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0.1 - Introduction to Racket and CS61AS


First Day Instructions

            Before We Begin...


Before we start Lesson 0.1, we'll have to get your lab account set up. You'll find the instructions here. If you are not currently enrolled in CS 61AS, skip to Step 11.


Once you've finished, move on to the next section!


Lesson 0.1 Intro

            Welcome!


Welcome to CS 61AS! In this lesson, we'll explore the basics of the Racket programming language
and look at the Big Ideas behind this course.


About This Text


This so-called "textbook" consists of 17 lessons, most of which are based on
the classic text Structure and Interpretation of Computer Programs, which gives this course its name.


A lesson is composed on multiple sections, or pages.
Use the table of contents on the right to navigate through the lesson.


Lessons are structured so that you learn by exploring, making mistakes, asking questions, and trying things out.


If you're reading this lesson in lab, you can raise your hand at any time to ask a question—a lab assistant
will come to your aid promptly.


Intro to Computer Science

            Note: All links in the following paragraphs are completely optional
reading and are included solely for the interest and amusement of the reader.


What Is Computer Science?


There isn't one right answer. Computer science means a lot of different
things to a lot of different people. For some, it means building a web
application that allows you to connect and keep up with your
friends. For others, it means engineering self-driving cars. For yet
others, it means lots and lots of math. And so on.


Generally speaking, computer science answers the following
questions:



	What can we compute?

	How do we compute it?

	What can we do with that?




In this sense, computer science isn't about computers—that's closer to
electrical engineering—and it isn't really a science—scientists
discover, we invent.


Computer scientists are like engineers: we build cool stuff, and we solve problems.


Complexity and Abstraction


All interesting problems in computer science are inherently complex—as are their solutions.


Consider your web browser, the program you're using to view this page.
Clearly, it solves an interesting problem. It's also highly complex:
when you type in a URL, your browser has to determine which
server to contact, ask that server to give it the webpage you're looking for,
download the webpage, interpret the webpage, and display it on your screen.
Each of these steps contains its own complex parts.


How does all of this fit together? In one word: abstraction!
Abstraction allows us to treat a complicated process as a single unit,
and to use that unit in an even more complex process.


We already use abstraction in our daily lives: To drive a car, we have to know how to steer and operate the pedals, but we don't have to know how the engine and drivechain work. To bake an apple pie, we need a recipe and an oven, but we need not grow our own apples or understand how they are grown. And to use the internet, we don't have to understand the protocols for requesting webpages—our browser abstracts that process away, so that anyone can browse the web quickly and easily.


In this course, we'll explore techniques for creating abstractions to solve problems.


Intro to Racket

            Introduction


Notice that in the previous page, there was little mention of programming
languages. That's because
in the grand scheme of things, programming languages don't matter. They only
matter because, for any given problem, one language might let us solve the
problem in fewer lines of code over another, or one language might let us
solve the problem more efficiently, and so on.


What of the problem of teaching computer science? Which language should we use
for that? We have chosen Racket, a dialect of Lisp.
We'll show basics of the language today, after which you can start thinking about computer science. As you learn more computer science, we'll incrementally show you more of the language.


Let's begin.




Basic Rules



	In Racket, parentheses (also known as parens) matter.

	When you ask a procedure to perform its action, you call it. This is also called invoking a procedure. Whenever you invoke a procedure, you must wrap the procedure call (the call to the procedure) in a set of parentheses.

	Everytime we invoke a procedure, we must follow prefix notation: the name of the procedure we're invoking is always the leftmost item in the parentheses.
All of the other things are arguments to that procedure—things we feed in to the procedure in order to get our answer.




Here's an example of an expression that demonstrates the three rules above:


(+ 1 2)



In this example, we're feeding the arguments 1 and 2 into the procedure +, which adds numbers.
We should expect the answer to be 3.


The Racket Interpreter


Of course, a language is no good if no one speaks it. For programming
languages, the dialog is usually  between the programmer and a computer. An
interpreter is a program that translates a particular language into
actions and computations that the computer performs. Interpreters are one way
to make computers do things, such as computing large prime numbers or counting all the distinct words used in all of Shakespeare's plays.


Let's start our Racket interpreter. We do this by opening a terminal and then typing in racket and hitting Enter.
You've just started the Racket interpreter!


You can now type Racket expressions for the interpreter to evaluate:


-> (+ 1 2)
3



What Will Racket Output?


Type each example below into the interpreter to try it out.
Before entering each example, take a moment and think about what the output should be.
Some of these examples cause errors—why do they do that? (If something errors, the interpreter will output an error message.)


5
(+ 2 3)
(+ 5 6 7 8)
(+ (* 3 4) 5)
(+)
+
(sqrt 16)
(/ 3 2)
(/ 3 0)

'hello
(first 'hello)
(first hello)
(butfirst 'hello)
(bf 'hello)
(first (bf 'hello))
(first 274)
(+ (first 23) (last 45))

(define pi 3.14159)
pi
'pi
(+ pi 7)
'(good morning)
'(+ 2 3)





Takeaways


In this section, we learned the basics of Racket. We also tried our hands at the Racket interpreter.


The Big Ideas Behind CS 61AS

            This class is full of Big Ideas! Here are the first two:



	The purpose of this course is to help you learn.

	The staff are here to help you succeed.




If at any point you feel like this isn't the case, speak up!
The following are all effective methods for getting help:



	Speak to a staff member in lab

	Post on Piazza

	Go to a TA's office hours

	Email a TA






Big Ideas


In 61AS, we will explore many Big Ideas that underlie all of Computer Science. Here are some of the big ones:



	Functions: To start off with, we'll think of programs as combinations of functions.
We'll examine what a function is and what we can use them for.

	Data: Data is another thing essential to programs. Making data the central focus of our programs leads to powerful results.

	State: We'll then answer the question, "How do we program assuming we can change things over time?"

	Interpreters: We go into how an interpreter works, and we'll even write our own. We'll also consider a few other interpreters and see what they all have in common.

	Programming Paradigms: We explore alternate ways of thinking about programs.




Takeaways


In this section, we learned about the Big Ideas behind CS 61AS.
Everything we'll cover in this class falls into one of these categories.


Alternatives to CS 61AS

            CS 61AS is a lab-centric class—there are no lectures.
Students learn by working through guided readings and participating in discussions.


While some students find this format appealing, others may not.
The CS department at UC Berkeley offers two other introductory CS courses, listed below.


CS 61A


CS 61A is the sister course to CS 61AS.
It is offered in the traditional lecture-lab-discussion format, and covers the same Big Ideas as 61AS,
except in the Python language and with a slightly different syllabus.
CS 61A is the equivalent of Units 1-4 of CS 61AS.


Find out more about CS 61A here: http://www-inst.eecs.berkeley.edu/~cs61a/.


CS 10


CS 10 is called "The Beauty and Joy of Computing".
It covers the equivalent of Units 0 and 1 of 61AS, and also aims to provide a gentle intro to Computer Science.
CS 10 uses a graphical language called Snap! that allows you to program by dragging and dropping components.


Find out more about CS 10 here: http://inst.eecs.berkeley.edu/~cs10/.


So What's the Difference?


Each class has something different to offer. To see an organized comparison of CS 10, CS 61A, and CS 61AS, take a look at this document.


Homework 0.1

            Homework 0.1 Intro


In this homework, you'll use what you've learned so far to solve
some problems. You'll also be doing a bit of reading and introducing yourself.


Remember: you can view the due date for this homework on either the front page
or the deadlines spreadsheet.


Template


A template file provides the basic skeleton for a homework assignment.


If you're on a lab computer, type the following command into your terminal to copy the template to the
current directory (note the period at the end):


    cp ~cs61as/autograder/templates/hw0-1.rkt .



Or you can download the template here.


Language Declaration


You may have noticed that the first line says


#lang racket



This tells the Racket interpreter that your file consists of Racket code.
This might seem redundant, but the Racket interpreter is also capable of understanding other Lisp-family languages, including
user-defined ones.


The bottom line is that you must include
this line at the top of every Racket file you write. If you don't, you'll see this error message:


default-load-handler: expected a `module' declaration



Autograder


An autograder is a program that checks the validity of your code for a particular assignment.


If you are working on the lab computers, the grader command will run the autograder; see below for details.
 If you are working on your own personal machine, you should download grader.rkt and the HW 0-1 tests.


Exercise 0


First, introduce yourself to the staff!


In your homework file, answer the following questions:



	What is your name?

	What is your major?

	Are you a returning student? (That is, did you take 61AS last semester?)

	What made you to take 61AS?

	Tell us some interesting things about yourself.




Now, see if you can find a post on Piazza called "Hello World!". Make a follow-up on that post and introduce yourself. Be sure to include:



	Name

	Major and year

	One interesting fact about yourself

	Why you're taking the course




Exercise 1


Here is the syntax for defining a procedure:


(define ([name of procedure] [variables]) [body of procedure])



For example, you saw how to define a square procedure:


(define (square x) (* x x))



After defining it, you can use the procedure square to find the square of any
number you want:


-> (square 3)
9



Using square, define a procedure sum-of-squares that takes two arguments and returns the sum of the squares of the two
arguments:


-> (sum-of-squares 3 4)
25



Make sure you test your work!


After you've written your procedure, run the autograder for this exercise and
check if you defined your procedure correctly.  If you are on the lab computers, type the following into your terminal:


grader hw0-1 hw0-1.rkt sum-of-squares



If you are working on your own machine, type the following into your terminal:


racket -tm grader.rkt -- hw0-1-tests.rkt hw0-1.rkt sum-of-squares



Interlude


Before we present the next exercise, we need to cover some more Racket features.
Students taking Unit 0 should consider this a preview—we'll explore these features more in Lesson 0.2.


Words and Sentences


We've shown you some interesting procedures that allow you to do stuff to words and sentences:



	' makes a word (e.g., 'pi) or a sentence (e.g., '(good morning)).

	first takes a word and returns the first letter of that word, or it takes a sentence and returns the first word of that sentence.

	butfirst (or bf) takes a word/sentence and returns everything but the first letter/word.




Keep these procedures and concepts in the back of your mind. They'll come back
in later exercises and lessons.


Special Forms


Racket has some control features that allow you to choose what to do next
based on a test. These features are examples of special forms—procedures with special evaluation rules.
We'll talk about special forms more later in the course.


if


In Racket, if is a special form that takes three arguments.
if always evaluates its first argument. If the
value of that argument is true, then if evaluates its second argument and
returns its value. If the value of the first argument is false, then if
evaluates its third argument and returns that value.


Here is an example of proper if syntax:


(if (= 5 (+ 2 3))
    'yay!
    (/ 1 0))



The result of this example expression is the word 'yay!. Because the first expression is true,
the last argument to if is not evaluated, which means we don't get a
divide-by-zero error.


cond


cond is a special form that acts just like if,
except with multiple options. Each condition is tested one at a time until one evaluates to true.
An else clause is typically used at the end to capture cases where all prior conditions evaluated to false.


Here is an example:


(cond ((= 3 1) 'wrong!)
      ((= 3 2) 'still-wrong!)
      (else 'yay))



In this example, the first two conditions return false, so the overall expression evaluates to the word 'yay!.


Some good procedures to use for the test cases are >, <, and =.


and


and checks whether all of its arguments are true:


-> (and (> 5 3) (< 2 4))
#t
-> (and (> 5 3) (< 2 1))
#f



(Note that #t and true can be used interchangeably, as can #f and false.)


Why is and a special form? Because it evaluates its arguments and stops as soon as
it can, returning false as soon as any argument evaluates to false. This turns
out to be useful. Suppose we have the following:


(define (divisible? big small)
  (= (remainder big small) 0))
(define (num-divisible-by-4? x)
  (and (number? x) (divisible? x 4)))



Then we can do this:


-> (num-divisible-by-4? 16)
#t
-> (num-divisible-by-4? 6) 
#f
-> (num-divisible-by-4? 'aardvark)
#f



Notice how the last call didn't fail. Since (number? 'aardvark) evaluates to false,
and returns #f before evaluating its second argument.
Calling (divisible? 'aardvark 4) would cause an error:


-> (divisible? 'aardvark 4)
; remainder: contract violation
;   expected: integer?
;   given: 'aardvark
;   argument position: 1st
; [,bt for context]



This message simply says that the procedure remainder reported an error because it expected an integer 
but instead got 'aardvark. 


A subtle point about and: if all its arguments evaluate to
true, instead of simply returning #t it will return the value of its last
argument.


-> (and #t (+ 3 5))
8
-> (and (- 2 1) 100)
100



Anything that is not #f is #t. So, 100 is true, 'foo is true, and so on.


or


or checks whether any of its arguments are true.


-> (or (> 5 3) (< 2 1))
#t
-> (or (> 5 6) (< 2 1))
#f



Why is or a special form? It evaluates its arguments and stops as soon as
one of its arguments evaluates to true.


> (or #f #t (/ 1 0))
#t



A subtle point about or: like and, if any one of its arguments evaluate to true, or returns the value of the evaluated expression rather than just simply #t.


-> (or #f (+ 1 2 3))
6
-> (or (* 3 4) (- 2 1))
12



Exercise 2


Part a


Take a moment to read through the above and try everything out in the interpreter.
Then, write a procedure can-drive that takes the age of a person as an argument. If the age is below 16, return the sentence
'(Not yet). Otherwise, return the sentence '(Good to go). Make sure to test your code in the
interpreter.


After you've finished this exercise, run the autograder on your code to check
if it's correct by typing the following into your terminal:


grader hw0-1 hw0-1.rkt can-drive



Or, on your own machine:


racket -tm grader.rkt -- hw0-1-tests.rkt hw0-1.rkt can-drive



Part b


Write a procedure fizzbuzz that takes a number and outputs the word 'fizz if the number is divisible by 3,
'buzz if it's divisible by 5, 'fizzbuzz if it's divisible by both 3 and 5, and otherwise, the number itself.
You may find the function remainder useful. Make sure to test your code in the interpreter.


After you've finished this exercise, check your solution by typing the
following into your terminal:


grader hw0-1 hw0-1.rkt fizzbuzz



Or, on your own machine:


racket -tm grader.rkt -- hw0-1-tests.rkt hw0-1.rkt fizzbuzz



Exercise 3


Why did the Walrus cross the Serengeti?


To figure out the answer, look on Piazza for the post labeled "Answer to Homework 0-1 Exercise 3".


Exercise 4


See what happens when you type the following snippets of code into the
interpreter:


(define (infinite-loop) (infinite-loop))

(if (= 3 6)
  (infinite-loop)
  (/ 4 2))



Now we want to see if we can write a procedure that behaves just like if.
Here's our attempt:


(define (new-if test then-case else-case)
  (if test
    then-case
    else-case))



Let's try it out:


(new-if (= 3 6)
  (infinite-loop)
  (/ 4 2))



It didn't work!


Here is another example that breaks:


(new-if (= 3 6)
  (/ 1 0)
  (/ 4 2))



Why didn't new-if behave like if? What can you learn about if from this
example? Think about this and try to figure it out. Expect to see it again.


Recommended Readings


The following readings are recommended:



	Lecture Notes 1

	SICP 1.1




Manual Testing


Before running the autograder, you should test your code manually in the Racket interpreter.
This is important because the autograder doesn't always test all possible cases.


To load individual definitions into Racket, start the Racket interpreter from your terminal by typing


racket



then copy and paste definitions from your file into the interpreter.


To load your entire file into Racket, use


racket -it hw0-1.rkt



Running the Autograder


Before submitting any homework, there are two checks you need to make:



	Your homework must load into the Racket interpreter. Any submissions that do not load will not receive any credit.

	Run your homework through the autograder to check your answers. If you cannot get your homework to pass all the autograder tests, don't fret.
Submit your homework anyway. Remember, homeworks are graded based on effort. 




To run the autograder, type the following into the terminal:


grader <assignment name> <file name>



For example, to run the autograder on this homework, type the following into
the terminal:


 grader hw0-1 hw0-1.rkt



Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


0.2 - More Practice with Racket


Lesson 0.2 Intro

            Introduction


This lesson covers the Racket programming language in more depth, and also expands on Functional Programming, a programming paradigm that solves problems through the evaluation of functions, and one of the Big Ideas we discussed in Lesson 0-1.


Prerequisites and What to Expect


Prerequisites: Make sure you have fully completed Lesson 0-1 and Homework 0-1 before starting on this Lesson.


What to Expect: In this lesson, we will:



	go over the basic syntax of Racket

	use Racket to solve simple problems

	highlight the idea of Functional Programming




Introduction to Racket


Racket is a dialect of Lisp, i.e.,



  "the greatest single programming language ever designed" -- Alan Kay




Why do we learn it?



  "Lisp is worth learning for the profound enlightenment experience you will have when you finally get it; that experience will make you a better programmer for the rest of your days [...]" -- Eric Raymond




Readings


Here are some outdated readings (written for the Scheme language) that may or may not be useful in understanding this lesson. If you find these readings confusing, feel free to skip them:



	SS Ch. 3 - Expressions

	SS Ch. 4 - Defining Procedures

	SS Ch. 5 - Words and Sentences

	SS Ch. 6 - Booleans, Predicates, and Special Forms




Continue to the next subsection to learn the basics of Racket!


Expressions and Evaluation

            Introduction


In this subsection, you will learn more about Functional Programming. You will also learn about expressions and evaluation.


Functional Programming


Before we jump into the Racket language itself, we will go over the deceptively simple big idea for this lesson. In short, it states that, when evaluating an expression, we can take the value returned by one function and use it as an argument to another function. By "hooking up" two functions in this way, we invent a new, third function. For example, let's say we have a function that adds the letter s to the end of a word (in pseudo-code):


add-s("run") = "runs"



and another function that puts two words together into a sentence:


sentence("day", "tripper") = "day tripper"



We can combine these to create a new function that represents the third person
singular form of a verb:


third-person(verb) = sentence("she", add-s(verb))



That general formula looks like this when applied to a particular verb:


third-person("sing") = "she sings"



The way we say it in Racket is


(define (third-person verb)
  (sentence 'she (add-s verb)))



Don't worry if this is confusing or unintuitive to you; you'll get plenty of practice on this concept. Nevertheless, it will turn out that we can express a wide variety of computational algorithms by linking functions together in this way. This linking is what we mean by functional programming.


Expressions


The Big Idea: You can ask Racket "questions", called expressions. The Racket interpreter will then "think" about your question, or evaluate your expression. You then get back answers, called values. Everything we type into Racket (that does not error) is an expression.


When you want Racket to do something (e.g. add two numbers together), you write an expression in prefix notation. Although all non-error inputs are expressions, the most interesting kind is a call to a procedure. Take a look at the following example:


(+ 3 4)



In this example:



	+ is the procedure, or the operator of the expression

	3 is an argument to +, or an operand of the expression

	4 is also an argument/operand




This syntax allows us to nest expressions:


(* (max 2 3) (/ 8 4))




	*, max, and / are all procedures

	* is the operator of the large expression, while (max 2 3) and (/ 8 4) are the operands of the large expression

	max is the operator of the first subexpression, while 2 and 3 are the operands of the first subexpression

	/ is the operator of the second subexpression, while 8 and 4 are the operands of the second subexpression





Test Your Understanding


Which of the following are valid Racket expressions? Select all that apply.








Now, open up the Racket interpreter on your computer and try out some expressions of your own.


Evaluation


Racket evaluates expressions using Applicative Order (taught in Lesson 1), which follows these rules:



	Evaluate the operator and operands

	Apply the operator to the operands




How Racket actually understands and evaluates an expression is rather complex, and is gone over in Lesson 11. For now, let's move on to the next subsection!


Words and Sentences

            Introduction


When we think of functions, we automatically assume math and numbers. In fact, in Racket and any other functional programming language, we can have functions that manipulate non-numerical values. 


Words


Let's say you defined a procedure called square: 


(define (square x) (* x x))



But later wanted to access the actual word 'square instead of the procedure, we would simply type 'square (single quotation mark followed by the word square) to get the literal word. Notice how you do not need parentheses around the expression if you working with just a single word.


Sentences


Sentences are just a collection of words grouped together with parentheses. To create a sentence, you need need one quotation outside the parentheses, like this '(hi hey hello). Try practicing a bit by writing one or two words and sentences.



Test Your Understanding


Try each of the following in the Racket interpreter.

'61AS


'(I love 61AS!)


('I 'love '61AS!)





quote


The ' you saw in the above sections is actually an abbreviation for a function called quote. This means that:



	'x is equivalent to (quote x)

	'(hi hey hello) is equivalent to (quote (hi hey hello))




quote is different from most other procedures in that it does not evaluate its argument. Functions that exhibit this type of behavior are special forms. You do not need to understand special forms for now; we will go more in depth on this topic in a later subsection. For now, it will suffice to know that quote is a function that takes in one argument and returns it as a word or sentence. Take the following example:


-> (define x 4)
x
-> x
4
-> (quote x)
x
-> 'x
x



Since quote is used quite often, it is given the abbreviation ', a single quotation mark. Remember that, although it may seem this way in its abbreviated form, quote is simply a function that can be called like any other function in Racket.


Word and Sentence Selectors


When working with words and sentences, it would help to have procedures that manipulate them. The procedures themselves are simple. Combining them correctly to accomplish your goal is going to the hard part. For now, here is a list of procedures you can use to select data from words or sentences.


first


first takes in a word and returns the first letter of the word, or takes in a sentence and returns the first word of the sentence.


-> (first 'hello)
'h
-> (first '(hi hey hello))
'hi



last


last takes in a word and returns the last letter of the word, or takes in a sentence and returns the last word of the sentence.


-> (last 'hello)
'o
-> (last '(hi hey hello))
'hello



butfirst or bf


butfirst, or its abbreviated version bf, takes in a word and returns all but the first letter of the word, or takes in a sentence and returns all but the first word of the sentence.


-> (butfirst 'hello)
'ello
-> (bf 'hello)
'ello
-> (butfirst '(hi hey hello))
'(hey hello)
-> (bf '(hi hey hello))
'(hey hello)



butlast or bl


butlast, or its abbreviated version bl, takes in a word and returns all but the last letter of the word, or takes in a sentence and returns all but the last word of the sentence.    


-> (butlast 'hello)
'hell
-> (bl 'hello)
'hell
-> (butlast '(hi hey hello))
'(hi hey)
-> (bl '(hi hey hello))
'(hi hey)



item


item takes in a number n and a word and returns the nth letter in the word. Or, it takes in a number n and a sentence and returns the nth word in the sentence.


-> (item 2 'hello)
'e
-> (item 2 '(hi hey hello))
'hey




Test Your Understanding


Try and guess what Racket will output for the following expressions, then check your answers with the Racket interpreter.

(first '(foo foo))



(bf '(foo foo))



(equal? (first '(foo foo)) (bf '(foo foo)))

equal? is a function that checks if two elements are the same.




Word and Sentence Constructors


Now that we can take apart a word or sentence, lets learn how to put them
together. 


word


word takes in any number of words as arguments concatenates them into one big word.


-> (word 'play 'ground)
'playground
-> (word 'fo 'o 'b 'ar)
'foobar
-> (word 'cs '61 'as)
'cs61as



sentence or se


sentence, or its abbreviated version se, takes in any number of words or sentences as arguments and creates one sentence of all of its arguments. 


-> (sentence 'I 'love 'cs '61as!)
'(I love cs 61as!)
-> (se 'foo 'bar)
'(foo bar)
-> (se 'foo '(foo bar) 'bar)
'(foo foo bar bar)



The Empty Word


There is an empty word that you can combine with other words which will have no effect when used. This is represented by "".


-> (word 'foo "")
'foo
-> (word "" 'foo)
'foo
-> (word "" "")
""



The Empty Sentence


There is also an empty sentence that you can combine with other sentences which will have no effect when used. This is represented by '().


-> (se 'hi 'there '())
(hi there)
-> (se '() 'hi 'there)
(hi there)
-> (se 'hi '() 'there)
(hi there)
-> (se '() '() '())
'()



At the moment it may not be clear as to why need these empty words and sentences. Keep these in mind for now, as they will be very useful when we learn recursion in Lesson 0-3.



Test Your Understanding


Note: This is Exercise 1 on your Homework.



Let's build some functions to deal with words and sentences. We'll define the second procedure for you - this procedure returns the second letter in a word, or the second word in a sentence.

(define (second item)
    (first (bf item)))


  	Write a procedure `first-two` that takes a word as its argument, returning a two-letter word containing the first two letters of the argument.

  	Write a procedure `two-first` that takes two words as arguments, returning a two-letter word containing the first letters of the two arguments.

  	Now write a procedure `two-first-sent` that takes a two-word sentence as argument, returning a two-letter word containing the first letters of the two words.






Pitfalls


Basically the only punctuation you can use when working with words and sentences are ! and ?. You have already seen that the quote ' has a special meaning in Racket. The period and comma also have special meaning, so you cannot use those, either.


As you saw in an earlier exercise, there's a difference between a word and a sentence containing one word. For example, people often mistakenly assume that the butfirst of a two-word sentence such as (computer science) is 'science. In actuality, it is a sentence with one word: (science). Another way of proving the difference between a word and a one-word sentence is by count-ing both of them:


-> (bf '(computer science))
'(science)  

-> (count (bf '(computer science)))  
1 ;; because there is ONE word in the sentence.

-> (first (bf '(computer science)))
'science

> (count (first (bf '(computer science))))  
7 ;; because there are SEVEN letters in the word 'science



Takeaways



	We can build words and sentences using word and sentence, respectively.

	We can also make words and sentences using a quote.  

	We can retrieve parts of a word or parts of a sentence by using procedures like first, butfirst, last and butlast.




Defining Variables and Procedures

            Introduction


Imagine a language in which we cannot use names to refer to computational objects. As we write more and more complex programs, keeping track of the details of each step of computation would get increasingly difficult and inconvenient. Thus, we assign values, which are the computational object, to variables, identified by a name, by using define. This is Racket's simplest means of abstraction.


Though you have seen various variable and procedure definitions scattered throughout the previous sections, we have not yet formally taught how to use define.


To start off, here are a few example expressions that use define. Try these out in the Racket interpreter to see what they do.


-> (define x 5)
-> (define (square x) (* x x))
-> (define y (square 3))
-> (define z (+ x y))



Defining Variables


The general form of a variable definition is as follows:


(define [name] [value])



The [name] represents a variable to which values are assigned to. For example:


-> (define x 5)
-> x
5



x is a variable, and 5 is its value. 


[value] can be replaced with any type of value, even expressions. An important property of variable definitions is that the value of the definition is completely evaluated before being assigned to its variable.


-> (define x (+ 5 5))
-> x
10



Why is x not (+ 5 5)? Because when we define x, we must first evaluate the expression (+ 5 5) to its simplest form, 10. We then assign 10 to x.



Test Your Understanding


What happens when we call (define x (/ 1 0))?



Defining Compound Procedures


Procedure definition is an even more powerful abstraction technique than variable definition, in which we can give a name to a compound operation and consequently refer to it as a unit. Let's start with a simple example by defining the square procedure:


(define (square x) (* x x))



We can understand this in the following way:


(define (square x) (   *     x      x))
   To    square x,  multiply x with x.



The general form of a procedure definition is as follows:


(define ([name] [formal parameters]) [body])



Notice how a significant difference this has from a variable definition is that the name and parameters are bound by parentheses. Recall that, besides quotes, a set of parentheses represents a procedure call. We can translate this by saying: When we call [name] with [formal parameters], we will do [body].



Test Your Understanding


A compound procedure can have any non-negative number of formal parameters, even 0. How do we correctly define a procedure named foo that takes in no arguments, and returns 5?








An important property of procedure definitions is that the body of the procedure is not evaluated until the procedure is called. This means that when we define square, we do not yet know that we need to multiply x by itself. Only when we call square on some number, say 3, do we know that we have to call (* 3 3).



Test Your Understanding


What happens when we call (define (x) (/ 1 0))?



Warning


One thing to pay attention to when creating compound procedures is naming. We need to be very careful when naming our procedures and formal parameters. Racket will not accept multiple definitions, which means that any procedure already defined cannot be used as the name of a compound procedure or a formal parameter. This is an example of a compound procedure definition that is NOT ALLOWED (try it in your interpreter to see why):


(define (foo sent word)
    (word sent word))



In both instances in the body, which word are we referring to, the parameter or the built-in procedure?


Nesting Procedures


Returning to the concept of nesting expressions, we can also nest procedures within other procedure definitions. As you did in Homework 0-1, we can define the procedure sum-of-squares by using the procedure square in its definition:


(define (sum-of-squares x y)
    (+ (square x) (square y)))



This roughly translates to: When we call sum-of-squares on x and y, we will add the square of x to the square of y.


A Summary


To clarify,


(define foo 10)




	This is a variable definition.

	foo is the variable name.

	10 is the value assigned to foo.




(define (square x) (* x x))




	This is a compound procedure definition.

	square is the procedure name.

	x is its only formal parameter.

	(* x x) is its body.




-> (square 3)
9




	This is an expression, and is also a procedure call.

	square is the procedure, and is the operator of this expression.

	3 is the argument to square, and is the operand of this expression.

	9 is the return value.




Takeaways



	We learned that we can use define as a means of abstraction

	We also learned how to define variables and compound procedures




The possibility of associating values and operations to symbols and later retrieving them means that the Racket interpreter must have some form of memory to keep track of these associative pairs. We call this memory the environment, which we will expand more on in Lesson 8.


Booleans and Predicates

            Booleans: True and False


Booleans are formally defined as a binary variable that has only two possible values: "true" and "false". These are extremely useful when expressing conditionals, or instructions for choosing an action based on the results of a test. A logical example of this would be: If we're out of milk, then go to the store. Else, add milk to our cereal and enjoy.


In order to test whether or not we are out of milk, we'll need to use booleans. Racket's "true" is represented by #t or true, while "false" is represented by #f or false.


-> (= 1 1)
#t

-> (= 1 2)
#f

> (if #t
    '(the condition was true)
    '(the condition was false))
(the condition was true)

> (if #f
    '(the condition was true)
    '(the condition was false))
(the condition was false)

> (if (= 1 1)
    '(the condition was true)
    '(the condition was false))
(the condition was true)



Predicates


A function that, when called, returns either true or false is called a predicate. For example, even? is a predicate used to test whether a number is even. 


-> (even? 2)
#t
-> (even? 3)
#f



Predicates will NEVER return a value other than #t or #f. Below is a list of some useful predefined predicates in Racket. This list is in no way comprehensive, and you will definitely discover many more predicates in future lesson.


Mathematical Operators


Racket has the standard mathematical operators that you will need to compare numerical values:



	< will return #t if the first argument is less than the second.

	> will return #t if the first argument is greater than the second.

	= will return #t if the two arguments are equal.

	<= will return #t if the first argument is less than or equal to the second.

	>= will return #t if the first argument is greater than or equal to the second.




WARNING: These predicates will only work on numbers. Using these to compare words, sentences, or any other type of value will produce errors.


-> (= (+ 3 3) 6)
#t
-> (= 'foo 'foo)
; =: contract violation
;   expected: number?
;   given: 'foo
;   argument position: 1st
; [,bt for context]



member?


member?, when given a letter and a word, returns #t if the word contains the letter, and #f otherwise. When member? is given a word and a sentence, it returns #t if the sentence contains the word, and #f otherwise.


-> (member? 'a 'aeiou)
#t
-> (member? 'b 'aeiou)
#f

-> (member? 'foo '(foo bar baz))
#t
-> (member? 'foobar '(foo bar baz))
#f



empty?


The predicate empty? takes in one argument of any type and returns #t if the argument is the empty word "" or the empty sentence '(), and #f otherwise.


-> (empty? "")
#t
-> (empty? 'foo)
#f

-> (empty? '())
#t
-> (empty? '(foo bar baz))
#f

-> (empty? 3)
#f



equal?


equal? takes in two arguments of any type and returns #t if they are the same, and #f otherwise.


-> (equal? (+ 1 1) 2)
#t
-> (equal? 3 1)
#f

-> (equal? 'foo 'foo)
#t
-> (equal? '(foo bar baz) '(foo bar baz))
#t

-> (equal? + +)
#t



Type Checkers


Racket also provides predicates that check whether a value is of a particular type:



	number? checks if a value is a number.

	word? checks if a value is a word.

	sentence? checks if a value is a sentence.

	boolean? checks if a value is a boolean.




Compound Procedures as Predicates


You can most definitely create your own predicates, since they are in fact procedures. For example:


(define (vowel? letter)
  (member? letter 'aeiou))



vowel? checks whether its argument letter is a vowel.



Test Your Understanding


Note: This is Exercise 2 on your Homework.



Write a predicate called teen? that takes in a number as its argument and returns #t if the number is between 13 and 19, inclusive.



Everything That Isn't False is True


When evaluating whether or not an expression is true or false, it is important to remember that anything is considered true unless it is false. This means that all numbers, words, sentences, and procedures are true, even "", '(), and 0. Here are some counter-intuitive examples to consider:


-> (false? "") ;; is "" false?
#f ;; no, it is not
-> (false? '())
#f
-> (false? 0)
#f
-> (false? false?) ;; is the procedure false? false?
#f ;; no, the procedure itself is not false



Logical Operators


We can also use logical operations in Racket.


and


and is a predicate that any number of arguments of any type. It returns the last element if everything was not false, and returns #f otherwise. For example:


-> (and 1 2 3)
3
-> (and (= 1 1) (member? 'a 'aeiou))
#t
-> (and (number? 'hi) 2 3)
#f



or


or is a predicate that takes any number of arguments of any type. It and returns the first true element, and returns #f otherwise. For example:


-> (or (even? 4) (= 1 1))
#t
-> (or 1 #f 2)
1
-> (or (even? 1) #f (number? 'foo))
#f



not


not takes a single argument of any type simply negates the argument that it takes in. For example:


-> (not #f)
#t
-> (not #t)
#f
-> (not 3)
#f
-> (not (and (and 3 3) (or #f #f)))
#t



nand


nand is equivalent to (not (and .... For example:


-> (nand #f #t)
...(not (and #f #t))
...(not #f)
#t



nor


nor is, you guessed it, equivalent to (not (or .... For example:


-> (nor #f #t)
...(not (or #f #t))
...(not #t)
#f



xor


xor takes two arguments of any type and, if exactly one (no more or less) of its arguments is not #f, return that argument. Otherwise, return #f.


-> (xor 11 #f)
11
-> (xor #f 11)
11
-> (xor 11 22)
#f
-> (xor #f #f)
#f



Special Forms

            The if Clause


Although we have done some exercises using if in the previous lesson, here is the general structure of the special form:


(if [test]
    [then]
    [else])



if is a special form, since it will not evaluate its arguments unless it is used. Here are a few examples:


-> (if #t
       'foo
       'baz)
'foo
-> (if #f
       'foo
       'baz)
'baz
-> (if (= 1 1)
       'foobar
       (/ 1 0))
'foobar



The last example shows why if needs to be a special form. Since (= 1 1) evaluates to #t, we never reach the else case, (/ 1 0), and successfully return 'foobar.


The cond Clause


It is possible to nest if expressions within itself, like this:


(define (roman-value letter)
  (if (equal? letter 'i)
      1
      (if (equal? letter 'v)
          5
          (if (equal? letter 'x)
              10
              (if (equal? letter 'l)
                  50
                  (if (equal? letter 'c)
                      100
                      (if (equal? letter 'd)
                          500
                          (if (equal? letter 'm)
                              1000
                              'huh?))))))))



This is useful for conditionals with many clauses. But, the more clauses, the messier and less readable your code becomes. A shorthand for nested ifs is the cond clause, which uses different syntax to complete the same task. Here's the roman-value function written using a cond statement:


(define (roman-value letter)
  (cond ((equal? letter 'i) 1)
        ((equal? letter 'v) 5)
        ((equal? letter 'x) 10)
        ((equal? letter 'l) 50)
        ((equal? letter 'c) 100)
        ((equal? letter 'd) 500)
        ((equal? letter 'm) 1000)
        (else 'huh?)))



As you can see, the cond clause lets you specify a series of conditions and possible values. The else clause at the end specifies the value to return when none of the previous predicates are true.


Translated into English, the above code reads:



	If the input letter is "i", the value is 1.

	If the input letter is "v", the value is 5.

	...

	If the input letter is "m", the value is 1000.

	Otherwise, when none of the above are true, the value is 'huh?.




The general structure of a cond clause is as follows:


(cond ([test1] [then1])
      ([test2] [then2])
      ...
      ([testn] [thenn])
      (else [else]))



Special Forms


Special forms are procedures that do not follow normal evaluation steps. We learned earlier that all arguments within an expression are evaluated before the procedure is applied to its arguments. This is not true with special forms. Of the predicates and clauses we've gone over so far, if, cond, or, and and are all special forms.



Test Your Understanding


The following expressions currently error. Rearrange their arguments in a way that will cause the expressions to not error and return the correct value. Do not change any argument values.

(and (/ 1 0) #f #t)
(or #f (/ 1 0) #t)




Suppose we decided to write our own if procedure called new-if and defined it like so:


(define (new-if test then else)
  (if test 
      then 
      else))



This should work exactly like if, since it's simply calling if in the body. But, since this is a compound procedure, it is not a special form. What happens when we call new-if like this?


(new-if (= 1 1) 'foo (/ 1 0))



Since new-if is not a special form, it will evaluate all of its arguments first before entering the body.



	(= 1 1) returns #t

	'foo returns 'foo

	(/ 1 0) returns-- wait a second...




And since (/ 1 0) errors, our new-if is a failed attempt to recreate the if special form.


if is Composable


To save time and code space, keep in mind that functions like if and cond can be used within an expression, instead of being a stand-alone expression. To demonstrate this, consider the following simple function:


(define (what-am-i age)
  (if (> age 21)
      '(i am a grownup)
      '(i am a child)))



Instead, we can rewrite it this way:


(define (what-am-i age)
  (se '(i am a) (if (> age 21)
                    'grownup
                    'child)))



Admittedly, there doesn’t seem to be much of a difference. It’s understandable, considering this is a simple function. When this technique is used in more complex functions, we save time by avoiding repetition. We can see above how the rewritten function only writes '(i am a) once, while the original definition writes it twice.


Pitfalls


The structure of a cond statement has very strict parenthetical rules. If you're code is erroring, it is very likely you missed a parenthesis or added an extra one. Thus, PAY ATTENTION TO PARENTHESES WHEN USING COND STATEMENTS!


Another issue is that and and or cannot be used as if they were in English. To clarify, suppose we have an expression that attempts to check whether an argument was either 'yes or 'no:


(equal? argument (or 'yes 'no))`



This is WRONG. or returns the first argument that is not false, and thus will return 'yes in this example. This expression ultimately is evaluated as:


(equal? argument 'yes)



If you want to check if the argument is either 'yes or 'no, you will need to do the following:


(or (equal? argument 'yes) (equal? argument 'no))



Last, but definitely not least, it is essential to avoid redundant code. Simple code is smart code, and will make complex programs much more readable and maneuverable. 


Example of redundant code:


(define (even? number)
  (if (not (odd? number))
      #t
      #f))



This is bad coding style. We can simplify this into just one line:


(define (even? number)
  (not (odd? number)))




Test Your Understanding


Note: This is Exercise 3 on your Homework.



Write a procedure indef-article that takes in a word as its only argument and returns a sentence. See examples below for how indef-article should work. Remember that the indefinite article for anything that starts with a consonant is "a", and the indefinite article for anything that starts with a vowel is "an". You can ignore any edge cases.

-> (indef-article 'beetle)
'(a beetle)
-> (indef-article 'apple)
'(an apple)




Homework 0.2

            Template


Type the following command at the terminal to copy the template file to the
current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw0-2.rkt .



Or you can download the template here.


Autograder


If you are working on the lab computers, the grader command will run the autograder.  If you are working on your own personal machine, you should download grader.rkt and the hw0-2-tests.


Exercise 0


The expression (+ 8 2) has the value 10. It is a compound expression made up of three atoms. For this problem, write five other Racket expressions whose values are also 10:



	An atom

	Another compound expression made up of three atoms

	A compound expression made up of four atoms

	A compound expression made up of an atom and two compound subexpressions

	Any other kind of expression




Exercise 1


Let's build some functions to deal with words and sentences. We'll give you the second procedure from the previous lab. You might also find the word function useful.



	Write a procedure first-two that takes a word as its argument, returning a two-letter word containing the first two letters of the argument.

	Write a procedure two-first that takes two words as arguments, returning a two-letter word containing the first letters of the two arguments.

	Now write a procedure two-first-sent that takes a two-word sentence as argument, returning a two-letter word containing the first letters of the two words.




-> (first-two 'ambulatory)
'am
-> (two-first 'brian 'epstein)
'be
-> (two-first-sent '(brian epstein))
'be



Exercise 2


Write a predicate teen? that returns #t if its argument is between 13 and 19, inclusive.


-> (teen? 19)
#t
-> (teen? (/ 39 2))
#f



Exercise 3


Write a procedure indef-article that takes in a word as its only argument and returns a sentence. See examples below for how indef-article should work. Remember that the indefinite article for anything that starts with a consonant is "a", and the indefinite article for anything that starts with a vowel is "an". You can ignore any edge cases.


-> (indef-article 'beetle)
'(a beetle)
-> (indef-article 'apple)
'(an apple)



Exercise 4


Write a procedure insert-and that takes a sentence of items and returns a new sentence with an and in the grammatically correct place.


-> (insert-and '(john bill wayne fred joey))
'(john bill wayne fred and joey)



Exercise 5


Write a procedure query that turns a statement into a question by swapping
the first two words and adding a question mark to the end of the last word. You can ignore any edge cases.


-> (query '(you are experienced))
'(are you experienced?)
-> (query '(i should have known better))
'(should i have known better?)
-> (query '(you were there))
'(were you there?)



Exercise 6


Write a procedure european-time to convert a time from American AM/PM
notation into European 24-hour notation. Also, write american-time, which
does the opposite.


-> (european-time '(8 am))
8
-> (european-time '(4 pm))
16
-> (european-time '(12 am))
0

-> (american-time 21)
'(9 pm)
-> (american-time 12)
'(12 pm)



Exercise 7


Write a procedure describe-time that takes a number of seconds as its argument and returns a more useful description of that amount of time. Assume that there are 365.25 days in a year. You only need to account for time periods up to a day.


-> (describe-time 45)
'(45 seconds)

-> (describe-time 930)
'(15.5 minutes)



Note


You may notice that Racket handles integer division a little strangely:


-> (/ 1 2)
1/2



You can force Racket to return numbers with decimal points (AKA floating-point numbers) by using decimal points in one or more of your arguments:


-> (/ 1.0 2)
0.5



Exercise 8


The following program doesn't work. Why not? Fix it and explain why.


(define (superlative adjective word)
  (se (word adjective 'est) word))



This is how superlative should work:


-> (superlative 'dumb 'exercise)
'(dumbest exercise)



Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


0.3 - Recursion and Racket


Lesson 0.3 Intro

            Introduction to Recursion



  "In order to understand recursion, one must first understand recursion."

  
  "Did you mean: recursion"




Prerequisites and What to Expect


Prerequisites: Make sure you are familiar with concepts taught in Lessons 0-1 and 0-2.


What to Expect: In this lesson, we will:



	Recursion - one of the central ideas of computer science. Open your mind and be prepared to see the magic recursion does!




Readings


Here are some outdated readings (written for the Scheme language) that we found useful in understanding recursion:



	SS Ch. 11 - Introduction to Recursion

	SS Ch. 12 - The Leap of Faith

	SS Ch. 13 - How Recursion Works

	SS Ch. 14 - Common Recursive Patterns




What is Recursion

            Recursion is a method for writing procedures that solve certain types of problems. These problems have solutions that depend on solutions to smaller instances of the same problem. Oftentimes, recursion has us repeat the same procedure over and over again. It looks a little like this:


[image: ]


What's peculiar about recursive procedures is that in order to call the procedure, we'll need to have the procedure call itself, which will have to call itself, which will-- let's go stare at an example.


Example: Factorial


In math, the factorial of a non-negative integer [mathjaxinline]n[/mathjaxinline], denoted by [mathjaxinline]n![/mathjaxinline], is the product of all positive integers less than or equal to n. For example, [mathjaxinline]3! = 3 * 2 * 1[/mathjaxinline]. Also, by definition, [mathjaxinline]0! = 1[/mathjaxinline].


How can we write the factorial procedure in Racket? This presents a challenge, since the numbers that we would like to multiply together depends on the number we want to find the factorial of, the argument.


Thus, we'll use recursion. Let's split it into two possible cases: 



	if [mathjaxinline]n ≥ 1[/mathjaxinline], then [mathjaxinline]n! = n * (n-1)![/mathjaxinline]

	if [mathjaxinline]n = 0[/mathjaxinline], then [mathjaxinline]n! = 1[/mathjaxinline]




Recursion depends heavily on conditionals. If we've finished, return some value. Otherwise, continue recursing. For the factorial example, we recurse until we reach [mathjaxinline]n = 0[/mathjaxinline], where we then return 1. We can use this to write factorial. Take a look at the Racket solution for factorial below and see if you can make sense of it. Try it out in the interpreter too! It's all right if you don't understand the code at the moment. We will go over recursion more explicitly in the next subsection.


(define (factorial n)
  (if (= n 0)
      1
      (* n (factorial (- n 1)))))



Takeaways


Here is what we covered in this subsection:



	What is recursion?

	How is factorial defined using recursion?




Move on to the next subsection to learn how recursion works.


How Recursion Works

            Breaking Down Recursion


Let's see how recursion can magically find the factorial of any number. We've replicated the code below:


(define (factorial n)
  (if (= n 0)
      1
      (* n (factorial (- n 1)))))



factorial returns 1 when n is 0, otherwise it returns the product of n
and the factorial of n - 1.


Every recursive procedure uses conditionals, and will need two cases:



	Base case: This case ends the recursion. Any input to a recursive procedure will eventually reach the base case.

	Recursive case: This case reduces the size of the problem. The recursive case will always try to make the problem smaller until it reaches the base case.




There can be more than one base case or recursive case in a recursive procedure, but there must be at least one of each in order for any procedure to be correct and recursive.


There is one base case and one recursive case in our factorial procedure. Can you identify them?



Test Your Understanding


The case in which `n` is `0` is the base case of factorial. Consider this alternate definition of factorial, which has no base case:

(define (factorial n)
  (* n (factorial (- n 1))))










What is wrong with this alternate definition?








The second case in which we call factorial within itself is the recursive case. Notice that the recursive call solves a smaller problem (i.e., (factorial (- n 1))) than the one we were originally given. Consider this alternate definition of factorial:

(define (factorial n)
  (if (= n 0)
      1
      (factorial n)))










What's wrong with this alternate definition?








Which of the following statements must hold for every recursive procedure you write? Choose all that apply.







Leap of Faith


At this point, you may still be wondering how a function can be defined in terms of itself. If you use factorial in the middle of defining factorial, shouldn't you get an error saying that factorial isn't defined yet? In order to make it work, you have to believe that it works. This is, in a sense, a leap of faith.


The leap of faith is actually a technique for writing recursive procedures. We must imagine that the procedure you are writing already works for any problem smaller than the one you are currently tackling. Thus, while you are thinking about how to compute (factorial 5), imagine that (factorial 4) has already been solved. This will keep your own thoughts from getting stuck in an infinite loop.


Back in Lesson 0-2, we stated an important property of defining procedures, where the procedure body is not evaluated when it is definted. This is the technical reason why recursion can work. Thus, define is a special form that does not evaluate its arguments and keeps the procedure body from being evaluated. The body is only evaluated when you call the procedure outside of the definition.



Test Your Understanding


Which of these expressions cause an error in Racket? Select all that apply.








Enter each expression into the Racket interpreter and see what happens.



factorial Revisited


Let's take a look at the definition of factorial again.


(define (factorial n)
  (if (= n 0)
      1
      (* n (factorial (- n 1)))))



If we would like to evaluate (factorial 6), then we reach the else case of the if statement and reduce the problem to (* 6 (factorial 5)). To simplify this further, we'll need to evaluate (factorial 5). Thus, we get (* 5 (factorial 4)). If we substitute this into the original expression, we get (* 6 (* 5 (factorial 4))). A few more recursive calls later, we'll get something like this:


(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0)))))))



What should we do with (factorial 0)? This is the base case, and we should just return 1. Thus, we get this expression:


(* 6 (* 5 (* 4 (* 3 (* 2 (* 1 1))))))



This is simply a series of nested multiplication expressions, which we can simplify easily, from inside out: 


(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
720



In Racket, there is a very useful procedure called trace, which takes a procedure as an argument and returns the process of the procedure when the procedure is invoked.


In your Racket interpreter, type (trace factorial) after defining the factorial procedure, then call (factorial 6). What do you see? If you no longer want to trace the procedure, simply type (untrace factorial).


Example: Fibonacci Numbers


Consider computing the sequence of Fibonacci numbers, in which each number is
the sum of the preceding two: 


\begin{align} 0, 1, 1, 2, 3, 5, 8, 13, 21 \end{align}


In general, the Fibonacci numbers can be defined by the following rule:


\begin{align}
Fib(n) =
\begin{cases}
0, & \text{if n = 0}
\\
1, & \text{if n = 1}
\\
Fib(n - 1) + Fib(n - 2), & \text{otherwise}
\end{cases}
\end{align}


We can immediately translate this definition into a recursive procedure for computing Fibonacci numbers:


(define (fib n)
  (cond ((= n 0) 0)
        ((= n 1) 1)
        (else (+ (fib (- n 1))
                 (fib (- n 2))))))



Consider what happens when we call (fib 2). The procedure makes two recursive calls (fib 1) and (fib 0), which return 1 and 0 respectively. These numbers are added together, and the procedure returns 1.


You may be wondering if it's really necessary to have two separate base cases. Consider what would happen if we left out the base case for when n is 1. (fib 1) would call (+ (fib 0) (fib -1)). (fib 0) would return 0, but (fib -1) would never reach a base case, and the procedure would loop indefinitely.


Example: Pig Latin


You may be familiar with Pig Latin, which is a language game where words in English are altered according to a simple set of rules: take the first consonant (or consonant cluster) of an English word and move it to the end of the word and append "ay" to the word. For example, "pig" yields "igpay", "trash" yields "ashtray", and "object" yields "objectay".


We can write Pig Latin in Racket using recursion and helper procedure:


(define (pigl wd)
  (if (pl-done? wd)
      (word wd 'ay)
      (pigl (word (bf wd) (first wd)))))

(define (pl-done? wd)
  (vowel? (first wd)))

(define (vowel? letter)
  (member? letter '(a e i o u)))



As a reminder, member? is a Racket primitive procedure that takes two arguments, a letter and a word and returns true if the letter is in the word.


Pig Latin is done when a vowel is found, so the base case is when pl-done? returns true, and it just concatenates "ay" at the end of the word. Otherwise, in the recursive case, it calls itself with the concatenation of the butfirst of the word and the first of word.  Think about what happens if the word contains no vowels.


Use your Racket interpreter to try out this implementation of pigl. Don't forget to take advantage of the trace procedure!


Example: sum-sent


Suppose we have a sentence of numbers, such as the one below: 


(define sent '(1 2 3 4 5))



We want to define a procedure called sum-sent that can find the sum of all the numbers in sent, but we also want sum-sent to be able to find the sum of any sentence of numbers. Since the output depends on the size of the input sentence, we will have to use recursion!


Let's take the leap of faith. Imagine that sum-sent already knows how to calculate the sentence containing all but the first number, e.g, '(2 3 4 5). To find this, we would simply call (sum-sent (bf sent)), and we should have faith that it will give us the correct sum. Given that, we know that: 


(sum-sent '(1 2 3 4 5)) ==> (+ 1 (sum-sent '(2 3 4 5)))



If we generalize this for any sentence of numbers, this gives us our recursive case:


(+ (first sent) (sum-sent (bf sent)))




Test Your Understanding


What happens when we stop here and define sum-sent as follows?

(define (sum-sent sent)
  (+ (first sent) (sum-sent (bf sent))))









We're missing the base case! To solve this problem, we must add a case that will handle the empty sentence. The predicate empty? can be used to check for the empty sentence. Here is the completed version of sum-sent:


(define (sum-sent sent)
  (if (empty? sent)
      0
      (+ (first sent) (sum-sent (bf sent)))))




Test Your Understanding


Suppose we have a sentence of negative numbers, '(-1 -3 -4 -6). What will Racket output? Run through this example using the code for sum-sent above without typing it into the interpeter. Then, use the interpreter to check your work.





Feel free to try out more examples with sum-sent in the Racket interpreter. If the recursion is confusing, try looking at what trace outputs.


Exercises



Test Your Understanding: count-ums



When you teach a class, people will get distracted if you say "um" too many times. Write a procedure called count-ums that takes in a sentence of words as its arguments and counts the number of times "um" appears in that sentence:

-> (count-ums '(today um we are going to um talk about the um combining method))
3










Write count-ums recursively.


Hint #1: What should happen when the sentence is empty?

Hint #2: What should happen when the first word of the sentence is "um"?

Hint #3: What should happen when the first word of the sentence is NOT "um"?





Test Your Understanding: countdown



Write a procedure called countdown that takes in a number and works as follows:

-> (countdown 10)
'(10 9 8 7 6 5 4 3 2 1 blastoff!)
-> (countdown 3)
'(3 2 1 blastoff!)
-> (countdown 1)
'(1 blastoff!)
-> (countdown 0)
'blastoff!




Common Recursive Patterns

            The "Every" Pattern


Here's a procedure to square every number in a sentence of numbers:


(define (square-sent sent)
  (if (empty? sent) `
      '()
      (se (square (first sent))
          (square-sent (bf sent)))))



Here's a procedure to translate every word of a sentence into Pig Latin:


(define (pigl-sent sent)
  (if (empty? sent)
      '()
      (se (pigl (first sent))
          (pigl-sent (bf sent)))))



The pattern here is pretty clear. Our recursive case will do something straightforward to the first of the sentence, such as squareing it or pigling it, and we'll combine that with the result of a recursive call on the butfirst of the sentence.



Test Your Understanding


Note: This is Exercise 5 on your Homework.


Write a procedure called initials that takes in a sentence as its argument and returns a sentence of the first letter of each word in the sentence. For example:

-> (initials '(if i needed someone))
'(i i n s)




The "Keep" Pattern


In the "every" pattern, we collect the results of transforming each element of a word or sentence into something else. This time we'll consider a different kind of problem: choosing some of the elements and filtering out the others.


First, here is a procedure to select the three-letter words from a sentence:


-> (define (keep-three-letter-words sent)
     (cond ((empty? sent) '())
           ((= (count (first sent)) 3)
             (se (first sent) (keep-three-letter-words (bf sent))))
           (else
             (keep-three-letter-words (bf sent)))))

-> (keep-three-letter-words '(one two three four five six seven))
'(one two six)



Next, here is a procedure to select the vowels from a word:


-> (define (keep-vowels wd)
     (cond ((empty? wd) "")
           ((vowel? (first wd))
             (word (first wd) (keep-vowels (bf wd))))
           (else
             (keep-vowels (bf wd)))))

-> (keep-vowels 'napoleon)
'aoeo



Let's look at the differences between the "every" pattern and the "keep" pattern. First of all, the "keep" procedures have three cases, instead of just two as in most of the "every" procedures. In the "every" pattern, we only have to distinguish between the base case and the recursive case. In the "keep" pattern, there is still a base case, but there are two recursive cases: we have to decide whether or not to keep the first available element in the return value. When we do keep an element, we keep the element itself, not some function of the element.



Test Your Understanding


Write a procedure called numbers that takes a sentence as its argument and returns another sentence containing only the numbers in the sentence. You may find the number? predicate useful.

-> (numbers '(76 trombones and 110 cornets))
'(76 110)




The "Accumulate" Pattern


Here are two recursive procedures for functions that follow the "accumulate" pattern, which combines all of the elements of the argument into a single result:


-> (define (addup nums)
     (if (empty? nums)
         0
         (+ (first nums)
            (addup (bf nums)))))
-> (addup '(8 3 6 1 10))
28

-> (define (scrunch-words sent)
     (if (empty? sent)
         "" ; This is an empty word
         (word (first sent)
               (scrunch-words (bf sent)))))
-> (scrunch-words '(ack now ledge able))
'acknowledgeable



What's the pattern? We're using some combiner (+ or word) to connect the word we're up to with the result of the recursive call. The base case tests for an empty argument, but the base case return value must be the identity element of the combiner function.



Test Your Understanding


In this subsection, we went through various functions as an example of recursion. Which of these functions below follow the accumulate pattern? Select all that apply.

(define (pigl wd)
  (if (pl-done? wd)
      (word wd 'ay)
      (pigl (word (bf wd) (first wd)))))

(define (count-ums sent)
  (cond ((empty? sent) 0)
        ((um? (first sent)) (+ 1 (count-ums (bf sent))))
        (else (count-ums (bf sent)))))

(define (fib n)
  (cond ((= n 0) 0)
        ((= n 1) 1)
        (else (+ (fib (- n 1)) (fib (- n 2))))))








Homework 0.3

            Template


Type the following command into the terminal to copy the homework template file to the current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw0-3.rkt .



Or, you can download the template here.


Exercise 1


Write a new version of the describe-time procedure from Homework 0-2. You only need to account for time periods up to a day. Instead of returning a decimal number, it should behave like this:


-> (describe-time 22222)
'(6 HOURS 10 MINUTES 22 SECONDS)

-> (describe-time 550441)
'(6 DAYS 8 HOURS 54 MINUTES 1 SECONDS)



Hint: use quotient!


See if you can make the program smart enough to know when to use plurals;  this is not required.


Exercise 2


Here's an example of how the procedure remove-once should work:


-> (remove-once 'morning '(good morning good morning))
'(good good morning)



(It's okay if remove-once removes the other "morning" instead, as long as it removes only one of them.)


Write remove-once.


Exercise 3


Write the procedure differences, which takes a sentence of numbers as its argument and returns a sentence containing the differences between adjacent elements. (The length of the returned sentence is one less than that of the argument.)


-> (differences '(4 23 9 87 6 12))
'(19 -14 78 -81 6)



Exercise 4


Write a procedure called location that takes two arguments, a word and a sentence. It should return a number indicating where in the sentence that word can be found. If the word isn't in the sentence, return #f. If the word appears more than once, return the location of the first appearance.


-> (location 'me '(you never give me your money))
4
-> (location 'i '(you never give me your money))
#f
-> (location 'the '(the fork and the spoon))
1



Exercise 5


Write a procedure initials that takes a sentence as its argument and returns a sentence of the first letters in each of the sentence's words.


-> (initials '(if i needed someone))
'(i i n s)



Exercise 6


Write a procedure copies that takes a number and a word as arguments and returns a sentence containing that many copies of the given word.


-> (copies 8 'spam)
'(spam spam spam spam spam spam spam spam)



Exercise 7


Write a GPA procedure. It should take a sentence of grades as its argument and return the corresponding grade point average. 


Hint: write a helper procedure called base-grade that takes a grade as argument and returns 0, 1, 2, 3, or 4, and another helper procedure called grade-modifier that returns −.33, 0, or .33, depending on whether the grade has a minus, a plus, or neither.


-> (gpa '(A A+ B+ B))
3.67



Exercise 8


Write repeat-words, which takes a sentence as its argument. It returns a sentence similar to the argument, except that if a number appears in the argument, then the return value contains that many copies of the following word.


-> (repeat-words '(4 calling birds 3 french hens))
'(calling calling calling calling birds french french french hens)
-> (repeat-words '(the 7 samurai))
'(the samurai samurai samurai samurai samurai samurai samurai)



Hint: You don't have to do all the work in just one procedure. Using a helper procedure may help.


Exercise 9


Write a predicate same-shape? that takes two sentences as arguments. It should return #t if two conditions are met: The two sentences must have the same number of words, and each word of the first sentence must have the same number of letters as the word in the corresponding position in the second sentence.


-> (same-shape? '(the fool on the hill) '(you like me too much))
#t
-> (same-shape? '(the fool on the hill) '(and your bird can sing))
#f



Hint: The primitive procedure count may be useful.


Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Unit 1


1 - Functions and Primitive Data


Lesson 1 Intro

            Functional Programming


In this lesson, we will dive into functional programming and recursion. A recursive procedure solves a large problem by making it a little bit smaller somehow and then calling itself. When it calls itself, it makes the problem smaller yet again. This continues until the problem is small enough to be trivially solved.


Recursion can be hard to get used to if you
have never used it before. Some things to remember when programming
recursively are:



	Remember to have a base case. Your recursion should reach a point where it no longer needs to call itself to get an answer. At some point, the problem should be trivial enough to just output an answer.

	Always make your problem smaller. Whenever you make a recursive call, make sure your arguments are smaller than what they were to begin with. If they aren't, then you can get yourself into some nasty infinite loops.

	Lastly, trust the recursion! Don't overthink the problem. If your recursion makes sense and you've followed hints 1 and 2, you probably have working code. You don't always need to trace through the recursion to make sure your procedure works as you expect it to.




Prerequisites and What to Expect


For this lesson, you should understand the very basics of Racket and know
proper syntax.


In this lesson, you will learn recursion.


Readings


Here are the relevant readings for this lesson:



	SICP 1.1 - The Elements of Programming

	Lecture Notes




If you'd like more resources, check out all of the readings for Unit 0.


Functions


Before we talk about functions in computer science, let's talk about functions
in math. In math, a function [mathjaxinline]f(x)[/mathjaxinline] takes a single input [mathjaxinline]x[/mathjaxinline], does
"something" to that [mathjaxinline]x[/mathjaxinline], and returns a new value. For each [mathjaxinline]x[/mathjaxinline] that the
function takes in, it returns only one value, and it returns the same value
every time. For example, if [mathjaxinline]f(x) = x + 2[/mathjaxinline], every single time we plug in 4 to
[mathjaxinline]f(x)[/mathjaxinline], we will get 6. In no circumstance will we input 4 and get 5, 7, or anything other than 6.


It's the same thing in computer science! A function is defined as a
procedure that has the property that the output is
dependent on the inputs--that is, when given a certain input(s) to a function,
it returns the same output every time.


(define (square x)
  (* x x))



is a function because whenever we put in an input, we always get that input
times itself.


In addition to functions, Racket also has a more general type of data type
called a procedure. A procedure is like a function, but it does not have to
necessarily return the same output for every input. For example, square is a
function, but random is not, because for the same input, we can get a
different output for each call of random.


To clarify: in Racket, all functions are procedures, but not all procedures
are functions.


Here are some things covered in this subsection:



	Functions--what they are, how to define them.


	Primitive procedures


	Special Forms





What next?


Start the next subsection 1!


Expressions

            What Are Expressions?


Expressions are anything that you type into the Racket interpreter.


For example,


2


is an expression. So is


(+ 2 3)


A combination, as shown above, is an expression where paretheses are used to
show when a procedure is called. The procedure, in this case +, is called the
operator, and the arguments, in this case 2 and 3 are called the
operands. The value of a combination is obtained by applying the operator to the operands.


Prefix Notation


You've already been introduced to prefix notation in Unit 0.1, so here's a
quick recap.


In Racket, we use prefix notation. So, instead of typing in 2 + 3 into the
interpreter, we type in (+ 2 3) --that is, the operator comes before the operands, or arguments.


This has a few benefits. The most obvious one right now is that it can take
procedures, such as + or *, that take a variable number of arguments. For
example, in prefix notation, adding 5 numbers would look like (+ 1 2 3 4 5),
whereas in infix notation, it would look like 1 + 2 + 3 + 4 + 5.


Another benefit is that it makes nesting procedures within each other very easy.
For example, (+ (- 4 3) (/ 4 2)) evaluates to 3. The depth of these
expressions can be arbitrarily extended, so that


(+ (- (/ 4 2) (+ 3 4 2 (/ 4 3))) (* 4 (- 3 4)))


is also valid Racket expression, though one that is very difficult for us
humans to understand.


Another advantage is that it makes parsing Racket very easy, which comes in
useful when writing an interpreter. If you have no idea what this means yet,
don't worry about it.


Even with the most complicated expressions, the interpreter does the same
thing: it reads the expression, evaluates it, and prints it to the screen.
This is known as the  read-eval-print loop .


Variables and Environments

            Defining Variables


We use define to assign values to variables.


For example, (define x 2) assigns the value 2 to x:


-> (define x 2)
-> x
2
-> (+ x 5)
7



After calling (define x 2), we say that x is bound to 2.
Variable bindings are stored in environments, which we'll talk more about in Unit 3.


Check for Understanding



Suppose the following is typed into the Racket interpreter:

(define pi 3.14159)
(define radius 3)

(define area (* radius radius pi))
(define circumference (* 2 pi radius))











What would area evaluate to?












What would circumference evaluate to?







Evaluating Combinations

            What Does Evaluate Mean?


When we type a Racket expression such as (+ 2 3) into the interpreter, we as
humans know immediately that that is really just 5. But all the computer
sees is open parentheses, plus, two, three, close parentheses. How does it get from the
Racket expression to the value 5? It evaluates the expression and gets the
value 5 from there. How does it evaluate it? 


How the Interpreter Evaluates Things


The way the interpreter evaluates things can be a little confusing at first,
but will make sense soon. To evaluate a Racket expression, first
evaluate the subexpressions of the expression. In other words, you first evaluate
the operands fully, and then apply the operator. When you reach a procedure
call, apply the operator to the operands and repeat.  Note that evaluation is
recursive--in order to evaluate an expression, we need to first evaluate its
subexpressions. In order to evaluate the subexpressions, we need to evaluate
their subexpressions, and so on until we reach a procedure.


Example: A Recursion Tree


Let's try evaluating the following expression:


(* (+ 2 (* 4 6))


      (+ 3 5 7))


This is a fairly complicated expression, and without recursion it would be very
difficult to evaluate. Evaluating this requires that the evaluation rule be
applied four different times. If we represent the evaluation process
as a tree, it becomes a little easier to understand. This tree, unlike real
trees, has its roots in the air and its branches sticking into the ground.


Each combination is represented by a node with branches corresponding to a subexpression. 
The end branches are operators or numbers. We can imagine that the values of the
operands swim upwards, starting at the bottom of the tree, getting
evaluated at each branch, and resulting in a new value which is further
evaluated at a higher level.


[image: Recursion Tree]


A more detailed explanation is given in the wiki
entry for eval, and it will be further explained in the sections about the
substitution model.


Define?


What about define? It turns out that the ordinary evaluation rules don't
work for define, since (define x 3) doesn't apply define to two
arguments; it instead stores the value of x as 3. Define is what is known as
a special form, and special forms are the only exceptions to the
rules of evaluation.



Which of the following is not a primitive function in Racket?








Compound Procedures

            Defining Procedures


You already know how to define simple procedures such as square. The
standard way to define a procedure is (define (name formal-parameters)
body).


Vocab:



	Compound Procedure: a compound procedure is a procedure that is defined in terms of Racket primitive procedures.

	Name: the name of the procedure is a symbol used to refer to the procedure.

	Formal Parameters: the formal parameters of a procedure are the names used within the body of the procedure to refer to the arguments.

	Body: the body of the procedure is the "meat" of the procedure. It is formally defined as "an expression that will yield the value of the procedure application when the formal parameters are replaced by the actual arguments to which the procedure is applied", but you can think of it as instructions for the computer to follow.




In the procedure definition (define (square x) (* x x)), the name is
square, the formal parameter is x, and the body is (* x x).


Suppose I define a procedure as such: (define (foo x y) (+ (* 3 x) (* 4 y))). Please answer the following questions.



What is the name of the above procedure?








What are the two formal parameters?








What is the body of the procedure?







Procedures with Multiple Formal Parameters


Procedures don't have to have just one formal parameter, such as in square.
They can also have multiple formal parameters. The way to create procedures
with multiple arguments is fairly straightforward. It looks something like
this: (define (foo x y z) (* x y z)).


We can also create procedures with no arguments at all! The code for that
looks something like this: (define (foo) 3)). Now, whenever you call
(foo), it will return 3.


Procedure-Ception


One of the most useful (and coolest!) parts about programming is that, once
you've defined a procedure, not only can you can use it over and over again,
you can also use it to define other procedures.


Since you're probably sick of square right now, let's use another function
as an example. Let's define a predicate vowel?, and use it to define another
procedure:


(define (vowel? letter) (member? letter '(a e i o u))


Now that we have vowel?, we can use it in different procedures. For example,
one of the problems in 0.3 deals with Pig Latin. If a word starts with a
vowel, translating that word into Pig Latin is as simple as adding "ay" to the
end of the word. We're not going to worry about translating words into Pig
Latin right now; we're just going to define yet another predicate to check if
a word starts with a vowel.


(define (pig-complete? wd) (vowel? (first wd)))


As you can see, we used one user-defined procedure (vowel?), to define
another one.


The Substitution Model for Procedure Application

            Applying Compound Procedures


So far we have seen how Racket breaks down and evaluates expressions such as:


(+ 1 2)


(+ 3 4 (* 2 5))


by following these steps:



	Evaluate the procedure

	Evaluate the arguments

	Apply the procedure to the arguments.




We have been slightly handwavy with step 3. How exactly do you 'apply'
procedures? For primitive functions like  +, - , quote, or, and, not, we can
assume that it is built into the interpreter . We are more interested in
something more complex: how do we apply compound (i.e. user defined) procedures? Since we 
can define arbitarily many compound procedures, they can't all be built into the
interpreter. There needs to be a a common step-by-step way to apply compound
procedures. One way to think about this is the Substitution Model, which we
will explore in this subsection.


Substitution Model


To apply a compound procedure with the Substitution Model, you substitute each
formal parameter in the body with the corresponding argument's value and evaluate it
normally. What does this actually mean? It's easier to see through an example:


Consider the sum-of-squares procedure from the very first lab, which can be
defined as follows:


(define (sum-of-squares x y)  
     (+ (square x) (square y))) ;; This line is the 'body' of the procedure
     (define (square x) (* x x))



How does the Substitution Model handle (sum-of-squares 3 4) ?



	We have a formal parameter, x which is called with the  argument 3 and another formal parameter y which is called with the argument 4.

	We substitute every occurence of x and y in the body with 3 and 4 respectively

	The body then becomes (+ (square 3) (square 4))

	Using the definition of square, this reduces to (+ (* 3 3) (* 4 4)).

	Applying both multiplications gives (+ 9 16)

	Applying addition gives the result of 25




Step 1 and 2 are the most crucial part of the Substitution Model: finding what
values are passed into the function, and substituting every occurence of a variable in the body
with its corresponding value.


Formal Parameters' Names


You might have noticed by now that the names of formal parameters are
arbitary. For example all of the followings are equivalent:


(define (square x) (* x x))


(define (square apple) (* apple apple))


(define (square magikarp) (* magikarp magikarp))


The Substitution Model handles all three equivalently, though it is best to
pick a name that is easy to understand (In this case, the first definition is
ideal). The main point is to stay consistent within the body.  The following
for example, might cause an error:


(define (square x) (* apple apple))


[image: cube-shaped apple]


When we use Substitution Model with  (square 4) with the definition above, you
can notice that things are not properly defined. The procedure square accepts an argument,
x which in this case is 4. What do we do in the body? We need to find the
value of apple and do (* apple apple). What is the value of apple? We
don't know! We only know what x is!


Substitution Model & Racket


Does Racket actually use the Substitution Model to apply compound procedures? Not
quite. We use the Substitution Model to help us think about procedure application. Racket does something slightly more complicated, which we will explore in Unit 3 and 4. Later on, we will find that the Substitution Model is not sufficient to explain some functions in Racket. This model will serve as a framework which we will build on.


Applicative Order vs Normal Order


Our method of evaluation by evaluating operator, evaluating the operands and then
applying the operator is just one possible rule of evaluation. The ordering we have been 
using is called "Applicative Order".  An alternative method of evaluation would be to
not evaluate the operand until the value is needed. This method is called
"Normal Order".  We can see the difference between these 2 from the following
example:


(square (+ 3 2))


Note that the input to square is (+ 3 2).



	Applicative Order:




      (square (+ 3 2))


      (square 5)


      (* 5 5)


      25


In Applicative Order, you would evaluate the parameter x, before you go the
body of square, which is (* x x). When you evaluate (+ 3 2), you get 5 and
this is what you pass into square. So x is bound to 5.



	Normal Order:




      (square (+ 3 2))


      (* (+ 3 2) (+ 3 2))


      (* 5 5)


      25


In Normal Order, you don't evaluate (+ 3 2) until you absolutely need to. So in this case, the x in (square x) is bound to (+ 3 2).


Notice that, in Normal Order, since you don't evaluate the x, which is (+ 3 2), until it's needed, you need to evaluate it twice. On the other hand, in Applicative Order, since you evaluate the operand x before applying the procedure, you only evaluate (+ 3 2) once.


Consider the following piece of code:


(define (double_first a b) (+ a a))

(double_first (+ 1 1) (+ 2 2)) 





In Applicative Order, how many times is (+ 1 1) evaluated?











Conditional Expressions and Predicates

            Review on Conditionals


We used if and conditionals in our first lab.
In this section, we will flesh out more details.


We generally use an if or a cond when we want our function to behave
differently depending on a certain condition. Note that these two functions are
special forms in Racket; we don't evaluate them using the usual
"evaluate the operands fully, and then apply the operator" method.


cond Examples


The general form of a cond expression is:


(cond  (<test1> <result1>)
       (<test2> <result2>)
       ...
       (<testn> <resultn>)
       (else <default>))  ;; The 'else' case is optional



Each (<test> <result>) pair is called a clause. The first part
of each pair (the <test>) is a predicate—an expression that must evaluate
to either true or false.


To evaluate a cond expression, start by evaluating <test1>. If it is true, evaluate
and return <result1>. If <test1> is false, repeat for <test2>, and so on until there
are no more tests. If you hit an else, return the value corresponding to it (the "default value").


You can write a cond expression as a series of 'if' statements:


(if <test1>
    <result1>
    (if <test2>
        <result2>
        ...
        (if <testn>
            <resultn>
            <default>) ;; Closing parentheses omitted



Exercise


The function plural below takes in a word and returns its plural form. For example, (plural 'carrot) returns 'carrots and (plural 'body) returns 'bodies. It does not perform correctly for (plural 'boy), which should return 'boys; the buggy version below returns 'boies instead.


(define (plural wd) 
  (if (equal? (last wd) 'y) 
      (word (bl wd) 'ies)
      (word wd 's)))




Choose which line of code to add in the blank below so that (plural 'boy) behaves correctly (that is, it should return boys). Suppose `vowel?` is defined as before.

(define (plural wd) 
  (if __________________
      (word (bl wd) 'ies)
      (word wd 's)))











Predicate and Style


A predicate is any expression that returns true or false. Some examples
include (< 3 4),(> 10 -2), and (= 'apple 'orange). You can form compound
predicates by using and, or, and not.


Here is an example of a predicate:


(define (even? x)
  (= (remainder x 2) 0))



When defining a predicate, it is conventional to end the name of the procedure
with a question mark (?).


Here's another way to define even?:


(define (even? x)
  (if (= (remainder x 2) 0)
      #t
      #f))



Although this definition is equivalent to the original definition above, it contains redundancies.
We urge you to avoid writing code like this.
Redundant code can make your programs more difficult to understand, and is typically considered
an example of bad programming style.


Exercises


We define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers


For example, (max-sum-squares 1 2 3) returns 13, which is 4 + 9



Why isn't the code below correct?

(define (square x) (* x x))

    (define (max-sum-squares a b c) (max (+ (square a) (square b)) (+ (square b) (square c)) (+ (square a) (square c))))









PRACTICE QUESTION:
Write a procedure pigl that takes a word as an argument and returns that word in pig latin. Here are the rules for pig latin:


If the input word starts with a vowel then we append "ay" to the input.


If the input word starts with a consonant then we move all the starting consonants to the end of the word and then append "ay" to the end.


Here are some examples:


(pigl 'hello) ; ellohay 
(pigl 'open) ; openay 
(pigl 'scheme) ; emeschay



What happens if our input doesn't have a vowel, like (pigl 'my)? Make sure your pigl checks if a word has no vowels and just returns that word directly. 


(pigl my) ; my



Check your answer in your Racket interpreter with the examples above!


Procedures as Black-Box Abstractions

            Procedures as Abstractions


So far we have defined functions that do a single computation by themselves
(such as square, fib, and factorial). You can create a much more complex
function by combining different functions, each handling a subproblem of the
original problem. We will build on an example of such function in this section
and explore the idea of 'functions as
abstractions'.


Extended Example: Largest Square


Charlie has a large amount of block (not bar) chocolates,  and he wants to
show it off to his friends by organizing those blocks in the largest possible
square arrangement! So let's say that Charlie has 13 blocks of chocolate. Then
the largest square arrangement is a 3x3 = 9 (shown left), with 4 leftovers.


[image: chocolate square]


Charlie wonders 'how big can the side of my square be given a certain amount
of chocolate blocks?' We can represent this question as a function, (largest-square total guess). The function largest-square takes two arguments:
total, which represents how many chocolate blocks Charlie has (in the example
above, total is 13), and guess, which represents your initial guess on what's the
largest side you can have. This function will output the largest side your
chocolate square can have (in this case, 3). We will break this function into
subproblems, and put all the pieces together in the rest of this section.


Largest Square: Overview


One thing that may seem odd is the redundant argument guess. You can write a
function that does the same thing with just the totalargument. We included
guess to add an extra layer of complexity to the question. . Consider
guess to be Charlie's estimate on how large he thinks his side can be. In
our original example of 13 blocks of chocolate, suppose Charlie takes a 
guess that the maximum side is 2:






  
    	guess
    	leftover
    	next guess
  

  
    	2
    	13-4= 9
    	2+1= 3
  

  
    	3
    	13-9= 4
    	3+1= 4
  

  
    	4
    	13-16= -3
    	4+1= 5
  





For each function call on largest-square like (largest-square 13 2),
we are going to check if the current guess (in this case 2) is good enough.
How do we check if our guess is good enough? It is good enough if our next
guess uses more chocolate blocks than we have available. If we can guess
better, then we use the next guess and call largest-square recursively.


Largest Square: Skeleton Code


Given our intuition in the last page, we can formalize our function
definition. If your guess is good enough, return your guess. If you can
have a better guess, call largest-square with a better guess


 (define (largest-square total guess)
    (if (good-enough? total guess)
        guess
        (largest-square total (next-guess guess))))




If you type the above definition as is (without defining 'good-enough?' and 'improve-guess', what will happen?







If afterwards you type (largest-square 13 2), what will happen?






"Wait wait, you just defined a function, but it calls other functions that
aren't defined yet! We haven't defined 'good-enough?' or 'improve-guess'! "


Yup, the definitions of the functions inside  are incomplete, but notice that
we (the programmers) can understand what the function is doing! We have
broken down the problem of finding 'largest-square' into some small problems
like 'is it close enough?' and 'improve our guess'. We could've broken the
code in a different way, like in every 3 lines, every 5 lines but then each
subproblem will not have an identifiable task. Breaking them to a coherent,
identifiable task is crucial.


This will be a key idea that we will visit again in the end, but first let's
finish the definition.


Largest Squares: Subproblems


Time to do the neccessary work to make the function work!


 (define (largest-square total guess)
    (if (good-enough? total guess)
        guess
        (largest-square total (next-guess guess))))



QUESTION:


We want to define the function good-enough? that accepts two inputs, total, the total number of chocolate blocks you have, and guess which represents your current guess. It should report either #t or #f depending on whether the next integer will be larger than total


(good-enough? 13 3) Should return #t. The next guess is 3+1=4 and will take 16 squares which is above 13, the total


(good-enough? 13 2) Should return #f. The next guess is 2+1=3 and will take 9 squares which is still below 13, the total


(good-enough? 100 11) Should return #t. The next guess is 11+1=12 and will take 144 squares which is above 100, the total


(good-enough? 100 10) Should return #t. The next guess is 10+1=11 and will take 121 squares which is above 100, the total


(good-enough? 100 9) Should return #f. The next guess is 9+1=10 and will take 100 squares which is equal to 100, the total



Choose what code should fill in the blank:

(define (good-enough? total guess))
    ________________________)





 




Next, we the function next-guess  that accepts your current guess, and returns a new number to try next


(next-guess 1) ;;Should return 2


(next-guess 3) ;;Should return 4



Choose what code should fill in the blank:
(define (next-guess guess)
    ________________________)









Functions as Abstractions


What can we learn from the square chocolate example? Remember that when we
first only define largest-square, we can understand what the procedure
is doing, without actually needing to know how good-enough? or next-guess
is implemented. We can consider these functions to be abstracted for us; we
know what it will output but we don't care * how * it is implemented. As
long as they do the right thing, we are happy!


You can also apply this in real life. When we turn on the TV, we never
consider "Oh the TV works because we shoot electron across the screen which
are guided by electromagnets which allows us to view stuff!". We usually think
more along the lines of "If I press this button, I can watch movies". We don't
need to know how the TV works to use it; its implementation is abstracted away
for us


Internal Definitions


We have defined a relatively complex procedure which depends on other
procedures. Now we will see if we can improve the organization of the code!


Notice that our definition of good-enough? and next-guess are very
specific to the largest-square problem; we can hardly find any other
functions that may use these functions. Also, when Charlie wants to find what
the largest square is, he will call the largest-square function and not
touch the two helper functions directly. In such cases, it would be preffered
to organize our code such that only largest-square has access to those two helper
functions


How can we do that? We can define the functions inside the body of largest-
square as follows:


(define (largest-square total guess)
    (define (next-guess guess) (+ guess 1))
    (define (good-enough? total guess)
        (< total (square (next-guess guess))))
    (if (good-enough? guess)
        guess
        (largest-square total (next-guess guess))))



Given that you defined only the procedure above, what will happen when we call `(next-guess 4)`?








Scope of Variables


(define (largest-square total guess)
    (define (next-guess guess) (+ guess 1))
    (define (good-enough? total guess)
        (< total (square (next-guess guess))))
    (if (good-enough? guess)
        guess
        (largest-square total (next-guess guess))))


Previously we mentioned that the functions good-enough? and next-guess are
defined only inside the function largest-square. Now that those functions
are inside largest-square, we can take other redundant parts out of the
function. Notice that next-guess and good-enough? accepts the same total
and guess that is passed in to larger-square. Removing the redunant
arguments in the two helper functions results in:


(define (largest-square total guess)


        (define (next-guess) (+ guess 1))
        (define (good-enough?)
            (< total (square (next-guess))))
        (if (good-enough?)
            guess
    (largest-square total (next-guess))))  


How do you keep track of what is available to a function and what is not? We will spend a lot of time on this in Unit 3. When a function defined inside another function, the one inside has access to variables and parameters of the outer function. Because next-guess is defined inside largest-square, next-guess has access to largest-square's parameters, total and guess.  


If you find a mnemonic helpful, consider the outer function as a parent and
the inner function as a baby. A parent may lend the baby their stuff (such as a
cellphone) but the baby won't let the parents to take away his toys


[image: ] [image: ]


Common Errors

            Try it out yourself!


Type the following into the Racket interpreter. Most of them will generate
errors. Read the error messages and try to figure out what they mean. You don't
have to turn in anything for this section.


=> (require berkeley) ;this should not error out. if it does, ask a TA for help
=> (bar 9)
=> (first '())
=> (bf '())
=> (first (bf '(1)))
=> (define (foo x) (+ x 1))) ;notice the extra parenthesis at the end
=> (foo 2 4)
=> (foo)
=> (define baz 3)
=> (baz 8)
=> (se garbly 4)
=> (se 'garbly 4)
=> (se baz 4)



You should also take a look at the list of common errors


Homework 1

            Template


Type the following command at the terminal to copy the template file to the
current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw1.rkt .



Or you can download the template
here.


If you get stuck on this homework, review Lesson 0.3 
for a detailed explanation of recursion.


Autograder


If you are working on the lab computers, the grader command will run the autograder.  If you are working on your own personal machine, you should download grader.rkt and the HW 1 tests.


Exercise 1


Write a procedure dupls-removed that, given a sentence as input, returns the
result of removing duplicate words from the sentence. This problem uses
recursion.


;; This should output (c a d e b)
(dupls-removed '(a b c a e d e b)) 



;; This should output (a b c)
(dupls-removed '(a b c)) ;;



;; This should output (b a) 
(dupls-removed '(a a a a b a a))



As a reminder, you can run the autograder on the lab computers by:


grader hw1 hw1.rkt dupls-removed



And on your own machine:


racket -tm grader.rkt -- hw1-tests.rkt hw1.rkt dupls-removed



Exercise 2


Write a procedure count-word that takes a sentence and a word as arguments
and outputs the number of occurences of the input word in the sentence.


;; This should output 2
(count-word '(i really really like 61as) 'really)



;; This should output 0
(count-word '(i lambda racket) 'love)



Exercise 3


Explain what would happen if you used new-if (from Lab 0) instead of if in
the pigl procedure.


Here is the definition of pigl from previous lab


(define (pigl wd)
  (if (pl-done? wd)
      (word wd 'ay)
      (pigl (word (bf wd) (first wd)))))

(define (pl-done? wd)
  (vowel? (first wd)))

(define (vowel? letter)
  (member? letter '(a e i o u)))



Exercise 4


Write a procedure squares that takes a sentence of numbers as its argument
and returns a sentence of the squares of the numbers.


;; This should output (1 4 9)
(squares '(1 2 3))



Exercise 5


Write a procedure switch that takes a sentence as its argument and returns a
sentence in which every instance of the words I or me is replaced by you,
while every instance of you is replaced by me except at the beginning of
the sentence, where it's replaced by I. (The word I is the only word that
should be capitalized.)


;; This should output (I told you that you should wake me up)
(switch '(you told me that I should wake you up))



Hint: Consider writing a helper function that just handles the general case of the problem—that is, your helper shouldn't worry about the "except at the beginning of the sentence" part. Then write switch using that helper function and handle the special case in the body of switch.


Exercise 6


Write a predicate ordered? that takes a sentence of numbers as its argument
and returns #t if the numbers are in ascending order, or #f otherwise.


(ordered? '(1 2 3)) ; #t



(ordered? '(2 1 3)) ; #f



(ordered? '(2)) ; #t



Exercise 7


Write a procedure ends-e that takes a sentence as its argument and returns a
sentence containing only those words that end in the letter E.


;; This should output (please the above the blue)
(ends-e '(please put the salami above the blue elephant))



Exercise 8


Most versions of Lisp provide and and or procedures like the ones we've
seen. In principle, there is no reason why these can't be ordinary procedures,
but some versions of Lisp make them special forms.


Suppose, for example, we
evaluate (or (= x 0) (= y 0) (= z 0)). If or is an ordinary procedure, all
three argument expressions will be evaluated before or is invoked. But if the
variable x has the value 0, we know that the entire expression has to be
true regardless of the values of y and z. A Lisp interpreter in which or
is a special form can evaluate the arguments one by one until either a true
one is found or it runs out of arguments.


Devise a test that will tell you whether Racket's and and
or are special forms or ordinary functions. This is a somewhat tricky problem,
but it'll get you thinking about the evaluation process more deeply.
Why might it be advantageous for an interpreter to treat or
as a special form and evaluate its arguments one at a time? Can you think of
reasons why it might be advantageous to treat or as an ordinary function?


Submitting Your Homework


If you are having trouble submitting, ask a question on Piazza or contact a TA.


Before submitting: Make sure your file loads in Racket.
You can verify this by typing into Racket: (enter! "hw1.rkt"), where "hw1.rkt" is the name of your homework file.
You will not receive credit for homework that does not load in Racket.


To submit your assignment, you need to be logged in on any of the lab
computers. If you want to submit from home, you must connect remotely to the
lab computers. More on that later.


Now, click on the "Terminal" icon on the left. Terminal is a terminal
emulator, a method of interacting directly to the computer via text commands.
It's sort of an "interpreter" for your entire computer. You can do useful
things with xterm like navigate and manipulate the filesystem (think Windows
Explorer), submit homework (what we're doing now), and start the Racket
interpreter (via racket)!


Let's submit an assignment. This requires the following steps:



	Making a folder for an assignment (optional, but strongly recommended, as we'll see)

	Doing the assignment in that folder (or moving the files to that folder if you've already completed the assignment)

	Running the submit command

	Checking if the assignment was correctly submitted




We're going to submit an assignment called "units", which will tell the staff
how many units you're doing.


Making a Folder


In the terminal, type:


mkdir units



This tells the computer to make a directory (folder) named units. You can
double check that it exists (and also see what else is in this current
directory) by running ls.


Now we need to navigate to that folder, so we'll do:


cd units



Finishing the Assignment


In order to complete this assignment, you must create a file named units
(inside the directory named units). In that file, write which units you're planning
on doing. For example, if you were to do units 0, 1, 2, and 3, you'd put


0 1 2 3



Please do not include any additional spaces or blank lines!


Submitting


After you've created the file, you can submit the assignment by doing


submit units



This tells the computer that you want to submit the assignment "units".
Follow any instructions that appear.


Checking Your Submission


The following command allows you to look at the times in which you've
submitted:


glookup -t



That's all for now. You might be interested in connecting from home in order
to work on all of this. Details about that are under the Resources link on the
top!


2 - Lambdas and Higher Order Functions


Lesson 2 Intro

            Introduction



  "I lambda Racket"




This week we will learn a new special form, lambda, that can make procedures!
Make sure you learn it well, for it will be used extensively for the rest of this
course.


Prerequisites and What to Expect


Prerequisites: Lesson 1 is required before working on this lesson. You should be familiar with concepts such as functions, procedures, and calling a procedure.


What to Expect: In this lesson, we will:



	explain lambdas and higher order functions

	learn a basic concept in Racket, or any other function-oriented programming language -- the manipulation of functions using other functions.




Readings


Here are the relevant readings for this lesson:



	SICP 1.3 - Abstractions with Higher-Order Procedures

	Lecture Notes




Sneak Peek


We learned how to create, modify, and call procedures in Lesson 1. Every procedure has a name, its arguments, and a body where we tell the function what to do with its arguments.


For instance, here is the procedure cube, which takes in one argument x and returns x cubed:


(define (cube x)  
   (* x x x))



We define a procedure whose name is cube, argument is x, and body is (* x x x). You should be able to tell by now that the body multiplies three x's together and returns x cubed.


cube is a procedure, or abstraction, that we can treat like a box and throw around, just like any other number or symbol. It has a value and we can
give it a name.


Now that we think about it, defining cube the way we did above is not too far off from defining var like this:


(define var 10)



[image: Cubes]


In the box var, we put 10. In the box (cube x), we put (* x x x). In one box, we put a number, and in the other, we put an expression. Pretty similar, right? What if, instead putting a primitive value or expression into the box, we put a function inside? Inconceivable! 


It'll probably look something like this:


(define f [some function])



[some function] is where we would put a lambda. Keep reading to find out more!


Constructing Procedures Using Lambda

            Take a look at the following definition of sum-doubles, which takes two numbers a and b, and returns the sum of all numbers between a and b doubled.


(define (sum-doubles a b)
    (define (double x) (* 2 x))
    (if (> a b)
        0
        (+ (double a) (sum-doubles (+ a 1) b))))



Since the double function was not already defined for us, we had to define it ourselves inside of our sum-doubles definition.


But doing that is such a waste! Outside of our sum-doubles definition, we won't ever be able use that double function. Isn't there a quick, easy way to make a user-defined function without first defining, then applying the named function?


Lambdas: The Anonymous Function


Actually, yes. Let's introduce the lambda function, otherwise known as an anonymous function. These mysterious functions will be major players in the concepts we will discuss in future lessons.


The general form for a lambda is as follows:


(lambda (<param1> <param2> ... <paramn>) <body>)



Let's dissect this. Within the parentheses, we have three major parts:



	a tag, lambda, which tells Racket that this is a lambda function,

	a list of parameters (as many as you want),

	and the body—anything following the list of parameters.




The procedure double, for example, can be defined as the following lambda function:


(lambda (x) (* 2 x))



In other words,


(define double (lambda (x) (* 2 x)))



would be equivalent to:


(define (double x) (* 2 x))



When describing lambdas, you would call it "the function of [params] that returns [body]." For example, "double is the function of x that returns (* 2 x)."


Calling Lambdas


Just as we can call procedures created using define, we can also call lambda functions. The general form of a call to a lambda is as follows:


((lambda (<param1> <param2> ... <paramn>) <body>) <arg1> <arg2> ... <argn>)


So if we want to call (double 5) as an anonymous function, the substitution model would give us this:


-> ((lambda (x) (* 2 x)) 5)
-> ((lambda (x) (* 2 5)) 5)
-> (* 2 5)
10



What happens here? When we call a lambda function, the first argument corresponds to the first parameter, the second argument to the second parameter, ..., and the nth argument to the nth parameter. Then, in the body, every occurence of each parameter is replaced with the corresponding argument.


Let's illustrate this with an example expression:


-> ((lambda (x y z) (+ x y x z)) 1 2 3)



In the body of the lambda, we replace every occurence of x with 1. We replace every y we see with 2. And every time we see a z, we replace it with 3.


-> ((lambda (x y z) (+ x y x z)) 1 2 3)
-> ((lambda (x y z) (+ 1 2 1 3)) 1 2 3)
-> (+ 1 2 1 3)
7



Now, we can rewrite sum-doubles as:


(define (sum-doubles a b)
    (if (> a b)
        0
        (+ ((lambda (x) (* 2 x)) a) (sum-doubles (+ a 1) b))))



Note: The value returned by creating a lambda is a procedure, just as much as one made with a call to define.


Try these expressions out in the Racket interpreter:


(lambda (x) (+ x 3))  
((lambda (x) (+ x 3)) 7)  
(define add3 (lambda (x) (+ x 3)))  
(add3 7)

(define (square x) (* x x))   
(square 5)   
(define sq (lambda (x) (* x x)))   
(sq 5)   
((lambda (x y) (+ (* 2 x) (* 5 y))) (* 100 100) (* 5 2))



Using Let to Create Local Variables

            Local variables are variables that only exist within a local environment. Here's an example:


(define (foo x)
  (define a 5)
  (+ x a))



The local environment is the environment created by the function foo, and the local variable is a. Note that x is not a local variable, even though it also cannot be accessed outside of foo—it is formally called the parameter.


Introduction to let


The special form let is essentially a call to a lambda function, arranged differently. For example, take the following lambda function call:


-> ((lambda (x y z) (+ x y x z)) 1 2 3)
7



This is equivalent to the following let statement:


-> (let ((x 1) (y 2) (z 3)) (+ x y x z))
7



When will this ever be useful? Two words: local variables. Rarely will we use a let statement to simply call a lambda function. Instead, we use it create local variables inside of a function.


An Example: Polynomials


Let's say we want to use Racket to compute the following polynomial with any given x and y:


[mathjax]f(x,y) = x(1+xy)^2 + y (1-y) + (1+xy)(1-y)[/mathjax]


Rewriting this ugly polynomial as an ugly procedure:


(define (f x y)
  (+ (* x (+ 1 (square (* x y)))) (* y (- 1 y)) (* (+ 1 (* x y)) (- 1 y))))



Yuck. Instead, we could use some substitution:


[mathjax]\displaystyle a = 1 + xy[/mathjax]


[mathjax]\displaystyle b = 1 -y[/mathjax]


So that we get:


[mathjax]\displaystyle f(x,y) = xa^2 + yb + ab[/mathjax]


Okay, I guess that's better. Writing this in Racket, we will define a helper function called f-helper so that we can use substitution:


(define (f x y)
    (define (f-helper a b)
        (+ (* x (square a))
           (* y b)
           (* a b)))
    (f-helper (+ 1 (* x y))
              (- 1 y)))



Take a minute to confirm that this does the same thing as the earlier definition of f. As we learned in the previous section, we don't really need an extra function definition inside f. Instead, we can use a lambda:


(define (f x y)
    ((lambda (a b)
        (+ (* x (square a))
           (* y b)
           (* a b)))
    (+ 1 (* x y))
    (- 1 y)))



Sadly, even after all this substitution and reorganizing, it's still a bit messy. This is where let comes in!


(define (f x y)
   (let ((a (+ 1 (* x y)))
         (b (- 1 y)))
     (+ (* x (square a)) (* y b) (* a b))))



Finally, we get a more readable version of our initial polynomial function f. We can clearly see that we're assigning a value to a and b, then plugging it into the body of the let statement.


let: General Form


The general structure of a let statement is


(let ((<var1> <exp1>)
      (<var2> <exp2>)
      ...
      (<varn> <expn>))
  <body>)



Remember, underneath, this is nothing more than a lambda call. The above structure is equivalent to


((lambda (<var1> <var2> ... <varn>) <body>)
  <exp1> <exp2> ... <expn> )



Try out these expressions (and more!) in the Racket interpreter.


(Note: A semicolon denotes a comment. Racket will ignore the rest of the line
after a semicolon.)


(define y 10)  

(let ((y 0)) y) ;; notice that let overrides global vars  

(let ((x 10)  
      (z x))   
    z) ;; this will break, translate to lambda to see why  

(let ((a 1))  
  (let ((a 2))  
    (let ((a 3))  
       a))) ;; nested lets are valid.   

(let ((test 'wait-what?))  
  5)  
test  ;; let only binds variables inside its body  

(let ((a 1))  
  (+ a (let ((a 2))  
    (+ a (let ((a 3))  
            a))))) ;; challenge: figure out what that last one returns, before checking interpreter



HOFs - Procedures as Arguments

            A higher order function (HOF) is a function that does one or both of the following:



	Takes a function as an argument.

	Returns a function as its output.




Before we jump in, let's have a quick refresher.


The Substitution Model Revisited


You should already be very familiar with defining functions like this:


(define (f x)
  (plus1 x))



In this function definition, the parameter of f is x, which is fed into the body as an argument to the built-in procedure plus1. If we bring back our substitution model from Lesson 1, we can say that a call to f, say, (f 5), would be evaluated with the following steps:


-> (f 5)
-> (plus1 5)
6



The argument 5 is substituted into the body of f and we call plus1 on 5 to get 6. Alright, that was too easy. But what if, instead of using x as an argument to the function in the body, we use it as the function?


A Simple Higher Order Function


Let's look at an example.


(define (f g)
  (g 2))



Do you see how g is in front? Hmm. What happens if we call (f 5) this time?


-> (f 5)
-> (5 2)
; application: not a procedure;
;  expected a procedure that can be applied to arguments
;   given: 5
; [,bt for context]



Whoops. Looks like we need to feed f a procedure instead.


-> (f square)
-> (square 2)
4



We could also feed f a lambda function!


-> (f (lambda (x) (* x x)))
-> ((lambda (x) (* x x)) 2)
-> (* 2 2)
-> 4



Would you look at that! We just defined a function, f, that takes a procedure, g, as its argument and applies g to 2. There it is, your first higher order function. Play around and see if you can define your own procedures that take other procedures as arguments.


Uses of Passing Functions as Arguments


Now that we've seen how functions can be passed around, let's actually explore
how this can be useful.


Consider the following three functions:


(define (sum-doubles a b)
  (if (> a b)
      0
      (+ (* 2 a) (sum-doubles (+ a 1) b))))    

(define (sum-squares a b)  
  (if (> a b)
      0
      (+ (square a) (sum-squares (+ a 1) b))))

(define (sum-cubes a b)
  (if (> a b)
      0
      (+ (cube a) (sum-cubes (+ a 1) b))))


These three functions compute the sum of the doubles, squares, and cubes of all integers between a and b, respectively.


For example, (sum-squares 5 8) computes 52 + 62 + 72 + 82.


Defining all three of these functions seems a bit redundant. Do you see how these three functions are nearly identical in definition, except for the underlined portions of the code? It's time to build some abstraction.


We know that for each of the three functions, we apply some operation to every element between a and b. So instead of having a specific function for each operation, let's abstract it away and put it in the function parameters!


So instead of having a specialized sum-[op] function for every possible operator, we'll just have a general function called sum:


(define (sum fn a b)
  (if (> a b)
      0
      (+ (fn a) (sum fn (+ a 1) b))))


We've underlined the major differences in the code above. In this definition of sum, we apply some input function fn to each number between a and b, as you can see in the recursive call.


Now, we can do this:


(sum (lambda (x) (* 2 x)) 5 8)



and this:


(sum square 5 8)



and this too:


(sum cube 5 8)



Having only written one procedure, sum, we get the functionality of all three procedures above. What a deal!


If you like, the initial three procedures can be redefined using sum as follows:


(define (sum-squares a b)
  (sum square a b))

(define (sum-cubes a b)
  (sum cube a b))

(define (sum-doubles a b)
  (sum (lambda (x) (* 2 x)) a b))



In your homework, we will take the abstraction of sum even further with an extremely useful and well-known HOF called accumulate. Make sure you understand how accumulate works, as you will need it in future exercises!


HOFs - Procedures as Returned Values

            We've seen how to write a procedure that takes another procedure as an argument. It turns out we can do the opposite as well - we can create a procedure that returns a procedure! Returning procedures is a great way to abstract even further. Instead of creating the procedure directly, we can have a program that creates the procedure for us! Depending on what arguments we give the program, it can create many different procedures.


Example: make-power


(We're not actually making power. That'd be powerplaying ;).)


Let's say we want to define a procedure sum-powers that takes the nth power of everything number between a and b and sums them together. We already have our procedure, reproduced below:


(define (sum f a b)
    (if (> a b)
        0
        (+ (f a) (sum f (+ a 1) b))))



From what we learned so far, it'd look something like this:


(define (sum-powers n a b)
    (sum (lambda (x) (expt x n)) a b))



But what if we create a new function called make-power, that, given a power n, returns a function that takes a number x and returns its nth power? It looks like this:


(define (make-power n)
    (lambda (x) (expt x n)))



As we noted earlier, lambdas return functions. This means that if we define the call to make-power as a lambda, it will return a function! We can now do this:


(define square (make-power 2))
(define cube (make-power 3))



And we can rewrite our sum-powers function like this:


(define (sum-powers n a b)
    (sum (make-power n) a b))



Note also how much we've progressed in abstraction. At the beginning of this
lab, we defined a different procedure for each different type of sum: sum-doubles, sum-squares, and sum-cubes.


But now, we have abstracted the summation itself, so that we can express any
summation in a single clear line.


Applied HOFs

            Note: This section is a bit more dense than the rest of the lesson. If you struggle with this section, don't worry—it's more advanced than most of what we'll expect you to know.


Here, we will explore two applied examples using the tools we have learned so
far: fixed-point and iterate.


fixed-point


We will first try to express the calculation of fixed points
of functions. A number x is called a fixed point of a function f if x
satisfies the equation f(x) = x.


An algorithm that finds a fixed point for some functions f is one where we start with an initial guess and apply f repeatedly, until successive values are very close.


x  
(f x)  
(f (f x))  
...



Using this idea, we'll make a procedure fixed-point that will keep applying a
function until we find two successive values whose difference is less than
some prescribed tolerance. Take a look at our definition of fixed-point below:


(define tolerance 0.00001)

(define (fixed-point f first-guess)
    (define (close-enough? v1 v2)
        (< (abs (- v1 v2)) tolerance))
    (define (try guess)
       (let ((next (f guess)))
          (if (close-enough? guess next)
              next
              (try next))))
    (try first-guess))



For example, we can use this method to approximate the fixed point of the
cosine function, starting with 1 as an initial approximation:


-> (fixed-point cos 1.0)
0.7390822985224024



To demonstrate the power of abstracting functions with fixed-point, we will
develop a method to calculate square roots with only 3 lines of Racket code!


Computing the square root of some number x requires finding a y such that
y2 = x. Putting this equation into the equivalent form y = x / y, you can see that we are looking for a fixed point of the function (lambda (y) (/ x y)). In code:


(define (sqrt x)
    (fixed-point (lambda (y) (/ x y))
    1.0))



If you happen to have an interpreter handy, though, you'll find that this
doesn't work. To see why, look at the successive guesses of, say, (sqrt 4):


1
4/1 = 4
4/4 = 1
4/1 = 4
...



It just keeps oscillating! If you think about it, it'll do that for any
number we put in (except 0 or 1).


So, instead of changing the guess by 1, we'll adjust by a little less. To
do that, we'll average the next guess with the current guess. That is, the
next guess after y is (1/2)(y + x/y) instead of x/y.


The process of making such a sequence of guesses is simply the process of
looking for a fixed point of y = (1/2)(y + x/y):


(define (sqrt x)
    (fixed-point (lambda (y) (* 0.5 (+ y (/ x y))))
    1.0))



With this modification, the square-root procedure works.  This approach of
averaging successive approximations to a solution, a technique the SICP
authors call average damping, often aids the convergence of fixed-
point searches.


So, let's continue our abstraction frenzy and abstract the average damping
technique as well:


(define (average-damp f)  
     (lambda (y) (* 0.5 (+ y (f y)))))



And now, a new sqrt:


(define (sqrt x)  
  (fixed-point (average-damp (lambda (y) (/ x y)))  
               1.0))



Amazingly clear, eh?


Notes:


y = (1/2)(y + x/y) is a simple transformation of the equation y =
x / y; to derive it, add y to both sides of the equation and divide by 2.


You may have noticed that we have effectively derived Newton's method for
calculating square roots. But... there are so many other ways! If you're
intersted, here's a cool link.


iterate


We will now conclude this lesson with another higher order function.


This one will allow us to write fixed-point AND largest-square (from Lesson 1).


How, you ask? Because they both fall under the general form of iterative
improvement. That is, you start with a value and keep improving it until it
is good enough.


Notice there are 3 things to abstract here:



	the starting value

	the function to improve

	the function to test if it's good enough




So, with that, we know our parameters and what it should do, so let's write
it!


(define (iterate start improve good-enough?)  
   (if (good-enough? start)  
       start  
       (iterate (improve start) improve good-enough?)))



And now, I'll express largest-square with iterate:


(define (largest-square total guess)  
    (iterate guess   
             (lambda (x) (+ x 1))  
             (lambda (x) (< total (square (+ x 1))))  
      ))



Our abstraction frenzy (mostly) ends here, but be on your toes. Abstraction is
what allows programmers to write complex but readable systems.


Never miss a good opportunity to abstract.


Homework 2

            Template


Type the following command at the terminal to copy the template file to the
current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw2.rkt .



Or you can download the template here.


Autograder


If you are working on the lab computers, the grader command will run the autograder.  If you are working on your own personal machine, you should download grader.rkt and the HW 2 tests.


Exercise 1


Write a procedure substitute that takes three arguments: a sentence, an old
word, and a new word. It should return a copy of the sentence, but with every
occurrence of the old word replaced by the new word.


-> (substitute '(she loves you yeah yeah yeah) 'yeah 'maybe)
(she loves you maybe maybe maybe)



Exercise 2


Type each of the following into Racket, and note the results. See if you can
predict the results before letting Racket do the computation.


(lambda (x) (+ x 3))



((lambda (x) (+ x 3)) 7)



make-adder is a function that returns another function.


(define (make-adder num)
  (lambda (x) (+ x num)))
((make-adder 3) 7)



(define plus3 (make-adder 3))
(plus3 7)



(define (square x) (* x x))
(square 5)



(define sq (lambda (x) (* x x)))
(sq 5)



(define (try f) (f 3 5))
(try +)
(try word)



Exercise 3


Consider a function g for which the expression


((g) 1)


returns the value 3 when evaluated.


Determine how many arguments g has. In one word, also describe as best you
can the type of value returned by g.


Exercise 4


For each of the following expressions, what must f be in order for the
evaluation of the expression to succeed, without causing an error? For each
expression, give a definition of f such that evaluating the expression will
not cause an error, and say what the expression's value will be, given your
definition. To be clear, for number one, define f1, for number 2, define f2,
etc.



	f1

	(f2)

	(f3 3)

	((f4))

	(((f5)) 3)




Exercise 5


Find the values of the following expressions, where add1 is a primitive procedure that adds one to its argument, and t is defined as follows:


(define (t f)
  (lambda (x) (f (f (f x)))) )



Work these out before trying them on the computer.



	((t add1) 0)

	((t (t add1)) 0)

	(((t t) add1) 0)




Exercise 6


Find the values of the following expressions where t is defined as in
Exercise 5, and s is defined as follows:


(define (s x)
  (+ 1 x))



Work these out before trying them on the computer



	((t s) 0)

	((t (t s)) 0)

	(((t t) s) 0)




Exercise 7


Write and test the make-tester procedure. Given a word w as its argument,
make-tester returns a procedure of one argument x that returns true if
x is equal to w and false otherwise.


-> ((make-tester 'hal) 'hal)
#t
-> ((make-tester 'hal) 'cs61a)
#f
-> (define sicp-author-and-astronomer? (make-tester 'gerry))
-> (sicp-author-and-astronomer? 'hal)
#f
-> (sicp-author-and-astronomer? 'gerry)
#t



Exercise 8


Complete SICP exercises 1.31a,
1.32a,
1.33,
1.40,
1.41, and
1.43.
For some of these problems, you will need to read parts of the SICP text.


Some additional guidelines:



	For 1.31a, you should base your product function off of the sum function earlier in the text. It should take four arguments (term, a, next, and b). Find the sum function and figure out what each of these arguments does.

	For 1.31a, the function to estimate pi should be called estimate-pi (see template). It should take in no arguments, and it should estimate pi using at least 100 terms of the formula given.

	For 1.33, the predicate should be the last argument to filtered-accumulate (see template).

	For 1.33, you should define functions sum-sq-prime and prod-of-some-numbers (see template).

	For 1.40, don't worry about learning Newton's method. Simply complete cubic, which takes in three arguments (a, b, and c) and returns another procedure. This procedure should take an input x and evaluate the cubic shown in the problem at x.

	For 1.43, name your procedure my-repeated instead of repeated (see template).




Exercise 9


Last week you wrote procedure squares, that squared each number in its
argument sentence, and saw pigl-sent, that pigled each word in its argument
sentence. Generalize this pattern to create a higher order procedure called
my-every that applies an arbitrary procedure, given as an argument, to each word of an argument sentence.


-> (my-every square '(1 2 3 4))
(1 4 9 16)
-> (my-every first '(nowhere man))
(n m)



Exercise 10


Using the higher order functions, our simply-scheme library provides its own versions of the every function from the last exercise and the keep function shown in our lessons. Get familiar with these by working these examples out before trying them on the computer:



	(every (lambda (letter) (word letter letter)) 'purple)

	(every (lambda (n) (if (even? n) (word n n) n)) '(781 5 76 909 24))

	(keep even? '(781 5 76 909 24))

	(keep (lambda (letter) (member? letter 'aeiou)) 'bookkeeper)

	(keep (lambda (letter) (member? letter 'aeiou)) 'syzygy)

	(keep (lambda (letter) (member? letter 'aeiou)) '(purple syzygy))

	(keep (lambda (wd) (member? 'e wd)) '(purple syzygy))




Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Project 1 - Chatterbot

            It's time to put your skills to the test. In our lessons and homework, we've created small projects with no more than a few lines of code. Now we're going to complete a larger project: Chatterbot.


A chatterbot is a program that is able to "talk" with a
user and simulate a conversation. We are going to implement some simple
chatterbots in this project using concepts that you've learned in this unit.


To get the skeleton code for this project, type in the terminal:


cp -r ~cs61as/lib/chatterbot/ .



You can also download the files individually here.


You should then have a directory called chatterbot with four files inside:



	readme.txt contains instructions and questions for this project.

	chatterbot.rkt is the main file for Chatterbot. You will be writing all of your code (not including tests) here.

	grader.rkt is an autograder for this project. Note that it is not comprehensive. You will write your own tests here, and they will count as part of your project grade.

	adjectives.rkt contains a list of adjectives. Do not modify this file!




This is an individual project. You may bounce ideas off of your classmates, but
sharing or copying other people's code (or code you find online) is
considered cheating. The CS 61AS academic dishonesty policy can be found on the syllabus page.


Before you submit, make sure your file loads without any errors. Submissions that do not load properly will receive no credit.


If you have any questions, please ask on Piazza, in office hours, or during lab.


Have fun!


3 - Recursion, Iteration, Efficiency


Lesson 3 Intro

            Resources and Computing


Computers are powerful, but they have limits. Because of this, part of a
programmer's job is to manage a computer's resources efficiently—if a
programmer writes a program that is too inefficient, the computer will run out
of resources attempting to execute it. There are two broad ways a program can
be inefficient: space and time. Space is the amount of "scratch paper" the
computer requires to carry out a program. Time is the amount of time required
before the computer finishes running a program. In the following sections, we
will examine both of these dimensions in detail.


First, we will take a look at space. An inefficient program may take up too
much space to run, leading the computer to crash. We will examine what causes
this and how we may prevent it through a specific type of recursion—tail
recursion.


Next, we will consider time. Some programs may run longer than than the
lifespan of the universe. (For example, the best programs we know to find a
perfect solution to Chess.) We will learn how to identify such programs, and
more generally, introduce and practice a method in which to measure how
time-efficient our programs are.


Lastly, we will also describe another new type of recursion—tree recursion.
Utilizing tree recursion in our programs allows us to tackle problems that we
previously didn't have the tools to solve. We will particularly focus on what
the costs and benefits this new technique brings.


Readings


You can check out additional readings in the book and the lecture notes. Each section of the lesson has more specific book links so that you can check out in case something is unclear.



	SICP 1.2 - Procedures and the Processes They Generate

	Lecture Notes




Space

            Recursive Processes


To begin exploring how procedures use space, consider the following procedure:


(define (factorial n)
  (if (= n 0)
      1
      (* n (factorial (- n 1)))))



If we were to evaluate (factorial 5) by hand, writing out each step we get the following:


start with  (factorial 5)
replaced by (* 5 (factorial 4))
replaced by (* 5 (* 4 (factorial 3)))
replaced by (* 5 (* 4 (* 3 (factorial 2))))
replaced by (* 5 (* 4 (* 3 (* 2 (factorial 1)))))
replaced by (* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0))))))
replaced by (* 5 (* 4 (* 3 (* 2 (* 1 1)))))
replaced by (* 5 (* 4 (* 3 (* 2 1))))
replaced by (* 5 (* 4 (* 3 2)))
replaced by (* 5 (* 4 6))
replaced by (* 5 24)
replaced by 120



Each line describes a new step of the computation--what we need to remember at that time step in order to continue the evaluation. Here is the key observation: if we chose a large enough input for factorial, say 10000, then at some step, we wouldn't be able fit the entire line in our minds.


Computers evaluate procedure calls in the same way. Each function call is stored in the computer's working memory—a place to store intermediary, incomplete computations. This space is finite and can be overflowed. The important thing to remember is that this problem only occurs on very large inputs. The "working memory" is called the "call stack". When that space is used up by a program, it's called a "stack overflow".


Iterative Processes


Is there a way to fix factorial such that it does not force the computer to run out of space on large inputs? Consider the following:


(define (factorial n)
  (fact-iter 1 1 n))

(define (fact-iter product counter max-count)
  (if (> counter max-count)
      product
      (fact-iter (* counter product)
                 (+ counter 1)
                 max-count)))



Test your understanding. Why must we say (> counter max-count)? What happens if we were to do (fact-iter 1 1 3)?
Now if we were to diagram (factorial 5) with the code above, we would get the following:


start with  (factorial 5)
replaced by (fact-iter 1 1 5)
replaced by (fact-iter 1 2 5)
replaced by (fact-iter 2 3 5)
replaced by (fact-iter 6 4 5)
replaced by (fact-iter 24 5 5)
replaced by (fact-iter 120 6 5)
replaced by 120



In this case, the amount of incomplete computations we had to keep in our minds as we carried through the evaluation didn't grow at each step. We instead carried the incomplete answer to the computation through the arguments, which saves space. In other words, the complete state of the computation is kept in the arguments to the recursive call--calling (fact-iter 2 3 5) would produce the same result as (fact-iter 1 1 5), whereas calling (factorial 3) would produce a different result from calling (factorial 5).


Note that this iterative process still uses Recursion, but this is different than saying it is a recursive process.


Comparing Iterative and Recursive Processes


Looking at these functions side by side, we can identify how these two procedures relate.



  
    
      	Recursive
      	Iterative
    

  
  

  	

(define (factorial n)
  (if (= n 0)
      1
      (* n (factorial (- n 1)))))




  
  	

(define (factorial n)
  (fact-iter 1 1 n))

(define (fact-iter product counter 
                   max-count)
  (if (> counter max-count)
      product
      (fact-iter (* counter product)
                 (+ counter 1)
                 max-count)))




  






Important observations on the differences:



	The value that is returned as  base case in the Recursive version acts as the starting point for product in the iterative version (1). Notice that calling iterative (factorial 1)causes the base case to be triggered in fact-iter, and 1 is returned.

	In the Recursive version, The * procedure is called outside of the recursive call. In the iterative version, all of the arguments are transformed before (or inside of) the recursive call. I.e., (* counter product) happens first, and then the recursive call gets made. This is the key to why the Iterative version is more space efficent.

	As a corollary, this means the recursive call is the "last" expression that is evaluated in a procedure call (as opposed to a multiplcation.)

	Because the Iterative version needed to keep track of more arguments, it needed a helper procedure where the recursion actually took place. This is often the case for Iterative procedures.




Tail Recursion and Writing Tail Recursive Procedures


In formal terms, the Iterative factorial is more space efficent because the Racket interpreter impliements Tail Call Elimination. In other programming languages and other interpreters that aren't Tail Call optimized, the Recursive and Iterative versions use the same amount of space when run. So why do we care?



	Introducing these topics gives us a deeper understanding of recursion, evaluation, and programming languages, which provides a solid background for other topics

	This is a chance to practice thinking critically about resource usage and tradeoffs, which is generally important to Software Engineering and Computer Science.




In order to write a tail-recursive procedure, here are a few tips.



	Figure out if you'll need to keep extra arguments in order to keep track of the state of the computation, and whether or not a helper procedure is necessary. Almost always, you'll need some sort of argument to keep track of the "answer so far". In factorial, that was product.

	In fact as a general rule, the Recursive version of procedures will try to make its arguments progressively smaller, whereas the Iterative version builds up a result. Thus when writing an iterative procedure, think of the starting values needed in order to "build" your answer. In factorial, that was 1, 1, and n, in (fact-iter 1 1 n).

	Ensure that the recursive call happens "at the last moment". In practice, this means that the arguments are processed (added, subtrated, multiplied, butfirst'd, etc.) before the recursive call is made.




Exercises


The following questions are for your understanding. You will not be graded. You can check your answers with a staff member.



	Iterative factorial keeps track of three things in fact-iter. What were those things? Could we rewrite factorial yet again in order to only keep track of two things?

	If we use an iterative version, will we ever run out of space calling factorial?




Further Reading


SICP 1.2.1 - Linear Recursion and Iteration


Time

            Measuring Time Efficency


In order to measure how fast programs runs, we have to devise a reasonable way to do so. Using a stopwatch to measure how much time it takes wouldn't work because the timings would change each time we had different programs running in the background, random fluctuations, solar flares, etc. Moreover, new computers are generally faster and old timings wouldn't be applicable.


A better way to approach this is to count the number of steps that a procedure takes. Focusing on the procedure allows us to avoid the problem of being tied down to any particular computer.


Counting Steps


Here are some of the procedures we'll consider as taking "one step":


All of the following procedures take a single step.



	Basic arithmetic operations

	defining variables

	defining procedures

	conditionals?

	user-defined procedure calls




Example: Counting Steps


(define (square x) (* x x)) ; takes a single step
(square 4) ; would take 2 steps (one for the procedure call, and one for the multiplication)
(square (+ 2 3)) ; 3 steps



However, the most interesting questions arise when we compare one procedure to another, and ask which one is faster.
In order to make this comparision, we must ask the following for each procedure:



  As we increase the size of the argument, how many steps will this procedure take to run?




In other words, if we were to graph the number of steps a procedure takes (with the input as the x-axis), what is the shape of that graph?


Example: Function Runtime



	For square, we say this is a constant time procedure--(square 2) takes as many steps as (square 2000). So as we increase the size of our input, the number of steps remains constant.

	For last, the procedure that finds you the last word of a sentence, we say this is a linear time procedure--as we call last on larger and larger inputs, the number of steps grows linearly.




In order to formalize this, we have to learn a mathematical construct called Orders of Growth.


Orders of Growth


Orders of Growth describe the relationship between functions. Given two functions f(n) and g(n), when we say f = Θ(g), we mean that there exists two numbers, a, and b such that
ag(n) ≤ f(n) ≤ bg(n) for sufficiently large values of n.


Examples



	When f(n) = n and g(n) = 329n, f = Θ(g).

	When f(n) = 4n² and g(n) = 2n²+n, f = Θ(g).

	When f(n) = .0004n³ and g(n) = 1000n²+30000n, f IS NOT equal to Θ(g).




Based on these examples, we have the following rules



	We can ignore constant factors in procedures

	We can ignore lower terms, e.g. in 2n²+n, we only care about the n².




Coming back to procedures, we can formally say that square is Θ(1), and last is Θ(n).


Example: Exponentiation


Consider the straightforward way to compute b^n (b to the nth power): multiply b against itself n times. Here's the code for that.


(define (expt b n)
  (if (= n 0)
      1
      (* b (expt b (- n 1)))))



This runs in linear time with respect to the n variable. We know this because of two observations



	If n is 2, we make two recursive calls and if n is 10, then we make 10 recursive calls.

	In each recursive call, there is Θ(1) work being done.




Can we do better? Turns out there's a more clever exponentiation algorithm that takes advantage of the follow idea of successive squaring.



  Let's say we were trying to compute b^8. Normally, we would do b * b * b * b * b * b * b * b. This requires 8 multiplcations. Instead we can do it in 3:
  [image: The trick]
  This method works fine for exponents that are powers of 2. We can also take advantage of successive squaring in computing exponentials in general if we use the rule
  [image: The other trick]




The above tricks give us this procedure:


(define (fast-expt b n)
  (cond ((= n 0) 1)
        ((even? n) (square (fast-expt b (/ n 2))))
        (else (* b (fast-expt b (- n 1))))))

(define (even? n)
  (= (remainder n 2) 0))



Squaring every even number allows us to cut down on the number of recursive calls. In fact, if you think about it, every other recursive call, we cut down n by half. This pattern of reducing the problem by half is means that the number of recursive calls taken is logarithmic with respect to n. Therefore, fast-expt = Θ(log(n)). (If this explanation doesn't make sense, check out 1.2.4. in the Further Reading)


Exercises


Here are short, ungraded exercises for practice with finding the runtime of a function.



What is the runtime of bar?

define (bar n)
  (if (zero? (remainder n 7))
      'Bzzst
      (bar (- n 1)) ))











What is the runtime of sort?

(define (sort s)
  (if (empty? s)
      '()
      (insert (sort (bf s)) (first s)) ))

(define (insert sorted-sofar n)
  (if (empty? sorted-sofar)
      (se n)
      (if (< n (first sorted-sofar))
          (se n sorted-sofar)
          (se (first sorted-sofar) (insert (bf sorted-sofar) n)) )))











Further Reading



	SICP 1.2.3 Orders of Growth

	SICP 1.2.4 Exponentiation




Tree Recursion

            A New Class of Problems


There are some problems for which we haven't explicitly described a recursive pattern for yet.
Consider the following problem:



  I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many different ways can I go up this flight of stairs?




For example, in the case where n is 5, there are 8 possible ways:



1 1 1 1 1

2   1 1 1

1 2   1 1

1 1 2   1

1 1 1 2  

1 2   2  

2   1 2  

2   2   1



In order to solve this problem, we have to introduce a pattern called Tree Recursion. Tree Recursion is just a phrase to describe when you make a recursive call more than once in your recursive case. Why would we need to do this here? Consider one solution to the above problem:


(define (count-stairs n)
  (cond [(= n 1) 1]
        [(= n 2) 2]
        [else (+ (count-stairs (- n 1))
                 (count-stairs (- n 2)) ]) ))



Breaking the procedure down, there are three parts to consider



	There are two base cases, with two different outcomes.

	If there is only one step to climb, there is only one way (by taking that step)

	If there are two steps to climb, there is exactly two ways (1-step 1-step, or 2-step)




	Otherwise, the problem is made smaller by breaking it into two worlds

	In the first world, we take one step, and thus the number of steps is reduced by one

	In the second world, we take two steps, and thus the number of steps is reduced by two




	Making two recursive calls to those smaller problems gives us the answer to those smaller problems, and adding up those up gives us the answer to the original problem.




count-stairs is tree recursive because whenever it is called, the recursive calls branches out and form an upside-down tree. For example, (count-stairs 5):
[image: An upside down tree]


Counting Change


Let consider a harder problem to solve:



  How many different ways can we make change of $1.00, given half-dollars, quarters, dimes, nickels, and pennies? More generally, can we write a function to compute the number of ways to change any given amount of money using any set of currency denominations?




We approach the problem in a similar fashion as above. By thinking carefully about the problem statement, we can notice that we have to keep track of a two things: what our amount currently is, and which coins we have to use (we can keep track of this in a sentence, e.g. '(50 25 10 5 1)). From there, we can observe a few things about our base cases:



	If the amount is exactly 0, we should count that as 1 way to make change

	This may seem counter-intuitive, but there's exactly one way to make change for $0--use no coins.




	If the amount is less than 0, we should count that as 0 ways to make change.

	You can't make change for negative amounts!




	If we run out of coins to use, we should count that as 0 ways to make change.

	This will become more intuitive once we consider the recursive case.







For the recursive case, we again have to make two recursive calls. These two recursive calls break our problem into two worlds:



	In one world, we use the the largest coin (the first of (50 25 10 5 1))

	Why are the coins in that order? Because it's easy to reason about. The sentence could be in a different order, and while that will affect the computation, it will not affect the result.




	In the other world, we never use the largest coin again.

	For example, if we never use the half dollar again, our new sentence should be (25 10 5 1).







When we translate this into code, we get the following:


(define (count-change amount)
  (cc amount `(50 25 10 5 1)))

(define (cc amount kinds-of-coins)
  (cond [(= amount 0) 1]
        [(or (< amount 0) (empty? kinds-of-coins)) 0]
        [else (+ (cc amount
                     (bf kinds-of-coins))
                 (cc (- amount
                        (first kinds-of-coins))
                     kinds-of-coins))] ))



On Time Efficiency


Tree recursive procedures typically take exponential time to compute. Why would we ever use them?



	Some problems are more easily solved by thinking tree recursively. Try writing count-change using for loops in another language.

	Some problems are intractably hard, meaning the fastest known algorithms we have for them are still exponential in runtime.

	Turns out we can optimize tree recursive procedures without changing their shape, which we will cover later in the course.




Further Reading



	SICP 1.2.2 Tree Recursion

	SICP 1.2.2 Example: Counting Change




Homework 3

            Template


Type the following command at the terminal to copy the template file to the
current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw3.rkt .



Or you can download the template
here.


Autograder


If you are working on the lab computers, the grader command will run the autograder.  If you are working on your own personal machine, you should download grader.rkt and the HW 3 tests.


Exercise 1: Invariant for Fast Exponentiation


Here is the fast-expt procedure from earlier in this lesson:


(define (even? n)
  (= (remainder n 2) 0))

(define (fast-expt b n)
  (cond ((= n 0) 1)
        ((even? n) (square (fast-expt b (/ n 2))))
        (else (* b (fast-expt b (- n 1))))))






Design a procedure that evolves an iterative exponentiation process that uses successive squaring and uses a logarithmic number of steps, as does fast-expt.

  (Hint: Using the observation that (bn/2)2 = (b2)n/2, keep, along with the exponent n and the base b, an additional state variable a, and define the state transformation in such a way that the product a bn is unchanged from state to state. At the beginning of the process a is taken to be 1, and the answer is given by the value of a at the end of the process. In general, the technique of defining an invariant quantity that remains unchanged from state to state is a powerful way to think about the design of iterative algorithms.)




Exercise 2: Golden Ratio (Optional)


Read the subsection on finding fixed points of functions in SICP, and do Exercise 1.35.


Exercise 3: cont-frac


Part 1


An infinite continued fraction is an expression of the form:


 
[mathjax]f=\frac{N_1}{D_1+\frac{N_2}{D_2+\frac{N_3}{D_3+\cdots}}}[/mathjax]



As an example, one can show that


 
[mathjax]\frac{1}{\phi}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}[/mathjax]



where [mathjaxinline]\phi=\frac{1+\sqrt{5}}{2}[/mathjaxinline] is the golden ratio.
One way to approximate an infinite continued fraction is to truncate the expansion after a
given number of terms. Such a truncation—a so-called [mathjaxinline]k[/mathjaxinline]-term finite continued
fraction—has the form:


 
[mathjax]\frac{N_1}{D_1+\frac{N_2}{\ddots+\frac{N_k}{D_k}}}[/mathjax]



Suppose that n and d are procedures of one argument
(the term index [mathjaxinline]i[/mathjaxinline]) that return the
[mathjaxinline]N[/mathjaxinline] and [mathjaxinline]D[/mathjaxinline] of
the [mathjaxinline]i[/mathjaxinline]-th term of the continued fraction.
Define a procedure cont-frac such
that evaluating (cont-frac n d k) computes the value of the [mathjaxinline]k[/mathjaxinline]-term
finite continued fraction. Check your procedure by approximating [mathjaxinline]\frac{1}{\phi}[/mathjaxinline]
using


(cont-frac (lambda (i) 1.0)
           (lambda (i) 1.0)
           k)



for successive values of k. How large must you make k in order to get an approximation that is accurate to 4 decimal places?


Part 2


If your cont-frac procedure generates a recursive process, write one that generates an iterative process.
If it generates an iterative process, write one that generates a recursive process.


Part 3


In 1737, Swiss mathematician Leonhard Euler showed that


 
[mathjax]
e - 2=\frac{N_1}{D_1+\frac{N_2}{D_2+\frac{N_3}{D_3+\cdots}}}
[/mathjax]



for the parameters


 
[mathjax]
\begin{cases}
N_i = 1\\
D_i = 1,2,1,1,4,1,1,6,1,1,8,\cdots
\end{cases}
[/mathjax]



where [mathjaxinline]e[/mathjaxinline] is the base of natural logarithms.
Write a program that uses your cont-frac procedure to approximate [mathjaxinline]e[/mathjaxinline]
using Euler's expansion.


Exercise 4: next-perf


A perfect number is defined as a number equal to the sum of all its factors less than itself. For example, the first perfect number is 6, because its factors are 1, 2, 3, and 6, and 1+2+3=6. The second perfect number is 28, because 1+2+4+7+14=28. What is the third perfect number?


Write a procedure (next-perf n) that tests consecutive integers starting with n until a perfect number is found. Then you can evaluate (next-perf 29) to solve the problem. Note that your procedure should be able to handle any non-negative integer input.


Hint: you’ll need a sum-of-factors subprocedure.


Note: If you run this program when the system is heavily loaded, it may take half an hour to compute the answer! Try tracing helper procedures to make sure your program is on track, or start by computing (next-perf 1) and see if you get 6.


Exercise 5: Interchanging Base Cases




Here is the definition of count-change program from earlier in this lesson:



(define (count-change amount)
  (cc amount `(50 25 10 5 1)))




(define (cc amount kinds-of-coins)
  (cond [(= amount 0) 1]
        [(or (< amount 0) (empty? kinds-of-coins)) 0]
        [else (+ (cc amount
                     (bf kinds-of-coins))
                 (cc (- amount
                        (first kinds-of-coins))
                     kinds-of-coins))] ))


  Explain the effect of interchanging the order in which the base cases in the cc procedure are checked.

  That is, describe completely the set of arguments for which the original cc procedure would return a different value or behave differently from a cc procedure coded as given below, and explain how the returned values would differ.


(define (cc amount kinds-of-coins)
  (cond
    [(or (< amount 0) (empty? kinds-of-coins)) 0]
    [(= amount 0) 1]
    [else ... ] ) ) ; as in the original version






Exercise 6: Invariant for Exponentiation


Here is the iterative exponentiation procedure from earlier in this lesson:


(define (expt b n)
  (expt-iter b n 1))

(define (expt-iter b counter product)
  (if (= counter 0)
      product
      (expt-iter b
                (- counter 1)
                (* b product))))






Give an algebraic formula relating the values of the parameters b, n, counter, and product of the iterative exponentiation procedure defined above.

  (The kind of answer we're looking for is "the sum of b, n, and counter times product is always equal to 37.")




Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Unit 2


4 - Data Abstraction and Sequences


Lesson 4 Intro

            Data Abstraction and Sequences


Remember all that fancy talk about abstraction in Lesson 0.1, and the sneak peek into abstraction using HOFs in Lesson 2? In this lesson, you will finally try your hand at creating some really interesting abstract data types. You'll learn that when programming, controlled complexity and layering abstractions will leave you with clean, professional code. 


Prerequisites and What to Expect


Prerequisites: Learning computer science is cumulative. Make sure you know all the preceding lessons, with emphasis on Lessons 1 and 2. 


What to Expect: One way programming can be summarized is with the following three (very very general) categories:



	Storing Data

	Extracting Data

	Manipulating Data




In Lesson 2, we learned procedural abstraction. In other words, we learned how to create generalized, "customizable" procedures using abstraction. This falls under the third category above, manipulation of data. For example, we have a list of numbers - our data - and we want to manipulate it to find the sum of all of its squares. We generalized this with our abstracted procedure, sum. If you don't remember this, we recommend you take a second to review.


This lesson is about data abstraction, which falls into the first two categories. We will first introduce data structures used to store data (pairs and lists), show how to extract and manipulate them (map), and then finally teach you how to create your own abstract data types.


Get pumped.


Readings


Here are the relevant readings for this lesson:



	SICP 2 Intro

	SICP 2.1

	SICP 2.2.1

	Lecture Notes (ignore the part on MapReduce -- this is different than map!)




Representing Sequences

            Before we get into actual data abstraction, let's first talk about the data structure we will use to store data: pairs. So far, the only way we know of storing information is to use sentences. In this section, we will introduce the idea of using pairs to combine and store data. Pairs are versatile and easy to build off of, for they can be nested within each other to create lists, data structures that are deceptively similar to the sentences from Lesson 1.


Pairs


In general, we as people tend to instinctively think of things as a collection or combination of multiple items. A book is a collection of words on paper. A salad is a combination of leaves and other yummy food. Now, let's shift this perspective. In Racket, and in much of computer science, things are represented by pairs. Now, how are we going to store multiple items if a pair is just two items? The second item of a pair, it turns out, is usually a pointer to another pair! And, if we have pairs point to other pairs which point to other pairs, we can store as much information as we want in this data structure. It adheres nicely to the rule in computer science that anything and everything can be represented in binary.


Creating Pairs


In Racket, we create a pair using the function cons, which takes into two arguments of any type and returns a pair. To represent this visually, we can think of a pair as a box with two halves:


[image: ]


The first half is called the car of the pair, while the second half is the cdr. They each have corresponding selectors of the same name. The procedures car and cdr both take in a pair as its only argument and returns the first and second item in that pair, respectively. 


Let's take a look at the following example, where we create a pair of the numbers 3 and 4:


-> (cons 3 4)
(3 . 4) ;; notice how there is a period between 3 and 4
-> (car (cons 3 4))
3
-> (cdr (cons 3 4))
4



Visually, this pair would look like this:


[image: ]


This visual representation is called a box and pointer diagram, and is an extremely useful tool for understanding pairs when they get more complex in the future.


Let's see another example:


-> (cons 'hello 'world)
(hello . world)
-> (define greeting (cons 'hello 'world))
greeting ;; store the pair into a variable called greeting
-> (car greeting)
hello
-> (cdr greeting)
world



As you can see, pairs can store any kind of data - numbers, words, procedures, and even more pairs!



Test Your Understanding


Write a procedure called func-pair that takes in a pair whose car is a function of one argument and whose cdr is a number. func-pair returns the value returned when we call that function to that number.



Try it out in the Racket interpreter first. Then, check your answers below.





It's common for pairs to store other pairs, since this allows us to store as much information in one pair as we'd like. Let's see what the box and pointer diagram will look like for this nested pairs example:


-> (cons (cons 1 2) 4)
((1 . 2) . 4)



Notice how the car of this pair is another pair, (cons 1 2), while the cdr is 4. In that case, this should be how we draw the box and pointer diagram:


[image: ]


You can only imagine how many ways we can store large amounts of data!



Test Your Understanding


Given the following piece of code:

(define z (cons (cons 1 2) 4))










What will the following expressions return? See if you can figure it out without a Racket interpreter, then click on the corresponding bubble to see the correct answer.








We can also have the cdr of a pair point to the empty list, which is written as '(). For example, we can do the following:


-> (cons 1 '())
(1)



[image: box-pointer]


Why is this useful? When would we ever want to store "nothing" into our pairs? Let's stay patient and look at the next example. Suppose we type this into the interpreter:


-> (cons 1 (cons 2 '()))



Try to draw the box and pointer diagram yourself, then try to guess what Racket would print out. Then, check your work with the interpreter.


Was the actual output what you expected? You probably assumed the expression would return something like (1 . (2 . ())). Instead, you got (1 2). This is because Racket has a nifty way of simplifying nested pairs! Since this format of (cons a (cons b (cons c (cons ...)))) is used so often, every time Racket sees a period followed by an open parenthesis, it will simplify the expression like so:


(1 . (2 . ()))
(1 2)


Here are a few practice problems for you to try out. For each of the following expressions, try drawing the corresponding box and pointer diagram, then write out what the Racket interpreter will print:


(cons 4 5)
(cons (cons 2 (cons 4 5)) (cons 6 7))
(cons 3 (cons (cons 1 4) (cons 5 '())))
(cons 1 (cons 2 (cons 3 '())))



What will the following expressions return? If you get stuck, draw a box and pointer diagram.


(car (cons 4 5))
(car (cdr (car (cons (cons (cons 4 5) (cons 6 7)) (cons 1 (cons 2 3))))))
(cdr (cdr (cdr (cons 1 (cons 2 (cons 3 '()))))))



Some Shorthand


Series of cars and cdrs can be downright ugly. In our Racket interpreter, there is a built-in shorthand notation to do multiple calls to car and/or cdr.


(car (cdr a)) is equivalent to (cadr a).


(car (cdr (car (car a)))) is equivalent to (cadaar a).


Notice how in the first example, if we take the cadr of some sequence a, we first take the cdr of a, and then take the car of whatever is returned from that. In general, you can extract the a's and d's from a string of cars and cdrs, and append them together, in the same order, between one c and one r. You can do up to cxxxxr (4 x's), where x is either a or d.


Lists



Test Your Understanding


Write an expression using cons so that Racket will print out (5 6 7 8). Click below to reveal the answer.





Using this pattern of conss over and over again can get pretty tedious. Because this is so common, Racket has another built-in procedure that creates a nested cons for us: list. list takes in any number of arguments of any type, and returns it as a nested cons, or a list. For example:


-> (cons 5 (cons 6 (cons 7 (cons 8 '()))))
(5 6 7 8)
-> (list 5 6 7 8) ;; this is identical to the expression above!
(5 6 7 8)

-> (list 'hello 'world 5 #t)
(hello world 5 #t)



We can define list formally using the following recursive definition: a list is either the empty list, written '(), or a pair whose cdr is another list. Notice that this means that if we continuously take the cdr of any list, we will always end up with the empty list.


We can draw box and pointer diagrams for lists by simply rewriting every list as a nested cons. For example, the box and pointer diagram for (list 1 2 3) is the same as the one for (cons 1 (cons 2 (cons 3 '()))):


[image: ]


Thus, we learn a very important key idea: every list is a pair. The reverse is not true though - not all pairs are lists. (cons 1 2) is a pair, but it is not a list.


Append


We now have almost all of the tools we need to represent collections and sequences in Racket! What we’re missing is a way to easily combine two lists. For example, say we have the lists (list 1 2 3) and (list 4 5 6), and we want to combine these into one large list of the form (list 1 2 3 4 5 6). Racket has a procedure that does this for us: append. Given any number of lists, append will return one list containing all the elements of its argument lists. 


Here’s what calling append in the example above will look like with box and pointer diagrams.


We start with two lists, (1 2 3) and (4 5 6):


[image: box-pointer]


Then, we remove the null pointer at the end of the first list and point it to the beginning of the second list:


[image: box-pointer]


Append: Under the Hood


Here's how append works under the hood. Remember how our recursive definition of lists tells us that the last cdr of a list always points to the empty list? First, append takes its first argument list and follows the cdr pointers until it finds the last pair of the list. Then, it replaces the value that the cdr of that last pair points to with the second argument list to append. That might seem like a lot of nonsense to you. Take a look at the following example for some clarity:


-> (define list1 (list 1 2 3 4))
list1 ;; the last pair of list1 is (4 . ())
-> (define list2 (list 5 6 7 8))
list2 ;; the last pair of list2 is (8 . ())
-> (define list3 (list 9 10 11 12))
list3
-> (append list1 list2 list3) ;; we take the cdr of list1's last pair, which is the empty list '(), and point it to list2. then, we take the cdr of list2's last pair, which is also '(), and point it to list3.
(1 2 3 4 5 6 7 8 9 10 11 12)



Append will only work if all but the last argument are lists. Can you explain why the last argument does not have to be a list? What does Racket return when you call append where the last argument is not a list?



Test Your Understanding


Which of the following calls to append will error?








List Operators and HOFs

            List Operators


Racket provides useful primitive procedures for lists:


list-ref


list-ref takes as arguments a list and a number n and returns the nth item of the list. The first element of the list is indexed as 0, meaning it is the 0th element of the list. Here's how list-ref is defined: 


(define (list-ref lst n)
  (if (= n 0)
      (car lst)
      (list-ref (cdr lst) (- n 1))))



and here is an example of how it works:


-> (define squares (list 1 4 9 16 25))
squares
-> (list-ref squares 3)
16



null?


null? takes a list as an argument and returns #t if the list is empty. Otherwise, it returns #f:


(null? (list 1 3))
#f

(null? '())
#t



length


length takes a list as an argument and returns the number of items in a list. Here's how length is defined: 


(define (length items)
  (if (null? items)
      0
      (+ 1 (length (cdr items)))))



and here is an example:


-> (define odds (list 1 3 5 7))
odds
-> (length odds)
4



Higher Order Functions with Lists


From here on out, we’ll be mostly using lists and pairs rather than sentences. This is great, since it means we'll be able to take a closer look at how data is represented by Racket. But, this also means that a lot of the important higher order functions we previously defined with sentences must now be rewritten to work with pairs.


every vs. map


Recall the HOF every, which takes in a function and a sentence, and returns a sentence with the function applied to every element of the sentence. The equivalent of this HOF using pairs is called map, which it takes in a function and a list, and returns a list with the function mapped to every element in the list. map is a recursively defined function, as you can see here:


(define (map proc items)
  (if (null? items)
      null
      (cons (proc (car items))
            (map proc (cdr items)))))



The procedure null? for lists is analogous to the procedure empty? for sentences, and checks whether or not the given argument is the empty list. Here are a few example calls to map:


-> (map square (list 1 2 3 4 5))
(1 4 9 16 25)
-> (map car (list (cons 1 2) (cons 3 4) (cons 5 6)))
(1 3 5)



keep vs. filter


We already had a quick glimpse of filter in the filtered-accumulate problem in Homework 2, so you should already have some idea of what the HOF filter should do. filter takes in two arguments, a predicate and a list, and returns a list with only elements that satisfy the predicate. Take a look at the formal definition:


(define (filter pred lst)
  (cond ((null? lst) null)
        ((pred (car lst))
          (cons (car lst) (filter pred (cdr lst))))
        (else (filter pred (cdr lst)))))



And here are some examples:


-> (filter odd? '(1 2 3 4 5))
(1 3 5)
-> (filter (lambda (x) (> x 2)) '(1 2 3 4 5))
(3 4 5)



accumulate


Finally, there is the procedure accumulate for sentences. This procedure takes in a function of two arguments, a base case value, and a sentence of values, and continuously combines the values in the list using this operation and ending/starting with the base case value. There are two equivalents to accumulate for lists: foldl and foldr. Both take in a function of two values, a base case value, and a list. 


fold-left starts from the last (right-most) element in the list and continuously applies the function recursively until it reaches the first element of the list. Thus, it folds to the left. For example, here are the steps to evaluate a call to foldl:


-> (foldl cons '() '(1 2 3 4))
... (cons 4 (cons 3 (cons 2 (cons 1 '()))))
(4 3 2 1)



Here's another example:


-> (define combiner (lambda (x y) (cons (add1 x) y)))
combiner
(foldl combiner '() '(1 2 3 4))
... (combiner 4 (combiner 3 (combiner 2 (combiner 1 '()))))
... (5 . (4 . (3 . (2 . ()))))
(5 4 3 2)



On the other hand, fold-right starts from the first (left-most) element in the list and continuously applies the function recursively until it reaches the last element of the list. Thus, it folds to the right. Take these calls for example:


-> (foldr cons '() '(1 2 3 4))
... (cons 1 (cons 2 (cons 3 (cons 4 '()))))
(1 2 3 4)

-> (foldr + 0 '(1 2 3 4))
... (+ 1 (+ 2 (+ 3 (+ 4 0))))
10



We now have two versions of accumulate, where the values of foldl and foldr would only differ when they are called with combiner functions in which order matters. 


Summary of HOFs


To make the transition easier, here’s a table illustrating some operations on sentences and their equivalent for lists.




    	SENTENCE
    	LIST





    	se/sentence
    	cons/list/append



    	first
    	car



    	bf/butfirst
    	cdr



    	last
    	NO EQUIVALENT



    	bl/butlast
    	NO EQUIVALENT



    	count
    	length



    	item (one-indexed)
    	list-ref (zero-indexed)



    	every
    	map



    	keep
    	filter



    	accumulate
    	foldl/foldr






An Overview - Data Abstraction

            What Is Data Abstraction?


Recall Lesson 1 - do you remember Procedures as Black-Box Abstractions? You don't have to know how the procedures that are used as arguments for higher order functions were implemented, as long as they work! This allowed us to create generalized, "customizable" functions that made our code concise, readable, and flexible. 


The analogous notion for compound data is called data abstraction, and it is a methodology that enables us to isolate how a compound data object is used from the details of how it is constructed from more primitive data objects. In other words, you don't need to know how a car's engine works to drive the car.


The basic idea of data abstraction is to structure the programs that use compound data objects so that they operate on "abstract data." That is, our programs should use data in such a way that it does not make any assumptions on how the data is stored or extracted. And so, the way data is represented is "concrete" and independent from the program that uses it. 


Programs and projects that professional programmers write are often accessible to the public, who aren't all code savvy. If a tech company writes a cool program in Python, they won't expect their clients to know how they wrote their program, or even how to understand Python, in order to use their product. So how do these programmers let non-programmer people to use their creations? Abstraction. This is what programming is all about.


The interface between these two parts of our system will be a set of procedures, called constructors and selectors:



	The constructor creates the object that stores our data.

	The selector(s) extracts the data that you will use from the object created by the constructor.




The object that a constructor creates is called an abstract data type (ADT).


Example: Rational Numbers


To illustrate this technique, let's consider how to design an interface for manipulating rational numbers.


A rational number is any number that can be expressed as the quotient or the fraction (p/q) of two integers, where q is non-zero. For example, 3/4 is a rational number with the denominator 4 and numerator 3, while π is an irrational number.


Although the Racket language already accommodates fractions in its dictionary, let's try to represent it by creating our own abstract data type. Before we jump into making our constructors and selectors, let's first look at the information we need. 


The minimal data needed for a complete representation of a rational number is the numerator and a denominator. So, we can arbitrarily pick any way to store these two numbers. Here we chose to store it in a pair:


(define (make-rational numer denom)
  (if (= 0 denom)
      (error "Divisor cannot be 0!")
      (cons numer denom)))



That's it for our constructor! It's simply a procedure that, when called with the proper arguments, "creates" a rational number by storing it in a pair. Sure, (3 . 4) doesn't really look like a fraction, but that's exactly what are selectors are here for. How can we extract the numerator and denominator from our abstract data type? Take a look:


(define (numerator rat)
  (car rat))

(define (denominator rat)
  (cdr rat))



The first selector, numerator, takes in a rational number as its argument and returns its numerator by calling car on it. The second selector returns the denominator by calling cdr on it. And now, our abstract data type implementation is complete! We can make a rational number and extract its data like so:


-> (define x (make-rational 3 4))
x
-> (numerator x)
3
-> (denominator x)
4



Do you see how, in the calls above, there is nothing that reveals how the rational number was represented? You've abstracted away the method of representing your data and left a clean interface that almost anybody can use. 


The constructors and selectors of an abstract data type go hand in hand. The selectors for this rational numbers implementation will not work for a different implementation of rational numbers. We could have used lists, sentences, decimals, etc. The beauty of abstraction is that we don't know.



Test Your Understanding


Consider the problem of representing line segments in a plane. Each segment is represented as a pair of points: a starting point and an ending point.



Points are represented as a pair of coordinates:

(define (make-point x y) (cons x y))
(define (x-coord point) (car point))
(define (y-coord point) (cdr point))










Define a constructor called make-segment and selectors called start-segment and end-segment that define the representation of segments in terms of points. You may choose any method of storing the data you wish.



Procedures using ADT


To build off of our rational numbers ADT, let's write some procedures that respect the abstraction of our implementation. One useful procedure is print-rat, which actually let's us see what a rational number "looks like" given its abstract representation.


-> (define (print-rat rat)
    (word (numerator rat) '/ (denominator rat)))
-> (define x (make-rational 3 4))
x
-> (print-rat x)
3/4



This way we can pretend our rational number isn't actually a pair. :)


What's the use of rational numbers if we can't do mathematical operations on them? Here, we've defined some simple arithmetic procedures for our ADT:


(define (add-rat rat1 rat2)
  (make-rational (+ (* (numerator rat1) (denominator rat2))
                    (* (numerator rat2) (denominator rat1)))
                 (* (denominator rat1) (denominator rat2))))

(define (sub-rat rat1 rat2)
  (make-rational (- (* (numerator rat1) (denominator rat2))
                    (* (numerator rat2) (denominator rat1)))
                 (* (denominator rat1) (denominator rat2)))))

(define (mul-rat rat1 rat2)
  (make-rational (* (numerator rat1) (numerator rat2))
                 (* (denominator rat1) (denominator rat2))))

(define (div-rat rat1 rat2)
  (make-rational (* (numerator rat1) (denominator rat2))
                 (* (denominator rat1) (numerator rat2)))))

(define (equal-rat? rat1 rat2)
  (= (* (numerator rat1) (denominator rat2))
     (* (numerator rat2) (denominator rat1))))



Notice how these procedures respect the abstraction. Nowhere in our code do we call cons to create a rational, or car/cdr to select the numerator or denominator. Failing to do so is called a data abstraction violation, but we can talk about that in a later section. For now, let's move on to a bigger and better example!



Test Your Understanding


Using your implementation of line segments above, define a procedure called segment-length that takes in a line segment and returns its length.



Example - Playing Cards

            How cool would it be if we could represent a card game using abstract data types? Let's create a more complex interface than rational numbers that will allow us to represent cards, hands, and decks. With these abstractions, we will be able to play some simple card games!


Creating the Card


When you look at any card, the two properties that identify it as a playing card are its rank and its suit. Sure, you can observe other properties, such as it's rectangular shape or its plastic-y surface, but those aren't the important qualities that you can use to identify the card. Thus, here we have our make-card constructor, which takes in a rank and a suit:


(define (make-card rank suit)
  (cons rank (first suit)))



And here are its selectors:


(define (rank card)
  (car card))

(define (suit card)
  (cdr card))



And so we can create a card and extract its properties with the following calls:


-> (define c (make-card 13 'heart))
card
-> (rank c)
13
-> (suit c)
h



We've just created the king of hearts card.


Creating a Hand


Just like how a hand of cards is a collection of cards in real life, in our abstraction, a hand will be a list of cards. We've defined the constructor and selectors below:


(define make-hand list) ;; constructor creates a list of cards

(define first-card car) ;; returns the first card in hand

(define rest-hand cdr) ;; returns the rest of the hand

(define empty-hand? null?) ;; checks if you have no cards in your hand



Notice how we defined make-hand as a variable assigned to the procedure list. This is because we don't want to specify how many arguments make-hand should take in - we can create a hand of any length. All we want make-hand to do is take in an arbitrary number of cards and store them into a list. Here are some example calls to our ADT:


-> (define my-hand (make-hand (make-card 1 'heart)
                           (make-card 5 'diamond)
                           (make-card 10 'diamond)
                           (make-card 13 'club)))
my-hand
-> (first-card my-hand)
(1 . h)
-> (rest-hand my-hand)
((5 . d) (10 . d) (13 . c))



Using Our Implementation


That's all we'll need to represent cards! You have cards, and you have a collection of cards. Everything else can be defined in terms these two objects. For example, a deck is just a hand with a card for every combination of rank and suit (plus two jokers, but we'll omit that for now). 


Now it's time to write some procedures with our implementation. For most card games, the rank of the cards represent its value. Let's write a procedure that finds the total value of your hand. total takes in a hand and returns the sum of all the values of your cards.


(define (total hand)
    (if (empty-hand? hand)
        0
        (+ (rank (first-card hand)) (total (rest-hand hand)))))



Here's an example:


-> (total my-hand)
29



Changing the Implementation


What would happen if we changed the way we represented cards? Would our code for total still work?


The answer is yes, total will work because there is a layer of abstraction that separates it from the way cards or hands are implemented. As long as we keep the same names for our constructors and selectors, all the procedures we built off of it will continue to work. Let's say we changed the way we represent cards to this:


(define (make-card rank suit)
  (cond ((equal? suit ’heart) rank)
        ((equal? suit ’spade) (+ rank 13))
        ((equal? suit ’diamond) (+ rank 26))
        ((equal? suit ’club) (+ rank 39))
        (else (error "say what?")) ))

(define (rank card)
  (remainder card 13))

(define (suit card)
  (nth (quotient card 13) ’(heart spade diamond club)))



Our total procedure will still work with this implementation too. Try it out on the Racket interpreter!


With this style of programming, we can create even bigger programs.


Violating Data Abstraction

            So, creating abstract data types is handy, and it's nice to be able write programs without worrying about implementation details. But, what's actually stopping us from crossing the abstraction barrier and use the underlying implementation?


Nothing, actually. Racket will not complain if you use cons instead of make-rational, or if you use car instead of numerator. We've reproduced the code for the rational numbers ADT below:


(define (make-rational numer denom)
  (if (= 0 denom)
      (error "Divisor cannot be 0!")
      (cons numer denom)))

(define (numerator rat)
  (car rat))

(define (denominator rat)
  (cdr rat))



Technically, if we make the following calls, the selectors will still return what we expect:


-> (define x (make-rational 3 4))
x
-> (define num (car x))
num
-> (= num (numerator x))
#t



So, why would we want to use the selector if we can just use car instead? This works for now, but problems arise when we later change our implementation of our constructors and selectors. Going under the abstraction and making assumptions on how the data structure was implemented is called a data abstraction violation (DAV).


Example: Violating the Data Abstraction


Let's say we write a new function, expt-rat, that takes a rational number and the power to which we exponentiate the rational number and returns another rational number to that power. This is the procedure we wrote:


(define (expt-rat rat n)
  (make-rational (expt (car rat) n) 
                 (expt (cdr rat) n)))



Can you spot the DAV? Given our current implementation of rational numbers, expt-rat should work with no problems:


-> (define x (make-rational 3 4))
x
-> (expt-rat x 2)
(9 . 16)



But this is dangerous! You can't guarantee your code will work if, later on, you decide to change your implementation. Let's say we rewrite the implementation this way:


(define (make-rational numer denom)
  (lambda (m) (cond ((equal? m 'numerator) numer)
                    ((equal? m 'denominator) denom)
                    (else (error "bad message to rational")))))

(define (numerator rat)
  (rat 'numerator))

(define (denominator rat)
  (rat 'denominator))



What happens now when we call expt-rat?


-> (define y (make-rational 5 6))
y
-> (expt-rat y 4)
; car: contract violation
;   expected: pair?
;   given: #<procedure>
; [,bt for context]



We get an error! Our code for expt-rat above assumes that we store the rational number as a pair, and foolishly calls car to retrieve the numerator and cdr for the denominator. And thus, Racket throws a fit when we try calling these procedures on a lambda function.


Abstraction Barriers


[image: A window into a lab with a warning tape that says "ABSTRACTION BARRIER DO NOT CROSS"]


We defined the rational-number operations in terms of a constructor make-rat and selectors numerator and denominator. In general, the underlying idea of data abstraction is to identify for each type of data object a basic set of operations (e.g. the constructors and selectors) in terms of which all manipulations of data objects of that type will be expressed, and then to use only those operations in manipulating the data.


We can envision the structure of the rational-number system as shown in the figure below. The horizontal lines represent abstraction barriers that isolate different "levels" of the system. At each level, the barrier separates the programs (above) that use the data abstraction from the programs (below) that implement the data abstraction. Programs that use rational numbers manipulate them solely in terms of the procedures supplied "for public use" by the rational-number package: add-rat, sub-rat, mul-rat, div-rat, and equal-rat?. These, in turn, are implemented solely in terms of the constructor and selectors make-rat, numerator, and denominator, which themselves are implemented in terms of pairs. The details of how pairs are implemented are irrelevant to the rest of the rational-number package so long as pairs can be manipulated by the use of cons, car, and cdr. In effect, procedures at each level are the interfaces that define the abstraction barriers and connect the different levels.


[image: Abstraction diagram for numbers]


This simple idea has many advantages. One advantage is that it makes programs much easier to maintain and to modify. Any complex data structure can be represented in a variety of ways with the primitive data structures provided by a programming language.


To understand why this is so important, consider a world where data abstraction didn't exist. Of course, the choice of representation influences the programs that operate on it; thus, if the representation were to be changed at some later time, all such programs might have to be modified accordingly. This task could be time-consuming and expensive in the case of large programs unless the dependence on the representation were to be confined by design to a very few program modules.


Luckily, if the data was implemented without any violation of data abstraction,  it would be very easy to modify the entire program -- you only need to modify constructors and selectors.


Homework 4

            Template


Type the following into the terminal to copy the template file
to the current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw4.rkt .



Or you can download the template here.


Autograder


If you are working on the lab computers, the grader command will run the autograder.  If you are working on your own personal machine, you should download grader.rkt and the HW 4 tests.


Warm-up


Try and predict what the following expressions will return, then check your answers with the Racket interpreter:



	(define x (cons 4 5))

	(car x)

	(cdr x)

	(define y (cons 'hello 'goodbye))

	(define z (cons x y))

	(car (cdr z))

	(cdr (cdr z))

	(cdr (car z))

	(car (cons 8 3))

	(car z)

	(car 3)




Exercise 1


The first few exercises refer to SICP 2.1.4.
See the text for details about interval arithmetic.


SICP 2.7


Alyssa's program is incomplete because she has not specified the implementation of the interval abstraction. Here is a definition of the interval constructor:


(define (make-interval a b) (cons a b))



Define selectors upper-bound and lower-bound to complete the implementation.


SICP 2.8


Using reasoning analogous to Alyssa's, describe how the difference of two intervals may be computed. Define a corresponding subtraction procedure, called sub-interval.


SICP 2.10


Ben Bitdiddle, an expert systems programmer, looks over Alyssa's shoulder and comments that it is not clear what it means to divide by an interval that spans zero. Modify Alyssa's code to check for this condition and to signal an error if it occurs.


Note: Spans zero means that one bound is <= zero and the other is >= zero!


SICP 2.12


Define a constructor make-center-percent that takes a center and a percentage tolerance and produces the desired interval. You must also define a selector percent that produces the percentage tolerance for a given interval. The center selector is the same as the one shown above.


SICP 2.17


Define a procedure last-pair that returns the list that contains only the last element of a given (nonempty) list:


-> (last-pair (list 23 72 149 34))
(34)



SICP 2.20


The procedures +, *, and list take arbitrary numbers of arguments. One way to define such procedures is to use define with dotted-tail notation. In a procedure definition, a parameter list that has a dot before the last parameter name indicates that, when the procedure is called, the initial parameters (if any) will have as values the initial arguments, as usual, but the final parameter's value will be a list of any remaining arguments. For instance, given the definition


(define (f x y . z) <body>)



the procedure f can be called with two or more arguments. If we evaluate


(f 1 2 3 4 5 6)



then in the body of f, x will be 1, y will be 2, and z will be the list '(3 4 5 6). Given the definition


(define (g . w) <body>)



the procedure g can be called with zero or more arguments. If we evaluate


(g 1 2 3 4 5 6)



then in the body of g, w will be the list '(1 2 3 4 5 6).


Use this notation to write a procedure same-parity that takes one or more integers and returns a list of all the arguments that have the same even-odd parity as the first argument. For example,


-> (same-parity 1 2 3 4 5 6 7)
(1 3 5 7)

-> (same-parity 2 3 4 5 6 7)
(2 4 6)



SICP 2.22


Louis Reasoner tries to rewrite the first square-list procedure of Exercise 2.21 so that it evolves an iterative process:


(define (square-list items)
  (define (iter things answer)
    (if (null? things)
        answer
        (iter (cdr things) 
              (cons (square (car things))
                    answer))))
  (iter items nil))



Unfortunately, defining square-list this way produces the answer list in the reverse order of the one desired. Why?


Louis then tries to fix his bug by interchanging the arguments to cons:


(define (square-list items)
  (define (iter things answer)
    (if (null? things)
        answer
        (iter (cdr things)
              (cons answer
                    (square (car things))))))
  (iter items nil))



This doesn't work either. Explain.


Exercise 2


Write a procedure my-substitute that takes three arguments: a list, an old
word, and a new word. It should return a copy of the list, but with every
occurrence of the old word replaced by the new word, even in sublists. For
example:


-> (my-substitute '((lead guitar) (bass guitar) (rhythm guitar) drums)
                  'guitar
                  'axe)
((lead axe) (bass axe) (rhythm axe) drums)



You might find the procedure list? useful:


-> (list? (list 1 2 3))
#t
-> (list? 'apple)
#f
-> (list? 4)
#f



Exercise 3


Now write my-substitute2 that takes a list, a list of old words, and a list of
new words; the last two lists should be the same length. It should return a
copy of the first argument, but with each word that occurs in the second
argument replaced by the corresponding word of the third argument:


-> (my-substitute2 '((4 calling birds) (3 french hens) (2 turtle doves))
                   '(1 2 3 4)
                   '(one two three four))
((four calling birds) (three french hens) (two turtle doves))



Extra for Experts


Do these if you want an extra challenge. These are not for credit.


Exercise 4


Write the procedure cxr-function that takes as its argument a word starting
with c, ending with r, and having a string of letters a and/or d in between,
such as cdddadaadar. It should return the corresponding function.


Exercise 5


SICP Ex. 2.6. Besides addition, invent multiplication and exponentiation of nonnegative integers. If you're really enthusiastic, see if you can invent subtraction. (Remember, the rule of this game is that you have only lambda as a starting point.) Read ~cs61as/lib/church-hint for some suggestions.


Exercise 6


SICP Ex. 2.18; this should take some thought, and you should make sure you get it right, but don't get stuck on it for a whole hour. Note: Your solution should reverse lists, not sentences! That is, you should be using cons, car, and cdr, not first, sentence, etc.


Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Project 2 - Turtle Graphics

            Introduction


In Lesson 4, we explored how cons lets us build arbitrarily complicated list structures.


In this project, we'll create a simple picture language that will
allow us to build arbitrarily complicated drawings,
like the one shown below. Notice how the image is composed of repeated
elements that are shifted and scaled.


[image: ]


As we explore this picture language, we'll see how data abstractions and higher-order procedures
can be combined to build simple elements into a complex system.


To begin, copy the file ~cs61as/lib/picture.rkt to your directory, or download it
here. You'll also need to install the Racket package
that will enable us to draw pictures. If you're working on a lab computer, type the following into your terminal:


install-htdp



If you want to install the picture-drawing package on your own computer, check out the first followup discussion to this Piazza post.


After completing installation, you should be able to type (require graphics/turtles) into Racket without errors.


The Picture Language


When we began our study of programming in Lesson 1, we emphasized the
importance of describing a language by focusing on the language's primitives,
its means of combination, and its means of abstraction. We'll follow that
framework here.


Part of the elegance of this picture language is that there is only one kind
of element, called a painter. A painter draws an image that is shifted and
scaled to fit within a designated parallelogram-shaped frame. For example,
there's a primitive painter we'll call wave-painter that makes a crude line drawing,
as shown below. The actual shape of the drawing depends on the frame—all
four images below are produced by the same wave-painter, but
with respect to four different frames.


[image: ]
[image: ]
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[image: ]


Combining Painters


To combine images, we use various operations that construct new painters from
given painters. For example, the beside operation takes two painters and
produces a new, compound painter that draws the first painter's image in the
left half of the frame and the second painter's image in the right half of the
frame. Similarly, below takes two painters and produces a compound painter
that draws the first painter's image below the second painter's image.


Some operations transform a single painter to produce a new painter. For example,
flip-vert takes a painter and produces a painter that draws its image upside-down,
and flip-horiz produces a painter that draws the original painter's
image left-to-right reversed.


Here's how we can define a painter called wave4 that is built up in
two stages starting from wave-painter:


(define wave2 (beside wave-painter (flip-vert wave-painter)))
(define wave4 (below wave2 wave2))  



The resulting figures are shown below:


[image: ]
[image: ]


Abstract Operations


Once we can combine painters, we would like to be able to abstract typical
patterns of combining painters. We will implement the painter operations as
Racket procedures. This means that we don't need a special abstraction
mechanism in the picture language: since the means of combination are ordinary
Racket procedures, we automatically have the capability to do anything with
painter operations that we can do with procedures. For example, we can
abstract the pattern in wave4 as


(define (flipped-pairs painter)
  (let ((painter2 (beside painter (flip-vert painter))))
    (below painter2 painter2)))



and define wave4 as an instance of this pattern:


(define wave4 (flipped-pairs wave))



Recursive Operations


We can also define recursive operations. Here's one called right-split
that makes painters split and branch towards the right:


(define (right-split painter n)
  (if (= n 0)
      painter
      (let ((smaller (right-split painter (- n 1))))
        (beside painter (below smaller smaller)))))



Here's what the general template for (right-split painter n) looks like:


[image: ]


And here's the result for (right-split wave-painter 4):


[image: ]


We can produce balanced patterns by branching upwards as well as towards the
right:


(define (corner-split painter n)
  (if (= n 0)
      painter
      (let ((up (up-split painter (- n 1)))
            (right (right-split painter (- n 1))))
        (let ((top-left (beside up up))
              (bottom-right (below right right))
              (corner (corner-split painter (- n 1))))
          (beside (below painter top-left)
                  (below bottom-right corner))))))  



Here's the general template for (corner-split painter n):


[image: ]


And here's the result for (corner-split wave-painter 4):


[image: ]


By placing four copies of a corner-split appropriately, we obtain a pattern
called square-limit:


(define (square-limit painter n)
  (let ((quarter (corner-split painter n)))
    (let ((half (beside (flip-horiz quarter) quarter)))
      (below (flip-vert half) half))))



The very first figure at the top of this page, reproduced below, is the visual
output for (square-limit wave-painter 5):


[image: ]


Before Starting Exercise 1


First of all, if you skimmed or skipped everything above because you wanted to jump directly to the first exercise,
take a minute now to read everything above carefully. It's important!


Also, note that you will not be able to test the visual output of any of your code
until after Exercise 6. The picture language we've been describing
is incomplete—you'll have to fill in the gaps before we can begin
using it!


Exercise 1: up-split


Define the procedure up-split used by corner-split. It is similar to
right-split, except that it switches the roles of below and beside.


For your convenience, right-split is shown again here:


(define (right-split painter n)
  (if (= n 0)
      painter
      (let ((smaller (right-split painter (- n 1))))
        (beside painter (below smaller smaller)))))



Higher-Order Operations


In addition to abstracting patterns of combining painters, we can work at a
higher level, abstracting patterns of combining painter operations. That is,
we can view the painter operations as elements to manipulate and can write
means of combination for these elements—procedures that take painter
operations as arguments and create new painter operations.


For example, flipped-pairs and square-limit each arrange four copies of a
painter's image in a square pattern; they differ only in how they orient the
copies. One way to abstract this pattern of painter combination is with the
following procedure, which takes four one-argument painter operations and
produces a painter operation that transforms a given painter with those four
operations and arranges the results in a square. tl, tr, bl, and br
are the transformations to apply to the top left copy, the top right copy, the
bottom left copy, and the bottom right copy, respectively.


(define (square-of-four tl tr bl br)
  (lambda (painter)
    (let ((top (beside (tl painter) (tr painter)))
          (bottom (beside (bl painter) (br painter))))
      (below bottom top))))



Then flipped-pairs can be defined in terms of square-of-four as follows:


(define (flipped-pairs painter)
  (let ((combine4 (square-of-four identity flip-vert
                                  identity flip-vert)))
    (combine4 painter)))



Similarly, square-limit can be expressed as:


(define (square-limit painter n)
  (let ((combine4 (square-of-four flip-horiz identity
                                  rotate180 flip-vert)))
    (combine4 (corner-split painter n))))



Exercise 2: split


right-split and up-split can be expressed as instances of a general
splitting operation. Define a procedure split with the property that
evaluating


(define right-split (split beside below))
(define up-split (split below beside))



produces procedures right-split and up-split with the same behaviors as
the ones already defined.


Frames


Before we can show how to implement painters and their means of combination,
we must first consider frames. A frame can be described by three vectors—an
origin vector and two edge vectors. The origin vector specifies the offset of
the frame's origin from some absolute origin in the plane, and the edge
vectors specify the offsets of the frame's corners from its origin. If the
edges are perpendicular, the frame will be rectangular. Otherwise the frame
will be a more general parallelogram.


The figure below shows a frame and its associated vectors. In accordance with data
abstraction, we need not be specific yet about how frames are represented in Racket,
other than to say that there is a constructor make-frame, which takes three
vectors and produces a frame, and three corresponding selectors: origin-frame,
edge1-frame, and edge2-frame


[image: ]


We will use coordinates in the unit square to specify vectors; that is, we'll
use the region of space where [mathjaxinline]0 \leq x,y \leq 1[/mathjaxinline].


Frame Coordinates (Optional)


This optional subsection describes how frame coordinates are calculated.


With each frame, we associate a coordinate map, which is used to shift
and scale images to fit the frame. The coordinate map transforms vectors in the unit square
to vectors in the frame using the formula


[image: ]


where [mathjaxinline]x[/mathjaxinline] and [mathjaxinline]y[/mathjaxinline] are
the components of the input vector.


For example, the vector (0, 0) is mapped to the origin of the frame, (1, 1) to the vertex
diagonally opposite the origin, and (0.5, 0.5) to the center of the frame.


In Racket, we can create a frame's coordinate map with the following procedure:


(define (frame-coord-map frame)
  (lambda (v)
    (add-vect
     (origin-frame frame)
     (add-vect (scale-vect (xcor-vect v)
                           (edge1-frame frame))
               (scale-vect (ycor-vect v)
                           (edge2-frame frame))))))



Observe that applying frame-coord-map to a frame returns a procedure that,
given a vector, returns a vector. If the argument vector is in the unit
square, the result vector will be in the frame. For example,


((frame-coord-map a-frame) (make-vect 0 0))



returns the same vector as


(origin-frame a-frame)



because the vector (0, 0) maps to the origin of the frame.


Exercise 3: Representing Vectors


A two-dimensional vector [mathjaxinline]v[/mathjaxinline] running from the origin to a point can be
represented as a pair consisting of an x-coordinate and a y-coordinate.
Implement a data abstraction for vectors by giving a constructor make-vect
and corresponding selectors xcor-vect and ycor-vect. 


Then, in terms of your selectors and constructor,
implement procedures add-vect, sub-vect, and scale-vect that perform
vector addition, vector subtraction,
and vector multiplication by a scalar:



[mathjax]
\begin{align}
(x_1, y_1) + (x_2, y_2) &= (x_1 + x_2, y_1 + y_2)\\
(x_1, y_1) - (x_2, y_2) &= (x_1 - x_2, y_1 - y_2)\\
c \cdot (x, y) &= (cx, cy)
\end{align}
[/mathjax]



Exercise 4: Representing Frames


We will now implement frames as described above.


Here are two possible constructors for frames:


(define (make-frame origin edge1 edge2)
  (list origin edge1 edge2))

(define (make-frame-2 origin edge1 edge2)
  (cons origin (cons edge1 edge2)))



For each constructor, supply the appropriate selectors.


Representing Painters


A painter is represented as a procedure that, given a frame as an argument, draws
a particular image shifted and scaled to fit the frame. That is to say, if p
is a painter and f is a frame, we produce p's image in f by calling (p f).


The details of how primitive painters are implemented depend on the particular
characteristics of the graphics system and the type of image to be drawn. For
instance, suppose we have a procedure draw-line that draws a line on the
screen between two specified points. Then we can create painters for line
drawings, such as the wave painter, from lists of line segments
as follows:


(define (segments->painter segment-list)
  (lambda (frame)
    (for-each
     (lambda (segment)
       (draw-line
        ((frame-coord-map frame) (start-segment segment))
        ((frame-coord-map frame) (end-segment segment))))
     segment-list)))



The line segments are given using coordinates with respect to the unit square.
For each segment in the list, the painter transforms the segment endpoints
with the frame coordinate map (see above) and draws a line between the transformed points.


Representing painters as procedures erects a powerful abstraction barrier in
the picture language. We can create and intermix all sorts of primitive
painters, based on a variety of graphics capabilities. The details of their
implementation do not matter. Any procedure can serve as a painter, provided
that it takes a frame as argument and draws something scaled to fit the frame.


Exercise 5: Representing Segments


A directed line segment in the plane can be represented as a pair of vectors—the
vector running from the origin to the start-point of the segment, and
the vector running from the origin to the end-point of the segment. Use your
vector representation from above to
define a representation for segments with constructor make-segment and
selectors start-segment and end-segment.


Exercise 6: Primitive Painters


Use segments->painter to define the following primitive painters:



	x-painter, which draws an "X" by connecting opposite corners of the
frame.


	outline-painter, which draws the outline of the designated frame.


	diamond-painter, which draws a diamond shape by connecting the midpoints of the
sides of the frame.


	wave-painter, which draws the familiar "wave" figure shown here. Your drawing does not have to be a perfect replica; just make sure it clearly resembles the original wave figure.





To make sure you're on the right track, you should test your code immediately after defining x-painter.
Instructions are below in the "Testing" section.


Important Hint


Remember that segments->painter takes in a list of segments, each of which is comprised of vectors defined relative to the unit square. For example, your code might looks something like this:


(define diag-painter
  (segments->painter
   (list (make-segment (make-vect 1 0) (make-vect 0 1)))))



This draws a single diagonal line from the upper left corner to the lower right corner (like this).


Testing


We can now begin testing our code. Note that the following commands will not work over SSH.


First load picture.rkt by typing in your terminal:


racket -it picture.rkt



Now use the cs ("clear screen") procedure to open the drawing window:


(cs)



You should see a window appear with a small triangle.


You can now tell a painter to draw in the drawing window by using full-frame as the frame argument.
For example, try this:


(x-painter full-frame)



You should see an X appear in your drawing window.
If nothing appears, or if you get errors, don't worry.
Use the debugging skills you've learned so far to pinpoint the error and resolve it.
If you need help, post on Piazza or contact a TA.


Note that the painter tranformations mentioned above (like beside and square-of-four) will not work at this point.
You'll have to finish Exercise 8 before testing them. For now, if your four primitive painters work, move on to the next section.


Transforming and Combining painters


An operation on painters (such as flip-vert or beside) works by creating a
painter that invokes the original painters with respect to frames derived from
the argument frame. Thus, for example, flip-vert doesn't have to know how a
painter works in order to flip it—it just has to know how to turn a frame
upside down: the flipped painter just uses the original painter, but in the
inverted frame.


Painter operations are based on the procedure transform-painter, which takes
as arguments a painter and information on how to transform a frame, and
produces a new painter. The transformed painter, when called on a frame,
transforms the frame and calls the original painter on the transformed frame.
The arguments to transform-painter are points (represented as vectors) that
specify the corners of the new frame: When mapped into the frame, the first
point specifies the new frame's origin and the other two specify the ends of
its edge vectors. Thus, arguments within the unit square specify a frame
contained within the original frame.


(define (transform-painter painter origin corner1 corner2)
  (lambda (frame)
    (let ((m (frame-coord-map frame)))
      (let ((new-origin (m origin)))
        (painter
         (make-frame new-origin
                     (sub-vect (m corner1) new-origin)
                     (sub-vect (m corner2) new-origin)))))))



Here's how to flip painter images vertically:


(define (flip-vert painter)
  (transform-painter painter
                     (make-vect 0.0 1.0)   ; new origin
                     (make-vect 1.0 1.0)   ; new end of edge1
                     (make-vect 0.0 0.0))) ; new end of edge2



Using transform-painter, we can easily define new transformations. For
example, we can define a painter that shrinks its image to the upper-right
quarter of the frame it is given:


(define (shrink-to-upper-right painter)
  (transform-painter painter
                     (make-vect 0.5 0.5)
                     (make-vect 1.0 0.5)
                     (make-vect 0.5 1.0)))



Other transformations rotate images counterclockwise by 90 degrees...


(define (rotate90 painter)
  (transform-painter painter
                     (make-vect 1.0 0.0)
                     (make-vect 1.0 1.0)
                     (make-vect 0.0 0.0)))



...or squash images towards the center of the frame:


(define (squash-inwards painter)
  (transform-painter painter
                     (make-vect 0.0 0.0)
                     (make-vect 0.65 0.35)
                     (make-vect 0.35 0.65)))



Frame transformation is also the key to defining means of combining two or
more painters. The beside procedure, for example, takes two painters,
transforms them to paint in the left and right halves of an argument frame
respectively, and produces a new, compound painter. When the compound painter
is given a frame, it calls the first transformed painter to paint in the left
half of the frame and calls the second transformed painter to paint in the
right half of the frame:


(define (beside painter1 painter2)
  (let ((split-point (make-vect 0.5 0.0)))
    (let ((paint-left
           (transform-painter painter1
                              (make-vect 0.0 0.0)
                              split-point
                              (make-vect 0.0 1.0)))
          (paint-right
           (transform-painter painter2
                              split-point
                              (make-vect 1.0 0.0)
                              (make-vect 0.5 1.0))))
      (lambda (frame)
        (paint-left frame)
        (paint-right frame)))))



Observe how the painter data abstraction, and in particular the representation
of painters as procedures, makes beside easy to implement. The beside
procedure need not know anything about the details of the component painters
other than that each painter will draw something in its designated frame.


Exercise 7: flip-horiz and Rotations


Define the transformation flip-horiz, which flips painters horizontally.


Then define rotate180 and rotate270, which rotate painters counterclockwise by
180 degrees and 270 degrees respectively.


Exercise 8: below


Define the below operation for painters. below takes two painters as
arguments. The resulting painter, given a frame, draws with the first painter
in the bottom of the frame and with the second painter in the top. Define
below in two different ways—first by writing a procedure that is analogous
to the beside procedure given above, then in terms of beside and
suitable rotation operations (from the exercise above).


Levels of Language for Robust Design


Our picture language is now complete.
Let's take a step back and evaluate.


The picture language exercises some of the critical ideas we've introduced
about abstraction with procedures and data. The fundamental data abstractions,
painters, are implemented using procedural representations, which enables the
language to handle different basic drawing capabilities in a uniform way. The
means of combination are also procedures, and this permits us to easily
build up complex designs. Finally, all the tools for abstracting procedures
are available to us for abstracting means of combination for painters.


We have also obtained a glimpse of another crucial idea about languages and
program design. This is the approach of stratified design, the notion that a
complex system should be structured as a sequence of levels that are described
using a sequence of languages. Each level is constructed by combining parts
that are regarded as primitive at that level, and the parts constructed at
each level are used as primitives at the next level. The language used at each
level of a stratified design has primitives, means of combination, and means
of abstraction appropriate to that level of detail.


Stratified design pervades the engineering of complex systems. For example, in
computer engineering, resistors and transistors are combined (and described
using a language of analog circuits) to produce parts such as and-gates and
or-gates, which form the primitives of a language for digital-circuit design.
These parts are combined to build processors, bus structures, and memory
systems, which are in turn combined to form computers, using languages
appropriate to computer architecture. Computers are combined to form
distributed systems, using languages appropriate for describing network
interconnections, and so on.


Stratified design helps make programs robust—that is, it makes it likely that
small changes in a specification will require correspondingly small changes in
the program. For instance, suppose we wanted to alter the image based on wave-painter.
We could work at the lowest level to change the detailed
appearance of the wave-painter element; we could work at the middle level to change
the way corner-split replicates the wave; or we could work at the highest level
to change how square-limit arranges the four copies of the corner. In
general, each level of a stratified design provides a different vocabulary for
expressing the characteristics of the system, and a different kind of ability
to change it.


Exercise 9: Square Limit


Alter the square limit of the wave painter by working
at each of the levels described above. In particular:



	Add some segments to the primitive wave-painter from Exercise 6 (to add a smile, for example).

	Change the pattern constructed by corner-split (for example, by using
only one copy of the up-split and right-split images instead of two).

	Modify the version of square-limit that uses square-of-four so as to
assemble the corners in a different pattern. (For example, you might make the
wave figure look outward from each corner of the square.)




Final Steps


Following the instructions in the "Testing" section above, test the rest of your painters.
Be sure to also test all of your painter transformation procedures.


To submit your project, navigate to your project directory in your terminal, then type


submit proj2





Just for Fun: Exporting Drawings


Don't want to lose your masterpiece?
Eager to share your creation on Facebook or Instagram?
You can now save your drawings as PNG files using the following command:


(export "filename.png")



5 - Hierarchical Data and calc.scm


Lesson 5 Intro

            Introduction


This lesson builds upon the idea of hierarchical structures—structures made
up of parts, which themselves are made up of parts, and so on. We will use
these ideas to make a simple calculator in Racket at the end of the lesson.


Warning


This lesson is substantially more dense and time-consuming than previous lessons.
Make sure you pace yourself so as not to fall behind.


Prerequisites and What to Expect


Material from Lesson 4 is required before working on this lesson.


We will briefly go over cons and list before extending their usage to build more
complex structures.


Readings


Here are the relevant readings for this lesson:



	SICP 2.2.2

	SICP 2.2.3

	SICP 2.3.1

	SICP 2.3.3

	Simply Scheme Ch. 18

	Lecture notes




Building Hierarchy

            Composing pairs and lists


Previously we saw how to use cons to "group" a pair of values together,
e.g. (cons 1 2), which returns a pair (1 . 2). We can also use list to
group an arbitary amount of data together. For example if you type (list 1 2
'bagel 4) in the interpreter, Racket will print the list (1 2 bagel 4).
Notice that we can put any sort of data inside them, even other pairs and lists!


Now let's make a pair of lists:


(cons (list 1 2) (list 3 4))



The first item of the pair is the list (1 2) and the second is the list (3 4). We can show this structure with the following box-and-pointer diagram:


[image: ]


(If you aren't familiar with drawing and interpreting box-and-pointer diagrams, please go back and review the section in Lesson 4.)


You can also represent the structure ((1 2) 3 4) using a little-t tree:


[image: ]


With litle-t trees, every element in a sequence is a node. In the example above, (1 2) is an element of ((1 2) 3 4),
so it's a node. But it's also a tree with two children nodes—one for each element.


Why do we call this a "little-t tree"? Later on in this lesson, we'll discuss the "capital-T Tree" data type, which is completely
different from the little-t tree data type. We use this notation for the sake of consistency and clarity.


We may also refer to little-t trees as deep lists (since they are lists within lists within lists within...), which is less ambiguous, but also less descriptive of the tree-like structure of lists of lists.



Test Your Understanding


Suppose we evaluate the expression (list 1 (list 2 (list 3 4))). What is returned when we enter this into the interpreter? Draw for yourself the corresponding box-and-pointer structure and the corresponding little-t tree.










Takeaways


In this section, we discussed nested cons structures. We also introduced little-t trees.


Before We Continue...


Review the shorthand notation for cars and cdrs.
It will come in handy!


Hierarchical Structures - Little-t Trees

            An Overview of Little-t Trees


Let's discuss some general properties of little-t trees.
We've seen that structures like (cons (list 1 2) (list 3 4))
can be represented in a tree-like structure:


[image: ]


Little-t trees are composed of branches and leaves.
The tree above has five
branches; they correspond to the lines on the diagram above. Notice that a
branch can lead to a subtree—a tree that is contained within a larger tree.
In this case, the branch ((1 2) 3 4) contains the subtree (1 2).
A leaf has no branches connecting from it. The tree above has 4 leaves: 1, 2, 3, and 4.
Leaves are found at the "bottom" of the tree, also called the fringe. 


Compared to trees in the real world, trees in computer science tend to be upside-down!


Recursion with Little-t Trees


When working with trees, it is usually helpful to think recursively.
As an example, let's write a function count-leaves that counts the number of leaves in a tree.


We'll start by informally outlining what our function will do in plain English.
This is called writing pseudocode. After we understand how our count-leaves function
should behave, we'll write the actual Racket code for it. This is good general technique for
solving problems.


Pseudocode


Recall how we defined length, which finds the number of elements in a list:



	length of an empty list is 0.

	length of a non-empty list x is 1 plus the length of the cdr of x.




The base case is the same for count-leaves:



	count-leaves of an empty list is 0.




Our recusive case is slightly different though.
In length, we are guaranteed that the car of the list is a single element, so we count its length as 1.
But for count-leaves, its car may contain one or more trees, and so its length will not always be 1.
Therefore, we need to recursively find the count-leaves of the car of the tree as well! Our recursive call is therefore:



	count-leaves of a tree is the count-leaves of the car of the tree plus count-leaves of the cdr of the tree.




Eventually we will car ourselves to the leaf of the tree, and so our second base case will be:



	count-leaves of a leaf is 1.




The pair? Predicate


When we call car on a tree, we have to determine if it returns another tree (a pair), or a leaf (a single element, technically known as an atom).
How do we check for it? Racket has a built-in predicate pair? that tests if its argument is the result of a cons. For example:



	(pair? (cons 1 2)) returns #t.

	(pair? (cons 1 (cons 2 3))) returns #t.

	(pair? 2) returns #f.

	(pair? 'pear) returns #f.

	(pair? '()) returns #f.




Real Code


Using pair? and the pseudocode above,
we can write the complete code for count-leaves:


(define (count-leaves x)
    (cond ((null? x) 0) ;; is the tree is empty?
          ((not (pair? x)) 1) ;;is the tree a single element?
          (else (+ (count-leaves (car x)) ;; else, call count-leaves on the car
                   (count-leaves (cdr x))))) ;; and cdr of x and add them up.



Example: scale-tree


In Lesson 4, we saw the function scale-list, which multiplies each
item in a list by a given numeric factor. We are going to write an analogous
function, scale-tree, which accepts a deep list and a numeric factor and multiplies all elements in the deep list by that factor.


Here is an example call:


> (scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7)) 10)
(10 (20 (30 40) 50) (60 70))





Test Your Understanding



Below is an unfinished definition of scale-tree. Which base case(s) do we need to correctly define scale-tree?



(define (scale-tree tree factor)
  (cond ;;Your answer here.
        (else 
          (cons (scale-tree (car tree) factor) 
                (scale-tree (cdr tree) factor)))))













Now, try scale-tree out in your interpreter with some examples of your own!


Example: deep-reverse


Let's work on a problem with a similar structure.
This time, we want to write a function called deep-reverse that reverses the order of all elements in a deep list.
For example:


> (define x (list (list 1 2) (list 3 4)))
((1 2) (3 4))

> (deep-reverse x)
((4 3) (2 1))



Notice that not only do (1 2) and (3 4) switch places, but their elements do as well.
deep-reverse should also work for lists that do not contain other lists inside of it.



Test Your Understanding


Below is an unfinished definition of deep-reverse.
Which recursive call(s) do we need in order to correctly define deep-reverse?

(define (deep-reverse d-l)
  (cond ((null? d-l) null)
        ;;Your answer here.
  ))












Try this out in your Racket interpreter!


Takeaways


Trees can contain subtrees, so recursion can be very helpful when solving problems involving trees.


Hierarchical Structures - Capital-T Trees

            Intro to Capital-T Trees (The Abstract Data Type)


Before you continue reading, note that the capital-T Trees we talk about in
this section are different than the trees from SICP. In SICP (and in the
previous sections), trees are simply a fancy word for deep lists. In this
section, we introduce a new concept, Trees, which are an abstract data type (ADT). These Trees must respect certain abstraction barriers. When you hear most computer scientists talk
about Trees in the real-world, they are typically talking about this ADT.


As with lists and sentences, we can also store data in the Trees data
structure. They are generally useful for providing hierarchy, ordering, and
composition.


[image: Tree diagram of the US. US is at the top, with California and Massechusetts underneath it. Underneath CA are San JOse and Berkeley. Underneath MA is Boston.]


The name comes from the downwards branching structure, similar to real trees
but upside down. A node is a point at the Tree. Each node contains a
datum ("U.S.A", "California" are some datums). Notice that a node can
contain another Tree. The node with "California" can be regarded as a Tree
with "California" at the top. Because of this, nodes and Trees are the same
thing! We generally use 'Tree' to refer to the whole structure. Another
synonym for a node is subtree.



	The root of a Tree is the topmost node. All Trees have only one root. In this case, it is "U.S.A"

	The parent of a node is the node directly above it. All nodes have exactly one parent, except for the root which has no parent.

	The children of a node are the nodes that are directly beneath it. The children of "California" are "Berkeley" and "San Jose".

	A branch node is a node that has at least one child (like "U.S.A","California" and "Massachusetts").

	A leaf node is a node that no children. (like "Berkeley", "San Jose", and "Boston")




The Tree ADT


We have our own ADT to represent Trees that we will use for the rest of this lesson, but there is no official way to represent Trees. Why? This is because there are several different design choices to make when creating a Tree ADT:



	Branch nodes may or may not have data

	Binary Trees (2 branches) vs N-way Trees (N branches)

	Order of children

	Can Trees be empty?

	... and many more




Different representations of Trees will give you different limitations, features, and functionalities.


Here are the built-in constructors and selectors for Trees:



	Constructor: make-tree takes in two arguments, a datum and a list of its children, and creates a Tree ADT.

	Selector: datum takes in a node and returns the datum that the node stores.

	Selector: children takes in a node and returns the list of its children.




Under the Hood


One way to implement the Trees described above is with the following definitions:


(define (make-tree datum children)
  (cons datum children))
(define (datum node)
  (car node))
(define (children node)
  (cdr node))



The selector children accepts a node as its single argument and returns its children, a list of Trees. A list of Trees is called a forest. Remember that
Trees and forests are two different data structures! In addition, you
should think of a forest as a list of Trees, but you should NOT think
of a Tree as a bunch of cons, cars, and cdrs. 


To reiterate, the constructor and selectors for forests are list, car, and cdr, while the constructor and selectors for (this ADT of) Trees are make-tree, datum, and children.


Additionally, since a leaf is a node with no children, we could use a predicate like this
to check whether a node is a leaf:


(define (leaf? node)
  (null? (children node)))



Remember that using lists is just one way to represent Trees. We can't
assume that someone who designed the ADT would use a list. For example, if maple is a Tree, we can't assume that (cdr maple) will give us the children. Instead, we must respect the data abstraction and use the constructors and selectors they provide for us.


Abstraction Barrier


[image: A real-life tree with a caution tape around it.]


We cannot stress enough that you cannot make any assumptions on how a Tree ADT is implemented. When working on Trees, you can only use the constructors/selectors that are
provided. Since forests are implemented as a list of Trees, you can use car
of a forest to find the first Tree, or cdr to find a list of the rest of the
Trees.



Test Your Understanding


Assuming pine refers to a Tree, which of the following is a data abstraction violation (DAV)?











Mapping over Trees


Something useful that we do to Trees often is to map a certain operation to
it, akin to mapping over a list. We can achieve this by the following:


(define (treemap fn tree)
   (make-tree (fn (datum tree))
              (map (lambda (t) (treemap fn t))
                   (children tree) )))



We apply the function to our datum, and map the function recursively on the
children.


Make sure you stare at the above code until it makes sense.


Mutual Recursion


Here is an alternative way to define treemap that applies a function fn
throughout the tree. Observe how the overall process is recursive, but treemap
does not directly call itself. treemap will be (mostly) responsible for
applying fn to the datum of a single Tree. Who handles the forest? Well,
treemap will call a helper procedure, forest-map, which applies fn to all
elements in the forest.


(define (treemap fn tree)
    (make-tree (fn (datum tree))
               (forest-map fn (children tree))))



How does forest-map apply fn to the forest? Well, a forest is just a list
of Trees, and we know that we have treemap that handles a single Tree. So, all we
need to do is recursively call treemap on all Trees in the forest!


(define (forest-map fn forest)
    (if (null? forest)
        '()
        (cons  (treemap fn (car forest))
               (forest-map fn (cdr forest)))))



Notice that treemap calls forest-map, and forest-map calls treemap.
The pattern of A calling B and B calling A is called mutual
recursion.


[image: Penguins making the LEAP OF FAITH into icy waters]


count-leaves


Let's use mutual recursion to write the procedure count-leaves, which returns the number of leaves in a tree. Let's take this step by step. Since we're using mutual recursion, that means we'll need a procedure to manage Trees, count-leaves, and a procedure to manage forests, count-leaves-in-forest. 


count-leaves:



	Base case: If the node is a leaf node, then just return 1. 

	Recursive call: Otherwise, it calls count-leaves-in-forest.




Here is the code for count-leaves:


(define (count-leaves tree)
  (if (leaf? tree)
      1
      (count-leaves-in-forest (children tree))))



count-leaves-in-forest:



	Base case: If the forest is null?, return 0.

	Recursive call: Otherwise, we need to find the total number of leaves in all of the trees in the forest.

	We call count-leaves on the car of the forest to find how many leaves are in the first Tree of the forest. 

	We recursively call count-leaves-in-forest on the cdr of the forest to find the number of leaves in the rest of the forest. 

	Finally, we add these two values together to find the total number of leaves.







Here is the code for count-leaves-in-forest:


(define (count-leaves-in-forest forest)
  (if (null? forest)
      0
      (+ (count-leaves (car forest))
         (count-leaves-in-forest (cdr forest)))))



Tree Traversals


We have seen how we can store and find elements in Trees. Now, many situations that use the Tree data structure involves visiting all of our nodes and do something with all of the
elements. The obvious way is to go up-down and left-right, but there are many
other ways we can traverse a Tree.


Depth First Search


Depth First Search (DFS) is when you explore a node's children before its
siblings. The name comes from the fact that you are going as deep as you can
in one branch before looking at other branches. The gif below demonstrates
this. The numbers indicate the order in which the nodes are visited.


[image: ]


Note that it finishes exploring one branch before exploring other branches.


We can demonstrate this in Racket. Lets say we want to print every single
node. Our Tree ADT actually follows the same structure, so our implementation of dfs is rather simple:


(define (depth-first-search tree)
    (print (datum tree))
    (for-each depth-first-search (children tree)))



Breadth First Search


Breadth First Search (BFS) explores the siblings before its children. It's
easier to imagine this as looking at the graph in 'layers'. First we look at
the Tree's root, then its children, followed by its grandchildren, and so on.
The gif below demonstrates this:


[image: ]


Implementing BFS in Racket is slightly harder because our ADT stores
information in a different order than the order in which BFS traverses. One
way around this is to use another data structure called a queue, which stores (in order) the nodes that are going to be checked next.


(define (breadth-first-search tree)
    (bfs-iter (list tree)))

(define (bfs-iter queue)
    (if (null? queue)
        'done
        (let ((task (car queue)))
            (print (datum task))
            (bfs-iter (append (cdr queue) (children task))))))



BFS Example


Lets walk through how the code above works using the example Tree below. The
arrows in the diagram indicate the parent --> child relationships.


[image: ]


When bfs-iter is first called, the whole Tree is put into the queue. To
simplify things, let's say a tree is denoted by its root.


queue: F


It dequeues node F, prints the value of node F, and recursively calls bfs-iter with the
rest of the queue and the children of F. The rest of the queue is empty, but
the children of F is B G.


queue: B G


bfs-iter will print the node of the first tree in the queue, B and
recursively calls bfs-iter with the rest of the queue, G, and the
children of B, A D.


queue: G A D


And so on until the queue is empty. Once the queue is empty, we will have
printed out each node's datum exactly once.


Note that the siblings are always first in the queue and the children are
entered from the back. This ensures that siblings are checked first before
children.


DFS vs BFS


[image: xkcd.com]


Is one better than the other? It depends on what you are trying to do with
your Trees and how you are storing elements in the Tree. 


The Tree below represents things in a house. In a "House" you can find a "Kitchen" and "Cat
Food". In a "Kitchen" you can find a "Drawer", "Trash Can", etc. The leaves
contain food and the deeper you go, the more filling the foods are.


[image: ]



Test Your Understanding


Consider a Tree with a structure similar to the one above. Imagine you are a starving cat searching for any food to fill your stomach as soon as possible. What kind of Tree traversal is more appropriate for the following situation?







You are still a cat, but now you're on a quest to find the most delicious food in the house. Which Tree traversal will help you find it the fastest?









Takeaways


Here are the takeaways from this subsection:



	Remember your constructor and selectors (make-tree, datum, and children).

	To map over Trees, we use mutual recursion, where the two procedures are written in terms of each other. Typically, one of those procedures takes in a Tree, and the other takes in a forest.

	Breadth First Search looks at the nodes in the same level first, whereas Depth First Search goes through each branch until it hits the leaf node.




Sequences as Conventional Interfaces

            Sequences as Abstractions


Let's explore more into the concept of abstraction. One major benefit of using abstraction is that it helps us clean up code and increase readability. Some of the functions that we write for sequences can be generalized and abstracted using Higher Order Functions. This idea can be summarized by the following steps:



	Find a recurring pattern in our code

	Abstract each element in the pattern using HOFs

	Redefine our code with using the abstraction




Here are two example functions that will help demonstrate this idea.


sum-odd-squares takes in a tree containing numbers and adds together the square of each odd element in the tree:


(define (sum-odd-squares tree)
  (cond ((null? tree) 0)  
        ((not (pair? tree))
         (if (odd? tree) (square tree) 0))
        (else (+ (sum-odd-squares (car tree))
                 (sum-odd-squares (cdr tree))))))



even-fibs takes in a number n, and returns a list of even fibonacci numbers up to and including n:


(define (even-fibs n)
  (define (next k)
    (if (> k n)
        nil
        (let ((f (fib k)))
          (if (even? f)
              (cons f (next (+ k 1)))
              (next (+ k 1))))))
  (next 0))



From a first glance at the two functions, we might say "These two functions
have nothing in common!". Sure, the functions look completely different but
they do share the same logic:


[image: ]


The first step in our idea was to find a recurring pattern in our code. From how we've described recursion in previous lessons, you might dissect sum-odd-squares and even-fibs by base cases and recursive calls. Now, let's see what each function does from a different perspective:


sum-odd-squares:



	enumerates the leaves of a tree

	filters out the nodes with even data, leaving only odd-valued nodes

	maps the function square onto each of the remaining nodes, and finally

	accumulates the results by adding them together, starting with 0.




even-fibs:



	enumerates the integers from 0 to n

	maps the function fib onto each integer

	filters out the odd numbers, leaving only even Fibonacci numbers, and finally

	accumulates the results using cons, starting with the empty list.




What pattern do we see here? What at first seemed like two very different functions can now be summarized into four major parts: enumeration, filtering, accumulation, and computation. This is great, because now we can use HOFs to abstract our code. This leads us to step two of our abstraction idea. But before that, let's go over some HOFs.


Map


We went over the map HOF in Lesson 4. You may want to go back for a quick refresher.


Filter


filter takes in two arguments, predicate and sequence, and returns the sequence with only the elements of that sequence that satisfy predicate.


(define (filter predicate sequence)
  (cond ((null? sequence) nil)
        ((predicate (car sequence))
         (cons (car sequence)
               (filter predicate (cdr sequence))))
        (else (filter predicate (cdr sequence)))))




Test Your Understanding


What do the following expressions return?

(filter (lambda (x) (= (remainder x 2) 0)) (list 0 1 2 3 4 5))







(filter equal? '(bongo celia momo laval laburrita bongo))










Accumulate


accumulate takes in an operation op, a starting value initial, and a sequence. Starting from initial, accumulate uses op to combine all the values in sequence into one. Here are some examples:


> (accumulate + 0 '(1 2 3 4 5))
15
> (accumulate append null '((1 2) (3 4) (5 6)))
(1 2 3 4 5 6)



Here is how we define accumulate:    


(define (accumulate op initial sequence)
  (if (null? sequence)
      initial
      (op (car sequence)
          (accumulate op initial (cdr sequence)))))



How this HOF works could be a little confusing, so here let's write out the evaluation steps explicitly:


Consider the expression:


(accumulate + 0 (list 1 2 3 4 5))


The recursive steps will proceed as follows:


(+ 1 (accumulate + 0 (list 2 3 4 5)))


(+ 1 (+ 2 (accumulate + 0 (list 3 4 5))))


(+ 1 (+ 2 (+ 3 (accumulate + 0 (list 4 5)))))


(+ 1 (+ 2 (+ 3 (+ 4 (accumulate + 0 (list 5))))))


(+ 1 (+ 2 (+ 3 (+ 4 (+ 5 (accumulate + 0 (list)))))))


(+ 1 (+ 2 (+ 3 (+ 4 (+ 5 0)))))


(+ 1 (+ 2 (+ 3 (+ 4 5))))


(+ 1 (+ 2 (+ 3 9)))


(+ 1 (+ 2 12))


(+ 1 14)


15


Enumerate


What does enumerate do? enumerate makes a sequence/list of elements. Our
definition of filter, map, and accumulate are designed for sequences but recall that
one of our functions, sum-odd-squares is called on trees. Instead of making
several versions of accumulate, map, and filter, we can differentiate them by just having
different enumerate functions.


Enumerate for Lists


Enumerate will return a list given a lower and upper range.



	(enumerate-interval 0 5) returns (0 1 2 3 4 5)

	(enumerate-interval 10 13) returns (10 11 12 13)




You can define enumerate (for lists) as:


(define (enumerate-interval low high)
  (if (> low high)
      nil
      (cons low (enumerate-interval (+ low 1) high))))



Enumerate for Trees


For our tree-version of enumerate, we need a function that accepts a tree, and
returns a list with all of the leaves, so that it is compatible with the rest of our HOFs.


(define (enumerate-tree tree)
  (cond ((null? tree) nil)
        ((not (pair? tree)) (list tree))
        (else (append (enumerate-tree (car tree))
                      (enumerate-tree (cdr tree))))))



Putting Everything Together


Here, we reach our final step in our abstraction idea. With all of the helper functions we have defined, we can define a more modular, readable, and compact version of sum-odd-squares and even-fibs:


(define (sum-odd-squares tree)
  (accumulate +
              0
              (map square
                   (filter odd?
                           (enumerate-tree tree)))))



What did we do here? We find all the leaves in the tree (enumerate), keep
everything that is odd (filter), square everything left (map), and add
up the results (accumulate).


Similarly we can define even-fibs as follows:


(define (even-fibs n)
  (accumulate cons
              nil
              (filter even?
                      (map fib
                           (enumerate-interval 0 n)))))



What happened this time? We make a list from 0 to n (enumerate), find
the Fibonacci number for all of them (map), keep everything that is even
(filter), and put them together into a list (accumulate).


Takeaways


Sequences provide a strong foundation for abstraction with different
combinations of map, filter, accumulate and enumerate. Even functions
that may look to have different structures like the ones we used here as an
example, we may be able to break them down using similar process signals.


Nested Mappings

            Nested Mapping in Sequences


In the previous subsection, we saw how we can combine enumerate, map,
filter, and accumulate to produce more complex functions. In this
subsection we are going to explore an example of nested mapping: calling map
on a list twice.


Checker Grid


[image: ]


Jack is a big fan of checkers. He wants to write a function that will make a
list  all of the coordinates in a 4x4 board. More concretely, he wants a
function that outputs:


( (1 . 1) (1 . 2) (1 . 3) (1 . 4)
  (2 . 1) (2 . 2) (2 . 3) (2 . 4)
  (3 . 1) (3 . 2) (3 . 3) (3 . 4)
  (4 . 1) (4 . 2) (4 . 3) (4 . 4) )



Note that a coordinate is represented as a pair of x and y coordinates and
the code outputs a list of such coordinates. We will walk step-by-step through
how Jack can write this function using list manipulation techniques we have
already learned.


Checker Grid: First Row


[image: ]


First, lets consider a small chunk of the problem and work our way up: Let's
write some code that returns a list of the coordinates from the first row,
i.e. ( (1 . 1) (2 . 1) (3 . 1) (4 . 1) ). How can we achieve this? Well, we
notice that the x-coordinate starts from 1 and ends at 4 and that the
y-coordinate is always 1. So if we have a list (1 2 3 4), we can cons each
element with 1. We can write this as:


> (map (lambda (x) (cons x 1))
     (enumerate 1 4))
((1 . 1) (2 . 1) (3 . 1) (4 . 1))



So far so good. Jack is happy.


Checker Grid: All Rows


[image: ]


So we have some code that returns a list of coordinates for the first row.
Since there are only 4 rows, we can technically have a copy for each row.


(map    (lambda (x) (cons x **1**))
        (enumerate 1 4))

(map    (lambda (x) (cons x **2**))
        (enumerate 1 4))

(map    (lambda (x) (cons x **3**))
        (enumerate 1 4))

(map    (lambda (x) (cons x **4**))
        (enumerate 1 4))



That is good and all, but we know that copying and pasting code is generally a
bad idea. (What if the checkerboard was 1000x1000?) We want to keep the part that is similar, and change as little as possible. Notice that the only difference from the code for row1, row2, row3, and row4 is the number you are cons-ing with. We can apply the same method
from before:


(map (lambda (y) (map (lambda (x) (cons x y))
                      (enumerate 1 4)))
     (enumerate 1 4))



Notice how the inner lambda takes care of each tile in a single row, while the outer lambda takes care of each row in a board. Hooray! We're done, right?


Checkers Grid: Flattening


[image: ]


This is what we get we we run our current code:


> (map (lambda (y)
        (map (lambda (x) (cons x y))
             (enumerate 1 4)))
      (enumerate 1 4))
( ((1 . 1) (2 . 1) (3 . 1) (4 . 1))
  ((1 . 2) (2 . 2) (3 . 2) (4 . 2))
  ((1 . 3) (2 . 3) (3 . 3) (4 . 3))
  ((1 . 4) (2 . 4) (3 . 4) (4 . 4)) )



This looks deceptively similar to our desired result:


( (1 . 1) (2 . 1) (3 . 1) (4 . 1)
  (1 . 2) (2 . 2) (3 . 2) (4 . 2)
  (1 . 3) (2 . 3) (3 . 3) (4 . 3)
  (1 . 4) (2 . 4) (3 . 4) (4 . 4) )



What's different? Our current code returns a list of a list of coordinates.
What we want instead is a list of coordinates. So how do we 'flatten' the
list? We can call accumulate with append:


(accumulate append
            nil
            (map (lambda (y)
                    (map (lambda (x) (cons x y))
                (enumerate 1 4))
            (enumerate 1 4))



Flatmap


Calling accumulate with append is so common that we implement this procedure as flatmap:


(define (flatmap proc seq)
  (accumulate append nil (map proc seq)))



Using this definition, we can finally write the function that Jack wants:


(flatmap (lambda (y)
             (map (lambda (x) (cons x y))
                  (enumerate 1 4)))
         (enumerate 1 4))



Takeaways


Nested mappings can be useful when you want to traverse a certain list and
match their elements up. In order to get your functions correct, breaking the
problem down like how we did it here is highly recommended. flatmap is
function that "flattens" list of lists.


Representing Sets

            Intro to Sets


We have seen how we can use lists or trees to introduce hierarchy to our
structure. Sometimes we don't care about a structure's hierarchy; we only need
to know if a certain datum is in the structure. One useful structure for this
is a set - a collection of unique data. In other words, sets will never contain two of the same element. For example, {cats dogs bears squirrels cats} is not a set because "cats" appear twice. In contrast, {cats dogs bears squirrels} is a set.


For this lesson, we will use lists to represent a Set ADT. This means we can create Sets using list and select from sets using car and cdr. The empty set will be represented by an empty list, null. Looking forward, here are some functions that we will define for the Set ADT:



	element-of-set? checks if a certain data is in a set

	adjoin-set adds a new data to a set.

	intersection-set given two sets, returns a new set which contains only elements that are in both sets




element-of-set?


element-of-set? takes in two arguments, an element x and a set, and returns #t if x is in set, #f otherwise:


(define (element-of-set? x set)
  (cond ((null? set) #f)
        ((equal? x (car set)) #t)
        (else (element-of-set? x (cdr set)))))



This code is similar to memq. We used equal? because the member of a set
can be a number, symbol, or anything else.



Test Your Understanding


Assume that set1 and set2 both have a length of n.


What is the running time of the function call below?

(element-of-set? (car set1) set2)











adjoin-set


Let's move on to adjoin-set! This function again takes in an element x and a set. If x is a member of set (we can check using our element-of-set? function), do nothing. Otherwise, add x to set:


(define (adjoin-set x set)
  (if (element-of-set? x set)
      set
      (cons x set)))



intersection-set


intersection-set is a bit more challenging. Given two sets, set1 and set2, we need to find its intersection. We'll have to do this recursively. Let's separate this problem into cases:



	If either set is empty, return null.

	Check if (car set1) is in set2. 

	If so, include that element in our answer and recursively call intersection-set on (cdr set1) and set2. 

	If it is not in set2, recursively call intersection-set on (cdr set1) and set2.







Here is the code for intersection-set:    


(define (intersection-set set1 set2)
  (cond ((or (null? set1) (null? set2)) '())
        ((element-of-set? (car set1) set2)        
         (cons (car set1)
               (intersection-set (cdr set1) set2)))
        (else (intersection-set (cdr set1) set2))))




Test Your Understanding


Assume that set1 and set2 both have a length of n.


What is the running time of the function call below?

(intersection-set set1 set2)











Set as an Ordered List


You might have noticed that our previous implementation of the Set ADT is
relatively slow. Finding the intersection of two sets could have a quadratic run time relative to their size. If a set is rather large, this implementation would be very slow. But don't worry, we can speed things up by instead using ordered sets, where data must be stored in increasing order. e.g., (1 3 4) is an ordered set, whereas (1 5 3 4) is not. 


Similar to how alphabetizing names will make a roster easier to search through, using ordered lists to represent sets will allow searching and manipulating them to be substantially faster.


element-of-set?


One advantage of an ordered list is that we don't always have to explore the entire set to find a certain element. Let's make the necessary changes to element-of-set? so that it takes advantage of the ordered property. 


element-of-set? still takes in two arguments, an element x and a set. Since we know that the elements of set are ordered, that means all we need to do is scan the set from left to right. 



	If (car set) is equal to x, then we stop and return #t. 

	Otherwise, if (car set) is greater than x, then we know that all other elements in the set will be greater than x, and we can stop here and return #f. 

	Else, if (car set) is less than x, we'll have to move on to the next element in set and repeat. 




This means that, if we're lucky and x is less than or equal to the first element of set, we can automatically return #f or #t without even looking at the rest of set! 


Our code for element-of-set? will then be as follows:


(define (element-of-set? x set)
  (cond ((null? set) false)
        ((= x (car set)) true)
        ((< x (car set)) false)
        (else (element-of-set? x (cdr set)))))



Note: We make the assumption that all the elements in our set are numbers. If this is not the case, the above code will error.



Test Your Understanding


Assume that set1 and set2 are ordered lists and both have a length of n.


What is the running time of the function call below?
(element-of-set? (car set1) set2)











intersection-set


Our previous implementation of intersection-set with unordered lists compared each element of one set to every element of the other set, giving it a total run time of Θ(n^2). In order to speed up this function using ordered lists, let's use a different approach to implement this function. We can split intersection-set into the base case (same as before):



	If either set is empty, return null




and the following recursive cases:



	(= (car set1) (car set2)): Since they share the same element, we include this element in our answer, remove this element from both sets, and check the rest by calling (intersection-set (cdr set1) (cdr set2)).

	(< (car set1) (car set2)): Since (car set2) is the smallest element in set2, we can conclude that (car set1) is smaller than all elements of set2 and thus cannot be in set2. We can continue searching with the next largest in set1 by calling (intersection-set (cdr set1) set2).

	(> (car set1) (car set2): This is the mirror image of the case above. Since (car set1) is the smallest member in set1, we know that that (car set2) is smaller than all elements of set1 and thus cannot be in set1. We can continue searching with the next largest member in set2 by calling (intersection-set set1 (cdr set2)).




The complete code for intersection-set can be written as follows:


(define (intersection-set set1 set2)
  (if (or (null? set1) (null? set2))
      '()    
      (let ((x1 (car set1)) (x2 (car set2)))
        (cond ((= x1 x2)
               (cons x1
                     (intersection-set (cdr set1)
                                       (cdr set2))))
              ((< x1 x2)
               (intersection-set (cdr set1) set2))
              ((< x2 x1)
               (intersection-set set1 (cdr set2)))))))




Test Your Understanding


Assume that set1 and set2 are ordered lists and both have a length of n.


What is the running time of the function call below?
(intersection-set set1 set2)











Set as Binary Tree


"I want to go faster"


In the need for speed, we must break free of the chains of lists that bind us to linearity. In other words, if we want our Set ADT to work even faster, we will have to use a different data structure than lists. How about using a tree? 


A binary tree is just like the Tree we described earlier in this lesson, except for one important property: each node of a binary tree can have at most two branches.


Using binary trees to represent sets is simple and intuitive. The entry (analogous to datum) of each node in a binary tree will be an element of a set. Each node will also have a left branch and a right branch; the left or right branch of a node can be empty. If both branches are empty, that node is a leaf. This data structure must follow one rule: The left branch of a node must point to a subtree with entries smaller than the entry node. The right branch must point to a subtree with entries larger than the entry node. In other words, all values to the left of a node must be smaller than the node, and all values to the right of a node must be larger than the node.


[image: ]


This rule introduces logarithmic runtime into the picture. Walk yourself through finding 11 in the leftmost tree above. We start at the root of the tree and notice that 11 is greater than 7, and so we travel down the right branch. 11 is greater than 9, and so we again go down the right branch. We have found 11 in the tree and can return #t.


Okay, now let's try to prove this logarithmic run time. If you don't want to see the entire proof, you can skip ahead to the TL;DR section. 


Take a look at the worst-case tree below:


[image: ]



	The maximum number of nodes you will have to explore, ever, is equal to the depth of the tree, or how many levels the tree has. (The depth at the root is 1.) Take a moment to confirm this. 

	We are given that the set has size n, and so there are n nodes in the tree.

	At depth 1, there is 1 (2^1 - 1) node. At depth 2, there are 3 (2^2 - 1) total nodes. At depth 3, there are 7 (2^3 - 1) total nodes, ...and finally, at depth d, there are (2^d - 1) total nodes. 




We learned in Lesson 3 that in asymptotic analysis, we can ignore constants, so let's just say that at depth d, there are 2^d total nodes. This means that any tree with depth d will have 2^d nodes in the tree. 


We know that there are n total nodes in the tree. That means 2^d = n.


After doing some cool algebra magic, we get d = log(n).


Remember how we said that the maximum number of nodes we'll ever explore is equal to the depth of the tree? This means the run time for finding a node in a binary tree is Θ(d) = Θ(logn). And thus, we have proved the logarithmic run time of using a binary tree to represent sets. Phew!


TL;DR: The ordering of the binary tree structure allows us to ignore half of the tree after every comparison. This means that the maximum number of nodes we'll ever have to explore equals the depth of the tree. This leads us to a running time of Θ(log n). e.g., in a tree with 8 nodes, we just need 3 comparisons max until we reach any leaf. In a tree with 16 nodes (double the previous one), we just need 4 comparisons (just 1 more comparison!) until we can reach any leaf.


Implementing a Binary Tree


One way to implement a binary tree is by using a list where the first item is
the element, the second item is the left subtree and the third item is the
right subtree.


(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)
  (list entry left right))



element-of-set?


We can formalize our algorithm for finding if an element is in a set with the
following code:


(define (element-of-set? x set)
  (cond ((null? set) false)
        ((= x (entry set)) true)
        ((< x (entry set))
         (element-of-set? x (left-branch set)))
        ((> x (entry set))
         (element-of-set? x (right-branch set)))))



Super simple stuff.


adjoin-set


How do you add an element to a binary tree? Since you need to decide whether to add x in the leaf of the left subtree or right subtree, let's follow the same algorithm element-of-set? above.



	If the tree is empty, make a tree with node entry x and empty left and right branches.

	If x is equal to the node of the tree, return the tree. (This means x is already in the tree and no changes need to be made.)

	If x is less than the node of the tree, go to the left subtree.

	If x is larger than the node of the tree, go to the right subtree.




Here's the formal algorithm for adjoin-set: 


(define (adjoin-set x set)
  (cond ((null? set) (make-tree x '() '()))
        ((= x (entry set)) set)
        ((< x (entry set))
         (make-tree (entry set) 
                    (adjoin-set x (left-branch set))
                    (right-branch set)))
        ((> x (entry set))
         (make-tree (entry set)
                    (left-branch set)
                    (adjoin-set x (right-branch set))))))



Unbalanced Tree


[image: ]


The image above is the result of adding the elements 1, 2, 3, 4, 5, 6, and 7, in
that order, to an empty tree. (Make sure you try this out with pen and paper to see that this is the case). We say that this tree is unbalanced because one
side of the tree has way more elements than the other.



Test Your Understanding


In the unbalanced tree above, what is the running time of finding an element (e.g., 7)? n is the the number of nodes in the tree, where n = 7.










Challenge: Can you think of an ordering to add the same numbers so that we create a balanced tree?


Different Types of Trees


Previously, we saw how nodes in a tree can have an arbitary number of
children. These types of trees are sometimes called N-way trees. For N-way
trees, we store the children of the tree as a forest, or a list of trees. We
retrieve this forest through the selector (children <tree>).


In the previous section, we saw a more specific type of tree, binary trees.
Each node in this tree has at most 2 children. They can be accessed with
(left-branch <tree>) and(right-branch <tree>). The constructor for a
binary tree is also different than the constructor for an N-way tree.


When you are working with trees, find out what kind of tree you are working
with and notice the constructors and selectors that the question provide. The constructors and selectors for a binary tree would not work at all on an
N-way tree!


Takeaways


A set is a particular data structure where each element appears only once.
There are multiple ways to represent Sets (as with basically all data
structures). The choice of representation affects the run time of different
functions.


Quotation

            This section is a short review and overview of the quote function (more commonly seen as ') and its functionalities to help you prep for the next section, calc.rkt.


Refresher


We have used quotation ' as a shortcut to create words and sentences since the beginning of this class. The example below should be painstakingly simple to understand:


> (define a 3)
3

> a
3

> 'a
a



The use of a single quote is actually a shortcut - 'a is equivalent to
(quote a). Similarly, '(a 1 b 2) is equivalent to (quote (a 1 b 2))



Test Your Understanding


The function quote (') is a special form.







Predicates and Quotes


To check for equality, we can use the primitive eq?


> (eq? 'a 'a)
#t
> (eq? 'a 'b)
#f
> (eq? 'a (first 'afro))
#t



Another useful primitive for handling symbols/quotes is memq. memq takes
two arguments, a symbol and a list. If the symbol is not contained in the list
(i.e., it is not eq? to any item in the list), then memq returns false.
Otherwise, it returns the sublist of the list beginning with the first
occurrence of the symbol:


>(memq 'apple '(banana raspberry windows android))
#f
>(memq 'apple '(banana raspberry windows apple android))
(apple android)
>(memq 'apple '(banana raspberry windows (apple android))
#f



Note that the last example returns #f because (eq? 'apple '(apple
android)) returns #f. Thus, memq does not work on deep lists.


You can implement memq with the following definition:


(define (memq item x)
  (cond ((null? x) false)
        ((eq? item (car x)) x)
        (else (memq item (cdr x)))))




Test Your Understanding


What do the following expressions return?

(memq 'everything '(sugar spice (everything nice)))






(memq 'chicken '(cow chicken cow and chicken))








What Will Racket Print?


For each of the following expressions, predict what Racket will print without using the interpreter. Then, use the interpreter to check your answers.


* `(list 'a 'b 'c)`
* `(list (list 'george))`
* `(cdr '((x1 x2) (y1 y2)))`
* `(cadr '((x1 x2) (y1 y2))`
* `(pair? (car '(a short list)))`
* `(memq 'red '((red shoes) (blue socks)))`
* `(memq 'red '(red shoes blue socks))`



Takeaways


In this subsection, you learned:



	'hi is a shorcut for (quote hi).

	memq is a predicate that determines whether a symbol is in a list.




calc.rkt

            Overview


In this subsection, we are going to play around with a calculator program that
is written in Racket.


Our calculator program will do arithmetic operations in the same syntax as
Racket. Why are we doing this? We want to increase our understanding on how
Racket evaluates things. In the next lab, we will add more features to it but
for now, all it does is arithmetic operations.


You can download the file from
here. You can also
copy it to your class account by typing the following into a terminal:


cp ~cs61as/lib/calc.rkt .


Note the '.' at the end. This will copy the .rkt file to your current
directory.


The 'READ' function


Before we dive in to the calculator, there is one function we should know: the
read function. When you call (read), it will prompt you for some input.


> (read)
123
123



In the example above, we entered 123 into the interpreter. The next 123 shown by the interpreter is the value returned by read. So what is it used for? Try this:


> (define a (read))
123
a
> a
123



Here, we are assigning a to the value of your input. Thus, when we type
123 again, we store that value in the variable a. Try the next one for
something more interesting:


> (define a (read))
(+ 1 2)
a
> a
(+ 1 2)
> (equal? a '(+ 1 2))
#t



This time, when the interpreter asked us what value we want to put into a, we
typed '(+ 1 2)'. a ended up with the value '(+ 1 2)' and NOT 3. The next
line tests whether a is equal to the quoted list '(+ 1 2)'. What can we
learn from this? (read) accepts user inputs as symbols; they are not
evaluated.


With that covered, let's go to the Calculator program!


Calc: How Does it Work?


Let's run the program and walk through what is actually happening. Load
calc.rkt in your Racket interpreter (by typing (enter! "calc.rkt")), then call the function (calc):


> (calc)
calc:



Notice that our usual prompt ">" is replaced with "calc:". This is an easy way
to know that the expressions you enter which will be evaluated by calc.rkt.
Now, try typing some arithmetic operation like (+ 10 20), or some number like 300, and play around with it!


How does it know how to evaluate math operations? Let's look at what the
calc function does. Its definition is reproduced below:


(define (calc)
  (display "calc: ")
  (flush)
  (print (calc-eval (read)))
  (calc))



The first line says (display "calc: "), which tells the interpreter to show
"calc: " to the 'screen'/output. 


flush tells the interpreter to show whatever we type on the 'screen' output (you can ignore this for now). 


The next line, (print (calc-eval (read))) tells the interpreter to call calc-eval with the user input and print the result. 


The last line is a recursive call to calc, which loops us back to the beginning. This is the read-eval-print-loop (REPL): it asks for some user-input, evaluates it, prints the result, and loops. 


This is all that calc does. The calculator magic happens in calc-eval.


Calc: Number Inputs


So what does calc-eval do? Consider a situation where we type a number in
calc as follows:


calc: 42
42



That wasn't a very exciting result, but under the hood, a lot of things are
interacting. Because the user input is 42, the calc-eval will be called as
(print (calc-eval '42)). (Remember that (read) returns a quoted symbol.)
Let's see how calc-eval handles this. Its code is reproduced below.


(define (calc-eval exp)
    (cond ((number? exp) exp)
          ((list? exp) 
           (calc-apply (car exp)
                       (map calc-eval (cdr exp))))
          (else (error "Calc: bad expression:" exp))))



calc-eval's body is a cond, and because the formal parameter exp is
called with 42, the first condition (number? exp) will be fulfilled and
calc-eval will return exp, which is 42. All numbers are treated the same way. A subtle point here is that this is the base-case. For any arithmetic calculation, the simplest argument that can be passed around are numbers.


Calc: One Operator


The next expression we are going to try is a single operator function call,
like (+ 1 1), (* 2 3 10), or (- 100 50 20 10).


calc: (* 2 3 10)



This will call calc-eval as (print (calc-eval '(* 2 3 10))). (Again,
remember that read treats user input as symbols.) How does calc-eval
handle this?



Test Your Understanding


The calc-eval code has be reproduced for you below:
(define (calc-eval exp)
  (cond ((number? exp) exp)
        ((list? exp)
         (calc-apply (car exp)
                     (map calc-eval (cdr exp))))
        (else (error "Calc: bad expression:" exp))))











What happens when we call the following expression:

(calc-eval '(* 2 3 10))











Calc-Apply


Our simple expression (* 2 3 10) to calc gets passed in to calc-apply as
(calc-apply '* '(2 3 10)). What does it do next? Here is the code for calc-
apply:


(define (calc-apply fn args)
  (cond ((eq? fn '+) (accumulate + 0 args))
        ((eq? fn '-) (cond ((null? args) (error "Calc: no args to -"))
                           ((= (length args) 1) (- (car args)))
                           (else (- (car args) (accumulate + 0 (cdr args))))))
        ((eq? fn '*) (accumulate * 1 args))
        ((eq? fn '/) (cond ((null? args) (error "Calc: no args to /"))
                           ((= (length args) 1) (/ (car args)))
                           (else (/ (car args) (accumulate * 1 (cdr args))))))
        (else (error "Calc: bad operator:" fn))))



Notice that the formal argument fn in calc-apply only accepts 4 values:
'+, '-, '*, or '/. Everything else results in an error. Calc-apply can be described as "find what function it is and do the right thing". In this case,
because fn is '*, calc-apply will call accumulate on args, which is '(2 3 10), and return 60.


Convince yourself that for any of the 4 acceptable arguments for fn, and any
list of numbers args, calc-apply will do the right computation.


Calc: Nested Operators



Test Your Understanding


Let's test our calculator program by calling a more complex expression. The calc-eval code has be reproduced for you below:
(define (calc-eval exp)
  (cond ((number? exp) exp)
        ((list? exp)
         (calc-apply (car exp)
                     (map calc-eval (cdr exp))))
        (else (error "Calc: bad expression:" exp))))











What happens when we call the following expression:

(calc-eval '(+ 4 5 (* 10 2) 7))












Compound Expressions


So how does our calculator program evaluate compound expressions? It calls
calc-eval on simpler expressions, and recursively repeats this until the
expressions are simple enough (just numbers) to simply return the expression. We know that calc-eval and calc-apply works for numbers and expressions with one operator. Everything else is just a combination. Trust the recursion!



Test Your Understanding


Which of the following is NOT a possible call in calc?







Takeaways


In this subsection, you learned about calc.rkt, which accepts an arithmetic expression (operation) as a symbol and evaluates it like a simplified scientific calculator.


Homework 5

            Template


Type the following into the terminal to copy the template file
to the current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw5.rkt .



Or you can download the template here.


Autograder


If you are working on the lab computers, the grader command will run the autograder.  If you are working on your own personal machine, you should download grader.rkt and the HW 5 tests.


Exercise 1: SICP 2.26


Suppose we define x and y to be two lists:


(define x (list 1 2 3))
(define y (list 4 5 6))



What result is printed by the interpreter in response to evaluating each of
the following expressions?


(append x y)
(cons x y)
(list x y)



Exercise 2: SICP 2.29


A binary mobile consists of two branches, a left branch and a right branch.
Each branch is a rod of a certain length, from which hangs either a weight or
another binary mobile. We can represent a binary mobile using compound data by
constructing it from two branches (for example, using list):


(define (make-mobile left right)
    (list left right))



A branch is constructed from a length (which must be a number) together with a
structure, which may be either a number (representing a simple weight) or
another mobile:


(define (make-branch len structure)
    (list len structure))



a. Write the corresponding selectors left-branch and right-branch, which
return the branches of a mobile, and branch-length and branch-structure,
which return the components of a branch.


b. Using your selectors, define a procedure total-weight that returns the
total weight of a mobile.


c. A mobile is said to be balanced if the torque applied by its top-left
branch is equal to that applied by its top-right branch (that is, if the
length of the left rod multiplied by the weight hanging from that rod is equal
to the corresponding product for the right side) and if each of the submobiles
hanging off its branches is balanced. Design a predicate that tests whether a
binary mobile is balanced.


d. Suppose we change the representation of mobiles so that the constructors
are


(define (make-mobile left right) (cons left right))
(define (make-branch len structure)
  (cons len structure))



How much do you need to change your programs to convert to the new
representation?


Exercise 3: SICP 2.30, 2.31


a. Define a procedure square-tree analogous to the square-list procedure.
That is, square-tree should behave as follows:


> (square-tree (list 1 (list 2 (list 3 4) 5) (list 6 7)))
(1 (4 (9 16) 25) (36 49))



b. Abstract your answer to produce a procedure tree-map with the property
that square-tree could be defined as:


(define (square-tree tree) (tree-map square tree))


Exercise 4: SICP 2.36


The procedure accumulate-n is similar to accumulate except that it takes
as its third argument a sequence of sequences, which are all assumed to have
the same number of elements. It applies the designated accumulation procedure
to combine all the first elements of the sequences, all the second elements of
the sequences, and so on, and returns a sequence of the results. For instance,
if s is a sequence containing four sequences, ((1 2 3) (4 5 6) (7 8 9) (10 11
12)), then the value of (accumulate-n + 0 s) should be the sequence(22 26
30). Fill in the missing expressions in the following definition of
accumulate-n:


(define (accumulate-n op init seqs)
  (if (null? (car seqs))
      '()
      (cons (accumulate op init <??>)
            (accumulate-n op init <??>))))



Exercise 5


Suppose we represent vectors v = (vi) as sequences of numbers, and
matrices m = (mi,j) as sequences of vectors (the rows of the matrix).
For example, the matrix


[image: ]


is represented as the sequence ((1 2 3 4) (4 5 6 6) (6 7 8 9)). With this
representation, we can use sequence operations to concisely express the basic
matrix and vector operations. These operations (which are described in any
book on matrix algebra) are the following:


[image: ]


We can define the dot product as


(define (dot-product v w)
    (accumulate + 0 (map * v w)))



Fill in the missing expressions in the following procedures for computing the
other matrix operations. (The procedure accumulate-n is defined in the
previous exercise)


(define (matrix-*-vector m v)
  (map <??> m))

(define (transpose mat)
  (accumulate-n <??> <??> mat))

(define (matrix-*-matrix m n)
  (let ((cols (transpose n)))
    (map <??> m)))



Exercise 6: SICP 2.38


The accumulate procedure is also known as fold-right, because it combines
the first element of the sequence with the result of combining all the
elements to the right. There is also a fold-left, which is similar to fold-right, except that it combines elements working in the opposite direction:


(define (fold-left op initial sequence)
    (define (iter result rest)
        (if (null? rest)
            result
            (iter (op result (car rest))
                  (cdr rest))))
    (iter initial sequence))



What are the values of the following:


(fold-right / 1 (list 1 2 3))
(fold-left / 1 (list 1 2 3))
(fold-right list nil (list 1 2 3))
(fold-left list nil (list 1 2 3))



Describe a property that op should satisfy to guarantee that fold-right
and fold-left will produce the same values for any sequence.


Exercise 7: SICP 2.54


Two lists are said to be equal if they contain equal elements arranged in the
same order. For example,


(equal? '(this is a list) '(this is a list))



is true, but


(equal? '(this is a list) '(this (is a) list))



is false. To be more precise, we can define equal? recursively in terms of
the basic eq? equality of symbols by saying that a and b are equal? if
they are both symbols and the symbols are eq?, or if they are both lists
such that (car a) is equal? to (car b) and (cdr a) is equal? to
(cdr b). Using this idea, implement equal? as a procedure.


Note: you should know by now that equal? is a built-in procedure as well.
This means your definition will overwrite the built-in definition.


Exercise 8


We can represent a set as a list of distinct elements, and we can represent
the set of all subsets of the set as a list of lists. For example, if the set
is (1 2 3), then the set of all subsets is (() (3) (2) (2 3) (1) (1 3) (1
2) (1 2 3)). Complete the following definition of a procedure that generates
the set of subsets of a set and give a clear explanation of why it works:


(define (subsets s)
  (if (null? s)
      (list nil)
      (let ((rest (subsets (cdr s))))
        (append rest (map <??> rest)))))



Exercise 9


Extend calc.rkt to include words as data, providing the operations first,
butfirst, last, butlast, and word. Unlike Racket, your calculator should
treat words as self-evaluating expressions except when seen as the operator of
a compound expression. That is, it should work like these examples:


calc: foo
foo
calc: (first foo)
f
calc: (first (butfirst hello))
e



Remember, you can get the program by typing


cp ~cs61as/lib/calc.rkt .


Or download it from
here.


Exercise 10: Extra for Experts


Do this if you want to. This is NOT for credit.


Read section 2.3.4 and do exercises 2.67 - 2.72.


Exercise 11: Extra for Experts


Do this if you want to. This is NOT for credit.


Programming by example: In some programming systems, instead of writing an
algorithm, you give examples of how you'd like the program to behave, and the
language figures out the algorithm itself:


> (define pairup (regroup '((1 2) (3 4) ...)))
> (pairup '(the rain in spain stays mainly on the plain))
((the rain) (in spain) (stays mainly) (on the))



Write regroup. Read ~cs61as/lib/regroup.problem for details.


Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


6 - racket1.rkt and Generic Operators


Lesson 6 Intro

            Introduction


In this lesson, we begin our exploration of generic operators—procedures that can be called
on different data types. The basic idea behind generic operators is that we have
different types of data that are "intelligent"—they know how to manipulate themselves.
Procedures are then allowed to be "stupid"—they don't need to know anything about data types and somehow it still works out.


We'll then introduce Racket-1, a simple Racket interpreter
written in Racket. While it cannot do all the things Racket can, it does
demonstrate the basic components that make up an interpreter.


Prerequisites


You should have a good understanding of calc.rkt and data abstraction.


Readings


Here are the relevant readings for this lesson:



	SICP 2.4

	SICP 2.51-2.52

	Lecture Notes




Tagged Data

            Introduction to Tagged Data


Before we can create generic operators, we first have to be able to keep track of data types. Why?


Think back to Lesson 4 where we implemented rational numbers. We made the decision 
to store rational numbers as a pair, where the car held the numerator and 
the cdr held the denominator. Meanwhile, our frenemy, Ben Bitdiddle, implemented 
complex numbers. He represented these numbers as a pair as well: the car held the real part
and the cdr held the imaginary part.


[image: ] [image: ]


Now, given a pair whose car is 3 and whose cdr is 4, how can we tell if the given data
represents the rational number [mathjaxinline]\frac{3}{4}[/mathjaxinline] or the complex number [mathjaxinline]3+4i[/mathjaxinline]?
The raw data we are given can be interpreted either way, so we can't know for sure! 
In fact, the pair may be neither of the two and actually represent some other data type.
That's why need a system to associate data with their particular types.


(Side note: At this point, you might be mad at Ben—why did he have to use
the same representation as us?! However, he really isn't to blame. Even if he
used a different internal representation, we cannot use this distinction
to check the type of the data: we would be breaking data abstraction barriers!)


The solution is to have tagged data: Each piece of data carries around
information about its type. We can do this by attaching tags to all our data. To
accomplish this, we need a constructor to tag our data (attach-tag) and
selectors to grab the tag and the data from a piece of tagged data (type-tag and contents).


Here's a possible implementation for handling tagged data.


(define (attach-tag tag data)
  (cons tag data))

(define (type-tag tagged-data)
  (if (pair? tagged-data)
      (car tagged-data)
      (error "Not tagged data")))

(define (contents tagged-data)
  (if (pair? tagged-data)
      (cdr tagged-data)
      (error "Not tagged data")))



Can you come up with another set of constructors and selectors that implements data tagging using a different internal representation?


Tagging Rational and Complex Numbers


Now that we've implemented tagged data, we can fix our implementations of the rational and complex number data types.
Our old code looked like this:


(define (make-rational numer denom)
  (cons num denom))

(define (make-complex real imag)
  (cons real imag))



But now we can do this:


(define (make-rational numer denom)
  (attach-tag 'rational (cons num denom)))

(define (make-complex real imag)
  (attach-tag 'complex (cons real imag)))



Notice that we easily could have replaced the function attach-tag with cons
and the code would have still worked. But this violates the data
abstraction barrier we created!


We can then write selectors using contents. For example, for rational numbers:


(define (numer n)
  (car (contents n)))

(define (denom n)
  (cdr (contents n)))



Writing Procedures for Tagged Data


Our goal is to write a universal addition procedure. It should work with rational numbers and complex numbers.


The first step is to write addition procedures that are specific to the data types of the inputs.
Using the constructors and selectors that we just wrote in the previous section, this should be fairly straight forward.


Try the following:



	Write add-rational, which takes in two rational numbers and returns a rational number equal to the sum of the two inputs.
Remember to respect the data abstraction by using proper constructors and selectors.


	Write add-complex, which takes in two complex numbers and returns a complex number equal to the sum of the two inputs.
Remember that [mathjaxinline](a+bi) + (c+di) = (a+c)+(b+d)i[/mathjaxinline].


	Assume that we've written a procedure add-rational-complex which takes in rational number and complex number in that order,
and adds them properly.


	Now write a generic addition operation called add-numbers that takes in two numbers, each of which can be
either rational or complex. We should rely on tags to direct our data to the correct procedure above.





Check your answers below.


Solutions


Your add-rational should look something like this:


(define (add-rational x y)
  (make-rational (+ (* (numer x) (denom y))
                    (* (numer y) (denom x)))
                 (* (denom x) (denom y))))



Your add-complex should be similar.
Notice that we didn't have to worry about tagging, thanks to the abstraction barrier
created by make-rational, numer, and denom.


Now for add-numbers:


(define (add-numbers num1 num2)
  (cond ((and (equal? (type-tag num1) 'rational)
              (equal? (type-tag num2) 'rational))
         (add-rational num1 num2))
        ((and (equal? (type-tag num1) 'complex)
              (equal? (type-tag num2) 'complex))
         (add-complex num1 num2))
        ((and (equal? (type-tag num1) 'rational)
              (equal? (type-tag num2) 'complex))
         (add-rational-complex num1 num2))
        (else
         (add-rational-complex num2 num1))))



Great! We can now add numbers using a single generic procedure!


Reflection


Let's think about what we've learned:



	We don't even need to know how tags are implemented to write this add-numbers!
This is because we properly abstracted away those details.
So we can just use the selector type-tag to tell us what type of data we're dealing with. 


	If we want to add another type of number to our system, we'll have to change our generic function's definition,
adding a good number of extra conditions to handle the new data type.
The modifications would be straightforward in our situation, but this wouldn't work with larger systems.
In other words, our system has poor scalability.





Although the add-numbers example is a little contrived, there are many systems that do use tagged data in the real world.
In fact, the Racket interpreter uses tagged data to evaluate your code!


Weaknesses of Tagged Data


As we hinted above, tagged data systems have several key weaknesses.


One weakness is that every data type must be identified and manually incorporated into every generic procedure.
For instance, suppose we wanted to incorporate a new type of number into our system. We would need to identify
this new representation with a type, then edit all the generic procedures out there (add-numbers,
multiply-numbers, divide-numbers, etc.) to check for the new type and carry out the appropriate operations.


Another weakness is that even though the individual
representations and corresponding procedures can be designed separately, we
must guarantee that no two procedures in the entire system have the same name.
This is why we created the new procedure add-numbers, which calls add-
rational, add-complex, and add-rational-complex.


The issue underlying both of these weaknesses is that the technique for
implementing generic interfaces does not scale—the person implementing the
generic procedures must modify those procedures each time a new
representation or type is added. Additionally, the people who originally wrote
the rational number system and the complex number system must now modify their
code to avoid name conflicts. In each of these cases, the changes that must be
made to the code are straightforward, but they must be made nonetheless, and
this is a source of inconvenience and error.


Data-Directed Programming

            What is Data-Directed-Programming?


You must load and run the following file to complete this section. Don't worry about what's defined in there.


cp ~cs61as/lib/data_directed_programming.rkt .



Data-directed programming is a means to increase the flexibility of your code by modularizing data typing even further.
Instead of controlling information regarding data types and operators(procedures) inside functions using cond clauses, we record this information in a data structure that we can add to and retrieve from. You are given tools to do so: put to set up the data structure and get to examine it. Intuitively, we're simply adding entries into a table-like data structure.


    > (get 'foo 'baz)
    #f
    > (put 'foo 'baz 'hello)
    > (get 'foo 'baz)
    hello



In the code above, we try to retrieve the entry with keys 'foo and 'baz.
Because that entry does not exist (we haven't put it yet!), we get #f. The
next line places an entry into the table with keys 'foo and 'baz. In the
last line, we retrieve the information we just placed.


Once you put something in the table, it stays there. (This is our ﬁrst
departure from functional programming, we are allowing you to make an assignment. But our intent is to set up the table
at the beginning of the computation and then to treat it as constant
information, not as something that is mutable.) For now we take put and get as
primitives; we'll see how to build them in Unit 3.


To understand how all of this relates to data-directed programming, begin with
the observation that we have a few operations that we want to be able to apply
to a variety of types. Depending on the type(s) of the input data, we call a
different procedure to carry out the same basic operation. For example, adding
two rational numbers uses a different procedure than adding two complex
numbers. We are basically dealing with a two-dimensional table that contains
the possible operations on one axis and the possible types on the other axis.
Note that the possible types might actually be a list of types, if the
procedure requires more than one argument.


Using this paradigm, adding a new type to the system does not require changing
any existing procedures; we need only add new entries to the table.


A New Example System


As the last section mentioned, the "keys" for our table must be a list of
types if we want to continue to use our arithmetic example. Instead of dealing
with this unnecessary complexity right now, we're going to switch to a
friendlier example that should be a little easier to follow. However, all of
the big ideas are exactly the same.


Our data types will be squares and circles; our operations will be area and
perimeter. For some comparison (and review) the tagged-data version of these
operations would be written:


(define pi 3.141592654)

;;this is the tagged-data version where types are processed by the generic procedure being called
(define (make-square side)
    (attach-tag 'square side))

;;this is the tagged-data version where types are processed by the generic procedure being called
(define (make-circle radius)
    (attach-tag 'circle radius))

;;this is the tagged-data version where types are processed by the generic procedure being called
(define (area shape)
    (cond ((eq? (type-tag shape) 'square)
           (* (contents shape) (contents shape)))
          ((eq? (type-tag shape) 'circle)
           (* pi (contents shape) (contents shape)))
          (else (error "Unknown shape -- AREA"))))

;;this is the tagged-data version where types are processed by the generic procedure being called
(define (perimeter shape)
    (cond ((eq? (type-tag shape) 'square)
           (* 4 (contents shape)))
          ((eq? (type-tag shape) 'circle)
           (* 2 pi (contents shape)))
          (else (error "Unknown shape -- PERIMETER"))))



You should be able to completely understand the above code! We'll be using
this example with squares and circles throughout the rest of the lesson.


"put"-ing it All Together


Using the data structure introduced at the top of the page, it is now possible for a system to handle any number of types
without having to change existing code! Here's what the new code would look
like (the constructors remain the same):


;;this is the data-directed version where types and operations 
;;are handled by a data structure that stores the information
(put 'square 'area (lambda (s) (* s s)))
(put 'circle 'area (lambda (r) (* pi r r)))
(put 'square 'perimeter (lambda (s) (* 4 s)))
(put 'circle 'perimeter (lambda (r) (* 2 pi r)))



Notice that the entry in each cell of the table is a function, not a symbol.
We can now redeﬁne the generic operators ("generic" because they work for any
of the types):


;;this is the data-directed version where types and operations 
;;are handled by a data structure that stores the information    
(define (area shape-obj)
    (operate 'area shape-obj))

(define (perimeter shape-obj)
    (operate 'perimeter shape-obj))

(define (operate op obj)
    (let ((proc (get (type-tag obj) op)))
      (if proc
          (proc (contents obj))
          (error "Unknown operator for type"))))



The magic occurs in the operate procedure. Given an operation and some data,
it looks up the correct procedure to apply to that data. If there is an entry
(which means we know how to handle that operation), then we simply apply the
procedure. Otherwise, we throw an error.


A Clarification on Data-Directed-Programming


Don't get the idea that Data-Directed-Programming just means a two-dimensional table of operator and
type names! DDP is a very general, great idea. It means putting the details of
a system into data, rather than into programs, so you can write general
programs instead of very speciﬁc ones.


In the old days, every time a company got a computer they had to hire a bunch
of programmers to write things like payroll programs for them. They couldn't
just use someone else's program because the details would be different, e.g.,
how many digits in the employee number. These days you have general business
packages and each company can "tune" the program to their speciﬁc purpose with
a data ﬁle.


Another example showing the generality of Data-Directed-Programming is the compiler. It used to be
that if you wanted to invent a new programming language you had to start from
scratch in writing a compiler for it. But now we have formal notations for
expressing the syntax of the language. (See section 7.1, page 38, of the
Scheme Report at the back of the course reader.) A single program can read
these formal descriptions and compile any language.


Message Passing

            What is Message Passing?


In conventional style, the operators are represented as functions that know
about the different types; the types themselves are just data. In Data-Directed-Programming, the
operators and types are all data, and there is one universal operate function
that does the work. We can also stand conventional style on its head,
representing the types as functions and the operations as mere data.


In fact, not only are the types functions, but so are the individual data
themselves. That is, there is a function (make-circle below) that represents
the circle type, and when you invoke that function, it returns a function that
represents the particular circle you give it as its argument. Each circle is
an object and the function that represents it is a dispatch procedure that
takes as its argument a message saying which operation to perform.


The new definitions of make-square and make-circle are below.


(define (make-square side)
    (lambda (message)
        (cond ((eq? message 'area)
               (* side side))
              ((eq? message 'perimeter)
               (* 4 side))
              (else (error "Unknown message")))))

(define (make-circle radius)
    (lambda (message)
        (cond ((eq? message 'area)
               (* pi radius radius))
              ((eq? message 'perimeter)
               (* 2 pi radius))
              (else (error "Unknown message")))))

(define square5 (make-square 5))

(define circle3 (make-circle 3))



Why is Message Passing Important?


Message passing may seem like an overly complicated way to handle this problem
of shapes, but we'll see in the next lesson that it's one of the key ideas in
creating object-oriented programming. Message passing becomes much more
powerful when combined with the idea of local state that we'll learn next
week.


We seem to have abandoned tagged data; every shape type is just some function,
and it's hard to tell which type of shape a given function represents. We
could combine message passing with tagged data, if desired, by adding a type
message that each object understands.


(define (make-square side)
    (lambda (message)
        (cond ((eq? message 'area)
               (* side side))
              ((eq? message 'perimeter)
               (* 4 side))
              ((EQ? MESSAGE 'TYPE) 'SQUARE)
               (else (error "Unknown message")))))



Racket-1

            Getting Started


Copy the source code for the Racket-1 interpreter into your current directory
by typing the following into your terminal:


cp ~cs61as/lib/racket1.rkt .



Alternatively, you can download the code
here.


To start Racket-1, type the following in Racket:


;; Load Racket-1 file
(require "racket1.rkt")

;; Start interpreter
(racket-1)



Familiarize yourself with Racket-1 by evaluating some expressions.
Try typing regular Racket expressions and see what happens!


You might notice that you can't do everything in Racket-1 that you can do in
normal Racket:



	You have all the Racket primitives for arithmetic and list manipulation.

	You have lambda but not higher-order functions.

	You don't have define.




To stop the Racket-1 interpreter and return to Racket, just evaluate an illegal
expression, such as ().


What Is an Interpreter?


In order to run a program on a computer, something in the computer must
understand the intentions of the code, perform the necessary computations, and
then return the results. This thing acts as a mediator between the
programmer's ideas and the hardware that computes them.
One such mediator is an interpreter.


racket is an interpreter for Racket. It translates Racket source code into instructions
that the computer, then tells the computer to execute them.
It has the ability to read input and display output.


Racket-1 is also an interpreter.
It works for a purely functional subset of Racket.
The fact that Racket-1 is written in Racket is interesting but unimportant.
We could also write Racket-1 in another language, like Python,
but what really matters to us as users is
what the interpreter does, not what its source code looks like.




We'll talk more about interpreters in just a few lessons.
For now, let's discuss how Racket-1 works.


How Does Racket-1 Work?


racket-1 

racket-1 follows these rules:


To evaluate a combination:



	Evaluate the subexpressions of the combination

	Apply the procedure that is the value of the leftmost subexpression (the operator) to the arguments that are the values of the other subexpressions (the operands).
To apply a compound procedure to arguments, evaluate the body of the procedure
with each formal parameter replaced by the corresponding argument.




(SICP: 1.1.3, 1.1.5)


Example:


Racket> ((lambda (x) (* x x)) (- 2 (* 4 3)))
100



What happens here? Given the rules, walk through the evaluation by hand.


Read-Eval-Print Loop 

An interpreter needs a loop that allows it to do all the things it does. Every
time you type a command, racket-1 parses and executes your input, returns the
output, and then waits for another command. This is called a Read-Eval-Print
loop (REPL).


Here is all of racket-1:


(define (racket-1)
    (newline)
    (display "Racket-1: ")
    (flush-output)
    (print (eval-1 (read)))
    (newline)
    (racket-1)
)



The first three lines simply print the prompt "Racket-1: ". The fourth line is
the important one. Here, input is read, parsed and sent to eval-1 to be
evaluated. After eval-1 takes care of executing the code, its result is
printed. Finally, racket-1 calls itself to restart the process, to display
another "Racket-1: " and take another command.


Eval-1 

Eval-1 is in charge of returning the result of whatever computation it was
passed as exp. It is composed of a cond, with a clause for everything it can
interpret and compute. Note that it is in Eval-1 where special forms are
caught and handled.


(define (eval-1 exp)
  (cond ((constant? exp) exp)
        ((symbol? exp) (eval exp))      ; use underlying Racket's EVAL
        ((quote-exp? exp) (cadr exp))
        ((if-exp? exp)
         (if (eval-1 (cadr exp))
             (eval-1 (caddr exp))
             (eval-1 (cadddr exp))))
        ((lambda-exp? exp) exp)
        ((pair? exp) (apply-1 (eval-1 (car exp))      ; eval the operator
                              (map eval-1 (cdr exp))))
        (else (error "bad expr: " exp))))



Apply-1 

Apply-1 is called by eval-1 when it is time to apply a procedure to its
arguments. Apply-1 takes care of two cases:



	racket-1 primatives. In this context, a primative is a non-user-defined procedures. All Racket procedures are Racket-1 primatives.

	Lambda functions, or user defined procedures.




(define (apply-1 proc args)
  (cond [(procedure? proc)      ; use underlying Racket's APPLY
          (apply proc args)]
        [(lambda-exp? proc)
          (eval-1 (substitute (caddr proc)   ; the body
                              (cadr proc)    ; the formal parameters
                              args           ; the actual arguments
                              '()))]         ; bound-vars
        [else (error "bad proc: " proc)]))



Mutual Recursion (in racket-1)   


[image: eval]


Practice with Racket-1


Okay, so even though you just finished staring at the code, you probably don't
completely understand all of it yet. Let's go through a few exercises to
better acquaint you with the program.



	Manually trace through (in detail) how racket-1 handles the following procedure call:  


 ((lambda (x) (+ x 3)) 5)






In particular, walk through all of the functions that racket-1 must call to
evaluate this expression.



	Try inventing higher-order procedures; since you don't have define you'll have to use the Y-combinator trick, like this: 


Racket-1: 
((lambda (f n)  ; this lambda is defining MAP 
    ((lambda (map) (map map f n)) 
    (lambda (map f n) 
        (if (null? n) 
            '() 
            (cons (f (car n)) (map map f (cdr n))) )) )) ;end of lambda defining MAP 
first              ; the argument f for MAP
'(the rain in spain)) ; the argument n for MAP


(t r i s)



	Since all the Racket primitives are automatically available in racket-1, you might think you could use Racket's primitive map function. Try these examples: 


Racket-1: 
(map first '(the rain in spain)) 
Racket-1: 
(map (lambda (x) (first x)) '(the rain in spain))






Explain the results.



	Modify the interpreter to add the and special form. Test your work. Be sure that as soon as a false value is computed, your and returns #f without evaluating any further arguments.




Homework 6

            Type the following command at the terminal to copy the template file to the
current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw6.rkt .



Or you can download the template
here.


Autograder


To run the autograder on your computer, download the test file here.
Follow the instructions from previous lessons.


Exercise 0


Exercise 0 consists of problems from the lesson. Highly recommended to do. This is NOT for credit.


Load the racket-1 interpreter from the file


~cs61as/lib/racket1.rkt


To start the interpreter, type (racket-1). Familiarize yourself with it by
evaluating some expressions. Remember: you have all the Racket primitives for
arithmetic and list manipulation; you have lambda but not higher-order
functions; you don't have define. To stop the racket-1 interpreter and return
to Racket, just evaluate an illegal expression, such as ().


0a. Trace in detail how a simple procedure call such as


((lambda (x) (+ x 3)) 5)


is handled in racket-1.


0b. Try inventing higher-order procedures; since you don't have define you'll
have to use the Y-combinator trick, like this:


Racket-1:
((lambda (f n)  ; this lambda is defining MAP 
    ((lambda (map) (map map f n)) 
    (lambda (map f n) 
        (if (null? n) 
            '() 
            (cons (f (car n)) (map map f (cdr n))) )) )) ;end of lambda defining MAP 
first              ; the argument f for MAP
'(the rain in spain)) ; the argument n for MAP

(t r i s)



0c. Since all the Racket primitives are automatically available in racket-1,
you might think you could use Racket's primitive map function. Try these
examples:


Racket-1: 
(map first '(the rain in spain))`

Racket-1: 
(map (lambda (x) (first x)) '(the rain in spain))



Explain the results.


0d. Modify the interpreter to add the and special form. Test your work. Be
sure that as soon as a false value is computed, your and returns #f without
evaluating any further arguments.


Exercise 1


Complete the following:


Abelson & Sussman, exercises 2.74, 2.75, 2.76, 2.77, 2.79,
2.80, 2.81, 2.83



Note: Some of these are thought-exercises; you needn't actually run any Scheme
programs for them! (Some don't ask you to write procedures at all; others ask
for modifications to a program that isn't online.)


Exercise 2


Write a map primitive for racket-1 (call it map-1 so you and Racket
don't get confused about which is which) that works correctly for all mapped
procedures.


Exercise 3


Modify the racket-1 interpreter to add the let special form. Hint: Like a
procedure call, let will have to use substitute to replace certain
variables with their values. Don't forget to evaluate the expressions that
provide those values!


Exercise 4


SICP ex. 2.62 


This will help: SICP 2.3.3


Exercise 5


The file ~cs61as/lib/bst.scm contains the binary search tree procedures from
SICP 2.3.3. Using adjoin-set, construct the trees shown on page
156.


Extra for Experts: Exercise 6


Do this if you want to. This is NOT for credit.


Another approach to the problem of type-handling is type inference. If, for
instance, a procedure includes the expression (+ n k), one can infer that
n and k have numeric values. Similarly, the expression(f a b) indicates
that the value of f is a procedure. Write a procedure called inferred-types
that, given a definition of a Scheme procedure as argument, returns a list of
information about the parameters of the procedure. The information list should
contain one element per parameter; each element should be a two-element list
whose first element is the parameter name and whose second element is a word
indicating the type inferred for the parameter. Possible types:


? (the type can't be inferred)

procedure (the parameter appeared as the first word in an unquoted expression or as the first argument of map or every)

number (the parameter appeared as an argument of +, -, max, or min)

list (the parameter appeared as an argument of append or as the second argument of map or member)

sentence-or-word (the parameter appeared as an argument of first, butfirst, sentence, or member?, or as the second argument of every)

x (conflicting types were inferred)



You should assume for this problem that the body of the procedure to be
examined does not contain any occurrences of if or cond, although it may
contain arbitrarily nested and quoted expressions. (A more ambitious inference
procedure both would examine a more comprehensive set of procedures and could
infer conditions like "�nonempty list"�.) Here's an example of what your
inference procedure should return.


(inferred-types
    '(define (foo a b c d e f)
        (f (append (a b) c '(b c))
           (+ 5 d)
           (sentence (first e) f)) ) )



should return


((a procedure) (b ?) (c list) (d number)
 (e sentence-or-word) (f x))



If you're really ambitious, you could maintain a database of inferred argument
types and use it when a procedure you've seen is invoked by another procedure
you're examining!


Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Unit 3


7 - Object Oriented Programming


Lesson 7 Intro

            IMPORTANT: Welcome to Scheme


At this point onwards, we will be using the Scheme language. If you're reading this message, that means that we are still working on transitioning to Racket on this section. The following lesson and all lessons afterwards will be from our old curriculum, and is written in Scheme.


See this guide for instructions on setting up your laptop with STk.


For our lessons, the semantics for Scheme are nearly identical, except for these major differences:



	To run the STk interpreter, type stkw or stk-simply into the terminal. If you have a Windows computer, only stk-simply will work.

	Instead of require-ing a file, you should load it. For example, typing (load "hw7.scm") into the interpreter will load the file into STk.

	Multiple definitions are allowed. In your .scm file, Scheme will allow you to define functions twice, and will also allow you to define functions that override built-in functions, e.g., (define (map f lst) 5) will override the map HOF.




Of course, the differences between STk and Racket are not limited to these, but the ones above are the differences that you absolutely need to know.


Thank you for your patience!


Object Oriented Programming (OOP)


One of the main advantages of using generic operators is that new modules can
be designed and added to pre-existing modules without modifying the pre-
existing code. Object oriented programming is another technique that has this
advantage. This is the second major programming paradigm that we are studying,
after functional programming.


The Big Idea of object oriented programming is to have data that knows how to
perform computations on itself. For example, a number could be represented as
an object that knows how to be added to, subtracted from, multiplied with, or
divided by another number. This allows programmers to build modules
independently. To create a new data representation, a programmer creates a
class, which is like a blueprint for objects, that specifies the data to be
stored in an object of that class, and what computations can be performed on
such objects. The three main ideas that make object-oriented programming
possible are message passing, local state and inheritance.


In order to use the OOP language in Sublime, you must first enter the following into the Stk interpreter:


(load "~cs61as/lib/obj.scm")



Afterwards, you will be able to call define-class and ask as necessary.


Prerequisites


You need to be done with Unit 2, especially the subsection with "Data
Directed" and "Message Passing".


Readings


The majority of the content of this lesson is taken from this
note.


This is a handy cheatsheet
we recommend you use for the homework and quiz.


You should also check out the old lecture notes here.


Objects


When we are coding in OOP, we are dealing with objects or "smart data" that
know how to do operations internally and how to interact with other objects.
For example, we can have an object Fred of type human. He internally knows
how to eat other objects, say, dumpling. OOP then allows us to "Ask Fred to
eat dumpling".


Jargon


Programmers who use OOP language have special vocabularies to describe
different components of OOP. In the example above, Fred is an instance
and the general category of human is a class.


Scheme does not natively support OOP, but we have an extension that provides
OOP to Scheme. This lab will focus on "Above the Line" of abstraction for OOP.
We will see how to design a class and make objects using the given framework.
If you are interested in how OOP is actually implemented in Scheme, don't
worry, one of our future lessons will cover exactly that.


Takeaways


In this subsection, you learned the general idea of the following terms:



	Object Oriented Programming (OOP)

	Object

	Instance

	Class




What's Next?


It's time to learn how to play with OOP and define your own class!


Local States

            Message Passing


The way to get things to happen in OOP is to "ask" them to do something for
you. The manner in which we do this is similar to the "message passing" that
we did in Lesson 6. How do we do it in OOP vocabulary?


Let's say we have two objects: Matt-Account and Brian-Account,
which are instances of bank-account classes. They hold the amount of money
that Matt and Brian have, respectively. (You can't type this into Scheme just yet! We are going to assume we made the objects previously.)


> (ask Matt-Account 'balance)
1000

> (ask Brian-Account 'balance)
10000

> (ask Matt-Account 'deposit 100)
1100

> (ask Brian-Account 'withdraw 200)
9800

> (ask Matt-Account 'balance)
1100

> (ask Brian-Account 'withdraw 200)
9600



ask


We use the ask procedure to tell objects to carry out a certain action. In
the example above, the bank account objects accepts 3 messages:



	balance

	deposit

	withdraw




For each of the 3 messsages, the bank account objects know what actions need to be carried out. Notice that some messages require additional information:



	For balance, it doesn't need any additional arguments. It returns the amount of money that account has. 




> (ask Matt-Account 'balance)
1000



	For deposit and withdraw, we need one more argument to specify the amount we are depositing or withdrawing. 




> (ask Matt-Account 'deposit 50000)
51000


The metaphor is that an object "knows how" to do certain tasks. These tasks
are called methods.



Test Your Understanding


Suppose we have a bank account for Max, and we enter the following expressions:

(ask max-account 'balance)
1000

(define withdraw 'deposit)










What is returned from the following expression?

(ask max-account 'withdraw 100)












What if, INSTEAD of the previous expression, we call this expression:

(ask max-account withdraw 100)










States


Consider these calls:


> (ask matt-account 'balance)
500

> (ask brian-account 'balance)  
9999  

> (ask matt-account 'deposit 500)
1000

> (ask matt-account 'balance)
1000

> (ask matt-account 'withdraw 200)
800

> (ask matt-account 'balance)
800  

> (ask brian-account 'balance)  
9999




Test Your Understanding


We called (ask matt-account 'balance) several times, each with different values. What does this tell us about OOP?








Both matt-account and brian-account returns how much money each person has. How does Matt's actions with his account (method calls to matt-account) affect Brian's account?






OOP Paradigm vs. Functional Programming Paradigm


In the first question, we see that Matt's balance changes with each
withdraw and deposit. This feels natural for us because that is how bank
accounts work. But, with the functional programming paradigm that we've been
using so far, we would expect the same call to return the same value.


In the OOP paradigm, the objects have state. That is, they have some knowledge about what has happened to them in the past. In this example, a bank account has a balance, which changes when you deposit or withdraw some money.


Local State Variables


In the second question, we see that although Matt has his 'balance' and
Brian has his 'balance' that never interfere with each other.


In OOP jargon we say that 'balance' is a local state variable *, or
*instance variable. An instance variable will have different values for
different instances.


We can draw a parallel here with the definitions for


(define (square x)
    (* x x))



and


(define (cube x)
    (* x x x))



Both definitions use x, but they are independent.


Classes

            To create an object in OOP, you need to instantiate a class. matt-account and brian-account are part of an "account" class.


> (define Matt-Account (instantiate account 1000))
Matt-Account

> (define Brian-Account (instantiate account 10000))
Brian-Account



The instantiate function takes a class as its first argument and returns a new
object of that class. instantiate may require additional arguments depending
on the particular class: in this example, you must specify an account's initial
balance when you create it.


Defining a Class


Most of the code in an object-oriented program consists of definitions of
various classes. A class can be treated as a blueprint for a certain kind of
object: "What should objects of these type be able to do? What variables
should each of them know?". Below is the definition of account class. We will
implement only one method right now and add on to it later. There is a lot to
say about this code and we will explain them one by one.


(define-class (account balance) ;; define a class called account
    (method (deposit amount) 
        ;; objects of this class will have one method called deposit
        (set! balance (+ amount balance))
        balance)
        ;; deposit sets the balance the the current value plus the deposit amount and then returns the new balance
        )



define-class


There's a new special form, define-class. The syntax of define-class is
analogous to that of define. Where you would expect to see the name of the
procedure you're defi ning comes the name of the class you're defi ning. In
place of the parameters to a procedure come the initialization variables of
the class: these are local state variables whose initial values must be given
as the extra arguments to instantiate. In the example below, the
initialization variable "balance" is set to 1000.


(define Matt-Account (instantiate account 1000))



The body of a class consists of any number of clauses; in this example there
is only one kind of clause, the method clause, but we'll learn about others
later.


Method


The syntax for defi ning methods was also chosen to resemble that of de fining
procedures. The "name" of the method is actually the message used to access
the method. When we say (ask matt-account 'deposit 50), we are essentially
saying "In matt-account, find the method with the name 'deposit and call
that method with argument 50". In other words, matt-account will call
(deposit 50) .


With the class definition we have now, we can actually do (ask matt-account
'balance). Some might say: "But we did not have any method definition for
balance yet!" That is true, but the above code still works. For each local
state variable in a class, a corresponding method of the same name is de fined
automatically. These methods have no arguments, and they just return the
current value of the variable with that name. Because we have state variable
balance when we instantiate matt-account, we have a method of the same
name 'balance for free. This is one way we can create  a state; we will see
an alternative for this later.


SET!


In the body of deposit, we've introduced a new procedure, set! This
procedure changes the value of a state variable. Its first argument is
unevaluated; it is the name of the variable whose value you wish to change.
The second argument is evaluated; the value of this expression becomes the new
value of the variable. set! changes the value of a variable, but does not
return anything.


> (define a 3)
a

> a
3

> (set! a (+ 2 4))
okay ; What Scheme prints when nothing is returned

> a
6

> (set! a (+ a a))
okay  

> a  
12



The "!" in "set!" is a convention in Scheme for functions that mutate
something (just like the convention that procedures ending in "?" return #t or #f).



Test Your Understanding


This looks a lot like define, but the meaning is slightly different. Define creates a new variable, while set! changes the value of an existing variable. Take a look at the code below:

(define a 10)
(define (change x)
  (define a 20)
  x)
(change 30)










What is the value of a now?





Instead, we decided to execute the following piece of code:

(define a 10)
(define (change x)
  (set! a 20)
  x)
(change 30)










What is the value of a now?






What happens if we try to set! a variable that is not defined?

(set! c 10)










Try it out on the STk interpreter.



Defining 'Withdraw' Methods


We defined the deposit method, and now lets see how to define the withdraw method. Note that the order in which these methods appear in our class definition do not matter.


(define-class (account balance)
    (method (deposit amount)
        (set! balance (+ amount balance))
        balance)  

    (method (withdraw amount)
        (if (< balance amount)
            "Insufficient Fund"
            (begin 
              (set! balance (- balance amount))
              balance)))



Again, withdraw is a method that takes in one argument, amount. If
there is not enough money in balance, return "Insufficient Fund". Otherwise,
reduce balance by amount and return the remaining balance. We are using
a new special form, begin. What does it actually do?


Where Should I Begin?


Imagine if we don't use the begin special-form. What do you think will
happen?


(if (< balance amount)
    "Insufficient Fund"
    (set! balance (- balance amount))
    balance)



if only accepts 3 arguments: a condition, then-case, and else-case. If we
don't use begin, we will have four arguments and the interpreter will throw an error. Until now, in every procedure we've evaluated only one expression, to provide the return value of that procedure. It's still the case that a procedure can only return one value. Now, though, we sometimes want to
evaluate an expression for what it does instead of what it returns, e.g.
changing the value of a variable. The call to begin indicates that the
(set! amount (- amount balance)) and the balance together form a single
argument to if.


In the next section, we'll go over how a class can inherit properties from another class.


Inheritance

            Intro


You can imagine that as our program grows larger and larger in OOP, you will define more objects and classes. Some of the classes will share similar characteristics. For example, you might have a box class, a safety-deposit-box class, and a locked-box class. They all need to know similar methods like adding items to it and removing items from it. It will be redundant to recode it for every single box-like class. What we want is to define a generic class (like a box class) that knows the general methods like opening and then let the more specific classes (like the safe-deposit-box class) inherit from the general box class.


Parents and Children


Let's say we want to create a checking-account class. Checking accounts are
just like regular bank accounts, except that you can write checks as well as
withdrawing money in person. But you're charged ten cents every time you write
a check.


> (define Hal-Account (instantiate checking-account 1000))
Hal-Account
> (ask Hal-Account 'balance)
1000
> (ask Hal-Account 'deposit 100)
1100
> (ask Hal-Account 'withdraw 50)
1050
> (ask Hal-Account 'write-check 30)
1019.9



One way to implement a checking-account is to copy all of the code we have
for the account class but then if we need to make a change in our account
then we need to remember to change our checking-account.


It is very common in object-oriented programming that one class will be a
specialization of another: the new class will have all the methods of the old,
plus some extras, just as in this bank account example. To describe this
situation we use the metaphor of a family of object classes. The original
class is the parent and the specialized version is the child class. We say
that the child inherits the methods of the parent. (The names subclass for
child and superclass for parent are also sometimes used.)


Parents


Here's how we create a subclass of the account class:


(define-class (checking-account init-balance)
    (parent (account init-balance))
    (method (write-check amount)
        (ask self 'withdraw (+ amount 0.10)) ))


This example introduces the parent clause in define-class. In this case, the
parent is the account class. Note that because the account class needs one
instantiation variable, we need to provide that argument as well (hence the
(account init-balance)).


Whenever we send a message to a checking-account object, where does the
corresponding method come from? If a method of that name is defined in the
checking-account class, it is used; otherwise, the OOP system looks for a
method in the parent account class. If the parent doesn't have that method, we
will look at the parent's parent, and so on.



Test Your Understanding


These questions follow our class definitions for account and checking-account above.

(define sam (instantiate checking-account 500))










Which one of these will return an error?










The 'self' Keyword


What should write-check do? It should reduce the account's balance by the specified amount and additional fee. We already know how to reduce our balance, it's just the withdraw method! To call a method that we already defined from the body of another method, we use the self, hence the (ask self 'withdraw (+ amount 0.10)). Each object has a local state variable self whose value is the object itself.


Scope


Methods defined in a certain class only have access to the local state variables de fined in the same class. For example, a method de fined in the checking-account class can't refer to the balance variable de fined in the account class; likewise, a method in the account class can't refer to the init-balance variable. 


This rule corresponds to the usual Scheme rule about scope of variables: each variable is only available within the block in which it's defi ned. (Not every OOP implementation works like this, by the way.) 



Test Your Understanding


Classes are wonderful! They keep objects organized. Inheritance is wonderful! They keep classes organized. Be aware about the states that a child has and which ones are updated.

>(define nick (instantiate checking-account 500))
>(ask nick 'init-balance)
500
>(ask nick 'balance)
500
>(ask nick 'deposit 50)
550










What does the following expression return?

(ask nick 'balance)







What does the following expression return?

(ask nick 'init-balance)







Suppose we now have the following snippet of code:

(define-class (checking-account init-balance)
    (parent (account init-balance)) 
    (method (write-check amount)
        (ask self 'withdraw (+ amount 0.10)) )
    (method (show-balance) balance)  )

(define jeffrey (instantiate checking-account 500))










We added a new method, show-balance to the class. What will (ask jeffrey 'show-balance) return?








Takeaways


Several takeaways from this subsection:



	Some classes will be a more 'specialized' or 'specific' version of another class. In these cases, we want to make the specific class a 'child' of the 'parent' class.

	A child class inherits all methods of the parent class.

	Keep track of what variable is actually in scope in your class.




What's Next?


We are going to learn what kinds of variables a class can have.


Three Kinds of Local State Variables

            Overview


So far the only local state variables we've seen have been instantiation
variables. In this subsection we will look at two other types: instance
variables and class variables.


Instance Variable


Recall the checking-account class:


(define-class (checking-account init-balance)
    (parent (account init-balance))
    (method (write-check amount)
        (ask self 'withdraw (+ amount 0.10)) ))



Whenever we write a check, we charged the account with an additional 10 cents. All checking-accounts start with a 10 cent fee, but now we want to be able to change the fee as we go. One way to do this is to add check-fee as an instantiation variable.


(define-class (checking-account init-balance check-fee)
    (parent (account init-balance))
    (method (write-check amount)
        (ask self 'withdraw (+ amount check-fee)) )
    (method (set-fee! fee)
        (set! check-fee fee)) ))

(define lily (instantiate checking-account 1000 0.10))
(define ted (instantiate checking-account 1000 0.10))
(define barney (instantiate checking-account 9999 0.10))



But this format is slightly redundant because we have to specify the check-fee every time, even though we always want it to start at 10 cents. We will introduce a new clause, instance-vars that solves our problems. 


(define-class (checking-account init-balance)
    (parent (account init-balance))
    (instance-vars (check-fee 0.10))
    (method (write-check amount)
        (ask self 'withdraw (+ amount check-fee)))
    (method (set-fee! fee)
        (set! check-fee fee)) )


Instance vs. Instantiation Variables


Instantiation variables are also instance variables; that is, every instance
has its own private value for them. The only difference is in the notation
and when you set the initial value. For instantiation variables you give a
value when you call instantiate, but for other instance variables you give the
value in the class de finition.


Class Variables


The third kind of local state variable is a class variable. Unlike the case of
instance variables, there is only one value for a class variable for the
entire class. Every instance of the class shares this value. For example,
let's say we want to have a class of workers that are all working on the
same project. That is to say, whenever any of them works, the total amount of
work done is increased. On the other hand, each worker gets hungry separately
as he or she works. Therefore, there is a common work-done variable for the
class, and a separate hunger variable for each instance.


(define-class (worker)
    (instance-vars (hunger 0))
    (class-vars (work-done 0))
    (method (work)
        (set! hunger (+ hunger 1))
        (set! work-done (+ work-done 1))
        'whistle-while-you-work ))  

> (define brian (instantiate worker))
brian
> (define matt (instantiate worker))
matt
> (ask matt 'work)
whistle-while-you-work
> (ask matt 'work)
whistle-while-you-work
> (ask matt 'hunger)
2
> (ask matt 'work-done)
2
> (ask brian 'work)
whistle-while-you-work
> (ask brian 'hunger)
1
> (ask brian 'work-done)
3
> (ask worker 'work-done)
3



As you can see, asking any worker object to work increments the work-done
variable. In contrast, each worker has its own hunger instance variable, so
that when Brian works, Matt doesn't get hungry. You can ask any instance the
value of a class variable, or you can ask the class itself. This is an
exception to the usual rule that messages must be sent to instances, not to
classes.



Test Your Understanding


We are going to design a "Dog" class. For each of the following, decide whether they should be a "child", "parent", "instance variable", "class variable" or "method" for the dog class.



(e.g. if we ask "cat?" and you think cat should be a parent of dog, type "parent")



In relation to the Dog class, "name" is a(n):









In relation to the Dog class, "age" is a(n):









In relation to the Dog class, "wag-tail" is a(n):









In relation to the Dog class, "Animal" is a(n):










Takeaways


There are three kinds of local state variables: instantiation, instance, and
class.



	An instantiation variable is specified when you create an object using instantiate.

	An instance variable is a variable that each object has and is independent from each other; changing the value of one doesn't affect the others.

	A class variable is a variable that is shared with all objects of that class; change the value of a class variable and every object of that class will notice the change.




Initialization and Default

            Initialization


Glance through the penguin class:


(define-class (penguin name)
    (class-vars (all-penguin nil)
                (favorite-food 'tuna))
    (instance-vars (hunger 50)
                   (weight 350))
    (method (eat)
        (set! hunger (- hunger 1))
        (set! weight (+ weight 5))
        (se 'That favorite-food '(was delicious!))))


> (define jack (instantiate penguin 'jack))

> (ask jack 'eat)
(that tuna was delicious!)

> (ask jack 'hunger)
49

> (ask jack 'weight)
355



A penguin has 2 instance variables: its hunger and weight. The penguin class has 2 class variables: its favorite food which is tuna, and all-penguin which is a list of all names of penguins ever created. Currently, all-penguin is never updated. On some occassions like this, we want our objects to do a certain thing when it is created. We can do this with the initialize clause.


[image: ]


Right After Instantiate


As soon as a Penguin object is instantiated, we want him to:



	Say his name and

	add himself to the all-penguin list. Here is how we do it with the initialize clause:




(define-class (penguin name)
    (class-vars (all-penguin nil)
                (favorite-food tuna))
    (instance-vars (hunger 50)
                   (weight 350))
    (initialize (print (se '(hi my name is) name))
                (set! all-penguin (cons name all-penguin)))
    (method (eat)
        (set! hunger (- hunger 1))
        (set! weight (+ weight 5))
        (se 'That favorite-food '(was delicious!))))

> (define jack (instantiate penguin 'jack))
(hi my name is jack)

> (define jennie (instantiate penguin 'jennie))
(hi my name is jennie)

> (ask penguin 'all-penguin)
(jennie jack)

> (ask jack 'all-penguin)
(jennie jack)


The Default Method


So this is our definition of the Penguin class that we have so far:


(define-class (penguin name)
    (class-vars (all-penguin nil)
                (favorite-food 'tuna))
    (instance-vars (hunger 50)
                   (weight 350))
    (initialize (print (se '(hi my name is) name))
                (set! all-penguin (cons name all-penguin)))
    (method (eat)
        (set! hunger (- hunger 1))
        (set! weight (+ weight 5))
        (se 'That favorite-food '(was delicious!))))



Let's say we call the following methods:


> (define jack (instantiate penguin 'jack))
(hi my name is jack)

> (ask jack 'favorite-food)
tuna

> (ask jack 'eat)
(That tuna was delicious!)

> (ask jack 'back-flip)
*** Error: No method back-flip in class penguin



It looks like jack doesn't know how to back-flip. Our penguins only know a handful of messages right now, but as the designer of the penguin class, we don't want them to throw an error for every other message. Instead, if a penguin sees a message it doesn't understand we want them to eat instead. We can do this with the default-method clause. Take a look at the addition to our Penguin class:


(define-class (penguin name)
    (class-vars (all-penguin nil)
                (favorite-food 'tuna))
    (instance-vars (hunger 50)
                   (weight 350))
    (initialize (print (se '(hi my name is) name))
                (set! all-penguin (cons name all-penguin)))
    (method (eat)
        (set! hunger (- hunger 1))
        (set! weight (+ weight 5))
        (se 'That favorite-food '(was delicious!)))
    (default-method
        (print (se '(I dont know how to) message '(I will eat instead)))
        (ask self 'eat)))


And now we call these methods:


> (define jack (instantiate penguin 'jack))
(hi my name is jack)

> (ask jack 'back-flip)
(I dont know how to back-flip I will eat instead)
(that tuna was delicious!)

> (ask jack 'weight)
355

> (ask jack 'fly)
(I don't know how to fly I will eat instead)
(that tuna was delicious!)

> (ask jack 'weight)
360
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Message and Args


Notice that in the default-method above, we used message to find out what message we passed in to our object. Similarly, we can also use args to find out what other arguments are passed as a list.


For example, if we call


(ask jack 'do-math 1 2 5 10)



Then, the variable message will point to 'do-math, while the variable args will point to (1 2 5 10).


Using a Parent's Method Explicitly

            Calling the Parent


Our penguin class is getting cramped! To clean things up, lets make a child for it called emperor-penguin. It can do everything that a penguin does, except that when it eats, an emperor-penguin says '(bon apetit) before eating food. Does the following definition work?


(define-class (emperor-penguin name)
    (parent (penguin name))
    (method (eat)
        (print '(bon apetit!))
        (ask self 'eat)))
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Test Your Understanding


Let's say we define napoleon as follow:

(define napoleon (instantiate emperor-penguin 'napoleon))










What happens when we call (ask napoleon 'eat)?








Usual


The correct way to call a parent's method is to use the usual keyword.


(define-class (emperor-penguin name)
    (parent (penguin name))
    (method (eat)
        (print '(bon apetit!))
        (usual 'eat)))


usual takes one or more argument, the first being the message, and the others being any arguments the message needs. This message and necessary arguments are then passed to the parent. In this way, an emperor-penguin object will refer to penguin's eat method.


Calling usual is just like saying (ask self ...) with the same arguments,
except that only methods defi ned within an ancestor class (parent,
grandparent, etc.) are eligible to be used. It is an error to invoke usual
from a class that doesn't have a parent class.


Naming Intuition


You may be thinking that usual is a funny name for this function. Here's the idea behind the name: We are thinking of subclasses as specializations. That is, the parent class represents some broad category of things, and the child is a specialized version. (Think of the relationship of checking-accounts to accounts in general.) The child object does almost everything the same way its parent does. The child has some special way to handle a few messages, different from the usual way (as the parent does it). But the child can explicitly decide to do something in the usual (parent-like) way, rather than in its own specialized way.


Multiple Superclasses

            Multiple Superclasses


It is possible for a class to have more than one parent. We can have a TA
class, a singer class, and a TA-singer class.


(define-class (singer)
    (method (introduce) '(I am aiming for MTV awards!))
    (method (sing) '(tralala lalala)))

(define-class (TA)
    (method (introduce) '(GO BEARS!))
    (method (teach) '(Let me help you with that box-and-pointer diagram)) )

(define-class (singer-TA)
    (parent (singer) (TA)) )

(define-class (TA-singer)
    (parent (TA) (singer)) )

> (define rohin (instantiate singer-TA))
> (define mona (instantiate TA-singer))

> (ask rohin 'introduce)
(I am aiming for MTV awards!)

> (ask rohin 'sing)
(tralala lalala)

> (ask rohin 'teach)
(Let me help you with that box-and-pointer diagram)


> (ask mona 'introduce)
(GO BEARS!)

> (ask mona 'sing)
(tralala lalala)

> (ask mona 'teach)
(Let me help you with that box-and-pointer diagram)



Note that TA-singer and singer-TA both inherit the TA class and singer
class, but in different order. When we ask instances of both class the same
message, the first parent takes precedence.


Cheatsheet for Quizzes


For quizzes, you may have a copy of this sheet in addition to your one-page-double-sided cheatsheet you normally have.


Homework 7

            Type the following into the terminal to copy the template file to the current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw7.scm .



Or you can download it from here.


Exercise 1


Modify the person class given in the template to add a repeat method, which repeats the last thing said. For example:


> (define brian (instantiate person 'brian))
brian 

> (ask brian 'repeat)
() 

> (ask brian 'say '(hello))
(hello) 

> (ask brian 'repeat)
(hello) 

> (ask brian 'greet)
(hello my name is brian) 

> (ask brian 'repeat)
(hello my name is brian) 

> (ask brian 'ask '(close the door))
(would you please close the door) 

> (ask brian 'repeat)
(would you please close the door)



Exercise 2


This exercise introduces you to usual.


Suppose that we want to define a class called double-talker to represent people that always say things twice. For example, take a look at the following dialog.


> (define mike (instantiate double-talker 'mike))
mike 

> (ask mike 'say '(hello))
(hello hello) 

> (ask mike 'say '(the sky is falling))
(the sky is falling the sky is falling)



Consider the following three definitions for the double-talker class:


(define-class (double-talker name)
    (parent (person name))
    (method (say stuff) (se (usual 'say stuff) (ask self 'repeat))) ) 

(define-class (double-talker name)
    (parent (person name))
    (method (say stuff) (se stuff stuff)) ) 

(define-class (double-talker name)
    (parent (person name))
    (method (say stuff) (usual 'say (se stuff stuff))) )



Determine which of these definitions work as intended. Determine also for which messages the three versions would respond differently.


Exercise 3


For a statistical project you need to compute lots of random numbers in various ranges. (Recall that (random 10) returns a random number between 0 and 9.) Also, you need to keep track of how many random numbers are computed in each range. You decide to use object-oriented programming. Objects of the class random-generator will accept two messages: number and count. The message number means "give me a random number in your range" while count means "how many number requests have you had?" The class has an instantiation argument that specifies the range of random numbers for this object, so:


(define r10 (instantiate random-generator 10))



will create an object such that (ask r10 'number) will return a random number between 0 and 9, while (ask r10 'count) will return the number of random numbers r10 has created.


Exercise 4


Define the class coke-machine. The instantiation arguments for a coke-machine are the number of Cokes that can fit in the machine and the price (in cents) of a Coke. For example,


(define my-machine (instantiate coke-machine 80 70))



creates a machine that can hold 80 Cokes and sells them for 70 cents each. coke-machine objects must accept the
following messages:



	(ask my-machine 'deposit 25) means deposit 25 cents. You can deposit several coins and the machine should remember the total.

	(ask my-machine 'coke) means push the button for a Coke. The machine then either 1) prints "Not enough money", 2) prints "Machine empty", or 3) returns the amount of change you get. The error messages should be printed using display (for example, (display "Machine empty")). (After a successful transaction, no money is left in the machine; i.e., change does not stay in the machine.)

	(ask my-machine 'fill 60) means add 60 Cokes to the machine.




Here's an example:


> (ask my-machine 'fill 60)
> (ask my-machine 'deposit 25)
> (ask my-machine 'coke)
"Not enough money"

> (ask my-machine 'deposit 25) ;; Now there's 50 cents in there.
> (ask my-machine 'deposit 25) ;; Now there's 75 cents.
> (ask my-machine 'coke)
5 ;; return val is 5 cents change.



You may assume that a Coke machine has an infinite supply of change and initially contains zero Cokes.


Exercise 5


We are going to use objects to represent decks of cards. You are given the
list ordered-deck containing 52 cards in standard order:


(define ordered-deck '(AH 2H 3H ... QH KH AS 2S ... QC KC))



You are also given a function to shuffle the elements of a list:


(define (shuffle deck)
    (if (null? deck)
        '()
        (let ((card (nth (random (length deck)) deck)))
            (cons card (shuffle (remove card deck))) )))



A deck object responds to two messages: deal and empty?. It responds to deal by returning the top card of the deck, after removing that card from the deck; if the deck is empty, it responds to deal by returning (). It responds to empty? by returning #t or #f, according to whether all cards have been dealt. Write a class definition for deck. When instantiated, a deck object should contain a shuffled deck of 52 cards.


Exercise 6


We want to promote politeness among our objects. Write a class miss-manners
that takes an object as its instantiation argument. The new miss-manners
object should accept only one message, namely please. The arguments to the
please message should be, first, a message understood by the original
object, and second, an argument to that message. (Assume that all messages
to the original object require exactly one additional argument.)


Here is an example using the person class from the upcoming adventure game project:


> (define BH (instantiate person 'Brian BH-office))
BH
> (ask BH 'go 'down)
BRIAN MOVED FROM BH-OFFICE TO SODA
> (define fussy-BH (instantiate miss-manners BH))
> (ask fussy-BH 'go 'east)
ERROR: NO METHOD GO
> (ask fussy-BH 'please 'go 'east)
BRIAN MOVED FROM SODA TO PSL



Extra for Experts


Do these if you want an extra challenge. These are not for credit.


Exercise 7


The technique of multiple inheritance is described on pages 9 and 10 of "Object-Oriented Programming - Above-the-line view". That section discusses the problem of resolving ambiguous patterns of inheritance, and mentions in particular that it might be better to choose a method inherited directly from a second-choice parent over one inherited from a first-choice grandparent.


Devise an example of such a situation. Describe the inheritance hierarchy of your example, listing the methods that each class provides. Also describe why it would be more appropriate in this example for an object to inherit a given method from its second-choice parent rather than its first-choice grandparent.


Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


8 - Assignment, State, and Environment


Lesson 8 Intro

            Warning


This lesson contains dense reading and needs major revisions. If you find any of this material confusing or hard to understand, please do not hesitate to ask questions.


Prerequisites and What to Expect


Make sure you understand all the material prior to this lesson, especially Message Passing.


In this section, we are going to go over the change of the state of the variables and environment. You get to draw cool diagrams that illustrates beautifully the environment in which Scheme stores variables and procedures. Be prepared to be exposed to a fair amount of information and synthesize it!


Reading


In this section, we will cover the material in the following readings:



	Introduction to Unit 3: Modularity, Objects, and State 

	SICP 3.1: Assignment and Local State 

	SICP 3.2: The Environment Model of Evaluation

	OOP Below the line

	Environment Diagram Rules




Feel free to read ahead!


Also, here's the webcast of old lecture videos. The only big example of an environment diagram is in the webcast, so we strongly suggest you watch it:



	Lecture 21

	Lecture 22

	Lecture 23




Modularity


We ordinarily view the world as populated by independent objects, each of
which has a state that changes over time. An object is said to "have state" if
its behavior is influenced by its history. A bank account, for example, has
state in that the answer to the question "Can I withdraw $100?" depends upon
the history of deposit and withdrawal transactions. We can characterize an
object's state by one or more state variables, which among them maintain
enough information about history to determine the object's current behavior.
In a simple banking system, we could characterize the state of an account by a
current balance rather than by remembering the entire history of account
transactions.




In a system composed of many objects, the objects are rarely completely
independent. Each may influence the states of others through interactions,
which serve to couple the state variables of one object to those of other
objects. Indeed, the view that a system is composed of separate objects is
most useful when the state variables of the system can be grouped into closely
coupled subsystems that are only loosely coupled to other subsystems.


This view of a system can be a powerful framework for organizing computational
models of the system. For such a model to be modular, it should be
decomposed into computational objects that model the actual objects in the
system. Each computational object must have its own local state variables
describing the actual object's state. Since the states of objects in the
system being modeled change over time, the state variables of the
corresponding computational objects must also change. If we choose to model
the flow of time in the system by the elapsed time in the computer, then we
must have a way to construct computational objects whose behaviors change as
our programs run. In particular, if we wish to model state variables by
ordinary symbolic names in the programming language, then the language must
provide an assignment operator to enable us to change the value associated
with a name.


In object-oriented programming, one of the seven fundamental principles of the
object model. The modularity principle states that a program should be
composed of a collection of internally cohesive units, called objects, that
can communicate and interoperate without needing information about their
internal structure.


Takeaways


In this subsection, you learned the definition of modularity.


What's Next?


Go to the next subsection and see how you can use modularity to program!


Local State Variables

            A Preview


Let's take a quick glance at what we will be going over in this section:
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(define (make-account balance) 
  (define (withdraw amount) 
    (set! balance (- balance amount)) balance) 
  (define (deposit amount) 
    (set! balance (+ balance amount)) balance) 
  (define (dispatch msg) 
    (cond 
      ((eq? msg 'withdraw) withdraw) 
      ((eq? msg 'deposit) deposit) ) ) 
  dispatch)



What do you think? Do you have any idea about what this function does?


Withdraw


Let's withdraw money from the bank account. We will do this using a procedure
withdraw, which takes as argument an amount to be withdrawn. If there is
enough money in the account to accommodate the withdrawal, then withdraw
should return the balance remaining after the withdrawal. Otherwise,
withdraw should return the message "Insufficient funds". For example, if we
begin with $100 in the account, we should obtain the following sequence of
responses using withdraw:


(withdraw 25)
75
(withdraw 25)
50
(withdraw 60)
"Insufficient funds"
(withdraw 15)
35



Observe that the expression (withdraw 25), evaluated twice, yields different
values.


Wait, but I thought that a particular function call with the same argument
returns the same value!


Up to now it has, but this is a new kind of behavior for a procedure. All our
procedures could be viewed as functions that pass the vertical line test. A
call to a procedure computes the value of the function applied to the given
arguments, and two calls to the same procedure with the same arguments always
produces the same result. But in this situation, the balance needs to be
changed after each transaction. Otherwise, we all are going to be rich!


To implement withdraw, we can use a variable balance to indicate the
balance of money in the account and define withdraw as a procedure that
accesses balance. The withdraw procedure checks to see if balance is at least
as large as the requested amount. If so, withdraw decrements balance by
amount and returns the new value of balance. Otherwise, withdraw returns the
Insufficient funds message. Here are the definitions of balance and
withdraw:


(define balance 100)

(define (withdraw amount)
  (if (>= balance amount)
      (begin (set! balance (- balance amount))
             balance)
      "Insufficient funds"))



Decrementing balance is accomplished by the expression


(set! balance (- balance amount))



This uses the set! special form, whose syntax is


(set! [name] [new-value])



Here [name] is a symbol and [new-value] is any expression. Set! changes
[name] so that its value is the result obtained by evaluating [new-value].
In the case at hand, we are changing balance so that its new value will be the
result of subtracting amount from the previous value of balance.


Withdraw also uses the begin special form to cause two expressions to be
evaluated in the case where the if test is true: first decrementing balance
and then returning the value of balance. In general, evaluating the
expression


(begin [exp1] [exp2] ... [expk])



causes the expressions [exp1] through [expk] to be evaluated in sequence
and the value of the final expression [expk] to be returned as the value of
the entire begin form.


Play with withdraw, set! and begin on your STk interpreter!


Something's Fishy...


Before we move on, examine again how withdraw and balance are defined:


(define balance 100)

(define (withdraw amount)
  (if (>= balance amount)
      (begin (set! balance (- balance amount))
             balance)
      "Insufficient funds"))



Do you see anything that could cause a trouble?


Trouble Detected


The problem is with the variable balance. As specified above, balance
is a name defined in the global environment and is freely accessible to be
examined or modified by any procedure. It would be much better if we could
somehow make balance internal to withdraw, so that withdraw would be
the only procedure that could access balance directly and any other
procedure could access balance only indirectly (through calls to
withdraw). This would more accurately model the notion that balance is a
local state variable used by withdraw to keep track of the state of the
account.


We can make balance internal to withdraw by rewriting the definition as
follows:


(define new-withdraw
  (let ((balance 100))
    (lambda (amount)
      (if (>= balance amount)
          (begin (set! balance (- balance amount))
                 balance)
          "Insufficient funds"))))



What we have done here is use let to establish an environment with a local
variable balance, bound to the initial value 100. Within this local
environment, we use lambda to create a procedure that takes amount as an
argument and behaves like our previous withdraw procedure. This procedure --
returned as the result of evaluating the let expression -- is new-
withdraw, which behaves in precisely the same way as withdraw but whose
variable balance is not accessible by any other procedure.


> (new-withdraw 10)
90
> (new-withdraw 30)
60



Play with new-withdraw on the STk interpreter and make sure you understand how it works.


make-account


Here is a simplified version of the make-account procedure in SICP:


(define (make-account balance) 
  (define (withdraw amount) 
    (set! balance (- balance amount)) balance) 
  (define (deposit amount) 
    (set! balance (+ balance amount)) balance) 
  (define (dispatch msg) 
    (cond ((eq? msg 'withdraw) withdraw) 
          ((eq? msg 'deposit) deposit) ) ) 
  dispatch)



Now, let's try to rewrite this using local state variables. Fill in the blank in the following code so that the result works exactly the same as the make-account procedure above. That is, it responds to the same messages and produces the same return values. The differences between the two procedures are that the inside of make-account above is enclosed in the let statement below, and the names of the parameters to make-account are different.


(define (make-account init-amount) 
  (let (______________________) 
    (define (withdraw amount) 
      (set! balance (- balance amount)) balance) 
    (define (deposit amount) 
      (set! balance (+ balance amount)) balance) 
    (define (dispatch msg) 
      (cond ((eq? msg 'withdraw) withdraw) 
            ((eq? msg 'deposit) deposit) ) ) 
    dispatch) )








Now, modify either version of make-account so that, given the message balance, it returns the current account balance, and given the message init-balance, it returns the amount with which the account was initially created. For example,


> (define acc (make-account 100)) 
acc 
> (acc 'balance) 
100








Make another modification such that, given the message transactions (any deposit or withdrawal), it returns a list of all transactions made since the account was opened. For example:


> (define acc (make-account 100)) 
acc 
> ((acc 'withdraw) 50) 
50 
> ((acc 'deposit) 10) 
60
> (acc 'balance)
60
> (acc 'transactions) 
((deposit 10) (withdraw 50))



Before viewing the entire solution below, try out your definition in the STk interpreter and make sure you understand the entire code for make-account.


Here is our solution:


(define (make-account init-amount) 
  (let ((balance init-amount)
        (transactions '())) 
    (define (withdraw amount) 
      (set! balance (- balance amount))
      (set! transactions (cons (list 'withdraw amount) transactions)) 
      balance) 
    (define (deposit amount) 
      (set! balance (+ balance amount))
      (set! transactions (cons (list 'deposit amount) transactions)) 
      balance) 
    (define (dispatch msg) 
      (cond ((eq? msg 'withdraw) withdraw) 
            ((eq? msg 'deposit) deposit)
            ((eq? msg 'balance) balance)
            ((eq? msg 'transactions) transactions) ) ) 
    dispatch) )



The Substitution Model of Evaluation


Given this definition:


(define (plus1 var) 
  (set! var (+ var 1)) 
  var)



Follow the substitution model to find the result of computing


(plus1 5)



That is, show the expression that results from substituting 5 for var in the body of plus1, and then compute the value of the resulting expression.


Now, try it in the STk interpreter. Did you get the same answer? Why or why not?


Introducing assignments accompanies a pretty big cost. At this point, you may realize that we cannot use the substitution model of evaluation anymore because it yields the wrong value. The trouble here is that substitution is based ultimately on the notion that the symbols in our language are essentially names for values. But as soon as we introduce set! and the idea that the value of a variable can change, a variable can no longer be simply a name. Now a variable somehow refers to a place where a value can be stored, and the value stored at this place can change. 


Then how can I evaluate the procedures?


The new model of evaluation is waiting for you in the next subsection.


Takeaways


In this section, you learned:



	How to implement local state variables

	Costs of assignments

	How to use set! and begin




What's Next?


Let's go to the next subsection and learn about the new model of evaluation!


The Environment Model of Evaluation

            The Environment Model of Evaluation


[image: ]


In the previous subsection, we learned that we can no longer use the
substitution model of evaluation once we use assignments. The new model that
will be used from now on is called the environment model of evaluation.


Let's go through the example to see how this new model works. We define a simple square procedure and call it on 7:


> (define (square x) (* x x))
square
> (square 7)
49



What happens? The substitution model states:



	Substitute the actual argument value(s) for the formal parameter(s) in the body of the function.

	Evaluate the resulting expression.




In this example, the substitution of 7 for x in (* x x) gives (* 7 7). In step 2 we evaluate that expression to get the result, 49.


Now, let's put the substitution model aside and take a look at the more complete and comprehensive environment model:



	Create a frame with the formal parameter(s) bound to the actual argument values.

	Use this frame to extend the lexical environment.

	Evaluate the body in the resulting environment.




A frame is a collection of name-value associations, or bindings. In our example, the frame has one binding that binds x to 7.


Let's skip step 2 for a moment and think about step 3. The idea is that we are going to evaluate the expression (* x x), but we are reﬁning our notion of what it means to "evaluate" an expression. Expressions are no longer evaluated in a vacuum, but instead, every evaluation must be done with respect to some
environment. 


An environment can be described as some collection of bindings between names and values. When we are evaluating (* x x) and we see the symbol x, we want to be able to look up x in our collection of bindings and ﬁnd the value 7. Looking up the value bound to a symbol is something we've done before with global variables. What's new is that instead of one central collection of bindings we now have the possibility of local environments. The symbol x isn't always 7. That's only the case during this one invocation of square. So, step 3 means to evaluate the expression in the way that we've always understood, but looking up names in a particular place.


What's step 2 about? The point is that we can't evaluate (* x x) in an environment with nothing but the x to 7 binding, because we also have to look up a value for the symbol * (namely, the multiplication function). So, we create a new frame in step 1, but that frame isn't an environment by itself. Instead we use the new frame to extend an environment that already existed.


Which old environment do we extend? In the square example, there is only one
candidate, the global environment. But in more complicated situations there
may be several environments available.


Rules for the Environment Model


Now, we will go over the rules for the environment model for different cases. Before we proceed, keep in mind that:



	Every expression is either an atom or a list.

	At any time there is a current frame, initially the global frame.




Expressing Atoms


Let's get some perspective on how we expression atomic values:



	Numbers, strings, #t, and #f are self-evaluating.

	If the expression is a symbol, find the first available binding. (That is, look in the current frame; if not found there, look in the frame "behind" the current frame; and so on until the global frame is reached.)




[image: ]


Procedure Invocation


What about procedures? How does the evaluation deal with expressions that invoke procedures?



	Evaluate all the subexpressions (using these same rules).

	Apply the procedure (the value of the first subexpression) to the arguments (the values of the other subexpressions).



	If the procedure is compound (user-defined):



	Create a frame with the formal parameters of the procedure bound to the actual argument values.

	Extend the procedure's defining environment with this new frame.

	Evaluate the procedure body, using the new frame as the current frame.




	If the procedure is primitive:



	Apply it by magic. ONLY COMPOUND PROCEDURE INVOCATIONS CREATES A NEW FRAME.










An Example


(define (square x)
  (* x x))
(define (sum-of-squares x y)
  (+ (square x) (square y)))
(define (f a)
  (sum-of-squares (+ a 1) (* a 2)))
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Procedure objects in the global frame.
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Environments created by evaluating (f 5).


Special Forms



	A lambda creates a procedure in the form of a double bubble. The left circle points to the text of the lambda expression; the right circle points to the defining environment (i.e., to the current environment at the time the lambda is seen). ONLY LAMBDAS CREATE PROCEDURES.

	define adds a new binding to the current frame.

	set! changes the first available binding.

	A let is a lambda with an invocation.

	(define (...) …) = lambda + define

	Other special forms follow their own rules (cond, if).




An Example


(define (make-withdraw balance)
  (lambda (amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
"Insufficient funds")))



[image: ]


Result of defining make-withdraw in the global environment.
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Result of evaluating (define W1 (make-withdraw 100)).


Takeaways


In this subsection, we learned how to evaluate procedures with the environment
model.


What's Next?


Go to the next subsection and learn how to draw environment diagrams!


How to Draw Environment Diagrams

            EnvDraw


EnvDraw is a cool program that you can run on your class account to help you
draw environment diagrams. To use it:



	Type envdraw into a terminal. (If this doesn't work, first SSH into torus, and then type the command.) This command should then open an STk interpreter.

	At the interpreter, type (envdraw).

	You should see a new EnvDraw window open. At the EnvDraw> prompt, try defining the square function. Then, look at the EnvDraw window and see what happens!




Overview


Now you're going to start drawing your own environment diagrams! We'll start
from the basics and gradually build on them. Literally all of the rules you
need to draw these diagrams are in the previous section. Make sure you know
all of them by the time you're done with this lesson.


All of the example environment diagrams we show you in this section are taken
from the EnvDraw program.


Define


Let's start by defining a variable in Scheme and looking at the corresponding
environment diagram. Specifically, we'll try drawing the diagram for:


(define x 3)



The first step is to always draw the global environment. Make sure to label
it! Next, we need to figure out how to handle the define. By looking at the
rules in the previous section, you should learn that define adds a new
binding to the current frame. Let's draw it out:
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That's all there is to it! Simply write "x" with an arrow pointing to 3, all
within the global environment. (Note: you don't have to write "[other bindings]" in your own environment diagrams for this class. EnvDraw does this for completeness.)


Now we're going to move onto defining procedures. What happens when you type
the following code into a STk interpreter? We'll continue off of our diagram from earlier.


(define (square x) (* x x))



The first thing we're going to do is change the above code so it uses a
lambda:


(define square (lambda (x) (* x x)))



Notice that this expression now has all of the same basic parts as (define x
3). So we follow the exact same procedure: write "square" in the global frame
and draw an arrow pointing to the lambda. We draw a lambda as a double-bubble.
The first bubble points to the arguments and the body. The second bubble
points to the defining environment, or the current environment at the time the
lambda is seen. This is how your diagram should now look.
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Now you're done! To recap, you first need to draw the lambda. Make the first
bubble point to the args and body, and the second point to the defining
environment. Next, simply write "square" in the global environment and make it
point to the lambda.


In the next section, we'll cover how to actually call the square function we
just defined.


There is one very important point we're ignoring in these examples: define
doesn't always add things to the global environment. Instead, it adds it to
the current frame (which happens to be the global environment in the cases
above). We'll walk you through how to figure out what the current frame is in
a later section.


Applying Primitive Procedures


Now, let's draw the environment diagram for:


(define y (+ 3 4))



The difference from the previous example is that we must first apply the +
procedure to 3 and 4 before we can assign the value of y. You can assume that all primitive procedures are applied by magic. Nothing needs to be drawn out for them. Thus, the full environment diagram would simply look like:
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Applying User-Defined Procedures


Let's say we now want to actually call the square function we defined earlier.
We'll call it with the code:


(square 5)



To call a user-defined procedure, we follow the following steps:



	Create a frame with the formal parameters of the procedure bound to the actual argument values.
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	Extend the procedure's defining environment with this new frame.
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	Evaluate the procedure body, using the new frame as the current frame.




The last step doesn't actually involve changing the environment diagram.
Instead, this is when we finally find the value of the call. To evaluate the
body of square, we must first figure out the value of x. We always use the
first available binding for a variable. This means we look at the binding of
x -> 5 in our current frame, rather than the binding of x -> 3 in the global
frame. Once we've figured out the value of x, we multiply it to itself
(remember, you can just assume this is done by magic). And now we're done!
We've multiplied 5 by itself, yielding the answer of 25.


Remember, only compound procedure invocation creates a new frame!


Atomic Expressions


The trick to evaluating atomic expressions (such as finding the value of a
symbol) relies on figuring out which frame is the current frame. Before we get
into that, remember that the rules of evaluating atomic expressions are:



	Numbers, strings, #t, and #f are self-evaluating.

	If the expression is a symbol, ﬁnd the ﬁrst available binding. (That is, look in the current frame; if not found there, look in the frame "behind" the current frame; and so on until the global frame is reached.)




All of the hard work is in case 2 above. Recall our environment diagram from
the last section:
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Remember that a new frame is only drawn when invoking a user-defined procedure. Thus, the current frame can only differ from the global environment when you are within the scope of another function. While this is a super important point, don't sweat it too much for now. Make sure you understand all of the examples thus far. We'll introduce more complicated examples further in the lesson.



Test Your Understanding


Recall that our environment diagram so far looks like this:



If I now type x into the interpreter, what will its value be?






I now improperly define the function cube as follows: 

(define (cube x) (* y y y))










First, draw the environment diagram corresponding to this definition. Add this definition on to the environment diagram we've drawn so far.






Draw the resulting environment diagram from evaluating the code: 

(cube 2)










What does it output?





Freeloading Frames


At this point, our environment diagram now has three frames, the global frame, E1, and E2. E1 and E2 were created by calls to square and cube, respectively. However, once these functions return (or finish), the frames E1 and E2 we've created are useless! They are no longer reachable and their bindings no longer matter.


This isn't always the case. In the next sections we'll go over some code that makes these frames useful much after the initial procedure call.


Using set!


Now let's look at how to handle set!. You may recall that set! changes the
first available binding. Remember that we find the first available binding
by looking in the current frame, and then looking in the frames "behind" that
frame.



Test Your Understanding


Let's try it out! Starting fresh, draw the environment diagram that corresponds to the following lines of code:

(define x 3)
(define (change x n)
  (set! x n))
(change x 5)






What is the value of x?








How can you fix the change procedure so the value of x in the global environment changes? Indicate ALL possible fixes.








Using let


Using let tends to cause a lot of students trouble. But don't despair! Whenever you're having troubles with let, remember these simple rules:



	Convert the let into a lambda statement plus invocation.




For example, you can rewrite


(let ((x 7)
      (y 10))
    (+ x y))



as


((lambda (x y) (+ x y)) 7 10)




	Draw the corresponding lambda. Remember, a lambda is just a double-bubble with the correct arrows.

	Call the lambda with the proper arguments. Remember, this includes drawing a new frame and binding the formal parameters to the actual argument values.




If you can remember these simple rules, you'll have no trouble at all!



Test Your Understanding


Draw the environment diagram for the following code:

(let ((x 7)
      ( y 10))
    (+ x y))






Now let's try something more complex. Draw the resulting environment diagram for the following code:

(define (make-withdraw initial-amount)
    (let ((balance initial-amount))
        (lambda (amount)
            (if (>= balance amount)
                (begin (set! balance (- balance amount))
                       balance)
                "Insufficient funds"))))
(define W1 (make-withdraw 100))
(W1 50)






Takeaways


At this point, you know everything you need to draw any environment diagram,
no matter how complicated! As we go through problems in the future, don't
forget the basics! Even the most complicated pieces of code can be boiled down
into simple rules.


If there is even a single thing covered so far that you don't understand, ask
for help! Environment diagrams is one of those topics that a lot of students
find difficult.


What's Next?


Using our new-found knowledge of the environment model of evaluation, in the
next section we're going to walk through how to implement OOP by clever-ly
using lambdas and lets.


For the Quiz


When you are taking Quiz 8, you are allowed to have a copy of the Environment Diagram Rules in addition to your double-sided cheat-sheet.


OOP Below the Line

            Below the Line
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Using your new-found knowledge of environments, it'll be much easier to
understand how OOP works! We call this "below-the-line" because we're
achieving the functionality of OOP without any special procedures (such as
define-class).


Message Passing


Let's take a look at the following code:


(define (make-rectangular x y)
  (define (dispatch m)
    (cond ((eq? m 'real-part) x)
          ((eq? m 'imag-part) y)
          ((eq? m 'magnitude)
           (sqrt (+ (square x) (square y))))
          ((eq? m 'angle) (atan y x))
          (else
            (error "Unknown op -- MAKE-RECTANGULAR" m))))
  dispatch)



In this example, a complex number object is represented by a dispatch
procedure. The procedure takes a message as its argument, and returns a number
as its result. However, dispatch can return a procedure instead of a number,
and it allows for extra arguments to what we are calling the method that
responds to a message.


The user says


((acc 'withdraw) 100)



Evaluating this expression requires a two-step process: 



	The dispatch procedure (named acc) is invoked with the message withdraw as its argument. 

	The dispatch procedure returns the withdraw method procedure, and that second procedure is invoked with 100 as its argument to do the actual work.




All of an object's activity comes from invoking its method procedures; the
only job of the object itself is to return the right procedure when it gets
sent a message.


Any OOP system that uses the message-passing model must have some below-the-
line mechanism for associating methods with messages. In Scheme, with its
first-class procedures, it is very natural to use a dispatch procedure as
the association mechanism. In some other language the object might instead be
represented as an array of message-method pairs. If we are treating objects as
an abstract data type, programs that use objects shouldn't have to know that
we happen to be representing objects as procedures. The two-step notation for
invoking a method violates this abstraction barrier. To fix this, we invent
the ask procedure:


(define (ask object message . args)
  (let ((method (object message))) ; Step 1: invoke dispatch procedure
    (if (method? method)
        (apply method args)        ; Step 2: invoke the method
        (error "No method" message (cadr method)))))



ask carries out essentially the same steps as the explicit notation used in
the text. First, it invokes the dispatch procedure (that is, the object itself)
with the message as its argument. This should return a method (another procedure). The second step is to invoke that method procedure with whatever
extra arguments have been provided to ask. The body of ask looks more
complicated than the earlier version, but most of that has to do with error-
checking: What if the object doesn't recognize the message we send it? These
details aren't very important. ask does use two features of Scheme that we
haven't discussed before:


The dot notation used in the formal parameter list of ask means that it
accepts any number of arguments. The first two are associated with the formal
parameters object and message; all the remaining arguments (zero or more of
them) are put in a list and associated with the formal parameter args.


The procedure apply takes a procedure and a list of arguments and applies
the procedure to the arguments. The reason we need it here is that we don't
know in advance how many arguments the method will be given; if we said
(method args) we would be giving the method one argument, namely, a list.


In our OOP system, you generally send messages to instances, but you can also
send some messages to classes, namely the ones to examine class variables.
When you send a message to a class, just as when you send one to an instance,
you get back a method. That's why we can use ask with both instances and
classes. (The OOP system itself also sends the class an instantiate message
when you ask it to create a new instance.) Therefore, both the class and each
instance is represented by a dispatch procedure. The overall structure of a
class definition looks something like this:


(define (class-dispatch-procedure class-message)
  (cond ((eq? class-message 'some-var-name) (lambda () (get-the-value)))
         (...)
        ((eq? class-message 'instantiate)
         (lambda (instantiation-var ...)
           (define (instance-dispatch-procedure instance-message)
             (cond ((eq? instance-message 'foo) (lambda ...))
                    (...)
                   (else (error "No method in instance")) ))
             instance-dispatch-procedure))
        (else (error "No method in class")) ))



(Please note that this is not exactly what a class really looks like. In this
simplified version we have left out many details. The only crucial point here
is that there are two dispatch procedures, one inside the other.) In each
procedure, there is a cond with a clause for each allowable message. The
consequent expression of each clause is a lambda expression that defines the
coreesponding method.


Local State (Again)


In the previous subsection, you learned how to give a procedure a local state
variable: define that procedure inside another procedure that establishes a
variable. So it can be written as the follwing example:


(define new-withdraw
  (let ((balance 100))
    (lambda (amount)
      (if (>= balance amount)
          (begin (set! balance (- balance amount)) balance)
          "Insufficient funds"))))



In the OOP system, there are three kinds of local state variables: class
variables, instance variables, and instantiation variables. Although
instantiation variables are just a special kind of instance variable above the
line, they are implemented di erently. Here is another simpli ed view of a
class definition, this time leaving out all the message passing stuff and
focusing on the variables:


(define class-dispatch-procedure
  (LET ((CLASS-VAR1 VAL1)
        (CLASS-VAR2 VAL2) ...)
    (lambda (class-message)
      (cond ((eq? class-message 'class-var1) (lambda () class-var1))
            ...
            ((eq? class-message 'instantiate)
             (lambda (INSTANTIATION-VARIABLE1 ...)
               (LET ((INSTANCE-VAR1 VAL1)
                     (INSTANCE-VAR2 VAL2) ...)
                (define (instance-dispatch-procedure instance-message)
                 ...)
                instance-dispatch-procedure)))))))



The scope of a class variable includes the class dispatch procedure, the
instance dispatch procedure, and all of the methods within those. The scope of
an instance variable does not include the class dispatch procedure in its
methods. Each invocation of the class instantiate method gives rise to a new
set of instance variables, just as each new bank account in the book has its
own local state variables.


Why are class variables and instance variables implemented using let, but
not instantiation variables? The reason is that class and instance variables
are given their (initial) values by the class definition itself. That's what
let does: It establishes the connection between a name and a value.
Instatiation variables, however, don't get values until each particular
instance of the class is created, so we implement these variables as the
formal parameters of a lambda that will be invoked to create an instance.


Inheritance and Delegation


Inheritance is the mechanism through which objects of a child class can use
methods from a parent class. Ideally, all such methods would just be part of
the repertoire of the child class; the parent's procedure de nitions would be
"copied into" the Scheme implementation of the child class. The actual
implementation in our OOP system, although it has the same purpose, uses a
somewhat di fferent technique called delegation. Each object's dispatch
procedure contains entries only for the methods of its own class, not its
parent classes. But each object has, in an instance variable, an object of its
parent class. To make it easier to talk about all these objects and classes,
let's take an example that we looked at before:


(define-class (checking-account init-balance)
  (parent (account init-balance))
  (method (write-check amount)
    (ask self 'withdraw (+ amount 0.10)) ))



Let's create an instance of that class:


(define Gerry-account (instantiate checking-account 20000))



Then the object named Gerry-account will have an instance variable named
my-account whose value is an instance of the account class. (The variables
"my-whatever" are created automatically by define-class.)


What good is this parent instance? If the dispatch procedure for Gerry-
account doesn't recognize some message, then it reaches the else clause of
the cond. In an object without a parent, that clause will generate an error
message. But if the object does have a parent, the else clause passes the
message on to the parent's dispatch procedure:


(define (make-checking-account-instance init-balance)
  (LET ((MY-ACCOUNT (INSTANTIATE ACCOUNT INIT-BALANCE)))
    (lambda (message)
      (cond ((eq? message 'write-check) (lambda (amount) ...))
            ((eq? message 'init-balance) (lambda () init-balance))
            (ELSE (MY-ACCOUNT MESSAGE)) ))))



(Naturally, this is a vastly simplified picture. We've left out the class
dispatch procedure, among other details. There isn't really a procedure named
make-checking-account-instance in the implementation; this procedure is
really the instantiate method for the class, as we explained earlier.)


When we send Gerry-account a write-check message, it's handled in the
straightforward way we've been talking about. But when we send Gerry-account
a deposit message, we reach the else clause of the cond and the message is
delegated to the parent account object. That object (that is, its dispatch
procedure) returns a method, and Gerry-account returns the method too.


The crucial thing to understand is why the else clause does not say


(else (ask my-parent message))



The Gerry-account dispatch procedure takes a message as its argument, and
returns a method as its result. Ask, you'll recall, carries out a two-step
process in which it first gets the method and then invokes that method. Within
the dispatch procedure we only want to get the method, not invoke it.
(Somewhere there is an invocation of ask waiting for Gerry-account's
dispatch procedure to return a method, which ask will then invoke.)


There is one drawback to the delegation technique. When we ask Gerry-account
to deposit some money, the deposit method only has access to the local state
variables of the account class, not those of the checking-account class.
Similarly, the write-check method doesn't have access to the account local
state variables like balance. You can see why this limitation occurs: Each
method is a procedure defi ned within the scope of one or the other class
procedure, and Scheme's lexical scoping rules restrict each method to the
variables whose scope contains it. The technical distinction between
inheritance and delegation is that an inheritance-based OOP system does not
have this restriction. We can get around the limitation by using messages that
ask the other class (the child asks the parent, or vice versa) to return (or
modify) one of its variables. The (ask self 'withdraw ...) in the write-check method is an example.


Bells and Whistles


The simplified Scheme implementation shown so far hides several complications
in the actual OOP system. What we have explained so far is really the most
important part of the implementation, and you shouldn't let the details that
follow confuse you about the core ideas. We're giving pretty brief
explanations of these things, leaving out the gory details.


One complication is multiple inheritance. Instead of delegating an unknown
message to just one parent, we have to try more than one. The real else
clauses invoke a procedure called get-method that accepts any number of
objects (i.e., dispatch procedures) as arguments, in addition to the message.
Get-method tries to fi nd a method in each object in turn; only if all of
the parents fail to provide a method does it give an error message. (There
will be a "my-whatever" variable for each of the parent classes.)


Another complication that aff ects the else clause is the possible use of a
default-method in the class de nition. If this optional feature is used, the
body of the default-method clause becomes part of the object's else
clause.


When an instance is created, the instantiate procedure sends it an
initialize message. Every dispatch procedure automatically has a
corresponding method. If the initialize clause is used in define-class,
then the method includes that code. But even if there is no initialize
clause, the OOP system has some initialization tasks of its own to perform. In
particular, the initialization must provide a value for the self variable.
Every initialize method takes the desired value for self as an argument. If
there are no parents or children involved, self is just another name for the
object's own dispatch procedure. But if an instance is the my-whatever of
some child instance, then self should mean that child. The solution is that
the child's initialize method invokes the parent's initialize method with
the child's own self as the argument. (Where does the child get its self
argument? It is provided by the instantiate procedure.)


Finally, usual involves some complications. Each object has a send-usual-to-parent method that essentially duplicates the job of the ask procedure,
except that it only looks for methods in the parents, as the else clause
does. Invoking usual causes this method to be invoked.


Counter Example


Now let's implement a simple counter. Every time the counter is called, it
increments its own local variable and the global variable for all counters.
Here is the code for our counter class:


(define make-counter
    (let ((glob 0))
        (lambda ()
            (let ((loc 0))
                (lambda ()
                    (set! loc (+ loc 1))
                    (set! glob (+ glob 1))
                    (list loc glob))))))



It works something like this:


> (define counter1 (make-counter))
counter1

> (define counter2 (make-counter))
counter2

> (counter1)
(1 1)

> (counter1)
(2 2)

> (counter2)
(1 3)

> (counter1)
(3 4)



The class variable glob is created in an environment that surrounds the
creation of the outer lambda, which represents the entire class. The instance
variable loc is created in an environment that's inside the class lambda,
but outside the second lambda that represents an instance of the class.



Test Your Understanding


The example above shows how environments support state variables in OOP, but it’s simplified in that the instance is not a message-passing dispatch procedure. In short, it isn't very realistic.



Currently, we call the counter with no arguments and are returned a list of the local and global variables for that counter. Change this class so that the counter has two methods, either 'local or 'global. Each of these methods takes in exactly one argument: the number by which to increment the counter. Your code should work like this:

> (define counter1 (make-counter))
counter1
> (define counter2 (make-counter))
counter2

> ((counter1 'global) 5)
5
> ((counter2 'global) 3)
8
> ((counter1 'local) 2)
2






Homework 8

            Template


Type the following command at the terminal to copy the template file to the
current directory:


cp ~cs61as/autograder/templates/hw8.scm .



Or you can download it here.


Exercises


Complete the following: 



	SICP 3.3, 3.4

	SICP 3.7, 3.8

	SICP 3.10

	SICP 3.11 




Note: For exercises 3.3 and 3.4, you should create a function called make-password-account instead of make-account.


Extra for Experts


Do this if you want to. This is NOT for credit.


The purpose of the environment model is to represent the scope of variables;
when you see an x in a program, which variable x does it mean? Another way
to solve this problem would be to rename all the local variables so that there
are never two variables with the same name. Write a procedure unique-rename
that takes a (quoted) lambda expression as its argument, and returns an
equivalent lambda expression with the variables renamed to be unique:


> (unique-rename '(lambda (x) (lambda (y) (x (lambda (x) (y x))))))
(lambda (g1) (lambda (g2) (g1 (lambda (g3) (g2 g3)))))



Note that the original expression had two variables named x, and in the
returned expression it's clear from the names which is which. You'll need a
modified counter object to generate the unique names.


You may assume that there are no quote, let, or define expressions, so
that every symbol is a variable reference, and variables are created only by
lambda.


Describe how you'd use unique-rename to allow the evaluation of Scheme
programs with only a single (global) frame.


Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Project 3 - Adventure Game


Introduction

            Adventure Time!


It's time to get your hands dirty with some OOP. For this project, you will be helping us write an adventure game where you create people, places, things, and then make them interact.


This project is designed to be done by two partners working in parallel, then
combining your results into one finished product. Hereafter the two partners
are called Person A and Person B. You will hand in one combined and finished project for your group.


The project begins with two exercises that both partners should do; these exercises do not require new programming, but rather familiarize you with the overall structure of the program as we've provided it. After that, each partner has separate exercises. There is one final exercise for everyone that requires the two partners' work to be combined. (Therefore, you should probably keep notes about all of the procedures that you've modified during the project, so you can notice the ones that both partners modified independently.)


This is a long project, and you should pace yourself accordingly. Once you finish all of the exercises for the entire project, your group should make one submission, including your modified adv.scm program with the modifications highlighted, and a transcript of the testing of your work. You MUST indicate at the top of your adv.scm file which of you is Partner A and which is Partner B. Make this is very prominent and easy to find!


Scoring


Each partner works on nine problems. Three of these (numbers 1, 2, and 9) are
common to the two partners; the others are separate. You hand in a single
solution to each problem. Both partners get the points awarded to the group
for problems 1, 2, and 9; each partner gets the points for his or her own
problems 3 through 8. This means that your score for the project is mostly
based on your individual work but also relies partly on the other member of
your group. For the first two problems, you could get away with letting your
partner do the work, but you shouldn't because those problems are necessary to
help you understand the structure of the entire project. Problem 9 requires
that both partners have already done their separate work, and meet together to
understand each other's solutions, so neither partner will receive credit for it
unless both have done their jobs.


If you can't find a partner and/or wish to work alone, please talk to a TA.


Acknowledgement


This assignment is loosely based on an MIT homework assignment in their
version of this course. But since this is Berkeley we've changed it to be
politically correct; instead of killing each other, the characters go around
eating gourmet food all the time. N.B.: Unless you are a diehard yuppie you
may feel that eating gourmet food does not express appropriate sensitivity to
the plight of the homeless. But it's a start.


In this laboratory assignment, we will be exploring two key ideas: the
simulation of a world in which objects are characterized by a set of state
variables, and the use of message passing as a programming technique for
modularizing worlds in which objects interact.


Notes on Working Together


Here are some suggestions to share your work with your partner:



	GitHub: Solid, but long set-up time. Try here for a taste.

	Dropbox: Easy to set-up. Be careful with overwriting your partner's files!

	Google Docs: Easy to set-up. Less likely to overwrite code.

	E-Mail: Nominate one partner. Send all of your code to that partner and they will be the one responsible for merging them together.

	Other: You may use whatever method you like, so long as it promotes academic honesty and successfully shares code among partners.




Getting Started

            Getting Started


In this laboratory assignment, we will be exploring two key ideas: 



	The simulation of a world in which objects are characterized by a set of state variables

	The use of message passing as a programming technique for modularizing worlds in which objects interact.




Object-oriented programming is becoming an extremely popular methodology for any application that involves interactions among computational entities.


Some examples include:



	Operating systems (processes as objects)

	Windows systems (windows as objects)

	Games (asteroids, spaceships, gorillas as objects)

	Drawing programs (shapes as objects)




Project Files


To start, copy the necessary files for the project into your directory:


cp -r ~cs61as/lib/adventure/ .





    	File Name
    	Purpose





    	1.obj.scm
    	The code for our object-oriented system.



    	2.adv.scm
    	The adventure game program. It contains the definitions of the object classes.



    	3.tables.scm
    	An ADT you'll need for Questions A5 and B4.



    	4.adv-world.scm
    	The specific instances of the objects (i.e., people, places, and things) in the adventure game.



    	5.small-world.scm
    	A smaller, simplified world that you can use for debugging.






To work on this project, you must load these files into STk in the exact order you see in the table above. Load either adv-world.scm OR small-world.scm, but NOT BOTH. The work you are asked to do refers to adv-world.scm;
small-world.scm is provided in case you'd prefer to debug some of your
procedures in a smaller world that may be less complicated to remember and
also faster to load.


To load a Scheme file, e.g., obj.scm, type 


(load "obj.scm")



into the interpreter.


The reason the adventure game is divided into adv.scm and adv-world.scm is that when you make any changes to the class definitions in adv.scm, you may need to reload the entire world in order for your changed version to take effect. Having two files means that you don't also have to reload the first batch of procedures.


An Intro to the Program


In this program there are three main classes: Person, Place, and Thing.


Here are some examples selected from adv-world.scm:


;;; construct the places in the world
(define Soda (instantiate place 'Soda))
(define BH-Office (instantiate place 'BH-Office))
(define art-gallery (instantiate place 'art-gallery))
(define Pimentel (instantiate place 'Pimentel))
(define 61A-Lab (instantiate place '61A-Lab))
(define Sproul-Plaza (instantiate place 'Sproul-Plaza))
(define Telegraph-Ave (instantiate place 'Telegraph-Ave))
(define Noahs (instantiate place 'Noahs))
(define Intermezzo (instantiate place 'Intermezzo))
(define s-h (instantiate place 'sproul-hall))

;;; make some things and put them at places
(define bagel (instantiate thing 'bagel))
(ask Noahs 'appear bagel)

(define coffee (instantiate thing 'coffee))
(ask Intermezzo 'appear coffee)

;;; make some people
(define Brian (instantiate person 'Brian BH-Office))
(define hacker (instantiate person 'hacker Pimentel))

;;; connect places in the world
(can-go Soda 'up art-gallery)
(can-go art-gallery 'west BH-Office)
(can-go Soda 'south Pimentel)



Having constructed this world, we can now interact with it by sending messages
to objects. Here is a short example:


; We start with the hacker in Pimentel.

> (ask Pimentel 'exits)
(NORTH SOUTH)
> (ask hacker 'go 'north)
HACKER moved from PIMENTEL to SODA



We can put objects in the different places, and the people can then take the
objects:


> (define Jolt (instantiate thing 'Jolt))
JOLT
> (ask Soda 'appear Jolt)
APPEARED
> (ask hacker 'take Jolt)
HACKER took JOLT
TAKEN



You can take objects away from other people, but the management is not
responsible for the consequences... (Too bad this is a fantasy game, and there
aren't really vending machines in Soda that stock Jolt.)


Exercises for Both Partners

            Instructions


The first two exercises in this part should be done by both partners! You may work in pairs, as long as both partners fully understand the exercise and the concepts it covers. (There should still only be one solution that both partners agree on.) The remaining exercises will have numbers such as "A3", which translates to "Exercise 3 for Partner A".


The project is split into two major parts. After both partners have completed their exercises for part 1, combine your work and make sure that either partner understands the others' work. Since part 2 of the project depends on working code from part 1, combine your code for adv.scm and adv-world.scm carefully.


Question 1


Instantiate a new Person object to represent yourself. Put yourself in a new place called dormitory (or wherever you live) and connect it to campus so that it is a reachable place. Create a place called kirin, north of soda. (It's actually on Solano Avenue.) Put a thing called potstickers there. Then give the necessary commands to move your character to kirin, take the potstickers, then move yourself to where Brian is, put down the potstickers, and have Brian take them. Then go back to the lab and get back to work. (There is no truth to the rumor that you'll get an A in the course for doing this in real life!) All this is just to ensure that you know how to speak the language of the
adventure program.


List all messages that are sent during this episode. It's a good idea to see if you can work this out in your head, at least for some of the actions that take place, but you can also trace the ask procedure to get a complete list. You don't have to hand in this listing of messages. (You must turn in a transcript of the episode without the tracing.) The purpose of this exercise is to familiarize you with the ways in which the different objects send messages
back and forth as they do their work.


[Tip: we have provided a move-loop procedure that you may find useful as an
aid in debugging your work. You can use it to move a person repeatedly.]


Question 2


It is very important that you think about and understand the kinds of objects
involved in the adventure game. Please answer the following questions:


a) What kind of thing is the value of variable Brian? Hint: What is returned by STk in the following situation:


> Brian



b) List all the messages that a Place understands. (You might want to maintain such a list for your own use, for every type of object, to help in the debugging effort.)


c) We have been defining a variable to hold each object in our world. For example, we defined bagel by saying:


> (define bagel (instantiate thing 'bagel))



This is just for convenience. Every object does not have to have a top-level definition. Every object DOES have to be constructed and connected to the world. For instance, suppose we did this:


> (can-go Telegraph-Ave 'east (instantiate place 'Peoples-Park))

;;; assume Brian is at Telegraph
> (ask Brian 'go 'east)



What is returned by the following expressions and why?


> (ask Brian 'place)

> (let ((where (ask Brian 'place)))
       (ask where 'name))

> (ask Peoples-park 'appear bagel)



d) The implication of all this is that there can be multiple names for objects. One name is the value of the object's internal name variable. In addition, we can define a variable at the top-level to refer to an object. Moreover, one object can have a private name for another object. For example, Brian has a variable place which is currently bound to the object that represents People's Park. Some examples to think about:


> (eq? (ask Telegraph-Ave 'look-in 'east) (ask Brian 'place))

> (eq? (ask Brian 'place) 'Peoples-Park)

> (eq? (ask (ask Brian 'place) 'name) 'Peoples-Park)



Okay. Suppose we type the following into STk:


> (define computer (instantiate thing 'Durer))



Which of the following is correct? Why?


(ask 61a-lab 'appear computer)



or


(ask 61a-lab 'appear Durer)



or


(ask 61a-lab 'appear 'Durer)



What is returned by (computer 'name)? Why?


e) We have provided a definition of the Thing class that does not use the object-oriented programming syntax described in the handout. Translate it into the new notation.


f) Sometimes it's inconvenient to debug an object interactively because its methods return objects and we want to see the names of the objects. You can create auxiliary procedures for interactive use (as opposed to use inside object methods) that provide the desired information in printable form. For example:


(define (name obj) (ask obj 'name))
(define (inventory obj)
    (if (person? obj)
        (map name (ask obj 'possessions))
        (map name (ask obj 'things))))



Write a procedure whereis that takes a person as its argument and returns
the name of the place where that person is. Write a procedure owner that
takes a thing as its argument and returns the name of the person who owns it.
(Make sure it works for things that aren't owned by anyone.)


Procedures like this can be very helpful in debugging the later parts of the
project, so feel free to write more of them for your own use. Now it's time
for you to make your first modifications to the adventure game. This is where
you split the work individually.


Exercises for Partner A

            Question A3


You will notice that whenever a person goes to a new place, the place gets an
'enter message. In addition, the place the person previously inhabited gets
an 'exit message. When the place gets the message, it calls each procedure
on its list of entry-procedures or exit-procedures as appropriate. Places
have the following methods defined for manipulating these lists of procedures:
add-entry-procedure, add-exit-procedure, remove-entry-procedure, remove-exit-procedure, and clear-all-procs. You can read their definitions in the code.


Sproul Hall has a particularly obnoxious exit procedure attached to it. Fix
sproul-hall-exit so that it counts how many times it gets called, and stops
being obnoxious after the third time.


Remember that the exit-procs list contains procedures, not names of
procedures! It's not good enough to redefine sproul-hall-exit, since Sproul
Hall's list of exit procedures still contains the old procedure. The best
thing to do is just to load adv-world.scm again, which will define a new
Sproul Hall and add the new exit procedure.


Question A4: Part 1


We've provided people with the ability to say something using the messages
'talk and 'set-talk. As you may have noticed, some people around this
campus start talking whenever anyone walks by. We want to simulate this
behavior. In any such interaction there are two people involved: the one who
was already at the place (hereafter called the talker) and the one who is
just entering the place (the listener). We have already provided a mechanism
so that the listener sends an enter message to the place when entering.
Also, each person is ready to accept a notice message, meaning that the
person should notice that someone new has come. The talker should get a
notice message, and will then talk, because we've made a person's notice
method send itself a talk message. (Later we'll see that some special kinds
of people have different notice methods.)


Your job is to modify the enter method for places, so that in addition to
what that method already does, it sends a notice message to each person in
that place other than the person who is entering. The notice message
should have the newly-entered person as an argument. (You won't do anything
with that argument now, but you'll need it later.)


Add the following to adv-world.scm:


(define singer (instantiate person 'rick sproul-plaza))

(ask singer 'set-talk "My funny valentine, sweet comic valentine")

(define preacher (instantiate person 'preacher sproul-plaza))

(ask preacher 'set-talk "Praise the Lord")

(define street-person (instantiate person 'harry telegraph-ave))

(ask street-person 'set-talk "Brother, can you spare a buck")



Try walking around to sproul-plaza and telegraph-ave to see if the messages are triggered.


You must include a transcript in which your character walks around and triggers these messages.


Question A4: Part 2


So far the program assumes that anyone can go anywhere they want. In real
life, many places have locked doors.


Invent a may-enter? message for places that takes a person as an argument
and always returns #t. Then invent a locked-place class in which the may-
enter? method returns #t if the place is unlocked, or #f if it's locked. (It
should initially be locked.) The locked-place class must also have an
unlock message. For simplicity, write this method with no arguments and have
it always succeed. In a real game, we would also invent keys, and a mechanism
requiring that the person have the correct key in order to unlock the door.
(That's why may-enter? takes the person as an argument.)


Modify the person class so that it checks for permission to enter before
moving from one place to another. If a person cannot enter, return an error.
Then create a locked place and test it out.


Note: A locked-place should take one instantiation variable, its name.


(define warehouse (instantiate locked-place 'warehouse))



Question A5


Walking around is great, but some people commute from far away, so they need
to park their vehicles in garages. A vehicle is just a thing, but you'll
have to invent a special kind of place called a garage. Garages have two
methods (besides the ones all places have): park and unpark. You'll also
need a special kind of thing called a ticket; what's special about it is
that it has a number as an instantiation variable.


The park method takes a vehicle (a thing) as its argument. First check to
be sure that the vehicle is actually in the garage. (The person who possesses
the vehicle will enter the garage, then ask to park it, so the vehicle should
have entered the garage along with the person before the park message is
sent.) Then generate a ticket with a unique serial number. (The counter for
serial numbers should be shared among all garages, so that we don't get in
trouble later trying to unpark a vehicle from one garage that was parked in
a different garage.) Every ticket should have the name ticket.


You'll associate the ticket number with the vehicle in a key-value table like
the one that we used with get and put in Lesson 6. However, get and put
refer to a single, fixed table for all operations; in this situation we need a
separate table for every garage. The file tables.scm contains an
implementation of the table Abstract Data Type:


constructor: (make-table) returns a new, empty table.

mutator: (insert! key value table) adds a new key-value pair to a table.

selector: (lookup key table) returns the corresponding value, or #f if
                     the key is not in the table.



You'll learn how tables are implemented in SICP 3.3.3 (pp. 266-268). For now, just take them as primitive.


Make a table entry with the ticket number as the key, and the vehicle as the
value. Then ask the vehicle's owner to lose the vehicle and take the ticket.


The unpark method takes a ticket as argument. First make sure the object you
got is actually a ticket (by checking the name). Then look up the ticket
number in the garage's table. If you find a vehicle, ask the ticket's owner to
lose the ticket and take the vehicle. Also, insert #f in the table for that
ticket number, so that people can't unpark the vehicle twice.


A real-life garage would have a limited capacity, and would charge money for
parking, but to simplify the project you don't have to simulate those aspects
of garages.


Be sure not to name anything a "car"! This will mess up everything!


Notes:



	A ticket only has one instantiation variable, a serial number. (e.g., (instantiate ticket 120)).

	A ticket is a thing with the name 'ticket

	A garage takes one instantiation variable, its name. (e.g., (instantiate garage 'soda-garage)).

	Do NOT define a new class for vehicles. You can assume that park is called with the correct argument.

	Parking a vehicle that is not owned by anyone should return an error.

	Unparking a vehicle that is not parked should return an error.




Exercises for Partner B

            Question B3


Define a method take-all for people. If given that message, a person should
take all the things at the current location that are not already owned by
someone.


> (ask someperson 'take-all)



Question B4: Part 1


It's unrealistic that anyone can take anything from anyone. We want to give
our characters a strength, and then one person can take something from
another only if the first has greater strength than the second.


However, we aren't going to clutter up the person class by adding a local
strength variable. That's because we can anticipate wanting to add lots more
attributes as we develop the program further. People can have charisma or
wisdom; things can be food or not; places can be indoors or not.
Therefore, you will create a class called basic-object that keeps a local
variable called properties containing an attribute-value table like the one
that we used with get and put in Lesson 6. However, get and put
refer to a single, fixed table for all operations; in this situation we need a
separate table for every object. The file tables.scm contains an
implementation of the table Abstract Data Type:



	Constructor: (make-table) returns a new, empty table.

	Mutator: (insert! key value table) adds a new key-value pair to a table.

	Selector: (lookup key table) returns the corresponding value, or #f if the key is not in the table.




You'll learn how tables are implemented in SICP 3.3.3 (pp. 266-268). For now, just take them as primitive.


You'll modify the person, place and thing classes so that they will inherit from basic-object. This object will accept a message put so that the following call does the right thing:


    > (ask Brian 'put 'strength 100)



Also, the basic-object should treat any message not otherwise recognized as a request for the attribute of that name, so


    > (ask Brian 'strength)
    100



should work WITHOUT having to write an explicit strength method in the class
definition.


Don't forget that the property list mechanism returns #f if you ask for a property that isn't in the list. This means that the following call should never give an error message, even if we haven't put that property in that object:


    > (ask Brian 'charisma)



This is important for true-or-false properties, which will automatically be #f (but not an error) unless we explicitly put a #t value for them.


Give people some reasonable initial strength. (They should be the same for every newly instantiated person object.) Later, they'll be able to get stronger by eating.


Question B4: Part 2


You'll notice that the type predicate person? checks to see if the type of
the argument is a member of the list '(person police thief). This means that
the person? procedure has to keep a list of all the classes that inherit
from person, which is a pain if we make a new subclass.


We'll take advantage of the property list to implement a better system for
type checking. If we add a method named person? to the person class, and
have it always return #t, then any object that's a type of person will
automatically inherit this method. Objects that don't inherit from person
won't find a person? method and won't find an entry for person? in their
property table, so they'll return #f.


Similarly, places should have a place? method, and things a thing? method.


> (ask brian 'person?)
 #t



Add these type methods and change the implementation of the type predicate
procedures (at the very bottom of adv.scm) to this new implementation. Don't
forget to add the definition for place?.


The new type predicate should do the following:    


 > (person? brian)
 #t
 > (place? soda)
 #t
 > (thing? coffee)
 #t



Remember that person? should work for classes that inherit from person,
like thief and police (defined later). Similarly with place? and thing?


Question B5: Part 1


In the modern era, many places allow you to get connected to the net. Define a
hotspot as a kind of place that allows network connectivity. Each hotspot
should have a name and a password as instantiation variables that you must
know to connect.


> (define library (instantiate hotspot 'library 1234))   
;name of hotspot is library, password is 1234



(Note: We're envisioning a per-network password, not a per-person password as
you use with AirBears.) The hotspot has a connect method with two arguments,
a laptop (a kind of thing, to be invented in a moment) and a password. If
the password is correct, and the laptop is in the hotspot, add it to a list of
connected laptops otherwise, return an error. When the laptop leaves the
hotspot, remove it from the list.


> (ask library 'connect somelaptop 1234)



Hotspots also have a surf method with two arguments, a laptop and a text
string, such as


    "http://www.cs.berkeley.edu"



If the laptop is connected to the network, then the surf method should


    (system (string-append "lynx " url))



where URL is the text string argument (note the space after x in "lynx ").
Otherwise, return an error.


> (ask library 'surf somelaptop "http://www.cs.berkeley.edu")



Question B5: Part 2


Now invent the laptop class. A laptop has one instantiation variable, its
name.


> (define somelaptop (instantiate laptop 'somelaptop)



A laptop is a thing that has two extra methods: connect, with a password as
argument, sends a connect message to the place where the laptop is. If the
password is wrong, return an error.


> (ask somelaptop 'connect 1234)



A laptop also has another method, surf, with a URL text string as argument,
sends a surf message to the place where it is. Thus, whenever a laptop
enters a new hotspot, the user must ask to connect to that hotspot's
network; when the laptop leaves the hotspot, it must automatically be
disconnected from the network. (If it's in a place other than a hotspot, the
surf message won't be understood; if it's in a hotspot but not connected,
return an error).


> (ask somelaptop 'surf "www.berkeley.edu")



Combining Your Work for Part 1

            Combining Work


You've finished Part 1 of the Adventure Game! At this point, you should have finished Questions 1, 2, A3-A5, and B3-B5. Now is the time to combine these answers into one file. Make sure everything still works correctly after merging.


Testing


Make sure you make a transcript that shows us your project works! To be
complete, it should adequately test all of your modifications, for both
partners. If you can't get something to work, include it in the transcript as
well, as you may get partial credit for conscious errors.


What's Ahead


The second part of the project includes three exercises for each partner, but
you must read each other's code midway, because one partner's Questions
7 and 8 build on the other partner's Question 6. Finally, Question 9 requires
the two partners' work to be combined. You will have to create a version of
adv.scm that has both partners' changes. This may take some thinking! If
both parners modify the same method in the same object class, you'll have to
write a version of the method that incorporates both modifications.


More Exercises for Partner A

            adv.scm includes a definition of the class thief, a subclass of person. A
thief is a character who tries to steal food from other people. Of course,
Berkeley can not tolerate this behavior for long. Your job is to define a
police class; police objects catch thieves and send them directly to
jail. To do this you will need to understand how thiefs work.


Since a thief is a kind of person, whenever another person enters the
place where the thief is, the thief gets a notice message from the
place. When the thief notices a new person, he does one of two things,
depending on the state of his internal behavior variable. If this variable
is set to steal, the thief looks around to see if there is any food at the
place. If there is food, the thief takes the food from its current possessor
and sets his behavior to run. When the thief's behavior is run, he moves
to a new random place whenever he notices someone entering his current
location. The run behavior makes it hard to catch a thief.


Notice that a thief object delegates many messages to its person object.


Question A6: Part 1


To help the police do their work, you will need to create a place called
jail (i.e., a jail is an instantiation of place). Jail has no exits.
Moreover, you will need to create a method for persons and thieves called go-
directly-to. go-directly-to does not require that the new-place be adjacent to the current-place. So by calling (ask thief 'go-directly-to jail), the police can send the thief to jail no matter where the thief currently is located,
assuming the variable thief is bound to the thief being apprehended.


Question A6: Part 2


Thieves sometimes try to leave their place in a randomly chosen direction.
This, it turns out, won't work if there are no exits from that place -- for
example, the jail. Modify thethief class so that a thief won't try to
leave a place with no exits.


Combining Work


Before moving on, get your partner to explain Question B6 and its solution. Also, explain Question A6 and its solution to your partner.


Question A7: Part 1


We are now going to invent restaurant objects. People will interact with the
restaurants by buying food there. First we have to make it possible for people
to buy stuff. Give person objects a money property, which is a number,
saying how many dollars they have. Note that money is not an object. We
implement it as a number because, unlike the case of objects such as chairs
and potstickers, a person needs to be able to spend some money without
giving up all of it. In principle we could have objects like quarter and
dollar-bill, but this would make the change-making process complicated for
no good reason.


To make life simple, we'll have every person start out with $100. (We should
really start people with no money, and invent banks and jobs and so on, but we
won't.) Create two methods for people, get-money and pay-money, each of
which takes a number as argument and updates the person's money value
appropriately. Pay-money must return true or false depending on
whether the person had enough money.


> (ask brian 'money)
100
> (ask brian 'get-money 20) ;increases money
> (ask brian 'money)
120
> (ask brian 'pay-money 30) ;decreases money. Returns #t if has enough money  
#t  
> (ask brian 'money)
90



Question A7: Part 2


Another problem with the adventure game is that Noah's only has one bagel.
Once someone has taken that bagel, they're out of business. The same goes with
other restaurants.


To fix this, we're going to invent a new kind of place, called a restaurant. (That is, restaurant is a subclass of place.) Each restaurant serves
only one kind of food. (This is a simplification, of course, and it's easy to
see how we might extend the project to allow lists of kinds of food.) When a
restaurant is instantiated, it should have two extra arguments, besides the
ones that all places have: the class of food objects that this restaurant
sells, and the price of one item of this type:


   > (define-class (pasta) (parent (food ...)) ...)

   > (define somerestaurant (instantiate restaurant 'somerestaurant pasta 7))



Notice that the argument to the restaurant is a class, not a particular
bagel (instance). Here is an example of the Pasta food class. Your partner
should have defined some example of food classes as part of Question B6.


> (define pesto-pasta (instantiate pasta))
> (ask pesto-pasta 'calories)
150



Restaurants should have two methods. The menu method returns a list
containing the name and price of the food that the restaurant sells. The sell method takes two arguments, the person who wants to buy something and the name of the food that the person wants. The sell method must first check that the restaurant actually sells the right kind of food. If so, it should ask the buyer to pay-money in the appropriate amount. If that succeeds, the method should instantiate the food class and return the new food object. The method should return #f if the person can't buy the food.


Here are some examples:


> (ask somerestaurant 'menu)
(pasta 7)
> (ask somerestaurant 'sell someperson 'pasta) ;note that pasta is the name



Question A8


Now we need a buy method for people. It should take as argument the name
of the food we want to buy:


> (ask Brian 'buy 'bagel)



The method must send a sell message to the restaurant. If this succeeds
(that is, if the value returned from the sell method is an object rather
than #f), the new food should be added to the person's possessions. If the
person can't buy, return an error.


More Exercises for Partner B

            Question B6: Part 1


The way we're having people take food from restaurants is unrealistic in several ways. Our overall goal this week is to fix that. As a first step, you are going to create a food class. We will give things that are food two properties, an edible? property and a calories property. edible? will have the value #t if the object is a food. If a person eats some food, the food's calories are added to the person's strength.


(Remember that the edible? property will automatically be false for objects other than food, because of the way properties were implemented in Question B4. You don't have to go around telling all the other stuff not to be edible explicitly.)


Write a definition of the food class that uses thing as the parent class. It should return #t when you send it an edible? message, and it should correctly respond to a calories message.


Replace the procedure named edible? in the original adv.scm with a new version that takes advantage of the mechanism you've created, instead of relying on a built-in list of types of food.


> (define pesto-pasta (instantiate food 'pasta 150))
;name is pesto-pasta, calories is 150
> (ask pesto-pasta 'calories)
150
> (ask pesto-pasta 'edible?)
#t
> (edible? pesto-pasta)
#t



Question B6: Part 2


Now that you have the food class, invent some child classes for particular kinds of food. For example, make a pasta class that inherits from food. pasta should not have any instantiation variable. Give the pasta a class-variable called name whose value is the word pasta. (We'll need this later when we invent restaurant objects.)


Using your pasta class, it should now be possible to instantiate the pesto-pasta above as follows.


> (define pesto-pasta (instantiate pasta))
> (ask pesto-pasta 'calories)
150



Question B6: Part 3


Make an eat method for people. Your eat method should look at your possessions and filter for all the ones that are edible. It should then add the calories value of the foods to your strength. Then it should make the foods disappear (no longer be your possessions and no longer be at your location).


Combining Work


Before moving on, get your partner to explain Question A6 and its solution. Also, explain Question B6 and its solution to your partner.


Question B7


Your job is to define the police class. When the police notices a new person entering where he is, the police checks to see if that person is a thief. If the person is a thief the police says "Crime Does Not Pay," then takes away all the thief's possessions and sends the thief directly to jail.


Give thieves and police default strengths. Thieves should start out stronger than persons, but police should be stronger than thieves. Of course, if you eat lots you should be able to build up enough strength to take food away from a thief.


Please test your code and turn in a transcript that shows the thief stealing your food, you chasing the thief and the police catching the thief. In case you haven't noticed, we've put a thief in Sproul Plaza to help test your code.


> (define somepolice (instantiate police 'grammarpolice soda))



Question B8


Now we want to reorganize take so that it looks to see who previously possesses the desired object. If its possessor is'no-one, go ahead and take it as always. Otherwise, invoke:


> (ask thing 'may-take? receiver)



The may-take? method for a thing that belongs to someone should compare the strength of its owner with the strength of the requesting person to decide whether or not it can be taken. If the receiver has the same strength as the holder, the receiver may take the object. If the thing does not has a holder, the receiver may take the object.


The method should return #f if the person may not take the thing, or the thing itself if the person may take it. This is a little more complicated than necessary right now, but we are planning ahead for a situation in which, for example, an object might want to make a clone of itself for a person to take.


Note the flurry of message-passing going on here. We send a message to the
taker. It sends a message to the thing, which sends messages to two people to
find out their strengths.


Combining Your Work for Part 2

            Combining Work


You've finished Part 2 of the Adventure Game! At this point, you should have finished Questions 1, 2, A3-A8, and B3-B8. Combine your answers and make sure your code still works correctly.


Testing


Check that your transcript accurately reflects how your code works. Even if your answer is on, include a demonstration of that error into your transcript.


What's Ahead


There is one more required question and some optional extra questions for both partners to complete. Your code MUST be combined and functional for Question 9 to be doable.


Final Exercises for Both Partners

            Question 9


Make the necessary changes so that when a police asks to buy some food, the restaurant does not charge them any money. (This makes the game more realistic...?)


(Note that pay-money and get-money should behave the same way. Do not change their implementations.)


> (ask somepoliceman 'money)
100
> (ask somepoliceman 'buy 'pasta)
> (ask somepoliceman 'money)
100



Extra for Experts (Optional)


As you can imagine, this is a truly open-ended project. If you have the time and inclination, you can populate your world with new kinds of people (e.g., college students, children, fire-resistant dragon queens), places (Jacobs Hall, libraries, death match fighting pits), and especially things (telephones, books, dragon glass swords). Oh, the possibilities!


For your enjoyment, we have developed a procedure that creates a labyrinth (a maze) that you can explore. To do so, load the file ~cs61as/lib/labyrinth.scm. (Note: labyrinth.scm may need some modification to work with the procedures you developed in part two of the project.)


Legend has it that there is a vast series of rooms underneath Sproul Plaza. These rooms are littered with food of bygone days and quite a few theives. You can find the secret passage down in Sproul Plaza.


You may want to modify fancy-move-loop so that you can look around in nearby rooms before entering so that you can avoid thieves. You might also want your character to maintain a list of rooms visited on its property list so you can find your way back to the earth's surface.


Submitting Your Project

            Submission Files


The files that you will need to submit for this project are:



	adv.scm

	adv-world.scm

	transcript




These files should include solutions to Questions 1-9 for both partners. Make sure you have added comments to your code highlighting all of the changes you've made. Your answers to Question 2 can be in adv-world.scm or you transcript, as long as it is commented out properly.


Make sure you clearly indicate at the top of adv.scm which partner is
Partner A and which is Partner B.


Submitting Through the Terminal


ONLY ONE PARTNER SHOULD SUBMIT THE PROJECT. Navigate into your adventure directory and type the following into your terminal:


submit proj3



When you submit, it will prompt you for your partner's login. (If it prompts you to put another login, type . and press enter.)


To ensure submission went well, both partners should type


glookup -t



to check for the submission. This command gives you a list of all submitted assignments, as well as when they were submitted.


If you need to re-submit your project for any reason, have the same person as
before submit the file. If this is not possible, send your reader an email as
a heads-up clarifying the situation.


END OF PROJECT


Congrats, you're done! Go outside and ask Brian to buy you a bagel from Noah's and eat it at Sproul Hall. Wait, there's a life outside of adv.scm, right?


9 - Mutable Data and Vectors


Lesson 9 Intro

            Mutable Data and Vectors


Unit 2 dealt with compound data as a means for constructing computational objects that have several parts. We abstracted their constructors and selectors and saw how they can be formed by nesting pairs and lists. But, we learned from Lesson 7 that there is another aspect of data that Unit 2 did not address. We are now able to mutate data with set!, and there is a similar operation for pairs. We will explore mutators, operations that modify data objects.


Prerequisites


For this lab, make sure you understand all material from Unit 2, specifically manipulating lists and structure hierarchy. We are going to see how we can mutate the elements and structure of pairs.


Readings


Take a look at the following readings:



	SICP 3.3.1-3

	These notes are from old CS 61A lectures and cover mutation and vectors.




Mutable List Structure

            Mutating a Pair


In Unit 2, we used pairs as the foundation of the data structures that store
data. We have seen that we are now walking in a realm where it's possible to
mutate data. There will also be times when we want to mutate what is stored in
our data structures.


(define x (cons 1 2))


[image: ]


set-car!


Let the car of x represent the number of times I fall down the stairs and the cdr of x represent the number of times I went to the wrong bathroom. I fell down a flight of stairs just now, so I should update the car of x to 2. How can we achieve this without creating a new pair? Scheme allows us to set! the value of some item using the following function:


(set-car! x 2)



As the name suggests, set-car! takes in a pair and a value, and changes its car to point to the specified value of the second argument.


[image: ]


The general form is


(set-car! <pair> <value>)



set-cdr!


As you might expect, Scheme also provides us with the function set-cdr!, which takes in a pair and a value, and changes the pointer of the pair's cdr to point to the value. Going with the previous example, calling 


(set-cdr! x 3)



will change the pair as shown below.


[image: ]


The general syntax is


(set-cdr! <pair> <value>)



Changing Pointers


Let us see how set-car! and set-cdr! work with more complicated lists. We are given the following pairs:    


(define x (cons (list a b) (list c d)))
(define y (list e f))



[image: ]


The next few calls on set-car! and set-cdr! are independent and will be
based on this original configuration. For the next few questions, drawing the
box-pointer is highly recommended.


Example 1


The effect of calling


(set-car! x y)



to the original configuration will give the resulting box-and-pointer diagram:


[image: ]


The call changes the car-pointer on x, which initially points to (list a b), to wherever y is pointing: (list e f). What happens to the list with a and b? Nothing actually happens to it, but since it has no pointers that reference it, the list is no longer reachable.



Test Your Understanding


In Example 1 above, what does x print?.









Let's say we have the original configuration from Example 1, and now we decided to call the following expression:

(set-car! (car x) 'z)










What does y print?







Example 2


From the original configuration, we now call


(define z (cons y (cdr x)))



This gives us the following box-and-pointer diagram:


[image: ]



	x will print ((a b) c d)


	y will print (e f)


	z will print ((e f) c d)






Test Your Understanding


From the configuration shown in Example 2, we now decide to call

(set-cdr! (cdr z) nil)










What does x print now?







From the configuration shown in Example 2, what should we call so that z will return ((e f) b)?









Creating New Pairs


Using set-car! and set-cdr! modifies existing pairs. Procedures like
cons and list on the other hand, creates a new pair. What about append?
Does it 'merge' two lists by changing the cdr pointer of one of them?
Remember the definition of append we have been using:


(define (append x y)
  (if (null? x)
      y
      (cons (car x) (append (cdr x) y))))



append forms a new list by cons-ing elements of x and y. This tells us
that append returns a new list.


[image: ]



Test Your Understanding



What will the following piece of code print when entered into STk? Take an educated guess, then try it out in the interpreter.

    > (define a (list 1 2 3 4 5))
    a
    > (set-cdr! (cdr a) (cdddr a))
    okay
    > a




The procedure `append!` is similar to `append`, but it is a mutator rather than a constructor. It appends the lists by splicing them together, modifying the final pair of `x` so that its `cdr` is now `y`. (It is an error to call `append!` with an empty `x`.) For example,

(define (append! x y)
    (set-cdr! (last-pair x) y)
    x)










The `last-pair` procedure accepts a list and returns the last pair of the list:

 (define (last-pair x)
    (if (null? (cdr x))
        x
        (last-pair (cdr x))))










Now, let's take a look at this piece of code:

> (define x (list 'a 'b))
x      
> (define y (list 'c 'd))
y
> (define z (append x y))
z     
> z
(a b c d)










What does (cdr x) return? Try it out by yourself before putting it into STk.











Now, take the following call to append!

> (define w (append! x y))
w
> w
(a b c d)










What does (cdr x) return now?





Sharing and Identity


The previous exercises raises a big sign that knowing when a pair is shared and created is important. In the code above, x and y refer to the same pairs, while z makes a different pair with the same elements.
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(define x (cons 1 2))
(define y x)
(define z (cons 1 2))



Remember the equal? predicate? It can check if two pairs contain the same
elements.


(equal? x y), (equal? x z), (equal? y z) all return #t, because they all hold the same elements at the same place. Is it possible to differentiate that x and z point to different structures? Yes! Scheme has the eq? predicate which takes 2 arguments and checks if the 2 arguments refer to the same pair.


> (eq? x y)
#t
> (eq? x z)
#f
> (eq? y z)
#f



Takeaways


set-car! and set-cdr! change the respective car and cdr pointers. Procedures like cons, list, and append create new pairs. Knowing which pairs are shared between different lists is crucial to determining whether mutating one will influence the other. Drawing box-and-pointer diagrams will be very helpful.


Representing Queues

            Queue Data Structure


Using set-car! and set-cdr! allows us to create a data structure that we
could not have implemented efficiently before: a queue. A queue is a sequence in which items are inserted at one end (called the rear of the queue) and deleted from the other end (the front). Because items are always removed in the order in which they are inserted, a queue is sometimes called a FIFO (first in, first out).


[image: ]


Queue in Action


Assume we have the functions make-queue, which returns a new queue, insert-queue!, which adds a new element to a queue, and delete-queue!, which removes an element in a queue (we are going to implement them soon!). Lets examine the mechanisms of a queue.




    	Operation
    	Resulting Queue





    	(define q (make-queue))
    	



    	(insert-queue! q 'a)
    	a



    	(insert-queue! q 'b)
    	a b



    	(delete-queue! q)
    	b



    	(insert-queue! q 'c)
    	b c



    	(insert-queue! q 'd)
    	b c d



    	(delete-queue! q)
    	c d






In terms of data abstraction, we can regard a queue as defined by the
following set of operations:



	a constructor: (make-queue) returns an empty queue (a queue containing no items).

	two selectors:

	(empty-queue? <_queue_>) tests if the queue is empty.

	(front-queue <_queue_>) returns the object at the front of the queue, signaling an error if the queue is empty. It does not modify the queue.




	two mutators:

	(insert-queue! <_queue_> <_item_>) inserts the item at the rear of the queue and returns the modified queue as its value.

	(delete-queue! <_queue_>) removes the item at the front of the queue and returns the modified queue as its value, signaling an error if the queue is empty before the deletion.







Queues as Lists


Because a queue is a list of items, we can technically represent it with an ordinary list. The front of the queue will be the car of the list, inserting a new element will be equivalent to appending a new pair at the end. Deleting an item will just be the cdr. Why don't we go with this implementation? The problem is the run time. To add an item to the back of a list, we have to go through a series of cdrs. If the list is really long, it will take us a really long time to find the last pair. The run time for this is Θ(n), where n is the length of the list.


A list allows us access to the first item in constant time, but when you need to find the last pair, it takes a long time. We can solve this by storing and updating the pointer to the backmost pair.
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Looking at the queue above, we see that we store two pointers: one that points to the front of the list and one to the back. If we try to add a new item, 'd, to the queue, the structure will be changed into the following:


[image: ]


When we want to find the last pair of q, we can follow the (cdr q) pointer.


Implementation


To define the queue operations, we use the following procedures, which enable us to select and modify the front and rear pointers of a queue:


(define (front-ptr queue)
    (car queue))
(define (rear-ptr queue)
    (cdr queue))
(define (set-front-ptr! queue item)
    (set-car! queue item))
(define (set-rear-ptr! queue item)
    (set-cdr! queue item))



Now we can implement the actual queue operations. We will consider a queue to be empty if its front pointer is the empty list:


(define (empty-queue? queue)
    (null? (front-ptr queue)))



The make-queue constructor returns, as an initially empty queue, a pair whose car and cdr are both the empty list:


(define (make-queue)
    (cons '() '()))



To select the item at the front of the queue, we return the car of the pair indicated by the front pointer:


(define (front-queue queue)
    (if (empty-queue? queue)
        (error "FRONT called with an empty queue" queue)
        (car (front-ptr queue))))



Adding to a Queue


We will follow the general algorithm outlined before:



	cons a new pair containing the new item

	If the queue is empty, we set its front-ptr and rear-ptr to this new pair

	If the queue isn't empty, we find the final pair, change its cdr to the newly made pair and update the rear-ptr.


(define (insert-queue! queue item)
  (let ((new-pair (cons item '())))
    (cond ((empty-queue? queue)
           (set-front-ptr! queue new-pair)
           (set-rear-ptr! queue new-pair)
           queue)
          (else
           (set-cdr! (rear-ptr queue) new-pair)
           (set-rear-ptr! queue new-pair)
           queue)))) 





Deleting from a Queue


To delete from a queue, we can simply change the front-ptr to point to the
next pair.


(define (delete-queue! queue)
  (cond ((empty-queue? queue)
         (error "DELETE! called with an empty queue" queue))
        (else
         (set-front-ptr! queue (cdr (front-ptr queue)))
         queue)))



[image: ]


If starting from the queue above we decide to delete the first time, the change will only be where the front-ptr points to:


[image: ]


Takeaways


set-car! and set-cdr! allows us to implement a new data structure (the queue) much more efficiently than what cons, car, and cdr alone can build.


Representing Tables

            Intro


We have mentioned in Unit 2 that we can store data using a 2 dimensional table and, given 2 keys, can fetch the desired data. We can use mutable lists to represent this data structure by first building a 1 dimensional table and extending the idea.


Before We Start: assoc


Before we dive in to tables, we have to explore another Scheme compound procedure, assoc, which will play a huge role. assoc accepts a key and a list of pairs, and returns the first pair that has key as its car. If no such pairs exist, it returns #f. Look at the series of examples below to understand what assoc does.


> (assoc 1 '((1 2) (3 4)))
  (1 2)     ;returns the pair with car 1

> (assoc 'cupcake '((1 2) (3 4) (cupcake donut) (galaxy star)))
  (cupcake donut)    ;anything can be a key.

> (assoc 2 '((1 2) (3 4)))
  #f      ;No pair has 2 as its car, hence returns #f

> (assoc 'froyo '((cupcake donut eclair)
                  (froyo gingerbread honeycomb) 
                  (sandwich jellybean kitkat)))
  (froyo gingerbread honeycomb)    ;Pairs can be of any length



Here is the formal definition for assoc:


(define (assoc key records)
  (cond ((null? records) false)
        ((equal? key (caar records)) (car records))
        (else (assoc key (cdr records)))))



1-Dimensional Tables


In a 1D table, values are stored under a single key. A table will be designed
as a list of pairs. Each pairs' car hold the key for each value.
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In the above table, the breakdown between the keys and values can be seen
below.




    	Keys
    	Values





    	a
    	1



    	b
    	2



    	c
    	3






Why does our table point to a pair that doesn't contain any key-value pair? We
designed our table so that the first pair holds the symbol *table* which
signifies that the current list structure we're looking at is a table.


make-table


Here is the simple constructor for our table:


(define (make-table)
  (list '*table*))



lookup


To extract information from a table, we use the lookup selector, which takes
a key as argument and returns the associated value (or #f if there is no
value stored under that key). Here's our definition of lookup


(define (lookup key table)
  (let ((record (assoc key (cdr table))))
    (if record
        (cdr record)
        false)))  

> (lookup 'b table)  ;table refers to the table made above
2



insert!


To insert a key-value pair in a table, we follow this simple algorithm:



	If key is already in the list, just update the value 

	Otherwise, make a new key-value pair and attach it to the table


(define (insert! key value table)
  (let ((record (assoc key (cdr table))))
    (if record
        (set-cdr! record value)
        (set-cdr! table
                  (cons (cons key value) (cdr table)))))
  'ok)





2-Dimensional Tables


In a 2D table, each value is specified by two keys. We can construct
such a table as a 1 dimensional table in which each key identifies a subtable.
Say we have 2 tables: "math" and "letters" with the following key-value pairs.


math:
    + : 43
    - : 45
    * : 42

letters:
    a : 97
    b : 98



We can put them into one big table:
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lookup


To find a value in a 2D table, you will need 2 keys. The first key is used to
find the correct subtable. The second key is used to find the correct value in
that subtable.


(define (lookup key-1 key-2 table)
  (let ((subtable (assoc key-1 (cdr table))))
    (if subtable
        (let ((record (assoc key-2 (cdr subtable))))
          (if record
              (cdr record)
              #f))
        #f)))



insert


To insert into a 2D table, you also need 2 keys. The first key is used to try
and find the correct subtable. If a subtable with the first key doesn't exist,
make a new subtable. If the table exists, use the exact same algorithm we have
for the 1 dimensional insert!.


(define (insert! key-1 key-2 value table)
  (let ((subtable (assoc key-1 (cdr table))))
    (if subtable
        (let ((record (assoc key-2 (cdr subtable))))
          (if record
              (set-cdr! record value)
              (set-cdr! subtable
                        (cons (cons key-2 value)
                              (cdr subtable)))))
        (set-cdr! table
                  (cons (list key-1
                              (cons key-2 value))
                        (cdr table)))))
  'ok)



Local Tables


The lookup andinsert! operations defined above take the table as an argument. This enables us to use programs that access more than one table. Another way to deal with multiple tables is to have separate lookup and insert! procedures for each table. We can do this by representing a table procedurally, as an object that maintains an internal table as part of its local state. When sent an appropriate message, this "table object'' supplies the procedure with which to operate on the internal table. Here is a generator for two-dimensional tables represented in this fashion:


(define (make-table)
  (let ((local-table (list '*table*)))
    (define (lookup key-1 key-2)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (cdr record)
                  false))
            false)))
    (define (insert! key-1 key-2 value)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (set-cdr! record value)
                  (set-cdr! subtable
                            (cons (cons key-2 value)
                                  (cdr subtable)))))
            (set-cdr! local-table
                      (cons (list key-1
                                  (cons key-2 value))
                            (cdr local-table)))))
      'ok)    
    (define (dispatch m)
      (cond ((eq? m 'lookup-proc) lookup)
            ((eq? m 'insert-proc!) insert!)
            (else (error "Unknown operation -- TABLE" m))))
    dispatch))



get and put


In Unit 2's "Data Directed" subsection, we used a 2D table to store a value
under 2 keys using the procedures get and put.


(put <key-1> <key-2> <value>)
(get <key-1> <key-2>)



We can now define these procedures using our tables!


(define operation-table (make-table))
(define get (operation-table 'lookup-proc))
(define put (operation-table 'insert-proc!))



get takes as arguments two keys, and put takes as arguments two keys and a value. Both operations access the same local table, which is encapsulated within the object created by the call to make-table.


Vectors

            Vectors


So far, we've programmed mostly in pairs, which we've used to make linked lists. We used lists to represent sequences, an abstract data type. While lists are great, they have one big disadvantage - referring to the nth element of a list takes Θ(n) time because we have to call cdr n times.


We want a way to be able to refer to the nth element of a sequence while taking constant (Θ(1)) time. In Scheme, vectors provide a mechanism of doing this. If you've programmed in Java or other C-like languages, it's essentially the same idea as an array.


Unfortunately, vectors have a drawback. In a linked list (which is essentially the list structure you've been working with so far this semester),  adding to the end of a list can be done Θ(1) time, since all we have to do is cons to the end of a list. However, adding to a vector takes Θ(n) time, where n is the length of the vector.


How Vectors Work


How do vectors work? What is the black magic that allows you to reference elements in constant time? Well, it turns out that it's not, in fact, black magic.


When you create a vector, you must specify the size of the vector you would like. Creating a vector of size n sets aside a chunk of memory n size long. Since we know the address of the first "block" of memory, we can add k to that address to get the kth element of the vector. This is how we can access any element in constant time!


The downside is that in order to get all the elements in a single chunk of memory, we have to allocate the chunk all at once. This is why adding an element to a vector takes Θ(n) time -- we would have to allocate a new chuck of memory (i.e. create a new array) and copy all of the old elements over!


Vector Primitives


NOTE: Vectors index from 0.


By this we mean the first element is referred to as the 0th element. That means that in the vector  #(1 2 3 4), 1 is at the 0th index, 2 is at the 1st index, and so on.


Some of the vector primitives are analogous to the primitives for lists:




    	Vectors
    	Lists





    	(vector a b c d...)
    	(list a b c d...)



    	(vector-ref vec n)
    	(list-ref lst n)



    	(vector-length vec)
    	(length lst)






But what about cons and append? Since adding an element to a vector takes Θ(n) time, there are no primitives to add to the end of a vector. There are, however, different constructers.


As discussed before, one of the main weaknesses of vectors is that we have to declare how long the vector is going to be when we create it. Therefore, the way to create an empty vector of length len is (make-vector len). If you want all the elements to be initially set to a certain value, you can instead say (make-vector len val).


So far, we can either create a vector with empty elements or a vector with all the same elements. That's not very useful. So, how do we change the elements of a vector? We do it with mutation! Specifically, we use (vector-set! vec n value) in order to set the nth element of a vector to a certain value. This is similar to set-car! and set-cdr!


Note: There exist procedures list->vector and vector->list that convert between the two types. However, in the lesson and homework, you will not be using these procedures since the purpose of this lesson is to learn vectors.


Vector Programming


When you're programming with vectors, you're usually going to use iterative processes to loop through a vector. Here are a few examples of coding with vectors so that you can get your feet wet.


Here's the map function for lists:


(define (map fn lst) 
    (if (null? lst) 
        '() 
        (cons (fn (car lst)) 
              (map (cdr lst)))))



Now let's make the same function for vectors, called vector-map:


(define (vector-map fn v) 
    (define (loop newvec i) 
        (if (< i 0) 
            newvec 
           (begin (vector-set! newvec i (fn (vector-ref v i))) 
                  (loop newvec (- i 1))))) 
    (loop (make-vector (vector-length v))
          (- (vector-length v) 1)))



It's a lot more complicated than map for lists! For one, our vector-map has an extra index variable i that keeps track of where we are in the vector at all times. We also have to know the length of our vector, because that is how our function knows when to stop.


map for lists was done with recursion, while vector-map is done with iteration. At the beginning of the semester, we mentioned that recursion is usually considered more elegant than iteration. Hopefully you now see why.



Test Your Understanding



Write a function vector-addup that takes in a vector of numbers and returns the sum of all the numbers. Test it out in STk to check your answer.



Vectors vs. Lists


Here are some comparisons between the running times for list and vector procedures.




    	Operation
    	Lists
    	Vectors





    	Finding the nth element
    	(list-ref lst n)
Runs in Θ(n)
    	(vector-ref vec n)
Runs in Θ(1)



    	Adding an element
    	cons
Runs in Θ(1)
    	N/A
Runs in Θ(n)



    	Finding the length
    	(length lst)
Runs in Θ(n)
    	(vector-length vec)
Runs in Θ(1)






There's no one best way to represent sequences - vectors and lists are good for different things. If you're going to be adding and removing elements frequently from your sequence, it's best to use a list, since cons runs in constant time. On the other hand, if you're going to have a fixed number of elements but plan on changing a lot of them, vectors are better, since vector-ref runs in constant time.


Example: Shuffling


Suppose we have a deck of cards and we want to shuffle it. What would be the best sequence to represent this?


First, let's use a list and use mutation to shuffle the deck.


(define (list-shuffle! lst) 
    (if (null? lst) 
        '() 
        (let ((index (random (length lst)))) 
          (let ((pair ((repeated cdr index) lst)) 
                (temp (car lst))) 
            (set-car! lst (car pair)) 
            (set-car! pair temp) 
            (list-shuffle! (cdr lst)) 
            lst))))



This does what we want, but it's very slow - Θ(n2) time. In fact, any list-based solution would take Θ(n2) time, because it takes Θ(n) time to find a random element, and we have to do that n times.


Let's try the same thing, but use a vector instead of a list.


(define (vector-shuffle! vec) 
    (define (loop n) 
        (if (= n 0) 
            vec 
            (let ((index (random n)) 
                  (temp (vector-ref vec (- n 1))))  
              (vector-set! vec (- n 1) (vector-ref vec index)) 
              (vector-set! vec index temp) 
              (loop (- n 1)) 
    (loop (vector-length vec)))



This is essentially the same algorithm, but performed on a vector instead of a list. However, this takes Θ(n) time because it performs n constant time operations, since vector-ref is in constant time.


Quiz Tips


Working with vectors might feel different at first, especially with all of the new functions. We highly suggest to write notes in your cheat sheet on various function primitives we used (e.g. make-vect, vector-ref, etc.) as well as helper procedures you are going to define in the homework exercises (e.g. vector-append) and these notes (e.g., vector-map).


Homework 9

            Template


Type the following command at the terminal to copy the template file to the current directory (note the period at the end):


cp ~cs61as/autograder/templates/hw9.scm .



Or you can download the template here.


Exercise 1


Suppose that the following definitions have been provided.


(define x (cons 1 3))
(define y 2)



A CS 61AS student, intending to change the value of x to a pair with car
equal to 1 and cdr equal to 2, types the expression (set! (cdr x) y)
instead of (set-cdr! x y) and gets an error. Explain why.


Exercise 2


a) Provide the arguments for the two set-cdr! operations in the blanks below to produce the indicated effect on list1 and list2. Do not create any new pairs; just rearrange the pointers to the existing ones.


> (define list1 (list (list 'a) 'b))
list1 

> (define list2 (list (list 'x) 'y))
list2 

> (set-cdr! ________ ________)
okay 

> (set-cdr! ________ ________)
okay 

> list1
((a x b) b) 

> list2
((x b) y)



b) After filling in the blanks in the code above and producing the specified
effect on list1 and list2, draw a box-and-pointer diagram that explains
the effect of evaluating the expression (set-car! (cdr list1) (cadr list2)).


Exercise 3


Complete exercises 3.13 and 3.14 in Abelson & Sussman.


Exercise 4


Complete exercises 3.16, 3.17, 3.21, 3.25, and 3.27 in Abelson & Sussman.


Note: You do not need to draw the environment diagram for exercise 3.27; use the trace procedure to provide the requested explanations. Treat the table procedures lookup and insert! as primitive; i.e. don't trace the procedures they call. Also, assume that those procedures work in constant time. We're interested to know about the number of times memo-fib is invoked.


Exercise 5


Write vector-append, which takes two vectors as arguments and returns a new vector containing the elements of both arguments, analogous to append for lists.


Don't use a list as an intermediate value. (That is, don't convert the vectors to lists at any time!)


Exercise 6


Write vector-filter, which takes a predicate function and a vector as arguments, and returns a new vector containing only those elements of the argument vector for which the predicate returns true. The new vector should be exactly big enough for the chosen elements. Compare the running time of your program to this version:


(define (vector-filter pred vec)
    (list->vector (filter pred (vector->list vec))))



Don't use a list as an intermediate value. (That is, don't convert the vectors to lists at any time!)


Exercise 7


Sorting a vector:


a) Write bubble-sort!, which takes a vector of numbers and rearranges them to be in increasing order. (You'll modify the argument vector; do not create a new one.) Use the following algorithm for your definition:
  1. Go through the array, looking at two adjacent elements at a time, starting with elements 0 and If the earlier element is larger than the later element, swap them. Then look at the next overlapping pair (0 and 1, then 1 and 2, etc.).
  2. Recursively bubble-sort all but the last element (which is now the largest element).
  3. Stop when you have only one element to sort.


b) Prove that this algorithm really does sort the vector. Hint: Prove the parenthetical claim in step 2.


c) What is the order of growth of the running time of this algorithm?


Don't use a list as an intermediate value. (That is, don't convert the vectors to lists at any time!)


Extra for Experts: Exercise 8


Do this if you want to. This is NOT for credit.


Abelson & Sussman, exercises 3.19 and 3.23. 


Exercise 3.19 is especially challenging, so props to you if you solve it. You'll need to look at some of the other exercises you may have skipped in this section. Exercise 3.23 is slightly easier, but be careful about the Θ(1) running time requirement.


Extra for Experts: Exercise 9


Do this if you want to. This is NOT for credit.


Write the procedure cxr-name. Its argument will be a function made by composing cars and cdrs. It should return the appropriate name for that function:


> (cxr-name (lambda (x) (cadr (cddar (cadar x)))))
CADDDAADAR



Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


10 - Streams


Lesson 10 Intro

            Prerequisites and What to Expect


Before proceeding, you should understand how to manipulate lists.
Consider reviewing key procedures like map and filter.


In this section, we'll learn about streams and some of their applications.


Readings


This lesson is based on SICP 3.5.


Introduction to Streams


We've gained a good understanding of assignment as a tool in modeling, as well
as an appreciation of the complex problems that assignment raises. It is time
to ask whether we could have gone about things in a different way, so as to
avoid some of these problems. In this section, we explore an alternative
approach to modeling state, based on data structures called streams. As we
shall see, streams can mitigate some of the complexity of modeling state.


Let's step back and review where this complexity comes from. In an attempt to
model real-world phenomena, we made some apparently reasonable decisions: We
modeled real-world objects with local state by computational objects with
local variables. We identified time variation in the real world with time
variation in the computer. We implemented the time variation of the states of
the model objects in the computer with assignments to the local variables of
the model objects.


Is there another approach? Can we avoid identifying time in the computer with
time in the modeled world? Must we make the model change with time in order to
model phenomena in a changing world? Think about the issue in terms of
mathematical functions. We can describe the time-varying behavior of a
quantity x as a function of time x(t). If we concentrate on x instant by
instant, we think of it as a changing quantity. Yet if we concentrate on the
entire time history of values, we do not emphasize change-the function itself
does not change.


If time is measured in discrete steps, then we can model a time function as a
(possibly infinite) sequence. In this section, we will see how to model change
in terms of sequences that represent the time histories of the systems being
modeled. To accomplish this, we introduce new data structures called streams.
From an abstract point of view, a stream is simply a sequence. However, we
will find that the straightforward implementation of streams as lists (as in
section 2.2.1) doesn't fully reveal the power of stream processing. As an
alternative, we introduce the technique of delayed evaluation, which enables
us to represent very large (even infinite) sequences as streams.


Stream processing lets us model systems that have state without ever using
assignment or mutable data. This has important implications, both theoretical
and practical, because we can build models that avoid the drawbacks inherent
in introducing assignment. On the other hand, the stream framework raises
difficulties of its own, and the question of which modeling technique leads to
more modular and more easily maintained systems remains open.


List Inefficiency


Since Lesson 4, we've been using lists to represent sequences.
But there are downsides to list representations. Manipulating these list
sequences require that our programs construct and copy data structures (which
could be huge) at every step of the process.


Let's see this in action. This procedure is written in the iterative style we
know and love:


(define (sum-primes a b)
  (define (iter count accum)
    (cond ((> count b) accum)
          ((prime? count) (iter (+ count 1) (+ count accum)))
          (else (iter (+ count 1) accum))))
  (iter a 0))



This second procedure makes use of accumulate,
filter, and enumerate-interval.


(define (sum-primes a b)
  (accumulate +
              0
              (filter prime? (enumerate-interval a b))))



In carrying out the computation, the first program needs only to store the sum
being accumulated. In contrast, the filter in the second program cannot do any testing until
enumerate-interval has constructed a complete list of the numbers in the
interval. The filter generates another list, which in turn is passed to
accumulate before being collapsed to form a sum.


Such large intermediate storage is not needed by the first program, which we
can think of as enumerating the interval incrementally, adding each prime to
the sum as it is generated.


Here's another example of list inefficiency:


(car (cdr (filter prime?
                  (enumerate-interval 10000 1000000))))



This code generates a huge list of integers
and a huge list of primes, even though we only want the second prime number!


Why Streams?


With streams, we can manipulate sequences
without incurring the costs of manipulating sequences as lists. With streams
we can achieve the best of both worlds: We can formulate programs elegantly as
sequence manipulations, while attaining the efficiency of incremental
computation. The basic idea is to construct a stream only partially, and to
pass the partial construction to the program that consumes the stream. If the
consumer attempts to access a part of the stream that has not yet been
constructed, the stream will automatically construct just enough more of
itself to produce the required part, thus preserving the illusion that the
entire stream exists. In other words, although we will write programs as if we
were processing complete sequences, we design our stream implementation to
automatically and transparently interleave the construction of the stream with
its use.


Streams Are Delayed Lists

            Stream Constructor and Selectors


On the surface, streams are just lists with different names for the procedures
that manipulate them. They have a constructor cons-stream , and two
selectors, stream-car and stream-cdr, which satisfies these constraints:



	(stream-car (cons-stream x y)) returns x

	(stream-cdr (cons-stream x y)) returns y




In order to construct the stream as we use it, we will arrange for the cdr of
a stream to be evaluated when it is accessed by the stream-cdr procedure
rather than when the stream is constructed.


As a data abstraction, streams are the same as lists. The difference is the
time at which the elements are evaluated. With ordinary lists, both the car
and the cdr are evaluated at construction time. With streams, the cdr isn't
evaluated until selection time.


Our implementation of streams will be based on a special form called delay.
Evaluating (delay [exp]) does not evaluate the expression [exp], but rather
returns a so-called delayed object, which we can think of as a "promise" to
evaluate [exp] at some future time. As a companion to delay, there is a
procedure called force that takes a delayed object as argument and performs
the evaluation -- in effect, forcing the delay to fulfill its promise. We will
see below how delay and force can be implemented, but first let us use
these to construct streams.


cons-stream is a special form such that (cons-stream [a] [b]) is equivalent to (cons [a] (delay [b])).


This means that we will construct using pairs of cars and delayed cdrs.
These will be our stream-car and stream-cdr procedures:


(define (stream-car stream) (car stream))

(define (stream-cdr stream) (force (cdr stream)))



Note that cons-stream is a special form. If it weren't, calling (cons-stream a b) would evaluate b, meaning b wouldn't be delayed.


the-empty-stream


There is a distinguishable object, the-empty-stream, which cannot be the
result of any cons-stream operation, and which can be identified with the
predicate stream-null?.


Stream Analogs of List Procedures


We can make and use streams, in just the same
way as we can make and use lists, to represent aggregate data arranged in a
sequence. In particular, we can build stream analogs of list-ref, map,
for-each, and so on.


stream-ref


(define (stream-ref s n)
  (if (= n 0)
      (stream-car s)
      (stream-ref (stream-cdr s) (- n 1))))



If we define x as


(define x (cons-stream 0 (cons-stream 1 (cons-stream 2 the-empty-stream))))



then (stream-ref x 0) returns 0 and  (stream-ref x 2) returns 2.
(Note that n starts counting from 0)


stream-map


(define (stream-map proc s)
  (if (stream-null? s)
      the-empty-stream
      (cons-stream (proc (stream-car s))
                   (stream-map proc (stream-cdr s)))))



If x is the same as above, then (stream-map square x) returns a stream with
(0 1 4)


stream-for-each


(define (stream-for-each proc s)
  (if (stream-null? s)
      'done
      (begin (proc (stream-car s))
             (stream-for-each proc (stream-cdr s)))))



stream-for-each is useful for viewing streams. The
following may be helpful for checking what's going on:


(define (display-stream s)
  (stream-for-each display-line s))

(define (display-line x)
  (newline)
  (display x))



Computation Using Streams


Let's take another look at the second prime computation we saw earlier,
reformulated in terms of streams:


(stream-car
 (stream-cdr
  (stream-filter prime?
                 (stream-enumerate-interval 10000 1000000))))



So we begin by calling stream-enumerate-interval with the arguments 10,000
and 1,000,000. This creates a stream of the numbers from 10,000 to 1,000,000.


(define (stream-enumerate-interval low high)
  (if (> low high)
      the-empty-stream
      (cons-stream
       low
       (stream-enumerate-interval (+ low 1) high))))



The result returned is (cons 10000 (delay (stream-enumerate-interval 10001
1000000))) This is a stream represented as a pair whose car is 10,000 and
whose cdr is a promise to enumerate more of the interval if it becomes
necessary. Now we filter it using stream-filter


(define (stream-filter pred stream)
  (cond ((stream-null? stream) the-empty-stream)
        ((pred (stream-car stream))
         (cons-stream (stream-car stream)
                      (stream-filter pred
                                     (stream-cdr stream))))
        (else (stream-filter pred (stream-cdr stream)))))



stream-filter tests the stream-car of the stream (the car of the pair,
which is 10,000). Since this is not prime, stream-filter examines the
stream-cdr of its input stream. The call to stream-cdr forces evaluation
of the delayed stream-enumerate-interval, which now returns


(cons 10001
      (delay (stream-enumerate-interval 10002 1000000)))



stream-filter now looks at the stream-car of this stream, 10,001, sees
that this is not prime either, forces another stream-cdr, and so on, until
stream-enumerate-interval yields the prime 10,007, whereupon stream-
filter, according to its definition, returns


(cons-stream (stream-car stream)
             (stream-filter pred (stream-cdr stream)))



which is


(cons 10007
      (delay
        (stream-filter
         prime?
         (cons 10008
               (delay
                 (stream-enumerate-interval 10009
                                            1000000))))))



This result is now passed to stream-cdr in our original expression. This
forces the delayed stream-filter, which in turn keeps forcing the delayed
stream-enumerate-interval until it finds the next prime, which is 10,009.
Finally, the result passed to stream-car in our original expression is


(cons 10009
      (delay
        (stream-filter
         prime?
         (cons 10010
               (delay
                 (stream-enumerate-interval 10011
                                            1000000))))))



Stream-car returns 10,009, and the computation is complete. Only as many
integers were tested for primality as were necessary to find the second prime,
and the interval was enumerated only as far as was necessary to feed the prime
filter.


Implementing delay and force


Although delay and force may seem like mysterious operations, their
implementation is really quite straightforward. delay must package an
expression so that it can be evaluated later on demand, and we can accomplish
this simply by treating the expression as the body of a procedure. delay can
be a special form such that


 (delay [exp])



is syntactic sugar for


 (lambda () [exp])



force simply calls the procedure (of no arguments) produced by delay, so
we can implement force as a procedure:


 (define (force delayed-object)
  (delayed-object))



Again, note the importance of delay being a special form. If it is not, then when we call (delay b), b will be evaluated before we evaluate the body.


This implementation suffices for delay and force to work as advertised,
but there is an important optimization that we can include. In many
applications, we end up forcing the same delayed object many times. This can
lead to serious inefficiency in recursive programs involving streams. The
solution is to build delayed objects so that the first time they are forced,
they store the value that is computed. Subsequent forcings will simply return
the stored value without repeating the computation. In other words, we
implement delay as a special-purpose memoized procedure. One way to
accomplish this is to use the following procedure, which takes as argument a
procedure (of no arguments) and returns a memoized version of the procedure.
The first time the memoized procedure is run, it saves the computed result. On
subsequent evaluations, it simply returns the result.


(define (memo-proc proc)
  (let ((already-run? false) (result false))
    (lambda ()
      (if (not already-run?)
          (begin (set! result (proc))
                 (set! already-run? true)
                 result)
          result))))



Delay is then defined so that (delay [exp]) is equivalent to


(memo-proc (lambda () [exp]))



and force is unchanged


Takeaways


In this section, you learned:



	What a stream is

	Some useful applications of streams

	How to implement delay and force




What's Next?


Let's go to the next subsection and learn about infinite lists!


Infinite Streams

            Introduction


We have seen how to support the illusion of manipulating a stream as a complete sequence, when in actuality we only compute as much of the stream as we need. We can exploit this technique to represent sequences efficiently as streams, even if the sequences are very long. But more importantly, we can use streams to represent sequences that are infinitely long. For instance, suppose we define the following:


(define (integers-starting-from n)
  (cons-stream n (integers-starting-from (+ n 1))))

(define integers (integers-starting-from 1))



Then integers represents the stream of all positive integers.
More specifically, the stream-car of integers is 1
and the stream-cdr of integers is a promise equivalent to
(integers-starting-from 2).


Using integers, we can define other infinite streams, such as the stream of
integers that are not divisible by 7:


(define (divisible? x y)
  (= (remainder x y) 0))
(define no-sevens
  (stream-filter (lambda (x) (not (divisible? x 7)))
                 integers))



We can then find integers not divisible by 7 simply by accessing elements of
this stream:


-> (stream-ref no-sevens 100)
117







Stream Procedures


The way we've been defining streams up until now is very similar to the way we
define lists. Now we're going to take a more "streamy" approach.


We can take advantage of delayed evaluation to implicitly define streams. For
example, we can define an infinite stream of all ones like this:


(define ones (cons-stream 1 ones))



This works much like the definition of a recursive procedure: ones is a pair
whose car is 1 and whose cdr is a promise to evaluate ones. Evaluating
the cdr gives us again a 1 and a promise to evaluate ones, and so on.


We can also define a stream procedure add-streams, which produces the
elementwise sum of two streams:


(define (add-streams s1 s2)
  (stream-map + s1 s2)



For example, (add-streams ones ones) would produce a stream of all twos.


We can redefine then define integers implicitly:


(define integers (cons-stream 1 (add-streams ones integers)))



This defines integers to be a stream whose stream-car is 1 and 
whose stream-cdr is the sum of ones and integers.
Thus, the second element of integers is
1 plus the first element of integers, or 2; the third element of integers is 1
plus the second element of integers, or 3; and so on. This definition works
because, at any point, enough of the integers stream has been generated so
that we can feed it back into the definition to produce the next integer.


Note on stream-map


Note that in the example above, we called stream-map with two streams.
Previously, we used stream-map with just one stream:


-> (define x (cons-stream 1 (cons-stream 2 (cons-stram 3 the-empty-stream))))
-> (stream-map square x)
(1 #[stream with car 4])



You can use stream-map with any number of streams, given that the procedure
you give has the corresponding number of arguments:


-> (stream-map + x x)
(2 #[stream with car 4])



Naturally, the actual definition of stream-map is slightly different, but don't
worry about it for now.


We can also define the Fibonacci sequence in the same style:


(define fibs
  (cons-stream 0
               (cons-stream 1
                            (add-streams (stream-cdr fibs) fibs))))



This definition says that fibs is a stream beginning with 0 and 1, such that
the rest of the stream can be generated by adding fibs to itself shifted by
one place.


Another stream operation that we can use is scale-stream. It takes in two
arguments—a stream of integers and an integer—and multiplies all elements in
the stream by the integer:


(define (scale-stream strm factor)
  (stream-map (lambda (x) (* x factor)) strm))



We can now define a stream of all the powers of 2 like so:


(define doubles (cons-stream 1 (scale-stream doubles 2)))



We can define the infinite stream of primes in a different, implicit way now:


(define primes
  (cons-stream 2
               (stream-filter prime?
                              (integers-starting-from 3))))



This might seem fairly straightforward—we start with the first prime, 2, and
we then cons-stream the rest of the integers that are prime to it. However,
the way that prime? is defined makes this problem a little more subtle.


We check if a number is prime by seeing whether it is divisible by any prime
(not just any integer!) less than √(n):


(define (prime? n)
  (define (iter ps)
    (cond ((> (square (stream-car ps)) n) #t)
          ((divisible? n (stream-car ps)) #f)
          (else (iter (stream-cdr ps)))))
  (iter primes))



This is a recursive definition (much like you saw in trees!) since primes is
defined in terms of the prime? predicate, which itself uses the primes
stream. The reason this procedure works is that, at any point, enough of the
primes stream has been generated to test the primality of the numbers we
need to check next. That is, for every n we test for primality, either n
is not prime (in which case there is a prime already generated that divides
it) or n is prime (in which case there is a prime already generated -- i.e.,
a prime less than n -- that is greater than √(n))


Takeaways


In this section, you learned:



	What infinite streams are!

	Some cool stuff we can make with them




Example - Iteration Using Streams

            Back in Unit 1, we wrote a procedure for approximating the square root
of a given number—let's call it x. The idea was to generate a sequence of better
and better guesses for the square root of x by applying over and over again
the procedure that improves guesses:


(define (sqrt-improve guess x)
  (average guess (/ x guess)))



We can create an infinite stream of guesses, starting with an initial guess of
1:


(define (sqrt-stream x)
  (define guesses 
    (cons-stream 1.0 (stream-map (lambda (guess) 
                                   (sqrt-improve guess x)) 
                                 guesses)))
  guesses)



The first few elements of (sqrt-stream 2) would be:


1
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899



Each successive element of the stream gets closer and closer to the square
root of 2.


Similarly, we used the following formula to approximate pi:


[image: ]


Now, let's calculate pi with an infinite stream:


(define (pi-summands n)
  (cons-stream (/ 1.0 n)
               (stream-map - (pi-summands (+ n 2)))))

(define pi-stream
  (scale-stream (partial-sums (pi-summands 1)) 4))



The first few elements look like this:


4.
2.666666666666667
3.466666666666667
2.8952380952380956
3.3396825396825403
2.9760461760461765
3.2837384837384844
3.017071817071818



As you can tell, the numbers are converging on pi—after looking at the first
eight elements, we know pi is somewhere between 3.28 and 3.02.


Example - Interleaving Streams

            Appending Streams




Suppose you have two streams and you want to merge one with the other, akin to
append with lists. With append, we join the beginning of one list
to the end of another. An equivalent stream definition would look like this:


(define (stream-append s1 s2)
  (if (stream-null? s1)
      s2
      (cons-stream (stream-car s1) 
                   (stream-append (stream-cdr s1) s2))))



But wait! Streams can be of infinite length! If we call (stream-append s1 s2)
and s1 is an infinite stream, we'll never be able to access any of the elements of
s2.


Interleaving Streams


An alternative is to interleave the two streams:


(define ones (cons-stream 1 ones)) ; (1 1 1 1 ...)
(define twos (cons-stream 2 twos)) ; (2 2 2 2 ...)

(define one-two (interleave ones twos)) ; (1 2 1 2 ...)



By interleaving the two streams, we can be certain that we will use elements
from both streams. We can define interleave like this:


(define (interleave s1 s2) 
  (if (stream-null? s1)
      s2
      (cons-stream (stream-car s1)
                   (interleave s2 (stream-cdr s1)))))



Example - Infinite Streams of Pairs

            Suppose we want to produce an infinite stream containing pairs of integers 
[mathjaxinline] (i, j) [/mathjaxinline] where [mathjaxinline]i \leq j[/mathjaxinline]
and [mathjaxinline]i + j[/mathjaxinline] is prime. If int-pairs is the stream of pairs of all
integers, our stream is:


(stream-filter (lambda (pair)
                 (prime? (+ (car pair) (cadr pair))))
               int-pairs)



Now all we have to do is define int-pairs. How do we do that? Let's start by
supposing that we have two streams, [mathjaxinline]S[/mathjaxinline] and [mathjaxinline]T[/mathjaxinline],
which are both equivalent to integers. Now let's
imagine the array (or matrix, if you want to think of it that way) of pairs of
[mathjaxinline]S[/mathjaxinline] and [mathjaxinline]T[/mathjaxinline]:


[image: ]


The stream of pairs of integers is everything above the diagonal:


[image: ]


Let's call the general stream of pairs (pairs s t), and consider it to be composed
of three parts: the pair [mathjaxinline] (S_0, T_0) [/mathjaxinline], the rest of the pairs in the first row, and
the remaining pairs.


[image: ]


The third piece in this decomposition (pairs that are not in the first row) is
(recursively) the pairs formed from (stream-cdr s) and (stream-cdr t).
Also note that the second piece (the rest of the first row) is:


(stream-map (lambda (x) (list (stream-car s) x))
            (stream-cdr t))1



Then our stream of pairs is:


(define (pairs s t)
  (cons-stream (list (stream-car s) (stream-car t))
               (combine (stream-map (lambda (x) (list (stream-car s) x))
                                                  (stream-cdr t))
                                      (pairs (stream-cdr s) (stream-cdr t)))))



Now we just need to put the streams together using some sort of combine function.
We know that appending doesn't work—let's use interleave instead! Our stream of pairs becomes:


(define (pairs s t)
  (cons-stream (list (stream-car s) (stream-car t))
               (interleave (stream-map (lambda (x) (list (stream-car s) x))
                                       (stream-cdr t))
               (pairs (stream-cdr s) (stream-cdr t)))))



Homework 10

            Template


You can copy the template for this homework by typing in your terminal:


cp ~cs61as/autograder/templates/hw10.scm .



You can also download it by clicking
here.


Exercise 1


Read SICP 3.5.1,
then answer the following:



	What is the type of the value of (delay (+ 1 27))?

	What is the type of the value of (force (delay (+ 1 27)))?




Exercise 2


Evaluating this expression produces an error:


(stream-cdr (stream-cdr (cons-stream 1 '(2 3))))



Explain why.


Exercise 3


Consider the following:


(define (enumerate-interval low high) 
  (if (> low high) 
      '() 
      (cons low (enumerate-interval (+ low 1) high)) ) )

(define (stream-enumerate-interval low high) 
  (if (> low high) 
      the-empty-stream 
      (cons-stream low (stream-enumerate-interval (+ low 1) high)) ) )



What's the difference between the following two expressions?


(delay (enumerate-interval 1 3))
(stream-enumerate-interval 1 3)



Exercise 4


An unsolved problem in number theory concerns the following algorithm for
creating a sequence of positive integers [mathjaxinline]s_1, s_2, \ldots[/mathjaxinline]
where [mathjaxinline]s_1[/mathjaxinline] is some positive integer and,
for all [mathjaxinline]n > 1[/mathjaxinline],



	if [mathjaxinline]s_n[/mathjaxinline] is odd, then [mathjaxinline]s_{n+1} = 3s_n+1[/mathjaxinline];

	if [mathjaxinline]s_n[/mathjaxinline] is even, then [mathjaxinline]s_{n+1} = s_n \div 2[/mathjaxinline].




No matter what starting value [mathjaxinline]s_1[/mathjaxinline] is chosen, the sequence (called a hailstone sequence)
always seems to end with
the repeating values 1, 4, 2, 1, 4, 2, 1, .... However, it is not known if this is always
the case.



	Write a procedure num-seq that, given a positive integer n as argument,
returns the hailstone sequence for n. For
example, (num-seq 7) should return the stream representing the sequence 7,
22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...


	Write a procedure seq-length that, given a stream produced by num-seq,
returns the number of values that occur in the sequence up to and including
the first 1. For example, (seq-length (num-seq 7)) should return 17. You
should assume that there is a 1 somewhere in the sequence.





Exercise 5


It's that time of the homework—SICP!


Complete the following: 3.50, 3.51,
3.52, 3.53, 3.54, 3.55,
3.56, 3.64, 3.66,
3.68.


Exercise 6


Write and test two functions to manipulate nonnegative proper fractions.


The
first function, fract-stream, will take as its argument a list of two
nonnegative integers, the numerator and the denominator, in which the
numerator is less than the denominator. It will return an infinite stream of
decimal digits representing the decimal expansion of the fraction.


The second
function, approximation, will take two arguments: a fraction stream and a
nonnegative integer numdigits. It will return a list (not a stream) containing
the first numdigits digits of the decimal expansion.


Some guidelines:



	(fract-stream '(1 7)) should return the stream representing the decimal

	expansion of 1/7, which is 0.142857142857142857...

	(stream-car (fract-stream '(1 7))) should return 1.

	(stream-car (stream-cdr (stream-cdr (fract-stream '(1 7))))) should return

	2.

	(approximation (fract-stream '(1 7)) 4) should return (1 4 2 8).

	(approximation (fract-stream '(1 2)) 4) should return (5 0 0 0).




Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!




Unit 4


11 - Metacircular Evaluator


Lesson 11 Intro

            Metacircular Evaluator


Do you remember Racket-1/Scheme-1 in Lesson 6? Now it's time to explore how Racket and Scheme
evaluate expressions!


You can download the code for this lesson by typing the following into your terminal:


    cp ~cs61as/lib/mceval.scm .



The code is also online here


Prerequisites and What to Expect


A good understanding of how Racket-1/Scheme-1 works will be helpful in this chapter. You should
also be comfortable with the environment model of evaluation from Lesson 8.
The material covered in this lesson will be quite different from the other
material covered so far, so be prepared! 


Readings


These are the relevant readings for this lesson:



	SICP Intro to Chapter 4

	SICP 4.1.1-6

	Lectures Notes




What Is An Evaluator?


So far, we have learned how to write procedures that output what we want. Once we
define those procedures and type them in the Scheme prompt, we get the value.
But have you wondered how those procedures actually get evaluated and work in
Scheme? How does Scheme know what the expression means? This is what an evaluator does.


An evaluator (or interpreter) for a programming language is a
procedure that, when applied to an expression of the language, performs the
actions required to evaluate that expression.


Wait, what? The evaluator is just a procedure?


Yes, it is. The evaluator is just another program!


What is the Metacircular Evaluator?


[image: ]


Our evaluator for Scheme will be implemented as a Scheme program. It may seem
circular to think about evaluating Scheme programs using an evaluator that is
itself implemented in Scheme. However, evaluation is a process, so it is
appropriate to describe the evaluation process using Scheme, which, after all,
is our tool for describing processes. An evaluator that is written in the same
language that it evaluates is said to be metacircular.


The metacircular evaluator is essentially a Scheme formulation of the
environment model of evaluation described in Lesson 8. Recall that the model
has two basic parts:



	To evaluate a combination (a compound expression other than a special form), 
evaluate the subexpressions and then apply the value of the operator 
subexpression to the values of the operand subexpressions.

	To apply a compound procedure to a set of arguments, evaluate the body of 
the procedure in a new environment. To construct this environment, extend the 
environment part of the procedure object by a frame in which the formal parameters 
of the procedure are bound to the arguments to which the procedure is applied.




These two rules describe the essence of the evaluation process, a basic cycle
in which expressions to be evaluated in environments are reduced to procedures
to be applied to arguments, which in turn are reduced to new expressions to be
evaluated in new environments, and so on, until we get down to symbols, whose
values are looked up in the environment, and to primitive procedures, which
are applied directly. This evaluation cycle will be embodied by the interplay
between the two critical procedures in the evaluator, eval and apply. We will
go through the details of eval and apply soon.


The implementation of the evaluator will depend upon procedures that define
the syntax of the expressions to be evaluated. We will use data abstraction to
make the evaluator independent of the representation of the language. For
example, rather than committing to a choice that an assignment is to be
represented by a list beginning with the symbol set! we use an abstract
predicate assignment? to test for an assignment, and we use abstract
selectors assignment-variable and assignment-value to access the parts of
an assignment. We will learn the implementation of expressions and operations
that specify the representation of procedures and environments. For example,
make-procedure constructs compound procedures, lookup-variable-value
accesses the values of variables, and apply-primitive-procedure applies a
primitive procedure to a given list of arguments.


Takeaways


In this subsection, you learned:



	The definition of evaluator

	The definition of metacircular evaluator




What's Next?


Now it's time to understand how Scheme actually works! Exciting! 


Eval

            The rest of the lesson has concepts that may be confusing the first time you learn about them, 
so carefully reread sentences that are hard to understand! It's also important to remember that
the metacircular evaluator is all about abstraction, so if you don't understand how something
is implemented just yet, it'll probably be explained in a later section.


Eval


(define (eval-1 exp)
  (cond ((constant? exp) exp)
        ((symbol? exp) (eval exp))      ; use underlying Scheme's EVAL                        
        ((quote-exp? exp) (cadr exp))
        ((if-exp? exp)
         (if (eval-1 (cadr exp))
             (eval-1 (caddr exp))
             (eval-1 (cadddr exp))))
        ((lambda-exp? exp) exp)
        ((pair? exp) (apply-1 (eval-1 (car exp))      ; eval the operator                     
                              (map eval-1 (cdr exp))))
        (else (error "bad expr: " exp))))



Does this code look familar to you? It should; it's part of the Racket-1/Scheme-1
interpreter you learned in Lesson 6! If you look at line 3, you can see that
eval-1 is using Scheme's eval procedure. You didn't really have to worry
too much about the details in Lesson 6, because Scheme's eval procedure
handled all the details. But what are the details behind Scheme's eval?


Now is time to look at how mc-eval is written. Take a look, and compare it to
eval-1:


(define (mc-eval exp env)
  (cond ((self-evaluating? exp) exp)
  ((variable? exp) (lookup-variable-value exp env))
  ((quoted? exp) (text-of-quotation exp))
  ((assignment? exp) (eval-assignment exp env))
  ((definition? exp) (eval-definition exp env))
  ((if? exp) (eval-if exp env))
  ((lambda? exp)
    (make-procedure (lambda-parameters exp)
      (lambda-body exp)
      env))
  ((begin? exp) 
  (eval-sequence (begin-actions exp) env))
  ((cond? exp) (mc-eval (cond->if exp) env))
  ((application? exp)
    (mc-apply (mc-eval (operator exp) env)
      (list-of-values (operands exp) env)))
  (else
    (error "Unknown expression type -- EVAL" exp))))



mc-eval is defined to do the work of underlying Scheme's eval to interpret Scheme's syntax rules and to decompose each call into the appropriate action. Don't worry if you don't understand it. We will go through this code step-by-
step.


What Does mc-eval Do?


The procedure mc-eval takes as arguments an expression and an environment. It classifies the
expression and directs its evaluation. In order to keep the
procedure general, we express the determination of the type of an expression
abstractly, making no commitment to any particular representation for the
various types of expressions. Each type of expression has a predicate that
tests for it and an abstract means for selecting its parts.


When mc-eval processes a procedure application, it uses list-of-values to
produce the list of arguments to which the procedure is to be applied. The procedure list-
of-values takes as an argument the operands of the combination. It evaluates
each operand and returns a list of the corresponding values:


(define (list-of-values exps env)
  (if (no-operands? exps)
      '()
      (cons (mc-eval (first-operand exps) env)
        (list-of-values (rest-operands exps) env))))



Left to Right? Right to Left?
Given some list of operands,list-of-values will recursively construct a nested cons structure of calls to mc-eval on each operand. Notice that we cannot tell the order that the metacircular evaluator evaluates operands from left to right or from right to left. Its evaluation order is inherited from the underlying  Scheme: If the arguments to cons in list-of-values are evaluated from left to right, then list-of-values will evaluate operands from left to right; and if the arguments to
cons are evaluated from right to left, then list-of-values will evaluate operands from
right to left.


Write a version of list-of-values that evaluates operands from left to right regardless 
of the order of evaluation in the underlying Scheme. Also write a version of list-of-values 
that evaluates operands from right to left.









Let's go line by line to see what each expression in the conditional does.


Self-Evaluating Expressions
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For self-evaluating expressions, such as numbers, mc-eval returns the
expression itself. mc-eval must look up variables in the environment to find
their values.



	The only self-evaluating items are numbers and strings:


(define (self-evaluating? exp)
  (cond ((number? exp) true)
        ((string? exp) true)
        (else false)))





Remember, words are not strings. Strings use double quotes (e.g. "Hello,
world!").



	Variables are represented by symbols:


(define (variable? exp)
  (symbol? exp))





Special Forms
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Special Forms: Sentences and Words


For quoted expressions, mc-eval returns the expression that was quoted.


Recall that the Scheme parser automatically transforms the expression '(some text here) into
the expression pair (quote (some text here)).


In other words, quotations have the form (quote <text-of-quotation>):


(define (quoted? exp)
  (tagged-list? exp 'quote))

(define (text-of-quotation exp) (cadr exp))  ;returns just the text as a list that will print to output



Quoted? is defined in terms of the procedure tagged-list?, which
identifies lists beginning with a designated symbol:


(define (tagged-list? exp tag)
  (if (pair? exp)
      (eq? (car exp) tag)
      false))



Special Form: Lambda


A lambda expression must be transformed into an applicable procedure by packaging together the parameters and body specified by the lambda expression with the environment of the evaluation.


Lambda expressions are lists that begin with the symbol lambda:


(define (lambda? exp) (tagged-list? exp 'lambda))
(define (lambda-parameters exp) (cadr exp))
(define (lambda-body exp) (cddr exp))



There is a constructor for lambda expressions, which is used by definition-
value:


(define (make-lambda parameters body)
  (cons 'lambda (cons parameters body)))



Special Form: Sequences
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	Eval-sequence is used by apply to evaluate the sequence of expressions in a procedure body. It is also used by eval to evaluate the sequence of expressions in a 
begin expression. It takes as arguments a sequence of expressions and an environment, and evaluates the expressions in the order in which they occur. The value returned 
is the value of the final expression.


(define (eval-sequence exps env)
  (cond ((last-exp? exps) (mc-eval (first-exp exps) env))
        (else (mc-eval (first-exp exps) env)
              (eval-sequence (rest-exps exps) env))))


	Begin packages a sequence of expressions into a single expression. A begin expression requires evaluating its sequence of expressions in the order in which they appear. We include syntax operations on begin expressions to extract the actual sequence from the begin expression, as well as selectors that return the first expression and the rest of the expressions in the sequence.


(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))





There is a constructor sequence->exp (for use by cond->if) that transforms
a sequence into a single expression, using begin if necessary:


(define (sequence->exp seq)
  (cond ((null? seq) seq)
        ((last-exp? seq) (first-exp seq))
        (else (make-begin seq))))
(define (make-begin seq) (cons 'begin seq))



Special Form: Conditionals
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	Eval-if evaluates the predicate part of an if expression in the given environment. If the result is true, eval-if evaluates the consequent, otherwise it evaluates the alternative: 


(define (eval-if exp env)
  (if (true? (mc-eval (if-predicate exp) env))
      (mc-eval (if-consequent exp) env)
      (mc-eval (if-alternative exp) env)))





The use of true? in eval-if highlights the issue of the connection between
an implemented language and an implementation language. The if-predicate is
evaluated in the language being implemented and thus yields a value in that
language. The interpreter predicate true? translates that value into a value
that can be tested by the if in the implementation language: The metacircular
representation of truth might not be the same as that of the underlying
Scheme.


true? and false? are define as following:


(define (true? x)
  (not (eq? x false)))
(define (false? x)
  (eq? x false))




	An if expression requires special processing of its parts, so as to evaluate the consequent if the predicate is true, and otherwise to evaluate the alternative.


(define (if? exp) (tagged-list? exp 'if))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
  (if (not (null? (cdddr exp)))
      (cadddr exp)
      'false))





There is a constructor for if expressions, to be used by cond->if to
transform cond expressions into if expressions:


(define (make-if predicate consequent alternative)
  (list 'if predicate consequent alternative))




	A case analysis (cond) is transformed into a nest of if expressions and then evaluated.




For example,


(cond ((> x 0) x)
      ((= x 0) (display 'zero) 0)
      (else (- x)))



can be represented as:


(if (> x 0)
    x
    (if (= x 0)
        (begin (display 'zero)
               0)
        (- x)))



There are syntax procedures that extract the parts of a cond expression, and a
procedure cond->if that transforms cond expressions into if expressions.
A case analysis begins with cond and has a list of predicate-action clauses.
A clause is an else clause if its predicate is the symbol else.


(define (cond? exp) (tagged-list? exp 'cond))
(define (cond-clauses exp) (cdr exp))
(define (cond-else-clause? clause)
  (eq? (cond-predicate clause) 'else))
(define (cond-predicate clause) (car clause))
(define (cond-actions clause) (cdr clause))
(define (cond->if exp)
  (expand-clauses (cond-clauses exp)))

(define (expand-clauses clauses)
  (if (null? clauses)
      'false                          ; no else clause
      (let ((first (car clauses))
            (rest (cdr clauses)))
        (if (cond-else-clause? first)
            (if (null? rest)
                (sequence->exp (cond-actions first))
                (error "ELSE clause isn't last -- COND->IF"
                       clauses))
            (make-if (cond-predicate first)
                     (sequence->exp (cond-actions first))
                     (expand-clauses rest))))))



Expressions (such as cond) that we choose to implement as syntactic
transformations are called derived expressions. Let expressions are also
derived expressions.


Special Form: Assignments and Definitions
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An assignment to (or a definition of) a variable must recursively call eval
to compute the new value to be associated with the variable. The environment
must be modified to change (or create) the binding of the variable.


The following procedure handles assignments to variables. It calls eval to
find the value to be assigned and passes the variable and the resulting
value to set-variable-value! to be defined in the designated environment.


(define (eval-assignment exp env)
  (set-variable-value! (assignment-variable exp)
                       (mc-eval (assignment-value exp) env)
                       env)
  'ok)



Definitions of variables are handled in a similar manner:


(define (eval-definition exp env)
  (define-variable! (definition-variable exp)
                    (mc-eval (definition-value exp) env)
                    env)
  'ok)



By convention, the symbol ok is returned as the value of an assignment or a
definition.


Now let's look at how assignment expressions are represented.


Assignments have the form (set! <var> <value>):


(define (assignment? exp)
  (tagged-list? exp 'set!))
(define (assignment-variable exp) (cadr exp))
(define (assignment-value exp) (caddr exp))



Definitions have the form (define <var> <value>) or the form


(define (var parameter1 ... parametern)
  body)



The latter form (standard procedure definition) can be re-written as:


(define var
  (lambda (parameter1 ... parametern)
          body))



The corresponding syntax procedures are the following:


(define (definition? exp)
  (tagged-list? exp 'define))
(define (definition-variable exp)
  (if (symbol? (cadr exp))
      (cadr exp)
      (caadr exp)))
(define (definition-value exp)
  (if (symbol? (cadr exp))
      (caddr exp)
      (make-lambda (cdadr exp)   ; formal parameters
                   (cddr exp)))) ; body



And and Or


Recall the definitions of the special forms and and or from Unit 1:



	and: The expressions are evaluated from left to right. If any expression evaluates to false, false is returned; any remaining expressions are not evaluated. If all the expressions evaluate to true values, the value of the last expression is returned. If there are no expressions then true is returned.


	or: The expressions are evaluated from left to right. If any expression evaluates to a true value, that value is returned; any remaining expressions are not evaluated. If all expressions evaluate to false, or if there are no expressions, then false is returned.





Install and and or as new special forms for the evaluator by defining appropriate syntax procedures and evaluation procedures eval-and and eval-or. Alternatively, show how to implement and and or as derived expressions.







mc-eval Definition Revisited


Let's take a look at mc-eval's definition again. Does it make sense to you now?


(define (mc-eval exp env)
  (cond ((self-evaluating? exp) exp)
  ((variable? exp) (lookup-variable-value exp env))
  ((quoted? exp) (text-of-quotation exp))
  ((assignment? exp) (eval-assignment exp env))
  ((definition? exp) (eval-definition exp env))
  ((if? exp) (eval-if exp env))
  ((lambda? exp)
    (make-procedure (lambda-parameters exp)
      (lambda-body exp)
      env))
  ((begin? exp) 
    (eval-sequence (begin-actions exp) env))
  ((cond? exp) (mc-eval (cond->if exp) env))
  ((application? exp)
    (mc-apply (mc-eval (operator exp) env)
      (list-of-values (operands exp) env)))
  (else
    (error "Unknown expression type -- EVAL" exp))))



Wait, wait, what's apply? I don't know what that is!


We are going to explore it in the next subsection.



Which of the following use mc-eval in their definition? Multiple answers may be correct, so check each answer individually.










Takeaways


In this subsection, you learned how Scheme evaluates the expressions using
mc-eval and other procedures.


What's Next?


Go to the next subsection and learn how Scheme applies the evaluated
expressions!


Apply

            apply


Apply takes two arguments, a procedure and a list of arguments to which the
procedure should be applied. Apply classifies procedures into two kinds: It
calls apply-primitive-procedure to apply primitives; it applies compound
procedures by sequentially evaluating the expressions that make up the body of
the procedure. The environment for the evaluation of the body of a compound
procedure is constructed by extending the base environment carried by the
procedure to include a frame that binds the parameters of the procedure to the
arguments to which the procedure is to be applied. Here is the definition of
apply:


(define (apply procedure arguments)
  (cond ((primitive-procedure? procedure)
         (apply-primitive-procedure procedure arguments))
        ((compound-procedure? procedure)
         (eval-sequence
           (procedure-body procedure)
           (extend-environment
             (procedure-parameters procedure)
             arguments
             (procedure-environment procedure))))
        (else
         (error
          "Unknown procedure type -- APPLY" procedure))))



We will go through the procedures used in the definition, one-by-one.


Representing Procedures


To handle primitives, we assume that we have available the following
procedures:



	(apply-primitive-procedure proc args) 

applies the given primitive procedure to the argument values in the list
'args' and returns the result of the application.


	(primitive-procedure? proc) 

tests whether proc is a primitive procedure.





Compound procedures are constructed from parameters, procedure bodies, and
environments using the constructor make-procedure:


(define (make-procedure parameters body env)
  (list 'procedure parameters body env))
(define (compound-procedure? p)
  (tagged-list? p 'procedure))
(define (procedure-parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environment p) (cadddr p))



Primitive Procedures


At this point, or maybe for a long time, you may wonder how primitive
procedures are represented in Scheme. There is actually no right way to
represent the primitive procedures, as long as apply can identify and apply
them by using the procedures primitive-procedure? and apply-primitive-
procedure.


People who created Scheme decided to represent a primitive procedure as a list
which begins with the symbol primitive and contains a procedure in the
underlying Lisp that implements that primitive.


(define (primitive-procedure? proc)
  (tagged-list? proc 'primitive))

(define (primitive-implementation proc) (cadr proc))

(define primitive-procedures
  (list (list 'car car)
        (list 'cdr cdr)
        (list 'cons cons)
        (list 'null? null?)
        <more primitives>
        ))

(define (primitive-procedure-names)
  (map car
       primitive-procedures))

(define (primitive-procedure-objects)
  (map (lambda (proc) (list 'primitive (cadr proc)))
       primitive-procedures))



To apply a primitive procedure, we simply apply the implementation procedure
to the arguments, using the underlying Lisp system:


(define (apply-primitive-procedure proc args)
  (apply-in-underlying-scheme
   (primitive-implementation proc) args))



Operations on Environments


For sure, the evaluator needs operations for manipulating environments. What
is an environment again? It is a sequence of frames, where each frame is a
table of bindings that associate variables with their corresponding values. We
use the following operations for manipulating environments:



	(lookup-variable-value <var> <env>) 

returns the value that is bound to the symbol  in the environment ,
or signals an error if the variable is unbound.


	(extend-environment <variables> <values> <base-env>) 

returns a new environment, consisting of a new frame in which the symbols in
the list  are bound to the corresponding elements in the list
, where the enclosing environment is the environment .


	(define-variable! <var> <value> <env>) 

adds to the first frame in the environment  a new binding that associates
the variable  with the value .


	(set-variable-value! <var> <value> <env>) 

changes the binding of the variable  in the environment  so that the
variable is now bound to the value , or signals an error if the
variable is unbound.





To implement these operations we represent an environment as a list of frames.
The enclosing environment of an environment is the cdr of the list. The
empty environment is simply the empty list.


(define (enclosing-environment env) (cdr env))
(define (first-frame env) (car env))
(define the-empty-environment '())



Each frame of an environment is represented as a pair of lists: a list of the
variables bound in that frame and a list of the associated values.


(define (make-frame variables values)
  (cons variables values))
(define (frame-variables frame) (car frame))
(define (frame-values frame) (cdr frame))
(define (add-binding-to-frame! var val frame)
  (set-car! frame (cons var (car frame)))
  (set-cdr! frame (cons val (cdr frame))))



To extend an environment by a new frame that associates variables with values,
we make a frame consisting of the list of variables and the list of values,
and we adjoin this to the environment. We signal an error if the number of
variables does not match the number of values.


(define (extend-environment vars vals base-env)
  (if (= (length vars) (length vals))
      (cons (make-frame vars vals) base-env)
      (if (< (length vars) (length vals))
          (error "Too many arguments supplied" vars vals)
          (error "Too few arguments supplied" vars vals))))



To look up a variable in an environment, we scan the list of variables in the
first frame. If we find the desired variable, we return the corresponding
element in the list of values. If we do not find the variable in the current
frame, we search the enclosing environment, and so on. If we reach the empty
environment, we signal an "unbound variable" error.


(define (lookup-variable-value var env)
  (define (env-loop env)
    (define (scan vars vals)
      (cond ((null? vars)
             (env-loop (enclosing-environment env)))
            ((eq? var (car vars))
             (car vals))
            (else (scan (cdr vars) (cdr vals)))))
    (if (eq? env the-empty-environment)
        (error "Unbound variable" var)
        (let ((frame (first-frame env)))
          (scan (frame-variables frame)
                (frame-values frame)))))
  (env-loop env))



To set a variable to a new value in a specified environment, we scan for the
variable, just as in lookup-variable-value, and change the corresponding
value when we find it.


(define (set-variable-value! var val env)
  (define (env-loop env)
    (define (scan vars vals)
      (cond ((null? vars)
             (env-loop (enclosing-environment env)))
            ((eq? var (car vars))
             (set-car! vals val))
            (else (scan (cdr vars) (cdr vals)))))
    (if (eq? env the-empty-environment)
        (error "Unbound variable -- SET!" var)
        (let ((frame (first-frame env)))
          (scan (frame-variables frame)
                (frame-values frame)))))
  (env-loop env))



To define a variable, we search the first frame for a binding for the
variable, and change the binding if it exists (just as in set-va``riable-
value!). If no such binding exists, we adjoin one to the first frame.


(define (define-variable! var val env)
  (let ((frame (first-frame env)))
    (define (scan vars vals)
      (cond ((null? vars)
             (add-binding-to-frame! var val frame))
            ((eq? var (car vars))
             (set-car! vals val))
            (else (scan (cdr vars) (cdr vals)))))
    (scan (frame-variables frame)
          (frame-values frame))))



apply Revisited


Let's look at the definition of apply again. Does it make sense this time?


(define (apply procedure arguments)
  (cond ((primitive-procedure? procedure)
         (apply-primitive-procedure procedure arguments))
        ((compound-procedure? procedure)
         (eval-sequence
           (procedure-body procedure)
           (extend-environment
             (procedure-parameters procedure)
             arguments
             (procedure-environment procedure))))
        (else
         (error
          "Unknown procedure type -- APPLY" procedure))))



Takeaways


In this subsection, you learned the following:



	How apply is defined

	How primitive procedures are defined and applied

	How the operations on environments are defined




What's Next?


We are going to learn how the evaluator runs as a program.


Running the Evaluator

            Running the Evaluator


Let's look at how Scheme runs the evaluator. So far, we learned how the Scheme
expressions are evaluated using mc-eval and mc-apply. Then how is the evaluator
program running?


What our evaluator program does is to reduce all the expressions to the
application of primitive procedures.  So all we need to run the evaluator is
to create a mechanism that uses the underlying Scheme system for the application
of primitive procedures.


There must be a binding for each primitive procedure name, so that when mc-eval
evaluates the operator of an application of a primitive, it will find an
object to pass to mc-apply. We thus set up a global environment that associates
unique objects with the names of the primitive procedures that can appear in
the expressions we will be evaluating (for example, we'll bind + to the
underlying Scheme procedure with the same name). The global environment also includes
bindings for the symbols true and false, so that they can be used as
variables in expressions to be evaluated.


(define (setup-environment)
  (let ((initial-env
         (extend-environment (primitive-procedure-names)
                             (primitive-procedure-objects)
                             the-empty-environment)))
    (define-variable! 'true true initial-env)
    (define-variable! 'false false initial-env)
    initial-env))
(define the-global-environment (setup-environment))



For convenience in running the metacircular evaluator, we provide a driver
loop that models the read-eval-print loop (or REPL) of the underlying Scheme system. It
prints a prompt, reads an input expression, evaluates this expression in
the global environment, and prints the result. We precede each printed result
by an output prompt so as to distinguish the value of the expression from
other output that may be printed.


(define input-prompt ";;; M-Eval input:")
(define output-prompt ";;; M-Eval value:")
(define (driver-loop)
  (prompt-for-input input-prompt)
  (let ((input (read)))
    (let ((output (mc-eval input the-global-environment)))
      (announce-output output-prompt)
      (user-print output)))
  (driver-loop))
(define (prompt-for-input string)
  (newline) (newline) (display string) (newline))

(define (announce-output string)
  (newline) (display string) (newline))



We use a special printing procedure, user-print, to avoid printing the
environment part of a compound procedure, which may be a very long list (or
may even contain cycles).


(define (user-print object)
  (if (compound-procedure? object)
      (display (list 'compound-procedure
                     (procedure-parameters object)
                     (procedure-body object)
                     '(procedure-env>))
      (display object)))



Now all we need to do to run the evaluator is to initialize the global
environment and start the driver loop. Here is a sample interaction:


(define the-global-environment (setup-environment))
(driver-loop)
;;; M-Eval input:
(define (append x y)
  (if (null? x)
      y
      (cons (car x)
            (append (cdr x) y))))
;;; M-Eval value:
ok
;;; M-Eval input:
(append '(a b c) '(d e f))
;;; M-Eval value:
(a b c d e f)



Wait, I still don't get it. How can we evaluate Scheme code with an evaluator
that is written in Scheme?


It's because Scheme is powerful enough to handle a program as data, and to let
us construct data structures that are both hierarchical and circular. I have
an analogy for you in the next section.


Data as Programs


To understand interpreting Scheme expression with the interpreter written in
Scheme, think of a program as a description of an abstract machine. For
example, you can think of the program to compute factorials:


(define (factorial n)
  (if (= n 1)
      1
      (* (factorial (- n 1)) n)))



as the description of a machine containing parts that decrement, multiply, and
test for equality, together with a two-position switch and another factorial
machine. (The factorial machine is infinite because it contains another
factorial machine within it -- recursion!) So the machine will look like this:


[image: ]


Like factorial, the evaluator is a very special machine that takes a
description of other machine as input, and then configures itself to emulate
the given machine. For example, if we give the evaluator the definition of
factorial, the evaluator will emulate it and be able to compute factorials.


[image: ]


So our evaluator is just a universal machine that mimics all other machines!


If you'd like to know more about the machines, ask for Unit 5.


Takeaways


In this subsection, you learned how the evaluator works.


What's Next?


Go do your homework! You should also start on Project 4, where you'll learn
the Python programming language.


Python Interpreter

            Introduction to Python


We are going to learn about Python, the language that CS61A uses. Your friends
in CS61A are writing a Scheme interpreter in Python.
Here in CS61AS, you are going to write a Python Interpreter written in Scheme for your last project.


Opening Python


To open Python, go to the terminal and type "python". The ">>>" prompt will
show up which is the equivalent of Scheme's "->".


As you will learn, spaces in Python are really important. Spaces for python
are Parentheses for Scheme.


Playing with Python


Try these commands out in the interpreter. Most of these are taken from the
project spec added with some more examples. Some of the examples are supposed
to error. If there is a behavior that you don't expect, please ask!


print


How would you ask Python to print "Hello World"? Well,


     >>> print "Hello World"
     Hello World



and that's it! (Yeah, seriously). As you may have noticed from that simple
example, Python does not need left parentheses to call functions; you do not
need to precede 'print' with a left parenthesis. Python is case-sensitive, so
"PRINT" would not work. Another key difference is that Python only supports
infix operators, where the operator is present between its operands:


     >>> print 2 + 2
     4



You don't actually need the 'print' statement; the interpreter automatically
evaluates whatever is typed at the prompt, using a Read-Eval-Print loop that
is very similar to that used in the metacircular evaluator (We'll explore this
two sections from now.) For example:


     >>> 2 + 2
     4



What are the outputs of the following?


    >>> 3 + 1 - 5 * 1
    >>> 3 + (1 - 5) * 1
    >>> 10/2
    >>> 10/0
    >>> (5+1)
    >>> (10)



Assignments


Assignments in Python are similar to assignments in other languages. If, for
example, you would like to provide a value to a variable called 'x':


     >>> x = 2
     >>> print x
     2



In contrast to Scheme, Python makes no distinction between DEFINE and SET!. If
a variable 'x' is not already present, the above assignment creates a new
variable 'x' in the global environment; otherwise, any previous value of 'x'
is overwritten.


Try the following:


    >>> num
    >>> num = 3
    >>> num
    >>> num = num + 1
    >>> num
    >>> num = "Berkeley"
    >>> num



booleans


"If we used "=" to assign variables, how do we check for equality?". Python
(and most other languages) uses "==" instead.


Try the following:


     >>> 5 == 1
     >>> 5 == 5
     >>> 5 = 5
     >>> x = 10
     >>> x == 5
     >>> x == 10
     >>> x == x



Python has support for the Boolean operators 'and' and 'or', which work
exactly as the corresponding Scheme special forms work:


     >>> x = 3
     >>> (x == 3) and (x == 4)
     False

     >>> True and 3 and 5
     5

     >>> True and 3 and False
     False

     >>> True or 3 or False
     True



The Python equivalents for #t and #f are True and False, respectively
(capitalization is important).


Try the following:


    >>> True and True and False
    >>> True and True and True
    >>> (1 == 0) and (42 == 42)
    >>> (1 == 1) and (42 == (1 / 0))
    >>> (1 == 0) and (42 == (1 / 0))
    >>> 2 and 3 and 4

    >>> (1 == 0) or (42 == (1 / 0))
    >>> (1 == 1) or (42 == (1 / 0))
    >>> True or 5
    >>> False or 5
    >>> 5 or True
    >>> 10 or 5
    >>> False or (1 == 0) or 5

    >>> not True
    >>> not False
    >>> not (1==0)
    >>> not 5
    >>> not "world"  
    >>> not ""



Lists


Python has lists! (Why wouldn't it?)


     >>> x = [1, 2, 3]



"x" is now a variable that stores a list of three numbers. As you can guess,
the Scheme analog is "(list 1 2 3)". Python lists can also be deep:


     >>> x = [[1, 2, 3], 2, 3]



Unfortunately, we can't CAR or CDR down a Python list. To access particular
elements of a list:


     >>> x[1]
     2



The notation "x[1]" returns the second element of the list (Python uses zero-
based counting). Again, in this case, the "[" character can be considered an
infix operator.


Try the following:


    >>> [0,1,3,-1,5]
    >>> lst = [0,1,3,-1,5]
    >>> lst
    >>> 0 in lst
    >>> 4 in lst
    >>> 0 not in lst
    >>> 4 not in lst

    >>> newlst = ["hey","I am", "a list", "too", ["boo", 100]]
    >>> newlst
    >>> "hey" in newlst
    >>> "am" in newlst
    >>> newlst[0]
    >>> newlst[0] == "hey"
    >>> newlst[1]
    >>> newlst[4]
    >>> newlst[5]



Blocks


Ifs


An important aspect of Python, born of its dedication to readable code, is its
usage of INDENTATION. In most other languages, including Scheme, indentation
is not an issue, since these languages ignore the number of spaces, and
instead use spaces to delimit symbols, numbers and words. However, in Python,
the number of spaces at the beginning of a line is important.


     >>> x = 2
     >>> if x == 1:
     ...   x = x + 1
     ...   print x



(You will have to press the ENTER key once more at the "..." prompt that will
show immediately after, to signify that you are done with the 'if'-statement.)
The 'if'-statement in Python works the same as its equivalent in Scheme: if
the condition of the 'if'-statement is satisfied, then the body is evaluated.
Notice that we have used '==' instead of '=': since the '=' character is
already used for assignment, we use '==' to check for equality. Notice also
that the body is indented: all statements in the body need to begin with the
same indentation. As a result, the following would not work:


     >>> x = 2
     >>> if x > 1:
     ...   x = x + 1
     ...    print x



because the second statement in the body is indented more than the first
statement. Similarly, the following would not work:


     >>> x = 2
     >>> if x > 1:
     ...    x = x + 1
     ...   print x



because the second statement in the body is indented less than the first
statement. In general, you would only DEDENT when you are done with a set of
related statements, or a BLOCK. All statements in a block need to be indented
with the same number of spaces. As a further example, an 'if'-statement can
also have an 'else'-clause, which is evaluated if the condition is not
satisfied.


     >>> x = 2
     >>> if x > 1:
     ...   x = x + 1
     ...   print x
     ... else:
     ...    x = x - 1
     ...    print x



Notice that the lines inside the blocks corresponding to the 'if'-statement
and its 'else'-clause are indented the same amount, but the blocks themselves
are indented by different amounts (though they don't have to be!). The
'if'-statement and the 'else'-clause, however, need to be indented by the same
amount because they belong to the same statement. However, all statements
that are not part of a block or sub-block of statements should have no
indentation. Try the following statement (which has an indentation of two
spaces after ">>> ") at the Python interpreter prompt:


     >>>   2 + 3



Indentation enforces clean code, but can take a while to get used to; the key
thing to remember is that you only need to indent when you are starting a new
block of statements.


Try the following:


     >>> if x == 3:
     ...   print x + 1
     ... elif x < 4:
     ...   print x + 2
     ... elif x > 5:
     ...   print x + 3
     ... else:
     ...   print x + 4



Defining Functions


Python also has FUNCTIONS, its analog to Scheme's procedures. The following
defines the 'square' function:


     >>> def square(x):
     ...   return x * x



(Again, you will have to press the ENTER key once more at the "..." prompt
that will show immediately after, to signify that you are done with the
procedure body.) This syntax is similar to C-like languages, where the
arguments to the function are enclosed between parentheses and present
immediately after the name of the function. To call the function:


     >>> square(3)
     9



In this sense, the left parenthesis can be considered an infix operator, where
the operator is between its operands. To see why this is the case, recall that
in Scheme, the left parenthesis can be considered as a prefix operator, which
"calls" its first argument on the subsequent arguments. Similarly, in Python,
the left parenthesis "calls" its first argument ('square') on the next
argument ('3'). Also, if Python procedures need to return values, we have to
explicitly add a 'return'-statement to the body to return the answer; by
contrast, in Scheme, the very last line of a procedure definition is always
returned. This allows us to distinguish between Python functions that return
values, and Python functions that do not return values but are used primarily
for their side-effects:


     >>> def foo():
     ...   print "Hello World"



Try the following:


>>> def sum_of_squares(x,y):
...   return square(x) + square(y)

>>> sum_of_squares(3,4)
>>> square(square(2))



Loops


Python has constructs for loops. The project spec has a more in depth
explanation but give the following codes a shot:


while


A "while" loop takes in a predicate, and will keep evaluating the body until
the predicate evaluates to False.


>>> x = 3
>>> while x < 5:
...   print x
...   x = x + 1

>>> y = 1
>>> while y < 50:
...   print y
...   y = y*2



for


A "for" loop takes in a list (or any kind of sequence) and runs through the
body with each element of the sequence. This is similar to the loops you learned
about in Lesson 9.


>>> for i in [1, 3, 5, 2, 4]:
     ...   print i

>>> for wd in ["Twinkle","twinkle","little","stars"]:
...   print wd



Homework 11

            Exercise 0.


Some warmup questions to check your understanding:



	List all the procedures in the metacircular evaluator that call mc-eval.

	List all the procedures in the metacircular evaluator that call mc-apply.

	Explain why make-procedure does not call mc-eval.




A Note on Homework 11


Some students have complained that this week's homework is very time-consuming.


Accordingly, with some reluctance, we've marked a few exercises as optional;
these are the ones to leave out if you're really pressed for time. But it's
much better if you do all of them!


The optional exercises have * next to them.


Template


You can copy the template for this homework by typing the following in your
terminal:


  cp ~cs61as/autograder/templates/hw11.scm .



Or, you can download it
here.


Exercise 1.


Abelson & Sussman, exercises 4.3, 4.6, 4.7,
4.10, 4.11*,
4.13, 4.14, and
4.15.


Exercise 4.


Abelson & Sussman, exercises 4.1, 4.2, 4.4, and
4.5.


Exercise 2*.


Modify the metacircular evaluator to allow type-checking of arguments to
procedures. Here is how the feature should work. When a new procedure is
defined, a formal parameter can be either a symbol as usual or else a list of
two elements. In this case, the second element is a symbol, the name of the
formal parameter. The first element is an expression whose value is a
predicate function that the argument must satisfy. That function should return
#t if the argument is valid. For example, here is a procedure foo that has
typechecked parameters num and list:


> (define (foo (integer? num) ((lambda (x) (not (null? x))) lst))
    (list-ref lst num))
> (foo 3 '(a b c d e))
d
> (foo 3.5 `(a b c d e))
Error: wrong argument type -- 3.5
> (foo 2 '())
Error: wrong argument type -- ()



In this example we define a procedure foo with two formal parameters, named
num and list. When foo is invoked, the evaluator will check to see that
the first actual argument is an integer and that the second actual argument is
not empty. The expression whose value is the desired predicate function should
be evaluated with respect to foo's defining environment. (Hint: Think about
extend-environment.)


More Challenge Problems


Here are some more optional exercises if you're interested in this section. These exercises are not for credit. 



	Abelson & Sussman, exercises 4.16 - 4.21.




Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Project 4 - Python Interpreter


Schython

            You've seen how to implement a Scheme interpreter in Lesson 11 (mceval.scm). For this project, you will be helping us construct a Python interpreter called Schython (Scheme + Python = Schython).


To get the necessary project files and the spec, type the following into your interpreter:


cp -r ~cs61as/lib/schython/ .



You may replace the . with whichever directory you want to save your project in.


Project Files


Here's a breakdown of the files contained inside of schython/:




    	File Name
    	Purpose





    	1.schython.text
    	This is the spec for your Schython project.



    	2.start.scm
    	The file that will load the files needed to test your code. Make sure it is in the same directory as the rest of your Schython files.



    	3.obj.scm
    	The code for our object-oriented system. OOP is used to create and manipulate the line-object class in parser.scm. Do NOT make changes to this file.



    	4.parser.scm
    	The parser for our Schython interpreter. This file breaks down lines of input into Python characters recognizable by the Scheme interpreter. You should edit this file.



    	5.py-meta.scm
    	This file is responsible for evaluating parsed Python code from our parser.scm. You should edit this file.



    	6.py-primitives.scm
    	This file contains all the Scheme representations of Python data types. You should edit this file.



    	7.primitives.py
    	A file containing a list of Python functions. Do NOT make changes to this file.



    	8.memoize.py
    	The file for your answer to Question 9. You should edit this file.



    	9.tests
    	A directory containing some tests that you can run to test your code. They are taken from the examples in schython.text. Instructions on how to run these tests can be found in the README file in this directory. Your grades will be determined by how many of these test cases you pass. 






To load the project, type the following into your interpreter:


(load "start.scm")



Scoring


Each partner will work on nine problems. Five of these (Questions 1, 2, 6, 8, and 9) are common to both partners; the others (Questions 3, 4, 5, and 7) should be completed separately.


Groups will hand in a single completed copy of the project, with one answer for each question. Partners will receive the same score for the common exercises and different scores for the separate questions.


There will be points (indicated in schython.text) where partners should combine their work. This is necessary in order to move on to the next sections of the project.


If you cannot find a partner and/or wish to work alone, please talk to a TA.


More About Python


Python is a modern and very popular language used for teaching introductory CS courses, and is the language used in CS 61A. We will go over the basics of the Python language necessary to write the Schython interpreter in the spec. But, if you are interested (this is not at all required for this project), you can take a look at Python's documentation for a more comprehensive breakdown of the language.


12 - Analyzing Evaluator and Lazy Evaluator


Lesson 12 Intro

            Introduction


At this point, you know (in principle) how to build a Scheme interpreter in
Scheme. Now we see how to both make the Metacircular Evaluator more efficient
and how changing the Metacircular Evaluator changes how the language is
interpreted, and what advantages this provides. In particular, we form two new
evaluators. The first evaluator separates the syntactic analysis of a program
(analyzing what a program says to do) from its execution (actually doing what
the program says to do) in order to increase efficiency. The second evaluator
changes the interpreter from Applicative Order to Normal Order.


Prerequisites and What to Expect


You should be very familiar with the Metacircular Evaluator from Lesson 11.
This lesson builds heavily upon the ideas and code of the MCE.


Readings


Here are the relevant readings for this lesson:



	SICP 4.1.7 Separating Syntactic Analysis from Execution

	SICP 4.2 Lazy Evaluation

	Lecture Notes (Skip the nondeterministic evaluator.)

	Therac Paper




When you're ready, move on to the next section!


Separating Analysis from Execution

            Analyzing Evaluator


To work with the ideas in this section, get the analyzing metacircular
evaluator:


cp ~cs61as/lib/analyze.scm .



The Metacircular Evaluator implementation in Lesson 12 is simple, but it is very inefficient because of how the syntactic analysis of expressions is interleaved with their execution. Thus, if a program is executed many times, its syntax is analyzed many times. Let's consider an example.


Suppose we’ve defined the factorial function as follows:


(define (fact num) 
  (if (= num 0)
      1
      (* num (fact (- num 1)))))



What happens when we compute (fact 3)?


eval (fact 3) 
  self-evaluating? ==> #f 
  variable? ==> #f
  quoted? ==> #f 
  assignment? definition?
  if? ==> #f
  lambda? ==> #f
  begin? ==> #f
  cond? ==> #f 
  application? ==> #t 
  eval fact
    self-evaluating? ==> #f
    variable? ==> #t
    lookup-variable-value ==> <procedure fact> 
    list-of-values (3)
      eval3 ==> 3
    apply <procedure fact> (3)
      eval (if (= num 0) ...) 
      self-evaluating? ==> #f 
      variable? ==> #f 
      quoted? ==> #f 
      assignment? ==> #f 
      definition? ==> #f
      if? ==> #t 
        eval-if (if (= num 0) ...) 
          if-predicate ==> (= num 0)
            eval (= num 0)
            self-evaluating? ==> #f
            ...
          if-alternative ==> (* num (fact (- num 1)))  
            eval (* num (fact (- num 1)))
              self-evaluating? ==> #f
              ...
              list-of-values (num (fact (- num 1)))
                ...
                eval (fact (- num 1))
                  ...
                  apply <procedure fact> (2)
                    eval (if (= num 0) ...)



Four separate times, the evaluator has to examine the procedure body, decide
that it’s an if expression, pull out its component parts, and evaluate those
parts (which in turn involves deciding what type of expression each part is).


This is one reason why interpreted languages are so much slower than compiled languages: The interpreter does the syntactic analysis of the program over and over again. The compiler does the analysis once, and the compiled program can just do the part of the computation that depends on the actual values of variables. In this section, we will study the analyzing evaluator to see how to prevent the repetitive analysis of a program's syntax.


The Separation


eval takes two arguments, an expression and an environment. Of those, the expression argument is the same every time we revisit the same expression, whereas the environment will be different each time. For example, when we compute (fact 3), we evaluate the body of fact in an environment in which num has the value 3. That body includes a recursive call to compute (fact 2), in which we evaluate the same body, but now in an environment with num bound to 2.


Our plan is to look at the evaluation process, find those parts which depend
only on exp and not on env, and do those only once. The procedure that
does this work is called analyze.


What is the result of analyze? It has to be something that can be combined
somehow with an environment in order to return a value. The solution is that
analyze returns a procedure that takes only env as an argument, and does
the rest of the evaluation.


Instead of


(eval exp env) ==> value



we now have


1. (analyze exp) ==> exp-procedure 
2. (exp-procedure env) ==> value




Test Your Understanding



What type of argument(s) does the procedure returned by analyze accept?







When we evaluate the same expression again, we only have to repeat step 2. What we’re doing is akin to memoization, in that we remember the result of a computation to avoid having to repeat it. The difference is that now we’re remembering something that’s only part of the solution to the overall problem, instead of a complete solution.


We can duplicate the effect of the original eval this way:


(define (eval exp env)
  ((analyze exp) env))



analyze


analyze has a structure similar to that of the original eval:


(define (analyze exp)
  (cond
    ((self-evaluating? exp)
      (analyze-self-eval exp)) 
    ((variable? exp)
      (analyze-var exp)) 
    ...
    ((foo? exp) (analyze-foo exp)) 
    ...))



The difference is that the procedures such as eval-if that take an expression and an environment as arguments have been replaced by procedures such as analyze-if that take only the expression as argument. How do these analysis procedures work? As an intermediate step in our understanding, here is a version of analyze-if that exactly follows the structure of eval-if and doesn’t save any time:


eval-if:


(define (eval-if exp env)
  (if (true? (eval (if-predicate exp) env))
      (eval (if-consequent exp) env) 
      (eval (if-alternative exp) env)))



analyze-if:


(define (analyze-if exp) 
  (lambda (env)
    (if (true? (eval (if-predicate exp) env)) 
        (eval (if-consequent exp) env)
        (eval (if-alternative exp) env))))



This version of analyze-if returns a procedure with env as its argument,
whose body is exactly the same as the body of the original eval-if.
Therefore, if we do


((analyze-if some-if-expression) some-environment)



the result will be the same as if we’d said


(eval-if some-if-expression some-environment)



in the original metacircular evaluator.


But we’d like to improve on this first version of analyze-if because it
doesn’t really avoid any work. Each time we call the procedure that analyze-
if returns, it will do all of the work that the original eval-if did.


The first version of analyze-if contains three calls to eval. Each of
those calls does an analysis of an expression and then a computation of the
value in the given environment. What we’d like to do is split each of those
eval calls into its two separate parts, and do the first part only once, not
every time:


(define (analyze-if exp)
  (let ((pproc (analyze (if-predicate exp)))
        (cproc (analyze (if-consequent exp)))
        (aproc (analyze (if-alternative exp)))) 
    (lambda (env)
      (if (true? (pproc env)) 
          (cproc env)
          (aproc env)))))



In this final version, the procedure returned by analyze-if doesn’t contain
any analysis steps. All of the components were already analyzed before we call
that procedure, so no further analysis is needed.


The biggest gain in efficiency comes from the way in which lambda
expressions are handled. In the original metacircular evaluator, leaving out
some of the data abstraction for clarity here, we have


(define (eval-lambda exp env) (list ’procedure exp env))



The evaluator does essentially nothing for a lambda expression except to
remember the procedure’s text and the environment in which it was created. But
in the analyzing evaluator we analyze the body of the procedure (using the
analyze-sequence procedure); what is stored as the representation of the
procedure does not include its text! Instead, the evaluator represents a
procedure in the metacircular Scheme as a procedure in the underlying Scheme,
along with the formal parameters and the defining environment.


(Be sure to read Section 4.1.7 from SICP to see how all of the syntactic analysis procedures are implemented).


Level Confusion


The analyzing evaluator turns an expression such as


(if A B C)



into a procedure


(lambda (env)
  (if (A-execution-procedure env)
      (B-execution-procedure env) 
      (C-execution-procedure env)))



This may seem like a step backward; we’re trying to implement if and we end
up with a procedure that does an if. Isn’t this an infinite regress?


No, it isn’t. The if in the execution procedure is handled by the underlying
Scheme, not by the metacircular Scheme. Therefore, there’s no regress; we
don’t call analyze-if for that one. Also, the if in the underlying Scheme
is much faster than having to do the syntactic analysis for the if in the
meta-Scheme.


So What?


The syntactic analysis of expressions is a large part of what a compiler does.
In a sense, this analyzing evaluator is a compiler! It compiles Scheme into
Scheme, so it’s not a very useful compiler, but it’s really not that much
harder to compile into something else, such as the machine language of a
particular computer.


A compiler whose structure is similar to this one is called a recursive descent compiler. Today, in practice, most compilers use a different
technique (called a stack machine) because it’s possible to automate the
writing of a parser that way. (I mentioned this earlier as an example of data-
directed programming.) But if you’re writing a parser by hand, it’s easiest to
use recursive descent.


(Be sure to read section 4.1.7 of SICP before proceeding).


An Example


Here is a nice example of evaluating factorial using the analyzing
evaluator. Let's consider the following Scheme code:


  (define factorial
    (lambda (n)
      (if (= n 1)
          1
          (* (factorial (- n 1)) n))))
  (factorial 2) ;; low argument, so that the example is not too long)))



There are two statements here: one definition and one application.


We start with the definition, which we will call d here (where d stands
for '(define (factorial n) ...)'):


  (eval d env)
  ((analyze d) env)
  ((analyze-definition d) env)



analyze-definition will first analyze the definition-value and then create
an execution procedure that, when executed, will define the variable name to
the analyzed definition-value.


This point is crucial. We are not just assigning a lambda to factorial, we
are assigning an analyzed lambda to factorial. This will provide a
performance boon later on.


So, to figure out the value of factorial, we analyze the lambda, with...
analyze-lambda, of course (through the dispatch in analyze).


The boon that analyze-lambda provides is really from analyzing the body
once, and then making a procedure Abstract Data Type with an analyzed body
(a scheme procedure), instead of a simple list of instructions, like in the
old eval.


The point is that, on invocations of our lambda, we won't have to deal with
parsing. Parsing will only be done upon creating the lambda.


Let's see this in action.


(NOTE: I'll be using := as a way to denote storing:


var := value



This isn't really scheme, but I think it's easier than having a bunch of let
statements.)


(analyze-lambda '(lambda (n) ...)')



Now we need to analyze the body, then store it for later, so that we don't
redundantly analyze the body again.


analyzed-body := (analyze (lambda-body '(lambda (n) (if ...))'))

(analyze-if '(if (= n 1)
                 1
                 (* (factorial (- n 1)) n))')



analyze-if analyzes everything it's given, stores it, and then creates a new
execution procedure with those stored values.


  if-pred := (analyze '(= n 1)')
  ; this is the execution procedure: (lambda (env)
  ;                                    (execute-application (analyzed/= env)

  if-true := (analyze '1')
  ; this is the execution procedure: (lambda (env) 1)

  if-false := (analyze '(* (factorial (- n 1)) n)')
  ; this is too long to write out, but it's
  ; kind of like if-pred

  ;;this is the execution procedure we return:
  ;;let's call this execution procedure 'analyzed-fact-if'
  (lambda (env)
    (if (true? (if-pred env))
        (if-true env)
        (if-false env)))



And now that we know that result, let's go back to analyze-lambda.


  analyzed-body := analyzed-fact-if
  (analyze-lambda '(lambda (n) ...)')
     => (lambda (env) (make-procedure '(n) analyzed-body env'))



We store the last expression into the factorial variable, and we're done
defining factorial. Note that we only analyze the body ONCE: during the
analysis stage. We never analyze during the evaluation stage! This means
that during evaluation, every time we call this factorial function, we know
its body contains an if statement, and that the if statement checks if n
equals 0 (and what to do if the predicate is true or false).


Now, on to evaluating factorial. This is where you'll see all the cryptic
analyzing work pay off.


  (eval '(factorial 2) env') ; env has factorial definition

  ((analyze '(factorial 2)') env)

  ((analyze-application '(factorial 2)') env)

  ((lambda (env) (execute-application ...)) env)

  ((procedure-body {internal factorial value})
   (extend-environment ...)) ; extend-environment is same as old eval

  ;; let's call the extended environment, env2
  (analyzed-body env2) ; analyzed-body from definition above

 ((lambda (env)
   (if (true? (if-pred env))
       (if-true env)
       (if-false env)))
  env2)

 (if (true? (if-pred env2)) ; (= n 0)
     (if-true env2)   ; 1
     (if-false env2)) ; (* (factorial (- n 1)) n)



Here, n = 2 != 0, so we'll end up calling executing (if-false env2). if-false will do an application of * to (factorial (- n 1)) and n, but
these arguments have already been analyzed (when we did analyze-lambda).
So we evaluate the analyzed (factorial (- n 1)), which is:


  (analyzed-factorial {result of calling analyzed (- n 1)})

  (analyzed-body env3)
  ;env3 := env2 extended with n := (- {previous n} 1) = (- 2 1) = 1

  (if (true? (if-pred env3)) ; (= n 0)
      (if-true env3)   ; 1
      (if-false env3)) ; (* (factorial (- n 1)) n)



We recurse again, in the same fashion:


  (if (true? (if-pred env4)) ; (= n 0)
      (if-true env4) ; 1
      (if-false env4)) ; (* (factorial (- n 1)) n)



Here, n actually equals 0, so we call (if-true env4). if-true
disregards env4 and returns the number 1. Then, we go back to all the
execute-application primitive applications and multiply everything together.


And we get... 2.


So, we're done.


Notice that during the evaluation phase, we never check the syntax of a
statement. The syntax has already been looked at, and analyzed. We simply
carry out what these analyzed statements tell us to do. Think about the gain
in efficiency here when computing something like (factorial 100).


Normal Order and Applicative Order

            Lazy Evaluator


To start, get our version of the lazy evaluator:


cp ~cs61as/lib/lazy.scm .



Now that we have an evaluator expressed as a Lisp program, we can experiment
with alternative choices in language design simply by modifying the evaluator.
Indeed, new languages are often invented by first writing an evaluator that
embeds the new language within an existing high-level language.


For example, if we wish to discuss some aspect of a proposed modification to
Lisp with another member of the Lisp community, we can supply an evaluator
that embodies the change. The recipient can then experiment with the new
evaluator and send back comments as further modifications. Not only does the
high-level implementation base make it easier to test and debug the evaluator;
in addition, the embedding enables the designer to snarf features from the
underlying language, just as our embedded Lisp evaluator uses primitives and
control structure from the underlying Lisp. Only later (if ever) need the
designer go to the trouble of building a complete implementation in a low-
level language or in hardware.


In this section and the next we explore some variations on Scheme that provide
significant additional expressive power.


Review of Normal and Applicative Order


In Lesson 1, where we began our discussion of models of evaluation, we noted
that Scheme is an applicative-order language, namely, that all the arguments
to Scheme procedures are evaluated when the procedure is applied. In contrast,
normal-order languages delay evaluation of procedure arguments until the
actual argument values are needed. Delaying evaluation of procedure arguments
until the last possible moment (e.g., until they are required by a primitive
operation) is called lazy evaluation.


Consider the procedure


(define (try a b)
  (if (= a 0) 1 b))



Evaluating (try 0 (/ 1 0)) generates an error in Scheme. With lazy
evaluation, there would be no error. Evaluating the expression would return 1,
because the argument (/ 1 0) would never be evaluated.


An example that exploits lazy evaluation is the definition of a procedure
unless


(define (unless condition usual-value exceptional-value)
    (if condition
        exceptional-value
        usual-value))



that can be used in expressions such as


(unless (= b 0)
        (/ a b)
        (begin (display "exception: returning 0")
               0))



This won't work in an applicative-order language because both the usual value
and the exceptional value will be evaluated before unless is called. An
advantage of lazy evaluation is that some procedures, such as unless, can do
useful computation even if evaluation of some of their arguments would produce
errors or would not terminate.



Test Your Understanding



Consider the following:

> (define (double x) (+ x x))
double
> (double (+ 2 1))
6










In applicative order, how many times does + get called?






In normal order, how many times does + get called?





Strict vs. Non-Strict


If the body of a procedure is entered before an argument has been evaluated we
say that the procedure is non-strict in that argument. If the argument is
evaluated before the body of the procedure is entered we say that the
procedure is strict in that argument. In a purely applicative-order
language, all procedures are strict in each argument. In a purely normal-order
language, all compound procedures are non-strict in each argument, and
primitive procedures may be either strict or non-strict. There are also
languages (see SICP Exercise 4.31) that give programmers detailed control
over the strictness of the procedures they define.


A striking example of a procedure that can usefully be made non-strict is
cons (or, in general, almost any constructor for data structures). One can
do useful computation, combining elements to form data structures and
operating on the resulting data structures, even if the values of the elements
are not known. It makes perfect sense, for instance, to compute the length of
a list without knowing the values of the individual elements in the list. We
will exploit this idea later in the lesson to implement the streams of Lesson
11 as lists formed of non-strict cons pairs.


An Interpreter with Lazy Evaluation

            The Big Idea


In this section we will implement a normal-order language that is the same as
Scheme, except that compound procedures are non-strict in each argument. Primitive procedures will still be strict. It is not difficult to modify
the evaluator of Lesson 12 so that the language it interprets behaves this
way. Almost all the required changes center around procedure application.


(Remember, the choices above are just that: choices! The metacircular
evaluator from Lesson 12 works perfectly fine, but sometimes we want Scheme to
act differently. This section will be about modifying the MCE code so that our
interpreted Scheme is normal-order.)


The basic idea is that, when applying a procedure, the interpreter must
determine which arguments are to be evaluated and which are to be delayed. The
delayed arguments are not evaluated; instead, they are transformed into
objects called thunks. The thunk must contain the information required to
produce the value of the argument when it is needed, as if it had been
evaluated at the time of the application. Thus, the thunk must contain the
argument expression and the environment in which the procedure application is
being evaluated.


The process of evaluating the expression in a thunk is called forcing. In
general, a thunk will be forced only when its value is needed: when it is
passed to a primitive procedure that will use the value of the thunk; when it
is the value of a predicate of a conditional; and when it is the value of an
operator that is about to be applied as a procedure. One design choice we have
available is whether or not to memoize thunks, as we did with delayed objects
in Lesson 11. With memoization, the first time a thunk is forced, it stores
the value that is computed. Subsequent forcings simply return the stored value
without repeating the computation. We'll make our interpreter memoize, because
this is more efficient for many applications. There are tricky considerations
here, however.


Modifying the Evaluator


The main difference between the lazy evaluator and the one in Lesson 12 is in
the handling of procedure applications in eval and apply.


The application? clause of eval becomes


((application? exp)
 (apply (actual-value (operator exp) env)
        (operands exp)
        env))



This is almost the same as the application? clause of eval in Lesson 12.
For lazy evaluation, however, we call apply with the operand expressions,
rather than the arguments produced by evaluating them. Since we will need the
environment to construct thunks if the arguments are to be delayed, we must
pass this as well. We still evaluate the operator, because apply needs the
actual procedure to be applied in order to dispatch on its type (primitive
versus compound) and apply it.


Whenever we need the actual value of an expression, we use


(define (actual-value exp env)
  (force-it (eval exp env)))



instead of just eval, so that if the expression's value is a thunk, it will
be forced.


Modifying apply


Our new version of apply is also almost the same as the version in MCE. The
difference is that eval has passed in unevaluated operand expressions: For
primitive procedures (which are strict), we evaluate all the arguments before
applying the primitive; for compound procedures (which are non-strict) we
delay all the arguments before applying the procedure.


(define (apply procedure arguments env)
  (cond ((primitive-procedure? procedure)
         (apply-primitive-procedure
          procedure
          (list-of-arg-values arguments env)))  ; changed
        ((compound-procedure? procedure)
         (eval-sequence
          (procedure-body procedure)
          (extend-environment
           (procedure-parameters procedure)
           (list-of-delayed-args arguments env) ; changed
           (procedure-environment procedure))))
        (else
         (error
          "Unknown procedure type -- APPLY" procedure))))



The procedures that process the arguments are just like list-of-values from
Lesson 12, except that list-of-delayed-args delays the arguments instead of
evaluating them, and list-of-arg-values uses actual-value instead of
eval:


(define (list-of-arg-values exps env)
  (if (no-operands? exps)
      '()
      (cons (actual-value (first-operand exps) env)
            (list-of-arg-values (rest-operands exps)
                                env))))
(define (list-of-delayed-args exps env)
  (if (no-operands? exps)
      '()
      (cons (delay-it (first-operand exps) env)
            (list-of-delayed-args (rest-operands exps)
                                  env))))



Handling if


The other place we must change the evaluator is in the handling ofif, where
we must use actual-value instead of eval to get the value of the predicate
expression before testing whether it is true or false:


(define (eval-if exp env)
  (if (true? (actual-value (if-predicate exp) env))
      (eval (if-consequent exp) env)
      (eval (if-alternative exp) env)))



Modifying the driver-loop


Finally, we must change the driver-loop procedure (the read-eval-print
loop) to use actual-value instead of eval, so that if a delayed value is
propagated back to the read-eval-print loop, it will be forced before being
printed. We also change the prompts to indicate that this is the lazy
evaluator:


(define input-prompt ";;; L-Eval input:")
(define output-prompt ";;; L-Eval value:")
(define (driver-loop)
  (prompt-for-input input-prompt)
  (let ((input (read)))
    (let ((output
           (actual-value input the-global-environment)))
      (announce-output output-prompt)
      (user-print output)))
  (driver-loop))



Testing it Out


With these changes made, we can start the evaluator and test it. The
successful evaluation of the try expression discussed in the section on
Normal vs. Applicative Order indicates that the interpreter is performing lazy
evaluation:


(define the-global-environment (setup-environment))
(driver-loop)
;;; L-Eval input:
(define (try a b)
  (if (= a 0) 1 b))
;;; L-Eval value:
ok
;;; L-Eval input:
(try 0 (/ 1 0))
;;; L-Eval value:
1



Representing Thunks


Our evaluator must arrange to create thunks when procedures are applied to
arguments and to force these thunks later. A thunk must package an expression
together with the environment, so that the argument can be produced later. To
force the thunk, we simply extract the expression and environment from the
thunk and evaluate the expression in the environment. We use actual-value
rather than eval so that in case the value of the expression is itself a
thunk, we will force that, and so on, until we reach something that is not a
thunk:


(define (force-it obj)
  (if (thunk? obj)
      (actual-value (thunk-exp obj) (thunk-env obj))
      obj))



One easy way to package an expression with an environment is to make a list
containing the expression and the environment. Thus, we create a thunk as
follows:


(define (delay-it exp env)
  (list 'thunk exp env))

(define (thunk? obj)
  (tagged-list? obj 'thunk))

(define (thunk-exp thunk) (cadr thunk))

(define (thunk-env thunk) (caddr thunk))



Actually, what we want for our interpreter is not quite this, but rather
thunks that have been memoized. When a thunk is forced, we will turn it into
an evaluated thunk by replacing the stored expression with its value and
changing the thunk tag so that it can be recognized as already evaluated.


(define (evaluated-thunk? obj)
  (tagged-list? obj 'evaluated-thunk))

(define (thunk-value evaluated-thunk)
  (cadr evaluated-thunk))
(define (force-it obj)
  (cond ((thunk? obj)
         (let ((result (actual-value
                        (thunk-exp obj)
                        (thunk-env obj))))
           (set-car! obj 'evaluated-thunk)
           (set-car! (cdr obj) result)  ; replace exp with its value
           (set-cdr! (cdr obj) '())     ; forget unneeded env
           result))
        ((evaluated-thunk? obj)
         (thunk-value obj))
        (else obj)))



Notice that the same delay-it procedure works both with and without
memoization.


Streams as Lazy Lists

            Streams Revisited


In section Lesson 11, we showed how to implement streams as delayed lists. We
introduced special forms delay and cons-stream, which allowed us to
construct a "promise" to compute the cdr of a stream, without actually
fulfilling that promise until later. We could use this general technique of
introducing special forms whenever we need more control over the evaluation
process, but this is awkward. For one thing, a special form is not a first-class object like a procedure, so we cannot use it together with higher-order
procedures. Additionally, we were forced to create streams as a new kind of
data object similar but not identical to lists, and this required us to
reimplement many ordinary list operations (map, append, and so on) for use
with streams.


Streams in Lazy Evaluator


With lazy evaluation, streams and lists can be identical, so there is no need
for special forms or for separate list and stream operations. All we need to
do is to arrange matters so that cons is non-strict. One way to accomplish
this is to extend the lazy evaluator to allow for non-strict primitives, and
to implement cons as one of these. An easier way is to recall Lesson 4 that
there is no fundamental need to implement cons as a primitive at all.
Instead, we can represent pairs as procedures


(define (cons x y)
  (lambda (m) (m x y)))
(define (car z)
  (z (lambda (p q) p)))
(define (cdr z)
  (z (lambda (p q) q)))



In terms of these basic operations, the standard definitions of the list
operations will work with infinite lists (streams) as well as finite ones, and
the stream operations can be implemented as list operations. Here are some
examples:


(define (list-ref items n)
  (if (= n 0)
      (car items)
      (list-ref (cdr items) (- n 1))))

(define (map proc items)
  (if (null? items)
      '()
      (cons (proc (car items))
            (map proc (cdr items)))))
(define (scale-list items factor)
  (map (lambda (x) (* x factor))
       items))
(define (add-lists list1 list2)
  (cond ((null? list1) list2)
        ((null? list2) list1)
        (else (cons (+ (car list1) (car list2))
                    (add-lists (cdr list1) (cdr list2))))))
(define ones (cons 1 ones))
(define integers (cons 1 (add-lists ones integers)))
;;; L-Eval input:
(list-ref integers 17)
;;; L-Eval value:
18



Note that these lazy lists are even lazier than the streams of Lesson 11:
The car of the list, as well as the cdr, is delayed. In fact, even
accessing the car or cdr of a lazy pair need not force the value of a list
element. The value will be forced only when it is really needed -- e.g., for
use as the argument of a primitive, or to be printed as an answer.


Homework 12

            To get homework file, on an instructional account type:
cp ~cs61as/autograder/templates/hw12.scm .


Exercise 1


Abelson & Sussman, exercises 4.22 and 4.23.


Exercise 2


Abelson & Sussman, exercises 4.27 and 4.29.


Exercise 3


This exercise is crucial to understanding the concepts of this lesson.


Abelson & Sussman, exercises 4.25, 4.26 and 4.28.


Exercise 4


This exercise is less crucial, but still goes over very important concepts.


Abelson & Sussman, exercises 4.30, 4.32 and 4.33.


Exercise 5: Extra for Experts


Do this if you want to. This is NOT for credit.


Abelson & Sussman, exercise 4.31. This exercise doesn't require great
brilliance, but it's a lot of work and involves a lot of debugging of details.
On the other hand, completing this exercise will teach you a lot about the
evaluator.


Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


Python - Intro, Memoization, Lazy


Mini Python Intro

            Introduction


At this point, you should be very familiar with programming principles in Scheme and Racket. 
Time to transfer this knowledge into a new language! Enter Python. This is a bit more detailed than the intro to Python in your project 4 spec but still pretty basic. Doing one should make the other a breeze. Enjoy!


Homework


The homework prompts are scattered throughout the lesson and are intended to be little exercises to do while you learn. Here's the template. More details on the homework section of this lesson!


Installation


We'll be using Python 3 (specifically 3.5) in this lesson. This is not equivalent to Python 2. You can skip the following if you have already installed Python 3. When you launch python in your terminal, the version you have installed is displayed so check there.


Anaconda (recommended installation method)


Anaconda is a distribution of Python that packages together Python with some other useful libraries such as NumPy. Anaconda also makes it much easier to install more extensions and automatically adds python to your computer’s path variable.


Please install Python 3.5 from this link: https://www.continuum.io/downloads and optionally read this to get more acquainted with conda and its awesomeness.


It’s okay to obtain Python 3.5 via other methods, this is just a recommended method. If you run into any problems, consult Google and StackOverflow!


Loading and Running Python


If you have Python 3 installed correctly, you should be able to launch it via your terminal with the command python. You should see three carrots >>> that indicate that the python interpreter is accepting input! If you're having problems, please check that you've set up your path environment variable to point to your installation (if you're not sure what that means, try google!) and make sure that you remove any other paths to older python versions. If you're on a mac, see this.


MyComputer ~ $ python
Python 3.5.1 |Anaconda 2.4.1 (64-bit)| (default, Jan 29 2016, 15:01:46) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> exit()
MyComputer ~ $ 



If you have a file you’d like to run in python, you can type into your terminal “python” followed by the file path and the “-i” flag to load the file and run python interactively. If you are missing the -i flag, the python load the file, run it, and exit


MyComputer ~ $ python python_hw.py -i
>>>



Resources


Not required reading! Just references for more help and instruction:



	Official Python 3 Guide and Documentation

	Python Wikibook

	Mini Python Examples

	Google




When you're ready, move on to the next section!


Basic Data Types

            Basics


As experienced programmers, we'll be speeding through the basics so you can dive in. But a few rules before we begin:



	Python is case sensitive

	Indentation via Spaces or tabs are used to structure Python code

	Spaces and tabs are not interchangeable so pick one and stick to it (spaces are recommended)

	if you are using sublime, under View > Indentation please check "Indentation Using Spaces"

	if you ever run into errors, under View > Indentation try converting all indentation to spaces and double check your spacing




	Parentheses can be used to clarify order of evaluation (like in math)

	(1 + 2) * 3




	A # will comment out anything that follows it on the same line




Math and Numbers


Numbers are self-evaluating (will return themselves). Numerical operations can be performed on numbers, variables holding numerical value, and numerical return values. Here is a table of most of the built in Python numerical operations. Feel free to input these expressions directly into the Python interpreter and examine the results.





	Operation
	Expression
	Result





	Addition
	1 + 2 + 3
	6



	Subtraction
	7 - 1
	6



	Multiplication
	2 * 3
	6



	Division (Floating Point)
	5 / 2
	2.5



	Division (Floor)
	5 // 2
	2



	Modulo (remainder)
	5 % 2
	1



	Less than
	5 < 7
	True



	Greater than
	5 > 7
	False



	Check Equals
	5 == 5
	True



	Less than or equals
	5 <= 2
	False



	Greater than or equals
	5 >= 2
	True






Boolean Values


Boolean values are encoded by True and False. Boolean values are again self-evaluating (will return themselves). The following operations return boolean values and when used with other data types will consider them to be true (anything that is not False is true).





	Operation
	Expression
	Result





	true
	True
	True



	false
	False
	False



	not
	not True
	False



	and
	1 and True
	True



	or
	False or not True
	False






Strings


Strings are another self-evaluating data type. They constructed as a sequence of characters between matching quotes (you can use either single or double quotes but you cannot mix and match them within a string). 


>>> "hello"
'hello'
>>> 'hello'
'hello'



Characters inside of the opening and closing quotes are not evaluated. So you can have quote characters inside of a string as long as they are not matching to the open and close quotes


>>> "hello my name is 'Sally'"
"hello my name is 'Sally'"
>>> 'hello my name is "Sally"'
'hello my name is "Sally"'




  Homework Problem 1: Naughty Strings

  
  What is the error message returned when you improperly use quotes inside of strings?

  
  Provide an example and explain the error message.




Here are some useful operations on string and/or returning strings





	Operation
	Expression
	Result
	Notes





	Print
	print(“hello”)
	Prints to output
	also works on numbers



	Selection
	“hello”[0]
	‘h’
	is zero-indexed



	Selection
	“hello”[-1]
	‘o’
	can also be negative



	Slicing
	“hello”[1:3]
	‘el’
	is inclusive of the start; 
 exclusive of the end



	Slicing
	“hello”[1:]
	‘ello’
	end defaults to length of string; 
 but first operation



	Slicing
	“hello”[:-1]
	‘hell’
	start defaults to zero; 
 but last operation



	Concatenation
	“hello” + " world"
	‘hello world’
	cannot mix with numbers 
 creates a new string!



	Convert
	str(1)
	‘1’
	useful for concatenation of numbers and strings



	Repetition
	“hello” * 3
	‘hellohellohello’
	



	Contains
	‘h’ in “hello”
	True
	



	Get Length
	len(“hello”)
	4
	






Lists


Lists and strings are similar! Strings are lists of characters, but for the sake of abstraction, we distinguish the two. Don't violate our data abstraction barrier when you use strings vs lists, but do use their similarities to wrap your head around how to approach either. (One big difference is that you can't set elements of a string, but you can with a list!)


Surprise, surprise... Lists are self-evaluating! Lists are declared by enumerating comma separated elements between square brackets. Similarly to strings, access list values using indices (indexing starts at 0).


>>> test_list = ["this", "is", "a", "list", 1 , 2 , 3]
>>> test_list
['this', 'is', 'a', 'list', 1 , 2 , 3]
>>> test_list[3]
'list'




	Line 1: Set up a list and assign it to a variable named test_list

	Line 2: Check what the variable test_list is

	Line 3: ['this', 'is', 'a', 'list', 1 , 2 , 3] is returned (the list we created!)

	Line 4: Get the fourth element of the list (index = 3)

	Line 5: 'list' is returned (the fourth element)




And again, here is a compilation of list indexing and operations!


For the table below, assume x = ["this", "is", "a", "list"]





	Operation
	Expression
	Results
	Notes





	Print
	print([1,2,3])
	Prints to output
	also works on numbers & strings



	Selection
	x[0]
	‘this’
	is zero-indexed



	Selection
	x[-1]
	‘list’
	can also be negative



	Slicing
	x[1:3]
	['is', 'a']
	is inclusive of the start; 
 exclusive of the end



	Slicing
	x[1:]
	['is', 'a', 'list']
	end defaults to length of string; 
 but first operation



	Slicing
	x[:-1]
	['this', is', 'a']
	start defaults to zero; 
 but last operation



	Concatenation
	[1, 2, 3] + [4, 5, 6]
	[1, 2, 3, 4, 5, 6]
	



	Concatenation
	>>> x = [1, 2, 3] 
 >>> x += [4, 5, 6] 
 >>> x
	[1, 2, 3, 4, 5, 6]
	



	Repetition
	[‘Hi!’] * 4
	[‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’]
	



	Contains
	3 in [1, 2, 3]
	True
	



	Iteration 
 (more on this in the control section!)
	for i in [1, 2, 3]: print(i)
	1
2
3
	



	Get Length
	len([1, 2, 3])
	3
	







  Homework Problem 2: Fruits and Vegetables

  
  x = ["apple", "banana", "carrot"]

  
  Write one line of code that when executed returns "apples bananas and carrots". 




Variables and Definitions

            Variables


To define a variable use the equal symbol. (To check equality, a double equals is used.) Variables can defined inside and outside of procedure defintion.


>>> x = 1 #set x to be 1
>>> x
1
>>> x == 1 #check if x equals 1
True



Defining Procedures


To define a procedure use “def”. In python, indentations (spacing at the start of a line) and colons are the delimiters that structure the python code into blocks. Therefore, we’ll use indentation to indicate the body of our procedures. When you’re done, you’ll need a empty line with a matching indentation as the def line to close the define block if you are inputing it directly into the interpreter.


>>> def func(x):
...    x = x * 2
...    return x + 1
... 
>>> func(1)
3




	Line 1:  (0 space indentation) The function header assigns the function name and parameters

	Line 2:  (3 space indentation) The body of func doubles x and returns (double of x) + 1

	Line 3:  (0 space indentation) Empty Line closes the define block

	Line 4:  Call on func with parameter x as 1

	Line 5:  3 is returned




Note how we use a return statement. A return stops the procedure and delivers the output back to be displayed. Lines lacking the return statement aren’t propagated beyond the procedure innards. An apt analogy would be: a return statement is similar to you speaking aloud and the non-return statements are similar to your thoughts leading up to what you say. 


If your body is a single expression, you can write procedure definitions in one line. You still need the empty line


>>> def func(x): return (x * 2) + 1
...
>>> func(2)
5




	Line 1:  (0 space indentation) The function header assigns the function name and parameters and the single expression body

	Line 2:  (0 space indentation) Empty Line closes the define statement

	Line 3:  Call on func with parameter x as 1

	Line 4:  3 is returned




Control Measures

            If, Elif, Else


Conditional statements are formed using if, elif, and else statements. An if statement is composed of a predicate and a body that is executed if the predicate is satisfied. Elif is shorthand for “else if” and is used for any additional conditions beyond the first if statement. An elif statement has a similar construction as an if statement. The else statement follows all if and elif statement as is triggered when none of the conditional statements prior are fulfilled. 


If, elif, and else use indentation and colons to block the code appropriately. When you’re done, you’ll need a empty line with a matching indentation as the first line to close the conditional when you are inputting directly into the interpreter.


>>> if False:
...    3
... elif True:
...    4
... else:
...    5
...
4




	Line 1:  (0 space indentation) The if condition

	Line 2:  (3 space indentation) The if body

	Line 3:  (0 space indentation) The else if condition

	Line 4:  (3 space indentation) The else if body

	Line 5:  (0 space indentation) The else

	Line 6:  (3 space indentation) The else body

	Line 7:  (0 space indentation) Empty Line closes the if block and invokes evaluation

	Line 8: 4 is returned (the if case is skipped, the elif case is triggered, never reaches the else case)




Note that no return statement is used. That is because the conditional statement is outside of a procedure definition. Inside of a function body, you would expect “return 3” instead of “3” and so on, if that were the desired return value.



  Homework Problem 3: Fizz Buzz

  
  Write a program that prints the integers from 1 to n (n is an argument to the procedure).
  But for multiples of three print "Fizz" instead of the number, and for the multiples of five print "Buzz". 
  For numbers which are multiples of both three and five print "FizzBuzz".




Loops and Range


In python, loops are supported. Loop execute a block or line of code multiple times. Loops are useful for when you would like to progress through a sequence  or repeat an operation---use a loop to iterate, instead of recursion. for loops control the number of iterations to correspond with the entries of a sequence to iterate over. while loops control the number of iterations with a predicate.


Certain control statements can be invoked within loops to stop and break out of the loop or to skip to the next iteration. break does the former and continue does the latter action. Consult online resources if you need an example of their use.


While loops


While loops contain a predicate which is checked before the start of every iteration. If the predicate is not satisfied, the while loop stops. A while block uses a colon and indentation to indicate which line is the header and which are in the body


>>> x = 0
>>> while x < 3:
...    print("repeat")
...    x += 1
...
hello
hello
hello
>>> x #check what x is
3




	Line 1: set up a variable x equals to zero

	Line 2: (0 spaces) While header with condition of x being less than 3

	Line 3: (3 spaces) While body line calls print

	Line 4: (3 spaces) While body line increments x by 1 (x += 1 is the same as x = x + 1)

	Line 5: (0 spaces) Empty line closes While block and the block is evaluated

	Line 6: hello is printed (for x = 0)

	Line 7: hello is printed (for x = 1)

	Line 8: hello is printed (for x = 2) 

	Line 9: check the value of x

	Line 10: 3 is returned for the value of x (which is NOT less than 3)





  Homework Problem 4: Snow White and the Seven Dwarves

  
  Write a program called snow_white that takes in two numbers as arguments, 
  the first is the num_chants, the second is the max_sing.

  
  The program:

  
  
  	prints "heigh" "ho" alternatingly

  	prints "its off to work we go" after num_chants of "heigh" or "ho"

  	stops printing after having "it's off to work we go" max_sing times

  

  
  EXAMPLE: should print "it's off to work we go" between every 5 alternating "hi"s and "ho"s, for a maximum of 2 times.


>>> snow_white(5, 2)
heigh
ho
heigh
ho
heigh
it's off to work we go
ho
heigh
ho
heigh
ho
it's off to work we go


  
  Use a while loop (and possibly control statements) to accomplish this behavior.

  
  Homework Problem 5: Push First Odd Back (taken from CS10)

  
  Write a function called push_first_odd_back that takes in a list as an argument
  This function should place the first odd number at the back of the input list. 
  Do not return a new list - in fact this function shouldn't return anything, 
  it should only modify the input list. (Hint: use the while loop)




For Loops


For loops contain a variable and a sequence (more on this later). With each iteration, the value of the variable changes to the next value in the sequence. As with other multiple line blocks, for loops are delimited by colons and indentation and are completed with an empty line. Within the body of the for loop, you can access the value of the variable being iterated over. 


The range function creates a progression of numbers which can then be used in a for loop for control. Range takes in a start, end, and increment to create a sequence that includes the start and incremental entries up to, but excluding the end. Range will default start to zero and increment to one if not provided. For now, only use range in the context of a for loop, later in the lesson we'll go in depth on how range works.


TIP: if you want x iterations and don't actually plan on using the iteration variable, use range(x)


>>> for i in range(2): #same as do two times
...    print "hello"
...
hello
hello



>>> for i in range(3): #i is 0 then 1 then 2
...    print i
...
0
1
2



>>> for i in range(2, 6, 2): #start at 2, stop before 6, skip 2
...    print(i)
...
2
4



You can also use a string or a list in the place of range as a sequence to iterate over


>>> sum = 0
>>> for number in [1,5,8]: #iterating over a list
...    sum += number
...
>>> sum
14



>>> longer_string = ""
>>> for letter in "apple": #iterating over string
...    longer_string += letter * 3
...
>>> longer_string
'aaappppppllleee'




  Homework Problem 6: Cats and Dogs

  
  Write a program that return True if the string "cat" and "dog" appear the same number of times in the given string. 


cat_dog('catdog') → True
cat_dog('catcat') → False
cat_dog('1cat1cadodog') → True





Dictionaries and Memoization

            Dictionaries


Dictionaries are very similar to lists, but instead do not use indexes to reference values but keys. 


[image: ]


As a refresher, here's how you declare and access list values:


>>> list_var = [0, 1, 2, 3]
>>> list_var[0]
0
>>> list_var[1]
1



Now, contrast that to the structure of dictionaries.


Creating a dictionary: (The keys must be immutable, a.k.a strings, numbers, tuples, but not lists!)


>>> empty_dict = {}
>>> full_dict = {"January": 31, "February":28, "March": 31}



Accessing a dictionary:


>>> empty_dict["April"] #should error because there is no "April" key in this dictionary 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'April'
>>> full_dict["January"] #should return the value associated with "January" key
31



Adding to and Changing a dictionary key value pair:


>>> empty_dict["April"] = 30 #adding a new key,value pair
>>> empty_dict
{'April': 30}
>>> full_dict["February"] = 29 #changing an existing key's value
>>> full_dict #note that there is no order to the entries of the dictionary
{'March': 31, 'February': 29, 'January': 31}




Useful Dictionary Operations:


>>> len(full_dict)
3



>>> print ("dictionary as string: " + str(full_dict)) #str returns a printable string representation
dictionary as string: {'January': 31, 'March': 31, 'February': 29}



>>> full_dict.get("April", default=False) #returns default if key is not in dictionary
False
>>> full_dict.has_key("January")
True
>>> "January" in full_dict #same as has_key operation
True



>>> full_dict.update(empty_dict) #adds all of empty_dict's key,values into full_dict
>>> full_dict
{'January': 31, 'March': 31, 'February': 29, 'April': 30}



Iterating over a dictionary's keys


>>> all_months = ""
>>> total_days = 0
>>> for key in full_dict:
...    all_months += key
...    all_months += " "
...    total_days += full_dict[key]
...
>>> total_days
121
>>> all_months
'January March February April '



Iterating over a dictionary's values


>>> total_days = 0
>>> for val in full_dict.values():
...    total_days += val
...
>>> total_days
121



Deletion


>>> del empty_dict['April']; # remove entry with key 'Name'
>>> empty_dict.clear();     # remove all entries in dict
>>> del empty_dict ;        # delete entire dictionary




  Homework Problem 7: Character Frequencies

  
  Write a function char_freq() that takes a string and builds a frequency listing of the characters contained in it. 
  Represent the frequency listing as a Python dictionary with each letter as a key that stores the number of times that letter appears. 

  
  Try it with something like char_freq("abbabcbdbabdbdbabababcbcbab").

  
  Homework Problem 8.1: Caesar's Ciphers

  
  Write a function rotate_letters() that takes in a number and creates a new mapping of lower case letters offset by that number.
  Return the new mapping as a dictionary such that the original letter is mapped to the shifted letter.
  For example, rotate_letters(2) would map 'a'->'c', 'b'->'d', 'c'->'e' and so on.

  
  Homework Problem 8.2: Caesar's Ciphers

  
  Write a function decode_cipher() that takes in a dictionary of letter mappings and a cipher string (of only lower case letters).
  Return the decoded string that is created when every character is replaced by its mapping from the dictionary
  For example, decode_cipher(rotate_letters(2), "abc") should return "cde".

  
  Use this function to decode "jbj fpurzr vf terng" given that the letters had been shifted by 13.




Memoization


You have now all the tools to learn a new topic which is called memoization! Memoization is the act of storing answers to computations (particularly computationally expensive ones) as you compute things so that if you are required to repeat that computation, you already have a memoized answer. Memoization is often seen in the context of improving the efficiency of a slow recursive process that makes repetitive computations.


Consider the fibbonacci function which generates the nth fibbonacci number in the sequence. Recursively, the brute force definition of that process looks like:


def fib(n):
    return n if n < 2 else fib(n-2) + fib(n-1)



If n is sufficiently large, you'll be waiting a long time for fib to return. Consider that case the n is 5.
We'll have to compute fib(5-2) and separately fib(5-1).
But in computing fib(5-1) we'll have to recompute fib(5-2).
Following this logic, you can see we'll end up with many unneccessary recomputations. 


Take a look at the recursion tree generated by calling fib(6). Can you spot all the overlapping computations?


[image: ]


To reduce our inefficiency, we should cache, or store, computations as they complete. Then, before doing any computation, we simple check our cache for whether we had already done that computation. Our cache can be created with a dictionary! The keys will correspond to the argument value and the values will correspond to the calculated computation.


fib_cache = {}
def fib(n):
    if n in fib_cache:
        return fib_cache[n]
    else:
        fib_cache[n] = n if n < 2 else fib(n-2) + fib(n-1)
        return fib_cache[n]



This is kind of messy because the cache exists outside of your function. Alternatively, you can wrap the cache and function so that it is memoized within each call to the wrapper function. The cache will reset for each call to memo_fib() but at least within one call memoization occurs. In project 4, you'll write a better memoization routine that is less messy yet still memoized between calls.


def memo_fib(n):
    fib_cache = {}
    def fib(n):
        if n in fib_cache:
            return fib_cache[n]
        else:
            fib_cache[n] = n if n < 2 else fib(n-2) + fib(n-1)
            return fib_cache[n]
    return fib(n)




  Homework Problem 9: Memoized Product of Factorials

  
  Write a memoized accumulated product of factorials procedure in a similar fashion to memo_fib. You MUST use recursion.

  
  Accumulated Factorial of 5 = 5! * 4! * 3! * 2! * 1!




Lazy Evaluation and GeneratorsTA DAH YOU'RE DONE!

            Lazy Evaluation


Sorry for this bit of a jump in topics. You're skipping this from Lesson 12, so we'll do a quick intro here.


Lazy evaluation is the implementation of normal order evaluation as opposed to applicative order evaluation. As a review, in Lesson 1, where we began our discussion of models of evaluation, we noted that Scheme is an applicative-order language, namely, that all the arguments to Scheme procedures are evaluated when the procedure is applied. In contrast, normal-order languages delay evaluation of procedure arguments until the actual argument values are needed. Delaying evaluation of procedure arguments until the last possible moment (e.g., until they are required by a primitive operation) is called lazy evaluation.


Python is similar to Scheme. When you define a procedure and call it with arguments. All arguments are evaluated before the body is evaluated.


Consider the procedure


def try(a, b):
    if a == 0:
       return True
    else:
       return b



Evaluating try(0, 1/0) will trigger a division by zero error because the arguments are both evaluated first. 


In Lazy Evaluation, an error would not occur. Evaluating the expression would return 1, because the argument 1/0 would never be evaluated as it is never used in a primitive procedure nor returned.


if is a lazy procedure when used directly. If you were to try:


$ python
>>> if 0 == 0:
...    True
... else:
...    1/0
...
True



See that True gets returned since we never need to evaluate 1/0 so we never error! All this is possible because if is handled as a special form in the evaluation process (think mc-eval from lesson 11). For us to get this behavior in every procedure call, we would have to change how eval and apply work in Python. Instead of immediately evaluating the arguments to a procedure application before passing it to apply, we only do so if it is returned or used primitively. 


If you have an interest in a deeper understanding of lazy evaluation implemented in an interpreter, please read the original lesson 12 content. 


If you want to dabble with an implementation of lazy evaluation wrappers in Python, see the lazy.py module on this website.


Range and Generators


We've been using range() in for loops but we haven't thought much how it works. Range is an immutable sequence that is lazy. Behind the scenes, elements in a sequence created by range aren't created until they are required. Don't believe me? Try print(range(4)) and print([0, 1, 2, 3]).


We can create similar sequences to range() through the use of generators. In Python, generators are functions than create sequences by computing and yielding the next value as needed. They are analogous to streams from Scheme and are a lazy sequence as opposed to lists which are eager sequences (eager to enumerate).


Generators are iterable so you can use them in for loops, just like how we use range(). You can also call next(generator) on any generator procedure to get subsequent elements. Generators, however, cannot be iterated over multiple times. Once you've used up the sequence, it's gone. If you try to call next() on a used up generator you'll get a StopIteration error message.


Take a moment to ponder why we'd want generators. Why not just always use lists?


yield is how we create procedures that are generators as opposed to functions. You'll use yield instead of return. Now for an example:


def gen_to(n):
    for i in range(n+1):
        yield i



Now try printing each element using a for loop:


gen_to_7 = gen_to(7)
for i in gen_to(7):
    print(i)



Now try calling next:


next(gen_to_7)



Aha! The StopIteration error!


And now an infinite generator! Go ahead and try to print it and next through a call.


def gen_forever():
    i = -1
    while true:
        i += 1
        yield i




  Homework Problem 10: Growing Pains (Exponentially)

  
  Write a generator gen_exp() that takes a number n and generates (for eternity) the exponential of n to the n to the n starting at n.

  
  For example the first few elements of gen_exp(2) should be 2, (2^2), ((2^2)^ 2), (((2^2)^ 2) ^ 2)




TA DAH YOU'RE DONE!


More cool things! You should look into if you liked learning Python.



	Importing Modules like the math module... so awesome. See this link for an extensive directory of module libraries that come packaged with Python 3.5.

	Turtle Graphics

	Science-y math-y stuff which is already installed with an Anaconda distribuition




Python Homework

            



Due by April 28th, 2016 at 11:59PM PST 



(but you should probably do this before/during Project 4) 


Template


Download here.


Autograder


Sorry! There's no autograder as of now. Just test your work as best you can, you'll be graded pretty leniently. A for effort. It'll be in the works if time permits.


Exercises


Homework Problem 1: Naughty Strings


What is the error message returned when you improperly use quotes inside of strings?


Provide an example and explain the error message.





Homework Problem 2: Fruits and Vegetables


x = ["apple", "banana", "carrot"]


Write one line of code that when executed returns "apples bananas and carrots". 





Homework Problem 3: Fizz Buzz


Write a program that prints the integers from 1 to n (n is an argument to the procedure).
But for multiples of three print "Fizz" instead of the number, and for the multiples of five print "Buzz". 
For numbers which are multiples of both three and five print "FizzBuzz".





Homework Problem 4: Snow White and the Seven Dwarves


Write a program called snow_white that takes in two numbers as arguments, the first is the num_chants, the second is the max_sing.


The program:
1. prints "heigh" "ho" alternatingly
2. prints "its off to work we go" after num_chants of "heigh" or "ho"
3. stops printing after having "it's off to work we go" max_sing times


EXAMPLE: should print it's off to work we go between every 5 alternating his and hos, for a maximum of 2 times.


snow_white(5, 2)
heigh
ho
heigh
ho
heigh
it's off to work we go
ho
heigh
ho
heigh
ho
it's off to work we go



Use a while loop (and possibly control statements) to accomplish this behavior.





Homework Problem 5: Push First Odd Back (taken from CS10)


Write a function called push_first_odd_back that takes in a list as an argument
This function should place the first odd number at the back of the input list. 
Do not return a new list - in fact this function shouldn't return anything, 
it should only modify the input list. (Hint: use the while loop)





Homework Problem 6: Cats and Dogs


Write a program that return True if the string "cat" and "dog" appear the same number of times in the given string. 


cat_dog('catdog') → True
cat_dog('catcat') → False
cat_dog('1cat1cadodog') → True






Homework Problem 7: Character Frequencies


Write a function char_freq() that takes a string and builds a frequency listing of the characters contained in it. 
Represent the frequency listing as a Python dictionary with each letter as a key that stores the number of times that letter appears.


Try it with something like char_freq("abbabcbdbabdbdbabababcbcbab").





Homework Problem 8.1: Caesar's Ciphers


Write a function rotate_letters() that takes in a number and creates a new mapping of lower case letters offset by that number.
Return the new mapping as a dictionary such that the original letter is mapped to the shifted letter.
For example, rotate_letters(2) would map 'a'->'c', 'b'->'d', 'c'->'e' and so on.


Homework Problem 8.2: Caesar's Ciphers


Write a function decode_cipher() that takes in a dictionary of letter mappings and a cipher string (of only lower case letters).
Return the decoded string that is created when every character is replaced by its mapping from the dictionary
For example, decode_cipher(rotate_letters(2), "abc") should return "cde".


Use this function to decode "jbj fpurzr vf terng" given that the letters had been shifted by 13.





Homework Problem 9: Memoized Factorial


Write a memoized accumulated factorial procedure in a similar fashion to memo_fib. You MUST use recursion.


Accumulated Factorial of 5 = 5! * 4! * 3! * 2! * 1!





Homework Problem 10: Growing Pains (Exponentially)


Write a generator gen_exp() that takes a number n and generates (for eternity) the exponential of n to the n to the n starting at n.
For example the first few elements of gen_exp(2) should be 2, (2^2), ((2^2)^ 2), (((2^2)^ 2) ^ 2)





Submit Your Homework!


Submit as python_hw instead of hw12. Please submit on/after April 1, 2016 (not earlier)!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


13 - Logic Programming


Lesson 13 Intro

            Introduction


This week’s big idea is logic programming or declarative programming.


It’s the biggest step we’ve taken away from expressing a computation in
hardware terms. When we discovered streams, we saw how to express an algorithm
in a way that’s independent of the order of evaluation. Now we are going to
describe a computation in a way that has no (visible) algorithm at all!


We are using a logic programming language that A&S implemented in Scheme.
Because of that, the notation is Scheme-like, i.e., full of lists. Standard
logic languages like Prolog have different notations, but the idea is the
same.


Prerequisites


This lesson follows a very different paradigm than anything you've seen so
far. As such, there are no prerequisites!


Readings


Most of this lesson is taken from these notes and SICP Sections 4.4.1-4.4.3.


Logic Programming


Logic programming excels in providing interfaces to data bases for information
retrieval. The query language we shall use in this chapter is designed to be
used in this way.


All we do is assert facts:


> (load "~cs61as/lib/query.scm")
> (query)

;;; Query input:
(assert! (Brian likes potstickers))



and ask questions about the facts:


;;; Query input:
(?who likes potstickers)

;;; Query results:
(BRIAN LIKES POTSTICKERS)



Although the assertions and the queries take the form of lists, and so they
look a little like Scheme programs, they're not! There is no application of
function to argument here; an assertion is just data.


This is true even though, for various reasons, it's traditional to put the
verb (the relation) ﬁrst:


(assert! (likes Brian potstickers))



We'll use that convention hereafter, but that makes it even easier to fall
into the trap of thinking there is a function called likes. Read on to learn
how we program in this peculiar language!


What is Logic Programming

            What is Logic Programming?


At the beginning of this course, we stressed that computer science deals with
imperative (how to) knowledge, whereas mathematics deals with declarative
(what is) knowledge. Indeed, programming languages require that the programmer
express knowledge in a form that indicates the step-by-step methods for
solving particular problems. On the other hand, high-level languages provide,
as part of the language implementation, a substantial amount of methodological
knowledge that frees the user from concern with numerous details of how a
specified computation will progress.


Most programming languages, including Lisp, are organized around computing the
values of mathematical functions. Expression-oriented languages (such as Lisp,
Fortran, and Algol) capitalize on the "pun" that an expression that describes
the value of a function may also be interpreted as a means of computing that
value. Because of this, most programming languages are strongly biased toward
unidirectional computations (computations with well-defined inputs and
outputs). There are, however, radically different programming languages that
relax this bias. Logic programming extends this idea by combining a relational
vision of programming with a powerful kind of symbolic pattern matching called
unification.


This approach, when it works, can be a very powerful way to write programs.
Part of the power comes from the fact that a single "what is" fact can be
used to solve a number of different problems that would have different "how
to" components.


A Sample Database


Before we get into the specifics of logic programming, we need a database to
play with. You can load this database using:


> (load "~cs61as/lib/query.scm")
> (initialize-data-base microshaft-data-base)
> (query-driver-loop)



The personnel data base for Microshaft contains assertions about company
personnel. Here is the information about Ben Bitdiddle, the resident computer
wizard:


(address (Bitdiddle Ben) (Slumerville (Ridge Road) 10))
(job (Bitdiddle Ben) (computer wizard))
(salary (Bitdiddle Ben) 60000)



Each assertion is a list (in this case a triple) whose elements can themselves
be lists.


As resident wizard, Ben is in charge of the company's computer division, and
he supervises two programmers and one technician. Here is the information
about them:


(address (Hacker Alyssa P) (Cambridge (Mass Ave) 78))
(job (Hacker Alyssa P) (computer programmer))
(salary (Hacker Alyssa P) 40000)
(supervisor (Hacker Alyssa P) (Bitdiddle Ben))
(address (Fect Cy D) (Cambridge (Ames Street) 3))
(job (Fect Cy D) (computer programmer))
(salary (Fect Cy D) 35000)
(supervisor (Fect Cy D) (Bitdiddle Ben))
(address (Tweakit Lem E) (Boston (Bay State Road) 22))
(job (Tweakit Lem E) (computer technician))
(salary (Tweakit Lem E) 25000)
(supervisor (Tweakit Lem E) (Bitdiddle Ben))



There is also a programmer trainee, who is supervised by Alyssa:


(address (Reasoner Louis) (Slumerville (Pine Tree Road) 80))
(job (Reasoner Louis) (computer programmer trainee))
(salary (Reasoner Louis) 30000)
(supervisor (Reasoner Louis) (Hacker Alyssa P))



All of these people are in the computer division, as indicated by the word
computer as the first item in their job descriptions.


Ben is a high-level employee. His supervisor is the company's big wheel
himself:


(supervisor (Bitdiddle Ben) (Warbucks Oliver))
(address (Warbucks Oliver) (Swellesley (Top Heap Road)))
(job (Warbucks Oliver) (administration big wheel))
(salary (Warbucks Oliver) 150000)



Besides the computer division supervised by Ben, the company has an accounting
division, consisting of a chief accountant and his assistant:


(address (Scrooge Eben) (Weston (Shady Lane) 10))
(job (Scrooge Eben) (accounting chief accountant))
(salary (Scrooge Eben) 75000)
(supervisor (Scrooge Eben) (Warbucks Oliver))
(address (Cratchet Robert) (Allston (N Harvard Street) 16))
(job (Cratchet Robert) (accounting scrivener))
(salary (Cratchet Robert) 18000)
(supervisor (Cratchet Robert) (Scrooge Eben))



There is also a secretary for the big wheel:


(address (Aull DeWitt) (Slumerville (Onion Square) 5))
(job (Aull DeWitt) (administration secretary))
(salary (Aull DeWitt) 25000)
(supervisor (Aull DeWitt) (Warbucks Oliver))



The data base also contains assertions about which kinds of jobs can be done
by people holding other kinds of jobs. For instance, a computer wizard can do
the jobs of both a computer programmer and a computer technician:


(can-do-job (computer wizard) (computer programmer))
(can-do-job (computer wizard) (computer technician))



A computer programmer could fill in for a trainee:


(can-do-job (computer programmer)
            (computer programmer trainee))



Also, as is well known,


(can-do-job (administration secretary)
            (administration big wheel))



Simple Queries


The query language allows users to retrieve information from the data base by
posing queries in response to the system's prompt. For example, to find all
computer programmers one can say


;;; Query input:
(job ?x (computer programmer))



The system will respond with the following items:


;;; Query results:
(job (Hacker Alyssa P) (computer programmer))
(job (Fect Cy D) (computer programmer))



The input query specifies that we are looking for entries in the data base
that match a certain pattern. In this example, the pattern specifies entries
consisting of three items, of which the first is the literal symbol job, the
second can be anything, and the third is the literal list (computer
programmer). The "anything" that can be the second item in the matching list
is specified by a pattern variable, ?x. The general form of a pattern
variable is a symbol, taken to be the name of the variable, preceded by a
question mark. We will see below why it is useful to specify names for pattern
variables rather than just putting ? into patterns to represent "anything".
The system responds to a simple query by showing all entries in the data base
that match the specified pattern.


A pattern can have more than one variable. For example, the query


(address ?x ?y)



will list all the employees' addresses.


A pattern can have no variables, in which case the query simply determines
whether that pattern is an entry in the data base. If so, there will be one
match; if not, there will be no matches.


The same pattern variable can appear more than once in a query, specifying
that the same "anything" must appear in each position. This is why variables
have names. For example,


(supervisor ?x ?x)



finds all people who supervise themselves (though there are no such assertions
in our sample data base).


The query


(job ?x (computer ?type))



matches all job entries whose third item is a two-element list whose first
item is computer:


(job (Bitdiddle Ben) (computer wizard))
(job (Hacker Alyssa P) (computer programmer))
(job (Fect Cy D) (computer programmer))
(job (Tweakit Lem E) (computer technician))



This same pattern does not match


(job (Reasoner Louis) (computer programmer trainee))



because the third item in the entry is a list of three elements, and the
pattern's third item specifies that there should be two elements. If we wanted
to change the pattern so that the third item could be any list beginning with
computer, we could specify


(job ?x (computer . ?type))



For example,


(computer . ?type)



matches the data


(computer programmer trainee)



with ?type as the list (programmer trainee). It also matches the data


(computer programmer)



with ?type as the list (programmer), and matches the data


(computer)



with ?type as the empty list ().


We can describe the query language's processing of simple queries as follows:



	The system finds all assignments to variables in the query pattern that satisfy the pattern -- that is, all sets of values for the variables such that if the pattern variables are instantiated with (replaced by) the values, the result is in the data base.

	The system responds to the query by listing all instantiations of the query pattern with the variable assignments that satisfy it.




Note that if the pattern has no variables, the query reduces to a
determination of whether that pattern is in the data base. If so, the empty
assignment, which assigns no values to variables, satisfies that pattern for
that data base.



Assertions and Queries: Part 1


Add a couple assertions into the database about things that you like. This should look very similar to

(assert! (likes brian potstickers))










Next, write a query that returns all of the things you like. It should return to you all of the assertions you just added.





Assertions and Queries: Part 2



Add a few more assertions into the database about things that your project partner likes. Write another query that returns all of the things s/he likes.





Assertions and Queries: Part 3



Finally, write a query that will return all of the things that anoyone in the database likes.





Simple Queries


Give simple queries that retrieve the following information from the data base:

    	all people supervised by Ben Bitdiddle;

    	the names and jobs of all people in the accounting division;

    	the names and addresses of all people who live in Slumerville.











Remember, to load the example database and run the query system, type the following commands into an interpreter:

 (load "~cs61as/lib/query.scm")
(initialize-data-base microshaft-data-base)
(query-driver-loop)








Compound Queries


Simple queries form the primitive operations of the query language. In order
to form compound operations, the query language provides means of combination.
One thing that makes the query language a logic programming language is that
the means of combination mirror the means of combination used in forming
logical expressions: and, or, and not. (Here and, or, and not are not the Lisp
primitives, but rather operations built into the query language.)


We can use and as follows to find the addresses of all the computer
programmers:


(and (job ?person (computer programmer))
     (address ?person ?where))



The resulting output is


(and (job (Hacker Alyssa P) (computer programmer))
     (address (Hacker Alyssa P) (Cambridge (Mass Ave) 78)))
(and (job (Fect Cy D) (computer programmer))
     (address (Fect Cy D) (Cambridge (Ames Street) 3)))



In general,


(and <query1> <query2> ... <queryn>)



is satisfied by all sets of values for the pattern variables that
simultaneously satisfy <query1> <query2> ... <queryn>


As for simple queries, the system processes a compound query by finding all
assignments to the pattern variables that satisfy the query, then displaying
instantiations of the query with those values.


Another means of constructing compound queries is through or. For example,


(or (supervisor ?x (Bitdiddle Ben))
    (supervisor ?x (Hacker Alyssa P)))



will find all employees supervised by Ben Bitdiddle or Alyssa P. Hacker:


(or (supervisor (Hacker Alyssa P) (Bitdiddle Ben))
    (supervisor (Hacker Alyssa P) (Hacker Alyssa P)))

(or (supervisor (Fect Cy D) (Bitdiddle Ben)) 
    (supervisor (Fect Cy D) (Hacker Alyssa P)))

(or (supervisor (Tweakit Lem E) (Bitdiddle Ben))     
    (supervisor (Tweakit Lem E) (Hacker Alyssa P))) 

(or (supervisor (Reasoner Louis) (Bitdiddle Ben)) 
    (supervisor (Reasoner Louis) (Hacker Alyssa P)))



In general,


(or <query1> <query2> ... <queryn> )



is satisfied by all sets of values for the pattern variables that satisfy at
least one of <query1> <query2> ... <queryn>.


Compound queries can also be formed with not. For example,


(and (supervisor ?x (Bitdiddle Ben))
     (not (job ?x (computer programmer))))



finds all people supervised by Ben Bitdiddle who are not computer programmers.
In general,


(not <query1>)



is satisfied by all assignments to the pattern variables that do not satisfy
<query1>.


The final combining form is called lisp-value. When lisp-value is the
first element of a pattern, it specifies that the next element is a Lisp
predicate to be applied to the rest of the (instantiated) elements as
arguments. In general,


(lisp-value <predicate> <arg1> ... <argn>)



will be satisfied by assignments to the pattern variables for which the
<predicate> applied to the instantiated <arg1> ... <argn> is true. For
example, to find all people whose salary is greater than $30,000 we could
write


(and (salary ?person ?amount)
     (lisp-value > ?amount 30000))



Rules


As long as we just tell the system isolated facts, we can’t get extraordinarily interesting replies. But we can also tell it rules that allow it to infer one fact from another. For example, if we have a lot of facts like:


(mother Eve Cain)



then we can establish a rule about grandmotherhood:


(assert! (rule (grandmother ?elder ?younger)
               (and (mother ?elder ?mom)
                    (mother ?mom ?younger) ))))



The rule says that the ﬁrst part (the conclusion) is true if we can ﬁnd values for the variables such that the second part (the condition) is true. 


Again, resist the temptation to try to do composition of functions!


(assert! (rule (grandmother ?elder ?younger) ;; WRONG!!!!
               (mother ?elder (mother ?younger)) ))



Mother isn’t a function, and you can’t ask for the mother of someone as this
incorrect example tries to do. Instead, as in the correct version above, you
have to establish a variable (?mom) that has a value that satisﬁes the two
motherhood relationships we need.


In this language the words assert!, rule, and, or, and not have special
meanings. Everything else is just a word that can be part of assertions or
rules.



Analyzing the Family Tree


Let's try writing some rules! The following database (see Genesis 4) traces the genealogy of the descendants of Ada back to Adam, by way of Cain:

(son Adam Cain)
(son Cain Enoch)
(son Enoch Irad)
(son Irad Mehujael)
(son Mehujael Methushael)
(son Methushael Lamech)
(wife Lamech Ada)
(son Ada Jabal)
(son Ada Jubal)










Formulate rules such as "If S is the son of F, and F is the son of G, then S is the grandson of G" and "If W is the wife of M, and S is the son of W, then S is the son of M" (which was supposedly more true in biblical times than today) that will enable the query system to find the grandson of Cain; the sons of Lamech; the grandsons of Methushael.





More Rules


Here's a slightly more complicated rule:


(rule (lives-near ?person-1 ?person-2)
      (and (address ?person-1 (?town . ?rest-1))
           (address ?person-2 (?town . ?rest-2))
           (not (same ?person-1 ?person-2))))



It specifies that two people live near each other if they live in the same
town. The final not clause prevents the rule from saying that all people
live near themselves. The same relation is defined by the very simple rule:    


(rule (same ?x ?x))




Carpooling Time


By giving the query

(lives-near ?person (Hacker Alyssa P))










Alyssa P. Hacker is able to find people who live near her, with whom she can ride to work. On the other hand, when she tries to find all pairs of people who live near each other by querying

(lives-near ?person-1 ?person-2)










she notices that each pair of people who live near each other is listed twice; for example,

(lives-near (Hacker Alyssa P) (Fect Cy D))
(lives-near (Fect Cy D) (Hacker Alyssa P))










Why does this happen? Is there a way to find a list of people who live near each other, in which each pair appears only once? Explain. (Don't write the code for this!)





Logic as Programs


We can regard a rule as a kind of logical implication: If an assignment of
values to pattern variables satisfies the body, then it satisfies the
conclusion. Consequently, we can regard the query language as having the
ability to perform logical deductions based upon the rules. As an example,
consider the append operation. Append can be characterized by the
following two rules:



	For any list y, the empty list and y append to form y.

	For any u, v, y, and z, (cons u v) and y append to form (cons u z) if v and y append to form z.




To express this in our query language, we define two rules for a relation


(append x y z)



which we can interpret to mean "x and y append to form z":


(assert! (rule (append () ?y ?y)))
(assert! (rule (append (?u . ?v) ?y (?u . ?z))
         (append ?v ?y ?z)))



The first rule has no body, which means that the conclusion holds for any
value of ?y. Note how the second rule makes use of dotted-tail notation to
name the car and cdr of a list.


Given these two rules, we can formulate queries that compute the append of two
lists:


;;; Query input:
(append (a b) (c d) ?what)
;;; Query results:
(append (a b) (c d) (a b c d))



What is more striking, we can use the same rules to ask the question "Which
list, when appended to (a b), yields(a b c d)?" This is done as follows:


;;; Query input:
(append (a b) ?what (a b c d))
;;; Query results:
(append (a b) (c d) (a b c d))



The new thing in logic programming is that we can run a "function" backwards!
We can tell it the answer and get back the question. But the real magic is...


;;; Query input:
(append ?this ?that (a b c d))
;;; Query results:
(append () (a b c d) (a b c d))
(append (a) (b c d) (a b c d))
(append (a b) (c d) (a b c d))
(append (a b c) (d) (a b c d))
(append (a b c d) () (a b c d))



we can also ask for all pairs of lists that append to form (a b c d)! We can
use logic programming to compute multiple answers to the same question!
Somehow it found all the possible combinations of values that would make our
query true.


How does the append program work? Compare it to the Scheme append:


(define (append a b)
    (if (null? a)
        b
        (cons (car a) (append (cdr a) b)) ))



Like the Scheme program, the logic program has two cases: There is a base case
in which the ﬁrst argument is empty. In that case the combined list is the
same as the second appended list. And there is a recursive case in which we
divide the ﬁrst appended list into its car and its cdr. We reduce the given
problem into a problem about appending (cdr a) to b. The logic program is
diﬀerent in form, but it says the same thing.


(Just as, in the grandmother example, we had to give the mother a name instead
of using a function call, here we have to give(car a) a name--we call it
?u.)


Word of Caution


The query system may seem to exhibit quite a bit of intelligence in using the
rules to deduce the answers to the queries above. Actually, as we will see in
the next section, the system is following a well-determined algorithm in
unraveling the rules. Unfortunately, although the system works impressively in
the append case, the general methods may break down in more complex cases.


The "working backward" magic used in the append case doesn't always work.
Let's look at the following example, which reverses a list.


(assert! (rule (reverse (?a . ?x) ?y)
               (and (reverse ?x ?z)
                    (append ?z (?a) ?y) )))

(assert! (reverse () ()))



This works for (reverse (a b c) ?what) but not the other way around; it gets
into an inﬁnite loop. We can also write a version that works only backwards:


(assert! (rule (backward (?a . ?x) ?y)
               (and (append ?z (?a) ?y)
                    (backward ?x ?z) )))

(assert! (backward () ()))



But it's much harder to write one that works both ways. Even as we speak,
logic programming fans are trying to push the limits of the idea, but right
now, you still have to understand something about the below-the-line algorithm
to be conﬁdent that your logic program won't loop.



Last-Pair


Define rules to implement the last-pair operation of SICP exercise 2.17, which returns a list containing the last element of a nonempty list.

Check your rules on queries such as (last-pair (3) ?x), (last-pair (1 2 3) ?x), and (last-pair (2 ?x) (3)). Do your rules work correctly on queries such as (last-pair ?x (3))?





Takeaways


Here are some takeaways from this subsection:



	In logic programming, we assert facts and ask questions.

	An assertion is represented by a list.

	We use the query language to retrieve information from the data base.

	Rules allow infering one fact from another.

	We can write programs such as append with logic programming!




What's Next?


Go to the next subsection and learn how the query system works!


How the Query System Works

            Introduction


In this section we give an overview that explains the general structure of the system independent of low-level implementation details. After describing the implementation of the interpreter, we will be in a position to understand some of its limitations and some of the subtle ways in which the query language's logical operations differ from the operations of mathematical logic. 


It should be apparent that the query evaluator must perform some kind of search in order to match queries against facts and rules in the data base. One way to do this would be to implement the query system as a nondeterministic program (you don't have to worry about this way). Another possibility is to manage the search with the aid of streams. Our implementation follows this second approach.


The query system is organized around two central operations called pattern matching and unification. We first describe pattern matching and explain how this operation, together with the organization of information in terms of streams of frames, enables us to implement both simple and compound queries.


We next discuss unification, a generalization of pattern matching needed to implement rules. Finally, we show how the entire query interpreter fits together through a procedure that classifies expressions in a manner analogous to the way eval classifies expressions for the metacircular evaluator. 


Pattern Matching


A pattern matcher is a program that tests whether some datum fits a specified pattern. For example, the data list ((a b) c (a b)) matches the pattern (?x c ?x) with the pattern variable ?x bound to (a b). The same data list matches the pattern (?x ?y ?z) with ?x and ?z both bound to (a b) and ?y bound to c. It also matches the pattern ((?x ?y) c (?x ?y)) with ?x bound to a and ?y bound to b. However, it does not match the pattern (?x a ?y), since that pattern specifies a list whose second element is the symbol a.


The pattern matcher used by the query system takes as inputs a pattern (e.g., (?x c ?x)), a datum (e.g., ((a b) c (a b))), and a frame that specifies bindings for various pattern variables. It checks whether the datum matches the pattern in a way that is consistent with the bindings already in the frame. If so, it returns the given frame augmented by any bindings that may have been determined by the match. Otherwise, it indicates that the match has failed.


For example, using the pattern (?x ?y ?x) to match the datum (a b a) given an empty frame will return a frame specifying that ?x is bound to a and ?y is bound to b. Trying the match with the same pattern, the same datum, and a frame specifying that ?y is bound to a will fail. Trying the match with the same pattern, the same datum, and a frame in which?y is bound to b and?x is unbound will return the given frame augmented by a binding of ?x to a.


The pattern matcher is all the mechanism that is needed to process simple
queries that don't involve rules. For instance, to process the query


(job ?x (computer programmer))



we scan through all assertions in the data base and select those that match the pattern with respect to an initially empty frame. For each match we find, we use the frame returned by the match to instantiate the pattern with a value for ?x.


Streams of Frames


The testing of patterns against frames is organized through the use of
streams. Given a single frame, the matching process runs through the data-base
entries one by one. For each data-base entry, the matcher generates either a
special symbol indicating that the match has failed or an extension to the
frame. The results for all the data-base entries are collected into a stream,
which is passed through a filter to weed out the failures. The result is a
stream of all the frames that extend the given frame via a match to some
assertion in the data base.


In our system, a query takes an input stream of frames and performs the above
matching operation for every frame in the stream, as indicated in the figure
below. That is, for each frame in the input stream, the query generates a new
stream consisting of all extensions to that frame by matches to assertions in
the data base. All these streams are then combined to form one huge stream,
which contains all possible extensions of every frame in the input stream.
This stream is the output of the query.


[image: ]


To answer a simple query, we use the query with an input stream consisting of
a single empty frame. The resulting output stream contains all extensions to
the empty frame (that is, all answers to our query). This stream of frames is
then used to generate a stream of copies of the original query pattern with
the variables instantiated by the values in each frame, and this is the stream
that is finally printed.


Compound Queries


The real elegance of the stream-of-frames implementation is evident when we
deal with compound queries. The processing of compound queries makes use of
the ability of our matcher to demand that a match be consistent with a
specified frame. For example, to handle the and of two queries, such as


(and (can-do-job ?x (computer programmer trainee))
     (job ?person ?x))



(informally, "Find all people who can do the job of a computer programmer
trainee"), we first find all entries that match the pattern


(can-do-job ?x (computer programmer trainee))



This produces a stream of frames, each of which contains a binding for ?x.
Then for each frame in the stream we find all entries that match


(job ?person ?x)



in a way that is consistent with the given binding for ?x. Each such match
will produce a frame containing bindings for ?x and ?person. The and of two
queries can be viewed as a series combination of the two component queries, as
shown in the figure below. The frames that pass through the first query filter
are filtered and further extended by the second query.


[image: ]


The and combination of two queries is produced by operating on the stream of
frames in series.


The figure below shows the analogous method for computing the or of two
queries as a parallel combination of the two component queries. The input
stream of frames is extended separately by each query. The two resulting
streams are then merged to produce the final output stream.


[image: ]


The or combination of two queries is produced by operating on the stream of
frames in parallel and merging the results.


Even from this high-level description, it is apparent that the processing of
compound queries can be slow. For example, since a query may produce more than
one output frame for each input frame, and each query in anand gets its
input frames from the previous query, an and query could, in the worst case,
have to perform a number of matches that is exponential in the number of
queries. Though systems for handling only simple queries are quite practical,
dealing with complex queries is extremely difficult.


From the stream-of-frames viewpoint, the not of some query acts as a filter
that removes all frames for which the query can be satisfied. For instance,
given the pattern


(not (job ?x (computer programmer)))



we attempt, for each frame in the input stream, to produce extension frames
that satisfy (job ?x (computer programmer)). We remove from the input stream
all frames for which such extensions exist. The result is a stream consisting
of only those frames in which the binding for?x does not satisfy (job ?x (computer programmer)). For example, in processing the query


(and (supervisor ?x ?y)
     (not (job ?x (computer programmer))))



the first clause will generate frames with bindings for ?x and?y. The not
clause will then filter these by removing all frames in which the binding for
?x satisfies the restriction that ?x is a computer programmer.


The lisp-value special form is implemented as a similar filter on frame
streams. We use each frame in the stream to instantiate any variables in the
pattern, then apply the Lisp predicate. We remove from the input stream all
frames for which the predicate fails.


Unification


In order to handle rules in the query language, we must be able to find the
rules whose conclusions match a given query pattern. Rule conclusions are like
assertions except that they can contain variables, so we will need a
generalization of pattern matching -- called unification -- in which both the
"pattern" and the "datum" may contain variables.


A unifier takes two patterns, each containing constants and variables, and
determines whether it is possible to assign values to the variables that will
make the two patterns equal. If so, it returns a frame containing these
bindings. For example, unifying (?x a ?y) and (?y ?z a) will specify a
frame in which?x, ?y, and?z must all be bound toa. On the other hand,
unifying(?x ?y a) and(?x b ?y) will fail, because there is no value for
?y that can make the two patterns equal. (For the second elements of the
patterns to be equal, ?y would have to be b; however, for the third
elements to be equal, ?y would have to bea.) The unifier used in the
query system, like the pattern matcher, takes a frame as input and performs
unifications that are consistent with this frame.


The unification algorithm is the most technically difficult part of the query
system. With complex patterns, performing unification may seem to require
deduction. To unify(?x ?x) and ((a ?y c) (a b ?z)), for example, the
algorithm must infer that ?x should be (a b c), ?y should be b, and
?z should be c. We may think of this process as solving a set of equations
among the pattern components. In general, these are simultaneous equations,
which may require substantial manipulation to solve. For example, unifying
(?x ?x) and((a ?y c) (a b ?z)) may be thought of as specifying the
simultaneous equations


?x  =  (a ?y c)
?x  =  (a b ?z)



These equations imply that


(a ?y c)  =  (a b ?z)



which in turn implies that


a  =  a, ?y  =  b, c  =  ?z,



and hence that


?x  =  (a b c)



In a successful pattern match, all pattern variables become bound, and the
values to which they are bound contain only constants. This is also true of
all the examples of unification we have seen so far. In general, however, a
successful unification may not completely determine the variable values; some
variables may remain unbound and others may be bound to values that contain
variables.


Consider the unification of(?x a) and((b ?y) ?z). We can deduce that ?x = (b ?y) anda = ?z, but we cannot further solve for ?x or?y. The
unification doesn't fail, since it is certainly possible to make the two
patterns equal by assigning values to?x and?y. Since this match in no
way restricts the values?y can take on, no binding for?y is put into the
result frame. The match does, however, restrict the value of ?x. Whatever
value ?y has, ?x must be(b ?y). A binding of ?x to the pattern (b ?y) is thus put into the frame. If a value for?y is later determined and
added to the frame (by a pattern match or unification that is required to be
consistent with this frame), the previously bound ?x will refer to this
value.


Applying Rules


Unification is the key to the component of the query system that makes
inferences from rules. To see how this is accomplished, consider processing a
query that involves applying a rule, such as


(lives-near ?x (Hacker Alyssa P))



To process this query, we first use the ordinary pattern-match procedure
described above to see if there are any assertions in the data base that match
this pattern. (There will not be any in this case, since our data base
includes no direct assertions about who lives near whom.) The next step is to
attempt to unify the query pattern with the conclusion of each rule. We find
that the pattern unifies with the conclusion of the rule


(rule (lives-near ?person-1 ?person-2)
      (and (address ?person-1 (?town . ?rest-1))
           (address ?person-2 (?town . ?rest-2))
           (not (same ?person-1 ?person-2))))



resulting in a frame specifying that ?person-2 is bound to (Hacker Alyssa P) and that?x should be bound to (have the same value as) ?person-1. Now, relative to this frame, we evaluate the compound query given by the body of the rule. Successful matches will extend this frame by providing a binding for ?person-1, and consequently a value for?x, which we can use to instantiate the original query pattern.


In general, the query evaluator uses the following method to apply a rule when
trying to establish a query pattern in a frame that specifies bindings for
some of the pattern variables:



	Unify the query with the conclusion of the rule to form, if successful, an extension of the original frame.

	Relative to the extended frame, evaluate the query formed by the body of the rule.




Notice how similar this is to the method for applying a procedure in the
eval/apply evaluator for Lisp:



	Bind the procedure's parameters to its arguments to form a frame that extends the original procedure environment.

	Relative to the extended environment, evaluate the expression formed by the body of the procedure.




The similarity between the two evaluators should come as no surprise. Just as procedure definitions are the means of abstraction in Lisp, rule definitions are the means of abstraction in the query language. In each case, we unwind the abstraction by creating appropriate bindings and evaluating the rule or procedure body relative to these.


Simple Queries


We saw earlier in this section how to evaluate simple queries in the absence
of rules. Now that we have seen how to apply rules, we can describe how to
evaluate simple queries by using both rules and assertions.


Given the query pattern and a stream of frames, we produce, for each frame in
the input stream, two streams:



	a stream of extended frames obtained by matching the pattern against all assertions in the data base (using the pattern matcher), and

	a stream of extended frames obtained by applying all possible rules (using the unifier).




Appending these two streams produces a stream that consists of all the ways
that the given pattern can be satisfied consistent with the original frame.
These streams (one for each frame in the input stream) are now all combined to
form one large stream, which therefore consists of all the ways that any of
the frames in the original input stream can be extended to produce a match
with the given pattern.


The Query Evaluator and the Driver Loop


Despite the complexity of the underlying matching operations, the system is
organized much like an evaluator for any language. The procedure that
coordinates the matching operations is calledqeval, and it plays a role
analogous to that of the eval procedure for Lisp. qeval takes as inputs a
query and a stream of frames. Its output is a stream of frames, corresponding
to successful matches to the query pattern, that extend some frame in the
input stream. Like eval, qeval classifies the different types of
expressions (queries) and dispatches to an appropriate procedure for each.
There is a procedure for each special form (and, or, not, and lisp-value)
and one for simple queries.


The driver loop, which is analogous to the driver-loop procedure for the
other evaluators in this chapter, reads queries from the terminal. For each
query, it calls qeval with the query and a stream that consists of a single
empty frame. This will produce the stream of all possible matches (all
possible extensions to the empty frame). For each frame in the resulting
stream, it instantiates the original query using the values of the variables
found in the frame. This stream of instantiated queries is then printed.


The driver also checks for the special command assert!, which signals that
the input is not a query but rather an assertion or rule to be added to the
data base. For instance,


(assert! (job (Bitdiddle Ben) (computer wizard)))
(assert! (rule (wheel ?person)
               (and (supervisor ?middle-manager ?person)
                    (supervisor ?x ?middle-manager))))



An Example


Here’s an example, partly traced:


;;; Query input:
(assert! (rule (append () ?y ?y)))

;;; Query input:
(assert! (rule (append (?u . ?v) ?y (?u . ?z))
               (append ?v ?y ?z)))

;;; Query input:
(append ?a ?b (aa bb))

(unify-match (append ?a ?b (aa bb))   ; MATCH ORIGINAL QUERY
             (append () ?1y ?1y)      ; AGAINST BASE CASE RULE
             ())                      ; WITH NO CONSTRAINTS

RETURNS: ((?1y . (aa bb)) (?b . ?1y) (?a . ()))
PRINTS: (append () (aa bb) (aa bb))



Since the base-case rule has no body, once we’ve matched it, we can print a
successful result. (Before printing, we have to look up variables in the
environment so what we print is variable-free.)


Now we unify the original query against the conclusion of the other rule:


(unify-match (append ?a ?b (aa bb))               ; MATCH ORIGINAL QUERY
             (append (?2u . ?2v) ?2y (?2u . ?2z)) ; AGAINST RECURSIVE RULE
             ())                                  ; WITH NO CONSTRAINTS

RETURNS: ((?2z . (bb)) (?2u . aa) (?b . ?2y) (?a . (?2u . ?2v)))
         [call it F1]



This was successful, but we’re not ready to print anything yet, because we now
have to take the body of that rule as a new query. Note the indenting to
indicate that this call to unify-match is within the pending rule.


    (unify-match (append ?2v ?2y ?2z)   ; MATCH BODY OF RECURSIVE RULE
                 (append () ?3y ?3y)    ; AGAINST BASE CASE RULE
                 F1)                    ; WITH CONSTRAINTS FROM F1

    RETURNS: ((?3y . (bb)) (?2y . ?3y) (?2v . ()) [plus F1])
    PRINTS: (append (aa) (bb) (aa bb))

    (unify-match (append ?2v ?2y ?2z)                 ; MATCH SAME BODY
                 (append (?4u . ?4v) ?4y (?4u . ?4z)) ; AGAINST RECURSIVE RULE
                 F1)                                  ; WITH F1 CONSTRAINTS

    RETURNS: ((?4z . ()) (?4u . bb) (?2y . ?4y) (?2v . (?4u . ?4v))
             [plus F1]) [call it F2]

        (unify-match (append ?4v ?4y ?4z) ; MATCH BODY FROM NEWFOUND MATCH
                     (append () ?5y ?5y)  ; AGAINST BASE CASE RULE
                     F2)                  ; WITH NEWFOUND CONSTRAINTS

        RETURNS: ((?5y . ()) (?4y . ?5y) (?4v . ()) [plus F2])
        PRINTS: (append (aa bb) () (aa bb))

        (unify-match (append ?4v ?4y ?4z)                 ; MATCH SAME BODY
                     (append (?6u . ?6v) ?6y (?6u . ?6z)) ; AGAINST RECURSIVE RULE
                     F2)                                  ; SAME CONSTRAINTS

        RETURNS: ()                                       ; BUT THIS FAILS



Takeaways


Here are several takeaways from this subsection:



	Simple queries are processed with the pattern matcher.

	To process compound queries, the pattern matcher needs to check if a match is consistent with a specified frame.

	Rules are handled with unification.




What's Next?


In the next subsection, we are going to talk about the relation between logical programming and mathematical logic.


Is Logic Programming Mathematical Logic

            Is Logic Programming Mathematical Logic?


The means of combination used in the query language may at first seem
identical to the operations and, or, and not of mathematical logic, and the
application of query-language rules is in fact accomplished through a
legitimate method of inference. This identification of the query language with
mathematical logic is not really valid, though, because the query language
provides a control structure that interprets the logical statements
procedurally. We can often take advantage of this control structure. For
example, to find all of the supervisors of programmers we could formulate a
query in either of two logically equivalent forms:


(and (job ?x (computer programmer))
     (supervisor ?x ?y))



or


(and (supervisor ?x ?y)
     (job ?x (computer programmer)))



If a company has many more supervisors than programmers (the usual case), it
is better to use the first form rather than the second because the data base
must be scanned for each intermediate result (frame) produced by the first
clause of the and.


The aim of logic programming is to provide the programmer with techniques for
decomposing a computational problem into two separate problems: "what" is to
be computed, and "how" this should be computed. This is accomplished by
selecting a subset of the statements of mathematical logic that is powerful
enough to be able to describe anything one might want to compute, yet weak
enough to have a controllable procedural interpretation. The intention here is
that, on the one hand, a program specified in a logic programming language
should be an effective program that can be carried out by a computer. Control
("how" to compute) is effected by using the order of evaluation of the
language. We should be able to arrange the order of clauses and the order of
subgoals within each clause so that the computation is done in an order deemed
to be effective and efficient. At the same time, we should be able to view the
result of the computation ("what" to compute) as a simple consequence of the
laws of logic.


Our query language can be regarded as just such a procedurally interpretable
subset of mathematical logic. An assertion represents a simple fact (an atomic
proposition). A rule represents the implication that the rule conclusion holds
for those cases where the rule body holds. A rule has a natural procedural
interpretation: To establish the conclusion of the rule, establish the body of
the rule. Rules, therefore, specify computations. However, because rules can
also be regarded as statements of mathematical logic, we can justify any
"inference" accomplished by a logic program by asserting that the same result
could be obtained by working entirely within mathematical logic.


Infinite Loops


A consequence of the procedural interpretation of logic programs is that it is
possible to construct hopelessly inefficient programs for solving certain
problems. An extreme case of inefficiency occurs when the system falls into
infinite loops in making deductions. As a simple example, suppose we are
setting up a data base of famous marriages, including


(assert! (married Minnie Mickey))



If we now ask


(married Mickey ?who)



we will get no response, because the system doesn't know that if A is married
to B, then B is married to A. So we assert the rule


(assert! (rule (married ?x ?y)
               (married ?y ?x)))



and again query


(married Mickey ?who)



Unfortunately, this will drive the system into an infinite loop, as follows:



	The system finds that the married rule is applicable; that is, the rule conclusion (married ?x ?y) successfully unifies with the query pattern (married Mickey ?who) to produce a frame in which ?x is bound to Mickey and ?y is bound to ?who. So the interpreter proceeds to evaluate the rule body (married ?y ?x) in this frame -- in effect, to process the query (married ?who Mickey).

	One answer appears directly as an assertion in the data base: (married Minnie Mickey).

	The married rule is also applicable, so the interpreter again evaluates the rule body, which this time is equivalent to (married Mickey ?who).




The system is now in an infinite loop. Indeed, whether the system will find
the simple answer (married Minnie Mickey) before it goes into the loop
depends on implementation details concerning the order in which the system
checks the items in the data base. This is a very simple example of the kinds
of loops that can occur. Collections of interrelated rules can lead to loops
that are much harder to anticipate, and the appearance of a loop can depend on
the order of clauses in an and or on low-level details concerning the order
in which the system processes queries.


Problems with not


Another quirk in the query system concerns not. Given the Microshaft data
base introduced earlier, consider the following two queries:


(and (supervisor ?x ?y)
     (not (job ?x (computer programmer))))
(and (not (job ?x (computer programmer)))
     (supervisor ?x ?y))



These two queries do not produce the same result. The first query begins by
finding all entries in the data base that match(supervisor ?x ?y), and then
filters the resulting frames by removing the ones in which the value of ?x
satisfies(job ?x (computer programmer)). The second query begins by
filtering the incoming frames to remove those that can satisfy (job ?x (computer programmer)). Since the only incoming frame is empty, it checks the
data base to see if there are any patterns that satisfy (job ?x (computer programmer)). Since there generally are entries of this form, the not clause
filters out the empty frame and returns an empty stream of frames.
Consequently, the entire compound query returns an empty stream.


The trouble is that our implementation of not really is meant to serve as a
filter on values for the variables. If a not clause is processed with a frame
in which some of the variables remain unbound (as does ?x in the example
above), the system will produce unexpected results. Similar problems occur
with the use of lisp-value -- the Lisp predicate can't work if some of its
arguments are unbound.


There is also a much more serious way in which the not of the query language
differs from the not of mathematical logic. In logic, we interpret the
statement "not P" to mean that P is not true. In the query system, however,
"not P" means that P is not deducible from the knowledge in the data base. For
example, given the Microshaft data base, the system would happily deduce all
sorts of not statements, such as that Ben Bitdiddle is not a baseball fan,
that it is not raining outside, and that 2 + 2 is not 4.78 In other words, the
not of logic programming languages reflects the so-called closed world
assumption that all relevant information has been included in the data base.


Takeaways


In this subsection, you learned:



	Logical programming is a procedurally interpretable subset of mathematical logic.

	There are pitfalls: loops and not.




Implementing the Query System

            Implementing the Query System


If you're interested in how the inner workings of this query system works, take a look at SICP Section 4.4.4. While this material is very interesting, you are not responsible for knowing the implementation of the query system for this class.


Homework 13

            For all problems that involve writing queries or rules, test your solutions.


To run the query system and load in the sample data:


> (load "~cs61as/lib/query.scm")
> (initialize-data-base microshaft-data-base)
> (query-driver-loop)



You are now in the query system's interpreter.


To add an assertion:


(assert! (foo bar))



To add a rule:


(assert! (rule (foo) (bar)))



Anything else is a query.


Exercise 1


Abelson & Sussman, exercises 4.56, 4.57, 4.58 and 4.65.


Exercise 2: Extra for Experts


Do this if you want to. This is NOT for credit.


Earlier in the section, we describe rules that allow inference of the reverse
relation in one direction, i.e.,


;;; Query input:
 (forward-reverse (a b c) ?what) 

;;; Query results:
 (FORWARD-REVERSE (A B C) (C B A)) 

;;; Query input:
 (forward-reverse ?what (a b c)) 

;;; Query results:
 ... infinite loop



or


;;; Query input:
 (backward-reverse ?what (a b c)) 

;;; Query results:
 (BACKWARD-REVERSE (C B A) (A B C)) 

;;; Query input:
 (backward-reverse (a b c) ?what) 

;;; Query results:
 ... infinite loop



Define rules that allow inference of the reverse relation in both directions,
to produce the following dialog: 


;;; Query input:
 (reverse ?what (a b c)) 

;;; Query results:
 (REVERSE (C B A) (A B C)) 

;;; Query input:
 (reverse (a b c) ?what) 

;;; Query results:
 (REVERSE (A B C) (C B A))



Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!


14 - Concurrency and MapReduce


Lesson 14 Intro

            Introduction


In this lesson, we'll discuss the basics of concurrency.z


Prerequisites


You should understand assignment and mutable data.


Readings


Most of this lesson is based off of these
notes
and SICP 3.4.


Introduction to Concurrency


In Unit 3, we saw the power of computational objects with local state as tools for modeling. But this power came at a price.


By introducing assignment we are forced to admit time into our
computational models. Before we introduced assignment, all our programs were
timeless, in the sense that any expression that has a value always has the
same value. In contrast, recall the example of modeling withdrawals from a
bank account and returning the resulting balance, introduced at the beginning
of section 3.1.1 in SICP:


> (withdraw 25)
75
> (withdraw 25)
50 



Here successive evaluations of the same expression yield different values.
This behavior arises from the fact that the execution of assignment statements
(in this case, assignments to the variable balance) delineates moments in time
when values change. The result of evaluating an expression depends not only on
the expression itself, but also on whether the evaluation occurs before or
after these moments. Building models in terms of computational objects with
local state forces us to confront time as an essential concept in programming.


We can go further in structuring computational models to match our perception
of the physical world. Objects in the world do not change one at a time in
sequence. Rather we perceive them as acting concurrently—all at once. So it
is often natural to model systems as collections of computational processes
that execute concurrently. Just as we can make our programs modular by
organizing models in terms of objects with separate local state, it is often
appropriate to divide computational models into parts that evolve separately
and concurrently.


In addition to making programs more modular, concurrent computation can
provide a speed advantage over sequential computation. Sequential computers
execute only one operation at a time, so the amount of time it takes to
perform a task is proportional to the total number of operations performed.
However, if it is possible to decompose a problem into pieces that are
relatively independent and need to communicate only rarely, it may be possible
to allocate pieces to separate computing processors, producing a speed
advantage proportional to the number of processors available.


Unfortunately, the complexities introduced by assignment become even more
problematic in the presence of concurrency. The fact of concurrent execution,
either because the world operates in parallel or because our computers do,
entails additional complexity in our understanding of time.


Parallelism

            Getting Started


To work with the ideas in this section, you'll need our concurrency library. From a lab machine (or over SSH), type the following into your Scheme interpreter:


(load "~cs61as/lib/concurrency.scm")



An Overview


Many things we take for granted in ordinary programming become problematic
when there is any kind of parallelism involved. These situations include:



	multiple processors (hardware) sharing data

	software multithreading (simulated parallelism)

	operating system input/output device handlers




This is covered in greater detail in CS 162 (operating systems).


Why Parallelism Is Hard


To see in simple terms what the problem is, think about the Scheme expression


(set! x (+ x 1))



As you'll learn in more detail in 61C, Scheme translates this into a sequence
of instructions to your computer. The details depend on the particular
computer model, but it'll be something like this:


lw $8, x        ; Put the value of x into processor register number 8.
addi $8, $8, 1  ; Take the value of register 8, add 1 to it, and put  
                ; the new value back into register 8.
sw $8, x        ; Set the value in register 8 as the value of x.



You don't have to understand the details of the code here (you'll learn about
it in 61C), but you should have an idea of what's going on.


(A register is a place where computers put values so that it can operate on
them.  So a computer usually can't immediately add 1 to x - it has to first
put the value of x in a register, and only then can it add 1 to it.)


Ordinarily we would expect this sequence of instructions to have the desired
effect. If the value of x was 100 before these instructions, it should be 101
after them.


But imagine that this sequence of three instructions can be interrupted by
other events that come in the middle. To be specific, let's suppose that
someone else is also trying to add 1 to x's value. Now we might have this
sequence:


my process      value of x   other process
----------      ----------   -------------  
  $8 = ??        x = 100       $9 = ??

lw $8, x  
  $8 = 100       x = 100       $9 = ??

addi $8, $8, 1  
  $8 = 101       x = 100       $9 = ??

                             lw $9, x  
  $8 = 101       x = 100       $9 = 100

                             addi $9, $9, 1  
  $8 = 101       x = 100       $9 = 101

                             sw $9, x  
  $8 = 101       x = 101       $9 = 101

sw $8, x  
  $8 = 101       x = 101       $9 = 101



The ultimate value of x will be 101, instead of the correct 102.


The general idea we need to solve this problem is the critical section, which
means a sequence of instructions that mustn't be interrupted. The three
instructions starting with the load and ending with the store are a critical
section.


Actually, we don't have to say that these instructions can't be interrupted;
the only condition we must enforce is that they can't be interrupted by
another process that uses the variable x. It's okay if another process wants
to add 1 to y meanwhile. So we'd like to be able to say something like


reserve x
lw $8, x
addi $8, 1
sw $8, x
release x



Levels of Abstraction


Computers don't really have instructions quite like reserve and release,
but we'll see that they do provide similar mechanisms. A typical programming
environment includes concurrency control mechanisms at three levels of
abstraction:


SICP name        What's protected              Provided by
---------        ----------------              -----------
serializer       high level abstraction        programming language
                   (procedure, object, ...)

mutex            critical section              operating system

test-and-set!    one atomic                    hardware
                   state transition



The serializer and the mutex are, in SICP, abstract data types. There is a
constructor make-serializer that's implemented using a mutex, and a
constructor make-mutex that's implemented using test-and-set!, which is a
(simulated, in our case) hardware instruction.


We'll go over serializers and mutexes in the coming sections.


Serializers

            What Are Serializers


We introduce an abstraction called a serializer. This is a procedure that
takes as its argument another procedure (call it proc). The serializer
returns a new procedure (call it protected-proc). When invoked, protected-proc
invokes proc, but only if the same serializer is not already in use by
another protected procedure. proc can have any number of arguments, and
protected-proc will take the same arguments and return the same value.


There can be many diﬀerent serializers, all in operation at once, but each one
can't be doing two things at once. So if we say


(define x-protector (make-serializer))
(define y-protector (make-serializer))
(parallel-execute (x-protector (lambda () (set! x (+ x 1))))
                  (y-protector (lambda () (set! y (+ y 1)))))



then both tasks can run at the same time; it doesn't matter how their machine
instructions are interleaved.


But if we say


(parallel-execute (x-protector (lambda () (set! x (+ x 1))))
                  (x-protector (lambda () (set! x (+ x 1)))))



then, since we're using the same serializer in both tasks, the serializer will
ensure that they don't overlap in time.


We've introduced a new primitive procedure, parallel-execute. It takes any
number of arguments, each of which is a procedure of no arguments, and invokes
them, in parallel rather than in sequence. (This isn't a standard part of
Scheme, but an extension for this section of the textbook.)


You may be wondering about the need for all those (lambda ()...) notations.
Since a serializer isn't a special form, it can't take an expression as
argument. Instead we must give it a procedure that it can invoke.


Let's look at a sample of how this code works:


(define x-protector (make-serializer))
(define protected-increment-x (x-protector (lambda () (set! x (+ x 1)))))
> x
100
> (protected-increment-x)
> x
101



Implementing Serializers


A serializer is a high-level abstraction. How do we make it work? Here is an
incorrect attempt to implement serializers:


(define (make-serializer)
  (let ((in-use? #f))
    (lambda (proc)
      (define (protected-proc . args)
        (if in-use?
            (begin
             (wait-a-while) ; Never mind how to do that.
             (apply protected-proc args)) ; Try again.
            (begin
             (set! in-use? #t) ; Don't let anyone else in.
             (apply proc args) ; Call the original procedure.
             (set! in-use? #f)))) ; Finished, let others in again.
      protected-proc)))



This is a little complicated, so concentrate on the important parts. In
particular, never mind about the scheduling aspect of parallelism--how we
can ask this process to wait a while before trying again if the serializer is
already in use. And never mind the stuﬀ about apply, which is needed only so
that we can serialize procedures with any number of arguments.


The part to focus on is this:


(if in-use?
    ....... ; wait and try again
    (begin (set! in-use #t)   ; Don't let anyone else in. 
           (apply proc args)  ; Call the original procedure.
           (set! in-use #f))) ; Finished, let others in again.



The intent of this code is that it ﬁrst checks to see if the serializer is
already in use. If not, we claim the serializer by setting in-use true, do
our job, and then release the serializer.


The problem is that this sequence of events is subject to the same parallelism
problems as the procedure we're trying to protect! What if we check the value
of in-use, discover that it's false, and right at that moment another
process sneaks in and grabs the serializer? In order to make this work we'd
have to have another serializer protecting this one, and a third serializer
protecting the second one, and so on.


There is no easy way to avoid this problem by clever programming tricks
within the competing processes. We need help at the level of the underlying
machinery that provides the parallelism: the hardware and/or the operating
system. That underlying level must provide a guaranteed atomic operation
with which we can test the old value of in-use and change it to a new value
with no possibility of another process intervening. (It turns out that there
is a very tricky software algorithm to generate guaranteed atomic test-and-
set, but in practice, there is almost always hardware support for parallelism.
Look up "Peterson's algorithm" in Wikipedia if you want to see the software
solution.)


The textbook assumes the existence of a procedure called test-and-set! with
this guarantee of atomicity. Although there is a pseudo-implementation on page
312, that procedure won't really work, for the same reason that my pseudo-
implementation of make-serializer won't work. What you have to imagine is
that test-and-set! is a single instruction in the computer's hardware,
comparable to the Load Word instructions and so on that we started with. (This
is a realistic assumption; modern computers do provide some such hardware
mechanism, precisely for the reasons we're discussing now.)


To understand how to properly implement serializers, you first need to learn
about and understand Mutexes (in two sections).


Programming Considerations

            Programming Considerations


Even with serializers, it's not easy to do a good job of writing programs that
deal successfully with concurrency. In fact, all of the operating systems in
widespread use today have bugs in this area; Unix systems, for example, are
expected to crash every month or two because of concurrency bugs.


To make the discussion concrete, let's think about an airline reservation
system, which serves thousands of simultaneous users around the world. Here
are the things that can go wrong:



	Incorrect results. The worst problem is if the same seat is reserved for two diﬀerent people. Just as in the case of adding 1 to x, the reservation system must ﬁrst ﬁnd a vacant seat, then mark that seat as occupied. That sequence of reading and then modifying the database must be protected.

	Ineﬃciency. One very simple way to ensure correct results is to use a single serializer to protect the entire reservation database, so that only one person could make a request at a time. But this is an unacceptable solution; thousands of people are waiting to reserve seats, mostly not for the same ﬂight.

	Deadlock. Suppose that someone wants to travel to a city for which there is no direct ﬂight. We must make sure that we can reserve a seat on ﬂight A and a seat on connecting ﬂight B on the same day, before we commit to either reservation. This probably means that we need to use two serializers at the same time, one for each ﬂight. Suppose we say something like 


(serializer-A (serializer-B (lambda () ...))))





Meanwhile someone else says


(serializer-B (serializer-A (lambda () ...))))



The timing could work out so that we get serializer A, the other person gets
serializer B, and then we are each stuck waiting for the other one (forever!).



	Unfairness. This isn't an issue in every situation, but sometimes you want to avoid a solution to the deadlock problem that always gives a certain process priority over some other one. If the high-priority process is greedy, the lower-priority process might never get its turn at the shared data.




Correct Behavior of Concurrent Programs


Depending on the particular program you're writing, the definition of correct
behavior might differ. Typically, a concurrent program is said to display
correct behavior if it produces the same result as if the processes had run
sequentially in some order. There are two important aspects to this
requirement.


First, it does not require the processes to actually run sequentially, but
only to produce results that are the same as if they had run sequentially.


Second, there may be more than one possible "correct" result produced by a
concurrent program, because we require only that the result be the same as for
some sequential order.


Mutex

            What are Mutexes?


A mutex is an object that supports two operations -- the mutex can be
acquired, and the mutex can be released. Once a mutex has been acquired, no
other acquire operations on that mutex may proceed until the mutex is
released.


The mutex is a mutable object (here we'll use a one-element list, which we'll
refer to as a cell) that can hold the value true or false. When the value is
false, the mutex is available to be acquired. When the value is true, the
mutex is unavailable, and any process that attempts to acquire the mutex must
wait.


Our mutex constructor make-mutex begins by initializing the cell contents to
false. To acquire the mutex, we test the cell. If the mutex is available, we
set the cell contents to true and proceed. Otherwise, we wait in a loop,
attempting to acquire over and over again, until we find that the mutex is
available. To release the mutex, we set the cell contents to false.


(define (make-mutex)
  (let ((cell (list false)))            
    (define (the-mutex m)
      (cond ((eq? m 'acquire)
             (if (test-and-set! cell)
                 (the-mutex 'acquire))) ; retry
            ((eq? m 'release) (clear! cell))))
    the-mutex))
(define (clear! cell)
  (set-car! cell false))



Test-and-set! tests the cell and returns the result of the test. In
addition, if the test was false, test-and-set! sets the cell contents to
true before returning false. This procedure is a Scheme primitive. Its
implementation requires hardware support.


Using Mutexes


The book uses an intermediate level of abstraction between the serializer and
the atomic hardware capability, called a mutex. What’s the diﬀerence between a
mutex and a serializer? The serializer provides, as an abstraction, a
protected operation, without requiring the programmer to think about the
mechanism by which it’s protected. The mutex exposes the sequence of events.
Just as the earlier incorrect implementation said


(set! in-use #t)
(apply proc args)
(set! in-use #f)



the correct version uses a similar sequence


(mutex ’acquire)
(apply proc args)
(mutex ’release)



By the way, all of the versions in these sections have another bug; we’ve
simpliﬁed the discussion by ignoring the problem of return values. We want the
value returned by protected-proc to be the same as the value returned by the
original proc, even though the call to proc isn’t the last step. Therefore the
correct implementation is


(mutex ’acquire)
(let ((result (apply proc args)))
    (mutex ’release)
    result)



as in the book’s implementation on page 311.


Implementing Serializers with Mutexes


Now that we know about mutexes and how to use them, it is relatively
straightforward to implement serializers. Our implementation is below. Make
sure you understand how and why it works!


(define (make-serializer)
  (let ((mutex (make-mutex)))
    (lambda (p)
      (define (serialized-p . args)
        (mutex 'acquire)
        (let ((val (apply p args)))
          (mutex 'release)
          val))
      serialized-p)))



Mapreduce

            Introduction to Mapreduce


In this section, we will revisit higher order functions from Unit 2 (map and
accumulate) and combine it with parallelism which enables us to process a
huge amount of data efficiently.


Background to Mapreduce


Engineers in Google noticed that a majority of their computations could be
broken down into a map of some function over data, followed by an
accumulate (also known as reduce, hence the name) afterwards. The result
is a library procedure named mapreduce that takes two functions as
arguments; one that acts as a mapper and another that acts as a reducer.
It accepts a large chunk of data, divide them into smaller parts, apply the
mapper to the smaller sized data and combines the results with a reducer.
Mapreduce handles everything related to parallelism, and we only have to
provide the 2 functions.


Although this may seem like what mapreduce is doing, this is not
mapreduce:


(define (mapreduce mapper reducer base-case data)
    (accumulate reducer base-case (map mapper data)))



Why is that not mapreduce? Because it doesn't handle dividing the data,
applying the mapper parallelism and sorting them before reducing them. What it
gets right though is that whoever wants to use mapreduce only needs to pass four
arguments: mapper, reducer, base-case and the datawe want to process to
the mapreduce function.


If you are interested,  here
 is an paper written by the Google employees who came up
with mapreduce. It is not required, but it is pretty readable and interesting.
The old lecture
notes also
have a good explanation, and you should read those if you feel like you don't
understand mapreduce.


Breakdown of Mapreduce


[image: ]



	Map the mapper to the smaller data (done in parallel). This involves selecting parts of the input we want to process and "attaching" a key to each results

	Sort the result to 'buckets' based on their keys

	Each 'bucket' is passed to a reducer that accumulates the values




We will look at each of these steps into more detail in subsequence sections.


Throughout this lesson, we will use the example of searching through a text
file and find the frequency of the words.


This will act as our test files:


>(define song1   '( ((please please me) i saw her standing there)
            ((please please me) misery)
            ((please please me) please please me)))

>(define song2   '( ((with the beatles) it wont be long)
            ((with the beatles) all ive got to do)
            ((with the beatles) all my loving)))

>(define song3   '( ((a hard days night) a hard days night)
            ((a hard days night) i should have known better)
            ((a hard days night) if i fell)))

>(define all-songs (append song1 song2 song3))
( ((please please me) i saw her standing there)
  ((please please me) misery)
  ((please please me) please please me)
  ((with the beatles) it wont be long)
  ((with the beatles) all i have got to do)
  ((with the beatles) all my loving)
  ((a hard days night) a hard days night)
  ((a hard days night) i should have known better)
  ((a hard days night) if i fell) )



Note that every line is 'tagged' with their titles. We recommend keeping this
tab open somewhere so that you know what our input looks like.


You can get this data and the other functions of our implementation of
mapreduce here. Note that this implementation does
not involve parallelism.


Mapper
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(map mapper data)




	Input: (smaller) A key-value pair

	Output: list of key-value pairs




A mapper is a function that accepts data (as a key-value pair), and returns
a list of key-value pairs. A list of key-value pairs is the same as
associative lists (also known as a-lists) that we played with in lesson 9. The
keys are used to keep track of where the data is from; this is important for
the parallelization. Note that the key of the input is not neccessarily the
same as the key(s) that the mapper outputs. This will be our ADT for kv-pair:


    (define make-kv-pair cons)
    (define kv-key car)
    (define kv-value cdr)



If we look at the first item of our sample input, the result is the following
:


 >(kv-key '((please please me) i saw her standing there))
 (please please me)
 >(kv-value '((please please me) i saw her standing there))
 (i saw her standing there)



Why do we output a list of key-value pairs instead of a single key-value pair?
Here are some reasons:



	no key-value: There will be cases where our data does not contain a key that is of an interest to us. For example imagine a case where you want to count number of vowels in a word, and you encounter the word 'fly'. We would return the empty list in this case.

	multiple key-value: There will be cases where our data corresponds to 2 or more keys that we want to produce. This is applicable to our song lyrics example (shown below)




Extended Example: Word-Count


Here is the definition of a mapper for our example.


>(define (mapper input-kv-pair)
    (map (lambda (wd) (make-kv-pair wd 1)) (kv-value input-kv-pair)))

>(mapper '((please please me) i saw her standing there))
((i . 1) (saw . 1) (her . 1) (standing . 1) (there . 1)) 

>(mapper '((please please me) please please me))
((please . 1) (please . 1) (me . 1))



What does our mapper do? It accepts a key-value pair (its key is the song
title, its value is a line from the song). For every word in the lines, use
the word as the new key, and pair that with the value 1. Note that even if a
word appears twice in the line, like '(please please me), it outputs (please .
1) twice and NOT (please . 2). That is fine, because here we are only starting
the count for each at 1. We add them up later.


sort-into-buckets


[image: ]


Before we actually get into the reducer, there is an intermediary step that
sorts the keys, and group the same keys together. Fortunately, we can take
advantage of abstraction and use the function **sort-into-buckets** to sort
them into 'buckets'for us. key-value pairs with the same keys are grouped
under the same 'bucket'. This is the result of calling the mapper from the
previous step:


>(map mapper all-songs)
( ((i . 1) (saw . 1) (her . 1) (standing . 1) (there . 1))  
  ((misery . 1))  
  ((please . 1) (please . 1) (me . 1))  
  ((it . 1) (wont . 1) (be . 1) (long . 1))   
  ((all . 1) (i . 1) (have . 1) (got . 1) (to . 1) (do . 1))  
  ((all . 1) (my . 1) (loving . 1))   
  ((a . 1) (hard . 1) (days . 1) (night . 1))   
  ((i . 1) (should . 1) (have . 1) (known . 1) (better . 1))  
  ((if . 1) (i . 1) (fell . 1)) )



Calling sort-into-buckets results inthe following:


>(sort-into-buckets (map mapper all-songs))

'( ((i . 1) (i . 1) (i . 1) (i . 1))
   ((saw . 1))
   ((her . 1))
   ((standing . 1))
   . . .
   ((all . 1) (all . 1))
   ((have . 1) (have . 1))
   . . . 
   ((if . 1))  
   ((fell . 1)) )



Some parts of the result is ommited to keep it short. Note how the keys and
values are organized here. The result is a list of buckets, where a bucket is
a list of kv-pair with the same keys. ((i . 1) (i . 1) (i . 1) (i . 1)) is
an example of a bucket, where each kv-pair has the key 'i'.


Reducer
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	Input: two "values"

	Output: a value




A reducer accepts two values(without the keys), and outputs a single value.
This will be the output associated with that particular key.


Extended Example: Word-Count


Here is the definition for our reducer


(define (reducer num other-num)
    (+ num other-num))



Reducing One Bucket


Note that our reducer accepts two values while the result of our previous step
(sort-into-buckets) is a list of buckets (where a bucket is a list of key-
value pairs). Let's look at how we can use our reducer to a single key-
value. Let us use our first list of key-value:


((i . 1) (i . 1) (i . 1) (i. 1) (i . 1))



> (accumulate reducer 0 (map kv-value '((i . 1) (i . 1) (i . 1) (i . 1) (i .
1))))


this simplifies to:


> (accumulate reducer 0 '(1 1 1 1 1))


5


Before we call accumulate, we have to obtain the values from the list of kv-
pairs by using map. Note that the result of calling accumulate is a single
value (the 5) associated with the key (which is 'i' in this case). Because our
end result needs to be a kv-pair, we have to return (i . 5) in the end. The
expression then becomes:


(make-kv-pair (kv-key '(i . 1))
              (accumulate reducer 0 (map kv-value '((i . 1) (i . 1)  
                                    (i . 1) (i . 1) (i . 1)))))



We can generalize the expression above into any other "bucket" besides '((i .
1) (i . 1) (i . 1) (i . 1) (i . 1)).


(define (reduce-bucket reducer base-value bucket)
    (make-kv-pair   (kv-key (car bucket))
            (accumulate reducer base-value (map kv-value bucket))))



Reducing a List of Buckets


The procedure reduce-bucket above reduces one bucket. Our result from the
previous step, (sort-into-buckets (map mapper data)) is a list of buckets.
To reduce a list of buckets, we can use map again. We are going to define the
function group-reduce that does exactly that.


(define (groupreduce reducer base-case buckets)
    (map (lambda (bucket) (reduce-bucket reducer base-case bucket))  
             buckets))



If we use what we have so far, it evaluates into the following:


>(groupreduce reducer 0 (sort-into-buckets (map mapper all-songs)))
( (i . 4) (saw . 1) (her . 1)
  . . .
  (misery . 1) (please . 2) (me . 1)
  . . .
  (all . 2) (have . 2))



Some values are omitted for conciseness. The final result is again, a list of
kv-pairs: the key is the word, the value is how many times those words appear
in our data. We have just used mapreduce to construct word counts for words in
our data!


This is the final (hand-wavy, approximated) definition of our mapreduce:


(define (mapreduce mapper reducer base-case data)
    (groupreduce reducer base-case (sort-into-buckets (map mapper data))))



Why is it not the actual mapreduce? The actual one will involve mapping and
reducing our kv-pairs parallely and we have to take into account of
concurrency issues. The definition above captures the major parts that we are
concerned with.


Practice with Mapreduce


Writing a mapreduce function is all about defining your mapper and reducer. We
have series of different scenarios and want you guys to define the
corresponding mapper, reducer and at the end the call to mapreduce.


Remember:



	The input to your mapper is a key-value-pair and it outputs a list of key-value pairs.

	The input to your reducer are two values and it outputs one value




Chaining Mapreduce


As hinted before, since mapreduce takes as an input a list of key-value pairs
and outputs a list of key-value pairs, it is possible to chain mapreduce
together. It would look something like this: (mapreduce some-mapper some-
reducer some-base-case (mapreduce another-mapper another-reducer another-base-
case actual-input)). Note that the keys and values for the first mapreduce
may be totally different from your second mapreduce.


Most Frequent Word


Let's write another mapreduce function (We're not chaining yet). This time,
our input has a key of 'words' and the value are numbers, representing how
many times they appeared in a document. We want our output to be a list of a
single key-value pair where just like the input, our key is a word and our
value is a number such that it is the highest number encountered.


Note: our solution isn't ideal, and it's a little contrived. It doesn't take
advantage of the parallelism that mapreduce offers.


>(define x (list (make-kv-pair her 1) (make-kv-pair i 4) (make-kv-pair saw 1))
>(most-frequent x) ; i appears the most
((i . 4))



Now We're Chaining


Our function above works, if we pass the pairs with the key as a word, and
value as a number. In real life, we might not have direct access to the word
counts of each word; we have to process that from the original document.


Write the function real-most-frequent that accepts a list of key-value pairs
where the key is the name of the file, and the values are lines from that file
(just like our all-songs example) . Our output is again, a list of single
key-value pair. You may want to reuse any functions we have defined so far in
the lesson.


>(real-most-frequent all-songs)
((i . 4))



The reader does not contain MapReduce exercises. If you want to get more
practices, there are MapReduce questions on the Lesson 14 discussion.


Homework 14

            To work with the ideas in the next homework problems, you should first


(load "~cs61as/lib/concurrency.scm")


Exercise 1


Exercise 3.38, 3.39, 3.40, 3.41,
3.42, 3.44, 3.46,
3.48, of Abelson & Sussman


Exercise 2: Chaining Mapreduce


Write the function real-most-frequent that accepts a list of key-value pairs
where the key is the name of the file, and the values are lines from that file
(just like our all-songs example) . Our output is again, a list of single
key-value pair. You may want to reuse any functions we have defined so far in
the lesson.


>(real-most-frequent all-songs)
((i . 4))



Exercise 3: Mapreduce with Streams


Our current mapreduce works with lists. Mapreduce in real life works with
really large datasets: so large that a list won't be able to contain them. One
way to solve this is to have a mapreduce that works on streams instead of
list. You can find our mapreduce version that work on streams
here. or at
"~cs61as/lib/mapreduce/streammapreduce.scm"


What changed? Our map, sort-into-buckets, and filter works with streams now.
What do you as a user need to provide? The mapper and reducer, just like what
you did previously. How do the mappers and reducers changed? they don't.
The behavior of mapper and reducer doesn't change. You can load the file and
try (mapreduce mapper reducer 0 all-songs) where the mapper and reducer are
ones you've defined in the lessons. They would work the same way. The only
difference is that if all-songs is large, our previous version will crash and
brun whereas our stream version would still be able to process it


Exercise 4: Do You Want to be the Very Best?


You have access to a stream of all 744 pokemon data
here and "~cs61as/lib/mapreduce/pokemon_data".
streammapreduce.scm should load it automatically and define the variable
"data" as your input. The key is the pokemon national number, the value is a
list of regional number, name, name (yes it appears twice), and the rest are
types that they have. For example the first element is (1 1 bulbasaur
bulbasaur grass poison) so it has the national number 1, regional number of
1, names bulbasaur, and has the types 'grass' and 'poison'. A Pokemon can
either have 1 or 2 types. Here is an example of one that only has one type:
(4 4 charmander charmander fire). You can take a look at the input by typing
(ss data) in the interpreter after loading the files.


Define the mapper, reducer and base-case such that calling mapreduce with
(mapreduce mapper reducer base-case data) would return a list of key-value
pairs where the keys are different types, and the values represent how many
times a pokemon of that type appears in the dataset. The final result should
yield the following (in any order):


((grass . 86) (dragon . 39) (normal . 99) (flying . 93) (poison . 59) (ice . 35) (fire . 58) (ghost . 37) (psychic . 77) (electric . 47) (water . 124) (fairy . 35) (bug . 70) (steel . 42) (ground . 62) (rock . 54) (fighting . 45) (dark . 44))



Submit Your Homework!


For instructions, see this guide. It covers basic terminal commands and assignment submission.


If you have any trouble submitting, do not hesitate to ask a TA!
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