How to Solve Set Constraints

Jens Palsberg
October 1, 2008

We will explain how to solve a particular class of set constraints in cubic time.

1 Set Constraints

Let C be a finite set of constants, and let VV be a set of variables. A set constraint is a
conjunction of constraints of the forms:

cev

cev=v C"

where ¢ € C and v,v’,v” € V. For a particular set constraint, we use C' to denote the finite
set of constants that occur in that set constraint, and we use V' to denote the finite set of
variables that occur in that set constraint.

We use 2 to denote the powerset of C. A set constraint has solution ¢ : V — 2¢ if

e for each conjunct of the form ¢ € v, we have ¢ € ¢(v) and

e for each conjunct of the form ¢ € v = v/ C v”, we have ¢ € p(v) = (V') C p(v").
We say that a set constraint is satisfiable if it has a solution.
Theorem 1 Fuvery set constraint is satisfiable.

Proof. The mapping Av : V.C' is a solution of the set constraint. O

For two mappings ¢, : V — 2¢, we define the binary intersection ¢ M1 as:
MY =M Vi(p(v) NY(v))

Theorem 2 For a given set constraint, the binary intersection of two solutions is itself a
solution.

Proof. Suppose ¢, : V — 2¢ are both solutions. Let us examine each of the conjuncts of
the set constraint.

e For a conjunct of the form ¢ € v, we have from ¢, ¥ being solutions that ¢ € p(v) and
c € Y(v). From ¢ € p(v) and ¢ € ¥(v) we have ¢ € (¢(v) N(v)) which is equivalent

to c € (p M) (v).

e for each conjunct of the form ¢ € v = v/ C v”, we have from ¢, being solutions
that ¢ € p(v) = ¢(v') C ¢(v”) and ¢ € P(v) = P(v') C P(v”). We want to show
c € (pN9)(v) = (PNH)(V') C (@) (") Suppose ¢ € (pM14)(v). From c € (p1)(v)
and the definition of M, we have ¢ € (p(v) N (v)), so we have ¢ € p(v) and ¢ € P(v).
From ¢ € p(v) and ¢ € p(v) = @(v') C p(v"), we have p(v') C p(v”). From ¢ € ¥(v)
and ¢ € Y(v) = Y((') C Y"), we have ¥(v') C ¥P(v”). From (') C p(v") and
P(v') C P("), we have (o(v') NY((v')) C (p(”) NY(")), which is equivalent to
(pMY)(V') C (pM)(v”), and that is the desired result.

O

For the space V — 2¢, we define an ordering C as follows. We say that ¢ C v if and
only if for all v € V : ¢(v) C ¥(v). For aset S C (V — 2Y), we say that an element o € S
is the C-least element of S if for all v € S : ¢ C 1.

Theorem 3 Fuvery set constraint has a C-least solution.

Proof. Let a particular set constraint be given. The space of possible solutions of the set
constraint is V' — 2°, which is a finite set. Let S C (V — 2) be the set of solutions of
the set constraint. From V — 2¢ being finite, we have that S is finite. From Lemma 1 we
have that S is nonempty. So, S is a nonempty, finite set. Let S = { 1,02, ¢3,...,0n }
Let ¢ = (... ((¢1 M¢2) Me3)...My,). From Lemma 2 we have that ¢ is a solution of the
set constraint, so ¢ € S. Additionally, we have that for all i € 1..n : ¢ C ;. So, ¢ is the
C-least solution of the set constraint. O

2 Solving Set Constraint Efficiently

We will translate the problem of solving a set constraint into a graph problem. For a given
set constraint, the initial graph has one node for each element of V| and an empty set of
edges. Additionally, each node v is associated with a bit vector B, of length |C| in which
every bit is initially 0. For a bit vector B, and a constant ¢ € C, we denote the entry for ¢ in
B, by B,[c]. Finally, every bit in every bit vector is associated with a list L, [c| of constraints
of the form v' C v”; all those lists are initially empty.

The initial graph represents the mapping Av : V.(). The idea is that for a given v € V, the
bit vector B, represents a subset of C'. When all the bits are 0, the bit vector B, represents
the empty set. An edge in the graph implies a subset relationship. If the graph has an edge
from v to v/, it implies that the set represented by the bit vector associated with v is a subset
of the set represented by the bit vector associated with v’.

We now process each conjunct of the set constraint in turn. The processing will add
edges, change bits from 0 to 1, and add constraints to the constraint lists associated with
bits in the bit vectors. We will use the following two procedures propagate and insert-edge
as key subroutines.

procedure propagate(v:Node, c:Constant) {
if (By[c] == 0) {
B,lc] =1
for (each element (v' C v”) of L,[c]) { insert-edge(v’,v") }
for (each edge (v,v’)) { propagate(v’, ¢) }

}

procedure insert-edge(v, v:Node) {
insert an edge (v, v")
for (c such that B,[c] == 1) { propagate(v’, ¢) }

For a constraint of the form ¢ € v, we execute propagate(v,c). For a constraint of the
form ¢ € v = v/ C V", we execute:

if (B,[c] == 0) { add the constraint (v C v") to the list L,[c] }
else { insert-edge(v’,v") }

When we have processed all the constraints, the resulting graph represents the C-least
solution of the set constraint.

We will now analyze the time complexity of the constraint processing. We will do the
analysis for a set constraint with |C| = O(n), |V| = O(n), O(n) conjuncts of the form ¢ € v,
and O(n?) conjuncts of the form ¢ € v = v' C v”. For each conjunct, the algorithm performs
a constant amount of work except for the calls to the propagate subroutine. So, the total
time is O(n?) plus the time spent by propagate. The propagate routine itself performs a
constant amount of work except for recursive calls! So the key to analyzing the time spent
by propagate is to determine the number of calls to the propagate routine. The processing
of the set constraint generates O(n®) immediate calls to propagate. The recursion involved
in each call to propagate stops when finding a bit that is 1. So, for each ¢ € C, the total
work of all calls of the form propagate(v,c) is given by the number of edges in the graph,
which is O(n?). To sum up, the total time is O(n?) 4+ (O(n) x O(n?)) = O(n?).

ELSEVIER

Available online at www.sciencedirect.com

sc.snce@o.“w

Information Processing Letters 98 (2006) 150-155

Information
Processing
Letters

www.elsevier.com/locate/ipl

Optimal register allocation for SSA-form programs
in polynomial time

Sebastian Hack *, Gerhard Goos

Institut fiir Programmstrukturen und Datenorganisation, Adenauerring 20a, 76131 Karlsruhe, Germany

Received 11 February 2005; received in revised form 23 November 2005
Available online 17 February 2006

Communicated by F. Meyer auf der Heide

Abstract

This paper gives a constructive proof that the register allocation problem for a uniform register set is solvable in polynomial time

for SSA-form programs.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Combinatorial problems; Graph algorithms

1. Introduction

Register allocation is the task in a compiler, which
maps (temporary) variables to processor registers. The
most prominent approach is to map this task to a graph
coloring problem. The nodes of the so-called interfer-
ence graph are formed by the temporaries of the pro-
gram. Whenever the compiler finds out, that two tem-
poraries cannot be held in the same register (due to
interference), an edge is drawn between the correspond-
ing nodes in the interference graph. Colors correspond
to processor registers. Thus, having k registers, a k-col-
oring of the interference graph forms a correct register
assignment.

Chaitin et al. [4] show that for each undirected graph
a program can be given which has this graph as its inter-
ference graph. So, since graph coloring is NP-complete,

* Corresponding author.
E-mail addresses: hack@ipd.info.uni-karlsruhe.de (S. Hack),
ggoos @ipd.info.uni-karlsruhe.de (G. Goos).

0020-0190/$ — see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ip.2006.01.008

register allocation must also be. However, if one only
considers programs in SSA-form (e.g., refer to [5]) the
situation changes. It turns out, that interference graphs
of SSA-form programs belong to the class of chordal
graphs, which is in turn a subset of the class of perfect
graphs. It is well known, that chordal graphs can be col-
ored in quadratic time. This also answers the question
posed by Andersson [1] whether interference graphs are
perfect.

This paper is structured as follows: First, we describe
the model of a program used in this paper. Then we give
anew definition of liveness for SSA-form programs. Af-
ter quoting basic facts from graph theory, we will prove
that interference graphs of SSA-form programs always
have perfect elimination orders and show how they are
determined.

2. SSA-form programs

Here, we consider a program (in SSA-form) given by
its control flow graph (CFG) whose nodes are made up
of labeled single instructions. We will therefore identify

S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155 151

if ... then if ... then

lyix < --- Ly ixp < -+
else else

l3:x < --- £3:xp < -+
end end
ly:y < x+1 £y 1x3 < (x1,x2)

Ly:y) < x3+1

Fig. 1. Program fragment and its equivalent in SSA-form.

the node and its label in the following. Let us call the set
of labels £. The CFG has one distinct start node which
has no predecessor nodes and is denoted by start. The
instruction corresponding to a node is of the following
form:

C:(dy,....dyn) < 1t(Uy,...,uy).

We denote the operation T at a label £ by Op,. We call
Resg ={d,, ..., d,} the ordered set of result values and
Arg, ={uy, ..., u,} the ordered set of argument values
at the label ¢. All dy,...,d,, and uy,...,u, are ele-
ments of the set of (abstract) values V of the considered
program. Given a label £, let us denote Arg,(i) the ith
argument to the operation at £. Each label has an or-
dered set of k predecessor labels which we will denote
by P}, ..., Pf.

We will also write ¢/ —' ¢ if ¢/ = P}. If we do
not care about the position, we simply write ¢/ — £
to denote that ¢’ is a predecessor to £. A path p is
an ordered set {{1,...,¢,} of at least two nodes, for
which £; — €5,4, — £3,...,€,_1 — £, holds. To in-
dicate that a set p = {{1,...,£,} is a path, we write
ply— =L,

Finally, we say a label ¢ dominates another label ¢’
if each path from start to ¢’ contains £, writing £ < ¢'.
Note, since < is reflexive, £ < £.

We require the program to be given in SSA-form,
which means that each variable is statically only as-
signed once. Usually, when a program is transferred
into SSA-form, for each definition of a non-SSA vari-
able x, a SSA variable x; is created. The usages of the
variables then have to be adjusted to refer to the corre-
sponding SSA variable. This is not always possible. It
might be dependent on the control flow, which defini-
tion of the variable is applicable at the usage. Consider
the left program in Fig. 1. At label ¢4, it is depen-
dent on the control flow whether the definition at £,
or the one at ¢3 is relevant for £4. In SSA-form pro-
grams, a special instruction, called ¢-function is used to
disambiguate multiple definitions by control flow. A ¢-
function copies its ith parameter to its result, if it was
reached via P[k. Note, that a basic block can have multi-
ple ¢-functions. So, since the program is in SSA-form,

l1:a <« ---
if ... then
Ly:--
else
03:b <«
end
Ly:y < ¢'(a,b)

Fig. 2. Liveness at ¢’-functions.

for each SSA-variable! v there is exactly one label D,
for which v € Resp, .

Since we allow only one instruction per label, we re-
place the set of all ¢-operations in a basic block

Vi =¢X11, ..., X10),

J’m = ¢(xm17 e 7~xml’l)
by the more concise ¢’-operation:

(1.

which sets y; = x;; if £ was reached via Pej . It is conve-
nient to define Arg,(j) = {x;; | 1 <i < m} subsuming

s Ym) =@ (X1 s Xl ey Xl s Xmn)

all operands of a ¢’-operation which refer to PZJ . Note,
that ¢’ is totally equivalent to the traditional ¢, since
SSA semantics states that all ¢-operations in a basic
block are evaluated simultaneously. In the following,
everything stated for ¢’-operations implicitly holds for
¢-operations. Thus we will only use ¢'.

2.1. Liveness in SSA-form programs

To perform register allocation on SSA-form pro-
grams, a precise notion of liveness is needed. The stan-
dard definition of liveness

A variable v is live at a label £, if there is a path from ¢
to a usage of v not containing a definition of v.

cannot be straightforwardly transferred to SSA-form
programs. The problem arises with ¢- and accordingly
¢’-operations. Consider the program in Fig. 2. Surely,
a is not live at label ¢3 although there is a path from
£3 to a usage of a, namely £4. The cause for this odd-
ity is that the usual notion of usage does not hold for
¢’-operations. In addition to their arguments, a ¢’-op-
eration also uses control flow information to produce
its result. To make the traditional definition of liveness
work, we have to incorporate the predecessor by which
a label was reached into the notion of usage:

1 SSA variables are often called values.

152 S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155

Definition 1 (Usage).

usage: N x L xV — B,

. v € Arg if Op, # ¢/,
@6 v) { ve Argi(i) if Opi =

Now, a usage is not only dependent on a label and a
value but also on a number which represents the prede-
cessor by which the label was reached. In our example
in Fig. 2, usage(1, €4, a) is true, since a is indeed used
if £4 is entered via £,. usage(2, ¢4, a) is false, since a is
not used if ¢4 is reached through ¢3. If the operation at
a label is not ¢’, this definition resembles the common
concept of usage by simply ignoring the predecessor in-
dex.

The traditional definition of liveness quoted above,
uses paths which end in usages of some variable to de-
fine liveness. In this traditional setting, usages and paths
are unrelated. With Definition 1, paths and usages are no
longer unrelated. So it is straightforward to merge them
in one term.

Definition 2 (Usepath). A path p:4; — --- — £, is a
usepath from £1 to £, concerning a value v, if v is used
at £, regarding this path. More formally:

usepath: £" x V — B,
(p:ily— = L,,v)

., | usage(i, £, v) if p=20; =40,
usepath(ép — --- — £,,v) otherwise.

Referring to the example in Fig. 2, £1,42,€4 is a
usepath of a and €1, £3, £4 is a usepath of b.

Using this definition of usage together with the tra-
ditional definition of liveness stated above, one obtains
a realistic model of liveness in SSA programs:

Definition 3 (Liveness). A value v is live at a label £; iff
there exists a label ¢, with usepath({1 — €, — --- —
£y,v)and Dy ¢ (€, ..., ¢,}.

We use the definition of usepaths to re-formulate the
notion of a strict program coined by Budimli¢ et al. [3].

Definition 4 (Strict program). A program is called
strict, iff for each value v each path from start to some
label £ with usepath(start — --- — £, v) contains the
definition of v.

From now on, we will only consider strict programs.?

The next lemma is essential for the rest of this paper and
has also been given by Budimli¢ relying on a slightly
different liveness definition.

Lemma 5. Each label ¢ at which a value v is live is
dominated by D,.

Proof. Suppose, £ is not dominated by D, . Then, there
is path from start to ¢ not containing D,. From the fact,
that v is live at £ follows, that there is a usepath of v
from £ to some ¢'. So there is a usepath from start to ¢’
not containing D, which contradicts the definition of a
strict program. 0O

2.2. Common facts about SSA-form programs

Since the definition of liveness given above seems
rather unusual, we shortly derive some well-known facts
about SSA-form programs from our definition. These
facts are not vital for the rest of the paper and are only
given to clarify certain properties of SSA-form pro-
grams.

Corollary 6. Each value v, used in a non-¢’-operation
at a label ¢ is dominated by its definition.

Proof. Then, for each predecessor of P(j of £, usage(}J,
£, v) holds. With Definition 3, v is live at each PZJ . With
Lemma 5, D, dominates each predecessor of £. Thus
D, also dominates £.

Corollary 7. If a value v € Arg),(i) for a ¢'-operation at
a label £ and some i, then the definition of v dominates
Pi

/2

Proof. Surely, usage(i, ¢, v) holds. So p: Pé —{isa
us;:path concerning v. So, after Deﬁnition 3, v is live at
Pé. Thus, with Lemma 5, D, < Pé.

Corollary 8. Let £ be a label with Op, # ¢'. Each pair
of values v, w € Arg, interfere.

Proof. Due to Definition 3, v and w are live at each
predecessor of that label. So v and w interfere.

Often, one can read statements like:

2 Surely, each non-strict program can be turned into a strict one by
inserting instructions which initially define the variables by an arbi-
trary value.

S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155 153

e ¢’-operations do not cause interferences.

e Concerning liveness, ¢’-operations can be treated
as if they had no arguments.

e ¢’-operations extend the lifetimes of their argu-
ments to the end of the respective predecessor label.

All these statements try to describe Corollary 8 the other
way around. With the definition of usepaths, they are
covered implicitly. In our model the basic assumption
is, that the property of usage is always tied to a value
and a path, which makes Corollary 8 the “special” case.

3. Graph theory

Here we quote definitions from basic graph theory
and the theory of perfect graphs important to this paper.
Let G = (V, E) be an undirected graph. If there is an
edge from v € Vg to w € V, we write vw € Eg. We
leave out the G in Eg, Vg if it is clear from the context,
which graph is considered. We call a graph G complete,
iff for each v, w € V, there is an edge vw € E. We call
G’ an induced subgraph of G, if Vg C Vi and for all
nodes v, w € Vg, vw € Eg — vw € Eg holds.

Definition 9 (Simplicial vertex). A vertex v € Vg is
called simplicial, if v and its neighbors induce a com-
plete subgraph in G.

Definition 10 (Perfect Elimination Order, PEO). We
call a linearly ordered sequence of vertices vy, ..., v,
a perfect elimination order, if each v; is simplicial in
G —{vy,...,v,—1} where G —{ay, ..., ay} is the graph
obtained by deleting all vertices {ay, ..., a;} and their
incident edges from the graph.

The class of graphs for which perfect elimination or-
ders exist are also called chordal or triangulated graphs.
Gavril [6] gives an algorithm for coloring chordal
graphs in O(|V|?). The algorithm constructs a PEO for
a given chordal graph by searching and removing a sim-
plicial node from the graph each step. Afterwards, the
nodes are inserted into the graph in reverse order. Each
node is assigned a color which is not occupied by a
neighbor of the node to insert. It is further proven, that
this algorithm leads to a minimal coloring of the graph.

4. Interference graphs of SSA-programs

We say two values v and v’ interfere, iff there is a la-
bel ¢ where v and v’ are live (regarding Definition 3).
Now, we can define the interference graph IG = (V, E)
of an SSA-form program. The set of vertices is made up

by the values occurring in the program, V;g = V. Since
nodes in the interference graph and values are identi-
cal, we identify both terms in the following. We draw
an edge between to values v and v’ iff they interfere and
write vv’ € Ejg. The following lemmas lead to a theo-
rem that connects the dominance relation of a program
to perfect elimination orders in the interference graph of
that program. Lemmas 11 and 12 have also been shown
by Budimli¢ et al. [3] and are given for the sake of com-
pleteness, here.

Lemma 11 shows that each edge in the interference
graph is directed according to the dominance relation-
ship of the values their nodes represent.

Lemma 11. If two values v and w are live at some label
L, either D, dominates D, or vice versa.

Proof. By Lemma 5, D, and D,, dominate £. Thus, ei-
ther D, dominates D,, or D,, dominates D,. O

The next lemma shows what is trivial in basic blocks
also holds for complete programs in SSA-form: if one
value starts living before another (it dominates the
other) and both interfere, the value is still alive at the
definition of the other.

Lemma 12. [f v and w interfere and D, < Dy, then v
is live at Dy,.

Proof. Assume, v is not live at D,,. Then there is no
usepath from D,, to some ¢’ concerning v. Since all la-
bels where w is live are dominated by D,,, there is no
label where v and w are simultaneously live. So v and w
do not interfere which contradicts the proposition. O

Lemma 13 shows how the dominance order relation
is reflected by the interference graph. It says that all val-
ues dominating a value v and interfering with v form a
clique in the interference graph. This is used later on to
connect the perfect elimination order to the dominance
relation.

Lemma 13. ab,bc € E and ac ¢ E. If D, <X Dy, then
Dy < D,.

Proof. Due to Lemma 11, either D, < D, or D. < Dj,.
Assume D, < Dj. Then (with Lemma 12), ¢ is live at
Dy,. Since a and b also interfere and D, < Dy, a is also
live at Dj,. So, a and c are live at D;, which cannot be
by precondition. O

154 S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155

Lemma 14. A value v can extend a perfect elimination
order; if each value whose definition is dominated by D,
is already contained in the PEQO.

Proof. To extend a PEO, v must be simplicial. Assume
v is not simplicial. Then there exist two neighbors a, b
for which va,vb € E but ab ¢ E (by Definition 9).
Due to the proposition, all values whose definitions are
dominated by D, have already been removed from IG.
Thus, D, dominates D,. By Lemma 13, D, dominates
Dj, which contradicts the proposition. Thus, v is simpli-
cia. O

Theorem 15. The interference graph of a SSA-form pro-
gram P is chordal.

Proof. Consider the tree T of immediate dominators
(cf. [9]) concerning the control flow graph of P. We
start with an empty PEO and apply Lemma 14 recur-
sively on T starting at the leaves. This constructs a PEO
for the interference graph of P. Since each graph which
has a PEO is chordal, cf. [7], the interference graph of
P is chordal.

As we can see by Theorem 15, a post-order visitation
of the dominator tree of a program yields a PEO. Since
the vertices are colored reversely along a PEO, a pre-
order visitation of the dominator tree defines a sequence
in which the values can be colored optimally using the
algorithm described in [6]. Since the liveness analysis
annotates the set of live values to each label, we always
have the set of neighbors present upon coloring a value.
Thus, we do not have to construct the interference graph
itself.

5. Leaving the SSA-form

As no real-world processor has a ¢-instruction the
compiler has to destroy the SSA-form of the program at
some point in time. Conventionally, ¢-functions are re-
placed by copies in its predecessor blocks to implement
the control flow dependent copy as described in Sec-
tion 2. In doing so, one modifies the interference graph
of the program since new interferences are introduced,
as shown in Fig. 3. x3 is now interfering with y; and
y2 which has not been the case in the interference graph
of the SSA-form program. These interferences are in-
troduced due to the fact, that the atomic, simultaneous
evaluation by ¢’-functions (as mentioned in Section 2)
is broken down to a sequential set of operations. In the
worst case, these new interferences render the interfer-
ence graph un-chordal which also might invalidate our

if ... then if ... then
lyix) <+ ly:ix) <+
f3iyp < £3:yp <
else Ly:x3 <X
Lyixp < --- U5:y3 <y
Ly:yy < -+ else
end lyixy < -
£6:(x3,y3) <= ¢’ (x1, y1, X2, ¥2) €51yp < -
Ly:x3 <X
l5:y3 <y
end

Fig. 3. A program fragment in SSA-form and after destroying SSA
using copy instructions.

register allocation. We can however destroy the SSA-
form of the program and convert a register allocation
with k registers of a SSA-form program into a register
allocation with exactly the same number of registers for
the resulting non-SSA-form program.

Consider a ¢’-function

(1,

at some label £. Arriving at £ and coming from P},
the x;; are copied at once into the y; according to SSA
semantics. Consider a valid register allocation The si-
multaneous assignment given by the ¢’-function corre-
sponds to a /-to-m mapping of registers, where [< m <
k, and k represents the number of register available.?
Furthermore, all y; are assigned to different registers,
since all y; interfere. So the question of removing a
¢’-function reduces to implementing /-to-m mappings
between registers on the control flow edges to the ¢'s
label using ordinary processor instructions and m regis-
ters.

,)’m) <_¢/(xllw--7xln,--wxml,---axmn)

Theorem 16. Any simultaneous assignment from [reg-
isters to m registers, where | < m, can be implemented
with m registers using only copy and swap instructions.

Proof. Consider following simultaneous assignment:

Dy e Ym) <= (X1 ee ey XLy ee ey Xy e e ey X1).

m

In general, there may be multiple y; to which the same
xj is assigned. For each x; we arbitrarily pick one of
the y; to which it is assigned and denote it by [x;].
Note, that this induces an equivalence relation ~ on the
Y1, ..., yni yi ~ yj if there is some x; which is assigned
to y; and y;. Thus, y; and y; are members of the equiv-

3 Note, that the same value x can be assigned to different y; by a
¢'-function. E.g., (y1, y2) = ¢/(ay, by, a1, by).

S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155 155

alence class [x;]. We denote the set of the x; by X and
the set of the equivalence classes [x;] by [X].

Consider a register allocation p :V — R of the SSA-
form program obtained by the algorithm described in
the last section. Let 7 by a function mapping p(x;) to
o([x;]). Note, that since all y; interfere, all [x;] also
interfere and by the fact that all x; interfere, 7 is injec-
tive. 7 may also be partial, since / might be smaller than
k=1|R|.

Each register in p([X]) which is not in p(X) can
be assigned immediately since its value is not needed
anymore. So we apply the following recursive scheme:
Let y=m(x). If y € [X] and y ¢ X we issue a copy
from p(x) to p(y) and recursively consider the map-
ping 7| x\(x}-

At the end of this recursive procedure, either all ele-
ments of [X] are processed and thus all of X since 7 is
injective or the remaining subset of [X] equals the one
of X. Thus this rest represents a permutation of regis-
ters which can be, as known from basic linear algebra,
implemented by a sequence of swap instructions. If the
processor does not possess swap instructions, one can
use three xors, adds or subs (cf. [10]).

Finally, each y; € [x;] can be processed by copying
p(lxjD w0 p(y). O

6. Conclusions

We have shown that the interference graphs of strict
SSA-form programs are chordal which leads to a color-
ing algorithm running in quadratic time. Furthermore,
the coloring algorithm does not need to have the inter-
ference graph materialized but uses a coloring sequence
induced by the dominance relation of the program. We
also showed, how a register allocation of a SSA-form
program using m registers can be turned into a register
allocation of a corresponding non-SSA program using
also no more than m registers, by implementing the ¢’-
functions properly.

7. Related work

At the time this paper was submitted, chordal graphs
played no role in register allocation. Meanwhile, they
have drawn the attention of other researchers in the area.
The paper which initiated our research on the topic is
by Andersson [1] who investigated interference graphs
in real-world compilers and found that all of them were
1-perfect (1-perfectness means that the chromatic num-

ber of the graph equals the size of its largest clique). The
result of the quest for a proof of this observation is this
paper. Independently of us, Brisk proved the perfectness
of strict SSA-form programs [2]. In his proof he also
shows their chordality without referring to it. Pereira
and Palsberg extended Andersson’s studies and found
that, with SSA-optimizations enabled, 95% of the (non-
SSA!) interference graphs of the Java standard library
were chordal. They use this fact to derive new spilling
and coalescing heuristics for graph coloring register al-
locators. Finally, the authors of this paper published a
more technical proof (without using perfect elimination
orders) of this paper’s result in a technical report [8].

Acknowledgements

We thank our colleagues Michael Beck, Marco
Gaertler, Gotz Lindenmaier and especially Rubino Geif3
for many fruitful discussions. We also thank the anony-
mous referees for their suggestions helping to improve
this paper.

References

[1] C. Andersson, Register allocation by optimal graph coloring,
in: G. Hedin (Ed.), CC 2003, Lecture Notes in Comput. Sci.,
vol. 2622, Springer-Verlag, Heidelberg, 2003, pp. 33—45.

[2] P. Brisk, F. Dabiri, J. Macbeth, M. Sarrafzadeh, Polynomial time
graph coloring register allocation, in: 14th Internat. Workshop on
Logic and Synthesis, ACM Press, New York, 2005.

[3] Z. Budimli¢, K.D. Cooper, T.J. Harvey, K. Kennedy, T.S. Oberg,
S.W. Reeves, Fast copy coalescing and live-range identification,
in: Proc. ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, ACM Press, New York,
2002, pp. 25-32.

[4] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E.
Hopkins, P.W. Markstein, Register allocation via coloring,
J. Comput. Languages 6 (1981) 45-57.

[5] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.X. Zadeck,
An efficient method of computing static single assignment form,
in: Symp. on Principles of Programming Languages, ACM Press,
New York, 1989, pp. 25-35.

[6] F. Gavril, Algorithms for minimum coloring, maximum clique,
minimum covering by cliques, and independent set of a chordal
graph, SIAM J. Comput. 1 (2) (1972) 180-187.

[7]1 M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,
Academic Press, New York, 1980.

[8] S. Hack, Interference graphs of programs in SSA-form, Tech.
Rep. 2005-25, Universitit Karlsruhe, June 2005.

[9] T. Lengauer, R.E. Tarjan, A fast algorithm for finding domina-
tors in a flowgraph, Trans. Programm. Languages Systems 1 (1)
(1979) 121-141.

[10] H.S. Warren, Hacker’s Delight, Addison-Wesley, Reading, MA,
2003.

Register Allocation via Coloring
of Chordal Graphs

Fernando Magno Quintao Pereira and Jens Palsberg

UCLA Computer Science Department
University of California, Los Angeles

Abstract. We present a simple algorithm for register allocation which
is competitive with the iterated register coalescing algorithm of George
and Appel. We base our algorithm on the observation that 95% of the
methods in the Java 1.5 library have chordal interference graphs when
compiled with the JoeQ compiler. A greedy algorithm can optimally color
a chordal graph in time linear in the number of edges, and we can eas-
ily add powerful heuristics for spilling and coalescing. Our experiments
show that the new algorithm produces better results than iterated regis-
ter coalescing for settings with few registers and comparable results for
settings with many registers.

1 Introduction

Register allocation is one of the oldest and most studied research topics of com-
puter science. The goal of register allocation is to allocate a finite number of
machine registers to an unbounded number of temporary variables such that
temporary variables with interfering live ranges are assigned different registers.
Most approaches to register allocation have been based on graph coloring. The
graph coloring problem can be stated as follows: given a graph G and a positive
integer K, assign a color to each vertex of G, using at most K colors, such that
no two adjacent vertices receive the same color. We can map a program to a
graph in which each node represents a temporary variable and edges connect
temporaries whose live ranges interfere. We can then use a coloring algorithm to
perform register allocation by representing colors with machine registers.

In 1982 Chaitin [8] reduced graph coloring, a well-known NP-complete prob-
lem [18], to register allocation, thereby proving that also register allocation is
NP-complete. The core of Chaitin’s proof shows that the interference relations
between temporary variables can form any possible graph. Some algorithms for
register allocation use integer linear programming and may run in worst-case
exponential time, such as the algorithm of Appel and George [2]. Other algo-
rithms use polynomial-time heuristics, such as the algorithm of Briggs, Cooper,
and Torczon [5], the Iterated Register Coalescing algorithm of George and Ap-
pel [12], and the Linear Scan algorithm of Poletto and Sarkar [16]. Among the
polynomial-time algorithms, the best in terms of resulting code quality appears
to be iterated register coalescing. The high quality comes at the price of han-
dling spilling and coalescing of temporary variables in a complex way. Figure 1

potential ng:t actual

@— build — simplify — coalesce — freeze —> spill ~_ spil

Fig. 1. The iterated register coalescing algorithm.

(a) (b) (c)

Fig. 2. (a) A chordal graph. (b-c) Two non-chordal graphs.

illustrates the complexity of iterated register coalescing by depicting the main
phases and complicated pattern of iterations of the algorithm. In this paper we
show how to design algorithms for register allocation that are simple, efficient,
and competitive with iterated register coalescing.

We have observed that the interference graphs of real-life programs tend to
be chordal graphs. For example, 95% of the methods in the Java 1.5 library have
chordal interference graphs when compiled with the JoeQ compiler. A graph is
chordal if every cycle with four or more edges has a chord, that is, an edge which
is not part of the cycle but which connects two vertices on the cycle. (Chordal
graphs are also known as ‘triangulated’, ‘rigid-circuit’, ‘monotone transitive’,
and ‘perfect elimination’ graphs.) The graph in Figure 2(a) is chordal because
the edge ac is a chord in the cycle abeda. The graph in Figure 2(b) is non-
chordal because the cycle abeda is chordless. Finally, the graph in Figure 2(c) is
non-chordal because the cycle abeda is chordless, just like in Figure 2(b).

Chordal graphs have several useful properties. Problems such as minimum
coloring, maximum clique, maximum independent set and minimum covering by
cliques, which are NP-complete in general, can be solved in polynomial time for
chordal graphs [11]. In particular, optimal coloring of a chordal graph G = (V, E)
can be done in O(|E| + |V]) time.

In this paper we present an algorithm for register allocation, which is based on
a coloring algorithm for chordal graphs, and which contains powerful heuristics
for spilling and coalescing. Our algorithm is simple, efficient, and modular, and
it performs as well, or better, than iterated register coalescing on both chordal
graphs and non-chordal graphs.

The remainder of the paper is organized as follows: Section 2 discusses re-
lated work, Section 3 summarizes some known properties and algorithms for
chordal graphs, Section 4 describes our new algorithm, Section 5 presents our
experimental results, and Section 6 concludes the paper.

2 Related Work

We will discuss two recent efforts to design algorithms for register allocation that
take advantage of properties of the underlying interference graphs. Those efforts
center around the notions of perfect and 1-perfect graphs. In a 1-perfect graph,
the chromatic number, that is, the minimum number of colors necessary to color
the graph, equals the size of the largest clique. A perfect graph is a 1-perfect
graph with the additional property that every induced subgraph is 1-perfect.
Every chordal graph is perfect, and every perfect graph is 1-perfect.

Andersson [1] observed that all the 27,921 interference graphs made publicly
available by George and Appel [3] are 1-perfect, and we have further observed
that 95.6% of those graphs are chordal when the interferences between pre-
colored registers and temporaries are not considered. Andersson also showed
that an optimal, worst-case exponential time algorithm for coloring 1-perfect
graphs is faster than iterated register coalescing when run on those graphs.

Recently, Brisk et al. [6] proved that strict programs in SSA-form have per-
fect interference graphs; independently, Hack [14] proved the stronger result
that strict programs in SSA-form have chordal interference graphs. A strict pro-
gram [7] is one in which every path from the initial block until the use of a
variable v passes through a definition of v. Although perfect and chordal graphs
can be colored in polynomial time, the practical consequences of Brisk and Hack’s
proofs must be further studied. SSA form uses a notational abstraction called
phi-function, which is not implemented directly but rather replaced by copy in-
structions during an SSA-elimination phase of the compiler. Register allocation
after SSA elimination is NP-complete [15].

For example, Figure 3(a) shows a program with a non-chordal interference
graph, Figure 3(b) shows the program in SSA form, and Figure 3(c) shows the
program after SSA elimination. The example program in Figure 3(a) has a cy-
cle of five nodes without chords: a~d-e—c—b—-a. In the example in Figure 3(b),
e = phi(ey, ez) will return ey if control reaches block 8 through block 7, and will
return e; if control reaches block 8 through block 4. The SSA semantics states
that all phi-functions at the beginning of a block must be evaluated simultane-
ously as the first operation upon entering that block; thus, live ranges that reach
block 8 do not interfere with live ranges that leave block 8. Hack [14] used this
observation to show that phi-functions break chordless cycles so strict programs
in SSA-form have chordal interference graphs. The example program after SSA
elimination, in Figure 3(c), has an interference graph which is non-chordal, non-
perfect, and even non-1-perfect: the largest clique has two nodes but three colors
are needed to color the graph. Note that the interference graph has a cycle of
seven nodes without chords: a-~d—el—-cl-e—c2-b-a.

For 1-perfect graphs, recognition and coloring are NP-complete. Perfect graphs
can be recognized and colored in polynomial time, but the algorithms are highly
complex. The recognition of perfect graphs is in O(|V|°) time [9]; the complexity
of the published coloring algorithm [13] has not been estimated accurately yet.
In contrast, chordal graphs can be recognized and colored in O(|E| 4 |V|) time,
and the algorithms are remarkably simple, as we discuss next.

. . 1[a,d]
int m(int x, a, d) { Fa d 2
. d [b=0;]
int b, c; 2[e1=0; h
int b, c; =0 s
if(x > 0) { Lel=0;] ab et
= . s{c2=a
e =0; et ofezea) | ‘lezdl
2 c2,
c =d; @b etct
} 1 { 4lcl=d; . 71e2 =b;
else TEer] | olmel) ap
= . cletl
b 0, 2,62 el N
cC = a,; sl c=cl

e = b; ¢ = phi(c1,c2); ec m
}) ; ec
return e + c; o[return e+c; | 11[return e+c; |

() (b) c)

Fig. 3. (a) A program with a non-chordal interference graph, (b) the program in SSA
form, (c) the program after SSA elimination.

Ig

—~

3 Chordal Graphs

We now summarize some known properties and algorithms for chordal graphs.
For a graph G, we will use A(G) to denote the maximum outdegree of any vertex
in G, and we will use N(v) to denote the set of neighbors of v, that is, the set
of vertices adjacent to v in G. A clique in an undirected graph G = (V, E) is
a subgraph in which every two vertices are adjacent. A vertex v € V is called
simplicial if its neighborhood in G is a clique. A Simplicial Elimination Ordering
of G is a bijection o : V(G) — {1...|V]}, such that every vertex v; is a simplicial
vertex in the subgraph induced by {vy,...,v;}. For example, the vertices b, d of
the graph shown in Figure 2(a) are simplicial. However, the vertices a and ¢ are
not, because b and d are not connected. In this graph, (b, a,c,d) is a simplicial
elimination ordering. There is no simplicial elimination ordering ending in the
nodes a or c¢. The graphs depicted in Figures 2(b) and 2(c) have no simplicial
elimination orderings.

Theorem 1. (Dirac [10]) An undirected graph without self-loops is chordal if
and only if it has a simplicial elimination ordering.

The algorithm greedy coloring, outlined in Figure 4, is a O(FE) heuristic for
graph coloring. Given a graph G and a sequence of vertices v, greedy coloring
assigns to each vertex of v the next available color. Each color is a number ¢
where 0 < ¢ < A(G) + 1. If we give greedy coloring a simplicial elimination
ordering of the vertices, then the greedy algorithm yields an optimal coloring
[11]. In other words, greedy coloring is optimal for chordal graphs.

The algorithm known as Maximum Cardinality Search (MCS)[17] recognizes
and determines a simplicial elimination ordering o of a chordal graph in O(|E|+
|[V|) time. MCS associates with each vertex v of G a weight A(v), which initially

procedure greedy coloring
1 input: G = (V, E), a sequence of vertices v

2 output: a mapping m, m(v) =¢,0<c < A(G)+ 1L,v eV
3 For all v € v do m(v) «—_L

4 For i — 1 to |v| do

5 let ¢ be the lowest color not used in N(v(7)) in

6 m(v(i)) «— ¢

Fig. 4. The greedy coloring algorithm.

procedure MCS

1 input: G = (V, E)

2 output: a simplicial elimination ordering ¢ = v1,...,vp

3 For all v € V do A(v) < 0

4 For i — 1 to |V| do

5 let v € V be a vertex such that Yu € V, A(v) > A(u) in
6 o(i) — v

7 For all u € VN N(v) do A(u) «— A(u) + 1

8 V—V-—-{v}

Fig. 5. The maximum cardinality search algorithm.

is 0. At each stage MCS adds to o the vertex v of greatest weight not yet visited.
Subsequently MCS increases by one the weight of the neighbors of v, and starts
a new phase. Figure 5 shows a version of MCS due to Berry et al. [4].

The procedure MCS can be implemented to run in O(|V| + |E|) time. To see
that, notice that the first loop executes |V| iterations. In the second loop, for
each vertex of G, all its neighbors are visited. After a vertex is evaluated, it is
removed from the remaining graph. Therefore, the weight A is increased exactly
|E| times. By keeping vertices in an array of buckets indexed by A, the vertex of
highest weight can be found in O(1) time.

4 Our Algorithm

Our algorithm has several independent phases, as illustrated in Figure 6, namely
coloring, spilling, and coalescing, plus an optional phase called pre-spilling. Coa-
lescing must be the last stage in order to preserve the optimality of the coloring
algorithm, because, after merging nodes, the resulting interference graph can
be non-chordal. Our algorithm uses the MCS procedure (Figure 5) to produce
an ordering of the nodes, for use by the pre-spilling and coloring phases. Our
approach yields optimal colorings for chordal graphs, and, as we show in Sec-
tion 5, it produces competitive results even for non-chordal graphs. We have
implemented heuristics, rather than optimal algorithms, for spilling and coalesc-
ing. Our experimental results show that our heuristics perform better than those
used in the iterated register coalescing algorithm.

[} - I ~
@— build —=IMCS — P& s ycs —» grEedY . post o escing —ve
| spilling 1 coloring spilling
1

Fig. 6. The main phases of our algorithm.

int ged (int R1, int R2)

1. IFCMP_I_EQ .. R2 0 (12);
2. ZERO_CHECK_I .. T1 R2;
3. DIV_I T7 R1 R2;
4. CHECK_EX T1
5. MOVE_I R4 T7;
6. MUL_I T8 R2 R4;
7. MOVE_I R6 T8;
8. SUB_I T9 R1 R5;
9. MOVE_I R6 T9;
10. MOVE_I R1 R2;
11. MOVE_I R2 R6;
12. GOTO e o (s
13. RETURN_I .. Ri;
(a) (b)

Fig. 7. (a) Euclid’s algorithm. (b) Interference graph generated for ged().

In order to illustrate the basic principles underlying our algorithm, we will as
a running example show how our algorithm allocates registers for the program
in Figure 7 (a). This program calculates the greatest common divisor between
two integer numbers using Euclid’s algorithm. In the intermediate representation
adopted, instructions have the form op, t, p1, p2. Such an instruction defines the
variable ¢, and adds the temporaries p; and ps to the chain of used values. The
interference graph yielded by the example program is shown in Figure 7 (b).
Solid lines connecting two temporaries indicate that they are simultaneously
alive at some point in the program, and must be allocated to different registers.
Dashed lines connect move related registers.

Greedy Coloring In order to assign machine registers to variables, the greedy
coloring procedure of Figure 4 is fed with an ordering of the vertices of the
interference graph, as produced by the MCS procedure. From the graph shown
in Figure 7 (b), MCS produces the ordering: (T7, R1, R2, T1, R5, R4, T8,
R6, T9), and greedy coloring then produces the mapping between temporaries
and colors that is outlined in Figure 8 (a). If the interference graph is chordal,
then the combination of MCS and Greedy Coloring produces a minimal coloring.
The coloring phase uses an unbounded number of colors so that the interference
graph can always be colored. The excess of colors will be removed in the post-
spilling stage.

Post-spilling Given an instance of a register allocation problem, it may be possi-
ble that the number of available registers is not sufficient to accommodate all the

(a) (b)

Fig. 8. (a) Colored interference graph. (b) Interference graph after spilling the highest
colors.

temporary variables. In this case, temporaries must be removed until the remain-
ing variables can be assigned to registers. The process of removing temporaries
is called spilling. A natural question concerning spilling when the interference
graph is chordal is if there is a polynomial algorithm to determine the minimum
number of spills. The problem of determining the maximum K-colorable sub-
graph of a chordal graph is NP-complete [20], but has polynomial solution when
the number of colors (K) is fixed. We do not adopt the polynomial algorithm
because its complexity seems prohibitive, namely O(|V|¥) time.

Iterated register coalescing performs spilling as an iterative process. After an
unsuccessful attempt to color the interference graph, some vertices are removed,
and a new coloring phase is executed. We propose to spill nodes in a single
iteration, by removing in each step all nodes of a chosen color from the colored
interference graph. The idea is that given a K-colored graph, if all the vertices
sharing a certain color are removed, the resulting subgraph can be colored with
K — 1 colors. We propose two different heuristics for choosing the next color to
be removed: (i) remove the least-used color, and (ii) remove the highest color
assigned by the greedy algorithm.

The spilling of the highest color has a simpler and more efficient implementa-
tion. The heuristic is based on the observation that the greedy coloring tends to
use the lower colors first. For a chordal graph, the number of times the highest
color is used is bounded by the number of maximal cliques in the interference
graph. A maximal clique is a clique that cannot be augmented. In other words,
given a graph G = (V, E), a clique @ is maximal if there is no vertex v,v € V—-@Q,
such that v is adjacent to all the vertices of Q. For our running example, Fig-
ure 8 (b) shows the colored interference graph after the highest colors have been
removed, assuming that only two registers are available in the target machine.
Coincidentally, the highest colors are also the least-used ones.

Coalescing The last phase of the algorithm is the coalescing of move related
instructions. Coalescing helps a compiler to avoid generating redundant copy
instructions. Our coalescing phase is executed in a greedy fashion. For each

procedure coalescing

1 input: list I of copy instructions, G = (V, E), K
2 output: G’, the coalesced graph G

3 let G' =G in

4 for allz:=y €l do

5 let S, be the set of colors in N(z)

6 let S, be the set of colors in N(y)

7 if there exists ¢,¢c < K,c ¢ S, U S, then

8 let zy,zy ¢ V be a new node

9 add zy to G’ with color ¢

10 make zy adjacent to every v,v € N(z)U N(y)
11 replace occurrences of x or y in [by xy
12 remove z from G’

13 remove y from G’

Fig. 9. The greedy coalescing algorithm.

instruction a := b, the algorithm looks for a color ¢ not used in N(a) U N(b),
where N (v) is the set of neighbors of v. If such a color exists, then the temporaries
a and b are coalesced into a single register with the color ¢. This algorithm is
described in Figure 9. Our current coalescing algorithm does not use properties
of chordal graphs; however, as future work, we plan to study how coalescing can
take benefit from chordality.

Pre-spilling To color a graph, we need a number of colors which is at least the
size of the largest clique. We now present an approach to removing nodes that
will bring the size of the largest clique down to the number of available colors and
guarantee that the resulting graph will be colorable with the number of available
colors (Theorem 2). Gavril [11] has presented an algorithm mazimalCl, shown in
Figure 10, which lists all the maximal cliques of a chordal graph in O(|E|) time.
Our pre-spilling phase first runs mazimalCl and then the procedure pre-spilling
shown in Figure 11. Pre-spilling uses a map w which maps each vertex to an
approximation of the number of maximal cliques that contain that vertex. The
objective of pre-spilling is to minimize the number of spills. When an interference
graph is non-chordal, the mazimalCl algorithm may return graphs that are not
all cliques and so pre-spilling may produce unnecessary spills. Nevertheless, our
experimental results in Section 5 show that the number of spills is competitive
even for non-chordal graphs.

The main loop of pre-spilling performs two actions: (i) compute the vertex
v that appears in most of the cliques of £ and (ii) remove v from the cliques in
which it appears. In order to build an efficient implementation of the pre-spilling
algorithm, it is helpful to define a bidirectional mapping between vertices and
the cliques in which they appear. Because the number of maximal cliques is
bounded by |V for a chordal graph, it is possible to use a bucket list to compute
w(v),v € V in O(1) time. After a temporary is deleted, a number of cliques may
become K-colorable, and must be removed from £. Again, due to the bidirectional

procedure maximalCl
input: G = (V, E)
output: a list of cliques € = (Q1,Q2,...,Qn)
o — MCS(G)
For i — 1 to n do
Let v « ofi] in
Qi — {v}U{u| (u,v) € BE,ue{o[l],...,oli —1]}}

DU W N =

Fig. 10. Listing maximal cliques in chordal graphs.

procedure pre-spilling

1 input: G = (V, E), a list of subgraphs of G: £ = (Q1,Qa2, ..., Qn),
a number of available colors K, a mapping w

output: a K-colorable subgraph of G

Ri=Q1;R2=Q2;... Ry =Qn

while there is R; with more than K nodes do
let v € R; be a vertex such that Yu € R;, w(v) > w(u) in

remove v from all the graphs Ri, Ra,..., Ry
return R UR2U...UR,

N O U W N

Fig. 11. Spilling intersections between maximal cliques.

mapping between cliques and temporaries, this operation can be performed in
O(|N(v)|), where N(v) is the set of vertices adjacent to v. Overall, the spilling
algorithm can be implemented in O(|E|).

Theorem 2. The graph pre-spilling(G,maximalCl(G),K w) is K-colorable.

Proof. Let (Q1,Qa, .., Q) be the output of mazimalCl(G). Let R{URLU. . .UR,
be the output of pre-spilling(G,mazimalCl(G),K,w). Let R} = RiURyU...UR;
for i € 1..n.

We will show that for all ¢ € 1..n, R} is K-colorable. We proceed by induction
on 1.

In the base case of i = 1, we have R} = Ry C ()1 and @; has exactly one
node. We conclude that R is K-colorable.

In the induction step we have from the induction hypothesis that R} is K-
colorable so let ¢ be a K-coloring of R?. Let v be the node o[i + 1] chosen in line
5 of mazimalCl. Notice that v is the only vertex of @); 1 that does not appear in
Q1,Q2,...,Q; so c does not assign a color to v. Now there are two cases. First,
if v has been removed by pre-spilling, then R?,; = R} so c¢ is a K-coloring of
R?, . Second, if v has not been removed by pre-spilling, then we use that R; 1
has at most K nodes to conclude that the degree of v in R;;1 is at most K — 1.
We have that ¢ assigns a color to all neighbors for v in R;;1 so we have a color
left to assign to v and can extend c to a K-coloring of Rj ;.

Figure 12 (a) shows the mapping between temporaries and maximal cliques
that is obtained from the gcd(x, y) method, described in Figure 7 (a). Assum-
ing that the target architecture has two registers, the cliques must be pruned

R1,R2, R4 R2, R4
R1,R2, RS R2, R5
R1,R2, R6 R2,R6 (Ra)oo---
T4, R1, R2 T, R2

$ED
T7,T1,R1, R2 #0 T7,T1,R2 |
R1, R2, T8 R2,T8

(a) (b) (c)

Fig. 12. (a) Mapping between nodes and maximal cliques. (b) Mapping after pruning
node R1. (¢) Interference graph after spilling R1 and R2.

T o @@
oo
(a) (b) (c) (d)

Fig. 13. (a) Coloring produced by the greedy algorithm. (b) Coalescing R6 and T9. (c)
Coalescing R4 and T7. (d) Coalescing R5 and T8.

until only cliques of size less than two remain. The registers R1 and R2 are the
most common in the maximal cliques, and, therefore, should be deleted. The
configuration after removing register R1 is outlined in Figure 12 (b). After the
pruning step, all the cliques are removed from &. Figure 12 (c¢) shows the inter-
ference graph after the spilling phase.

Figure 13 outlines the three possible coalescings in this example. Coinciden-
tally, two of the move related registers were assigned the same color in the greedy
coloring phase. Because of this, their colors do not had to be changed during
the coalescing stage. The only exception is the pair (R4, T7). In the coalescing
phase, the original color of R4 is changed to the same color of T7. Afterwards,
the registers are merged.

Complexity Analysis The coloring phase, as a direct application of maximum
cardinality search and greedy coloring, can be implemented to run in O(|V|+|E|)
time.

Our heuristics for spilling can all can be implemented to run in O(|E|) time.
In order to implement spilling of the least-used color, it is possible to order the
colors with bucket sort, because the maximum color is bounded by the highest
degree of the interference graph plus one. The same technique can be used to

order the weight function for the pre-spilling algorithm because the size of the
list &, produced by the procedure mazimalCl, is bounded by |V]|.

Coalescing is the phase with the highest complexity, namely O(t), where
t is the number of temporaries in the source code. Our coalescing algorithm
inspects, for each pair of move related instructions, all their neighbors. It is
theoretically possible to have up to ¢? pairs of move related instructions in the
target code. However, the number of these instructions is normally small, and
our experimental results show that the coalescing step accounts for less than
10% of the total running time (see Figure 14 (a)).

5 Experimental Results

We have built an evaluation framework in Java, using the JoeQ compiler [19], in
order to compare our algorithm against the iterated register coalescing. When
pre-spilling is used, post-spilling is not necessary (Theorem 2). Our benchmark
suite is the entire run-time library of the standard Java 1.5 distribution, i.e. the
set of classes in rt.jar. In total, we analyzed 23,681 methods. We analyzed
two different versions of the target code. One of them is constituted by the in-
termediate representation generated by JoeQ without any optimization. In the
other version, the programs are first converted to single static assignment form
(SSA), and them converted back to the JoeQ intermediate representation, by
substituting the phi functions by copy instructions. In the former case, approx-
imately 91% of the interference graphs produced are chordal. In the latter, the
percentage of chordal graphs is 95.5%.

Table 1 shows results obtained by the iterative algorithm (IRC), and our
non-iterative register allocator (NIA). The implementation of both algorithms
attempts to spill the minimum number of registers. As it can be seen in the table,
our technique gives better results than the traditional register allocator. It tends
to use less registers per method, because it can find an optimum assignment
whenever the interference graph is chordal. Also, it tends to spill less temporaries,
because, by removing intersections among cliques, it decreases the chromatic
number of several clusters of interfering variables at the same time. Notably, for
the method coerceData, of the class java.awt.image.ComponentColorModel,
with 6 registers available for allocation, the pre-spilling caused the eviction of
41 temporaries, whereas Iterated Register Coalescing spilled 86. Also, because
our algorithm tends to spill fewer temporaries and to use fewer registers in
the allocation, it is able to find more opportunities for coalescing. The Iterated
register coalescing and our algorithm have similar running times. The complexity
of a single iteration of the IRC is O(|E|), and the maximum number of iterations
observed in the tests was 4; thus, its running time can be characterized as linear.
Furthermore, both algorithms can execute a cubic number of coalescings, but,
in the average, the quantity of copy instructions per program is small when
compared to the total number of instructions.

Table 2 compares the two algorithms when the interference graphs are chordal
and non-chordal. This data refers only to target programs after SSA elimination.

Algorithm [SSA|number of|register/| spill/ | Total |maximum|coalescing/|running
registers | method |method| spills | # spills moves |time (s)

NIA no 18 4.20 |0.0044 | 102 15 0.38 2645.1
Post-spilling| yes 18 4.13 |0.0034| 81 14 0.72 2769.9
least-used no 6 3.79 0.43 |10,218 30 0.37 2645.0
color yes 6 3.75 0.51 [12,108 91 0.73 2781.7
NIA no 18 4.20 |0.0048 | 115 15 0.34 2641.5
Post-spilling| yes 18 4.13 0.010 | 246 63 0.72 2767.0
highest no 6 3.80 0.50 (11,923 33 0.35 2674.3
used color | yes 6 3.75 0.80 (19,018 143 0.69 2764.2
NIA no 18 4.20 |0.0044 | 105 15 0.34 2640.5
Pre-spilling | yes 18 4.13]0.0039 | 94 17 0.72 2763.2
no 6 3.78 0.45 (10,749 34 0.35 2645.8

yes 6 3.75 0.49 |11,838 43 0.70 2765.1

no 18 4.25 10.0050 | 115 16 0.31 2644.1

IRC yes 18 4.17 |0.0048 | 118 27 0.70 2823.2
no 6 3.81 0.50 (11,869 32 0.31 2641.5

yes 6 3.77 0.57 [13,651 86 0.66 2883.7

Table 1. Comparison between our algorithm (NIA) and Iterated Register Coalescing
(IRC), including results for the three different spilling heuristics in Section 4.

In general, non-chordal interference graphs are produced by complex methods.
For instance, methods whose interference graphs are non-chordal use, on average,
80.45 temporaries, whereas the average for chordal interference graphs is 13.94
temporaries.

The analysis of methods whose interference graphs are chordal gives some
insight about the structure of Java programs. When an interference graph is
chordal, the mapping between temporaries and registers is optimal, i.e. it uses the
smallest possible number of registers. Figure 14 (b) shows the relation between
number of methods of the Java Library and the minimum number of registers
necessary to handle them. Only methods that could be colored with less than
18 colors (99.6%) are shown. Allocation results for methods whose interference
graph are non-chordal are also presented, even though these may not be optimal.

Figure 14 (a) compares the amount of time spent on each phase of the al-
gorithm when different spilling heuristics are adopted. The time used in the
allocation process is a small percentage of the total running time presented in
Table 1 because the latter includes the loading of class files, the parsing of byte-
codes, the liveness analysis and the construction of the interference graph. When
pre-spilling is used, it accounts for more than half the allocation time.

We have also tested our register allocation algorithm on the 27,921 inter-
ference graphs published by George and Appel. Those graphs were generated
by the standard ML compiler of New Jersey compiling itself [3]. Our tests have
shown that 95.7% of the interference graphs are chordal when the interferences
between pre-colored registers and temporaries are not taken into consideration.
The compilation results are outlined in Table 3. The graphs contain 21 pairwise

Algorithm |chordal number of|register/| spill/ |Total|maximum|coalescing/
graph | registers | method |method|spills| # spills moves
NIA no 18 8.17 0.054 | 61 17 0.75
Pre-spilling| no 6 5.77 4.55 | 5173 43 0.79
yes 18 3.92 |0.0015| 33 6 0.69
yes 6 3.65 0.29 | 6665 31 0.68
no 18 8.39 0.062 | 71 27 0.74
IRC no 6 5.79 4.89 | 5562 86 0.66
yes 18 3.97 [0.0015| 34 6 0.67
yes 6 3.68 0.39 | 8089 45 0.67

Table 2. Comparative performance of our spilling heuristics for chordal and non-

chordal interference graphs.

Z

=

[chordal interference graphs
4500

[non-chordal interference graphs
4000

coalescing

3500 -

3000

2500 M

=N Highest color

_:\\\ Least used color

Clique Intersection

2000

spilling

[EEEEESS

SPOYIOI JO JequinN

1500

1000

500 — — —

coloring

Number of Registers

(a) (b)

Fig. 14. (a) Time spent on coloring, spilling and coalescing in the different heuristics.
(b) Number of registers assigned to methods of the Java 1.5 Standard Library.

interfering pre-colored registers, which represent the machine registers available
for the allocation. Because of these cliques, all the graphs, after spilling, de-
manded exactly 21 colors. When the graphs are chordal, pre-spilling gives the
best results; however, this heuristic suffers a penalty when dealing with the
non-chordal graphs, because they present a 21-clique, and must be colored with
21 registers. In such circumstances, the procedure mazimalCl from Figure 10
have listed some false maximal cliques, and unnecessary spills have been caused.
Overall, the spilling of the least-used colors gives the best results. The execution
times for analyzing the ML-compiler-based benchmarks are faster than those for
analyzing the Java Library because the latter set of timings includes the times
to construct the interference graphs.

chordal|Total of| maximum |coalescing/|allocation

Algorithm graph | spills |number of| moves time
spills (s)

Post-spilling least yes 1,217 84 0.97 993.8
used color no 63 14 0.94 '

Post-spilling highest| yes 1,778 208 0.97 999.9
used color no 80 20 0.94 '

Pre-spilling yes 1,127 86 0.97
no 1,491 23 0.93 482.3

Table 3. Results obtained from the allocation of registers to 27,921 interference graphs
generated from ML code.

6 Conclusion

This paper has presented a non-iterative algorithm for register allocation based
on the coloring of chordal graphs. Chordal graphs present an elegant structure
and can be optimally colored in O(|V| + |E|) time. For the register allocation
problem, we can find an optimal allocation in time linear in the number of inter-
ferences between live ranges, whenever the interference graph is chordal. Addi-
tionally, our algorithm is competitive even when performing register allocation
on non-chordal inputs.

In order to validate the algorithm, we compared it to iterated register co-
alescing. Our algorithm allocates fewer registers per method and spills fewer
temporaries. In addition, our algorithm can coalesce about the same proportion
of copy instructions as iterated register coalescing.

In addition to being efficient, our algorithm is modular and flexible. Because it
is non-iterative, it presents a simpler design than traditional algorithms based on
graph coloring. The spill of temporaries can happen before or after the coloring
phase. By performing spilling before coloring, it is possible to assign different
weights to temporaries in order to generate better code. Our implementation
and a set of interference graphs generated from the Java methods tested can be
found at http://compilers.cs.ucla.edu/fernando/projects/.

Acknowledgments. We thank Ben Titzer and the reviewers for helpful com-
ments on a draft of the paper. Fernando Pereira is sponsored by the Brazilian
Ministry of Education under grant number 218603-9. We were supported by the
National Science Foundation award number 0401691.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Christian Andersson. Register allocation by optimal graph coloring. In 12th Con-
ference on Compiler Construction, pages 34-45. Springer, 2003.

Andrew W Appel and Lal George. Optimal spilling for cisc machines with few
registers. In International Conference on Programming Languages Design and
Implementation, pages 243—-253. ACM Press, 2001.

. Andrew W Appel and Lal George. 27,921 actual register-interference graphs gen-

erated by standard ML of New Jersey, version 1.09-http://www.cs.princeton.e-
du/~appel/graphdata/, 2005.

. Anne Berry, Jean Blair, Pinar Heggernes, and Barry Peyton. Maximum cardinality

search for computing minimal triangulations of graphs. Algorithmica, 39(4):287—
298, 2004.

. Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph

coloring register allocation. Transactions on Programming Languages and Systems
(TOPLAS), 16(3):428-455, 1994.

. Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial-

time graph coloring register allocation. In 14th International Workshop on Logic
and Synthesis. ACM Press, 2005.

. Zoran Budimlic, Keith D Cooper, Timothy J Harvey, Ken Kennedy, Timothy S

Oberg, and Steven W Reeves. Fast copy coalescing and live-range identification. In
International Conference on Programming Languages Design and Implementation,
pages 25-32. ACM Press, 2002.

. G J Chaitin. Register allocation and spilling via graph coloring. Symposium on

Compiler Construction, 17(6):98-105, 1982.

. Maria Chudnovsky, Gerard Cornuejols, Xinming Liu, Paul Seymour, and Kristina

Vuskovic. Recognizing berge graphs. Combinatorica, 25:143-186, 2005.

G A Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universiat Hamburg, volume 25, pages 71-75. University of Hamburg,
1961.

Fanica Gavril. Algorithms for minimum coloring, maximum clique, minimum cov-
ering by cliques, and maximum independent set of a chordal graph. SICOMP,
1(2):180-187, 1972.

Lal George and Andrew W Appel. Iterated register coalescing. Transactions on
Programming Languages and Systems (TOPLAS), 18(3):300-324, 1996.

M Grotschel, L Lovasz, and A Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169-197, 1981.

Sebastian Hack. Interference graphs of programs in SSA-form. Technical report,
Universitat Karlsruhe, 2005.

Fernando M Q Pereira and Jens Palsberg. Register allocation after SSA elimination
is NP-complete. Manuscript, 2005.

Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Transactions on Programming Languages and Systems, 21(5):895-913, 1999.
Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J. Comput., 13(3):566-579, 1984.

Douglas B West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.
John Whaley. Joeq:a virtual machine and compiler infrastructure. In Workshop
on Interpreters, virtual machines and emulators, pages 58-66. ACM Press, 2003.
Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph prob-
lem for chordal graphs. Information Processing Letters, 24(2):133-137, 1987.

Register Allocation after Classical SSA
Elimination is NP-complete

Fernando Magno Quintao Pereira
Jens Palsberg

UCLA
University of California, Los Angeles

Abstract. Chaitin proved that register allocation is equivalent to graph
coloring and hence NP-complete. Recently, Bouchez, Brisk, and Hack
have proved independently that the interference graph of a program in
static single assignment (SSA) form is chordal and therefore colorable
in linear time. Can we use the result of Bouchez et al. to do register
allocation in polynomial time by first transforming the program to SSA
form, then performing register allocation, and finally doing the classical
SSA elimination that replaces ¢-functions with copy instructions? In this
paper we show that the answer is no, unless P = NP: register allocation
after classical SSA elimination is NP-complete. Chaitin’s proof technique
does not work for programs after classical SSA elimination; instead we
use a reduction from the graph coloring problem for circular arc graphs.

1 Introduction

In Section 1.1 we define three central notions that we will use in the paper:
the core register allocation problem, static single assignment (SSA) form, and
post-SSA programs. In Section 1.2 we explain why recent results on programs
in SSA form might lead one to speculate that we can solve the core register
allocation problem in polynomial time. Finally, in Section 1.3 we outline our
result that register allocation is NP-complete for post-SSA programs produced
by the classical approach that replaces ¢-functions with copy instructions.

1.1 Background

Register Allocation. In a compiler, register allocation is the problem of mapping
temporaries to machine registers. In this paper we will focus on:

Core register allocation problem:

Instance: a program P and a number K of available registers.

Problem: can each of the temporaries of P be mapped to one of the K
registers such that temporary variables with interfering live ranges are
assigned to different registers?

Notice that K is part of the input to the problem. Fixing K would correspond to
the register allocation problem solved by a compiler for a fixed architecture. Our
core register allocation problem is related to the kind of register allocation prob-
lem solved by gcc; the problem does not make assumptions about the number
of registers in the target architecture.

Chaitin et al. [8] showed that the core register allocation problem is NP-
complete by a reduction from the graph coloring problem. The essence of Chaitin
et al.’s proof is that every graph is the interference graph of some program.

SSA form. Static single assignment (SSA) form [21] is an intermediate represen-
tation used in many compilers, including gcc version 4. If a program is in SSA
form, then every variable is assigned exactly once, and each use refers to exactly
one definition. A compiler such as gcc version 4 translates a given program to
SSA form and later to an executable form.

SSA form uses ¢-functions to join the live ranges of different names that rep-
resent the same value. We will describe the syntax and semantics of ¢-functions
using the matrix notation introduced by Hack et al. [17]. Figure 1 (a) outlines
the general representation of a ¢-matrix. And Figure 1 (c) gives the intuitive
semantics of the matrix shown in Figure 1 (b).

An equation such as V= ¢M, where V is a n-dimensional vector, and M
is a n X m matrix, contains n ¢-functions such as a; «— ¢(a;1, a2, . - . a;m). Each
possible execution path has a corresponding column in the ¢-matrix, and adds
one parameter to each ¢-function. The ¢ symbol works as a multiplexer. It will
assign to each element a; of V an element a;; of M, where j is determined by
the actual path taken during the program’s execution.

All the ¢-functions are evaluated simultaneously at the beginning of the basic
block where they are located. As noted by Hack et al. [17], the live ranges of
temporaries in the same column of a ¢-matrix overlap, while the live ranges
of temporaries in the same row do not overlap. Therefore, we can allocate the
same register to two temporaries in the same row. For example, Figure 2 shows
a program, its SSA version, and the program after classical SSA elimination.
If the control flow reaches block 2 from block 1, ¢(v11,v12) will return vyy; v12
being returned otherwise. Variables i5 and v1; do not interfere. In contrast, the
variables v1; and i; interfere because both are alive at the end of block 1.

Post-SSA programs. SSA form simplifies many analyses that are performed on
the control flow graph of programs. However, traditional instruction sets do not
implement ¢-functions [10]. Thus, in order to generate executable code, com-
pilers have a phase called SSA-elimination in which ¢-functions are destroyed.
Henceforth, we will refer to programs after SSA elimination as post-SSA pro-
grams.

The classical approach to SSA-elimination replaces the ¢-functions with copy
instructions [1, 5,7, 10, 18, 20]. For example, consider vy = ¢(v11, ..., v1,,) in block
b. The algorithm explained by Appel [1] adds at the end of each block ¢ that
precedes b, one copy instruction such as v; = vy;.

al ail ai2... Qim

ef(a1)

a2 — 4 a1 a2... a2m def(a;;)
an anl QAn2 ... Gnm
a11 21 a12 a22 a13 23
v
(211 a, é\ z‘32 é1 at2
® \ l /
ai —¢ ail ai2 a3 sel@y
az a1 22 a23 use(a,)
(b) (c)

Fig. 1. (a) ¢-functions represented as a matrix equation. (b) Matrix equation repre-
senting two ¢-functions and three possible execution paths. (¢) Control flow graph
illustrating the semantics of ¢-functions.

In this paper we concentrate on SSA programs whose control flow graphs
have the structure outlined in Figure 3 (a). The equivalent post-SSA programs,
generated by the classical approach to SSA-elimination, are given by the gram-
mar in Figure 3 (b). We will say that a program generated by the grammar in
Figure 3 (b) is a simple post-SSA program. For example, the program in Fig-
ure 2(c) is a simple post-SSA program. A simple post-SSA program contains a
single loop. Just before the loop, and at the end of it (see Figure 3 (b)), the pro-
gram contains copy instructions that correspond to the elimination of a ¢-matrix
such as:

U1 V11 V21
VK MK U2K
) 11 19

1.2 Programs in SSA-form have chordal interference graphs

The core register allocation problem is NP-complete and a compiler can trans-
form a given program into SSA form in cubic time [9]. Thus we might expect that
the core register allocation problem for programs in SSA form is NP-complete.
However, that intuition would be wrong, unless P = NP, as demonstrated by
the following result.

In 2005, Brisk et al. [6] proved that strict programs in SSA form have perfect
interference graphs; independently, Bouchez [4] and Hack [16] proved the stronger
result that strict programs in SSA form have chordal interference graphs. In a

—_

int vii = pi;

int i =p2; int m(int pi, int p2) {
2 * int Vi1 = P1;
int m(int p1, int p2) { [intw) o [vn v1z] int i, = po;
int vi = p1; inti) "~ o2 int vi = viy;
int i = pa; int i = ij;
while (i < 10) { while (i < 10) {
i =it int ip = it+1;
if (vi > 11) break; b=l if (vi > 11) break;
vi = i+2; if (vi>1])1;reak; int viz = ix+2;
} intvie=1i2+2; Vi = Vi2;
return vy; i=ig;
} }
return v;
}
(a) (b) ()

Fig.2. (a) A program. (b) The same program in SSA form. (c) The program after
classical SSA elimination.

strict program, every path from the initial block to the use of a variable v passes
through a definition of v [7]. The proofs presented in [4,16] rely on two well-
known facts: (i) the chordal graphs are the intersection graphs of subtrees in
trees [14], and (ii) live ranges in an SSA program are subtrees of the dominance
tree [16].

We can color a chordal graph in linear time [15] so we can solve the core
register allocation problem for programs in SSA form in linear time. Thus,
the transformation to SSA form seemingly maps an NP-complete problem to
a polynomial-time problem in polynomial time! The key to understanding how
such a transformation is possible lies in the following observation. Given a pro-
gram P, its SSA-form version P’, and a number of registers K, the core register
allocation problem (P, K) is not equivalent to (P’, K). While we can map a
(P, K)-solution to a (P’, K)-solution, we can not necessarily map a (P, K)-
solution to a (P, K)-solution. The SSA transformation splits the live ranges of
temporaries in P in such a way that P’ may need fewer registers than P.

Given that the core register allocation problem for programs in SSA form
can be solved in polynomial time and given that a compiler can do classical
SSA elimination in linear time, we might expect that the core register allocation
problem after classical SSA elimination is in polynomial time. In this paper we
show that also that intuition would be wrong!

1.3 Owur Result

We prove that the core register allocation problem for simple post-SSA programs
is NP-complete. Our result has until now been a commonly-believed folk theorem
without a published proof. The recent results on register allocation for programs

P ::=int m(int pi1, ..., int px+1) {

1 intvy, = p,; int vi; = p1;...;int vig = pk;
int i1 = px1;
int vig = pg; int vi = vi1; ...; int vk = vik;
int i; = pi; int i = ij;
| while (i< C) {
2 intv, g:kt iz = i+1;
int v, =phi Vi = V215 ...; VK = Va2K;
int i i=ig;
3 return vi;
false S u=int v; = i4C;
s | vy = v
4linti,=i+1; | if (v; > C) break;
5 |return v, ; S* .
C ranges over integer constants

(a) (b)

Fig. 3. (a) Control flow representation of simple SSA programs. (b) The grammar for
simple post-SSA programs.

in SSA form have increased the interest in a proof. Our result implies that the
core register allocation problem for post-SSA programs is NP-complete for any
language with loops or with jumps that can implement loops.

The proof technique used by Chaitin et al. [8] does not work for post-SSA
programs. Chaitin et al.’s proof constructs programs from graphs, and if we
transform those programs to SSA form and then post-SSA form, we can color
the interference graph of each of the post-SSA programs with just three colors.
For example, in order to represent C}, their technique would generate the graph
in the upper part of Figure 4 (b). The minimal coloring of such graph can be
trivially mapped to a minimal coloring of Cy, by simply deleting node z. Figure 4
(a) shows the control flow graph of the program generated by Chaitin et al.’s
proof technique, and Figure 4 (c) shows the program in post-SSA form. The
interference graph of the transformed program is shown in the lower part of
Figure 4 (b); that graph is chordal, as expected.

We prove our result using a reduction from the graph coloring problem for
circular arc graphs, henceforth called simply circular graphs. A circular graph
can be depicted as a set of intervals around a circle (e.g. Figure 5 (a)). The
idea of our proof is that the live ranges of the variables in the loop in a simple
post-SSA program form a circular graph. From a circular graph and an integer
K we build a simple post-SSA program such that the graph is K-colorable if
and only if we can solve the core register allocation problem for the program and
K + 1 registers. Our reduction proceeds in two steps. In Section 2 we define the
notion of SSA-circular graphs and we show that the coloring problem for SSA-

X switch()
w d c
,,,,,,,,,,,, al=1 b2=1 cl=1 a2=1
bi=2 c2=2 di=2 @=2
c2 b2 x1=al +b1 X2 =b2 +c2 x3=cl+di x4=a2+d2

=1 b=1 =1 =1
b2 c=2 izz a2 \X/ \
x=a+b | |x=b+c | |x=c+d | |x=a+d a1 2 o1 T\
\)ﬂ\x/xa/| |x=x1|x=x2 x=x|[x=x4 x=x2 | x=x3 x=x3|x=x4
:=bl |b:=b2 [a=al |a:=a2 [c:=c2 [ci=cl [d:=di [d:=d2
AN
ANV AR VAR VARV,
Ire(um b+xl Ire(uma+xl [re(umc+xl [returnd+xl / \ lre(ummxl lre(uma+x| lre(umm-xl lre(urnd+xl
a2 d2
() (b) (c)

Fig. 4. (a) Chaitin et al.’s program to represent Cy. (b) The interference graph of the
original program (top) and of the program in SSA form (bottom). (c) The program of
Chaitin et al. in SSA form.

circular graphs is NP-complete. In Section 3 we present a reduction from coloring
of SSA-circular graphs to register allocation for simple post-SSA programs. An
SSA-circular graph is a special case of a circular graph in which some of the
intervals come in pairs that correspond to the copy instructions at the end of
the loop in a simple post-SSA program. From a circular graph we build an SSA-
circular graph by splitting some arcs. By adding new intervals at the end of the
loop, we artificially increase the color pressure at that point, and ensure that
two intervals that share an extreme point receive the same color. In Section 4 we
give a brief survey of related work on complexity results for a variety of register
allocation problems, and in Section 5 we conclude.

Recently, Hack et al. [17] presented an SSA-elimination algorithm that does
not use move instructions to replace ¢-functions. Instead, Hack et al.’s algorithm
uses xor instructions to permute the values of the parameters of the ¢-functions
in a way that preserves both the semantics of the original program and the
chordal structure of the interference graph, without demanding extra registers.
As aresult, register allocation after the Hack et al.’s approach to SSA elimination
is in polynomial time. In contrast, register allocation after the classical approach
to SSA elimination is NP-complete.

2 From circular graphs to SSA-circular graphs

Let N denote the set of positive, natural numbers {1,2,3,...}. A circular graph
is an undirected graph given by a finite set of vertices V. C N x N, such that
Vd € N :(d,d) ¢ V and Y(d,u),(d',v') € V :d=d < u=u". We sometimes
refer to a vertex (d,u) as an interval, and we call d, u extreme points. The set of
vertices of a circular graph defines the edges implicitly, as follows. Define

b : N x N — finite unions of intervals of the real numbers
_ ld, ul ifd<u
bld,u) = {]o,u[Uld, 00| if d > u.

(a) (b) (©)

Fig. 5. (a) Cs represented as a set of intervals. (b) The set of intervals that represent
W = F(Cs,3). (c) W represented as a graph.

Two vertices (d,u),(d’,u’) are connected by an edge if and only if b(d,u) N
b(d',u') # 0. We use V to denote the set of such representations of circular
graphs. We use max (V') to denote the largest number used in V, and we use
min(V') to denote the smallest number used in V. We distinguish three subsets
of vertices of a circular graph, V;, V; and V,:

Vi={(d,u) eV | d<u}
Vi={({d,u) eV | d>u}
Vz:{(dvy)e‘/i | El(yvu)evl}

Notice that V=V, UV,, V;NV; =0, and V, C V.

Figure 5 (a) shows a representation of Cs = ({a, b, ¢, d, e}, {ab, be, cd, de, ea})
as a collection of intervals, where a = (14,7), b = (6,9), ¢ = (8,11), d =
(10,13), e = (12,5), V; = {b,c,d}, Vi = {a, e}, and V, = 0. Intuitively, when the
intervals of the circular graph are arranged around a circle, overlapping intervals
determine edges between the corresponding vertices.

An SSA-circular graph W is a circular graph with two additional properties:

V(y,u) e W;:3d e N : (d,y) e W, (1)
V(d,u) € W, \ W, :V(d',u') e W, :u < d (2)

We use W to denote the set of SSA-circular graphs.

Let W be an SSA-circular graph. Property (1) says that for each interval
in W, there is an interval in W, so that these intervals share an extreme point
y. In Section 3 it will be shown that the y points represent copy instructions
used to propagate the parameters of ¢-functions. Henceforth, the y points will
be called copy points. Figure 5 (b) shows W € W as an example of SSA-circular
graph. W; = {(18,1),(21,5),(22,7)}, W; = {(6,9),(8,11),(10,13)} U W,, and
W, = {(15,18),(12,21), (14,22)}. Notice that for every interval (y,u) € W,

W Ny Main vertices created
Z c,OQ S by operation (6)
o w,
Main vertices created by operation (5) Q
. |
max(V) |
. 3
Wz (\GoQ\% W
Auxiliary vertices /G0 Auxiliary vertices :
: created by operation (3) < created by operation (4)
m I .
m+1 m+K-n m+K+1 m+2K-n m+2K+1 m+2K+n 0 1 K-n

Fig. 6. The critical points created by F(V, K).

there is an interval (d,y) € W,. Figure 5 (c¢) exhibits W using the traditional
representation of graphs.
Let n = |V}|. We will now define a mapping F on pairs (V, K):

F:VxN-W
F(V,K) =V, UGV, K,max(V))
G:VXNxN-=YVY
G{ (djyu;) | ieln, Km)={(m+im+K+i) | iecl.K—n} (
U{(m+K+i,i) | iecl.K—n} (4
U{({dim+2K+i) | icl.n} (
U{(m+2K+i,u;) | i€l.n} (

Given V, the function F splits each interval of V; into two nonadjacent intervals
that share an extreme point: (d,y) € W, and (y,u) € W;. We call those intervals
the main vertices. Given V, the function F also creates 2(K — n) new intervals,
namely K — n pairs of intervals such that the two intervals of each pair are
nonadjacent and share an extreme point: (d,y) € W,, and (y,u) € W;. We call
those intervals the auziliary vertices. Figures 5 (b) and 5 (¢) represent F(Cs, 3),
and Figure 6 outlines the critical points between m = max(V') and K — n.

Lemma 1. IfV is a circular graph and min(V') > K, then F(V, K) is an SSA-
circular graph.

Proof. Let W = F(V, K). Notice first that W is a circular graph because the
condition min(V) > K ensures that rules (4) and (6) define vertices that don’t
share any extreme points. To see that W is an SSA-circular graph let us consider
in turn the two conditions (1) and (2). Regarding condition (1), W; consists of the
sets defined by (4), (6), while W, consists of the sets defined by (3), (5), and for
each (y,u) € Wi, we can find (d,y) € W,. Regarding condition (2), we have that
if (d,u) € W; \ W, and (d',u') € Wi, then v < max(V) < max(V)+ K+1<d'.

O

Lemma 2. If W = F(V, K) is K-colorable, then two intervals in W, UW; that
share an extreme point must be assigned the same color by any K -coloring of W.

Proof. Let ¢ be a K-coloring of W. Let v; = (d,y) and vy = (y,u) be a pair
of intervals in W, U W;. From the definition of F(V, K) we have that those two
intervals are not connected by an edge. The common copy point ¥ is crossed by
exactly K — 1 intervals (see Figure 6). Each of those K — 1 intervals must be
assigned a different color by ¢ so there remains just one color that ¢ can assign
to v1 and wvye. Therefore, ¢ has assigned the same color to v, and vs. O

Lemma 3. Suppose V' is a circular graph and min(V) > K. We have V is
K -colorable if and only if F(V, K) is K-colorable.

Proof. Let V; = { (d;,u;) | ¢ € 1.n } and let m = max(V).

First, suppose ¢ is a K-coloring of V. The vertices of V; form a clique so ¢
must use |Vj| colors to color V. Let n = |V|. Let {x1,...,2x_n} be the set of
colors not used by ¢ to color V;. We now define a K-coloring ¢’ of F(V, K):

c(v) ifveV;

x; ifo=(m+im+K+i),icl.K—n
dv) =1 z ifo=(m+K+i,i),i€l.K—n

e(diyu;) ifv=(dj,m+2K +1i),i €l.n

c(diyug) ifv=m+2K +1i,u;),i € l.n

To see that ¢ is indeed a K-coloring of F(V, K), first notice that the colors of
the main vertices don’t overlap with the colors of the auxiliary vertices. Second,
notice that since min(V) > K, no auxiliary edge is connected to a vertex in V;.
Third, notice that since ¢ is a K-coloring of V| the main vertices have colors
that don’t conflict with their neighbors in V;.

Conversely, suppose ¢’ is a K-coloring of F(V, K). We now define a K-coloring
cof V:

C(U):{c'(v) ifvey
d(di,m+2K +1) if v=(d;,u;),i € 1l.n

To see that ¢ is indeed a K-coloring of V', notice that from Lemma 2 we have
that ¢’ assigns the same color to the intervals (d;,m + 2K + 1), (m + 2K + i, u;)
for each i € 1..n. So, since ¢’ is a K-coloring of F(V, K), the vertices in V; have
colors that don’t conflict with their neighbors in V. O

Lemma 4. Graph coloring for SSA-circular graphs is NP-complete.

Proof. First notice that graph coloring for SSA-circular graphs is in NP because
we can verify any color assignment in polynomial time. To prove NP-hardness,
we will do a reduction from graph coloring for circular graphs, which is known to
be NP-complete [12,19]. Given a graph coloring problem instance (V, K') where
V is a circular graph, we first transform V into an isomorphic graph V' by
adding K to all the integers used in V. Notice that min(V’) > K. Next we
produce the graph coloring problem instance (F(V', K), K), and, by Lemma 3,
V' is K-colorable if and only if F(V’, K) is K-colorable. O

3 From SSA-circular graphs to post-SSA programs

We now present a reduction from coloring of SSA-circular graphs to the core
register allocation problem for simple post-SSA programs. In this section we
use a representation of circular graphs which is different from the one used in
Section 2. We represent a circular graph by a finite list of elements of the set
T ={ def(j), use(j), copy(4,5'), | j,7 € N }. Each j represents a temporary
name in a program. We use £ to range over finite lists over Z. If ¢ is a finite list
over Z and the d-th element of ¢ is either def(j) or copy(j,j’), then we say that
Jj is defined at index d of ¢. Similarly, if the w’th element of ¢ is either use(j’) or
copy(4,7'), then we say that j' is used at index u of £. We define X" as follows:

X = { ¢| for every j mentioned in ¢, j is defined exactly once and used

exactly once A for every copy(7,j') in ¢, we have j # j' }

We will use X to range over X. The sets X and V are isomorphic; the function
« is an isomorphism which maps X to V:

a: X =V
a(X) ={(d,u)|3j € N :j is defined at index d of X and j is used
at index u of X }

We define Y = a~1(W), and we use Y to range over). The graph W shown in
Figure 5 (b) is shown again in Figure 7 (a) in the new representation:

Y = (use(t), use(e), def(b), use(a), def(c), use(b), def(d), use(c), def(e),
use(d)a def(a)a def(t2)> COPY(ta t2)7 COpY(67 62)7 COPY(U', a2)>'

Figure 8 presents a mapping H from Y-representations of SSA-circular graphs
to simple post-SSA programs. Given an interval (d,) represented by def(j) and
use(j), we map the initial point d to a variable definition vj = iz + C, where i
is the variable that controls the loop. We assume that all the constants are
chosen to be different. The final point u is mapped to a variable use, which we
implement by means of the conditional statement if (v; > C) break. We opted
for mapping uses to conditional commands because they do not change the live
ranges inside the loop, and their compilation do not add extra registers to the
final code. An element of the form copy(4, j'), which is mapped to the assignment
j = 7', is used to simulate the copy of one of the parameters of a ¢-function,
after classical SSA elimination. Figure 7 (b) shows the program P = H(Y,3),
where Y = F(Cs, 3).

Lemma 5. We can color an SSA-circular graph Y with K colors if and only if
we can solve the core register allocation problem for H(Y, K) and K +1 registers.

Proof. First, assume Y has a K-coloring. The intervals in Y match the live
ranges in the loop of H(Y, K), except for the control variables i, and is, which
have nonoverlapping live ranges. Therefore, the interference graph for the loop

int m(int pl, int p2, int p3, int p4) {

int i1 = p4;

int al = pi;

int el P2;

int t1 P3;

int a al;

int e el;

int t t1;

int i i1;

while(i > 10) {
int i2 =i + 1;
if(t > 9) break;
if(e > 10) break;
int b = i2 + 11;
if (a > 11) break;
int ¢ = i2 + 12;
if(b > 12) break;
int d = i2 + 13;
if(c > 13) break;
int e2 = i2 + 14;
if(d > 14) break;

copy(a,a2) copy(t,t2)
- def(t2)

int a2 = i2 + 15;
int t2 = i2 + 16;
i=i2;
a = a2;
t = t2;
e = e2;
}
return a;
}
(2) (b)
Fig.7. (a) Y = F(C5s, 3) represented as a sequence of instructions and as a graph. (b)
P=H(Y,3)

can be colored with K +1 colors. The live ranges of the variables declared outside
the loop form an interval graph of width K +1. We can extend the K + 1-coloring
of that interval graph to a K + 1-coloring of the entire graph in linear time.
Now, assume that there is a solution of the core register allocation problem
for H(Y, K) that uses K +1 registers. The intervals in ¥ represent the live ranges
of the variables in the loop. The control variables ¢ and i demand one register,
which cannot be used in the allocation of the other live ranges inside the loop.
Therefore, the coloring of H(Y, K) can be mapped trivially to the nodes of Y.
O

Theorem 1. The core register allocation problem for simple post-SSA programs
is NP-complete.

Proof. Combine Lemmas 4 and 5. a

As an illustrative example, to color C'5 with three colors is equivalent to deter-
mining a 3-coloring to the graph Y in Figure 7 (a). Such colorings can be found
if and only if the core register allocation problem for P = H(Y, 3) can be solved
with 4 registers. In this example, a solution exists. One assignment of registers
would be {a,a1,a2,¢,p1} — R1, {b,d,t1,t2,t,ps} — R2, {e,e1,e2,p2} — R3,
and {4,41,42,p4} — R4. This corresponds to coloring the arcs a and ¢ with the
first color, arcs b and d with the second, and e with the third.

gen(def(y)) = int v; = iz + C;
gen(use(j)) = if (v; > C) break;
gen(copy(j.f')) = v; = vy
‘H : Y x N — simple post-SSA program
H(Y, K) = int m(int p1, ..., int px41) {
int vi1 = p1; ...;int vig = pxk;
int il = PK+1,
int vi = vi1; ...; int vk = vik;
int i = il;
while (i< C) {
int is = i+1;
map(Y, gen)
1= 1ig;
}
return vy;
}

Fig. 8. The mapping of circular graphs to simple post-SSA programs

4 Related Work

The first NP-completeness proof of a register allocation related problem was
published by Sethi [22]. Sethi showed that, given a program represented as a set
of instructions in a directed acyclic graph and an integer K, it is an NP-complete
problem to determine if there is a computation of the DAG that uses at most K
registers. Essentially, Sethi proved that the placement of loads and stores during
the generation of code for a straight line program is an NP-complete problem if
the order in which instructions appear in the target code is not fixed.

Much of the literature concerning complexity results for register allocation
deals with two basic questions. The first is the core register allocation problem,
which we defined in Section 1. The second is the core spilling problem which
generalizes the core register allocation problem:

Core spilling problem:

Instance: a program P, number K of available registers, and a number
M of temporaries.

Problem: can at least M of the temporaries of P be mapped to one of
the K registers such that temporary variables with interfering live ranges
are assigned to different registers?

Farach and Liberatore [11] proved that the core spilling problem is NP-complete
even for straight line code and even if rescheduling of instructions is not allowed.
Their proof uses a reduction from set covering.

For a straight line program, the core register allocation problem is linear in
the size of the interference graph. However, if the straight line program contains
pre-colored registers that can appear more than once, then the core register

allocation problem is NP-complete. In this case, register allocation is equivalent
to pre-coloring extensions of interval graphs, which is NP-complete [2].

In the core register allocation problem, the number of registers K is not
fixed. Indeed, the problem used in our reduction, namely the coloring of circular
graphs, has a polynomial-time solution if the number of colors is fixed. Given n
circular arcs determining a graph G, and a fixed number K of colors, Garey et
al. [12] have given an O(n- K!- K -log K) time algorithm for coloring G if such a
coloring exists. Regarding general graphs, the coloring problem is NP-complete
for every fixed value of K > 2 [13].

Bodlaender et al. [3] presented a linear-time algorithm for the core register
allocation problem with a fixed number of registers for structured programs.
Their result holds even if rescheduling of instructions is allowed. If registers of
different types are allowed, such as integer registers and floating point registers,
for example, then the problem is no longer linear, although it is still polynomial.

Researchers have proposed different algorithms for inserting copy instruc-
tions, particularly for reducing the number of copy instructions [7,5,10, 18].
Rastello et al. [10] have proved that the optimum replacement of ¢-functions
by copy instructions is NP-complete. Their proof uses a reduction from the
maximum independent set problem.

5 Conclusion

We have proved that the core register allocation problem is NP-complete for
post-SSA programs generated by the classical approach to SSA-elimination that
replaces ¢-functions with copy instructions. In contrast, Hack et al.’s recent
approach to SSA-elimination [17] generates programs for which the core register
allocation problem is in polynomial time. We conclude that the choice of SSA-
elimination algorithm matters.

We claim that compiler optimizations such as copy propagation and constant
propagation cannot improve the complexity of the core register allocation prob-
lem for simple post-SSA programs. Inspecting the code in Figure 8 we perceive
that the number of loop iterations cannot be easily predicted by a local analysis
because all the control variables are given as function parameters. In the state-
ment int v; = i+C; the variable i limits the effect of constant propagation and
the use of different constants C limits the effect of copy propagation. Because
all the K + 1 variables alive at the end of the loop have different values, live
ranges cannot be merged at that point. In contrast, rescheduling of instructions
might improve the complexity of the core register allocation problem for simple
post-SSA programs. However, rescheduling combined with register allocation is
an NP-complete problem even for straight line programs [22].

Theorem 1 continues to hold independent on the ordering in which copy
instructions are inserted, because the function G, defined in Section 2, can be
modified to accommodate any ordering of the copy points. In more detail, let
W = F(V,K) be a SSA-circular graph, let n € [0 - max(W)], and let ovl(n) be

use (t);
def (a);
use(c);
def (b) ;
use(a);
def (c2);
use (b) ;
def (t2);

use (t); c =c2
use(c) ; t = t2

(a) (b) (c)

Fig.9. (a) SSA graph W that represents F(Cs, K). (b) A program P that represents
W with a single if-statement. (c¢) Schematic view of the live ranges of P.

the number of intervals that overlap at point n.
Vn e Jmax(V)---max(W)] :ovl(n) = K (7)

Any ordering that ensures property 7 suffices for the proof of Lemma 2. Figure
6 shows the region around the point 0 of a SSA-circular graph. Given W =
F(V,K), exactly K copy points are inserted in the interval between max(V)
and max(W).

Our proof is based on a reduction from the coloring of circular graphs. We
proved our result for programs with a loop because the core of the interference
graph of such programs is a circular graph. The existence of a back edge in the
control flow graph is not a requirement for Theorem 1 to be true. For example,
SSA-circular graphs can be obtained from a language with a single if-statement.
Figure 9 (a) shows a SSA-circular graph that represents C3, when K = 2, and
Figure 9 (b) shows a program whose live ranges represent such graph. The live
ranges are outlined in Figure 9 (c).

Acknowledgments. We thank Fabrice Rastello, Christian Grothoff and the
anonymous referees for helpful comments on a draft of the paper. Fernando
Pereira is sponsored by the Brazilian Ministry of Education under grant number
218603-9. Jens Palsberg is supported by the National Science Foundation award
number 0401691.

References

1. Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition, 2002.

2. M. Bir6, M. Hujter, and Zs. Tuza. Precoloring extension. I: interval graphs. In
Discrete Mathematics, pages 267-279. ACM Press, 1992. Special volume (part 1)
to mark the centennial of Julius Petersen’s “Die theorie der regularen graphs”.

3. Hans Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time register allocation
for a fixed number of registers. In SIAM Symposium on Discrete Algorithms, pages
574-583, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

Florent Bouchez. Allocation de registres et vidage en mémoire. Master’s thesis,
ENS Lyon, 2005.

Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. Prac-
tical improvements to the construction and destruction of static single assignment
form. Software Practice and Ezperience, 28(8):859-881, 1998.

Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial-
time graph coloring register allocation. In 14th International Workshop on Logic
and Synthesis. ACM Press, 2005.

Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Timothy S.
Oberg, and Steven W. Reeves. Fast copy coalescing and live-range identification. In
International Conference on Programming Languages Design and Implementation,
pages 25-32. ACM Press, 2002.

Gregory J. Chaitin, Mark A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer
Languages, 6:47-57, 1981.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451-490, 1991.

Frangois de Ferriére, Christophe Guillon, and Fabrice Rastello. Optimizing the
translation out-of-SSA with renaming constraints. ST Journal of Research Proces-
sor Architecture and Compilation for Embedded Systems, 1(2):81-96, 2004.
Martin Farach and Vincenzo Liberatore. On local register allocation. In 9th ACM-
SIAM symposium on Discrete Algorithms, pages 564 — 573. ACM Press, 1998.

M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods, 1(2):216—
227, 1980.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
problems. Theoretical Computer Science, 1(3):193-267, 1976.

Fanica Gavril. Algorithms for minimum coloring, maximum clique, minimum cov-
ering by cliques, and maximum independent set of a chordal graph. SICOMP,
1(2):180-187, 1972.

Fanica Gavril. The intersection graphs of subtrees of a tree are exactly the chordal
graphs. Journal of Combinatoric, B(16):46-56, 1974.

Sebastian Hack. Interference graphs of programs in SSA-form. Technical Report
ISSN 1432-7864, Universitat Karlsruhe, 2005.

Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for pro-
grams in SSA-form. In 15th International Conference on Compiler Construction.
Springer-Verlag, 2006.

Allen Leung and Lal George. Static single assignment form for machine code. In
Conference on Programming Language Design and Implementation, pages 204—214.
ACM Press, 1999.

Daniel Marx. A short proof of the NP-completeness of circular arc coloring, 2003.
Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation via col-
oring of chordal graphs. In Proceedings of APLAS’05, Asian Symposium on Pro-
gramming Languages and Systems, pages 315-329, 2005.

B. K. Rosen, F. K. Zadeck, and M. N. Wegman. Global value numbers and re-
dundant computations. In ACM SIGPLAN-SIGACT symposium on Principles of
Programming languages, pages 12—27. ACM Press, 1988.

Ravi Sethi. Complete register allocation problems. In 5th annual ACM symposium
on Theory of computing, pages 182-195. ACM Press, 1973.

A Verifiable SSA Program Representation for Aggressive
Compiler Optimization

Vijay S.Menon' Ned Glew! Brian R. Murphy?
Ali-Reza Adl-Tabatabai !
YIntel Labs 2Intel China Research Center

Santa Clara, CA 95054

Beijing, China
{vijay.s.menon, brian.r.murphy, tatiana.shpeisman, ali-reza.adl-tabatabai, leaf.petersen}@intel.com

Andrew McCreight®* Tatiana Shpeisman'

Leaf Petersen!

3Dept. of Computer Science, Yae University
New Haven, CT 06520

aglew@acm.org

andrew.mccreight@yale.edu

Abstract

We present a verifiable low-level program representation to em-
bed, propagate, and preserve safety information in high perfor-
mance compilers for safe languages such as Java and C#. Our rep-
resentation precisely encodes safety information via static single-
assignment (SSA) [11, 3] proof variables that are first-class con-
structs in the program.

We argue that our representation allows a compiler to both (1)
express aggressively optimized machine-independent code and
(2) leverage existing compiler infrastructure to preserve safety
information during optimization. We demonstrate that this ap-
proach supports standard compiler optimizations, requires minimal
changes to the implementation of those optimizations, and does not
artificially impede those optimizations to preserve safety.

We aso describe a simple type system that formalizes type
safety in an SSA-style control-flow graph program representation.
Through the types of proof variables, our system enables composi-
tional verification of memory safety in optimized code.

Finally, we discuss experiences integrating this representation
into the machine-independent global optimizer of STARJIT, a
high-performance just-in-time compiler that performs aggressive
control-flow, data-flow, and algebraic optimizations and is compet-
itive with top production systems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.4 [Programming
Languages]: Compilers, D.3.4 [Programming Languages]|: Opti-
mization; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Performance, Design, Languages, Reliahility,
Theory, Verification

Keywords Typed Intermediate Languages, Proof Variables, Safety
Dependences, Check Elimination, SSA Formalization, Type Sys-
tems, Typeabhility Preservation, Intermediate Representations

* Supported in part by NSF grants CCR-0208618 and CCR-0524545.

Permission to make digital or hard copies of al or part of this work for personal or
classroom useis granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or afee.

POPL’06 January 11-13, 2006, Charleston, South Carolina, USA.

Copyright (© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

397

1. Introduction

In the past decade, safe languages have become prevaent in the
general software community and have gained wide acceptance
among software devel opers. Safe languages such as Javaand C# are
particularly prominent. These languages provide a C++-like syn-
tax and feature set in conjunction with verifiable safety properties.
Foremost among these properties is memory safety, the guarantee
that a program will only read or write valid memory locations.
Memory safety is crucial to both robustness and security. It pre-
vents common programmer memory errors and security exploits
such as buffer overruns through a combination of compile-time
and run-time checks.

Both Java and C# were designed to allow programs to be com-
piled and distributed via bytecode formats. These formatsretain the
crucial safety properties of the source language and are themselves
statically verifiable. Managed runtime environments (MRTES),
such as the Java Virtual Machine (JVM) or the Common Lan-
guage Infrastructure (CLI), use static verification to ensure that no
memory errors have been introduced inadvertently or maliciously
before executing bytecode programs.

Bytecodes, however, are still rather high-level compared to na-
tive machine code. Runtime checks (e.g., array bounds checks)
are built into otherwise potentially unsafe operations (e.g., mem-
ory loads) to ease the verification process. To obtain acceptable
performance, MRTES compile programs using a just-in-time (JIT)
compiler. A JIT compiler performs several control- and data-flow
compiler transformations and produces optimized native machine
code. In the process, runtime checks are often eliminated or sepa-
rated from the potentially unsafe operationsthat they protect. Asfar
aswe are aware, al production Javaand CL1 J'T compilersremove
safety information during the optimization process: optimized low
level code or generated machine code is not easily verifiable. From
asecurity perspective, this precludes the use of optimized low level
code as a persistent and distributable format. Moreover, from areli-
ability perspective it requires that the user trust that complex com-
piler transformations do not introduce memory errors.

In recent years, researchers have developed proof languages
(eg., PCC [20] and TAL [19]) that allow a compiler to embed
safety proofs into low-level code, along with verification tech-
niques to validate those proofs. They have demonstrated certifying
compilers that can compile Java and safe C-like languages [21, 8,
18, 13] while both performing optimizations and generating safety
proofs. Nevertheless, although the proof language and verification
process is well-devel oped, implementing or modifying existing op-
timizationsto correctly generate and/or preserve safety information
istill an arduous and poorly understood process.

In this paper, we introduce anew program representation frame-
work for safe, imperative, object-oriented languages to aid in the
generation, propagation, and verification of safety information
through aggressive compiler optimization. In this representation
we encode safety dependences, the dependences between poten-
tially unsafe operations and the control points that guarantee their
safety, as abstract proof variables. These proof variables are purely
static: they have no runtime semantics. Nevertheless, they are first
class constructs produced by control points and consumed by po-
tentially unsafe instructions. From the perspective of most compiler
transformations, they are the same as any other variable.

We argue that this representation is particularly well-suited to
use as an intermediate representation for an aggressively optimiz-
ing compiler. We demonstrate that it supports common advanced
compiler optimizations without artificially constraining or exten-
sively modifying them. In particular, we demonstrate that by carry-
ing proof valuesin normal variables a compiler can leverage exist-
ing transformations such as SSA construction, copy propagation,
and dead code elimination to place, update and eliminate proof
variables.

Weillustrate our ideasin the context of the machine-independent
global optimizer of STARJIT [1], a dynamic optimizing compiler
for Javaand C#. STARJI T was designed as a high-performance op-
timizing compiler and is competitive in performance with the best
production MRTE systems. We describe a prototype integration of
our ideas into STARJIT'sinterna representation, and we discuss
how it is able to preserve safety information through a varied set
of aggressive optimizations. The original motivation for the safety
dependence representation described in this paper was for opti-
mization rather than safety. However, a prototype implementation
of a verifier has also been developed, and this paper is intended
to provide both a description of the safety dependence mechanism
and atheoretical development of atype system based upon it.

In particular, our paper makes the following contributions:

1. We introduce a safe low-level imperative program representa
tion that combines static single-assignment (SSA) form with
explicit safety dependences, and weillustrate how it can be used
to represent highly optimized code.

. We present a simple type system to verify memory safety of
programs in this representation. To the best of our knowledge,
this type system is the first to formalize type checking in an
SSA representation. While SSA isin some sense equivalent to
CPS, the details are sufficiently different that our type system is
quite unlike the usual lambda-calculus style type systems and
reguired new proof techniques.

. We demonstrate the utility of this program representation in a
high-performance compiler, and we describe how a compiler
can leverage its existing framework to preserve safety informa-
tion. In particular, we demonstrate that only optimizations that
directly affect memory safety, such as bounds check elimination
and strength reduction of address calculations, require signifi-
cant modification.

Theremainder of the paper isorganized asfollows. In Section 2,
we motivate the explicit representation of safety dependence in an
optimizing compiler and describe how to do this viaproof variables
in alow-level imperative program representation. In Section 3, we
describe a formal core language specifically dealing with array-
bounds checks and present a type system with which we can verify
programs in SSA form. In Section 4, we demonstrate how a com-
piler would lower a Java program to the core language and illustrate
how aggressive compiler optimizations produce efficient and veri-
fiable code. In Section 5, we informally describe extensions to our
core language to capture complete Java functionality. In Section 6,

398

if (a!=null)
while (!done) {
b= (B)a;
R T A

}
Figurel. Fieldload inloop

we discuss the status of our current implementation, and, finally, in
Sections 7 and 8 we discuss related work and conclude.

2. Motivation

We define a potentially unsafe instruction as any instruction that,
taken out of context, might fault or otherwise cause an illegal
memory access at runtime. Some instructions, taken independently,
are inherently unsafe. A load instruction may immediately fault if
it accesses protected memory or may trigger an eventual crash by
reading an incorrectly typed value. A store may corrupt memory
with anillegal value (e.g., if an arbitrary integer replaces an object’s
virtual table).

Consider, for example, the field access in Figure 1. Assuming
C++-like semantics, the operation b.x dereferences memory with
no guarantee of safety. In general, C++ does not guarantee that b
refers to a real object of type B: b may hold an an integer that
faults when used as a pointer.

Assuming Java semantics, however, the field access itself
checks at runtime that b does not point to a null location. If the
check succeeds, the field access executes the load; otherwise, it
throws an exception, bypassing the load. By itself, this built-in
check does not ensure safety: the load also depends on the preced-
ing cast, which dynamically checks that the runtime type of b is
in fact compatible with the type B. If the check succeeds, the cast
executes the load; otherwise, it throws an exception, bypassing the
load.

Typically, the safety of a potentially unsafe instruction depends
on aset of control flow points. We refer to this form of dependence
as safety dependence. In this example, the safety of the load de-
pends on the cast that establishes its type. We call an instruction
contextually safe when its corresponding safety dependences guar-
anteeits safety. To verify the output of acompiler optimization, we
must prove that each instruction is contextually safe.

2.1 Safety In Java

In Java and the verifiable subset of CLI, acombination of static ver-
ification and runtime checks guarantee the contextual safety of indi-
vidual bytecode instructions. Static type checking establishes that
variables have the appropriate primitive or object type. Runtime
checks such as type tests (for narrowing operations), null pointer
tests, and array bounds tests detect conditions that would cause a
fault or illegal access and throw a language-level runtime excep-
tion instead.

Figure 2 shows Java-like bytecode instructions (using pseudo-
registers in place of stack locations for clarity) for the code of
Figure 1. The Java type system guarantees that variable b has type
B at compiletime, whilethe getfield instruction guarantees non-
null access by testing for null at runtime. The check and the static
verifier together guarantee that the load operation will not trigger
an illegal memory access.

2.2 Safety in aLow-Level Representation

The Java bytecode format was not intended to be an intermedi-
ate program representation for an optimizing compiler. There are
anumber of reasons why such aformat is not suitable, but here we

ifnull a goto EXIT

L:
ifeq done goto EXIT
b := checkcast(a, B)
t1 := getfield(b, B::x)
goto L
EXIT:

Figure 2. Field load with Javarlike bytecode

if @ = null goto EXIT

if done = 0 goto EXIT
checkcast(a, B)
checknull(a)

to := getfieldaddr(a, B::x)
t1 :=1d(t2)

goto L
EXIT:

Figure 3. Field load lowered in erasure-style representation

will focus only on those related to safety. First, bytecodes hide re-
dundant check elimination opportunities. For example, in Figure 2,
optimizations can eliminate the null check built into the getfield
instruction because of the ifnull instruction. Even though sev-
eral operations have built-in exception checks, programmers usu-
ally write their code to ensure that these checks never fail, so such
optimization opportunities are common in Java programs.

Second, extraneous aliasing introduced to encode safety prop-
erties hides optimization opportunities. In Figures 1 and 2, vari-
able b represents a copy of a that has the type B. Any use of a
that requires this type information must use b instead. While this
helps static verification, it hinders optimization. The field access
must establish that b is not null, even though the ifnull statement
establishes that property on a. To eliminate the extra check, a re-
dundancy elimination optimization must reason about aliasing due
to cast operations; thisis beyond the capahilities of standard ago-
rithms[16, 5].

In the absence of amechanism for tracking safety dependences,
STARJIT would lower a code fragment like this to one like that
in Figure 3. Note that the 1d operation is potentialy unsafe and is
safety dependent on the null check. In this case, however, the safety
dependence between the null check and the load is not explicit. Al-
though the instructions are still (nearly) adjacent in this code, there
is no guarantee that future optimizations will leave them so. Fig-
ure 4 roughly illustrates the code that STARJI T would produce for
our example. Redundant checks are removed by a combination of
partial loop peeling (to expose redundant control flow) and com-
mon subexpression elimination. The invariant address field calcu-
lation ishoisted viacode motion. In this case, the dependence of the
load on the operations that guarantee its safety (specifically, the if
and checkcast statements) has become obscured. We refer to this
as an erasure-style low-level representation, as safety information
is effectively erased from the program.

An alternative representation embeds safety information di-
rectly into the values and their corresponding types. The Java lan-
guage aready does this for type refinement via cast operations.
Thisapproach also appliesto null checks, asshown in Figure 5. The
SafeTSA representation takes this approach, extending it to array
bounds checks [25, 2] aswell. We refer to this as arefinement-style
representation. In this representation, value dependences preserve
the safety dependence between a check and a load. To preserve

399

to := getfieldaddr(a, B::x)
if @ = null goto EXIT

if done = 0 goto EXIT
checkcast(a, B)

t1 = ld(tg)

if done # 0 goto L
EXIT:

Figure 4. Field load optimized in erasure-style representation

if @ = null goto EXIT

L:
if done = 0 goto EXIT
b := checkcast(a, B)
t3 := checknull(b)
to := getfieldaddr(ts, B::x)
t1 := 1d(t2)
goto L
EXIT:

Figure5. Field load lowered in refinement-style representation

safety, optimizations must preserve the value flow between the
check and the load. Check elimination operations (such as the
checknull in Figure 5) may be eliminated by optimization, but
the values they produce (e.g., t2) must be redefined in the process.

From an optimization standpoint, a refinement-style represen-
tation is not ideal. The safety dependence between the check and
the load is not direct. Instead, it is threaded through the address
field calculation, which is really just an addition operation. While
the load itself cannot be performed until the null test, the address
calculation isaways safe. A code motion or instruction scheduling
compiler optimization should be free to move it above the check if
it is deemed beneficial. In Figure 3, itis clearly legal. In Figure 5,
it is no longer possible. The refinement-style representation adds
artificial constraints to the program to allow safety to be checked.
In this case, the address calculation is artificially dependent on the
check operation.

A refinement-style representation also obscures optimization
opportunities by introducing multiple names for the same value.
Optimizations that depend on syntactic equivalence of expressions
(such asthe typical implementation of redundancy elimination) be-
come less effective. In Figure 3, a is syntactically compared to
null twice. In Figure 5, thisis no longer true. In general, syntac-
tically equivalent operations in an erasure-style representation may
no longer be syntactically equivalent in a refinement-style repre-
sentation.

2.3 A Proof Passing Representation

Neither the erasure-style nor refinement-style representations pre-
cisely represent safety dependences. The erasure-style representa-
tion omits them altogether, while the refinement-style representa-
tion encodes them indirectly. As a result, the erasure-style rep-
resentation is easy to optimize but difficult to verify, while the
refinement-style is difficult to optimize but easy to verify.

To bridge this gap, we propose the use of a proof passing
representation that encodes safety dependence directly into the
program representation through proof variables. Proof variables act
as capahilities for unsafe operations (similar to the capabilities of
Waelker et a. [26]). The availability of a proof variable represents
the availability of a proof that a safety property holds. A potentially
unsafe instruction must use an available proof variable to ensure

[s1, s2] if a = null goto EXIT

L:
if done = 0 goto EXIT
s3 := checkcast(a, B)
s4 := checknull(a)
to := getfieldaddr(a, B::x)
s5 := pfand(ss, s4)
t1 :=1d(t2) [ss]
goto L
EXIT:

Figure 6. Field load lowered in a proof passing representation

to := getfieldaddr(a, B::x)
[81, 52} if @ = null goto EXIT

L:
if done = 0 goto EXIT
s3 := checkcast(a, B)
S4 1= 81
s5 := pfand(ss, s4)
t1 = 1d(t2) [s5]
goto L

EXIT:

Figure 7. Field load with CSE and Code Motion

contextual safety. This methodology relates closely to mechanisms
proposed for certified code by Crary and Vanderwaart [10] and
Shao et al. [23] in the context of the lambda calculus. We discuss
the relationship of our approach to thiswork in Section 7.

Proof variables do not consume any physical resources at run-
time: they represent abstract values and only encode safety de-
pendences. Nevertheless, they are first-class constructs in our rep-
resentation. They are generated by interesting control points and
other relevant program points, and consumed by potentially unsafe
instructions as operands guaranteeing safety. Most optimizations
treat proof variables like other program variables.

Figure 6 demonstrates how we represent a load operation in a
proof passing representation. As in Figure 5, we represent safety
through value dependences, but instead of interfering with existing
values, we insert new proof variables that directly model the safety
dependence between the load and both check operations.

Figures7 to 10 represent the relevant transformations performed
by STARJIT to optimizethiscode. In Figure 7, weillustrate two op-
timizations. First, STARJIT's common subexpression elimination
pass eliminates the redundant checknull operation. When STAR-
JIT detects a redundant expression in the right hand side of an in-
struction, it replaces that expression with the previously defined
variable. The if statement defines the proof variable s; if the test
fails. This variable proves the proposition a # null. At the defi-
nition of s4, the compiler detects that a # null is available, and
redefines s4 to be acopy of s1. STARJI T updates aredundant proof
variable the same way as any other redundant variable.

Second, STARJIT hoists the definition of ¢2, a loop invariant
address calculation, above the loop. Even though the computed ad-
dress may beinvalid at this point, the address calculation is always
safe; we require a proof of safety only on amemory operation that
dereferences the address.

Figure 8 shows a step of copy propagation, which propagates s;
into the load instruction and eliminates the use of s4, allowing dead
code elimination to remove the definition of s4.

Figure 9 illustrates the use of partial loop peeling to expose re-
dundant control flow operations within the loop. This transforma-

400

to := getfieldaddr(a, B::x)
[81782} if @ = null goto EXIT

L:
if done = 0 goto EXIT
s3 := checkcast(a, B)
s5 := pfand(ss, s1)
t1 = 1d(t2) [s5]
goto L

EXIT:

Figure 8. Field load with Copy Propagation

to := getfieldaddr(a, B::x)
[s1,s2] if a = null goto EXIT
if done = 0 goto EXIT
s% := checkcast(a, B)

L:
52 = ¢(si,s3)
s5 := pfand(s3, s1)
t1 = 1d(t2) [s5]
if done = 0 goto EXIT
s3 := checkcast(a, B)
goto L

EXIT:

Figure9. Fieldload with Partial Loop Peeling

to := getfieldaddr(a, B::x)
[81782} if @ = null goto EXIT
if done = 0 goto EXIT

s3 := checkcast(a, B)

s5 := pfand(ss, s1)

t1 = 1d(t2) [s5]

if done # 0 goto L
EXIT:

Figure 10. Field load with 2nd CSE and Branch Reversal

tion duplicates the test on done and the checkcast operation, and
makes the load instruction the new loop header. The proof variable
sz is now defined twice, where each definition establishes that a
has type B on its corresponding path. The compiler leverages SSA
form to establish that the proof variableis available within the loop.

Finaly, in Figure 10, another pass of common subexpression
elimination eliminates the redundant checkcast. Copy propage-
tion propagates the correct proof variable, this time through a re-
dundant phi instruction. Note, that this final code is equivalent to
the erasure-style representation in Figure 4 except that proof vari-
ables provide a direct representation of safety. In Figure 10, it is
readily apparent that the if and checkcast statements establish
the safety of the load instruction.

In the next section we formalize our approach as a small core
language, and the following sections show its use and preservation
across compiler optimizations and extension to full Java.

3. CorelLanguage

In this section we describe a small language that captures the main
ideas of explicit safety dependences through proof variables. As
usual with core languages, we wish to capture just the essence of
the problem and no more. Theissue at hand is safety dependences,
and to keep things simple we will consider just one such depen-

(P,L1,n1,b.’i) — (P, Lg,ng,pc) where:
P(b.7) Lo na pc Side conditions
P Ll{fl = Ll(fg)} ni b.(i —+ 1) ﬁ[nﬂ =1I] :=1T2
T =1 Li{z :=1} n1 b.(1 4+ 1)
Tl T = X9 Li{z1 := Li(z2)} | m1 b.(i4+1)
21 : T := newarray(z2, x3) Li{z1 :=v1} ni b.(i4+1) | Li(z2) =n, Li(x3) = vs,v1 = (v3,...,v3)
n
T1 : T := newarray(zr2, x3) Li{z1 :=v1} ni b.(i4+1) | Li(z2) =1,i < 0,v1 = ()
1 : 7 := len(z2) Li{z1 :=n} ni b.(i4+1) | Li(z2) = (vo,... i)"_1>
1 : T := base(z2) Li{z2 :=v@0} ni b.(i4+1) | Li(z2) =v,v= (V')
Tl T :i=X2 bOp xrs3 Ll{xl = ’i4} ni b.(i —+ 1) Ll(xg) = iQ, Ll(xg) = i37 4 = 12 bOp 13
x1: 7T := z2 bOp 3 L1{331 = ’U@i4} ni b.(i 4+ 1) | Li(w2) = vQiz, Li(x3) = 43,74 = i2 bop i3
1 : 7 := 1d(z2) [z3] Li{z1 :==v;} ni b.(i4+1) | Li(z2) = (vo,...,vm)@3,0<i<n
x1 : 7 := pffact(x2) Li{z1 := true} ni b.(i4+1)
z : 7 := pfand(y) Li{z := true} ny b.(i +1)
[z1: 71,22 : T2] if T3 rop x4 goto b’ | Li{w1 := true} edgep(b,b+1) | (b+1).0 | Li(x3) = i3, L1(x4) = i4, (i3 rop is)
[x1: 71,22 : T2] if x3 TOP 24 gOoto b’ | Li{zs := true} edgep(b,b') b'.0 Li(z3) = i3, L1(x4) = 94,93 rOP ig
goto b/ Ly edgep (b,') b'.0

Figure11. Operational semantics

dence, namely, bounds checking for arrays. In particular, we con-
sider a compiler with separate address arithmetic, load, and store
operations, where the type system must ensure that aload or store
operation is applied only to valid pointers. Moreover, since the ba-
sic safety criteron for astore is the same as for aload, namely, that
the pointer is valid, we consider only loads; adding stores to our
core language adds no interesting complications. Not considering
stores further allows us to avoid modelling the heap explicitly, but
to instead use a substitution semantics which greatly simplifies the

presentation.

The syntax of our core language is given as follows:
Prog. States S = (P,L,n,pc)
Programs P = B
Blocks B = P;uc
Phi Instructions ~ p = x:7:=¢(T)
Instructions L = x:T:=7T

Right-hand sides r i | « | newarray(z1,x2) |
len(z) | base(z) |
1 bOp X2 | ld(mj) [mg] |

pffact(z) | pfand(ZT)

Binary Ops bop = +|-—
Transfers c := goton |halt |
[.%'1 1T, T2t TQ] if x3 rop x4
goton
Relations rop = <|<|=|#
Environments L = T:=7
Values v = 1| (©) | (v)Qi | true
Prog. Counters pc = ni.ne

Here ¢ ranges over integer constants, « ranges over variables, n
ranges over natural numbers, and ¢ is the phi-operation of SSA.
We use the bar notation introduced in Featherweight Java [15]: B
abbreviates By, ..., By, T := v abbreviates o := vo, ..., Tn =
vn, €t cetera. We also use the bar notation in type rules to ab-
breviate a sequence of typing judgements in the obvious way.
In addition to the grammar above, programs are subject to a
number of context-sensitive restrictions. In particular, the n in
[x1: 71,22 : 2] if z3ropzs goto m and goto n must be a
block number in the program (i.e., if the program is By, ..., B,
then 0 < n < m); the transfer in the last block must be a goto
or halt; the number of variables in a phi instruction must equal the
number of incoming edges (as defined below) to the block in which
it appears; the variables assigned in the phi instructions of a block
must be distinct.

401

Informally, the key features of our language are the following.
The operation base(z) takes an array and creates a pointer to the
element at index zero. The arithmetic operations can be applied to
such pointers and an integer to compute a pointer to a different in-
dex. The 1d(z1) [z2] operation loads the value pointed to by the
pointer in 1. The variable x5 is a proof variable and conceptually
contains a proof that z; isavalid pointer: that is, that it pointsto an
in-bounds index. The typing rules ensure that = isvalid by requir-
ing 2 to contain an appropriate proof. The operations pffact(r)
and pfand(Z) construct proofs. For pffact(x) a proof of a for-
mula based on the definition of x is constructed. For example, if
x’s definitionisz : int := len(y) then pffact(x) constructs a
proof of x = len(y). A complete definition of the defining facts
of instructions appears in Figure 14. For pfand(z1,...,%x), Z1
through z,, are also proof variables, and a proof of the conjunction
is returned. Values of the form (o, . .., v,)@i represent pointers
to array elements: in this case a pointer to the element at index ¢
of an array of type (vo, ..., vn). Such apointer isvalid if ¢ isin
bounds (that is, if 0 < ¢ < n) and invalid otherwise. The typing
rules must ensure that only valid pointers are loaded from, with
proof variables used to provide evidence of vaidity. The fina un-
usual aspect of the language is that branches assign proofs to proof
variables that reflect the condition being branched on. For exam-
ple, in the branch [x1 : 71, z2 : 2] if x3=x4 goto n, aproof of
rs # x4 isassigned to x; along the fall-through edge, and a proof
of x3 = x4 isassigned to x, along the taken edge. These proofs
can then be used to discharge validity requirements for pointers.

To state the operational semantics and type system we need a
few definitions. The program counters of a program pcs(P) are
{bi| P=DBo,...., B Ab<mABy, =D;t1; " jtn;cAi <
n+1}. Wewrite P(b) for B, when P = By, ..., B, andb < n; if
P(b) =D;t1;...;tm;cthen P(b.n) ispwhenn = 0,and ¢, when
1 <n < mandcwhenn = m + 1. The edges of aprogram P,
edges(P), are asfollows. The entry edgeis (—1,0). If P(n) ends
in[z1: 71,72 : 72] if x3 rop x4 goto n’ then there are edges
(n,n+1), caled thefall-through edge, and (n, n’), called the taken
edge. If P(n) endsin goto n’ then thereis an edge (n,n’). For a
given P and n, theedges (n1,n2) € edges(P) arenumbered from
zero in the order given by ni; edgep(n1,n2) isthis number, aso
called the incoming edge number of (n1, n2) into ns.

Operational Semantics A program P is started in the state
(P,0,0,0.0). The reduction relation that maps one state to the
next is given in Figure 11. Note that the third component of a pro-

gram state tracks which incoming edge led to the current program
counter—initialy thisis the entry edge (—1,0), and is updated by
transfers. It isused by phi instructions to select the correct variable.
The notation p[i] denotes z1 := z1i,...,Tn = Tn; Whenp =
X1 1 T1 = d)(:L'll, . .,xlm), vy Xp L Tp = d)(l’nl, . .,xnm).
A program terminates when in a state of the form (P, L, n, pc)
where P(pc) = halt. A program state is stuck if it is irreducible
and not a termina state. Stuck states all represent type errors that
the type system should prevent. Note that the array creation opera-
tion must handle negative sizes. Our implementation would throw
an exception, but since the core language does not have exceptions,
it simply creates a zero length array if anegative size is requested.
In the operational semantics, the proof type has the single in-
habitant true, upon which no interesting operations are defined.
Proofs in this sense are equivalent to unit values for which non-
escaping occurrences can be trivially erased when moving to an
untyped setting. This “proof erasure” property is precisely anao-
gous to the “coercion erasure” property of the coercion language of
Vanderwaart et al. [24]. In practice, uses of proof variables in the
STARJIT compiler are restricted such that all proof terms can be
elided during code generation and consequently impose no over-
head at run time. While we believe that it would be straightforward
to formalize the syntactic restrictions that make this possible, we
choose for the sake of simplicity to leave thisinformal here.

Type System The type system has two components: the SSA
property and a set of typing judgements. The SSA property ensures
both that every variable is assigned to at most once in the program
text (the single assignment property) and that all uses of variables
are dominated by definitions of those variables. In a conventional
type system, these properties are enforced by the typing rules. In
particular, the variables that are listed in the context of the typing
judgement are the ones that are in scope. For SSA IRs, it is more
convenient to check these properties separately.

The type checker must ensure that during execution each use of
avariableispreceded by an assignment to that variable. Sincethe -
th variable of aphi instruction isused only if the i-th incoming edge
was used to get to the block, and the proof variablesin an if transfer
are assigned only on particular out-going edges, we give a rather
technical definition of points at which variables are assigned or
used. These points are such that a definition point dominating a use
point impliesthat assignment will always precede use. These points
are based on an unconventional notion of control-flow graph, to
avoid critical edges which might complicate our presentation. For
a program P with blocks 0 to m, the control-flow graph consists
of thenodes {0, ..., m} U edges(P) and edges from each origina
node n to each original edge (n,n’) and similarly from (n,n’)
to n'. The definition/use points, du(P), are pcs(P) U {b.0.i |
P(b.0) =po,...,pn A0 <i<n}U{ei|e € edges(P)Ai€
{0,1}}.

Figure 13 gives the formal definition of dominance, defini-
tion/use points, and the SSA property.

The syntax of typesis:

Types 7 u=1int | array(r) | ptr,(r) | S(z) | pf(p,
Facts F:=e rop ez | Fi N Fy
Fact Exps. e ==1i| x| len(x) | e1 bopes | Qe

EnvironmentsT" :=Z% : 7

The type ptr, () is given to pointers that, if valid, point to values
with type 7 (the 7 indicates that they might not be valid). The
singleton type S(x) is given to things that are equa to x. The
type pf ., is given to proof variables that contain a proof of the
fact F'. Factsinclude arithmetic comparisons and conjunction. Fact
expressions include integers, variables, array lengths, arithmetic
operations, and a subscript expression—the fact expression zQe
stands for a pointer that points to the element at index e of array .

402

Judgement Meaning

'En<mn 7 iIsasubtypeof 72 inT'

R = I Fy Imp|IESF2

I'tp p issafein environment T'
I'kpe v issafein environment T’

I'ke cissafein environment I'
FpTatdu 7 well-formed type at du in P
Fp T environment I" well-formed in P
P P issdfe

Figure 12. Typing judgements

The judgements of the type system are given in figure 12. Most
of the typing rules are given in Figure 14. Typing environments
I' state the types that variables are supposed to have. The rules
check that when assignments are made to avariable, the type of the
assigned value is compatible with the variable's type. For example,
the judgement T" - int < I'(z) intherulefor z : 7 := 4 checks
that integers are compatible with the type of =. The rules also check
that uses of a variable have a type compatible with the operation.
For example, the rule for load expects a proof that the pointer, x2,
is valid, so the rule checks that x3's type I'(x3) is a subtype of
PE (1@0<ugAwy<z@len(x)) [OF SOMEz. Itisthischeck along with the
rules for proof value generation and the SSA property that ensure
that z isvalid.

Given these remarks, the only other complicated rule is for phi
instructions. In aloop a phi instruction might be used to combine
two indices, and the compiler might use another phi instruction to
combine the proofs that these indices are in bounds. For example,
consider this sequence:

z1 : int := ¢(x2, x3)
Y1 :Pf(ogzl) = ¢(y27y3)

where y2 : pf o,y ad ys : pf <, Here the types for yi,
y2, and ys are different and in some sense incompatible, but are
intuitively the correct types. The rule for phi instructions allows
this typing. In checking that y» has a compatible type, the rule
substitutes z; for z1 iny:’stypeto get pf , <), Whichisthetype
that y» has; similarly for ys.

For aprogram P that satisfies the SSA property, every variable
mentioned in the program has a unique definition point, and that
definition point is decorated with a type. Let vt(P) denote the
environment formed from extracting these variable/type pairs. A
program P iswell formed (- P) if:

1. P satisfiesthe SSA property,

.Fp Vt(P),

. vt(P) - pforevery pin P,

. vt(P) Fp ¢ for every instruction ¢ in P, and
. vt(P) F cfor every transfer cin P.

a b~ wWDN

The type system is safe:

THEOREM 1 (Type Sefety).
If- Pand (P, 0,0,0.0) —* S then S isnot stuck.

A proof of this theorem appears in the companion technical re-
port [17]. The proof takes the standard high-level form of showing
preservation and progress lemmas, as well as some lemmas partic-
ular to an SSA language. It is important to note that safety of the
type system is contingent on the soundness of the decision proce-
durefor - 1 = F5. In the proof, a judgement corresponding
to truth of factsin an environment is given. In this setting, the as-
sumption of logical soundness corresponds to the restriction that in
any environment in which F; istrue, F» isaso true.

Defsand Uses:
If P(b.i) = x : 7 := r then program counter b.¢ defines x, furthermore, b.i isa use of the ys where r has the following forms:

y | nevarray(y1,2) | 1en(y) | base(y) | y1 bop v | 1a(y1) [yo] | ptfact(y) | prand(y)
If P(b.i) = (po,...,pn) @dp; = zj : 7j := ¢(yj1,--.,Y;m) then b.i.j defines each x; and e,.1 uses each y;;, where e, is the k-th incoming edge
of b. If P(b.i) = [z1 : 71,22 : T2] if y1 rop y2 goto n then e1.0 defines z1 and e2.0 defines x2 where e and e2 are the fall-through and taken edges
respectively, and b. uses y; and y2. If = has a unique definition/use point in P that definesiit, then defp () is this point.

Dominance:

® |nprogram P, node n dominates node m, written domp (n, m), if every path in the control-flow graph of P from (—1, 0) to m includes n.
® |nprogram P, definition/use point n; .41 strictly dominates definition/use point np.iz, written sdomp (n1.41, n2.i2) if n1 = ng and i1 < 2 (herei; or
i2 might be adotted pair 0.5, so we take this inequality to be lexicographical ordering) or m # n2 and domp(ni, n2).
Single Assignment:
A program satisfies the single-assignment property if every variable is defined by at most one definition/use point in that program.

In Scope:
A program P satisfies the in-scope property if for every definition/use point dw that uses a variable there is a definition/use point dwy that defines that
variable and sdomp (duz, duy).

SSA:
A program satisfies the Single Satic Assignment (SSA) property if it satisfies the single-assignment and in-scope properties. Note that a program that satisfies
SSA has a unique definition for each variable mentioned in the program.

Figure 13. SSA definitions

||—p7atdu I—pF|

fv(1) C inscope p(du) Fp 7 at defp(T)

Fp 7 atdu FpxT:T
[TFrn<n FA = R
'k <m I'tm <m
'k int < int '+ array(m) < array(m2) 'k ptr,(m1) < ptry(T2)
- F = Iy 'k < I'kF<T13
'tk s(z) <s(z) T'FS(z) <T'(x) I'Fpf gy <Pf(p,) Tkm <73

Thejudgement - Fy — F> issome appropriate decision procedure for our fact language.
Fp TFpe The |

D FS(@iy) <T(@){z1,. .., @n =215, ..., Tnj}

Phoy:m = d(T11, -+, Tim)y - -5 Tn 2 Tn = G(Tnl,- -, Tnm)
' int < T'(x) It s(z2) <T'(z1) T'FT(z2) <int It array(I'(z3)) < T'(z1)
Thtpax:T:i=1 Thpxy:7 =22 T'tp 21 : 7 := newarray(z2, x3)
T'FT(z2) < array(me) D'k int < T'(z1) T'tFT(z2) < array(me) I'Fptry(m) <I(z1)
I'tpxz1:7:=len(z2) T'kp 1 :7:= base(z2)
T'FD(x2) <int I'FI(z3) <int I'Fint <T'(z1) I'FT(z2) <ptry(re) TI'FD(xz3) <int Tk ptry(r2) <T'(z1)
I'kpxy:7:=x2 bopzs I'kpxy:7:=x2bopzs

I'ED(z2) <ptro(re) T'FI(23) < pfpa0<asrms<c@len(z)) 1 F T2 < I'(z1)
T'kpx:7:=1d(z2) [x3]
DEPE (geftact p (o)) S D(1) T'EL@n) <pfpy -+ TED(yn) <pfp,) TEpfmanar,) <T(@1)
I'kp xy:7:=pffact(xa) I'kpx:7:=pfand(y1,...,Yn)
PET(z3) <int T'FT(z4) <int TEPE (oo ropay)) ST@1) TEPEL gpay) < Dx2)

Tt [x1: 71,22 : T2] if 23 rOp T4 goto n

't goton I' + halt
deffact p(x) | The fact deffact p () depends upon the defining instruction of z in P, and is given by these rules:

deffactp(z : 7 :=1) = z=i
deffactp(z : 7 := len(z’)) = z=len(a’)
deffactp(z : 7 :=base(z’)) = z=2'Q0
deffactp(z : 7:=xz1 bopxa) = ax=xz1 bopz2

Figure 14. Typing rules

403

Thetyping rules presented are for the most part syntax-directed,
and can be made algorithmic. A consideration is that the rule for
load must determine the actual array variable, which isnot apparent
from the conclusion. In general, the decision prodecure only needs
to verify that the rule holds for one of the arrays available at that
program point. In practice, the correct array can be inferred by ex-
amining the type of the proof variable. We believe that judgements
on facts may be efficiently decided by an integer linear program-
ming tool such as the Omega Calculator [22] with two caveats.
First, such tools reason over Z rather than 32- or 64-bit integers.
Second, they restrict our fact language for integer relations (and,
thus, compiler reasoning) to affine expressions. This is, however,
sufficient to capture current STARJI T optimizations.

4, Compiler optimizations

In this section we examine compiler optimizationsin the context of
the core language. We demonstrate how an optimizing compiler can
preserve both proof variables and their type information. We argue
that our ideas greatly simplify thisprocess. In previouswork, anim-
plementer would need to modify each optimization to update safety
information. In our representation, we leverage existing compiler
infrastructure to do the bulk of thework. In particular, most control-
flow or data-flow optimizations require virtually no changes at all.
Others that incorporate algebraic properties only need to be modi-
fied to record the compiler’s reasoning. In the next section we will
discuss how these ideas can be extended from the core language to
full Java.

In general, there are two ways in which an optimization can
maintain the correctness of the proofs embedded in the program.
First, it can apply the transformation to both computation and proof
simultaneously. Thisis sufficient for the majority of optimizations.
Second, it can create new proofs for the facts provided by the
original computation. As we show below, this is necessary for
the few optimizations that infer new properties that affect safety.
In the rest of this section we show how these general principles
apply to individual compiler optimizations on a simple example.
For thisexample, we show how to generate alow-level intermediate
representation that contains safety information and how to preserve
this information through several compiler optimizations, such as
loop invariant code motion, common subexpression elimination,
array bounds check elimination, strength reduction of array element
pointer, and linear function test replacement.

The example we will consider, in pseudo code, is:

for (i=0; i<a.length; i++) {
- =alil;
}

Where we assume that a is a non-null integer array, that a is not
modified in the loop, and that the pseudo code array subscripting
has an implicit bounds check. Although this example does not
reflect the full complexity of Java, it is sufficient to illustrate the
main ideas of propagating safety information through the compiler
optimizations. Section 5 discusses additional issues in addressing
full Java.

The first compilation step for our example lowers the program
into alow-level representation suitable for optimization, as shown
in Figure 15. In our system, lowering generates instructions that ex-
press the computation and any required proofs of the computation’s
safety. For example, atypical compiler would expand an array ele-
ment access ali] into the following sequence: array bounds checks,
computation of the array element address, and a potentially unsafe
load from that address. In our system, the compiler also generates
proof variables that show that the array index i is within the ar-
ray bounds (g, for the lower bound and g, for the upper bound)
and that the load accesses an element i of the array a (proof vari-

i1 :int
uB: int
LOOP :
I2 : int
[0y : PE(iycu) G2 i -] 1=
aLen : int
O3 : Pf(aLen=1en(a))
% PE(0<iy)
Qs : pf(i2<aLen)
O : pf(i2<len(a))
aBase : ptr, (int)
U7 * P (aBase=ac0)
addr : ptr,(int)
Os * Pf(addr=aBasetis)
o * PE (addr=a@is)
U10 * Pf(a@o<addr - a@1en(a))

=0
:=1len(a)

i=(i1,i3)

if uB<is goto EXIT
:=1en(a)
:=pffact(aLen)
:=checkLowerBound(iz, 0)
:=checkUpperBound(iz, aLen)
:=pfand(ds, ds)
:=base(a)
:=pffact(aBase)
:—aBase+io
:=pffact(addr)
:=pfand(dy, s)
::pfand(CM: QGv QQ)

val : int :=1d(addr) [Q;0]
et :=val
i3 :int =ig+1
goto LOOP
EXIT :

Figure 15. Low-level representation for array load in loop

i1 :int =0
uB: int :=1len(a)
O3 : Pf(uB=1en(a)) :=pffact(uB)
aBase : ptr,(int) :=base(a)
07 © Pf (apase=a@0) :=pffact(aBase)
LOOP :
io :int ::¢(i1,i3)
[0y : Py cup) G ¢ -- -] := if UB<iy goto EXIT
ds : P (o<iy) :=checkLowerBound(iz, 0)
s : PE(i, <uB) :=checkUpperBound (i2, uB)

:=pfand(ds, d5)
:—aBase+io
:=pffact(addr)
:=pfand(dy, dg)
:=pfand(qy, qg, dy)

O : pf(iz <len(a))

addr : ptr,(int)

Os : Pf(addr—aBasetis)

O : PE (addr=aaiy)

O10 * Pf(a@o<addr - a@1en(a))

val : int :=1d(addr) [0;0]
R =wval
i3 :int =ig+1
goto LOOP
EXIT :

Figure 16. IR after CSE and loop invariant code motion

able g,). The conjunction of these proofs is sufficient to type check
the load instruction according to the typing rulesin Figure 14. The
proof variables are generated by the explicit array bounds checks
(which we use as syntactic sugar for the branches that transfer con-
trol to a halt instruction if the bounds check fails) and by pffact
and pfand statements that encode arithmetic properties of the ad-
dress computation as the types of proof variables.

Next, wetake the examplein Figure 15 through several common
compiler optimizations that are employed by STARJIT to generate
efficient code for loops iterating over arrays (Figures 16 - 19). The
result is highly-optimized code with an embedded proof of program
safety.

We start, in Figure 16, by applying several basic data-flow op-
timizations such as CSE, dead code elimination, and loop invari-
ant code motion. An interesting property of these optimizations
in our system is that they require no modification to preserve the

i1 :int =0

Oy PG —0) =pffact(i1)

uB: int :=1en(a)

03 : Pf(4B—1en(a)) :=pffact(uB)

aBase : ptr, (int) :=Dbase(a)

07 : Pf (aBase=a0) :=pffact(aBase)
LOOP :

ig :int ==¢(i1,i3)

U4 : PE(o<iy) =¢(0y1,0h3)

if uB<ipz goto EXIT
:=pfand(qs, q;)
:=aBasetis
:=pffact(addr)
:=pfand(q,, dg)
::Pfand(q47q67q9)

(9 : P, cu) G2 o] 1=
s * PE(iy<1en(a))

addr : ptr,(int)

Os : Pf(qddr—aBasetiz)

o : PE (addr=aais)

O10 * Pf(a@o<addr < a@1en(a))

val : int :=1d(addr) [gy]

el =val

i3 :int i=ig+1

O12 * PL(i=iyt1) :=pffact(iz)

13 * PE(0<is) r=pfand(dy, dy5)
goto LOOP

EXIT :

Figure 17. IR after bound check elimination

safety proofs. They treat proof variables identically to other terms,
and, thus, are automatically applied to both the computation and
the proofs. For example, common subexpression elimination and
copy propagation replace all occurrences of aLen with uB, includ-
ing those that occur in proof types. The type of the proof variable
05 is updated to match its new definition pffact (uB).

In Figure 17, we illustrate array bounds check elimination. In
the literature [4], this optimization is typically formulated to re-
move redundant bounds checks without leaving any trace of itsrea-
soning in the program. In such an approach, a verifier must effec-
tively repeat the optimization reasoning to prove program safety. In
our system, an optimization cannot eliminate an instruction that de-
fines a proof variable without constructing a new definition for that
variable or removing all uses of that variable. Intuitively, the com-
piler must record in a new definition its reasoning about why the
eliminated instruction was redundant. Consider the bounds checks
in Figure 16. The lower bound check that verifies that 0<iz is
redundant because i» is @ monotonically increasing variable with
the initial value 0. Formally, the facts that i1=0, i2=¢(i1,i3) and
is=ia+1 imply that 0<i.. This reasoning is recorded in the trans-
formed program through a new definition of the proof variable g,
and the additional proof variables g,, and g, ;. We use SSA to con-
nect these proofs at the program level. The upper bound check that
verifies that io<1en(a) (proof variable q;) is redundant because
the if statement guarantees the same condition (proof variabled,).
Because the new proof for the fact g is aready present in the pro-
gram, the compiler simply replaces all uses of of g, with g, .

In Figure 18, we perform operator strength reduction (OSR) [9]
to find a pointer that is an affine expression of a monotonically in-
creasing or decreasing loop index variable and to convert it into an
independent induction variable. In our example, OSR eliminates i
from the computation of addr by incrementing it directly. Because
variable addr is used in the g; := pffact(addr) statement, the
compiler cannot modify the definition of addr without also mod-
ifying the definition of gy (otherwise, the transformed program
would not type check). Informally, the compiler must reestablish
the proof that the fact trivially provided by the original definition
till holds. In our system, OSR ismodified to construct a new proof
for the fact trivially implied by the original pointer definition by

405

i1 :int

O11 : PE(j, —0)

UB: int

O3 : PE(uB=1en(a))

aBase : ptr, (int)

07 * Pf (aBase=a@0)

addr; : ptr,(int)

O14 * PE (addr; =aBaseti1)
LOOP :

i : int

Oy : PE(o<iy)

addry : ptr,(int)

Os : PE (addr,—aBase tis)

O : PEGiycuys G2 ¢ - -] =

O6 : pf(i2<1en(a))

Qo : P (addro=a@is)

O10 : Pf(a@o<addr < a@1en(a))

val : int

is : int

O12 * PL(iy=iyt1)

addrs : ptr,(int)

Q15 * PE (addry —addra 41)

O13 : Pf(o<iy)

O16 * PE (addry—aBase+i3)

EXIT :

=0
:=pffact(iy)
:=1en(a)
:=pffact(uB)
:=base(a)
:=pffact(aBase)

(i1,i3)

(U1, th3)

(addry, addrs)

= ¢(Oh4, U16)

if uB<ig goto EXIT
:=pfand(ds, d;)
:=pfand(dy, dg)
::pfand(q47 q67 qQ)
:=1d(addr2) [q;]
:=wal

=ig+1
:=pffact(is)
:=addra+1
:=pffact(addrs)
:=pfand(qy, t;2)
:=pfand(Qg, U2, U5)
goto LOOP

Figure 18. IR after strength reduction of element address

uB: int

03 * P (uB=1en(a))
aBase : ptr,(int)
07 : PE (aBase—a@o)
addry : ptr,(int)
G14 * P (addr; =aBase)
addrUB : ptr, (int)

G17 * Pf (addrUB=aBase + uB)
LOOP :
addrs : ptr,(int)

Uy : PE (aBase<addr,)

[0 : P (addry <adarug), G2 © - -] =

6 * PT (addr, <aBase+1en(a))
U10 * Pf(a@o<addr, <a@1len(a))
val : int

addrs : ptr,(int)

U15 * PE (addry —addro+1)

U13 * P (aBase<addrs)

EXIT :

:=1len(a)
:=pffact(uB)
:=base(a)
:=pffact(aBase)
:=aBase
:=pffact(addry)
:=aBase+-uB
:=pffact(addrUB)

:= ¢(addr1, addrs)
1:¢(Q147q13)
if addrUB<addrs
goto EXIT
:=pfand(Qs, 0y, 0;7)
:=pfand(Qy, dg, 07)
:=1d(addrz) [g;0]
:=val
:=addro+1
:=pffact(addrs)
:=pfand(q,,d;5)
goto LOOP

Figure 19. IR after linear function test replacement

induction on that fact. Again, we leverage SSA to establish the new
proof. In thiscase, Gs : Pf ag4r, —apaseti,) IS defined by the phi in-
struction that merges proof variables ¢, : Pf (agar, —apase+i,) ad

Oi6 * PE (addrs —aBasetis)-

Finally, weillustratelinear function test replacement (LFTR) [9]
inFigure19. ! Classical LFTR replacesthetest uB<i, inthe branch
by a new test addrUB<addr,. If our program contained no proof
variables, this would allow the otherwise unused base variable i
to be removed from the loop. We augment the usual LFTR pro-
cedure, which rewrites occurrences of the base induction variable
i> in loop exit tests (and exits) in terms of the derived induction
variable addr,, to aso rewrite occurrences of i in the types of
proof variables. Finally, to eliminate the original induction variable
altogether, the compiler must replace the inductive proofs on the
original variable (expressed through ¢ instructions) with proofsin
terms of the derived induction variable. In this case, the compiler
must replace the proof that 0<i» (established by q,, and q,,) with
one that proves aBase<addr. (established by g,, and q,5). Af-
ter the replacement, the loop induction variable i and any proof
variables that depend upon it are no longer live in the loop, so all
definitions of the variable can be removed. The compiler must re-
move the proof variables whose types reduce to tautologies and
apply further CSE to yield Figure 19.

5. Extensions

Our core language can easily be extended to handle other interest-
ing aspects of Java and CLI. In this section we describe several of
these extensions.

Firstly, we can handle object-model lowering through the use
of our singleton types. Consider an invoke virtual operation. It is
typically lowered into three operations: load the virtual dispatch
table (vtable), load the method pointer from the vtable, call the
method pointer passing the object as an additional argument. In
our system, these operations would look like this:

x : SomeClass := - --

t1 : vtable(x) := vtable(z)

t2 : (S(x),int) — int := method(foo : (int) — int,t1)
ts : int := call(tz2)(z, 10)

Here the method foo (taking an integer and returning an integer)
is being invoked on variable x. In the lowered code, variable ¢,
gets the dependent type vtable(x) meaning that it contains the
vtable from the object currently in x. Variable ¢, gets the loaded
method pointer. From the type vtable(z), the typing rules can
determine a precise function type for this method pointer, namely
(S(z), int) — int, wherethefirst argument must be x. The actual
call isthelast operation, and here we pass x asan explicit argument.
Since z hastype S(z), this operation type checks.

By using singleton types based on term variables, we achieve
a relatively simple type system and still avoid the well known
typing problems with the explicit “this’ argument (see [12] and
references). The existing solutions to this typing problem have
much more complicated type systems, with one exception. Chen
and Tarditi [7] have asimilarly simple type system for alowered IR
for class-based object-oriented languages. Like our system, theirs
also has class names as types, and keeps around information about
the class hierarchy, fields, and methods. They also have existentials
with subclass bounds (type variables can be bounded above by a
class, and range over any subclass of that class). They use these
existentials to express the unknown runtime type of any given
object, and thus the type of the explicit “this’ argument. They
also have a class representation function that maps class names

1 Note that the code resulting from LFTR is not typable in our core lan-
guage, since we do not allow conditional branches on pointers. Extending
the language to handle this is straightforward, but requires a total ordering
on pointer values which essentially requires moving to a heap-based seman-
tics. Note though that the fact language does permit reasoning about pointer
comparison, as used in the previous examples.

406

to a record type for objects in the class, and they have coercions
to convert between the two. These ideas could be adapted to our
system instead of our vtable types, and our vtable types could be
adapted to their type system. In summary, both systems are simpler
than existing, more foundational, object encodings. Theirs has type
variables and bounded existentials, ours has singleton types based
on term variables.

Javaand CLI aso alow null asavaluein any classtype, and at
runtime this null value must be checked and an exception thrown
before any invocation or field access on an object. We can use our
proof variable technique to track and ensure that these null checks
are done. We simply add a null constant to the fact expression lan-
guage. We can add an operationlikep : pf ,, .,.,11) := chknull(z)
to check that « is not null. If z isnull then it throws an exception,
if not then it assigns a proof of x##null to p. Similarly to array-
bounds check elimination, we can eliminate redundant null checks.

To handle exceptions we simply add explicit control flow for
them. Each potentially exception throwing operation will end aba-
sic block and there will be edges coming out of the block corre-
sponding to exceptions that go to blocks corresponding to the ex-
ception handlers. An important point is that exceptions typically
occur before the assignment of the potentially exception throw-
ing operation, so like the conditional branches of our core lan-
guage, we must treat the definition point as occuring on the fall-
through edge rather than at the end of the basic block. So in both
2 : 7 := chknull(y) and z : 7 := call(y)(y), the varigble z is
assigned on the fall-through edge.

We can easily deal with stores to pointers by adding a store
operation of the form st(xz,y) [p] where = holds the pointer, y
the value to store, and p a proof that = is valid. The type rule for
this operation is:

I'-I(z) <ptr,(r) TFI(y)<T
'k F(p) S pf(z@OSa:/\z<z@len(z))

I'tp st(z,y) [p]

Modifying our formalisation and type soundness proof to accomo-
date stores would be straightforward.

Java and CLI have mutable covariant arrays, and thus require
array-store checks at runtime. In particular, when storing into an
array, the runtime must check that the object being stored is com-
patible with the runtime element type of the array (which could be
asubtype of the static element type). In our implementation we use
types of theform elem(x) to stand for the runtime element type of
array x. Theload base operation on x actually returns something of
typeptr,(elem(x)). Thearray-store check produces a proof value
that can be used to prove that some other variable hastype elem(x)
and we have a coercion to use the proof value to change the vari-
able’stype. The end of alowered array store would look something
like this:

x: array(C) :==---
y:Ci=---

p1: Pf(g;;énun/\z@ogt/\t<z@len(m)) =
p2 - pf(y:elem(m)) = ChkSt(m7y)
st(t,retype(y,p2)) [p1]

One technicality is worth noting. In order to avoid circularities
between the type system and the fact language, and to avoid making
the fact language's decision procedure mutually dependent upon
the subtype checker, we restrict the types that can appear in a fact
of theform z : 7 to those that do not mention proof types.
Downcasts are similar to store checks, and we can treat them in
asimilar way. A chkcast(x : C) operation checksthat x isin type
C and returns aproof of this fact, otherwise it throws an exception.
Theactual subtype checks performed at runtimein our implementa-

tion are generally done by the virtual machine itself, and the virtual
machine is not type checked by the type system of our JIT. How-
ever, we do partialy inline this operation to include some common
fast cases, and to expose some parts to redundant elimination and
CSE. For example, if aobject isnull thenitisin any reference type
and can be stored into any reference array or downcast to any ref-
erence type. Another example is comparing the vtable of an object
against the vtable of a specific class, if these are equal then that ob-
jectisin that class. Such comparisons produce facts in our system
of the form z=null or vtable(z)=vtable(C). We can simply
add axioms to our fact language like - z=null = z:C or
F vtable(z)=vtable(C) = z:C.

6. Implementation Status

The current implementation of the STARJIT compiler generates
and maintains proof variables throughout its compilation processto
enable safe implementation of certain optimizationsin the presence
of check elimination (to be described in a forthcoming paper). For
their initially designed rolein optimizations, proof variables did not
require proof types: optimizations do not need to know the reason
an optimization was safe, but only its safety dependences. As such,
the current STARJIT representation is similar to that described in
Section 2 with some of the extensions in Section 5.

STARJIT implements @l of the optimizations discussed in this
paper as well as more described in [1]. We modified each opti-
mization, if necessary, to correctly handle proof variables. Array
bounds check elimination and operator strength reduction required
the most significant modification, as described in Section 4. For
partial inlining of virtual machine type checking functions, as de-
scribed in Section 5, we updated the definition of proof variablesto
established that a variable has the checked type. We aso modified
method inlining to properly establish the type of inlined methods.
For each parameter of amethod, we added a proof variable that es-
tablished that it had the correct type. When a method is compiled
independently, that proof variable istrivially defined at the method
entry (as parameter types to a method are guaranteed by the run-
time environment). When the method isinlined, the corresponding
proof variables must be defined by the calling method instead. As
method call operations require proof variables for each parameter
in our system, thisinformation isreadily available. Most optimiza-
tions, however, did not require significant changes for the reasons
outlined in this paper.

An early version of atype verifier which inferred proof typesit-
self was implemented. This implementation was particularly help-
ful in finding bugs within STARJIT, but was insufficient for com-
plete verification of optimized code. In particular, the inference a-
gorithm was insufficient for some more complicated optimization
situations, such asthe LFTR example (without proof type informa-
tion) in Section 4. We are confident that extending the compiler to
use precise proof types for proof variables will be straightforward,
using the framework developed in this paper.

7. Related Work

Asfar aswe are aware, SafeTSA [25, 2] isthe only other example
of atype-safe SSA representation in the literature. The motivation
of their work is rather different than ours. SafeTSA was designed
as an alternative to Java bytecode, whereas our representation is de-
signed to be alow-level intermediate language for a bytecode com-
piler. SafeTSA can represent certain optimizations, such as CSE
and limited check elimination, that Java bytecode does not. How-
ever, in our classification in Section 2, SafeTSA is a refinement-
style representation and, thus, cannot represent the effect of many
of the low-level optimizations we discuss here. For example, it can-
not represent the safety of check elimination based upon aprevious

407

branch or the construction of an unsafe memory address as illus-
trated in Figure 7. On the other hand, we do not support their notion
of referential security: the property that a program must be safe by
construction.

While most of the work on certified code focuses on the fina
machine code representation, there has been previous work on
intermediate representations that allow verification of the memory
safety of highly optimized machine level code. One of the major
differences between the various approaches lies in the degree to
which safety information is made explicit.

On the side of less explicit information are the SpecialJ com-
piler [8] and DTAL [27]. Both approaches record loop invariants,
but not explicit safety dependences. This makes verification harder
(all available invariants must be considered by the decision pro-
cedure), interferes with more optimizations (such as loop peeling)
than our approach, and makes removing dead invariants much more
difficult (because invariants never have explicit uses).

At the other end of the spectrum, there are other systemsthat not
only represent dependences explicitly as we do, but also record ex-
actly why the dependences imply safety for each instruction, using
proofs, instead of relying on a decision procedure during checking,
asin our system. The LTT system of Crary and Vanderwaart [10]
and the TSCB system of Shao et al. [23], devel oped independently,
both take this approach, albeit in the setting of a functional or
mostly-functional language. Both systems are designed around the
idea of incorporating alogic into atype theory, in order to combine
the benefits of proof-carrying code [20] with the convenience of
atype system. LTT and TSCB adopt the linear logical framework
LLF and the Calculus of Inductive Constructions, respectively, as
their proof languages. | ncorporating a proof system also givesthem
more flexibility, asthey can express avariety of properties within a
single framework.

The lack of explicit proofs in the representation forces us to
use a decision procedure during typechecking. This limits us to
decidable properties, and may be less suited for certified code
applications where the added complexity of a decision procedure
in the verifier may be undesirable.

On the other hand, a system such as ours is much more suited
to use in the internals of an optimizing compiler. For the limited
use that we need proofs for—to verify the correctness of checks
which are eliminated by areal optimizing compiler—we can get
away with avastly smpler system, one that imposes much less of
a burden on the compiler than more syntactically heavy systems.
Moreover, for applications of certified code, we believe that it
should be possible to take optimized intermediate code in the style
presented here and trandate it, as part of code generation, to a
more explicit form in the style of LTT or TSCB, thereby reaping
the benefits of both approaches, perhaps by following the Specia
Jmodel of using a proof generating theorem prover. However, this
remains future work.

Finally, our proof variables are aso similar to the Jalapefio Java
system’s condition registersas described in [6, 14]. Both are mech-
anisms to represent control-flow information as abstract value de-
pendences. Their usage, however, is more limited. Condition regis-
tersare not used to express genera safety information or to support
verification of code. Instead, they are used by the compiler to model
control flow between a check operation and all (rather than just po-
tentially unsafe) instructions that follow it. Jalapefio uses condition
registersto collapse control flow due to exceptions into asingle ex-
tended block and, in that block, to prevent instruction reordering
that would violate control flow dependences.

8. Conclusions

This paper has shown a typed low-level program representation
that preserves memory safety dependences in highly-optimizing

type-preserving compilers. Our representation encodes safety de-
pendences as first-class term-level proof variables that capture the
essential memory-safety dependences in the program without artifi-
cially constraining optimizations—previous approaches that piggy-
back safety dependence on top of value dependence inhibit opti-
mization opportunities. Our representation encodes proofs of mem-
ory safety as dependent types associated with proof variables. Ex-
perience implementing this representation in the STARJIT com-
piler has demonstrated that a highly-optimizing Java JI'T compiler
can easily generate and maintain this representation in the pres-
ence of aggressive SSA-based optimizations such as bounds check
elimination, value numbering, strength reduction, linear function
test replacement, and others. Using explicit proof values and proof
types, modern optimizing compilers for type-safe languages can
now generate provably safe yet low-level intermediate representa-
tions without constraining optimizations.

References

[1] ADL-TABATABAI, A.-R., BHARADWAJ, J., CHEN, D.-Y., GHU-
LOuM, A., MENON, V. S., MURPHY, B. R., SERRANO, M., AND
SHPEISMAN, T. The StarJIT compiler: A dynamic compiler for man-
aged runtime environments. Intel Technology Journal 7, 1 (February
2003).

AMME, W., DALTON, N., VON RONNE, J., AND FRANZ, M.
SafeTSA: a type safe and referentially secure mobile-code repre-
sentation based on static single assignment form. In Proceedings of
the ACM SIGPLAN 2001 conference on Programming language de-
sign and implementation (Snowbird, UT, USA, 2001), pp. 137-147.

BiLARDI, G., AND PINGALI, K. Algorithms for computing the static
single assignment form. J. ACM 50, 3 (2003), 375-425.

BoDiK, R., GUPTA, R., AND SARKAR, V. ABCD: Eliminating
array bounds checks on demand. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation (Vancouver, British Columbia, Canada, 2000),
pp. 321-333.

BRIGGS, P.,, COOPER, K. D., AND SIMPSON, L. T. Vaue
numbering. Software—Practice and Experience 27, 6 (June 1996),
701-724.

CHAMBERS, C., PECHTCHANSKI, |., SARKAR, V., SERRANO,
M. J., AND SRINIVASAN, H. Dependence analysis for Java. In
Proceedings of the 12th International Workshop on Languages and
Compilers for Parallel Computing (1999), vol. 1863 of Lecture Notes
in Computer Science, pp. 35-52.

CHEN, J., AND TARDITI, D. A simple typed intermediate language
for object-oriented languages. In Proceedings of the 32nd Annual
ACM Symposium on Principles of Programming Languages (Long
Beach, CA, USA, Jan. 2005), ACM Press, pp. 38—49.

CoLBY, C., LEE, P.,, NECULA, G. C.,BLAU, F., PLESKO, M., AND
CLINE, K. A certifying compiler for Java. In PLDI '00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming language
design and implementation (New York, NY, USA, 2000), ACM Press,
pp. 95-107.

COOPER, K. D., SIMPSON, L. T., AND VIcK, C. A. Operator
strength reduction. ACM Transactions on Programming Languages
and Systems (TOPLAS) 23, 5 (September 2001), 603-625.

[10] CRARY, K., AND VANDERWAART, J. An expressive, scalable type
theory for certified code. In ACM SIGPLAN International Conference
on Functional Programming (Pittsburgh, PA, 2002), pp. 191-205.
CYTRON, R., FERRANTE, J., ROSEN, B., WEGMAN, M., AND
ZADECK, K. An efficient method of computing static single
assignment form. In Proceedings of the Sixteenth Annual ACM
Symposium on the Principles of Programming Languages (Austin,
TX, Jan. 1989).

GLEW, N. An efficient class and object encoding. In Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages (Minneapolis, MN, USA, Oct. 2000), ACM
Press, pp. 311-324.

[2

—

(3

=

[4

=

[5

i)

(€]

(7

8

=

[9

—

(11

(12]

408

[13] GROSSMAN, D., AND MORRISETT, J. G. Scalable certification
for typed assembly language. In TIC *00: Selected papers from the
Third International Workshop on Typesin Compilation (London, UK,
2001), Springer-Verlag, pp. 117-146.

GUPTA, M., CHoI, J.-D.,AND HIND, M. Optimizing Java programs
in the presence of exceptions. In Proceedings of the 14th European
Conference on Object-Oriented Programming - ECOOP ' 00 (Lecture
Notes in Computer Science, Vol. 1850) (June 2000), Springer-Verlag,
pp. 422-446.

IGARASHI, A., PIERCE, B., AND WADLER, P. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Transactions on
Programming Languages and Systems (TOPLAS) 23, 3 (May 2001),
396-560. First appeared in OOPSLA, 1999.

KNOOP, J., RUTHING, O., AND STEFFEN, B. Lazy code motion.
In Proceedings of the SSGPLAN ’92 Conference on Programming
Language Design and Implementation (San Francisco, CA, June
1992).

MENON, V., GLEW, N., MURPHY, B., MCCREIGHT, A., SHPEIS-
MAN, T., ADL-TABATABAI,A.-R., AND PETERSEN, L. A verifiable
SSA program representation for aggressive compiler optimization.
Tech. Rep. YALEU/DCS/TR-1338, Department of Computer Sci-
ence, Yale University, 2005.

MORRISETT, G., CRARY, K., GLEW, N., GROSSMAN, D.,
SAMUELS, R., SMITH, F., WALKER, D., WEIRICH, S., AND
ZDANCEWIC, S. TALx86: A redlistic typed assembly language. In
Second ACM SIGPLAN Workshop on Compiler Support for System
Software (Atlanta, Georgia, 1999), pp. 25-35. Published as INRIA
Technical Report 0288, March, 1999.

MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. From
System F to typed assembly language. ACM Transactions on
Programming Languages and Systems (TOPLAS) 21, 3 (May 1999),
528—569.

NEcuLA, G. Proof-carrying code. In POPL1997 (New York, New
York, January 1997), ACM Press, pp. 106-119.

NECULA, G. C., AND LEE, P. The design and implementation
of a certifying compiler. In PLDI '98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementation (New York, NY, USA, 1998), ACM Press, pp. 333—
344.

[22] PucH, W. The Omegatest: A fast and practical integer programming
algorithm for dependence analysis. In Proceedings of Supercomput-
ing '91 (Albuquerque, NM, Nov. 1991).

SHAO, Z., SAHA, B., TRIFONOV, V., AND PAPASPYROU, N. A
type system for certified binaries. In Proceedings of the 29th Annual
ACM Symposium on Principles of Programming Languages (January
2002), ACM Press, pp. 216-232.

VANDERWAART, J. C., DREYER, D. R., PETERSEN, L., CRARY,
K., AND HARPER, R. Typed compilation of recursive datatypes.
In Proceedings of the TLDI 2003: ACM SIGPLAN International
Workshop on Types in Language Design and Implementation (New
Orleans, LA, January 2003), pp. 98-108.

VON RONNE, J., FRANZ, M., DALTON, N., AND AMME, W.
Compile time elimination of null- and bounds-checks. In 3rd
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-
3) (December 2000).

WALKER, D., CRARY, K., AND MORISETT, G. Typed memory man-
agement via static capabilities. ACM Transactions on Programming
Languages and Systems (TOPLAS) 22, 4 (July 2000), 701—-771.

X1, H., AND HARPER, R. Dependently typed assembly language.
In International Conference on Functional Programming (September
2001), pp. 169-180.

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

(23]

[24]

[29]

[26]

[27]

Object-Oriented Type Inference

Jens Palsberg and Michael I. Schwartzbach

palsberg@daimi.aau.dk and mis@daimi.aau.dk

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Arhus C, Denmark

Abstract

We present a new approach to inferring types in un-
typed object-oriented programs with inheritance,
assignments, and late binding. It guarantees that
all messages are understood, annotates the pro-
gram with type information, allows polymorphic
methods, and can be used as the basis of an op-
timizing compiler. Types are finite sets of classes
and subtyping is set inclusion. Using a trace graph,
our algorithm constructs a set of conditional type
constraints and computes the least solution by least
fixed-point derivation.

1 Introduction

Untyped object-oriented languages with assign-
ments and late binding allow rapid prototyping be-
cause classes inherit implementation and not spec-
ification. Late binding, however, can cause pro-
grams to be unreliable, unreadable, and inefficient
[27]. Type inference may help solve these prob-
lems, but so far no proposed inference algorithm
has been capable of checking most common, com-
pletely untyped programs [9].

We present a new type inference algorithm for a
basic object-oriented language with inheritance, as-
signments, and late binding.

In Proc. ACM Conference on Object-Oriented
Programming: Systems, Languages, and Applications
(OOPSLA) October 6-11, 1991, pages 146-161.
©1991 ACM. Copied by permission.

The algorithm guarantees that all messages are un-
derstood, annotates the program with type infor-
mation, allows polymorphic methods, and can be
used as the basis of an optimizing compiler. Types
are finite sets of classes and subtyping is set in-
clusion. Given a concrete program, the algorithm
constructs a finite graph of type constraints. The
program is typable if these constraints are solvable.
The algorithm then computes the least solution in
worst-case exponential time. The graph contains
all type information that can be derived from the
program without keeping track of nil values or flow
analyzing the contents of instance variables. This
makes the algorithm capable of checking most com-
mon programs; in particular, it allows for polymor-
phic methods. The algorithm is similar to previous
work on type inference [18, 14, 27, 1, 2, 19, 12, 10, 9]
in using type constraints, but it differs in handling
late binding by conditional constraints and in re-
solving the constraints by least fixed-point deriva-
tion rather than unification.

The example language resembles SMALLTALK [8]
but avoids metaclasses, blocks, and primitive meth-
ods. Instead, it provides explicit new and if-then-
else expressions; classes like Natural can be pro-
grammed in the language itself.

In the following section we discuss the impacts of
late binding on type inference and examine previ-
ous work. In later sections we briefly outline the
example language, present the type inference algo-
rithm, and show some examples of its capabilities.

2 Late Binding

Late binding means that a message send is dynam-
ically bound to an implementation depending on
the class of the receiver. This allows a form of poly-
morphism which is fundamental in object-oriented
programming. It also, however, involves the danger
that the class of the receiver does not implement a
method for the message—the receiver may even be
nil. Furthermore, late binding can make the control
flow of a program hard to follow and may cause a
time-consuming run-time search for an implemen-
tation.

It would significantly help an optimizing compiler
if, for each message send in a program text, it could
infer the following information.

e Can the receiver be nil?

e Can the receiver be an instance of a class which
does not implement a method for the message?

e What are the classes of all possible non-nil re-
ceivers in any execution of the program?

Note that the available set of classes is induced by
the particular program. These observations lead us
to the following terminology.

Terminology:

Type: A type is a finite set of classes.

Induced Type: The induced type of an ex-
pression in a concrete program is the set
of classes of all possible non-nil values to
which it may evaluate in any execution of
that particular program.

Sound approximation: A sound approxima-
tion of the induced type of an expression
in a concrete program is a superset of the
induced type.

Note that a sound approximation tells “the whole
truth”, but not always “nothing but the truth”
about an induced type. Since induced types are

generally uncomputable, a compiler must make do
with sound approximations. An induced type is
a subtype of any sound approximation; subtyp-
ing is set inclusion. Note also that our notion of
type, which we also investigated in [22], differs from
those usually used in theoretical studies of types in
object-oriented programming [3, 7]; these theories
have difficulties with late binding and assignments.

The goals of type inference can now be phrased as
follows.

Goals of type inference:

Safety guarantee: A guarantee that any mes-
sage is sent to either nil or an instance of
a class which implements a method for the
message; and, given that, also

Type information: A sound approximation of
the induced type of any receiver.

Note that we ignore checking whether the receiver
is nil; this is a standard data flow analysis problem
which can be treated separately.

If a type inference is successful, then the program
is typable; the error messageNotUnderstood will not
occur. A compiler can use this to avoid inserting
some checks in the code. Furthermore, if the type
information of a receiver is a singleton set, then
the compiler can do early binding of the message
to the only possible method; it can even do in-line
substitution. Similarly, if the type information is
an empty set, then the receiver is known to always
be nil. Finally, type information obtained about
variables and arguments may be used to annotate
the program for the benefit of the programmer.

SMALLTALK and other untyped object-oriented lan-
guages are traditionally implemented by interpret-
ers. This is ideal for prototyping and exploratory
development but often too inefficient and space de-
manding for real-time applications and embedded
systems. What is needed is an optimizing compiler
that can be used near the end of the programming
phase, to get the required efficiency and a safety
guarantee. A compiler which produces good code

can be tolerated even it is slow because it will be
used much less often than the usual programming
Our type inference algorithm can
be used as the basis of such an optimizing com-
piler. Note, though, that both the safety guaran-
tee and the induced types are sensitive to small
changes in the program. Hence, separate compi-

environment.

lation of classes seems impossible. Typed object-
oriented languages such as SIMULA [6]/BETA [15],
C++ [26], and EIFFEL [17] allow separate compila-
tion but sacrifice flexibility. The relations between
types and implementation are summarized in fig-
ure 1.

When programs are: | Their implementation is:

Untyped Interpretation
Typable Compilation
Typed Separate Compilation

Figure 1: Types and implementation.

Graver and Johnson [10, 9], in their type system
for SMALLTALK, take an intermediate approach be-
tween “untyped” and “typed” in requiring the pro-
grammer to specify types for instance variables
whereas types of arguments are inferred. Suzuki
[27], in his pioneering work on inferring types in
SMALLTALK, handles late binding by assuming that
each message send may invoke all methods for that
message. It turned out, however, that this yields
an algorithm which is not capable of checking most
common programs.

Both these approaches include a notion of method
type. Our new type inference algorithm abandons
this idea and uses instead the concept of conditional
constraints, derived from a finite graph. Recently,
Hense [11] addressed type inference for a language
O’SMALL which is almost identical to our example
language. He uses a radically different technique,
with type schemes and unification based on work of
Rémy [24] and Wand [29]. His paper lists four pro-
grams of which his algorithm can type-check only
the first three. Our algorithm can type-check all

four, in particular the fourth which is shown in
figure 11 in appendix B. Hense uses record types
which can be extendible and recursive. This seems
to produce less precise typings than our approach,
and it is not clear whether the typings would be
useful in an optimizing compiler. One problem is
that type schemes always correspond to either sin-
gletons or infinite sets of monotypes; our finite sets
can be more precise. Hense’s and ours approaches
are similar in neither keeping track of nil values
nor flow analyzing the contents of variables. We
are currently investigating other possible relations.

Before going into the details of our type inference
algorithm we first outline an example language on
which to apply it.

3 The Language

Our example language resembles SMALLTALK, see
figure 2.

A program is a set of classes followed by an expres-
sion whose value is the result of executing the pro-
gram. A class can be defined using inheritance and
contains instance variables and methods; a method
is a message selector (mj_ ... m,_) with formal pa-
rameters and an expression. The language avoids
metaclasses, blocks, and primitive methods. In-
stead, it provides explicit new and if-then-else ex-
pressions (the latter tests if the condition is non-
nil). The result of a sequence is the result of the
last expression in that sequence. The expression
“self class new” yields an instance of the class of
self. The expression “E instanceOf Classld” yields
a run-time check for class membership. If the check
fails, then the expression evaluates to nil.

The SMALLTALK system is based on some primi-
tive methods, written in assembly language. This
dependency on primitives is not necessary, at least
not in this theoretical study, because classes such
as True, False, Natural, and List can be programmed
in the language itself, as shown in appendix A.

(Program) P = C;...C, E

(Class) C =
var Idl Idk Ml ..
end Classld
(Method) M ::= method m; Id;

(Expression) E ::=

class Classld [inherits Classld]

.M,

...m, Id, E

Id:=E|Emi E;...m, E,| E; E|ifE then E else E |

ClassId new | self class new | E instanceOf Classld |
self | super | Id | nil

Figure 2: Syntax of the example language.

4 Type Inference

Our type inference algorithm is based on three fun-
damental observations.

Observations:

Inheritance: Classes inherit implementation
and not specification.

Classes: There are finitely many classes in a
program.

Message sends: There are finitely many syn-
tactic message sends in a program.

The first observation leads to separate type infer-
ence for a class and its subclasses. Notionally, this
is achieved by expanding all classes before doing
type inference. This expansion means removing all
inheritance by

e Copying the text of a class to its subclasses

e Replacing each message send to super by a
message send to a renamed version of the in-
herited method

e Replacing each “self class new” expression by a
“Classld new” expression where Classld is the
enclosing class in the expanded program.

This idea of expansion is inspired by Graver and
Johnson [10, 9]; note that the size of the expanded

program is at most quadratic in the size of the orig-
inal.

The second and third observation lead to a finite
representation of type information about all execu-
tions of the expanded program; this representation
is called the trace graph. From this graph a finite
set of type constraints will be generated. Typa-
bility of the program is then solvability of these
constraints. Appendix B contains seven example
programs which illustrate different aspects of the
type inference algorithm, see the overview in fig-
ure 3. The program texts are listed together with
the corresponding constraints and their least solu-
tion, if it exists. Hense’s program in figure 11 is the
one he gives as a typical example of what he cannot
type-check [11]. We invite the reader to consult the
appendix while reading this section.

A trace graph contains three kinds of type infor-
mation.

Three kinds of type information:

Local constraints: Generated from method
bodies; contained in nodes.

Connecting constraints: Reflect
sends; attached to edges.

message

Conditions: Discriminate receivers; attached
to edges.

Example program in: | Illustrates: Can we type it?
Figure 10 Basic type inference Yes
Figure 11 Hense’s program Yes
Figure 12 A polymorphic method Yes
Figure 13 A recursive method Yes
Figure 14 Lack of flow analysis No
Figure 15 Lack of nil detection No
Figure 16 A realistic program Yes

Figure 3: An overview of the example programs.

4.1 Trace Graph Nodes

The nodes of the trace graph are obtained from
the various methods implemented in the program.
Each method yields a number of different nodes:
one for each syntactic message send with the cor-
responding selector. The situation is illustrated
in figure 4, where we see the nodes for a method
m that is implemented in each of the classes
C1,Cso,...,C,. Thus, the number of nodes in the
trace graph will at most be quadratic in the size
of the program. There is also a single node for
the main expression of the program, which we may
think of as a special method without parameters.

Methods do not have types, but they can be pro-
vided with type annotations, based on the types
of their formal parameters and result. A particu-
lar method implementation may be represented by
several nodes in the trace graph. This enables it to
be assigned several different type annotations—one
for each syntactic call. This allows us effectively to
obtain method polymorphism through a finite set
of method “monotypes”.

4.2 Local Constraints

Fach node contains a collection of local constraints
that the types of expressions must satisfy. For each
syntactic occurrence of an expression E in the im-
plementation of the method, we regard its type as

an unknown variable [E]. Exact type information
is, of course, uncomputable. In our approach, we
will ignore the following two aspects of program ex-
ecutions.

Approximations:

Nil values: It does not keep track of nil values.

Instance variables: It does not flow analyze
the contents of instance variables.

The first approximation stems from our discussion
of the goals of type inference; the second corre-
sponds to viewing an instance variable as having a
single possibly large type, thus leading us to iden-
tify the type variables of different occurrences of
the same instance variable. In figures 14 and 15
we present two program fragments that are typical
for what we cannot type because of these approxi-
mations. In both cases the constraints demand the
false inclusion {True} C {Natural}. Suzuki [27] and
Hense [11] make the same approximations.

For an expression E, the local constraints are gener-
ated from all the phrases in its derivation, accord-
ing to the rules in figure 5. The idea of generat-
ing constraints on type variables from the program
syntax is also exploited in [28, 25].

The constraints guarantee safety; only in the cases
4) and 8) do the approximations manifest them-
selves. Notice that the constraints can all be ex-

method implementations

class C;
mq
syntactic my
message
sends
mq

class Co class C,,
o . m,,
o . m,,
o . m,,

Figure 4: Trace graph nodes.

pressed as inequalities of one of the three forms:
“constant C variable”, “variable C constant”, or
“variable C variable”; this will be exploited later.

Each different node employs unique type variables,
except that the types of instance variables are com-
mon to all nodes corresponding to methods imple-
mented in the same class. A similar idea is used by
Graver and Johnson [10, 9].

4.3 Trace Graph Edges

The edges of the trace graph will reflect the possible
connections between a message send and a method
that may implement it. The situation is illustrated
in figure 6.

If a node corresponds to a method which contains a
message send of the form X m: A, then we have an
edge from that sender node to any other receiver
node which corresponds to an implementation of a
method m. We label this edge with the condition
that the message send may be executed, namely
C € [X] where C is the class in which the particular

method m is implemented. With the edge we asso-
ciate the connecting constraints, which reflect the
relationship between formal and actual parameters
and results. This situation generalizes trivially to
methods with several parameters. Note that the
number of edges is again quadratic in the size of
the program.

4.4 Global Constraints

To obtain the global constraints for the entire pro-
gram we combine local and connecting constraints
in the manner illustrated in figure 7. This pro-
duces conditional constraints, where the inequali-
ties need only hold if all the conditions hold. The
global constraints are simply the union of the con-
ditional constraints generated by all paths in the
graph, originating in the node corresponding to the
main expression of the program. This is a finite set,
because the graph is finite; as shown later in this
section, the size of the constraint set may in (ex-
treme) worst-cases become exponential.

If the set of global constraints has a solution, then

Connecting constraints:

Expression: Constraint:
1) Id:=E [Id] D [E] A [Id := E] = [E]
2) Em E;y...m, E, [E] C{C|C implements my...m,}
3) E1 . E2 [[El) EQ]] [[Eg]]
4) if E; then Eg else E3 [if E; then Eg else E3] O [Eq] U [Es]
5) C new [C new] = {C}
6) E instanceOf C [E instanceOf C] = {C}
7) self [self] = {the enclosing class}
5 1 [1d] = [1d]
9) nil [nil] ={}
Figure 5: The local constraints.
C e [X] method m: F
Xm: A E
sender receiver

(“actual equals formal”)

(“formal result equals actual result”)

Figure 6: Trace graph edges.

this provides approximate information about the
dynamic behavior of the program.

Consider any execution of the program. While ob-
serving this, we can trace the pattern of method
executions in the trace graph. Let E be some ex-
pression that is evaluated at some point, let VAL(E)
be its value, and let CLASS(b) be the class of an
object b. If L is some solution to the global con-
straints, then the following result holds.

Soundness Theorem:

If VAL(E) # nil then cLass(vaL(E)) € L([E])

It is quite easy to see that this must be true. We
sketch a proof by induction in the number of mes-
sage sends performed during the trace. If this is
zero, then we rely on the local constraints alone;

given a dynamic semantics [4, 5, 23, 13| one can eas-
ily verify that their satisfaction implies the above
property. If we extend a trace with a message send
X m: A implemented by a method in a class C,
then we can inductively assume that C € L([X]).
But this implies that the local constraints in the
node corresponding to the invoked method must
hold, since all their conditions now hold and L is
a solution. Since the relationship between actual
and formal parameters and results is soundly rep-
resented by the connecting constraints, which also
must hold, the result follows.

Note that an expression E occurring in a method
that appears k times in the trace graph has k
type variables [E]1,[E]2,...,[E]x in the global
constraints. A sound approximation to the induced

K, Ks

KS Kn

Conditional constraint:

Ki,Ky,Ks,...,K,=LUC

L = local constraints of the final node

C' = connecting constraints of the final edge

Figure 7: Conditional constraints from a path.

type of E is obtained as
(U L([EL)

Appendix C gives an efficient algorithm to compute
the smallest solution of the extracted constraints,
or to decide that none exists. The algorithm is at
worst quadratic in the size of the constraint set.

The complete type inference algorithm is summa-
rized in figure 8.

4.5 Type Annotations

Finally, we will consider how a solution L of the
type constraints can produce a type annotation of
the program. Such annotations could be provided
for the benefit of the programmer.

An instance variable x has only a single associ-
ated type variable. The type annotation is sim-
ply L([x]). The programmer then knows an upper
bound of the set of classes whose instances may
reside in x.

A method has finitely many type annotations, each
of which is obtained from a corresponding node in
the trace graph. If the method, implemented in the
class C, is

Input: A program in the example language.

Output: Either: a safety guarantee and type
information about all expressions; or: “un-

able to type the program”.
1) Expand all classes.

2) Construct the trace graph of the expanded
program.

3) Extract a set of type constraints from the
trace graph.

4) Compute the least solution of the set of type
constraints. If such a solution exists, then
output it as the wanted type information,
together with a safety guarantee; otherwise,
output “unable to type the program”.

Figure 8: Summary of the type inference algorithm.

method my: F;1 ma: Fo ...m,,: F,,
E

then each type annotation is of the form

{C} > L([Fal) x - - < L([Fu]) — L([E])

The programmer then knows the various manners
in which this method may be used.

A constraint solution contains more type informa-

tion about methods than the method types used
by Suzuki. Consider for example the polymorphic
identity function in figure 12. Our technique yields
both of the method type annotations

id: {C} x {True} — {True}
id : {C} x {Natural} — {Natural}

whereas the method type using Suzuki’s framework
is

id : {C} x {True, Natural} — {True, Natural}

which would allow neither the succ nor the isTrue
message send, and, hence, would lead to rejection
of the program.

4.6 An Exponential Worst-Case

The examples in appendix B show several cases
where the constraint set is quite small, in fact linear
in the size of the program. While this will often be
the situation, the theoretical worst-case allows the
constraint set to become exponential in the size
of the program. The running time of the inference
algorithm depends primarily on the topology of the
trace graph.

In figure 9 is shown a program and a sketch of its
trace graph. The induced constraint set will be ex-
ponential since the graph has exponentially many
different paths. Among the constraints will be a
family whose conditions are similar to the words of
the regular language

(CCC + DCC)3

the size of which is clearly exponential in n.

Note that this situation is similar to that of type
inference in ML, which is also worst-case exponen-
tial but very useful in practice. The above scenario
is in fact not unlike the one presented in [16] to il-
lustrate exponential running times in ML. Another
similarity is that both algorithms generate a po-
tentially exponential constraint set that is always
solved in polynomial time.

method m,,_;

class C class D
var x var x
method m; method m;
X Mg X Mgy
method my method msy
X mg3 X m3

method m,_;

X my, X my,
method m,, method m,,

0 0

end C end D

Figure 9: A worst-case program.

5 Conclusion

Our type inference algorithm is sound and can han-
dle most common programs. It is also conceptually
simple: a set of uniform type constraints is con-
structed and solved by fixed-point derivation. It
can be further improved by an orthogonal effort in
data flow analysis.

The underlying type system is simple: types are
finite sets of classes and subtyping is set inclusion.

An implementation of the type inference algorithm
is currently being undertaken. Future work in-
cludes extending this into an optimizing compiler.
The inference algorithm should be easy to modify
to work for full SMALLTALK, because metaclasses

are simply classes, blocks can be treated as objects
with a single method, and primitive methods can
be handled by stating the constraints that the ma-
chine code must satisfy. Another challenge is to
extend the algorithm to produce type annotations
together with type substitution, see [20, 21, 22].

Appendix A: Basic classes

class Object
end Object

class True
method isTrue
Object new
end True

class False
method isTrue
nil
end False

Henceforth, we abbreviate “True new” as “true”,
and “False new” as “false”.

class Natural
var rep
method isZero
if rep then false else true
method succ
(Natural new) update: self
method update: x
rep := x; self
method pred
if (self isZero) isTrue then self else rep
method less: i
if (i isZero) isTrue
then false
else if (self isZero) isTrue then true
else (self pred) less: (i pred)
end Natural

Henceforth, we abbreviate “Natural new” as “0”,
and, recursively, “n succ” as “n + 1”.

class List
var head, tail
method setHead: h setTail: t
head := h; tail .=t
method cons: x
(self class new) setHead: x setTail: self
method isEmpty
if head then false else true
method car
head
method cdr
tail
method append: alist
if (self isEmpty) isTrue
then alist
else (tail append: alList) cons: head
method insert: x
if (self isEmpty) isTrue
then self cons: x
else
if (head less: x) isTrue
then self cons: x
else (tail insert: x) cons: head
method sort
if (self isEmpty) isTrue then self
else (tail sort) insert: head
method merge: alist
if (self isEmpty) isTrue
then alist
else
if (head less: (aList car)) isTrue
then (tail merge: alList) cons: head
else (self merge: (aList cdr)) cons: (aList car)
end List

class Comparable
var key
method getKey
key
method setKey: k
key := k
method less: ¢
key less: (c getKey)
end Comparable

Appendix B: Example Programs

class A
method f
7
end A
class B
method f
true
end B
x := A new; (x f) succ

Constraints:
[A new] = {A}
[x] 2 [A new]
[x := A new] = [A new]
[x] € {A,B}
A € = [xf]=1[7]
] = [7] = {Natural}

€ [x
€ [x] = [x f] = [true]
€ [x] = [true] = {True}

[[x f] € {Natural}

Natural € [x f] = [(x f) succ] = {Natural}
[x :== A new; (x f) succ] = [(x f) succ]
Smallest Solution:

[x] = [A new] = [x := A new] = {A}

[x f] = [(x f) succ] =

[x := A new; (x f) succ] = [7] = {Natural}
[true] = {True}

Trace graph sketch:

Figure 10: Conditions at work.

class A
method m
0
end A
class B inherits A
method n
0
end B
a = A new;
b := B new;
a:=b;
am

Constraints:

Smallest Solution:
[a] = {A.B}
[b] = {B}
[a m] = {Natural}
[A new] = {A}
[[B new|] = {B}

Trace graph sketch:

Figure 11: Hense’s program.

class C
method id: x
X
end C
((C new) id: 7) succ;
((C new) id: true) isTrue

Constraints:

[C new]; = {C}

[C new]; C {C}

C € [C new]; = [7]
C € [C new]; = [x]1
[7] = {Natural}

[(C new) id: 7] C {Natural}

Natural € [(C new) id: 7] = {Natural} = [((C new) id: 7) succ]
[C new], = {C}

[C new]y C {C}

C € [C new]y = [true] = [x]2

C € [C new]s = [x]2 = [(C new) id: true]

[true] = {True}

[(C new) id: true] C {True,False}

True € [(C new) id: true] = {Object} = [((C new) id: true) isTrue]
False € [(C new) id: true] = {} = [((C new) id: true) isTrue]
Smallest Solution:

[C new]; = [C new]s = {C}

7] = [x]1 = [(C new) id: 7] = [((C new) id: 7) succ] = {Natural}
[true] = [x]2 = [(C new) id: true] = {True}

[((C new) id: true) isTrue] = {Object}

Trace graph sketch:

[
[(C new) id: 7]

Figure 12: A polymorphic method.

class D
method f: x
if x then self f: x else nil
end D
(D new) f: nil

Constraints:
[D new] = {D}
[D new] C {D}
D € [D new] = [nil] = [x]:
D new [if x then self f: x else nil]; = [(D new) f: nil]
D new [if x then self f: x else nil]; D [self f: x]; U [nil];
D new nil]y = {}
D new [self]; = {D}
D new [self]; € {D}
D new], D € [self]; = [x]1 = [x]2
D new], D € [self]; = [if x then self f: x else nil]y = [self f: x];
D new], D € [self]; = [if x then self f: x else nil]y D [self f: x]2 U [nil]2
D new], D € [[SG'f]]l = [[nll]]g = {}
D new], D € [self]; = [self]s = {D}

=
=
=
=
=

g

D new], D € [self]; = [self]s C {D}
D e [[SGlf]]l, De [[SG|f]]2 = [[X]]g = [[X]]Q
D € [self]1, D € [self]a = [if x then self f: x else nil]a = [self f: x]2

De]
De]
De]
De]
De]
De]
De]
De]
De]
De]
De]
De]

D new
D € [D new

[nil] = {}
Smallest Solution:

[D new] = [self]; = [self] = {D}
[nil] = [x]1 = [nil]1 = [if x then self f: x else nil]; = [self f: x]; =
[(D new) f: nil]; = [x]2 = [nil]2 = [if x then self f: x else nil]y =

[self f: x]2 = [(D new) f: nil]2 = {}
Trace graph sketch:

]
|
]
|
]
|
|
]
|
]
|
]
]

Figure 13: A recursive method.

X =T,

X succ;

X := true;
x isTrue

Constraints:
1] 2 [7]
[7] = {Natural}
[x] € {Natural}
[x] 2 [true]
[true] = {True}
[x] € {True,False}

Figure 14: A safe program rejected.

(if nil then true else 7) succ
Constraints:
[if nil then true else 7]
[if nil then true else 7]
[true] = {True}
[7] = {Natural}

{Natural}

C
D [true] U 7]

Figure 15: Another safe program rejected.

class Student inherits Comparable

end Student
class ComparableList inherits List
method studentCount
if (self isEmpty) isTrue
then 0
else
if (self car) instanceOf Student
then ((self cdr) studentCount) succ
else (self cdr) studentCount
end ComparableList

Figure 16: An example program.

Appendix C: Solving Systems of
Conditional Inequalities

This appendix shows how to solve a finite system
of conditional inequalities in quadratic time.

Definition C.1: A CI-system consists of

e a finite set A of atoms.
e a finite set {«;} of variables.

e a finite set of conditional inequalities of the
form

Cl,CQ,...,CkiQ

Each C; is a condition of the form a € «j,
where a € A is an atom, and @ is an inequality
of one of the following forms

A Q (67
(67 - A
(673 Q Oéj

where A C A is a set of atoms.

A solution L of the system assigns to each variable
a; a set L(a;) € A such that all the conditional
inequalities are satisfied. O

In our application, A models the set of classes oc-
curring in a concrete program.

Lemma C.2: Solutions are closed under intersec-
tion. Hence, if a Cl-system has solutions, then it
has a unique minimal one.

Proof: Consider any conditional inequality of the
form C1,Cy,...,Cr = Q, and let {L;} be all so-
lutions. We shall show that N;L; is a solution. If
a condition a € N;L;(a;) is true, then so is all of
a € Li(a;). Hence, if all the conditions of @ are
true in N;L;, then they are true in each L;; fur-
thermore, since they are solutions,) is also true
in each L;. Since, in general, A; C B implies
NpAr C NgBy, it follows that N;L; is a solution.
Hence, if there are any solutions, then N;L; is the
unique smallest one. O

Definition C.3: Let C be a Cl-system with atoms

error

0,0,...,0)

Figure 17: The lattice of assignments.

A and n distinct variables. An assignment is an el-
ement of (24)" U {error} ordered as a lattice, see
figure 17. If different from error, then it assigns a
set of atoms to each variable. If V' is an assignment,
then C(V) is a new assignment, defined as follows.
If V = error, then C(V) = error. An inequality is
enabled if all of its conditions are true under V. If
for any enabled inequality of the form «; C A we
do not have V(a;) C A, then C(V') = error; other-
wise, C(V) is the smallest pointwise extension of V
such that

e for every enabled inequality of the form AC
a; we have A C C(V)(qy).

e for every enabled ineguality of the form «; C
a; we have V(a;) C C(V) (o).

Clearly, C is monotonic in the above lattice. O

Lemma C.4: An assignment L # error is a solu-
tion of a Cl-system C iff L = C(L). If C has no
solutions, then error is the smallest fixed-point of
C.

Proof: If L is a solution of C, then clearly C will
not equal error and cannot extend L; hence, L is
a fixed-point. Conversely, if L is a fixed-point of
C, then all the enabled inequalities must hold. If

there are no solutions, then there can be no fixed-
point below error. Since error is by definition a
fixed-point, the result follows. O

This means that to find the smallest solution, or to
decide that none exists, we need only compute the
least fixed-point of C.

Lemma C.5: For any Cl-system C, the least fixed-
point of C is equal to

lim ék(@,@,...,@)

k—o0

Proof: This is a standard result about monotonic
functions on complete lattices. O

Lemma C.6: Let n be the number of different
conditions in a Cl-system C. Then

lim C*(0,0,...,0) =C"'(0,0,...,0)

k—o0

Proof: When no more conditions are enabled, then
the fixed-point is obtained by a single application.
Once a condition is enabled in an assignment, it
will remain enabled in all larger assignments. It
follows that after n iterations no new conditions
can be enabled; hence, the fixed-point is obtained
in at most n + 1 iterations. O

Lemma C.7: The smallest solution to any CI-
system, or the decision that none exists, can be
obtained in quadratic time.

Proof: This follows from the previous lemmas. O

References

[1] Alan H. Borning and Daniel H. H. Ingalls. A type dec-
laration and inference system for Smalltalk. In Ninth
Symposium on Principles of Programming Languages,
pages 133-141, 1982.

[2] Luca Cardelli. A semantics of multiple inheri-
tance. In Gilles Kahn, David MacQueen, and Gordon
Plotkin, editors, Semantics of Data Types, pages 51-68.
Springer-Verlag (LNCS 173), 1984.

[3] Luca Cardelli and Peter Wegner. On understanding
types, data abstraction, and polymorphism. ACM
Computing Surveys, 17(4):471-522, December 1985.

(4]

(11]

(12]

(13]

(14]

(15]

William Cook and Jens Palsberg. A denotational se-
mantics of inheritance and its correctness. Information
and Computation, 114(2):329-350, 1994. Also in Proc.
OOPSLA’89, ACM SIGPLAN Fourth Annual Confer-
ence on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 433-443, New Orleans,
Louisiana, October 1989.

William R. Cook. A Denotational Semantics of Inher-
itance. PhD thesis, Brown University, 1989.

Ole-Johan Dahl, Bjgrn Myhrhaug, and Kristen Ny-
gaard. Simula 67 common base language. Technical
report, Norwegian Computing Center, Oslo, Norway,
1968.

Scott Danforth and Chris Tomlinson. Type theories and
object-oriented programming. ACM Computing Sur-
veys, 20(1):29-72, March 1988.

Adele Goldberg and David Robson. Smalltalk-80—The
Language and its Implementation. Addison-Wesley,
1983.

Justin O. Graver and Ralph E. Johnson. A type system
for Smalltalk. In Seventeenth Symposium on Principles
of Programming Languages, pages 136-150, 1990.

Justin Owen Graver. Type-Checking and Type-Inference
for Object-Oriented Programming Languages. PhD the-
sis, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, August 1989. UIUCD-R-
89-1539.

Andreas V. Hense. Polymorphic type inference for
a simple object oriented programming language with
state. Technical Report No. A 20/90, Fachbericht 14,
Universitat des Saarlandes, December 1990.

Ralph E. Johnson. Type-checking Smalltalk. In Proc.
OOPSLA’86, Object-Oriented Programming Systems,
Languages and Applications, pages 315-321. Sigplan
Notices, 21(11), November 1986.

Samuel Kamin. Inheritance in Smalltalk—80: A denota-
tional definition. In Fifteenth Symposium on Principles
of Programming Languages, pages 80-87, 1988.

Marc A. Kaplan and Jeffrey D. Ullman. A general
scheme for the automatic inference of variable types.
In Fifth Symposium on Principles of Programming Lan-
guages, pages 60-75, 1978.

Bent B. Kristensen, Ole Lehrmann Madsen, Birger
Mpgller-Pedersen, and Kristen Nygaard. The BETA pro-
gramming language. In Bruce Shriver and Peter Weg-
ner, editors, Research Directions in Object-Oriented
Programming, pages 7-48. MIT Press, 1987.

Harry G. Mairson. Decidability of ML typing is com-
plete for deterministic exponential time. In Seventeenth
Symposium on Principles of Programming Languages,
pages 382-401, 1990.

Bertrand Meyer. Object-Oriented Software Construc-
tion. Prentice-Hall, Englewood Cliffs, NJ, 1988.

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

Robin Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences,
17:348-375, 1978.

Prateek Mishra and Uday S. Reddy. Declaration-free
type checking. In Twelfth Symposium on Principles of
Programming Languages, pages 7-21, 1985.

Jens Palsberg and Michael 1. Schwartzbach. Type sub-
stitution for object-oriented programming. In Proc.
OOPSLA/ECOOP’90, ACM SIGPLAN Fifth Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications; European Conference on
Object-Oriented Programming, pages 151-160, Ottawa,
Canada, October 1990.

Jens Palsberg and Michael 1. Schwartzbach. What is
type-safe code reuse? In Proc. ECOOP’91, Fifth Fu-
ropean Conference on Object-Oriented Programming,
pages 325-341. Springer-Verlag (LNCS 512), Geneva,
Switzerland, July 1991.

Jens Palsberg and Michael 1. Schwartzbach. Static typ-
ing for object-oriented programming. Science of Com-
puter Programming, 23(1):19-53, 1994.

Uday S. Reddy. Objects as closures: Abstract semantics
of object-oriented languages. In Proc. ACM Conference
on Lisp and Functional Programming, pages 289-297,
1988.

Didier Rémy. Typechecking records and variants in
a natural extension of ML. In Sizteenth Symposium
on Principles of Programming Languages, pages 77-88,
1989.

Michael I. Schwartzbach. Type inference with inequal-
ities. In Proc. TAPSOFT’91, pages 441-455. Springer-
Verlag (LNCS 493), 1991.

Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 1986.

Norihisa Suzuki. Inferring types in Smalltalk. In Eighth
Symposium on Principles of Programming Languages,
pages 187-199, 1981.

Mitchell Wand. A simple algorithm and proof for type
inference. Fundamentae Informaticae, X:115-122, 1987.

Mitchell Wand. Type inference for record concatenation
and multiple inheritance. In LICS’89, Fourth Annual
Symposium on Logic in Computer Science, pages 92-97,
1989.

Optimization of
Object-Oriented Programs
Using Static Class Hierarchy Analysis

Jeffrey Dean, David Grove, and Craig Chambers

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350 USA
{jdean,grove,chambers}@cs.washington.edu

Abstract. Optimizing compilers for object-oriented languages apply static
class analysis and other techniques to try to deduce precise information about
the possible classes of the receivers of messages; if successful, dynamically-
dispatched messages can be replaced with direct procedure calls and
potentially further optimized through inline-expansion. By examining the
complete inheritance graph of a program, which we dalis hierarchy
analysis, the compiler can improve the quality of static class information and
thereby improve run-time performance. In this paper we present class
hierarchy analysis and describe techniques for implementing this analysis
effectively in both statically- and dynamically-typed languages and also in
the presence of multi-methods. We also discuss how class hierarchy analysis
can be supported in an interactive programming environment and, to some
extent, in the presence of separate compilation. Finally, we assess the
bottom-line performance improvement due to class hierarchy analysis alone
and in combination with two other “competing” optimizations, profile-
guided receiver class prediction and method specialization.

1 Introduction

Object-oriented languages foster the development of reusable, extensible class libraries
and frameworks [Johnson 92]. For example, the InterViews graphics framework [Linton

et al. 89] defines a collection of interacting base classes. The base classes define a set of
messages that are to be defined or overridden in subclasses. Clients of the framework
specialize it to their use by providing application-specific subclasses of the framework’s
base classes with the appropriate operations defined. Other frameworks have a similar
structure, exploiting inheritance and dynamic binding of messages to make library code
customizable and malleable.

Heavy use of inheritance and dynamically-bound messages is likely to make code
more extensible and reusable, but it also imposes a significant performance overhead,
compared to an equivalent but non-extensible program written in a non-object-oriented
manner. In some domains, such as structured graphics packages, the performance cost of
the extra flexibility provided by using a heavily object-oriented style is acceptable.
However, in other domains, such as basic data structure libraries, numerical computing
packages, rendering libraries, and trace-driven simulation frameworks, the cost of
message passing can be too great, forcing the programmer to avoid object-oriented
programming in the “hot spots” of their application. For example, hybrid languages like
C++ [Stroustrup 91], Modula-3 [Nelson 91, Harbison 92], and CLOS [Bobtaav. 88,
Gabrielet al. 91] provide non-object-oriented built-in array data structures that are more

Appeared in ECOOP’95, August 1995.

efficient than would be a typical class-based extensible implementation using
dynamically-dispatched fetch and store operations, Sather [Omohundro 94, Szgpersky
al. 93] allows the programmer to explicitly select where subtype polymorphism is
allowed, trading away reusability for performance, and it is common practice in C++
programming to avoid virtual function calls along common execution paths, sometimes
leading to contorted, hard-to-understand and hard-to-extend code.

Compilers can reduce the cost of dynamically-dispatched messages in a number of
ways. For exampletatic class analysis identifies a superset of the set of possible classes
of objects that can be stored in variables and returned from expressions. Sometimes class
analysis determines that the receiver of a message can be an instance of only one class,
allowing the dynamically-dispatched message to be replaced with a direct procedure call
(i.e.,statically-bound) at compile-time and further optimized using inline expansion if the
target procedure is small. If static class analysis determines that the receiver of a message
can be one of a small set of classes, the dynamically-dispatched message can be replaced
with a “type-case” expression, implemented with a series of run-time class tests, each
branching to direct procedure calls implementing that case; executing one or two run-time
class tests followed by an inlined version of the called procedure can be faster than
performing a general run-time method lookup, particularly if additional optimizations of
the called and calling methods can take place after inlining. Several other compiler
techniques have been investigated for reducing the cost of message passing:

e Profile-guided receiver class prediction can support a type-casing-style
optimization where static analysis is unable to determine precise information about
the receiver of a message. The profile information representing the expected
receiver class distribution of particular messages or call sites can be hard-wired into
the compiler [Deutsch & Schiffman 84, Chambets al. 89], gathered and
exploited on-line [Hoélzle & Ungar 94], and/or gathered off-line and exploited via
recompilation [Garrettt al. 94, Calder & Grunwald 94].

» Method specialization can produce faster specialized versions of a method for
particular inheriting subclasses; each specialized version can be optimized for the
particular class or classes of the receiver for which the method is being specialized.
Specializations for a given source method can be produced obliviously for each
inheriting subclass [Kilian 88, Chambers & Ungar 89, Lea 90, Lim & Stolcke 91]
or they can be produced selectively for groups of inheriting subclasses guided by
execution frequency profiles [Deat al . 95].

Class hierarchy analysis is another idea for speeding messages. When the compiler
compiles a method, it knows statically that the receiver of the method is some s8bclass
of the classC containing the method. Unfortunately, in the absence of additional
information, the compiler cannot optimize messages sent to the method’s receiver,
because the subclaSsnay override any of C’s dynamically-dispatched methods. Class
hierarchy analysis resolves this dilemma by supplying the compiler with complete
knowledge of the program’s class inheritance graph and the set of methods defined on
each class. In the presence of this global information about the program being compiled,
the compiler can infer statically a specific set of possible classes given that the receiver is
a subclass of the cla€s and messages sent to the method’s receiver can be optimized. In
particular, if there are no overriding methods in subclasses, a message sent to the method’s
receiver can be replaced with a direct procedure call and perhaps inlined. This sort of
optimization would be especially important in the case of highly-extensible frameworks,
where a great deal of flexibility is incorporated in the form of dynamically-dispatched
messages within the framework base classes, but where only a limited portion of the
potential flexibility is exploited by any particular application. For example, InterViews

supports the display and manipulation of arbitrary graphical shapes, but if a particular
application only implements a rectangle concrete subclass, then al the dynamically-
dispatched calls within the framework for manipulating arbitrary shapes can be replaced
with direct cals to the appropriate rectangle methods.

Class hierarchy analysis has long been known informally as a possible optimization
among implementors of optimizing compilers for object-oriented languages, but we are
unaware of any previous studies of the effectiveness and costs of this technique.
Moreover, class hierarchy analysisisjust one of anumber of candidate optimizations that
could be incorporated into an optimizing compiler, and the question remains as to which
is the most cost-effective combination to include. In this paper we perform such a study:

» We describe several implementation techniques for efficiently incorporating class
hierarchy analysisinto acompiler, in particular into an existing static class analysis
framework. Our techniques scale to support multi-method-based languages,
efficient compile-time method lookup in the presence of multi-methods is
substantially harder than for mono-methods.

» We address programming environment concerns of achieving fast turnaround for
programming changes and supporting independent development of libraries, which
could be adversely affected by a whole-program analysis such as class hierarchy
analysis.

» We measure the run-time performance benefit and compile-time cost of class
hierarchy analysis on several large programs written in Cecil [Chambers 92,
Chambers 93], a pure object-oriented language with multi-methods. Moreover, we
also measure the run-time performance benefits and compile-time costs of profile-
guided receiver class prediction and method specialization separately and in
combination with class hierarchy analysis.

The next section of this paper describes our integration of class hierarchy analysis into
static class analysis and addresses programming environment concerns. Section 3 reports
on our experimental evaluation of class hierarchy analysis, profile-guided receiver class
prediction, and method specialization. Section 4 describes some related work and Section
5 offers some conclusions.

2 ClassHierarchy Analysis

By exploiting information about the structure of the class inheritance graph, including
where methods are defined (but not depending on the implementation of any method nor
on theinstance variables of the classes), the compiler can gain valuable static information
about the possible classes of the receiver of each method being compiled. To illustrate,
consider the following class hierarchy:

class A
method m
method p
classB: A classC: A
method m method m
classD: B classg: C classF: C
method m method p

X

classG: F classH:F

Consider the situation where the method p in the class F contains a send of the m message
to self. m is declared to be avirtual function (there are several implementations of m for
subclasses of A, and the right implementation should be selected dynamically). As a
result, with only static intraprocedural class analysis the m message in F::p must be
implemented as a general message send. However, by examining the subclasses of F and
determining that there are no overriding implementations of m, the m message can be
replaced with a direct procedure call to C::m and then further optimized with inlining,
interprocedural analysis, or the like. This reasoning depends not on knowing the exact
class of the receiver, as with most previous techniques, but rather on knowing that no
subclasses of F override the version of m inherited by F. Class hierarchy analysisis a
direct method for determining this without programmer intervention.

2.1 Alternativesto ClassHierarchy Analysis

Other languages have alternative approaches for achieving a similar effect. In C++ a
programmer can declare whether or not amethod isvirtual (methods default to being non-
virtual). When a method is not declared to be virtual, the compiler can infer that no
subclass will override the method,® thus enabling it to implement invocations of the
method as direct procedure calls. However, this approach suffers from three weaknesses
relative to class hierarchy analysis:
e The C++ programmer must make explicit decisions of which methods need to be
virtual, making the programming process more difficult. When developing a
reusable framework, the framework designer must make decisions about which

1. Actually, C++ non-virtua functions can be overridden, but dynamic binding will not
be performed: the static type of the receiver determines which version of the non-vir-
tual method to invoke, not the dynamic class.

operations will be overridable by clients of the framework, and which will not. The
decisions made by the framework designer may not match the needs of the client
program; in particular, a well-written highly-extensible framework will often
provide flexibility that goes unused for any particular application, incurring an
unnecessary run-time performance cost. In contrast, class hierarchy analysis is
automatic and adapts to the particular framework/client combination being
optimized.

e The virtual/non-virtual annotations are embedded in the source program. If
extensions to the class hierarchy are made that require a non-virtual function to
become overloaded and dynamically dispatched, the source program must be
modified. This can be particularly difficult in the presence of separately-devel oped
frameworks which clients may not be able to change. Class hierarchy analysis, as
an automatic mechanism, requires no source-level modifications.

» A function may need to be virtual, because it has multiple implementations that
need to be selected dynamically, but within some particularly subtree of the
inheritance graph, there will be only one implementation that applies. In the
example above, the m method must be declared virtual, since there are several
implementations, but there is only one version of m that is called from F or any of
its subclasses. In C++, m must be virtual and consequently implemented with a
dynamically-bound message, but class hierarchy analysis can identify when a
virtual function “reverts’ to a non-virtual one with a single implementation for a
particular class subtree, enabling better optimization. In particular, it is aways the
case that a message sent to the receiver of amethod defined in aleaf classwill have
only onetarget implementation and hence can beimplemented as adirect procedure
call, regardiess of whether or not the target method is declared virtual. For the
benchmark programs discussed in Section 3, slightly more than half of the message
sends that were statically bound through class hierarchy analysis could not have
been made non-virtual in C++ (i.e., had morethan asingle definition of theroutine).

Inasimilar vein, Trellis [Schaffert et al. 85, Schaffert et al. 86] allows a class to be
declared with the no_subtypes annotation and Dylan [Dyl92] allows aclassto be sealed,
both of which inform the compiler that no subclasses exist. These annotations allow the
compiler to treat the classasaleaf class and compile all messages sent to objects statically
known to be of the class as direct procedure calls. Sealing has similar weaknessesrelative
to class hierarchy analysis as do non-virtual functions in C++: programmers have to
predict in advance, in the source code, which classes are to be sealed, and opportunities
for static binding will be missed, relative to class hierarchy analysis, when a class has
unknown subclasses but none of the subclasses override certain methods.

2.2 Implementation

To make class hierarchy analysis effective, it must be integrated with intraprocedural
static class analysis. Static class analysisis akind of data flow analysis that computes a
set of classes for each variable and expression in a method; the compiler uses this
information to optimize dynamically-bound messages, type-case statements as in
Modula-3 and Trellis, and other run-time type checks. Previous frameworks for static

class analysis in dynamically-typed object-oriented languages have defined several
representations for sets of classes [Chambers & Ungar 90]:

Representation Description Source Use

Unknown the set of all classed method aguments;
results of non-
inlined message
sends; contents of
instance variables

Class(C) the singleton set true branch of run- | supports static bind-
{C} time class tests; lit- | ing of sends; elimi-
erals nating run-time

type checks

Union(s,,S) union of class sets | control flow meges | supports “type-cas-
ing” if small union
of classes
Difference§,;, S) difference of two false branch of run- | avoids repeated tests
class sets time class tests

Earlier frameworks focused on the singleton class set as the primary source of
optimization: if the receiver of a message is a singleton class set, then the message lookup
can be resolved at compile-time and replaced with a direct procedure call to the target
method. Unions of class sets were optimized only through a type-casing optimization, if
the union combined a small number of classes.

2.2.1 Cone Class Sets

Class hierarchy analysis changes the flavor of static class analysis. The initial class set
associated with the receiver of the method being analyzed is the set of classes inheriting
from the class containing the method; in the earlier example, the receivepahethod

is associated with the sefF{ G, H}. It would be possible to use the Union set
representation to represent the class set of the method receiver, but this could be space-
inefficient for the large receiver class sets of methods declared high up in the inheritance
hierarchy. Consequently we introduce a new representation for the kind of regular class
sets inferred by class hierarchy analysis, the Cone:

Representation Description Source Use
Cone() the set of all sub- class hierarchy anal; supports static bind-
classes of the class | ysis of method ing of sends
C, includingC receiver; static type
declarations

Class hierarchy analysis annotates the method’s receiver with a cone set representation for
the class containing the method. A simple optimization of this representation is to use the

Class(C) representation rather than Cone(C) if C is a leaf class. (This framework for
representing static class anaysis information is similar to Palsberg and Schwartzbach’'s
static type system [Palsberg & Schwartzbach 94].) Cones tend to be concise summaries
of sets of classes: in our implementation, when compiling a 52,000-line benchmark
program with 957 classes, the average cone used for optimization purposes contained 12
concrete classes, and some cones included as many as 93 concrete classes.

In a statically-typed language, cones can be used to integrate static type declarations
into the static class analysis framework: for avariable declared to be of static type C, any
static class information inferred for the variable is intersected with Cone(C). This
integration is crucial to adapting techniques developed for dynamically-typed object-
oriented languages to work effectively for statically-typed object-oriented languages. For
hybrid languages, built-in non-object-oriented data types like integers and arrays can be
considered their own separate classes, as far as static class analysis is concerned; CLOS
takesasimilar view on integrating the standard Lisp data types with user-defined classes.

2.2.2 Method Applies-To Sets

If only singleton class sets support static binding of messages, then only leaf classes
would benefit from class hierarchy analysis. However, thisis unnecessarily conservative:
even if the receiver of a message has multiple potential classes, if al the classes inherit
the same method, then the message send can be statically bound and replaced with adirect
procedure call. For instance, in the earlier example, the class set computed for the m
message sent to the receiver of the F::p method is{F, G, H}, but all three classes inherit
the same implementation of m, C::m. Our measurements indicate that nearly 50% of the
messages statically bound using class hierarchy analysis have receiver class sets
containing more than a single class. To receive the most benefit from class hierarchy
analysis, static binding of messages whose receivers are sets of classes should be
supported. One approach would beto iterate through all elements of Union and Cone sets,
performing method lookup for each class, and checking that each class inherits the same
method; however, this could be slow for large sets (e.g., cones of classes with many
subclasses).

We have pursued an alternative approach that compares whol e sets of classes at once.
We first precompute for each method the set of classes for which that method is the
appropriate target; we call this set the applies-to set. (In our compiler, we compute the
applies-to sets of methods on demand, the first time a message with a particular name and
argument count is analyzed, to spread out the cost of this computation.) Then at amessage
send, we take the class set inferred for the receiver and test whether this set overlaps each
potentialy-invoked method’ s applies-to set. If only one method’ s applies-to set overlaps
the receiver’s class set, then that is the only method that can be invoked and the message
send can be replaced with a direct procedure call to that method. (To avoid repeatedly
checking alarge number of methods for applicability at every call sitein the program, our
compiler incorporates a compile-time method lookup cache that memaoizes the function
mapping receiver class set to set of target methods. In practice, the size of this cache is
reasonable: for a 52,000-line program, this cache contained 7,686 entries, and a total of
54,211 queries of the cache were made during compilation.)

Theefficiency of thisapproach to compile-time method |ookup depends on the ability
to precompute the applies-to sets of each method and the implementation of the set
overlaps test for the different representations of sets. To precompute the applies-to sets,
wefirst construct apartial order over the set of methods, where one method M islessthan

another M, in the partial ordering iff M, overrides M,. For the running example, we
construct the following partial order:

A:m A:p
N\ }
B:m C:m F:p
!
E:m

Then for each method defined on class C, we initidize its applies-to set to Cone(C).
Finally, we traverse the partial order top-down. For each method M, we visit each of the
immediately overriding methods and subtract off their (initial) applies-to sets from M’'s
applies-to set. In general, the resulting applies-to set for amethod C::M is represented as
Difference(Cone(C), Union(Cone(D4), ..., Cong(D,))), where D4, ..., D,, are the classes
containing the directly-overriding methods. If a method has many directly-overriding
methods, the representation of the method’s applies-to set can become quite large. To
avoid this problem, the subtracting can be ignored at any point, it is safe though
conservative for applies-to sets to be larger than necessary.

The efficiency of overlaps testing depends on the representation of the two sets being
compared. Overlaps testing for two arbitrary Union sets of size N is O(N?),% but overlaps
testing among Cone and Class representations takes only constant time (assuming that
testing whether one class can inherit from another takes only constant time[AK et al . 89,
Agrawal et al. 91, Caseau 93]): for example, Cone(C1) overlaps Class(C2) iff C1 =C2
or C2 inherits from C1. Overlaps testing of arbitrary Difference setsis complex and can
be expensive. Since appliesto sets in general are Differences, overlaps testing of a
receiver class set against acollection of applies-to Difference sets could be expensive. To
represent irregular applies-to sets more efficiently, we convert Difference sets into a
flattened BitSet representation. Overlaps testing of two BitSet class sets requires O(N)
time, where N isthe number of classesin the program. In practice, this check isfast: even
for alarge program with 1,000 classes, if bit sets use 32 bit positions per machine word,
only 31 machine word comparisons are required to check whether two bit sets overlap. In
our implementation, we precompute the BitSet representation of Cone(C) for each class
C, and we use these bit sets when computing differences of Cones, overlaps of Cones, and
membership of aclassin aCone.

When compiling a method and performing intraprocedural static class analysis, the
static class information for the method' s receiver isinitialized to Cone(C), where C isthe
class containing the method. It might appear that the applies-to set computed for the
method would be more precise initial information. Normally, this would be the case.
However, if an overriding method contains asuper send (or the equival ent) to invoke the
overridden method, the overridden method can be called with objects other than thosein
the method's applies-to set; the applies-to set only applies for norma dynamically-
dispatched message sends. If it is known that none of the overriding methods contain
super sends that would invoke the method, then applies-to would be a more precise and
legal initial class set.

1. Since the set of classes is fixed, Union sets whose elements are singleton classes
could be stored in a sorted order, reducing the overlaps computation to O(N).

2.2.3 Support for Dynamically-Typed Languages

In a dynamically-typed language, there is the possibility that for some receiver classes a
message send will result in arun-time message-not-understood error. When attempting to
optimize a dynamic dispatch, we need to ensure that we will not replace such a message
send with a statically bound call even if there is only one applicable source method. To
handle this, we introduce a special “error” method defined on the root class, if thereisno
default method already defined. Once error methods are introduced, no special efforts
need be made to handle the possibility of run-time method lookup errors. For example, if
only one (source) method is applicable, but a method lookup error is possible, our
framework will consider this case as if two methods (one real and one error) were
applicable and hence block static binding to the one real method. Similarly, if a message
is ambiguously defined for some class, more than one method will include the classin its
applies-to set, again preventing static binding to either method.

Knowledge of the class hierarchy and the location of defined methods can improve
theresults of receiver class prediction, acommon technique used when the available static
classinformation is not precise enough to lead to static binding of a message send. If the
compiler can predict the expected class(es) of the message’ s receiver, either based on the
name of the message and a hard-wired table in the compiler (asin Smalltalk-80 and the
Self-91 system) or on dynamic profile data (as in the Self-93 system and Cecil), then it
can insert run-time class tests for the expected classes. The compiler generates a full
message send to handle any unexpected classes that occur at run-time:

Before Class Prediction: After Class Prediction:

a .= s.area(); if (s.class == Rectangle) {

// statically bind to rectangle’s area; inline if sma
a := s.Rectangle::area();

} elseif (s.class == Gircle) {
// statically bind to circle’s area; inline if small
a:=s.Crcle::area();

} else {
// a full message send to handle unexpected cas
a .= s.area();

}

In dynamically-typed languages, if the compiler can prove statically that the classes being
tested exhaust the set of classes for which the message is correctly defined, then the final
“unexpected” case can be replaced with a run-time message lookup error trap. (In
statically-typed languages, using class hierarchy information to convert static type
declarations into Cone class set representations accomplishes a similar purpose.) Such a
lookup error trap might take up less compiled code space than a full message send, but
more importantly in some languagesit is known not to return to the caller. Thus, the error
branch never merges back into the main stream of the program, and the compiler learns
that only the predicted class(es) are possible after the message. In the above example, if
analysis of the class hierarchy reveals that Rectangle and Circle are the only classes
implementing the area message, then the third case can be replaced with an error trap.
After the area message, the compiler will know that s is either a Rectangle or aCircle,
enabling it to better implement later messages sent to s. (In a statically-typed language,
class hierarchy analysis coupled with static type declarations would have shown s to refer
to either aRectangle or aCircle all along.) In the absence of class hierarchy information,
the compiler must assume that some other class could implement the area message (or,

in astatically-typed language, that some other class could be a subtype of the Shape static
type), and consequently include support for the third “ unexpected” case. When compiling
our 52,000-line benchmark program, elimination of unexpected cases using class
hierarchy analysis occurred 3,232 times; 3,004 of these occurrences optimized basic
messages such asif and not, which might not be necessary in aless pure language lacking
user-defined control structures.

2.2.4 Support for Multi-Methods

The above strategy for static class analysisin the presence of class hierarchy analysisand/
or static type declarations works for singly-dispatched languages with one message
receiver, but it does not support languages with multi-methods, such as CLOS, Dylan, and
Cecil. To support multi-methods, we associate methods not with sets of classes but sets of
k-tuples of classes, where k is the number of dispatched arguments of the method.X To
represent many common sets of tuples of classes concisely, we use k-tuples of class sets.
ak-tuple <Sq, ..., S >, where the S; are class sets, represents the set of tuples of classes
that is the cartesian product of the S; class sets. To represent other irregular sets of tuples
of classes, we support a union of class set tuples as a basic representation.

Static class analysis is modified to support multi-methods as follows. For each
method, we precompute the method’ s applies-to tuple of class sets; this tuple describes
the combinations of classes for which the method should be invoked. For a multi-method
specialized on the classes Cq, ..., Cy, the method's applies-to tuple is initialized to
<Cone(C,), ..., Cone(Cy)>. When visiting the directly-overriding methods, the overriding
method’s applies-to tuple is subtracted from the overridden method's tuple. When
determining which methods apply to a given message, the k-tupleisformed from the class
setsinferred for the k dispatched message arguments, and then the applies-to tuples of the
candidate methods are checked to see if they overlap the tuple representing the actual
arguments to the message.

Efficient multi-method static class analysis relies on efficient overlaps testing and
difference operations on tuples. Testing whether one tuple overlaps another is
straightforward: each element class set of one tuple must overlap the corresponding class
set of the other tuple. Computing the difference of two tuples of class sets efficiently is
trickier. The pointwise difference of the element class sets, though concise, would not be
a correct implementation. One straightforward and correct representation would be a
union of k k-tuples, where each tuple has one element class set difference taken:

<Sl1 ey Sk> - <T1, ey Tk> = Dizl..k <Sl, ey Si-l’ Si - Ti’ Si+1’ ey Sk>

If the S; — T; element set is empty, then the i-th k-tuple is dropped from the union: its
cartesian-product expansion is the empty set. Also, if two tuplesin the union areidentical
except for one position, they can be merged into a single tuple by taking the union of the
element class sets. Both optimizations are important in practice.

1. We assume that the compiler can determine statically which subset of a message’s
arguments can be examined as part of method lookup. In CLOS, for instance, all meth-
odsin ageneric function have the same set of dispatched arguments. In Cecil, the com-
piler examines all methods with the same name and number of arguments and finds all
argument positions that any of the methods i s specialized upon. It would be possible to
consider al arguments as potentially dispatched, but thiswould be substantially less ef -
ficient, both at compile-time and at run-time, particularly if the majority of methodsare
specialized on asingle argument.

For example, consider the following class hierarchy and multi-methods (x @X is the
syntax we use for indicating that the x formal argument of a multi-method is specialized
for the class X):

class A

mr@, sa@, t@) { ...}
mMr@, sa, ta) { ... }

classB: A classC: A

Under both CLOS' s and Cecil’ s method overriding rules, the partial order constructed for
these methods is the following:

mMa\, @\ @)

ma, a@, @)
The applies-to tuples constructed for these methods, using the formula above, are:
mMa\, @ @): <ACG . {ABC} {ABC>0<{ABC} {AB} {ABC}>
ma, @ @): <8, ,{C {ABC>

(The third tuple of the first method' s applies-to union drops out, since one of the tuple's
elementsisthe empty class set.)

Unfortunately, for a series of difference operations, as occurs when computing the
applies-to tuple of a method by subtracting off each of the applies-to tuples of the
overriding methods, this representation tends to grow in size exponentially with the
number of differencestaken. For example, if athird method is added to the existing class
hierarchy, which overrides the first method:

mr@, s@, t@) { ... }
then the applies-to tuple of the first method becomes the following:
mMa\, @\ @): <A {ABC} {ABC}>U<{ACH{AC {ABC>D
<{AC},{AB,C}, {AB}>0<{AB},{AB}, {ABC}>0O
<{AB,C}, {A},{AB,C}>0<{AB,C},{AB}, {AB}>

To curb this exponentia growth problem, we have developed (with help from William
Pugh) a more efficient way to represent the difference of two overlapping tuples of class
sets:

<Sl, veny Sk> —<T1, . T|(> = Di=1..k <Sl n Tl’ ey Si-l n Ti-l’ Si - Ti, Si+11 ey Sk>

By taking the intersection of the first i-1 elements of the ith tuple in the union, we avoid
duplication among the element tuples of the union. As a result, the element sets of the
tuples are smaller and tend to drop out more often for a series of tuple difference
operations. For the three multi-method exampl e, the applies-to tuple of the first method is
simplified to the following:

mMa\, @ @): <{A},{AB/C} {AB,C}>0<{C} {AC} {AB,C}>0O
<{C},{B},{AB}>0<{B}, {A,B}, {AB,C}>

Asafinal guard against exponential growth, weimpose alimit on the number of class
set termsin the resulting tuple representation, beyond which we stop narrowing (through
subtraction) amethod’ s applies-to set. Werarely resort to thisfinal ad hoc measure: when
compiling a 52,000-line Cecil program, only one applies-to tuple, for a message with 5
dispatched argument positions, crossed our implementation’s threshold of 64 terms. The
intersection-based representation is crucial for conserving space: without it, using the
simpler representation described first, many applies-to sets would have exceeded the 64-
term threshold.

2.3 Incremental Programming Changes

Class hierarchy analysis might seem to be in conflict with incremental compilation: the
compiler generates code containing embedded assumptions about the structure of the
program’s class inheritance hierarchy and method definitions, and these assumptions
might change whenever the class hierarchy is altered or amethod is added or removed. A
simple approach to overcoming this obstacle isto perform class hierarchy analysisand its
dependent optimizations only after program devel opment ceases. A final batch optimizing
compilation could be applied to frequently-executed software just prior to shipping it to
users, as afina performance boost.

Class hierarchy analysis can be applied even during active program development,
however, if the compiler maintains enough intermodule dependency information to be
ableto selectively recompile those parts of aprogram invalidated after some changeto the
class hierarchy or the set of methods. In previous work, we have devel oped a framework
for maintaining intermodule dependency information [Chambers et al. 95]. This
framework is effective at representing the compilation dependencies introduced by class
hierarchy analysis.

In the dependency framework, intermodule dependencies are represented by a
directed, acyclic graph structure. Nodes in this graph represent information, including
pieces of the program’s source and information resulting from various interprocedural
analyses such as class hierarchy analysis, and an edge from one node to another indicates
that the information represented by the target node is derived from or depends on the
information represented by the source node. Depending on the number of incoming and
outgoing edges, we classify nodes into three categories:

source nodes internal nodes target nodes

< B

» Source nodes have only outgoing dependency edges. They represent information
present in the source modules comprising the program, such as the source code of
procedures and the class inheritance hierarchy.

» Target nodes have only incoming dependency edges. They represent information
that is an end product of compilation, such as compiled . o files.

 Internal nodes have both incoming and outgoing edges. They represent information
that is derived from some earlier information and used in the derivation of some
later information.

The dependency graph is constructed incrementally during compilation. Whenever a
portion of the compilation process uses a piece of information that could change, the
compiler adds an edge to the dependency graph from the node representing the

information used to the node representing the client of the information. When changes are
made to the source program, the compiler computes what source dependency nodes have
been affected and propagates invalidations downstream from these nodes. This
invalidates all information (including compiled code modules) that depended on the
changed source information.

In our compiler, static class analysis queries a compile-time method lookup cache to
attempt to determine the outcome of message lookups statically; this cache is indexed
with amessage name and atupl e of argument class sets and returns the set of methodsthat
might be called by such a message. To compute an entry in the method |ookup cache, the
compiler tests the applies-to tuples of methods with a matching name, in turn examining
the BitSet representation of the set of classes represented by a Cone class set, which was
computed from the underlying classinheritance graph. To support selective recompilation
of optimized code, dependency graph nodes are introduced to model information derived
from the source code:

Cone(C) BitSet
Applies-To Tuples

» one kind of dependency node represents the BitSet representation of the set of
subclasses of aclass (one product of class hierarchy analysis),

» another kind of dependency node represents the set of methods with a particular
name (another product of class hierarchy analysis),

» athird kind of dependency node represents the applies-to tuples of the methods,
which is derived from the previous two pieces of information, and

» afourth kind of dependency node guards each entry in the compile-time method
lookup cache.

If the set of subclasses of agiven classis changed or if the set of methods with aparticular
name and argument count is changed, the corresponding source dependency nodes are
invalidated. This causes all downstream dependency nodes to be invalidated recursively,
eventually leading to the appropriate compiled code being invalidated and subsequently
recompiled.

To support greater selectivity and avoid unnecessarily invalidating any compiled
code, some of the internal nodes in the dependency framework are filtering nodes. When
invalidated, a filtering node will first check whether the information it represents really
has changed; only if the information it represents has changed will a filtering node
invalidate its successor dependency nodes. The compile-time method lookup cache
entries are guarded by such filtering nodes. If part of the inheritance graph is changed or
anew method is added, then downstream method lookup results may have changed, but
often the source changes do not affect all potentially dependent method lookup cache
entries. By rechecking the method lookup when invalidated, and squashing the
invalidation if the method |ookup outcome was unaffected by a particular source change,
many unnecessary recompilations are avoided.

Empirical evaluation using atrace of amonth’ sworth of actual program devel opment
indi cates that the dependency-graph-based approach reduces the amount of recompilation
required during incremental compiles by a factor of seven over a coarser-grained C++-
style header file scheme, in the presence of class hierarchy analysis, and by afactor of two

Lookup Cache Entry Compiled Code

over the Self compiler’s previous state-of-the-art fine-grained dependency mechanism
[Chambers & Ungar 91]. Of course, more recompilation occurs in the presence of class
hierarchy analysis than would occur without it, but for these traces the number of files
recompiled after a programming change is often no more than the number of files directly
modified by the changes. A more important concern with our current implementation is
that many filtering nodes may need to be checked after some programming changes, and
even if few compiled files areinvalidated, afair amount of compilation timeis expended
in checking caches. The size of the dependency graph is about half as large as the
executable for the program being compiled, which is acceptable in our program
development environment; coarser-grained dependency graphs could be devised that save
space at the cost of reduced selectivity. Further details are avail able el sewhere [Chambers
et al. 95].

2.4 Optimization of Incomplete Programs

Class hierarchy analysis is most effective in situations where the compiler has access to
the source code of the entire program, since the whole inheritance hierarchy can be
examined and the locations of all method definitions can be determined; having accessto
all source code also provides the compiler with the option of inlining any routine once a
message send to the routine has been statically-bound. Although today’s integrated
programming environments make it increasingly likely that the whole program is
available for analysis, there are till situations where having source code for the entire
program is unrealizable. In particular, alibrary may be developed separately from client
applications, and the library developer may not wish to share source code for the library
with clients. For example, many commercial C++ classlibraries provide only header files
and compiled . o files and do not provide complete source code for the library.

Fortunately, having full source code access is hot a requirement for class hierarchy
analysis: aslong as the compiler has knowledge of the class hierarchy and where methods
are defined in the hierarchy (but not their implementations), class hierarchy analysis can
still be applied, and this information usually is available in the header files provided for
the library. When compiling the client application, the compiler can perform class
hierarchy analysis of the whole application, including thelibrary, and statically bind calls
within the client application. If source code for some methodsin thelibrary isunavailable,
then statically-bound calls to those methods simply won't be able to be inlined. Static
binding alone still provides significant performance improvements, particularly on
modern RISC processors, where dynamically-dispatched message send implementations
stall the hardware pipeline. Furthermore, some optimizing linkers are able to optimize
static calls by inlining the target routine’s machine code at link time [Fernandez 95],
although the resulting code is not as optimized as what could be done in the compiler.

Using class hierarchy analysis when compiling alibrary inisolation is more difficult,
since the client program might create subclasses of library classes that override methods
defined inthelibrary. The sealing approach of Dylan and Trellis can provide the compiler
with information about what library classes won't be subclassed by client applications,
supporting class hierarchy-based optimizations for those classes at the cost of reduced
extensibility. Alternatively, the compiler could choose to compile specialized versions of
methods applicable only to classes present in the library. For example, in a data structure
library, the compiler could compile specialized versions of methodsfor array, string, hash
table, and other frequently-used classes; generic versions of methods would aso be
compiled to support any subclasses of these library classes defined by client applications.
In previous work, we have developed a profile-guided algorithm that examines the
potential targets of sendsin aroutine and derives a set of profitable specializations based

on where in the class hierarchy these target routines are defined [Dean et al. 95]. This
specialization algorithm detects call sites where class hierarchy analysisisinsufficient to
statically-bind message sends, and produces versions of methods specialized to truncated
cones of the class hierarchy. Empirical measurements indicate that this algorithm applied
to acomplete 52,000-1ine Cecil program improves performance by 50% or more with only
a 5% to 10% compiled code space increase, although we would expect a larger relative
space overhead if the algorithm were applied to alibrary inisolation.

In summary, athough class hierarchy analysis is most effective when the whole
program is available, it can still be applied in situations where only portions of the
program are available. Using the techniques described above, it can be applied to
incomplete programs and to libraries independent of client applications, at some cost in
missed optimization opportunities and/or increased compiled code space.

3 Empirical Assessment

Class hierarchy analysis, method specialization, and profile-guided receiver class
prediction are all techniques for increasing the amount of class information available to
the optimizer at compile time. All three represent different, and partially overlapping,
approaches to solving the same fundamental problem: enabling the static binding of
dynamic dispatches. In this section, we examine the effectiveness of these three
approachesin isolation and in combination, focusing on the following questions:

* What isthe impact of class hierarchy analysis on program performance?

» How effective is class hierarchy analysis in comparison to speciaization? Can
additional benefit be gained from combining class hierarchy anaysis and
specialization?

» How much benefit does class hierarchy analysis confer to a system that aready
performs profile-guided receiver class prediction?

Weexaminetheseissuesin the context of the VV ortex optimizing compiler for Cecil, apure
object-oriented language with multi-methods. Table 1 describes the five medium-to-large
Cecil programs that we used as benchmarks. Appendix A includes the raw performance
data.

Table 1: Cecil Benchmarks

Program Lines? Description
Richards (Rich) 400 | Operating systems simulation
Deltablue (Delta) 650 | Incremental constraint solver
InstrSched (Instr) 2,400 | MIPS global instruction scheduler
Typechecker (Type) 17,000° | Cecil static typechecker
Compiler (Comp) 43,800° | Vortex optimizing compiler

a. Not including 8,500-line standard library.
b. The typechecker and compiler share approximately 12,000 lines of code.

Dynamic Dispatches Execution Speed
2.7 1.9 2.0 2.1 2.0

o oz 20r

8

= °

2 10t 8 15}t

g o

@2 n

& ooy E

(—g g 05}

5 z

Zz 004 0.0

Rich Delta Instr Type Comp Rich Delta Instr Type Comp

Unopt
Std
CHA-ct-only
CHA

Figure 1: Number of dynamic dispatches and execution speed

3.1 Effectivenessof Class Hierarchy Analysis

Sinceclasshierarchy analysis providesthe compiler with additional information about the
classes of program variables (in particular the receiver(s) of the message being compiled),
we would expect that the compiler would be able to statically bind more dynamic
dispatches. Additionally, as discussed in Section 2.2.3, in some situations the compiler
can determine when unexpected cases of a message send are guaranteed to fail, thus
improving the quality of static analysis downstream of the send.

To measure the impact of class hierarchy analysis, we compiled the benchmark
programs using the following set of compiler optimizations:

« unopt: No optimizations.

e std: Standard static intraprocedural analyses, including iterative intraprocedural
class analysis, inlining, hard-wired class prediction for a small set of common
messages, closure optimizations, extended splitting [Chambers & Ungar 90] and
other standard intraprocedural optimizations such as CSE, constant folding and
propagation, and dead code elimination.

e cha-ct-only: Standard (std) augmented by a limited usage of class hierarchy
analysis. The results of class hierarchy analysis are used only to optimize the
uncommon cases after run-time class tests, as described in Section 2.2.3.

» cha: Standard augmented by class hierarchy analysis. Class hierarchy analysisis
used to provide classinformation about the receiver(s) of amethod and to determine
when messages sends are guaranteed to fail.

Figure 1 shows the dynamic number of dynamic dispatches and the execution speeds of
the benchmark programs, normalized to those of std. Augmenting standard
intraprocedural techniques with class hierarchy analysis resulted in a 23% to 89%
improvement in execution speed for these applications. Since the performance difference
between std and cha-ct-only was negligible, we can conclude that ailmost all of the runtime
benefits seen in cha are due to additional receiver class information and not from
optimizing the unexpected branches of classtestsinserted by hard-wired class prediction,
therefore we expect the improvements due to class hierarchy analysis to be significant
even in object-oriented languages lacking used-defined control structures.

Code Space

10
© Unopt
S std
& CHA-ct-only
(0] CHA
8
O 05¢
°
9]
N
©
E
S
=z

0.0 =

Rich Delta Instr Type Comp

Figure 2: Compiled Code Space

In addition to improving execution speed, class hierarchy analysis reduces compiled
code size, as shown in figure 2. Executables compiled with class hierarchy analysis were
12% to 21% smaller than std executables. By comparing the relative heights of the bars
we can see that most of this reduction in code space was due to the replacement of call
sites which are guaranteed to result in a message-not-understood error by asimple call to
an error routine. Such call sites mainly occurred in the off branches of class testsinserted
by hard-wired class prediction and thus, one would expect that class hierarchy analysis
would have a smaller impact on compiled code space in languages without user-defined
control structures.

3.2 ClassHierarchy Analysisand Specialization

Method specialization creates multiple copies of a single source method, each one of
which is compiled with more precise static class information about the method receiver(s)
thus enabling static binding and inlining of messages sent to self. Class hierarchy analysis
makes a similar contribution. In some sense, specialization and class hierarchy analysis
are competing approaches to gaining the same sort of information. Animportant question,
then, is “what are the relative benefits and costs of the two techniques?’ Since a
specialized method has exact class information about the receiver(s) of the method, we
would expect that specialization would yield better results than class hierarchy analysis,
but specialization accruesits benefits at the cost of increased compiled code space. Inthis
section, we examine the impact of class hierarchy analysis and method specialization,
both inisolation and in combination, using the following set of compiler optimizations:

o std: Standard static intraprocedural analyses, as described in Section 3.1.
» cha: Standard augmented by class hierarchy anaysis.

e cust-k: Standard augmented by the customization form of method specialization.
Customization is the specialization strategy used in Self, Trellis, and Sather
implementations where a specialized version of a method is generated for each
inheriting subclass. We extended customization to handle multi-methods by
specializing on all combinations of subclasses of the dispatched arguments.t

1. We used profile data to determine which of the specializations produced by cust-k
actually needed to be generated, sinceit wasinfeasible to actually compile them all. In
effect, this simulates Self-style dynamic compilation.

Dynamic Dispatches Execution Speed

3.2 3.1
20} 7
A
15} U \I
o N[. ’ . ’
° VAN T ¢
1.0 \f \f \f
¢ il
o il o
WAL ML AL
Rich Delta Instr Type Comp
it:A-l V) custk
N Cust1 || cust+cHA
CHA | | selective

Figure 3: Number of dynamic dispatches and execution speed

e cust-1: Standard augmented by customization on only the first receiver.
Customization on only the first receiver is more feasible in practice than
customizing on all combinations of receivers in the case of multi-methods.

» cha-1: Standard augmented by class hierarchy analysis for only the first receiver, to
compare againgust-1.

» cust+cha: Standard augmented with batlst-k and class hierarchy analysis.

» odectiver Standard augmented with class hierarchy analysis and a selective
specialization algorithm that combines a profile-derived weighted call graph and
class hierarchy analysis to select candidates for specialization Dedn95].

Figure 3 shows the normalized number of dynamic dispatches and execution speeds for
the benchmark programs compiled with these seven configurations. As expected, in most
cases customization had a larger impact than class hierarchy analysis, speeding up
programs by 48% to 87%. Combining class hierarchy analysis and naive customization
(cust+cha) yielded only small additional benefits. However, the runtime benefits of
customization came at the cost of a large increase in compiled code space and compile
time. Cust-1 executables were 2.5 to 3.5 times larger tsidnexecutables andust-k
executables are too large to actually be built using standard static compilation techniques;
even in a system with dynamic compilaticost-k would require compiling roughly 1.5

to 2 times as many methodsst In contrastcha executables were 12% to 21% smaller
thanstd. By far, the best results were achievedstgctive, which increased execution
speed by 52% to 210% while increasing compiled code space by only 4% to 10%.

3.3 Class Hierarchy Analysis and Pofile-Guided Receiver Class
Prediction

Profile-guided receiver class prediction has been shown to substantially improve the
performance of applications written in pure object-oriented languages. It is unclear
whether or not adding class hierarchy analysis to a system that already performs profile-
guided receiver class prediction would result in any significant improvements [Holzle
94]. To examine this question, we utilized the following compiler configurations:

» dtd: Standard intraprocedural optimizations as described in Section 3.1.

« cha: Standard augmented by class hierarchy analysis

Dynamic Dispatches Execution Speed

9.9
10
] i)
3 IS
@ 05} @
0.0 V= 0.0 -
Rich Delta Instr Type Comp Rich Delta Instr Type Comp
Std
CHA
Profile
Profile+CHA

Figure 4: Number of dynamic dispatches and execution speed

» profile: Standard augmented with profile-guided receiver class prediction.

» profiletcha: Standard augmented with profile-guided receiver class prediction and
class hierarchy analysis.

Figure 4 showsthe normalized number of dynamic dispatches and execution speeds of the
applications. These numbers show that profile-guided receiver class prediction isthe most
effective of the three techniques in isolation, improving application execution speeds by
90% to 410% over std. However, augmenting profile-guided receiver class prediction
with class hierarchy anaysis (profiletcha) yielded surprisingly large additional
improvements of 45% to 125% over profile alone. Part of this improvement can be
explained by areduction in the number of call sites at which the compiler, due to alack
of sufficient static class information, is forced to fall back on profile information and
insert explicit classtests. However, the improvements can not solely be explained by this
effect, since combining the two optimizationsyields larger benefits than can be explained
even by assuming that their benefitsin isolation are completely additive. For example, in
the Compiler benchmark, cha is 41% faster than std and profile is 142% faster than std.
Multiplying these two speedups resultsin a projected speedup of 241% over std, whichis
smaller than the observed speedup of 272%. By examining the number of dynamic
dispatches, we can see that it is not the case that profile+cha is able to eliminate more
dispatches than the sum of profile and cha (in the Compiler benchmark, cha eliminated
45% of the dynamic dispatches present in std and profile eliminated 58%, but profile+cha
only eliminated 88%). We believe that the large speedups observed in profile+ cha are due
to the increased effectiveness of other compiler optimizations, such as CSE and register
allocation, that was enabled by the simplified control flow graphs produced by this
configuration.

In our implementation of profile-guided receiver class prediction, we only insert class
tests if the target method is a desirable candidate for inlining; if the target method is not
going to be inlined, then we leave the call site unchanged. In the Richards benchmark,
several of the frequently-called methods are too large to be inlined, but can be statically-
bound by class hierarchy analysis. This explains why profile eliminated fewer dynamic
dispatches than cha for the Richards benchmark.

4 Other Related Work

An alternative to performing whole-program optimizations such as class hierarchy
analysis at compile-time is to perform optimizations at link-time. Recent work by
Fernandez has investigated using link-time optimization of Modula-3 programs to convert
dynamic dispatches to statically bound calls when no overriding methods were defined
[Fernandez 95]. This optimization is similar to class hierarchy analysis. An advantage of
performing optimizations at link-time is that, because the optimizations operate on
machine code, they can be applied to the whole program, including libraries for which
source code is unavailable. However, there are two drawbacks of link-time optimizations.
First, because the conversion of message sends to statically-bound calls happens in the
linker, rather than the compiler, the compiler’s optimization tools cannot be brought to
bear on the now statically-bound call site; the indirect benefits of post-inlining
optimizations in the compiler can be more important than the direct benefit of eliminating
procedure call/return sequences. Second, care must be taken to prevent linking from
becoming a bottleneck in the edit-compile-debug cycle. For example, Fernandez’s link-
time optimizer for Modula-3 performs code generation from a machine-independent
intermediate representation for the entire program at every link; Fernandez acknowledges
that this design penalizes turnaround time for small programming changes. Additional
link-time optimizations would only increase this penalty. In contrast, class hierarchy
analysis coupled with a selective invalidation mechanism supports incremental
recompilation, fast linking, and compile-time optimization of call sites where source code
of target methods is available.

Srivastava has developed an algorithm to prune unreachable procedures from C++
programs at link-time [Srivastava 92]. Although the described algorithm is only used to
prune code and not to optimize dynamic dispatches, it would be relatively simple to
convert some virtual function calls into direct procedure calls using the basic
infrastructure used to perform the procedure pruning.

Interprocedural class analysis algorithms are an important area of current research
[Palsberg & Schwartzbach 91, Oxtasjal . 92, Agesert al. 93, Plevyak & Chien 94].
By examining the whole program and solving an interprocedural data flow problem to
determine the set of classes that might be stored in each program variable, these
algorithms can provide more accurate class sets than intraprocedural static class analysis
or class hierarchy analysis. However, current interprocedural class analysis algorithms are
relatively expensive to run, assume access to the source code of the entire program
(including method bodies), and are not incremental in the face of programming changes.
Nevertheless, as these algorithms mature, it will be interesting to compare the run-time
benefits and compile-time costs of interprocedural class analysis against class hierarchy
analysis and the other techniques examined in Section 3. Agesen and Hdlzle have
compared the effectiveness of profile-guided receiver class prediction alone to
interprocedural class analysis alone for a suite of small-to-medium sized Self programs,
but they did not report on the effectiveness of combining the two techniques [Agesen &
Holzle 95].

5 Conclusions

Class hierarchy analysis is a promising technique for eliminating dynamically-dispatched
message sends automatically. Unlike language-level mechanisms such as non-virtual
functions in C++ and sealed classes in Dylan, class hierarchy analysis improves
performance while preserving the source-level semantics of message passing and the
ability for clients to subclass any class. To integrate class hierarchy analysis effectively

into existing static class analysis frameworks, we introduced the cone representation for
a class and its subclasses and constructed applies-to sets for each method to support
compile-time method lookup in the presence of cones and other unions of classes. Cones
also provide ameansfor static type declarations to be integrated into static class analysis.
Class hierarchy analysis imposes some requirements on the underlying programming
environment, particularly to support incremental compilation, but these costs appear to be
manageable in practice. These techniques have been implemented in the Vortex compiler
for Cecil since the Spring of 1994. In this compiler class hierarchy analysis is always
performed as a matter of course, and intermodule dependency links support selective
recompilation. The Vortex compiler is itself a 52,000-line Cecil program, undergoing
rapid continuous development and extension, providing some evidence that class
hierarchy analysisis compatible with a program devel opment environment.

Classhierarchy analysisisonly one of anumber of optimizations proposed for object-
oriented languages; othersinclude method specialization and profile-guided receiver class
prediction. We implemented and measured these techniques separately and in
combination, on a collection of medium-to-large Cecil programs, to try to determine
which techniques are most effective and where the techniques could profitably be
combined. Of the techniques that we examined, profile-guided class prediction was the
most effective in isolation at improving program performance. However, performing
class hierarchy analysisin addition to profile-guided class prediction provided substantial
performance improvements over profile-guided class prediction aone. Class hierarchy
analysis consumed far less compiled code space than customization, but with smaller
performance gains; the best results are achieved by a profile-guided selective
specialization algorithm integrated with class hierarchy analysis.

There are two interesting future directions for this work. First, it would be very
interesting to extend this performance study to include interprocedural static class
analysis algorithms as they mature. Second, the effectiveness of these techniquesin pure
object-oriented languages like Cecil has been demonstrated, but their effectiveness and
relative value when applied to hybrid, statically-typed object-oriented languages such as
C++ and Modula-3 remains an open question. We are in the process of porting compiler
front-ends for C++ and Modula-3 to the Vortex optimizing compiler back-end in order to
be able to perform such experiments.

Acknowledgments

We thank William Pugh for his help in devising a more efficient tuple difference
implementation. Charles Garrett performed many of the initia studies of profile-guided
receiver class prediction. Vitay Shmatikov, Ben Teitelbaum, Tina Wong, and Matthew
Parker have contributed to the Cecil implementation.

This research is supported in part by an NSF Research Initiation Award (contract number
CCR-9210990), an NSF Y oung Investigator Award (contract number CCR-9457767), agrant
from the Office of Naval Research (contract number N00014-94-1-1136), and gifts from Sun
Microsystems, IBM, and Pure Software. Stephen North and Eleftherios Koutsofiosof AT& T
Bell Laboratories provided us with dot , a program for automatic graph layout.

Other papers on the Cecil programming language and the Vortex optimizing compiler are
available via anonymous ft p from cs.washington.edu:/pub/chambers and via the
World Wide Web URL http://www.cs.washington.edu/research/projects/cecil.

References

[Agesen & Holzle 95Ple Agesen and Urs Holzle. Type Feedback vs. Concrete Type
Analysis: A Comparison of Optimization Techniques for Object-Oriented
Languages. Technical Report TRCS 95-04, Department of Computer Science,
University of California, Santa Barbara, March 1995.

[Agesenet al. 93]Ole Agesen, Jens Palsberg, and Micha8thwartzback. Type
Inference of SELF: Analysis of Objects with Dynamic and Multiple Inheritance.
In Proceedings ECOOP ' 93, July 1993.

[Agrawalet al. 91] Rakesh Agrawal, Lind&. DeMichiel, and Bruc&. Lindsay.
Static Type Checking of Multi-Methods. Rroceedings OOPSLA'91, pages
113-128, November 1991. Published as ACM SIGPLAN Notices, volume 26,
number 11.

[AK et al. 89]Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr.
Efficient Implementation of Lattice Operatio®CM Transactions on
Programming Languages and Systems, 11(1):115-146, January 1989.

[Bobrowet al. 88]D. G. Bobrow, L.G. DeMichiel, R.P. Gabriel, SE. Keene,
G. Kiczales, and DA. Moon. Common Lisp Object System Specification X3J13.
SIGPLAN Notices, 28(Special Issue), September 1988.

[Calder & Grunwald 94Brad Calder and Dirk Grunwald. Reducing Indirect Function
Call Overhead in C++ Programs.Qonference Record of POPL '94: 21st ACM
SIGPLAN-S GACT Symposiumon Principles of Programming Languages, pages
397-408, Portland, Oregon, January 1994.

[Caseau 93Yves Caseau. Efficient Handling of Multiple Inheritance Hierarchies. In
Proceedings OOPSLA' 93, pages 271287, October 1993. Published as ACM
SIGPLAN Notices, volume 28, number 10.

[Chambers & Ungar 89Craig Chambers and David Ungar. Customization: Optimizing
Compiler Technology for Self, A Dynamically-Typed Object-Oriented
Programming Languag& GPLAN Notices, 24(7):146-160, July 1989. In
Proceedings of the ACM SSGPLAN ' 89 Conference on Programming Language
Design and Implementation.

[Chambers & Ungar 90Fraig Chambers and David Ungar. Iterative Type Analysis and
Extended Message Splitting: Optimizing Dynamically-Typed Object-Oriented
ProgramsS GPLAN Notices, 25(6):150-164, June 1990.Pnoceedings of the
ACM S GPLAN "90 Conference on Programming Language Design and
I mplementation.

[Chambers & Ungar 91Craig Chambers and David Ungar. Making Pure Object-
Oriented Languages Practical.RPnoceedings OOPSLA '91, pages 1-15,
November 1991. Published as ACM SIGPLAN Notices, volume 26, number 11.

[Chambers 92Craig Chambers. Object-Oriented Multi-Methods in Cecil. In
O. Lehrmann Madsen, editdProceedings ECOOP '92, LNCS 615, pages 33—
56, Utrecht, The Netherlands, July 1992. Springer-Verlag.

[Chambers 93Craig Chambers. The Cecil Language: Specification and Rationale.
Technical Report TR-93-03-05, Department of Computer Science and
Engineering. University of Washington, March 1993.

[Chamberset al. 89]Craig Chambers, David Ungar, and Elgin Lee. An Efficient
Implementation of SELF — a Dynamically-Typed Object-Oriented Language
Based on Prototypes. Rroceedings OOPSLA ' 89, pages 49-70, October 1989.
Published as ACM SIGPLAN Notices, volume 24, number 10.

[Chamberset al. 95]Craig Chambers, Jeffrey Dean, and David Grove. A Framework
for Selective Recompilation in the Presence of Complex Intermodule
Dependencies. Ih7th International Conference on Software Engineering,

Seattle, WA, April 1995.

[Deanet al. 95] Jeffrey Dean, Craig Chambers, and David Grove. Selective
Specialization for Object-Oriented Languad@§&PLAN Notices, June 1995. In
Proceedings of the ACM SIGPLAN ’' 95 Conference on Programming Language
Design and Implementation.

[Deutsch & Schiffman 84l.. Peter Deutsch and Allavi. Schiffman. Efficient
Implementation of the Smalltalk-80 SystemJonference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Languages,
pages 297-302, Salt Lake City, Utah, January 1984.

[Dyl92] Dylan, an Object-Oriented Dynamic Language, April 1992. Apple Computer.

[Fernandez 95Mary Fernandez. Simple and Effective Link-time Optimization of
Modula-3 ProgramsS GPLAN Notices, June 1995. liProceedings of the ACM
SIGPLAN ’ 95 Conference on Programming Language Design and
| mplementation.

[Gabrielet al. 91]RichardP. Gabriel, Joh. White, and DanieG. Bobrow. CLOS:
Integrating Object-Oriented and Functional Programniiioggnmuni cations of
the ACM, 34(9):28-38, September 1991.

[Garrettet al. 94] Charlie Garrett, Jeffrey Dean, David Grove, and Craig Chambers.
Measurement and Application of Dynamic Receiver Class Distributions.
Technical Report UW-CS 94-03-05, University of Washington, March 1994.

[Harbison 92]SamuelP. HarbisonModula-3. Prentice Hall, Englewood Cliffs, NJ,
1992.

[Holzle & Ungar 94]Urs Holzle and David Ungar. Optimizing Dynamically-
Dispatched Calls with Run-Time Type Feedb&IGPLAN Notices, 29(6):326—
336, June 1994. IRroceedings of the ACM SIGPLAN ' 94 Conference on
Programming Language Design and I mplementation.

[Holzle 94]Urs Holzle Adaptive Optimization for Self: Reconciling High Performance
with Exploratory Programming. PhD thesis, Stanford University, August 1994.

[Johnson 92Ralph Johnson. Documenting Frameworks Using PatterRsoteedings
OOPSLA 92, pages 63-76, October 1992. Published as ACM SIGPLAN
Notices, volume 27, number 10.

[Kilian 88] MichaelF. Kilian. Why Trellis/lOwl Runs Fast. Unpublished manuscript,
March 1988.

[Lea 90]Doug Lea. Customization in C++. Rroceedings of the 1990 Usenix C++
Conference, San Francisco, CA, April 1990.

[Lim & Stolcke 91]Chu-Cheow Lim and Andreas Stolcke. Sather Language Design
and Performance Evaluation. Technical Report TR 91-034, International
Computer Science Institute, May 1991.

[Linton et al. 89] M. A. Linton, J.M. Vlissides, and PR. Calder. Composing User
Interfaces with InterViewd EEE Computer, 2(2):8-22, February 1989.

[Nelson 91]Greg NelsonSystems Programming with Modula-3. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[Omohundro 94tephen Omohundro. The Sather 1.0 Specification. Unpublished
manuscript from International Computer Science Institute, Berkeley, CA, 1994.

[Oxhgjet al. 92]Nicholas Oxhgj, Jens Palsberg, and Michagchwartzbach.

Making Type Inference Practical. In Oehrmann Madsen, editdProceedings
ECOOP '92, LNCS 615, pages 329-349, Utrecht, The Netherlands, July 1992.
Springer-Verlag.

[Palsberg & Schwartzbach 91éns Palsberg and MichdeSchwartzbach. Object-
Oriented Type Inference. Proceedings OOPSLA '91, pages 146-161,
November 1991. Published as ACM SIGPLAN Notices, volume 26, number 11.

[Palsberg & Schwartzbach 94éns Palsberg and MichdeSchwartzbachObject-
Oriented Type Systems. John Wiley & Sons, 1994,

[Plevyak & Chien 947 ohn Plevyak and Andref. Chien. Precise Concrete Type
Inference for Object-Oriented LanguagesPhoceedings OOPSLA 94, pages
324-340, Portland, Oregon, October 1994.

[Schaffertet al. 85]Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis
Object-Based Environment, Language Reference Manual. Technical Report
DEC-TR-372, Digital Equipment Corporation, November 1985.

[Schaffertet al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Killian, and
Carrie Wilpolt. An Introduction to Trellis/Owl. IRroceedings OOPSLA’ 86,
pages 9-16, November 1986. Published as ACM SIGPLAN Notices, volume 21,
number 11.

[Srivastava 92Amitabh Srivastava. Unreachable Procedures in Object-Oriented
ProgrammingACM Letters on Programming Languages and Systems, 1(4):355—
364, December 1992.

[Stroustrup 91Bjarne Stroustruplthe C++ Programming Language (second edition).
Addision-Wesley, Reading, MA, 1991.

[Szyperskyet al. 93] Clemens Szypersky, Stephen Omohundro, and Stephan
Murerzw. Engineering a Programming Language: The Type and Class System of
Sather. Technical Report 93-064, International Computer Science Institute,
Berkeley, CA, 1993.

Appendix A Raw Data

Table 2: Execution Times (seconds)

Configuration Richards Deltablue InstSched | Typechecker Compiler

unopt 13.410 31.830 25.080 294 2314
std 1.780 11.880 11.870 113 1176
cha-ct-only 1.830 11.490 11.960 110 1152
cha 0.940 8.940 9.670 81 834
cust-1 0.950 7.620 8.710 73 735
cha-1 1.060 9.160 10.030 83 852
custk 0.950 8.050 8.870 73 712
custk+cha 0.910 6.220 8.160 71 700
selective 0.560 3.810 6.850 68 650
profile 0.930 2.310 5.830 48 484
profile+cha 0.380 1.200 4.000 40 316

Table 3: Dynamically Dispatched M essage Sends (x1000)

Configuration Richards Deltablue InstSched | Typechecker Compiler

unopt 10,006 13,461 7,505 75,053 470,488
std 3,697 6,980 4,676 36,131 231,659
cha-ct-only 3,697 6,980 4,664 36,028 231,529
cha 1,583 4,668 3,004 18,566 128,400
cust-1 1,414 3,874 2,655 19,301 129,729
cha-1 1,583 4,668 3,192 20,632 143,578
custk 1,414 3,874 2,637 19,341 129,701
custk+cha 1,414 3,624 2,516 19,156 125,095
selective 1,278 3,021 1,969 15,478 101,929
profile 619 159 1,890 15,426 98,435
profile+cha 545 157 474 3,902 28,640

Efficient Implementation of the Smalitalk-80 System

I.. Peter Deutsch
Xerox PARC, Software Concepts Group

Allan M. Schiffman
Fairchild Laboratory for Artificial Intclligence Rescarch

ABSTRACT

‘The Smalltalk-80° programming language includes dynamic
storage allocation, full upward funargs, and universally
polymorphic procedures; the Smalltalk-80 programiming system
features interactive exccution with incremental compilation, and
implementation portability. These features of modern
programming systems arc among the most difficult to implement
cfficicntly, cven individually. A new implementation of the
Smalltalk-80 system, hosted on a small microprocessor-based
computer, achieves high performance while retaining’ complete
{object code) compatibility with cxisting implementations. ‘This
paper discusses the most significant optimization techniques
developed over the course of the project, many of which are
applicable to other languages. ~ 'The key idea is Lo represent
certain runtime state (both code and data) in more than one
form, and o convert between forms when nceded.

*Smalkalk-80 is a trademark of the Xerox Corporation.
BACKGROUND

The Smalltalk-80 system is an object-oriented programming
language and interactive programming environment. ‘The
Smalltalk-80 language includes many of the most difficuit-to-
implement features of modern programming languages: dynamic
storage allocation, full upward funargs, and call-time binding of
procedure names o actual procedures based on dynamic type
information, somctimes called message-passing. ‘The interactive
environment includes a full complement of programming tools:
compiler, debugger, cditor, window system, and so on, all written
in the Smalltalk-80 language itsclf. A detailed overview of the
systern appears in [SCG 81]. |Goldberg 83] is a technical
reference for both the non-interactive programmer and the
system implementor; [Goldberg 84] is a reference manual for the
interactive system. .

SPECIAL DIFFICULTIES

‘The standard Smalltalk-80 system implementation is based
on an idcal virtual machine or v-machine. ‘The compiler
generates code for this machine, and the implementor’s
documentation describes the system as an interpreter for the v-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0297 $00.75

297

machine instruction set, similar to the Pascal P-system [Ammann
75] [Ammann 77]. One unusual feature of the Smalltalk-80 v-
machine is that it makes runtime state such as procedure
activations visible to the programmer as data objects. This is
similar to the “spaghcetti stack™ model of Interlisp [XSIS 83], but
morc straightforward: Interlisp uses a programmer-visible
indirection mechanism to reference procedure activations,
whercas the Smalltalk-80 programmer treats procedure
activations just like any other data objects.

The Smalltalk-80 language approaches programming with
generic data types through message-passing and dynamic typing.
To invoke a procedure (method in Smalltalk-80 terminology), a
message is sent to a data object (the receiver), which selects the
method to be exccuted. ‘This means that ¢ method address must
be found at runtime. At a given lexical point in the code, only
the message name (selector) is known. To perform a message
send, the data type (class) of the receiver is extracted, and the
selector is uscd as a hash index into a table of the message
dictionary of the class, which maps sclectors to methods. The
task of method-lookup is complicated by the inheritance property
of classes -- a class may bc defined as a subclass to another,
inheriting all of the mcthods of the superclass. If the initial
method-lookup fails, the lookup algorithm trics again using the
message dictionary of the superclass of the recciver's class,
continuing in this way up the class hicrarchy until a mcthod
corresponding to the sclector is found or the top of the
inheritance hicrarchy is reached.

The Smalltalk-80 language uses the organization of objects
into classes to provide strong information hiding. Only the
methods associated with a given class (and its subclasscs) can
access dircctly the state of an instance of that class. All access
from “outside”™ must be through messages. Because of this, a
Smalltalk-80 program must often make procedure calls to access
state where languages such as Pascal could compile a direct
access to a ficld of a record. This makes the performance of the
mcthod-lookup algorithm cven more critical.

IMPLEMENTATION OUTLINE

The purpose of the rescarch described here was to build a
Smailtatk-80 system with acceptable performance on a relatively
inexpensive, microprocessor-based computer; specifically, to
discover how to implement the basic data and code objects of
the Smatlltalk-80 system in a way that still conformed to the v-
machine specification, but were more suitable for conventional
hardwarc. (As of carly 1982, the only implementations that ran
at acceptable speed were on - non-commercial, user-
microprogrammable machincs, as described in [Krasner 83)
[lampson 81)) Thc system specification in [Goldberg 83)
includes the definition of internal data structures and object code
representation for the virtual machine. Indced, much of the
system code depends on these definitions. We chose to take
these dcfinitions as given, rather than alter the system code.

This was motivated partly by a dcsire to retain object-code
portability, and party by a desire not to complicate the
description of tHe Smalltalk-80 machine model. '

‘The single principle that undcilics all the results reported
herc is dynamic change of reprcsentation. By this we mcan that
the same information is represented in more than one
(structurally different) way during iis lifctime, being converted
transparcntly between representations as necded for cfficient use
at any moment. An important spccial case of this idca is
caching: one can think of information in a cache as a different
representation of the same information (considering contents and
accessing information together) in the backup micmory. In the
implementation described in this papcer, we applied this principle
to several different kinds of runtime information in the
Smalltalk-80 system.

* We dynamically translatc v-code (i.c., codc in the
instruction set of the v-machinc) into code that cxecutes
directly on the hardware without interpretation, the
native code or n-code. ‘Franslated code is cached: it is
regencrated rather than paged.

* We represent procedure activation records (contexts in
Smalitalk-80 parlance) in cithcr a machine-oriented form,
when they are being used to hold exccution state, or in
the form of Smalltalk-80 data objects, when they are
being treated as such.

* We usc scveral different caches to speed up the
polymorphic search required at each procedure
invocation. 1In the best case, which applics over 90% of
the time, a Smalltalk-80 procedure invocation requires
only one comparison operation in addition to a
conventional procedure linkage.

* Using the techniques in [Dcutsch&Bobrow 76), we
represent reference count information for automatic
storage management in a way that climinates
approximately 85% of the refercnce counting operations
required by a standard implementation.

CODE TRANSLATION

Targeting code to a portable v-machine has been used in
other language implcmentations. Usually v-code targeting is
used only to avoid having multiple (one per target machine)
code-gencration phases of the compiler; a sccondary benefit is
that v-code is usually much more compact than code for any real
machine. Since the Smalltalk-80 compiler is just onc tool
available in the same interactive cnvironment used for cxecution,
and other tools besides the compiler must be able to examine the
machine state, the v-machine approach is even more attractive in
reducing the cost of rehosting.

PERFORMANCE ISSUES

To rehost the system, an implementor must cmulate the v-
machine on the target hardware, cither in microcode or in
softwarc. This normally incurs a severe performance penalty
arising from scveral factors,

* Proccssors have specialized hardware for fetching,
decoding, and dispatching their own native instruction
set. This hardware is typically not available to the
programmer (although it may be available at the
microprogram level), and thercfore not useful to the v-
machine interpreter in its time-consuming operation of
instruction fetching, decoding, and dispatching.

* The v-machine architecture may bc substantially
different from that of the undcrlying hardware. For
example. many v-machincs, including both the P-system

298

and Smalltalk-80 v-machines, use a stack-oricnted
architecture for convenience in code gencration, but
most available hardwarc machines cxceute register-
oricnted code much more cfficiently than stack-oricnied
code.

* The basic operations of the v-machinc may be
relatively expensive to implement, even though the
overall algorithm represented by a v-code program may
not bc much more cxpensive than if it were
implemented in the hardware instruction set. For
cxample, cven though a naive interpreter for the
Smatltalk-80 v-code must perform reference counting
operations cvery time it pushes a variable value onto the
stack, a sequence of several instructions often has no net
effect on reference counts.

If the v-code were translated to n-code after normal
compilation of a source program to v-code, the interpreter’s
overhead could be climinated and some optimizations become
possible. One technique for eliminating part of the overhead of
interpretation is threaded code [Bell 73] [Moore 74]. In this
approach, v-code consists of an actual sequence of subroutine
calls on runtime routines. This technique docs reduce the
overhcad for fetching and dispatching v-code instructions,
although it docs not help with operand decoding, or cnable
optimizations that span more than onc v-instruction. We prefer
to translate v-code to in-linc n-code in a more sophisticated way.

Naive translation from v-code to n-codc is a process
somcthing like macro-cxpansion. In fact, [Mitchell 71] observed
that a translator can be derived very simply from an interpreter
by having the interpreter save its action-routine code in a buffer
rather than cxccuting it. If the computation performed by
individual action routincs is small relative to the computation
needed for the interpreter loop, the benefit of even this simple
kind of translation will be great.

‘I'ranslation-time can also be considered an opportunity for
peephole optimization or cven mapping stack references to
registers [Pittman 80). Translation back-ends for portable
compilers have been implemented [Zcllweger 79).

DYNAMIC 'l'RANSLATION_

Because the Smalltalk-80 v-code is a compact representation
that captures the basic scmantics of the language, n-code will
typically take up much more space than v-code. (In the
implementation discussed in this paper, n-code takes about S
times as much space as v-code) This would place severe stress
on a virtual memory system if the n-code were being paged.
However, since n-code is derived algorithmically from v-code,
therc is no need to keep it permanently: it can be recomputed
when needed, if this is more efficient than swapping it in from
sccondary storage. ‘This leads us to the idca of translating at
runtime. (The idea of dynamic translation appears in [Rau 78],
where it is applicd to translation from v-code to microcode.)
When a procedure is about to be cxecuted, it must cxist in n-
code form. If it does not, the call faults and the translator takes
control. ‘'The translator finds the corresponding v-code routine,
translates it, and completes the call. Since, as mentioned carlier,
the translation process i$ more akin to macro-cxpansion than
compilation, translation time for a v-code byte is comparable to
the time taken to interpret it

We consider the translation approach, and dynamic
translation in particular, to be the most interesting part of our
rescarch, since it muotivated the work on multiple state
representations described below. A later section of this paper
presents the cxperimental results that support our contention that
dynamic translation is an cffective technique in a substantial
region of current technological paramecters,

MAPPING STATE AT RUNTIME

Since the definition of the Smalltalk-80 v-machine makes
runtime state such as procedure activations visible to the
programmer as data objects, an implementation bascd on n-code
must find a way to make the state appear to the programmer as
though it were the state of a v-machine, regardless of the actual
representation. The system must maintain a mapping of n-
machine state to v-machine statc; in particular, it must keep the
v-code available for inspection.

How can we guarantee that all attempts to access a quantity
requiring representation mapping are detected? The structure of
the Smalitalk-80 language guarantces that the only code that can
access an object of a given class dircetly is the code that
implements messages sent to that class. ‘Thus, the only code that
can directly access the parts of an object requiring mapping is
code associated with that object’s class. Recall that all the code
in the Smalltalk-80 system is written in the Smaltalk-80
language, hence compiled into v-code. When we translatc a
procedure from v-code to n-code that is associated with a class
whosc representation may require mapping, we generate special
n-code that calls a subroutine to ensurc that the object is
represented in a form where accesses to its named parts are
mcaningful.

‘The most obvious quantity requiring mapping is the return
address (PC) in an activation record, which refers to a location in
the n-code procedure rather than in the v-code. Although there
is no simple algorithmic correspondence between the v-PC and
the n-PC values, the v-PC nced only be available when a
program attempts to inspect an activation as a data object. At
that moment, the system can consult (or compute) a table
associated with the procedurc that gives the correspondence
between n- and v-PC values.

We can greatly reduce the size of the mapping tables for PC
values by obscrving that the PC can only be accessed when an
activation is suspended, ic., at a procedure call or
interrupt/process-switch. If we are willing to accept somewhat
greater fatency in a Smalltalk-80 program's response to
interrupts, we can choosc a restricted but sufficient set of
allowable interrupt points, and only store the mapping tables for
thosc points. This is what our implementation does: interrupts

arc only allowed at, and PC map cntries are only stored for, all

procedure calls and backward branches (the latter since interrupts
must be allowed inside loops).

MULFIPLE REPRESENTATIONS OF CONTEXTS

As mentioned carlier, the format of procedure activation
records are part of the Smalltalk-80 v-machine specification.
Contexts are full-fledged data objects; they have identifiable
ficlds which can be accessed and they respond to messages. A
context is created for cvery message-send. ‘There is also syntax
in the language for creating contexts whosc activation is deferred,
called block comtexts in Smalltalk-80 terminology, which
correspond to the functionals, closures, or funargs of other
languages. Most control structurcs in the Smalltalk-80 system are
implemented with block contexts.

‘The fact that contexts are standard data objects implies that
they must be created like data objects, i.c., allocated on a heap
and reclaimed by garbage collection or reference counting.
Unfortunately, conventional machines are adapted for calling
sequences that create a new activation record as a stack frame,
storing suspended state in predefined slots in the frame,
Actually implementing contexts as hcap objects results in a
serious performance penalty.

Mcasurements show that cven in Smalltalk-80 programs,
more than 85% of all contexts behave like procedure activations
in conventional languages: they arc crcated by a call, never

299

referenced as a data object, and can be freed as soon as control
returns from them. (Notc that any context in which a block
context is created does not satisfy this criterion.) Such contexts
arc candidates for stack-frame representation. (An unpublished
cxperimental implementation of an carlier Smalltalk system used
lincar stacks. but did not dcal properly with contexts that
outlived their callers.)

Stack allocation of contexts solves onc of the two major
efficicncy problems associated with treating contexts like other
objects, namcly the overhcad of allocating the contexts
themselves. {Deutsch&Bobrow 76] shows how to solve the other
problem, of reference counting operations apparcntly being
required on cvery store into a local variable. With these two
problems solved, we can usc the hardwarc subroutine call,
return, and store instructions dircetly.

Our system has scveral types of context representations. A
message-send creates a new context in a representation optimized
for exccution; a frame is allocated on the machine’s stack (with
some spare slots) by the usual machine instructions. In the
simple casc, where no reference is ever made to the context as a
data object, the machine’s return instruction simply pops the
frame off the stack when control returns from the context. ‘This
kind of context, which lives its life as a stack frame, we call
volatile.

At the other extreme, we store contexts in a format
compliant with the virtual machine specification, which can be
manipulatcd as data items. We call this representation stable.

‘The third representation of a context, called hybrid, is a stack
frame that incorporates header information to make it look partly
like an ordinary data object. A volatile context is converted to
hybrid when a pointer is generated to it. Since this makes it
possible for programs to refer to the context as an object, we fill
in slots in the frame corresponding to the header ficlds in an
ordinary object. This pscudo-object is tagged as being of a class
we name "DummyContext.” A block of memory is allocated,
and its address is stored in the context in case the context must
be stabilized in the future. Since there may be pointers to this
context, it cannot be rcturned from in a normal way, so the
return address is copied to another slot in the frame and
replaced with the address of a clean-up routine that stabilizes the
context on return.

When a message is seat to a hybrid context, the send fails
(there arc no procedures defined for the DummyContext class),
and a routine is called to convert the hybrid context to the
stabilized form. At this point PC mapping comcs into play; the
n-PC in the activation is converted to a v-PC for the stabilized
representation. Pointers to the hybrid context are switched to
refer to the stable context (this is simple in our system, which
uses an indircction table for all objects). After the context has
been stabilized, the failed message is re-sent to the stable form.

A stable context is not suitable for exccution. Before a
stabilized context can be resumed, it is reconstituted on the stack
as hybrid. Again, this mcans that the n-PC must be
reconstructed from the v-PC. Usually the v-PC docs not change
during the stable period, so our system includes a onc-clement
cache in cach n-code procedure for the most recent v-PC/n-PC
pair, to avoid having to run the mapping algorithm.

Block contexts are “born™ in stable form, sincc the whole
purpose of closurcs is to provide a representation for an
cxccution context which can be invoked later.

IN-LINF, CACHING OF METHOD ADDRESSES

Message-passing is applied down to the simplest opcrations
in Smalltalk. ‘Ihe system provides a varicty of predefined
classes: the most basic operations ons clementary data types (such
as addition of intcgers) arc performed by primitives implemented

by the kernel of the system, rather than by Smalltalk routines,
but there is no distinction drawn at the language level. Since
message-sends are so ubiquitous, they must be fast; the opcration
of mecthod-lookup is both cxpensive and critical.

Al cxisting Smalltalk-80 implementations accelerate method-
lookup by using a method cache, a hash table of popular method
addresses indexed by the pair (recciver class, message selector).
"This simple technique typically improves system performance by
20-30%. More cxtensive measurcinents of this improvement
appcar in [Krasner 83].

Further performance improvements are suggested by the
abscrvation of dynamic locality of type usage. ‘I'hat is, at a given
point in code, the receiver is often the same class as the receiver
at the same point when the code was last executed. If we cache
the looked-up mcthod address at the point of send, subsequent
execution of the send code has the method address at hand, and
method-lookup can be avoided if the class of the recciver is the
same as it was at the previous exccution of this particular send.
Of course, the class of the receiver may have changed, and must
be checked against the class corresponding to the cached method
address.

In the implementation described here, the translator
gencrates n-code for sends unlinked -- as a call to the method-
lookup routine, with the sclector as an in-linc argument. The
mcthod-lookup routine links the call by finding the recciver
class, storing it in-line at the call point, and doing the method-
lookup (like other implementations, it uses a sclector/class
mcthod cache). When the n-code method address is found, it is
placed in-linc with a call instruction, overwriting the former call
to the lookup routine. The call is then re-exccuted. (Of course,
there may be no corresponding #-code mcthod, in which case the
translator is called first.) Note that this is a kind of dynamic
code modification, which is generally condemned in modern
practice. The n-method address can just as well be placed out-
of-linc and accessed indirectly; code maodification is more
cfficient, and we arc using it in a wcll-confined way.

The entry code of an n-code mcthod checks the stored
receiver class from the point of call against the actual receiver
class. [f they do not mawh, relinking must occur, just as if the
call had not yct been finked.

Since linked sends have n-code method addresses bound in-
linc, this address must be invalidated if the called n-code mcthod
is being discarded from memory. The idea of scanning all n-
code routines to invalidated linked addresses was initially so
daunting that we almost rejected the scheme. However, since n-
code only exists in main memory, invalidation cannot produce
time-consuming page faults. Furthermore, since the PC mapping
tables described carlier contain precisely the addresses of calls in
the n-code, no scarching of the n-code is required: it is only
nccessary to go through the mapping tables and overwrite the
call instructions to which the entrics point. (A scheme similar to
this may be found in {Moon 73})

For a fcw special sclectors like +. the translator gencrates
in-line code for the common case along with the standard send
code. For cxample, 4- gencrates a class check to verify that both
arguments arc small intcgers, native code for integer addition,
and an overflow check on the result. If any of the checks fail,
the send code is exccuted. ‘This is a space-time tradeoft justified
by measurcments that indicate that the overwhelining majority of
arithmetic operations involve only small integers, cven though
they arc (in principle) polymorphic likc all other operations in
the language.

EXPERIMENTAL RESULTS

Three aspects of our results deserve experimental validation:
the use of stable and volatile context represcntations, the use of

300

the one-clement in-linc cache and linked sends for accelerating
method-lookup, and the technique of v-code to n-code
transtation (specifically, dynamic translation).

CONTEXT REPRESENTATIONS

The dramatic drop in reference counting overhead obtained
by treating contexts specially has been documented clsewhere
(c.g., [Krasncr 83], scction 19). We also obtain a striking
cfficiency improvement by allocating contexts on a stack, and by
keeping their contents in cxccution-orienated form. Offsctting
these advantages, in our implementation there is an added
overhcad of converting contexts between volatileZhybrid and
stable forms, and of cnsuring that a context accessed as a data
object (cither by sending it a message or dircctly while running a
incthod implemented in a context class) is in stable form.

To cvaluate the performance advantage of lincar context
allocation and volatile rcpresentation, we compared our code for
allocating and deallocating contexts against code based on a
hypothetical design that used the standard object represcntation
for contexts, but did not reference-count their contents. This
code appears to take about 8 times as long to cxccute, which
would make it consume 12% of total exccution time compared to
1.5% for our present code.

I.ess than 10% of all contexts cver exist in other than volatile
form. Block contexts, which are created in stable form, and their
cnclosing context, which must be made hybrid so the block
context can refer to it, account for two-thirds of thesc; ncarly all
of the remainder arise from an implementation detail regarding
linking together fixed-size stack scgments. In all of our
measured cxamples, the time required for the conversion
between the stable and volatile form was under 3% of total
exccution time.

If the receiver of a message is not a hybrid context, there is
no overhead for making the check because it happens as part of
the normal method-lookup (recall that hybrid contexts appear to
be objects of a special class DummyContext with no associated
methods). Only when method-lookup fails is a check made
whether the receiver was actually a DummyContext. In the
normal operation of the system, messages are only sent to
contexts by the debugger and for cleanup during destruction of a
process, so the overail impact is ncgligible.

As discussed above, methods associated with context classes
must be translated specially, so that cach reference to an instance
variable checks to make sure the receiver is in stable form. The
time required for this check is negligible.

IN-LINE CACHE AND LINKED SENDS

Independent measurcments by us and by a group at U.C.
Berkeley confirm that the onc-element in-line cache is cffective
about 95% of the time. Mecasurcments reported in [Krasner 83)
indicate that a more conventional global cache of a reasonable
size is cffective about 85-90% of the time. 1t may be that an in-
line cache tends to lower the cffectivencss of the global cache,
since nost of the lookups that would succeed in the global cache
are now handled by the in-line cache, but we have no dircct
cvidence on this point.

Adding an in-line cachc to the simple translator described
below improved overall performance by only 9% On a
benchmark consisting almost cntirely of message sends where the
in-linc cache is guarantced valid, the in-line cache only improved
performance by 11%. ‘The improvement obtained by adding an
in-linc cache to the optimizing translator was also about 10%.
Our original hand-analysis indicated that the overall
improvement should be closer to 20%, and we cannot yet account
for the discrepancy. ‘The code produced by the optimizing

translator for the activate-and-return benchmark is a remarkable
47% faster than the code from the simple translator with the in-
line cache, suggesting that opcrations other than the overhcad
climinated by the in-line cache still dominates overall cxecution
time.

DYNAMIC CODIE TRANSLATION

Our implementation of the Smalltatk-80 v-machine is
designed to be casily switchable between different execution
strategics. We have implemented a straightforward interpreter, a
simple translator with almost no optimization, and a more
sophisticated translator. Both translators cxist in two variants,
with and without the in-linc cache described above. Switching
between strategics simply requires relinking the implementation
with a different set of modulces; the price in exccution speed paid
for this flexibility is ncgligible.

Our first cxperiment in code translation was a simple
translator that does little pcephole optimization and always
generates exactly 4 n-bytes per v-byte. (The latter restriction
climinated the nced for the PC mapping tables described carlier.)

Our sccond cxperiment was a translator that does significant
pecphole optimization. The code it gencrates keeps the top
clement of the v-machine stack in a machine register whenever
possible, and implements all v-instructions in-line except sends
and a few rare instructions like load current context. Even
arithmetic and rclational opcrations are implemented in-line, with
a call on an out-of-linc routinc if the operands arc not small
integers. The resulting code is bulky but fast.

To cstimate the space required by translated methods, we
have obscrved that the average v-method consists of 55% pointers
(litcral constants, message sclectors, and references to global
variables) and 45% v-instructions. Since our simple translator
expands each v-code byte to 4 n-code bytes, the expansion factor
for the mcthod as a whole is .55 4-(.45*4)=2.35. 'The version of
the simple translator that uses an in-line cache simply triples the
size of the pointer area, leaving room for a cached class and n-
mcthod pointer regardless of whether the pointer is a selector or
somcthing clsc. This expands the total size of mecthods by a
factor of (3*.55)+(4*.45)=3.45. I'hc obscrved cxpansion factors
for the optimizing translators appcar in the table below.

We ran the standard sct of Smalltalk-80 benchmarks
described in [Krasner 83), scction 9, using cach of our five
cxccution strategics. The normalized results arc summarized in
the following table:

Strategy Space Time
Interpreter 1.00 1.000
Simple translator, 235 0.686
no in-line cache

Simple translator 345 0.625
with in-finc cache :

Optimizing translator, 5.0 0.564
no in-linc cache

Optimizing translator 5.03 0.515

with in-line cache

‘I'he space figurc for the optimizing translator without the in-
line cache could be reduced at the expense of further slowing the
code down.

With respect to paging behavior in a virtual memory
cnvironment, we would like to comparc the following threc
cxccution strategies:

301

* Purc interpretation: only v-code exists; it is brought
into main memory as nceded.

* Static translation: n-code is gencrated siinultaneously
with v-code. Only n-code is nceded at cxecution time.
N-code is brought into memory as nceded.

* Dynamic translation: n-code is kept in a cache in main
memory; v-code is brought into memory for translation
as nceded.

Note that space taken by n-code in main memory trades off
against space for data. When main memory space is needed
(cither for n-code or for data), we have the option of replacing
data pages or discarding n-code. Unfortunately, since the work
described here has been carricd out in a non-virtual memory
environment, we have no cxperimental results on this topic.

CONCLUSIONS AND RELATED WORK

Perhaps the most important observation from our rescarch is
that we have demonstrated that it is possible to implement an
interactive system bascd on a demanding high-level language,
with only a modest incrcase in mecinory requirements and
without the use of any of the special hardware (special-purpose
microcode, tagged memory architecture, garbage collection co-
processor) often advocated for such systems, and with resulting
performance that users judge excellent. We have achicved this
by carcful optimization of the obscrved common cases and by
the plentiful use of caches and other changes of representation.

A related research project [Patterson 83} is investigating a
Smalltalk-80 implemientation that uses only n-code, on a specially
designed VLSI processor called SOAR. As discussed above, this
implementation requires rewriting the compiler, dcbugger, and
other tools that manipulate compiled code and contexts. We
expect some interesting comparisons between the two approaches
somctime in 1984, when the SOAR implementation becomes
opcrational.

We believe the techniques described in this paper are
applicable in varying degrees to other late-bound languages such
as Lisp, and to portable V-code-based language implementations
such as the Pascal P-system, but we have no current plans to
investigate these other languages.

ACKNOWLEDGMENTS

Thanks arc duc to Mike Braca, who programmed the I/O
kernel of our implementation; Bob Hagmann, who programmed
the optimizing code translator and made many contributions to
the design of the system; and Mark Roberts, who implemented
the disk file system and virtual memory capabilitics. Bob
Hagmann, Dan Ingalls, and Paul McCullough contributed
helpful comments on this paper, The Smalitalk-80 system itself
is owed to PARC SCG. Butler lampson gave helpful
suggestions during the carly project design phase.

RFEFERENCES

[Ammann 75] Ammann, U., Nori, Jensen, K., Nageli, H., “The
Pascal (P) Compiler Implementation Notes.” Institut Fur
Informatik, Fidgenossische T'echnische Hochschule, Zurich, 1975,

[Ammann 77) Ammann, U., “On codc generation in a Pascal
compiler.” Software Practice and Experience v7 # 3, June/July
1977, pp. 391-423.

[Belt 73] Bell, J. R., “Threaded Code.” Communications of the
ACM, v16 (1973) pp. 370-372.

[Deutsch & Bobrow 76] Deutsch, L. P., Bobrow, D. G., “An
cfficicnt, incremental, real-time garbage collector.”
Communications of the ACM, October 1976,

[Goldberg 83] Goldberg, A., Robson, 2., “Smalltalk-80: The
I.anguage and its Implementation.” Addison-Wesley, Reading,
MA, 1983. - :

[Goldberg 84] Goldberg. A., *Smalltalk-80: The Interactive
Programming Environment.” Addison-Wesley, Reading, MA,
1984.

[Krasner 83] Krasner, Glenn, Ed., “Smalltalk-80: Bits of History,
Words of Advice.” Addison-Wesley, Reading, MA, 1983,

[I.ampson 81} Lampson, B. W., Ed., “The Dorado: A Iligh-
Performance Personal Computer.” Xcrox PARC Report CSL-81-1,
Pzlo Alto, CA, January 1981.

[Mitchell 71] Mitchell, J. G., “The Design and Construction of
Flexible and Ffficient Interactive Programming Systems.” Ph.1).
dissertation, 1971, NTIS A1 712-721, in Outstanding Disscrtations
in the Computer Scicnces, Garland Publishing, New York (1978).

[Moon 73] Moon D., Ed., Maclisp Manual pp. 3-75 to 3-77, MIT Al
Laboratory Technical Report (1973).

{Moore 74] Muore, C. H., “FORTH: a New Way to Program a
Computer.” Astronomy and Astrophysics Supplement, # 15 (1974)
pp 497-511.

[Patterson 83] Patterson, ., Ed., “Smatltalk on a RISC:
Architectural lnvestigations (Proceedings of CS 292R).” University
of California, Berkeley, April 1983.

[Perkins 79] Perkins, D. R., Sites, R. .., “Machinc independent
Pascal code optimization.” ACM SIGPL.AN Notices v14 #
(August 1979) pp. 201-207. :

[Pittman 80] Pittman, T.J., A Practical Optimizer: Zero-Address to
Multi-Address Code.” M.S. thesis, University of California, Santa
Cruz, June 1980.

[Rau 78} Rau, B. R., “Levels of Representation of Programs and the
Architecture of Universal Host Machines.” Proceedings of Micro-
11, Asilomar, CA, November 1978.

{Richards 75} Richards, M., *“The portability of the BCPL.
compiler.” Software, Practice and Experience v1 (1971) pp. 135-
146.

{SCG 81] Software Concepts Group, spccial issuc on Smalltalk.
BYTE Magazine, volume 6, number 8, August 1981,

[XSIS 83] Masinter, L.. M., Ed., “Interlisp Reference Manual.”
Xcrox Special Information Systems, Pasadena, CA, 1983,

[Zcltweger 79) Zellweger, P. T., “Machinc-Independent
Optimization in SOPAIPILLA.” The S-1 Project 1979 Annual
Rceport (Chapter 8), Lawrence Livermore Laboratory (1979).

302

Fast Static Analysis of C++ Virtual Function Calls

David F. Bacon and Peter F. Sweeney

IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY, 10598
Email: {dfb,pfs}@watson.ibm.com

Abstract

Virtual functions make code easier for programmers to reuse
but also make it harder for compilers to analyze. We investi-
gate the ability of three static analysis algorithms to improve
C++ programs by resolving virtual function calls, thereby
reducing compiled code size and reducing program complex-
ity so as to improve both human and automated program
understanding and analysis. In measurements of seven pro-
grams of significant size (5000 to 20000 lines of code each)
we found that on average the most precise of the three algo-
rithms resolved 71% of the virtual function calls and reduced
compiled code size by 25%. This algorithm is very fast: it
analyzes 3300 source lines per second on an 80 MHz Pow-
erPC 601. Because of its accuracy and speed, this algorithm
is an excellent candidate for inclusion in production C++
compilers.

1 Introduction

A major advantage of object-oriented languages is ab-
straction. The most important language feature that
supports abstraction is the dynamic dispatch of meth-
ods based on the run-time type of an object. In dynam-
ically typed languages like Smalltalk and SELF, all dis-
patches are considered dynamic, and eliminating these
dynamic dispatches has been essential to obtaining high
performance [9, 14, 24].

C++ is a more conservatively designed language.
Programmers must explicitly request dynamic dispatch
by declaring a method to be virtual. C++ programs
therefore suffer less of an initial performance penalty,
at the cost of reduced flexibility and increased program-

Appears in the Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA'96), October 1996, San Jose, Cal-
ifornia. SIGPLAN Notices volume 31 number 10. Copy-
right (© 1996 Association for Computing Machinery.

mer effort. However, virtual function calls still present
a significant source of opportunities for program opti-
mization.

The most obvious opportunity, and the one on which
the most attention has been focused, is execution time
overhead. Even with programmers specifying virtual
functions explicitly, the execution time overhead of vir-
tual function calls in C++ has been measured to be as
high as 40% [16]. In addition, as programmers become
familiar with the advantages of truly object-oriented de-
sign, use of virtual functions increases. The costs as-
sociated with developing software are so high that the
performance penalty of virtual functions is often not suf-
ficient to deter their use. Therefore, unless compilers are
improved, the overhead due to virtual function calls is
likely to increase as programmers make more extensive
use of this feature.

Other researchers have shown that virtual function
call resolution can result in significant performance im-
provements in execution time performance for C++ pro-
grams [6, 3, 16]; in this paper we concentrate on compar-
ing algorithms for resolving virtual function calls, and
investigating the reasons for their success or failure.

Another opportunity associated with virtual func-
tions is code size reduction. For a program without
virtual function calls (or function pointers), a complete
call graph can be constructed and only the functions
that are used need to be linked into the final program.
With virtual functions, each virtual call site has mul-
tiple potential targets. Without further knowledge, all
of those targets and any functions they call transitively
must be included in the call graph.

As a result, object-code sizes for C++ programs have
become a major problem in some environments, par-
ticularly when a small program is statically linked to
a large object library. For instance, when a graphical
“hello world” program is statically linked to a GUI ob-
ject library, even though only a very small number of
classes are actually instantiated by the program, the
entire library can be dragged in.

Finally, virtual function calls present an analogous

problem for browsers and other program-understanding
tools: if every potential target of a virtual function call
is included in the call graph, the user is presented with
a vastly larger space of object types and functions that
must be comprehended to understand the meaning of
the program as a whole.

In this paper, we compare three fast static analysis
algorithms for resolving virtual function calls and eval-
uate their ability to solve the problems caused by virtual
function calls in C++. We also use dynamic measure-
ments to place an upper bound on the potential of static
analysis methods, and compare the analysis algorithms
against more sophisticated analyses like alias analysis.
Finally, we present measurements of the speed of the
analysis algorithms, which demonstrate that they are
fast enough to be included in commercial-quality com-
pilers.

1.1 Outline

Section 2 briefly describes and compares the mechanics
of the three static analysis algorithms that are evalu-
ated in this paper. Section 3 describes our benchmarks,
presents the results of our measurements, and explains
the reason behind the success or failure of the analy-
sis algorithms. Section 4 describes related work, and
Section 5 presents our conclusions.

2 Static Analysis

In this paper we will be comparing three static analy-
sis algorithms, called Unigque Name [6], Class Hierarchy
Analysis [11, 13], and Rapid Type Analysis [4]. We will
sometimes abbreviate them as UN, CHA, and RTA, re-
spectively.

In this section we give a brief overview of the three al-
gorithms, and use a small example program to illustrate
the differences between them. We then briefly compare
them in power to other static analyses, and discuss the
interaction of type safety and analysis.

2.1 Unique Name

The first published study of virtual function call reso-
lution for C++ was by Calder and Grunwald [6]. They
were attempting to optimize C++ programs at link
time, and therefore had to confine themselves to infor-
mation available in the object files. They observed that
in some cases there is only one implementation of a par-
ticular virtual function anywhere in the program. This

class A {
public:
virtual int foo() { return 1; };

};

class B: public A {
public:
virtual int foo() { return 2; };
virtual int foo(int i) { returm i+1; };

};

void main() {
Bx p = new B;
int resultl = p->foo(1);
int result2 = p->foo();
A* q = p;
int result3 = gq->foo();

Figure 1: Program illustrating the difference between
the static analysis methods.

can be detected by comparing the mangled names ! of
the C++ functions in the object files.

When a function has a unique name (really a unique
signature), the virtual call is replaced with a direct call.
While it can be used within a compiler in the same
manner as the other algorithms evaluated in this pa-
per, Unique Name has the advantage that it does not
require access to source code and can optimize virtual
calls in library code. However, when used at link-time,
Unique Name operates on object code, which inhibits
optimizations such as inlining.

Figure 1 shows a small program which illustrates the
power of the various static analyses. There are three
virtual calls in main (). Unique Name is able to resolve
the first call (that produces resultl) because there is
only one virtual function called foo that takes an in-
teger parameter — B: :foo(int). There are many foo
functions that take no parameters, so it can not resolve
the other calls.

2.2 Class Hierarchy Analysis

Class Hierarchy Analysis [11, 13] uses the combination
of the statically declared type of an object with the class
hierarchy of the program to determine the set of possible
targets of a virtual function call. In Figure 1, p is a

IThe mangled name of a function is the name used by the
linker. It includes an encoding of the class and argument types
to distinguish it from other identically named functions.

pointer whose static type is Bx. This means that p can
point to objects whose type is B or any of B’s derived
classes.

By combining this static information with the class
hierarchy, we can determine that there are no derived
classes of B, so that the only possible target of the second
call (that produces result2) is int B::foo().

Class Hierarchy Analysis is more powerful than
Unique Name for two reasons: it uses static informa-
tion (as in Figure 1), and it can ignore identically-named
functions in unrelated classes.

Class Hierarchy Analysis must have the complete pro-
gram available for analysis, because if another module
defines a class C derived from B that overrides foo(),
then the call can not be resolved.

In the process of performing Class Hierarchy Anal-
ysis, we build a call graph for the program. The call
graph includes functions reachable from main() as well
as those reachable from the constructors of global-scope
objects. Note that some other researchers use the term
“Class Hierarchy Analysis” to denote only the resolu-
tion of virtual calls, not the building of the call graph.

2.3 Rapid Type Analysis

Rapid Type Analysis [4] starts with a call graph gen-
erated by performing Class Hierarchy Analysis. It uses
information about instantiated classes to further reduce
the set of executable virtual functions, thereby reducing
the size of the call graph.

For instance, in Figure 1, the virtual call g->foo ()
(which produces result3) is not resolved by Class Hi-
erarchy Analysis because the static type of q is A%, so
the dynamic type of the object could be either A or B.
However, an examination of the entire program shows
that no objects of type A are created, so A: :foo() can
be eliminated as a possible target of the call. This leaves
only B: :foo ().

Note that RTA must not consider instantiation of sub-
objects as true object instantiations: when an object of
type B is created, A’s constructor is called to initial-
ize the A sub-object of B. However, the virtual function
table of the contained object still points to B’s foo()
method.

Rapid Type Analysis builds the set of possible instan-
tiated types optimistically: it initially assumes that no
functions except main are called and that no objects are
instantiated, and therefore no virtual call sites call any
of their target functions. It traverses the call graph cre-
ated by Class Hierarchy Analysis starting at main. Vir-
tual call sites are initially ignored. When a constructor
for an object is found to be callable, any of the virtual
methods of the corresponding class that were left out

are then traversed as well. The live portion of the call
graph and the set of instantiated classes grow iteratively
in an interdependent manner as the algorithm proceeds.

Rapid Type Analysis inherits the limitations and ben-
efits of Class Hierarchy Analysis: it must analyze the
complete program. Like CHA, RTA is flow-insensitive
and does not keep per-statement information, making
it very fast.

Rapid Type Analysis is designed to be most effec-
tive when used in conjunction with class libraries. For
instance, a drawing library defines numerous objects
derived from class shape, each with their own draw()
method. A program that uses the library and only ever
creates (and draws) squares will never invoke any of
the methods of objects like circle and polygon. This
will allow calls to draw() to be resolved to calls to
square: :draw(), and none of the other methods need
to be linked into the final program. This leads to both
reduced execution time and reduced code size.

Another approach to customizing code that uses class
libraries is to use class slicing [23].

2.4 Other Analyses

There are several other levels of static analysis that can
be performed. First, a simple local flow-sensitive anal-
ysis would be able to resolve this call:

A*x q = new B;
q = new A;
result = gq->foo();

because it will know that q points to an object of type A.
Rapid Type Analysis would not resolve the call because
both A and B objects are created in this program.

An even more powerful static analysis method is alias
analysis, which can resolve calls even when there is in-
tervening code which could potentially change an ob-
ject’s type. Alias analysis is discussed more fully in
Section 4.2, with related work.

2.5 Type Safety Issues

An important limitation of CHA and RTA is that they
rely on the type-safety of the programs. Continuing
to use the class hierarchy from Figure 1, consider the
following code fragment:

void* x = (void*) new B;
Bx q = (Bx) x;
int casel = gq->foo();

Despite the fact that the pointer is cast to void* and
then back to B*, the program is still type-safe because

we can see by inspection that the down-cast is actually
to the correct type. However, if the original type is A,
as in

void* x = (void*) new A;
Bx q = (B*) x;
int case2 = gq->foo();

then the program is not type-safe, and the compiler
would be justified in generating code that raises an ex-
ception at the point of the virtual function call to foo ().
However, because foo() is in fact defined for A, most
existing compilers will simply generate code that calls
A::foo(); this may or may not be what the program-
mer intended. If the call had instead been

int case3 = gq->fo00(666);

then the program will result in a undefined run-time
behavior (most likely a segmentation fault) because A’s
virtual function table (VFT) does not contain an entry
for foo(int).

The computation of casel is clearly legal, and the
computation of case3 is clearly illegal. In general it is
not possible to distinguish the three cases statically. Un-
fortunately, in case2, Class Hierarchy Analysis would
determine that the call was resolvable to B::foo(),
which is incorrect. Rapid Type Analysis would deter-
mine that there are no possible call targets, which is
correct according to the C++ language definition but
different from what is done by most compilers.

Therefore, Class Hierarchy Analysis and Rapid Type
Analysis either need to be disabled whenever a downcast
is encountered anywhere in the program, or they can be
allowed to proceed despite the downcast, with a warning
printed to alert the programmer that optimization could
change the results of the program if the downcasts are
truly unsafe (as in case2 or case3).

We favor the latter alternative because downcasting
is very common in C++ programs. This can be sup-
plemented by pragmas or compiler switches which allow
virtual function call resolution to be selectively disabled
at a call site or for an entire module. We will discuss
this issue further when we present the results for one
of our benchmarks, 1com, which contained some unsafe
code.

3 Experimental Results

In this section we evaluate the ability of the three fast
static analysis methods to solve the problems that were
outlined in the introduction: execution time perfor-
mance, code size, and perceived program complexity.

Where possible, we will use dynamic measurement in-
formation to place an upper limit on what could be
achieved by perfect static analysis.

3.1 Methodology

Our measurements were gathered by reading the C++
source code of our benchmarks into a prototype C++
compiler being developed at IBM. After type analysis is
complete, we build a call graph and analyze the code.
Since the prototype compiler is not yet generating code
reliably enough to run large benchmarks, we compile the
programs with the existing IBM C++ compiler on the
RS/6000, xIC. The benchmarks are traced, and their
executions are simulated from the instruction trace to
gather relevant execution-time statistics. We then use
line number and type information to match up the call
sites in the source and object code.

We used both optimized and unoptimized compiled
versions of the benchmarks. The unoptimized versions
were necessary to match the call sites in the source code
and the object code, because optimization includes in-
lining, which distorts the call graph. However, existing
compilers can not resolve virtual function calls, so op-
timization does not change the number of virtual calls,
although it may change their location, especially when
inlining is performed. Therefore, turning optimization
(and inlining) off does not affect our results for virtual
function resolution. Unoptimized code was only used
for matching virtual call sites. All measurements are
for optimized code unless otherwise noted.

Because our tool analyzes source code, virtual calls in
library code were not available for analysis. Only one
benchmark, simulate, contained virtual calls in the li-
brary code. They are not counted when we evaluate the
efficacy of static analysis, since had they been available
for analysis they might or might not have been resolved.

The information required by static analysis is not
large, and could be included in compiled object files
and libraries. This would allow virtual function calls in
library code to be resolved, although it would not confer
the additional benefits of inlining at the virtual call site.

3.2 Benchmarks

Table 1 describes the benchmarks we used in this
study. Of the nine programs, we consider seven
to be “real” programs (sched, ixx, lcom, hotwire,
simulate, idl and taldict) which can be used to
draw meaningful conclusions about how the analysis al-
gorithms will perform. idl and taldict are both pro-
grams made up of production code with demo drivers;

Benchmark | Lines | Description

sched 5,712 | RS/6000 Instruction Timing Simulator

ixx 11,157 | IDL specification to C++ stub-code translator
lcom 17,278 | Compiler for the “L” hardware description language
hotwire 5,335 | Scriptable graphical presentation builder

simulate 6,672 | Simula-like simulation class library and example

idl 30,288 | SunSoft IDL compiler with demo back end

taldict 11,854 | Taligent dictionary benchmark

deltablue 1,250 | Incremental dataflow constraint solver

richards 606 | Simple operating system simulator

Table 1: Benchmark Programs. Size is given in non-blank lines of code

the rest are all programs used to solve real prob-
lems. The remaining two benchmarks, richards and
deltablue, are included because they have been used
in other papers and serve as a basis for comparison and
validation.

Table 2 provides an overview of the static character-
istics of the programs in absolute terms. Library code
is not included. The number of functions, call sites, and
virtual call arcs gives a composite picture of the static
complexity of the program. Live call sites are those
which were executed in our traces. Non-dead virtual call
sites are those call sites, both resolved and unresolved,
that remained in the program after our most aggressive
analysis (RTA) removed some of the dead functions and
the virtual call sites they contained.

Table 3 provides an overview of the dynamic (execu-
tion time) program characteristics for optimized code.
Once again, all numbers are for user code only. The
number of instructions between virtual function calls
is an excellent (though crude) indication of how much
potential there is for speedup from virtual function res-
olution. Under IBM’s AIX operating system and C++
run-time environment a virtual function call takes 12 in-
structions, meaning that the user code of taldict could
be sped up by a factor of two if all virtual calls are re-
solved (as they in fact are).

The graphs in the paper all use percentages because
the absolute numbers vary so much. Tables 2 and 3
include the totals for all subsequent graphs, with the
relevant figure indicated in square brackets at the top
of the column.

Figure 2 is a bar graph showing the distribution of
types of live call sites contained in the user code of
the programs; Figure 3 shows the analogous figures for
the number of dynamic calls in user code. Direct (non-
virtual) method calls account for an average of 51% of
the static call sites in the seven large applications, but

only 39% of the dynamic calls. Virtual method calls
account for only 21% of the static call sites, but a much
more significant 36% of the total dynamic calls.

Indirect function calls are used sparely except by
deltablue, and pointer-to-member calls are only used
by ixx, and then so infrequently that they do not ap-
pear on the bar chart.

Since non-virtual and virtual method calls are about
evenly mixed, and direct (non-method) calls are less fre-
quent, we conclude that the programs are written in a
relatively object-oriented style. However, only some of
the classes are implemented in a highly reusable fash-
ion, because half of the method calls are non-virtual.
The exception is taldict, with 89% of the dynamic
function calls virtual: taldict uses the Taligent frame-
works, which are designed to be highly re-usable. As
use of C++ becomes more widespread and code reuse
becomes more common, we expect that programs will
become more like taldict, although probably not to
such an extreme.

Note that we assume that trivially resolvable virtual
function calls are implemented as direct calls, and count
them accordingly throughout our measurements. That
is, the call to foo() in

A a;
a.foo();

is considered a direct call even if foo () is a virtual func-
tion. This is consistent with the capabilities of current
production C++ compilers, but different from some re-
lated work.

Our results differ, in some cases significantly, from
those reported in two previous studies of C++ virtual
function call resolution [6, 3]. This would seem to indi-
cate that there is considerable variation among applica-
tions.

Program | Code Size | Functions Call | Live Call Virtual Non-Dead Virtual

(bytes) [6] [7] | Sites | Sites [2] | Call Sites | V-Call Sites [4] | Call Arcs [8]
sched 99,888 237 530 184 34 33 58
ixx 178,636 1,108 | 3,601 767 467 399 1,752
Icom 164,032 779 | 2,794 1,653 458 446 3,661
hotwire 15,416 230 | 1,204 550 48 6 83
simulate 28,900 242 580 141 36 23 41
idl 243,748 856 | 3,671 882 1,248 1,198 3,486
taldict 20,516 429 783 47 79 14 116
deltablue N.A. 103 372 201 3 3 11
richards 9,744 78 174 68 1 1 5

Table 2: Totals for static (compile-time) quantities measured in this paper. All quantities are measured for user code
only (libraries linked to the program are not included). Numbers in brackets are the numbers of subsequent figures
for which the column gives the total.

Program Instrs. Function Virtual Instrs. per

Executed Calls [3] Calls [5] | Virtual Call
sched 106,901,207 | 2,302,003 967,789 110
ixx 7,919,945 248,391 47,138 168
lcom 107,826,169 | 4,210,059 | 1,099,317 98
hotwire 4,842,856 189,160 33,504 145
simulate 1,230,305 57,537 10,848 113
idl 776,792 33,826 14,211 55
taldict 837,496,535 | 39,401,445 | 35,060,980 23
deltablue | 10,492,752 558,028 205,100 51
richards 86,916,173 | 2,407,782 657,900 132

Table 3: Totals for dynamic (run-time) quantities measured in this paper. All quantities are for user code only
(libraries linked to the program are not included). Numbers in brackets are the numbers of subsequent figures for
which the column gives the total.

Considerable additional work remains to be done for
benchmarking of C++ programs. While the SPEC
benchmark suite has boiled down “representative” C
code to a small number of programs, it may well be
that such an approach will not work with C++ because
it is a more diverse language with more diverse usage
patterns.

3.3 Resolution of Virtual Function Calls

When a virtual call site always calls the same function
during one or more runs of the program, we say that it
is monomorphic. If it calls multiple functions, it is poly-
morphic. If the optimizer can prove that a monomor-
phic call will always call the same function, then it can
be resolved statically. Polymorphic call sites can not be
resolved unless the enclosing code is cloned or type tests
are inserted.

The performance of the analyses for resolving virtual
function calls is shown in Figures 4 (which presents
the static information for the call sites) and 5 (which
presents the dynamic information for the calls in our
program traces). Together with the remaining graphs
they compare the performance of the three static anal-
ysis algorithms, and they all use a consistent labeling
to aid in interpretation. Black is always used to label
the things that could not possibly be handled by static
analysis; in the case of virtual function resolution, black
represents the call sites or calls that were polymorphic.
White represents the region of possible opportunity for
finer analysis; for virtual function resolution, this is the
call sites or calls that were dynamically monomorphic
but were not resolved by any of the static analysis meth-
ods we implemented. For graphs of static quantities, the
diagonally striped section labels an additional region
of opportunity in unexecuted code; for virtual function
resolution, this is the call sites that were not resolved
and were not executed at run-time. They may be dead,
monomorphic, or polymorphic.

Since Class Hierarchy Analysis (CHA) resolves a su-
perset of the virtual calls resolved by Unique Name
(UN), and Rapid Type Analysis (RTA) resolves a super-
set of the virtual calls resolved by CHA, we show their
cumulative effect on a single bar in the chart. There-
fore, to see the effect of RTA, the most powerful anal-
ysis, include all the regions labeled as “resolved” (they
are outlined with a thick line).

If the region of opportunity is very small, then the dy-
namic trace has given us a tight upper bound: we know
that no static analysis could do much better. On the
other hand, if the white region (and for static graphs,
the striped region) is large, then the dynamic trace has
only given us a loose upper bound: more powerful static

analysis might be able to do better, or it might not.

Call sites identified as dead by Rapid Type Analysis
were not counted, regardless of whether they were re-
solved. This was done so that the static and dynamic
measurements could be more meaningfully compared,
and because it seemed pointless to count as resolved
a call site in a function that can never be executed.
However, this has relatively little effect on the overall
percentages.

Figure 5 shows that for for five out of seven of the
large benchmarks, the most powerful static analysis,
RTA, resolves all or almost all of the virtual function
calls. In other words, in five out of seven cases, RTA
does an essentially perfect job. On average, RTA re-
solves 71% of the dynamic virtual calls in the seven
large benchmarks. CHA is also quite effective, resolving
an average of 51%, while UN performs relatively poorly,
resolving an average of 15% of the dynamic virtual calls.

We were surprised by the poor performance of Unique
Name, since Calder and Grunwald found that Unique
Name resolved an average of 32% of the virtual calls
in their benchmarks. We are not sure why this should
be so; possibly our benchmarks, being on average of a
later vintage, contain more complex class hierarchies.
UN relies on there only being a single function in the
entire application with a particular signature.

Our benchmarks are surprisingly monomorphic; only
two of the large applications (ixx and lcom) exhibit a
significant degree of polymorphism. We do not expect
this to be typical of C++ applications, but perhaps
monomorphic code is more common than is generally
believed.

A problem arose with one program, lcom, which is
not type-safe: applying CHA or RTA generates some
specious call site resolutions. We examined the pro-
gram and found that many virtual calls were potentially
unsafe, because the code used down-casts. However,
most of these potentially unsafe calls are in fact safe,
because the program uses a collection class defined to
hold pointers of type voidx. Usually, inspection of the
code shows that the down-casts are simply being used
to restore a void* pointer to the original type of the
object inserted into the collection.

We therefore selectively turned off virtual function
call resolution at the call sites that could not be de-
termined to be safe; only 7% of the virtual calls that
would have been resolved by static analysis were left
unresolved because of this (they are counted as unre-
solved monomorphic calls). We feel that this is a rea-
sonable course because a programmer trying to opti-
mize their own program might very well choose to fol-
low this course rather than give up on optimization al-

together; readers will have to use their own judgment
as to whether this would be an acceptable programming
practice in their environment.

The only benchmark to use library code containing
virtual calls was simulate, which uses the task library
supplied with AIX. Slightly less than half of the virtual
calls were made from the library code, and about half of
those calls were monomorphic (and therefore potentially
resolvable). We have not included virtual calls in library
code in the graphs because the corresponding code was
not available to static analysis.

3.3.1 Why Rapid Type Analysis Wins

Since Class Hierarchy Analysis is a known and accepted
method for fast virtual function resolution, it is impor-
tant to understand why RTA is able to do better.

RTA does better on four of seven programs, although
for id1l the improvement is minor. For ixx, RTA re-
solves a small number of additional static call sites
(barely visible in Figure 4), which account for almost
20% of the total dynamic virtual function calls. The
reason is that those calls are all to frequently exe-
cuted string operations. There is a base class String
with a number of virtual methods, and a derived class
UniqueString, which overrides those methods. RTA
determines that no UniqueString objects are created
in ixx, and so it is able to resolve the virtual call sites
to String methods. These call sites are in inner loops,
and therefore account for a disproportionate number of
the dynamic virtual calls.

RTA also makes a significant difference for taldict,
resolving the remaining 19% of unresolved virtual calls.
RTA is able to resolve two additional call sites because
they are calls where a hash table class is calling the
method of an object used to compare key values. The
comparison object base class provides a default com-
parison method, but the derived class used in taldict
overrides it. RTA finds that no instances of the base
class are created, so it is able to resolve the calls.

The hotwire benchmark is a perfect example of the
class library scenario: a situation in which an applica-
tion is built using only a small portion of the function-
ality of a class library. The application itself is a sim-
ple dynamic overhead transparency generator; it uses
a library of window management and graphics routines.
However, it only creates windows of the root type, which
can display text in arbitrary fonts at arbitrary locations.
All of the dynamic dispatch occurs on redisplay of sub-
windows, of which there are none in this application.
Therefore, all of the live virtual call sites are resolved.

3.3.2 Why Fast Static Analysis Fails

One benchmark, sched, stands out for the poor perfor-
mance of all three static analysis algorithms evaluated in
this paper. Only 10% of the dynamic calls are resolved,
even though 30% of the static call sites are resolved, and
100% of the dynamic calls are monomorphic. Of course,
a function may be monomorphic with one input but not
with another. However, sched appears to actually be
completely monomorphic.

The unresolved monomorphic virtual call sites are all
due to one particular programming idiom: sched de-
fines a class Base and two derived classes Derivedl
and Derived2 (not their real names). Base has no
data members, and defines a number of virtual func-
tions whose implementation is always assert (false) —
in other words, they will raise an exception when ex-
ecuted. In essence, Base is a strange sort of abstract
base class.

Derivedl and Derived2 each implement a mutually
exclusive subset of the methods defined by Base, and
since Base has no data members, this means that these
two object types are totally disjoint in functionality. It
is not clear why the common base class is being used at
all.

RTA determines that no objects of type Base are
ever created. However, the calls to the methods of
Derivedl and Derived2 are always through pointers
of type Basex. Therefore, there are always two possi-
ble implementations of each virtual function: the one
defined by one of the derived classes, and the one inher-
ited from Base by the other derived class.

Depending on your point of view, this is either an
example of the inability of static analysis to handle par-
ticular coding styles, or another excellent reason not to
write strange code.

The other benchmark for which none of the static
analyses do a very good job is 1com: 45% of the virtual
calls are monomorphic but unresolved. 40% of the vir-
tual calls are from a single unresolved call site. These
calls are all through an object passed in from a single
procedure, further up in the call graph. That procedure
creates the object with new, and it is always of the same
type. While it would probably not be resolved by simple
flow analysis, it could be resolved by alias analysis.

What kinds of programming idioms are not amenable
to fast static analysis? CHA will resolve monomorphic
virtual calls for which there is only a single possible
target. RTA will also eliminate monomorphic calls when
only one of the possible target object types is used in
the program. The kind of monomorphic calls that can’t
be resolved by RTA occur when multiple related object
types are used independently, for instance if Square and

Circle objects were each kept on their own linked list,
instead of being mixed together. We call this disjointed
polymorphism.

Disjointed polymorphism is what occurs in 1com and,
in a degenerate fashion, in sched. While there are cer-
tainly situations in which it does make sense to use
disjointed polymorphism, we believe it to be relatively
uncommon, and this is borne out by our benchmarks.
Disjointed polymorphism presents the major opportu-
nity for alias analysis to improve upon the fast static
techniques presented in this paper, since it can some-
times determine that a pointer can only point to one
type of object even when multiple possible object types
have been created.

3.4 Code Size

Because they build a call graph, Class Hierarchy Analy-
sis and Rapid Type Analysis identify some functions as
dead: those that are not reachable in the call graph.
RTA is more precise because it removes virtual call
arcs to methods of uninstantiated objects from the call
graph.

Figure 6 shows the effect of static analysis on user
code size. As before, white represents the region of op-
portunity for finer analysis — those functions that were
not live during the trace and were not eliminated by
static analysis.

Our measurements include only first-order effects of
code size reduction due to the elimination of entire func-
tions. There is a secondary code-size reduction caused
by resolving virtual call sites, since calling sequences for
direct calls are shorter than for virtual calls. We also did
not measure potential code expansion (or contraction)
caused by inlining of resolved call sites. Finally, due
to technical problems our code size measurements are
for unoptimized code, and we were not able to obtain
measurements for deltablue.

On average, 42% of the code in the seven large bench-
marks is not executed during our traces. Class Hierar-
chy Analysis eliminates an average of 24% of the code
from these benchmarks, and Rapid Type Analysis gets
about one percent more.

CHA and RTA do very well at reducing code size:
in five of the seven large benchmarks, less than 20% of
the code is neither executed nor eliminated by static
analysis. Only ixx and id1 contain significant portions
of code that was neither executed nor eliminated (about
40%).

We were surprised to find that despite the fact that
RTA does substantially better than CHA at virtual
function resolution, it does not make much difference
in reducing code size.

Unique Name does not remove any functions because
it only resolves virtual calls; it does not build a call
graph.

3.5 Static Complexity

Another important advantage of static analysis is its
use in programming environments and compilers. For
instance, in presenting a user with a program browser,
the task of understanding the program is significantly
easier if large numbers of dead functions are not in-
cluded, and if virtual functions that can not be reached
are not included at virtual call sites.

In addition, the cost and precision of other forms of
static analysis and optimization are improved when the
call graph is smaller and less complex.

Figure 7 shows the effect of static analysis on elimi-
nating functions from the call graph. This is similar to
Figure 6, except that each function is weighted equally,
instead of being weighted by the size of the compiled
code. As we stated above, since Unique Name does not
build a call graph, it does not eliminate any functions.

Once again, Class Hierarchy Analysis eliminates a
large number of functions, and Rapid Type Analysis
eliminates a few more.

Figure 8 shows the effect of static analysis on the
number of virtual call arcs in the call graph. At a virtual
call site in the call graph for a C++ program, there is
an arc from the call site to each of the possible virtual
functions that could be called.

Class Hierarchy Analysis removes call arcs because
it eliminates functions, and so any call arcs that they
contain are also removed. Rapid Type Analysis can
both remove dead functions and remove virtual call arcs
in live functions. For example, refer back to Figure 1
at the beginning of this paper: even though main() is
a live function, RTA removes the call arc to A::foo()
at the call that produces result3 because it discovers
that no objects of type A are ever created.

Surprisingly, despite the large number of virtual call
sites that are resolved in most programs, relatively few
virtual call arcs are removed in three of the seven large
benchmarks. In those programs, the virtual function
resolution is due mostly to Class Hierarchy Analysis.
CHA, by definition, resolves a function call when there
is statically only a single possible target function at the
call site. Therefore, the call site is resolved, but the
call arc is not removed. On the other hand, because
RTA actually removes call arcs in live functions, it may
eliminate substantial numbers of call arcs, as is seen in
the case of hotwire.

Size | Analysis Time | Compile RTA
Benchmark | (lines) | CHA | RTA Time | Overhead
sched 5,712 | 1.90 1.94 921 <0.1%
ixx 11,157 | 5.12 5.22 367 1.4%
lcom 17,278 | 6.27 6.50 218 3.0%
hotwire 5,335 | 2.05 2.06 160 1.3%
simulate 6,672 | 2.67 2.75 49 5.6%
idl 30,288 | 5.71 6.42 450 1.4%
taldict 11,854 | 1.66 1.78 45 4.0%
deltablue 1,250 | 0.42 0.44 18 2.4%
richards 606 | 0.30 0.32 9 3.6%

Table 4: Compile-Time Cost of Static Analysis (timings are in seconds on an 80 MHz PowerPC 601). Compile time
is for optimized code, and includes linking. Rightmost column shows the overhead of adding RTA to the compilation

process.

3.6 Speed of Analysis

We have claimed that a major advantage of the algo-
rithms described in this paper is their speed. Table 4
shows the cost of performing the Class Hierarchy Anal-
ysis and Rapid Type Analysis algorithms on an 80 MHz
PowerPC 601, a modest CPU by today’s standards.
The total time to compile and link the program is also
included for comparison. We do not include timings
for Unique Name because we implemented it on top of
CHA, which would not be done in a real compiler. Since
Unique Name performed poorly compared to CHA and
RTA, we did not feel it was worth the extra effort of a
“native” implementation.

RTA is not significantly more expensive than CHA.
This is because the major cost for both algorithms is
that of traversing the program and identifying all the
call sites. Once this has been done, the actual analysis
proceeds very quickly.

RTA analyzes an average of 3310 non-blank source
lines per second, and CHA is only marginally faster.
The entire 17,278-line 1com benchmark was analyzed in
6.5 seconds, which is only 3% of the time required to
compile and link the code. On average, RTA took 2.4%
of the total time to compile and link the program.

We expect that these timings could be improved upon
significantly; our implementation is a prototype, de-
signed primarily for correctness rather than speed. No
optimization or tuning has been performed yet.

Even without improvement, 3300 lines per second is
fast enough to include in a production compiler without
significantly increasing compile times.

10

4 Related Work

4.1 Type Prediction for C++

Aigner and Holzle [3] compared the execution time per-
formance improvements due to elimination of virtual
function calls via class hierarchy analysis and profile-
based type prediction. Our work differs from theirs
in that we compare three different static analysis tech-
niques, and in that we demonstrate the ability of static
analysis to reduce code size and reduce program com-
plexity. We also use dynamic information to bound the
performance of static analysis.

Type prediction has advantages and disadvantages
compared with static analysis. Its advantages are that
it resolves more calls, and does not rely on the type-
correctness of the program. Its disadvantages are that
it requires the introduction of a run-time test; it requires
profiling; and it is potentially dependent upon the input
used during the profile.

Ultimately, we believe that a combination of static
analysis with type prediction is likely to be the best
solution.

In Aigner and Holzle’s study, excluding the trivial
benchmarks deltablue and richards and weighting
each program equally, Class Hierarchy Analysis resolved
an average of 27% of the dynamic virtual function calls
(and a median of 9%). They said they were surprised
by the poor performance of CHA on their benchmarks,
since others had found it to perform well. In our mea-
surements, CHA resolved an average of 51% of the dy-
namic virtual calls, so it seems that there is considerable
variation depending upon the benchmark suite. In fact,
we got different results for the one large benchmark that

we had in common, ixx, due to a different input file and
possibly a different version of the program.

Type prediction can always “resolve” more virtual
calls than static analysis, because it precedes a direct
call with a run-time test. Call sites resolved by static
analysis do not need to perform this test, and one would
therefore expect the execution time benefit from static
resolution to be greater than that from type prediction.
This trend is indeed evident in their execution time
numbers: for only one of their benchmarks does type
feedback provide more than a 3% speedup over Class
Hierarchy Analysis. This is despite the fact that in all
but one of the benchmarks, type prediction resolves a
significantly larger number of virtual calls.

4.2 Alias Analysis for C++

The most precise, and also most expensive, proposed
static method for resolving virtual function calls is to
use interprocedural flow-sensitive alias analysis. Pande
and Ryder [19, 18] have implemented an alias analysis
algorithm for C++ based on Landi et al.’s algorithm
for C [15]. This analysis is then used to drive virtual
function elimination. They give preliminary results for
a set of 19 benchmark programs, ranging in size from
31 to 968 lines of code.

In comparison with our RTA algorithm, which pro-
cesses about 3300 lines of source code per second (on
an 80 MHz PowerPC 601), the speed of their algorithm
ranges from 0.4 to 55 lines of source code per second
(on a Sparc-10). At this speed, alias analysis will not
be practical in any normal compilation path.

We have obtained their benchmark suite; Figure 10
shows the performance of our static analysis algorithms
on the 9 programs that we could execute (since their
analysis is purely static, not all programs were actu-
ally executable). Of these 9, two are completely poly-
morphic (no resolution is possible), and two were all or
almost all resolved by Rapid Type Analysis or Class Hi-
erarchy Analysis. So for four out of nine, RTA does as
well as alias analysis.

RTA resolved 33% of the virtual call sites in objects,
compared to about 50% by alias analysis (for com-
parative data, see their paper [19]). For the remain-
ing four (derivl, deriv2, family, and office) fast
static analysis did not resolve any virtual call sites, and
significant fractions of the call sites were dynamically
monomorphic. Alias analysis was able to resolve some
of the virtual call sites in derivl and deriv2, and all of
the virtual call sites in family and office. However,
the latter two programs are contrived examples where
aliases are deliberately introduced to objects created in
the main routine.

11

Because of the small size and unrealistic nature of
the benchmarks used by Pande and Ryder, we hesitate
to make any generalizations based on the results of our
comparison. Two of our seven large benchmarks, sched
and lcom, appear to be programs for which alias anal-
ysis could perform better than RTA. These programs
make use of disjointed polymorphism, as discussed in
Section 3.3.2.

Over all, our benchmarks and Pande and Ryder’s in-
dicate that for most programs, there is relatively little
room for improvement by alias analysis over RTA. How-
ever, there are definitely cases where alias analysis will
make a significant difference. The ideal solution would
be to use RTA first, and only employ alias analysis when
RTA fails to resolve a large number of monomorphic
calls.

In a similar vein as Pande and Ryder, Carini et al. [7]
have also devised an alias analysis algorithm for C++
based on an algorithm for C and Fortran [10, 5]. We are
currently collaborating with them on an implementation
of their algorithm within our analysis framework. This
will allow a direct comparison of both the precision and
the efficiency of alias analysis.

4.3 Other Work in C++

Porat et al. [21] implemented the Unique Name op-
timization in combination with type prediction in the
IBM x1C compiler for AIX, and evaluated the results
for 3 benchmark programs. Their two large benchmarks
were identical to two of ours: taldict and lcom. They
achieved a speedup of 1.25 on taldict and a speedup
of 1.04 on lcom, using a combination of Unique Name
and type prediction. Our estimates and experiments in-
dicate that a significantly higher speedup is achievable
for taldict using Rapid Type Analysis.

Calder and Grunwald [6] implemented the first virtual
function resolution algorithm for C++. Their Unique
Name algorithm (which might more accurately be called
“Unique Signature”) is very fast, since it only requires
a linear scan over the method declarations in the pro-
gram. Calder and Grunwald implemented Unique Name
as a link-time analysis, and found it to be quite effec-
tive. With their benchmarks, it resolved anywhere from
2.9% to 70.3% of the virtual calls executed by the pro-
gram. We found it to be not nearly so effective on our
benchmarks, and it was significantly outperformed by
Rapid Type Analysis.

Srivastava [22] developed an analysis technique with
the sole object of eliminating unused procedures from
C++ programs. He builds a graph starting at the root
of the call graph. Virtual call sites are ignored; in-
stead, when a constructor is reached, the referenced

virtual methods of the corresponding class are added
to the graph. His algorithm could also be used to re-
solve virtual function calls by eliminating uninstanti-
ated classes from consideration and then using Class
Hierarchy Analysis. His technique is less general than
RTA because the resulting graph is not a true call graph,
and can not be used as a basis for further optimization.

4.4 Other Related Work

Related work has been done in the context of other
object-oriented languages like Smalltalk, SELF, Cecil,
and Modula-3. Of those, Modula-3 is the most similar
to C++.

Fernandez [13] implemented virtual function call
elimination as part of her study on reducing the cost of
opaque types in Modula-3. She essentially implemented
Class Hierarchy Analysis, although only for the purpose
of resolving virtual calls, and not for eliminating dead
code.

Diwan et al. [12] have investigated a number of
algorithms for Modula-3, including an interprocedural
uni-directional flow-sensitive technique, and a “name-
sensitive” technique.

For the benchmarks they studied, their more power-
ful techniques were of significant benefit for Modula-3,
because they eliminated the NULL class as a possible tar-
get. However, when NULL is ignored (as it is in C++),
in all but one case the more sophisticated analyses did
no better than class hierarchy analysis. This is inter-
esting because we found several cases in which Rapid
Type Analysis was significantly better than Class Hier-
archy Analysis — this may indicate that class instantia-
tion information is more important than the flow-based
information.

Because of the wide variation we have seen even
among our C++ benchmarks, it seems unwise to ex-
trapolate from Modula-3 results to C++. However, de-
spite the difference between their and our algorithms,
the basic conclusion is the same: that fast static anal-
ysis is very effective for statically typed object-oriented
languages.

Dean et al. [11] studied virtual method call elimina-
tion for the pure object-oriented language Cecil, which
includes support for multi-methods. They analyzed the
class hierarchy as we do to determine the set of type-
correct targets of a virtual method call, and used this
information to drive an intraprocedural flow analysis of
the methods. Their method is not directly comparable
to RTA: it uses more precise information within proce-
dures, but performs no interprocedural analysis at all.
Measured speedups for benchmarks of significant size

12

were on the order of 25%, and code size reduction was
also on the order of 25%.

There has been considerable work on type inference
for dynamically typed languages [20, 8, 1, 17]. In a
recent paper [2], Agesen and Holzle showed that type
inference can do as well or better than dynamic re-
ceiver prediction in the SELF compiler, and proceeded
to extrapolate from these results to C++ by excluding
dispatches for control structures and primitive types.
However, C++ and SELF may not be sufficiently similar
for such comparisons to be meaningful.

5 Conclusions

We have investigated the ability of three types of static
analysis to improve C++ programs by resolving virtual
function calls, reducing compiled code size, and reduc-
ing program complexity to improve both human and
automated program understanding and analysis.

We have shown that Rapid Type Analysis is highly
effective for all of these purposes, and is also very fast.
This combination of effectiveness and speed make Rapid
Type Analysis an excellent candidate for inclusion in
production C++ compilers.

RTA resolved an average of 71% of the virtual func-
tion calls in our benchmarks, and ran at an average
speed of 3300 non-blank source lines per second. CHA
resolved an average of 51% and UN resolved an aver-
age of only 15% of the virtual calls. CHA and RTA
were essentially identical for reducing code size; UN is
not designed to find dead code. RTA was significantly
better than CHA at removing virtual call targets.

Unique Name was shown to be relatively ineffective,
and can therefore not be recommended. Both RTA and
CHA were quite effective. In some cases there was little
difference, in other cases RTA performed substantially
better. Because the cost of RTA in both compile-time
and implementation complexity is almost identical to
that of CHA, RTA is clearly the best of the three algo-
rithms.

We have also shown, using dynamic traces, that the
best fast static analysis (RTA) often resolves all or al-
most all of the virtual function calls (in five out of the
seven large benchmarks). For these programs, there
is no advantage to be gained by using more expensive
static analysis algorithms like flow-sensitive type analy-
sis or alias analysis. Since these algorithms will invari-
ably be at least one to two orders of magnitude more
expensive than RTA, RTA should be used first to re-
duce the complexity of the program and to determine
if there are significant numbers of virtual call sites left
to resolve. In some cases, this will allow the expensive

analysis to be skipped altogether.

Acknowledgements

We thank Michael Burke, Susan Graham, and Jim
Larus for their support of our work; Harini Srinivasan
and G. Ramalingam for their assistance with the de-
velopment of the analyzer; Mark Wegman for his many
helpful suggestions; Ravi Nair for the use of his xtrace
system, the accompanying benchmarks, and for his tech-
nical assistance; Vance Waddle for his NARC graph dis-
play system; and Yong-Fong Lee and Mauricio Serrano
for sharing their benchmark suite and their insights.
We thank Gerald Aigner, Urs Holzle, Brad Calder, and
Dirk Grunwald for helpful discussions and explanations
of their work.

We also thank Rob Cecco, Yee-Min Chee, Derek In-
glis, Michael Karasick, Derek Lieber, Mark Mendell,
Lee Nackman, Jamie Schmeiser, and the other Montana,
team members for their invaluable assistance with their
prototype C++ compiler upon which our optimizer was
built.

Finally, we thank those who provided feedback on
earlier drafts of this paper: Michael Burke, Paul Carini,
German Goldszmidt, Urs Holzle, Michael Karasick,
Harini Srinivasan and Kenny Zadeck.

References

[1] AGesEN, O. Constraint-based type inference
and parametric polymorphism. In Proceedings of
the First International Static Analysis Symposium
(Namur, Belgium, Sept. 1994), B. Le Charlier, Ed.,
Springer-Verlag, pp. 78-100.

AGESEN, O., AND HOLzZLE, U. Type feedback
vs. concrete type inference: A comparison of opti-
mization techniques for object-oriented languages.
In Proceedings of the 1995 ACM Conference on
Object Oriented Programming Systems, Languages,
and Applications (Austin, Tex., Oct. 1995), ACM
Press, New York, N.Y., pp. 91-107.

[2]

AIGNER, G., AND HOLZLE, U. Eliminating virtual
function calls in C++ programs. In Proceedings of
the Tenth European Conference on Object-Oriented
Programming — ECOOP’96 (Linz, Austria, July
1996), vol. 1098 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, Germany, pp. 142—
166.

[3]

[4] BAacoN, D. F., WEGMAN, M., AND ZADECK,
K. Rapid type analysis for C++. Tech. Rep. RC

13

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

number pending, IBM Thomas J. Watson Research
Center, 1996.

BURKE, M., CARINI, P., CHOI, J.-D., AND HIND,
M. Flow-insensitive interprocedural alias analysis
in the presence of pointers. In Proceedings of the
Seventh International Workshop on Languages and
Compilers for Parallel Computing (Ithaca, N.Y.,
Aug. 1994), K. Pingali, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, Eds., vol. 892 of Lec-
ture Notes in Computer Science, Springer-Verlag,
Berlin, Germany, pp. 234-250.

CALDER, B., AND GRUNWALD, D. Reducing in-
direct function call overhead in C++ programs. In
Conference Record of the Twenty-First ACM Sym-
posium on Principles of Programming Languages
(Portland, Ore., Jan. 1994), ACM Press, New York,
N.Y., pp. 397-408.

CARINI, P., HIND, M., AND SRINIVASAN, H. Type
analysis algorithm for C++4-. Tech. Rep. RC 20267,
IBM Thomas J. Watson Research Center, 1995.

CHAMBERS, C., AND UNGAR, D. Iterative type
analysis and extended message splitting: optimiz-
ing dynamically-typed object-oriented programs.
LISP and Symbolic Computation 4, 3 (July 1991),
283-310.

CHAMBERS, C., UNGAR, D., AnD LEg, E. An
efficient implementation of SELF, a dynamically-
typed object-oriented language based on proto-
types. LISP and Symbolic Computation 4, 3 (July
1991), 243-281.

CHol, J.-D., BURKE, M., AND CARINI, P. Effi-
cient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Confer-
ence Record of the Twentieth ACM Symposium on
Principles of Programming Languages (Charleston,
South Carolina, Jan. 1993), ACM Press, New York,
N.Y., pp. 232-245.

DEAN, J., GROVE, D., AND CHAMBERS, C. Op-
timization of object-oriented programs using static
class hierarchy analysis. In Proceedings of the Ninth
European Conference on Object-Oriented Program-
ming — ECOOP’95 (Aarhus, Denmark, Aug. 1995),
W. Olthoff, Ed., vol. 952 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Germany,
pp. 77-101.

DiwaN, A., Moss, J. E. B., AND McKINLEY,
K. S. Simple and effective analysis of statically-
typed object-oriented programs. In Proceedings of

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

the 1996 ACM Conference on Object Oriented Pro-
gramming Systems, Languages, and Applications
(San Jose, Calif., Oct. 1996), pp. 292-305.

FERNANDEZ, M. F. Simple and effective link-time
optimization of Modula-3 programs. In Proceedings
of the SIGPLAN Conference on Programming Lan-
guage Design and Implementation (La Jolla, Calif.,
June 1995), ACM Press, New York, N.Y., pp. 103—
115.

HOLZLE, U., CHAMBERS, C., AND UNGAR, D.
Optimizing dynamically-typed object-oriented lan-
guages with polymorphic inline caches. In Pro-
ceedings of the European Conference on Object-
Oriented Programming — ECOOP’91 (Geneva,
Switzerland, July 1991), P. America, Ed., vol. 512
of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Germany, pp. 21-38.

LanDI, W., RYDER, B. G., AND ZHANG, S. In-
terprocedural modification side effect analysis with
pointer aliasing. In Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation (Albuquerque, New Mexico, June
1993), ACM Press, New York, N.Y., pp. 56-67.

Leg, Y., AND SERRANO, M. J. Dynamic mea-
surements of C++ program characteristics. Tech.
Rep. STL TR 03.600, IBM Santa Teresa Labora-
tory, Jan. 1995.

OxH@J, N., PALSBERG, J., AND SCHWARTZBACH,
M. I. Making type inference practical. In Pro-
ceedings of the Furopean Conference on Object-
Oriented Programming — ECOOP’92 (Utrecht,
Netherlands, June 1992), O. L. Madsen, Ed.,
vol. 615 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, pp. 329-349.

Panpe, H. D., AND RyYDER, B. G. Static
type determination for C++. In Proceedings of
the 1994 USENIX C++ Conference (Cambridge,
Mass., Apr. 1994), Usenix Association, Berkeley,
Calif., pp. 85-97.

PANDE, H. D., AND RYDER, B. G. Data-flow-
based virtual function resolution. In Proceedings
of the Third International Static Analysis Sympo-
stum (1996), vol. 1145 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Germany,
pPp- 238-254.

PLEVYAK, J., AND CHIEN, A. A. Precise con-
crete type inference for object-oriented languages.

14

[21]

[22]

[23]

[24]

In Proceedings of the 199, ACM Conference on
Object Oriented Programming Systems, Languages,
and Applications (Portland, OR, Oct. 1994), ACM
Press, New York, N.Y., pp. 324-340.

PoraT, S., BERNSTEIN, D., FEDOROV, Y., RoO-
DRIGUE, J., AND YAHAV, E. Compiler optimiza-
tions of C++ virtual function calls. In Proceed-
ings of the Second Conference on Object-Oriented
Technologies and Systems (Toronto, Canada, June
1996), Usenix Association, pp. 3-14.

SRIVASTAVA, A. Unreachable procedures in object-
oriented programming. ACM Letters on Pro-

gramming Languages and Systems 1, 4 (December
1992), 355-364.

Trip, F., Cuor, J.-D., FIELD, J., AND RAMA-
LINGAM, G. Slicing class hierarchies in C++. In
Proceedings of the 1996 ACM Conference on Object
Oriented Programming Systems, Languages, and
Applications (San Jose, Calif., Oct. 1996), pp. 179-
197.

UNGAR, D., SmiTH, R. B., CHAMBERS, C., AND
HovzLe, U. Object, message, and performance:
how they coexist in Self. Computer 25, 10 (Oct.
1992), 53-64.

q1

sodA T, T UOMOUN] JO UOTINQLIISI(] JTWRUA(] ¢ 2InJt

weiboid

anjqeyap epeInwIs anmoy woo) XX1 payos

spreyou

%0

%0T
%02
%0€
%0%

Calls (%)

%0S

%09
%0L
%08
%06
%00T

uonoung wanan
uonoun4 1a11pul N
poyis waua g
PoyIaN fenUIA
J3quIBN-01-nd @

s|[eD alweuAq jo uoneoyisse|d g ainbiq

g oIS

sodA T, [[eD uonOUN JO UOHNALIISI(] O13eIS

weiboid

anjqeyap epenwIs anmoy woo) XX1 payos

spreyou

%0
%02
%0%

Callsites (%)

%09
%08
%00T

OSoOm
939s
239s
o = @ g
g 33
822
o =
522%g
22338
5 3 Q
S

J8quIBN-01-Nd B

SONS |[eD O1RIS PEad-UON JO UONRIISSE|D 1z 21nbily

91

S[ren) orwreuk (] JO UOTINJOSY :C 2In3Jrq

B

S||eD [enuIA diweuAq Jo uolinjosay G ainbiq

Sm@zE80
ccccc
22233
S 9 9 g 2
<<<<<
$33¢86¢
sozod
gggit
ooooo
2 I ds<
> > 5

SOYIS[[B)) O1¥e)S AT A[QISSOJ JO UOTIN[0SOY :F 9InS1]

T

SAS |[ED [ENUIA O1RIS PEad-UON JO UONN|0SaY ¥ 2inBid

Bytes (%)

Code Size -

Functions (%)

Figure 6: Code Size

100%

80%
60%
OlLive
@Not Eliminated/Unexecuted
SEliminated by RTA
W Eliminated by CHA
0% M
B
20%
0%
ixx lcom hotwire simulate deltablue richards
Program
Figure 6: Code Size
Figure 7: Elimination of Functions
100%
8% %
%
N
60%
Olive
@ Not Eliminated/Not Executed
M Eliminated by CHA
40%
NN
20%
-’
Y
0%
sched ixx Icom hotwire simulate deltablue richards
Program

Figure 7: Elimination of Dead Functions by Static Analysis

17

Virtual Call Arcs (%)

Seconds
(80 MHz PowerPC 601)
o
o

100%

80%

60%

40%

20%

Figure 8: Elimination of Static Virtual Call Arcs

sched

hotwire

Program

simulate

deltablue

richards

Olive

BNot Eliminated/Unexecuted
NEliminated by RTA

M Eliminated by CHA

Figure 8: Elimination of Virtual Call Arcs by Static Analysis

Figure 9: Effectiveness of Type Prediction

0.9

0.8

0.7

=3
Y

IS
=

0.3

0.2

0.1

10

20

30

40 50

Percentage Correctly Predicted

60

70

—a— Dynamic Dispatch

—e— Static Resolution w/Inlining
—— Static Resolution w/o Inlining

Figure 9: Type Prediction vs. Static Resolution on the PowerPC 601

18

Callsites (%)

Figure 10: Resolution of Non-Dead Static Call Sites (Alias Analysis Benchmarks)

100%

80%

60%

40%

20%

9:derivl 7:deriv2 3:family

5.garage

10:0bjects 1:office 12:primes 8:shapes 6:vcircle
Program

DOUnresolved/Polymorphic
B Unresolved/Not Executed
BUnresolved/Monomorphic
BResolved by RTA

M Resolved by CHA

B Resolved by UN

Figure 10: Resolution of Static Callsites — Alias Analysis Benchmarks

19

Scalable Propagation-Based Call Graph Construction
Algorithms

Frank Tip
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

tip@watson.ibm.com

ABSTRACT

Propagation-based call graph construction algorithms have
been studied intensively in the 1990s, and differ primarily in
the number of sets that are used to approximate run-time
values of expressions. In practice, algorithms such as RTA
that use a single set for the whole program scale well. The
scalability of algorithms such as 0-CFA that use one set per
expression remains doubtful.

In this paper, we investigate the design space between RTA
and 0-CFA. We have implemented various novel algorithms
in the context of Jax, an application extractor for Java, and
shown that they all scale to a 325,000-line program. A key
property of these algorithms is that they do not analyze
values on the run-time stack, which makes them efficient and
easy to implement. Surprisingly, for detecting unreachable
methods, the inexpensive RTA algorithm does almost as well
as the seemingly more powerful algorithms. However, for
determining call sites with a single target, one of our new
algorithms obtains the current best tradeoff between speed
and precision.

1. INTRODUCTION

A key task that is required by most approaches to whole-
program optimization is the construction of a call graph ap-
proximation. Using a call graph, one can remove methods
that are not reachable from the main method, replace dy-
namically dispatched method calls with direct method calls,
inline methods calls for which there is a unique target, and
perform more sophisticated optimizations such as interpro-
cedural constant propagation, object inlining, and transfor-
mations of the class hierarchy. In the context of object-
oriented languages with dynamic dispatch, the crucial step
in constructing a call graph is to compute a conservative
approximation of the set of methods that can be invoked by
a given virtual (i.e., dynamically dispatched) method call.

In proceedings of OOPSLA’00, ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 281-293,
2000.

Jens Palsberg
Dept. of Computer Science
Purdue University
West Lafayette, IN 47907

palsberg@cs.purdue.edu

Call-graph construction algorithms have been studied inten-
sively in the 1990s. While their original formulations use a
variety of formalisms, most of them can be recast as set-
based analyses. The common idea is to abstract an object
into the name of its class, and to abstract a set of objects
into the set of their classes. For any given call site e.m/(),
the goal is then to compute a set of class names Se that
approximates the run-time values of the receiver expression
e. Once the sets S. are determined for all expressions e,
the class hierarchy can be examined to identify the methods
that can be invoked.

Most call graph construction algorithms differ primarily in
the number of sets that are used to approximate run-time
values of expressions. Examples:

Number of sets used to
approximate run-time values
of expressions

Algorithm name

No sets Class Hierarchy Analysis
(CHA) [9, 10]

One set for the whole program || Rapid Type Analysis
(RTA) [6, 5]

One set per expression 0-CFA (Control-Flow
Analysis) [33, 17]

5-CFA, k > 0 [33, 17]

Several sets per expression

Intuitively, algorithms that use more sets compute more pre-
cise call graphs, but need more time and space to do the
construction. In practice, the scalability of the algorithms
at either end of the spectrum is fairly clear. The CHA and
RTA algorithms at the low end of the range scale well and
are widely used. The k-CFA algorithms (for k£ > 0) at the
high end seem not to scale well at all [17]. The scalability of
0-CFA remains doubtful, mostly due to the large amounts
of space required to represent the many different sets that
arise. Recent work by Fahndrich et al. [14, 37] give grounds
for optimism, although their recent results are obtained on a
machine with 2,048 Megabytes of memory [37]. In the case
of Java, another complicating factor for 0-CFA is that sets
of class names need to be computed for locations on the run-
time stack. Those locations are unnamed, and to facilitate
0-CFA, it seems necessary to first do a program transforma-
tion that names all the locations in some fashion, as done
in various recent work [41, 38, 21]. Such transformations
introduce both time and space overhead.

With the investigation of the scalability of 0-CFA still pend-
ing, our research focuses on the following questions:

e Are there interesting design points in the space be-
tween RTA and 0-CFA?

e Can we achieve better precision than RTA without an-
alyzing values on the run-time stack?

We have implemented several novel algorithms in the con-
text of Jax, an application extractor for Java, and shown
that they all scale to a 325,000-line program. A key prop-
erty of the algorithms is that they do not require simulation
of the run-time stack, which makes them easy to implement
and which helps efficiency. Our algorithms associate a single
distinct set with each class, method, and/or field (but not
each expression) in an application. Surprisingly, for detect-
ing unreachable methods, the inexpensive RTA does almost
as well as the seemingly more powerful algorithms. However,
for determining call sites with a single target, one of our new
algorithms obtains the current best tradeoff between speed
and precision.

In summary, the results for the most precise of the new
algorithms look as follows:

e The constructed call graphs tend to contain only
slightly fewer method definitions (i.e., methods that
have a body) when compared to RTA: up to 3.0%
fewer method definitions, and 1.6% fewer method def-
initions on average, but in several cases significantly
fewer edges (i.e., calling relationships between method
definitions): up to 29.0% fewer edges, and 7.2% fewer
edges on average.

e An in-depth study of the constructed call graphs re-
vealed that the most precise of our algorithms uniquely
resolves up to 26.3% of the virtual call sites that are
deemed polymorphic by RTA (12.5% on average).

e Associating a distinct set of types with each method in
a class has a significantly greater impact on precision
than using a distinct set for each field in a class.

e The algorithms scale well: the running time is within
an order of magnitude of a well-tuned RTA implemen-
tation in all cases. The most precise of our algorithms
runs up to 8.3 times slower than RTA, and the cor-
relation of this “slowdown factor” with program size
appears to be weak (for the largest benchmark, our
most expensive algorithm ran 5.0 times slower than
RTA).

e The algorithms do not require exorbitant amounts of
space. All our measurements were performed on a IBM
ThinkPad 600E PC with 288 MB memory. None of our
benchmarks required more than 200MB of heap space.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our new algorithms, and discusses their rela-
tion to several previous algorithms such as RTA. Section 3
discusses implementation issues. In Section 4, we compare

the results computed by the new algorithms with those ob-
tained with RTA. Section 5 presents related work. Finally,
directions for future work are presented in Section 6.

2. THE ALGORITHMS

We will use a set-based framework to present both some ex-
isting and some new algorithms. This will enable easy com-
parison and help put our work in context. Figure 1 shows
the relationships between four new algorithms (shown in a
shaded area, and code-named CTA, MTA, FTA, and XTA)
that will be presented shortly, and four well-known previous
algorithms: RA (Reachability Analysis), CHA (Class Hier-
archy Analysis), RTA (Rapid Type Analysis), and 0-CFA.
The ordering from left to right corresponds to increased ac-
curacy and increased cost. The increased cost stems from
increased amounts of information used in resolving virtual
method calls. The algorithms to the left of the new algo-
rithms have been shown to scale well, whereas the scalability
of 0-CFA remains doubtful. In Section 4, we will present re-
sults that demonstrate the scalability of the new algorithms.

2.1 Previous Algorithms

Since our new algorithms can be viewed as a natural “next
step” with respect to previous work, we will first discuss
some relevant previous algorithms. These algorithms pro-
gressively take more information into account when resolv-
ing virtual method calls.

2.1.1 Name-Based Resolution (RA)

We will begin by giving a set-constraint formulation of Reach-
ability Analysis (RA), a simple algorithm for constructing
call graphs that only takes into account the name of a method.
(A slightly more advanced version of this algorithm relies on
the equality of method signatures instead of method names.)
Variations of RA have been presented in many places (see,
e.g., [34]) and used in the context of tree-shakers for Lisp
[16].

RA can be defined in terms of a set variable R (for “reach-
able methods”) that ranges over sets of methods, and the
following constraints, derived from the program text:

1. main € R
program)

(main denotes the main method in the

2. For each method M, each virtual call site e.m(...) oc-
curring in M, and each method M’ with name m:
(M eR) = (M €R).

Intuitively, the first constraint reads “the main method is
reachable,” and the second constraint reads “if a method is
reachable, and a virtual method call e.m(...) occurs in its
body, then every method with name m is also reachable.”
It is straightforward to show that there is a least set R that
satisfies the constraints, and a solution procedure that com-
putes that set. The reason for computing the least R that
satisfies the constraints is that this maximizes the comple-
ment of R, i.e., the set of unreachable methods that can be
removed safely.

RA CHA RTA

CTA

FTA

XTA O-CFA| -

MTA

Figure 1:

algorithms.

2.1.2 Class Hierarchy Analysis (CHA)

We can extend the constraint system for the basic reacha-
bility analysis to also take class hierarchy information into
account. The result is known as class hierarchy analysis
(CHA) [9, 10]. We will use the notation StaticType(e) to
denote the static type of the expression e, SubTypes(t) to
denote the set of declared subtypes of type ¢, and the no-
tation StaticLookup(C, m) to denote the definition (if any)
of a method with name m that one finds when starting a
static method lookup in the class C. Like RA, CHA uses
just one set variable R ranging over sets of methods. The
constraints:

1. main € R
program)

(main denotes the main method in the

2. For each method M, each virtual call site
e.m(...) occurring in M, and each class C €
SubTypes(StaticType(e)) where StaticLookup(C,m) =
M

(M eR) = (M'e€R).

Intuitively, the second constraint reads: “if a method is
reachable, and a virtual method call e.m(...) occurs in the
body of that method, then every method with name m that
is inherited by a subtype of the static type of e is also reach-
able.”

2.1.3 Rapid Type Analysis (RTA)

We can further extend CHA to take class-instantiation in-
formation into account. The result is known as rapid type
analysis (RTA) [6, 5]. RTA uses both a set variable R rang-
ing over sets of methods, and a set variable S which ranges
over sets of class names. The variable S approximates the
set of classes for which objects are created during a run of
the program. The constraints:

1. main € R
program)

(main denotes the main method in the

2. For each method M, each virtual call site
e.m(...) occurring in M, and each class C €
SubTypes(StaticType(e)) where StaticLookup(C, m) =
M’

(M eR)A(CeS) = (M eR).

cost and accuracy

Schematic overview of the algorithms studied in this paper, and their relationship to several previous

3. For each method M, and for each “new C'()” occurring
in M:
(M eR) = (Cebf).

Intuitively, the second constraint refines the corresponding
constraint of CHA by insisting that C' € S, and the third
constraint reads: “S contains the classes that are instanti-
ated in a reachable method.”

RTA is easy to implement, scales well, and has been shown
to compute call graphs that are significantly more precise
than those computed by CHA [6]. We are aware of several
whole-program analysis systems that rely on RTA to com-
pute call graphs (e.g., the Jax application extractor of [40].)
In Section 4, we will use RTA as the baseline against which
we compare the new call graph construction algorithms that
we are about to present.

2.2 New Algorithms

The new algorithms use multiple set variables that range
over sets of classes. We will associate these set variables
with program entities such as classes, methods, and fields.
The idea is that by giving each program entity a more precise
“local” view of the types of objects available, call sites may
be resolved more accurately.

2.2.1 Separate sets for methods and fields (XTA)

We will first present an algorithm that uses a distinct set
variable Sjs for each method M, and a distinct set vari-
able S, for each field x. We call this analysis XTA. We
will use the notation ParamTypes(M) for the set of static
types of the arguments of the method M (ezcluding method
M’s this pointer), and the notation ReturnType(M) for
the static return type of M. We also extend the function
SubTypes(-) to work on a set of types:

SubTypes(Y) = U SubTypes(y)
yey

The following constraints define XTA:

1. main € R
program)

2. For each method M, each virtual «call site
e.m(...) occurring in M, and each class C €

(main denotes the main method in the

SubTypes(StaticType(e)) where StaticLookup(C, m) =

M
(M€ R)A(C € Su)
M eR A
N Sub Types(Param Types(M')) N Sy C Sapr A

SubTypes(ReturnType(M')) N Sy € S A
C e Sy

3. For each method M, and for each “new C()” occurring
in M:
(MeR) = CeSu

4. For each method M in which a read of a field x occurs:
(MGR) = S C Sy

5. For each method M in which a write of a field x occurs:
(M eR) =
(SubTypes(StaticType(z)) N Sa) C Sy

Intuitively, the second constraint refines the corresponding
constraint of RTA by (i) insisting that objects of the target
class C are available in the local set Sy associated with M,
(i3) adding two inclusions that capture a flow of data from
M to M’, and from M’ back to M, and (iii) stating that an
object of type C' (the “this” pointer) is available in M'. The
third constraint refines the corresponding constraint of RTA
by adding the class name C to just the set variable for the
method M. The fourth constraint reflects a data flow from
a field to a method body, and the fifth constraint reflects a
data flow from a method body to a field, taking hierarchy
information and creation point information into account.

2.2.2 Algorithms in the space between RTA and XTA

There is a spectrum of analyses between RTA and XTA. We
have experimented with the following ones:

e CTA: The algorithm CTA uses a distinct set variable
Sc for each class C'. Intuitively, the set variable S¢
unifies the flow information for all methods and fields.
The constraints for CTA can be obtained by adding
the following constraints to the definition of XTA:

1. If a class C defines a method M: Sc = S
2. If a class C defines a field z: Sc¢ = Sa.

e MTA: The algorithm MTA uses a distinct set vari-
able S¢ for each class C, and a set variable S, for
every field z. Intuitively, the set variable Sc¢ unifies
the flow information for all methods (but not fields.)
The constraints for MTA can be obtained by adding
the following constraints to the definition of XTA:

1. If a class C defines a method M: Sc = S

e FTA: The algorithm FTA uses a distinct set variable
Sc for each class C, and a set variable Sys for every
method M. Intuitively, the set variable S¢ unifies the
flow information for all fields (but not methods.) The
constraints for MTA can be obtained by adding the
following constraints to the definition of XTA:

1. If a class C defines a field z: S¢ = S,.

Many other possibilities exist. For example, one could unify
the sets associated with fields in the same class if they have
the same type.

2.2.3 Summary
Let us now summarize the algorithms with which we have
done experiments. For a given program, define:

C : the number of classes in the program
M : the number of methods in the program
F : the number of fields in the program.

In the following table, the first column gives the number of
set variables used to approximate run-time values of expres-
sions.

Number of sets | Algorithm
0 CHA
1 RTA
C CTA
C+F MTA
C+ M FTA
M+ F XTA

All of our new algorithms and also 0-CFA can be executed
in O(n® x C) time, where n is the number of set variables
[28]. We can view 0-CFA as an extension of XTA in the fol-
lowing way. Rather than using just one set variable for each
method, 0-CFA uses one set variable for each argument and
each expression that evaluates to an object, including refer-
ences to objects on the run-time stack. The main problem
for 0-CFA is that stack locations are unnamed in the Java
virtual machine, so it seems necessary to first do a program
transformation that names all the locations in some fashion,
as done in various recent work [41, 38, 21].

The lattice that was shown previously in Figure 1 illustrates
the relationships between the algorithms in terms of cost and
accuracy. Section 5 discusses further how these algorithms
compare to other algorithms.

3. IMPLEMENTATION ISSUES

We implemented several of the new algorithms of Section 2
in the context of Jax, an application extractor for Java [40].
Our implementation relies on “JikesBT” (IBM’s Jikes Byte-
code Toolkit)! for reading in the Java class files that consti-
tute an application, and for creating an internal represen-
tation of the classes in which the string-based references of
the class file format are represented by pointer references.
Jax uses RTA for constructing call graphs, and our new al-
gorithms reuse several important data structures that were
previously designed for RTA. Since the algorithms of Sec-
tion 2 are fairly simple, the amount of new code we had to
write is only about 4000 lines.

The implementation performs the XTA algorithm in an it-
erative, propagation-based style. Three work-lists are asso-
ciated with each program component (i.e., method or field)

!Jikes Bytecode Toolkit is a publically available
class library for manipulating Java class files. See
www .alphaworks.ibm.com/tech/jikesbt.

that keep track of “processed” types that have been prop-
agated onwards from the component to other components,
“current” types that will be propagated onwards in the cur-
rent iteration, and “new” types that are propagated to the
component in the current iteration and that will be propa-
gated onwards in the next iteration.

The FTA and MTA algorithms are implemented by using
a shared set for all the methods and fields in a class, re-
spectively. Note that in the case of MTA (FTA) propaga-
tions between different methods (fields) in the same class
are not needed. However, once a type is propagated to a
method (field) in class C, the other methods (fields) in C'
still have to be revisited because onward propagations from
those methods (fields) may have to take place. Due to time
constraints, we have not completed the implementation of
the CTA algorithm yet.

We use a combination of array-based and hash-based data
structures that allow efficient membership-test operations,
element addition, and iteration through all elements. We
found that it is important to make all of these operations
very efficient. Since the propagation of elements is filtered
by types of method parameters, method return types, and
types of fields, it is very important to efficiently implement
subtype-tests. We use an approach described in [42] that re-
lies on associating two integers with each class, correspond-
ing to a pre-order and a post-order traversal of the class
hierarchy. Using this numbering scheme, the existence of a
subclass-relationship between two classes can be determined
in unit time by comparing the associated numbers.

Applying the algorithms to realistic Java applications forced
us to address several pragmatic issues:

direct method calls. Direct method calls can be modeled
using simple set-inclusions between the sets associated
with the callee and the caller.

arrays. Arrays are modeled as classes with one instance
field that represents all of its elements. A method m
is assumed to read an element from array A if: (i)
an object of type A is propagated to m, and (ii) m
contains an aaload byte code instruction. Similarly,
a method m is assumed to write to A-element if: (i)
an object of type A is propagated to m, and (ii) m
contains an aastore instruction.

exception handling. The use of exception handling may
cause nontrivial flow of types between methods, since
exception objects may skip several stack frames before
being caught. Any approach for tracking this flow of
types precisely is fraught with complexity, and—in our
opinion— unlikely to be very worthwhile, since the
number of types involved is likely to be small (only
subtypes of java.lang.Throwable are involved), and
the hierarchy of user-defined exception types is often
not very large or complex. Therefore, we use a single,
global set of types that represents the run-time type of
all expressions in the entire program whose static type
is a subtype of java.lang.Throwable, and use that set
to resolve all method calls on exception objects.

stack examination. While conducting experiments, we

observed that better precision along with greater effi-
ciency can be achieved by examining the instruction
that follows a method call (or field read). If this in-
struction is of the form checkcast C, an exception is
thrown unless the run-time type of the object returned
by the method) is a subtype of C. In such cases, we
can exclude from the types being propagated to the
calling method any type that is not a subtype of C.
Similarly, if the instruction that follows a method call
is a stack pop operation, we can avoid propagating
from the callee to the caller altogether. These situa-
tions occur frequently in the presence of polymorphic
containers such as vectors and hash-tables.

incomplete applications. While we have described how
our algorithms construct call graphs for complete ap-
plications with a single entry point, any realistic im-
plementation must deal with situations where applica-
tions extend classes in the standard libraries, call li-
brary methods, and override library methods that are
invoked from outside the application. Our basic ap-
proach is to associate a single set of objects Sg with
the “outside world” (i.e., all code outside the applica-
tion). This set interacts with the other sets as follows:

o If a method m calls a method m’ outside the ap-
plication, we propagate (Sm, N ParamTypes(m'))
to Sg. For virtual methods, any types passed via
the this pointer are also propagated to Sk.

e Whenever a method m writes to a field f outside
the application, we propagate (Sm N Type(f)) to
Se. Read-accessing an external field causes simi-
lar flow in the opposite direction.

e If a virtual method in the application overrides
an external method m, we make the conservative
assumption that the external code contains a call
tom’. Our approach is to use the set Sg to deter-
mine the set of methods in the application that
may be invoked by the dynamic dispatch mecha-
nism. For each such method m’, we use the pa-
rameter types and return types of m’ to model
the flow of objects between Sg and S,,.

We have observed that the above scheme is in cer-
tain cases unnecessarily conservative, because objects
passed to a library method do not always pollute the
global set Sg. Based on these observations, our imple-
mentation incorporates two refinements to the above
scheme:

e For calls to certain methods in the standard li-
braries, we know that propagation to the set
SE is unnecessary, because the objects passed
to the method will not be the receiver of sub-
sequent method calls. The constructor of class
java.lang.0Object is a prime example in this cat-
egory. We have identified about 25 heavily-called
library methods for which calls can be ignored.

e A separate set of objects Sc can be associ-
ated with an external class C in cases where
the objects passed to methods in C' only inter-
act with the other external classes in limited
ways. For example, we can associate a distinct
set with class java.util.Vector. Care has to

benchmark # classes # methods | #fields (reference-typed) # virtual call sites
Hanoi 44 379 232 (107) 285
Ice Browser 76 761 500 (253) 922
mBird 2,050 17,946 6739 (4284) 3,269
Cindy 468 4,449 3075 (1677) 5,085
CindyApplet 468 4,449 3075 (1677) 2,502
eSuite Sheet 588 5,590 4305 (1412) 4,459
eSuite Chart 733 8,302 5448 (2141) 8,074
javaFig 1.43 161 2,108 1526 (971) 3,482
BLOAT 282 2,677 1255 (541) 6,623
JAX 6.3 309 2,754 1252 (579) 3,836
javac 210 1,512 1107 (406) 3,621
Res. System 2,332 21,495 12487 (6334) 23,640
Table 1: Benchmark characteristics.

be taken, because objects may flow from this
class to other external classes (e.g., due to a call
to java.util.Vector.elements()). There are
three other collection classes that we modeled
similarly.

reflection and dynamic loading. Nearly all of our
benchmarks use dynamic loading and reflection. Since
it is impossible for a static analysis to determine which
classes may be accessed using these mechanisms, we
have to manually supply the analysis with informa-
tion about where objects are created. Issues related to
whole-program analysis in the presence of these mech-
anisms are discussed at length in [39)].

4, RESULTS

For a range of benchmarks, we have measured five charac-
teristics of the results of MTA, FTA, and XTA, with the
results of RTA as a baseline:

e the number of types available per method,
e the number of reachable methods,
e the number of edges in the call graphs,

e the number monomorphic and polymorphic call sites,
and

e the running times.

Of particular interest is the classification of call sites into
monomorphic and polymorphic ones, and we provide a de-
tailed study of how our algorithms improve on RTA. While
the number of reachable methods decreases little, we have
found significant reductions in the number of edges in the
constructed call graphs for several of the benchmarks. More
importantly, we found a significant increase in the number
of monomorphic call sites when moving from RTA to, espe-
cially, XTA.

4.1 Benchmark characteristics

Table 1 lists the benchmark applications that we used to
evaluate our algorithm, and provides a number of relevant
statistics for each of them. These benchmarks cover a wide
spectrum of programming styles and are publically available
(except for Mockingbird and Reservation System).

Hanoi is an interactive applet version of the well-known
“Towers of Hanoi” problem, and is shipped with Jax. ICE
Browser? is a simple internet browser. Mockingbird (mBird)
is a proprietary IBM tool for multi-language interoperabil-
ity. It relies on, but uses only limited parts of, several large
class libraries (including Swing, now part of JDK 1.2, and
IBM’s XML parser). Cinderella® is an interactive geome-
try tool used for education and self-study in schools and
universities. CindyApplet is an applet that allows users to
interactively solve geometry exercises that were created with
Cinderella. It is contained in the same class file archive as
Cinderella. Lotus eSuite Sheet and Lotus eSuite Chart are
interactive spreadsheet and charting applets, which are ex-
amples shipped with Lotus’ eSuite* productivity suite (De-
vPack 1.5 version). JavaFig® (version 1.43 (22.02.99)) is a
Java version of the xfig drawing program. BLOAT® is a
byte-code optimizer developed at Purdue University. Ver-
sion 6.3 of Jax itself was used as a benchmark. javac’ is the
SPEC JVM 98 version Sun’s javac compiler. Our largest
benchmark, Reservation System, is an interactive front-end
for an airline, hotel, and car rental reservation system de-
veloped by an IBM customer, and consists of approximately
325,000 lines of Java source code.

Table 1 shows the number of classes, methods, and fields for
each of the benchmarks. The table also shows the number
of reference-typed fields in the application (i.e., fields whose
type is a reference to a class), which is indicated between
brackets in the “fields” column. Our system creates one

2See www.icesoft.no.

3See www.cinderella.de.

1See www.esuite.lotus.com.

5 See tech-www.informatik. uni-hamburg.de/applets/javafig.
6See www. cs.purdue.edu/homes/hosking/pjama.html.
"See www . specbench.org.

set for each reference-typed field that is accessed from a
reached method. Hence, this number is a bound on the
number of field-sets that are created. Table 1 also shows the
number of virtual call sites in each benchmark. For reasons
we will explain shortly, virtual calls to methods outside the
application are excluded from this statistic.

4.2 Setsizes

Statistics such as the number of reached methods and the
percentage of uniquely resolved method calls are the mea-
sures by which call graph construction algorithms are tradi-
tionally compared. Since such measures all depend on the
number of types available in a method, it is interesting to
examine the average set of types available in each method
as a more “absolute” measure. Table 4.2 shows, for each of
the algorithms we implemented, the total number of types
(instantiated classes), the average number of types available
in each method body, and the latter as a percentage of the
former. In the case of RTA, which uses only one set, the
average number of types per method is is the same as the
total number of types.

Table 2 tells us several interesting things:

e There are only a very few cases where RTA determines
a larger total number of types than the other algo-
rithms.

e Using MTA, an average 57.8% of all types is available
in each method, a roughly two-fold reduction over RTA
(where all types are available in each method). FTA
does much better than MTA and determines that, on
average, only 15.6% of all types are available in each
method. XTA is better still, with 12.3% of the types
being available on average.

While these reductions in average set size are substantial, it
seems that there is still room for improvement. For Reserva-
tion System, we compute that, on average, about 200 types
are available in each method when XTA is used. This num-
ber seems high, considering that the average size of a method
is in the order of 15-20 lines of source code.

4.3 Reached methods

Table 3 shows, for each of the benchmarks, the number of
methods in the call graphs computed by RTA, MTA, FTA,
and XTA. Also shown are the percentage reductions of MTA,
FTA, and XTA relative to RTA.

These statistics do not include abstract methods, which do
not have a body, do not call other methods, and which can-
not be the target of a dynamic dispatch. The rationale for
excluding abstract methods has to do with the following
observation: In cases where a virtual method m is called,
but where m cannot be the target of a dynamic dispatch,
it is possible to remove the m’s body and make m into an
abstract method without affecting program behavior (in
fact, this is one of the optimizations performed by Jax).
Therefore, counting abstract methods as first-class citizens
makes it impossible to distinguish between call graphs that
contain the same set of method headers, but different sets of

method implementations. One could of course provide de-
tailed statistics that include the number of abstract meth-
ods as well as the number of non-abstract methods, but we
do not consider this additional detail to be very worthwhile.

In summary, we find that:

e MTA computes call graphs with 0 to 2.3% fewer method
definitions than RTA (0.6% on average),

e FTA computes call graphs with 0 to 2.7% fewer method
definitions than RTA (1.4% on average), and

e XTA computes call graphs with 0 to 3.0% fewer method
definitions than RTA (1.6% on average).

4.4 Call graph edges

The next measure we study is the number of edges in the
computed call graphs. In determining this number, we count
each direct call site (i.e., a call that does not involve a dy-
namic dispatch) as one, and each virtual call site as the num-
ber of “target” methods that may be invoked by a dynamic
dispatch from that site. Multiple calls to the same method
m within a method body are counted separately (although
our analyses will treat each of these calls similarly).

Since we do not know whether or not classes outside the
application have been instantiated, it is not possible to ac-
curately determine the number of targets of calls to virtual
methods outside the application. Therefore, in performing
these measurements, any calls to methods outside the appli-
cation are ignored.

The results are shown in Table 4. It is clear that several
of the new algorithms do eliminate substantially more edges
than RTA does. The results can be summarized as follows:

e MTA computes call graphs with 0 to 4.7% fewer edges
than RTA (1.6% on average),

e FTA computes call graphs with 0.1% to 26.7% fewer
edges than RTA (6.6% on average), and

e XTA computes call graphs with 0.3% to 29.0% fewer
edges than RTA (7.2% on average).

4.5 Uniquely resolved call sites

One of the key goals in the optimization of object-oriented
programs is to find “monomorphic” virtual call sites from
which only a single method can be invoked. Such call sites
can be transformed into direct calls, and subsequently in-
lined and optimized further.

Table 5 classifies the virtual call sites in each of the bench-
mark applications as “unreached” (i.e., occurring in an un-
reached method), “monomorphic” (i.e, having a single tar-
get), or “polymorphic” (i.e., having multiple targets). Calls
to methods outside the application are ignored again, since
we cannot accurately determine the number of targets in
such cases. We can conclude the following from Table 5:

e The percentage of virtual call sites that is unreached
varies significantly from one benchmark to another.

benchmark | RTA MTA FTA XTA

#types | #types |#types/imethod (avg) #types | #types/imethod (avg) #types | #types/method (avg)
Hanoi 19 19 7.1 37.3% 19 3.8 20.0% 19 2.8 14.8%
Ice Browser 59 59 234 39.7% 59 7.1 12.0% 59 4.5 7.7%
mBird 178 178 90.0 50.6% 178 13.3 7.5% 178 11.6 6.5%
Cindy 238 237 153.2 64.6% 237 36.5 15.4% 237 28.3 11.9%

CindyApplet 105| 104| 64.6 62.1%| 104| 17.2| 165%| 104| 139 13.4%
eSuite Sheet | 174| 174| 96.0 55.2%| 174 211 12.1%| 174 13.8 7.9%
eSuite Chart 303| 303 2241 74.0%| 303| 48.6| 16.0%| 303| 24.0 7.9%
javaFig 1.43 110| 110 73.4 66.7%| 110/ 21.2| 19.3%| 110| 17.1| 155%

BLOAT 209 209| 163.8 78.4% 209 447 21.4% 209 42.4 20.3%
JAX 6.3 221 221 70.9 32.1% 221 10.0 4.5% 221 8.3 3.8%
javac 171 171, 106.4 62.2% 171 39.9 23.3% 171 355 20.8%
Res. System | 1,174| 1174, 833.8 71.0%| 1172 228.2 19.5%] 1172 200.0 17.1%
AVERAGE 57.8% 15.6% 12.3%

Table 2: Average set size per method for RTA, MTA, FTA, and XTA on each of the benchmarks.

benchmark RTA MTA FTA XTA (RTA-MTA)IRTA (RTA-FTA)/RTA (RTA-XTA)RTA
Hanoi 183 179 178 178 2.2% 2.7% 2.7%
Ice Browser 644 644 643 643 0.0% 0.2% 0.2%
mBird 1,862 1,855| 1,825| 1,824 0.4% 2.0% 2.0%
Cindy 2,437 2,412 | 2,404 2,403 1.0% 1.4% 1.4%
CindyApplet 1,237 1,209 1,203| 1,202 2.3% 2.7% 2.8%
eSuite Sheet 2,414 2,400, 2,385| 2,367 0.6% 1.2% 1.9%
eSuite Chart 4,428 4,419| 4,313| 4,296 0.2% 2.6% 3.0%
javaFig 1.43 1,441 1,435| 1,413, 1,411 0.4% 1.9% 2.1%
BLOAT 2,143 2,142 2,120| 2,091 0.0% 1.1% 2.4%
JAX 6.3 1,900 1,894 1,894| 1,892 0.3% 0.3% 0.4%
javac 1,366 1,366 1,366| 1,366 0.0% 0.0% 0.0%
Res. System 11,232 | 11,227 | 11,204 | 11,201 0.0% 0.2% 0.3%
AVERAGE 0.6% 1.4% 1.6%

Table 3: Number of methods in the call graphs computed by RTA, MTA, FTA, and XTA on each of the benchmarks.

benchmark RTA MTA FTA XTA (RTA-MTA)/RTA (RTA-FTA)RTA (RTA-XTA)/RTA
Hanoi 400 386 382 379 3.5% 4.5% 5.3%
Ice Browser 1,594 1,594 1,593 1,588 0.0% 0.1% 0.4%
mBird 8,061 8,036 7,772 7,760 0.3% 3.6% 3.7%
Cindy 15,457 14,729 11,331 10,967 4.7% 26.7% 29.0%
CindyApplet 5223| 4,990 4,399| 4,347 4.5% 15.8% 16.8%
eSuite Sheet 7,171 7,149 7,093 7,071 0.3% 1.1% 1.4%
eSuite Chart 14,669 14,648 13,857 13,771 0.1% 5.5% 6.1%
javaFig 1.43 5,128 5,064 4,963 4,961 1.2% 3.2% 3.3%
BLOAT 19,384 18,772 16,704 16,672 3.2% 13.8% 14.0%
JAX 6.3 7,053 7,018 6,904 6,895 0.5% 2.1% 2.2%
javac 13,154 13,154 13,115 13,113 0.0% 0.3% 0.3%
Res. System 46,130 45,944 44,792 44,412 0.4% 2.9% 3.7%
AVERAGE 1.6% 6.6% 7.2%

Table 4: Number of edges in the call graphs computed by RTA, MTA, FTA, and XTA on each of the benchmarks.

benchmark RTA MTA FTA XTA
unreached mono poly unreached mono poly unreached mono poly unreached mono poly
Hanoi 34.0% 61.6% 4.4% 34.0% 62.3% 3.7% 34.0% 62.7% 3.3% 34.0% 62.7% 3.3%
Ice Browser 4.0% 91.4% 4.7% 4.0% 91.4% 4.7% 4.0% 91.4% 4.7% 4.0% 91.6% 4.5%
mBird 14.2% 73.4% 12.3% 14.2% 73.5% 12.2% 174% 70.8% 11.8% 174% 70.9% 11.7%
Cindy 49.3% 45.0% 5.7% 49.5% 45.0% 5.5% 49.4% 45.2% 5.4% 49.4% 45.5% 5.0%
CindyApplet 72.0% 24.6% 3.4% 72.1% 24.6% 3.3% 72.3% 24.4% 3.3% 72.3% 24.5% 3.2%
eSuite Sheet 28.1% 68.4% 3.5% 28.1% 68.4% 3.5% 28.1% 69.1% 2.8% 28.2% 69.1% 2.8%
eSuite Chart 13.3% 76.6% 10.1% 13.3% 76.6% 10.1% 15.7% 75.7% 8.7% 15.7% 76.0% 8.3%
javaFig 1.43 9.1% 87.1% 3.9% 9.1% 87.4% 3.6% 9.7% 87.2% 3.1% 9.7% 87.2% 3.1%
BLOAT 6.6% 824% 11.1% 6.6% 82.4% 11.1% 6.7% 82.5% 10.8% 7.0% 822% 10.8%
JAX 6.3 18.7% 75.9% 5.4% 18.9% 75.7% 5.4% 18.9% 76.6% 4.5% 18.9% 76.8% 4.3%
javac 3.0% 77.6% 19.4% 3.0% 77.6% 19.4% 3.0% 77.6% 19.4% 3.0% 77.7% 19.3%
Res. System 18.1% 72.0% 9.9% 18.1% 72.2% 9.7% 18.2% 73.1% 8.7% 18.2% 74.0% 7.9%
AVERAGE 7.8% 7.7% 7.2% 7.0%
Table 5: Classification of virtual call sites according to the RTA, MTA, FTA, and XTA algorithms, for each of the

benchmarks.

For example, only 3.0% of the virtual call sites in javac
are unreached, whereas 72.0% of the virtual call sites
in CindyApplet are unreached.

e Restricting our attention to reached virtual call sites,
we find that all of the algorithms classify a vast ma-
jority of the call sites as monomorphic. Specifically,
we find that:

— RTA classifies between 3.4% and 19.4% of all call
sites as polymorphic (7.8% on average).

— MTA classifies between 3.3% and 19.4% of all call
sites as polymorphic (7.7% on average).

— FTA classifies between 2.8% and 19.4% of all call
sites as polymorphic (7.2% on average).

— XTA classifies between 2.8% and 19.3% of all call
sites as polymorphic (7.0% on average).

In summary, we can conclude that RTA does a very good
job in classifying virtual call sites as monomorphic. For
the benchmarks we study in this paper, only 7.8% of all
virtual call sites are classified as polymorphic (on average),
which leaves little room for improvement. XTA classifies an
average of 7.0% of all virtual call sites as polymorphic.

4.6 Detailed comparison

Table 6 shows a detailed comparison of the call graphs con-
structed by RTA and MTA /FTA /XTA, for each of the bench-
marks. Each call site in the RTA call graph is classified as
one of the following:

e mono-to-unreached: virtual call sites that were re-
solved to a single target method in the RTA call graph,
and that became unreached in the MTA/FTA/XTA
call graphs (due to the fact that the method contain-
ing the call site in question became unreachable).

e mono-to-mono: virtual call sites that were resolved
to a single target method in both the RTA and the
MTA/FTA/XTA call graphs.

e poly-to-unreached: virtual call sites that were re-
solved to more than 1 target in the RTA call graph,

and that became unreached in the MTA/FTA/XTA
call graphs.

e poly-to-mono: virtual call sites that were resolved
to more than 1 target in the RTA call graph, but to a
unique target in the MTA /FTA/XTA call graphs.

e poly-to-poly: virtual call sites that were resolved
to more than 1 target in both the RTA and the
MTA/FTA/XTA call graphs.

To determine how much more accurate the MTA /FTA /XTA
algorithms are when compared to RTA in relative terms, we
can observe the following;:

e Any call sites determined to be unreachable by
MTA/FTA/XTA have no impact on an application’s
performance. After all, they are never executed.

e Any call sites determined to be monomorphic by RTA
will not be improved by a better algorithm (because
they either stay monomorphic, or they become un-
reached).

Hence, what remains are the poly-to-mono and the poly-
to-poly categories. The ratio between these categories re-
flects the relative improvement of MTA /FTA /XTA over RTA.

As an example, consider Reservation System, our largest
benchmark. This application contains a total of 23,640 vir-
tual call sites. If we subtract (i) all call sites that are de-
termined to be monomorphic by RTA, and (ii) all call sites
that are determined to be unreachable by XTA, we are left
with 2,824 call sites that are determined to be polymorphic
by RTA. XTA determines that 569 of these call sites are, in
fact, monomorphic. Hence, XTA is capable of devirtualizing
569/2,824 = 20.1% of the call sites deemed polymorphic by
RTA. If we apply this line of reasoning to Table 6, we find
that:

e MTA finds a single target for up to 15.8% of the call
sites deemed polymorphic by RTA (2.9% on average).

benchmark mono->unreached mono->mono poly->unreached poly->mono poly->poly
Hanoi 0 (MTA) 266 (MTA) 0 (MTA) 3 (MTA) 16 (MTA)
0 (FTA) 266 (FTA) 0 (FTA) 5 (FTA) 14 (FTA)
0 (XTA) 266 (XTA) 0 (XTA) 5 (XTA) 14 (XTA)
Ice Browser 0 (MTA) 877 (MTA) 0 (MTA) 0 (MTA) 45 (MTA)
1 (FTA) 876 (FTA) 0 (FTA) 0 (FTA) 45 (FTA)
1 (XTA) 876 (XTA) 0 (XTA) 2 (XTA) 43 (XTA)
mBird 0 (MTA) 2,807 (MTA) 0 (MTA) 4 (MTA)| 458 (MTA)
141 (FTA) 2,666 (FTA) 8 (FTA)| 12 (FTA)| 442 (FTA)
141 (XTA) 2,666 (XTA) 8 (XTA)| 16 (XTA)| 438 (XTA)
Cindy 8 (MTA) 4,510 (MTA) 0 (MTA) 9 (MTA) 548 (MTA)
11 (FTA) 4,507 (FTA) 0 (FTA)| 24 (FTA) 543 (FTA)
14 (XTA) 4,504 (XTA) 0 (XTA)| 52 (XTA) 515 (XTA)
CindyApplet 8 (MTA) 2,185 (MTA) 3 (MTA) 12 (MTA) 294 (MTA)
21 (FTA) 2,172 (FTA) 3 (FTA) 3 (FTA) 303 (FTA)
25 (XTA) 2,168 (XTA) 3 (XTA)| 14 (XTA) 292 (XTA)
eSuite Sheet 1 (MTA) 4,272 (MTA) 2 (MTA) 0 (MTA) 184 (MTA)
1 (FTA) 4272 (FTA) 2 (FTA) 45 (FTA) 139 (FTA)
2 (XTA) 4271 (XTA) 2 (XTA)| 45 (XTA) 139 (XTA)
eSuite Chart 2 (MTA) 7,186 (MTA) 2 (MTA) 1 (MTA) 883 (MTA)
209 (FTA) 6,979 (FTA) 32 (FTA)| 100 (FTA) 754 (FTA)
217 (XTA) 6,971 (XTA) 32 (XTA)| 135 (XTA) 719 (XTA)
javaFig 1.43 1 (MTA) 3,333 (MTA) 0 (MTA)| 12 (MTA) 136 (MTA)
23 (FTA) 3,311 (FTA) 2 (FTA)| 26 (FTA) 120 (FTA)
25 (XTA) 3,309 (XTA) 2 (XTA)| 26 (XTA) 120 (XTA)
BLOAT 0 (MTA) 5,838 (MTA) 0 (MTA) 2 (MTA) 783 (MTA)
26 (FTA) 5812 (FTA) 0 (FTA) 20 (FTA) 765 (FTA)
58 (XTA) 5,780 (XTA) 0 (XTA)| 20 (XTA) 765 (XTA)
JAX 6.3 11 (MTA) 3,571 (MTA) 0 (MTA) 2 (MTA) 252 (MTA)
11 (FTA) 3571 (FTA) 0 (FTA) 46 (FTA) 208 (FTA)
11 (XTA) 3571 (XTA) 0 (XTA)| 55 (XTA) 199 (XTA)
javac 0 (MTA) 2,898 (MTA) 0 (MTA) 0 (MTA) 723 (MTA)
0 (FTA) 2,898 (FTA) 0 (FTA) 0 (FTA) 723 (FTA)
0 (XTA) 2,898 (XTA) 0 (XTA) 2 (XTA) 721 (XTA)
Res. System 4 (MTA)| 20,797 (MTA) 2 (MTA)| 48 (MTA)| 2,789 (MTA)
22 (FTA)| 20,779 (FTA) 14 (FTA)| 324 (FTA)| 2,501 (FTA)
23 (XTA)| 20,778 (XTA) 15 (XTA)| 569 (XTA)| 2,255 (XTA)

Table 6: Detailed comparison of the call graphs constructed by RTA and by MTA/FTA/XTA for each of the
benchmarks.

benchmark RTA MTA FTA XTA MTA/RTA FTA/RTA XTA/RTA
Hanoi 0.2 1.1 1.0 1.2 55 5.0 6.0
Ice Browser 0.4 1.7 2.4 2.1 4.3 6.0 5.3
mBird 1.1 4.8 5.2 5.8 4.4 4.7 5.3
Cindy 2.0 10.8 8.7 9.3 5.4 4.4 4.7
CindyApplet 0.7 3.0 24 2.6 4.3 34 3.7
eSuite Sheet 1.5 5.4 6.4 6.9 3.6 4.3 4.6
eSuite Chart 7.0 33.0 24.3 19.9 4.7 35 2.8
javaFig 1.43 0.8 3.4 4.5 4.9 4.3 5.6 6.1
BLOAT 1.8 13.1 7.9 8.7 7.3 4.4 4.8
JAX 6.3 1.2 3.4 3.2 3.5 2.8 2.7 2.9
javac 1.2 12.1 8.9 10.0 10.1 7.4 8.3
Res. System 445 329.4 309.1 250.2 7.4 6.9 5.6
AVERAGE 5.3 4.9 5.0

Table 7: Running times (in seconds) of the RTA, XTA, and YTA algorithms on each of the benchmarks.

10

e FTA finds a single target for up to 26.3% of the call
sites deemed polymorphic by RTA (9.9% on average),
and

e XTA finds a single target for up to 26.3% of the call
sites deemed polymorphic by RTA (12.5% on average).

4.7 Running times

Table 7 shows the running time for the RTA, MTA, FTA,
and XTA algorithms on each of the benchmarks®. In sum-
mary, we found that the XTA algorithm is up to 8.3 times
slower than RTA. The correlation between the slowdown
factor and program size appears to be weak: XTA is only
5.0 times slower than RTA on Reservation System. Based
on our experiences we believe that, on a large machine, our
algorithms should have no problems with million-line pro-
grams.

Surprisingly, the MTA and FTA algorithms were in sev-
eral instances somewhat slower than XTA. Due to time con-
straints, we have not been able to analyze the source of these
slowdowns. A possible explanation is that the increased
number of types available in a method results in additional
work in resolving the call sites within that method. How-
ever, it seems unlikely that this would negate all the benefits
from a decreased number of propagations between sets. We
would expect an efficient implementation of MTA /FTA (e.g,
using techniques by Fahndrich et al [13]) to be significantly
more efficient than XTA.

4.8 Assessment

Our experiments have demonstrated that it is feasible to
construct propagation-based call graph construction algo-
rithms that use more than a single set of objects to approx-
imate the run-time values of expressions. Regarding the
precision of these algorithms, we have observed that:

e The algorithms are slightly more accurate than RTA
in terms of the number of reached methods.

e In several cases, the algorithms are significantly more
accurate than RTA in terms of the number of edges
between the methods in the call graph.

e More importantly, the reduction in the number of edges
is to a significant extent derived from call sites that are
classified as polymorphic by RTA, but as monomorphic
call sites by our new algorithms.

With respect to the number of sets one should use, we con-
clude that:

e Using a distinct set for each method in the program is
useful, because it improves accuracy.

e Using a unified set to represent the fields in a class
does not lead to a great loss of accuracy.

8Measurements taken on an IBM ThinkPad 600E PC with a
300Mhz processor and 288MB of main memory. We used the
Sun JDK 1.1.8 VM with the just-in-time compiler developed
at the IBM Tokyo Research Laboratory [22]. None of the
benchmarks required more than 200MB of heap space.

11

In light of the improved results of XTA over FTA in some
cases, we consider the XTA algorithm the best choice. If
heap space is at a premium, FTA offers reduced space con-
sumption in exchange for a slight loss of precision. MTA
seems a poor choice since it computes call graphs that have
roughly the same precision as those computed by RTA, but
it is more complex to implement. Although we do not have
data for CTA, we know it is less accurate than MTA, and
the same arguments can be made to argue why it is not a
very good choice.

5. RELATED WORK
5.1 Propagation-based algorithms

The idea of doing a propagation-based program analysis
with one set variable for each expression is well known.
This so-called monovariant style of analysis can be done
in O(n®) time where n is the number of expressions. When
the goal is to construct a call graph approximation in object-
oriented or functional languages, then that style of analysis
is known as 0-CFA [33], and when the goal is to do points-
to analysis for C programs, then that style of analysis is
often referred to as “Andersen’s analysis” [3, 31]. 0-CFA
has been implemented for a variety of languages, includ-
ing dynamically-typed object-oriented languages [29, 28, 1],
functional languages [33, 19], and statically-typed object-
oriented languages, including Java [11, 38, 21]. The expe-
rience has been that the effectiveness of the approaches is
language-dependent, and perhaps even programming-style
dependent.

The idea of polyvariance is to associate more than one set
variable with each expression, and thereby obtain better pre-
cision for each call site. Polyvariant analysis was pioneered
by Sharir and Pnueli [32], and Jones and Muchnick [25]. In
the 1990s the study of polyvariant analysis has been inten-
sive. Well known are the k-CFA algorithms of Shivers [33],
the poly-k-CFA of Jagannathan and Weeks [24], and the
cartesian product algorithm of Agesen [1, 2]. A particularly
simple polyvariant analysis was presented by Schmidt [30].
Frameworks for defining polyvariant analyses have been pre-
sented by Stefanescu and Zhou [36], Jagannathan and Weeks
[23], and Nielson and Nielson [26]. Successful applications
of polyvariant analysis include the optimizing compiler of
Chambers et al [17], and of Hendren et al [12], and the
partial evaluator of Consel [8]. As far as we know, these
polyvariant approaches have not been tried on programs of
300,000+ lines of code.

5.2 Algorithms not based on propagation
Calder and Grunwald [7] investigated a particularly simple
approach to inlining based on the unique name measure,
that is, inlining in cases where there statically is a unique
target for a given call site.

A variation of 0-CFA is the unification-based approach, also
known as the equality-based approach, pioneered for call
graph construction by [20], and later adapted to points-to
analysis for C by Steensgaard [35]. A comparison of An-
dersen’s analysis and Steensgaard’s analysis has been pre-
sented by Shapiro and Horwitz [31]. The unification-based
approach is cheaper and less precise than the 0-CFA-style
approach.

A broader comparison was given by Foster, Fahndrich,
and Aiken [15]; they compared both polymorphic ver-
sus monomorphic and equality-based versus inclusion-based
points-to analysis. Their main conclusion is that the
monomorphic inclusion-based algorithm is a good choice be-
cause 1) it usually beats the polymorphic equality-based
algorithm, 2) it is not much worse than the polymorphic
inclusion-based algorithm, and 3) it is simple to implement
because it avoids the complications of polymorphism.

An experimental comparison of RTA and a unification-based
approach to call graph construction was carried out by De-
Fouw, Grove, and Chambers [11]. Their paper presents a
family of algorithms that blend propagation and unification,
thereby in effect dynamically determining which set vari-
ables to unify based on how propagation proceeds. Members
of the family include RTA, 0-CFA, and a number of algo-
rithms with cost and precision in between. Our algorithms,
by contrast, uses static criteria to decide which set variables
are to be merged, and then performs the usual propagations
between them. This is potentially a poorer choice, both for
accuracy and analysis time, than the approach in [11]. Our
static criterion for merging set variables stems from our de-
sire to keep the algorithm simple, in particular by avoiding
analysis of the run-time stack.

Ashley [4] also presented an algorithm that blends unifica-
tion and propagation, in the setting of Scheme.

6. FUTURE WORK

A comparison of our algorithms, 0-CFA, and the variations
presented by Sundaresan et al. [38] and Ishizaki et al. [21]
seems to require a framework in which a program transfor-
mation names all stack locations. This would be a signifi-
cant extension to our framework so it may be easier to do a
comparison in the settings of [38, 21]. Questions that could
be addressed by such a comparison include: 1) does 0-CFA
use significantly more time and space than our algorithms
for large benchmarks? 2) is the potential extra precision of
0-CFA worth the increased cost? and 3) when used in a
compiler for devirtualization of monomorphic calls, does 0-
CFA give significantly better speedups than our algorithms?
Answers may well shed more light on which algorithm to
choose. Perhaps 0-CFA needs to be a fair bit better than
the other algorithms before it becomes tempting to imple-
ment the program transformation that enables 0-CFA for
Java bytecodes.

While adding Hindley-Milner polymorphism seems not to
be worthwhile [15], we have conducted some initial exper-
iments with the use of data-polymorphism. The idea is
well known: treat each distinct allocation site as a separate
class, and keep the fields in these artificial classes distinct
[27, 18]. Similarly, distinct sets may be used when meth-
ods are invoked on objects of the same type but allocated
at different sites. Data-polymorphism has the potential of
significantly increasing the cost (more elements have to be
propagated, and the number of distinct sets may increase
as well). However, accuracy may improve as well because
unrelated instantiations of the same type are kept separate,
thereby leading to a more precise analysis of their fields.

Acknowledgments

12

We are grateful to Aldo Eisma, David Grove, Tony Hosking,
and especially Craig Chambers for useful discussions and
feedback on drafts of this paper. The anonymous OOPSLA
referees also provided many helpful suggestions.

Palsberg is supported by a National Science Foundation Fac-
ulty Early Career Development Award, CCR-9734265, and
by IBM.

7. REFERENCES

[1] AcEseN, O. Constraint-based type inference and
parametric polymorphism. Proceedings of the First
International Static Analysis Symposium (SAS’94)
(September 1994), 78-100. Springer-Verlag LNCS vol. 864.

[2

AGESEN, O. Concrete Type Inference: Delivering
Object-Oriented Applications. PhD thesis, Stanford
University, December 1995. Appeared as Sun Microsystems
Laboratories Technical Report SMLI TR-96-52.

3

ANDERSEN, L. O. Self-applicable C program specialization.
In Proceedings of PEPM’92, Workshop on Partial
Evaluation and Semantics-Based Program Manipulation
(June 1992), pp. 54-61. (Technical Report
YALEU/DCS/RR-909, Yale University).

[4] AsHLEY, J. M. A practical and flexible flow analysis for
higher-order languages. In Proceedings of POPL’96, 23nd
Annual SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (1996), pp. 184-194.

[5] BacoN, D. F. Fast and Effective Optimization of Statically
Typed Object-Oriented Languages. PhD thesis, Computer
Science Division, University of California, Berkeley, Dec.
1997. Report No. UCB/CSD-98-1017.

[6] BAacoN, D. F., AND SWEENEY, P. F. Fast static analysis of
C++ virtual function calls. In Proceedings of the Eleventh
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’96) (San
Jose, CA, 1996), pp. 324-341. SIGPLAN Notices 31(10).

[7] CALDER, B., AND GRUNWALD, D. Reducing indirect
function call overhead in C++ programs. Conference
Record of the Twenty-First ACM Symposium on Principles
of Programming Languages (January 1994), 397-408.

8

CoNsEL, C. A tour of Schism: A partial evaluation system
for higher-order applicative languages. In Proceedings of
PEPM’93, Second ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation
(1993), pp. 145-154.

[9] DEAN, J., AND CHAMBERS, C. Optimization of
object-oriented programs using static class hierarchy
analysis. Tech. Rep. 94-12-01, Department of Computer
Science, University of Washington at Seattle, December
1994.

[10] DEAN, J., GROVE, D., AND CHAMBERS, C. Optimization of
object-oriented programs using static class hierarchy
analysis. In Proceedings of the Ninth European Conference
on Object-Oriented Programming (ECOOP’95) (Aarhus,
Denmark, Aug. 1995), W. Olthoff, Ed., Springer-Verlag,

pp. 77-101.

DeFouw, G., GROVE, D., AND CHAMBERS, C. Fast
interprocedural class analysis. In Conference Record of the
Twenty-Fifth ACM Symposium on Principles of
Programming Languages (San Diego, CA, January 1998),
pp. 222-236.

11]

[12] EmMaMm1, M., GHIvA, R., AND HENDREN, L. J.
Context-sensitive interprocedural points-to analysis in the
presence of function pointers. In Proceedings of ACM
SIGPLAN 199/ Conference on Programming Language

Design and Implementation (1994), pp. 242-256.

(13]

(14]

(15]

[16]

(17)

(18]

(19]

20]

(21]

(22]

(23]

[24]

[25]

[26]

27]

FAHNDRICH, M., AND AIKEN, A. Program analysis using
mixed term and set constraints. In Proceedings of SAS’97,
International Static Analysis Symposium (1997),
Springer-Verlag (LNCS), pp. 114-126.

FAHNDRICH, M., FOSTER, J. S., SU, Z., AND AIKEN, A.
Partial online cycle elimination in inclusion constraint
graphs. In Proceedings of ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation
(1998), pp. 85-96.

FOSTER, J. S., FAHNDRICH, M., AND AIKEN, A.
Polymorphic versus monomorphic flow-insensitive points-to
analysis for C. In Proceedings of SAS 2000, 7th Static
Analysis Symposium (2000), J. Palsberg, Ed., pp. 175-198.

GOLDBERG, A., AND ROBSON, D. Smalltalk-80—The
Language and its Implementation. Addison-Wesley, 1983.

GROVE, D., DEFouw, G., DEAN, J., AND CHAMBERS, C.
Call graph construction in object-oriented languages. In
Proceedings of the Twelfth Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’97) (Atlanta, GA, 1997),

pp. 108-124. SIGPLAN Notices 32(10).

GROVE, D., DEFouw, G., DEAN, J., AND CHAMBERS, C.
Call graph construction in object-oriented languages. In
Proceedings of OOPSLA’97, ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and
Applications (1997), pp. 108-124. SIGPLAN Notices
32(10).

HEINTZE, N. Set-based analysis of ML programs. In
Proceedings of ACM Conference on LISP and Functional
Programming (1994), pp. 306-317.

HENGLEIN, F. Dynamic typing. In Proceedings of ESOP’92,
European Symposium on Programming (1992),
Springer-Verlag (LNCS 582), pp. 233-253.

Isnizaki, K., Kawaniro, M., YAsug, T., KomaTsu, H.,
AND NAKATANI, T. A study of devirtualization techniques
for a Java just-in-time compiler. In Proceedings of the
Fifteenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’00) (Minneapolis, Minnesota), 2000).

IsHizaki, K., KAwAHITO, M., YASUE, T., TAKEUCHI, M.,
OGASAWARA, T., SUGANUMA, T., ONODERA, T., KOMATSU,
H., AND NAKATANI, T. Design, implementation, and
evaluation of optimizations in a just-in-time compiler. In
Proceedings of the ACM SIGPLAN JavaGrande
Conference (San Francisco, CA, June 1999).

JAGANNATHAN, S., AND WEEKS, S. A unified treatment of
flow analysis in higher-order languages. In Proceedings of
POPL’95, 22nd Annual SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (1995),

pp- 393-407.

JAGANNATHAN, S., AND WRIGHT, A. Effective flow analysis
for avoiding run-time checks. In Proceedings of SAS’95,
International Static Analysis Symposium (Glasgow,
Scotland, September 1995), Springer-Verlag (LNCS 983).

JONES, N., AND MUCHNICK, S. A flexible approach to
interprocedural data flow analysis of programs with
recursive data structures. In Ninth Symposium on
Principles of Programming Languages (1982), pp. 66-74.

NIELSON, F., AND NIELSON, H. R. Infinitary control flow
analysis: A collecting semantics for closure analysis. In
Proceedings of POPL’97, 24th Annual SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(1997), pp. 332-345.

OxH@J, N., PALSBERG, J., AND SCHWARTZBACH, M. I.
Making type inference practical. In Proceedings of
ECOOP’92, Sixth FEuropean Conference on
Object-Oriented Programming (Utrecht, The Netherlands,
July 1992), Springer-Verlag (LNCS 615), pp. 329-349.

13

(28]

[29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

(37)

(38]

(39]

[40]

[41]

(42]

PALSBERG, J., AND SCHWARTZBACH, M. Object-Oriented
Type Systems. John Wiley & Sons, 1993.

PALSBERG, J., AND SCHWARTZBACH, M. I. Object-oriented
type inference. In Proceedings of OOPSLA’91, ACM
SIGPLAN Sizth Annual Conference on Object-Oriented
Programming Systems, Languages and Applications
(Phoenix, Arizona, October 1991), pp. 146-161.

ScHMIDT, D. Natural-semantics-based abstract
interpretation. In Proceedings of SAS’95, International
Static Analysis Symposium (Glasgow, Scotland, September
1995), Springer-Verlag (LNCS 983).

SHAPIRO, M., AND HORWITZ, S. Fast and accurate
flow-insensitive points-to analysis. In Conference Record of
the Twenty-Fourth ACM Symposium on Principles of
Programming Languages (Paris, France, 1997), pp. 1-14.

SHARIR, M., AND PNUELI, A. Two approaches to
interprocedural data flow analysis. In Program Flow
Analysis, Theory and Applications, S. Muchnick and
N. Jones, Eds. 1981.

SHIVERS, O. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, CMU, May 1991. CMU-CS-91-145.

SRIVASTAVA, A. Unreachable procedures in object oriented
programming. ACM Letters on Programming Languages
and Systems 1, 4 (December 1992), 355-364.

STEENSGAARD, B. Points-to analysis in almost linear time.
In Proceedings of the Twenty-Third ACM Symposium on
Principles of Programming Languages (St. Petersburg, FL,
January 1996), pp. 32-41.

STEFANESCU, D., AND ZHOU, Y. An equational framework
for flow analysis of higher-order functional programs. In
Proceedings of ACM Conference on LISP and Functional
Programming (1994), pp. 318-327.

Su, Z., FAHNDRICH, M., AND AIKEN, A. Projection
merging: Reducing redundancies in inclusion constraint
graphs. In Proceedings of POPL’00, 27nd Annual
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2000), pp. 81-95.

SUNDARESAN, V., HENDREN, L., RAZAFIMAHEFA, C.,
VALLEE-RAI R., LAM, P., GAGNON, E., AND GoDIN, C.
Practical virtual method call resolution for Java. In
Proceedings of the Fifteenth Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’00) (Minneapolis, Minnesota),
2000).

SWEENEY, P. F.; AND Tip, F. Extracting library-based
object-oriented applications. In Proceedings of the Fighth
International Symposium on the Foundations of Software
Engineering (FSE-8) (November 2000). To appear. A
previous version of this paper appeared as IBM Research
Report RC 21596, November 1999.

Tip, F., LAFFRA, C., SWEENEY, P. F., AND STREETER, D.
Practical experience with an application extractor for Java.
In Proceedings of the Fourteenth Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’99) (Denver, CO), 1999),

pp. 292-305. SIGPLAN Notices 34(10).

VALLE-RAI, R., GAGNON, E., HENDREN, L., LAM, P.,
POMINVILLE, P., AND SUNDARESAN, V. Optimizing java
bytecode using the soot framework: Is it feasible? In
Proceedings of CC’00, International Conference on
Compiler Construction (2000), Springer-Verlag (LNCS).

VITEK, J., HOrspooL, R. N.; AND KRrALL, A. Efficient type
inclusion tests. In Proceedings of OOPSLA’97, ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (1997), pp. 142-157.
SIGPLAN Notices 32(10).

Ultra-fast Aliasing Analysis using CLA:
A Million Lines of C Code in a Second’

Nevin Heintze
Research, Agere Systems

(formerly Lucent’s Microelectronics Division)

nch@agere.com

ABSTRACT

‘We describe the design and implementation of a system for
very fast points-to analysis. On code bases of about a million
lines of unpreprocessed C code, our system performs field-
based Andersen-style points-to analysis in less than a second
and uses less than 10MB of memory. Our two main contri-
butions are a database-centric analysis architecture called
compile-link-analyze (CLA), and a new algorithm for imple-
menting dynamic transitive closure. Our points-to analysis
system is built into a forward data-dependence analysis tool
that is deployed within Lucent to help with counsistent type
modifications to large legacy C code bases.

1. INTRODUCTION

The motivation for our work is the following software main-
tenance/development problem: given a million+ lines of C
code, and a proposed change of the form “change the type
of this object (e.g. a variable or struct field) from typel to
type2”, find all other objects whose type may need to be
changed to ensure the “type consistency” of the code base.
In particular, we wish to avoid data loss through implicit
narrowing conversions. To solve this problem, we need a
global data-dependence analysis that in effect performs a
forward data-dependence analysis (Section 2 describes this
analysis, and how it differs from other more standard de-
pendence analyses in the literature.). A critical part of this
dependence analysis is an adequate treatment of pointers:
for assignments such as *p = x we need to determine what
objects p could point to. This kind of aliasing analysis is
commonly called points-to analysis in the literature [4]. The
scalability of points-to analysis has been a subject of inten-
sive study over the last few years [5, 8, 21, 11, 23]. However
the feasibility of building interactive tools that employ some
form of “sufficiently-accurate” pointer analysis on million
line code-bases is still an open question.

The paper has two main contributions. The first is an archi-

! This is a substantially revised version of [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

PLDI 2007 6/01 Snowbird, Utah, USA

© 2001 ACM ISBN 1-58113-414-2/01/06...$5.00

254

Olivier Tardieu
Ecole des Mines, Paris
olivier.tardieu@mines,org

tecture for analysis systems that utilizes ideas from indexed
databases. We call this architecture compile-link-analyze
(CLA), in analogy with the standard compilation process.
This architecture provides a substrate on which we can build
a variety of analyses (we use it to implement a number of
different algorithms for Andersen-style points-to analysis,
dependence analysis and a unification-style points-to anal-
ysis, all using a common database format for representing
programs). It scales to large code bases and supports sepa-~
rate and/or parallel compilation of collections of source files.
Also, its indexing structures support rapid dynamic loading
of just those components of object files that are needed for
a specific analysis, and moreover after reading a component
we have the choice of keeping it in memory or discarding it
and re-reading it if we even need it again (this is used to
reduce the memory footprint of an analysis). We describe
CLA in detail in Section 4, and discuss how it differs from
other approaches in the literature, such as methods where
separate files are locally analyzed in isolation and then the
individual results are combined to analyze an entire code-
base.

The second contribution is a new algorithm for implement-
ing dynamic transitive closure (DT'C). Previous algorithms
in the literature for Andersen’s analysis are based on a tran-
sitively closed constraint graph e.g. [4, 10, 11, 21, 23, 22].
In contrast, our algorithm is based on a pre-transitive graph
i.e. we maintain the graph in a form that is not transitively
closed. When information about a node is requested, we
must perform a graph reachability computation (as apposed
to just looking up the information at the node itself in the
case of a transitively closed constraint graph). A direct im-
plementation of the pre-transitive graph idea is impractical.
We show how two optimizations — caching of reachability
computations, and cycle elimination — yield an efficient al-
gorithm. Cycle elimination has previously been employed
in the context of transitively closed graph and shown to re-
sult in significant improvement [11], however in that work
the cost of finding cycles is non-trivial and so completeness
of cycle detection is sacrificed in order to contain its cost.
However, in the pre-transitive setting, cycle detection is es-
sentially free during graph reachability. We describe our
algorithm in detail in Section 5.

Section 6 presents various measurements of the performance
of our system. For the Lucent code bases for which our sys-
tem is targeted, runtimes are typically less than a second
(800MHz Pentium) and space utilization is about 10MB.

These code bases are in excess of a million lines of code (un-
commented non-blank lines of source, before pre-processing).
On gimp (a publicly available code base of about 440K
lines), our system performs field-based Andersen-style points-
to analysis in about a second (800MHz Pentium) and uses
about 12MB. We also present data to illustrate the space
advantages of CLA.

2. MOTIVATING APPLICATION - DEPEN-
DENCE ANALYSIS

Our points-to analysis system is built into a forward data-
dependence analysis tool that is deployed within Lucent to
help with consistent type modifications to large legacy C
code bases. The basic problem is as follows: suppose that
the range of values to be stored in a variable must be in-
creased to support additional system functionality. This
may require changing the type of a variable, for example
from short to int. To avoid data loss through implicit nar-
rowing conversions, any objects that take values from the
changed variable must also have their types appropriately
altered. Consider the following program fragment.

short x, y, z, *p, v, w;

yEx
z = y+i;
P = &v;
*p = 73
w=1;

If the type of x is changed from short to int, then we may
also have to change the types of y, z, v and probably p, but
we do not need to change the type of w.

Given an object whose type must be changed (the target),
we wish to find all other objects that can be assigned val-
ues from the specified object. This is a forward dependence
problem, as opposed to backwards dependence used for ex-
ample in program slicing [25]. Moreover it only involves
data-dependencies, as opposed to both data-dependencies
and control-dependencies which are needed in program slic-
ing. Our analysis refines forward data-dependence analysis
to reflect the importance of a dependency for the purposes
of consistent type changes. The most important dependen-
cies are those involving assignments such as x = y and z
y+1. On the other hand, an assignment such as z1 = !y
can be ignored, since changing the type of y has no effect
on the range of values of z1, and so the type of z1 does not
need to be changed. Assignments involving operations such
as division and multiplication are less clear. We discuss this
later in the section.

An important issue for the dependence analysis is how to
treat structs. Consider the program fragment involving
structs in Figure 1. If the target is the variable target,
then u, w and s.x are all dependent objects. If the type
of target is changed from short to int, then the types of
u, w and s.x should also be changed. To effect this change
to the type of s.x, we can either change the type of the x
field of the struct S, or we can introduce a new struct type
especially for s. The advantage of the former case is that we
make minimal changes to the program. The disadvantage is
that we also change the type of t.x, and this may not be

255

Table 1: Classification of operations.

Operations | Argument 1 Argument 2
+ - 1,8 ° Strong Strong

* Weak Weak

%, >>, << Weak None
unary: +, - Strong n/a

&, || None None

! None n/a

strictly necessary. However, in practice it is likely that if
we have to change the type of the x field of s, then we will
have to change the type of the x field of £. As a resuls, it
is desirable to treat objects that refer to the same field in
a uniform way. By “same field”, we mean not just that the
fields have the same name, but that they are the same field
of the same struct type.

Since our ultimate use of dependence analysis is to help iden-
tify objects whose type must be changed, we are not just in-
terested in the set of dependent objects. Rather, we need to
give a user information about why one object is dependent on
another. To this end, we computes the dependence chains,
which identify paths of dependence between one object and
another. In general there are many dependence paths be-
tween a pair of objects. Moreover, some paths are more
important than others. Dependencies arising from direct
assignments such as x=y are usually the most important; de-
pendencies involving arithmetic operations x=y+1, x=y>>3,
x=421y, x=1<<y are increasingly less important. Our metric
of importance is biased towards operations that are likely
to preserve the shape and size of input data. Table 1 out-
lines a simple strong/weak/none classification that we have
employed. Our analysis computes the most important path,
and if there are several paths of the same importance, we
compute the shortest path.

Large code bases often generate many dependent objects —
typically in the range 1K-100K. To help users sift through
these dependent objects and determine if they are objects
whose type must be changed, we prioritize them according
to the importance of their underlying dependence chain. We
also provide a collection of graphic user interface tools for
browsing the tree of chains and inspecting the corresponding
source code locations. In practice, there are often too many
chains to inspect — a common scenario is that a central ob-
ject that is not relevant to a code change becomes dependent
{often due the context- or flow-insensitivity of the underly-
ing analysis), and then everything that is dependent on this
central object also becomes dependent. We address this is-
sue with some additional domain knowledge: we allow the
user to specify “non-targets”, which are objects that the
user knows are certainly not dependent on the target ob-
ject. This has proven to be a very effective mechanism for
focusing on the important dependencies.

3. ANDERSEN’S POINTS-TO ANALYSIS

We review Andersen’s points-to analysis and introduce some
definitions used in the rest of the paper. In the literature,
there are two core approaches to points-to analysis, ignoring
context-sensitivity and flow-sensitivity. The first approach is

1. short target;
2.

3. short u, #*v, w;
4, struct S s, t;
5. v = &w;

6. u = target;

7. %v = uj;

8. s.x = w;

struct S { short x; short y; };

w/short <egl.c:3> — u/short <egl.c:7> — target/short <egl.c:6> where target/short <egl.c:1>

target/short <egl.c:i>

u/short <egl.c:3> — target/short <egl.c:6> where target/short <egl.c:1>

S.x/short <egl.c:2> — w/short <egl.c:8> -+ u/short <egl.c:7> — target/short <egl.c:6> --:

Figure 1: A program fragment involving siructs and its dependence results (the target is target).

unification-based [24]: an assignment such as x = y invokes
a unification of the node for x and the node for y in the
points-to graph. The algorithms for the unification-based
approach typically involve union/find and have essentially
linear-time complexity. The second approach is based on
subset relationships: an assignment such as x = y gives rise
to a subset constraint x 2 y between the nodes x and y in
the points-to graph [4]. The algorithms for the subset-based
approach utilize some form of subtyping system, subset con-
straints or a form of dynamic transitive closure, and have
cubic-time complexity.

The unification-based approach is faster and less accurate
[22]. There has been considerable work on improving the
performance of the subset-based approach [11, 23, 21}, al-
though the performance gap is still sizable (c.f. [23, 21] and
[8]). As Das very recently observed “In spite of these efforts,
Andersen’s algorithm does not yet scale to programs beyond
500KLOC.” {8] There has also been work on improving the
accuracy of the unification-based approach by incorporat-
ing some of the directional features of the subset-based ap-
proach to produce a hybrid unification-based algorithm {8}:
for a small increase in analysis time (and quadratic worst-
case complexity), much of the additional accuracy of the
subset-based approach can be recovered.

A Deductive Reachability Formulation

We use a context-insensitive, flow-insensitive version of the
subset-based approach that is essentially the analysis due
to Andersen [4]. One reason for this choice is the better
accuracy of the subset-based approach over the unification-
based approach. Another reason is that users of our depen-
dence analysis system must be able to inspect the depen-
dence chains produced by our system (Section 2), and un-
derstand why they were produced. Subset-based approaches
generate easier to understand results; unification-based ap-
proaches often introduce hard to understand “backwards”
flows of information due to the use of equalities.

Previous presentations of Andersen’s algorithm have used
some form of non-standard type system. Our presentation
uses a simple deductive reachability system. This style of
analyses presentation was developed by McAllester [20]. It
has also been used to describe control-flow analysis [18]. To
simplify our presentation, we consider a tiny language con-
sisting of just the operations x and &. Expressions e have

256

z — &y
y—re
z — &y
e—ry

(if ¥z = e in P) (sTAR-1)

(if e = %z in P) (STAR-2)

(ife; = ez in P) (assIGN)

€1 —¥ €2
€1 —+ €2 ez —r e3
€] —r €3
Figure 2: Deduction rules for aliasing analysis.

(TRANS)

the form:

e =g | %z | &z

We shall assume that nested uses of x and & are removed
by a preprocessing phase. Programs are sequences of assign-
ments of the form e; = e; where e; cannot be &z.

Given some program P, we construct deduction rules as
specified in Figure 2. In the first rule, the side condition
“if xx = e in P” indicates that there is an instance of this
rule for each occurrence of an assignment of the form xx = e
in P. The side conditions in the other rules are similarly
interpreted. Intuitively, an edge e; — es indicates that any
object pointer that we can derive from e; is also derivable
from e;. The first rule deals with expressions of the form
%z on the left-hand-sides of assignments: it states that if
there is a transition from z to &y, then add a transition
from y to e, where e is the left-hand-side of the assignment.
The second rule deals with expressions of the form %z on
the right-hand-sides of assignments: it states that if there
is a transition from z to &y, then add a transition from e
to y where e is the right-hand-side of the assignment. The
third rule adds a transition from e; to ez for all assignments
e1 = ez in the program, and finally, the fourth rule is just
transitive closure. The core of our points-to analysis can
now be stated as follows: x can point to y if we can derive
z — &y. Figure 3 contains an example program and shows
how y — &z can be derived.

Analysis of Full C

Extending this core analysis to full C presents a number of
choices. Adding values such as integers is straightforward.
It is also easy to deal with nested uses of x and & through
the addition of new temporary variables (we remark that

int x, =*y;

int vz z— &y (ASSIGN)

2 = &y *z > &x (ASSIGN)
e ex (f

¥z = &x; y—&x (from STAR-1)

Figure 8: Example program and application of de-
duction rules to show y — &x.

considerable implementation effort is required to avoid in-
troducing too many temporary variables). However, treat-
ing structs and unions is more complex. One possibility
is, in effect, to ignore them: each declaration of a variable
of struct or union type is treated as an unstructured mem-
ory location and any assignment to a field is viewed as an
assignment to the entire chunk e.g. z.f is viewed as an as-
signment to x and the field component f is ignored. We
call this the field-independent approach and examples in-
clude [10, 11, 22]. Another approach is to use a field-based
treatment of structs such as that taken by Andersen [4]. In
essence, the field-based approach collects information with
each field of each struct, and so an assignment to z.f is
viewed as an assignment to f and the base object x is ig-
nored. (Note that two fields of different structs that happen
to have the same name are treated as separate entities.) The
following code illustrates the distinction between field-based
and field-independent.

struct S { int *x; int *y; } A, B;
int z;
main () {

int *p, *q, *r, *s;

A.x = &2; /x field~based: assigns to “x"
* field-independent: assigns to "A" */
p = A.x; /* p gets &z in both approaches */
q = A.y; /* field~independent: q gets &z */
r = B.x; /x field-based: r gets &z */
s = B.y; /% in neither approach does s get &z */

In the field-independent approach, the analysis determines
that only p and q can point to &z. In the field-based ap-
proach, only p and r can point to &z. Hence, neither of
these approaches strictly dominates the other in terms of ac-
curacy. We note that while the works {10, 11, 22] are based
on Andersen’s algorithm [4], they in fact differ in their treat-
ment of structs: they are field-independent whereas Ander-
sen’s algorithm is field-based’. In Section 6, we show this
choice has significant implications in practice, especially for
large code bases. Qur aliasing analysis uses the field-based
approach, in large part because our dependence analysis is
also field-based.

4. COMPILE-LINK-ANALYZE

A fundamental problem in program analysis is modular-
ity: how do we analyze large code bases consisting of many
source files? The simple approach of concatenating all of the
source files into one file does not scale beyond a few thou-
sand lines of code. Moreover, if we are to build interactive

!Strictly speaking, while Andersen’s core algorithm is field-
based, he assumes that a pre-processing phase has dupli-
cated and renamed struct definitions se that structs whose
values cannot Sow together have distinct names (see Section

2.3.3 and 4.3.1 of [4]).

257

tools based on an analysis, then it is important to avoid re-
parsing/reprocessing the entire code base when changes are
made to one or two files.

The most basic approach to this problem is to parse compila-
tion units down to an intermediate representation, and then
defer analysis to a hybrid link-analyze phase. For example,
at the highest level of optimization, DEC’s MIPS compiler
treats the internal ucode files produced by the frontend as
“object files”, and then invokes a hybrid linker (uld) on the
ucode files [9]. The uld “linker” simply concatenates the
ucode files together into a single big ucode file and then
performs analysis, optimization and code generation on this
file. The advantage of this approach is it modularizes the
parsing problem — we don’t have to parse the entire program
as one unit. Also, we can avoid re-parsing of the entire code
base if one source file changes. However, it does not mod-
ularize the analysis problem - the analysis proceeds as if
presented with the whole program in one file.

One common way to modularize the analysis problem is to
analyze program components (at the level of functions or
source files), and compute summary information that cap-
tures the results of these local analyses. Such summaries
are then combined/linked together in a subsequent “global-
analysis” phase to generate results for the entire program.
This idea is analogous to the construction of principle types
in type inference systems. For example, assigning “a — o”
to the identity function in a simply typed language is essen-
tially a way of analyzing the identity function in a modular
way. Uses of the identity function in other code fragments
can utilize & —+ a as a summary of the behavior of the
identity function, thus avoiding inspection of the original
function. (Of course, full polymorphic typing goes well be-
yond simply analyzing code in a modular way, since it allows
different type instantiations for different uses of a function
~ akin to context-sensitive analysis — which is beyond the
scope of the present discussion.)

This modular approach to analysis has a long history. Ac-
cording to folklore, one version of the MIPS compiler em-
ployed local analysis of separate files and then combined the
local analysis results during a “linking” phase. The idea is
also implicit in Aiken et. al.’s set-constraint type systems
[3], and is much more explicit in Flanagan and Felleisen’s
componential analysis for set-based analysis [12]. Recently,
the idea has also been applied to points-to analysis. Das [8]
describes a hybrid unification-based points-to analysis with
the following steps. First, each source file is parsed, and
the assignment statements therein are used to construct a
points-to graph with flow edges, which is simplified using a
propagation step. The points-to graph so computed is then
“serialized” and written to disk, along with a table that
associates symbols and functions with nodes in the graph.
The second phase reads in all of these (object) files, unifies
nodes corresponding to the same symbol or function from
different object files, and reapplies the propagation step to
obtain global points-to information. In other words, the
analysis algorithm is first applied to individual files and the
internal state of the algorithm (which in this case is a points-
to graph, and symbol information) is frozen and written to
a file. Then, all of these files are thawed, linked and the
algorithm re-applied.

This means that the object files used are specific not just to
a particular class of analysis (points-to analysis), but to a
particular analysis algorithm (hybrid unification-based anal-
ysis), and arguably even to a particular implementation of
that algorithm. The object files are designed with specific
knowledge of the internal data-structures of an implemen-
tation in such a way that the object file captures sufficient
information about the internal state of the implementation
that this state can be reconstructed at a later stage.

The CILA Model

Our approach, which we call compile-link-analyze (CLA),
also consists of a local computation, a linking and a global
analysis phase. However, it represents a different set of
tradeoffs from previous approaches, and redraws the bound-
aries of what kind of work is done in each phase. A key
difference is that the first phase simply parses source files
and extracts assignment statements — no actual analysis is
performed — and the linking phase just links together the
assignment statements. One advantage of the CLA architec-
ture is that the first two phases remains unchanged for many
different implementations of points-to analysis and even dif-
ferent kinds of analysis (we return to this point later). A
follow-on advantage is that we can justify investing resources
into optimizing the representation of the collections of as-
signments, because we can reuse this work in a number of
different analysis implementations. In particular, we have
developed a database-inspired representation of assignments
and function definitions/calls/returns. This representation
is compact and heavily indexed. The indexing allows rel-
evant assignments for a specific variable to be identified in
just one lookup step, and more generally, it supports a mode
where the assignments needed to solve a particular analysis
problem can be dynamically loaded from the database on
demand.

More concretely, CLA consists of three phases. The compile
phase parses source files, extracts assignments and function
calls/returns/definitions (in what follows we just call these
“assignments”), and writes an object file that is basically an
indexed database structure of these basic program compo-
nents. No analysis is performed yet. Complex assignments
are broken down into primitive ones by introducing tempo-
rary variables. The elements of the database, which we call
primitive assignments, involve variables and (typically) at
most one operation.

The link phase merges all of the database files into one
database, using the linking information present in the ob-
ject files to link global symbols (the same global symbol
may be referenced in many files). During this process we
must recompute indexing information. The “executable” file
produced has the same format as the object files, although
its linking information is typically obsolete (and could be
stripped).

The analyze phase performs the actual analysis: the linked
object file is dynamically loaded on demand into the running
analysis. Importantly, only those parts of the object file
that are required are loaded. An additional benefit of the
indexing structure of the object file is that when we have
read information from the object file we can simply discard
it and re-load it later if necessary (memory-mapped 1/0O

i8 used to support efficient reading and re-reading of the
object file). We use this feature in our implementation of
Andersen’s analysis to greatly reduce the memory footprint
of the analysis. It allows us to maintain only a very small
portion of the object file in memory.

Axn example source file and a partial sketch of its object file
representation is given in Figure 4. These object files consist
of a header section which provides an index to the remaining
sections, followed by sections containing linking information,
primitive assignments (including information about function
calls/returns/definitions) and string information, as well as
indexing information for identifying targets for the depen-
dence analysis. The primitive assignments are contained in
the dynamic section; it consists of a list of blocks, one for
each object in the source program. Each block consists of
information about the object (its name, type, source code
location and other attributes), followed by a list of prim-
itive assignments where this object is the source. For ex-
ample, the block for z contains two primitive assignments,
corresponding to the second and third assignments in the
program (a very rough intuition is that whenever z changes,
the primitive assignments in the block for z tell us what we
must recompute).

As mentioned before, one of the goals of our work is to build
infrastructure that can be used for a variety of different anal-

‘ysis implementations as well as different kinds of analysis.

258

We have used our CLA infrastructure for a number of differ-
ent subset-based points-to analysis implementations (includ-
ing an implementation based on bit-vectors, as well as many
variations of the graph-based points-to algorithm described
later in this paper), and field-independent and field-based
points-to analysis. The key point is that our object files
do not depend on the internals of our implementation and
so we can freely change the implementation details without
changing the object file format. We have also used CLA
infrastructure for implementing unification-based points-to
analysis, and for the dependence analysis described in Sec-
tion 2. Finally, we note that we can write pre-analysis op-
timizers as database to database transformers. In fact, we
have experimented with context-sensitive analysis by writ-
ing a transformation that reads in databases and simulates
context-sensitivity by controlled duplication of primitive as-
signments in the database — this requires no changes to code
in the compile, link or analyze components of our system.

We now briefly sketch how the dependence and points-to
analyses use object files. Returning to Figure 4, consider
performing points-to analysis. The starting point for points-
to analysis is primitive assignments such as q = &y in the
static section. Such an assignment says that y should be
added to the points-to set for q. This means that the points-
to set for q is now non-empty, and so we must load all prim-
itive assignments where q is the source. In this case, we
load p = q, which imposes the constraint p D q. This is
all we need to load for points-to analysis in this case. Now
consider a dependence analysis. Suppose that the target of
the dependence analysis is the variable z. We first look up
“z” in the hashtable in the target section to find all vari-
ables in the object file whose name is “z” (strictly speaking,
we find the object file offsets of all such variables). In this
case we find just one variable. We build a data-structure to

header section: segment offsets and sizes

global section: linking information

static section: address-of operations; always loaded for points-10 analysis

q = &y
string section: common strings
ﬁl@l_iﬁi target section: hashtable Tor finding targets
int x, y, z, *p, *q; dynamic section: elements are loaded on demand, organized by object
X =y, x @ a.c:1
X =z none
*p =z y @ a.c:l
P=q; Xx=y @ a.c:2
q = &y; z @ a.cil
X = *p; X =2z @ a.c:3
*p =z @ a.c:4
p Qa.c:l
x = *p @ a.c:7
q@Qa.cl
p=q@ach

Figure 4: Example program and sketch of its object file

say that this variable is a target of the dependence analysis.
We then load the block for 2, which contains the primitive
assignments x = z and *p = z. Using the first assignment,
we build a data-structure for x and then we load the block
for x, which is empty. Using the second assignment, we find
from the points-to analysis that p can point to &y, and so
we build a data-structure for y and load the block for y, etc.
In the end, we find that both x and y depend on z.

The compilation phase we have implemented includes more
information in object files that we have sketched here. Our
object files record information about the strength of depen-
dencies (see Section 2), and also information about any oper-
ations involved in assignments. For exarmple, corresponding
to a program assignment x = y + z, we obtain two prim-
itive assignments x = y and x = z in the database. Each
would retain information about the “+” operation. Such
information is critical for printing out informative depen-
dence chains; it is also useful for other kinds of analysis that
need to know about the underlying operations. We include
sections that record information about constants in the pro-
gram. To support advanced searches and experiment with
context-sensitive analysis, we also include information for
each local variable that identifies the function in which it
is defined. We conjecture that our object file format can
be used (or easily adapted) for any flow-insensitive analysis
that computes properties about the values of variables i.e.
any analysis that focuses entirely on the assignments of the
program, and ignores control constructs. Examples include
points-to analysis, dependence analysis, constant propaga-
tion, binding-time analysis and many variations of set-based
analysis. One advantage of organizing object files using sec-
tions (much like COFF/ELF), is that new sections can be
transparently added to object files in such a way that exist-
ing analysis systems do not need to be rewritten.

We conclude with a discussion of functions and function
pointers. Function are handled by introducing standard-
ized names for function arguments and returns. For exam-
ple, corresponding to a function definition int £(x, v {

return(z)}, we generate primitive assignments z =
fi, y = fa, fret = z, where fi, fz, fre: are respectively the
standardized variables for the two arguments of f and f’s
return value. Similarly, corresponding to a call of the form

259

w = f(e1,ez2), we generate primitive assignments fi = ey,
f2 = e2 and w = fre:. These standardized names are treated
as global objects, and are linked together, like other global
objects, by the linker. The treatment of indirect function
calls uses the same naming convention, however some of the
linking of formal and actual parameters happens at analysis
time. Specifically, corresponding to a function definition for
g, there is an object file entry (in the block for g) that records
the argument and return variables for g. Corresponding to
an indirect call (*£) (x, y), we mark f as a function pointer
as well as adding the primitive assignments fi =z, fo = y,
etc. During analysis, if a function g is added to the points-to
set for f (marked as a function pointer), then we load the
record of argument and return variables for both f and g.
Using this information, we add new assignments g1 = fi,
g2 = f2 and fret = Gret.

5. AGRAPH-BASED ALGORITHMFOR AN-
DERSEN’S ANALYSIS

Scalability of Andersen’s context-insensitive flow-insensitive
points-to analysis has been a subject of much research over
the last five years. One problem with Andersen’s analysis is
the “join-point” effect of context-insensitive flow-insensitive
analysis: results from different execution paths can be joined
together and distributed to the points-to sets of many vari-
ables. As a result, the points-to sets computed by the anal-
ysis can be of size O(n) where n is the size of the program;
such growth is commonly encountered in large benchmarks.
This can spell scalability disaster if all points-to sets are
explicitly enumerated.

Aiken et. al. have addressed a variety of scaling issues for
Andersen’s analysis in a series of papers. Their work has
included techniques for elimination of cycles in the inclusion
graph [11], and projection merging to reduce redundancies
in the inclusion graph [23]. All of these are in the context of
a transitive-closure based algorithm, and their results show
very substantial improvements over their base algorithm -
with all optimizations enabled, they report analysis times of
1500s for the gimp benchmark on a SPARC Enterprise 5000
with 2GB {23].

Alternatively, context- and flow-sensitivity can be used to

reduce the effect of join-points. However the cost of these ad-
ditional mechanisms can be large, and without other break-
throughs, they are unlikely to scale to millions of lines of
code. Also, recent results suggest that this approach may
be of little benefit for Andersen’s analysis [13].

In principle, ideas from sub-transitive control-flow analysis
[18] could also be applied to avoid propagation of the in-
formation from join-points. The basic idea of sub-transitive
control-flow analysis is that the usual dynamic transitive
closure formulation of control-flow analysis is redesigned so
that the dynamic edge-adding rules are de-coupled from the
transitive closure rules. This approach can lead to linear-
time algorithms. However, it is currently only effective on
bounded-type programs, an unreasonable restriction for C.

The main focus of our algorithm, much like that of the sub-
transitive approach, is on finding a way to avoid the cost of
computing the full transitive closure of the inclusion graph.
We begin by classifying the assignments used in the deduc-
tive reachability system given in Section 3 into three classes:
(a) simple assignments, which have the form x = y, (b) base
assignments, which have the form z = &y, and (c) complex
assignments, which have the form 2 = %y or x¢ = y. For
simplity, we omit treatment of «z = %y; it can be split into
*z = z and 7z = xy where z is a new variable. In what
follows we refer to items of the form &y as lvals.

The central data-structure of our algorithm is a graph G,
which initially contains all information about the simple as-
signments and base assignments in the program. The nodes
of G are constructed as follows: for each variable z in the
program, we introduce nodes n, and n.. (strictly speaking,
we only need a node n. if there is a complex assignment
of the form y = %z). The initial edges of G are constructed
as follows: corresponding to each simple assignment z = y,
there is an edge n, — ny from n, to n,. Corresponding to
every node n in G, there is a set of base elements, defined
as follows:

baseElements(n;) = {y : ¢ = &y appears in P}

The complex assignments, which are not represented in G,
are collected into a set C. The algorithm proceeds by it-
erating through the complex assignments in € and adding
edges to G based on the information currently in G. At any
point in the algorithm, G represents what we explicitly know
about the sets of lvals for each program variable. A major
departure from previous work is that G is maintained in pre-
transitive form i.e. we do not transitively close the graph.
As a result, whenever we need to determine the current lvals
of a specific variable, we must perform graph reachability:
to find the set of lvals for variable z, we find the set of nodes
reachable from n; in zero or more steps, and compute the
union of the baseElements sets for all of these nodes. We use
the function getLvals(n.) to denote this graph reachability
computation for node n.

The process of iterating through the complex assignments in
C and adding edges to G based on the information currently
in G is detailed in Figure 5. Note that line 7 need only be
executed once, rather than once for each iteration of the
loop.

260

Before discussing the getLvals() function, we give some in-
tuition on the computational tradeoffs involved in maintain-
ing the constraint graph in pre-transitive form and compus-
ing lvals on demand. First, during its execution, the algo-
rithm only requires the computation of lvals for some subset
of the nodes in the graph. Now, of course, at the end of the
algorithm, we may still have to compute all Ivals for all graph
nodes. However, in the presence of cycle-elimination (dis-
cussed shortly), it is typically much cheaper to compute all
Ivals for all nodes when the algorithm terminates than it is
to do so during execution of the algorithm. Second, the pre-
transitive algorithm trades off traversal of edges versus flow
of lvals along edges. More concretely, consider a complex
assignment such as xx = y, and suppose that the set of lvals
for ¢ includes &x1 and &x2. As a result of this complex
assignment, we add edges from z; to y and x2 to y. Now,
in an algorithm based on transitive-closure, all lvals asso-
ciated with y will flow back along the new edges inserted
and from there back along any paths that end with z; or
z2. In the pre-transitive graph, the edges are added and
there is no flow of lvals. Instead, lvals are collected (when
needed) by a traversal of edges. In the transitive closure
case, there are O(n.E) transitive closure steps, where n is
the average number of distinct lvals that flow along an edge,
and F is the number of edges, versus O(F) steps per reach-
ability computation This tradeoff favors the pre-transitive
graph approach when E is small and n is large. (We re-
mark that this is analysis is for intuition only; it is not a
formal analysis, since neither the transitive closure step nor
the reachability step are O(1) operations.)

‘We next describe getLvals(), which is the graph reachabil-
ity component of the algorithm. A key part of the graph
reachability algorithm is the treatment of cycles. Not only
is cycle detection important for termination, but it has fun-
damental performance implications. The first argument of
getLvals() is a graph node and the second is a list of ele-
ments that define the path we are currently exploring; top-
level calls have the form getLvals(n,nil). Each node in G
has a one-bit field onPath.

The function unifyNodes() merges two nodes. We imple-
ment node merging by introducing an optional skip field
for each node. Two nodes n; and n2 are then unified by
setting skip(ni) to n2, and merging edge and baseElement
information from n; into ns. Subsequently, whenever node
ny is accessed, we follow its skip pointer. We use an incre-
mental algorithm for updating graph edges to skip-nodes to
their de-skipped counter-parts.

Cycle elimination was first used for points-to analysis by
Fahndrich et. al [11]. In their work, the cost of finding cy-
cles was non-trivial and so completeness of cycle detection
was sacrificed in order to contain its cost. In contrast, cy-
cle detection is essentially free in our setting during graph
reachability computations. Moreover, we find almost all cy-
cles — more precisely, we find all cycles in the parts of the
graphs we traverse during graph reachability. In essence,
we find the costly cycles —~ those that are not detected are
in parts of the graph that we ignore. In other words, one
of the benefits of our algorithm is that it finds more of the
important cycles and it does so more cheaply.

/* The Iteration Algorithm /
do {
nochange = true;
for each complex assignment *x =
for each &z in getLvals(n,)
add an edge n; - ny to §;
for each complex assignment x =
add an edge n; — Ny}
for each &z in getLvals(ny)
add an edge nyy — n,
} until nochange

yin C

W N e

¥y in C

O~ O,

o

getlvals(n, path) {
if (onPath(n)) { /* we have a cycle %/
foreach n’ in path, unifyNode(n’, n);
return(emptySet);
} else { /* explore new node n */
onPath(n) = 1;
lvals = emptySet;
path = cons(n, path);
lvals = union(lvals, baseElements(n);
foreach n’ such that there is an edge from n to n’
lvals = union(lvals, getLvals(n, path));
onPath(n) = 0;
return(lvals);

3

Figure 5: The Pre-Transitive Graph Algorithm for Points-to Analysis

This completes the basic description of our algorithm. We
conclude with a number of enhancements to this basic al-
gorithm. First, and most important, is a caching of reach-
ability computations. Each call to getLvals() first checks to
see if the Ivals have been computed for the node during the
current iteration of the iteration algorithm; if so, then the
previous lvals are returned, and if not, then they are recom-
puted (and stored in the node). Note that this means we
might use “stale” information; however if the information
is indeed stale, the nochange flag in the iteration algorithm
will ensure we compute another iteration of the algorithm
using fresh information. Second, the graph edges are main-
tained in both a hash table and a per-node list so that it is
fast to determine whether an edge has been previously added
and also to iterate through all of the outgoing edges from a
node. Third, since many lval sets are identical, a mechanism
is implemented to share common lvals set. Such sets are im-
plemented as ordered lists, and are linked into a hash table,
based on sef size. When a new lval set is created, we check
to see if it has been previously created. This table is flushed
at the beginning of each pass through the complex assign-
ments. Fourth, lines 4-5 and lines 8-9 of Figure 5 are changed
so that instead of iterating over all lvals in getLvals(ny), we
iterate over all nodes in getLvalsNodes(n,). Conceptually,
the function getLvalsNodes() returns all of the de-skipped
nodes corresponding to the lvals computed by getLvals();
however it can be implemented more efficiently.

From the viewpoint of performance, the two most signif-
icant elements of our algorithm are cycle elimination and
the caching of reachability computations. We have observed
a slow down by a factor in excess of > 50K for gimp (45,000s
cf. 0.8s user time) when both of these components of the
algorithm are turned off.

6. RESULTS

Our analysis system is implemented using » mix of ML and
C. The compile phase is implemented in ML using the ckit
frontend[6]. The linker and the analyzer are implemented in
C. Our implementation deals with full C including structs,
unions, arrays and function call/return (including indirect
calls). Support for many of these features is based on simple
syntactic transformations in the compile phase. The field-
based treatment of structs is implemented as follows: we
generate a new variable for each field f of a struct defini-
tion, and then map each access of that field to the variable.
Our treatment of arrays is index-independent (we essentially
ignore the index component of sub expressions). The bench-

261

marks we use are described in Table 2. The first six bench-
marks were obtained from the authors of [21], and the lines
of code reported for these are the number of lines of non-
blank, non-# lines in each case. We do not currently have
accurate source line counts for these benchmarks. The sev-
enth benchmark was obtained from the authors of [23]. The
last benchmark is the Lucent code base that is the main tar-
get of our system (for proprietary reasons, we have not in-
cluded all informations on this benchmark). For each bench-
mark, we also measure the size of the preprocessed code in
bytes, the size of the object files produced by the analy-
sis (compiler + linker, also in bytes), and the number of
primitive assignments in the object files — the five kinds of
assignments allowed in our intermediate language.

We remark that line counts are only a very rough guide
to program size. Source code is misleading for many rea-
sons. For instance, macro expansion can- counsiderably. in-
crease the amount of work that must be performed by an
analysis. Preprocessed code is misleading because many ex-
traneous extern declarations are included as the result of
generic system include files. Moreover, these system include
files can vary considerably in size from system to system.
AST node counts of preprocessed code are a better mea-
sure of complexity because they de-emphasize the effects of
coding style; however there is no agreed upon notion of AST
nodes, and AST nodes mighst still be inflated by unnecessary
declarations generated by rampant include files. Counts of
primitive assignments may be a more robust measure.

Results from these benchmarks are included in Table 3.
These results measure analysis where (a) each static oc-
currence of a memory allocation primitive (malloc, calloc,
etc.) is treated as a fresh location, and (b) we ignore con-
stant strings, This is the default setup we use for points-to
and dependence analysis. The first column of Table 3 rep-
resents the count of program objects (variables and fields)
for which we compute non-empty pointer sets; it does not
include any temporary variables introduced by the analysis.
The second column represents the total sizes of the points-to
sets for all program objects. The third and fourth columns
give wall-clock time and user time in seconds respectively,
as reported by /bin/time using a single processor of a two
processor Pentium 800MHz machine with 2GB of memory
running Linux®. The fifth column represents space. utiliza-

*Red Hat Linux release 6.2 (Piglet)
VA Linux release 6.2.3 07/28/00 bl.1 P2
Kernel 2.2.14-VA.5.1smp on a 2-processor i686.

LOC LOC preproc. | object | program assignments
(source) | (preproc.) size size variables | z=y [a=&y [z =y [z =ry | € =¥y
nethack - 44.1K 1.4MB | 0.7TMB 3856 9118 1115 30 34 105
burlap - 74.6K 2.4MB 1.4MB 6859 14202 1049 1160 714 1897
vortex - 170.3K 7.7MB 2.6MB 11395 24218 7458 353 231 1866
emacs - 93.5K 40.2MB 2.6MB 12587 31345 3461 614 154 1029
povray - 175.5K 68.1MB 3.1MB 12570 29565 4009 2431 1190 3085
gee - 199.8K 69.0MB 4.4MB 18749 62556 3434 1673 585 1467
gimp 440K 7486.7K | 201.6MB | 27.2MB 131552 | 303810 25578 5943 2397 6428
lucent 1.3M - -1 20.1MB 96509 | 270148 72355 1562 991 3989

Table 2: Benchmarks

tion in MB, obtained by summing static data and text sizes
(reported by /bin/size), and dynamic allocation (as re-
ported by malloc_stats()). We note that for the lucent
benchmark ~ the target code base of our system — we see
total wall-clock times of about half a second, and space uti-
lization of under 10MB.

The last three columns explain why the space utilizations
are so low: these columns respectively show the number
of primitive assignments maintained “in-core”, the number
loaded during the analysis, and the total number of primitive
assignments in the object file. Note that only primitive as-
signments relevant to aliasing analysis are loaded (e.g. non-
pointer arithmetic assignments are usually ignored). Recall
that once we have loaded a primitive assignment from an ob-
ject file and used it, we can discard it, or keep it in memory
for future use. Our discard strategy is: discard assignments
z = y and z = &y, but maintain all others. These num-
bers demonstrate the effectiveness of the load-on-demand
and load-and-throw-away strategies supported by the CLA
architecture.

Table 4 studies the effect of changing the baseline system.
The first group of columns represents the baseline and is
just a repeat of information from Table 3. The second
group shows the effect of changing the underlying treat-
ment of structs from field-based to field-independent. We
caution that these results are very preliminary, and should
not be interpreted as a conclusive comparison of field-based
and field-independent. In particular, there are a number of
opportunities of optimization that appear to be especially
important in the field-independent case that have not im-
plemented in our current system. We expect that these op-
timizations could significantly close the time and space gap
between the two approaches. However, it is clear that the
choice between field-based and field-independent has signifi-
cant implications in practice. Most points-to systems in the
literature use the field-independent approach. Our results
suggest that the field-based might in fact represent a better
tradeoff. The question of the relative accuracy of the two
approaches is open — even the metric for measuring their
relative accuracy is open to debate.

We conclude by briefly discussing empirical results from re-
lated systems in the literature. Since early implementations
of Andersen’s analysis [{22], much progress has been made
[11, 23, 21]. Currently, the best results for Andersen’s are
analysis times of about 430 seconds for about 500K lines of
code (using a single 195 MHz processor on a multi-processor

SGI Origin machine with 1.5GB) [21]. The main limiting
factor in these results is that space utilization (as measured
by the amount of live data after GC) is 150MB and up — in
fact the largest benchmark in {21] ran out of memory. Re-
sults from [23] report analysis times of 1500s for gimp (on
a SPARC Enterprise 5000 with 2GB). We note that both
of these implementations of Andersen’s analysis employ a
field-independent treatment of structs, and so these results
are not directly comparable to ours (see the caveats above
about the preliminary nature of results in Table 4).

Implementations of Steensgaard’s algorithm are faster and
use less memory. Das reports that Word97 (about 2.2 mil-
lion lines of code) runs in about 60s on a 450MHz Intel Xeon
running Windows NT [8]. Das also reports that modifica-
tions to Steensgaard’s algorithm to improve accuracy yield
analysis times of about 130s, and memory usage of “less
than 200MB” for the same benchmark. We again note that
Das uses a field-independent treatment of structs.

7. CONCLUSION

We have introduced CLA, a database-centric analysis archi-
tecture, and described how we have utilized it to implement
a variety of high-performance analysis systems for points-
to analysis and dependence analysis. Central to the per-
formance of these systems are CLA’s indexing schemes and
support for demand-driven loading of database components.
We have also described a new algorithm for implementing
dynamic transitive closure that is based on maintaining a
pre-transitive graph, and computing reachability on demand
using caching and cycle elimination techniques.

The original motivation for this work was dependence anal-
ysis to help identify potential narrowing bugs that may be
introduced during type modifications to large legacy C code
bases. The points-to analysis system described in this paper
has been built into a forward data-dependence analysis tool
that is deployed within Lucent. Our system has uncovered
many serious new errors not found by code inspections and
other tools.

Future work includes exploration of context-sensitivity, and
a more accurate treatment of structs that goes beyond field-
based and field-independent (e.g. modeling of the layout of
C structs in memory[7], so that an expression z.f is treated
as an offset “f” from some base object x)

Acknowledgements: Thanks to Satish Chandra and Jeff
Foster for access to their respective systems and bench-

262

" 0 I
pointer | poinfs-to real user | process assignments

variables | relations || time | time size in core | loaded | in file

nethack 1018 7K i 0.03s | 0.01s | 5.2MB 114 5933 | 10402
burlap 3332 201X || 0.08s | 0.03s | 5.4MB 3201 | 12907 | 19022
vortex 4359 392K | 0.15s | 0.11s | 5.7MB 1792 | 15411 | 34126
emacs 8246 11232K || 0.54s | 0.51s | 6.0MB 1560 | 28445 | 36603
povray 6126 141K || 0.11s | 0.09s | 5.7MB 5886 | 27566 | 40280
gee 11289 123K || 0.20s | 0.17s | 6.0MB 2732 | 53805 | 69715
gimp 45091 15298K | 1.05s | 1.00s | 12.1MB 8377 | 144534 | 344156
lucent 22360 3865K || 0.46s | 0.38s | 8.8MB 4281 | 101856 | 349045

Table 3: Results

field-based field-independent (preliminary) |

pointers | relations | utime size pointers | relations | utime | size
nethack 1018 7K | 0.01s [5.2MB 1714 97K 0.03s | 5.2MB
burlap 3332 201K | 0.03s | 5.4MB 2903 323K 0.21s | 5.9MB
vortex 4359 392K | 0.11s | 5.7MB 4655 164K 0.09s | 5.7MB
emacs 8246 | 11232K | 0.51s | 6.0MB 8314 | 14643K 1.05s | 6.7MB
povray 6126 141K | 0.09s | 5.TMB 5759 1375K 0.39s | 6.6MB
gee 11289 123K | 0.17s | 6.0MB 10984 408K 0.65s | 8.8MB
gimp 45091 | 15298K | 1.00s | 12.1MB 30888 | 79603K | 30.12s | 18.1MB
lucent 22360 3865K | 0.46s | 8.8MB 26085 | 19665K | 137.20s | 59.0MB

Table 4: Effect of a field-independent treatment of structs.

marks.

8. REFERENCES
{1] A. Aiken, M. F3hndrich, J. Foster, and Z. Su, “A Toolkit
for Constructing Type- and Constraint-Based Program
Analyses”, TIC’98.

[2] A. Aiken and E. Wimmers, “Solving Systems of Set
Constraints”, LICS, 1992.

[3] A. Aiken and E. Wimmers, “Type Inclusion Constraints
and Type Inference”, ICFP, 1993,

[4] L. Andersen, “Program Analysis and Specialization for
the C Programming Language”, PhD. thesis, DIKU
report 94/19, 1994,

{5] D. Atkinson and W. Griswold, “Effective Whole-Program
Analysis in the Presence of Pointers”, 1998 Symp. on the
Foundations of Soft. Eng..

[6] S. Chandra, N. Heintze, D. MacQueen, D. Oliva and M.
Siff, “ckit: an extensible C frontend in ML”, to be
released as an SML/NJ library.

[7] S. Chandra and T. Reps, “Physical Type Checking for C”
PASTE, 1999.

{8] M. Das, “Unification-Based Pointer Analysis with
Directional Assignments” PLDI, 2000.

[9] “Appendix D: Optimizing Techniques (MIPS-Based C
Compiler)”?, Programmer’s Guide: Digital UNIX Version
4.0, Digital Equipment Corporation, March 1996.

[10] J. Foster, M. Fihndrich and A. Aiken, “Flow-Insensitive
Points-to Analysis with Term and Set Constraints” U. of
California, Berkeley, UCB//CSD97964, 1997.

{11] M. Fihndrich, J. Foster, Z. Su and A. Aiken, “Partial
Online Cycle Elimination in Inclusion Constraint Graphs”
PLDI, 1998.

[12] C. Flanagan and M. Felleisen, “Componential Set-Based
Analysis” PLDI, 1997.

263

[13} J. Foster, M. Fihndrich and A. Aiken, “Polymorphic
versus Monomorphic Flow-insensitive Points-to Analysis
for C”, SAS 2000.

[14] N. Heintze, “Set Based Program Analysis”, PhD thesis,
Carnegie Mellon University, 1992.

[15]) N. Heintze, “Set-Based Analysis of ML Programs”, LFP,
1994.

[16] N. Heintze, “Analysis of Large Code Bases: The
Compile-Link-Analyze Model” unpublished report,
November 1999.

{17) N. Heintze and J. Jaffar, “A decision procedure for a class
of Herbrand set constraints” LICS, 1990.

[18] N. Heintze and D. McAllester, “On the Cubic-Bottleneck
of Subtyping and Flow Analysis” LICS, 1997.

[19] “Programming Languages - C”, ISO/IEC 9899:1990,
Internation Standard, 1990.

[20] D. McAllester, “On the Complexity Analysis of Static
Analysis”, SAS, 1999.

[21]) A. Rountev and S. Chandra, “Off-line Variable
Substitution for Scaling Points-to Analysis”, PLDI, 2000.

[22] M. Shapiro and S. Horwitz, “Fast and Accurate
Flow-Insensitive Points-To Analysis”, POPL, 1997.

[23] Z. Su, M. Féhndrich, and A. Aiken, “Projection Merging:
Reducing Redundancies in Inclusion Constraint Graphs”,
POPL, 2000. ’

[24] B. Steensgaard, “Points-to Analysis in Almost Linear
Time”, POPL, 1996.

[25] F. Tip, “Generation of Program Analysis Tools”, Institute
for Logic Language and Computation dissertation series,
1995-5, 1995.

Cloning-Based Context-Sensitive Pointer Alias Analysis
Using Binary Decision Diagrams

John Whaley

Monica S. Lam

Computer Science Department
Stanford University
Stanford, CA 94305

{jiwhaley, lam}@stanford.edu

ABSTRACT

This paper presents the first scalable context-sensitive, inclusion-
based pointer aias anaysis for Java programs. Our approach to
context sensitivity is to create a clone of a method for every con-
text of interest, and run a context-insensitivalgorithm over the ex-
panded call graph to get context-sensitiveesults. For precision,
we generate a clone for every acyclic path through a program’s call
graph, treating methods in astrongly connected component asasin-
gle node. Normally, this formulation is hopelessly intractable as a
call graph often has 10** acyclic paths or more. We show that these
exponentia relations can be computed efficiently using binary de-
cision diagrams (BDDs). Key to the scalability of the technique is
a context numbering scheme that exposes the commonalities across
contexts. We applied our algorithm to the most popular applications
available on Sourceforge, and found that the largest programs, with
hundreds of thousands of Java bytecodes, can be analyzed in under
20 minutes.

This paper shows that pointer analysis, and many other queries
and algorithms, can be described succinctly and declaratively using
Datalog, alogic programming language. We have developed a sys-
tem called bddbddb that automatically translates Datal og programs
into highly efficient BDD implementations. We used this approach
to develop a variety of context-sensitive algorithms including side
effect analysis, type analysis, and escape anaysis.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compilers E.2
[Data]: Data Storage Representations

General Terms
Algorithms, Performance, Design, Experimentation, Languages

Keywords

context-sensitive, inclusion-based, pointer analysis, Java, scalable,
cloning, binary decision diagrams, program analysis, Datalog, logic
programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PLDI'04, June 9-11, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

131

1. INTRODUCTION

Many applications of program analysis, such as program opti-
mization, parallelization, error detection and program understand-
ing, need pointer alias information. Scalable pointer analyses
developed to date are imprecise because they are either context-
insensitivgl, [17,[19, 133] or unification-basefl5, [16]. A context-
insensitive analysis does not distinguish between different calling
contexts of a method and alows information from one caller to
propagate erroneoudly to another caler of the same method. In
unification-based approaches, pointers are assumed to be either un-
aliased or are pointing to the same set of locations[28]. In contrast,
inclusion-basedypproaches are more efficient but also more expen-
sive, as they allow two aliased pointers to point to overlapping but
different sets of locations.

We have developed a context-sensitive and inclusion-based
pointer alias analysis that scales to hundreds of thousands of Java
bytecodes. The analysis is field-sensitive meaning that it tracks
the individual fields of individual pointers. Our analysisis mostly
flow-insensitive, using flow sensitivity only in the analysis of local
pointersin each function. Theresults of thisanalysis, aswe show in
this paper, can be easily used to answer users' queries and to build
more advanced analyses and programming tools.

1.1 Cloningto Achieve Context Sensitivity

Our approach to context sensitivity is based on the notion of
cloning Cloning conceptually generates multiple instances of a
method such that every distinct calling context invokes a different
instance, thus preventing information from one context to flow to
another. Cloning makes generating context-sensitive results algo-
rithmically trivial: We can simply apply a context-insensitivelgo-
rithm to the cloned program to obtain context-sensitiveesults. Note
that our analysis does not clone the code per se; it simply produces
a separate answer for each clone.

The context of a method invocation is often distinguished by its
call path which is simply the call sites, or return addresses, on the
invocation’s call stack. In the case of a recursive program, there
are an unbounded number of calling contexts. To limit the number
of calling contexts, Shivers proposed the concept of k-CFA (Con-
trol Flow Analysis) whereby one remembers only the last k£ call
sites[26]. Emami et a. suggested distinguishing contexts by their
full call paths if they are acyclic. For cyclic paths, they suggested
including each call site in recursive cycles only once[14]. Our ap-
proach also uses entire call paths to distinguish between contexts
in programs without recursion. To handle recursion, call paths are
reducedby eliminating al invocations whose callers and callees be-
long to the same strongly connected component in the call graph.
These reduced call paths are used to identify contexts.

It was not obvious, at least to us at the beginning of this project,
that a cloning-based approach would be feasible. The number of re-
duced call paths in a program grows exponentially with the number
of methods, and a cloning-based approach must compute the result
of every one of these contexts. Emami et al. have only reported
context-sensitive points-to results on small programs[14]. Realistic
programs have many contexts; for example, the meganmek applica
tion has over 10'* contexts (see Section[6). The size of the final
results alone appears to be prohibitive.

We show that we can scale a cloning-based points-to analysis
by representing the context-sensitive relations using ordered binary
decision diagrams (BDDs)[6]. BDDs, originally designed for hard-
ware verification, have previously been used in a number of pro-
gram analyses|2, [23,138], and more recently for points-to analysis[3]
39]. We show that it is possible to compute context-sensitive points-
to results for over 10'* contexts.

In contrast, most context-sensitive pointer alias analyses devel-
oped to date are summary-based[15, 34} [37]. Parameterized sum-
maries are created for each method and used in creating the sum-
maries of its callers. It is not necessary to represent the results for
the exponentially many contexts explicitly with this approach, be-
cause the result of a context can be computed independently using
the summaries. However, to answer queries as ssimple as “which
variables point to a certain object” would require all the results
to be computed. The readers may be interested to know that, de-
spite much effort, we tried but did not succeed in creating ascalable
summary-based algorithm using BDDs.

1.2 Contributions

The contributions of this paper are not limited to just an algorithm
for computing context-sensitive and inclusion-based points-to infor-
mation. The methodology, specification language, representation,
and tools we used in deriving our pointer analysis are applicable to
creating many other algorithms. We demonstrate this by using the
approach to create a variety of queries and algorithms.

Scalable cloning-based context-sensitive points-to analysis
using BDDs. The algorithm we have developed is remarkably sim-
ple. We first create a cloned call graph where a clone is created
for every distinct calling context. We then run a simple context-
insensitive algorithm over the cloned call graph to get context-
sensitive results. We handle the large number of contexts by rep-
resenting them in BDDs and using an encoding scheme that al-
lows commonalities among similar contexts to be exploited. We
improve the efficiency of the algorithm by using an automatic tool
that searches for an effective variable ordering.

Datalog as a high-level language for BDD-based program
analyses. Instead of writing our program analyses directly in terms
of BDD operations, we store all program information and results as
relations and express our analyses in Datalog, alogic programming
language used in deductive databases|30]. Because Datalog is suc-
cinct and declarative, we can express points-to analyses and many
other algorithms simply and intuitively in just afew Datalog rules.

We use Datalog because its set-based operation semantics
matches the semantics of BDD operations well. To aid our al-
gorithm research, we have developed a deductive database system
called bddbddb (BDD Based Deductive DataBase) that automati-
cally translates Datal og programsinto BDD algorithms. We provide
ahigh-level summary of the optimizations in this paper; the details
are beyond the scope of this paper|35].

Our experienceisthat programs generated by bddbddb are faster
than their manually optimized counterparts. More importantly, Dat-
alog programs are orders-of-magnitude easier to write. They are so
succinct and easy to understand that we use them to explain all our

132

algorithms here directly. All the experimental results reported in
this paper are obtained by running the BDD programs automatically
generated by bddbddb.

Context-sensitive queries and other analyses. The context-
sengitive points-to results, the simple cloning-based approach to
context sensitivity, and the bddbddb system make it easy to write
new analyses. We show some representative examples in each of
the following categories:

1. Simple queriesTheresultsfrom our context-sensitive pointer
analysis provide a wealth of information of interest to pro-
grammers. We show how a few lines of Datalog can help
programmers debug a memory leak and find potential secu-
rity vulnerabilities.

2. Algorithms using context-sensitive points-to resie show
how context-sensitive points-to results can be used to cre-
ate advanced analyses. We include examples of a context-
sensitive analysis to compute side effects (mod-ref) and an
analysisto refine declared types of variables.

3. Other context-sensitive algorithm<€loning can be used to
trivially generate other kinds of context-sensitive results be-
sides points-to relations. We illustrate this with a context-
sensitive type analysis and a context-sensitive thread escape
analysis. Whereas previous escape analyses require thou-
sands of lines of code to implement|34], the algorithm here
has only seven Datalog rules.

Experimental Results. We present the analysis time and mem-
ory usage of our analyses across 21 of the most popular Java appli-
cations on Sourceforge. Our context-sensitive pointer analysis can
analyze even the largest of the programs in under 19 minutes. We
also compare the precision of context-insensitive pointer analysis,
context-sensitive pointer analysis and context-sensitive type analy-
sis, and show the effects of merging versus cloning contexts.

1.3 Paper Organization

Here is an overview of the rest of the paper. Section [ex-
plains our methodology. Using Bernd!’s context-insensitive points-
to algorithm as an example, we explain how an analysis can be
expressed in Datalog and, briefly, how bddbddb translates Dat-
alog into efficient BDD implementations. Section [3 shows how
we can easily extend the basic points-to agorithm to discover
call graphs on the fly by adding a few Datalog rules. Section[4]
presents our cloning-based approach and how we use it to compute
context-sensitive points-to results. Section 5 shows the represen-
tative queries and algorithms built upon our points-to results and
the cloning-based approach. Section[6 presents our experimental
results. We report related work in Section [7] and conclude in Sec-
tion[8.

2. FROM DATALOG TO BDDS

In this section, we start with a brief introduction to Datalog.
We then show how Datalog can be used to describe the context-
insensitive points-to analysis due to Berndl et al. at ahigh level. We
then describe how our bddbddb system trandates a Datalog pro-
gram into an efficient implementation using BDDs.

2.1 Datalog

We represent a program and all its analysis results as relations.
Conceptually, arelation is a two-dimensional table. The columns
are the attributes each of which has a domaindefining the set of
possible attribute values. The rows are the tuples of attributes that
share the relation. If tuple (z,y, z) isin relation A, we say that
predicate A(z, y, z) istrue.

A Datalog program consists of a set of rules, written in a Prolog-
style notation, where a predicate is defined as a conjunction of other
predicates. For example, the Datalog rule

D(w,z) A(w,z), B(z,y),C(y, 2).

saysthat “ D(w, z) istrue if A(w,z), B(z,y), and C(y, z) arell
true” Variables in the predicates can be replaced with constants,
which are surrounded by double-quotes, or don’t-cares, which are
signified by underscores. Predicates on the right side of the rules
can be inverted.

Datalog is more powerful than SQL, which is based on relational
calculus, because Datal og predicates can be recursively defined[30].
If none of the predicatesin a Datalog program isinverted, then there
is a guaranteed minimal solution consisting of relations with the
least number of tuples. Conversely, programs with inverted pred-
icates may not have a unique minimal solution. Our bddbddb
system accepts a subclass of Datalog programs, known as strati-
fied programg[7], for which minimal solutions always exist. Infor-
mally, rules in such programs can be grouped into strata, each with
aunique minimal solution, that can be solved in sequence.

2.2 Context-Insensitive Points-to Analysis

We now review Berndl et a.’s context-insensitive points-to
analysis[3], while also introducing the Datalog notation. This al-
gorithm assumes that a call graph, computed using simple class hi-
erarchy analysig[13], is available a priori. Heap objects are named
by their alocation sites. The agorithm finds the objects possibly
pointed to by each variable and field of heap objectsin the program.
Shown in Algorithm[Tlis the exact Datalog program, asfed to bddb-
ddb, that implements Bernd!’s algorithm. To keep thefirst example
simple, we defer the discussion of using types to improve precision
until SectionZ3

ALGORITHM 1. Context-insensitive points-to analysis with a

precomputed call graph.

DoOMAINS
\% 262144 variable.map
H 65536 heap.map
F 16384 field.map
RELATIONS
input vPo (variable : V, heap : H)
input store (base : V, field : F, source : V)
input load (base : 'V, field : F, dest : V)
input assign (dest : V, source : V)
output vP (variable : V, heap : H)
output AP (base : H, field : F, target : H)
RULES
vP(v, h) — wvPo(v,h). (@)
vP(v1, h) — assign(v1,v2), vP(va, h). 2
hP(h’lafa h2) - StOT’e(’Ul,f77_)2)7
UP(U1,h1),UP(U2,h2). (3)
vP(v2, h2) — load(v, f,v2),
UP(U17h1)7hP(h17f7h2)' (4)
O

A Datalog program has three sections. domains, relations, and
rules. A domain declaratiorhas a name, a size n, and an optional
filenamethat provides aname for each element in the domain, inter-
nally represented as an ordinal number from 0 to n — 1. The latter

133

allows bddbddb to communicate with the users with meaningful
names. A relation declarationhas an optional keyword specifying
whether it is an input or output relation, the name of the relation,
and the name and domain of every attribute. A relation declared
as neither input nor output is atemporary relation generated in the
analysis but not written out. Finally, the rules follow the standard
Datalog syntax. The rule numbers, introduced here for the sake of
exposition, are not in the actual program.

We can express all information found in the intermediate repre-
sentation of a program as relations. To avoid inundating readers
with too many definitions all at once, we define the relations as they
are used. The domains and relations used in Algorithm[d are:

V isthe domain of variables. It represents all the alocation sites,
formal parameters, return values, thrown exceptions, cast op-
erations, and dereferences in the program. There is also a
special globalvariable for use in accessing static variables.

H is the domain of heap objects. Heap objects are named by the
invocation sites of object creation methods. To increase pre-
cision, we also statically identify factory methods and treat
them as object creation methods.

F isthe domain of field descriptors in the program. Field descrip-

tors are used when loading from afield (vo = vi.f;) or

storing to afield (v1. f = vo;). Thereisaspecia field de-
scriptor to denote an array access.
V x H is the initial variable points-to relation extracted
from object alocation statements in the source program.
vPo (v, h) means there is an invocation site h that assigns
anewly dlocate object to variable v.
store: V x F x V represents store statements. store(v1, £,v2)
saysthat thereisastatement “v;. f = va; ” inthe program.

load: V x F x V represents load statements. load (v1, £, v2) Says
that there isastatement “v, = v4. f;” inthe program.

assign: V x V isthe assignments relation due to passing of argu-
ments and return values. assign(v1, v2) means that variable
v1 includes the points-to set of variable v». Although we do
not cover return values here, they work in an analogous man-
ner.

vPo:

vP: V x H is the output variable points-to relation. vP (v, h)
means that variable v can point to heap object h.
hP: H x F x H is the output heap points-to relation.

hP(hi, f, h2) meansthat field f of heap object /1 can point
to heap object hs.

Note that local variables and their assignments are factored away
using a flow-sensitive analysig[33]. The assignrelation is derived
by using a precomputed call graph. The sizes of the domains are
determined by the number of variables, heap objects, and field de-
scriptorsin theinput program.

Rule (@) incorporates the initia variable points-to relations into
vP. Rule @) finds the transitive closure over inclusion edges. If
v1 includes v, and variable v, can point to object A, then v; can
also point to 4. Rule @) models the effect of store instructions on
heap objects. Given a statement “v;. f = vo; ", if vq can point
to hy and v can point to hz, then hy.f can point to k2. Rule (@)
resolvesload instructions. Given astatement“vo = vq. f; ", ifvy
can point to h, and h;.f can point to ks, then v, can point to hs.
Applying these rules until the results converge finds all the possible
context-insensitive points-to relations in the program.

2.3 Improving Points-to Analysiswith Types

Because Java is type-safe, variables can only point to objects of
assignabletypes. Assignabilityis similar to the subtype relation,

ALGORITHM 2.
type filtering.

DoOMAINS
Domains from Algorithm[, plus:

T 4096 type.map

RELATIONS
Relations from Algorithm[d] plus:

input oT (variable : V, type : T)
input AT (heap : H, type : T)
input aT (supertype : T, subtype : T)
vPfilter (variable : V, heap : H)
RULES
vPfilter(v, h) vT (v, t0), KT (hytr), aT (tv,tr). (5)
vP(v, h) vPo (v, h). (6)
vP(v1, h) — assign(vi,v2), vP(va, h),
vPfilter(vi, h). (7
hP(hi, fyhe) :— store(vi, f,v2),
UP(’Ul,h1),UP(’UQ,h2). (8)
vP(v2, ha) i — load(vy, f,v2),vP(vi, h1),
hP(h1, f, hg), vPﬁlter(vg, hg) (9)
O

with allowancesfor interfaces, null values, and arrays|22]. By drop-
ping targets of unassignable types in assignments and load state-
ments, we can eliminate many impossible points-to relations that
result from the imprecision of the analysis. [

Adding type filtering to Algorithm[dis simple in Datalog. We
add a new domain to represent types and new relations to repre-
sent assignability as well as type declarations of variables and heap
objects. We compute the type filter and modify the rules in Algo-
rithm([d to filter out unsafe assignments and load operations.

T isthe domain of type descriptors (i.e. classes) in the program.

vT: V x T represents the declared types of variables. vT'(v,t)
means that variable v is declared with type ¢.

hT: H x T represents the types of objects created at a particular
creation site. In Java, the type created by a new instruction
is usually known staticallyl] ~T'(h,t) means that the object
created at h hastypet.

aT: T x Tistherelation of assignable types. aT'(t1,t2) means
that type ¢, is assignable to type ¢;.

vPfilter: V x H isthe type filter relation. vPfilter(v, h) means
that it is type-safe to assign heap object & to variable v.

Rule (B in Algorithm [2 defines the vPfilter relation: It is type-
safe to assign heap object h of type ¢, to variable v of typet, if t,
is assignable from ¢,. Rules (6) and (8) are the same as Rules (1)
and @) in Algorithm[d. Rules ([@) and (@) are analogousto Rules (2)
and (4), with the additional constraint that only points-to relations
that match the type filter are inserted.

'We could similarly perform type filtering on stores into heap ob-
jects. However, because all stores must go through variables, such a
type filter would only catch one extra case — when the base object
isanull constant.

2The type of a created object may not be known precisely if, for
example, the object is returned by a native method or reflection is
used. Such types are modeled conservatively as al possible types.

Context-insensitive points-to analysis with

24 Trandating Datalog into Efficient BDD
I mplementations

We first describe how Datalog rules can be translated into opera-
tors from relational algebra such as*join” and “project”, then show
how to translate these operations into BDD operations.

2.4.1 Query Resolution

We can find the solution to an unstratified query, or a stratum of
astratified query, simply by applying the inference rules repeatedly
until none of the output relations change. We can apply a Datalog
rule by performing a series of relational natural join, project and re-
name operations. A natural join operation combines rows from two
relations if the rows share the same value for a common attribute.
A project operation removes an attribute from arelation. A rename
operation changes the name of an attribute to another one.

For example, the application of Rule (2) can be implemented as:

t1 = rename(vP, variable, source);
to = project(join(assign,t1), source);
vP = vP Urename(tz, dest, variable);

We first rename the attribute in relation vP from variableto source
so that it can be joined with relation assignto create a new points-to
relation. The attribute destof the resulting relation is changed to
variable so that the tuples can be added to the v P tuples accumu-
lated thus far.

The bddbddb system uses the three following optimizations to
speed up query resolution.

Attributesnaming. Sincethe names of the attributes must match
when two relations are joined, the choice of attribute names can
affect the costs of rename operations. Since the renaming cost is
highly sensitive to how the relations are implemented, the bddbddb
system takes the representation into account when minimizing the
renaming cost.

Rule application order. A rule needs to be applied only if the
input relations have changed. bddbddb optimizes the ordering of
the rules by analyzing the dependences between the rules. For ex-
ample, Rule 1 in Algorithm[1] does not depend on any of the other
rules and can be applied only once at the beginning of the query
resolution.

Incrementalization. We only need to re-apply a rule on those
combinations of tuples that we have not seen before. Such atech-
nique is known as incrementalization in the BDD literature and
semi-naive fixpoint evaluation in the database literature[l]. Our
system also identifies loop-invariant relations to avoid unnecessary
difference and rename operations. Shown below is the result of in-
crementalizing the repeated application of Rule (2):

d = vP;
repeat
t1 = rename(d, variable, source);
to = project(join(assign,t1), source);
d" = rename(tz2, dest, variable);
d =d — P
vP = 9P Ud,
until d == 0;

2.4.2 Relational Algebra in BDD

We now explain how BDDs work and how they can be used to
implement relations and relational operations. BDDs (Binary De-
cision Diagrams) were originally invented for hardware verifica-
tion to efficiently store a large number of states that share many
commonalities[6]. They are an efficient representation of boolean

functions. A BDD is adirected acyclic graph (DAG) with asingle
root node and two terminal nodes, representing the constants one
and zero. Each non-terminal node in the DAG represents an input
variable and has exactly two outgoing edges: a high edge and alow
edge. The high edge represents the case where the input variable
for the node is true, and the low outgoing edge represents the case
where the input variable isfalse. On any path in the DAG from the
root to a terminal node, the value of the function on the truth val-
ues on the input variables in the path is given by the value of the
terminal node. To evaluate a BDD for a specific input, one simply
starts at the root node and, for each node, follows the high edge if
the input variable is true, and the low edge if the input variable is
false. The value of the terminal node that we reach is the value of
the BDD for that input.

The variant of BDDs that we use are called ordered binary de-

cision diagramsor OBDDsg[6]. “Ordered” refers to the constraint
that on all paths through the graph the variables respect a given lin-
ear order. In addition, OBDDs are maximally reduceaneaning that
nodes with the same variable name and low and high successors are
collapsed as one, and nodes with identical low and high successors
are bypassed. Thus, the more commonalities there are in the paths
leading to the terminal s, the more compact the OBDDs are. Accord-
ingly, the amount of the sharing and the size of the representation
depends greatly on the ordering of the variables.

We can use BDDsto represent relations as follows. Each element
d in an n-element domain D is represented as an integer between
Oand n — 1 using logz2(n) bits. Arelation R : D1 x ... x D, is
represented asaboolean function f : Dy x...x D, — {0,1} such
that (dl,...,dn) € Riff f(dl,,dn) =1,and (d1,...,dn) ¢
Riff f(d1,...,dn) =0.

A number of highly-optimized BDD packages are available[21]
27|; the operations they provide can be used directly to implement
relational operations efficiently. For example, the “replace” oper-
ation in BDD has the same semantics as the “rename” operation;
the “relprod” operation in BDD finds the natural join between two
relations and projects away the common domains.

Let us now use a concrete example to illustrate the signif-
icance of variable ordering. Suppose relation R; contains tu-
ples (1,1),(2,1),...,(100,1) and relation R, contains tuples
(1,2),(2,2),...,(100, 2). If in the variable order the bits for the
first attribute come before the bits for the second, the BDD will
need to represent the sequence 1, . . ., 100 separately for each rela-
tion. However, if instead the bits for the second attribute come first,
the BDD can share the representation for the sequence 1, ..., 100
between R; and R». Unfortunately, the problem of finding the best
variable ordering is NP-complete]5]. Our bddbddb system auto-
matically explores different alternatives empiricaly to find an ef-
fective ordering|35].

3. CALL GRAPH DISCOVERY

The call graph generated using class hierarchy analysis can have
many spurious call targets, which can lead to many spurious points-
to relations[19]. We can get more precise results by creating the call
graph on the fly using points-to relations. As the algorithm gener-
ates points-to results, they are used to identify the receiver types of
the methodsinvoked and to bind calls to target methods; and as call
graph edges are discovered, we use them to find more points-to re-
lations. The agorithm converges when no new call targets and no
new pointer relations are found.

Modifying Algorithm[2]to discover call graphs on the fly is sim-
ple. Instead of an input assign relation computed from a given call
graph, wederiveit from method invocation statements and points-to
relations.

ALGORITHM 3.
computes call graph on the fly.

DOMAINS
Domains from Algorithm[2, plus:

I 32768 invoke.map
N 4096 name.map
M 16384 method.map
Z 256

RELATIONS

Relations from Algorithm 2, with the modification that assign is
now a computed relation, plus:

input cha (type : T, name : N, target : M)
input actual (invoke : I, param : Z,var : V)
input formal (method : M, param : Z, var : V)
input IFEo (invoke : 1, target : M)
input ml (method : M, invoke : 1)

(

output IE wmwvoke : 1, target : M)
RULES
Rules from Algorithm[Z, plus:
IE(i,m) :— IEo(i,m). (10)
IE(i,m2) :— ml(mai,i,n), actual(i, 0, v),
vP(v,h), hT(h,t), cha(t,n, ms).(11)
assign(vi,v2) :— IE(i,m), formal(m,z,v1),
actual(i, z,v2). 12
O

| is the domain of invocation sites in the program. An invocation
site is a method invocation of the formr = po. m(p1 ...
px) . Notethat H C I.

N is the domain of method names used in invocations. In an invo-
cationr = po.N(pP1 ... Px), nisthemethod name.

M is the domain of implemented methods in the program. It does
not include abstract or interface methods.

Z isthe domain used for numbering parameters.

cha: T x N x M encodes virtual method dispatch information
from the class hierarchy. cha(t,n,m) means that m is the
target of dispatching the method name n on type ¢.

actual: | x Z x V encodes the actual parameters for invocation
sites. actual(i, z,v) means that v is passed as parameter
number z at invocation site .

formal: M x Z x V encodes formal parameters for methods.
formal(m, z,v) means that formal parameter z of method
m isrepresented by variable v.

I1Ey: | x M aretheinitial invocation edges. They record the invo-
cation edges whose targets are statically bound. In Java, some
calls are static or non-virtual. Additionally, local type analy-
sis combined with analysis of the class hierarchy allows usto
determine that some calls have asingle target[13]. [E (i, m)
means that invocation site ¢ can be analyzed statically to call
method m.

ml: M x | x N represents invocation sites. mI(m,%,n) means
that method m contains an invocation site ¢ with virtual
method name n. Non-virtual invocation sites are given a spe-
cia null method name, which does not appear in the cha re-
lation.

IE: | x M is an output relation encoding all invocation edges.
IE (4, m) means that invocation site ; calls method m.

Context-insensitive points-to analysis that

The rules in Algorithm [3] compute the assign relation used in
Algorithm[2 Rules ([I0) and (1) find the invocation edges, with
the former handling statically bound targets and the latter handling
virtual calls. Rule (II) matches invocation sites with the type of
the “this” pointer and the class hierarchy information to find the
possible target methods. If an invocation site i with method name n
isinvoked on variable v, and v can point to 4 and h has type ¢, and
invoking n on type ¢ leads to method m, then m is a possible target
of invocation i.

Rule (T2) handles parameter passingl If invocation site i has a
target method m, variable v, is passed as argument number z, and
the formal parameter z of method m is vy, then the points-to set
of v; includes the points-to set of v2. Return values are handled
in a likewise manner, only the inclusion relation is in the opposite
direction. We see that as the discovery of more variable points-
to (vP) can create more invocation edges (/£), which in turn can
create more assignments (assign) and more points-to relations. The
algorithm converges when all the relations stabilize.

4. CONTEXT SENSITIVE POINTSTO

A context-insensitive or monomorphi@nalysis producesjust one
set of results for each method regardless how many ways a method
may be invoked. This leads to imprecision because information
from different calling contexts must be merged, so information
along one calling context can propagate to other calling contexts.
A context-sensitive or polymorphicanalysis avoids thisimprecision
by allowing different contexts to have different results.

We can make a context-sensitive version of a context-insensitive
analysis as follows. We make a clone of a method for each path
through the call graph, linking each call siteto its own unique clone.
We then run the original context-insensitive analysis over the ex-
ploded call graph. However, this technique can require an exponen-
tial (and in the presence of cycles, potentially unbounded) number
of clonesto be created.

It has been observed that different contexts of the same method
often have many similarities. For example, parameters to the same
method often have the same types or similar aliases. This obser-
vation led to the concept of partial transfer functions (PTF), where
summaries for each input pattern are created on the fly as they are
discovered|36, [37]. However, PTFs are notorioudly difficult to im-
plement and get correct, as the programmer must explicitly calcu-
late the input patterns and manage the summaries. Furthermore, the
technique has not been shown to scale to very large programs.

Our approach is to alow the exponential explosion to occur and
rely on the underlying BDD representation to find and exploit the
commonalities across contexts. BDDs can express large sets of re-
dundant data in an efficient manner. Contexts with identical infor-
mation will automatically be shared at the data structure level. Fur-
thermore, because BDDs operate down at the bit level, it can even
exploit commonalities between contexts with different information.
BDD operations operate on entire relations at a time, rather than
onetuple at atime. Thus, the cost of BDD operations depends on
the size and shape of the BDD relations, which depends greatly on
the variable ordering, rather than the number of tuplesin arelation.
Also, dueto caching in BDD packages, identical subproblems only
have to be computed once. Thus, with the right variable ordering,
theresults for all contexts can be computed very efficiently.

4.1 Numbering Call Paths

A call path is a sequence of invocation edges
(i1,m1), (i2,m2),..., such that i, is an invocation site in

3We also match thread objectsto their corresponding r un() meth-
ods, even though the edges do not explicitly appear inthe call graph.

136

Figure 1: Example of path numbering. The graph on theleft is
the original graph. Nodes M» and M3 arein acycle and there-
fore are placed in one equivalence class. Each edge is marked
with path numbers at the source and target of the edge. The
graph on theright isthe graph with all of the paths expanded.

Call paths | Reduced call paths
reachingMs reachingMs

a(cd)*eh aeh
b(dc)*deh beh
a(cd)*cfh afh

b(de)* fh bfh
a(cd)*cgi agi

b(de)* gt bgi

Figure 2: Thesix contexts of function Mg in Example[d]

an entry method, typicallymai], andi,, is an invocation site in
methodmy,_ forall k& > 1.

For programs without recursion, every call path to a method de-
fines a context for that method. To handle recursive programs,
which have an unbounded number of call paths, we first find the
strongly connected components (SCCs) in a call graph. By elimi-
nating all method invocations whose caller and callee belong to the
same SCC from the call paths, we get a finite setedficed call
paths. Each reduced call path to an SCC defines a context for the
methods in the SCC. Thus, information from different paths lead-
ing to the SCCs are kept separate, but the methods within the SCC
invoked with the same incoming call path are analyzed context-
insensitively.

ExampLE 1. Figure[l(a) shows a small call graph with just six
methods and a set of invocation edges. Each invocation edge has a
name, being one af throughi; its source is labeled by the context
number of the caller and its sink by the context number of the callee.
The numbers will be explained in Examjle 2. Methads and
M35 belong to a strongly connected component, so invocations along
edgesc and d are eliminated in the computation of reduced call
graphs. While there are infinitely many call paths reaching method
Mes, there are only six reduced call paths reachig as shown in
Figurd2. Thus\/s has six clones, one for each reduced call path.

Under this definition of context sensitivity, large programs can
have many contexts. For exampeyd from our test programs has
1971 methods anti0®® contexts! In the BDD representation, we
give each reduced call path reaching a method a distiomtext

40ther “entry” methods in typical programs are static class initial-
izers, object finalizers, and thread run methods.

number. It is important to find a context numbering scheme that 4.2 Context-Sensitive Pointer Analysis with a
allows the BDDs to share commonalities across contexts. Algo- Pre—computed Call Graph

rithm[4 shows one such scheme. We are now ready to present our context-sensitive pointer analy-

sis. We assume the presence of a pre-computed call graph created,
for example, by using a context-insensitive points-to analysis (Al-
gorithm[3). We apply Algorithni]4 to the call graph to generate

ALGORITHM 4. Generating context-sensitive invocation edges
froma call graph.

INPUT: A call multigraph. the context-sensitive invocatior_1 edgé_E_c. On_ce that is cre_ated,
o _ we can simply apply a context-insensitive points-to analysis on the
OuTpuT: Context-sensitive invocation edgé:: C x | x Cx M, exploded call graph to get context-sensitive results. We keep the
where C is the domain of context numbef&(c, ¢, ¢,n, m) means results separate for each clone by adding a context number to meth-
that invocation sité in contextc calls methodn in contextc,, . ods, variables, invocation sites, points-to relations, etc.
METHOD: ALGORITHM 5. Context-sensitive points-to analysiswith a pre-
1. A method withn clones will be given numbers, ... n. computed call graph.
Nodes with no predecessors are given a singleton contexty o0 s
numbered 1.

Domains from Algorithni P, plus:

2. Find strongly connected components in the input call graph.
Theith clone of a method always calls tita clone of another
method belonging to the same component. RELATIONS

Relations from Algorithri 2, plus:

C 9223372036854775808

3. Collapse all methods in a strongly connected component to a
single node to get an acyclic reduced graph. input IEc (caller : C,invoke : 1, callee : C, tgt : M)
assignc (deste : C, dest : V, srce : C, src : V)

4. For each node in the reduced graph in topological order, output vPe¢ (context : C, variable : V, heap : H)

Set the counts of contexts createdto 0.

: X RULES
For each incoming edge,
If the predecessor of the edgéask contexts, vPfilter(v,h) = vT(v,ty), KT (h,tn), aT (tv, tn). (13)
createk clones of node, vPc(c,v, h) :— wPo(v,h),IEc(c, h,_,). (14)
Add tuple(i,p,i + ¢,n) to IEc, for 1 < i < k, .
o vPc(c1,v1,h) :— assignc(ci,vi,c2,v2),
c=c+k.
O vPc(c2,v2, h), vPfilter(vi, h). (15)
hP(hi, f,h2) = — store(vi, f,v2),

EXAMPLE 2. We now show the results of applying Algoritfun 4 vPc(c,v1,h), vPc(c,va, ha). (16)
to Exampld_l.M;, the root node, is given context number 1. We
shall visit the invocation edges from left to right. Nodks and vPe(c,v2,he) 1~ load(vy, f,v2), vPe(c, v1, ha),
Ms, being members of a strongly connected component, are repre- hP(ha, f, ha), vPfilter (vz, ha). (17)
sented as one node. The strongly connected component is reached assignc(ci, v1, c2, v2)
by two edges from\/;. SinceM; has only one context, we create :— IEc(e2,i,c1,m), formal(m, z,v1),
two clones, one reached by each edge. For mefledthe pre- actual(i, z,v2). (18)
decessor on each of the two incoming edges has two contexts, thus
M4 has four clones. Methodl/s has two clones, one for each clone
that invokesMs. Finally, methodMs has six clones: Clones 1-4 C is the domain of context numbers. Our BDD library uses signed
of method), invoke clones 1-4 and clones 1-2 of methif call 64-bit integers to represent domains, so the size is limited to
clones 5-6, respectively. The cloned graph is shown in Flgure 1(b). 2%,

IE:: C x | x C x M is the set of context-sensitive invocation

The numbering scheme used in Algoritith 4 plays up the edges./E¢(c, i, cm, m) means that invocation sitein con-
strengths of BDDs. Each method is assigned a contiguous range of text ¢ calls methodm in contexte,,. This relation is com-
contexts, which can be represented efficiently in BDDs. The con- puted using Algorithrill4.
texts of callees can be computed simply by adding a constant to the gssigne: C x V x C x V is the context-sensitive version of the
contexts of the callers; this operation is also cheap in BDDs. Be- assign relation.assignc(ci, v1, ca, v2) means variable; in
cause the information for contexts that share common tail sequences contextc; includes the points-to set of variahbe in context
are likely to be similar, this numbering allows the BDD data struc- vo due to parameter passing. Again, return values are handled
ture to share effectively across common contexts. For example, the analogously.
sequentially-numbered clones 1 and 2\d@ both have a common vPc: C x V x H is the context-sensitive version of the variable
tail sequenceh. Because of this, the contexts are likely to be sim- points-to relation¢P). vPc(c, v, h) means variable in con-
ilar and therefore the BDD can take advantage of the redundancies. textc can point to heap objedt

To optimize the creation of the cloned invocation graph, we have
defined a new primitive that creates a BDD representation of con- Rule (I8) interprets the context-sensitive invocation edges to find
tiguous ranges of numbers in K)(operations, wheré is the num- the bindings between actual and formal parameters. The rest of
ber of bits in the domain. In essence, the algorithm creates one BDDthe rules are the context-sensitive counterparts to those found in
to represent numbers below the upper bound, and one to represenlgorithm[2.
numbers above the lower bound, and computes the conjunction of Algorithm[H takes advantage of a pre-computed call graph to cre-
these two BDDs. ate an efficient context numbering scheme for the contexts. We can

137

compute the call graph on the fly while enjoying the benefit of the vuln (e,) : — IE(i, “PBEKeySpec.init()"),

numbering scheme by numbering all thessible contexts with a actual(i,1,v), vPc(c,v, h),
conservative call graph, and delaying the generation of the invoca- fromString(h).

tion edges only if warranted by the points-to results. We can reduce
the iterations necessary by exploiting the fact that many of the in- object derived from aString is immediately supplied to

vocation sites of a call graph created by_ a context-insensitive arjlal_PBEKeySpec.init(). This query will also identify cases where the
ysis have single targets. Such an algorithm has an execution time

similar to Algorithm[®, but is of primarily academic interest as the object has passed through many variables and heap objects.
call graph rarely improves due to the extra precision from context- 5.3 Type Refinement
sensitive points-to information.

Notice that this query does not only find cases where the

Libraries are written to handle the most general types of objects

5. QUERl ESAND OTHER ANALYSES possible, and their full generality is typically not used in many ap-

.) . plications. By analyzing the actual types of objects used in an ap-
The algorithms in sectioris[2] 3 &nid 4 generate vastamounts of re-yjication, we canrefine the types of the variables and object fields.

sults in the form of relations. Using the same declarative program- Type refinement can be used to reduce overheads in cast operations,

ming interface, we can conveniently query the results and extract ggolve virtual method calls, and gain better understanding of the
exactly the information we are interested in. This section shows a rogram.

variety of queries_a_m_d analyses that make use of pointer information We say that variables can be legally declared as written

and context sensitivity. varSuper Types(v, t), if t is a supertype of the types of all the ob-

5.1 DebuggingaMemory Leak jectsu can point to. The type of a variable is refinable if the variable
Memory leaks can occur in Java when a reference to an objectcan be declare_d to _have amore precise type. To compute_the super

remains even after it will no longer be used. One common approachtyg)iﬁtseght)c‘) Vge flr?/tvgrlggﬁrﬁfgrcstﬂp fﬁévéé)'gge deosf :{ﬁﬁjee Cetfact

of debugging memory leaks is to use a dynamic tool that locates theP Y. . o pertyp .

allocation sites of memory-consuming objects. Suppose that, upontypeS to get the deswe_d solution; we do so in Datalog by finding the

reviewing the information, the programmer thinks objects allocated complement of the union of the complement of the exact types.

in line 57 in filea. j ava should have been freed. He may wishto varEzactTypes(v,t) :— vPc(.,v,h), hT(h,t).

know which objects may be holding pointers to the leaked objects,

. ; . T D= FE. T —aT .
and which operations may have stored the pointers. He can consult notVarType(v,t) varBzactTypes(v,tu), ~aT (L, to)
the static analysis results by supplying the queries: varSuperTypes(v,t) :— —motVarType(v,t).
whoPointsTo57(h, f) :— hP(h,f, “a.java:57"). refinable(v, t.) i = vT(v,ta), varSuper Types(v, tc),
T(tq, te), ta # te.
whoDunnit(c,v1, f,v2) :— store(vi, f,v2), aT (ta,te),ta #
vPc(c, v, “a.java : 577). The above shows a context-insensitive type refinement query. We

find, for each variable, the type to which it can be refined regardless
of the context. Even if the end result is context-insensitive, itis more
tprecise to take advantage of the context-sensitive points-to results
available to determine the exact types, as shown in the first rule.
In Sectior 6.8, we compare the accuracy of this context-insensitive
5.2 Finding a Security Vulner ability query with a context-sensitive version.

The Java Cryptography Extension (JCE) is a library of crypto- -Sensiti _ :
graphic algorithm§5[29]. Misuse of the JCE API can lead to security 54 dc?ntelx'[, i StdlvedM Od.Rethl’;_alldySIfS hat obi
vulnerabilities and a false sense of security. For example, many Mod-ref analysis is used to determine what fields of what objects

operations in the JCE use a secret key that must be supplied by thén@y be modified or referenced by a statement or call site[18]. We
programmer. Itis important that secret keys be cleared after they arean use the context-sensitive points-to results to solve a context-
used so they cannot be recovered by attackers with access to memsensitive version O_f this query. YVe de'fmd/(m,_ 1_1) to mean that '
ory. SinceSt ri ng objects are immutable and cannot be cleared, 'S @ local variable inn. Them V¢ relation specn‘_l_es the set of vari-
secret keys should not be storedSr i ng objects but in an array ables and contexts of methods that are tran_'sltlvely reacha_ble from
of characters or bytes instead. a method. m V& (c1 ;™M Ca, v) means that _calllng met_honlz with

To guard against misuse, the function that accepts the secret keypontextcl can transitively call a method with local variahleinder
PBEKeySpec.init(), only allows arrays of characters or bytes as CONtextcz.
input. However, a programmer not versed in security issues may mV¢(c,m,c,v) s — mV(m,v).
have stored the key in 8t ri ng object and then use a routine
in the St ri ng class to convert it to an array of characters. We
can write a query to audit programs for the presence of such id-
ioms. Let Mret(m,v) be an input relation specifying that vari- The first rule simply says that a methodin contextc can reach
able v is the return value of methoeh. We define a relation its local variable. The second rule says that if methadn context
fromString(h) which indicates if the objedt was directly derived c1 calls methodms in contextcz, thenm, in contexte; can also
from aString. Specifically, it records the objects that are re- reach all variables reached by methad in contextc,.

The first query finds the objects and their fields that may point
to objects allocated ata” j ava:57”; the second finds the store
instructions, and the contexts under which they are executed, tha
create the references.

mVe(er,mi,cs,v3) +— ml(ma,i), [Ec(ci,i,c2,ms),
mV(ea, me, cs,v3).

turned by a call to a method in tH& r i ng class. An invocation We can now define the mod and ref set of a method as follows:

1 to methodPBEKeySpec.init() is a vulnerability if the first argu- mod(c,m, b, f) :— mVi(e,m,co,v)

ment points to an object derived fronSar i ng. e store(q;f ’_) ;P;(cq) v, h).
fromString(h) : — cha(“String”, -, m), Mret(m,v), ref(c,my by f) 1 — mVi(e,m,ce,v),

UPC(—vvvh)' load(v,f, _),UPC(CU,U,}1)~

138

The first rule says that if method in contextc can reach a vari-
ablewv in contextc,, and if there is a store through that variable to
field f of objecth, thenm in contextc can modify fieldf of object
h. The second rule for defining the ref relations is analogous.

5.5 Context-Sensitive Type Analysis

Our cloning technique can be applied to add context sensitivity
to other context-insensitive algorithms. The example we show here
is the type inference of variables and fields. By not distinguish-
ing between instances of heap objects, this analysis does not gene
ate results as precise as those extracted from running the complet%
context-sensitive pointer analysis as discussed in Sdcfibn 5.3, but is

much faster.
The basic type analysis is similar ®@CFA[26]. Each variable

and field in the program has a set of concrete types that it can re
fer to. The sets are propagated through calls, returns, loads, an
stores. By using the path numbering scheme in Algorfthm 4, we
can convert this basic analysis into one which is context-sensitive—

in essence, making the analysis int&-&£FA analysis wheré is
the depth of the call graph and recursive cycles are collapsed.

ALGORITHM 6. Context-sensitive type analysis.

DoOMAINS
Domains from Algorithni b
RELATIONS
Relations from Algorithri b, plus:
output vTc (context : C, variable : V, type : T)
output fT (field : F, target : T)
vTfilter (variable : V,type : T)
RULES
vTfilter(v,t) :— vT(v,ty), aT (ty,t). (29)
vTc(e,v,t) :— wPo(v,h),IEc(c, h, -, _), hT(h,t).(20)

vTc(coy,v1,t) : — assignc(co,,v1,Coy,v2),

vTc(Coy, 2, t), vTfilter(vi,t). (21)
fT(f7 t) P StOT@(_, vaQ)vaC(—7U27t)~ (22)
’UTC(_,’U,t) T load(—7 fa U)afT(fa t)a

vTfilter(v,t). (23)

assignec(ci,v1,c2,v2)
: — IEc(c2,1,c1,m), formal(m, z,v1),
actual(i, z,v2). (24)

O

vTe: C x V x Tis the context-sensitive variable type relation.
vTc(c,v,t) means that variable in contextc, can refer to
an object of type. This is the analogue afP. in the points-
to analysis.

fT: F x T is the field type relationf7'(f,t) means that fieldf
can point to an object of type

vTfilter: V x T is the type filter relation.v Tfilter (v, t) means
that it is type-safe to assigh an object of type variablev.

Rule [20) initializes thevT'; relation based on the initial local
points-to information contained Py, combining it withh T to get

the type and/E. to get the context numbers. Rule]21) does tran-

sitive closure on theT'c relation, filtering withv Tfilter to enforce

type safety. Ruled(22) anf (23) handle stores and loads, respec-

tively. They differ from their counterparts in the pointer analysis in

r-

5.6 Thread Escape Analysis

Our last example is a thread escape analysis, which determines
if objects created by one thread may be used by another. The re-
sults of the analysis can be used for optimizations such as synchro-
nization elimination and allocating objects in thread-local heaps, as
well as for understanding programs and checking for possible race
conditions due to missing synchronizations$[8, 34]. This example
illustrates how we can vary context sensitivity to fit the needs of the
analysis.

We say that an object allocated by a threadésaaped if it may

e accessed by another thread. This notion is stronger than most
other formulations where an object is said to escape if it can be
reached by another threald[8. 34].

Java threads, being subclasseg alva. | ang. Thr ead, are

d‘dentified by their creation sites. In the special case where a thread

creation can execute only once, a thread can simply be named by
the creation site. The thread that exists at virtual machine startup
is an example of a thread that can only be created once. A creation
site reached via different call paths or embedded in loops or recur-
sive cycles may generate multiple threads. To distinguish between
thread instances created at the same site, we create two thread con-
texts to represent two separate thread instances. If an object created
by one instance is not accessed by its clone, then it is not accessed
by any other instances created by the same call site. This scheme
creates at most twice as many contexts as there are thread creation
sites.

We clone the threadun() method, one for each thread context,
and place these clones on the list of entry methods to be analyzed.
Methods (transitively) invoked by a contexrsin() method all
inherit the same context. A clone of a method not only has its own
cloned variables, but also its own cloned object creation sites. In
this way, objects created by separate threads are distinct from each
other. We run a points-to analysis over this slightly expanded call
graph; an object created in a thread context escapes if it is accessed
by variables in another thread context.

ALGORITHM 7. Thread-sensitive pointer analysis.

DOMAINS
Domains from Algorithnfib
RELATIONS
Relations from Algorithmi R, plus:
input Hr (c: C, heap : H)
input vPor (cv: C,wvariable : V, ch : C, heap : H)
output vPr (cv : C,variable : V, ch : C, heap : H)
output hPr (cb: C,base : H, field : F, ct : C, target : H)
RULES

vPfilter(v, h) :—vT(v,ty), hT(h,tp), aT (tv, tn). (25)

vPr(c1,v,c2,h) : —vPor(c1,v,c2, h). (26)

vP1(c,v,c, h) : —vPo(v, h), Hi(c, h). (27)

'UPT(CQ7 V1, Ch, h) : 704587;9”(1)17 ’Ug), UPT(027 V2, Ch, h)?
vPfilter(vi, h). (28)

hP+(c1, ha, f, c2, ha): —store(v1, f,v2), vPr(c, v1,c1, h1),

vP1(c, vz, c2, h2). (29)
vPr(c,v2,¢2,h2) : —load(v1, f,v2), vPr(c,v1, c1, 1),

hP<(c1, b1, f, c2, h2),

vPfilter(va, ha). (30)

that they do not use the base object, only the field. Rule (24) models O

the effects of parameter passing in a context-sensitive manner.

139

H;: C x H encodes the non-thread objects created by a thread.to handle return values and threads, and added annotations for the

H:(c, h) means that a thread with contexinay execute non- physical domain assignments of input relations.) The input rela-
thread allocation sité; in other words, there is a call path tions were generated with the Joeq compiler infrastructure[32]. The
from ther un() method in context to allocation siteh. entire bddbddb implementation is only 2500 lines of coddad-

vPor: C x V x C x H is the set of initial inter-thread points-to ~ dbddb uses the JavaBDD librafy[31], an open-source library based
relations. This includes the points-to relations for thread cre- on the BuDDy library[2]l]. The entire system is available as open-
ation sites and for the global objeetPor(c1, v, c2, h) means source[35], and we hope that others will find it useful.
that thread:; has an thread allocation site andv points to All experiments were performed on a 2.2GHz Pentium 4 with
the newly created thread context (There are usually two Sun JDK 1.4.204 running on Fedora Linux Core 1. For the context-
contexts assigned to each allocation site). All global objects insensitive and context-sensitive experiments, respectively: we used

across all contexts are given the same context. initial BDD table sizes of 4M and 12M; the tables could grow by
vP+: Cx V x C x His the thread-sensitive version of the variable 1M and 3M after each garbage collection; the BDD operation cache
points-to relatiorwPc. vP+(c1,v, c2, h) means variable in sizes were 1M and 3M. o _
contextc; can point to heap objedt created under context To test the scalability and applicability of the algorithm, we ap-
ca. plied our technique to 21 of the most popular Java projects on
hP:: C x H x F x C x H is the thread-sensitive version of the ~Sourceforge as of November 2003. We simply walked down the
heap points-to relatiohP. hP+(c1, hi, f, c2, ha) means that list of 100% Java projects sorted by activity, selecting the ones that
field f of heap objech; created under context can point would co_mp?le dire_ctly as standalone applications. They are all
to heap objeck; created under contexs. real applications with tens of thousands of users each. As far as

we know, these are the largest benchmarks ever reported for any
Rule [ZB) incorporates the initial points-to relations for thread context-sensitive Java pointer analysis. As a point of comparison,
creation sites. Ruld{27) incorporates the points-to information the largest benchmark in the specjvm sy@eac, would rank only
for non-thread creation sites, which have the context numbers of 13th in our list.
threads that can reach the method. The other rules are analogous For each application, we chose an applicatdé n() method as
to those of the context-sensitive pointer analysis, with an additional the entry point to the application. We included all class initializers,
context attribute for the heap objects. thread run methods, and finalizers. We ignored null constants in the
From the analysis results, we can easily determine which objectsanalysis—every points-to set is automatically assumed to include
have escaped. An objektcreated by thread contexhas escaped, null. Exception objects of the same type were merged. We treated

written escaped(c, h), if it is accessed by a different contexi. reflection and native methods as returning unknown objects. Some
Complications involving unknown code, such as native methods, native methods and special fields were modeled explicitly.
could also be handled using this technique. A short description of each of the benchmarks is included in Fig-

urel3, along with their vital statistics. The number of classes, meth-
escaped(c,h) : = wPr(cv, - ¢, h) c0 # c. ods, and bytecodes were those discovered by the context-insensitive
Conversely, an objedt created by context is captured, written ~ on-the-fly call graph construction algorithm, so they include only
captured(c, h), if it has not escaped. Any captured object can be the reachable parts of the program and the class library.

allocated on a thread-local heap. The number of context-sensitive (C.S.) paths is for the most part
correlated to the number of methods in the program, with the excep-
captured(c,h) :— wvPr(c,v,c, h),nescaped(c, h). tion of pmd. pmd has an astoundifigt 10 paths in the call graph,
We can also use escape analysis to eliminate unnecessary Synwhich req_uires 79 bits to represent. pmd has different characteristics
chronizations. We define a relatigncs(v) indicating if the pro- because it contains code generated by the parser generator JavaCC.

gram contains a synchronization operation performed on variable Many machine-generated methods call the same class library rou-
A synchronization for variable under context is necessary, writ- ines, leading to a particularly egregious exponential blowup. The
ten neededSyncs(c, v), if syncs(v) andv can point to an escaped JavaBDD library only supports physical domains up to 63 bits; con-

object. texts numbered beyor2{® were merged into a single context. The
large number of paths also caused the algorithm to require many
neededSyncs(c,v) :— syncs(v), vP1(c,v,cn, h), more rule applications to reach a fixpoint solution.

escaped(ch, h) .
6.2 AnalysisTimes

We measured the analysis times and memory usage for each of
éhe algorithms presented in this paper (Figdre 4). The algorithm
with call graph discovery, in each iteration, computes a call graph
based on the points-to relations from the previous iteration. The

6. EXPERIMENTAL RESULTS number of iterations taken for that algorithm is also included here.

. . . All timings reported are wall-clock times from a cold start, and
In this section, we present some experimental results of ixlng

. A include the various overheads for Java garbage collection, BDD
dbddb on the Datalog algorithms presented in this paper. We de- o046 collection, growing the node table, etc. The memory num-

scribe our testing methodology and benchmarks, present the analpers reported are the sizes of the peak number of live BDD nodes

ysis times, evaluate the results of the analyses, and provide SOMgy,ring the course of the algorithm. We measured peak BDD mem-
insight on our experience of developing these analyses arfitthe y \sage by setting the initial table size and maximum table size

dbddb tool. increase to 1MB, and only allowed the table to grow if the node
6.1 Methodol ogy table was more than 99% full after a garbage colle@ion.

Notice thatneededSyncs is context-sensitive. Thus, we can
distinguish when a synchronization is necessary only for certain
threads, and generate specialized versions of methods for thos
threads.

The input tobddbddb is more or less the Datalog programs ex- 5To avoid garbage collections, it is recommended to use more mem-
actly as they are presented in this paper. (We added a few rulesory. Our timing runs use the default setting of 80%.

140

Name Description Classes| Methods| Bytecodes| Vars| Allocs | C.S. Paths
freetts speech synthesis system 215 723 48K 8K 3K [4 x 10*
nfcchat scalable, distributed chat client 283 993 61K | 11K 3K| 8 x1¢f
jetty HTTP Server and Servlet container 309 1160 66K 12K 3K | 9 x10°
openwfe java workflow engine 337 1215 74K 14K 4K | 3 x 10°
joone Java neural net framework 375 1531 92K 17K 4K | 1 x 107
jboss J2EE application server 348 1554 104K | 17K 4K | 3 x 10°
jpbossdep | J2EE deployer 431 1924 119K | 21K 5K | 4 x 108
sshdaemon| SSH daemon 485 2053 115K | 24K 5K | 4 x 10°
pmd Java source code analyzer 394 1971 140K | 19K 4K | 5 x 10?3
azureus Java bittorrent client 498 2714 167K | 24K 5K | 2 x 10°
freenet anonymous peer-to-peer file sharing system 667 3200 210K | 38K 8K | 2 x 1
sshterm SSH terminal 808 4059 241K | 42K 8K | 5 x 10!
jgraph mathematical graph-theory objects and algorithms 1041 5753 337K| 59K 10K | 1 x 10
umldot makes UML class diagrams from Java code 1189 6505 362K | 65K 11K | 3 x 104
joidwatch | auction site bidding, sniping, and tracking tool 1474 8262 489K | 90K 16K | 7 x 103
columba graphical email client with internationalization 2020 10574 572K| 111K 19K| 1 x 103
gantt plan projects using Gantt charts 1834 10487 597K | 117K 20K | 1 x10'3
jxplorer Idap browser 1927 10702 645K | 133K 22K | 2 x 107
jedit programmer’s text editor 1788 10934 667K | 124K 20K | 6 x 107
megamek | networked BattleTech game 1265 8970 668K | 123K 21K | 4 x 104
gruntspud | graphical CVS client 2277 12846 687K | 145K 24K | 2 x 10°

Figure 3: Information about the benchmarks we used to test our analyses.

The context-insensitive analyses (Algorithfds 1 &hd 2) are re- because the number of thread creation sites is relatively small, and
markably fast; the type-filtering version was able to complete in we use at most two contexts per thread.
under 45 seconds on all benchmarks. It is interesting to notice that .
introducing type filtering actually improved the analysis time and 6-3 ~EVvaluation of Results
memory usage. Along with being more accurate, the points-to sets An in-depth analysis of the accuracy of the analyses with respect
are much smaller in the type-filtered version, leading to faster anal- to each of the queries in Sectign 5 is beyond the scope of this paper.
ysis times. Instead, we show the results of two specific queries: thread escape
For Algorithm[3, the call graph discovery sometimes took over analysis (Sectiofi 5.6) and type refinement (Se¢figh 5.3).
40 iterations to complete, but it was very effective in reducing the The results of the escape analysis are shown in Flglure 5. The
size of the call graph as compared to CHA[19]. The complexity of first two columns give the number of captured and escaped object
the call graph discovery algorithm seems to vary with the number creation sites, respectively. The next two columns give the number
of virtual call sites that need resolving—jedit and megamek have of unneeded and needed synchronization operations. The single-
many methods declared as final, but jxplorer has none, leading tothreaded benchmarks have only one escaped object: the global ob-
more call targets to resolve and longer analysis times. ject from which static variables are accessed. In the multi-threaded
The analysis times and memory usages of our context-sensitivebenchmarks, the analysis is effective in finding 30-50% of the al-
points-to analysis (Algorithrill5) were, on the whole, very reason- location sites to be captured, and 15-30% of the synchronization
able. It can analyze most of the small and medium size benchmarksoperations to be unnecessary. These are static numbers; to fully
in a few minutes, and it successfully finishes analyzing even the evaluate the results would require dynamic execution counts, which
largest benchmarks in under 19 minutes. This is rather remarkableis outside of the scope of this paper.
considering that the context-sensitive formulation is solving up to The results of the type refinement query are shown in Figure 6.
10'* times as many relations as the context-insensitive version! Our We tested the query across six different analysis variations. From
scheme of numbering the contexts consecutively allows the BDD to left to right, they are context-insensitive pointer analysis with-
efficiently represent the similarities between calling contexts. The out and with type filtering, context-sensitive pointer analysis and
analysis times are most directly correlated to the number of pathscontext-sensitive type analysis with the context projected away,
in the call graph. From the experimental data presented here, it ap-and context-sensitive pointer and type analysis on the fully cloned
pears that the analysis time of the context-sensitive algorithm scalesgraph. Projecting away the context in a context-sensitive analysis
approximately withO(lg n) wheren is the number of paths in makes the result context-insensitive; however, it can still be more
the call graph; more experiments are necessary to determine if thisprecise than context-insensitive analysis because of the extra pre-
trend persists across more programs. cision at the intermediate steps of the analysis. We measured the
The context-sensitive type analysis (Algorithin 6) is, as expected, percentages of variables that can point to multiple types and vari-
quite a bit faster and less memory-intensive than the context- ables whose types can be refined.
sensitive points-to analysis. Even though it uses the same number of Including the type filtering makes the algorithm strictly more
contexts, it is an order of magnitude faster than the context-sensitiveprecise. Likewise, the context-sensitive pointer analysis is strictly
points-to analysis. This is because in the type analysis the numbemore precise than both the context-insensitive pointer analysis and
of objects that can be pointed to is much smaller, which greatly the context-sensitive type analysis. We can see this trend in the
increases sharing in the BDD. The thread-sensitive pointer analy-results. As the precision increases, the percentage of multi-typed
sis (Algorithm[{) has analysis times and memory usages that arevariables drops and the percentage of refinable variables increases.
roughly comparable to those of the context-insensitive pointer anal- The context-insensitive pointer analysis and the context-sensitive
ysis, even though it includes thread context information. This is type analysis are not directly comparable; in some cases the point-

141

Context-insensitive pointers Context-sensitive Thread-sensitive

Name no type filter | with type filter | with cg discovery | pointer analysi$ type analysi$ pointer analysis

time mem| time mem| iter time mem| time mem| time mem| time mem
freetts 1 3 1 3] 20 2 4 1 6 1 6 1 4
nfcchat 1 4 1 4| 23 4 6 2 12 2 12 1 6
jetty 1 5 1 5| 22 4 7 3 12 2 10 1 6
openwfe 1 5 1 6| 23 5 8 4 14 2 14 1 7
joone 2 7 1 71 24 7 10 4 18 3 18 1 9
jboss 2 7 2 7| 30 8 10 7 24 4 22 2 9
jbossdep 2 9 2 9| 26 7 12 9 30 5 26 3 11
sshdaemon 2 9 2 10| 26 13 14 12 34 6 28 3 13
pmd 1 7 1 71 33 9 10| 297 111 19 36 1 9
azureus 2 10 2 10| 29 13 15 9 32 6 30 2 12
freenet 7 16 5 16 | 40 41 23 21 38 10 32 6 21
sshterm 8 17 5 17| 31 37 25 50 86 18 60 7 23
jgraph 17 27 11 25| 42 78 37| 119 134 33 20 13 35
umldot 17 30 11 29| 34 97 43| 457 304| 63 130 16 41
jbidwatch 31 43 20 40| 32 149 58| 580 394| 68 140 25 56
columba 43 55 27 49| 42 273 73| 807 400| 123 178| 38 72
gantt 41 59 26 51| 39 261 76| 1122 632 113 174| 34 71
jxplorer 57 68 39 60| 41 390 88| 337 198 78 118 51 83
jedit 61 61 38 54| 37 278 80| 113 108 60 82 50 76
megamek 40 57 26 51| 34 201 76| 1101 600 100 224| 34 73
gruntspud 66 76 41 67| 35 389 99| 312 202| 86 130 58 95

Figure 4: Analysistimes and peak memory usages for each of the benchmarks and analyses. Time isin seconds and memory isin

megabytes.

ers are more precise, in other cases the context-sensitive types araumbering scheme is the reason why the analysis would finish at all

more precise.

on even small programs. Every one of the optimizations described

When we do not project away the context, the context-sensitive in Sectiof 2.4 was first carried out manually. After considerable ef-

results are remarkably precise—the percentage of multi-typed vari-

fort, megamek still took over three hours to analyze, and jxplorer

ables is never greater than 1% for the pointer analysis and 2% for thedid not complete at all. The incrementalization was very difficult
type analysis. Projecting away the context loses much of the benefitto get correct, and we found a subtle bug months after the imple-

of context sensitivity, but is still noticeably more precise than using
a context-insensitive analysis.

heap objects sync operations

Name captured escaped | —needed mneeded

freetts 2349 1 43 0

nfcchat 1845 2369 52 46
jetty 2059 2408 47 89
openwfe 3275 1 57 0

joone 1640 1908 34 75
jboss 3455 2836 112 105
jbossdep 1838 2298 32 94
sshdaemon 12822 22669 468 1244
pmd 3428 1 47 0

azureus 8131 9183 226 229
freenet 5078 9737 167 309
sshterm 16118 24483 767 3642
jgraph 25588 48356 1078 5124
umldot 38930 69332 2146 8785
jbidwatch 97234 143384 2243 11438
columba 111578 174329 3334 18223
gantt 106814 156752 2377 11037
jxplorer 188192 376927 4127 18904
jedit 446896 593847, 7132 36832
megamek 179221 353096 3846 22326
gruntspud 248426 497971 5902 25568

Figure5: Results of escape analysis.

6.4 Experience
Allthe experimental results reported here are generated bding

mentation was completed. We did not incrementalize the outermost
loops as it would have been too tedious and error-prone. It was also
difficult to experiment with different rule application orders.

To get even better performance, and more importantly to make it
easier to develop new queries and analyses, we créaldintdb.
We automated and extended the optimizations we have used in our
manual implementation, and implemented a few new ones to em-
pirically choose the best BDD library parameters. The end result is
that code generated tiyddbddb outperforms our manually tuned
context-sensitive pointer analysis by as much as an order of magni-
tude. Even better, we could ubddbddb to quickly and painlessly
develop new analyses that are highly efficient, such as the type anal-
ysis in Sectiof 515 and the thread escape analysis in SEction 5.6.

7. RELATED WORK

This paper describes a scalable cloning-based points-to analysis
that is context-sensitive, field-sensitive, inclusion-based and imple-
mented using BDDs. Our program analyses, expressed in Datalog,
are translated biddbddb into a BDD implementation automati-
cally. We also presented example queries using our system to check
for vulnerabilities, infer types, and find objects that escape a thread.
Due to space constraints, we can only describe work that is very
closely related to ours.

Scalable pointer analyses. Most of the scalable algorithms pro-
posed are context-insensitive and flow-insensitive. The first scalable
pointer analysis proposed was a unification-based algorithm due to
Steensgaard[28]. Das et al. extended the unification-based approach
to include “one-level-flow([10] and one level of context sensitiv-
ity[11]. Subsequently, a number of inclusion-based algorithms have

dbddb. At the early stages of our research, we hand-coded every been shown to scale to large programs[3, 17| 19, 33].

points-to analysis using BDD operations directly and spent a con-
siderable amount of time tuning their performance. Our context-

142

A number of context-sensitive but flow-insensitive analyses have
been developed recently|15,|16]. The C pointer analysis due to

Context-insensitive pointers Projected context-sensitive Context-sensitive

Name no type filter T with type filter | pointer analysi§ type analysis| pointer analysi$ type analysis

multi refine | multi refine | multi refine| multi refine| multi refine| multi refine
freetts 5.1 411 2.3 41.6 2.0 41.9 25 41.3 0.1 44.4 0.3 44.0
nfcchat 12.4 36.4| 8.6 37.0 8.2 37.4 8.6 36.9 0.1 45.9 0.7 45.3
jetty 12.6 36.2 7.7 37.1 7.3 37.4 7.7 37.1 0.1 45.4 0.6 44.8
openwfe 12.1 36.9 7.0 37.7 6.6 38.0 7.0 37.6 0.1 455 0.5 44.8
joone 11.9 375 6.8 38.1 6.4 38.4 6.7 38.1 0.1 45.8 0.5 45.0
jboss 134 378| 7.9 38.7 7.4 39.3 7.8 38.7 0.1 47.3 0.7 46.4

jbossdep 10.2 40.3 7.4 39.5 7.0 40.0 7.5 39.4 0.2 47.6 0.8 46.6
sshdaemon| 10.7 39.3 6.0 40.3 5.8 40.5 5.9 40.4 0.1 46.8 0.6 46.1

pmd 9.6 42.3 6.2 43.1 5.9 43.4 6.2 43.1 0.1 52.1 0.6 48.1
azureus 10.0 43.6 6.1 44.1 6.0 44.3 6.2 44.1 0.1 50.8 0.9 49.7
freenet 12.1 39.1 6.3 40.0 5.9 40.5 6.3 40.1 0.1 47.0 0.8 46.0
sshterm 14.7 40.8 8.9 42.0 8.5 425 9.0 42.1 0.6 51.3 1.6 49.9
jgraph 16.1 43.2 9.6 45.1 9.3 45.4 9.7 45.2 0.7 54.7 1.9 53.2
umidot 15.7 42.3 9.4 43.6 9.0 43.9 9.4 43.6 0.6 53.0 2.0 51.2

jbidwatch 14.9 42.3 8.6 43.4 8.2 43.7 8.6 43.4 0.6 52.0 17 50.5
columba 15.7 42.3 9.0 43.7 8.6 44.1 8.9 43.9 0.6 52.4 1.8 51.0

gantt 15.0 43.4 8.2 44.7 7.9 45.0 8.2 447 0.5 53.0 17 514
jxplorer 15.2 43.1 7.9 44.3 7.7 44.6 8.0 44.4 0.5 52.5 1.6 50.8
jedit 154 43.6 8.1 44.7 7.9 44.9 8.1 44.7 0.6 53.1 1.6 51.5

megamek 133 44.6 7.1 451 6.8 45.3 7.2 45.2 0.5 53.3 14 51.6
gruntspud | 15.4 44.0 7.7 45.5 7.5 45.7 7.8 45.5 0.5 53.6 1.4 52.1

Figure 6: Results of the type refinement query. Numbers are percentages. Columns labeled multi and refine refer to multi-type
variables and refinable-type variables, respectively.

Fahndrich et al.[15] has been demonstrated to work on a 200K-line maintain precise points-to relations for locations that escape, so the
gcc program. Unlike ours, their algorithm is unification-based and algorithm acleved scalability by collpsing escaped nodes.
field-independent, meaning that fields in a structure are modeled as BDD-based pointer analysis. BDDs have recently been used
having the same location. Their context-sensitive analysis discov-in a number of program analyses such as predicate abstraction[2],
ers targets of function pointers on-the-fly. Our algorithm first com- shape analysis[28, 38], and, in particular, points-to analysis[3, 39].
putes the call graph using a context-insensitive pointer alias analy-Zhu proposed a summary-based context-sensitive points-to analysis
sis; there are significantly more indirect calls in Java programs, the for C programs, and reported preliminary experimental results on
target of our technique, due to virtual method invocations. Their al- C programs with less than 5000 lineg[39]. Berndl et al. showed
gorithm uses CFL-reachability queries to implement context sensi- that BDDs can be used to compute context-insensitive inclusion-
tivity[24]. Instead of computing context-sensitive solutions on de- based points-to results for large Java programs efficiently. In the
mand, we compute all the context-sensitive results and represensame conference this paper is presented, Zhu and Calman describe
them in a form convenient for further analysis. a cloning-based context-sensitive analysis for C pointers, assuming
Other context-sensitive pointer analysis. Some of the earlier that only the safe C subset is used. The largest program reported in
attempts of context-sensitive analysis are flow-senditive[14, 18, 34, their experiment has about 25,000 lines 8nd 10® context<[40].
37]. Our analysis is similar to the work by Emami et al. in that High-level languages and tools for program analysis. The
they also compute context-sensitive points-to results directly for all use of Datalog and other logic programming languages has previ-
the different contexts. Their analysis is flow-sensitive; ours uses ously been proposed for describing program analyses[12. 25, 30].
flow sensitivity only in summarizing each method intraprocedurally. Ourbddbddb system implements Datalog using BDDS[35] and has
While our technique treats all members of a strongly connected been used to compute context-sensitive points-to results and other
component in a call graph as one unit, their technique only ignoresadvanced analyses. Other examples of systems that translate pro-
subsequent invocations in recursive cycles. On the other hand, theigram analyses and queries written in logic programming languages
technique has only been demonstrated to work for programs undelinto implementations using BDDs include Touple[9] and Croco-
3000 lines. Pat[4]. Jedd is a Java language extension that provides a relational
As discussed in Sectidil 1, using summaries is another commonalgebra abstraction over BDDs[20].
approach to context sensitivity. It is difficult to compute a compact
summary if a fully flow-sensitive result is desired. One solution is 8. CONCLUSION
to use the concept of partial transfer functions, which create sum- This paper shows that, by using BDDs, it is possible to obtain
maries for observed calling contekts[36. 37]. The same summary efficient implementations of context-sensitive analyses using an ex-
can be reused by multiple contexts that share the same relevant aliagemely simple technique: We clone all the methods in a call graph,
patterns. This technique has been shown to handle C programs upne per context of interest, and simply apply a context-insensitive
to 20,000 lines. analysis over the cloned graph to get context-sensitive results. By
One solution is to allow only weak updafes[34]; that is, a write to numbering similar contexts contiguously, the BDD is able to handle
a variable only adds a value to the contents of the variable without the exponential blowup of contexts by exploiting their commonal-
removing the previously held value. This greatly reduces the power ities. We showed that this approach can be applied to type infer-
of a flow-sensitive analysis. This approach has been used to handlence, thread escape analysis and even fully context-sensitive points-
programs up to 70,000 lines of code. However, on larger programsto analysis on large programs.
the representation still becomes too large to deal with. Because the This paper shows that we can create efficient BDD-based anal-
goal of the prior work was escape analysis, it was not necessary toyses easily. By keeping data and analysis results as relations, we

143

can express queries and analyses in terms of Datalog.bdtie- SIGPLAN Conference on Programming Language Design and

ddb system we have developed automatically converts Datalog pro- Implementation, pages 253-263, June 2000. '
grams into BDD implementations that are even more efficient than [16] J. S. Foster, M. &findrich, and A. Aiken. Polymorphic versus
those we have painstakingly hand-tuned. monomorphic flow-insensitive points-to analysis for C. In

Proceedings of the 7th International Static Analysis Symposium,
pages 175-198, Apr. 2000.
N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA: A

Context-sensitive pointer analysis is the cornerstone of deep pro-
gram analysis for modern programming languages. By combining 17]

(1) context-sensitive points-to results, (2) a simple approach to con- million lines of C code in a second. Proceedings of the SGPLAN

text sensitivity, and (3) a simple logic-programming based query Conference on Programming Language Design and Implementation,

framework, we believe we have made it much easier to create ad- pages 254-263, June 2001.

vanced program analyses. [18] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification
side effect analysis with pointer aliasing.Pnoceedings of the

Acknowledgments SIGPLAN Conference on Programming Language Design and

. o . . Implementation, pages 56-67, June 1993.
This material is based upon work supported by the National Sci- [19] 0. Lhotk and L. Hendren. Scaling Java points-to analysis using
ence Foundation under Grant No. 0086160 and an NSF Graduate ~ Spark. InProceedings of the 12th International Conference on

Student Fellowship. We thank our anonymous referees for their Compiler Construction, pages 153-169, April 2003.

helpful comments. [20] O.Lhotak and L. Hendren. Jedd: A BDD-based relational extension
of Java. InProceedings of the SSIGPLAN Conference on Programming

9. REFERENCES Language Design and Implementation, June 2004.

[21] J. Lind-Nielsen. BuDDy, a binary decision diagram package.
http://www.itu.dk/research/buddy/.

[22] T. Lindholm and F. YellinThe Java Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

[23] R. Manevich, G. Ramalingam, J. Field, D. Goyal, and M. Sagiv.
Compactly representing first-order structures for static analysis. In
Proceedings of the 9th International Static Analysis Symposium,
pages 196-212, Sept. 2002.

[24] T.Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow

[1] 1. Balbin and K. Ramamohanarao. A generalization of the differential
approach to recursive query optimizatidournal of Logic
Programming, 4(3):259-262, Sept. 1987.

[2] T.Ball and S. K. Rajamani. A symbolic model checker for boolean
programs. IrProceedings of the SPIN 2000 Workshop on Model
Checking of Software, pages 113-130, Aug. 2000.

[3] M. Berndl, O. Lhotk, F. Qian, L. Hendren, and N. Umanee. Points-to
analysis using BDDs. IRroceedings of the SSGPLAN Conference on
Programming Language Design and | mplementation, pages 103-114,

June 2003 analysis via graph reachability. Proceedings of the 24th Annual
[4] D. Beyer, A. Noack, and C. Lewerentz. Simple and efficient relational j\gpggg? on Principles of Programming Languages, pages 49-61,

querying of software structures. Rroceedings of the 10th |IEEE
Working Conference on Reverse Engineering, Nov. 2003.

[5] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs
is NP-completel EEE Transactions on Computers, 45(9):993-1002,

[25] T. W. RepsDemand Interprocedural Program Analysis Using Logic
Databases, pages 163-196. Kluwer, 1994.
[26] O. ShiversControl-Flow Analysis of Higher-Order Languages. PhD

Sept. 1996 thesis, Carnegie Mellon University, May 1991.

[6] R. E. Bryant. Graph-based algorithms for Boolean function [27] F. Somenzi. CUDD:.CU decision _diggram pac_kage rglease, 1998.
manipulation! EEE Transactions on Computers, C-35(8):677—691, [28] B. Steensgaard. Points-to analysis in almost linear time. In
Aug. 1986. Symposium on Principles of Programming Languages, pages 32—41,

P Jan. 1996
7] A.Chandra and D. Harel. Horn clauses and generalizatitmusnal) .) ’
7] of Logic Programming, 2(1):1-15, 1985. 9 [29] Java cryptography extension (JCE). http://java.sun.com/products/jce,

[8] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. 2003. .
Midkiff. Escape analysis for Java. Proceedings of the Conference [30] J. D. Ullman.Principles of Database and Knowledge-Base Systems.

on Object-Oriented Programming Systems, Languages, and Computer Science Press, Rockville, Md., volume Il edition, 1989.

Applications, pages 1-19, Nov. 1999. [31] J. Whaley. JavaBDD library. http://javabdd.sourceforge.net.
[9] M.-M. Corsini, K. Musumbu, A. Rauzy, and B. L. Charlier. Efficient [32] J. Whaley. Joeq: A virtual machine and compiler infrastructure. In

bottom-up abstract interpretation of Prolog by means of constraint Proceedings of the SIGPLAN Workshop on I nterpreters, Virtual
solving over symbolic finite domains. Proceedings of the Machines, and Emulators, pages 5866, June 2003. _
International Symposium on Programming Language Implementation [33] J. Whaley and M. S. Lam. An efficient inclusion-based points-to
and Logic Programming, pages 75-91, Aug. 1993. analysis for strictly-typed languages.Pnoceedings of the 9th

[10] M. Das. Unification-based pointer analysis with directional International Static Analysis Symposium, pages 180-195, Sept. 2002.
assignments. IRroceedings of the SGPLAN Conference on [34] J. Whaley and M. Rinard. Compositional pointer and escape analysis
Programming Language Design and Implementation, pages 35-46, for Java programs. I@onference of Object Oriented Programming:
June 2000. Systems, Languages, and Applications, pages 187-206, Nov. 1999.

[11] M. Das, B. Liblit, M. Fahndrich, and J. Rehof. Estimating the impact ~ [35] J. Whaley, C. Unkel, and M. S. Lam. A BDD-based deductive
of scalable pointer analysis on optimization Rroceedings of the 8th database for program analysis. http://suif.stanford.edu/bddbddb, 2004.

International Static Analysis Symposium, pages 260-278, July 2001. [36] R. P. Wilson Efficient, context-sensitive pointer analysisfor C
[12] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program programs. PhD thesis, Stanford University, Dec. 1997.
analysis using general purpose logic programming systems—a case [37] R. P.Wilson and M. S. Lam. Efficient context-sensitive pointer

study. InProceedings of the SGPLAN Conference on Programming analysis for C programs. IRroceedings of the SGPLAN Conference

Language Design and Implementation, pages 117-126, May 1996. on Programming Language Design and Implementation, pages 1-12,
[13] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented June 1995.

programs using static class hierarchy analysi®rbceedings of the [38] T. Yavuz-Kahveci and T. Bultan. Automated verification of

9th European Conference on Object-Oriented Programming, pages concurrent linked lists with counters. Rroceedings of the 9th

77-101, Aug. 1995. International Static Analysis Symposium, pages 69-84, Sept. 2002.
[14] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive [39] J. Zhu. Symbolic pointer analysis. Rroceedings of the International

interprocedural points-to analysis in the presence of function pointers. Conference in Computer-Aided Design, pages 150-157, Nov. 2002.

In Proceedings of the SGPLAN Conference on Programming [40] J. Zhu and S. Calman. Symbolic pointer analysis revisited. In

Language Design and Implementation, pages 242-256, June 1994. Proceedings of the SSIGPLAN Conference on Programming Language
[15] M. Fahndrich, J. Rehof, and M. Das. Scalable context-sensitive flow Design and Implementation, June 2004.

analysis using instantiation constraints Aoceedings of the

144

Type-Safe Method Inlining

Neal Glew ® Jens Palsberg®

aIntel Corporation
Santa Clara, CA 95054
aglew@acm.org
YUCLA Computer Science Department
4531K Boelter Hall, Los Angeles, CA 90095
palsberg@ucla. edu

Abstract

In a typed language such as Java, inlining of virtual methods does not always pre-
serve typability. The best known solution to this problem is to insert type casts,
which may hurt performance. This paper presents a solution that never hurts per-
formance. The solution is based on a transformation that modifies static type an-
notations and changes some virtual calls into static calls, which can then be safely
inlined. The transformation is parameterised by a flow analysis, and for any analysis
that satisfies certain conditions, the transformation is correct and idempotent. The
paper presents the transformation, the conditions on the flow analysis, and proves
the correctness properties in the context of a variant of Featherweight Java.

Key words: Types, objects, inlining

1 Introduction

1.1 Background

Behavior-preserving program transformations can change the design or even
the language of the programs they transform. They are key to several parts of
the software engineering process. Compilers, for example, transform programs
for efficiency and to translate from high-level languages to machine code. Soft-
ware engineers also transform programs to improve the design, maintain the
program, or evolve the program towards new goals. In the context of object-
oriented software engineering, the whole area of refactoring [1] employs pro-
gram transformations to achieve its goals of evolving software and in particular

Preprint submitted to Elsevier Science 23 March 2004

the design of the software. As such efforts become increasingly ambitious, so
does the amount of detail that must be attended to and the importance of do-
ing the transformations correctly. Hence there is an increasing interest in tool
support for program transformation. Such tool support is challenging because
of new languages and new language features.

Some of today’s popular programming languages, including Java [2] and C++
[3], have static type systems. Java also has a bytecode language with a notion
of type soundness, based on the concept of bytecode verification [4]. Transfor-
mations of programs in these languages must produce programs in these lan-
guages themselves, and in particular produce programs that still type check—a
property called typability preservation. In a similar sense, a number of recent
compilers use typed intermediate languages (e.g., [5-8]) to obtain debugging
and optimisation benefits [5,9]. Such compilers also require transformations
that are typability preserving when translating from one typed representation
to another.

One recent example of a typability-preserving program transformation in the
context of software engineering was given by Tip, Kiezun, and Baumer [10].
They provided tool support for a transformation known as FExtract Inter-
face/Superclass for redirecting the access to a class via a newly created inter-
face. This refactoring involves the updating of the types of variables, method
parameters, method return types, and field types to make use of the newly
added interface.

1.2 The Problem

This paper is concerned with a particular transformation, namely that of
inlining of dynamic method calls in a statically-typed object-oriented lan-
guage. Method inlining is standard in industrial-strength Java virtual ma-
chines, see for example [11]. Method inlining is also useful for software en-
gineering and program maintenance; it is a standard refactoring operation
that is supported by interactive development environments such as IntelliJ
(see http://www.intellij.com). In Java, all method calls are dynamic; they
are also known as virtual calls. For comparison, C++ has both dynamic and
static calls. While there has been substantial previous work on method inlin-
ing (e.g., [12,13]), the known approaches are either for an untyped language,
or have to rely on adding type casts or extra types. For example, consider
the following well-typed Java program. Note here that from the perspective
of preserving type correctness, there is no major difference between working
with Java source code and working with Java bytecode.

class B { // a code snippet:

B m() { return this; } B x = new C();

} x = x.m();
x = (B)new CO).mO;

class C extends B {

C £;

Bm(O {

return this.f;

}

}

Both of the method calls x.m() and ((B)new C()).m() have a unique target
method that is a small code fragment, so it makes sense to inline these calls.

In both cases, a compiler could inline by taking the body of m and replacing
this with the actual receiver expression to get:

X
X

x.f; // does not type check
((B)new C()).f // does not type check

These two assignments do not type check. The reason is that while this in
class C has static type C, both x and (B)new C() have static type B. Hence,
both x.f and ((B)new C()).f will yield the compile-time error that there is
no f-field in either x or (B)new C().

The problem can be solved by inserting type casts. In their Java compiler,
Wright et al. [7] insert type casts (in the form of a typecase expression) of this
in all translated method bodies. Applying this idea to our example program
produces the following declaration for method m in class C:

B m() {
return ((C)this).f;
+

After inlining, the two assignments type check:

X
X

((©)x) .f; // type checks
((C) ((B)new C())).f; // type checks

A different approach was taken by Gagnon et al. [14] who first compile Java
to a representation of Java bytecode in which variables do not have types,
then do the optimizations on that representation, and finally infer types to
regain static type annotations. Gagnon et al. use a style of type inference that
combines a flow-based style [15] with the types of methods that came from
the Java bytecode. Their results show that this works well for a substantial
suite of benchmark programs. In general, however, their algorithm for type

inference may fail, and in such cases they revert to inserting type casts.

A related approach, which does not require type casts at all, is to add new
types to the program. Knoblock and Rehof [16] demonstrated how to add
types in a way such that type inference will succeed for all verifiable Java
bytecode programs.

In general, inserting type casts may hurt performance, and adding new types
may not be acceptable. Since these type casts and extra types are not added
in the untyped setting, they are there just for the purposes of satisfying the
type system. It is intellectually unsatisfying that we cannot just use the un-
typed techniques. Until now, it has remained an open problem to devise a
scheme for supporting typability-preserving method inlining in a way that
does not require the insertion of type casts or extra types. This paper solves
the problem.

1.8 Our Approach

The core of the problem is an instance of what we call type rot. Perfectly fine
type annotations somehow “rot” during a step of method inlining. Before the
transformation, the program type checks, but after the transformation, the
same type annotations are suddenly no good. This observation leads us to the
following insight:

Insight 1: For method inlining, transforming statements and expressions
is insufficient; we must also transform the type annotations and type casts.

For the code snippet in Section 1.2, the type of x is B, even though the more
precise type C could also be used. Similarly, the cast to B could as well be a cast
to C. Thus, we can transform the types in a way that preserves well-typedness:

C x = new CQ); // the type of x has been changed to C
x = x.m();
x = ((COnew CO).m(); // the type cast has been changed to C

Inlining then produces the following well-typed code snippet:

C x = new CQ);
x = x.f; // type checks
x = ((C)new CO)).f; // type checks

Notice that for the example, the type transformation does not change the
behavior of the program, and, hence, performance is not affected.

To ensure that our type transformation preserves well-typedness, it is designed
carefully in the following way. Each type annotation and type case is either left
unchanged or is changed to a subtype. For the example, such type transfor-
mation is sufficient to enable type-safe method inlining. However, this is not
always the case. In Section 5, we present an example with a method call that
has a unique receiver but where no type transformation can enable type-safe
method inlining.

The centerpiece of our approach is showing that type transformation can be
automated and can enable a large number of inlinings.

1.4 Our Result

We present an approach to typability-preserving method inlining that never
hurts performance and does not require the insertion of type casts or new
types. Our approach has three components:

(1) Type transformation: We change some type annotations and type
casts to be more precise.

(2) Devirtualisation: If a dynamic call has a unique target, then it can be
devirtualised, that is, changed to a static call.

(3) Inlining: We inline the static calls.

Notice that we view devirtualisation and inlining as two separate compo-
nents. As in previous work, a dynamic method call e.m(ey,...,e,) can
be transformed to a static call e.D::m(eq,...,e,) if all the objects that
e could evaluate to are instances of classes that inherit m from a fixed class D.
(The expression e.D::m(eq,...,e,) invokes D’s version of m on e with argu-
ments e; through e,,.) The static call e.D: :m(e;, ..., e,) can be inlined to
e’{this,xy,...,%, := e,ey,...,e,} where D has method m with body e and
parameters x; through x,. Inlining of a static call is nothing other than ap-
plying a nonstandard reduction rule at compile time, and it is straightforward
to show that the rule is typability preserving.

So, the main difficulty is to do type transformation and devirtualisation in a
typability-preserving manner. For both of them, a compiler needs information
that can drive the transformations. In the case of devirtualisation, a standard
approach is flow-directed devirtualisation. The idea is to use a static program
analysis, known as flow analysis, which approximates the results of evaluating
expressions. For each expression, it determines a set of classes such that every
possible result of evaluating the expression is an instance of one of those
classes. Based on such information, a compiler can easily determine whether
a dynamic call has a unique target.

The set of classes computed by a flow analysis is easily transformed into a Java
type. In particular, the least upper bound of the set, if it exists, can replace
the old type annotation. If a least upper bound does not exists, such as for
multiple extensions of interfaces, we can fall back to the old static type. We
call this flow-directed type transformation.

For our example program in Section 1.2, the best flow set for both receiver
expressions in the program is {C}, and the least upper bound for this set is C.
Therefore the program transforms into the one shown in Section 1.3; it type
checks.

Given that we can do both type transformation and devirtualisation in a flow-
directed manner, we are led to our second key insight:

Insight 2: Type transformation and devirtualisation should be done to-
gether.

The idea is to do a single flow analysis and then do both of the type transfor-
mation and the devirtualisation based on the same flow information. While,
in theory, one can imagine the use of two flow analyses, it makes sense for a
compiler to do just one.

Not all flow analyses enable type-safe method inlining in the style above. How-
ever, we give sufficient conditions on a flow analysis for ensuring correctness.
We will present the transformation, the conditions on the flow analysis, and
prove the correctness properties; all in the context of a variant of Featherweight
Java. It is straightforward to extend our approach to full Java. (Students at
Purdue have implemented our ideas for the full Java Virtual Machine.)

Because the flow analysis is used for flow-directed type transformation, it
is crucial to align the flow analysis with the type system. There are several
aspects of Java’s type system that lead to unusual conditions on the flow anal-
ysis. One example is Java’s lack of a bottom type, leading to a nonemptyness
condition on flow sets. Another example is that the Java type system allows
the use of subtyping in some places but not in others. One of the insights from
previous work on aligning flow analysis and type systems [17-20,16] is that
subset constraints correspond to subtyping, while equality constraints corre-
spond to “no nontrivial subtyping,” that is, types are related only if they are
equal. The consequence is that a flow analyses must satisfy subset constraints
in some places and equality constraints in others (see [21,22] for examples of
subset constraints and [23] for an example of equality constraints and another
example of the mixed use of subset and equality constraints).

Note that our transformation is based on a flow analysis which is a whole-
program analysis. Hence, our transformation is a whole-program transforma-
tion. By making suitable conservative assumptions it could be used to trans-

form separate program fragments. How effective this might be is beyond the
scope of this paper. More recent work [24] has extended our ideas to a dy-
namic class loading environment with a just-in-time compiler. Note also that
our flow analyses are context insensitive and we leave context-sensitive flow
analyses to future work.

The following section presents our variant of Featherweight Java, Section 3
presents the constraints flow analyses must satisfy, Section 4 presents the
program transformation, and Section 5 discusses some examples. The proofs
of the correctness theorems are presented in three appendices.

2 The Language

We formalise our results in Featherweight Java [25] (FJ) extended with a static
call construct, a language we call FJS. The language and its presentation follow
the original FJ paper as closely as possible.

As in FJ, an FJS program is a list of class definitions and an expression to
be evaluated. Each class definition is in a stylised form. Every class extends
another; top-level classes extend Object. Every class has exactly one construc-
tor. This constructor has one parameter for each of the fields of the class, with
the same names and in the same order. It first calls the superclass constructor
with the parameters that correspond to the superclass’s fields. Then it uses the
remaining parameters to initialise the fields declared in the class. Constructors
are the only place where super or = appear in an FJS program. The receiver
of a field access or method call is always explicit; this is used to refer to an
object’s fields and methods. FJS is functional, so a method body consists just
of a return statement with an expression and there is no void type. There
are just six forms of expressions: variables, field access, object constructors,
dynamic casts, dynamic method call, and static method call. Although FJS
does not have super, static method call can be used to call a superclass’s
methods. The remainder of this section formalises the language.

2.1 Syntax and Semantics

The syntax of FJS is:

P ::= (CD,e)

CD class C extends C {C f“; K M}

K = C(C f) {super(f); this.f = f;}
M = ¢ n(x%) {return’e;}
e ::= x| e.f'| new' C(® | (O | e.m(®‘| e.C::m(8)*

The metavariables A, B, C, D, and E range over class names; £ and g range
over field names; m ranges over method names; x ranges over variables; d
and e range over expressions; M ranges over method definitions; K ranges over
constructors; CD ranges over class definitions; and P ranges over programs.
Object is a class name, but no program may give it a definition; this is
a variable, but no program may use it as a parameter. The over bar no-
tation denotes sequences, so f abbreviates f;, ..., f,. This notation also
denotes pairs of sequences in an obvious way—C £’ abbreviates ¢; £, ...,
C, ff;", C f%; abbreviates C f?; <o Gy ff;";, and this.f=f abbreviates
this.f;=fy; ---; this.f,=f,. The empty sequence is e, and comma con-
catenates sequences. Sequences of class definitions, field declarations, method
definitions, and parameter declarations may not contain duplicate names. We
abuse notation and consider a sequence of class definitions to also be a mapping
from class names to class definitions, and write CD(C) to mean the definition
of C under the map corresponding to CD. Any class name C except Object
appearing in a program must be given a definition by that program, and the

extends clauses of a program must be acyclic.

Class definition class C extends D {E f!; K M} declares class C to be a
subclass of D. In addition to the fields of its superclass, C has fields £¢ of types E.
K is the constructor for the class, and it has the stylised form described above.
M are the methods declared by C, they may be new methods or may override
those of D. C also inherits all methods of D that it does not override. Method
declaration C m(ﬁ_xf) {return‘e;} declares a method m with return type C,
with parameters x‘ of types D, and that when invoked evaluates expression e
and returns it as the result of the call.

As mentioned above, there are six forms of expression: variables x, field selec-
tion e.f’, object constructors new’ C(%), casts (C)‘e, dynamic method calls
e.m(d)’, and static method calls e.C::m(d)¢. The latter invokes C’s version
of method m on object e, which should be in C or one of its subclasses.

Metavariable ¢ ranges over a set of labels. Such a label is used, for example, in
C £’ to label the field f. Notice that there is a label associated with all expres-
sions, fields, method returns, and formal arguments; these labels are assumed
to be unique. For a program P, labels(P) denotes the set of labels used in P.
To simplify the technical definitions later, all the field names and argument
names must be distinct. Furthermore, the label on any variable occurrence
must be the same as the label on its declaration, and any two occurrences of
this in a class must have the same label. Any well-typed program can easily

Field Lookup:

fields(CD,Object) = o
CD(C) = class C extends Co {D, f’; K M} fields(CD,Cy) =D; g
fields(CD,C) =D, g,Dy £
Method Type Lookup:

CD(C) = class C extends Co {D £7; K M}
By m(B x2) {return‘e:} c M
mtype(CD, C,m) = B — By

CD(C) = class C extends Co {D £f'; K M} m not defined in M
mtype(CD, C,m) = miype(CD, Co, m)
Method Body Lookup:

CD(C) = class C extends Co {D £'; K M}
By m(B x?) {return‘e;} eM
mbody(CD, C,m) = (¢, X, e)

CD(C) = class C extends Cy {D £7; K M} m not defined in M
mbody(CD, C,m) = mbody(CD, Co,m)
Class of Method Lookup:

CD(C) = class C extends Co {D £7; K M}
By m(B x2) {return‘e:} c M
impl(CD,C,m) = C: :m

CD(C) = class C extends Co {D £7; K M} m not defined in M
impl(CD, C,m) = impl(CD, Cy, m)
Valid Method Overriding;:

mtype(CD,D,m) = E — E, implies C = E and Cy = E,
can-declare(CD,D,m,C — Cy)

Fig. 1. Auxiliary Definitions

be transformed to satisfy these conditions. Function lab maps an expression,
a field name, or an argument name to its label.

Some auxiliary definitions that are used in the rest of the paper appear in
Figure 1. Unlike FJ, we do not make the list of class declarations global, but
have them appear explicitly as parameters to functions, predicates, and rules.
Function fields(CD, C) returns a list of C’s fields and their types; mtype(CD, C,m)

fields(CD,C) =D f
(CD,X(new” C(&).f;2)) — (CD,X(e;))
CDFC<:D
(CD,X((D)“new’> C(8))) — (CD,X(new’? C(a)))
mbody(CD, C,m) = (¢, X, e)
(CD,X(new” C(®).m(d)*)) — (CD,X(ep{this,X :=new’* C(d),d}))
mbody(CD,D,m) = (¢, X, e)

(CD, X(new" C(&).D::m(d)*)) — (CD,X(ep{this,X := new’ C(é),a}>())

13

(10)

(11)

(12)

Fig. 2. Operational Semantics

returns the type of method m in class C, this type has the form D — D,
where Dy is the return type and D are the argument types; mbody(CD, C,m)
returns the body of method m in class C, this has the form (¢,%, e) where ¢
is the label of the return statement, e is the expression to evaluate, and X
are the parameter names; impl(CD, C,m) returns the class from which class C
inherits method m (this might be C itself if C declares m), this has the form
D: :m where D is the class. Predicate can-declare(CD,D,m,C — Co) is true when
method m of type C — Cy may be declared in a subclass of D. It checks that
if D declares or inherits m then it has the same type, as required by Java’s
type system. The more general rule with contravariant argument types and
covariant result types could be used, and the results of this paper would still
hold (the definition of acceptable flow would change slightly). Notice that the
definition of can-declare(CD,D,m,C — Cy) uses an implication rather than, say,
a conjunction. This is because the definition captures both the case where no
method m was declared in D or a superclass of D and the case where a method
m was indeed declared in D or a superclass of D.

The operational semantics of the language appear in Figure 2. Metavariable X
ranges over evaluation contexts, which are expressions with exactly one hole;
X(e) denotes the expression formed by replacing the hole in X by the expression
e. Unlike FJ, in addition to making the list of class declarations explicit in the
rules we make the evaluation context explicit as well.

Because the language is functional and each class has exactly one constructor
of a particular form, the values of the language, which are all objects, can be
represented using object constructors new’ C(g). Field access reduces to the
appropriate element of . The cast (C)“new’? D(&) reduces to the object new’?
D(@) if D is a subclass of C. If D is not a subclass of C then the cast is irreducible
representing that the cast fails as a checked run-time error. The method call
new’’ C(8).m(d)* reduces to the method body e, with the actual parameters
d substituted for the formal parameters X and the object new’* C(&) substi-
tuted for this. The method body and formal parameters are obtained by
looking up the method m in class C, mbody(CD, C,m) = (¢, X, e,). Static method

10

call new’* C(&).D::m(d)¢ reduces similarly except that the method is looked
up in D not C. Note that this method lookup can be done at compile time
and a static method call can be implemented as a direct call rather than an
indirect call through a method table.

An irreducible expression is stuck if it is of the form X(e.f’), X(e.m(d)*), or
X(e.D::m(d)’). The type system prevents stuck expressions from occurring
during execution of a program (see Theorem 1). Irreducible expressions that
are not stuck are of the form v::=new’ C(¥) or X((C)“'new® D(8)) where D
is not a subclass of C; the former represents normal termination with a fully
evaluated object, the latter represents a failed cast.

2.2 Type System

The type system consists of the following judgements:

Judgement Meaning

CDFC<:D C is a subtype of D
CD;I'FeeC e is well formed and of type C
CDFMOK in C | M is well formed in class C

CD - CD OK CD is well formed

FpPpecC P is well formed and of type C

A typing context I" has the form X:C where there are no duplicate variable
names. The only types are the names of classes, and such a type includes
all instances of that class and its subclasses. The rules appear in Figure 3.
The bar notation denotes sequences of typing judgements, so CD;I' - e € C
abbreviates CD;I'+e; € Cy, ..., CD; ' e, € C,.

The rules for constructors and method call check that each actual parameter
has a subtype of the corresponding formal parameter. The typing rule for
dynamic method call looks up the type of the method in the class of the
receiver. The typing rule for static method call e.D::m(d)? requires that e
has some subtype of D and looks up the type of the method in D. As in
FJ, the typing rules allow stupid casts, such as (C)“new’? D(g€) where D is
not a subclass of C and the cast will always fail. Allowing stupid casts is
needed to prove type preservation. Unlike FJ, FJS has only one rule for casts,
which just requires the expression being cast to have some type. This rule is
equivalent to FJ’s three rules except that it does not issue stupid-cast warnings.
The type system is sound, that is, well-typed programs never get stuck. This
fact is stated in the following theorem, which can be proved by standard

11

Subtyping:

CDFC<:C (14)
CDFC<:D CDFDX:E
CDFCX<: E (15)
CD(C) = class C extends D {...} 16
CDFC<:D (16)
Expression Typing:

— 17
CD; ' - xf € T'(x) (17)
C_D; I'kFey €Cy ﬁelds(C_D, CO) =C f (18)

CD;T + ep.ff € C;
fields(CD,C)=D f CD;I'e€E CDHE<:D (19)

CD; T new! C(&) €C
CD;I'FeyeD

= (20)

CD;T'+ (C)fe, € C
CD;I'Fey€Cy miype(CD,Cop,m) =B—C CD;I'Fe€E CDHE<:B
CD; '+ eg.m(e)t € C

(21)
@;Fl_eoecb @l‘CO<SD
mtype(CD,D,m) =B — C
CD;'FecE CDHE<:B
— — (22)
CD;I'Fep.D::m(@)" €C
Method Typing:
CD;this:D,Xx:Ckey€Ey CDFEy<:Cy
CD(C) = class D extends Dy {...} can-declare(CD,Dg,m,C — Co) (23)
— — 23
CD F Cy m(C x*) {return’ey;} OK in D
Class Typing:
CDFMOK in C
ﬁEZdS (@, Co) = 51 g
K=C(®D; g, Dy f) {super(g); this.f=f;}
— 24
CD | class C extends Cy {Dy f‘; K M} OK (24)
Program Typing:
CDFCDOK CDjelecC
(25)

+ (CD,e) € C

Fig. 3. Typing Rules

12

methods [26,27,25].

Theorem 1 (Type Soundness) If - P € C then P does not reduce to a
program with a stuck expression.

The rules are syntax directed, with the exception of the rules for subtyping.
So, disregarding the details of how subtyping judgments are derived, for any
program there is exactly one derivation possible. Thus for a program P and
any £, which can be the label of a field, method parameter, method return, or
expression appearing in P, there is a uniquely determined static type for the
program point labeled ¢, written static-type({,P).

3 Flow Analysis

A flow analysis approximates the results of evaluating expressions. In our
setting, flow information for an expression is a set of classes such that the
expression will evaluate to an instance of one of those classes.

For a program P, classes(P) denotes the set of class names declared in P,
flow(P) is the powerset of classes(P); elements of flow(P) are called flows. The
set subclasses(P, C) is the set of subclasses of C (including C). Flow information
for P is a member of flow-information(P) = labels(P) — flow(P)—it associates
a flow with each expression, field, method parameter, and method return.
Metavariables S and T range over flow(P), ¢ ranges over flow-information(P).
We order flow-information(P) such that ¢1 < @9 if and only if p;(¢) C ¢a()
for every ¢ € labels(P). In flow-information(P), the least element is A.{) and
the greatest element is Al.classes(P).

Some members of flow-information(P) are not valid approximations of the
results of evaluating expressions in P and do not support our program trans-
formation. The flow analyses with the desired properties are the ones that are
both acceptable and type respecting. (The term “type respecting” was coined
by Jagannathan et al. [28].) Intuitively, an acceptable analysis contains sets
that are big enough, in that it correctly approximates the results of evaluating
expressions. A type-respecting analysis contains sets that are small enough,
in that it is at least as precise as the static type system, that is, each flow
only contains classes that are subclasses of the corresponding static type. For
a program P, we define:

acceptable(P) ={ ¢ € flow-information(P) |
¢ satisfies the conditions listed in Figure 4 }

13

type-respecting(P) ={ ¢ € flow-information(P) |
Ve € labels(P) :
©(l) C subclasses(P, static-type({,P)) }
flow-analysis(P) = acceptable(P) N type-respecting(P).

The conditions in Figure 4 for a flow analysis to be acceptable are somewhat
unusual. The design of those conditions is influenced by the way the program
transformation will use flow information to change type annotations: for a
program point with label ¢, the transformation uses the least upper bound of
(), written Ugp({), as the new type annotation. With that in mind, here is
a closer look at the rules in Figure 4.

Rules (26)—(37) are related to one way of specifying 0-CFA [15,22,19]. The
unusual aspect of them is that they are a mixture of subset constraints [22]
and equality constraints [19]. If the sole purpose were to approximate the
results of evaluating expressions, then all of the equality constraints can be
relaxed to be subset constraints; the result would be 0-CFA. The reason for
using equality constraints in some cases is to align the flow analysis with the
type system. The type system does not have a general subsumption rule that
allows subtyping to be used everywhere. Rather, in the type rules in Figure 3,
subtyping is used in four places: Rule (19) for new-expressions, Rule (21) for
calls, Rule (22) for static calls, and Rule (23) for method typing. In each
case, there is a subset constraint in the corresponding rule for acceptable flow
analyses in Figure 4: Rule (27) for new-expressions, Rule (30) for dynamic
method calls, Rule (33) for static method calls, and Rule (37) for method
typing. In contrast, Rule (18) for field selection requires the type of the field to
equal the type of the field-selection expression; this is matched by the equality
constraint in Rule (26). A similar comment applies to Rules (31) and (34).
If there were a general subsumption rule, then that would allow subtyping to
be used in the three mentioned cases where it is not allowed in the current
definition of Java.

Rules (29), (32), and (35) have no direct counterparts in the type system
and are needed to ensure that the flow analysis approximates the results of
evaluating expressions. Specifically, Rule (29) models that a type cast to C only
can be an object of C or a subclass of C, while Rule (32) and Rule (35) model
that a receiver expression will become the this-object in the body of the called
method. In Rule (32), the intersection with subclasses(P,D) ensures that the
flow set for the this variable will only contain elements of subclasses(P,D).
This intersection is correct, because objects of other classes will have a different
implementation of m than D::m, so will not flow to ¢”; it is needed because
Rule (23) requires this to have type D. In contrast, such an intersection is not
needed in Rule (35) because Rule (22) guarantees that the receiver expression
has a type that is a subtype of the class that defines the called method.

14

Rule (36) is rather conservative: it says that the this object always can be
an object of the class in which this occurs. The rule is needed because of
Rule (23) for method typing, which asserts that this has type C. Finally,
Rules (38) and (39) ensure that the signature of a method and the signature
of an overriding method are the same. First, notice that Rule (40) ensures
that least upper bounds are of a nonempty set. This rule is not needed only to
ensure that least upper bounds exist, and is not a rule in most flow analyses.

A variant of Class Hierarchy Analysis [12] (CHA) can be defined as follows:
CHA(P) = M.subclasses(P, static-type((,P)).

It is straightforward to show that CHA(P) is the coarsest flow analysis of P,
as stated in the following theorem.

Theorem 2 (CHA) CHA(P) is the greatest element of flow-analysis(P).

Note that flow-analysis(P) does not have a least element. This is due to
Rule (40) that requires all flows to be nonempty. Without it, flow-analysis(P)
always has a least element. This is because constraints of the forms used in
Rules (26)—(39) always have a least solution [15]. The least solution can be
found in O(n?®) time where n is the size of the program from which the con-
straints were generated.

If Java had a bottom type, then this type could be used as the least upper
bound of the empty set and Rule (40) would not be needed. Furthermore,
flow-analysis(P) would be a meet semilattice with both a greatest and least
element. However, Java does not have a bottom type, so we have kept this
constraint.

The property of being a flow analysis is preserved during computation, as
stated in the following theorem, which is proved in Appendix A. (Palsberg [22]
proved a similar result for the A-calculus.)

Theorem 3 (Flow Preservation) If ¢ € flow-analysis(P1) and Py — Pa,
then ¢ € flow-analysis(Py) (technically ¢ restricted to the labels of Py).

It is straightforward to compute CHA(P). However, since CHA(P) is the great-
est element of flow-analysis(P), it is the most conservative choice of flow anal-
ysis and will lead to the least number of inlinings. This raises the question
of whether other polynomial-time algorithms could do better. The main diffi-
culty is that flow-analysis(P) does not have a least element, so there is not a
unique best choice of flow analysis that improves on CHA(P).

To illustrate that indeed there is a better polynomial time algorithm, we now
define a flow analysis with mixed constraints and nonempty sets; the analysis

15

e for each e.f’ in P: o(lab(£)) = p(¢ (26)
e for each new’ C(@) in P, where fields(CD,C) =D f¥:

p(lab(e)) C ¢(lab(f)) (27)
Ce o) (28)

e for each (C)‘e in P:
@(lab(e)) N subclasses(P,C) C ¢(¢) (29)

e for each e.m(d)*in P and each class C in P, where mbody(CD, C,m) = (¢, %, &'),
impl(CD,C,m) = D: :m, and ¢” is the label for D’s this occurrences:

C € p(lab(e)) = ¢(lab(d)) S ¢(lab(x)) (30)
C € p(lab(e)) = p(l') = ¢({) (31)
C € ¢(lab(e)) = p(lab(e)) N subclasses(P,D) C (L") (32)

e foreach e.C::m(d)* in P, where mbody(CD, C,m) = (¢, %, &), impl(CD, C,m) =
D::m, and ¢” is the label for D’s this occurrences

©(lab(d)) C p(lab(x)) (33)
(l') = p(f) (34)
p(lab(e)) C (L") (35)

e for each class C in P, where / is the label for C’s this occurrences:
C € o(0) (36)
e for each method in P, with body {return’eg;?}
p(lab(eo)) € () (37)
e for each method name m declared or inherited in class C of P, if

CD(C)=class C extends Cy {D f; K M}
mbOdy(C_D7 C, m) = (gla X1, el)
=

mbody(TD, Co,m) = ({, %o, &)
then

©(lab(%1)) = p(lab(%2)) (38)

e(l1) =p(ls) (39)

o for cach (€ labels(P): o) £ 10 (40)

Fig. 4. Requirements for an acceptable flow analyses ¢ of a program P = (CD,e).

16

is called MN(P) (for Mixed and Nonempty). First, the notion of lifting a flow
analysis is:

lift(¢) = flow-information(P) — flow-information(P)

1 if Ll(f) exist
lifi(0) = M. ©(0) if U (¢) exists
{ static-type(¢,P) } otherwise

Notice that lift()(€) # 0 for all ¢ € labels(P). For Featherweight Java and
FJS, Up(¢) exists for all nonempty sets ¢(¢). The full Java type system enables
multiple subtyping among interfaces which can lead to nonempty flows without
a least upper bound.

Second, the definition of MN(P) is:

o = the least flow analysis satisfying Rules (26)—(39)
MN(P) = the least flow analysis greater than lift(yo)
satisfying Rules (26)—(39)

This algorithm is polynomial time: ¢ takes polynomial time to compute using
the technique of Fahndrich and Aiken [23], which intuitively is a fixed-point
computation with A(.() as the starting point. Lifting clearly takes polynomial
time, and MN(P) takes polynomial time to compute by using the Fahndrich-
Aiken algorithm again, but this time with lift(yg) as the starting point for the
fixed-point computation. This two-step procedure makes LIMN(P)(¢) equal to
static-type(¢, P) for any ¢ € labels(P) such that ¢o(¢) = (). Thus the program
transformation based on MN(P) will not change the type annotation for the
program points labeled by such £.

It is left to future work to settle whether there is a way to avoid both Rule (40)
and the two-step procedure of MN(), by somehow mapping the empty flow set
to a legal Java type.

There might be worthwhile elements of flow-analysis(P) other than CHA(P)
and MN(P). Any element of flow-analysis(P) can be used as an argument to
the program transformation, which we present next.

4 Program Transformation

The program transformation is parameterised by a flow analysis, and it oper-
ates on program fragments and type environments in a compositional fashion.
It transforms each program fragment into a similar program fragment with the

17

same label, and it transforms each type environment into a type environment
which defines the same variables. The changes made are that:

e it changes some dynamic method calls to static method calls,
e it changes the type annotations, and
e it changes the classes used in type casts.

In each case, the change is made on the basis of the supplied flow analysis.
Specifically, (1) a dynamic call is changed to a static call when the flow analy-
sis determines that there is a unique target method and (2) a type annotation
and the class in a type cast are changed to the least upper bound of the classes
in the corresponding flow. Taking the least upper bound of the classes in a flow
is justified as follows. The transformation is restricted to flow analyses that
are acceptable and type respecting, which means the following. First, all flows
are nonempty. Second, nonempty sets of classes admit least upper bounds be-
cause FJS is a single-inheritance language. Third, the type-respecting property
implies that the new types (that is, the least upper bounds) can only be more
refined than the old ones.

The transformation consists of the following cases:

Transformation | Meaning

[Pl the transformation of P using ¢

[[CD]]?OD the transformation of CD using ¢ and CD
[X], the transformation of K using ¢

M] ZD the transformation of M using ¢ and CD
[[e]]::o_D the transformation of e using ¢ and CD
[, the transformation of I" using ¢

The definition of the transformation appears in Figure 5.

We now present four correctness theorems: the transformation preserves ty-
pability, the transformation is operationally correct, a flow analysis of the
original program is also a flow analysis of the transformed program, and the
transformation is idempotent. First our main result, which is proved in Ap-
pendix B.

Theorem 4 (Typability Preservation) Suppose ¢ € flow-analysis(P) and
P = (CD,e). If - P € C then I [P, € Up(lab(e)).

The transformation is also operationally correct, in that the transformed pro-
gram simulates the original program step for step and vice versa, as stated in

18

(@01, = e
[class C extends Cy {D f‘; K ﬁ}]]::DD = class C extends Cy
{Up(®) £ [K], (M3}
[C(D £) {super(f1); this.f2=£2}] = C(Up(lab(f)) £)
{super (f1); this.f2=f2}
[D n(E x5 {returnée;}]]:;_D = Up(f) m(Up(?) x5

{return’ [[e]]fp_D; }

=13 = x!

[e-£15 = [e; . £*

[new’ D(é)]]pr = new’ D([[é]]i%

[(D)e]? = (Up(0))[e]®

[e.m(D] = [e].D: :m([d])"
where VE € p(lab(e)) : impl(CD,E,m) =D::m

[e.m@*]? = [e]®.u([™)*
otherwise

[e.D: im(D S = [e]?.D: :m([a])"

[x1:Ci, ... %t Gl = x; : Up(lab(xy)), .. .,

X, : Up(lab(x,))

Fig. 5. The Transformation of Dynamic to Static Dispatch

the following theorem, which is proved in Appendix C. Operational correctness
for a multistep computation follows from Theorems 3 and 5.

Theorem 5 (Operational Correctness) If ¢ € flow-analysis(P1) then:
Py — Py if and only if [P1], — [Po],-

It is straightforward to prove that a flow analysis of a program is also a flow
analysis of the transformed program, as stated in the following theorem.

Theorem 6 (Analysis Preservation) If ¢ € flow-analysis(P), then ¢ €
flow-analysis([P] ;).

19

class A {

A x = new AQ); void m(Q arg) { class 'Q {
B y = new BQ); N arg.p();) void p() {...}

. ¥ class S extends Q {
x-mnew 00); class B extends A { void p() {...}

y,m(new S()): void m(Q arg) { } }

}
Fig. 6. Example program

Given a flow analysis, it is sufficient to apply the transformation only once:
applying the transformation again with the same flow analysis will not lead to
any further change. We can state this as the following idempotence property
of the transformation, which is straightforward to prove.

Theorem 7 (Idempotence) If ¢ € flow-information(P) then [[P]], =

[PI,.-

5 Examples

We first present an example that illustrates the difference between CHA(P),
0-CFA(P), and our analysis MN(P). Consider the example program in Figure 6.
There are four classes: A, B, Q, and S, where B extends A and where S extends
Q. Notice that A has a method m, and that B also has a method m that overrides
the one from A. Similarly Q has a method p, and S also has a method p that
overrides the one from Q. Among these methods, only the body of A.m is of
interest here, while the bodies of the other methods are left unspecified. To
the left of the classes are four lines of code that should be seen as being part
of some other class. The first two lines are declarations of fields x and y, and
the last two lines are method calls.

Now consider which of the method calls in the program will be inlined based
on CHA(P), 0-CFA(P), and our analysis MN(P).

First consider CHA(P). In the first method call x.m(new Q()), the static type
of x is A. Since A has a subclass B, CHA(P)(lab(x)) = {A,B}. Note that A and
B have different implementations of m, so CHA(P) does not lead to inlining of
the method call x.m(new QQ)).

By the way, for the example program, Bacon and Sweeney’s Rapid Type Anal-
ysis (RTA) [29,30] gives the same result as CHA. RTA is similar to CHA except
that its flow sets contain only classes that are actually instantiated in the pro-
gram [31]. In the example program, objects are created from all four classes,
so there is no difference between RTA and CHA in this case.

20

A x = new AQ);

) class A {
) A0 { Claffii%{o (..}
y = new SQ; // infinite } ’
’ // recursion!
} else_ { . return this.nO) class .S extends Q {
y = x.m(); 3 void p(O) {...}
} }
y.pO; ¥

Fig. 7. Example that shows empty flow sets

In the second method call y.m(new S()), the static type of y is B. Since B has
no subclasses, CHA(P)(lab(y)) = {B}. Clearly, B has just one implementation
of m, so CHA(P) leads to inlining of the method call x.m(new QQ)).

In the third method call arg.p(), the static type of arg is Q. Since Q has
a subclass S, CHA(P)(lab(arg)) = {Q,S}. Note that Q and S have different
implementations of p, so CHA(P) will not lead to inlining of the method call
arg.pQ).

Second consider 0-CFA(P). The initialisations of x and y show that an A-object
flows to x and that a B-object flows to y. So, in the first method call x.m(new
QO), 0-CFA(P)(lab(x)) = {A}, and in the second method call y.m(new S()),
0-CFA(P)(lab(y)) = {B}, and thus 0-CFA(P) leads to inlining of both those
method calls. In the third method call arg.p(), the receiver is arg, and the
only value that flows to arg is the Q-object from the call site x.m(new QQ)).
So, 0-CFA(P) also leads to inlining of the third method call.

Third consider our analysis MN(P), which, by construction, is at least as pre-
cise as CHA(P) and at most as precise as 0-CFA(P). For the first two method
calls, it is straightforward to see that MN(P) gives the same results as 0-CFA(P)
for x and y, Hence, MN(P) leads to inlining of both those method calls.

However, 0-CFA(P) and MN(P) differ on the third method call arg.p(). Here,
Rule (38) forces the flow sets for arg in A.m to be the same as for arg in B.m.
The second call site y.m(new S()) shows that an S-object flows to arg in B.m.
So, the unified flow set for both arg in A.m and arg in B.m is {Q, S}, and hence
the call site is not inlined.

In conclusion, CHA(P) leads to the inlining of one call site, MN(P) leads to
the inlining of two call sites, while 0-CFA(P) leads to the inlining of three call
sites.

As a final example, consider the program in Figure 7.
In this example, class S extends Q and both have a p method. Notice that

variable y is initialised either with an instance of S or with the result of

21

new A().m(), which never returns. Clearly in any run of this program only
an instance of S will reach the call site y.p(), so it is safe to inline S::p
at this point. Since A::m does not return, 0-CFA(P)(lab(A::m)) = (), so in
turn, 0-CFA(P)(lab(y)) = {S}. Thus 0-CFA(P) leads to inlining of the call
site. However, our analysis will return MN(P)(lab(A: :m)) = {Q, S}, so in turn,
MN(P)(lab(y)) = {Q,S}. Thus MN(P) does not lead to inlining of the call site.

Observe that, in both examples, our analysis did not inline some call sites
because of constraints imposed by the type system. In the first example, the
constraints were due to Java’s invariant subtyping for method parameters and
returns. In the second example, the constraints were due to Java’s lack of
a bottom type. Based on the result of Palsberg and O’Keefe [17], one can
imagine a more expressive type system for Java that would admit 0-CFA(P)
as a type-preserving analysis, and that would allow all of the inlining discussed
above. In particular, such a type system would likely have a bottom type and
likely have depth subtyping for methods.

6 Conclusion

We have shown how to inline methods while preserving typability in a single-
inheritance language without resorting to the insertion of type casts or new
types. Our approach is based on flow analysis, and we found it tricky to
get the requirements for the flow analysis right. During the process of proving
correctness, we discovered the need for flow constraints that would not usually
be used in a flow analysis, e.g., Rule (36). The requirement that all flow sets
must be nonempty is unusual, and it entails that there is no unique best
analysis that satisfies the requirements. While CHA and our own MN analysis
satisfy the requirements, more work is needed to investigate alternatives.

Concerning the effectiveness of the various analyses, our analysis MN is always
at least as precise as CHA and at most as precise as 0-CFA. This is because

MN imposes fewer flow constraints than CHA and more flow constraints than
0-CFA.

One can evaluate the practical effectiveness of an inlining strategy in at least
two ways: the static count of inlined calls and the run-time count of inlined
calls. With regards to the static count of inlined calls, CHA is an excellent
baseline. Tip and Palsberg [31] showed that RTA (the variant of CHA dis-
cussed earlier) inlines 92.2% of all virtual call sites in a large suite of Java
programs. Thus, even though one can try better analyses, the room for im-
provement is just the remaining 7.8% of the virtual call sites. Tip and Palsberg
did experiment with other analyses than RTA, but even their most powerful
analysis inlined just 93.0% of all virtual call sites. Thus, even though MN is

22

better than CHA and RTA, we conjecture that there will be a small difference
in the number of call sites that will be inlined. The important property of MN
is that it guarantees that inlining can be done without the insertion of type
casts.

In practice, the run-time count of inlined calls is more important than the
static count. For example, the inlining of a method call in an inner loop can
have a major impact on the run-time performance. So, even though an analysis
might inline less than one percent more of the statically-counted call sites,
some of those calls might occur in frequently executed code and therefore be
important to inline. Sundaresan et al. [32] investigated an analysis called VTA
which is more powerful that CHA, and they found that their analysis leads
to nontrivial improvements in run-time performance compared to CHA. They
conclude: “some of the extra calls sites found by VTA could be important ones
for inlining.”

One idea for future work is to do two flow analyses of a program: one which
is typability preserving, and one that is more powerful but not necessarily ty-
pability preserving. The difference between the two sets of call sites suggested
for inlining can then be inlined with type casts, in the style of Wright et al.
[7]. In this way, the performance penalty of the type casts is only payed when
deemed necessary.

Another idea, due to Ralf Laemmel, is to change the type system such that 0-
CFA would lead to a type preserving transformation, perhaps with inspiration
from the equivalence result of Palsberg and O’Keefe [17].

Acknowledgements. We thank the 84 students who took Palsberg’s gradu-
ate course on programming languages in 1999-2001 and tried, as a homework,
to find and implement a solution to the problem of type-safe method inlining
for a subset of Java. Only 10 of the implementations seemed not to have er-
rors, leading to the realisation that the problem is considerably harder than
flow-directed inlining for an untyped language.

A preliminary version of this paper was presented at ECOOP’02, European
Conference on Object-Oriented Programming 2002. We thank Ralf Laemmel,
Mayur Naik, and the anonymous referees for helpful comments on a draft of
the paper. We also thank Ben Titzer for finding a mistake in an earlier version
of the flow analysis.

Palsberg is supported by a National Science Foundation Faculty Early Career
Development Award, CCR-9734265.

23

A Proof of Theorem 3

First, observe that labels(Ps) C labels(Py) so ¢ (restricted to labels(Ps)) is a
flow analysis of Py. Let P; = (CD,X(e;)) where e; and ey are as in the rules of
Figure 2. Since P; and P, differ only in e; and es, ¢ satisfies the conditions for
acceptability and type respecting for Py except for the conditions on ey and its
subexpressions that are not subexpressions of e;, and on the expression that
e, appears immediately within. By inspection of the rules, the last condition
will hold if p(lab(es)) C ¢(lab(e1)). Thus, we need just to show the latter
and that ¢ satisfies the conditions for e, and its subexpressions that are not
subexpressions of e;. Consider the various cases for the reduction rule.

field selection: In this case e; = new’* C(&) .fo, e, = e;, and fields(CD, C) =
D f. Thus, es is a subexpression of e;. By Rule 27, p(lab(e;)) C ¢(lab(£;));
by Rule 26, ¢(lab(£f;)) = ¢(f2). By transitivity, ¢(lab(es)) = ¢(lab(e;)) C
©(ly) = p(lab(ey)), as required.

cast: In this case e; = (D) new”? C(&), e; = new’ C(g), and CD | C <: D.
Thus, ey is a subexpression of e;. By the type respecting property and
Rule 19, ¢(f3) C subclasses(Py,C). Since CD C <: D, subclasses(P1,C) C
subclasses(Py, D), so:

©(l3) N subclasses(Py,D) = p(l2) (A.1)

By Rule 29, p(¢5) N subclasses(P1,D) C ¢(¢1). Thus by (A.1), ¢(fs) C ¢(4q),
as required.

dynamic method call: In this case both e; = new’” C(g).m(d)* and e, =
eo{this,X := new’t C(8),d} where mbody(CD,C,m) = ({',%, ey). By Rule 28,
C € ¢(f2). So by Rule 30, ¢(lab(d)) C ¢(lab(x)), and by Rule 32,

(1) N subclasses(D,P) C o(£")

where impl(CD,C,m) = D::m and ¢” is the label for D’s this occurances.
Since ¢ satisfies the conditions for type respecting, and the static type of
¢, must be C by Rule 19, p(¢1) C subclasses(C,P). By the rules, CD I C <:
D, so subclasses(C,P) C subclasses(D,P). Thus ¢(¢1) N subclasses(D,P) =
w(l1) and p(f1) € @(¢"). By Lemma 8 (below), ¢ satisfies the conditions
for acceptability and type respecting for e, and all its subexpressions. By
Rule 31, o(¢') = ¢(ls2); by Rule 37, p(lab(e)) € ¢(¢'). Also by Lemma 8,
p(lab(ez)) © ¢(lab(e)). Thus p(lab(es)) S ¢(lab(eo)) S (') = ¢(l) =
©(lab(ey)), as required.

static method call: In this case both e; = new”* C(€).D::m(d)* and ey, =
eo{this,X := new’t C(8),d} where mbody(CD,D,m) = (¢, %, e). By Rule 33,
©(lab(d)) C ¢(lab(x)), and by Rule 35, ¢(¢1) C ¢(lab(this)). By Lemma 8
(below), ¢ satisfies the conditions for acceptability and type respecting for
es and all its subexpressions. By Rule 34, ¢(¢') = ¢(¢3), and by Rule 37,

24

©(lab(eg)) C @(¢). Also by Lemma 8, p(lab(es)) € ¢(lab(ep)). Thus

(lab(e2)) € p(lab(eo)) C @(') = ¢(t2) = ¢(labler))
as required.

Lemma 8 If ¢ satisfies the conditions for acceptability and type respecting
for all labels in e and d and if p(lab(d)) C ¢(lab(X)) then ¢ satisfies the
conditions for acceptability and type respecting for all labels in e{X := d} and

p(lab(e{x :=d})) € p(lab(e)).

Proof. Straightforward.

B Proof of Theorem 4

Theorem 4 follows immediately from Rule (25), and from Lemma 9 and
Lemma 11, as stated and proved below.

Lemma 9 Suppose o € acceptable(P) N type-respecting(P), and P = (CD,eq).
IfTD +CD OK, then [CD]; + [CD]3 OK.

Proof. Immediate from Lemmas 10 and 14 (below), using Rule (24).

Lemma 10 Suppose ¢ € acceptable(P)Ntype-respecting(P), and P = (CD,e() .
IfCD M OK in C, then [CD]) + [M] OK in C.

Proof. Straightforward from Lemmas 11, 12, 15, and 16 (below), using Rules
(17), (23), (36), and (37).

Lemma 11 Suppose ¢ € acceptable(P) N type-respecting(P), and P = (CD,e() .
IfCD;I' ke €D, then [[C_DJ]ZD; [], + [[e]]ZD € Up(lab(e)).

Proof. We proceed by induction on the structure of the derivation of CD;I" -
e € D. There are six cases, depending on which one of Rules (17)—(22) was the
last one used to derive CD;I' - e € D.

o (17) e = x5 We have [[xf]]Z_D = xf_and [T],(x) = Up(f), so we can derive,
using Rule (17), HC_DHZD; [[F]]il— [[e]]fpD € Up(0), as desir_ed. -
o (18)e = ey.f;". We have CD; ' - ey € Cy and fields(CD, Cy) = C £, where £;

occurs in f. From the induction hypothesis we have [[@]ZD; [I], + [[eo]]Z_D €
Lp(lab(eg)). From ¢ € type-respecting(P) we have CD + Up(lab(eo)) <: Co so
fields(CD, Uyp(lab(eo))) =D g C £. Hence, from Lemma 14 (below), we have

fields([CD], Ugp(lab(eo))) = Lip(lab(g)) g Up(lab(f)) E. From Rule (26) we

25

have p(lab(£;)) = w(£), so Up(lab(fi)) = Up(f), so we can derive, using
o @ .
Rule (18), that [CD] s [I'], F [e]; € I_Iﬁ(é), as dEered. - ~
(19) e = new’ C(e). We have fields(CD,C) = D f, and CD;I' - & € E,
and CD - E <: D. From Lemma 14 (below) we have ﬁe_lds([[@]]foD,C)_:
Lp(lab(f)) £. From the induction hypothesis we have [[@J];D; [, = [[é]];D €
Lp(lab(€)). From Rule (27), we have ¢(lab(g)) C ¢(lab(f)), so from Lemma
16 (below) we have CD I Lip(lab(®)) <: Up(lab(f)), and so from Lemma 15

(below) we have [[@]]23 F Up(lab(®)) <: Up(lab(f)). Finally we have from
Rule (28) that C € (¢), and since new’ C(&) has static type C and ¢ €
type-respecting(P), we have Up(¢) = C. We conclude, using Rule (19), that

we have [[C_D]]ED; [T, - new’ C([[é]]g)) €C.

(20) e = (C)'ep. We have CD;T' I ¢, € D. From the induction hypothesis
we have [[C_D]]:;D; [[F]]_@ + [[eo]]pr € ngp(lab(ei)). From Rule (20) we have that
we can derive [[@]ZD; [T], = (I_Igp(é))z[[eo]]:;D € Up(?).

(21) e = eg.m(8)’. There are two cases. First, assume that there is a class
D in P such that VE € p(lab(ey)) : tmpl(CD,E,m) = D: :m. We have

@, '+ ey € CO (Bl)
mtype(CD, Cy,m) =D — C (B.2)
Ch;'FeeC (B.3)

From (B.1), (B.3), and the induction hypothesis, we have

[D17: [T], - [eo]? € Liplableo)) (B4)
[CDI2; [T], F []3 € Le(lab(e)) (B.5)

We have CD F Up(lab(eo)) <: D, so from Lemma 15 (below), we have
[ED]2 F Lip(lab(eo)) <: D, (B.6)

and together with (B.2), we have mtype(CD,D,m) = D — C. Suppose also
mbody(CD,D,m) = (¢, %, €). From Lemma 13 (below) we have

mtype([CD]Y, D, m) = (Up(lab(%))) — (Up(£)). (B.7)

From Rule (40) we have ¢(lab(eq)) # 0, so suppose Eq € p(lab(eg)). Suppose
also mbody(CD, Ey,m) = (¢”,%x”,&"), From Rules (30)-(31) we have

p(lab(®)) C p(lab(x"))
p(L") =p(0).

Finally, from Rules (38)—(39) we have

¢(lab(x)) C p(lab(x"))
(") = (L"),

26

SO

p(lab(@)) € p(lab(x)) (B.8)
p(l) = (D). (B.9)

Thus, from Rule (22), and from (B.4)—(B.9), we have that we can derive
[[@]]SJD; [rl, = [[eo]]:iD.D: :m([[é]]g))z € Up(0)

as desired.

Second, suppose we have the “otherwise” case from the definition of the
transformation of a method call. The proof of this case is similar to the first
case, and we omit the details.

e (22) e = ep.D::m(8)". The proof of this case is similar to the previous case,
and we omit the details.

Lemma 12 Suppose ¢ € acceptable(P) Ntype-respecting(P), and P = (CD, ep).

If can-declare(CD,D,m,C — Cy), CD F C <: D, and mbody(CD,C,m) = (¢,%,e),
then

can—declar@([[@]]?,D,m, (Up(lab(x))) — (Up(0))).
Proof. Immediate from Lemma 13 (below), using Rule (9), (14)—(16).

Lemma 13 Suppose ¢ € acceptable(P) Ntype-respecting(P), and P = (CD, ep).
If mtype(CD,D,m) =D — Dy, CD F C <: D, and mbody(CD,C,m) = (¢, X, e), then

miype([CD]. D.m) = (Up(lab(®)) — (Lip(0)).
Proof. Straightforward, using the rules Rules (3)—(6), (14)—(16), (38)—(39).

Lemma 14 Suppose p € acceptable(P) Ntype-respecting(P), and P = (CD,ep).

If fields(CD,D) =D g, then fields([CD], D) = Lip(lab(g)) .

Proof. Straightforward, by induction on the structure of the derivation of the
judgment fields(CD,D) = D g, using Rules (1)—(2).

Lemma 15 IfCD+ C<: D, then [[@]]:;_D - C<:D.
Proof. Immediate from the definition of subtyping, that is, Rules (14)—(16).
Lemma 16 Suppose S,T € flow(P)\ 0. If S C T, then CDF US <: UT.

Proof. Immediate from the observation that the subtyping order forms a tree
and therefore admits least upper bounds of nonempty sets.

27

C Proof of Theorem 5

(=) Let P, =(CD,X(e;)) and P, =(CD, X(ez)) where e; and e, are given by one
of the rules in Figure 2. Clearly [P;], = ([[@]]ZD , [[X]]i% ﬂeiﬂiD>), so it remains

to show that [[elﬂi_D — [[eg]]:i_D. The interesting cases are when e; is a cast and
when e; is a dynamic method call that is transformed to a static method call.

e Case 1, ey =(D)“new’ C(&): In this case

ey =new’? C(&8) (C.1)
[e1]2 = (Up(£1))new’z c([e]™) (C.2)
DFC<:D (C.3)

By Rule 28, C € ¢(¢2); by Rule 29, ¢(¢3) N subclasses(P1,D) C ¢(¢1). Thus
C € p(l1),s0CDF C<: Up(ly). By the reduction rules,

[e1] — new® D([E]D) = [e2] (C.4)

e Case 2, e;=new’’ C(€).m(d)* and [[el]]fp_D = new' C([[é]]Z_D) .D: :m([[a]]i_D)ZQ:
In this case

VE € ¢©({y) : impl(CD,E,m)=D: :m (C.5)
e; =ep{this, X := new” C(&),d} (C.6)

where
mbody(CD, C,m) = (¢, X, eg) (C.7)

By Rule 28, C € ¢(¢1). By (C.5), impl(CD,C,m) = D::m. By inspecting
Rules 5-8 and (C.7)

mbody(CD,D,m) = (¢, X, eg) (C.8)
Thus:
[e1]2 = new’ C([e]®).D: :m([AT)"
— [eo]P{this, % = new” C([[D), [AT)
= [eo]
(<) If [P1], takes any step then it is easy to see that P; has the form

(CD,X(e1)) and that [P1], — ([CD]T, [X][P(e') for [e]P and ¢’ as in the

rules in Figure 2. It remains to show that e; — e, and [[eﬂ]fo_D = &’ for some e,.
The interesting cases are when e; is a cast and when e; is a dynamic method
call that is transformed to a static method call.

28

Case 1, e; =(D)“'new’ C(&): In this case
[e1]2 = (Lip(£1))new’ c([e]D) (C.9)
e =new" C([[é]]g)) (C.10)
CDF C<: Up(t) (C.11)

Since ¢ is type respecting and Rule 20, CD k- Up(f1) <: D. By transitivity of
subtyping, CD - C <: D. Then e; — ey and [[eg]]:;D = ¢’ if ey is new? C(8).
Case 2, e;=new’! C(&).m(d)* and [[el]]:;D = new' C([[é]]:;D) .D: :m([[a]]foD)ZZ:
In this case
VE € p(f1) : impl(CD,E,m) =D: :m (C.12)
¢ = [eo]P{this, % := new” C([e]D), [AIC}3)
where
mbody(CD,D,m) = (¢, X, eg) (C.14)
By Rule 28, C € ¢(¢;). By (C.12), impl(CD,C,m) = D: :m. By inspection of
Rules 5-8 and (C.14)
mbody(CD, C,m) = (¢, X, eg) (C.15)

CD . .
Then e; — ey and [[e2]]@ =e'if ey is

eo{this, X := new’! C(8),d} (C.16)

References

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison-Wesley, 1999.

J. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison-Wesley,
1996.

M. A. Ellis, B. Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, 1990.

T. Lindholm, F. Yellin, The Java Virtual Machine Specification, Addison-
Wesley, 1996.

G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, P. Lee, The TIL/ML
compiler: Performance and safety through types, in: ACM SIGPLAN Workshop
on Compiler Support for System Software, Tucson, AZ, USA, 1996.

G. Morrisett, D. Walker, K. Crary, N. Glew, From System F to typed assembly
language, ACM Transations on Programming Languages and Systems 21 (3)
(1999) 528-569.

29

[7] A. Wright, S. Jagannathan, C. Ungureanu, A. Hertzmann, Compiling Java to
a typed lambda-calculus: A preliminary report, in: ACM Workshop on Types
in Compilation, Kyoto, Japan, 1998, pp. 9-27.

[8] N. Glew, An efficient class and object encoding, in: Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA),
Minneapolis, Minnesota, USA, 2000, pp. 311-324.

[9] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, P. Lee, TIL: A type-
directed optimizing compiler for ML, in: 1996 ACM SIGPLAN Conference on
Programming Language Design and Implementation, Philadelphia, PA, USA,
1996, pp. 181-192.

[10] F. Tip, A. Kiezun, D. Baumer, Refactoring for generalization using type
constraints, manuscript (2003).

[11] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, T. Nakatani, A study of
devirtualization techniques for a Java just-in-time compiler, in: Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), Minneapolis, Minnesota, USA, 2000, pp. 294-310.

[12] J. Dean, D. Grove, C. Chambers, Optimization of object-oriented programs
using static class hierarchy analysis, in: W. Olthoff (Ed.), Ninth European
Conference on Object-Oriented Programming (ECOOP), Vol. 952 of Lecture
Notes in Computer Science, Springer-Verlag, Aarhus, Denmark, 1995, pp. 77—
101.

[13] D. Detlefs, O. Agesen, Inlining of virtual methods, in: Thirteenth European
Conference on Object-Oriented Programming (ECOOP), Springer-Verlag
(LNCS 1628), 1999, pp. 258-278.

[14] E. M. Gagnon, L. J. Hendren, G. Marceau, Efficient inference of static types
for Java bytecode, in: Seventh International Static Analysis Symposium (SAS),
Springer-Verlag (LNCS 1824), 2000, pp. 199-219.

[15] J. Palsberg, M. I. Schwartzbach, Object-Oriented Type Systems, John Wiley
& Sons, 1994.

[16] T. Knoblock, J. Rehof, Type elaboration and subtype completion for Java
Bytecode, ACM Transations on Programming Languages and Systems 23 (2)
(2001) 243-272.

[17] J. Palsberg, P. M. O’Keefe, A type system equivalent to flow analysis, ACM
Transations on Programming Languages and Systems 17 (4) (1995) 576-599,
preliminary version in Proceedings of POPL’95.

[18] N. Heintze, Control-flow analysis and type systems, in: Second International
Static Analysis Symposium (SAS), Springer-Verlag (LNCS 983), Glasgow,
Scotland, 1995, pp. 189-206.

[19] J. Palsberg, Equality-based flow analysis versus recursive types, ACM
Transations on Programming Languages and Systems 20 (6) (1998) 1251-1264.

30

[20] J. Palsberg, C. Pavlopoulou, From polyvariant flow information to intersection
and union types, Journal of Functional Programming 11 (3) (2001) 263-317,
preliminary version in Proceedings of POPL’98.

[21] L. O. Andersen, Self-applicable C program specialization, in: 1992 Workshop
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM),
1992, pp. 54-61, (Technical Report YALEU/DCS/RR-909, Yale University).

[22] J. Palsberg, Closure analysis in constraint form, ACM Transations on
Programming Languages and Systems 17 (1) (1995) 47—62, preliminary version
in Proceedings of CAAP’94.

[23] M. Fahndrich, A. Aiken, Program analysis using mixed term and set constraints,
in: Fourth International Static Analysis Symposium (SAS), Springer-Verlag
(LNCS), 1997, pp. 114-126.

[24] N. Glew, J. Palsberg, Method inlining, dynamic class loading, and type
soundness, submitted for publication (2003).

[25] A. Igarashi, B. Pierce, P. Wadler, Featherweight Java: A minimal core calculus
for Java and GJ, ACM Transations on Programming Languages and Systems
23 (3) (2001) 396-450, first appeared in OOPSLA 1999.

[26] F. Nielson, The typed lambda-calculus with first-class processes, in: Proceedings
of PARLE’89, 1989, pp. 357-373.

[27] A. Wright, M. Felleisen, A syntactic approach to type soundness, Information
and Computation 115 (1) (1994) 38-94.

[28] S. Jagannathan, A. Wright, S. Weeks, Type-directed flow analysis for typed
intermediate languages, in: Fourth International Static Analysis Symposium
(SAS), Springer-Verlag (LNCS), 1997, pp. 232-249.

[29] D. F. Bacon, P. F. Sweeney, Fast static analysis of C++ virtual function calls, in:
Eleventh Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), San Jose, CA, 1996, pp. 324-341, SIGPLAN Notices
31(10).

[30] D. F. Bacon, Fast and effective optimization of statically typed object-oriented
languages, Ph.D. thesis, Computer Science Division, University of California,
Berkeley, report No. UCB/CSD-98-1017 (Dec. 1997).

[31] F. Tip, J. Palsberg, Scalable propagation-based call graph construction
algorithms, in: Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), Minneapolis, Minnesota, USA, 2000,
pp. 281-293.

[32] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
C. Godin, Practical virtual method call resolution for Java, in: Proceedings of
the Fifteenth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’00), Minneapolis, Minnesota), 2000,
pp. 264-280.

31

benchmark | prog. size SBA new alg. (“all” sites)
parameter (lines) work units | time (sec) | build | close | querying
10 42 1594 0.028 | 0.008 | 0.001 0.000
20 82 9964 0.100 | 0.016 | 0.001 0.001
40 162 71104 0.422 | 0.029 | 0.002 0.003
80 322 538984 3.494 | 0.082 | 0.003 0.012
160 642 4201144 27.115 | 0.184 | 0.006 0.062
Table 1:
linear-time algorithm
benchmark | prog. size SBA total build close
(lines) (time) || time | time | nodes | time | nodes
life 150 0.201 || 0.083 | 0.069 1429 | 0.013 564
lexgen 1180 1.090 || 0.368 | 0.217 3624 | 0.150 | 2651
Table 2:
Our algorithm could potentially be combined ming Languages and Systems, Vol. 15, No.
with the standard cubic-time CFA algorithm to 2, pp. 253-289, 1993.
Eitra;f a hybrid al%)ont.hm. that terminates for ar- [8] N. Jones, “Flow Analysis of Lambda Ex-
y programs but is linear for bounded-type) ;
programs. Another area of future work involves pressions”, Symp. on Functzonal Languages
extending the analysis to make use of evaluation- and Computer Architecture, pp. 66-74,
order information. 1981.
[9] N. Jones, “Flow Analysis of Lazy Higher-
Order Functional Programs”, in Abstract
Interpretation of Declarative Languages, S.
References Abramsky and C. Hankin (Eds.), Ellis Hor-
wood, 1987.
(1] A. Aho, J. Hopcroft, and J. Ullmann, [10] D. McAllester, “Inferring Recursive Data

“Time and tape complexity of pushdown
automaton languages”, Information and
Control, vol. 13, no. 3, pp. 186-206, 1968.

A. Bondorf and J. Jorgensen, “Efficient
analysis for realistic off-line partial evalua-
tion”, Journal of Functional Programming,
Vol. 3, No. 3, July 1993.

S. Debray and T. Proebsting, “Inter-
procedural Control Flow Analysis of First
Order Programs with Tail Call Optimiza-
tion”, draft, May 1996.
(http://www.cs.arizona.edu/people/
debray/papers/cfa.ps)

N. Heintze, “Set-Based Analysis of ML
Programs”, ACM Conference on Lisp
and Functional Programming, pp 306-317,
1994.

N. Heintze, “Control-Flow Analysis and
Type Systems”, Static Analysis Sympo-
stum, 1995, pp 189-206.

N. Heintze and D. McAllester, “On the
Cubic-Bottleneck of Subtyping and Flow
Analysis” IEFE Symposium on Logic in
Computer Science, 1997, to appear.

F. Henglein, “Type Inference with Polymor-
phic Recursion”, Transactions on Program-

[11]

[12]

[13]

[14]

[15]

[16]

Types”, draft manuscript, July 1996.

C. Mossin, “Control Flow Analysis for
Higher-Order Typed Programs”, draft
Ph.D. thesis, DIKU, University of Copen-
hagen, December, 1996.

E. Melski and T. Reps, “Interconvertibility
of Set Constraints and Context-Free Lan-
guage Reachability”, PEPM’97, to appear.

R. Milner, M. Tofte and R. Harper, “The
Definition of Standard ML”, MIT Press,
1990.

R. Neal, “The computational complex-
ity of taxonomic inference”, unpublished
manuscript, 18 pages, 1989,
(ftp://ftp.cs.utoronto.ca/pub/radford/
taxc.ps.Z).

J. Palsberg and P. O’Keefe, “A Type Sys-
tem Equivalent to Flow Analysis”, POPL-
95, pp. 367-378, 1995.

J. Palsberg and M. Schwartzbach, “Safety
Analysis versus Type Inference” Informa-
tion and Computation, Vol. 118, No. 1, pp.
128-141, April 1995.

O. Shivers, “Control Flow Analysis in
Scheme”, Proc. 1988 ACM Conf. on Pro-
gramming Language Design and Implemen-
tation, Atlanta, pp. 164-174, June 1988.

We compare the performance of the linear-
time algorithm with an implementation of set-
based analysis (SBA) [4], run in monovariant
mode (a generalization of the standard CFA al-
gorithm). All results are for a 150 MHz MIPS
R4400 processor with 512 MBytes; all timings are
user time in seconds and represent the fastest of
10 runs of the benchmark. Each benchmark con-
sists of analyzing the example program and writ-
ing out the control flow information for all non-
trivial applications (i.e. applications of the form
(e1 e2) where €1 is not a function identifier or an
abstraction).

The first set of results are for a parameterized
benchmark that illustrates the cubic behavior of
the standard CFA algorithm. The benchmark of

size 1 consists of:

fun fs x = x

fun bs x = x

fun f1 x = x

fun bl x = x

val x1 = b1(fs f1)
val y1 = (bs bl) f1

and the benchmark of size n consists of the first
two lines of the above code and n copies of the last
four lines, with £1, b1, x1 and y1 appropriately
renamed. The following table presents results for
a variety of sizes of this benchmark. The cubic-
time behavior of SBA is clear (the table not only
give runtimes, but also a measure of the units of
work involved, since cache effects and optimiza-
tions in the implementation of SBA itself mean
that timings are somewhat misleading). The last
three columns describe the behavior of our new
algorithm: the first two of them give the results
for the linear-time LC algorithm, and the last
one shows the quadratic cost of querying all non-
trivial applications (there are O(r) of them and
each has cost O(n)). Note that the graph build-
ing phase (which consists of a simple linear-time
pass over the program text) appears to be slightly
non-linear (e.g. 0.029 x 2 # 0.082). This may be
due to cache effects, timing inaccuracies, or to
inefficiencies introduced in the implementation of
the prototype (e.g. lists are currently used to rep-
resent some aspects of the graph’s structure).

Next, we give the results from two standard
SML benchmarks, the life program, and the lexer
generator. These results indicate that our pre-
liminary implementation of the linear-time algo-
rithm is 2.5 — 3 times faster than SBA. Perhaps
more significant is the number of nodes gener-
ated by the linear-time algorithm. The number
of nodes in the “build” phase of the analysis is es-
sentially the same as the number of syntax nodes
in the program. The key quantity is the number
of nodes added during the “close” phase of the
algorithm: this gives a measure of the number of

times rules such as CLOSE-DOM and CLOSE-RAN
are applied. The results suggest that the number
of nodes added in the close phase is typically no
more than the number of nodes in the build phase,
although more benchmarks are clearly needed.

We remark that the timing results probably
overstate the cost of the linear-time algorithm.
Additional measurements have shown that the
cost of the analysis time for the linear-algorithm
is now dominated by the cost of just traversing
the intermediate representation: for the lexgen
example, this cost accounted for up to 198 ms
out of the total 368 ms for the benchmark, and
for life it was 65 ms out of 83 ms.

11 Conclusion

We have introduced the notion of a sub-transitive
control-flow graph: this is a graph whose transi-
tive closure represents control-flow information.
The key advantage of this graph is that we can
develop O(n) algorithms (where n measures the
size of the graph) for many control-flow consum-
ing applications.

Our main result is a linear-time algorithm
for bounded-type programs that builds a sub-
transitive control-flow graph whose transitive clo-
sure gives exactly the results of the standard
(cubic-time) CFA algorithm. Our algorithm can
be used to list all functions calls from all call
sites in (optimal) quadratic time. However, we
argue that the “all calls from all call-sites” view
of control-flow analysis is unsuitable for investi-
gating the complexity of analyses. In particular,
we show that by directly using the sub-transitive
graph (instead of using the quadratic sized “all
calls from all call-sites” representation), we can
develop linear-time algorithms for many CFA-
consuming applications. Examples include effects
analysis and k-limited CFA. We leave the ques-
tion of the generality of this approach to future
work. In particular, are there “natural” CFA-
consuming applications that require the entire
“all calls from all call-sites” information, or can
we adapt our techniques to all CFA-consuming
applications?

We note that linear-time algorithms for other
forms of control-flow analysis have previously
been proposed. In effect, these algorithms re-
place containment by unification in the definition
of control-flow information, and as a result com-
pute information that is strictly less accurate that
standard CFA. Our paper shows that this loss of
information is not necessary to obtain linear-time
algorithms.

For a let-bound function, we can first ana-
lyze the function using the above technique to
obtain a simplified graph fragment representing
the analysis of the function; then, we make copies
of this graph fragment for each place the function
is used. In practice, we rarely want to blindly du-
plicate graph fragments for all functions in this
way (in general, this duplication could lead to
an exponential control-flow analysis). Rather, we
focus on functions where polyvariance pays off.
For example, we could look at the types of the
program and determine which functions are poly-
morphic. Alternatively, we could first perform a
simple monovariant analysis, and then use that
information to control a subsequent polyvariant
analysis (see e.g. [4]).

Note that we could force our polyvariant al-
gorithm to be linear-time by restricting polyvari-
ance so that there is some global bound on the
number of times each graph fragment is effectively
duplicated (if one graph fragment is duplicated
inside another graph fragment, then any dupli-
cation of the enclosing graph fragment must be
counted as duplication of the enclosed fragment).

8 Linear-time Effects Analysis

Suppose that we want to use CFA information to
drive an effects analysis. We could, for example,
run the standard CFA algorithm, build the list of
functions that can be called from each call-site,
and then iterate over this information to deter-
mine which expressions have side-effects. For sim-
plicity, assume that all side-effecting primitives
are fully applied and that the language consists
only of applications and abstractions. We start
by marking applications of side-effecting primi-
tives as side-effecting. Then, we mark an appli-
cation (e; e2) as side-effecting if either e; or e
are marked side-effecting or if the CFA says that
e1 could be a side-effecting function. Note that
this analysis has complexity at least quadratic in
the program size, because it uses a representa-
tion of control-flow information that is quadratic
in program size.

Using our algorithm, we can obtain a proce-
dure that computes exactly the same effects in-
formation as the process just described, but runs
in linear-time. The basic idea is that we color all
applications that involve side-effecting operations
with red, and then propagate coloring as follows:
(a) a node (e1 e2) is colored red if either e, e
or ran(ey) are red; (b) a node ran(e) is colored
red if there is an edge ran(e) — ¢’ and e’ is red.
Rule (a) corresponds to the condition used in the
previous paragraph; rule (b) is a (limited) form

of transitive closure for coloring. This is clearly
a linear-time procedure (it is just a graph reach-
ability problem).

9 Linear-time k-limited CFA

In many applications of CFA, we are only in-
terested in knowing information about call sites
where a small number of functions can be called
(e.g. one, two or three functions). If more func-
tions than that may be called, then we might not
be interested in knowing the exact details of the
functions, because the optimization we have in
mind may be intractable or inappropriate. Exam-
ples of these kinds of applications include inlining
and specialization.

We can use our algorithm to obtain a linear-
time procedure for computing this information as
follows. First, we annotate with each node with
a value that is either a small set or the token
“many”. We start by annotating nodes corre-
sponding to functions with the singleton set con-
taining just that function, and all other nodes
with the empty set. Then, we propagate infor-
mation back along edges: if a node n has edges
to nodes with sets S1,...,S5;, then we update the
annotation at » with S;U---US; if this is a small
set (size < k), and “many” otherwise. Each up-
date can be done in constant time, each node can
be updated at most a constant number of times,
and hence if we only propagate changes, we can
obtain a linear-time algorithm for computing k-

limited CFA.

10 Experimental Results

We present some preliminary results from a proto-
type implementation of the linear-time algorithm.
This prototype implements the basic linear-time
CFA algorithm, with extensions for datatypes
and records; however certain aspects of ML have
not yet been implemented, and as a result the
benchmarks we have been able to run are limited.

Our implementation is essentially a naive im-
plementation of the algorithm described in this
paper. A number of improvements could be made
(such as taking advantage of the many nodes that
have only one outgoing edge). We expect con-
siderable improvement in the performance of the
prototype as we better understand how the al-
gorithm behaves in practice. It is also likely that
we can exploit a number of graph implementation
techniques.

shall only be interested in the case where 7(n) is
a datatype).

We now define two node congruences (by con-
gruence, we mean that if nqy = ny then dom(n,) =
dom(nz), etc.). The first congruence, =, is
defined to be the least congruence such that
n1 =1 ny whenever 7(n1) = 7(n2) and both are
datatypes. The second congruence differs from
the first in that only nodes that have the same
base node and involve a de-constructor are con-
sidered equivalent. To this end, observe that any
node can be written in the form «(n) where n
is a basic node and « is a sequence of dom, ran,
de-constructors, etc. We say that n is the base
node of a(n). Now, define =2, to be the least
congruence such that n; =; ny whenever (a)
7(n1) = 7(n2) and both are datatypes and (b)
n1 and ns both have the same base node and in-
volve a de-constructor. This second congruence is
finer than the first, and it leads to a strictly more
accurate analysis. To illustrate these construc-
tions, suppose that we have the program frag-
ment cons (2, cons(1, nil)). Let e denote this
expression, and let e’ denote the sub-expression
cons (1, nil). Using =2, we generate the follow-
ing edges (we include some of the rules that may
be generated by the closure rules):

e — cons(2,¢’)
e’ — cons(1, nil)
car(e) — 2
cdre) — €
car(e'y — 1
cdr(e') — nil
car(cdr(e)) — car(e’) (CAR-CLOSE)
edr(e) — cdr(e’) (CDR-CLOSE)

noting that in the last line, cdr(e) =z cdr(cdr(e)).
Now, if we use =1 instead of =», then e, €', cdr(e),
cdr(e’) would all be in the same equivalence class,
and so, for example, there would be edges to both
1 and 2 from car(e).

For bounded type programs, =i generates
O(n) congruence classes, and this leads to a
linear-time analysis algorithm. In contrast, for
bounded type programs, = generates up to
O(n?) congruence classes, and hence leads to a
quadratic-time analysis algorithm. However, if in
addition to bounded types, we assume that nest-
ing levels of datatypes are bounded, then =5 gives
a linear-time algorithm. We define nesting levels
of datatypes as follows: label a datatype defini-
tion that does not mention other datatypes with
0, and label any other datatype definition with
the maximum of the labels of all datatypes it uses,
plus 1.

We are currently investigating the tradeoffs

between these two approaches. In particular,
how much more accurate is the second approach?
Note that the first approach is akin to statically
fixing the set of allowed functions that can ap-
pear in a particular slot in a data-constructor; the
second approach allows more dynamic behavior.
We also plan to investigate whether the bounded
nesting-level assumption for datatypes is realistic.

7 Polyvariance

So far, we have described a monovariant al-
gorithm. We now describe polyvariant exten-
sions to our algorithm that are analogous to let-
polymorphism. Consider a program P. At a very
naive level, consider just let-expanding P and an-
alyzing the resulting (probably very large) pro-
gram. Our intent is to develop an analysis whose
end result is equivalent to doing a monomorphic
analysis of the let-expanded P, without doing the
explicit let-expansion. Instead, we analyze the
function once, and build a summary of the anal-
ysis of its code body. The resulting parameter-
ized and simplified graph can then be instantiated
(copied) at the points of the function where it is
mentioned, much like polymorphic type inference

in ML.

One of the strengths of our algorithm is that
the simplification/parameterization steps can be
easily carried out — they correspond to graph
reachability and simplification steps. To illus-
trate the basic issues, let e be the code fragment
)\la:.(()\lly.:c) nil). If we look at e in isolation, the
LC’ rules introduce edges:

mn()\lly.:n) — T
y — dom()\lly.a:)
dom()\lly.:n) — il
((M'y.z) nil) — mn()\lly.z)
ran(e) — ((Ay.z) nil)
z — dom(e)

To simplify /parameterize this graph fragment, we
first isolate the critical nodes, which are those
nodes that may be used by surrounding pro-
gram text, in this case mn(/\llm.(()\ly.z) nil)) and
dom()\llz.(()\ly.z) nil)). Next, we do a graph
reachability from these two nodes (and here we
must generalize reachable so that if n is reach-
able, then so is dom(n) and ran(n)). Any non-
reachable nodes (such as nil) can now be removed.
Finally, we can compress the graph and remove
intermediate nodes (such as z). In this case, we
are left with just ran(e) — dom(e).

bounded number of edges for bounded type size
polymorphically typed programs, it therefore suf-
fices to show that the number of distinct posi-
tions in the type trees of the monotypes in the
let-expanded version of the program. This is im-
mediate, since the sizes of the monotypes in the
let-expanded program are bounded by some con-
stant k, and hence there is at most a total of 2*
positions in these types.

We have thus established that our algorithm
runs in linear-time on bounded-type (in the sense
of McAllester) polymorphic programs. Note that
although we have addressed programs with poly-
morphic types, the algorithm itself is still mono-
variant (context insensitive). Making the algo-
rithm polyvariant is a separate issue, and is con-
sidered in Section 7.

6 CFA for ML

Thus far, we have worked in the context of a
simple version of the lambda calculus (with just
abstraction and application). We now extend
the algorithm to recursion, records and (recur-
sive) datatypes. First consider fix: since we have
worked with simply typed lambda terms with
only abstraction and application, there is no re-
cursion. To address this, consider adding a con-
struct letrec f = Mz.ep ines. Itis simple to ex-
tend the linear-time algorithm for this construct:
for each instance of this construct, we add tran-
sitions:

letrec f = Az.e1 ines — es
[— Aaz.eq

Next consider records. Suppose we add con-
structs (e1,...,en) and proj,, y = 1..n, for record
creation and accessing. We extend the algorithm
by adding proj, as a node operator (i.e. it has the
same status as dom and ran in the last section,
and has its own closure rule, similar to CLOSE-
RAN). Then, for each expression (e1,...,en),
we add transitions proj;((e1,...,en)) — ey,
7 = 1..n, and each program expression proj](e)
is treated as a node. If the program has bounded
types, then only a bounded number of nodes need
be considered, and so the extended algorithm is
linear-time. (Note, however, that for programs
with records, bounded-order and bounded-arity
no longer implies bounded type size.)

Next consider recursive data types. One possi-
bility is to ignore recursive data types: whenever
a function is put in a recursive data structure and
then extracted, we lose all information about the

function (i.e. we obtain the set of all abstraction
labels). The rational for this is that functions
are rarely put in recursive data structures, and
so we can obtain most of the important informa-
tion about control-flow in a program by ignoring
recursive data types.

However, many generalized forms of CFA
track data-constructors in the same way as they
track functions: the advantage here is that not
only do they give better control-flow informa-
tion, but they also give information about the
shape of first-order values. We consider a simi-
lar approach. First, we extend the node opera-
tors dom and ran with additional operators just
as we did for records. Specifically, we add one
operator (“de-constructor”) for each argument of
each data-constructor’: for an n-ary constructor
¢, we would add c(_f), e c(_nl). Then we add ap-
propriate (demand-driven) closures rules for de-
constructors. Finally, for each expression e of
form c(e1, ..., €exn), we add transitions c(_ﬁ(e) —
e;, 3 =1..n.

Unfortunately, as formulated, we have no way
of bounding the size of the nodes we must con-
sider. In fact, the monadic monotone closure
problem® can be mapped into this analysis prob-
lem, and Neal [14] has shown that monadic mono-
tone closure is essentially as hard as the 2NPDA
acceptability problem, a well-studied problem for
which the best known algorithm is O(n?) and has
not been improved since Aho, Hopcroft and Ull-
mann’s early work [1] in 1968. Melski and Reps
[12] have recently obtained a similar result in their
work on set-based analysis and context-free reach-
ability.

To reduce this complexity, we consider two al-
ternatives, both of which reduce the accuracy of
the analysis so that it is less accurate than, for
example, mono-variant set-based analysis. The
basic idea is to use a finite node congruence that
bounds the number of nodes that are considered
(the algorithm considers only one node from each
congruence class) at the expense of reducing anal-
ysis accuracy. First, note that each node can be
associated with a type. In particular, each node
of the form c(_z)l(n) can be associated with the

type of the 1'" argument of the constructor c¢. Let
7(n) denote the type thus associated with n (we

TFor simplicity, we view an ML datatype declaration
as a definition of a collection of of multi-arity data-
constructors.

8This is a generalization of transitive closure that in-
cludes two (or more) monotone node functions f and g
such that if n is a node, then f(n) and g(n) are nodes,
and if n — n' then f(n) — f(n') and g(n) — g(n’).
Given a set of edges between nodes, and two nodes n and
n’ appearing in this set, does n — n’ follow from the
standard transitive closure rule and the additional f and
g rules?

Algorithm 1
Input: A program P, label ! and a program
sub-expression e.
Output: Is 1 € L(e)?
1. Apply LC' to P.
2. Use graph reachability to determine
whether [is reachable from e.

Algorithm 2

Input: A program P and a program
sub-expression e.

Output: L(e)

1. Apply LC’ to P.

2. Use graph reachability to find all nodes
reachable from e.

3. Output the labels of abstractions
in these reachable nodes.

We can also obtain an O(n?®) algorithm for com-
puting all label sets (i.e. complete CFA informa-
tion) by repeatedly applying Algorithm 2 to all
program sub-expressions.

The key part of our new algorithm is the use
of the type tree at each program node to limit
the number of edges that must be added during
the analysis. Proposition 4 bounds the number
of nodes using the maximum size type trees that
can appear at any program node. This provides
a rather loose bound. We could obtain tighter
bounds by observing that the work done by the
algorithm at each node is proportional to the type
tree at that node. Hence the total work done by
the algorithm is proportional to the sum of the
type tree sizes at each node. In other words, it
is proportional to kqve - | P|, where kqve is the av-
erage size of the type trees at each node in the
program. One of the principal concerns of our im-
plementation was the size of this constant: would
it be prohibitive? Early results indicate that this
is not the case: the constant is quite small, typi-
cally around 2 or 3.

Note that the algorithm itself does not ac-
tually look at the types during its execution.
Rather, the types are used only to establish ter-
mination (and the linear-time complexity bounds
in the bounded-type case). In other words, our
algorithm only needs to know that the (appropri-
ate) types exist — it does not need to know what
they are. This simplifies implementation — we
do not need to transmit the types from type in-
ference to our algorithm.

5 Polymorphic Types

Thus far we have considered monomorphic pro-
grams and we have assumed a bound k& on the
size of the monotypes in a program. Now consider
polymorphically typed programs (in the sense of
ML) and suppose our expression language is ex-
tended with an appropriate let construct. There
are at least two notions of bounded size poly-
morphically typed programs. McAllester [10] de-
fines that a polymorphically typed program P has
bounded type size if there is some constant & such
that the tree-size of the monotypes of each expres-
sion in the let-expansion of P all have size < k.
Alternatively, motivated by Henglein’s “ML pro-
grams with small types” [7], we can define that
a polymorphically typed program P has bounded
type size if there is some constant k such that the
types (including polytypes) of expressions in P
all have tree-size bounded by < k.

Unfortunately, the two definitions are not
equivalent®. We shall use McAllester’s defini-
tion. Suppose that we have a polymorphically
typed programs (according to McAllester’s defi-
nition). For monotyped program, we bound the
running of the algorithm by using the mono-
types of expressions to provide a template for the
nodes that need to be considered during the edge-
adding phase. The situation is similar for poly-
morphically typed programs, except that we use
the induced collection of monotypes in the let-
expansion of a program to provide a collection of
templates for bounding the behavior of our algo-
rithm. Note, again, that our algorithm does not
actually need to have the types (and in particu-
lar, our algorithm does not need to construct the
let-expansion of the program!); we just use their
existence to prove termination. For example, in
the program

fun id x = x
val y = ((id id) id) 1

the induced monotypes for id are int — int,
(int — int) — (int — int) and ((int — int) —
(int — int)) — ((int — int) — (int — int)).
In essence, we can set up a correspondence be-
tween each node n added during the edge-adding
step and a position in some type tree for the
based node of n (recall that nodes in the edges-
adding phase are built from basic nodes by ap-
plying dom(-) and ran(-)).

To show that our algorithm adds only a

8Consider the program consisting of n functions where
the first function fo is just the identity function, and f;41
is defined to be Az.(f; fi) . This program has bounded
type using Henglein’s definition, but the monotypes in
the let-expansion of the program have exponential tree
size.

edge-adding phase (which adds basic edges) and a
transitive closure phase. However, note that the
CLOSE-DOM and CLOSE-RAN rules are open ended:
given any edge n — n' (added by one of the other
rules), the CLOSE-RAN rule says that we can add
all edges of the form ran*(n) — ran®(n’) for all
k > 1, and similarly for the CLOSE-DOM rule.

To control the application of the cLOSE-DOM
and CLOSE-RAN rules, we make them demand
driven, as follows:

n — N n — dom(nz)

(cLosE-DOM’)

dom(ny) — dom(n,)

n] — N2 n — ran(n1)

(CLOSE-RAN')

ran(n,) — ran(nz)

This means that cLOSE-DOM’ can only applied if
there is a transition whose right-hand-side could
immediately match with the left-hand-side of the
added transition i.e. if it is “needed”. Similarly
for cLOSE-RAN’. Call this new system LC’ (that
is, LC' consists of ABS-1, ABS-2, APP-1, APP-2,
CcLOSE-DOM’ and cLOSE-RAN'). LC’ is equivalent
to LC in the following sense:

Proposition 2 For all programs P, and expres-
sions e and Nz.e appearing in P:

e There exist nodes n; such thate — nq —
g — Maz.ein LC iff

e there erist nodes n, such that e — nj} —
—np — Maz.ein LC.

This modification of LC into LC’ improves
the termination properties of the system (dis-
cussed further in the next section). It also intro-
duces an element of demand-driven/incremental
behavior. For example, suppose that we have
a function Mz.z. The rules introduce edges
ran(Mz.z) — z and z — dom(Mz.z). At this
stage, these are the only edges involving these
nodes. Eventually, if and when the function is
used, we may invoke the cLOSE-DOM’ and CLOSE-
RAN' rules. For example, if the entire program
is (Mlz.z)\lly.y) e), then the cLoseE-pom’ and
cLOSE-RAN’ rules will add ran(ran(X'z.z)) —
ran(z) and ran(z) — ran(dom(N'z.z)), amongst
others. In other words, we only explore the parts
of the “type” of an expression that are actually
needed.

4 Termination

The LC’ system can be viewed as an algorithm:
given a program P, add all of the edges specified
by the rules (this is best represented as a graph).
However, this procedure does not terminate in
general. We now show that the algorithm:

e terminates for typed programs (either sim-
ply typed or polymorphically typed).

o is fast (linear) for bounded-type programs
(either simply typed or polymorphically
typed).

In essence, we shall use the types as a template
for the nodes that need to be considered. To illus-
trate this, suppose e is a program expression with
(non-polymorphic) type (11 — 1) — 13 — 74,
then we need to consider six new nodes, one for
each proper subexpression of the type: dom(e),
ran(e), dom(dom(e)), ran(dom(e)), dom(ran(e))
and ran(ran(e)). In general, the number of new
nodes that must be added corresponds to the size
of the type trees of program nodes. We show
how this idea can be applied to programs with
polymorphic types in the next section (Section
5); for the moment we shall consider programs
with monotypes.

Bounding the number of nodes guarantees
termination, because the inference rules ABS-1,
ABS-2, APP-1, APP-2 generate a fixed (program-
dependent) number of rules, and cLOSE-DOM’ and
CLOSE-RAN’ can add at most one new rule for each
rule/node pair. In the case of programs with
k-bounded types, the size of these type trees is
bounded by k, and hence we can obtain a lin-
ear bound on the number of rules that must be
added. (Note that, in general, the tree-size of a
program can be exponential in program size —
for programs that exhibit this behavior, our pro-
posed algorithm would be a poor choice compared
with the standard cubic-time algorithm. For un-
typed (or recursively typed programs), there is no
bound, and our algorithm may not terminate.)

To make the behavior of our algorithm on
bounded-type program more precise, fix on some
constant k, and define Py, to be the class of mono-
typed programs whose whose types are bounded
by k. In system LC’ we have:

Proposition 3 There exists a constant cx such
that when LC' is applied to a program P in Py,
LC' consiructs at most ci - |P| edges where |P|
denotes the size of program P.

Hence, we obtain the following linear-time al-
gorithms for bounded-type monotyped programs:

tially the same steps as the algorithm based on
the previous control-flow definition and is also
O(r?) (in fact, the close correspondence between
the two algorithms can be used to provide an easy
proof of equivalence of the two definitions).

Observe that in this algorithm, the transitive
closure computation in intertwined with the ad-
dition of new edges. However, this does not need
to be the case; this is a key insight of our algo-
rithm. To show this, we define a new transition
system. First, define a set of nodes n by the fol-
lowing grammar:

n == e | dom(n) | ran(n)

Intuitively, dom(mn) represents the “domain” of
the node n, and ran(n) represents the “range”
of the node n. If n corresponds to an abstraction,
then dom(n) is simply the argument (bound vari-
able) of the abstraction; otherwise, dom(n) de-
notes the collection of arguments of the abstrac-
tions represented by n. Similarly, if n corresponds
to an abstraction, then ran(n) is simply the re-
sult (body) of the abstraction; otherwise, dom(n)
denotes the collection of results of abstractions
represented by n.

Now, define a transition system between nodes
n as follows:

m (lf Az.ein P) (ABS—l)
m (lf /\lx.e in P) (ABS—Q)
(if (e1 e2) In P) (APP—l)

dom(e1) — e

(61 62) — ran(el) (if (e1 €2) in P) (APP—Z)

ny1 — N2

dom(ny) — dom(n,) (CLOsE-DOM)

n1 — N2

" CLOSE-RAN
ran(n,) — ran(nz) (>)

Call this system LC (for “linear closure”); it
forms the core part of our linear-time CFA al-
gorithm. To illustrate LC, consider the program

(Mz.(z 7) ()\llz'.z':):) used earlier in this section.
Applying the first four rules leads to:

g Al dom(Mz.(z z)) (1)

ran(Nz.(z) ABS 2 (z z) (2)

, z’ :%; dom()\llz'.z') (3)

ran(A" z'.z") — &' (4)
dom(Nz.(z z)) APl N gt ! (3)
(Nz.(z) (W2'.2") T2 ran(Ma.(z) (6)
dom(z) arel g (7)

(z z) Arp 2 ran(z) (8)

where the subscripts on the arrows indicate which
rule is employed. Applying the last two rules
leads to the following transitions (among others).

dom(A'z'.2") — dom(dom()\lz.(lz z))) (9)
ran(dom(M'z.(z £))) — ran(A'z’.z") (10)
dom(do‘m()\lz.(:c z))) — dom(z) (11)
ran(z) — ran(dom()\lz.(z z))) (12)

(9) and (11) are by cLOSE-DOM; (10) and (12) are
by CLOSE-RAN. Combining these transitions, we
can derive Al 2’2’ from (Mz.(z z) (A" 2'.2')):

(Az.(z z) (A 2'.2"))

— mn(»)\lz.(z z)) by (6)
— (zz) by (2)
— ran(z) l by (8)
— mn(dolm()\ z.(z z))) by (12)
— ran(A' z'.2") by (10)
— ' / by (4)
— dom(A'z'.2)) by (3)

— dom(dpm()\lz.(:c z))) by (9)
— dom(z) by (11)
— T by (7)
— dolm()\lz.(z z)) by (1)
— Mg by (5)

Compare this to DTC in which the transition
ANale' — (Mz.(z z) ()\llz'.z')) was added by
the deduction rules. In other words, what was a
single transition step in DTC has become a multi-
step transition in LC. This relationship holds in
general: the transitive closure of LC corresponds
to DTC in the following sense:

Proposition 1 For all programs P, and expres-
sions e and N'z.e appearing in P,
e — Mz.e in DTC iff for some nodes n;, e —

ny —s - — np — Xz.e in LC.

What we have achieved, then, is a factoriza-
tion of the algorithm into two separate parts: an

all at once. Since each label set contains up to
n labels, this represents O(n?) information, and
takes O(n?) time just to output. So a linear time
algorithm for “compute all label sets!” is out of
the question. However, in compiler applications
we rarely want to know the control-flow informa-
tion for every node in the program. Instead we
usually only want to know the functions that can
be called from a (relatively few) specific call sites.
Alternatively, we may want to know whether only
one function can be called from a particular site
(e.g. for inlining or specialization applications).
More generally, we may not be interested in spe-
cific control-flow information, but rather we may
need to know about control-flow to answer other
questions such as “is this expression side-effect
free?”. We address the complexity of these such
questions in Sections 8 and 9; for now, we con-
sider four basic control-flow questions:

e Given alabel [and an expression occurrence
e,is 1 € L(e)?

e Given an expression occurrence e, compute

L(e).

e Given a label I, compute all expression oc-
currences e such that [€ L(e).

e Compute all label sets.
The following table compares the complexity of

our algorithm with the standard algorithm on
these questions, for bounded-type programs.

Problem Std Alg. | New Alg.
Is l € L(e)? O(r?) O(n)
L(e) O(n?) O(n)
{e:le L(e)} O(rn?) O(n)
All Label Sets | O(n?) O(n?)

3 The Algorithm

We begin by reformulating the definition of stan-
dard control-flow information as a transition sys-
tem between program nodes. This reformulation
makes explicit the connection with transitive clo-
sure. For convenience we assume that programs
are renamed to ensure that bound variables are
distinct. Now, for a program P, construct the
following deduction rules:

Az.e — Az.e (aBs)

— Az, .
- T (if (e1 e2) in P) (aPP-1)

r — €2

e1 — Maz.e

m (lf (61 62) in P) (APP—Z)
€1 — €2 €2 —/ €3
p—— (TRANS)

where the condition on the second and third rules
“if (e1 e2) in P” indicates that there is instance of
the respective rule for each occurrence of a term
of the form (e1 ez) in P. Intuitively, an edge
e1 — ez indicates that anything (e.g. an ab-
straction) we can derive from es is also derivable
from e1. In the case where e is itself an abstrac-
tion, this edge says that es is one possible “value”
for e1. The first rule is a boot-strapping rule that
says that any abstraction leads to itself. The sec-
ond and third rules deal with application and re-
spectively say that if there is a transition from
the operator of an application to an abstraction,
then add a transition from the bound variable of
the abstraction to the operand of the application
(rule APP-1) and also add a transition from the
entire application to the body of the abstraction
(rule APP-2). The final rule is transitivity (we
note that it is sufficient to restrict this rule to
the case where es is an abstraction). Standard
control-flow analysis can now be redefined as fol-
lows: given a program expression e, find all ab-
stractions A'z.e such that e — Az.e is derivable
from the above rules.

For example, consider (A'z.(z) ()\llz'.x':):).
The above rules lead to:

)\lz.l(z z) —)\llz.(z z) (ABS) (1)

ANzl —)\llz'.z' (ABS) (2)

/ ¢ — Az’s’ (aPP-1) (3)

(Maz.(z) A e’ 2') — (Ilz) (APP-2) (4)
9:" — Az (APP—l) (5)

(z z) — =’ EAPP—Q) (6)

()\lz.(z z))\llz'.:cl) Ve

The last rule follows from two applications of
transitivity on (4), (6) and (5) (in that order). In
effect, the four deduction rules ABS, APP-1, APP-
2 and TRANS define a dynamic transitive closure
problem: ABS sets up some initial edges, TRANS is
transitive closure, and APP-1 and APP-2 add new
basic edges as the transitive closure proceeds. We
refer to this system as DTC because of its close
connection to dynamic transitive closure. Clearly
we can use DT'C as the basis of an iterative fixed-
point algorithm for control-flow analysis: we start
with the empty set of transitions and add a tran-
sition e — ¢’ if it follows from one of the above
rules in the context of the set of transitions ob-
tained thus far. This algorithm performs essen-

most important, the overhead of the new algo-
rithm (i.e. the “size of the constant”) appears to
be small.

In general terms, what we establish in this pa-
per is a connection between control-flow analysis
and graph reachability. Recent work by Melski
and Reps [12] has show a similar kind of connec-
tion between (a limited class of) set constraints
and context-free reachability. While the differ-
ences are significant (our work deals with reacha-
bility in a standard graph, whereas Melski/Reps
deals with S-path reachability in a labeled graph),
the use of graphical constructs in analysis is be-
coming increasingly common. We also note that
very recent (and independent) work by Mossin
[11] investigates ideas similar to those in this
paper (in particular, the use of types to bound
control-flow graph construction).

2 Control-Flow Analysis

We define standard control-flow analysis on a
variant of the A-calculus with labeled abstrac-
tions. Expressions e are defined by*:

e u= 1z | Aaz.e | (e1 e2)

where z is a variable and ! is a label. Such la-
bels allow us to trace a program’s control flow.
A program is a closed term in which each ab-
straction has a unique label. Program evalu-
ation is f-reduction, appropriately adapted to
labeled expressions. Note that reduction pre-
serves labels on abstractions: e.g. a single step
of f-reduction rewrites (A'z.(z 7)) ()\lly.y)) into
()\lly.y:) ()\lly.y). There are no restrictions on the

reduction order: the f-reduction can be applied
at any subterm at any time.

The purpose of control-flow analysis is to asso-
ciate a set of labels L(e) with each sub-expression
e of the program® such that if e reduces to an
abstraction labeled ! during execution of the pro-
gram, then I € L(e). In other words, control-flow
analysis gives a conservative approximation of the
abstractions that can be encountered at each ex-
pression during execution of a program.

We can now define standard control-flow anal-

*When discussing control-flow of ML typable pro-
grams, we shall assume the addition of a fix construct
and a let construct. However, we describe the core of our
algorithm using just this simple version of the A-calculus.

58trictly speaking, the association is with each occur-
rence of a sub-expression: different occurrences can have
different label sets.

ysis as the least such association of label sets that
satisfies the following two conditions:

e for any abstraction A'z.e, we have | €

L(Mgz.e), and

e for any application (e; ez2), if [€ L(e1) and
! labels the abstraction A'z.e, then

— L(z) D L(ez) for each occurrence of z
bound by the abstraction I, and

= L{(er e2)) 2 L(e).

The standard algorithm for computing this anal-
ysis is essentially a least fixed-point computation:
each label set is initially the empty set, and then
the algorithm repeatedly picks a sub-expression
at which one of the conditions is not satisfied, and
minimally adds new labels to label sets to locally
satisfy the condition. This process is guaranteed
to terminate because there are only a finite num-
ber of labels in a program, and the label sets are
monotonically increasing. The complexity of this
algorithm is O(n®) where n is the size (number of
syntax nodes) of the input program: informally,
at most n labels may be added to the n label
sets, and each of these n? possible additions may
involve up to O(n) work.

To give some intuition about how this kind of
behavior can arise in practice, consider the fol-
lowing program fragment:

fun £f x =

(f x1)

Using the above algorithm, the label set collected
for x is the union of the label sets collected for
x1 and x2. Since the number of calls to function
f can linearly increase with program size, the in-
formation collected for x can grow linearly — in
effect, x acts like a “join” point, combining infor-
mation from diverse parts of a program. If x is
applied in the body of f, then we must perform
work proportional to the information collected for
x at this application site. Worse, if x is returned
then all of the information joined by x can flow
back to the call sites of the function £. This join-
point behavior is independent of type size and is
observed in practice, particularly for extensions
of standard CFA that deal with data construc-
tors (for which library functions such as append
and map become common join-points). Although
it rarely leads to cubic behavior, it can have a
significant impact on analysis running time and
space.

Note that the standard CFA algorithm com-
putes the label sets for each program expression

The usual algorithm for standard CFA has
O(r?) time complexity and O(n?) space complex-
ity, where n measures the length of the input
program. The conventional wisdom is that this
algorithm cannot be improved because the algo-
rithm is essentially performing a dynamic tran-
sitive closure and the best known algorithm for
dynamic transitive closure is O(n®). Dynamic
transitive closure differs from the usual transitive
closure problem because new basic edges may be
added during the algorithm’s execution; as a re-
sult the usual techniques for obtaining sub-cubic
algorithms for transitive closure cannot be ap-
plied in the dynamic case.

The apparent cubic complexity of standard
CFA has been a barrier to the use of CFA in com-
pilers. In fact, although a number of prototypes
analyzers have been built, standard CFA has yet
to find its way into a widely used compiler. Many
implementors have instead used simpler but less
accurate algorithms. For example, Bondorf and
Jorgensen [2] employ an equality-based algorithm
for CFA because “the equality-based flow analy-
sis can be done in almost-linear time whereas an
inclusion-based analysis is expected to be at least
cubic.” Another common choice is to use very
simple approximations of the control-flow graph
based on known function applications. We re-
mark that, in practice, the standard CFA algo-
rithm (and its derivatives) rarely exhibit cubic
behavior, but they are often non-linear.

Recent work [6] indicates that it is unlikely we
can improve on the cubic-time complexity of stan-
dard control-flow analysis, because it is as hard
as the 2-NPDA acceptability problem. (Melski
and Reps [12] have recently shown a similar kind
of “cubic-hardness” result for first-order set-based
analysis with data-constructors.) In this paper we
focus on bounded-type programs. For monotyped
(or simply typed) programs®, we simply bound
the tree-size of a program’s types by some con-
stant. Equivalently, we could bound a program’s
order and arity, where arity is defined so that cur-
rying increases argument count rather than order;
for example, the usual curried version of integer
map with type (Int — Int) — Int list — Int list
has arity 2 and order 2.

Bounded-type programs capture the intuition
that functions rarely have more than, say, 20 ar-
guments or have order greater than 3, and al-
most never at the same time (while this holds for
most hand-written programs, the case is rather
less clear for automatically generated programs).
This class of programs has been particularly use-
ful for understanding the observed linear behavior

3We discuss the notion of bounded-type for polymor-
phically typed programs (in the sense of ML) in Section
5.

of type inference for ML [13]; see [7, 10]. How-
ever, it cannot be used to control the complexity
of the standard CFA algorithm, which is cubic
even when type size is bounded. Section 10 illus-
trates this with an example.

The main result of this paper is a linear-time
algorithm for bounded-type programs that builds
a directed graph whose transitive closure gives
exactly the results of the standard (cubic-time)
CFA algorithm. Our algorithm can be used to list
all functions calls from all call sites in (optimal)
quadratic time. More importantly, for many ap-
plications that consume (standard) control-flow
information, we can adapt our algorithm to per-
form the necessary control-flow analysis and post-
processing of the control-flow information all in
linear-time. We illustrate this by giving linear-
time algorithms for:

o effects analysis: find the side-effecting ex-
pressions in a program.

e k-limited CFA: for each call-site, list the
functions if there are only a few of them
(< k) and otherwise output “many”.

e called-once analysis: identify all functions
called from only one call-site.

Our algorithm is simple, incremental, demand-
driven and easily adapted to polyvariant usage.
Early experimental evidence suggests that this
new algorithm is significantly faster than the
standard algorithm.

Section 2 gives the definition of the standard
control-flow problem. In Section 3, we present
the linear-time algorithm. The main insight of
our algorithm is a decoupling of the transitive
closure and edge addition aspects of the stan-
dard CFA algorithm (the standard CFA algo-
rithm can be viewed as transitive closure inter-
twined with edge addition due to newly discov-
ered function applications). Section 4 uses types
to show termination. Sections 5 shows termina-
tion for polymorphically typed programs. Sec-
tion 6 extends the basic algorithm to records and
recursive datatypes (the treatment of recursive
datatypes is somewhat less accurate than in other
approaches such as set-based analysis [4]). Sec-
tion 7 considers polyvariance. Sections 8 and 9
show how our algorithm can be used to provide
linear-time algorithms for some CFA-consuming
applications. In Section 10, we provide some
empirical evidence that our new algorithm has
practical significance. Preliminary results sug-
gest that the new algorithm is significantly faster
than the standard algorithm for ML programs.
We also provide a comparison on some programs
that exhibit worst-case cubic behavior. Perhaps

Linear-time Subtransitive Control Flow Analysis

Nevin Heintze*

Abstract

We present a linear-time algorithm for bounded-
type programs that builds a directed graph whose
transitive closure gives exactly the results of
the standard (cubic-time) Control-Flow Analysis
(CFA) algorithm. Our algorithm can be used to
list all functions calls from all call sites in (op-
timal) quadratic time. More importantly, it can
be used to give linear-time algorithms for CFA-
consuming applications such as:

e effects analysis: find the side-effecting ex-
pressions in a program.

e k-limited CFA: for each call-site, list the
functions if there are only a few of them
(< k) and otherwise output “many”.

e called-once analysis: identify all functions
called from only one call-site.

1 Introduction

The control-flow graph of a program plays a cen-
tral role in compilation — it identifies the block
and loop structure in a program, a prerequisite
for many code optimizations. For first-order lan-
guages, this graph can be directly constructed
from a program because information about flow
of control from one point to another is explicit
in the program (we remark that in the context

of tail-call optimization, some extra work may be
needed; see [3]).

For languages with higher-order functions, the
situation is very different: the flow of control from
one point to another is not readily apparent from

*Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974,
nch@bell-labs.com.

TAT&T Labs, 600 Mountain Ave, Murray Hill, NJ
07974, dmac@research.att.com.

David McAllester!

program text because a function can be passed
around as data and subsequently called from any-
where in the program. This limits compiler op-
timization. One way to address this problem is
to perform control-flow analysis (CFA) to deter-
mine (an approximation) of the functions that
may be called from each call site in a program
(8,9, 17, 16]. (In fact, some form of CFA is used
in most forms of analyses for higher-order lan-

guages.)

Many different control-flow analyses have
been developed (often independently), with vari-
ations in:

1. the treatment of context: does the analysis
take into account the calling context of a
function (polyvariant' treatment) or does
it fold all activations of a function together
(monovariant?® treatment)?

2. the treatment of dead-code: does the analy-
sis take into account which pieces of a pro-
gram can actually be called? Does it take
into account reduction order?

3. the treatment of data-constructors: what
happens when a function is stored in a list
and then later extracted from the list — is
the identity of a function traced through re-
cursive data-structures?

Despite these variations, a fundamental notion
of CFA has emerged — the monovariant form of
CFA defined over the pure lambda calculus. We
call this analysis standard CFA (see Section 2 for
a definition). Most other forms of CFA can be
viewed as modification or extensions of standard
CFA. Moreover, a number of connections have
been established between standard CFA and a va-
riety of type inference problems [15, 5].

LA number of different terminologies have developed
for this concept: a polyvariant analyses is often called
“context-sensitive”, and sometimes “polymorphic”.

?A monovariant analysis is often called “context-
insensitive” | and sometimes “monomorphic”.

A Type System Equivalent to Flow Analysis”

Jens Palsberg! Patrick O'Keefe!

Abstract

Flow-based safety analysis of higher-order languages has been studied by Shivers, and
Palsberg and Schwartzbach. Open until now is the problem of finding a type system that
accepts exactly the same programs as safety analysis.

In this paper we prove that Amadio and Cardelli’s type system with subtyping and
recursive types accepts the same programs as a certain safety analysis. The proof involves
mappings from types to flow information and back. As a result, we obtain an inference
algorithm for the type system, thereby solving an open problem.

1 Introduction

1.1 Background

Many program analyses for higher-order languages are based on flow analysis, also known
as closure analysis. Examples include the binding-time analyses for Scheme in the partial
evaluators Schism [5] and Similix [3]. Such analyses have the advantage that they can be
applied to untyped languages. This is in contrast to more traditional abstract interpretations
which use types when defining the abstract domains.

Recently, it has become popular to define program analyses for typed languages by an-
notating the types with information about program behavior [10, 2]. This has lead to clear
specifications of a range of analyses, and often such an analysis can be efficiently computed by
a straightforward extension of a known type inference algorithm.

The precision of a type-based analysis depends on the expressiveness of the underlying type
system. Similarly, the precision of a flow-based analysis depends on the expressiveness of the
underlying flow analysis. In this paper we address an instance of the following fundamental
question:

Fundamental question. What type-based analysis computes the same informa-
tion as a given flow-based analysis?

*ACM Transactions on Programming Languages and Systems, 17(4):576-599, July 1995. Preliminary version
in Proc. POPL’95.

fComputer Science Department, Aarhus University, DK-8000 Aarhus C, Denmark. E-mail:
palsberg@daimi.aau.dk.

1151 Coolidge Avenue #211, Watertown, MA 02172, USA. E-mail: pmo@world.std.com.

We consider the case of flow-based safety analysis, that is, an analysis which collects type
information from for example constants and applications of primitive operations. Such an
analysis was first presented in 1991 by Shivers [18] who called it type recovery. Later, Palsberg
and Schwartzbach [12, 15] proved that on the basis of the collected information, one can define a
predicate which accepts only programs which cannot go wrong. They called this safety analysis.
They also proved that their safety analysis accepts more programs than simple type inference.

In this paper, we consider the following instance of the above question:

Which type system accepts the same programs as safety analysis?

The particular safety analysis we consider is defined in Section 3. It is based on a flow anal-
ysis which in the terminology of Shivers [17] is a OCFA, that is, a 0-level control-flow analysis.
Intuitively, it is a flow analysis which for each function merges all environment information.

Many program analyses are based on 0CFA-style analyses, see for example [16, 22, 7]. Our
thesis is that the type system that answers the specific question will in many cases also be the
answer to the fundamental question.

Flow-based analyses have the reputation of fitting poorly together with separate compilation
because they deal with program points. In contrast, traditional type systems such as that of
ML fit well together with separate compilation because one can compute a principal type for
each subterm. Our hope is that the type system that answers the specific question above will
lead to a better understanding of how to create program analyses that are both modular and
have the power of flow-based analyses.

1.2 Our result

We prove that a natural type system with subtyping and recursive types accepts the same
programs as safety analysis. The proof involves mappings from types to flow information and
back.

The type system has been studied by Amadio and Cardelli [1], and an O(n?) algorithm
for deciding the subtyping relation has been presented by Kozen, Palsberg, Schwartzbach,
[9]. Open until now is the question of type inference. As a corollary of our result we get a
type inference algorithm which works by first doing safety analysis and then mapping the flow
information to types.

The set of types can be presented by the following grammar:

t =ty —ty|Int|v|pvt|T|L

The type system contains the following components: the binary function type constructor —,
the constant type Int, the possibility for creating recursive types, and two more constant types
T, and L. Moreover, there is a subtype relation, written <. In contrast, safety analysis uses
an abstract domain containing sets of syntactic occurrences of abstractions and the constant
Int.

In slogan-form, our result reads:

Flow analysis + Safety checks =
Simple types + Recursive types + T + L + Subtyping

Each component of the type system captures a facet of flow analysis:

e The function type constructor — corresponds to a set of abstractions. Intuitively, a
function type is less concrete than a set of abstractions. Indeed, the other components of
the type system are essential to make it accept the same programs as the safety analysis.

e The constant Int is used for the same purpose in both systems. For simplicity, we do not
consider other base types, or product and sum constructors, etc. Such constructs can be
handled by techniques that are similar to the ones we will present.

e Recursive types are needed in order that safety analysis accepts all programs that do not
contain constants.

e The constant T corresponds to the largest possible set of flow information. This type
is needed for variables which can hold both a function and a base value. Intuitively, a
program with such a variable should be type incorrect. However, the flow-based analysis
may detect that this variable is only passed around but never actually used. For the type
system to have that capability, T is required.

e The constant L corresponds to the empty set of flow information. This type is needed for
variables which are used both as a function and as a base value. Intuitively, a program
that uses a variable in both these ways should be type incorrect. However, the flow-based
analysis may detect that this part of the program will never be executed. For the type
system to have that capability, L is required.

e Subtyping is needed to capture flow of information. Intuitively, if information flows from
A to B, then the type of A will be a subtype of the type of B.

Palsberg and Schwartzbach [15, 12] proved that the system without L accepts at most as many
programs as safety analysis. In this paper we present the type system which accepts exactly the
same programs as safety analysis. This may be seen as a natural culmination of the previous
results.

1.3 Examples

Our example language is a A-calculus, generated by the following grammar:
E :=x|\e.E| E\Ey|0]succ B

Programs that yield a run-time error include (0 z), succ(Ax.z), and (succ 0)(x), because 0
is not a function, succ cannot be applied to functions, and (succ 0) is not a function. These
programs are not typable and they are rejected by safety analysis. Some programs can be typed
in the type system without the use of L and T, for example

Ar.xT T po.a— o,

where F : t means “F has type t”. Some programs require the use of T, for example

Af.Qx.fO)(fonr = T,

where I = Ax.z. Note that T is the only type of (Af.(Az.fI)(f0))I because f has to be assigned
the type T — T. Some programs require the use of L, for example

Az.x(succ x) : L — ¢ for any t.

Both type inference and safety analysis can be phrased as solving a system of constraints,
derived from the program text. The definitions of such constraint systems will be given in
Sections 2.3 and 3. We will now present the constraint systems for the last of the above
examples. For notational convenience, we give each of the two occurrences of x a label so that
the A-term reads A\x.zq(succ x3). For brevity, let E = Az.zi(succ x). The constraint system
for type inference of E looks as follows:

r — [z (succ z2)] < [E£]
[z1] < [succ zo] — [z1(succ x2)]
r <[]
O |
Int < [succ z2]
[xo] < Int

Here, the symbols z, [z1], [x2], [succ xa], [z1(succ x9)], [E] are type variables. Intuitively,
the type variable x is associated with the bound variable x, and the other type variables of
the form [...] are associated with particular occurrences of subterms. Solving this constraint
system yields that the possible types for the A-term Azx.z(succ z) are T and L — ¢t for any type
t. Among these, | — 1 is a least type. In general, however, such a constraint system need not
have a least solution. This reflects that in Amadio and Cardelli’s type system, a typable term
need not have a least type. For example, the term Ax.x have both of the types 1L — L and
T — T, and these types are incomparable minimal types of Ax.x. Thus, before type checking
and separately compiling a module, we may want to explicitly annotate the module boundary
with the types we are interested in. It remains open, however, if modular program analyses
can based on Amadio and Cardelli’s type system.
The constraint system for safety analysis of £ looks as follows:

{E£} [£]
[1] {E}
z [24]
x [#2]

{£} C [a]
{£} C [a1]
{Int}
[#2]

[succ x5] C x
[x1(succ x2)]] C [x1(succ x9)]
[succ 5]

{Int}

NN 4 4 NN in N

This constraint system uses the same variables as the one above, but now the type variables
range over finite sets of occurrences of abstractions and the constant Int.

If such a constraint system is solvable, then it has a least solution. This particular constraint
system is indeed solvable, and the least solution is the mapping ¢, where

o([E]) = {E}
¢([succ xa]) = {Int}
p([zr(suce 2)]) = o(x) = ([l = p(fxs]) = 0

This example will be treated in much further detail in Section 5.1.

In the following two sections we present the type system and the safety analysis, and in
Section 4 we prove that they accept the same programs. In Section 5 we present two examples,
in Section 6 we discuss various extensions, and in Section 7 we outline directions for further
work. The reader is encouraged to refer to the examples while reading the other sections.

2 The type system

2.1 Types

We now define the notions of type, term, and term automaton. The idea is that a type is
represented by a term which in turn is represented by a term automaton.

Definition 1 Let ¥ = {—,Int, L, T} be the ranked alphabet where — is binary and Int, L, T
are nullary. A type is a regular tree over X. A path from the root of such a tree is a string over
{0, 1}, where 0 indicates “left subtree” and 1 indicates “right subtree”. O

Definition 2 We represent a type by a term, that is, a partial function
t:{0,1}* = %

with domain D(t) where ¢ maps each path from the root of the type to the symbol at the end
of the path. The set of all such terms is denoted T%. O

Following [9], we finitely represent a term by a so-called term automaton, as follows.

Definition 3 A term automaton over ¥ is a tuple
M = (Q, %, q, 6, {)
where:
e () is a finite set of states,
e ¢ € Q is the start state,

e 0:(Q x{0,1} — @ is a partial function called the transition function, and

5

o (:(Q) — X is a (total) labeling function,
such that for any state ¢ € @, if ¢(q) € {—} then
{i]d(q,1) is defined} = {0,1}
and if £(q) € {Int, L, T} then
{i]16(q, 1) is defined} = 0.
The partial function ¢ extends naturally to a partial function
0:Qx{0,1}* = Q

inductively as follows:

~

o(q.€) = q
,at) = 6(d6(q,«),i), fori e {0,1}.

6(q
The term represented by M is the term

tm = dal(8(qo,) .

O

Intuitively, trq(a) is determined by starting in the start state gy and scanning the input «,
following transitions of M as far as possible. If it is not possible to scan all of o because some
i-transition along the way does not exist, then ¢,(a) is undefined. If on the other hand M
scans the entire input v and ends up in state ¢, then () = £(q).

For example, consider the type

N
N
: iR

which can be understood as a representation of pv.(v — 1). We represent this type by the
term t where the domain of ¢ is the infinite regular set 0* + 0*1 and where #(0") =— and
t(0"1) = L for all n > 0. The corresponding term automaton is

0 L

Thus, infinite paths in a type yield cycles in the corresponding term automaton.
Types are ordered by the subtype relation <, as follows.

6

Definition 4 The parity of a € {0,1}* is the number mod 2 of 0’s in a. The parity of « is
denoted wa. A string « is said to be even if ra = 0 and odd if ma = 1. Let <y be the partial
order on X given by

1 <yg— and — <y T and
L <glInt and Int<, T

and let <y be its reverse

T<4— and — <; 1 and
T Sl Int and Int Sl 1

For s,t € Tk, define s < t if s(a) <,q t(a) for all « € D(s) ND(t). O

Kozen, Palsberg, and Schwartzbach [9] showed that the relation < is equivalent to the order
defined by Amadio and Cardelli [1]. The relation < is a partial order, and if s — ¢ < s — ¢/,
then ' <sand t <t [1,9].

2.2 Type rules

If Fis a A\-term, t is a type, and A is a type environment, i.e. a partial function assigning types
to variables, then the judgement

AFE:t

means that F has the type t in the environment A. Formally, this holds when the judgement
is derivable using the following six rules:

AFO0:Int (1)
Al FE :lInt

AFsucc E :Int (2)

AFx:t (provided A(z) =1t) (3)

Alx — s|FE:t
A M E:s—t

AFFE:s—t AFRF:s
AFEF ¢t

AFFE:s s<t
AFFE:t

The first five rules are the usual rules for simple types and the last rule is the rule of subsumption.

The type system has the subject reduction property, that is, if A+ E : t is derivable and E
(-reduces to E’, then A+ E’ : t is derivable. This is proved by straightforward induction on
the structure of the derivation of A+ FE : t.

2.3 Constraints

Given a A-term E, the type inference problem can be rephrased in terms of solving a system of
type constraints. Assume that F has been a-converted so that all bound variables are distinct.
Let Xg be the set of A-variables x occurring in E, and let Yz be a set of variables disjoint from
Xp consisting of one variable [F] for each occurrence of a subterm F of E. (The notation
[F] is ambiguous because there may be more than one occurrence of F' in E. However, it will
always be clear from context which occurrence is meant.) We generate the following system of
inequalities over Xz U Yg. Each inequality is of the form W < W’ where W is of the forms V/,
Int, or (V — V')p.r, and where W’ is of the form V| Int, or (V — V'), for V.V’ € XpUYE.

e for every occurrence in E of a subterm of the form 0, the inequality

Int < [0] ;

for every occurrence in E of a subterm of the form succ F', the two inequalities

for every occurrence in E of a subterm of the form Az.F', the inequality

(@ = [Frer < [Az.FT;

e for every occurrence in E of a subterm of the form G H, the inequality
[G] < ([H] = [GHDn

e for every occurrence in E of a A\-variable z, the inequality
x < [z] .

The subscripts are present to ease notation in Section 4.1; they have no semantic impact and
will be explicitly written only in Section 4.1.

Denote by T'(E) the system of constraints generated from E in this fashion. For every
Aterm FE, let Tmap(FE) be the set of total functions from Xp U Yg to Tx. The function
¥ € Tmap(F) is a solution of T(FE), if it is a solution of each constraint in T'(F). Specifically,
for V,V' V" € Xg UYE, and occurrences of subterms A\z.F and GH in E:

The constraint: has solution ¢ if:
Int <V Int < (V)
V <lInt (V) <Int

(V= V)xar <V (V) = (V') < (V)
V<V =V e | (V) <¢(V') — (V")
V<V v(V) < o(V7)

The solutions of T'(E) correspond to the possible type annotations of E in a sense made
precise by Theorem 5.

Let A be a type environment assigning a type to each A-variable occurring freely in E. If ¢
is a function assigning a type to each variable in Xz U Yy, we say that ¢ extends A if A and ¥
agree on the domain of A.

Theorem 5 The judgement A+ E : t is derivable if and only if there exists a solution v of
T(E) extending A such that ([E]) = t. In particular, if E is closed, then E is typable with
type t if and only if there exists a solution v of T(FE) such that ([E]) = t.

Proof. Similar to the proof of Theorem 2.1 in the journal version of [8], in outline as follows.
Given a solution of the constraint system, it is straightforward to construct a derivation of
A F E:t. Conversely, observe that if A = E:t is derivable, then there exists a derivation of
A F E:t such that each use of one of the ordinary rules is followed by exactly one use of the
subsumption rule. The approach in for example [21, 12] then gives a set of inequalities of the
desired form. O

3 The safety analysis

Following [15, 12], we will use a flow analysis as a basis for a safety analysis. Given a A-term E,
assume that E has been a-converted so that all bound variables are distinct. The set Abs(E)
is the set of occurrences of subterms of F of the form Az.F. The set CI(E) is the powerset of
Abs(E) U {Int}. Safety analysis of a A\-term E can be phrased as solving the following system
of constraints over X U Yg where type variables range over CI(£).

e For every occurrence in F of a subterm of the form 0, the constraint
{Int} < [0];
e for every occurrence in F of a subterm of the form succ F', the two constraints

{Int} C [succ F]
[F] € {int}

where the latter provides a safety check;

e for every occurrence in E of a subterm of the form Ax.F', the constraint

{A2.F})aer S [Mo.F];

e for every occurrence in E of a subterm of the form GH, the constraint
[G] S (Abs(E))cn ;

which provides a safety check;

e for every occurrence in E of a A-variable z, the constraint

x C [z] ;

e for every occurrence in E of a subterm of the form Ax.F', and for every occurrence in E
of a subterm of the form GH, the constraints

. F}r CG] = [H]Cx
({M.F})rer €G] = [F]C[GH].

10

Again, the subscripts are present to ease notation in Section 4.1; they have no semantic impact
and will be explicitly written only in Section 4.1.

The constraints in the fourth and sixth items reflect some of the significant differences
between the type system and the safety analysis. Intuitively, a constraint of the form [G] C
(Abs(E))gp ensures that G does not evaluate to an integer. This is by the type constraints
ensured by the constraint [G] < ([H] — [GH])gu because the type Int is not a subtype of
any function type. The constraints of the forms

({A2.F})xr C[G] = [H]Cx
({Az.F)aer CIG] = [F] C[GH]

creates a connection between the caller GH and the potential callee Ax.F. Intuitively, if G
evaluates to Az.F, then the argument H is bound to z, and the result of evaluating the body
F becomes the result of whole application GH.

Denote by C(FE) the system of constraints generated from £ in this fashion. For every
A-term FE| let Cmap(E) be the set of total functions from Xz U Yg to CI(E). The function
© € Cmap(F) is a solution of C(F), if it is a solution of each constraint in C'(E). Specifically,
for V.V’ V" € Xg U YE, and occurrences of subterms \z.F and GH in E:

The constraint: has solution ¢ if:
{Int} CV {Int} C (V)
v C {int} o(V) C {Int}
(- F s C V Ao F} C (V)
V' C (Abs(E))cn @(V) C Abs(E)
vev p(V) C (V)
A F})aer CV =V CV | {2 F} C (V)= (V') C (V")

Solutions are ordered by variable-wise set inclusion. See [15, 14] for a cubic time algorithm
that given £ computes the least solution of C(E) or decides that none exists. See [11] for a
proof technique that enables a proof of the following subject reduction property. If £ 3-reduces
to E’, and C(F) is solvable, then C'(E’) is also solvable.

4 Equivalence

4.1 Deductive Closures

We now introduce two auxiliary constraint systems called C(E) and T(E). They may be
thought of as “deductive closures” of C'(E) and T'(E). We then show that they are isomorphic
(Theorem 9). For examples of deductive closures, see Section 5.

Definition 6 For every A-term E, define C(E) to be the smallest set such that:
e The non-conditional constraints of C'(E) are members of C(E).

e If a constraint ¢ = K is in C(E) and c is in C(FE), then K is in C(FE).

11

e For s € XpUYy, if r Csand s Ct both are in C(E), then r C t is in C(E).

Notice that every constraint in C'(E) is of the form W C W', where W is of the forms V, {Int},
or ({A\z.F})xe.r, and where W’ is of the forms V| {Int}, or (Abs(E))gu, for V € Xg U Yg.
For every A-term F, define also the series C,(E), for n > 0, of subsets of C(FE).

e (Cy(E) is the set of non-conditional constraint in C'(E).

e For n > 0, Cy,42(FE) is the smallest set such that Cy,19(F) 2O Co,41(F) and such that if
a constraint ¢ = K is in C(F) and ¢ is in Cy,11(FE), then K is in Cy,1o(FE).

e For n >0, Cy,41(F) is the smallest set such that Cy,.1(E) D Cs,(E) and such that for
s € XpUYp, if r < s and s <t both are in Cy,(E), then r <t is in Cy,41(E).

Notice that C;(E£) C Cj(E) for 0 < i < j. Clearly, there exists N > 0 such that for all n > N,
C.(E)=C(E). 0

Definition 7 For every A-term E, define T(FE) to be the smallest set such that:
e T(E)CT(E).
o If (s = t)yor < (8 = t)gy isin T(E), then s’ < s and t <t are in T(E).
e For s € XpUYg, if r < sand s <t both are in T(E), then r < tis in T(E).

Notice that every constraint in T(F) is of the form W < W’ where W is of the forms V| Int,
or (V. — V')ae.r, and where W’ is of the form V| Int, or (V — V')qg, for V, K’ e XpUYpg.
For every A-term E, define also the series T,,(F), for n > 0, of subsets of T'(E).

o Ty(E) = T(E).

e For n > 0, Ty,,2(FE) is the smallest set such that Ty, o(E) 2D To,41(F) and such that if
(s = t)rer < (8 = t)gy isin To, i1 (F), then ' < s and t <t are in Ty, o (FE).

e For n > 0, Ty,41(F) is the smallest set such that Ts,.1(E) O Ts,(F) and such that for
s € XpUYg, if r <sand s <t both are in Ty, (F), then r < tis in Ty, 1(E).

Notice that T;(E) C T;(E) for 0 < i < j. Clearly, there exists N > 0 such that for all n > N,
T.(E) =T(E). O

We will now present the definition of two functions Z and 7, one from C(FE) to T(E) and
one from T'(F) to C(E). After the definition we prove that they are well-defined and each
others inverses.

Definition 8 The functions

12

are defined as follows.

IW W) = (Lz(W)
JW<W') = (Ls(W)

Lz (W)

<
C Ly (W)

where the functions £7 and L are:

W ifWeXpUYp
) Int if W = {Int}
LW =0 G [Fawr W = (e F)r
([H] — [GHDen it W = (Abs(E))c
w ifWeXpUYp
LA(W) = {Int} it W =Int

{\e.F}er W = (2= [F])rer
(Abs(E))gu it W = ([H] — [GH])cu

O

Theorem 9 The sets C(E) and T(E) are isomorphic, and T and J are bijections and each
others inverses.

Proof. If 7 and J are well-defined, then clearly they are inverses of each other and thus
bijections, so C(E) and T(F) are isomorphic.

First we show that Z is well-defined, that is, Z maps each element of C'(E) to an element
of T(E). Tt is sufficient to prove that for n > 0, Z maps each element of C,,(E) to an element
of T(E). We proceed by induction on n. In the base case, consider the constraints of Cy(E),
that is, the non-conditional constraints of C'(E) and observe that for those we have:

Co(E) To(E)
{Int} C [O] Int < [O]
{Int} C [succ F] Int < [succ F]
[F] C {Int} [F] < Int

(N2 F) wr C DeF] | (@ — [F])rer < [Ma.F]
[G] < (Abs(E))er | [G] < ([H] — [GH])cn
r C [7] r <[]

It follows that the lemma holds in the base case.
In the induction step, consider first Cy,12(E) for some n > 0. Suppose

{AeFh)r CIG] = [H]Cx

{Ae.Fh)ar CIG] = [F] C[GH]
are in C(E) and suppose ({Az.F})y,.r C [G] is in Cy,41(E). By the induction hypothesis,
(x = [F]rer < [G] is in T(E). Moreover, [G] < ([H] — [GH])cy is in T(E) and thus

also in T(E). Hence, (x — [F])xer < ([H] — [GH])cr is in T(E), so also [H] < x and
[F] < [GH] are in T(E).

13

Consider then Cy,,1(F) for some n > 0. Suppose r C s and s C t are in Cy,(F), and
suppose s € Xg U Yg. By the induction hypothesis, £7(r) < Lz(s) and Lz(s) < Lz(t) are in
T(F). From s € XpUYg we get L7(s) = s, so Lz(r) < Lz(t) is in T(E).

Then we show that J is well-defined, that is, J maps each element of T'(E) to an element
of C(E). It is sufficient to prove that for n > 0, J maps each element of T},(E) to an element of
C(FE). We proceed by induction on n. In the base case, consider the constraints of Ty(E), that
is, the constraints of T'(E). Using the same table as above we observe that J is well-defined
on all these constraints.

In the induction step, consider first 75, 2(E) for some n > 0. Suppose (x — [F])ier <
([H] — [GH])gu is in Ty,41(E). Tt is sufficient to prove that L7 ([H]) C L7(x) and L7([F]) C
L7([GH]) are in C(E), or equivalently, that [H] C x and [F] C [GH] are in C(E). In C(FE)

we have

{Az.F})ar C[G] = [H]Ca
({Ae.FY)r C[G] = [F]C[GH].

If ({Ae.F})rer C [G] is in C(E), then [H] C z and [F] C [GH] are in C(E). To see
that ({\v.F})xer C [G] is in C(E), notice that in T(E), (x — [F])xe.r occurs only in the
constraint (z — [F])x.r < [Me.F], and ([H] — [GH])eu occurs only in the constraint
IG] < ([H] — [GH])gr. Since (z — [F])rer < ([H] — [GH])gn is in Ty,41(E) we get
that also [Az.F] < [G] is in Ta,11(E). Hence, (z — [F])xe.r < [G] is in Ty,+1(E), so by the
induction hypothesis, ({\z.F})x..r C [G] is in C(E).

Consider then Ty,,1(E) for some n > 0. Suppose r < s and s < t are in Ty,(F), and
suppose s € Xg U Yg. By the induction hypothesis, £7(r) C L7(s) and L7(s) C L7(t) are in
C(E). From s € XgUYg we get L7(s) = s, s0 L7(r) C Ls(t) is in C(F). O

4.2 The equivalence proof

The following construction is the key to mapping flow information to types.

Definition 10 For every A-term E, ¢ € Cmap(E), and gy € CI(E), define the term automaton
A(E, ¢, qo) as follows:

A(E>S07QO) = (Cl(E)7 Za qo, 57 E)

where:

[] 5({)\$1.E1, ceey)\ZE’nEn}, O) = m?zl QO(ZL'Z)
forn >0

o S({\x1.Ey, ..., xn. En}, 1) = UL, o[Ei]
forn >0

1 ifg=10
) Int if ¢ = {Int}
¢ =9 if g C Abs(E)Aq#0

T otherwise

14

O
Lemma 11 Suppose ¢ € Cmap(E) and 51,5, € CI(E). If S1 C Sy, then tup,p.51) < tAEp,S)-

Proof. Define the orderings Cy, C; on CI(E) such that Cy equals C and C; equals O. The
desired conclusion follows immediately from the property that if o € D(t a(g,p,5,)) D (tA(E,4,55))

then & (S1, @) Cra) (Sa,). This property is proved by straightforward induction on the length
of a. O

We can now prove that the type system and the safety analysis accept the same programs.

Theorem 12 For every A-term E, the following seven conditions are equivalent:
1. C(FE) is solvable.
is solvable.

C(E

)
)

T(E) is solvable.
) is solvable.
)

E) does not contain constraints of the forms {Int} C Abs(E) or {Axz.F'} C {Int}.

%Wf*%@

E) does not contain constraints of the forms Int <V — V' or V.— V' < Int, where
V.V'e XpUYg.

7. The function
ANVA k| the constraint {k} CV isin C(E) }
is the least solution of C'(E).

Proof. Given a A-term E, notice that by the isomorphism of Theorem 9, (5) < (6). To
show the remaining equivalences, we proceed by proving the implications:

1) =02 =06 =04=06=0=(0

To prove (1) = (2), suppose C(FE) has solution ¢ € Cmap(FE). Let f be the function
AS.ta(k,p,s) and define ¢ € Tmap(E) by ¥ = fop. We will show that T'(E) has solution . We
consider each of the constraints in turn. The cases of the constraints generated from subterms
of the forms 0, succ E, x are immediate, by using Lemma 11. Consider then Ax.F and the
constraint © — [F] < [Az.F]. By the definition of f and Lemma 11 we get

U(x) = o([F]) = f{Az.F}) < o([Ae.F]) -

Consider then GH and the constraint [G] < [H] — [GH]. We know that ¢([G]) C Abs(E)
so there are two cases. Suppose first that ¢([G]) = 0. We then have ¢([G]) = L < ¢([H]) —
»([GH]). Consider then the case where p([G]) = {Az1.Ey, ..., Ax,.E,}, for n > 0. We then

15

have that ¢([H]) € ¢([z;]) and ¢([E:]) € ¢([GH]) for i € {1,...,n}. Thus, o([H]) C
Nizi o([2:]) and Uiz, o([E:]) € ([GH]). So, by Lemma 11,

(G = fle ([[G]]))

= f(ﬂ p([:])—>f('_U1<P([[Ei]]))
fe
o(

=1

(LH])) — f((IGH]))
[H]) — ¢([GH])

To prove (2) = (3), suppose T'(E) has solution ¢ € Tmap(E). It is sufficient to show that
T(E) has solution ¢, and this can be proved by straightforward induction on the construction
of T(E).

To prove (3) = (4), suppose T(E) has solution 1y € Tmap(E). Define 7 € Cmap(E) as
follows:

Lo
_ nt 1 €) = Int
PV) =1 Abs(E) if ((V))(e) = —

Abs(E) U {Int} if (¢(V))(e) = T

We will show that C(E) has solution . To see this, let W C Z be a constraint in C(E).
If it is of the forms {Int} C {Int} or {\z.F'} C Abs(FE), then it is solvable by all functions,
including . For the remaining cases, notice that by Theorem 9, L7 (W) < L7(Z) is in T(E)
and thus it has solution . This means that W C Z cannot be of the forms {Int} C Abs(E) or
{Ax.F} C {Int}. Suppose then that W C Z is of one of the remaining forms, that is, {Int} C V|
V V',V C{int}, {\x.F} CV, V C Abs(E), where V, V' € Xp U Yg. We will treat just the
first of them, the others are similar. For a constraint of the form {Int} C V it follows that
Int <V isin T(E). Since T(E) has solution ¢ we get that (¢¥(V))(e) € {Int, T}. Thus, (V)
is either {Int} or Abs(E) U {Int}, and hence {Int} C V has solution .

To prove (4) = (5), observe that constraints of the forms {Int} C Abs(E) or {\z.F'} C {Int}
are not solvable.

To prove (5) = (7), suppose C(E) does not contain constraints of the forms {Int} C Abs(F)
or {\z.F'} C {Int}. Define

¢ = AV.{ k| the constraint {k} CV isin C(F) }
We proceed in four steps, as follows.

e First we show that ¢’ is a solution of C'(E). We consider in turn each of the seven possible
forms of constraints in C(E). Constraints of the forms {Int} C {Int} and {\z.F} C
Abs(E) have any solution, including ¢’. We are thus left with constraints of the forms
{Int} SV, VCV V CH{nt}, {da.F'} CV, V C Abs(E), where V,V' € Xg U Ygr. We
will treat just the first three, since case four is similar to case one and since case five is
similar to case three. For a constraint of the form {Int} C V', notice that Int € ¢'(V), so
the constraint has solution ¢’. For a constraint of the form V' C V', suppose k € ¢'(V).

16

Then the constraint {k} C V is in C(E), and hence the constraint {k} C V' is also in
C(E). Tt follows that k € ¢'(V’). For a constraint of the form V' C {Int}, suppose it does
not have solution ¢’. Hence, there exist k € ¢'(V') such that k # Int. It follows that the
constraint {k} C V is in C(F), and hence the constraint {k} C {Int} is also in C(FE), a

contradiction.

Next we show that ¢’ is the least solution of C(E). To do this, let ¢ be any solution of
C(E) and suppose V € Xp U Yg. It is sufficient to prove that ¢’'(V) C (V). Suppose
k € ¢'(V). Then the constraint {k} C V is in C(F). Since ¢ is a solution of C(FE),
keoV).

Next we show that ¢’ is a solution of C'(F). Consider first the non-conditional constraints
of C(E). Since these constraints are also members of C'(E), they have solution ¢’. Con-
sider then {A\z.F'} C V = K in C(E) and suppose {A\z.F'} C V has solution ¢’. Then
by the definition of ¢, we have that {\z.F'} C V is in C(E), so also K is in C(E), and
hence K has solution ¢'.

Finally we show that ¢’ is the least solution of C'(E). To do this, let ¢ be any solution of
C(E). Then ¢ is also a solution of C(E), as can be proved by straightforward induction
on the construction of C(E). Since ¢’ is the least solution of C(E), ¢ is smaller than or
equal to .

To prove (7) = (1), simply notice that since C'(E) has a solution, it is solvable. 0

Corollary 13 The type system accepts the same programs as the safety analysis.

The equivalence proof is illustrated in Section 5.

4.3 Algorithms

As corollaries of Theorem 12 we get two cubic time algorithms. Given a A-term E, first observe
that both C(F) and T(E) can be computed in time O(n3) where n is the size of E. We can
then easily answer the following two questions:

e Question (safety): Is E accepted by safety analysis?
Algorithm: Check that C'(E£) does not contain constraint of the forms {Int} C Abs(E) or
{A\z.F} C{Int}.

e Question (type inference): Is E typable? If so, what is an annotation of it?
Algorithm: Use the safety checking algorithm. If E turns out to be typable, we get an
annotation by first calculating the two functions

¢ = AV.{ k| the constraint {k} C V is in C(F) }
and
f=)\S~tA(E7go,S)

17

and then forming the composition
b=foy .
This function ¢ is a solution of T'(E).

The question of type inference has been open until now. In contrast, it is well-known that flow
analysis in the style discussed in this paper can be computed in time O(n?).

It remains open to define a more direct O(n?®) time type inference algorithm, that is, one
that does not use the reduction to the safety checking problem.

5 Examples

We will illustrate the proof of equivalence with two examples. The A-terms that will be treated
are \x.z(succ x), which was also discussed in Section 1, and (A\z.zx)(Ay.y).

5.1 Az.z(succ z)

As in Section 1, we give each of the two occurrences of x a label so that the A-term reads
Az.xq(succ x9). For brevity, let E = Ax.z(succ xq). Notice that Abs(E) = {E}. As stated in
Section 1, C'(E) looks as follows:

{E£} [£]
[24] {E}
z [24]
x xo]

{E} C]
{E} C [l
{Int} [succ 4]

[2] {Int}

The deductive closure C(E) looks as follows:

[
[succ x5] C x
[

x1(succ x9)] C [zq(succ x9)]

NN 4 4 ininin N

{E} < [£]
[.] < {E}
S]

z C [z
{Int} C [succ 5]
[zo] < {Int}

r C {E}

x C {Int}

18

Intuitively, this deductive closure is obtained by observing that no constraint matches the
condition of any of the two conditional constraints, and by using the transitivity rule twice.
As also stated in Section 1, T'(E) looks as follows:

x — [x(succ xo)] < [E]
[z1] < [succ xzo] — [z1(succ x2)]
x < [aq]
r < [xo]
Int < [succ z2]
[xa] < Int

The deductive closure T(E) looks as follows:

x — [zi(succ)] < [E]
[x1] < [succ 23] — [z1(succ)]
r < [z
r < [xo]
Int < [succ z5]
[z2] < Int
x < [succ o] — [z1(succ x2)]
z < Int

This deductive closure is obtained by using the transitivity rule twice.

It can be verified by inspection that Theorem 9 is true for E, that is, C(E) and T(FE)
are isomorphic. Moreover, C(E) does not contain constraints of the forms {Int} C Abs(F)
or {\z.F} C {Int}, and T(FE) does not contain constraints of the forms Int < V — V' or
V — V' <Int, where V.V’ € Xgp U YE.

We are now ready to focus on the equivalence proof. We will go through that proof and
illustrate each construction in the case of F.

The equivalence proof may be summarized as follows. The proof demonstrates several
instances of how to transform a solution of one constraint system into a solution of an other
constraint system. It may be helpful to think of a step as transforming the output of the previous
step, as follows. The starting point is a solution ¢ of C'(E). This ¢ is then transformed into a
solution v of T'(E). This) is also a solution of T(FE), and it is then transformed into a solution
® of C(FE). Having such a solution implies that certain constraints are not in C'(E) (condition
5), and also that certain constraints are not in T'(E) (condition 6). The function @ need not be
a solution of C(E), but we can construct the least solution of C'(E) from C'(E). In one picture,
the transformations go as follows:

o =Y =P

We will now follow a particular ¢ as it tours this diagram.

19

As starting point, we choose the least solution ¢ of C(E) which was also stated in Section 1.
It looks as follows:

e([E]) ={E}
©([succ z5]) = {Int}
o([z1(succ 22)]) = (@) = ([z1]) = p([z2]) = 0
To get the solution 1 of T'(E), we need to construct the function AS.t (g 4, s) and compose

it with . The automaton A(E, ¢, S) can be illustrated as follows:
.01 L T Int,

(B}) (E.int} {Int}

Notice that we have not pointed to the start state; it is a parameter of the specification.
The illustration gives both the name and the label of each state. There are just two transitions,
both from the state {E} to the state (). Observe that

L — 1 ifS={F}
tAB,p.5) =

Int if S = {Int}
1 if S=10
We can then obtain the mapping 1)
W(E]) =L — 1
W ([succ z2]) = Int
U([z1(suce 25)]) = (x) = P([21]) = ([z2]) = L
It can be verified by inspection that v is a solution of T'(E) and T(E).
To get the solution B of C(E), we need to compute (¢(V))(e) for every V € Xp U Yy. For
example,
W(ED)(e) = (L— L)(e) =—
Plugging this into the definition of @ yields:
e([E]) = {E}
?([succ z3]) = {Int}
P([z1(suce 22)]) = B(x) = D([21]) = P([z2]) = 0

So, ¢ = P, and it can be verified by inspection that @ is a solution of C'(FE).
Finally, to construct ¢’ where

¢ = AV.{ k| the constraint {k} CV isin C(F) }

notice that the constraints in C'(E) that have the form {k} C V where V € Xz U Yy are:
{E} < [£]
{Int} C [succ 5]

So, ¢ = = ¢/, and hence ¢’ is the least solution of C'(E).
It is only in special cases that ¢ = . Next we consider a slightly more complicated example
where this does not occur.

20

5.2 (Az.zz)(A\y.y)

We give each of the two occurrences of x a label so that the A-term reads (Ax.zqiz2)(Ay.y).
For brevity, let £ = (Az.x122)(Ay.y). Notice that Abs(E) = {Az.z122, \y.y}. The constraint
system C'(E) looks as follows:

\T.T1 T {Az.x129} C [Az.21 25
Ay.y {My.y} € [yl

E [Ax.x125] C Abs(E)
T1T2 [[1'1]] Q AbS(E)

Al T Q [[Zlfl]]

) T Q [[ZL’Q]]

y y C [yl

rizo and | {Az.xize} C] = [2] Cx
L. X1 o {)\I‘.I‘1I2} - [[Zlfl]] = [[.Tl.l’g]] - [[l’l.ilfg]]
rize and | {Ay.y} C[z1] = [zo] Cy

AY-y Myt Cla] = [y] C [z12]

E and {Ar.z129} C [Armzs] = [Mwy] Ca
AT.T1 T {Az.x120} C [Az.m125] = [1122] C [E]
E and {Ayy} C[Aexizs] = [Ayy]Cy

Ay.y {Ay.y} C [Aexixs] = [y] C [F]

To the left of the constraints, we have indicated from where they arise.
The constraint system T'(F) looks as follows:

From \z.z120 = — [r122] < [Az.2129]
From \y.y y — [y < Myl

From E [Av.z120] < [Ayy] — [£]
From T1T9 [[1'1]] S [[ZL’Q]] — [[$1£L’2]]
From z; r <[]

From z, x < [xo]

From y y <[yl

The deductive closures C(E) and T(E) look as follows.

21

C(E) T(E)

{)\ZIJ.ZZ,’lLUQ} Q [[)\%.%12[‘2]] r — [[.Tl.l’g]] S [[)\$.$1I2]]
{\x.z129} C Abs(FE) r — [r120] < [My.y] — [E]
[Az.x125] C Abs(E) [Az.x125] < [Ay.y] — [E]

Ay} € [yl y — [yl < Myl
Myt Cao y— [yl <=z
{Ayy} C 1] y — [y] <[]
{A\y.y} C Abs(E) y — [y] < [22] — [2172]
{My.y} C [zl y — [y] <[]
Myt Cy y— [yl <y
Ayt €yl y — [yl < [y]
{yy} C [, y — [yl < [z12]
Ay} CE] y — [yl < [E]
[Myy] C o [M\yy] <=

[M\y.y] € [4] [y-y] <[]
[Ay.y] € Abs(E) [Nyl < [22] — [z122]
[My-y] € [x2] [My.y] < [x2]
[Myy] Sy [\yy] <y

[M\y-y] € [y] [My.y] <[]
[My.y] € [2125] [y-yll < [2122]
[A\y.y] € [E] [My.y] < [E]

z C 7] r <[]

x C Abs(E) x < [z2] — [z122]
x C] z <[]

rCy r<y

z C [y] z < [y]

x C [z122] x < [zy22]

z C [E] z < [E]

[z1] € Abs(E) [z1] < [22] — [172]
[xo] Cy [z2] <y

[z2] € [y] [z2] < [y]

[xso] C [z122] [xo] < [z122]

[z2] C [£] [z2] < [E]

y C [yl y <[yl

y C [xq22] y < [z125]

y C [E] y < [E]

[y] € [2122] [y] < [2122]

[y] € [E] [yl < [E]

[z122] C [E] [z172] < [E]

It can be verified by inspection that Theorem 9 is true for E, that is, C(E) and T(E)
are isomorphic. Moreover, C(E) does not contain constraints of the forms {Int} C Abs(F)
or {\z.F} C {Int}, and T(FE) does not contain constraints of the forms Int < V — V' or
V — V' <lInt, where V,V' € Xp U YE.

22

As for the previous example, we will now go through the equivalence proof and illustrate
each construction in the case of F.
As starting point, we choose the least solution ¢ of C'(FE). It looks as follows:

| {Araxs} iV = [Avazas]
p(V) = { {\y.y} otherwise

To get the solution ¢ of T'(E), we need to construct the function AS.t 4k, g) and compose it
with ¢. The automaton A(E, ¢, S) can be illustrated as follows:

0,1
— 0,1 v 0,1 —
{Az} { vy} {Az, Ay}
1 Inty
0 {Int}
T. —l—. T.
{Int, Az} {Int, \y} {Int, Az, \y}

As before, notice that we have not pointed to the start state; it is a parameter of the
specification. Notice also that we have abbreviated the names of some of the states. Observe
that ¢t qpe,5) = pa.a — o, if S is a non-empty subset of {A\z.z12,, Ay.y}. We can then obtain
the mapping . It is a constant function:

(V) = po.a — «

It can be verified by inspection that v is a solution of T'(E) and T(E).

As an aside, note that although (V) is an infinite tree for all V', there are other solutions
of T(E) and T(E) where all the involved types are finite. For example, consider the solution
1)’ where

= ([y]) = ¢'([z122])

23

Plugging this into the definition of % yields that ¥ is a constant function:
@(V) = Abs(E)

Notice that ¢ # @. It can be verified by inspection that % is a solution of C(E).
Finally, to construct ¢’ where

¢ = AV.{ k| the constraint {k} CV isin C(F) }
notice that the constraints in C'(E) that have the form {k} C V where V € Xz U Yy are:

{A\r.z129} C [Ar.m129]
{My.y} C [Myy]
{\yytCua

Pyt € [21]

Py} C [zo]

Myt Cy

Ayt €yl

M.y} € [z129]
Pyt C[E]

So, ¢ = ¢', and hence ¢’ is the least solution of C(F).

6 Extensions

Various extensions to the type system and flow analysis have equivalent typability and safety

problems. We now show an example of such an extension: the conditional construct if0. For

simplicity, we consider if0 rather than a more usual if, to avoid introducing booleans. Thus,

the set of types Ts and the abstract domain CI(E) for the safety analysis remain the same.
The syntax for the extension of our example language is:

E .= .. |If0 E1E2E3

The intension is that if E; evaluates to 0, then FEj is evaluated; if E; evaluates to a non-zero
integer, then FEj3 is evaluated; and if F; evaluates to a non-integer, then an error occurs. We
need one new type rule:

AFE:Int AFFEy:t AR Es:t 7
Al_lfo ElEgEgit

As before, we can rephrase the type inference problem in terms of solving a system of type
constraints. We need three new type constraints:

24

e for every occurrence of a subterm of the form if0 £, EsE3, we generate the three inequal-
ities

[Ey] < Int
[E;] < [if0 EyEsEs]
[Bs] < [ifo E\EyEs] .

It is straightforward to check that Theorem 5 remains true, that is, the solutions of the con-
straint system correspond to the possible type annotations.
We need three new safety constraints:

e for every occurrence of a subterm of the form if0 £y s F3, we generate the three constraints

[E,] < {Int}
[E;] < [if0 EyEsEs]
[Bs] C [ifo E\EyEy] .

It is straightforward to check that Theorem 9 and Theorem 12 remain true, that is, C'(E) are
T(E) are isomorphic, and the type system and the safety analysis accept the same programs.
Moreover, the safety analysis analysis and type inference algorithms remain the same.

The addition of polymorphic let, products, sums and atomic subtypes with coercions should
also be straightforward. Dynamic or soft typing systems are also candidates for formulating
equivalent type and flow analysis systems.

A different challenge is to formulate a type system equivalent to the safety analysis for
object-oriented languages presented in [14]. Yet another challenge is to find two equivalent
binding-time analyses, one based on type systems and one based on flow analysis. Results in
this direction were presented in [13].

7 Conclusion

We have described a type system and a flow analysis and proved that the corresponding typabil-
ity and safety problems are equivalent. We also obtained a cubic time algorithm for typability.
This problem has been open since the type system was first presented by Amadio and Cardelli
in 1991 [1].

For a given program, the system of type constraints and the system of flow constraints are
radically different. For the particular language studied in this paper, however, we demonstrated
that the deductive closures of those systems are isomorphic. This property does not seem to
be either a necessary or a sufficient condition for the equivalence result, but in itself it suggests
a close relationship between the systems.

Tang and Jouvelot [19] has demonstrated that type analysis and flow analysis can be com-
bined in a single framework. The type system part of their approach is that of simple types.

25

A challenge is to extend their framework such that the type system part is that of this paper.
Wand and Steckler [22] presented a framework for proving correctness of flow-based compiler
optimizations. A challenge is to investigate if their framework can be simplified when the flow
analysis is replaced by for example the framework of Tang and Jouvelot [19] or possibly an
extended one.

An example of an area in which a relationship between a typing problem and a flow problem
may be helpful is debugging and explaining type inferencing results for end users. A flow
analysis point of view might provide a concrete illustration of why the type inferencer produced
a particular type assignment or typing error [20].

The two systems considered in this paper use inequalities, that is, subtyping in the type
system and set inclusion in the flow analysis. One might consider changing the inequalities
to equalities and look for an equivalence result similar to the one on this paper. On the type
system side, this would result in a simply-typed lambda-calculus with a type inference algorithm
based on unification. On the flow analysis side, it would result in an analysis resembling the
one of Bondorf and Jgrgensen [4]. Current work addresses obtaining an equivalence between
two such systems [6].

In conclusion, we find that a type system and a flow analysis can in some cases be equivalent
ways of looking at the same problem.

Acknowledgements

We thank Mitchell Wand for encouragement and helpful discussions. We also thank Torben
Amtoft and the anonymous referees for helpful comments on a draft of the paper. The results
of this paper were obtained while the first author was at Northeastern University, Boston.

References

[1] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575-631, 1993. Also in Proc. POPL’91.

[2] Torben Amtoft. Minimal thunkification. In Proc. WSA’93, pages 218-229, 1993.

[3] Anders Bondorf. Automatic autoprojection of higher order recursive equations. Science
of Computer Programming, 17(1-3):3-34, December 1991.

[4] Anders Bondorf and Jesper Jorgensen. Efficient analyses for realistic off-line partial eval-
uation. Journal of Functional Programming, 3(3):315-346, 1993.

[5] Charles Consel. A tour of Schism: A partial evaluation system for higher-order applicative
languages. In Proc. PEPM’93, Second ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, pages 145154, 1993.

[6] Nevin Heintze. Personal communication. 1994.

26

[7]

8]

[12]

[13]

Nevin Heintze. Set-based analysis of ML programs. In Proc. ACM Conference on LISP
and Functional Programming, pages 306-317, 1994.

Dexter Kozen, Jens Palsberg, and Michael 1. Schwartzbach. Efficient inference of partial
types. Journal of Computer and System Sciences, 49(2):306-324, 1994. Also in Proc.
FOCS’92, 33rd IEEE Symposium on Foundations of Computer Science, pages 363-371,
Pittsburgh, Pennsylvania, October 1992.

Dexter Kozen, Jens Palsberg, and Michael 1. Schwartzbach. Efficient recursive subtyping.
Mathematical Structures in Computer Science, 1995. To appear. Also in Proc. POPL’93,
Twentieth Annual SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 419-428, Charleston, South Carolina, January 1993.

Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new perspective based on

type inference. In Proc. Conference on Functional Programming Languages and Computer
Architecture, pages 260272, 1989.

Jens Palsberg. Closure analysis in constraint form. ACM Transactions on Programming
Languages and Systems, 1995. To appear. Also in Proc. CAAP’94, Colloquium on Trees
in Algebra and Programming, Springer-Verlag (LNCS 787), pages 276-290, Edinburgh,
Scotland, April 1994.

Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference for partial
types. Information Processing Letters, 43:175-180, 1992.

Jens Palsberg and Michael 1. Schwartzbach. Binding-time analysis: Abstract interpreta-
tion versus type inference. In Proc. ICCL’94, Fifth IEEE International Conference on
Computer Languages, pages 289-298, Toulouse, France, May 1994.

Jens Palsberg and Michael 1. Schwartzbach. Object-Oriented Type Systems. John Wiley
& Sons, 1994.

Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference. Infor-
mation and Computation, 118(1):128-141, 1995.

Peter Sestoft. Analysis and Efficient Implementation of Functional Programs. PhD thesis,
DIKU, University of Copenhagen, October 1991.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU, May
1991. CMU-CS-91-145.

Olin Shivers. Data-flow analysis and type recovery in Scheme. In Peter Lee, editor, Topics
in Advanced Language Implementation, pages 47-87. MIT Press, 1991.

Yan Mei Tang and Pierre Jouvelot. Separate abstract interpretation for control-flow analy-
sis. In Proc. TACS 9, Theoretical Aspects of Computing Sofware, pages 224-243. Springer-
Verlag (LNCS 789), 1994.

27

[20] Mitchell Wand. Finding the source of type errors. In Thirteenth Symposium on Principles
of Programming Languages, pages 3843, 1986.

[21] Mitchell Wand. Type inference for record concatenation and multiple inheritance. Infor-
mation and Computation, 93(1):1-15, 1991.

[22] Mitchell Wand and Paul Steckler. Selective and lightweight closure conversion. In Proc.
POPL’9/, 21st Annual Symposium on Principles of Programming Languages, pages 434—
445, 1994.

28

Assertion Checking over Combined Abstraction
of Linear Arithmetic and Uninterpreted
Functions

Sumit Gulwani' and Ashish Tiwari2

! Microsoft Research, Redmond, WA 98052, sumitg@microsoft.com
2 SRI International, Menlo Park, CA 94025, tiwari@csl.sri.com

Abstract. This paper presents results on the problem of checking equal-
ity assertions in programs whose expressions have been abstracted using
combination of linear arithmetic and uninterpreted functions, and whose
conditionals are treated as non-deterministic.

We first show that the problem of assertion checking for this combined
abstraction is coNP-hard, even for loop-free programs. This result is quite
surprising since assertion checking for the individual abstractions of lin-
ear arithmetic and uninterpreted functions can be performed efficiently
in polynomial time.

Next, we give an assertion checking algorithm for this combined abstrac-
tion, thereby proving decidability of this problem despite the underlying
lattice having infinite height. Our algorithm is based on an important
connection between unification theory and program analysis. Specifically,
we show that weakest preconditions can be strengthened by replacing
equalities by their unifiers, without losing any precision, during back-
ward analysis of programs.

1 Introduction

We use the term equality assertion or simply assertion to refer to an equal-
ity between two program expressions. By assertion checking, we mean checking
whether a given assertion is an invariant at a given program point.

Reasoning about assertions in programs is an undecidable problem. Hence,
assertion checking is typically performed over some (sound) abstraction of the
program. This may give rise to false positives, i.e., some assertions that are
true in the original program may not be true in the abstract version. There is
an efficiency-precision trade-off in the choice of the abstraction. A more precise
abstraction leads to fewer false positives but is also harder to reason about.

Linear arithmetic and uninterpreted functions® are two most commonly used
expression languages for creating program abstractions. There are several papers

3 An uninterpreted function F of arity n satisfies only one axiom: If e; = e} for
1 <4< n,then Flei,..,en) = F(el,..,er). Uninterpreted functions are commonly
used to abstract programming language operators that are otherwise hard to reason
about. They are also used to abstract procedure calls.

l

a,:=0;a,:=0;
b, :=1; b, :=F(1);
¢, :=3; ¢, :=F(4);

l

True | 417 a+1; ay = a,+2;

a,;< 100 >=—— p :=F(b,); b, := F(b,);

¢, :=F(1+c)); ¢, :=F(c,+1);

False

Assert(a,=2a,);
Assert(b, =F(b)));
Assert(c,=F(c,;+1));

Fig. 1. This program illustrates the difference between precision of performing analysis
over the abstractions of linear arithmetic (which can verify only the first assertion),
uninterpreted functions (which can verify only the second assertion), and their combina-
tion (which can verify all assertions). F' denotes some function without any side-effects
and can be modeled as an uninterpreted function for purpose of proving the assertions.

that describe how to do assertion checking for each of these abstractions. (Sec-
tion 6 on related work describes some of this work.) The combined expression
language of linear arithmetic and uninterpreted functions yields a more precise
abstraction than the ones obtained from either of these two expression languages.
For example, consider the program shown in Figure 1. Note that all assertions at
the end of the program are true. If this program is analyzed over the abstraction
of linear arithmetic (using, for example, the abstract interpreter described in [14]
or [6]), then only the first assertion can be validated. This is because discovering
the relationship between b; and bs, and between ¢y and co, involves reasoning
about uninterpreted functions. Similarly, if this program is analyzed over the ab-
straction of uninterpreted functions (using, for example, the abstract interpreter
described in [10]), then only the second assertion can be validated. However, an
analysis over the combined abstraction of linear arithmetic and uninterpreted
functions can verify all assertions.

Even though there has been a lot of work for reasoning about the abstrac-
tions of linear arithmetic and that of uninterpreted functions, the problem of
assertion checking over the combined abstraction of linear arithmetic and unin-
terpreted functions has not been considered before. In this paper, we consider
the problem of checking equality assertions in programs whose expressions have
been abstracted using linear arithmetic and uninterpreted functions. We also
abstract all program conditionals as non-deterministic because otherwise the
problem is easily shown to be undecidable even for the individual abstractions
of linear arithmetic [17] and uninterpreted functions [16]. (An analysis that per-
forms an imprecise reasoning over the combined abstraction of linear arithmetic

and uninterpreted functions but takes conditional guards into account would
also be useful in practice, and can be used, for example, for array bounds check-
ing. The related work section mentions our recent work on combining abstract
interpreters, which can be used to construct such an analysis.) The abstracted
program model is formally described in Section 2.

In Section 3, we show that the problem of assertion checking in the com-
bined abstraction of linear arithmetic and uninterpreted functions is coNP-hard.
This is true even for loop-free programs, in which case it is coNP-complete. This
result is quite surprising because assertion checking in the individual abstrac-
tions of linear arithmetic and uninterpreted functions entails polynomial-time
algorithms (even for programs with loops). Karr’s algorithm [14,17] can be used
to perform assertion checking when program expressions have been abstracted
using linear arithmetic operators. Gulwani and Necula’s algorithm [9,10] per-
forms assertion checking in programs whose expressions have been abstracted
using uninterpreted functions. Both these algorithms run in polynomial time.
However, our coNP-hardness result shows that there is no way to combine these
algorithms to do assertion checking for the combined abstraction in polynomial
time (unless P=coNP). A similar combination problem has been studied ex-
tensively in the context of decision procedures. Nelson and Oppen have given a
famous combination result for combining decision procedures for disjoint, convex
and quantifier-free theories with only polynomial-time overhead [20]. The the-
ories of linear arithmetic and uninterpreted functions are disjoint, convex, and
quantifier-free and have polynomial time decision procedures. Hence, the Nelson-
Oppen combination methodology can be used to construct a polynomial-time
decision procedure for the combination of these theories. In this paper, we show
that, unfortunately, there is no polynomial-time combination scheme for asser-
tion checking in the combined abstraction of linear arithmetic and uninterpreted
functions (unless P=coNP).

In Section 4, we give an assertion checking algorithm for the combined ab-
straction (of linear arithmetic and uninterpreted functions) thereby showing that
this problem is decidable. This result is again surprising because the underly-
ing abstract lattice has infinite height, which implies that a standard abstract
interpretation [6] based algorithm cannot terminate in a finite number of steps.
However, our algorithm leverages the fact that our goal is not to discover all
equality invariants, but to check whether a given assertion is an invariant. A
central component of our algorithm is a general result that allows replacement
of equalities generated in weakest precondition computation by their unifiers
(Lemma 2). For theories that admit a singleton or finite complete set of unifiers,
respectively called unitary and finitary theories, this replacement can be effec-
tively done. The significance of this connection between assertion checking and
unification is discussed further in Section 5. We make the paper self-contained by
presenting (in Section 4.1) a novel unification algorithm for the combined theory
of linear arithmetic and uninterpreted functions, which is used in our assertion
checking algorithm.

v v v \4| W2
: = True False \/
v U Wi Ve v

(a) Assignment Node (b) Non-deterministic (c) Non-deterministic (d) Join Node
Assignment Node Conditional Node

Fig. 2. Flowchart nodes in our abstracted program model.

2 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 2. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as expression language of the program. The expres-
sion languages for the abstractions of linear arithmetic, uninterpreted functions
and their combination are as follows:

— Linear arithmetic:
ex=y | ¢ | estes | cxe

Here y denotes some variable while ¢ denotes some arithmetic constant.
— Uninterpreted functions:

ex=y | F"(e1,..,en)

Here F™ denotes some uninterpreted function of arity n. We allow n to be
zero (for representing nullary uninterpreted functions).
— Combination of linear arithmetic and uninterpreted functions:

ex=y | ¢ | estes | exe | Fe1,..,en)

A non-deterministic assignment x :=7 denotes that the variable z can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

Non-deterministic conditionals, represented by #*, denote that the control
can flow to either branch irrespective of the program state before the condi-
tional. They are used as a safe abstraction of guarded conditionals, which our
abstraction cannot handle precisely. We abstract away the guards in condition-
als because otherwise the problem of assertion checking (when the expression
language of the program involves combination of linear arithmetic and uninter-
preted functions) can be easily shown undecidable from either of the following
two results. Miiller-Olm and Seidl have shown that the problem of assertion

checking in programs that use guarded conditionals and linear arithmetic ex-
pressions is undecidable [17]. Miiller-Olm, Riithing, and Seidl have also proved
a similar undecidability result when the expression language involves uninter-
preted functions [16].

A join node has two incoming edges. Note that a join node with more than
two incoming edges can be reduced to multiple join nodes each with two incoming
edges.

3 coNP-hardness of Assertion Checking

In this section, we show that the problem of assertion checking when the ex-
pression language of the program involves combination of linear arithmetic and
uninterpreted functions (and the flowchart representation of the program con-
sists of nodes shown in Figure 2) is coNP-hard.

The key observation in proving this result is that a disjunctive assertion
of the form ¢ = aV g = b can be encoded as the non-disjunctive assertion
F(a)+ F(b) = F(g) + F(a+ b — g). The procedure Check(g,m) generalizes this
encoding for the disjunctive assertion g =0V ..V g =m — 1 (which has m — 1
disjuncts), as stated in Lemma 1. Once such a disjunction can be encoded, we
can reduce the unsatisfiability problem to the problem of assertion checking as
follows.

Consider the program shown in Figure 3. We will show that the assert state-
ment in the program is true iff the input boolean formula) is unsatisfiable. Note
that, for a fized v, the procedures IsUnSatisfiable and Check can be reduced
to one procedure whose flowchart representation consists of only the nodes shown
in Figure 2. (These procedures use procedure calls and loops with guarded con-
ditionals only for expository purposes.) This can be done by unrolling the loops
and inlining procedure Check inside procedure IsUnSatisfiable. The size of
the resulting procedure is polynomial in the size of the input boolean formula
.

The procedure IsUnSatisfiable contains k non-deterministic conditionals,
which together choose a truth value assignment for the k& boolean variables in
the input boolean formula 1, and accordingly set its clauses to true (1) or false
(0). The boolean formula v is unsatisfiable iff at least one of its clauses remains
unsatisfied in every truth value assignment to its variables, or equivalently, g €
{0,..,m—1} in all executions of the procedure IsUnSatisfiable. The procedure
Check(g, m) performs the desired check as stated in the following lemma.

Lemma 1. The assert statement in Check(g,m) is true iff g € {0,..,m — 1}.
Proof. The following properties hold for all 0 < i < m — 1.

E1. If 0 <j <i, then h@j = h@o.

E2. If g € {0,..,m — 1}, then h; = h; 4.

E3. If g € {0,..,m — 1}, then h; cannot be expressed as a linear combination of
hios .- higm—1-

IsUnSatisfiable (1))

% Suppose formula v has k variables zi,..,Tg

YA and m clauses numbered 1 to m.

% Let variable z; occur in positive form in clauses # A;[0],.., A;[ci]
% and in negative form in clauses # B;[0],.., B;[d;].

for ¢+ = 1 to m do
e; :=0; % e; represents whether clause 7 is satisfiable or not.
for ¢ = 1 to k do
if (*) then % set xz; to true
for j = 0 to ¢; do
el =1
else % set x; to false
for j = 0 to d; do

eg.1q = 1;
g:=e1+ex+ .z.[i €m; % Count how many clauses have been satisfied.
Check(g,m);
Check(g, m)
% This procedure checks whether g € {0,..,m —1}.
ho := F(g);
for j =0 to m—1 do
hoj = F(j);

for e =1 tom—1 do
Si—1:=hi—1,0 + hi—1,i;
hi == F(hi—1) + F(si—1 — hi—1);
for j =0 to m—1 do
hij = F(hi—1,;) + F(si—=1 — hi—1,5);
Assert (hm—1 = hm—1,0);

Fig. 3. A program that illustrates the coNP-hardness of assertion checking when the
expression language uses combination of linear arithmetic and uninterpreted functions.

The above properties can be proved easily by induction on i. If g € {0,..,m—1},
then the assert statement is true because:

hm—1 = hm—1,4 (follows from property E2)
= hym—1,0 (follows from property E1)
If g £{0,..,m — 1}, then it follows from property E3 that the assert statement
is falsified. W

Lemma 1 implies that the assert statement in procedure IsUnSatisfiable(v)
is true iff the input boolean formula ¢ is unsatisfiable. Hence, the following the-
orem holds.

Theorem 1. Assertion checking for programs with non-deterministic condition-
als and whose expression language is a combination of linear arithmetic and
uninterpreted functions is coNP-hard.

Since IsUnSatisfiable can be represented as a loop-free program, Theo-
rem 1 holds even for loop-free programs.

4 Algorithm for Assertion Checking

In this section, we give an assertion checking algorithm for our abstracted pro-
gram model when the expression language of the program involves combination
of linear arithmetic and uninterpreted functions. We prove that this algorithm
terminates, which establishes the decidability of assertion checking for the com-
bined abstraction. It remains an open problem to establish an upper complexity
bound for this algorithm.

For purpose of describing and proving correctness of our algorithm, we first
establish some results on unification in the combined theory of linear arithmetic
and uninterpreted functions in the next sub-section.

4.1 Unification in the Combined Theory

A substitution o is a mapping that maps variables to expressions such that
for every variable x, the expression o(x) contains variables only from the set
{y | o(y) = y}. A substitution mapping o can be (homomorphically) lifted to
expressions such that for every expression e, we define o(e) to be the expres-
sion obtained from e by replacing every variable x by its mapping o(z). Often,
we denote the application of a substitution ¢ to an expression e using postfix
notation as ec. We sometimes treat a substitution mapping o as the following
formula, which is a conjunction of non-trivial equalities between variables and
their mappings:

A substitution o is a unifier for an equality e; = eg (in theory T) if ejo = ez
(in theory T'). A substitution o is a unifier for a set of equalities E if o is a unifier
for each equality in E. A substitution oy is more-general than a substitution oo
if there exists a substitution o such that xos = (x07)o for all variables z. + A set
C of unifiers for F is complete when for any unifier o for F, there exists a unifier
o’ € C that is more-general than . Theories can be classified based on whether
all equalities in that theory have a complete set of unifiers whose cardinality is
at most 1 (unitary theory), or finite (finitary theory), or whether some equality
does not have any finite complete set of unifiers (infinitary theory).

In the remaining part of this section, we show that the combined theory of
linear arithmetic and uninterpreted functions is finitary. For this purpose, we
describe an algorithm that computes a complete set of unifiers for an equality
in the combined theory. We describe this algorithm using a set of inference rules
(listed in table 1) in the style of [4].

Table 1 describes some inference rules that operate on states. A state (E, o) is
a pair consisting of a set F of equalities (between expressions involving combina-
tion of linear arithmetic and uninterpreted functions) and a substitution o. The
Unif0 rule removes trivial equalities from E. The Unifl rule can be applied after

4 The more-general relation is reflexive, i.e., a substitution is more-general than itself.

(BEU{e=c}0)
(E,0)

Unifo:

(Eu{z=¢e},0)

(Eo',o0")
if does not occur in e. Here 0’/ = {x — e} and Eo’ denotes {e10’ = e20’ | (e1 =
62) S E}

Unifl:

(EU{F(e1,..,en) = F(el,..,en) + €}, 0)
(Eu{er=¢€l,..,en =¢€,,e=0},0)

Unif2:

Table 1. Inference rules for unification in the combination theory.

selecting some equality from F that can be rewritten in the form x = e such that
variable z does not occur in expression e. The Unif2 rule is applied after selecting
some equality that can be rewritten in the form F(ey,..,e,) = F(e},..,¢el,) + e
for some uninterpreted function F' and expressions e;, €} and e.

The notation {z1 > eq,.., 2 — e} denotes the substitution mapping that
maps variable z; to e; (for 1 <14 < k) and all other variables to themselves. We
use the notation (E,0) b (E’,0’) to denote that the state (E’,o’) is obtained
from (E, o) by applying some inference rule. Similarly, (E, o) H* (E’, o’) denotes
that the state (E’,¢’) can be obtained from the state (F, o) by applying some
sequence of inference rules.

To generate a complete set of unifiers C' for an equality e; = eq, we start with
the state ({e1 = ea}, I), where I is the identity mapping, and apply the inference
rules repeatedly until no more inference rules can be applied. For all derivations
that end with some state of the form (0,0), we put ¢ in C. Theorem 2 stated
below implies that the set C thus obtained is indeed a set of unifiers for the
equality e; = ea. Theorem 3 implies that this set C' of unifiers is complete. The
proofs of these theorems are by induction on the length of the derivation and
are given in the full version of this paper [13].

Theorem 2 (Soundness). If (E,I)F* (0,0), then o is a unifier for E.

Theorem 3 (Completeness). Suppose o is a unifier for E. Then there is a
derivation (E,I) F* (0, 00) such that oo is a more-general unifier for E than o.

The following theorem implies that the set C' is finite.

Theorem 4 (Finite Complete Set of Unifiers). Fvery derivation (E,I) -*
(E', ') takes a finite number of steps. Consequently, E has a finite complete set
of unifiers.

The proof of Theorem 4 is given in the full version of this paper [13]. The key
proof idea is to show that every derivation (F, I) F* (E’, ¢’) takes a finite number
of steps and then use Konig’s lemma to bound the total number of derivations.

We next illustrate the application of the inference system.

Ezxample 1. Consider the following derivation of a unifier for the equality Fa +
Fy=Fa+ Fb.

({Fz+ Fy=Fa+ Fb},I)

{Fz=Fby=a},I) Unif2
{x=by=a},1) Unif2
(x =b,{y — a}) Unifl
(0, {x— b,y a}) Unifl

Thus {z — b,y +— a} is a unifier for Fz+ Fy = Fa+ Fb. Note that the alternate
choice for the first Unif2 application yields another unifier { +— a,y +— b} for
the given equality. No other unifier can be generated by applying the inference
rules. Hence, these two unifiers constitute a complete set of unifiers for the given
equality.

Example 2. As another example, consider generating a complete set of unifiers
for the equality z + Fo + Fy = a + Fa + F(a + 1). Since each variable occurs
below an uninterpreted symbol, only the Unif2 rule is applicable. There are four
choices, either t = a,orx =a+1, or y = a, or y = a + 1. We show a derivation
for the second choice below.

({z+ Fx+Fy=a+Fa+ F(a+1)},1I)

({z+ Fy=a+ Fa,z=a+1},I) Unif2
({a+ Fa—Fy=a+1},{zx —a+ Fa— Fy}) Unifl
{a=a+1l,a=y},{x— a+ Fa— Fy}) Unif2
{0=1},{x—a+ Fa— Fy,y+ a}) Unifl

The above derivation is now stuck with no inference rule being applicable. Note
that only the first choice z = a and the fourth choice y = a + 1 successfully
generate a unifier, which in both cases is {z — a,y — a+ 1}. This unifier yields
a singleton complete set of unifiers for the given equality.

4.2 Algorithm

Our algorithm for assertion checking over the combined abstraction is based
on weakest precondition computation. It represents invariants at each program
point by a formula that is a disjunction of substitution mappings. We show that
any program invariant in our abstracted program model can be represented using
such formulas (Lemma 2).

Suppose the goal is to check whether an assertion e; = e is an invariant at
program point 7. The algorithm performs a backward analysis of the program
computing a formula) (which is a disjunction of substitution mappings) at each
program point such that 1) must hold for the assertion e; = es to be true at
program point 7. This formula is computed at each program point from the
formulas at the successor program points in an iterative manner. The algorithm
uses the transfer functions described below to compute these formulas across
the flowchart nodes shown in Figure 2. The algorithm declares e; = es to be

an invariant at 7 if the formula computed at the beginning of the program
after fixed-point computation is a tautology in the combined theory of linear
arithmetic and uninterpreted functions.

In the following transfer functions, we use the notation Unif(F), where F is
some conjunction of equalities F, to denote the formula that is a disjunction of
all unifiers in some complete set of unifiers for E. (If F is unsatisfiable, then FE
does not have any unifier and Unif(FE) is simply false.) The formula Unif(FE)
can be computed by using the algorithm described in Section 4.1.

Initialization: The formula at all program points except 7 is initialized to be
the trivial formula ¢rue. The formula at program point 7 is initialized to be
Unif(e; = ea).

Assignment Node: See Figure 2 (a).

The formula 1)’ before an assignment node x := e is obtained from the formula
1 after the assignment node by substituting x by e in v, and invoking Unif on
each resulting disjunct.

Y = \/Unif(z/ﬂ[e/x]), where 9 = \/W

Non-deterministic Assignment Node: See Figure 2 (b).

The formula ¢’ before a non-deterministic assignment node x : =7 is obtained
from the formula 1 after the non-deterministic assignment node by substituting
program variable 2 by some fresh constant (i.e., a fresh nullary uninterpreted
function symbol) «, and invoking Unif on each resulting disjunct.

Y = \/Unif(wi[a/x]), where ¢ = \/w

Non-deterministic Conditional Node: See Figure 2 (c).

The formula 1 before a non-deterministic conditional node is obtained by taking
the conjunction of the formulas 11 and - on the two branches of the conditional,
and invoking Unif on each resulting disjunct.

= \/Unif(z/ﬂi A)), where ¢ = \/Wl and ¢y = \/1/1%
i, i J

Join Node: See Figure 2 (d).
The formulas ¥; and 12 on the two predecessors of a join node are same as the
formula v after the join node.

Y1 =1 and ¢y =9
Fized-point Computation: In presence of loops in procedures, the algorithm goes

around each loop until the formulas computed at each program point in two
successive iterations of a loop are equivalent, or if any formula becomes false.

10

Correctness We now prove that the above algorithm is correct, i.e., an assertion
e1 = eo holds at program point 7 iff the algorithm claims so. For this purpose,
we first state a useful lemma (Lemma 2) that states an interesting connection
between program analysis and unification theory. This lemma is true is general:
it is independent of the logical theory and also holds for programs with guarded
conditionals. The proof of this lemma is given in the full version of this paper [13].

Lemma 2. An equality e; = es holds at a program point w iff Unif(e; = eg)
holds at w. In fact, a formula ¢ containing e; = ey holds at a program point m
iff p[Unif(eqr = e2)/(e1 = e2)] holds at .

Lemma 2 implies that the formula computed by our algorithm before the
flowchart is the (real) weakest precondition of the formula after those nodes.
Also, note that the algorithm starts with a formula which is an invariant at 7 iff
the given assertion is an invariant at 7 (follows from Lemma 2). The correctness
of the algorithm now follows from the fact that the algorithm starts with the
correct assertion at 7w and iteratively computes the correct weakest precondition
at each program point in a backward analysis.

Termination We now prove that the above algorithm terminates in a finite
number of steps. It suffices to show that the weakest precondition computation
across a loop terminates in a finite number of iterations. This follows from the
following lemma.

Lemma 3. Let C be a chain V1,3, .. of formulas that are disjunctions of sub-

stitutions. Let ¢; = \/ ¢ for some integer m; and substitutions Vf. Suppose
=1

(a) Vi1 =\ V Unif(yf A al), for some substitutions) .
0=1j=1

(b) ¥i # i1
Then, C is finite.

The proof of Lemma 3 is by establishing a well founded ordering on t.s, and
is given in the full version of this paper [13]. Lemma 3 implies termination of
our assertion checking algorithm. (Note that the weakest preconditions 1)1, ¢, . .
generated by our algorithm at any given program point inside a loop in successive
iterations satisfy condition (a), and hence ;11 = 1; for all i. Lemma 3 implies
that there exists j such that ; = ;41 and hence ¢; = 111, at which point
the fixed-point computation across that loop terminates.) Hence, the following
theorem holds.

Theorem 5. Assertion checking for programs with non-deterministic condition-
als and whose expression language is a combination of linear arithmetic and
uninterpreted functions is decidable.

The decidability of assertion checking for the combined abstraction is rather
surprising given that the abstract lattice over sets of equalities between expres-
sions in the combined theory has an infinite height. This suggests that an abstract

11

interpretation based forward analysis algorithm that operates over this lattice
may not terminate across loops (unless widening techniques are employed, which
may lead to imprecise analysis). For example, consider the following program.

InfiniteHeightExample()
z = 0;
while (¥) do { z := 2 +1 };
Assert(x =0V - ---Vx=m);

The disjunctive assertion at the end of the program can be encoded using
an equality assertion. The procedure Check(x,m) (on page 6) does exactly this.
Clearly, the assertion at the end of the program is not true. To invalidate this
assertion, the abstract interpreter will have to go around the loop m times.
Hence, it will not terminate across loops (because if it did terminate in say ¢
steps, then it will not be able to invalidate the assertion z =0V---Vz =t). Our
algorithm terminates because it performs a backward analysis (which is good
enough for assertion checking) instead of performing a forward analysis (which
is required for discovering all valid equalities).

5 Assertion Checking and Unification

The results in this paper point out an interesting connection between assertion
checking in programs over a given abstraction and the unification problem for
the theory defining that abstraction. Lemma 2 implies that we can replace an
assertion by a formula representing a complete set of unifiers for that assertion.
This result is quite general and holds for programs with even guarded condi-
tionals and any expression language. This allows for strengthening of weakest
preconditions computed using standard transfer functions, by applying Unif()
to the result without losing any precision. This observation is the basis for the
close connection between assertion checking and unification.

The theories of linear arithmetic and uninterpreted functions are unitary.
However, equalities in the combined theory of linear arithmetic and uninter-
preted functions may not have a complete set of unifiers with a cardinality of at
most 1. This disparity appears to be responsible for the coNP-hardness of asser-
tion checking for the combined abstraction of linear arithmetic and uninterpreted
functions (as opposed to the fact that the abstractions of linear arithmetic and
uninterpreted functions have polynomial-time assertion checking algorithms [14,
10]). The presence of multiple unifiers in a minimal complete set allows for en-
coding of disjunctions in the combined abstraction. For example, the assertion
F(z)+ F(3—z) = F(1) + F(2) has two unifiers = 1 and # = 2 in its minimal
complete set of unifiers. This assertion will be true at any program point iff
x =1 or x = 2 on all paths leading to this assertion.

The decidability of assertion checking for the combined abstraction (of linear
arithmetic and uninterpreted functions) can be attributed to fact that the com-
bined theory is finitary. Observe that the weakest precondition computation of
an assertion, as described in Section 4.2, terminates across a loop because there
are only finitely many ways that the assertion can be true.

12

6 Related Work

We are not aware of any work related to assertion checking for the combined
abstraction of linear arithmetic and uninterpreted functions. However, there has
been a lot of work on assertion checking and invariant generation over individual
abstractions of linear arithmetic and uninterpreted functions.

Program analysis over abstraction of linear arithmetic. Karr described an algo-
rithm to reason about programs using the abstraction of linear equalities. This
algorithm performs a forward analysis of the program and computes a set of lin-
ear equalities at each program point [14, 17] in an iterative manner. Gulwani and
Necula gave a randomized algorithm that performs an equally precise reason-
ing but more efficiently [8]. Cousot gave a more precise algorithm that reasons
about programs using the abstraction of linear inequalities wherein the facts com-
puted at each program point are linear inequality relationships between program
variables [7]. Miiller-Olm and Seidl have described a modular linear arithmetic
analysis to reason about finite-bit machine arithmetic [19]. There has also been
some work on extending some of these analyses to an interprocedural setting [18,
11].

Program analysis over abstraction of uninterpreted functions. Kildall’s algo-
rithm [15] performs abstract interpretation over the lattice of sets of Herbrand
equivalences (i.e., equivalences between expressions involving uninterpreted func-
tions) but it runs in exponential time. Alpern, Wegman, and Zadeck (AWZ) gave
a polynomial-time algorithm that reasons about programs treating all operators
as uninterpreted functions [1]. The AWZ algorithm is less precise than Kildall’s
algorithm, but is quite popularly used for global value numbering in compilers.
Riithing, Knoop and Steffen’s (RKS) polynomial-time algorithm also reasons
about programs using the abstraction of uninterpreted functions. The RKS al-
gorithm is more precise than the AWZ algorithm but remains less precise than
Kildall’s algorithm. Recently, Gulwani and Necula gave a polynomial-time algo-
rithm that is as precise as Kildall’s algorithm with respect to assertion checking
in programs using the abstraction of uninterpreted functions [9, 10].

Combination of Abstract Interpreters. We have recently described a general
methodology to combine abstract interpreters for two abstractions to construct
an abstract interpreter for the combination of those abstractions [12]. This
methodology can be used to construct an efficient polynomial-time algorithm
that performs analysis over the combined abstraction of linear arithmetic and
uninterpreted functions and also takes conditional guards into account. However,
this algorithm does not perform the most precise reasoning over the combined
abstraction of linear arithmetic and uninterpreted functions. Note that the algo-
rithm that we have described in this paper performs the most precise reasoning
over the combined abstraction of linear arithmetic and uninterpreted functions,
but it does not take conditional guards into account.

13

Unification for combination of theories. The unification problem for the com-
bined theory of linear arithmetic and uninterpreted functions is a simple variant
of the unification problem for abelian groups with additional uninterpreted func-
tions. This latter problem is usually referred to as the general unification problem
for abelian groups [3]. The first algorithm for generating unifiers for the general
unification problem for abelian groups was obtained as a corollary of the general
result for combining unification algorithms [21] and was later refined [2]. The
generic combination unification algorithm involves solving the so-called “unifi-
cation with constants” and “constant elimination” problems [21], or “unification
with linear constant restriction” [2] problem for the individual theories. In this
paper, we have presented a different unification algorithm for the combined the-
ory of linear arithmetic and uninterpreted functions. Our presentation of this
unification algorithm is using inference rules, which are simple to understand
and implement.

Decision procedures for combination of theories. Nelson and Oppen gave a gen-
eral methodology for combining decision procedures for disjoint, convex and
quantifier-free theories with only polynomial-time overhead [20]. Shostak gave
an efficient variant of this algorithm for the specific case of solvable theories.
Clark, Dill and Levitt have described a decision procedure, based on Shostak’s
method, for combination of linear arithmetic and uninterpreted functions in
presence of boolean connectives [5]. It must be mentioned that the problem of
assertion checking in programs over a certain abstraction (and in particular for
combination of two abstractions) is harder than developing a decision procedure
for that abstraction. This is because even though a decision procedure can be
used to verify an assertion along a particular program path, a program can po-
tentially have an infinite number of paths. However, if a program is annotated
with appropriate invariants at all join points, then a decision procedure can be
easily used to verify those invariants as well as assertions across straight-line
program fragments.

7 Conclusion

In this paper, we show that assertion checking in programs whose expressions
have been abstracted using linear arithmetic and uninterpreted functions is
coNP-hard (even for loop-free programs). We also give an algorithm for assertion
checking for this abstraction, thereby proving decidability of this problem. These
results are obtained by closely analyzing the expressiveness of a theory and its
effect on the assertion checking problem. First, the ability to encode disjunc-
tions is identified to be an important factor in making assertion checking hard.
Second, the classification of a theory as unitary, finitary, or infinitary—based
on whether it admits a singleton, finite, or infinite complete set of unifiers has
bearing on the hardness and tractability of the assertion checking problem. We
show that assertions can be replaced by their unifiers for purpose of checking if
they are invariant. We believe that these observations will be significant when
other similar or more general abstractions are considered for program analysis.

14

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In 15th Annual ACM Symposium on POPL, pages 1-11, 1988.

F. Baader and K. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. In 11th International Conference on Automated
Deduction, volume 607 of LNAI pages 50-65, 1992.

F. Baader and W. Snyder. Unification theory. In Handbook of Automated Reason-
ing, volume I, chapter 8, pages 445-532. Elsevier Science, 2001.

L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. J. of
Automated Reasoning, 31(2):129-168, 2003.

C. W. Barrett, D. L. Dill, and J. R. Levitt. Validity checking for combinations
of theories with equality. In First International Conference on Formal Methods in
Computer-Aided Design, volume 1166 of LNCS, pages 187-201, 1996.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th
Annual ACM Symposium on POPL, pages 234-252, 1977.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th ACM Symposium on POPL, pages 84-96, 1978.

S. Gulwani and G. C. Necula. Discovering affine equalities using random interpre-
tation. In 30th Annual ACM Symposium on POPL, Jan. 2003.

S. Gulwani and G. C. Necula. Global value numbering using random interpretation.
In 81st Annual ACM Symposium on POPL, Jan. 2004.

S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value num-
bering. In Static Analysis Symposium, volume 3148 of LNCS, pages 212-227, 2004.
S. Gulwani and G. C. Necula. Precise interprocedural analysis using random in-
terpretation. In 32nd Annual ACM Symposium on POPL, Jan. 2005.

S. Gulwani and A. Tiwari. Combining abstract interpreters. Submitted for publi-
cation, Nov. 2005.

S. Gulwani and A. Tiwari. Assertion checking over combined abstraction of lin-
ear arithmetic and uninterpreted functions. Technical Report MSR-TR-2006-01,
Microsoft Research, Jan. 2006.

M. Karr. Affine relationships among variables of a program. In Acta Informatica,
pages 133-151. Springer, 1976.

G. A. Kildall. A unified approach to global program optimization. In 1st ACM
Symposium on POPL, pages 194-206, Oct. 1973.

M. Miiller-Olm, O. Riithing, and H. Seidl. Checking herbrand equalities and be-
yond. In VMCAI, volume 3385 of LNCS, pages 79-96. Springer, Jan. 2005.

M. Miiller-Olm and H. Seidl. A note on Karr’s algorithm. In 31st International
Colloquium on Automata, Languages and Programming, pages 1016-1028, 2004.
M. Miiller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In 81st ACM Symposium on POPL, pages 330-341, Jan. 2004.

M. Miiller-Olm and H. Seidl. Analysis of modular arithmetic. In Furopean Sym-
posium on Programming, pages 46-60, 2005.

G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245-257, Oct. 1979.
M. Schmidt-Schauss. Unification in a combination of arbitrary disjoint equational
theories. J. Symbolic Computation, 8(1-2):51-99, 1989.

15

Undecidability of Context-Sensitive Data-Dependence Analysis

THOMAS REPS
University of Wisconsin

A number of program-analysis problems can be tackled by transforming them into certain kinds of graph-reachability
problems in labeled directed graphs. The edge labels can be used to filter out paths that are not of interest: A path P
from vertex s to vertex t only counts as a “valid connection” between s and t if the word spelled out by P is in a certain
language. Often the languages used for such filtering purposes are languages of matching parentheses:

« In some cases, the matched-parenthesis condition is used to filter out paths with mismatched calls and returns. This
leads to so-called “context-sensitive” program analyses, such as context-sensitive interprocedural slicing and context-
sensitive interprocedural dataflow analysis.

< In other cases, the matched-parenthesis condition is used to capture a graph-theoretic analog of McCarthy’s rules:
“car (cons(x,Yy))=x"and “cdr (cons(x,y))=y”. Thatis, in the code fragment

c = cons(a,b);
d = car(c);

the fact that there is a “structure-transmitted data dependence” from a to d, but not from b to d, is captured in a
graph by using (i) a vertex for each variable, (ii) an edge from vertex i to vertex j when i is used on the right-hand
side of an assignment to j, (iii) parentheses that match as the labels on the edges that run from a to ¢ and c to d, and
(iv) parentheses that do not match as the labels on the edges that run from b to ¢ and ¢ to d.

However, structure-transmitted data-dependence analysis is context-insensitive, because there are no constraints that fil-
ter out paths with mismatched calls and returns. Thus, a natural question is whether these two kinds of uses of paren-
theses can be combined to create a context-sensitive analysis for structure-transmitted data dependences. This paper
answers the question in the negative: In general, the problem of context-sensitive, structure-transmitted data-depen-
dence analysis is undecidable.

The results of this paper imply that, in general, both context-sensitive set-based analysis and co-CFA (when data
constructors and selectors are taken into account) are also undecidable.

CR Categories and Subject Descriptors: D.3.4 [Programming L anguages]: Processors—compilers; optimization; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic—computability theory; F.4.3 [Mathematical
Logic and Formal Languages]: Formal Languages—decision problems; G.2.2 [Discrete Mathematics]: Graph The-
ory—path and circuit problems;

General Terms: Languages, Theory

Additional Key Words and Phrases: Context-sensitive program analysis, dependence analysis, graph-reachability prob-
lem, structure-transmitted data dependence, set-based analysis, set constraints, control-flow analysis, co-CFA, linear
matched-parenthesis language

This work was supported in part by the National Science Foundation under grants CCR-9625667 and CCR-9619219, by the United
States-1srael Binational Science Foundation under grant 96-00337, by a grant from IBM, and by a Vilas Associate Award from the
University of Wisconsin.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright no-
tices affixed thereon. The views and conclusions contained herein are those of the authors, and should not be interpreted as necessari-
ly representing the official policies or endorsements, either expressed or implied, of the above government agencies or the U.S. Gov-
ernment.

Author’s address: Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706.
E-mail: reps@cs.wisc.edu.

1. INTRODUCTION

A number of program-analysis problems can be tackled by transforming them into certain kinds of graph-
reachability problems in labeled directed graphs [20,9,5,4,6,15,19,28,30,16,29,25,32]. It is useful to con-
sider not just ordinary reachability (e.g., transitive closure), but a generalization in which the edge labels are
used, in effect, to filter out paths that are not of interest [4,15,28,30,16,29,25,32]: A path P from vertex s to
vertex t only counts as a “valid connection” between s and t if the word spelled out by P (i.e., the concate-
nation, in order, of the labels on the edges of P) is in a certain language.

Definition 1.1. Let L be a language over alphabet >, , and let G be a graph whose edges are labeled with
members of X, . Each path in G defines a word over %, , namely, the word obtained by concatenating, in
order, the labels of the edges on the path. A path in G is an L-path if its word is a member of L. An
instance of the (single-source/single-target) L-path problem asks whether there exists an L-path in G from a
given source vertex s to a given target vertex t.

Let £ be a family of languages, and L [0 £ be a language over alphabet >, . An instance of the £-reacha-
bility problem is an L-path problem instance < L, 2, ,G,s,t >. O

Example. When the family of languages £ in Defn. 1.1 is the context-free languages, we have the CFL-
reachability problem [38]. Consider the graph and the context-free grammar shown below. Note that
L (matched) is the context-free language that consists of strings of matched parentheses and square brack-

ets, with zero or more e’s interspersed.

‘e/\\) matched - matched matched
° { | (matched)
s e T] i | [matched]
—t— P e—Pe—Po— o — o —Po | e
[(e [e]] | &

In this graph, there is exactly one L(matched)-path from s to t: The path goes exactly once around the
cycle, and generates the word “[(e[])eee[e]]”. O

A number of program-analysis problems can be viewed as instances of the CFL-reachability problem
[32]. In program-analysis problems, the languages used for such filtering purposes are often languages of
matching parentheses. In some cases, the matched-parenthesis condition is used to filter out paths with
mismatched calls and returns in order to implement so-called “context-sensitive” program analyses.

Example 1.2. The use of CFL-reachability in context-sensitive program analysis, as opposed to ordinary
graph reachability, is illustrated by the following example:?

*In this paper, the word “parentheses” is used in both the generic sense—to mean any kind of matching delimiter (e.g., round parenthe-
ses, square brackets, curly braces, angle brackets, etc.)—as well as in the specific sense of round parentheses. It should always be
clear from the context which of these two meanings is intended.

2In this example, we use C syntax. In later examples, we use C augmented with the operator cons, which denotes a pairing construc-
tor; the operators car and cdr, which select the first and second components of a pair, respectively; and the operator at om which
constructs an atomic object (different from NULL) from a given string. This notation is used to simplify the way storage-allocation op-
erations are expressed in our examples. The use of these operators does not imply that our results apply only to the analysis of LISP
programs.

Annotated Source Code Corresponding Data-Dependence Graph
int x, vy;
void g() {
y =X
}
void f() {
X = 0;
9();
pl: /* Could y be 0? 1? */
X = 1;
9();

p2: /* Could y be 0? 1? */
}

The diagram on the right shows the program’s data-dependence graph. (Strictly speaking, neither the two
large ovoid shapes nor the rectangular boxes labeled Cal | , Ent er, and Exi t are part of the data-depen-
dence graph. The two ovoids indicate which elements belong to which procedure; the rectangular boxes
provide some context about the control points in the program to which the various vertices are associated.)
Each directed edge in the graph represents a data dependence (also known as a flow dependence [21,22]):
An edge from vertex vy to vertex v, indicates that the value produced at v; may be used at vertex v,. For
instance, the edge

0 —» x=0

in the dependence graph for procedure f indicates that the value of x after the execution of the statement
x = 0 could be (and, in this case, must be) 0.

In the above program, procedure g has no parameters. However, our data-dependence graphs reflect a
somewhat nonstandard treatment of global variables: A global variable such as x is treated as if it were a
“hidden” value-result parameter whose value (and subsequent return value) is passed from one scope to
another via the special scope-transfer variables x_i n and x_out . For example, the interprocedural data-
dependence edge

_ {, _
X_in=x —= x=x_in

represents the passing of x from f ’s scope to g’s scope at the first call on g. Note that data-dependence
edges for dependences transmitted from the caller to the callee (i.e, from f to g) are labeled by the sym-
bols {1 and {2 whereas data-dependence edges for dependences transmitted from the callee back to
the caller are labeled by the symbols }1 and }2 In particular, the data-dependence edges that repre-
sent how x and y are passed from f °s scope to g’s scope at the first call on g are labeled with {1; the data-
dependence edges that represent how x and y are passed from f °s scope to g’s scope at the second call on
g are labeled with {2. Likewise, the data-dependence edges that represent how x and y are passed back
from g’s scope to f ’s scope after the two calls finish are labeled with }l and }2, respectively.

Our data-dependence graphs also have vertices that correspond to various annotations in the program;
annotations, denoted here as comments, indicate that we are interested in a given variable at a given point in
the program. In the example above, the comments at p1 and p2 give rise to the vertices p1: y and p2: y.

A context-insensitive analysis that tracks dependences between constants and variables in the program
will report that y depends on 0 and 1 at both p1 and p2. The reason is that a context-insensitive analysis
ignores the fact that the only paths that can possibly be feasible execution paths are those in which returns
are matched with corresponding calls. For instance, the existence of the (mismatched) path

{

0 —»Xx=0 —»Xx_i n=X —1>x:x_i n —sy=Xx
— >y outzy —2ey=y out —p2:y (1.3)

in the graph shown above serves as “evidence” that p2: y depends on O (i.e, that the value of y at p2
could be 0).

In contrast, a context-sensitive analysis only reports possible transmissions of values along paths in
which returns are matched with corresponding calls. For this example, it reports that p1: y depends on O
but not on 1 and that p2: y depends on 1 but not on O (i.e, y could have only the value 0 at p1 and 1 at
p2). The context-sensitive analysis can be expressed as a CFL-reachability problem with respect to a lan-
guage of matched indexed curly braces. It would say that path (1.3) is not a valid connection between O

and p2:y, because the label {1 on the interprocedural data-dependence edge x_i n=x —1>x:x_i n
(which represents the transfer of x’s value from f to g as g is entered at the first call site) does not match

the label }2 on the edge y_out =y —2>y:y_out (which represents the transfer of y’s value back to f
when a return is performed in g from a call on g that originated at the second call site). On the other hand,
because {2 matches with }2, the (matched) path

{

1 —»x=1—»X_in=x —2>x:x_i n —sy=x
— =y outzy —2my=y out —p2:y (1.4)

does count as a valid connection between 1 and p2: vy, and this path serves as evidence that the value of y
atp2 couldbe 1. O

Problems in which CFL-reachability has been used to devise context-sensitive program analyses include
interprocedural slicing [15,28] and interprocedural dataflow analysis [30,16].2

CFL-reachability—and, in particular, a matched-parenthesis constraint—has also been used to capture a
graph-theoretic analog [29,25] of McCarthy’s rules [24] (i.e, “car(cons(Xx,y))=x" and
“cdr (cons(x,Yy))=y”),as illustrated in the following example.

Example 1.5. The following program illustrates the use of CFL-reachability in (context-insensitive)
structure-transmitted data-dependence analysis:

3There is an unfortunate clash in terminology that the reader should be aware of. The term “context-sensitive analysis” is standard in
the programming-languages community, where it means a static-analysis method in which the analysis of a called procedure is “sensi-
tive” to the context in which it is called: A context-sensitive analysis captures the fact that different call sites that call the same proce-
dure may have different effects on a program’s possible execution states. Context-sensitive analysis should not be confused with the
“context-sensitive languages” of formal-language theory. Unfortunately, the principle that context-free-language reachability is useful
in formalizing approaches to context-sensitive analysis was fully articulated [32] only after the term “context-sensitive analysis” had
been adopted by the programming-languages community [7,37].

Annotated Source Code Corresponding Data-Dependence Graph
Li st *x, *y;
void f() {
x = cons(NULL, NULL) ;
y = car(Xx);
pl: /* Could y be NULL here? */
X = cons(x, NULL);
y = car(Xx);
p2: /* Could y be NULL here? */
y = car(y);
p3: /* Could y be NULL here? */

}

In this graph, the labels on the data-dependence edges serve a different purpose than the labels used in
Example 1.2: Here an edge labeled “(” corresponds to a data construction in which the value is placed in
the first position of a cons; an edge labeled “[” corresponds to a data construction in which the value is
placed in the second position of a cons; an edge labeled “)” corresponds to a selection via car ; an edge
labeled “]” corresponds to a selection via cdr .

The matched-parenthesis path

NULL —(>x:cons(NULL, NULL) —(>x:cons(x, NULL)
)) _ _
—»y=car (x) —» y=car(y) —» p3:y
from NULL to p3: y serves as evidence that the value of y at p3 could be NULL. The path
NULL —(>x=cons(NULL, NULL) —(>x=cons(x, NULL) —)>y=car(x) —» p2:y

does not serve as evidence that the value of y at p2 could be NULL, because the first occurrence of “(” has
no matching “)”. In fact, there is no matched-parenthesis path from NULL to p2: y, and a (context-insensi-
tive) structure-transmitted data-dependence analysis would conclude that the value of y at p2 cannot be
NULL. O

The structure-transmitted data-dependence analyses given in [29] and [25] are context-insensitive,
because there are no constraints that filter out paths with mismatched calls and returns. Thus, a natural
question is whether the two kinds of uses of matching delimiters illustrated in Examples 1.2 and 1.5 can be
combined to create a context-sensitive analysis for structure-transmitted data dependences. The following
interprocedural variation on Example 1.5 illustrates what we would hope to gain from a context-sensitive,
structure-transmitted data-dependence analysis:

Example 1.6. Consider the following example program:

Li st *x, *y;

void g() {
y = car(Xx);
}

void f() {
X = cons(NULL, NULL) ;
g();

pl: /* Could y be NULL here? */
X = cons(x, NULL);
a();

p2: /* Could y be NULL here? */
X =;
a();

p3: /* Could y be NULL here? */

}
The relevant portions of this program’s data-dependence graph are shown below:

For this example, a context-sensitive analysis should report that variable y can have the value NULL at p1
and p3, but not at p2. The following path from NULL to program point p3 serves as evidence that the

valueof y at p3 could be NULL:

NULL —(>x:cons(NULL, NULL) —»Xx_i n=x

{ 3

—1>x:x_i n —X_0ut =X —= x=X_out

—Xx=cons(x, NULL) —X_i n=x

{ !
_2>x:x_i n —)>y=car(x) — y_out=y —Z y=y_out
{
—» X=y ——» X_iNn=x — 3 X=X_in —— y=car(Xx)
}

— >y outzy — s y=y out — p3:y

(1.7)

In contrast, a context-insensitive analysis would also use the following path from NULL to program point
p2 as evidence that the value of y at p2 could be NULL:

NULL —(>x:cons(NULL, NULL) —=Xx_i n=x

4 h

—®X=X_i n —»X_out =x —=»=X=X_out
(:
—»x=cons(Xx, NULL) —X_i n=x

{ }
—2>x:x_i n —)>y:car(x) — y_out=y — i y=y_out

&

— X=y — X_iN=X — X=X_in —— y=car(Xx)

}

— > y outzy —2s y=y out — p2:y (1.8)

The problem with this path is that there is a mismatch between the labels on the edge

b

X_i n=x —==Xx=X_i n and the subsequent edge y_out =y —2>y:y_out . Consequently, this path
would be excluded from consideration by a context-sensitive analysis. O

The other fact to note about Example 1.6 is that in path (1.7), although “(” symbols match with “)” sym-
bols, and {, symbols match with }. symbols, the two patterns of matched symbols are interleaved.*
This observation serves to motivate the study of interleaved matched-parenthesis languages carried out in
Sections 2 and 3.

This paper shows that it is impossible to create an algorithm that captures all, and only, interleaved
matched-parenthesis paths of the kind illustrated in Example 1.6: In general, the problem of context-sensi-
tive, structure-transmitted data-dependence analysis is undecidable. In other words, you can capture either
(i) the matching of calls and returns, or (ii) “car (cons(x, y)) =x cancellation”, but not both simultane-
ously, in any amount of time. (Of course, there may be useful algorithms that compute approximate, but
safe, solutions to this problem, cf. [13].)

In terms of the programming-language features needed for this result to apply, higher-order functions are
not required: The main result of this paper implies that context-sensitive, structure-transmitted data-depen-
dence analysis is undecidable for first-order languages (both functional and imperative). This result applies
to such languages as C, C++, Java, ML, and Scheme, as well as to many others.

It should be noted that questions of the kind posed in Example 1.6 (i.e., “Does a given variable have a
given value at a particular point in a program?”) often turn out to be undecidable in their most general
form, and often there are several independent reasons why the problem is undecidable (e.g., it is undecid-
able whether a given statement is ever executed; it is undecidable whether a given path is ever executed,;
etc.). This paper shows that context-sensitive, structure-transmitted data-dependence analysis is undecid-
able even if a conservative approximation is made that, for many other program-analysis problems, over-
comes other sources of undecidability. (In particular, we assume that all paths in a procedure’s control-flow
graph are executable.)

The remainder of the paper is organized into four sections: The undecidability result is shown by a reduc-
tion from a variant of Post’s Correspondence Problem (PCP); Section 2 defines PCP and discusses a variant
of it that is particularly suited to our needs. Example 1.6 motivates our interest in languages with inter-
leaved patterns of matching delimiters; Section 3 shows that a certain set of L-path problem instances—
where L is a language of strings formed by interleaving two languages of matching parentheses—is unde-

“In this paper, the term “interleaved” is used in a somewhat restricted sense, compared to the standard usage in formal-language theory
(cf. [14, pp. 282]). The exact nature in which patterns of matched symbols are allowed to be woven together is defined precisely in
Sections 3 and 4.

cidable. Section 4 relates the result from Section 3 to the undecidability of context-sensitive, structure-
transmitted data-dependence analysis. Section 5 discusses what our results imply about other program-
analysis problems.

2. AVARIANT OF POST'S CORRESPONDENCE PROBLEM
Our undecidability result is shown by a reduction from a variant of Post’s Correspondence Problem:

Definition 2.1. An instance of Post’s Correspondence Problem, or PCP, consists of two lists of strings, X
and Y, where X and Y each consist of k strings in {0,1}":

X = Xq, Xp, 000y Xk
Y = Y1, Y2, 0 Yk
The instance of PCP has a solution if there exists a nonempty sequence of integers iy, ip, -+, ij, -+, iy such

that(i)foralllsjsm,wehavelsijsk,and(ii)xilxiz---xij---xim = Yi Vi, Vi Vi O

Example 2.2. Consider the following instance of PCP, where k is 3:

X = 0101, 101, 111
Y =01, 011, 0111101

This instance of PCP has the solution 1, 2, 3, 1 because
X1 Xp X3 X; = 0101 101 111 0101 = 01 011 0111101 01 = y; Y, Y3 V1.
O

PCP is known to be undecidable; for proofs, see Hopcroft and Ullman [14, pp. 193-198], Lewis and
Papadimitriou [23, pp. 289-293], or Harrison [8, pp. 249-256].
For our purposes, it is more convenient to work with the following variant of PCP:
Definition 2.3. (Parenthesis-PCP) Given an instance of PCP,
X = Xq, Xo, 0+, Xk
Y = YL Y2, Yk
we define the corresponding instance of parenthesis-PCP, or P-PCP, as

X = Xy, Xp, o, Ky
7 R _ _ _
YYo= R YR, R

where, for 1 <i <k,

 X;isthestringin {(,[}* equal to x; with O replaced by “(” and 1 replaced by “[”.

* y; isthestring in {),]1}" equal to y; with O replaced by “)” and 1 replaced by “]”.

 The superscript “R” on a string denotes the reversed string.

A solution to an instance of P-PCP is defined with the aid of the following linear context-free grammar:®
balanced — (balanced)

| [balanced]

| (#)

I [#]
An instance of P-PCP has a solution if there exists a nonempty sequence of integers
iy, iy, o 05 +ey ip such that (i) for all 1<js<m, we have 1<i;<k, and

(ii) Xi, Xi, -+~ X -+ X #YR yffyfj yi O L(balanced). O

Example 2.4. The instance of P-PCP that corresponds to Example 2.2 is

SA linear context-free grammar is one in which at most one nonterminal appears on the right-hand side of each production.

o= (LG ICL I
=D 1) DI

This instance of P-PCP has the solution 1, 2, 3, 1 because
X1 %o Xg Xe # Y5 ¥5 Y5 ¥5 = (LCL [CC LLL (LC0 # 1) D111 11) 1) O L(balanced).

=< X
|

O

Clearly an instance of PCP has a solution if and only if the corresponding instance of P-PCP has a solu-
tion.
For a given instance of P-PCP,

X = X1, Xy, X
YR o= yRyR R

every solution (if one exists) corresponds to a string in the language generated by the following linear con-
text-free grammar:

So — X So y& forl<is<k
| % # yR forli<i<k
While not every string in L(Sy) corresponds to a solution, all strings in L(S,) that are also in L(balanced)

correspond to a solution. That is, the given instance of P-PCP has a solution exactly when the language
L(Sp) n L(balanced) is non-empty. This observation implies the following theorem (cf. [23, pp. 293-294]):

THEOREM 2.5. It is undecidable for arbitrary linear context-free grammars G, and G, whether
L(G1) n L(G,) is empty.

The fact that the existence of a solution to a given instance of P-PCP can be characterized by the non-
emptiness of the intersection of two linear context-free grammars underlies our result on the undecidability
of context-sensitive data-dependence analysis. However, for the purpose of investigating the latter problem,
it is useful to develop a slightly more elaborate way of characterizing the solutions to an instance of P-PCP:

Definition 2.6. If an instance of P-PCP
X = Xq, %9, 0, X
Yo o=y
has a solution iy, i,, - - -, iy, We say that the following string exhibits the solution in tagged form:®
{i1 X, {i2 X, - '{im Xi, # yiRm }im e yiF; }i2 ViFi }il' 2.7)
In general, suppose that iy, iy, -+, ij, -+, ip, is some nonempty sequence of integers such that, for all

1<j<p, wehave 1<ij<k. Regardless of whether iy, iy, -+, ij, -+, i, is actually a solution to the
instance of P-PCP, we say that a string of the form

{.x i, '{ij Xi; - "{ip Xi, #¥ie }ip SR }i,- -y}, v h
exhibits a candidate solution in tagged form. O

For instance, because the sequence 2, 1, 2, 3, 1 is not a solution to Example 2.4, the following string
exhibits a candidate solution in tagged form (but not a solution in tagged form):

Liaf.aafratufiaasn nmvkmkbnhint. (2.8)

In contrast, the following string exhibits a candidate solution to Example 2.4 in tagged form that is also a
solution in tagged form:

®For technical reasons having to do with the details of the constructions given in Sections 3 and 4, we will also work with some slight
variants of (2.7). For instance, in Section 3 we use a version of (2.7) in which each occurrence of “{” is immediately preceded by two
occurrences of the symbol e, and each occurrence of “}” is immediately followed by two occurrences of e.

10

Laatrafuaasnhnimm ki Lok (2.9)

3. AN UNDECIDABLE FAMILY OF L-PATH PROBLEM INSTANCES

In this section, we show how to formulate P-PCP in graph-theoretic terms. In particular, we construct an
undecidable family of L-path problem instances, where each problem instance corresponds to an instance
of P-PCP. Throughout the remainder of the paper, we assume that we have been given a fixed, but arbitrary,
instance of P-PCP consisting of the k pairs of strings

X :Xllxz,...,)’(k
YR = g vk
Our interest in P-PCP is motivated by the fact that a string that exhibits a P-PCP solution in tagged form
has two interleaved patterns of matched delimiters:
(i) Thestring %, X, % === % #Y -~ -+ Vi iy is in L(balanced).
(ii) The string {il{iz---{ij "'{im#}im : --}ij ---}iz}il is in L(balanced’), the language of balanced
strings made up of {i and }i, for 1 <i <k, defined by the following linear context-free grammar:

balanced’” — {, balanced’ } fori<i<k
| C# b fori<i<k
It is important to note that, in general, in a string that exhibits a P-PCP solution in tagged form, the two
balancing processes can be out of sync. For instance, in the following prefix of string (2.9)

{Laafrafsfiaasnt

the last symbol, namely }1 does not match with the seventh-from-last symbol, namely “[”. However, we
can capture the structure of P-PCP solutions in tagged form via the intersection of two linear context-free
languages:

(i) The language L(S;) consists of strings of L(balanced) with an arbitrary number of symbols of the

form *q,;” interspersed among the open-parenthesis and open-bracket symbols, and an arbitrary num-
ber of symbols of the form }I interspersed among the close-parenthesis and close-bracket symbols:
S - (S)

Il [S]]

| (#)

| [#1]

| {{ s forisisk

|

S} foris<is<k

(if) The language L(S,) consists of all possible candidate solutions, in tagged form, to the given instance
of P-PCP:

ss - {{x Sy} foi<ic<k
I { xo# R} forl<isk

Languages L(S;) and L(S,) capture the two interleaved patterns of matched delimiters noted above: L(S;)
consists of all possible candidate solutions, in tagged form, to the given instance of P-PCP; L(S;) consists
of strings such that when all {. and }, symbols are excluded, we are left with a string in L(balanced).
Furthermore, the language L(S;) n L(S,) consists of exactly the solutions, in tagged form, to the given
instance of P-PCP. For instance, for Example 2.4, strings (2.8) and (2.9) are both in L(S;), but only
string (2.9) is in L(S,); that is,

Laaforafif.aasnhnnim ki D 0LS) o LS.

Similar to what we observed for the language L(S;) n L(balanced), the given instance of P-PCP has a solu-
tion exactly when the language L(S;) n L(S,) is non-empty.

11

We now show how to construct a graph (with two distinguished vertices, s and t) such that there is an
L(S) n L(S;)-path from sto t if and only if the given instance of P-PCP has a solution. Fig. 1 shows a

schematlc dlagram that illustrates the construction. For an instance of P-PCP X = Xy, Xp, -+, Xj, -+, Xy,
=yR Y5 yJ .-+, YR, the graph contains k regions of the form
el Te
(i i

(«——o . .<-_.<.....‘........
o—p o co—Ppor"

#

Call the left part of such a region an x-string segment, and the right part a yR-string segment. Note that the

j" %-string segment begins with the sequence e{ whereas the j™ yR-string segment ends with the

Figure 1. A schematic diagram of the graph that would be constructed for an instance of P-PCP
X = %y, Kooy Ky K YOS YROYR - R R,

12

sequence “}je". The dotted edges labeled e around the outsides of Fig. 1 serve to connect each x-string
segment to all of the other x-string segments, and each yR-string segment to all of the other yR-string seg-
ments. Any number of X-string segments can be concatenated together to form a path in any order; how-
ever, each such segment is labeled in the word of the path by the appropriate { symbol. Similarly, any
number of yR-string segments can be concatenated together to form a path in any order; however, each such
segment is labeled in the word of the path by the appropriate } symbol.

The fact that certain edges in Fig. 1 are dotted has no special significance; they are displayed in this way
to highlight the fact that these edges correspond to interprocedural data-dependence edges in dependence
graphs. This correspondence will be made clear in Section 4 (cf. Fig. 4).

By following one of the edges that is labeled with “#”, a path can pass from an X-string segment to a
yR-string segment. However, once a #-edge is taken, the path can only be extended with yR-string seg-
ments. Consequently, all paths from sto t are of the form:

e - # R o e
s ——= some number of x-string segments ——= some number of y"-string segments —— t

Here we see the reason for the remark made in footnote 6: In the word of a path from s to t, each occur-
rence of “q” is immediately preceded by two occurrences of the symbol e, and each occurrence of “¢” is
immediately followed by two occurrences of e. Technically, the definition of a (candidate) P-PCP solution
in tagged form should be changed accordingly, and also each occurrence of “q,” in grammars S; and S,
should be replaced with “ee{i”, and each occurrence of }I should be replaced with }I ee’.

We now observe that

o If there is an L(S;) n L(S;)-path P from sto t, a solution to the instance of P-PCP can be read off from
the word of P by reading it as a P-PCP solution in tagged form.

* If the instance of P-PCP has the solution iy, ip, -+, ij, -+, im, then we can find an L(S;) n L(S,)-path P
from sto t by

(i) following the e edge from s,

(i) choosing x-string segments in the order X; , X;,, ---, X, -+, X;_, thereby generating a subpath
whose word is e{il Xi, ee{i2 X, = ee{ij Xi - -ee{im Xi

(iii) following the #-edge from the i‘n*?, X-string segment to the i‘n'} yR-string segment,

(iv) choosing yR-string segments in the order vy, ---, yff, -+, y&, yi, thereby generating a subpath
whose word is yR }; ee- - N }ij ee-yR} eeyR} e

(v) following the eedge to t.

The word of this path exhibits the solution to the instance of P-PCP in tagged form (modulo the extra

occurrences of €). As we observed earlier, L(S;) n L(S;) consists of exactly the solutions, in tagged

form, to the given instance of P-PCP. Hence, the path constructed above is an L(S;) n L(S;)-path from s
to t.

We shall call a graph constructed in the manner described above a P-PCP graph. For the particular case
of the instance of P-PCP introduced in Example 2.4, the corresponding P-PCP graph is shown in Fig. 2.
The above observations prove the following lemma:

LEMMA 3.1. Given an instance of P-PCP (with corresponding grammars S, and S,, and P-PCP graph
G), thereisan L(S;) n L(S,)-path fromstot in G if and only if the instance of P-PCP has a solution.

4. UNDECIDABILITY OF CONTEXT-SENSITIVE, STRUCTURE-TRANSMITTED DATA-DEPEN-
DENCE ANALYSIS

In this section, we show how a slight modification of the construction presented in the previous section
implies that it would be impossible to create a precise algorithm for context-sensitive, structure-transmitted
data-dependence analysis. In particular, we construct a family of programs whose data-dependence graphs
encode the P-PCP graphs.

— 1:3 —

N
e,
L%

Figure 2. The P-PCP graph that would be constructed for the instance of P-PCP given in Example 2.4. This graph
contains an L(S;) n L(S;)-path from sto t whose word is

ee{ ([([ee{,[([ee{;lI[ee{, ([(I#]) } ee)11I]) }seell) }eel) } ee,

which indicates that the instance of P-PCP given in Example 2.4 has the solution 1, 2, 3, 1.

For instance, Fig. 3 shows a C program fragment whose data-dependence graph (see Fig. 4) corresponds
to the instance of P-PCP given in Example 2.4. A context-sensitive, structure-transmitted data-dependence
analysis should report that variable x may have the value at om(" A") at program point t (which corre-
sponds to the fact that this instance of P-PCP has the solution 1, 2, 3, 1). In Fig. 3, the symbols {J and
}] correspond to data dependences associated with the call from procedure f to procedure fj and the
return from fj to f, respectively; the symbol “(” corresponds to a data construction in which the value is
placed in the first position of a cons; the symbol “[” corresponds to a data construction in which the value
is placed in the second position of a cons; the symbol “)” corresponds to a selection via car ; the symbol
“1” corresponds to a selection via cdr . Data dependences associated with calls to procedure f are labeled
by symbols of the form “<,”; data dependences associated with corresponding returns from f are labeled by
“».”: the symbol “#” corresponds to a data dependence that occurs when a (recursive) call on f is finally

14

bypassed.’

When inspecting Fig. 3, the reader should keep in mind that the left-to-right encoding of a string—where
a string consists of either all open parentheses or all closed parentheses—corresponds to working one’s way
out from the inner occurrence of x in the expression that encodes the string.

The idea illustrated in Figs. 3 and 4 carries over to all instances of P-PCP: In general, the pair of strings
Xj, ij is encoded by a procedure of the form

Li st *x;
void f1() {
x = cons(NULL, cons(cons(NULL, cons(x, NULL)), NULL)); /* Encodes ([([*/
if (..) {
} f0);
x = car(cdr(x)); /* Encodes]) */
}
void f2() {
x = cons(NULL, cons(cons(NULL, x), NULL)); /* Encodes [(] */
if (..) {
} f0);
x = car(cdr(cdr(x))); /* Encodes]]) */
}
void f3() {
x = cons(NULL, cons(NULL, cons(NULL, x))); /* Encodes [[] */
if (..) {
} f0);
x = car(cdr(cdr(cdr(cdr(car(cdr(x))))))); /* Encodes 1)1]111) */
}
void f() {
if (. . .) f1();
elseif (. . .) f2();
el se 13();

void main() {

s: x = atom("A"); /* A special value used nowhere else in the program*/
f0);
t: /* Could x be atonm("A") here? */
}

Figure 3. The C program scheme that would be constructed for the instance of P-PCP given in Example 2.4. The rele-
vant part of this program’s data-dependence graph is shown in Fig. 4.

"The role of the labels “{” and)" is similar to that of { and } respectively, in that both kinds of parenthesis pairs encode proce-

dure call/return. However, € and) have been introduced as separate symbols to emphasize the fact that the calls to procedure f play a
different role in the construction than the calls to the f j procedures.

15

void fj() {
x = cons(...X...); /* Construction expression encoding X; */
if (.. .) {
fO);
}
Xx =...car(...cdr(...Xx...)...)...; [* Selection expression encodi ng y? */
}
Procedure f has the form
void f() {
if (.. .) f1(0);
elseif (. . .) f2(0);
elseif (. . .) fk-1();
el se fk();
}

Procedure mai n is the same as in Fig. 3.

The undecidability of context-sensitive, structure-transmitted data-dependence analysis follows from two
properties: (i) the data-dependence graph for a program of the form given above is very much like the P-
PCP graph for the given instance of P-PCP (see Fig. 1), and (ii) variable x can have the value at on(" A")
at program point t if and only if there is a path from s to t whose word is in a language very similar to
L(S;) n L(S,) (except that {’s and >’s must also be balanced).

For instance, the portion of the data-dependence graph shown in Fig. 4 (for the program given in Fig. 3)
is identical to the P-PCP graph shown in Fig. 2, except that certain dotted edges, corresponding to calls to f
and returns from f , now have labels of the form (i or 7.8 Therefore, the path language of interest for iden-

tifying context-sensitive, structure-transmitted data dependences must now incorporate the labels <; and ;
(for 0 =i < k). Formally, this is accomplished by considering L(S;") n L(S,')-paths, where the grammars
S,' and S, are defined as follows:

S’ - e " e

S" - (")
| [S"]
| (#)
| [#]
| e{ s foric<ick
| < s forl<i<k
| s} e forisis<k
| S) forl<is<k

" > ef{ x ("N yW}e forisisk

i i e forl<i<k
We also change the notion of a P-PCP solution in tagged form to one in which each occurrence of X;
(except for the innermost one) is immediately followed by an occurrence of ;, and each occurrence of yR

(except for the innermost one) is immediately preceded by an occurrence of);.

®The only elements omitted from the data-dependence graph shown in Fig. 4 concern dependences on NULL. These are irrelevant to
the question of how at on{ " A") flows through the program—and to our embedding of P-PCP graphs in data-dependence graphs.

16

Figure 4. Relevant parts of the data-dependence graph for the program shown in Fig. 3. This corresponds to the P-
PCP graph shown in Fig. 2, except that certain dotted edges now have labels of the form (i or ;.

By the same argument used to prove Lemma 3.1, there is an L(S;") n L(S,")-path from s to t in the data-
dependence graph if and only if the given instance of P-PCP has a solution. Therefore, a context-sensitive,
structure-transmitted data-dependence analysis would determine that x could have the value at on{" A")
at program point t if and only if the given instance of P-PCP has a solution. Consequently, context-sensi-
tive, structure-transmitted data-dependence analysis is undecidable (i.e., an algorithm for context-sensitive,
structure-transmitted data-dependence analysis cannot exist).

5. CONCLUSIONS AND IMPLICATIONS FOR OTHER PROGRAM-ANALYSIS FRAMEWORKS

Earlier work by the author and his colleagues has demonstrated the usefulness of formulating program-
analysis problems in terms of graph-reachability questions [32]. This approach has been used to obtain a
number of positive results about program-analysis problems (specifically, polynomial-time algorithms for
solving a variety of different problems [15,28,30,16,29,34,25]). The present paper demonstrates that this
viewpoint is also valuable from the standpoint of obtaining negative results about program-analysis prob-
lems (see also [31]).

The undecidability result in this paper concerns a situation in which there are two interleaved patterns of
matching “events”. Viewed more broadly, the notions of “interleaved matched-parenthesis paths” and “P-
PCP solutions in tagged form” are two concepts that can provide insight into whether other program-analy-
sis problems are undecidable. For instance, Ramalingam showed recently that synchronization-sensitive,
context-sensitive interprocedural analysis of multi-tasking concurrent programs is undecidable [27]. His

17

result was inspired by the one given in the present paper, using the insight that synchronization-sensitive,
context-sensitive interprocedural analysis also involves two interleaved patterns of matching events.

Set Constraints and Set-Based Analysis

Following earlier work by Reynolds [33] and Jones and Muchnick [18], a number of people in recent years
have explored the use of set constraints for analyzing programs. Set constraints are typically used to collect
a superset of the set of values that the program’s variables may hold during execution. Typically, a set vari-
able is created for each program variable at each program point; set constraints are generated that approxi-
mate the program’s behavior; program analysis then becomes a problem of finding the least solution of the
set-constraint problem. Set constraints have been used both for program analysis [33,18,1,11,12], and for
type inference [2,3].

Melski and Reps have obtained a number of results on the relationship between certain classes of set
constraints and CFL-reachability [25]. Their results establish relationships in both directions: They showed
that CFL-reachability problems and a subclass of what have been called definite set constraints [10] are
equivalent. That is, given a CFL-reachability problem, it is possible to construct a set-constraint problem
whose answer gives the solution to the CFL-reachability problem; likewise, given a set-constraint problem,
it is possible to construct a CFL-reachability problem whose answer gives the solution to the set-constraint
problem. It is also shown in [25] that CFL-reachability is equivalent to a class of set constraints that was
designed to be useful for (context-insensitive) analysis of programs written in a higher-order language—so-
called “set-based analysis” [11]. The results of Sections 3 and 4 imply that if you start with a version of
context-insensitive set-based analysis that is at least as precise as the context-insensitive structure-transmit-
ted data-dependence analysis illustrated in Example 1.5, then it is impossible to create an algorithm for the
context-sensitive version of your set-based analysis, even for a first-order language.

Control-Flow Analysis

In [35], Sharir and Pnueli defined two methods for carrying out interprocedural dataflow analysis so as to
ensure that the propagation of dataflow information respects the fact that when a procedure finishes it
returns to the site of the most recent call. In one of their methods, the so-called “call-strings approach”,
each piece of dataflow information is tagged with a call string that records the history of uncompleted pro-
cedure calls along which that data has propagated. The call string on a piece of information is updated
whenever a propagation step associated with a call statement or return statement is performed. The infor-
mation that would be obtained, in principle, if call strings were allowed to grow arbitrarily long is called the
call-strings-oo solution.

Sharir and Pnueli show that, for distributive dataflow-analysis problems over a finite semilattice, it is pos-
sible to restrict the length of call strings to some fixed length (where the bound on the length required is
quadratic in the size of the lattice and linear in the number of call sites in the program) and yet still obtain a
result that is equivalent in precision to the call-strings-co solution. By suitable means, approximate (but
safe) solutions can also be obtained using shorter call strings; limiting call strings to length k defines the
call-strings-k solution.

In considering algorithms for interprocedural dataflow analysis, one should be careful not to confuse two
separate issues:

(i) Whether an algorithm computes a solution equal in precision to the call-strings-oo solution.

(i) Whether an algorithm computes its solution by actually tracking entities labeled by call strings (e.g.,
of some length k).

A type-(ii) algorithm typically has worst-case running time that is exponential in k. However, for suitably
restricted classes of interprocedural dataflow-analysis problems, there are algorithms with property (i), yet

18

their worst-case running times are polynomial in the size of the program;® these algorithms use dynamic
programming, rather than utilizing entities labeled with explicit call strings [30,34]. For the same class of
problems, a type-(ii) algorithm will, in general, have exponential running time.

These results provide an interesting contrast with those that have been obtained on a program-analysis
problem of interest to the functional-programming community: the problem of “k-CFA”, or “control-flow
analysis” (for higher-order programming languages) using call strings of length k [36,17,13,26]. The goal
of control-flow analysis is to track data and control flow in the presence of first-class (anonymous) func-
tions, data constructors, and selectors. Many of the algorithms that have been given for k-CFA are type-(ii)
algorithms (in the sense mentioned above), in that they actually track entities labeled by call strings of
length < k. In general, the running time of these algorithms is exponential in k.

Similar to the concept of the call-strings-oco solution to an interprocedural dataflow-analysis problem, the
00-CFA solution is what would be obtained, in principle, if call strings were allowed to grow arbitrarily
long. The results of Sections 3 and 4 imply that, in general, when data constructors and selectors are to be
taken into account, co-CFA is undecidable. That is, in the presence of data constructors and selectors, the
00-CFA solution cannot be computed.

ACKNOWLEDGEMENTS

I am grateful for discussions that | had about the problem with F. Nielson, G. Ramalingam, S. Horwitz, and
D. Melski.

REFERENCES

1. Aiken, A. and Murphy, B.R., “Implementing regular tree expressions,” pp. 427-447 in Func. Prog. and Comp. Arch., Fifth ACM
Conf., (Cambridge, MA, Aug. 26-30, 1991), Lec. Notes in Comp. Sci., Vol. 523, ed. J. Hughes, Springer-Verlag, New York, NY
(1991).

2. Aiken, A. and Murphy, B.R., “Static type inference in a dynamically typed language,” pp. 279-290 in Conf. Rec. of the Eighteenth
ACM Symp. on Princ. of Prog. Lang., (Orlando, FL, Jan. 1991), ACM, New York, NY (1991).

3. Aiken, A. and Wimmers, E.L., “Type inclusion constraints and type inference,” pp. 31-41 in Sxth Conf. on Func. Prog. and
Comp. Arch., (Copenhagen, Denmark), (June 1993).

4. Callahan, D., “The program summary graph and flow-sensitive interprocedural data flow analysis,” Proc. of the ACM SIGPLAN
88 Conf. on Prog. Lang. Design and Implementation, (Atlanta, GA, June 22-24, 1988), SIGPLAN Not. 23(7) pp. 47-56 (July
1988).

5. Cooper, K.D. and Kennedy, K., “Interprocedural side-effect analysis in linear time,” Proc. of the ACM SSGPLAN 88 Conf. on
Prog. Lang. Design and Implementation, (Atlanta, GA, June 22-24, 1988), SSGPLAN Not. 23(7) pp. 57-66 (July 1988).

6. Cooper, K.D. and Kennedy, K., “Fast interprocedural alias analysis,” pp. 49-59 in Conf. Rec. of the Sxteenth ACM Symp. on
Princ. of Prog. Lang., (Austin, TX, Jan. 11-13, 1989), ACM, New York, NY (1989).

7. Emami, M., Ghiya, R., and Hendren, L.J., “Context-sensitive interprocedural points-to analysis in the presence of function point-
ers,” Proc. of the ACM SIGPLAN 94 Conf. on Prog. Lang. Design and Implementation, (Orlando, FL, June 22-24, 1994), S G-
PLAN Not. 29(6) pp. 242-256 (June 1994).

8. Harrison, M.A., Introduction to Formal Language Theory, Addison-Wesley, Reading, MA (1978).

9. Hecht, M.S., Flow Analysis of Computer Programs, North-Holland, New York, NY (1977).

®In their Theorem 7-3.4, Sharir and Pnueli establish that the greatest fixed point of a certain set of equations equals the meet-over-all-
valid-paths (MOVP) solution. In their Theorem 7-4.6, they establish that the MOVP solution equals the call-strings-oo solution. As
for algorithms, Sharir and Pnueli give a worklist algorithm for finding the greatest fixed point of the set of equations. However, Sec-
tion 7-3 of [35] presents a fairly general framework: in particular, the only assumption about the semilattice is that it is finite. Because
of the way their dynamic-programming algorithm tabulates information, when the size of the semilattice is exponential in the size of
the program, the algorithm may use time exponential in the size of the program.

To achieve a polynomial time bound, the tricks are:

« To restrict attention to a certain class of semilattices. However, this class can include semilattices whose size is exponential in the
size of the program (e.g., the powerset of the program points, the powerset of the program’s variables, etc.).

« To tabulate the Sharir-Pnueli ¢ functions pointwise (e.g., on singletons, rather than entire sets).

This is essentially what is done in [30] for the class of finite-distributive-subset problems, and in [34] for the larger class of distributive
environment problems.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

217.

28.

29.

30.

31
32.

33.

34.

35.

36.

37.

38.

19

Heintze, N. and Jaffar, J., “A decision procedure for a class of set constraints,” Tech. Rep. CMU-CS-91-110, School of Computer
Science, Carnegie Mellon Univ., Pittsburgh, PA (1991).

Heintze, N., “Set-based analysis of ML programs,” Tech. Rep. CMU-CS-93-193, School of Computer Science, Carnegie Mellon
Univ., Pittsburgh, PA (July 1993).

Heintze, N. and Jaffar, J., “Set constraints and set-based analysis,” in 2nd Workshop on Principles and Practice of Constraint Pro-
gramming, (May 1994).

Heintze, N. and McAllester, D., “Linear-time subtransitive control flow analysis,” Proc. of the ACM SIGPLAN 97 Conf. on Prog.
Lang. Design and Implementation, (Las Vegas, Nevada, June 15-18, 1997), SSGPLAN Not. 32(5) pp. 261-272 (May 1997).
Hopcroft, J.E. and Ullman, J.D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA
(1979).

Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,” ACM Trans. Program. Lang. Syst.
12(1) pp. 26-60 (Jan. 1990).

Horwitz, S., Reps, T., and Sagiv, M., “Demand interprocedural dataflow analysis,” SGSOFT 95: Proc. of the Third ACM SG-
SOFT Symp. on the Found. of Softw. Eng., (Wash., DC, Oct. 10-13, 1995), ACM SIGSOFT Softw. Eng. Notes 20(4) pp. 104-115
(1995).

Jagannathan, S. and Weeks, S., “A unified treatment of flow analysis in higher-order languages,” pp. 393-406 in Conf. Rec. of the
Twenty-Second ACM Symp. on Princ. of Prog. Lang., (San Francisco, CA, Jan. 23-25, 1995), ACM, New York, NY (1995).
Jones, N.D. and Muchnick, S.S., “Flow analysis and optimization of Lisp-like structures,” pp. 102-131 in Program Flow Analy-
sis: Theory and Applications, ed. S.S. Muchnick and N.D. Jones, Prentice-Hall, Englewood Cliffs, NJ (1981).

Khedker, U.P. and Dhamdhere, D.M., “A generalized theory of bit vector data flow analysis,” ACM Trans. Program. Lang. Syst.
16(5) pp. 1472-1511 (Sept. 1994).

Kou, L.T., “On live-dead analysis for global data flow problems,” J. ACM 24(3) pp. 473-483 (July 1977).

Kuck, D.J., The Sructure of Computers and Computations, Vol. 1, John Wiley & Sons, New York, NY (1978).

Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs and compiler optimizations,” pp. 207-218
in Conf. Rec. of the Eighth ACM Symp. on Princ. of Prog. Lang., (Williamsburg, VA, Jan. 26-28, 1981), ACM, New York, NY
(1981).

Lewis, H.R. and Papadimitriou, C.H., Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, NJ (1981).
McCarthy, J., “A basis for a mathematical theory of computation,” pp. 33-70 in Computer Programming and Formal Systems, ed.
Braffort and Hershberg, North-Holland, Amsterdam (1963).

Melski, D. and Reps, T., “Interconvertibility of a class of set constraints and context-free language reachability,” Theor. Comp.
ci. 248(1-2)(Nov. 2000). (To appear.)

Nielson, F. and Nielson, H.R., “Infinitary control flow analysis: A collecting semantics for closure analysis,” pp. 332-345 in Conf.
Rec. of the Twenty-Fourth ACM Symp. on Princ. of Prog. Lang., (Paris, France, Jan. 15-17, 1997), ACM, New York, NY (1997).
Ramalingam, G., “Context-sensitive synchronization-sensitive analysis is undecidable,” Res. Rep. RC 21493, IBM T.J. Watson
Res. Cent., Yorktown Heights, NY (May 1999).

Reps, T., Horwitz, S., Sagiv, M., and Rosay, G., “Speeding up slicing,” SSGSOFT 94: Proc. of the Second ACM SIGSOFT Symp.
on the Found. of Softw. Eng., (New Orleans, LA, Dec. 7-9, 1994), ACM SIGSOFT Softw. Eng. Notes 19(5) pp. 11-20 (Dec. 1994).
Reps, T., “Shape analysis as a generalized path problem,” pp. 1-11 in Proc. of the ACM SIGPLAN Symp. on Part. Eval. and
Sem.-Based Prog. Manip. (PEPM 95), (La Jolla, California, June 21-23, 1995), ACM, New York, NY (1995).

Reps, T., Horwitz, S., and Sagiv, M., “Precise interprocedural dataflow analysis via graph reachability,” pp. 49-61 in Conf. Rec. of
the Twenty-Second ACM Symp. on Princ. of Prog. Lang., (San Francisco, CA, Jan. 23-25, 1995), ACM, New York, NY (1995).
Reps, T., “On the sequential nature of interprocedural program-analysis problems,” Acta Inf. 33 pp. 739-757 (1996).

Reps, T., “Program analysis via graph reachability,” Information and Software Technology 40(11-12) pp. 701-726 Elsevier Sci-
ence, (Nov./Dec. 1998).

Reynolds, J.C., “Automatic computation of data set definitions,” pp. 456-461 in Information Processing 68: Proc. of the IFIP
Congress 68, North-Holland, New York, NY (1968).

Sagiv, M., Reps, T., and Horwitz, S., “Precise interprocedural dataflow analysis with applications to constant propagation,” Theor.
Comp. Sci. 167 pp. 131-170 (1996).

Sharir, M. and Pnueli, A., “Two approaches to interprocedural data flow analysis,” pp. 189-233 in Program Flow Analysis: The-
ory and Applications, ed. S.S. Muchnick and N.D. Jones, Prentice-Hall, Englewood Cliffs, NJ (1981).

Shivers, O., “Control flow analysis in Scheme,” Proc. of the ACM SSIGPLAN 88 Conf. on Prog. Lang. Design and I mplementation,
(Atlanta, GA, June 22-24, 1988), SIGPLAN Not. 23(7) pp. 164-174 (July 1988).

Wilson, R.P. and Lam, M.S., “Efficient context-sensitive pointer analysis for C programs,” Proc. of the ACM SIGPLAN 95 Conf.
on Prog. Lang. Design and Implementation, (La Jolla, CA, June 18-21, 1995), SSIGPLAN Not. 30(6) pp. 1-12 (June 1995).
Yannakakis, M., “Graph-theoretic methods in database theory,” pp. 230-242 in Proc. of the Ninth ACM Symp. on Princ. of
Database Syst., (1990).

The Undecidability of Aliasing

G. RAMALINGAM
IBM T. J. Watson Research Center

Alias analysis is a prerequisite for performing most of the common program analyses such as
reaching-definitions analysis or live-variables analysis. Landi [1992] recently established that it
is impossible to compute statically precise alias information—either may-alias or must-alias—in
languages with if statements, loops, dynamic storage, and recursive data structures: more
precisely, he showed that the may-alias relation is not recursive, while the must-alias relation is
not even recursively enumerable. This article presents simpler proofs of the same results.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization; F.4.1 [Mathematical Logie]: Computability Theory; F.4.3 [Fermal Languages]:
Decision Problems

General Terms: Languages, Theory

Additional Key Words and Phrases: Alias analysis, pointer analysis

1. INTRODUCTION

Compilers and various other programming tools make good use of static
program analysis. To solve most program analysis problems, such as the
problem of determining live variables, one requires alias information, or
information about whether two L-valued expressions may/must have the
same value at some program point. Informally, two names or L-valued
expressions are said to alias each other at a particular point during program
execution if both refer to the same location. In the may-alias problem, one is
interested in identifying aliases that can occur during some execution of the
program, while in the must-alias problem, one is interested in identifying
aliases that occur in all executions of the program. Obviously, such informa-
tion is relevant to most dataflow analysis problems.

Program analysis is commonly performed under the conservative assump-
tion that all paths in the program are executable, since the problem of
deciding if an arbitrary path in a program is executable is undecidable. This
simplifying assumption makes it possible to solve a number of program
analysis problems. Unfortunately, even this assumption is not sufficient to
make the may-alias or must-alias problem decidable.

Author’s address: IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY
10598.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republich, requires a fee and /or
specific permission.

© 1994 ACM 0164-0925 /94 /0900-1467 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994, Pages 1467-1471.

1468 . G. Ramalingam

Names a and b are said to may-alias each other at a program point if
there exists a path P from the program entry to that program point, such
that @ and b refer to the same location after execution along path P. Names
a and b are said to must-alias each other at a program point if, for all paths
P from the program beginning to the program point, @ and b both refer to the
same location after execution along path P. Landi [1992] recently established
that even the simpler intraprocedural versions of the may-alias and must-alias
problems are undecidable for languages that permit recursive data structures
to be built. Here, we present a simpler proof of the same result. We establish
the undecidability of this problem by reducing the Post’s Correspondence
Problem, or PCP, to the may-alias problem. Section 2 of the article presents
proofs of the undecidability results, while Section 3 discusses related work.

2. THE UNDECIDABILITY OF ALIASING

The decision version of the may-alias problem is the following: given a
program point in a program and two names, decide if the may-alias relation
holds between the given names at the given program point. More generally,
we are interested in generating the set of all may-alias facts that hold true.
This set can be made finite by restricting attention to the names and
L-valued expressions that occur in the program.

Definition 2.1. The Post’s Correspondence Problem, or PCP is the follow-
ing: Given arbitrary lists A and B of r strings each in {0, 1}, say

A=w,,wy,...,Ww,
B=2z,29,...,2,
does there exist a nonempty sequence of integers i, i,,...,1, such that
Wi Wiy " Wy, = 24, Z5 0 2y

THEOREM 2.2. The PCP is undecidable | Hopcroft and Ullman 1979].

THEOREM 2.3. The intraprocedural may-alias problem is undecidable for
languages with if statements, loops, dynamic storage, and recursive data
structures.

Proor. We relate PCP to the may-alias problem as follows. Consider a
binary tree with root root. A binary string consisting of Os and 1s can be
interpreted as representing a path from the root of the binary tree with 0
representing a left branch and 1 a right branch. Define branch(0) to be left
and branch(1) to be right. For any binary string b,b; --- b,, define
path(byb, - b,) to be branch(b,) — branch{b,;) = - —= branch(b,). Let «
and B be two binary strings. Then, « = 8 iff root — path(e) and root —
path() refer to the same node in the binary tree. Essentially, this is the idea
behind our reduction of PCP to the may-alias problem.

Given an instance of PCP, we construct the program in Figure 1. The
program is written in C, but it can be written in any language with if
statements, loops, dynamic storage, and recursive data structures. The may-

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

The Undecidability of Aliasing . 1469

alias relation holds between *(q — left) and node at line 39 iff the given
instance of PCP has a solution, as explained below. Ignore, for the moment,
lines 7 through 19, and assume that root points to a binary tree at line 20.
There are r different branches inside the loop of lines 22 through 35—num-
ber these branches 1 through r. Any path P in the program from line 20 to
line 36 that iterates through the loop (lines 22 through 35) ¢ times corre-
sponds to a sequence o of ¢ integers, where the jth element in the sequence
denotes the branch taken during the jth time through the loop. Furthermore,
*p and *q will alias each other at the end of path P iff the sequence ¢ is a
solution to the given PCP instance, provided that root pointed to a “suffi-
ciently large” binary tree at line 20.

Instead of actually constructing a binary tree, we use the code in lines 9
through 19 to “generate” all possible paths through a binary tree. In doing
this, the pointer fields of newly allocated tree nodes are not initialized to a
null pointer as might be done usually. Instead, these fields are initialized to
point to a special node called undefined whose left and right fields are
initialized to point to itself. This ensures that every possible path from the
program beginning to line 36 can be executed without raising any errors such
as dereferencing a null pointer. Consequently, at line 36, either pointer p has
a “proper value” and points to some node allocated in line 12 or 15, or pointer
p points to the node undefined. The same claim holds true for pointer q.
Consequently, the given instance of PCP has a solution iff there exists some
execution path to line 36, at the end of which p = g # &undefined. Checking
for this condition can be converted into checking for a may-alias fact using
line 38. Obviously, the may-alias relation holds between *(g — left) and node
at line 39 iff the given instance of PCP has a solution. O

The may-alias relation, however, is recursively enumerable because we can
enumerate all paths in the program, and for any given path, we can deter-
mine the aliases that hold after execution along that path.

THEOREM 2.4. The intraprocedural must-alids problem is undecidable for
languages with if statements, loops, dynamic storage, and recursive data
structures. The intraprocedural must-alias relation is not even recursively
enumerable.

Proor. The undecidability of the must-alias problem follows immediately
from the undecidability of the may-alias problem. Congider Figure 1. Line 40
shows how must-alias information can be used to compute may-alias informa-
tion. The must-alias relation holds between node and *(node.left) in line 41
iff the may-alias relation does not hold between node and *(g — left) in line
39. The complement of a recursively enumerable but nonrecursive set is not
recursively enumerable. It follows that the must-alias relation is not even
recursively enumerable. O

3. RELATED WORK

Kam and Ullman [1977] established that the problem of computing the
meet-over-all-paths solution to a monotonic dataflow analysis framework, or
monotone MOP problem, is undecidable by reducing a modified version of

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

1470 . G. Ramalingam

[1] main() {

2] int i
3] struct tree_node |{
{4] int value;
5} struct tree_node *left, *right;
[6] } *root, *p, *q, *1, node, undefined,
7] undefined.left = &undefined; undefined.right = &undefined;
8] root = mailoc(sizeof(struct tree_node)); root—>left = &undefined; root—>right = &undefined,
9] t = root;
[10] while (<+) {
(11 ifC)
[12] t—>right = malloc(sizeof(struct tree_node));
{13] t = t—>right;
[14] } else {
[15] t—>left = malloc(sizeof(struct tree_node));
[16] t = t—>left;
[17] }
(18] t—>left = &undefined; t->right = &undefined;
[19] }
[20] p = root;
[21} q = root;
[22] do {
[23] i=
[24] if (i==1){
[25] p =p—>path(w,); @ = q—> path(z,);
[26] } else if (i ==2) {
[27] p = p—> path(w,); q = q—> path(z,);
[28] }else if (i ==3) {
[30] } else if (i == r-1) {
[31] p = p—> path(w,_,); q = g—> path(z,_,);
[32] } else {
[33] p = p—> path(w,); q = g—> path(z,);
(34] }
[35] } while (-)
[36] /* The given PCP instance has an affirmative answer iff 3 some execution path to this point after
{371 * which p = q # &undefined. */
[38] p—>left = &node; undefined.left = &undefined;
[39] /* The given PCP instance has an affirmative answer iff *(q—>left) may-alias node ar this poinr. */
[40] node.left = &node; g—>left—>left = &undefined;
[41] /* node must-alias *(node.left) here iff not *(q—>left) may-alias node in line 39. */
(421}
Fig. 1. The program corresponding to an instance w,,...,w,, z4,..., z, of the PCP problem.

Note that path(a) is an abbreviation for a sequence of dereferences through the left and right
fields as determined by the binary string o.

PCP to the monotone MOP problem. The proof presented in this article is
similar to the proof of Kam and Ullman. However, as Kam and Ullman
observe, their result says only that no algorithm that solves any monotonic
dataflow analysis problem exists. However, they do not rule out the existence
of algorithms for a specific monotonic dataflow analysis problem, such as the
may-alias problem. In other words, the meet-over-all-paths problem for arbi-
trary monotonic dataflow analysis frameworks is more general than the
may-alias problem. Consequently, the undecidability of the latter problem is
a stronger result than the undecidability of the former problem.

Larus [1988; 1989] showed that alias analysis was NP-hard in languages
with recursive data structures. Landi [1992] presented the first proof that the

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

The Undecidability of Aliasing . 1471

may-alias problem is not recursive and that the must-alias problem is not
even recursively enumerable. He established these results by reducing the
halting problem to these problems, and this article presents simpler proofs
for the same results.

In the absence of recursively defined data structures, various versions of
the aliasing problems become decidable, but remain difficult. Myers [1981]
showed that many interprocedural static-analysis problems are NP-complete.
Refer to Landi’s thesis [1991] for a comprehensive classification of the
complexity of various restricted versions of the aliasing problems. Not sur-
prisingly, the problem of computing conservative approximations to the may-
alias and must-alias relations in the presence of pointers has attracted and
continues to attract much attention. Pfeiffer’s thesis [1991] presents a com-
prehensive overview of this area. Refer to Landi and Ryder [1992] and Choi et
al. [1993] for more recent work in this area.

ACKNOWLEDGMENTS

The author thanks the anonymous referees, Charles Fischer, and William
Landi for their comments, which helped improve this article and made the
proofs more precise.

REFERENCES

Cuor, J.-D., BURKE, M. G. AND CARINI, P. 1993. Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In Conference Record of the 20th ACM
Symposium on Principles of Programming Languages (Charleston, S. Carolina). ACM, New
York, 232-245.

HopcrorT, J. E. aND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Mass.

Kam, J. B. anp UrLLman, J. D. 1977. Monotone data flow analysis frameworks. In Acta
Informatica 7, 305-317.

Lanpi, W. 1992. Undecidability of static analysis. 1992. Lett. Program. Lang. Syst. 1, 4
(Dec).

Lanpr, W. 1991, Interprocedural aliasing in the presence of pointers. Ph.D. thesis, Dept. of
Computer Science, Rutgers Univ., New Brunswick, N.dJ.

Lanpr, W. anD RYDER, B. G. 1992. A safe approximate algorithm for pointer-induced aliasing.
SIGPLAN Not. 27, 7 (July), 235-248,

Larus, J. R, 1989. Restructuring symbolic programs for concurrent execution on multiproces-
sors. Ph.D. thesis, Univ. of California, Berkeley, Calif. (May).

Larus, J. R. anp HiurFINnGer, P. N. 1988. Detecting conflicts between structure accesses.
SIGPLAN Not. 23, 7 (July), 21-34.

Mvers, E. 1981. A precise inter-procedural data flow algorithm. In Conference Record of the
8th ACM Symposium on Principles of Programming Languages (Williamsburg, Va., Jan.
26-28). ACM, New York.

PrEIFFER, P. 1991. Dependence-based representations for programs with reference variables.
Ph.D. dissertation and Tech. Rep. TR-1037, Computer Sciences Dept., Univ. of Wisconsin,
Madison, Wis. (Aug.).

Received June 1993; revised October 1993 and March 1994; accepted May 1994

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

A Generalized Theory of Bit Vector Data
Flow Analysis

UDAY P. KHEDKER and DHANANJAY M. DHAMDHERE
Indian Institute of Technology

The classical theory of data flow analysis, which has its roots in unidirectional flows, is
inadequate to characterize bidirectional data flow problems. We present a generalized theory of
bit vector data flow analysis which explains the known results in unidirectional and bidirectional
data flows and provides a deeper insight into the process of data flow analysis. Based on the
theory, we develop a worklist-based generic algorithm which is uniformly applicable to unidirec-
tional and bidirectional data flow problems. It is simple, versatile, and easy to adapt for a specific
problem. We show that the theory and the algorithm are applicable to all bounded monotone
data flow problems which possess the property of the separability of solution.

The theory yields valuable information about the complexity of data flow analysis. We show
that the complexity of worklist-based iterative analysis is the same for unidirectional and
bidirectional problems. We also define a measure of the complexity of round-robin iterative
analysis. This measure, called width, is uniformly applicable to unidirectional and bidirectional
problems and provides a tighter bound for unidirectional problems than the traditional measure
of depth. Other applications include explanation of isolated results in efficient solution tech-
niques and motivation of new techniques for bidirectional flows. In particular, we discuss edge
splitting and edge placement and develop a feasibility criterion for decomposition of a bidirec-
tional flow into a sequence of unidirectional flows.

Categories and Subject Descriptors: D.3.4 [Programming Languagesl|: Processors—compilers;
optimization; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—complexity of proof procedures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Bidirectional data flows, data flow analysis, data flow
frameworks

1. INTRODUCTION

Data flow analysis is the process of collecting information about the uses and
definitions of data items in a program. This information is put to a variety of
uses, viz., program design, debugging, optimization, maintenance, and docu-

This work was done when the first author was a research student at the Indian Institute of
Technology.

Authors’” addresses: U. P. Khedkar, Department of Computer Science, University of Poona, Pune
411 007, India; email: uday@pucsd.ernet.in; D. M. Dhamdhere, Department of Computer Science
and Engineering, Indian Institute of Technology, Bombay 400 076, India; email:
dmd@ecse.iitb.ernet.in.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or
specific permission.

© 1994 ACM 0164-0925 /94 /0900-1472 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994, Pages 1472-1511.

Bit Vector Data Flow Analysis . 1473

mentation. Compilers typically use data flow analysis to collect information
for the purpose of code optimization.

Data flows used in code optimization involve unidirectional dependencies
mostly 1.e., the data flow information available at a node in the program flow
graph 1s influenced either by its predecessors or by its successors. Such data
flows can be readily classified into forward and backward data flows [Aho et
al. 1986]. In bidirectional problems, the information available at a node
depends on its predecessors as well as its successors. The Morel and Renvoise
Algorithm for partial redundancy elimination [Morel and Renvoise 1979]
(also called MRA) is a representative bidirectional problem. The advantage of
bidirectional problems is that they unify several optimizations reducing both
the size and the running time of an optimizer. For example, MRA unifies the
traditional optimizations of code movement, common-subexpression elimina-
tion, and loop optimization. The Composite Hoisting and Strength Reduction
Algorithm [Joshi and Dhamdhere 1982a; 1982b] unifies code movement,
strength reduction, and loop optimization.

Though bidirectional data flow problems have been known for over a
decade, it has not been possible to explain the intricacies of bidirectional
flows using the traditional theory of data flow analysis. Although a fixed-point
solution for a bidirectional problem exists, the flow of information and the
safety of an assignment cannot be characterized formally. Because of this
theoretical lacuna, efficient solutions to bidirectional problems have not been
found though some isolated and ad hoc results have been obtained
[Dhamdhere 1988a; Dhamdhere and Patil 1993; Dhamdhere et al. 1992].

In this article we present a theory which handles undirectional as well as
bidirectional data flow problems uniformly. Apart from explaining the known
results in unidirectional and bidirectional flows, it provides deeper insights
into the process of data flow analysis. Though the exposition of the theory is
based on the bit vector problems, the theory is applicable to all bounded
monotone data flow problems which possess the property of separability of
solution. Several proofs have been omitted from the article for brevity; they
can be found in Khedker and Dhamdhere [1992].

Section 2 introduces MRA which is used as a representative example
throughout the article. Section 3 reviews the classical theory of data flow
analysis. Section 4 defines bit vector problems formally, generalizes the
traditional concepts, and provides generic data flow equations which facili-
tate uniform specification of data flow problems. A worklist-based generic
algorithm is developed in Section 5. Arising out of a generalized theory, it is
uniformly applicable to unidirectional and bidirectional data flow problems.
This section also analyses the performance of the generic algorithm and
shows that the complexity of the worklist-based iterative analysis is the same
for unidirectional and bidirectional problems.

!Data flow analysis can be either interprocedural or intraprocedural. We restrict ourselves to
the latter in this article except that the interprocedural information at the entry/exit of a
procedure ig considered for analyzing data flows within the procedure.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

1474 . U. P. Khedker and D. M. Dhamdhere

Section 6 discusses several applications of the generalized theory in the
complexity of data flow analysis. A new measure called the width (w) of a
graph for a data flow framework is defined which is shown to bound the
number of iterations of round-robin analysis for unidirectional and bidirec-
tional problems. We show that the width provides a tighter bound for
unidirectional problems than the traditional measure of depth. This section
also explains several known results in the solution of bidirectional data flows,
viz., edge splitting and edge placement, and develops a feasibility criterion for
decomposition of bidirectional flows into a sequence of unidirectional flows.
Section 7 discusses the significance and applicability of the results presented
in this article.

2. BIDIRECTIONAL DATA FLOWS: AN EXAMPLE

This section introduces the Morel and Renvoise Algorithm (MRA) [Morel and
Renvoise 1979] for partial redundancy elimination which is used as a repre-
sentative bidirectional problem throughout the article.

MRA unifies the traditional optimizations of code movement, common-sub-
expression elimination, and loop optimization. The importance of the MRA
framework lies in the fact that unification of many classical optimizations
reduces the size as well as the running time of an optimizer; a 35% reduction
in the size and a 30% to 70% reduction in the execution cost has been
reported in the literature [Morel and Renvoise 1979]. It has been imple-
mented in at least two important production compilers (MIPS and PL.8) and
has inspired several other unifications [Chow 1988; Dhamdhere 1988a; Joshi
and Dhamdhere 1982a; 1982b].

The data flow properties and the data flow equations for MRA are given in
Figure 1. Note that PPIN, 1s the bit vector for node : which represents the
property PPIN; for all expressions, whereas PPIN! is the bit representing the
expression e;.

Local property ANTLOC! represents local anticipability, i.e., the existence
of an upward exposed expression e, in node i, while TRANSP/ reflects
transparency, i.e., the absence of definition(s) of any operand(s) of e, in the
node. The global property of anticipability (ANTIN!/ANTOUT/) indicates
whether expression e, is very busy at the entry/exit of node i—a necessary
and sufficient condition for the safety of placing an evaluation of e; at the
entry/exit of the node [Kennedy 1972]. Equations (1) and (2) do not use
ANTIN!/ANTOUT/ properties explicitly; they are implied by PPIN! /PPOUT/
properties. The data flow property of availability (AVINL.Z/AVOUTL-Z) is com-
puted using the classical forward data flow problem [Aho et al. 1986]. The
partial redundancy of an expression is represented by the partial availability
of the expression (PAVIN!) at the entry of node i. PPIN! indicates the
feasibility of placing an evaluation of e, at the entry of i while PPOUT/
indicates the feasibility of placing it at the exit. Computations of an expres-
sion e, are inserted at the exit of node ¢ if INSERT/ = T. REDUND! indicates
that the upward exposed occurrence of e; in node i is redundant and may be
deleted.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

Bit Vector Data Flow Analysis . 1475

LOCAL DATA FLOW PROPERTIES :

ANTLOC! Node i contains a computation of e, not preceded by a definition
of any of its operands.
COMP! Node i contains a computation of e;, not followed by a definition
of any of its operands.
TRANSP! Node i does not contain a definition of any operand of e;.
GLOBAL DATA FLOW PROPERTIES :
AVIN!/AVOUT! ¢, is available at the entry/exit of node i.
PAVIN!/PAVOUT! ¢, is partially available at the entry/exit of node i.
ANTIN!/ANTOUT! ¢, is anticipated at the entry/exit of node 1.
PPIN!/PPOUT! Computation of e; may be placed at the entry/exit of node 1.
INSERT! Computation of ; should be inserted at the exit of node i.
REDUND! First computation of e existing in node 1 is redundant.

DATA FLOW EQUATIONS :

PPIN; = PAVIN, . (ANTLOC; + TRANSP, - PPOUT,)- (1)
I[(avout, + PPOUT,)
j € pred(z)
PPOUT; = [(PPINy) ()
k € suce(i)

INSERT; = PPOUT;-—-AVOUT, (-PPIN; + —=TRANSP,)
REDUND; = PPIN, - ANTLOC;

Fig. 1. The Morel-Renvoise algorithm.

The PPIN, equation is slightly different from the original equation in MRA;
the term ANTIN, - (PAVIN, + - ANTLOC, - TRANSP,) in the original MRA
equations is replaced by the term PAVIN, to prohibit redundant hoisting
when the expression is not partially available. The PAVIN, term represents
the profitability of hoisting in that there exists at least one possible execu-
tion path along which the expression is computed more than once. The other
two terms in the PPIN, equation represent the feasibility of hoisting.

Bidirectional dependencies of MRA arise as follows. Redundancy of an
expression is based on the notion of availability of the expression which gives
rise to forward data flow dependencies (reflected by the IT term in the PPIN;
equation). The safety of code movement is based on the notion of anticipabil-
ity of the expression which introduces backward dependencies in the data
flow problem (reflected by the I'T term in the PPOUT, equation).

Example 2.1. Consider the program flow graph in Figure 2. The partial
redundancy elimination performed by MRA subsumes the following three
optimizations:

—Loop-Invariant Movement: The computations of a a + b in node 4 and node
5 are hoisted out of the loops and are inserted in node 2 (REDUND.,
REDUNDY, and INSERT}, are T).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

1476 . U. P. Khedker and D. M. Dhamdhere

[—Node [Transp | Antloc | Pavin [Avout || Ppin | Ppout || Insert | Redund |

SlE{a]o|ef~| o] v| s wroj—~
il ie ol bt e
=l lells lolies e Fe Bl Do Reot hoo! R
il B Do s Lo B S et e
s e o5 = T P o' e 5
e e e S B I I T e
{3) | e | el e 3| o
| | | | | | e | | e s
o1t TS ey NS R S e e

Fig. 2. Program flow graph and properties for Example 2.1.

—Code Hoisting: The partially redundant computation of @ * & in node 12 is
hoisted to node 7. As a result of suppressing this partial redundancy, the
path 1-8-11-12 would have only orne computation of a * b; the unoptimized
program has two.

—Common-Subexpression Elimination: The totally redundant computation of
a#* b in node 6 is deleted as an instance of common-subexpression elimina-
tion.

Note that the partially redundant computation ¢+ 5 in node 11 is not
suppressed since hoisting it to node 8 would be unsafe—the path 1-8-9 had
no computation of @ * b in the original program.

Example 2.2. Bidirectional data flows have been used also in register
assignment and strength reduction optimizations. Figure 3 presents the data
flow equations of two such algorithms. The SPPIN /SPPOUT problem of LSIA

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

Bit Vector Data Flow Analysis . 1477

o BASIC LOAD STORE INSERTION ALGORITHM (LSIA) [Dhamdhere 1988b)]
spPIN; = [[(sppPouUT))
J € pred(i)
SPPOUT; = DPANTOUT; - (DCOMP; + DTRANSP; - SPPIN;) -

II (DANTIN. + SPPIN,)
k € succ(i)

|

o COMPOSITE HOISTING AND STRENGTH REDUCTION ALGORITHM (CHSA) [Joshi and
Dhamdhere 1982a; Joshi and Dhamdhere 1982b]

NOCOMIN; = CONSTA; - NOCOMOUT; +

> CONSTB; - NOCOMOUT;
J € pred(7)
NOCOMOUT; = CONSTC; + CONSTD; - NOCOMIN; +
Z CONSTE, - NOCOMIN,
k € succ(s)

Fig. 3. Data flow equations of some other bidirectional problems.

performs sinking of STORE instructions using partial redundancy elimina-
tion techniques [Dhamdhere 1988b]. The NOCOMIN /NOCOMOUT problem
of CHSA is used to inhibit the placement of an update computation following
a high-strength computation [Joshi and Dhamdhere 1982a; 1982b].

3. NOTIONS FROM CLASSICAL DATA FLOW ANALYSIS

This section presents an overview of the classical theory of data flow analysis
and compares various solution methods and their complexities. Our descrip-
tion is based mostly on Graham and Wegman [1976], Hecht [1977], and
Marlowe and Ryder [1990]. A more detailed treatment can be found in Aho et
al. [1986], Graham and Wegman [1976], Hecht [1977], Kam and Ullman
[1977], Kildall [1973], Marlowe and Ryder [1990], and Rosen [1980]. The
concluding part of this section motivates the need for a more general setting.

3.1 Preliminaries

A data flow framework is defined as a triple D = (&, 1 ,.%) (Figure 4).
Elements in .# represent the information associated with the entry/exit of a
basic block. 1 is the set union or intersection operation which determines the
way the global information is combined when it reaches a basic block. A

function f; € & represents the effect on the information as it flows through
basic block i.”

Alternatively, the functions can be associated with in-edges (out-edges) of node i for forward
(backward) flow problems.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

Stack Size Analysis for

Interrupt-driven Programs !

Krishnendu Chatterjee® Di Ma ¢ Rupak Majumdar ©
Tian Zhao? Thomas A. Henzinger ®® Jens Palsberg ©*

& Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, USA
{c_krish,tah} @eecs.berkeley.edu

bSchool of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne, Switzerland

¢Department of Computer Science
Purdue University, West Lafayette, IN 47907, USA
madi@cs.purdue. edu

dDepartment of Computer Science
University of Wisconsin, Milwaukee, WI 58211, USA
tzhao@cs.uwm. edu

¢ Department of Computer Science
University of California, Los Angeles, CA 90095, USA
{rupak,palsberg} @cs.ucla.edu

Abstract

We study the problem of determining stack boundedness and the exact maximum
stack size for three classes of interrupt-driven programs. Interrupt-driven programs
are used in many real-time applications that require responsive interrupt handling.
In order to ensure responsiveness, programmers often enable interrupt processing in
the body of lower-priority interrupt handlers. In such programs a programming error
can allow interrupt handlers to be interrupted in a cyclic fashion to lead to an un-
bounded stack, causing the system to crash. For a restricted class of interrupt-driven
programs, we show that there is a polynomial-time procedure to check stack bound-
edness, while determining the exact maximum stack size is PSPACE-complete. For
a larger class of programs, the two problems are both PSPACE-complete, and for
the largest class of programs we consider, the two problems are PSPACE-hard and
can be solved in exponential time. While the complexities are high, our algorithms
are exponential only in the number of handlers, and polynomial in the size of the
program.

Key words: Program analysis, stack bounds, interrupt programs.

Preprint submitted to Elsevier Science 27 April 2004

1 Introduction

Most embedded software runs on resource-constrained processors, often for
economic reasons. Once the processor, RAM, etc. have been chosen for an
embedded system, the programmer has to fit everything into the available
space. For example, on a Z86 processor, the stack exists in the 256 bytes of
register space, and it is crucial that the program does not overflow the stack,
corrupting other data. Estimating the stack size used by a program is therefore
of paramount interest to the correct operation of these systems. A tight upper
bound is necessary to check if the program fits into the available memory,
and to prevent precious system resources (e.g., registers) from being allocated
unnecessarily.

Stack size analysis is particularly challenging for interrupt-driven software.
Interrupt-driven software is often used in embedded real-time applications
that require fast response to external events. Such programs usually have a
fixed number of external interrupt sources, and for each interrupt source, a
handler that services the interrupt. When an external interrupt occurs, control
is transferred automatically to the corresponding handler if interrupt process-
ing is enabled. To maintain fast response, interrupts should be enabled most of
the time, in particular, higher-priority interrupts are enabled in lower-priority
handlers. Interrupt handling uses stack space: when a handler is called, a re-
turn address is placed on the stack, and if the handler itself gets interrupted,
then another return address is placed on the stack, and so on. A programming
error occurs when the interrupt handlers can interrupt each other indefinitely,
leading to an unbounded stack. Moreover, since stack boundedness violations
may occur only for particular interrupt sequences, these errors are difficult
to replicate and debug, and standard testing is often inadequate. Therefore,
algorithms that statically check for stack boundedness and automatically pro-
vide precise bounds on the maximum stack size will be important development
tools for interrupt-driven systems.

In this paper, we provide algorithms for the following two problems (defined
formally in Section 2.3) for a large class of interrupt-driven programs:

e Stack boundedness problem. Given an interrupt-driven program, the
stack boundedness problem asks if the stack size is bounded by a finite
constant. More precisely, given a program p, the stack boundedness problem
returns “yes” if there exists a finite integer K such that on all executions of

A preliminary version of this paper appeared in the Proceedings of the Static Anal-
ysis Symposium (SAS 2003), Lecture Notes in Computer Science 2694, Springer-
Verlag, pages 109-126, 2003.

* Corresponding Author

the program p, the stack size never grows beyond K, and “no” if no such
K exists.

e Exact maximum stack size problem. Given an interrupt-driven pro-
gram, the exact maximum stack size problem asks for the maximum possible
stack size. More precisely, given a program p, the exact maximum stack size
problem returns an integer K such that for all executions of the program
p, the stack size never grows beyond K, and such that there is a possible
schedule of interrupts and an execution of the program p such that the stack
size becomes K; the problem returns oo if there is an execution where the
stack can grow unbounded.

We model interrupt-driven programs in the untyped interrupt calculus of Pals-
berg and Ma [4]. The interrupt calculus contains essential constructs for pro-
gramming interrupt-driven systems. For example, we have found that the cal-
culus can express the core aspects of seven commercial micro-controllers from
Greenhill Manufacturing Ltd. A program in the calculus consists of a main
part and some interrupt handlers. In the spirit of such processors as the Intel
MCS-51 family (8051, etc.), Motorola Dragonball (68000 family), and Zilog
786, the interrupt calculus supports an interrupt mask register (imr). An imr
value consists of a master bit and one bit for each interrupt source. For ex-
ample, the Motorola Dragonball processor can handle 22 interrupt sources.
An interrupt handler is enabled, if both the master bit and the bit for that
interrupt handler is set. When an interrupt handler is called, a return address
is stored on the stack, and the master bit is automatically turned off. At the
time of return, the master bit is turned back on (however, the handler can
turn the master bit on at any point). A program execution has access to:

e the interrupt mask register, which can be updated during computation,
e a stack for storing return addresses, and
e a memory of integer variables; output is done via memory-mapped 1/0O.

Each element on the stack is a return address. When we measure the size of
the stack, we simply count the number of elements on the stack. Our analy-
sis is approximate: when doing the analysis, we ignore the memory of integer
variables and the program statements that manipulate this memory. In partic-
ular, we assume that both branches of a conditional depending on the memory
state can be taken. Of course, all the problems analyzed in this paper become
undecidable if integer variables are considered in the analysis, since we can
then easily encode two-counter machines.

We consider three versions of Palsberg and Ma’s interrupt calculus, here pre-
sented in increasing order of generality:

e Monotonic programs. These are interrupt calculus programs that satisfy
the following monotonicity restriction: when a handler is called with an imr

Calculus | Problem Complexity Reference
Monotonic | Stack boundedness NLOGSPACE-complete Theorem 7
Exact maximum stack size PSPACE-complete Theorems 13,25
Monotonic | Stack boundedness PSPACE-complete Theorems 22,25
(enriched) | Exact maximum stack size PSPACE-complete Theorems 13,25
Enriched Stack boundedness PSPACE-hard, EXPTIME | Theorems 22,30
Exact maximum stack size | PSPACE-hard, EXPTIME | Theorems 13,30
Table 1

Complexity results

value tmry, then it returns with an imr value imr, such that imr, < imry,
where < is the logical bitwise implication ordering. In other words, every
interrupt that is enabled upon return of a handler must have been enabled
when the handler was called (but could have possibly been disabled during
the execution of the handler).

e Monotonic enriched programs. This calculus enriches Palsberg and
Ma’s calculus with conditionals on the interrupt mask register. The mono-
tonicity restriction from above is retained.

e Enriched programs. These are programs in the enriched calculus, without
the monotonicity restriction.

We summarize our results in Table 1. We have determined the complexity of
stack boundedness and exact maximum stack size both for monotonic pro-
grams and for monotonic programs enriched with tests. For general programs
enriched with tests, we have a PSPACE lower bound and an EXPTIME upper
bound for both problems; tightening this gap remains an open problem. While
the complexities are high, our algorithms are polynomial (linear or cubic) in
the size of the program, and exponential only in the number of interrupts. In
other words, our algorithms are polynomial if the number of interrupts is fixed.
Since most real systems have a fixed small number of interrupts (for example
Motorola Dragonball processor handles 22 interrupt sources), and the size of
programs is the limiting factor, we believe the algorithms should be tractable
in practice. Experiments are needed to settle this.

We reduce the stack boundedness and exact stack size problems to state
space exploration problems over certain graphs constructed from the interrupt-
driven program. We then use the structure of the graph to provide algorithms
for the two problems. Our first insight is that for monotonic programs, the
maximum stack bounds are attained without any intermediate handler re-
turn. The polynomial-time algorithm for monotonic programs is reduced to
searching for cycles in a graph; the polynomial-space algorithm for determin-
ing the exact maximum stack size of monotonic enriched programs is based
on finding the longest path in a (possibly exponential) acyclic graph. Finally,

we can reduce the stack boundedness problem and exact maximum stack size
problem for enriched programs to finding context-free cycles and context-free
longest paths in graphs. Our EXPTIME algorithm for enriched programs is
based on a novel technique to find the longest context-free path in a DAG. Our
lower bounds are obtained by reductions from reachability in a DAG (which is
NLOGSPACE-complete), satisfiability of quantified boolean formulas (which
is PSPACE-complete), and reachability for polynomial-space Turing Machines
(which is PSPACE-complete). We also provide algorithms that determine,
given an interrupt-driven program, whether it is monotonic. In the nonen-
riched case, monotonicity can be checked in polynomial time (NLOGSPACE);
in the enriched case, in co-NP. In Section 2, we recall the interrupt calculus
of Palsberg and Ma [4]. In Section 3, we consider monotonic programs, in
Section 4, we consider monotonic enriched programs, and in Section 5, we
consider enriched programs without the monotonicity restriction.

1.1 Related Work

Brylow, Damgaard, and Palsberg [1] do stack size analysis of a suite of micro-
controller programs by running a context-free reachability algorithm for model
checking. They use, essentially, the same abstraction that our EXPTIME al-
gorithm uses for enriched programs. Our paper gives more algorithmic details
and clarifies that the complexity is exponential in the number of handlers.

Palsberg and Ma [4] present a type system and a type checking algorithm for
the interrupt calculus that guarantees stack boundedness and certifies that the
stack size is within a given bound. Each type contains information about the
stack size and serves as documentation of the program. However, this requires
extensive annotations from the programmer (especially since the types can be
exponential in the number of handlers), and the required type information is
absent in legacy programs. Our work can be seen as related to type inference
for the interrupt calculus. In particular, we check stack properties of programs
without annotations. From our algorithms, we should be able to infer the types
of [4]. It remains to be seen whether our algorithms can be as successful on
legacy programs as the algorithm of Brylow, Damgaard, and Palsberg [1].

Regehr, Reid, and Webb [8] integrated a stack size analysis in the style of
[1] with aggressive abstract interpretation of ALU operations and conditional
branches, and they showed how global function inlining can significantly de-
crease the stack space requirements.

Hughes, Pareto, and Sabry [3,7] use sized types to reason about liveness, ter-
mination, and space boundedness of reactive systems. However, they require
types with explicit space information, and do not address interrupt handling.

Wan, Taha, and Hudak [11] present event-driven Functional Reactive Pro-
gramming (FRP), which is designed such that the time and space behavior of
a program are necessarily bounded. However, the event-driven FRP programs
are written in continuation-style, and therefore do not need a stack. Hence
stack boundedness is not among the resource issues considered by Wan et al.

Context free reachability has been used in interprocedural program analysis
[9]. Recently, Reps, Schwoon, and Jha [10] consider context-free reachability
on weighted pushdown graphs to check security properties.

Hillebrand, Kanellakis, Mairson, Vardi [2] studied a boundedness problem that
is related to ours, namely whether the depth of recursion of a given Datalog
program is independent of the input. They showed that several variations of the
problem are undecidable. Our boundedness problem focuses on whether the
“depth of recursion” (that is, stack size) is finite under all possible inputs. The
two boundedness problems are different. The problem studied by Hillebrand et
al. is to decide whether the depth of recursion is always the same. Our problem
is about whether the “depth of recursion” is bounded across all inputs. Note
that our problem will allow the “depth of recursion” to vary with the input, as
long as there is a common bound that works for all inputs. A further difference
is that the input to a Datalog program is a finite database, while the “input”
to an interrupt-calculus program is an infinite stream of interrupts.

2 The Interrupt Calculus

2.1 Syntaz

We recall the (abstract) syntax of the interrupt calculus of [4]. We use z to
range over a set of program variables, we use imr to range over bit strings,
and we use ¢ to range over integer constants.

(program) p = (m,h)

(main) m:=loops | s; m

(handler) h ==ret | s; h

(statement) s ==z =-e€ | imr=imr Adimr | imr=imrV imr |
if0 (x) sy else so | s1; so | skip

(expression) e ==c | z | z+c | 1+ 2

The pair p = (m,jL) is an nterrupt program with main program m and in-
terrupt handlers h. The over-bar notation h denotes a sequence h; ... h, of

handlers. We use the notation h(i) = h;. We use a to range over m and h.

2.2 Semantics

We use R to denote a store, that is, a partial function mapping program
variables to integers. We use o to denote a stack generated by the grammar
o ==nil | a:: 0. We define the size of a stack as |nil| = 0 and |a :: 0| = 1+|0].

We represent the imr as a bit sequence imr = byb; . . . b,, where b; € {0,1}. The
Oth bit by is the master bit, and for ¢ > 0, the ith bit b; is the bit for interrupts
from source i, which are handled by handler i. Notice that the master bit is
the most significant bit, the bit for handler 1 is the second-most significant bit,
and so on. This layout is different from some processors, but it simplifies the
notation used later. For example, the imr value 101b means that the master
bit is set, the bit for handler 1 is not set, and the bit for handler 2 is set. We
use the notation imr(i) for bit b;. The predicate enabled is defined as

enabled(imr,i) = (imr(0) = 1) A (smr(i) = 1), i€ l.n.

We use 0 to denote the imr value where all bits are 0. We use t; to denote the
imr value where all bits are 0’s except that the ¢th bit is set to 1. We will use A
to denote bitwise logical conjunction, V to denote bitwise logical disjunction, <
to denote bitwise logical implication, and — to denote bitwise logical negation.
Notice that enabled(ty V t;,j) is true if i = j, and false otherwise. The imr
values, ordered by <, form a lattice with bottom element 0.

A program state is a tuple (h, R, imr,o,a) consisting of interrupt handlers h,
a store R, an interrupt mask register imr, a stack o of return addresses, and
a program counter a. We refer to a as the current statement; it models the
instruction pointer of a CPU. The interrupt handlers h do not change during
computation; they are part of the state to ensure that all names are defined
locally in the semantics below. We use P to range over program states. If
P = (h,R,imr,o,a), then we use the notation P.stk = o. For p = (m,h),
the initial program state for executing p is P, = (h, 2.0, 0, nil, m), where the
function Az.0 is defined on the variables that are used in the program p.

A small-step operational semantics for the language is given by the reflexive,

transitive closure of the relation — on program states:

(h,R,imr,0,a) — (h, R, imr A —tg,a :: o, h(i)) (1)
if enabled(imr, 1)

— (h, R, imr V to, ', a)

[\

(h, R, imr,a :: o', iret

w

(h, R, imr,0,loop s) — (h, R, imr, o, s;loop s)

W

(h,R,imr o,z = e;a h, R{x s evalg(e)}, imr, o, a)

ot

(h, R, imr,o,imr = imr A imr’; a
h, R, imr V imr’, o, a)

h,R,imr,o,sy;a) if R(z)
h, R, imr, o, so;a) if R(z) #

h, R, imr, o, a)

(h, R, imr, o, (if0 (x) s; else s5);a
(h, R, imr, o, (if0 (x) s; else s5);a

(h, R, imr, o, skip; a

o O
-3

oo

) —

)= (

)= (

Y —(h, R, imr A imr’, o, a)
(h, R, imr,o,imr = imr V imr'; a) — (

) —

)=

) —

Nej D
~— — T N N~ N~

where the function evalg(e) is defined as:

evalr(c) = ¢ evalp(x +¢) = R(z)+c
evalp(x) = R(z) evalg(xy + x2) = R(z1) + R(x2).

Rule (1) models that if an interrupt is enabled, then it may occur. The rule
says that if enabled(imr, 1), then it is a possible transition to push the current
statement on the stack, make h(i) the current statement, and turn off the
master bit in the imr. Notice that we make no assumptions about the inter-
rupt arrivals; any enabled interrupt can occur at any time, and conversely, no
interrupt has to occur. Rule (2) models interrupt return. The rule says that
to return from an interrupt, remove the top element of the stack, make the re-
moved top element the current statement, and turn on the master bit. Rule (3)
is an unfolding rule for loops. It implies that interrupt calculus programs do
not terminate, a feature common in reactive systems. Rules (4)—(9) are stan-
dard rules for statements. Let —™ denote the reflexive transitive closure of

—.

A program execution is a sequence P, — P, — P, — --- — P of program
states. Consider a program execution 7 of the form P, —* P, — P, —*
P; — Pjyy with P, = (h, R, imry,0,a) and P; = (h, R',imr’ o', d’). The han-
dler l_z(z) is called in v with imry, from state P; and returns with imr, from
state P; if

P, — Py = (h, R, imry A —tg,a :: o,h(i)) and enabled(imry, i),

P; — Py = (h,R,imr,,0,a) and 0’ =a :: 0,

imr = imr or 111b handler 2 {

loop { imr = imr or 111b } imr = imr and 110b

handler 1 { imr = imr or 010b
imr = imr and 101b imr = imr or 100b
imr = imr or 100b imr = imr and 101b
iret iret

} +

Fig. 1. A program in the interrupt calculus

and Py.stk # o for all © < k < j. We say that there is no handler call in
v between P; and P; if for all 7 < k < j, the transition P, — Py is not
a transition of the form (1). Similarly, given an execution P, —* P, —* P;,
there is no handler return between FP; and F; if for all ¢ < k < 7, the transition
P, — Py is not a transition of the form (2).

2.3 Stack Size Analysis

We consider the following problems of stack size analysis.

e Stack boundedness problem Given an interrupt program p, the stack
boundedness problem returns “yes” if there exists a finite integer K such
that for all program states P’, if P, —™ P’ then |P".stk| < K; and returns
“no” if there is no such K.

¢ Exact maximum stack size problem For a program state P we define
maxStackSize(P) as the least K > 0 such that for all P', if P —* P/,
then |P’.stk| < K; and “infinite” in case no such K exists. The exact
maximum stack size problem is given an interrupt program p and returns
mazxStackSize(P,).

Figure 1 shows an example of a program in the real interrupt calculus syntax,
where “A” and “V” are represented by “and” and "or” respectively. The bit
sequences such as 111b are imr constants. Notice that each of the two handlers
can be called from different program points with different imr values. The
bodies of the two handlers manipulate the imr, and both are at some point
during the execution open to the possibility of being interrupted by the other
handler. However, the maximum stack size is 3. This stack size happens if
handler 1 is first called with 111b, then handler 2 with 101b, and then handler
1 again with 110b, at which time there are three return addresses on the stack.

We shall analyze interrupt programs under the usual program analysis as-
sumption that all paths in the program are executable. More precisely, our
analysis assumes that each data assignment statement x = e in the program
has been replaced by skip, and each conditional if0 (x) s; else sy has been

replaced by if0 (%) s; else s2, where * denotes nondeterministic choice. While
this is an overapproximation of the actual set of executable paths, we avoid
trivial undecidability results for deciding if a program path is actually exe-
cutable. In the following, we assume that the relation — is defined on this
abstract program.

3 Monotonic Interrupt Programs

We first define monotonic interrupt programs and then analyze the stack
boundedness and exact maximum stack size problems for such programs. A
handler h; of program p is monotonic if for every execution v of p, if h; is
called in v with an imr value imr, and returns with an imr value imr,, then
imr, < imry,. The program p is monotonic if all handlers hy ... h, of p are
monotonic. The handler h; of p is monotonic in isolation if for every execu-
tion 7 of p, if h; is called in v with an imr value imr, from a state P; and
returns with an imr value ¢mr, from a state P; such that there is no handler
call between P; and P;, then imr, < imry,.

We first show that a program p = (m, h) is monotonic iff every handler h; € h
is monotonic in isolation. Moreover, a handler h; is monotonic in isolation iff,
whenever h; is called with imr value toVt; from state P, and returns with imr,
from state P;, with no handler calls between P; and P;, then imr, <tV t,.
These observations can be used to efficiently check if an interrupt program is
monotonic: for each handler, we check that the return value imr, of the imr
when called with ty V t; satisfies imr, <ty V t;.

Lemma 1 A program p = (m,h) is monotonic iff every handler h; € h is
monotonic in isolation.

Proof. If there is a handler h which violates monotonicity in isolation then A
is not monotonic and hence the program p is not monotonic. For the converse,
suppose that all handlers are monotonic in isolation, but the program p is not
monotonic. Consider an execution sequence v which violates the monotonicy
condition. In v, we can choose a handler h which is called with an imr value
imry and returns with an imr value imr, such that

mry 2 imr, (10)

but any handler A" which was called from within / with an imr value imry ,
returned with an imr value imr, , satistying imr,,, < imry, ,. From v we now
construct a simpler execution sequence 7' which also violates the monotonicity
condition. We construct ' by omitting from ~ all calls from within h. In +/
there are no calls between the call to h and the return of h. Each of the omitted

10

calls are monotonic, so in 7' h will return with an imr value ¢ms’. such that
imr, < imr’, (11)

Since in this sequence no handler is called from A and A is monotonic in
isolation it follows that:
imr!. < imry (12)

From (10), (11), and (12), we have a contradiction. Hence p is monotonic. i

Lemma 2 Given a program p = (m,h), a handler h; € h is monotonic in
1solation iff when h; is called with imr value ty V t; from program state P;,
and returns with imr value tmr, from program state P;, with no handler calls
between P; and P;, then imr, <ty V t;.

Proof. 1f the right-hand side of the “iff” is not satisfied, then h; is not mono-
tonic in isolation. Conversely, suppose the right-hand side of the “iff” is satis-
fied but h; is not monotonic in isolation. Suppose further that h; is called with
the imr value imr, and it follows some sequence of execution in the handler
h; to return imr., with imr, # imr!. Hence there is a bit j such that the
j-th bit is on in émr!. but the j-th bit is off in émr,. Since the conditionals do
not depend on imr, the same sequence of execution can be followed when the
handler is called with tq V t;. In this case, the return value imr, will have the
j-th bit on, and hence tq V t; 2 tmr,.. This is a contradiction. i

Proposition 3 It can be checked in linear time (NLOGSPACE) if an inter-
rupt program is monotonic.

Proof. It follows from Lemma 1 that checking monotonicity of a program p can
be achieved by checking monotonicity of the handlers in isolation. It follows
from Lemma 2 that checking monotonicity in isolation for a handler h; can
be achieved by checking if h; is monotonic when called with ¢;. Thus checking
monotonicity is just checking the return value of the imr when called with
t;. This can be achieved in polynomial time by a standard bitvector dataflow
analysis. Since the conditionals do not test the value of imr, we can join the
dataflow information (i.e., bits of the imr) at merge points. It is clear that
finding bit by bit the return value when called with ¢; can be achieved in
NLOGSPACE. &

3.1 Stack Boundedness

We now analyze the complexity of stack boundedness of monotonic programs.
Our main insight is that the maximum stack size is achieved without any in-
termediate handler returns. First observe that if handler A is enabled when
the imr is #mry, then it is enabled for all imr imry > imr;. We argue the case

11

where the maximum stack size is finite, the same argument can be formalized
in case the maximum stack size is infinite. Fix an execution sequence that
achieves the maximum stack size. Let h be the last handler that returned in
this sequence (if there is no such h then we are done). Let the sequence of
statements executed be sg, s1,...5;_1,5i,...5j, Sj+1, ... where s; was the start-
ing statement of i and s; the iret statement of h. Suppose h was called with
1imr, and returned with ¢mr, such that imr, < imr,. Consider the execution
sequence of statements sg, s1,...5;_1, 511, .. . with the execution of handler h
being omitted. In the first execution sequence the imr value while executing
statement s;;4 is #mr, and in the second sequence the imr value is ¥mry. Since
imr, < imrp then repeating the same sequence of statements and same se-
quence of calls to handlers with h omitted gives the same stack size. Following
a similar argument, we can show that all handlers that return intermediately
can be omitted without changing the maximum stack size attained.

Lemma 4 For a monotonic program p, let Pn.. be a program state such that
P, —* Puax and for any state P', if P, —™ P’ then |Ppax.stk| > | P .stk|.
Then there is a program state P" such that P, —* P", |P".stk| = | Puax.stk|,
and there is no handler return between P, and P".

We now give a polynomial-time algorithm for the stack boundedness problem
for monotonic programs. The algorithm reduces the stack boundedness ques-
tion to the presence of cycles in the enabled graph of a program. Let hy ... h,
be the n handlers of the program. Given the code of the handlers, we build
the enabled graph G = (V, E) as follows.

e There is a node for each handler, i.e., V = {hy, ho,... hy}.
e Let the instructions of h; be C; = 41,19, ...%,,. There is an edge between
(hi, h;) if any of the following conditions holds.

(1) There is [, k such that [< k, the instruction at 4; is imr = imr V imr with
to < imr, the instruction at i is imr = imrV imr with t; < ¢mr and for all
statements i,, between i; and i, if i,, is imr = imr A émr then to < imr.

(2) There is I, k such that [< k, the instruction at ¢; is imr = imr V imr with
t; < @mr, the instruction at ¢ is imr = imrV iémr with ¢y < émr and for all
statements i,, between ¢; and iy, if i, is imr = imr A imr then t; < imr.

(3) We have ¢ = j and there is [such that the instruction at ¢ is imr =
imr V imr with tg < imr and for all statements i,, between i; and i, if i,,
is imr = imr A imr then t; < imr. This gives a self-loop (h;, h;).

Since we do not model the program variables, we can analyze the code of h;
and detect all outgoing edges (h;, h;) in time linear in the length of h;. We
only need to check that there is an V statement with an imr constant with
jth bit 1 and then the master bit is turned on with no intermediate disabling
of the jth bit or vice versa. Hence the enabled graph for program p can be
constructed in time n? x |p| (where |p| denotes the length of p).

12

Lemma 5 Let G, be the enabled graph for a monotonic interrupt program p.
If G, has a cycle, then the stack is unbounded, that is, for all positive integers
K, there is a program state P' such that P, —* P’ and |P'.stk| > K.

Proof. Consider a cycle C' = (hy,, hi,, ..., hi, hi,) such that for any two con-
secutive nodes in the cycle there is an edge between them in G,. Consider
the following execution sequence. When h;, is executed, it turns h;, and the
master bit on. Then, an interrupt of type h;, occurs. When h;, is executed,
it turns on h;, and the master bit. Then, an interrupt of type h;, occurs, and
so on. Hence h;, can be called with h;, on stack and the sequence of calls can
be repeated. If there is a self-loop at the node h;, then h; can occur infinitely
many times. This is because handler h; can turn the master bit on without
disabling itself, so an infinite sequence of interrupts of type h; will make the
stack grow unbounded. B

Since cycles in the enabled graph can be found in NLOGSPACE, the stack
boundedness problem for monotonic programs is in NLOGSPACE. Note that
the enabled graph of a program can be generated on the fly in logarithmic
space. Hardness for NLOGSPACE follows from the hardness of DAG reacha-
bility.

Lemma 6 Stack Boundedness for monotonic interrupt programs s

NLOGSPACE-hard.

Proof. We reduce reachability in a DAG to the Stack Boundedness checking
problem. Given a DAG G = (V, FE) where V = {1,2,...,n} we write a program
p with n handlers hq, ho, ..., h,, as follows:

e The code of handler h; disables all handlers and then enables all its succes-
sors in the DAG and the master bit.

e the handler h,, disables all the other handlers and enables itself and the
master bit and then disables itself.

Hence the enabled graph of the program will be a DAG with only the node
n with a self-loop. So the stack size is bounded iff n is not reachable. Hence

stack boundedness checking is NLOGSPACE-hard. B

Theorem 7 Stack boundedness for monotonic interrupt programs can be
checked in time linear in the size of the program and quadratic in the num-
ber of handlers. The complexity of stack boundedness for monotonic interrupt
programs is NLOGSPACE-complete.

In case the stack is bounded, we can get a simple upper bound on the stack
size as follows. Let G, be the enabled graph for a monotonic interrupt program
p. If G, is a DAG, and the node h; of G, has order k in topological sorting
order, then we can prove by induction that the corresponding handler h; of p

13

can occur at most 281 times in the stack.

Lemma 8 Let G, be the enabled graph for a monotonic interrupt driven pro-
gram p. If G, is a DAG, and the node h; of G}, has order k in topological
sorting order, then the corresponding handler h; of p can occur at most 2%=1)
times in the stack.

Proof. We prove this by induction. Let h; be the node with order 1. It has no
predecessors in the enabled graph. No node in the enabled graph has a self-
loop, since our assumption is that the enabled graph G, is a DAG. Hence h;
must turn its bit off before turning the master bit on. Hence when h; occurs in
the stack its bit is turned off. As no other handler turns it on when the master
bit is on (since otherwise there would have been an edge to h;) it cannot occur
more than once in the stack. This proves the base case.

Consider a node h with order k. By hypothesis, all nodes with order j where
7 <k —1 can occur at most 20-1 times in the stack. Now when the node h
occurs in the stack its bit is turned off. So before it occurs again in the stack,
one of the predecessors of h must occur in the stack. Hence the number of
times h can occur in the stack is given by

1+ > Number of times its predecessors can occur
<1430 207

We get the following bound as an immediate corollary of Lemma 8. Let p =
(m, h) be a monotonic interrupt driven program with n handlers, and with
enabled graph G,. If G, is a DAG, then for any program state P’ such that
P, —* P’ we have |P'.stk| < 2" — 1. This is because the maximum length of
the stack is given by the sum of the number of times a individual handler can
be in the stack. By Lemma 8 we know a node with order j can occur at most
27=1 times. Hence the maximum length of the stack is given by

PPN |

=1

In fact, this bound is tight: there is a program with n handlers that achieves
a maximum stack size of 2" — 1. We show that starting with an imr value
of all 1’s one can achieve the maximum stack length of 2" — 1 while keeping
the stack bounded. We give an inductive strategy to achieve this. With one
handler which does not turn itself on we can have a stack length 1 starting
with imr value 11. By induction hypothesis, using n — 1 handlers starting with

14

Algorithm 1 Function MaxStackLengthBound

Input: An interrupt program p
Output: If the stack size is unbounded then oo,

else an upper bound on the maximum stack size
1. Build the Enabled Graph G from the Program p
2. If G has a cycle then the Maximum Stack Length is oo.
3. If G is a DAG then topologically sort and order nodes of G
4.1 For i «— 1to |V[G]]

4.2 For a node h with order ¢

Nlh]= 1+ NJh;] where h; is a predecessor of h

5. Upper Bound on Maximum Length of Stack=)" N[h] for all handlers h

imr value all 1’s we can achieve a stack length of 2"~! — 1. Now we add the nth
handler and modify the previous n — 1 handlers such that they do not change
the bit for the nth handler. The n-th handler turns on every bit except itself,
and then turns on the master bit. The following sequence achieves a stack
size of 2" — 1. First, the first n — 1 handlers achieve a stack size of 27! — 1
using the inductive strategy. After this, the nth handler is called. It enables
the n — 1 handlers but disables itself. Hence the sequence of stack of 271 — 1
can be repeated twice and the n the handler can occur once in the stack in
between. The total length of stack is thus 1+ (2"t —1)+ (2" 1 —-1) = 2" — 1.
Since none of the other handlers can turn the nth handler on, the stack size
is in fact bounded.

We now give a polynomial time procedure to give an upper bound on the stack
size if it is bounded. If the stack can possibly grow unbounded we report infi-
nite. If the stack is bounded we compute an upper bound N[A] on the number
of times a handler h can occur in the stack. The algorithm MaxStackLength-
Bound is shown in Algorithm 1.

Lemma 9 Function MaxStackLengthBound correctly checks the stack bound-
edness of interrupt driven programs, that is, if MaxStackLengthBound returns
oo then there is some execution of the program that causes the stack to be
unbounded. It also gives an upper bound on the number of times a handler
can occur in the stack, that is, if MaxStackBound(p) is N, then the mazimum
stack size on any execution sequence of p is bounded above by N.

Proof. 1t follows from Lemma 5 that if the enabled graph has a cycle then the
stack can grow unbounded. This is achieved by Step 2 of MaxStackLength-
Bound. It follows from Lemma 8 that the maximum number of times a handler
can occur in the stack is one plus the sum of the number of times its prede-
cessors can occur. This is achieved in Step 4 of MaxStackLengthBound. B

Lemma 10 Function MazxStackLengthBound runs in time polynomial in size

15

of the interrupt driven program.

Proof. The enabled graph can be built in time h%? x PC where h is the number
of handlers and PC' is the number of program statements. Steps 2,3 and 4 can
be achieved in time linear in the size of the enabled graph, and hence in time
linear in the size of the program. i

While MaxStackLengthBound is simple, one can construct simple examples
to show that it may exponentially overestimate the upper bound on the stack
size. We show next that this is no accident: we now prove that the exact maxi-
mum stack size problem problem is PSPACE-hard. There is a matching upper
bound: the exact maximum stack size problem can be solved in PSPACE.
We defer this algorithm to Section 4, where we solve the problem for a more
general class of programs.

3.2 Mazimum Stack Size

We now prove that the exact maximum stack size problem is PSPACE-hard.
We start with a little warm-up: first we show that the problem is both NP-hard
and co-NP hard. We show this by showing that the problem is DP-hard, where
DP is the class of all languages L such that L = Ly N Ly for some language
Ly in NP and some language Lo in co-NP [6] (note that DP is not the class
NP N co-NP [5,6]). We reduce the problem of EXACT-MAX Independent Set
of a Graph and its complement to the problem of finding the exact maximum
size of the stack of programs in interrupt calculus. The EXACT-MAX IND
problem is the following:

EXACT-MAX IND = {(G, k) the size of the maximum independent set is k}

EXACT-MAX IND is DP-complete [5]. Given an undirected graph G = (V, E)
where V' = {1,2,...,n}, we construct an interrupt-driven program as follows.
We create a handler h; for every node i. Let N; = {j : (i,j) € E} be the
neighbors of node 7 in G. The code of h; disables itself and all the handlers of
N; and then turns the master bit on. The main program enables all handlers
and then enters an empty loop. Consider the maximum stack size and the
handlers in it. First observe that once a handler is disabled, it is never re-
enabled. Hence, no handler can occur twice in the stack, as every handler
disables itself and no other handler turns it on. Let h; and h; be two handlers
in the stack such that h; occurs before h;. Then (i,j) ¢ E, since if (i,7) € £
then h; would have turned h; off, and thus h; could not have occurred in the
stack (since h; is never re-enabled). Hence if we take all the handlers that
occur in the stack the corresponding nodes in the graph form an independent
set. Consider an independent set I in G. All the handlers corresponding to
the nodes in I can occur in the stack as none of these handlers is disabled by

16

any other. We have thus proved given a stack with handlers we can construct
an independent set of size equal to the size of the stack. Conversely, given
an independent set we can construct a stack size equal to the size of the
independent set. Hence the EXACT-MAX IND problem can be reduced to the
problem of finding the exact maximum size of the stack. Hence the problem
of finding exact stack size in DP-hard. It follows that it is NP-hard and co-NP
hard.

We now give the proof of PSPACE-hardness, which is considerably more tech-
nical. We define a subclass of monotonic interrupt calculus which we call
simple interrupt calculus and show the exact maximum stack size problem is
already PSPACE-hard for this class. It follows that exact maximum stack size
is PSPACE-hard for monotonic interrupt-driven programs.

For imr’, imr"” where imr’(0) = 0 and imr”(0) = 0, define H(ims"; imr") to
be the interrupt handler

imr = imr A —imr’;

imr = imr V (to V imr");
imr = imr A =(to V imr");
iret.

A simple interrupt calculus program is an interrupt calculus program where
the main program is of the form

imr = imr V (imrg V to);
loop skip

where imrg(0) = 0 and every interrupt handler is of the form H(imr’; imr").
Intuitively, a handler of a simple interrupt calculus program first disables
some handlers, then enables other handlers and enables interrupt handling.
This opens the door to the handler being interrupted by other handlers. After
that, it disables interrupt handling, and makes sure that the handlers that
are enabled on exit are a subset of those that were enabled on entry to the
handler.

For a handler h; of the form H(imr'; imr"), we define function f;(imr) =
imr A (—imr') Vimr”. Given a simple interrupt calculus program p, we define
a directed graph G(p) = (V, F) such that

o V={imr | imr(0)=0},
o E={ (imr, f;(imr),i) | t < imr} is a set of labeled edges from imr to

filimr) with label i € {1..n}.

The edge (imr, f;(imr),i) in G(p) represents the call to the interrupt handler

17

h(i) when imr value is imr. We define imrg as the start node of G(p) and
we define M(imr) as the longest path in G(p) from node imr. The notation
M (imr) is ambiguous because it leaves the graph unspecified; however, in all
cases below, the graph in question can be inferred from the context.

Lemma 11 For a simple interrupt calculus program p, we have that
mazStackSize(P,) = |M(imrg)|.

Proof. By definition, the state of a simple interrupt program p = (m, h) is of
the form (h, 0, imr, o, a) and stack size of p increases whenever an interrupt is
handled and we have state transition of the form

(h,0,imr,o,a) — (h,0,imr A =tg,a :: o, h(i)) if imr > t; V to.

Let a;, i € {1..4} represent the four statements in the body of an interrupt
handler such that any handler is of the form a;as;as;as. By definition of
simple interrupt program., the master bit is enabled only between a, and
as, where calls to other handlers may occur. Also, after a call to a interrupt
handler returns, the imr value is always less than or equal to the imr value
before the call. Thus, during a call to handler h; with initial imr value equal
to tmr, the only possible states where interrupts maybe be handled are of
the form (h,0, imr’, o, as; as), where imr’ < f;(émr). Then, we only need to
examine state transitions of the following form to compute mazStackSize(P,):

(h,0,imr,o,a) —* (h,0,imr' a :: 0,a3;a4),
where imr’ < f;(imr) Vi, such that t; V tg < imr.
Let P = (h,0,imr,o,a) and P' = (h,0,imr’,0,a). By an easy induction on
execution sequences, we have that mazStackSize(P) < mazStackSize(P') if
imr < emr’. Therefore, it is sufficient to consider state transitions of the form

(h,0,imr,o,a) —* (h,0, fi(imr),a :: 0,a3; a),

where imr > t; V tg. In the main loop, the possible states where interrupts
may be handled are of the form

(h,0,imrg V to, nil, loop skip) and (h,0, imrg V to, nil, skip; loop skip).

Let ag be the statements of the form loop skip or skip;loop skip. To compute
mazStackSize(P,), we only need to consider transitions of the form

<B7 07 imrgs V lo, 0, a’0> —* <FL7 07 fz(”r“"s) Vg, ap it 0,as; CL4>a

18

where imrg > t;, and

_ _ . _

<h> 07 tmr, o, as; @4> - <h7 07 fj(zmr), as; a4 :: 0, agb ail)?
where imr > t; V 1.

It is now clear that we can just use tmr A —ty to represent states that
we are interested in with starting states represented by imrg. The above
two kinds of transitions can be uniquely represented by edges of the form
(imrg, fi(imrg), 1), (imr N —to, fj(imr A —tg),j) in graph G(p). Therefore,
mazStackSize(P,) is equal to the length of the longest path in G(p) from
the start node imrg. i

Lemma 12 For a simple interrupt calculus program p, and a subgraph of
G(p), we have that if imr < imry V imry, then |M(imr)| < |M(imry)| +
| M (imrs)|.

Proof. The lemma follows from the following claim. If imr < imry V imry, and
P is a path from node imr to imr’, then we can find a path P, from imr; to
imr} and a path P, from node imry to imr}, such that |P| = |Py| + |P;| and
imr’ < amr| Vimrl,.

Given this claim, the lemma following from the following reasoning. We can
apply the above claim to the situation with M(imr) as the path P from imr
to 0. Since |[M(imry)| > |Pi| and |[M(imry)| > |Ps|, we have |M(imr)| <
|IM(imry)| + | M(imrs)|.

We now prove the claim. We proceed by induction on the length of P. The
base case of |P| = 0 is trivially true. Suppose the claim is true for |P| = k and
that P’ is P appended with an edge to imr”. We need to prove the case of P’.
Since P ends at imr’, there exists t; < émr’ such that imr” = f;(imr’). By the
induction hypothesis, ¢; < imr’ < imr} V imry. Thus, there exists a € {1, 2}
such that ¢; < imr!. Suppose that ¢t; < imr)| (the case of t; < imr), is similar
and is omitted). We can let P| be P, appended with an edge to imr] where
imr] = f;(imr}). By definition of f;, we have f;(imr") < fi(imr})Vimr,. Thus,
we have |P'| = |P|+1 = |P|+ 14 |P2| = |P{| + | P:| and imr" < imr] V imr,.
|

We now show PSPACE-hardness for simple interrupt calculus. Our proof is
based on a polynomial-time reduction from the quantified boolean satisfiability

(QSAT) problem [5].

We first illustrate our reduction by a small example. Suppose we are given a
QSAT instance S = Ix,Vx; ¢ with

d=(li1 VI2) A(lr Vi) = (x2V=x1) A (X2 Vxq).

19

h(ws) h(x1) h(Z1) h(ws)

h(wl) h(lll) h(llg) h(lzl) h(lQQ) h(’u_)l)
Fig. 2. Enable relation of interrupt handlers

We construct a simple interrupt program p = (m,h) with an imr register,
where h = {h(x;), h(Z;), h(w;), h(w;), h(L;) | i,j = 1,2} are 12 handlers. The
imr contains 13 bits: a master bit, and each remaining bit 1-1 maps to each
handler in h. Let D = {;, Z;, w;, w;, li; | 4,7 = 1,2}. We use t,, where x € D,
to denote the imr value where all bits are 0’s except the bit corresponding to
handler A(x) is set to 1. The initial imr value imrg is set to imrg = t,, V tz,.

We now construct h. Let E(h(z)), * € D, be the set of handlers that h(z)
enables. This enable relation between the handlers of our example is illustrated
in Figure 2, where there is an edge from h(z;) to h(z;) iff h(z;) enables h(x;).
Let D(h(z)), x € D, be the set of handlers that h(z) disables. Let L = {h(l;;) |
i,7 =1,2}. The D(h(x)),z € D, are defined as follows:

D(h(x2)) = D(h(T2)) = {h(x2), h(Z2)} (13)
D(h(z1)) ={h(z1)} D(h(z1)) = {h(T1)} (14)
D(h(ws)) = D(h(w2)) = {h(z1), h(Z1)} U {h(ws), h(w;) [i = 1,2} U L(15)
D(h(wr)) = D(h(w1)) = {h(ws), h(w1)} U L (16)
D(h(li;)) = {h(lir), h(li2) } U{h(w) | lij = —ax} UL{h(we) | Lij =z} (17)

If h(z) = H(imr';imr”), then imr’ = Vygepn@)ly and imr” =
Vi()eD(h(z)) tz» Where x,y,2 € D. We claim that the QSAT instance S is
satisfiable iff |[M(imrg)| = 10, where imrg = t,, V tz,. We sketch the proof as
follows.

Let imr = Vpyer ti, where [€ D. From (17) and Figure 2, it can be shown
that |M(imrp)| = 2. From Figure 2, we have FE(h(zy)) = {h(w;)} U L; and
together with (16), and (17), it can be shown that

(M(te,)| = 1+ [M(tw, Vimry)] <2+ [M(@imry)| = 4

and the equality holds iff Jji, j» € 1,2, such that Iy, I, # —xq, because other-
wise handler h(w;) would be surely disabled. Similarly, it can be shown that
|IM(tz,)] <4, and that

|M(t$1 \ tf1)| S |M<t$1>| + |M(tfl)| S 8’

where the equality holds iff Jji, jo, such that lyj,, Iy, # —x; and 3}, j5, such that

20

lijr, oy, # x1. From Figure 2, we have E(h(zz)) = {h(wa), h(x1), h(71)}. Thus,

|M(tz2)| =1+ |M(tw2 Vig, V tf1)| <2+ |M(t$1 Vti1)| = 10,

and it can be shown from (15) and (17), that the equality holds iff Jjq,j»
such that lj,, lj, # —Xo, =x; and Jj},j, such that lij, i, # —%2,%1, which im-
plies that both x, = true, x; = true and x, = true, x; = false are satisfiable truth
assignments to ¢. Similarly, it can be shown that |[M(tz,)| = 10 iff both
x, = false, x; = true and x, = false, x; = false are satisfiable truth assignments

to ¢.

From (13), we have |M(t,, V tz,)| = max(|M(t.,)|, |M(tz,)|). Therefore,
|M(imrg)| = 10 iff there exists x, such that for all x1, ¢ is satisfiable, or equiv-
alently iff S is satisfiable. For our example, S is satisfiable since dx, = true such
that Vx;, ¢ is satisfiable. Correspondingly, | M (imrg)| = |[M(x2)| = 10.

Theorem 13 The exact mazximum stack size problem for monotonic interrupt
programs is PSPACE-hard.

Proof. We will do a reduction from the QSAT problem. Suppose we are given
an instance of QSAT problem

S = Jx,Van_1 ... JxVr, @,

where ¢ is a 3SAT instance in conjunctive normal form of n variables x,,, ..., z;
and L boolean clauses. Let ¢;; be the jth literal of the ith clause in ¢ and
¢ = N2y Vi_, ¢ij. We construct a program p = (m,h) and b = {h(i) | i €
{1...3L +4n} }.

As before, we define a graph G(p) = (V, E) such that V' = {imr | imr(0) = 0}
and E = {(imr, f;(imr),q) | t; < imr}, where f;(imr) = imr A —imr’ V imr”
iff A(i) = H(imr'; imr”).

For clarity, we define three kinds of indices: d;; = 3(i — 1) + j, where ¢ €
{1.L},j € {1.3}; ¢ = 3L +4i—3+a, and w} = 3L + 4i — 1 + a, where
i€{l.n},ac{0,1}.

Let
D ={dy,ds,dis | Vi € {1..L}}
D;j=A{di1,di2,diz} U{wi | (a =1AN¢;; =x1)V(a=0A¢;; = xp)}

Wi={wj | Vj € {1..i},Va € {0,1}}
Qi={q; | Vj € {1..i},Ya € {0,1}}.

We will use the abbreviation

21

imro=\/ t;, imry = ty Vig Vk € {l.n}.
i€D

Assume that n is even. For all a € {0, 1}, let

foo, (@) =2 AN—tge NV (imro_oVitys), Vke€{l.n/2}
fog, () =3 A =imrgy V (imrop—1 V tug), Vk € {1.n/2}

fuwa () =2 A = V Vk € {1.n}
1€DUQ L _1UWy

fo, (@)= n=\/ t, Vie {1..L},j € {1,2,3}.
kGDij

Given an imr value 7, we define the graph G, (p) to be the subgraph of G(p)
such that any edge labeled d;; is removed for all ¢, j such that ¢;; = -z, and
two <7, 01 ¢y = xp and 1,1 < r. We use M, (imr) to denote the longest path
in G,.(p) from imr. We organize the proof as a sequence of claims.

Claim 14 Vk € {1.5}, |[M,(imry)] = maxeeqay | M, (tg)|, and
|M.,.(imro)| < L.

Proof of Claim 14. By definition, we have that Ya € {0,1}, fi (z) = z A
—imrox V (imrog_1 V twgk), from which the claim follows.

By definition of fg,,, for each ¢ € {1..L}, M(imry) can contain at most one
edge with label d;;, where j € {1,2,3}. Thus, |M(imr)| < L.

Claim 15 ’Mr(ingk_lﬂ == Zbe{o,l} ’Mr(t)|

L
Proof of Claim 15. From Lemma 12, we have |M,(imro_q1)] <
Zbe{o,l} \Mr(tqgk_l)’-

Let P be the path from imra,_1 to ¢, constructed from M, (t,) by
replacing any node imr on M’"(tqgk_1> with émr Vi, It is straightforward

to show that if edge (imr,imr’,7) is on M,.(), then (imr Vit imr'V
1 2k—1

t,0
dop
tg i) is on P. If we concatenate P with M, (t,), then we have a path
from imrag—_y of length [M,(te)|+ [M,(t;)| W

Claim 16 |M(imr,)| < 2"/%(6 + L) — 6.

Proof of Claim 16. 1t is sufficient to prove that |M(imrq)| < 28(6 + L) — 6.
For all a € {0,1} we have:

22

(Mtgg) =1+ [M(imrag 1 V tug,)
< 2+ \M(imr%,lﬂ
=2+ > My,)l
be{0,1}
=4+ Z ’M(Z'm’f’gk,Q V twgk
be{0,1}
< 6 + 2|M(imr2k,2)|

)l

-1

[M{imray)| = max (|M(tgg)], Mg,)])

ace{0,1}
S 6 + 2|M(im7‘2k_2)|

From the last inequality and Claim 14, it is straightforward to show the claim
by induction on k.

Claim 17 For anyr and a € {0,1}, M, (tg)| = 28(6+L)—6 iff Vb € {0,1},
Moty) =2516+ L) — 4, where v/ =1V Ly, .

Proof of Claim 17. Suppose that [M,(tg)| = 2¥(6+L)—6. The path M, (ts)
must contain the edge with label w$, because otherwise

M (tge) =1+ | M (imrag—1 V tug)|
=1 + ‘Mr<im’/’2k,1>’
<14 [M(imrge_1)| <2%6+ L) — 7.

By definition of fa , for any node imr on the path M, (imrap_1 V tyg), we
have f,q (@mr) = 0. Thus, the edge labeled w, can only be the last edge on
Mr(tq;k). By definition of fg;, the longest path from imray_1 Vit,g containing
edge labeled w$,, does not contain any edge labeled d;; for all 7, j such that
¢ij = vor if a = 1, and ¢;; = —wy, if @ = 0. This path is the same path in
G (p), where 1" =1V t,0 . Therefore,

(M (tgg)| = 28(6 + L) — 6= | My (tgg,)]
=1+ My (imrap—1 V tys)|
<1+ My (imrgp—1)| + My (tug)]
=2+ Y [My(ty), and

be{0,1}

> Mty =256+ L) -8

be{0,1}
Since

23

|Mr’ (tqgk71)| =1+ |MT/(im7‘2k_2 V twgk
S 24 |Mr1(imr2k_2)|
S 2+ |./\/l(im7‘2k_2)| = 2k_1(6 + L) - 4,

)l

—1

we have Vb € {0,1}, [My(tp)| =2"1(6+L)—4.

b
2k—1
Conversely, assume that for all b € {0,1}, [My(tp)| = 216+ L) — 4
where 1" = r V t, . From Claim 2, we know that |[M,. (imro_1)| =
heqoay Mty) =2°6+L) -8

Let P be a path from @mraj—1 Vg to tyg constructed from M, (imrop_q) by
replacing any node imr on M, (imrg_;) with imrV tyg . It is straightforward
to show that if edge (imr, imr’, i) is on M, (imra—1), then (imrV tye , imr'V
tuwg ,1) is on P as well.

If we concatenate P with M, (twgk), then we have a path from imray,—1 V tye,
in graph G (p) of length 25(6 + L) — 7. Thus, [M,(tge)| = [My(tee)| =
2"(6+L)—6.1

Claim 18 For any 1’ and b € {0,1}, we have [M/(ty)| = 2816+ L) — 4
iff | Mo (imrog_)| = 25716 + L) — 6, where r" =1’V bt

Proof of Claim 18. The proof is similar to the proof of Claim 17, we omit the
details. B

Claim 19 |M(imr,)| = 2"/%(6+ L) — 6 iff Ja,Ya, 1 ... JasVa, € {0,1}, such
that for r = \ye(1.n) Ly |IM,.(imro)| = L.

Proof of Claim 19. From Claim 14, we know that |M,.(imry,)| = 2¥(6+ L) — 6
iff 3a € {0,1} such that |[M,(t,)| = 2%(6 + L) — 6. Together with Claim 17
and Claim 18, we have that for k € {1..n/2}, |IM,.(imrqy)| = 2%(6 + L) — 6 iff
there exists a € {0,1} such that forall b € {0,1}, we have | M, (imrop_o)| =
2"1(6 4+ L) — 6, where 7 = 1V tyg V bup

It is straightforward to prove by induction from k =n/2 to 1, that
IM(imr,)| =226 4+ L) — 6 iff Ja,Va,_ ... JaoVag_1,
such that | M, (imryy_o)| = 28716 4+ L) — 6, where r = \/Ty, | L,
The claim follows when £ = 1.1

Claim 20 S is satisfiable iff Ja,Van_1...3asVa; € {0,1}, we have
M. (imro)| = L, where r = Vi_; t,o.

24

Proof of Claim 20. 1t is sufficient to prove that ¢ is satisfiable iff da,,,...,a; €
{0, 1}, such that for r = \V}_,; t,or, we have | M.,.(imro)| = L.

Suppose we have ap,...,a; such that r = Vi_, f 0, |M,.(imrg)| = L. We
can construct a truth assignment 7' by defining T'(zy) = true if ay = 0 and
T'(xy) = false if ar = 1. By definition of fy,;, for each i € {1..L}, there exists
a j such that the edge labeled d;; is on M, (imr). By definition of M,., if an
edge labeled d;; is on M, (imry) and ¢;; = xy, then a,, = 0, and T'(xy,) = true;
and if ¢;; = —xy, then ay, = 1 and T'(zx) = false. T(¢;;) = true in both cases.
Therefore, T satisfies ¢.

Conversely, suppose 1" satisfies ¢. We can construct r = \/j_,; tw:k from T
by defining a, = 0 if T(z)) = true and a, = 1 if T(x;) = false. For each
i € {1..L}, there exists j such that T'(¢;;) = true, which means that the edge
labeled d;; can be on the path M, (imry). Therefore, | M, (imrg)| = L. 1

We now proceed with the proof of the theorem. We conclude

S is satisfiable

iff JanVan—y ... Jag¥ay: for r = Vit o, |IM,.(imrg)] = L (Claim 20)
iff [M(imrg)| = 2"/%(6 + L) — 6, where imrg = imr,, (Claim 19)
iff mazStackSize(P,) =2"2(6+ L) — 6 (Lemma 11),

so the exact maximum stack size problem is PSPACE-hard. B

Notice that we can combine the last part of the proof of Theorem 13 with
Claim 16 to get that S is not satisfiable iff mazStackSize(P,) < 2"/?(6+ L) —6.

4 Monotonic Enriched Interrupt Programs

We now introduce an enriched version of the interrupt calculus, where we allow
conditionals on the interrupt mask register. The conditional can test if some
bit of the imr is on, and then take the bitwise or of the imr with a constant bit
sequence; or it can test if some bit of the imr is off, and then take the bitwise
and of the imr with a constant. The syntax for enriched interrupt programs is
given by the syntax from Section 2 together with the following clauses:

(statement) s ::=--- | if(bit ¢ on) imr = imr V imr

| if(bit i off) imr = imr A imr

25

The small-step operational semantics is given below:

(h, R, imr, o,if(bit i on)imr = imr V imr';a) — (h, R, imr \V imr' o, a)

if imr(i) =1
(h, R, imr, o,if(bit i on)imr = imr V imr’;a) — (h, R, imr, 0, a)
if imr(i) =0
(h, R, imr, o, if(bit i off)imr = imr A imr’;a) — (h, R, imr A imr’, 0, a)
if imr(i) =0
(h, R, imr, o, if(bit i off)imr = imr V imr’;a) — (h, R, imr, 0, a)
if imr(i) =1

Unlike the conditional statement if0 (z) s; else sy on data that has been
overapproximated, our analysis will be path sensitive in the imr-conditional.

Proposition 21 Monotonicity of enriched interrupt programs can be checked
in time exponential in the number of handlers (in co-NP).

Proof. 1t follows from Lemma 1 that a program is monotonic iff each handler
is monotonic in isolation. To check nonmonotonicity, we guess a handler and
an imr value that shows it is nonmonotonic, and check in polynomial time
that the handler is not monotonic for that imr. B

For monotonic enriched interrupt programs, both the stack boundedness prob-
lem and the exact maximum stack size problem are PSPACE-complete. To
show this, we first show that the stack boundedness problem is PSPACE-
hard by a generic reduction from polynomial-space Turing machines. We fix a
PSPACE-complete Turing machine M. Given input x, we construct in poly-
nomial time a program p such that M accepts z iff p has an unbounded stack.
We have two handlers for each tape cell (one representing zero, and the other
representing one), and a handler for each triple (i, ¢, b) of head position 7, con-
trol state ¢, and bit b. The handlers encode the working of the Turing machine
in a standard way. The main program sets the bits corresponding to the ini-
tial state of the Turing machine, with x written on the tape. Finally, we have
an extra handler that enables itself (and so can cause an unbounded stack)
which is set only when the machine reaches an accepting state. We provide
the formal proof below.

Theorem 22 The stack boundedness problem for monotonic enriched inter-
rupt programs is PSPACE-hard.

Proof. Fix a PSPACE-complete Turing Machine M which on any input = uses
at most r(|x|) space to decide whether M accepts x, where r is a polynomial.
Given any input x, the TM M always halts and answers accept or reject. It is
PSPACE-complete to decide given M and x whether M (z) accepts or rejects

26

[5]. Let the states of M be Q = {q1, ¢, ..., :} with ¢ as the accepting state.
Given such a machine M and an input x we reduce the problem of whether ¢,
is reachable to the stack boundedness analysis of a interrupt driven program
such that the stack size is infinite iff ¢; is reachable. We construct, from M
and x a monotone interrupt program p(M,x) such that M accepts x iff the
stack of p(M, x) is unbounded.

Now we describe the #mr and handlers. The total number of bits in the imr
is 1+2xr(|z]) +2 x |Q| x r(|z|). The first (0th) bit is the master bit. There
are two bits for each position of the tape, so 2r(|z|) bits encode the tape of
the TM M. Further, the imr has one bit for every tuple (i, q, o) for each tape
position i € {1,...,r(Jz|)}, TM state ¢ € @, and symbol o € {0,1}.

For k € {1,...,7(|z])}, the k-th tape cell is stored in bits 2k — 1 and 2k. For
all 1 < k < r(]z|), the (2k — 1)-th bit is 1 and 2k-th bit is 0 if the tape cell
in the k-th position of M is 0. Similarly, or all 1 <k < r(]z|), the (2k — 1)-th
bit is 0 and 2k-th bit is 1 if the tape cell in the k-th position of M is 1.

The bit for (i,q,0) bit is turned on when the head of M is in the i-th cell,
the control is in state ¢ and o is written in the i-th cell. Formally, the bit
(2r(|z|) + 2kr(|x|) +2¢ — 1) is 1 if the head of TM M is in position i, the
TM is in state ¢, and the ith tape cell reads 0. The code for this handler
implements the transition for the TM M corresponding to (gx,0). Similarly,
the (2r(|x|) 4+ 2kr(|x|) + 2¢)-th bit is 1 if the head of TM M is in position 1,
the TM is in state g, and the ith tape cell reads 1. The code for this handler
implements the transition for the TM M corresponding to (g, 1).

The first 2 x r(|x|) handlers which encode the tape cells do not change the sta-
tus of the imr, that is, the body of the handler H; contains only the statement
iret for i =1,...,2r(|z|).

We show how to encode the transition of TM M in the code for the handler.
We first introduce some short-hand notation for readability.

e The operation write(co,?) writes o in the i-th cell tape of M. This is short-
hand for the following code:

(1) if o = 0, the code is imr = imr A —tgy;;imr = imr V toy;_1 (recall that

t; denotes the imr with all bits 0’s and only the j-th bit 1).

(2) if 0 =1, the code is imr = imr A =ty _1;imr =imr V toy;.

e The operation set(i-th bit on) sets the i-th bit of the imr on. This is short-
hand for imr = imr V t;.

e The operation set(i-th bit off) sets the i-th bit of the imr off. This is short-
hand for imr = imr A —it;.

We now give the encoding of the transition relation of the TM.

27

Handler H; {
1. set(j-th bit off);
2. write (o,1)
3. if(bit (2(¢ +1)) on) { /* Check if the (i +1)-th TM cell is 1 */
3.1 set (I-th bit on)
3.2 set (0th bit on) /* set master bit */

N

if(bit (2(4 4+ 1) — 1) on) { /* Check if the (i + 1)-th TM cell is 0 */
4.1 set ((I — 1)-th bit on)
4.2 set (Oth bit on) /* set master bit */

Ut —~

.imr = imr A 000...00..00
6. iret

Fig. 3. Code for Turing Machine transition

Main {
1l.imr=imrVe
where ¢ is an imr constant which correctly encodes
the starting configuration of M on .
2. loop skip

}

Fig. 4. Code for the main program

(1) Consider Handler H; where j = 2r(|x|) 4+ 2kr(|z|) + 2i — 1 and the tran-
sition for (g, 0) is (qw,0, R). Let | = 2r(|z|) + 2k'r(|x|) + 2(i + 1). The
code for handler H; is shown in Figure 3. Note that the two consecutive
imr,, statements in line 3.1 and 3.2 and 4.1 and 4.2 can be folded into a
single imr,, statement, we separate them for readability. We can encode
the other transition types similarly.

(2) The code for a handler H; corresponding to an accepting state sets the
master bit on, and returns.

(3) The main program initializes the imr with the initial configuration, and
enters an empty loop. The code for the main program is shown in Figure 4.

Lemma 23 If M accepts x then the stack of p(M,) grows unbounded.

Proof. We show that there is a sequence of interrupt occurrences such that a
handler corresponding to the accepting state is called. Whenever the [-th or
the (I — 1)-th bit in turned on and the master bit is turned on in lines 3.1,3.2
or 4.1,4.2 of Figure 3, an interrupt of type [or (I — 1) occurs. Hence following
this sequence a handler corresponding to the accepting state is called and then
the stack can grow unbounded as the handler sets the master bit on without
disabling itself. B

28

Lemma 24 If M halts without accepting x then the stack of p(M,x) is
bounded.

Proof. If any handler which encodes the transitions of the M (x) returns it
sets all the bits of imr to 0 (Statement 6 in Figure 3). Hence all the following
checks in the statements 3 and 4 will fail and the master bit will not be set
any further. Hence the stack would go empty. So if the stack is unbounded
then no handler which encodes the configuration of the machine M returns.
If the stack is unbounded and the accepting state is not reached then there
is a handler A which encodes the transition of the machine M and it occurs
infinitely many times in the stack. This means one of the configurations of
M (z) can be repeated. This means there is a cycle in the configuration graph
of M(x) and hence it cannot halt. But this is a contradiction, since our TM
always halts. This proves that if the accepting state is not reached then the
stack is bounded. i

From Lemmas 23, 24 the theorem follows.

We now give a PSPACE algorithm to check the exact maximum stack size.
Since we restrict our programs to be monotonic it follows from Lemma 4 that
the maximum length of the stack can be achieved with no handler returning
in between. Given a program p with m statements and n handlers, we label
the statements as pcy,...pc,. Let PC denote the set of all statements, i.e.,
PC = {pcy,...pcy}. Consider the graph G}, where there is a node v for every
statement with all possible imr values (i.e., v = (pc, imr) for some value among
PC and some imr value). Let v = (pe,imr) and v' = (pc,ims’) be two nodes
in the graph. There is an edge between v, v’ in G if any of the following two
conditions hold:

e on executing the statement at pc with imr value imr the control goes to pc/
and the value of imr is imr’. The weight of this edge is 0.

e pc is a starting address of a handler h; and enabled(imr,i) and imr’ =
tmr A —tg. The weight of this edge is 1.

We also have a special node in the graph called target and add edges to target
of weight 0 from all those nodes which correspond to a pc € PC which is a
iret statement. This graph is exponential in the size of the input as there are
O(|PC| x 2"™) nodes in the graph. The starting node of the graph is the node
with pc; and ¢mr = 0. If there is a node in the graph which is the starting
address of a handler h and which is reachable from the start node and also self-
reachable then the stack length would be infinite. This is because the sequence
of calls from the starting statement to the handler A is first executed and then
the cycle of handler calls is repeated infinitely many times. As the handler h
is in stack when it is called again the stack would grow infinite. Since there
is a sequence of interrupts which achieves the maximum stack length without

29

any handler returning in between (follows from Lemma 4) if there is no cycle
in G, we need to find the longest path in the DAG G,.

Theorem 25 The exact maximum stack size for monotonic enriched inter-
rupt programs can be found in time linear in the size of the program and ex-
ponential in the number of handlers. The complexity of exact maximum stack
size for monotonic enriched interrupt programs is PSPACE.

In polynomial space one can generate in lexicographic order all the nodes
that have a pc value of the starting statement of a handler. If such a node
is reachable from the start node, and also self-reachable, then the stack size
is infinite. Since the graph is exponential, this can be checked in PSPACE. If
no node has such a cycle, we find the longest path from the start node to the
target. Again, since longest path in a DAG is in NLOGSPACE;, this can be
achieved in PSPACE. It follows that both the stack boundedness and exact
maximum stack size problems for monotonic enriched interrupt programs are
PSPACE-complete.

5 Nonmonotonic Enriched Interrupt Programs

In this section we consider interrupt programs with tests, but do not restrict
handlers to be monotonic. We give an EXPTIME algorithm to check stack
boundedness and find the exact maximum stack size for this class of programs.
The algorithm involves computing longest context-free paths in context-free
DAGs, a technique that may be of independent interest.

5.1 Longest Paths in Acyclic Context-free Graphs

We define a context-free graph as in [9]. Let ¥ be a finite alphabet. A context-
free graph is a tuple G = (V, E,X) where V is a set of nodes and £ C (V' x
V x (X U{r})) is a set of labeled edges (and 7 is a special symbol not in).

We shall particularly consider the context-free language of matched paren-
theses. Let ¥ = {(1,(%,...,(*,)%,)2, ...,)*} be the alphabet of opening and
closing parentheses. Let £ be the language generated by the context-free gram-
mar

M— M(F®S | Sfor1<i<k
S— e | ((9)Sfor1<i<k
from the starting symbol M. Thus £ defines words of matched parentheses

with possibly some opening parentheses mismatched. From this point, we re-
strict our discussion to this > and the language L.

30

Algorithm 2 Function LongestContextFreePath

Input: A context-free DAG G, a vertex v, of G
Output: For each vertex v of G, return the length of the longest
context-free path from v to v, and
0 if there is no context-free path from v to vy
1. For each vertex v; € V: wallv;] =0
2. Construct the transitive closure matrix 7" such that
T[i,j] = 1 iff there is a context-free path from i to j
3. For j =1 ton:
3.1 For each immediate successor v; of v; such that
the edge e, ,, from v; to v; satisfies wit(ey;.,) > 0:
vallv;] = max{vallv;], val[v;] + wt(ey; ;) }
3.2 For each vertex v; € V:
3.2.1 if(T'[7, j]) (v; is context-free reachable from v;)
val[v;] = max{val[v;], val[v;]}

We associate with each edge of G a weight function wt : E — {0,+1,—1}
defined as follows:

e wit(e) =0 if e is of the form (v, ', 7),
o wit(e) = —1 if e is of the form (v,?’,)") for some 4,
o wt(e) =1if e is of the form (v, ', (*) for some i.

A context-free path m in a context-free graph G is a sequence of vertices
V1, Vg, ...V such that for all ¢ = 1...k — 1, there is an edge between wv;
and vy, i.e., there is a letter 0 € ¥ U {7} such that (v;,vi41,0) € E and
the projection of the labels along the edges of the path to X is a word in
L. Given a context-free path 7 with edges eq,es,...ep the cost of the path
Cost(r) is defined as Y_; wt(e;). Note that Cost(r) > 0 for any context-free
path 7. A context-free graph G is a context-free DAG iff there is no cycle
C' of G such that Y .o wt(e) > 0. Given a context-free DAG G = (V, E,)
we define an ordering order : V' — N of the vertices satisfying the following
condition: if there is a path 7 in G from vertex v; to v; and Cost(m) > 0 then
order(v;) < order(v;). This ordering is well defined for context-free DAGs. Let
G be a context-free DAG G, and let V' = {vy, vy, ... v,} be the ordering of the
vertex set consistent with order (i.e., order(v;) = i). We give a polynomial-
time procedure to find the longest context-free path from any node v; to vy in

G.

The correctness proof of our algorithm uses a function Num from paths to N.
Given a path m we define Num(w) as max{order(v) | v occurs in 7}. Given
a node v let L, = {Ly, Ls,... L} be the set of longest paths from v to v;.
Then we define Num,, (v) = min{ Num(L;) | L; € L,}. The correctness of the
algorithm follows from the following set of observations.

31

Lemma 26 If there is a longest path L from a node v to vy such that L
starts with an opening parenthesis (* that is not matched along the path L then
order(v) = Num,, (v).

Proof. Consider any node v’ in the path L. Since the first opening parenthesis is
never matched, the sub-path L(v,v") of L from v to v’ satisfies Cost(L(v,v")) >
0. Hence it follows that for all nodes v' in L, we have order(v') < order(v).
Thus Num,, (v) = order(v). B

Lemma 27 A node v in the DAG G satisfies the following conditions.

o [f Num,, (v) = order(v) = j then within the execution of Statement 3.1 of
the j-th iteration of Loop 3 of function LongestContextFreePath, vallv] is
equal to the cost of a longest path from v to v.

o [f order(v) < Num,, (v) = j then by the j-th iteration of Loop 3 of function
LongestContextFreePath val[v] is equal to the cost of a longest path from v
to v1.

Proof. We prove by induction on Num,, (v). The base case holds when
Num,, (v) = 1, since v = v;. We now prove the inductive case. If the value of
the longest path is 0 then it was fixed initially and it cannot decrease. Other-
wise, there is a positive cost longest path from v to v;. We consider the two
cases when order(v) = Num,, (v) and when order(v) < Num,, (v).

Case order(v) = Num,, (v) = j. Let L(v,v;) be a longest path from v to v;
such that Num/(L(v,v1)) = order(v). We consider the two possible cases.
(1) The longest path L(v,v) is such that it starts with a opening paren-

thesis which is never matched. Let v” be the successor of v in L(v, vy).
Hence order(v") < order(v) = Num,,(v) = j. Also the sub-path
L(v",v1) of L(v,v1) is a longest path from v” to v; (since other-
wise we could have a greater cost path from v to v; by following
the path from v to v” and then the path from v” to v;). Hence
Num,, (v") < Num,,(v) = j. By the induction hypothesis, before
the j-th iteration val[v”] is equal to the cost of the longest path from
v” to v;. Hence during the j-th iteration of Loop 3, when the loop
of statement 3.1 is executed and v” is chosen as v’s successor then
val[v] is set to the cost of the longest path from v to v;.

(2) The longest path L(v,v;) goes through a node v' such that the cost
of the subpath of L(v,v") of L(v,v;) satisfies Cost(L(v,v")) = 0
and there is a opening parenthesis from v’ which is not matched in
L(v,vy). Clearly the sub-path L(v’,v;) must be a longest path from
v' to vy as otherwise L(v,v;) would not have been a longest path. It
follows from Lemma 26 that Num,, (v') = order(v') = k < j. By the
induction hypothesis, by the end of Statement 3.1 of k-th iteration

32

val[v'] is equal to the longest path from v’ to v1. As v can context-free
reach v' we have during the execution of statement 3.2 of the k-th
iteration val[v] is equal to the longest path from v to v;.

Case order(v) < Num,, (v) = j. Let L(v,v1) be a longest path from v to v;.
The longest path L(v,v;) goes through a node v" such that the cost of
the subpath of L(v,v") of L(v,v) satisfies Cost(L(v,v")) = 0 and there is
an opening parenthesis from v" which is not matched in L(v,v;). Clearly
the sub-path L(v',v;) must be a longest path from v’ to v; as otherwise
L(v,v1) would not have been a longest path. It follows from Lemma 26
that Num,, (v') = order(v') = k. By hypothesis by the end of Statement
3.1 of k-th iteration wal[v'] is equal to the cost of the longest path from
v’ to v1. As v can context-free reach v’ we have during the execution of
statement 3.2 of the k-th iteration val[v] is equal to the longest path from
v to v1. As Num,, (v) > order(v’) (since v’ occurs in the path) it follows
by the end of j-th iteration val[v] is equal to the cost of the longest path
from v to v;.

Notice also that every time val[v] is updated (to ¢, say), it is easy to construct
a witness path that shows that the cost of the longest path is at least c. This
concludes the proof. i

From the above two lemmas, we get the following.

Corollary 28 At the end of function LongestContextFreePath(G, vy), for each
vertex v, the value of val[v] is equal to the longest context-free path to vy, and
equal to zero if there is no context-free path to vy.

We now consider the time complexity of the function LongestContextFreePath.
In the Function LongestContextFreePath the statement 3.2.1 gets executed at
most n? times since the loop on line 3 gets executed n times at most and the
nested loop on line 3.2 also gets executed n times at most. The context-free
transitive closure can be constructed in O(n?) time [12]. Hence the complexity
of our algorithm is polynomial and it runs in time O(n? + n?) = O(n?).

Theorem 29 The longest context-free path of a context-free DAG can be

found in time cubic in the size of the graph.

To complete our description of the algorithm, we must check if a given context-
free graph is a context-free DAG, and generate the topological ordering order
for a context-free DAG. We give a polynomial-time procedure to check whether
a given context-free graph is a DAG. Let G = (V, E, X)) be a given context-free
graph, and let V = {1,2,...n}. For every node k € V the graph G can be
unrolled as a DAG for depth |V, and it can be checked if there is a path 7
from k to k such that Cost(m) > 0. Given the graph G and a node k we create
a context-free DAG Gy = (Vi, Ex, X) as follows:

33

1 Ve = (kb U{(i, /) [1<i<n—21<j<n}U{kn.}
2. By = {(ko, (1,7), %) ! (k,j, *) € E} U{<(Z 3): (@ + 1,5, %) | (5,j', %) € E}
U{((n —2,7), kp—1,%) | (J, k%) € E}
U{(ko, (1, k), 7)} U{{(i, k), (i +1,k),7)}

where * can represent a opening parenthesis, closing parenthesis or can be 7.
Notice that the edges in the last line ensure that if there is a cycle of positive
cost from k to itself with length ¢ < n then it is possible to go from kg to
(n —t —1,k) and then to reach k,_; by a path of positive cost.

We can find the longest context-free path from kg to k, in G,, (by the function
LongestContextFreePath). If the length is positive, then there is a positive cycle
in G from k to k. If for all nodes the length of the longest path in G, is 0, then
G is a context-free DAG and the longest context-free path can be computed
in G. Given a context-free DAG G we can define order(v) in polynomial time.
If a vertex v can reach v' and v’ can reach v put them in the same group of
vertices. Both the path from v to v' and v’ to v must be cost 0 since there
is no cycle of positive cost. Hence the ordering of vertices within a group
can be arbitrary. We can topologically order the graph induced by the groups
and then assign an order to the vertices where vertices in the same group are
ordered arbitrarily.

5.2 Stack Size Analysis

We present an algorithm to check for stack boundedness and exact maximum
stack size. The idea is to perform context-free longest path analysis on the
state space of the program. Given a program p with m statements and n
handlers, we label the statements as pcy, pca, . .. pcp,. Let PC = {pcy, ... pcy}
as before. We construct a context-free graph G, = (V, E, ¥}, called the state
graph of p, where ¥ = {(*, (%,...,(™,),)?, ...)™} as follows:

o V= PC x IMR, where IMR is the set of all 2" possible imr values.

o £ C (VxV x(XU{r}) consists of the following edges.

(1) Handler call: (v,v', (;) € E iff v = (pc;, imr) and v' = (pc;, imry) and pe;
is the starting address of some handler h; such that enabled(imrq,j) and
mmry = 1mry A —ty.

(2) Handler return: (v',v,);) € E iff v = (pec;, imry) and v' = (pc;, imry) and
pc; is the iret statement of some handler and imr; = imry V tg.

(3) Statement execution: (v,v',7) € E iff v = (pc;, imry) and v' = (pc;, imrs)
and executing the statement at pc, with imr value #mr; the control goes
to pc; and the imr value is imrs.

The vertex (pcy, 0) is the starting vertex of G,. Let G}, be the induced subgraph
of G, containing only nodes that are context-free reachable from the start

34

Algorithm 3 Function StackSizeGeneral

Input: Enriched interrupt program p
Output: mazStackSize(P,)
. Build the state graph G, = (V, E, ¥) from the program p
. Let V! = {v'| there is a context-free path from the starting vertex to v’}
. Let (7}, be the subgraph of G, induced by the vertex set V'
. If G}, is not a context-free DAG then return “infinite”
. Else create G) = (V", E", %) as follows :
5.1 V" =V'U{target} and E" = E' U {(v,target,7) | v e V'}

6. Return the value of the longest context-free path

from the starting vertex to target

Ot > W N~

node. If 7 is not a context-free DAG then we report that stack is unbounded.
Otherwise, we create a new DAG G by adding a new vertex target and adding
edges to target from all nodes of G, of weight 0. Then, we find the value of a
longest context-free path from the start vertex to target in the DAG G7.

From the construction of the state graph, it follows that there is a context-
free path from a vertex v = (pc,imr) to v/ = (pc,imr’) in the state graph
G, if there exists stores R, R’ and stacks o, o’ such that (h, R,imr, o, pc) —*
(h, R',imr’, o'pc’). Moreover, if G, is the reachable state graph then there
exists K such that for all P’ such that B, —* P’ we have |P'.stk| < K iff
G, is a context-free DAG. To see this, first notice that if G}, is not a context-
free DAG then there is a cycle of positive cost. Traversing this cycle infinitely
many times makes the stack grow unbounded. On the other hand, if the stack
is unbounded then there is a program address that is visited infinitely many
times with the same imr value and the stack grows between the successive
visits. Hence there is a cycle of positive cost in (7. These observations, together
with Theorem 29 show that function StackSizeGeneral correctly computes the
exact maximum stack size of an interrupt program p.

Theorem 30 The exact mazimum stack size of nonmonotonic enriched in-
terrupt programs can be found in time cubic in the size of the program and
exponential in the number of handlers.

Proof. The number of vertices in G, is m x 2", for m program statements and
n interrupt handlers. It follows from Theorem 29 and the earlier discussion
that the steps 1, 2, 3, 4, 5, and 6 of StackSizeGeneral can be computed in time
polynomial in G,,. Since G, is linear in the size of the input program p, and
exponential in the number of handlers, we have a procedure for determining the
exact maximum stack size of nonmonotonic enriched interrupt programs that
runs in O(m?8"). This gives an EXPTIME procedure for the exact maximum
stack size problem.

35

While our syntax ensures that all statements that modify the imr are mono-
tonic, this is not a fundamental limitation for the above algorithm. Indeed, we
can extend the syntax of the enriched calculus to allow any imr operations,
and the above algorithm still solves the exact maximum stack size problem,
with no change in complexity.

We leave open whether the exact maximum stack size problem for non-
monotonic interrupts programs, in the nonenriched and enriched cases, is
EXPTIME-hard or PSPACE-complete (PSPACE-hardness follows from The-
orem 22). One can note that the time to execute the algorithms grows expo-
nentially with the number of interrupt handlers, which is typically small, and
cubically with the size of the interrupt handler programs.

Acknowledgments

Palsberg, Ma, and Zhao were supported by the NSF ITR award 0112628.
Henzinger, Chatterjee, and Majumdar were supported by the AFOSR grant
F49620-00-1-0327, the DARPA grants F33615-C-98-3614 and F33615-00-C-
1693, the MARCO grant 98-DT-660, and the NSF grants CCR-0208875 and
CCR-~0085949.

References

[1] D. Brylow, N. Damgaard, and J. Palsberg. Static checking of interrupt-driven
software. In ICSE: International Conference on Software Engineering, pp. 47-56.
ACM/IEEE, 2001.

[2] G. G. Hillebrand, P. C. Kanellakis, H. G. Mairson, and M. Y. Vardi. Undecidable
boundedness problems for datalog programs. Journal of Logic Programming
25(2):163-190, 1995.

[3] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. In POPL: Principles of Programming Languages, pp. 410—423.
ACM, 1996.

[4] J. Palsberg and D. Ma. A typed interrupt calculus. In FTRTFT: Formal
Techniques in Real-Time and Fault-tolerant Systems, LNCS 2469, pp. 291-310.
Springer, 2002.

[5] C.H. Papadimitriou. Computational Complezity. Addision-Wesley, 1994.

[6] C.H. Papadimitriou and M. Yannakakis. The complexity of facets (and some
facets of complexity). Journal of Computer and System Sciences 28:244-259,
1984.

36

[7] L. Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of
Technology, 2000.

[8] J. Regehr, A. Reid, and K. Webb, Eliminating stack overflow by abstract
interpretation, In EMSOFT’03: Third International Workshop on Embedded
Software, 2003. To appear.

[9] T.W. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL 95: Principles of Programming Languages, pp.
49-61. ACM, 1995.

[10] T.W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their
application to interprocedural dataflow analysis. In SAS 03: Static Analysis
Symposium, LNCS 2694, pp. 189-213. Springer, 2003.

[11] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. In PADL: Practical
Aspects of Declarative Languages, LNCS 2257, pp. 155-172. Springer, 2002.

[12] M. Yannakakis. Graph-theoretic methods in database theory. In PODS:
Principles of Database Systems, pp. 203—242. ACM, 1990.

37

A Proof of the Schroder-Bernstein Theorem

Jens Palsberg
July 26, 2008

The following proof is a slightly modified version of C. A. Gunter and D. S. Scott’s proof
in their article Semantic Domains in Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics, pages 633-674, 1990.

Theorem 1 (Schroder-Bernstein) Let S and T be sets. If f: S — T and g:T — S are
injections, then there is a bijection h : S — T'.

Proof. Let us for a moment assume that we can find a set Y C T that satisfies the equation:
T\Y = f(S\g"(Y)) (1)
Define h : S — T by

h(z) = { y if v € g*(Y), that is, z = g(y) for some y € Y
flz) ifze(S\g(Y))

To see that h is well defined for z € ¢*(Y), notice that we have a unique choice of y because
g 1s an injection.

To see that h is an injection, suppose 1, e € S and h(zq) = h(xs). We have four cases.
First, if 21,29 € g*(Y), then 21 = g(h(z1)) = g(h(xs)) = x5. Second, if x1, x5 € (S\ g*(YV)),
then x1 = x9 because f is an injection. Third, if z; € ¢*(Y) and x5 € (S'\ ¢*(Y)), then we
have h(xy) € Y and h(zz) € f*(S\g*(Y)) = (T'\Y), where the last step is equation (1). Now
h(z1) € Y and h(zy) € (T'\ Y) contradicts h(zy) = h(zy). Fourth, if z; € (S'\ ¢*(Y)) and
x9 € ¢g*(Y), then in a manner that is similar to the third case, we can reach a contradiction
of h(xy) = h(xy).

To see that h is a surjection, suppose y € T. We have two cases. If y € Y, then
h(g(y)) =y. Ify € (T'\Y), then we have from equation (1) that y € (T\Y) = f*(S\¢*(Y)),
so y = f(x) = h(z) for some x € (S\ g*(YV)).

We must finally prove that we can find a set Y C T' that satisfies the equation (1). The
function Y +— (T°\ f*(S)) U f*(¢*(Y)) from subsets of T' to subsets of T' is easily seen to
be continuous with respect to the inclusion ordering. Hence, by the Fixed Point Theorem,
there is a subset Y = (T"\ f*(S)) U f*(¢*(Y)). We have

T\Y = T\[(T\f(S)u)l
ST\ (g™ (Y)))
= J1(S\g'(Y))

So our assumption is valid and we conclude that h is a bijection. 0

Closure Analysis in Constraint Form

JENS PALSBERG
Aarhus University

Flow analyses of untyped higher-order functional programs have in the past decade been presented
by Ayers, Bondorf, Consel, Jones, Heintze, Sestoft, Shivers, Steckler, Wand, and others. The
analyses are usually defined as abstract interpretations and are used for rather different tasks
such as type recovery, globalization, and binding-time analysis. The analyses all contain a global
closure analysis that computes information about higher-order control-flow. Sestoft proved in
1989 and 1991 that closure analysis is correct with respect to call-by-name and call-by-value
semantics, but it remained open if correctness holds for arbitrary beta-reduction.

This article answers the question; both closure analysis and others are correct with respect to
arbitrary beta-reduction. We also prove a subject-reduction result: closure information is still
valid after beta-reduction. The core of our proof technique is to define closure analysis using a
constraint system. The constraint system is equivalent to the closure analysis of Bondorf, which
in turn is based on Sestoft’s.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics; D.3.2 [Programming Languages|: Language Classifications—applicative
languages; F.3.1 [Logics and Meanings of Programs]|: Specifying and Verifying and Reasoning
about Programs—Iogics of programs

General Terms: Languages, Theory

Additional Key Words and Phrases: Constraints, correctness proof, flow analysis

1. INTRODUCTION
1.1 Background

The optimization of higher-order functional languages requires powerful program
analyses. The traditional framework for such analyses is abstract interpretation, and
for typed languages, suitable abstract domains can often be defined by induction
on the structure of types. For example, function spaces can be abstracted into
function spaces. For untyped languages such as the A-calculus, or dynamically
typed languages such as Scheme, abstract domains cannot be defined by abstracting
function spaces into function spaces. Other domains can be used, but it may then
be difficult to relate the abstract interpretation to the denotational semantics. In
this article we consider a style of program analysis where the result is an abstraction
of the operational semantics.

In the past decade, program analyses of untyped languages has been presented

Author’s address: Computer Science Department, Aarhus University, Ny Munkegade, DK-8000
Aarhus C, Denmark; email: palsberg@daimi.aau.dk.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

ACM Transactions on Programming Languages and Systems, 17(1):47-62, January 1995. Also in
Proc. CAAP’94, pages 276-290. ©

2 : Jens Palsberg

by Ayers [1992], Bondorf [1991], Consel [1990], Jones [1981], Heintze [1992], Ses-
toft [1989; 1991], Shivers [1991a; 1991b], Wand and Steckler [1994], and others.
Although the analyses are used for rather different tasks such as type recovery,
globalization, and binding-time analysis, they are all based on essentially the same
idea:

Key idea. In the absence of types, define the abstract domains in terms

of program points.

For example, consider the following A-term:

Az y.y(al)(zK))A
where I = Aa.a, K = Ab.A\c.b, and A = \d.dd.

Giannini and Rocca [1988] proved that this strongly normalizing term has no higher-
order polymorphic type. Still, a program analysis might answer basic questions such
as:

(1) For every application point, which abstractions can be applied?
(2) For every abstraction, to which arguments can it be applied?

Each answer to such questions should be a subset of the program points in this par-
ticular A-term. Thus, let us label all abstractions and applications. Also variables
will be labeled: if a variable is bound, then it is labeled with the label of the A that
binds it, and if it is free, then with an arbitrary label. By introducing an explicit
application symbol, we get the following abstract syntax for the above A-term.

(x\lx./\zy.yQ @7 (.Il @8 I) @9 (.Il @10 K)) @11 A
where T = Ma.a®, K = A*b.\%¢c.b*, and A = \6d.d6 @5 db.

An analysis might be able to find out that no matter how reduction proceeds:

—*“I can only be applied to I,” that is, an abstraction with label 3 can only be
applied to abstractions with label 3;

—“At the application point dd (in A) both I and K can be applied,” that is, at an
application point labeled 12 there can only be applied abstractions with labels 3
and 4; and

—“the abstraction Ac.b will never be applied,” that is, at no application point can
an abstraction with label 5 be applied.

The quoted sentences give the intuitive understanding of the precise statements
that follow. In this particular example, the labels are rather unnecessary because
no name clashes happen during any reduction and because I, K, and Ac.b are in
normal form. In the presence of name clashes or reduction under a A\, however, it
is crucial to use sets of program points as the abstract values.

The above questions have turned out to be of paramount importance in many
analyses of untyped functional programs. Following Sestoft and Bondorf, we will
call any analysis that can answer them conservatively a closure analysis. On top of
a closure analysis, one can build for example type recovery analyses, globalization
analyses, and binding-time analyses. The closure analysis answers questions about
higher-order control flow, and the extension answers the questions one is really
interested in, for example, about type recovery. The role of closure analysis is thus
as follows:

Closure Analysis in Constraint Form : 3

“Higher-order analysis = first-order analysis + closure analysis.”

Closure analysis is useful for higher-order languages in general, for example, object-
oriented languages (see Palsberg and Schwartzbach [1991; 1994b]). It is also use-
ful for typed functional languages because type information is usually not specific
enough to tell which functions among the type-correct ones are called at each ap-
plication point.

Closure analysis and its extensions can be defined as abstract interpretations.
They differ radically from traditional abstract interpretations, however, in that
the abstract domain is defined in terms of the program to be analyzed. This
means that such analyses are global: before the abstract domain can be defined,
the complete program is required. Moreover, the program cannot take higher-order
input because that would add program points. Also the minimal function graph
approach to program analysis uses abstract domains defined in terms of the input
program. In contrast, traditional abstract interpretations can analyze pieces of a
program in isolation. We will refer to all analyses based on closure analysis as flow
analyses.

Examples of large-scale implementations of such analyses can be found in the
Similix system of Bondorf [Bondorf 1993; Bondorf and Danvy 1991], the Schism
system of Consel [1990], and the system of Agesen et al. [1993] for analyzing Self
programs [Ungar and Smith 1987]. The last of these implementations demonstrates
that closure analysis can handle dynamic and multiple inheritance.

Closure analysis and its extensions have been formulated using constraints by
others, for example, Heintze [1992; 1994], and Wand and Steckler [1994]. Their
constraint systems are in spirit close to ours, although they are technically some-
what different. A key difference between Heintze’s definition [Heintze 1994] and
ours is that he attempts to avoid analyzing code that will not be executed under
call-by-value. This goal is shared by an analysis of Palsberg and Schwartzbach
[1992a]. The idea of defining program analyses using constraints over set variables
is called set-based analysis by Heintze.

Sestoft [1989; 1991] proved that closure analysis is correct with respect to call-
by-name and call-by-value semantics, but it remained open if correctness holds for
arbitrary beta-reduction.

1.2 Our Results

We prove that closure analysis is correct with respect to arbitrary beta-reduction.
We also prove a subject-reduction result: closure information is still valid after
beta-reduction. The correctness result implies that closure analysis is correct with
respect to any reduction strategy.

—We present a novel specification of closure analysis that allows arbitrary beta-
reduction to take place and which subsumes all previous specifications.

—We present a closure analysis that uses a constraint system. The constraint sys-
tem characterizes the result of the analysis without specifying how it is computed.
An example of such a constraint system is given in Section 1.3.

—We prove that the constraint-based analysis is equivalent to the closure analysis
of Bondorf [1991], which in turn is based on Sestoft’s [Sestoft 1989]. We also

4 : Jens Palsberg

prove that these analyses are equivalent to a novel simplification of Bondorf’s
definition.

The proofs of correctness and subject-reduction then proceed by considering only
the constraint-based definition of closure analysis.

In contrast to the closure analyses by abstract interpretation, the one using a
constraint system does not depend on labels being distinct. This makes it possible
to analyze a A-term, beta-reduce it, and then analyze the result without relabeling
first. The abstract interpretations might be modified to have this property also, but
it would be somewhat messy. This indicates that a direct proof of correctness of
such a modified abstract interpretation would be more complicated than the proof
presented in this article.

Our technique for proving correctness generalizes without problems to analyses
based on closure analysis. The following two results are not proved in this article:

—The safety analysis of Palsberg and Schwartzbach [1992a; 1992b] is correct with
respect to arbitrary beta-reduction. This follows from the subject-reduction prop-
erty: terms stay safe after beta-reduction.

—The binding-time analysis of Palsberg and Schwartzbach [1994a] that was proved
correct by Palsberg [1993], can be proved correct more elegantly with our new
technique.

The constraint-based definition of closure analysis is straightforward to extend to
practical languages. For a medium-sized example see Palsberg and Schwartzbach
[1994b] where the analysis is defined for an object-oriented language.

1.3 Example

The constraint system that expresses closure analysis of a A-term is a set of Horn
clauses. If the A-term contains n abstractions and m applications, then the con-
straint system contains n + (2 X m x n) constraints. Thus, the size of a constraint
system is in the worst-case quadratic in the size of the A-term. Space constraints
disallow us to show a full-blown example involving name clashes and reduction un-
der a A, so consider instead the A\-term (Az.zx)(Ay.y) which has the abstract syntax
Mzt @3 2') @4 (\2y.y?). The constraint system that expresses closure analysis
of this A-term looks as follows.

From A! {1} C[\']
From A2 {2} C V]
eyt {1012 I
romey ¢ { 1S 1 2 S
e {1013 I
e | B1ERS I

Symbols of the forms [¢!], [A!], and [@;] are metavariables. They relate to vari-
ables with label [, abstractions with label I, and applications with label ¢, respec-
tively. Notice that we do not assume, for example, that there is just one abstraction

Closure Analysis in Constraint Form : 5

with label [. The reason is that we want to do closure analysis of all terms, also
those arising after beta-reduction which may copy terms and hence labels.

To the left of the constraints, we have indicated from where they arise. The first
two constraints express that an abstraction may evaluate to an abstraction with
the same label. The rest of the constraints come in pairs. For each application
point @; and each abstraction with label [there are two constraints of the form:

{l} C “metavar. for operator of @;” = “metavar. for operand of @,” C [1']
[} C “metavar. for operator of @;” = “metavar. for body of abst.” C [@;
y

Such constraints can be read as:

—The first constraint. If the operator of @; evaluates to an abstraction with label [,
then the bound variable of that abstraction may be substituted with everything
to which the operand of @; can evaluate.

—The second constraint. If the operator of @; evaluates to an abstraction with
label [, then everything to which the body of the abstraction evaluates is also a
possible result of evaluating the whole application @;.

In a solution of the constraint system, metavariables are assigned closure in-
formation. The minimal solution of the above constraint system is a mapping L
where:

LN = {1}
LX) = L[v'] = L[»*] = L]es] = Lfea] = {2}

For example, the whole A-term will, if normalizing, evaluate to an abstraction
with label 2 (L[@4] = {2}); at the application point @3 there can only be applied
abstractions with label 2 (L[] = {2}); the application point @3 is the only point
where abstractions with label 2 can be applied (L[A'] = {1}); and such abstractions
can only be applied to A-terms that either do not normalize or evaluate to an
abstraction with label 2 (L[v?] = {2}).

One of our theorems says that the computed closure information is correct. One
might also try to do closure analysis of the above A-term using Bondorf’s abstract
interpretation; another of our theorems says that we will get the same result.

Now contract the only redex in the above A-term. The result is a A-term with
abstract syntax (A\?y.y?) @3 (A?y.y?). One third of our theorems says that the
mapping L above gives correct closure information also for this A-term.

In the following section we define three closure analyses: Bondorf’s, a simpler
abstract interpretation, and one in constraint form. In Section 3 we prove that they
are equivalent, and in Section 4 we prove that they are correct.

2. CLOSURE ANALYSIS
Recall the A-calculus [Barendregt 1981].
Definition 2.1. The language A of A-terms has an abstract syntax which is de-
fined by the grammar:
E = o (variable)
| No.E (abstraction)
| E1 @; E2 (application)

6 : Jens Palsberg

The labels on variables, abstraction symbols, and application symbols have no
semantic impact; they mark program points. The label on a bound variable is the
same as that on the A that binds it. Labels are drawn from the infinite set Label.
The symbols ,1’,i range over labels. The labels and the application symbols are
not part of the concrete syntax of A. We identify terms that are a-congruent. The
a-conversion changes only bound variables, not labels. We assume the Variable
Convention of Barendregt [1981]: when a A-term occurs in this article, all bound
variables are chosen to be different from the free variables. This can be achieved by
renaming bound variables. An occurrence of (\'z.E) @; E' is called a redex. The
semantics is as usual given by the rewriting-rule scheme:

(Mz.E) e; E' — E[E'/2'] (beta-reduction) .

Here, E[E’/x'] denotes the term E with E’ substituted for the free occurrences
of 2!. Notice that by the Variable Convention, no renaming of bound variables is
necessary when doing substitution. In particular, when we write (Aly.E)[E’ /2!,
we have that y' # 2" and that y' is not among the free variables of E’. Thus,
(\y.E)[E' /2! = Ny.(E[E'/2"]). We write Es —* Ep to denote that Ep has
been obtained from Eg by 0 or more beta-reductions. A term without redexes is
in normal form.

The abstract domain for closure analysis of a A-term FE is called CMap(F) and is
defined as follows.

Definition 2.2. A metavariable is of one of the forms [v'], [A'], and [e;]. The
set of all metavariables is denoted Metavar. A A-term is assigned a metavariable by
the function var, which maps 2! to [V'], Nlz.E to [\'], and E; @; E to [¢;].

For a A-term FE, Lab(F) is the set of labels on abstractions (but not applications)
occurring in E. Notice that Lab(F) is finite. The set CSet(F) is the powerset
of Lab(E); CSet(E) with the inclusion ordering is a complete lattice. The set
CMap(FE) consists of the total functions from Metavar to CSet(E). The set CEnv(E)
contains each function in CMap(E) when restricted to metavariables of the form
[']. Both CMap(E) and CEnv(E) with pointwise ordering, written C, are complete
lattices where the least upper bound is written L. The function (V +— S) maps the
metavariable V' to the set S and maps all other metavariables to the empty set.
Finally, we define upd V.S L =(V — S) U L.

2.1 The Specification of Closure Analysis
We can then state precisely what a closure analysis is. An intuitive argument
follows the formal definition.

Definition 2.1.1. For a A-term E and for every L € CMap(FE), we define a binary
relation Ty, on A-terms, as follows. T(Ex, Ey) holds if and only if the following
four conditions hold:

—1If By equals Aa.E, then {I} C L(var(Ex)).
—1If By contains \'y.(\z.E), then Ex contains A z. B’ such that {I} C L(var(E")).

—1If Ey contains (\'x.E) @; Es,, then Ex contains E; ©; FE) such that {I} C
L(var(Ey)).

Closure Analysis in Constraint Form : 7

—1If Ey contains E; ©; (Mx.E), then Ex contains Ef ©; Fs such that {I} C
L(var(Ey)).

A closure analysis of E produces L € CMap(F) such that if £ —* E’, then
T.(E, E').

Intuitively, if Ex —* Ey, then we can get conservative information about the
abstractions in Ey by doing closure analysis of Ex. For example, the first condition
in Definition 2.1.1 can be illustrated as follows.

Ey

Ex
P
|
E

In this case, Fy is an abstraction with label I. Thus, EFx can evaluate to an
abstraction with label [. The first condition says that in this case the mapping L
must satisfy {{} C L(var(Fx)). In other words, the analysis must be aware that
such an abstraction is a possible result of evaluating Ex.

The three other conditions in Definition 2.1.1 cover the cases where abstractions
are proper subterms of Ey. The second condition covers the case where an abstrac-
tion in Ey is the body of yet another abstraction. The third and fourth conditions
cover the cases where an abstraction is the operator and the operand of an appli-
cation, respectively. Here, we will illustrate just the first of these three conditions;
the others are similar.

Ex
A2
El/

In this case, Ey contains an abstraction with label [(\'z.E). This abstraction is
in turn the body of an abstraction with label I’ (A" y.\x.F). The second condition

Ey

8 : Jens Palsberg

in Definition 2.1.1 says that in this case there must be an abstraction in Ex with
label I’ ()\l/z.E’, the bound variable may be different) such that the mapping L
satisfies {I} C L(var(E’)). In other words, the analysis must be aware that some
abstraction Al z.E’ in Ex can evolve into an abstraction with a body being an
abstraction with label [.

Notice the possibility that more than one abstraction in E'x has label I’. Thus, if
we want closure information for “the body of the abstraction with label I’” we must
compute the union of information for the bodies of all abstractions in Fx with label
I’. A similar comment applies to the third and fourth condition in Definition 2.1.1.
Such use of closure information is not of concern in this article, however.

2.2 Bondorf's Definition

We now recall the closure analysis of Bondorf [1991], with a few minor changes in
the notation compared to his presentation. The analysis assumes that all labels are
distinct. Bondorf’s definition was originally given for a subset of Scheme; we have
restricted it to the A-calculus. Note that Bondorf’s definition is based on Sestoft’s
[Sestoft 1989].

We have simplified Bondorf’s definition as follows. Bondorf’s original definition
assigns distinct metavariables to different occurrences of a variable; in contrast
we assign the same metavariable to each occurrence of a variable. The simplified
definition is equivalent to Bondorf’s original definition; see below.

We will use the notation that if A'z.F is a subterm of the term to be analyzed,
then the partial function body maps the label [to E.

Definition 2.2.1. We define
B:(E:A)— CMap(FE) x CEnv(E)
B(E) = fiz(A(p, p)-b(E)pp)

b:(E:A)— CMap(F) — CEnv(E) — CMap(E) x CEnv(E)
b(a')up = (upd [V'] p[v'] 1, p)
b(Na.BE)up = let (u',p') be b(E)up
in (upd [\] {1} 1/, o)
b(E1L ©; Ez)up = let (1, p') be (b(E1)up) U (b(E2)pp) in
let ¢ be p/(var(FEy)) in
let " be upd [0;] (Liee ' (var(body(l)))) u' in
let o be o U (Lree (upd [1] 1/ (var(E2)) o)
in (,u//,p”))

We can now do closure analysis of E by computing fst(B(FE)).

If we modify the above definition such that different occurrences of a variable
are assigned distinct metavariables, then we obtain Bondorf’s original definition.
That definition will assign the same set to all metavariables for the occurrences of
a given variable, and moreover, the computed closure information will be the same
as that computed by the stated analysis (we leave the details to the reader).

2.3 A Simpler Abstract Interpretation

Bondorf’s definition can be simplified considerably. To see why, consider the
second component of CMap(FE) x CEnv(E). This component is updated only in

Closure Analysis in Constraint Form : 9

b(E; @; E2)up and read only in b(z!')up. The key observation is that both these
operations can be done on the first component instead. Thus, we can omit the use
of CEnv(E). By rewriting Bondorf’s definition according to this observation, we
arrive at the following definition. As with Bondorf’s definition, we assume that all
labels are distinct.

Definition 2.3.1. We define

m: (E:A) — CMap(E) — CMap(F)
m(a') = p
m(Nz.B)p = (m(E)p) U ([N — {1})
m(Ey € Ez)p = (m(E1)p) U (m(Ez)p) U
Uicpwvar(myy ([¥'] = u(var(E»))) U ([:] = pu(var(body(l))))) -

We can now do closure analysis of E by computing fiz(m(E)).

A key question is: is the simpler abstract interpretation equivalent to Bondorf’s?
We might attempt to prove this using fixed-point induction, but we find it much
easier to do using a particular constraint system as a “stepping stone.”

2.4 A Constraint System

For a A-term F, the constraint system is a finite set of Horn clauses over inclusions of
the form P C P’ where P and P’ are either metavariables or elements of CSet(E).
A solution of such a system is an element of CMap(FE) that satisfies all Horn clauses.
The constraint system is defined in terms of the A-term to be analyzed. We need
not assume that all labels are distinct.
The set R(E; @; Ey, Nw.E) consists of the two elements

{I} Cvar(Ey) = var(Es) C [V]
{l} Cvar(Ey) = var(E) C[e;] .

For a A-term E, the constraint system C(FE) is the union of the following sets of
constraints.

—For every AMz.E' in E, the singleton constraint set consisting of {I} C [\!].
—For every E; @; Fy in E and for every Mz.E' in E, the set R(E; ©; Ey, Nlw.E").

Each C(E) has a least solution, namely, the intersection of all solutions.

We can now do closure analysis of E by computing a solution of C'(F). The
canonical choice of solution is of course the least one.

The closure analysis of Bondorf and Jgrgensen [1993] can be understood as
adding two constraints to each R(E; @; E>, Nz E') such that in effect the in-
clusions var(E3) C [¢!] and var(E) C [e;] are changed to equalities. Thus, their
closure analysis computes more approximate information than ours. In return,
their analysis can be computed in almost-linear time, using an other formulation
of the problem [Bondorf and Jgrgensen 1993], whereas the fastest known algorithm
for computing the least solution of C'(E) uses transitive closure (see Palsberg and
Schwartzbach [1992a; 1994b]).

3. EQUIVALENCE

We now prove that the three closure analyses defined in Section 2 are equivalent
(when applied to A-terms where all labels are distinct). We will use the standard

10 : Jens Palsberg

terminology that p is a prefized point of m(E) if m(E)u C p.

LEMMA 3.1. If u is a prefized point of m(E), then so is it of m(E’) for every
subterm E' of E.

PRrROOF. By induction on the structure of £. [
LEMMA 3.2. C(E) has least solution fix(m(E)).

ProOOF. We prove a stronger property: the solutions of C'(FE) are exactly the
prefixed points of m(E). There are two inclusions to be considered.

First, we prove that every solution of C'(FE) is a prefixed point of m(FE). We
proceed by induction on the structure of E. In the base case, consider z!. Clearly,
every 4 is a prefixed point of m(z!). In the induction step, consider first Az.E.
Suppose p is a solution of C(Az.E). Then p is also a solution of C(FE), so by the
induction hypothesis, p is a prefixed point of m(E). Hence, we get m(\a.E)yu =
(m(E)u)U([A] = {1}) T pU{([N'] = {I}) = u, by using the definition of m, that p
is a prefixed point of m(E), and that since C(\x.E) has solution u, {1} C u([N']).

Consider then E; @; E5. Suppose p is a solution of C(E; @; E3). Then p is also a
solution of C'(F;) and C(FE2), so by the induction hypothesis, p is a prefixed point
of m(Ey) and m(E3). Hence, we get m(E; @; F2)u = p, by using the definition
of m, that p is a prefixed point of m(E;) and m(Fs), and that C(E; @; Es) has
solution p.

Second, we prove that every prefixed point of m(FE) is a solution of C(E). We
proceed by induction on the structure of E. In the base case, consider z!. Clearly,
every 4 is a solution of C(z!). In the induction step, consider first Alz.E’. Sup-
pose yu is a prefixed point of m(Az.E’). Then, by Lemma 3.1, u is also a pre-
fixed point of m(E’). By the induction hypothesis, p is a solution of C(E’).
Thus, we need to prove that u satisfies {I/} C [\] and for every E; @; Fy in
E', R(E; @; B3, Mz.E'). For the first of these, use that y is a prefixed point of
m(\o.E") to get p 3 m(No.E)u = (m(E')u) U (V] — {11 2 (IN] — {I}),
from which the result follows. For the second one, consider E; @; F> in E/. By
Lemma 3.1, p is also a prefixed point of m(F; @; E3). Using the assumption
that we get © 3 m(E; ©; Eo)u 3 Ule#(var(El))«[[Vl]] — p(var(E2))) U {Je;] —
u(var(body(1))))), from which the result follows.

Consider then E; @; E>. Suppose p is a prefixed point of m(E; @; E3). Then, by
Lemma 3.1, p is also a prefixed point of both m(E;) and m(E2). By the induction
hypothesis, u is a solution of both C(E;) and C(E3). Thus, we need to prove that
for every Nw.E' in By ©; Eo, p satisfies R(E; ©; Fo,N'z.E’). From p being a
prefixed point of m(Ey @; Es), we get n I m(E; @; Eo)u 1 [_|l6“<var(E1))(<[[yl]] —
p(var(E2))) U([e;] — p(var(body(l))))), from which the result follows. 0O

LEMMA 3.3. C(E) has least solution fst(B(E)).
PROOF. Similar to the proof of Lemma 3.2. O
THEOREM 3.4. The three closure analyses defined in Section 2 are equivalent.

Proor. Combine Lemmas 3.2 and 3.3. O

Closure Analysis in Constraint Form : 11

4. CORRECTNESS

We now prove that the three closure analyses defined in Section 2 are correct. The
key is to define an entailment relation A ~» A’ (Definition 4.1) meaning that all
constraints in the constraint system A’ can be logically derived from those in A. A
central result (Theorem 4.10) is that if Ex — Fy, then C(Ex) ~ C(Ey). This
theorem is proved without at all considering solutions of the involved constraint
systems.

Definition 4.1. If A is a constraint system, and H is a Horn clause, then the
judgment A = H (“A entails H”) holds if it is derivable using the following five
rules:

A H itHe A (Discharge)

m (ReﬂeXlVIty)

AFPCP AP CP
AFPCP"

(Transitivity)

AFX AFX =Y
ArRY

(Modus Ponens)

AFPCP'=Q CQ" AFP CP' AFQCQ
AFPCP =QCQ”

(Weakening)

If A, A’ are constraint systems, then A ~» A’ if and only if VH € A’ : A+ H.

LEMMA 4.2. ~ is reflexive, transitive, and solution-preserving. If A D A’, then
A~ A

PrOOF. The last property is immediate using Discharge. Reflexivity of ~» is
a consequence of the last property. For transitivity of ~+, suppose A ~» A’ and
A’ ~» A”. The statement “if A’ H then A+ H” can be proved by induction on
the structure of the proof of A’ = H. To prove A ~» A”, suppose then that H € A”.
From A’ ~» A" we get A’ - H, and from the above statement we finally get A+ H.
To prove that ~» is solution-preserving, suppose A ~» A’ and that A has solution
L. We need to prove that for every H € A’, H has solution L. This can be proved
by induction on the structure of the proof of AF- H. O

The following lemmas are structured such that Modus Ponens is only used in the
proof of Lemma 4.3, and Weakening is only used in the proof of Lemma 4.6.

To aid intuition we can informally read A F var(E) C var(E’) as “under the
assumption A, the A-term E has smaller flow information than the A-term E’.”

The next lemma states that two specific constraints can be derived from the
constraint system for a redex. Informally, the first constraint says that the argument
has smaller flow information than the bound variable, and the second constraint
says that the body of the abstraction has smaller flow information than the whole
redex.

12 : Jens Palsberg

LEMMA 4.3. If A ~ C((\z.E) ©; E3), then A - var(Ey) C [v'] and A F
var(E) C [e;].

PrOOF. We have A - {I} C [\] and A ~ R((N'x.E) @; E, Nlw.E). The result
then follows from var(A'z.E) = [\!] and Modus Ponens. [

The next lemma is a substitution lemma. Informally, it states that a A-term
gets smaller flow information if a subterm gets substituted by one with smaller flow
information.

LEMMA 4.4. If AFvar(U) C [V'], then A+ var(E[U/z!]) C var(E).
PROOF. By induction on the structure of F, using Reflexivity repeatedly. [

Informally, the next lemma states that beta-reduction creates A-terms with small-
er flow information.

LEMMA 4.5. If A~ C(Ex) and Ex — Ey, then AF var(Ey) C var(Ex).

PROOF. We proceed by induction on the structure of Ex. In the base case,
consider z!. The conclusion is immediate since z! is in normal form.

In the induction step, consider first M'z.E. Suppose E — E’. Notice that
var(Alz.E) = var(\lz.E") = [\!]. Using Reflexivity we get A - [A!] C [\].

Consider finally Fy @; E5. There are three cases. Suppose Eq — Ej. Notice that
var(Ey ©; E2) = var(F{ @; E3) = [0;]. Using Reflexivity we get A F [0;] C [@;].

Suppose then that Fy — Ef. Notice that var(E; @; E2) = var(E}] ©; E2) = [¢;].
Using Reflexivity we get A F [@;] C [e;].

Suppose then that Ey = Nx.F and that E; @; By — E[E;/x']. From Lemma 4.3
we get A I var(Es) C ['] and A I~ var(E) C [e;]. From the former of these and
Lemma 4.4 we get A - var(E[Es/z!]) C var(E). Using Transitivity we can finally
conclude that A Fvar(E[Ey/2']) C [e;]. O

Informally, the next lemma states that entailment is robust under beta-reduction
and substitution.

LEMMA 4.6. Suppose A ~» R(El Q,; Eg,)\lx.Eg,) U C(El) U C(EQ) U C(E3) If
E; =E} or Ej — Ej or B, = Ej[Uj/xé-j] where A F var(U;) C var(x;j) forj €1.3,
then A~ R(E} @; Eb, Nx.E}).

PROOF. For j € 1.3, we get A - var(E}) C var(Ej;) from either Reflexivity,
Lemma 4.5, or Lemma 4.4. The result then follows using Weakening. [

The following definition is needed for stating and proving Lemma 4.9.

Definition 4.7. The set W(FE, E') is the union of the following sets of constraints.
—C(E)UC(E").

—For every F; ©; Fy in E and for every A'a.E3 in E’, the set R(E; @; Bz, \'2.E3).
—For every E; @; E, in E' and for every Aa.E3 in E, the set R(E; @; Ey, \a.E3).

LEMMA 4.8. W(E1, Ey) C C(FE; @; E»). Moreover, if Ey is a subterm of F1,
then W(Ei,Eg) g W(El,Eg).

PRrROOF. Immediate. O

Closure Analysis in Constraint Form : 13

The next lemma is a substitution lemma. Like Lemma 4.6, it states that entail-
ment is robust under substitution.

LEMMA 4.9. If A~ W(E,U) and At var(U) C [v'], then A~ C(E[U/z")).

PROOF. Let p denote the substitution [U/x!]. We proceed by induction on the
structure of E. In the base case, consider £ = yl,. If 2! = yl,, then Fp = U so
the result follows from A ~» W (E,U) and Lemma 4.2. If 2! # 4!, then Ep = E so
again the result follows from A ~» W(E,U) and Lemma 4.2.

In the induction step, consider first £ =)\l/y.E'. If 2 = yl/, then Ep = FE so
also in this case the result follows from A ~» W (E,U) and Lemma 4.2. If 2! # ¢,
Ep = N'y.(E'p). By the induction hypothesis, A ~ C(E’p). Thus, we need to
show A F {I'} C [A\'] and for every E; @; Ey in E'p, A~ R(E; @; Eo, X'y.(E'p)).
The first follows from A ~» C’()\l,y.E’). For the second, consider any E; @; Fsy in
E'p. Notice that either Eq @; Es is a subterm of E’, or Eq ©; E2 = (E{ ©; EY)p =
(E1p) @; (Fhp) where E| @; F) is a subterm of E’, or E; @; Fs is a subterm of U.
In each case the result follows from A ~» W(E,U) and Lemma 4.6.

Consider ﬁnally E = E1 @i EQ. Notice that (E1 @i E2)p = (Elp) @i (Egp) By
the induction hypothesis, A ~ C(E1p) U C(E2p). Thus, we need to show that
for every A'y.E' in (Ey ©; E)p, A ~ R((Ey @ Ey)p,\'y.E'). Consider any
)\l/y.E’ in (F1 ©; F3)p. Notice that either)\l/y.E’ is a subterm of E; @; E5, or
Moy B = \'y.(E'p) where \'y.E' is a subterm of Ey @; Es, or 'y E’ is a subterm
of U. In each case the result follows from A ~» W(E,U) and Lemma 4.6. O

We can now prove that if we beta-reduce Ex to Ey, then the constraint system
for E'x entails the constraint system for Ey .

THEOREM 4.10. If Ex — Ey, then C(Ex)~ C(Ey).

PrOOF. We proceed by induction on the structure of Ex. In the base case of
2!, the conclusion is immediate since 2! is in normal form.

In the induction step, consider first A'z.E. Suppose E — E’. By the induc-
tion hypothesis, C(E) ~ C(E'), so also C(Alx.E) ~» C(E'). Thus, we need
to show C(Nx.E) F {I} € [N] and for every E; ©; Ey in Na.E', C(\Nw.E) ~
R(Ey @; Es,)\lx.E’). The first follows using Discharge. For the second, there are
four cases. Notice that by Discharge we have C(A'z.E) ~» R(E} @; Ey, Nx.E) for
every E} @; E} in Mz.E. In the first case, suppose E; @; F» is also a subterm
of Mz.E. The result then follows from Lemma 4.6. In the second case, consider
a subterm Ej ©; Fs of Mz.E such that E{ — Ej. Again, the result follows from
Lemma 4.6. In the third case, consider a subterm E; @; E) of Mz.E such that
El, — E5. Yet again, the result follows from Lemma 4.6. In the fourth case, con-
sider a subterm E{ @; E} of Aa.E such that E; @; E; = (E} @; E})[Es/y"]. The
substitution arises because of the contraction of a redex. From Lemma 4.3 we get
C(MNz.E) F var(Es) C [']. The result then follows from Lemma 4.6.

Consider finally E; @; Fy. For every Mz.E in E; @; E5, we have C(F1 0; E3) ~
R(E; @; Ey, Nlw.E). There are three cases.

Suppose that By — Ej. By the induction hypothesis, C(E;) ~ C(E1), so also
C(Ey @; Ey) ~ C(E}). Thus we need to show that for every Nlz.E’ in Ef @; Es,
C(Ey @; E3) ~ R(E}| @ E3 MNz.E'). There are three cases. In the first case,
suppose Az.E’ is a subterm of E; @; E,. The result then follows from Lemma 4.6.

14 : Jens Palsberg

In the second case, consider a subterm M z.E of Ey @; Es such that E — E'. Again,
the result follows from Lemma 4.6. In the third case, consider a subterm \z.E of
Ey @; B such that Xa.E' = Ma.(E[Es/y"]). The substitution arises because of
the contraction of a redex. From Lemma 4.3 we see C(E; ©; Ey) - var(Eg) C [vVV].
The result then follows from Lemma 4.6.

Suppose then that E; — FEj. The proof in this case is similar to the case of
E, — Ef so we omit the details.

Suppose then that Ey = Mx.F and that E; @; By — E[E;/x']. From Lemma 4.3
we see O(E; ©; Ey) I var(E;) C [v!]. From Lemma 4.8 we see that W (E, Ey) C
C(Ey ©; E5). The result then follows from Lemma 4.9. [

THEOREM 4.11. The three closure analyses defined in Section 2 are correct.

Proor. From Theorem 3.4 we see that the three analyses are equivalent when
applied to A-terms where all labels are distinct. Thus, it is sufficient to prove that
the one defined using a constraint system is correct. The proof has two steps.

In Step 1, use Lemmas 4.3, 4.4, and 4.5 to prove that if A~ C(Ex) and Ex —
Ey-, then both of the following properties hold:

—1If By contains A'y.E, then Ex contains \'2.E’ such that A I var(E) C var(E’).

—If Fy contains E; @; Es, then Ex contains E] @, E) such that A b var(E;) C
var(E4) and A+ var(Ez) C var(E}).

In Step 2, suppose C(FEx) has solution L, and suppose Ex —* Ey. We will prove
T.(Ex, Ey) by induction on the length of Ex —* Ey.

In the base case, TL(Ex, Ex) is immediate. In the induction step, suppose
Ex — Ez —" Ey. By Theorem 4.10, C(Ex) ~ C(Ez). By Lemma 4.2, C(Ez)
has solution L. By the induction hypothesis, T1,(Ez, Ey). To prove Tr(Ex, Ey),
there are four cases to be considered.

First suppose By = Az.E. From Tr(Ez, Ey) we get {I} C L(var(Ez)). From
Lemma 4.5 we get C(Ex) b var(Ez) C var(Ex). Finally, the result follows by using
that C(Fx) has solution L.

Then suppose Ey contains /\l,y.(/\lx.E). From Ty (Ez, Ey) we get that Ez con-
tains AV z.E’ such that {I} C L(var(E’)). From Step 1 of this proof, we get that Ex
contains A'w.E” such that C(Ex) F var(E’) C var(E"). Finally, the result follows
by using that C(Ex) has solution L.

In the last two cases, suppose Ey contains either (AM2.E) @; Ey or Fy 0; (\x.E),
respectively. Both cases are similar to the second one, so we omit the details. [

Finally, we prove our subject-reduction result.
THEOREM 4.12. If C(E) has solution L and E — E’, then C(E') has solution L.

PROOF. Immediate from Theorem 4.10 and Lemma 4.2. 0O

ACKNOWLEDGMENTS

The author thanks Torben Amtoft, Nils Klarlund, and the anonymous referees for
helpful comments on a draft of the article.

Closure Analysis in Constraint Form : 15

REFERENCES

AGESEN, O., PALSBERG, J., AND SCHWARTZBACH, M. 1. 1993. Type inference of Self: Analysis of
objects with dynamic and multiple inheritance. In Proceedings of ECOOP’93, 7th European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science, vol. 707.
Springer-Verlag, New York, 247-267.

AYERS, A. 1992. Efficient closure analysis with reachability. In Proceedings of WSA’92, Analyse
Statique. IRISA, Rennes, France, 126-134.

BARENDREGT, H. P. 1981. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
Amsterdam.

BONDORF, A. 1993. Similiz 5.0 Manual. DIKU, University of Copenhagen, Denmark. Included
in Similix 5.0 distribution.

BONDORF, A. 1991. Automatic autoprojection of higher order recursive equations. Sci. Comput.
Program. 17, 1-3 (Dec.), 3-34.

BONDORF, A. AND DANVY, O. 1991. Automatic autoprojection of recursive equations with global
variables and abstract data types. Sci. Comput. Program. 16, 151-195.

BONDORF, A. AND JORGENSEN, J. 1993. Efficient analyses for realistic off-line partial evaluation.
J. Functional Program. 3, 3, 315—346.

CoNseL, C. 1990. Binding time analysis for higher order untyped functional languages. In
Proceedings of the ACM Conference on Lisp and Functional Programming. ACM, New
York, 264-272.

GIANNINI, P. AND Rocca, S. R. D. 1988. Characterization of typings in polymorphic type dis-
cipline. In Proceedings of LICS’88, 3rd Annual Symposium on Logic in Computer Science.
IEEE, New York, 61-70.

HEINTZE, N. 1994. Set-based analysis of ML programs. In Proceedings of the ACM Conference
on LISP and Functional Programming. ACM, New York, 306-317.

HEINTZE, N. 1992. Set based program analysis. Ph. D. thesis, CMU-CS-92-201, Carnegie
Mellon University, Pittsburgh, Pa.

JonEs, N. D. 1981. Flow analysis of lambda expressions. In Proceedings of the 8th Colloquium
on Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 115.
Springer-Verlag, New York, 114-128.

PALSBERG, J. 1993. Correctness of binding-time analysis. J. Functional Program. 3, 3, 347-363.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1994a. Binding-time analysis: Abstract interpretation
versus type inference. In Proceedings of ICCL’94, 5th IEEE International Conference on
Computer Languages. IEEE, New York, 289-298.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1994b. Object-Oriented Type Systems. John Wiley
and Sons, New York.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1992a. Safety analysis versus type inference. Inf.
Comput. To be published.

PALSBERG, J. AND SCHWARTZBACH, M. 1. 1992b. Safety analysis versus type inference for partial
types. Inf. Process. Lett. 43, 175-180.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1991. Object-oriented type inference. In Proceedings
of OOPSLA’91, ACM SIGPLAN 6th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications. ACM, New York, 146-161.

SESTOFT, P. 1991. Analysis and efficient implementation of functional programs. Ph. D. thesis,
DIKU, University of Copenhagen.

SESTOFT, P. 1989. Replacing function parameters by global variables. M.S. thesis, DIKU, Uni-
versity of Copenhagen.

SHIVERS, O. 1991a. Control-flow analysis of higher-order languages. Ph. D. thesis, CMU-CS—
91-145, Carnegie Mellon University, Pittsburgh, Pa.

SHIVERS, O. 1991b. Data-flow analysis and type recovery in Scheme. In Topics in Advanced
Language Implementation, P. Lee, Ed. MIT Press, Cambridge, Mass., 47-87.

UNGAR, D. AND SmiTH, R. B. 1987. SELF: The power of simplicity. In Proceedings of OOP-
SLA’87, Object-Oriented Programming Systems, Languages and Applications. ACM, New

16 : Jens Palsberg

York, 227-241. Also published in Lisp and Symbolic Computation 4(3), Kluwer Acadamic
Publishers, June 1991.

WAND, M. AND STECKLER, P. 1994. Selective and lightweight closure conversion. In Proceedings
of POPL’9, 21st Annual Symposium on Principles of Programming Languages. ACM,
New York, 434-445.

Received May 1994; revised October 1994; accepted October 1994

Access Rights Analysis for Java

Larry Koved

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, New York 10598

koved@us.ibm.com

ABSTRACT

Java™ 2 has a security architecture that protects systems from
unauthorized access by mobile or statically configured code. The
problem is in manually determining the set of security access
rights required to execute a library or application. The commonly
used strategy is to execute the code, note authorization failures,
allocate additional access rights, and test again. This process
iterates until the code successfully runs for the test cases in hand.
Test cases usually do not cover all paths through the code, so
failures can occur in deployed systems. Conversely, a broad set of
access rights is allocated to the code to prevent authorization
failures from occurring. However, this often leads to a violation
of the “Principle of Least Privilege.”

This paper presents a technique for computing the access rights
requirements by using a context sensitive, flow sensitive,
interprocedural data flow analysis. By using this analysis, we
compute at each program point the set of access rights required by
the code. We model features such as multi-threading, implicitly
defined security policies, the semantics of the Permission.implies
method and generation of a security policy description. We
implemented the algorithms and present the results of our analysis
on a set of programs. While the analysis techniques described in
this paper are in the context of Java code, the basic techniques are
applicable to access rights analysis issues in non-Java-based
systems.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer—aided software
engineering (CASE).

D.2.4 [Software/Program Verification]: Format methods,
Validation.

D.2.5 [Testing and Debugging]: Code inspections and walk-
throughs, Diagnostics, Testing tools (e.g., data generators,
coverage testing), Tracing.

General Terms
Security, Languages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-471-1/02/0011...$5.00.

Marco Pistoia
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, New York 10598

pistoia@us.ibm.com

Aaron Kershenbaum
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, New York 10598

aaronk@us.ibm.com

Keywords
Security, call graph, invocation graph, data flow analysis,
Java security, access rights.

1. Introduction

Java™ 2 has a security architecture intended to protect client and
server systems from dynamically installed (e.g., mobile code) or
statically configured malicious code [13] [14] [15] [23]. Applet
code is downloadable from the Internet into a Web browser [23]
[19], and uploadable via RMI [22] into a server application. The
Java 2 security system contains an authentication subsystem and
an authorization subsystem. This paper focuses on the
authorization subsystem, automating the determination of access
rights needed to execute the code.

Prior to deploying application or library code in Java, a critical
question arises: “What Java access rights are required to allow the
code to execute?” In practice this problem is solved empirically.
The developer reads documentation for libraries used (including
the Java run-time libraries) and deduces the required access rights.
Unfortunately, this documentation is often missing, misleading, or
out of date. In the absence of reliable documentation, the
developer executes the new code and observes authorization
failures. The developer then grants additional access rights and
retests. The developer repeats this process, possibly many times,
until there are no authorization failures. However, required access
rights requirements can remain undiscovered due to an
insufficient number of test cases, rendering the code unstable.

An analogous situation arises in systems where mobile code is
dynamically installed and the system administrator (e.g., the Web
browser user) must determine the set of access rights to provide.
The system administrator usually relies on the code
developers’/distributors’ recommendations, with the risk that too
many access rights are granted and security holes are created.
Alternatively, the system administrator runs the code with a
smaller set of access rights, examines failures, and incrementally
adds access rights as is necessary. This process is tedious and
error-prone. As before, insufficient testing results in improper
authorizations, creating security exposures or application
instability.

This paper describes a technique based on context sensitive data
and control flow analyses to automatically determine access rights
required by Java programs or libraries. We use a modified

interprocedural invocation graph, called an access
invocation graph (ARIG), to compute the access rights.

rights

In Java, access rights are modeled using the Permission class
hierarchy. The root of the class hierarchy is the abstract class
java.security.Permission. By default, all Permissions are
“approval” of access rather than “denial.” A Permission object is

an instance of a subclass of java.security.Permission. For
instance,

perm = new Fi |l ePerm ssion("/tnp/abc", "read");
creates a Permission object to read the file /tmp/abc. In our

analysis, we compute the set of Permission objects to associate
with each program point by constructing an ARIG to propagate
the access rights. An ARIG consists of nodes corresponding to
AccessController’s checkPermission and doPrivileged methods,
which are the boundary nodes, as well as all nodes in the
invocation graph in all paths between the boundary nodes and
from the boundary nodes to the root nodes.

To summarize, the main contributions of this paper are:

* We present a context sensitive, flow sensitive analysis for
computing the access rights requirements of a program.

¢ We model features such as multithreading, implicitly defined
security policies, semantics of the Permission.implies
method, and the generation of a security policy description.

* We use a modified invocation graph, an ARIG, to propagate
access rights.

e We implemented the algorithms and present test results from
the use of our tool.

‘Our analysis technique is scalable enough to produce usable
results on problems with an analysis scope of over 20,000 classes.

2. Prior Work

Both static and dynamic analysis techniques are employed in
modeling security and authorization. Much of this work has been
applied to eliminate or minimize redundant authorization tests or
define alternatives to the current approach to defining
authorization points within code.

Pottier, Skalka and Smith [25] extend and formalize Wallach’s
security passing style [31] via type theory using a A-calculus,
called A.. Pottier, et al, were unable to model all of Java’s
authorization characteristics, including multithreaded code and
“open world” analysis. Nor does it consider computing the
authorization object, which often includes identifying the String
parameters to the Permission objects’ constructor. All of these
strongly affect the completeness of an authorization analysis.

Jensen, Métayer and Thorn [17] focus on proving that code is
secure with respect to a global security policy. Their model uses
operational semantics to prove the properties, using a two-level
temporal logic, and shows how to detect redundant authorization
tests. They assume all of the code is available for analysis, and
that a call graph can be constructed for the code, though they do
not do so themselves. The results are also limited by an

360

assumption that security properties can be expressed solely in
terms of the control flow and call graph of the program. For Java,
essential authorization information is based on values (usually
string constants) propagated to authorization tests.

Bartoletti, Degano and Ferrari [5] are interested in optimizing
performance of run-time authorization testing, by eliminating
redundant tests and relocating others as is needed. The reported
results apply operational semantics to model the run-time stack.
Similarly, Banerjee and Naumann [4] apply denotational
semantics to show the equivalence of “eager” and “lazy”
semantics for stack inspection, provide a static analysis of safety
(the absence of security errors), and identify transformations that
can remove unnecessary authorization tests. Significant
limitations to this approach are that the analyses are limited to a
single thread, and require whole program analysis. Also, the
Permission.implies and Permissions.implies methods, including
AllPermission, are not modeled. Modeling these classes and
methods are important when simplifying the access rights policy
descriptions so that the results are usable.

In the aforementioned works, assumptions are made that (1) call
graph algorithms are available to translate the theoretical
approach into a practical implementation, and (2) there is an
authorization object, p, and a single authorization point, the
checkPermission method. For Java 2 this is not correct. Almost
all of the code in the Java runtime calls one of the
SecurityManager authorization methods, though many of these
methods subsequently call AccessController.checkPermission.
Many of the well-known call graph and data flow algorithms [16]
are too conservative to correctly identify authorization
requirements. In this paper we describe an invocation graph and
data flow analysis that minimizes the conservativeness to get more
accurate authorization information.

Felten, Wallach, Dean and Balfanz have studied a number of
security problems related to mobile code [32] [11] [31] [9] [30]
[10] [8]. In particular, they present a formalization of stack
introspection, which examines authorization based on the
principals (signers and/or origin of the code) currently active in a
Thread stack at run-time, as is found in Java. In particular, an
authorization optimization technique, called security passing
style, encodes the security state of an application while the
application is executing [31]. Each method is modified so that it
passes a security token as part of each method invocation. The
token represents an encoding of the active principals (security
state) at each stack frame, as well as the result of any
authorization test encountered. By running the application and
encoding the security state, security passing style explores
subgraphs of the comparable invocation graph, and discovers the
security states and authorizations associated with those states.
Wallach assumes that all authorization tests are temporally
invariant, so that once an authorization test succeeds or fails in a
particular security state, it will always succeed or fail in that state.
In Java 2 this invariance does not exist. A Permission.implies
invocation can revoke a class’ access rights, or may use state
unrelated to the runtime stack when determining the result of the
test. In practice, especially in web server environments, access
rights are revoked while the JVM is running. Our approach is not
to optimize the authorization performance, but to discover
authorization requirements by analyzing all possible paths

through the program, even those that may not be discovered by a
limited number of test cases.

Rather than analyzing security policies as embodied by existing
code, Erlingsson and Schneider [12] describe a system that inlines
reference monitors into the code to enforce specific security
policies. The objective is to define a security policy and then
inject authorization points into the code. This approach can
reduce or eliminate redundant authorization tests. We examine
the authorization issue from the perspective of examining an
existing system containing authorization test points. Through
static analysis, we discover how the security policy needs to be
modified / updated to enable the code to execute.

3. Invocation Graph Characteristics

We use a path-insensitive, flow-sensitive, context-sensitive
invocation graph. A path-insensitive invocation graph analyzes
all paths through all basic blocks in each method. Because Java 2
authorization is based on associating rights with classes, a path-
insensitive invocation graph construction algorithm is sufficient.
The invocation graph is flow-sensitive for intraprocedural analysis
because it considers the order of execution of the instructions
within each basic block, accounting for local variable kills and
casting of object references. The invocation graph
(interprocedural analysis) is context-sensitive because it uniquely
distinguishes each node by its calling context: the target method,
receiver and parameters values.

For the purposes of describing the Permission culling algorithm,
the invocation graph has the following characteristics:

¢ Each node in the graph represents a context sensitive method
invocation.

e Each node in the graph is uniquely identified by its calling
context, so no two nodes in the graph have the same calling
context.

¢ Each node in the graph contains the following state:

0 The target method.

0 For instance methods, an allocation site (or type) for the
method’s receiver.

0 All parameters to the method, represented as a vector of
sets of possible allocation sites (or possible types).

0 A set of possible return value allocation sites (or types)
from this method.

e The edges in the graph are directed, where each edge points
from a call site to a target method.

e The graph is rooted and may be cyclic.

e Our representation of the graph allows bi-directional
traversal, even though the edges in the graph are
unidirectional. Therefore, from any node within the graph,
we can find all of its predecessor nodes.

In addition to the invocation graph construction, we use a data
flow analysis with a precision to the level of allocation sites
(CFA(1) [27]) and include the propagation of string constants. In
a limited number of cases, data flow on Permission objects is
computed using a CFA(2)-like algorithm to reduce the
conservativeness of the analysis (see Section 4.). We are

361

particularly interested in the string constants since they are used
as parameters to Permission object constructors. The string
constant values passed to the constructor fully qualify the access
rights requirement.

4. Authorization Model — Access Rights
Invocation Graph (ARIG)

Each Java application class is loaded into the Java Virtual
Machine and is associated with a set of rights, or privileges,
granted to the code. Statically determining this set of rights is
nontrivial because it involves identifying, as accurately as
possible, the precise set of methods callable from any point in a
program execution. If any method is omitted, the analysis is
incomplete. Conversely, when the analysis is overly conservative,
the large number of false positives violates the Principle of Least
Privilege [26], rendering the analysis ineffective for practical use.

We model the Java 2 authorization algorithm using a graph and
set theoretic approach as follows. Let GZ(N,E% be the
invocation graph representing a program @ The nodes are
described by N = {n(M ,R,P)| M is the target method, with

receiver R and k parameters P = (Pl> where parameter i

=1,k
can have possible types P;}. Each node represents the
intraprocedural analysis of a method, including the virtual call
sites within the method, and subsumes the control flow graph for
that method. The edges are described by:

E= {e(np(MP,RP,Pp),nS(MS,RS,PS))IMS is invoked within Mp} .
Given a node nON, we define F+(n):={n'| [b(n,n')DE} and

F~(n)={n'| (n'.n)OE} , known as the outward and inward
adjacencies of n, respectively.

We can extend these definitions to sets of nodes. Thus, given
N O N, we define r+(N):: Ur+(n) and F_(N):: UF_(n).
nON nON

We also define:

* Nyt = {n ON| I'_(n) = @}, the set of root nodes in the
invocation graph

. Ngp = {n(M ,R,P) | M is AccessController.doPrivilegec}

* Ny= {n(M ,R,P) | M is AccessController.checkPermission}

* Nstart = Nroot Ur—(Ndp)
* N stop =N, cp
For any node n, RP(n) indicates the set of required Permissions
for n. Similarly, given a set of nodes N O N, RP(N) denotes
the required Permissions for the nodes in N. This implies that
RP(N) = URP(n) . For each node nON, the algorithm
nN
determines RP(n) by starting from RP(N stop), and tracing paths

back from nodes in Ny, to nodes in Ny

For each node n in Nyop, RP(n) is defined to be the set
containing the single element p, where p is the Permission being
checked at n. Thus, if we define CP(n) to be the Permission

{#.0nON,,
checked at # itself, we have CP(n) =
@,Un0 N,
For any node nON, if there is a path n(n,s) from n to another

node s, n requires all the Permissions that s does. Therefore, it
must be RP(n) g RP(s). We thus compute RP(n) recursively

from RP(1)=CP(x)U | JRP(s).
sON | Or{n,s)

Since, in general, § contains cycles, the algorithm is a fixed-point
computation, starting with estimates for RP(S) for every s in Ny,

and working backwards, using the ' function, along paths
towards nodes in N, This process associates a set of required
Permissions RP(n) with each node n in Ng,,. More precisely, it

computes RP(n) forall nON.

Finally, RP(C) , the set of Permissions required for a class C, can

then be computed as RP(C)= URP(n), where N (C) is the
#ON(C)

sets of nodes n whose methods are declared in class C. Indeed, in

this manner, we can compute RP(N) for any set of nodes

NON.

Note that Permissions propagated upwards via a doPriviledged
node do not propagate beyond the predecessor of the doPrivileged
node. Thus, the above definition (or the algorithm based on it)

must be refined to replace F_(n) by F_(n, p), where

@, when p was propagated upwards to n

r- (n, p) = via a doPrivileged node

r (n), otherwise

Lastly, many security authorization tests in Java 2 are made
through calls to methods in the SecurityManager class. In the
reference implementation of this class, most of the
SecurityManager authorization tests are performed by calling
AccessController.checkPermission ~ with ~ an appropriate
Permission object. Details about the classes, objects and
algorithms employed by Java 2 authorization are treated in-depth
in Gong’s and Pistoia’s Java 2 security books [15] [23].

It can be seen that the data flow analysis described above does
indeed converge to a fixed point by observing that the transfer
function relating the value of RP(n) at the output of any

invocation graph node, #, to its value at the input to that node is in
fact the identity function and the value of RP(n) at the input to a

node 7 is formed from the values at the outputs of nodes in F_(n)
by means of a set union operation. Thus, RP(n) is monotone,

specifically it is a non-decreasing function as our computation
proceeds. The values of the RP(n) at each invocation site form a

362

lattice [18] and, since the set of types within our analysis scope is
finite, we are guaranteed that the computation converges to a
unique fixed point in finite time, regardless of the order in which
we visit the nodes in the invocation graph.

It should be noted also that uniquely identifying a node in the
ARIG by its calling context does not introduce any additional
conservativeness to the analysis. In fact, any two invocations of
the same method with the same calling context would generate the
same invocation subgraph. Therefore, they would require the
same set of Permissions.

To clarify all of the concepts introduced in this section, consider
the following simple example. A class C implements a method,
methodC, which takes as argument the name of a file, and returns
a FileInputStream for that file, as shown next:

Fi l el nput Stream nmet hodC(String fil eName) {
return new Fil el nput Strean(fil eNane);
}

Creating a FileInputStream involves a security check.

methodC is called from within methodA in class A and methodB
in class B, the only difference being that while methodA calls
methodC with a specific parameter, "fi | el. t xt", methodB
calls methodC with two possible parameters depending on the
value of a boolean expression, as shown in the two following
snippets of code:

Fi | el nput Stream met hodA() {
String fileName = "filel. txt";
Cc = new ();
return c. methodC(fil eNane);

}

Fi |l el nput Stream et hodB() {
String fil eNane;

if (Math.randon() > 0.5)
fileName = "file.txt";
el se
fileName = "file2.txt";

Cc = new ();
return c. methodC(fil eNane);
}

Evaluating the boolean expression in methodB cannot be done
during the static analysis of the code. Therefore, the conservative
and most secure approach requires that the execution of both the
branches be considered. Therefore, the call to methodC must be
represented taking into account both the parameters
"filel.txt" and "file2.txt". The following figure
shows a simplified version of the invocation graph representing
the program:

B. met hodB()

A. met hodA()

C. met hodC
({“filel.txt"})

C. met hodC
({“filel.txt”,
“file2.txt"})

Fi | el nput Stream
<init>
({“filel.txt”,
“file2.txt"})
AccessControl |l er.
checkPer m ssi on

Fi |l el nput Stream
<init>
({“filel.txt"})

AccessControl | er.
checkPer m ssion

O-E-C-@

({p}) ({Pp1, P2})
@ = Permission set X is required
p, = FilePerm ssion(“filel.txt”, read”)
p, = FilePerm ssion(“file2.txt”, read”)

Figure 1. Sample Program ARIG Graphical Representation

As the ARIG in Figure 1, shows, classes B and C require both
Permissions p; and p,, while class A require only p;.

5. The Permission Culling Algorithm

We describe an algorithm to statically identify the set of rights
required by each analyzed class. The algorithm identifies paths in
an invocation graph [2] [3] [6] [7] [28] [29] leading to
AccessController.checkPermission nodes. By using a data flow
analysis [21] the algorithm determines the set of possible
Permission objects that could be passed as the argument to this
method.

5.1 The Basic Permission Culling Algorithm

The basic algorithm uses the ARIG previously described to
identify the set of Permissions representing the access rights
required for each analyzed call site. The algorithm then
aggregates these Permissions by the calling methods and their
declaring classes. The algorithm identifies all nodes in each path
bounded by any Ny, node and an Ny, node and associates a set
of Permissions with each of the nodes in the path. In a running
system, each checkPermission method call has a single Permission
object passed as an argument. In our analysis, which is path
insensitive, this argument is a set of possible Permissions.

Each method in the path, and the method’s declaring class, is
marked as requiring the set of Permissions. In addition, the String
parameters from Permission constructors are obtained through the
data flow analysis. The parameter values provide necessary
qualification of the authorization requirement. A typical
authorization is described by constructor call
FlePermission("/tnp/filel","wite"). Pseudo code for this
algorithm is in Appendix 1. The following figure graphically
represents the Basic Permission Culling algorithm:

363

(p)

AccessControl | er.
doPri vi |l eged()

Securi t yManager .

checkPer m ssi on(q) 0 Pri vExcAction. run()

AccessControl | er.
checkPer m ssi on(q)

€

Securit yManager .
checkPer m ssi on(p)

AccessController.

checkPer m ssi on(p)
= Permission x is required

(JO)

= No permission is required

Figure 2. The Basic Permission Culling Algorithm

5.2 Reducing the Conservativeness of the
Access Rights Analysis

The basic algorithm as described leads to an overly conservative
result as is shown in the following figure. The subgraph

represents part of the standard Java 2 SecurityManager control
and data flow:

Securi t yManager .
¥ checkRead({“filel"})

Securi t yManager .
checkRead({“fil e2"})

Securi t yManager .
#) checkPer mi ssi on({p, q})

Fi | ePer ni ssi on.
<init>
(“file2",

Fi | ePer ni ssi on.
init>

(“filel”, “read")

Both Permissions p and g
are propagated

AccessControl | er.
#) checkPerm ssi on({p, q})

@ = Permission x is computed
. = No permission is required

Figure 3. Conservativeness Introduced by the SecurityManager

The problem is that the FilePermission allocation site corresponds
to two different FilePermission constructor calls as a result of the
two different paths leading to the checkRead method. The Basic
Permission Culling Algorithm propagates the Permission set
{p,q} even when only p or g, but not both, is required. This
violates the Principle of Least Privilege. We selectively reduce
the conservativeness by using the node of the Permission’s
allocation site (a CFA(2)-like approach [27]) to differentiate the
Permission allocations in the SecurityManager. In practice, this

“wite")

approach appears to be sufficient. The following figure shows the

@

v

result:

i Securi t yManager .

checkRead
({“file1"})

Securi t yManager .

Fi | ePer i ssion. SecurityMnager.
<init> checkPer ni ssion
(“filel”, “read”) ({p})

Securi t yManager .
checkPer ni ssion

(fah)

Fi | ePer mi ssi on.
<init>
(“file2”,

AccessControl | er.
checkPer ni ssi on

({a})

AccessControl | er.
checkPer ni ssi on

({p})

@ = Permission x is computed ‘

Figure 4. Conservativeness Reduction through Selective CFA(2)

= No permission is required

We define r_(n,P), the inward adjacency of a node n with
respect to a set P of Permissions, as the set of predecessor nodes
of n with respect to the allocation sites of the Permissions in P.

The algorithm proceeds as before, with I'_(n,P) in place of

r_(n).
Permissions allocated in one of the SecurityManager check
methods that exhibit the behavior similar to the checkRead
method described above.

In practice, this refinement is sufficient for those

5.3 Threads

The construction of a new Thread object does not cause it to start
execution. Nominally, a call to the Thread.start method results in
the new Thread beginning execution at the Thread.run method.
The new Thread can be started by a different Thread other than
that which created it, or by a method in a class other than that
which created the Thread. The run method becomes the root
(starting) method for the Thread.

According to the Java 2 authorization model, a new Thread
requires that all predecessor nodes of the newly created Thread’s

constructor node also require Permission set P. Also, F_(n),
where n is a Thread.run node, does not require P. We extend the

I~ function as follows:
- iy, if nisa Thread.run node
F(np)=1 "
r (n,P), otherwise
where npy, is the Thread constructor node for n’s receiver.
The pseudo code is in Appendix 2. Graphically, we are rewriting

the ARIG to contain a predecessor edge from a Thread.run call
site to the Thread constructor as is shown in the following figure:

“write")

364

Thr ead.
<init>()

>

®
N \.

N
R Y

~
~
~
~

~

> ~
new ~
predecessor edge

Thread. start ()

00

Thread. run()

= Permission p is required
AccessController.
checkPer m ssi on(p)

Q
®

= Permission p is not required

Figure 5. Modeling Threads

5.4 doPrivileged with an
AccessControlContext

In addition to the AccessController.doPrivileged method
described above, another form of the doPrivileged method takes
an AccessControlContext instance as an argument. In addition to
the previously described behavior, authorization tests include all
of the predecessor nodes of the node where the
AccessControlContext object was allocated. This is modeled

similarly to how we model new Threads, by augmenting I to
include an edge from the doPrivileged node to the node where the

AccessControlContext was allocated. Specifically, we extend r
as follows:

Nacc (n), if nis a doPrivileged node with an

r- (n, P) = AccessControlContext
r- (n, P), otherwise
where N pcc (n) is the set of nodes where

AccessControlContext.<init> is invoked to create any of n’s
AccessControlContext parameters.

6. Computational Experience

The practical usefulness of an ARIG depends on the
conservativeness of the underlying invocation graph and data flow
analysis. In this section we discuss the trade-offs of using
relatively less conservative invocation graphs, and we explain
through practical results why we selected a context sensitive,
selectively CFA(2) invocation graph. We discuss also the
limitations that naturally arise in the identification of string
constants representing the parameters to Permission constructors.
Finally, we show some experimental results.

6.1 Analysis Conservativeness

Previous work using static analysis for Java authorization analysis
has not discussed the implications of conservativeness of
invocation graph and data flow analysis techniques. The
conservativeness of the invocation graph and data flow analysis
greatly affects the Permission Culling Algorithm results. An
overly conservative control and data flow analysis is likely to
determine access rights requirements for classes that do not need
them, thus violating the Principle of Least Privilege. Class
Hierarchy Analysis (CHA)-style graph construction algorithms [7]
result in java.security.Permission and all of its subclasses being
required for all classes needing authorization. A similar result
holds for Rapid Type Analysis (RTA)-style algorithms [2], except
that the access rights requirements for any class needing any
Permission will include all of those Permissions that have
allocation sites within the call graph. A CFA(0) call graph [27]
would lead to overly conservative results because it does not
consider the calling contexts. Without the calling contexts, it not
possible to differentiate the AccessController.checkPermission
calls. Similarly for the calls to the SecurityManager, where
CFA(2) is used to selectively differentiate the required
Permissions, as shown in Section 5.2. In addition, doPrivileged
nodes would be collapsed, causing all nodes prior to doPrivileged
to require the same set of Permissions, even though the required
Permissions should usually be different. Again, this is overly
conservative, resulting in a violation of the Principle of Least
Privilege.

Experience has shown that context-sensitive invocation graphs
yield less conservative results. Propagation-based call graph
construction algorithms have been studied extensively, and differ
primarily in the number of sets used to approximate run-time
values of expressions [16]. The Cartesian Product Algorithm
(CPA) [1] uses an approach based on parametric polymorphism.
Given a method invocation to analyze, CPA computes the
Cartesian product of the types of the actual arguments to the
method. The invocation graph we use is similar to Agesen’s,
except we use what he refers to as megamorphic sets to represent
parameters. Also, we consider data polymorphism, while Agesen
does not. The invocation graph construction algorithm we use is
similar the one described by Plevyak and Chien [24].

To minimize conservativeness, we use a graph construction
algorithm that is context sensitive, flow sensitive, and path
insensitive. By flow sensitive we mean that the analysis considers
the order of execution of instructions both intra- and inter-
procedurally thus improving the accuracy of the resulting graph.
Part of our graph construction is flow sensitive for local variables,
including support for local field kills — local fields that are
overridden by subsequent assignments to the same field — and
type casting. However, our handling of instance and class (static)
fields is flow-insensitive because we use the weak assumption that
all instance and class fields are subject to modification at any time
due to multi-threading. To compensate for class and instance
field flow-insensitivity, the data flow analysis tracks field values

365

by allocation site. The practical problem that arises is that an
allocation site does not directly map to a node in the invocation
graph, thus making the analysis somewhat more conservative than
we would otherwise like. Specifically, there is a one-to-many
mapping of allocation sites to nodes in the graph. However, we
have observed, by closely examining output from our tool and
corresponding source code, that using allocation sites is sufficient
to compensate for imprecision resulting from being
interprocedurally flow insensitive.

Path insensitive intraprocedural analysis considers all paths
through a method. This is conservative because input values or
the values of constants defined within the program are not
considered. For example, in the statement:

if (false) expl el se exp2

both expl and exp2 are evaluated even though, in practice, expl
never gets executed. While conservatively correct, this may result
in additional graph nodes being generated for paths not occurring
in practice. The net effect is that all required Permissions are
included, though some additional Permissions may be included
that are not strictly necessary in all executions of a program. A
future version of the tool could consider adding a level of path
sensitivity to minimize this conservative characteristic.

The graph construction algorithm that we use is selectively
CFA(2). In particular, we use the node of the Permission’s
allocation site to differentiate Permission allocations in the
SecurityManager. The CFA(1) portion of our algorithm defines
the calling context to be the allocation sites of the possible
receivers and parameters. Unfortunately, this approach alone does
not distinguish between two different Permissions allocated at the
same bytecode offset in the SecurityManager (see Section 5.2).
As a result, it would be impossible to distinguish between two
different Permissions of the same type, where the Permission
object is allocated at the same location in the SecurityManager.
As we explained in Section 5.2, the selective use of a CFA(2)-like
approach eliminates this additional level of conservativeness
without significantly impacting CPU and memory usage.

6.2 Limitations on String Constant
Identification

As a practical matter, parameters to Permission constructors are
string constants. In some cases, the parameter value may be
available only at run-time. For example, it may be required that
the name of a file to be opened be specified as input. To improve
the analysis, it is possible to provide some metadata to reflect the
run-time values. In other cases, the parameter value could be the
result of a computation (e.g., string concatenations). A slightly
more sophisticated data flow analysis is required in such
circumstances.

Application Classes Methods | Instruction Analysis time (sec.) Nodes | Edges | Heap size

Scope | Analyzed Analyzed bytes Call graph ARIG Total (MB)
javadoc 6,720 635 2,874 190,394 162 8 170 | 21,042 | 60,935 128
GetProperty 5,446 378 1,545 91,471 32 6 38| 9,326 | 15,743 65
CountMain 5,451 383 1,552 91,809 32 6 381 9,339] 15,763 65
java.lang.* 5,445 472 2,319 126,105 51 6 57 | 13,578 | 23,250 93
ECPerf Corp 21,291 1,912 2,854 426,685 94 7 101 | 18,330 | 36,479 120

Table 1. Comparison of Analyses

6.3 Experimental Results

Context and flow sensitive static analysis has a reputation for
requiring significant processing power and memory. We have
performed authorization analysis on a number of sample programs
(see Appendix 3), parts of rt.jar, selected middleware, the Java
API documentation generator (javadoc), and part of the ECPerf
benchmark program. The results reported in Table 1. are from
running our analysis on a system with an AMD Athalon 933 MHz
processor, Windows 2000 SP2 with 768 MB RAM and using the
Java Development Kit (JDK) V1.3.1. JDK V1.3 functionality was
made part of the analysis scope by including the JDK V1.3 rt.jar.

Performance is improved by ignoring methods that do not lead to
calls to AccessController.checkPermission, but whose data flow
analysis requires a substantial amount of time. By forcing the
underlying invocation graph to ignore the class constructor for
sun.io.CharacterEncoding as well as all methods in classes Object,
String, StringBuffer, and NullPointerException in package
java.lang, and classes TimeZone and SimpleTimeZone in package
java.util, we improved execution time significantly without
affecting the resulting Permission sets identified. In particular,
this optimization is a consequence of the fact that the analysis
could be performed incrementally. Once it has been established
that the invocation of a particular library will never lead to a
security check, the data flow analysis for that library can be
avoided.

The simplest example that we analyzed is an application called
GetProperty, whose main method was the only root method and
contained the following two lines of code:

System set Securit yManager (new SecurityManager());
System out. println(System get Property("user. hone"));

The authorization requirements produced were precisely those
that we expected based on examination of the source code:

java.l ang. Runti nePerni ssion "createSecurityManager"
java.l ang. Runti nePerni ssi on "set SecurityManager"
java.util.PropertyPernission "user.hone", "read"

366

The next example, CountMain, is more interesting because it
makes use of privileged code. The method main was the only root
method. The analysis computed access rights requirements that
exactly reflected the presence of privileged code in the
application. The source code for CountMain, as well as the
computed access rights requirements, is reported in Appendix 3.

We also ran an analysis on the packages java.lang, java.lang.ref,
and java.lang.reflect in rtjar (part of the run-time classes for
Java); all the public and protected methods of classes in these
packages were considered as root nodes, including non-abstract
public and protected methods in abstract classes, because they
represent all the possible entry points that a program running on
top of a library could invoke. The entire rt.jar V1.3 was included
in the analysis scope. 2,811 root nodes were generated from
1,018 root methods, of which 336 were static methods, and the
remaining 682 were instance methods. The number 2,811 comes
from the fact that each static method gets counted once, because it
has no receiver, and each instance method is weighted by the
number of receivers. This results in an average of 3.629 receivers
per root instance method.

The tool has successfully been run on large Java programs, the
largest of which contain over 20,000 classes. Table 1. shows the
statistics of running the analysis on the Corp part of the J2EE
benchmark called ECPerf. To analyze this benchmark, the Java
runtime plus all of the Enterprise JavaBeans (EJB) runtime classes
are needed, resulting in an analysis scope of over 21,000 classes.

Other analyses were performed on large products (over 20,000
classes in the analysis scope) based on the Java security model of
the JDK V1.1 platform. The goal was to identify its access rights
requirements to allow it to successfully run with the Java 2
security model enabled.

7. Generation of a Security Policy Description

In Java 2, every concrete Permission class is required to
implement the implies method. Given two Permission objects, p
and ¢, when p. i npl i es(q) returns t r ue it means that any code
that is granted p is also automatically granted g. Since we
identify the String parameters to the Permission objects’

constructors, we instantiate the Permission objects during the
analysis, and use their implies methods to filter out those
Permissions that are already implied by other Permissions. This
minimizes the list of required access rights. When the parameters
to a Permission constructor are not determinable, we impose that
the resulting Permission cannot imply any other Permissions, even
though stronger Permissions, such as java.security.AllPermission,
still imply it. This also allows us to generate a security policy file
containing the access right requirements needed at run-time.

The access rights requirements are minimal modulo the
conservativeness of the analysis and the possible inability to
determine some string constants. The resulting policy file is
useful for defining new security policy, update an existing policy,
or validate whether a path through the program will result in an
authorization failure.

8. Conclusions

For a given application or classes in a library, we are able to
conservatively identify the set of Java 2 Permissions required for
each class in the analysis scope. By using a context-sensitive
invocation graph, we are able to accurately identify the classes in
each path that contains a call to the Java 2 security authorization
subsystem. Our level of precision is far greater than that required
for Java 2 security because we are able to identify access rights
requirements to the level of methods and call sites, rather then the
coarser granularity of classes or libraries. A refinement of the
Java 2 authorization algorithm could result in the minimization of
authorization, bringing us closer to the application of the
Principle of Least Privilege.

By using the analysis technique described in this paper, we can
determine the access rights requirements of mobile code, such as
applets, servlets, and code that exploits mobile code features of
RMI. Prior to loading the mobile code, it is possible to prompt
the administrator or end-user to authorize or deny the code access
rights for restricted resources protected by the Java 2
authorization subsystem.

Automating the process of determining required access rights
changes the relationship between the developer of the code and
the administrator / end-user. Instead of relying solely on
recommendations from the developer, or resorting to trial-and-
error testing of the code to determine required access rights, our
tool can analyze the code and make its own recommendations
and/or validate recommendations made by the developer. This
shifts the relationship from one that requires that the developer be
trusted, to something that can be verified.

While the analysis described here is specific to Java, the basic
techniques can be applied to resource access rights determination
in other type safe languages. With stronger analysis techniques, it
may even be possible to apply the same approach to languages
that lack type explicit safety but could rely on other mechanisms
such as typed assembly language [20].

367

9. Acknowledgment

The authors would like to thank Dr. Sreedhar Vugranam for his
invaluable technical contributions to this paper.

10. References

[1] O. Agesen. The Cartesian Product Algorithm: Simple and
precise type inference of parametric polymorphism. In
Proceedings of ECOOP 95, Aarhus, Denmark, August 1995.
Springer-Verlag, 1995.

D.F. Bacon and P.F. Sweeney. Fast static analysis of C++
virtual function calls. In Proceedings of the Eleventh
Annual Conference on Object-Oriented Programming
Systems, Languages, Systems and Applications
(OOPSLA’96), San Jose, CA. 1996, 324-341, ACM Press,
New York. Also in ACM SIGPLAN Notices 31(10).

D.F. Bacon. Fast and Effective Optimization of Statically
Typed Object-Oriented Languages. PhD thesis, Computer
Science Division, University of California, Berkeley, Dec.
1997. Report No. UCB/CSD-98-1017.

(3]

A. Banerjee and D. A. Naumann. A4 Simple Semantics and
Static Analysis for Java Security. Stevens Institute of
Technology, CS Report 2001-1, July 2001.

M. Bartoletti, P. Degano, and G. Ferrari. Static Analysis for
Stack Inspection. Proceedings of ConCoord, Lipari, Italy, 6-
8 July 2001, ENTCS 54, Elsevier Science B. V., 2001.

C. Chambers, D. Grove, G. DeFouw and J. Dean. Call
graph construction in object-oriented languages. In
Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA’97), 108-124, Oct. 5-9, 1997, ACM Press, New
York. Also in ACM SIGPLAN Notices 32(10).

[7] J. Dean, D. Grove and C. Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In
Proceedings of the Ninth European Conference on Object-
Oriented Programming (ECOOP’95). Aarhus, Denmark,

Aug. 1995. W. Olthoff, Ed., Springer-Verlag, 77-101.

D. Dean, E.W. Felten, and D.S. Wallach. Java Security:
From HotJava to Netscape and Beyond. Proceedings of the
1996 IEEE Syposium on Security and Privacy (Oakland,
California), IEEE, May 1996.

[9] D. Dean. The Security of Static Typing with Dynamic
Linking. Proceedings of the Fourth ACM Conference on
Computer and Communications Security. (Ziirich,

Switzerland), April 1997.

[10]D. Dean, E. W. Felten, D.S. Wallach, and D. Balfanz. Java
Security: Web Browsers and Beyond. Internet Beseiged:
Counter Cyberspace Scofflaws, D.E. Denning and P.J.
Denning, eds. ACM Press (NY, NY), October 1997.

[11]R.D. Dean. Formal Aspects of Mobile Code Security. PhD
thesis, Princeton University, Princeton, New Jersey, January
1999.

[12]U. Erlingsson and F.B. Schneider. IRM Enforcement of Java
Stack Inspection. Proceedings IEEE Symposium on Security
and Privacy, pp. 246-255, Oakland, California, May 2000.

[13]L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going Beyond the Sandbox: An Overview of the New
Security Architecture in the Java Development Kit 1.2.
Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 103-112, Monterey, CA.,
December 1997.

[14]L. Gong and R. Schemers. Implementing Protection
Domains in the Java Development Kit 1.2. Proceedings of
the Internet Society Symposium on Network and Distributed
System Security, 125-134, San Diego, CA., March 1998.

[15]L. Gong. Inside Java™ 2 Platform Security: Architecture,
APl Design, and Implementation. Addison-Wesley,
Reading, MA. 1999.

[16]D. Grove and C. Chambers. A4 Framework for Call Graph
Construction Algorithms. ACM TOPLAS, Vol. 23, No. 6,
November 2001.

[17]T. Jensen D. Le Métayer and T. Thorn. Verification of

control flow based security properties. IRISA, Publication
interne n° 1210, October 1998.

[18]G. A. Kildall. A Unified Approach to Global Program
Optimization. Proceedings of Principles of Programming
Languages, pp. 194-206, 1973.

[19]G. McGraw and E.W. Felten. Securing Java™. John Wiley
& Sons, Inc., New York. 1999.

[20]G. Morrisett, D. Walker, K. Crary, and N. Glew. From
system F to Typed Assembly Language. In ACM
Transactions on Programming Languages and Systems,
21(3):528-569, May 1999.

[21]S.S. Muchnick. Advanced Compiler Design And

Implementation. Morgan Kaufmann Publishers, San Diego,
CA, 1997.

[22]R. Oberg. Mastering RMI: Developing Enterprise
Applications in Java and EJB. John Wiley & Sons, Inc.,
New York. 2001.

[23]M. Pistoia., D.F. Reller, D. Gupta., M. Nagnur., AK.
Ramani. Java™ 2 Network Security, Second Edition.
Prentice Hall PTR, New Jersey, 1999.

368

[24]7. Plevyak and A.A. Chien. Precise Concrete Type Inference
for Object-Oriented Languages. ACM OOPSLA’94, Object-
Oriented Programming Systems, Languages and
Applications, pp. 324-340, Portland, Oregon, October 1994.

[25]F. Pottier, C. Skalka and S. Smith. A4 Systematic Approach
to Static Access Control. D. Sands (Ed.): ESOP 2001,
LNCS 2028, pp.30-45, 2001. Springer-Verlag, Berlin
Heidelberg 2001.

[26]Saltzer J.H. and M.D.Schroeder. The Protection of
Information in Computer Systems. Proceedings of the IEEE
63 9 (Sept.1975), 1278-1308.

[27]0. Shivers. Control-flow Analysis in Scheme. ~ACM
SIGPLAN Notices, 23(7):164-174, July 1988. Proceedings
of the ACM SIGPLAN 1988 Conference on Programming
Languages Design and Implementation.

[28] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-Rai,
P. Lam, E. Gagnon and C. Godin. Practical Virtual Method
Call Resolution for Java. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2000), 264-
280, Oct. 15-19, 2000, ACM Press, New York. Also in
ACM SIGPLAN Notices 35(10).

[29]F. Tip and J. Palsberg. Scalable Propagation-Based Call
Graph Construction Algorithms. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA’97), 264-280, Oct. 15-19, 2000, ACM Press, New
York. Also in ACM SIGPLAN Notices 35(10).

[30]D.S. Wallach, D. Balfanz, D. Dean, E.W. Felten. Extensible
Security Architectures for Java. 16™ Symposium on
Operating Systems Principles (Saint-Malo, France), October
1997.

[31]D.S. Wallach and E.W. Felten. Understanding Java Stack
Inspection. Proceedings of the 1998 IEEE Symposium on
Security and Privacy (Oakland, California), May 1998.

[32]D.S. Wallach. 4 New Approach to Mobile Code Security.
PhD thesis, Princeton University, Princeton, New Jersey,
January 1999.

Appendix 1

The following pseudo-code embodies the Basic Permission Culling Algorithm.

/1 ldentify all start and stop nodes in the graph.
/1 The start set includes all nodes in the call graph root set.
Set startSet = new Set(root Nodes);
Set stopSet = new Set();// Initially, the stop set is enpty.
/1 ldentify additional start nodes and the stop nodes
/! by iterating over all nodes in the call graph.
Iterator nodeslter = graphNodes.iterator();
whil e (nodeslter. hasNext())
Node node = nodeslter.next();
if (isDoPrivileged(node)
start Set. add(node);
doPri vSet. add(node) ;
el seif (i sCheckPerm ssion(node))
st opSet. add(node) ;

/1 Find all nodes between stop to start nodes and get the required Perm ssion.
/1 For each node, get its nethod and associ ated cl ass.
/'l Associate the Permi ssion with each class identified.

/1l For each checkPerm ssion(perm, identify Pernission
/1 permand the cl asses needing perm
Iterator stoplter = stopSet.iterator();
while (stoplter.hasNext())
Node stopNode = stoplter.next();
/1l Get the Perm ssion fromthe checkPerm ssion() node
Requi r edPer mi ssi on perm = get Per m ssi on(st opNode) ;

/1 Using a work list algorithm find all nodes in all paths that
/1 are bounded by the nodes in the start set and the stop node.
/1 Note: The graph nay be cyclic.
Set pat hNodes = get Pat hsNodes(st opNode, start);
/'l For each such node, get the node’s nethod and the class that
/'l declared that nethod. Add the Permission as being required for the class.
Iterator nodeslter = pathNodes.iterator();
whil e (nodeslter.hasNext())

Node node = nodeslter.next();

nodePer m add(node, perm;

Met hod net hod = node. get Met hod() ;

Cl ass decl ari ngd ass = net hod. get Decl ari ngd ass();

/! Remenber that this class needs this Perm ssion

requi redPer ns. add(decl ari ngd ass, perm;

/1 Propagate the Perm ssions at the doPrivileged node to all of
/1 its predecessors as is required by Java 2
Iterator doPriviter = doPrivSet.iterator();
while (doPrivlter.hasNext))
Node node = doPriviter.next();
Set reqgPerns = nodePerm get (node);
Pr opagat ePer ns ToPr edecessor Nodesd ass(node, reqPerns);

At the end of this algorithm, each class in the requiredPerms map is mapped to the set of the Permission objects that it
requires. From the allocation sites, we identify the string constants used in the Permission constructors. These string
constants are used to report the required access rights for each class.

369

Appendix 2

We build a lookup table that maps Thread allocation sites to the graph nodes where the respective inherited
AccessControlContext constructor is called. This mapping allows us create the replacement predecessor edge for the
Thread.run method.

The following pseudo-code embodies the basic algorithm.

/1 For all Thread allocation sites, build a table that naps the
/1 Thread to its constructor.
Map t hreadConstructor Map = new Map();

Il lterate over all of the object allocations, selecting Thread allocations.
Iterator alloclter = allocationSites.iterator();
while (alloclter.hasNext())
AllocSite allocSite = alloclter.next();
if (allocSite.getd ass() instanceof java.lang. Thread)
t hreadConst ruct or Map. add(al | ocSite, node);

Now, when we reach a Thread.run node in the invocation graph, we can find its new predecessors by looking up the
Thread allocation site and use it as the replacement predecessor edge. From the algorithm above, the getNodes method
is suitably modified to use al | ocCal | Si t es to find replacement predecessor nodes when searching the call graph.

Appendix 3

To illustrate computational experience with Permission analysis, we have made use of an application called
CountMain. It is an interesting test case because it contains privileged code. From its main method, CountMain
creates and sets a new SecurityManager, and then instantiates a CountFileCaller!l object and a CountFileCaller2 object,
as shown in the following code:

import java.io.FilePerm ssion;

public class CountMain {
public static void main(String[] args) {
Syst em set Securi t yManager (new Securi tyManager());
Count Fi | eCal | er 1. mai n(args) ;
Count Fi | eCal | er 2. mai n(args);

The purpose of both CountFileCaller] and CountFileCaller2 is to read the file CAAUTOEXEC.BAT from the local file
system. The code for CountFileCaller] is shown next:

public class CountFileCallerl {
public static void main(String[] args) {
try {
Systemout.printin("lInstantiating CountFilel...");
Count Filel cf = new CountFilel();

}

cat ch(Exception e) {
Systemout.printin("" + e.toString());
e.printStackTrace();

}
}

The following is the code for CountFileCaller2:

public class CountFileCaller2 {
public static void main(String[] args) {

try {
Systemout.printin("lInstantiating CountFile2. ..");
Count Fil e2 cf = new CountFile2();
cf.count Chars();

}
catch(Exception e) {

370

Systemout.printin("" + e.toString());
e.printStackTrace();

}
}
}

To perform the file read operation, CountFileCaller] uses a supporting class called CountFilel, whereas
CountFileCaller2 makes use of CountFile2. The difference between these two supporting classes is that CountFilel
wraps the code that performs the file read operation into a privileged block, whereas CountFile2 does not. This is
evident by looking at the source code for CountFilel:

import java.io.*;
import java.security.*;

class PrivExcAction inplenments Privil egedExceptionAction {
public Object run() throws Fil eNot FoundException {
Fil el nput Stream fis = new Fil el nput Strean{"C: \\ AUTOEXEC. BAT") ;

try {
int count = O;
while (fis.read() !'= -1)

count ++;
Systemout.println("H ! W counted " + count + " chars.");

}
catch (Exception e) {
Systemout. println("Exception " + e);

return null;

public class CountFilel {
public CountFilel() throws FileNotFoundException {

try {
AccessControl | er. doPrivil eged(

new PrivExcAction());

catch (PrivilegedActi onException e) {
throw (Fil eNot FoundException) e. get Exception();
}

}
}

CountFile2 attempts to gain file read access without using Privileged code, as shown next:
import java.io.*;

public class CountFile2 {
int count=0;
public void countChars() throws Exception {
FilelnputStreamfis =
new Fi | el nput St rean(" C:.\\ AUTOEXEC. BAT") ;
try {
while (fis.read() != -1)
count ++;
Systemout.println("W counted " + count + " chars.");

catch (Exception e) {
Systemout. println("No characters counted");
System out. println("Exception caught" + e.toString());
}
}
}

371

The following figure shows a graphical representation of the CountMain program structure:

>

CountFileCaller1

ountFileCaller2

C)\AUTOEXEC BAT
CountFile2

i

The CountMain program will run as long as CountFileCaller2, CountFilel, CountFile2, and CountMain itself are all
granted the Permission to read the file C\AAUTOEXEC.BAT. This requirement is waived for CountFileCallerl, which

is temporarily given the Permission because CountFilel invokes doPrivileged.
CountMain also needs the Permissions to create and set a new SecurityManager.

Permission requirements exactly, as shown in the following table:

In addition to that Permission,

The analysis reflected these

Classes Permissions Determined by the Permission Culling Algorithm
CountMain java.io. Fil ePerm ssion "C: \ AUTCEXEC. BAT", "read"
j ava. l ang. Runt i mePer m ssi on "createSecurityManager"
java. |l ang. Runti mePer m ssi on "set SecurityManager"
CountFileCallerl
CountFilel java.io. FilePerm ssion "C:\ AUTCEXEC. BAT", "read"
PrivExcAction
CountFileCaller2
CountFile2

372

Static Analysesfor Eliminating Unnecessary
Synchronization from Java Programs

Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and Susan Eggers

Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195 USA
{jond, chambers, egs, eggers} @cs.washington.edu

Abstract. This paper presents and evaluates a set of analyses designed to
reduce synchronization overhead in Java programs. Monitor-based
synchronization in Java often causes significant overhead, accounting for
5-10% of total execution time in our benchmark applications. To reduce this
overhead, programmers often try to eiminate unnecessary lock operations by
hand. Such manua optimizations are tedious, error-prone, and often result in
poorly structured and less reusable programs. Our approach replaces manual
optimizations with static andyses that automatically find and remove
unnecessary synchronization from Java programs. These analyses optimize
cases where a monitor is entered multiple times by a single thread, where one
monitor is nested within another, and where a monitor is accessible by only one
thread. A partia implementation of our analyses eliminates up to 70% of
synchronization overhead and improves running time by up to 5% for severa
aready hand-optimized benchmarks. Thus, our automated analyses have the
potentia to significantly improve the performance of Java applications while
enabling programmers to design simpler and more reusable multithreaded code.

1. Introduction

Monitors [LR80] are appealing congructs for synchronization because they promote
reusable code and present a simple model to the programmer. Many modern programming
languages, such as Java [GJS96] and Modula-3, directly support monitors. While these
congructs enable programmers to easily write multithreaded programs and reusable
components, they can incur significant run time overhead. Reusable code modules may contain
synchronization for the most general case of concurrent access, even though particular
programs often use these modules in a context that is already protected from concurrency. For
instance, a synchronized data structure may be accessed by only one thread at run time, or
access to a synchronized data structure may be protected by another monitor in the program. In
both cases, unnecessary synchronization increases execution overhead. As described in section
2, even singlethreaded Java programs typically spend 5-10% of their execution time on
unnecessary synchronization operations.

Synchronization overhead can be reduced by manualy restructuring programs [SNR+97],
but this typically involves trading off program performance against smplicity, maintainability,
and reusability. To improve performance, synchronization annotations can be omitted where

they are not needed for correctness in the current version of the program, or synchronized
methods can be modified to provide specialized, fast entry points for threads that already hold a
monitor lock. Such specidized functions make the program more complex, and using them
safely may require careful reasoning about object-oriented dispatch to ensure that the protecting
lock is acquired on all paths to the function call. The assumption that a lock is held a a
particular program point may be unintentionally violated by a change in some other part of the
program, making program evolution and maintenance error-prone. Hand optimizations make
code less reusabl e, because they make assumptions about synchronization that may not be valid
when a component is reused in another setting. In general, complex manua optimizations
make programs harder to understand, make program evolution more difficult, reduce the
reusability of components, and create an opportunity for subtle concurrency bugsto arise.

In this paper, we present and eval uate static analyses that reduce synchronization overhead
by automatically detecting and removing unnecessary synchronization. A synchronization
operation is unnecessary if there can be no contention between threads for the synchronization
operation. For example, if a monitor is only accessible by a single thread throughout the
lifetime of the program, there can be no contention for the monitor, and thus all operations on
that monitor can safely be eliminated. Similarly, if threads aways acquire one monitor and
hold it while acquiring another monitor, there can be no contention for the second monitor, and
this unnecessary synchronization can safely be removed. Findly, when a monitor is acquired
by the same thread multiple times in a nested fashion, the first monitor acquisition protects the
others from contention and therefore al nested synchronization operations may be optimized
away. In order to reason saticaly about synchronization, we assume the compiler has
knowledge of the whole program at andysis time; future work may extend our techniques to
handle Java's dynamic code loading and reflection features.

There are three main contributions of this paper. First, we describe severa synchronization
optimization opportunities and measure their frequency of occurrence in severa Java programs.
Second, we provide precise definitions for a family of analyses designed to detect unnecessary
synchronization. Finally, we present a preliminary empirica evauation of these analyses on a
suite of benchmarks. Our partial implementation eliminates up to 70% of synchronization
overhead and improves running time by up to 5% for typica Java benchmarks on a highly
optimized platform.

The rest of the paper is structured as follows. The next section describes the Java
synchronization model, and provides measurements of synchronization overhead for typical
benchmarks. Section 3 identifies opportunities for optimizations. Section 4 provides a precise
description for a set of anayses that detect and diminate unnecessary synchronization
operations. Section 5 summarizes the performance impact of these analyses on a set of
benchmarks, section 6 discusses related work, and section 7 concludes.

2. Java Synchronization

Java provides a monitor construct to protect access to shared data structures in a multithreaded
environment.

21 Semantics

The semantics of monitors in Java are derived from Mesa [GMS77]. Each object isimplicitly
associated with a monitor, and any method can be marked synchr oni zed. When executing

40% m DK1.2.0
35%
30%
25%
20%
15%
10%

5% —F

0% —
-5%

Vortex

% of Total Execution Time

jlex javacup javac pizza cassowary

Fig. 1. Overhead of Synchronization

asynchr oni zed method, athread acquires the monitor associated with the receiver object,’
runs the method's code, and then releases the monitor. An explicit synchronization statement
provides away to manipulate monitors at program points other than method invocations. Java's
monitors are reentrant, meaning that a single thread can acquire a monitor multiple timesin a
nested fashion. A reentrant monitor is only released when the thread exits the outermost
method or statement that synchronizes on that monitor.

22 Cost

Synchronization represents a significant performance bottleneck for a set of Java benchmarks.
To quantify the cost of synchronization operations, we compared singlethreaded Java programs
to versons of the same programs where synchronization has been removed from both the
application and the standard Java library. Since the correctness of multithreaded benchmarks
depends on the presence of synchronization, we did not perform these measurements on
multithreaded benchmarks. However, the unnecessary synchronization present in
singlethreaded programs suggests that a significant amount of the synchronization in
multithreaded programs is a so unnecessary.

We used a binary rewriter [SGA+98] to diminate al synchronization operations from the
application binaries. This strategy allowed us to perform measurements on commercid Java
virtual machines without having to instrument and recompile them at the source level.

We examine the benchmarks using two different Java implementations that are
representative of different Java virtual machine implementations. The JDK 1.2.0 embodies a
hybrid JT compilation and interpretation scheme, and features an efficient implementation of
lock operations. Consequently, it represents the state of the art in commercialy available Java
virtual machines. Vortex, an aggressively optimizing research compiler [DDG+96], produces
natively compiled stand-alone executables and uses efficient synchronization primitives
[BKM+98]. For these figures, we use the base Vortex system, which does not contain the
analyses described in this paper.

Figure 1 shows the percentage of total execution time spent on synchronization in five
singlethreaded benchmarks for each platform. Synchronization overhead averages 5-10% of

st at i ¢ synchr oni zed methods acquire the monitor associated with the Cl ass object for
the enclosing class.

cl ass Reentrant {
synchroni zed foo() {
this. bar ()

synchroni zed bar ()

(...}

cl ass Encl osing {
Encl osed nenber;
synchroni zed foo() {
menber . bar () ;
}

cl ass Encl osed {
synchroni zed bar ()

(...}

Fig. 2. Reentrant Monitors Fig. 3. Enclosed Monitors

execution time, depending on the platform, and can be as high as 35%. The relative cost of
synchronization varies between the platforms because of the varying amounts of optimization
they perform in the compilation process, and their different synchronization implementations.
For example, if Vortex is able to optimize the non-synchronization-related parts of a
benchmark like jlex more effectively than the JDK 1.2.0, its synchronization overhead will be
relatively more significant. In contragt, the benchmarks javac and cassowary may use
synchronization in a way that is more expensive on the JDK platform than on Vortex. Despite
the variations between platforms, synchronization overhead represents a significant portion of
the execution time for these Java benchmarks, demonstrating that there is considerable room
for performance improvement over current synchronization technol ogy.

3. Optimization Opportunities

In this section, we describe three different opportunities for optimizing synchronization
operations.

3.1 Reentrant Monitors

Reentrant monitors present the simplest form of unnecessary synchronization. Asillustrated in
Figure 2, a monitor is reentrant when one synchronized method calls another with the same
receiver object. It is safe to remove synchronization from bar if all cadls to bar reachable
during program execution are within procedures that synchronize on the same receiver object.
Qur optimization generalizes this example to arbitrary call paths: synchronization on the
receiver object O of method bar may be removed if dong every reachable path in the cal
graphto bar thereisamethod or statement synchronized on the same object O.

If the receiver object’s monitor has been entered along some, but not all, call paths to
method bar, specialization can be used to create two versions of bar : an unsynchronized
version for the call paths where the receiver is already synchronized, and a synchronized
version for the other call paths. The synchronized version acquires the lock and then simply
calls the unsynchronized version. For example, if bar is also called from the function mai n,
where the receiver object is not synchronized, bar could be specialized so that mai n calls a
synchronized version that acquires a monitor. Methods like f oo that have already locked the
receiver object can still call the more efficient, unsynchronized version of bar .

class PrintWiter { PrintWiter
oj ect | ock;
W! ter out; immutable
void wite(int c) { field
synchroni zed(| ock) {
out.write(c);
}

unshared
field

unique

path
}

}

class StringWiter {
synchroni zed wite(int c)

{ ...}

| oc out

Fig. 4. Immutable Paths

3.2 Enclosed Monitors

An enclosed monitor is a monitor that is aready protected from concurrent access by another
monitor. The enclosing monitor is aways entered first, and while it is held the enclosed
monitor is acquired. Later, the enclosed monitor and then the enclosing monitor will be
released. Because the enclosed monitor is only entered when the enclosing monitor isheld, itis
protected from concurrent access and is unnecessary. For example, in Figure 3 the monitor on
the menber object is enclosed by the monitor on the Encl osi ng object. Thus the
synchronization on thebar function is unnecessary and may be removed.

In order to remove synchronization safely from a monitor M during static anaysis, we must
prove there is a unique, unchanging enclosing monitor that protects M, not one of severd
enclosing monitors. If there were severa Encl osi ng objects in Figure 3, for example,
different threads could access the Encl osed object concurrently by going through different
Encl osi ng objects, and it would be unsafe to remove synchronization from bar . There are
four ways we can ensure thisisthe case:

First, the enclosing monitor may store the enclosed monitor in an unshared field—a field
that holds the only reference to the enclosed object. Since the unshared field holds the only
reference to the enclosed object, the only way to enter the enclosed object's monitor is to go
through the (unique) enclosing object. We can relax the "only reference" condition in the
definition of an unshared field if we use the name of the field to identify the enclosing lock. As
long each enclosed object is only stored in one instance (i.e., run-time occurrence) of that field,
it is permissible for other fields and local variables to refer to the enclosed object, because the
field name uniquely identifies the enclosing object.

Second, the enclosing monitor may be stored in an immutable static field, i.e. a global
variable that does not change value. Because the enclosing monitor is identified by the static
field, and only one object is ever stored in that static field, the field name uniquely identifies a
monitor. The static field's monitor M encloses another monitor M’ if all synchronization
operations on M’ execute from within monitor M.

Third, the enclosing monitor may be stored in an immutable field of the enclosed monitor.
Since an immutable field cannot change, the same enclosing monitor is always entered before
the enclosed monitor. This case occurs when a method first synchronizes on a field of the
receiver object, then on the receiver object itself.

class Local { W % Reentrant [% Enclosed M % ThreadH ocal

synchroni zed foo() 100%
} { ...} 0%
mai n() { 80%
new Local ().foo(); 0%
} 60%
50%

40% -

30%

20% -

10%

0% -

jlex javacup javec pizza cassoway
Fig. 5. Thread-Loca Monitors Fig. 6. Optimization Potential

Fourth, the cases above can be combined. For example, Figure 4 illustrates an example
similar to cases in the JDK 1.2.0 /O library when an stream object first synchronizes on an
object in one of its fields, then calls a synchronized method on the object in another field. In
the example, it is safe to remove the synchronizationon St ri ngW it er. wri t e becausethe
| ock object of an enclosing stream is always locked before calingwri t e. Sincel ock isan
immutable field of Pri nt Wi ter and out isan unshared field of Pri nt Wi ter, we can
use trangitivity to determine that there is a unique enclosing object (I ock) for each enclosed
object (out). Using transitivity, we can combine a sequence of immutable and unshared fields
into a unique path from the enclosed monitor to the enclosing monitor. A unique path
identifies a unique enclosing object relative to a particular enclosed object.

The genera rule we have developed can be stated as follows:

A synchronization statement S may be removed if, for every other synchronization
statement S that could synchronize on the same object as S there exists an unique path
of links such that:

1. Thefirst link represents the object synchronized on by Sand S

2. Each subsequent link is either an unshared field of an object that encloses the
link before or an immutablefield that is enclosed by the link before

3. Thelast link represents an object that is synchronized on dl call paths that
reach Sand is also synchronized on all cdl pathsthat reach S

Asin the case of reentrant monitors, synchronization statements on enclosed objects may be
specidized if it is legal to remove synchronization on some instances of a class but not others.
For example, the root node in a binary tree encloses dl of the inner nodes, so specidization
could create two kinds of nodes: one that is synchronized for creating the root of a binary tree,
and onethat is unsynchronized for creating the inner nodes of the tree.

3.3 Thread-Local Monitors

Figure 5 shows an example of athread-loca monitor. Instances of the Local class are only
accessible by the thread that created them, because they are created on the stack and are not

accessible via any datic fied. Since static fields are the only base case for sharing data
between threads in Java’s memory model, it is safe to remove synchronization on methods of
any class that is unreachable from static fields. In our model, Thr ead and its subclasses are
stored in a global list, so that passing references from one thread to another during thread
creation is handled correctly. Specialization can eliminate synchronization when some
instances of a class are thread-local and other instances are not.

34 Optimization Potential

Figure 6 shows an estimate of the opportunities for optimization in our benchmark suite,
demonstrating that different programs present different optimization opportunities. This data
was collected from dynamic traces of the five Java programs running on the JDK 1.1.6. For
each benchmark, it shows the percentages of dynamic monitor operations that were reentrant,
enclosed (by a different monitor), and thread-local, representing an upper bound for how well
our analyses could perform. The bars may add up to more than 100% because some
synchronization operations may fall into several different categories. All the benchmarks do
100% of their synchronization on thread-local monitors because they are singlethreaded, and so
no monitor is ever locked by more than one thread. Multithreaded benchmarks would have
some synchronization that is not thread-local, but we believe that thread-local monitors would
still represent a significant opportunity in these benchmarks.

The benchmarks differ significantly in the optimization opportunities they present. For
example, 41% of the synchronization in jlex is reentrant but less than 1% is enclosed. In
contrast, 97% of the synchronization in javac is enclosed and virtually none is reentrant. For
these singlethreaded benchmarks, thread-local monitors present the greatest opportunity for
optimization, with two programs gaining significant benefit from enclosing or reentrant
monitors. This data demonstrates that each kind of optimization is important for some Java
programs.

4. Analyses

We define asmplified anaysis language and describe three anayses necessary to optimize the
synchronization opportunities discussed above: lock analysis, unshared field analysis, and
multithreaded object analysis. Lock anaysis computes a description of the monitors held at
each synchronization point so that reentrant locks and enclosed locks can be eliminated.
Unshared field analysis identifies unshared fields so that lock anaysis can safely identify
enclosed locks. Finaly, multithreaded object analysis identifies which objects may be
accessible by more than one thread. This enables the dimination of all synchronization on
objects that are not multithreaded. Our analyses can rely on Javas f i nal annotation to detect
immutable fields; an important area of future work is to detect immutable fields that are not
explicitly annotated asf i nal .

41 AnalysisLanguage

We describe our analyses in terms of a simple expression-based core language, incorporating
the essentia synchronization-related aspects of Java. This dlows us to focus on the details
relevant to specifying the analyses while avoiding some of the complexity of area language. It
is straightforward to handle the missing features of Java—our prototype implementation

id, field, fnOID
| abel O LABEL
key O KEY
e, program E
E ::= new®
| 1D
| let ID:=E;in E
| EID
| E.ID:= B
| E; op E
| synchronized“®™™ (E) { E}
| if Egtthen E, el se E;
| IDEy,...,E)

Fig. 7. Core Analysis Language

handles al of the Java language except reflection and dynamic code |oading, which are omitted
to enable static reasoning.

Figure 7 presents our analysis language. It is a smple, first-order language, incorporating
object creation, fidld access and assignment, let-bound identifiers, synchronization expressons,
and simple control flow. Each object creation point is labeled with a class key [GDD+97],
which identifies the group of objects created at that point. In our implementation, there is a
unique key for each new statement in the program; in other implementations a key could
represent a class, or could represent another form of context sensitivity. We assume that dl let-
bound identifiers are given unique names. Static field references are modeled as references to a
field of the specid object gl obal , whichisimplicitly passed to every procedure. We assume
al procedures are put into an implicit globa table before evaluating the main expression. The
lookup function returns the A-expression associated with a particular procedure.

We mode ordinary binary operators like + and ; (which evaluates and discards its first
argument before returning the second) with the E; op E, syntax. Control flow operations
include simple function calls and a functiona i f expression—facilities that can be combined
to form other structures like loops and object-oriented dispatch. Finally, Java’s synchronization
construct is modeled by a synchr oni zed statement, which locks the object referred to by E;
and then evaluates E, before releasing the lock. Each synchr oni zed statement in the
program text is associated with a unique label O LABEL that is used in our analyses.

4.2 Analysis Context

Our analyses are parameterized by other alias and class analyses, a feature of our approach that
allows a tradeoff between analysis time and the precision of our analysis results. Our analyses
also benefit from earlier copy propagation and must-alias analysis passes, which merge
identifiers that point to the same object. We assume the following functions are defined from
earlier analysis passes:

id_aliases(e) — the set of identifiers that may point to the same value as
expression e

field_aliases(f i el d) — the set of fields declarations whose instances may
point to the same object as fi el d. This information can be
easily computed from a class analysis.

is_immutable(f i el d) — true if fi el d is immutable (i.e., write-once).
This may be deduced from fi nal annotations and constructor
code.

label_aliases(l abel) — the set of labels of synchronization statements
that may lock the same object as the synchronization statement
associated with | abel

Some of our analyses deal with groups of objects, represented by class keys. We assume
that an earlier class pass has found a conservative approximation to the set of objects that can
be in each variable or field in the program. Our implementation uses the 1-1-CFA algorithm
[S88][GDD+97], which considers each procedure in one level of calling context and analyzes
objects from different creation points separately, and the 0-CFA algorithm, which lacks this
context-sensitivity. We use the following functions to access this information:

field_keys(fi el d, key) — the set of class keys to which field f i el d may
refer when accessed through a particular class key key

static_field_keys(f i el d) — the set of class keys to which static field
fi el d may refer

label_keys(l abel) — the set of class keys that the synchronization
expression associated with | abel may lock.

43 Analyses

Our analyses compute the following functions:

get_locks(l abel) — the set of locks held at a particular synchronization
point denoted by | abel . A lock is represented by a path of two
kinds of field links, as described below.

is_unshared(f i el d) —trueiffi el d is unshared

is_multithreaded(key) — true if objects described by key may be
accessible through static variables

We describe our first two analyses in syntax-directed form, where a semantic function maps
an expression and a set of inherited attributes to a set of synthesized attributes. The third
analysis uses only data from previous analyses and does not work directly over the program
text.

Lock Analysis. Figure 8 defines the domains and helper functions that are used by our lock
analysis flow functions. Our lock analysis, shown in Figure 9, describes locks in terms of paths
and bipaths. A path names a particular object relative to an identifier, and consists of the
identifier name and a series of field accesses. Thus, the pathid - field; —» field,
represents the expression i d. fi el d;. fi el d,. A bipath represents a bi-directional path.
The forward links represent field dereferences, as in paths, while the backward links mean “is
enclosed by”—that is, in a bipath of the form bipathg, — fi el d, the expression denoted by
bipathgy, is referenced by the f i el d field of some unspecified object. In our descriptions, we
use the notation m[x — y] to denote that we compute a new mapping 0 X — Y that is identical
to mapping mexcept that element x 00 X is mapped toy O Y.

path OPATH = 1D + PATH - I D
drODR={ -, « }

bipath 0 Bl PATH = I D + Bl PATHxDI Rx D
lockset 0 LOCKSET = 28! PAT™

lockmap [LOCKMAP = LABEL - i, LOCKSET
idnmap 01 DVAP = D g, 27T

is_immutable_path(path) : bool
switch (path)
caseid: true
casepath’ — fied: is_immutable(field) Ois_immutable_path(path’)

is_prefix(bipathy, bipath,) : bool
if (bipath, = bipath,) then true
elseif (bipath,=id) then false
edseif (bipath, = bipath’ dir field) then is_prefix(bipath,, bipath’)

substitute(bipath,, path, bipath,) : Bl PATH
if (bipath, = path) then bipath,
elseif (bipath, = bipath’ dir field)
then substitute(bipath’, path, bipath,) dir field
elseerror

map_lock(bipath;, path, bipath,) : Bl PATHO { not_defined }
if (is_prefix(path, bipath;)) then substitute(bipath;, path, bipath,)
elseif (path = path’ - field Ois_unshared(field))
then map_lock(bipath,, path’, bipath, — field)
else not_defined

map_lockset(lockset, path,, path,) : LOCKSET
{ map_lock(bipath, path;, path,) | bipath O lockset } - { not_defined }

Fig. 8. Domains and Helper Functions for Lock Analysis

The lock andysis function L accepts four arguments in curried style. The first argument is
an expression from the text of the program. The second argument, a lockset, is the set of
bipaths representing locks held at this program point. The third argument, a lockmap, is the
current mapping from synchronization labels to sets of bipaths representing locks held at each
|abeled synchronization statement. The final argument, an idmap, is amapping from identifiers
to paths that describe the different field expressions that the identifier aliases. The result of
lock andysis is a lockmap that summarizes the locks held at every reachable synchronization
label in the program. We andyze the expression representing the program in the context of an
empty lockset (no lock encloses the entire program expression), an optimistic lockmap (no
synchronization points have been analyzed yet), and an empty idmap (no identifiers are in
Scope).

Many of the andysis flow functions in Figure 9 are relatively straightforward; we discuss
only the more subtle ones below. Therulesfor | et and i d expressions update the idmap for
identifiers and return the pathset represented by an identifier. A fi el d expresson smply
extends dl pathsin e’s pathset with f i el d.

L:E - LOCKSET - LOCKMAP — | DMAP _ 27ATH x | OCKMAP

get_locks(l abel) : LOCKSET =
let (pathset’, lockmap’) = L[program] @ @ @ in lockmap'(l abel)

LInew®Jlockset lockmap idmap = (@, lockmap)
L[i d]jlockset lockmap idmap = ({i d } O idmap(i d), lockmap)

Ll et id := ey in e,]lockset lockmap idmap =
let (pathset', lockmap') = L[fe;]llockset lockmap idmap in
L[e-] lockset lockmap' idmap[i d — pathset']

Lle. fi el d]lockset lockmap idmap =
let (pathset', lockmap') = L[] lockset lockmap idmap in
({ path - fi el d | path O pathset' }, lockmap’)

Lle;. field : = e,]lockset lockmap idmap =
let (pathset', lockmap') = L[fe,]llockset lockmap idmap in
let (pathset", lockmap") = L[[e1] lockset lockmap' idmap in
(9, lockmap™)

Lle; op e,]lockset lockmap idmap =
let (pathset', lockmap') = L[fe;]llockset lockmap idmap in
let (pathset", lockmap") = L[le,] lockset lockmap' idmap in
(9, lockmap™)

Lsynchroni zed' ®® (e;) { e, }]lockset lockmap idmap =
let (pathset', lockmap') = L[fe;]llockset lockmap idmap in

let lockmap" = lockmap'[l abel - U map_lockset(lockset, path, SYNCH)] in
pathOpathset’
Lle2] (lockset O { path | path O pathset' Ois_immutable_path(path) }) lockmap" idmap

LI f ey then e, el se es]lockset lockmap idmap =
let (pathset', lockmap') = L[fe;]llockset lockmap idmap in
let (pathset", lockmap") = L[le,] lockset lockmap' idmap in
let (pathset™, lockmap™) = L[Jes]]lockset lockmap" idmap in
(pathset" n pathset™, lockmap™)

LIFn(ey, ..., e, Jlockset lockmapy idmap =
let [A(formal 4, ..., formal,) e]=lookup(fn)in
0i O 1..n let (pathset;, lockmap;) = L[fe;]| lockset lockmap;.; idmap in

let lockset' = U map_lockset(lockset, path, f or mal ;) in

idL.n
pathC pathset;

let (pathset', lockmap') = context_strategy(L[e] lockset' lockmap, @) in
({ substitute(path, f or mal ;, path’)
| path O pathset' O 0 O 1..n s.t. is_prefix(f or mal ;, path) Opath' O pathset; },
lockmap")

Fig. 9. Lock Analysis Flow Functions

When a synchronization statement is encountered, the lockmap is updated with al of the
bipaths in the lockset. Before being added to the lockset, however, these bipaths are converted
to anormal form in terms of e, the expression on which the statement synchronizes. This
norma form allows us to compare the bipath descriptions of the locks held at different
synchronization pointsin the program in the lock elimination optimization described below.

The normal form expresses alock in terms of the special identifier SYNCH representing e,
the object being locked. The map_lockset function considers each bipath in the lockset in turn
and uses map_lock to compute a new bipath in terms of a mapping from the pathset of e; to
SYNCH. For each bipath b in the lockset, map_lock will substitute SYNCH into the lock
expression bipath if the bipath is a prefix of b. For example, if the path corresponding to e, is
id - field, and the lockset is{ id - field; - field,}, then map_lock(id -
fieldy > fieldyid - field;, SYNCH =SYNCH - fi el d,, signifying that the field
fi el d,of theobject referred to by e; isaready locked at this point.

If the prefix rule does not apply and the last fidd f i el d in the synchronization expression
path is unshared, then map_lock will try to match against a shorter prefix with SYNCH
field as the expression to be substituted. In Figure 5, the synchronization expression
PrintWiter - out isnot aprefix of the currently locked object Pri nt Witer -
| ock, so since out isan unshared field map_lock will attempt to substitute SYNCH — out
for Print Wi ter ingead. Thus the result we get is map_lock(Pri ntWiter - |ock,
PrintWiter - out, SYNCH) = SYNCH —~ out - lock. That is, at the current
synchronization point the program holds a lock on the | ock field of the object whose out
field points to the object currently being synchronized. Thisis a correct description of the case
in Figure5.

Next, the expression inside the synchronization block is evaluated in the context of the
current lockset combined with al paths in the synchronization expression’s pathset that are
unique. The is_immutable_path function, which checks that each field in a path is
immutable, ensures that no lock description is added to the lockset unless it uniquely identifies
the locked object interms of the base identifier.

At function calls, we look up the definition of the caled function and evauate the actua
parameters to produce a set of paths for each parameter and an updated lockmap. The
map_lockset function is used to map actual paths to forma variables in each lock in the
lockset. Information about locks that are not related to formal parameters (including the
implicit forma parameter gl obal mentioned subsection 4.2) cannot be used by the callee,
since there would be no way to ensure that the locked object protects any synchronization
statementsthere. The caleeisandyzed in the context of the new lockset and lockmap, and the
result is memoized to avoid needl ess recomputation.

Our andysis may be parameterized by a context_strategy function that allows a varying
level of context sensitivity. The current implementation is context-insensitive—it simply
computes the intersections of the incoming lockset with all other locksets and re-evaluates the
callee in the context of the new lockset if the input information has changed since the last
analysis. We avoid infinite recursion in our analysis by returning an empty pathset and the
existing lockmap when a lock analysis flow function is called recursively with identical input
analysis information; the analysis will automatically iterate until a sound fixpoint is reached.
Since the lockset must decrease in size each time a function is reanalyzed, termination of our
analysis is assured. Finally, the set of paths is returned from the function call by mapping back
from formals to actuals.

fset, shared O FSET =2'C
idsate O | DSTATE =1 D 4, FSET

U:E - | DSTATE - FSET - FSET x| DSTATE x FSET

is_unshared(f i el d) = let (idstate, shared) = U[[program]] @ din (fi el d O shared)
Ullhew‘®] idstate shared = (@, idstate, shared)

U[li d] idstate shared = (idstate(id), idstate, shared)

Ullet id := e; in e,]idstate shared =
let (fset', idstate’, shared’) = U[le,] idstate shared in
Ule.llidstate’[i d - fset] shared'

Ule. fi el d]jidstate shared =
let (fset', idstate’, shared’) = U[e] idstate shared in
(field_aliases(f i el d), idstate', shared")

Ule:. field : = e,]idstate shared =
let (fset', idstate’, shared’) = U[le,] idstate shared in
let (fset", idstate", shared") = U[fe,]lidstate’ shared' in
let fset" =fi el d O fset" in
(fset™,
idstate"[id — idstate"(id) O fset" | id O id_aliases(e,)],
if (fset" Ofi el d) then shared" elseshared" O fi el d)

Ulle: op e;]idstate shared =
let (fset', idstate’, shared’) = U[le,] idstate shared in
let (fset", idstate", shared") = U[fe,]lidstate’ shared' in
(fset’ merge,, fset", idstate”, shared")

Ulsynchroni zed' ®®' (e;) { e, }]idstate shared =
let (fset', idstate’, shared’) = U[le,] idstate shared in
U[e.llidstate’ shared

Ui f e;then e, el se ej]lidstate shared =
let (fset', idstate’, shared’) = U[le,] idstate shared in
let (fset", idstate", shared") = U[fe,]lidstate’ shared' in
let (fset™, idstate™, shared™) = U[[e.] idstate’ shared' in
(fset" O fset™, idstate" O idstate™, shared" [0 shared™)

Uf n(eyq, ..., e, Jlidstateg sharedy =

let [A(formal 4, ..., formal,) e]=lookup (f n)in

Oi O 1..n let (fset;, idstate;, shared;) = U[e;] idstate;_; shared;_;in

let idstate' ={formal ; - fset;|iO1.n}in

let (fset", idstate", shared") = context_strategy(U[e] idstate’ shared,) in
(fset",
idstate,[id — idstate,(id) O idstate"(f or mal ;) | i O 1..n and id O id_aliases(e;)],
shared")

Fig. 10. Unshared Field Analysis

Unshared Fied Analysis. The unshared field analysis described in Figure 10 computes the set
of fields that are shared, i.e. may refer to objects that are aso stored in other instances (that is,
run-time occurrences) of the same field. Unshared fields are in the complement of this shared
field set. The result of this analysisis used in the map_lock function of the previous analysis
to detect enclosing locks.

The information computed by unshared field analysis differs from the result of the
field_aliases function in two essentid ways. First, the field_aliases function cannot tell
whether two instances of a given field declaration may point to the same object, which
determines whether a given field is shared. Second, our unshared field analysis is flow-
sengitive, enabling increased precision over non-flow-sengitive techniques.

The anaysis works by keeping track of which fields each identifier and expression could
dias. When afield is assigned avalue that may have originated in another instance of the same
fidd, the andysis marks the field shared. U, the analysis function for unshared field analysis,
accepts as curried parameters a program expression, the set of currently shared fields, and a
mapping from identifiers to the sets of fidlds whose contents they may point to. It then
computes the set of fields the expression may aias and an updated set of shared fields. Our
anaysis is run on the program’s top-level expression, using an initially empty identifier
mapping (since no identifiers areinitialy in scope) and initially optimistically assuming that dl
fields are unshared. The rules for field references, field assignment, and function cals are the
mogt interesting.

When a field fi el d is dereferenced, the resulting expresson may dias any field in
field_aliases(f i el d). At assignments to a field fi el d, we must update the identifier
mapping for any identifier that could dias the expression being assigned to f i el d, since the
values these identifiers point to could also be referenced by f i el d dueto the assignment. In
fact, due to the actions of other threads, these identifiers could dias any field in
field_aliases(f i el d). For the purposes identifying unshared fields, however, we can
optimigticaly assume that such diasing does not occur when writing to a field. This enables
our analysis to detect unshared fields even when the same object is written to two fields with
different names. If this object is later copied from one field to another, the field written to will
be correctly identified as shared because diasing is accounted for when reading fidds. If the
expression being assigned may not dias the field being assigned, then the field being assigned
may remain unshared; otherwise, it is added to the shared set. In expressions of the form e,
op e, the correct merge function for the expression’s field set depends on the operator. For
example, the merge function for the ; operand simply returns the field set of its second
argument.

At afunction call, we lookup the callee and evaluate dl the argument expressions to get a
set of fields for each of them as well as an updated identifier map and shared field set. The
idstate for the calee conssts of a mapping from its formal parameters to the field sets of each
actual parameter expression. We then evauate the calee in the context of the new idstate and
the current shared set, and return the resulting field set and shared set. After evauating the
calleg, it is also necessary to update the identifier state of the caller. Every id that may alias an
actual expression could now reference any fidd that the forma parameter of the cdlee could
reference after evauating the calee. This update is necessary because some callee (possibly
severd levels down the call graph) may have assigned the parameter's vaue to afield.

Our context_strategy for this analysisis context sensitive, as we re-eval uate the callee for
each different identifier mapping. In practice, context sensitivity enables results that are much
more precise. For example, when acaleeis caled with a formal parameter diasedtofi el d
at one call site, we don't want dl other cdl sites to see that the forma may diasfi el d after
the call and thus conservatively assume that the cdlee assigned that forma to fi el d.
Termination is assured because the results of each andysis are memoized, and the size of the
field sets is bounded by the number of fields in the program. Recursive functions are handled

multiz@ | Jstatic_field_keys(f)H g | field_keys(f,k)
OstaticFields H;%r;%llt(ij ©

Fig. 11. Multithreaded Object Analysis

by optimistically returning the empty set of fields at recursive calls, and the analyses
subsequently iterate until a sound fixpoint is reached.

Multithreaded Object Analyss. We define multi, a set of class keys, as the smalest set
satisfying the recursive equation shown in Figure 11. Then we define is_multithreaded as
follows:

is_multithreaded(key) =key O multi

Our implementation smply starts with class keys referenced by datic fields, and for each
classkey it consders each field of that key and adds the keys that field may reference to the set
multi. When the set reaches the least fixed point, the anadysisis complete. The andysis must
terminate because there is afinite number of class keysto consider.

44 Applying the Results

To apply the results of our analyses, we perform an optimization pass during code generation.
At each statement of theform

synchr oni zed'®® (e;) { e, }
wereplace it with the statement e4; e, if any of the following conditions holds:

1. SYNCH 0O get_locks(label), or
2. Ol abel’ Olabel_aliases(l abel).
get_locks(l abel) n get_locks(l abel ') # @, or
3. Okey Olabel_keys(l abel) .-is_multithreaded(key)

The first condition represents a reentrant monitor—if the monitor associated with expression e;
is already locked, then SYNCH O get_locks(l abel). Here get_locks(l abel) is defined (in
Figure 9) to be the result of lock analysis at the program point identified by | abel . We can
safely replace the synchronized expression with a sequence that evaluates the lock expression
(for potential side effects) and then evaluates and returns the expression protected within the
synchronization statement. The second condition represents the generalization to enclosed
locks: a synchronization statement S may be eliminated if, for every other synchronization
statement S that may lock the same object, some common lock is already held at both Sand S.
The third condition removes synchronization statements that synchronize on an expression that
refers only to non-multithreaded class keys.

Due to the complicated semantics of monitors in Java, our optimizations may not conform to
the Java specification on some multiprocessor systems. According to the Java language
specification, “locking any lock conceptually flushes all variables from a thread's working
memory, and unlocking any lock forces the writing out to main memory of all variables that the
thread has assigned.” [GJS96] This implies, for example, that a legal Java program may pass
data (in a timing-dependent manner) from one thread to another by having each thread

synchronize on a thread-local object. This kind of “covert channel” communication could be
broken by our optimizations. An implementation that synchronizes the caches of a
multiprocessor even when other parts of a synchronization operation have been removed would
comply with the Java specification, for example. Our optimizations are always safe, however,
in a Java-like language with a somewhat looser synchronization guarantee which could be
informally stated as follows: if thread T, writes to a variable V and then unlocks a lock and
thread T, locks the same lock and reads variable V, then thread T, will read the value that T,
wrote. We believe that most well written multithreaded programs in Java use this model of
synchronization.

5. Reaults

A preliminary performance evaluation shows that a subset of our analysis is able to eliminate
30-70% of the synchronization overhead in several of our benchmarks. We have implemented
prototype versions of reentrant lock analysis and multithreaded object analysis, and
transformations that use the results of these analyses. Our implementation does not yet apply
specialization to optimize different instances of an object or method separately. Although our
results are preliminary, they demonstrate the promise of our approach. We plan to complete
and evaluate a more robust and detailed implementation in the future, which will include
unshared field analysis and enclosed lock analysis.

We demonstrate the performance benefit of our analyses on the five singlethreaded
benchmarks presented earlier. While these benchmarks could be optimized trivially by
removing all synchronization, they are real programs and may be partly representative of how
synchronization is used in multithreaded programs as well. Javac, javacup, jlex, and pizza are
all compiler tools; cassowary is a constraint solver. We hope to evaluate our techniques on
multithreaded programs in the future.

Our prototype implementation is built on the Vortex compiler infrastructure [DDG+96]
augmented with a simple, portable, non-preemptive, user-level threading package based on
QuickThreads [K93]. We compiled all programs with a full suite of conventional
optimizations, as well as interprocedural class analysis. For our small benchmarks, we used a
1-1-CFA call graph construction algorithm [GDD+97]; this did not scale well to pizza, javac,
and javacup, so we used a simpler 0-CFA analysis for these programs, possibly missing some
optimization opportunities due to more conservative alias information. Our lock
implementation is already highly optimized, using an efficient lock implementation [BKM+98].
We compiled two versions—one with and one without our synchronization optimizations.
Both versions included all other Vortex optimizations. All our runtime overhead measurements
come from the average of five runs on a SPARC ULTRA 2 machine with 512 MB of memory.
We ran the benchmarked program once before the data were collected to eliminate cold cache
startup effects.

Table 1 shows statistics about how our analyses performed. The first two columns show the
total number of classes in the program and the number identified as thread-local. Multithreaded
object analysis identified a large fraction of classes as singlethreaded for the jlex, javacup, and
cassowary benchmarks, but was less successful for javac or pizza. Since these benchmarks are
singlethreaded, all their classes are thread-local. However, because our analysis assumes static
field references make a class reachable by other threads, our analysis is only able to determine
this for a subset of the classes in each program.

Table 1. Synchronization Analysis Statistics

Benchmark dases totd lock lock ops removed % overhead
ops removed
totd |thread-locdl] reentrant [threed-locd| totd
jlex 56 3 27 2 8 9 679
pizza 184 0f 33 6 0 6 N/A
javacup 66 28 30 2 6 7l 4799
cassowary 57, 29 32 4 12 13 27%
javec 1% 0 68 5 0 5 0%

The next four columns of Table 1 show the total (static) number of synchronization
operations, the number removed by reentrant lock anayss, the number of thread-loca
operations removed, and the total number of operations removed. Thetotal is |ess than the sum
from the two anayses because some synchronization operations were removed by both
analyses. As suggested by the class figures in the first two columns, multithreaded object
anaysis was more effective than reentrant lock analysis for jlex, javacup, and cassowary, while
pizza and javac only benefited from reentrant lock analysis. In general, our analyses removed
20-40% of the static synchronization operationsin the program.

The last column summarizes our runtime performance results. We present the speedup
achieved by our optimizations as a percentage of the overhead of synchronization for Vortex.
For jlex, javacup, and cassowary, we eliminated a significant percentage of the synchronization
overhead, approaching 70% in the case of jlex. The absolute speedups ranged up to 5% in the
case of jlex. Pizza did not have a significant overhead from synchronization, so no speedup
was achievable. We also got no measurable speedup on javac.

The speedup in the case of jlex is due the large number of stack operations performed by this
benchmark, which our analysis optimized effectively. Multithreaded analysis discovered that
al of the St ack objects were thread-locd, and lock andysis was successful in removing some
reentrant locks in the Stack code. Most of the remaning synchronization is on
Dat aQut put St ream and Buf f er edQut put St r eam objects. Multithreaded object
anaysis determined that Dat aQut put St r eamwas thread-local and that the most important
instances of Buf f er edQut put St r eamwere thread-loca, but because our implementation
does not yet produce specialized code for instances of Buf f er edQut put St r eamthat are
thread-local we were unable to take advantage of this knowledge. Implementing specidization
would improve our optimization performance here.

Over 99% of Javacup’s synchronization comes from manipulation of strings, bitsets, stacks,
hashtables, and 1/0 streams. Multithreaded analysis was able to remove synchronization from
every method of Stri ngBuffer, but was did not eiminate synchronization from other
objects. Each of the other classes was reachable from a stetic variable, either in the Java library
or in the javacup application code.

To optimize this code effectively would require three additional dements. First, we need a
scaable analysis that distinguishes program creation points so that one multithreaded
Hasht abl e does not make al Hasht abl es multithreaded. Our current 1-1-CFA andysis
that distinguishes creation points does not scale to javacup or javac, and therefore our
performance suffers for both benchmarks. Second, we need speciaization to optimize different
instances of the same class separately. Third, we need a more effective multithreaded analysis
that can determine if a static variable is only used by one thread, rather than conservatively
assuming al such variables are multithreaded.

In Cassowary, multithreaded anaysis was able to remove synchronization from all the
methods of Vector. However, the primary source of synchronization overhead was
Hasht abl e, which was not optimized by our multithreaded analysis because it was reachable
from datic fields.

Although a few operations were optimized in javac, we did not measure any speedup in this
benchmark. Since javac executes many operations on enclosed monitors, we expect these
results to improve once we have implemented our unshared field andysis and enclosed lock
andysis.

Considering that we have achieved a significant fraction of the potential speedup for several
of our benchmarks although many important €l ements of our anayses are not yet implemented,
we find these results promising.

6. Redated Work

A large body of work (e.g., [ALL89] [KP98]) has focused on reducing the overhead of locking
or synchronization operations. Most recently, Bacon’s Thin Locks [BKM+98] reduce the
overhead of Java’s synchronization to a few instructions in the common case. Thin locks
improve the performance of real programs by up to 70% by reducing the latency of individual
synchronization operations. Our analyses complement this work by reducing the number of
synchronization operations.

Diniz and Rinard [DR98] present two techniques for lock coarsening in parallelizing
compilers: merging multiple locks into one, so that several objects are protected by one lock,
and transforming locks that are repeatedly acquired and released within a method so that they
are only acquired and released once. Their work is applicable to explicitly parallel programs;
however, they do not evaluate their optimizations in this context. They do not consider thread-
local locks, do not consider immutable fields as a potential source of lock nesting, and
apparently can only optimize nested locks in languages like C++ where objects can be statically
declared to be represented inline. Their coarsening optimizations are complementary to our
work; while we can eliminate a broader class of redundant locks, their optimizations may lead
to acquiring the non-redundant locks fewer times.

Another source of related work is the Concert project at the University of Illinois. To
reduce the overhead of lock operations, they optimize calls from one method to another on the
same receiver by eliminating the lock operation from the second method during inlining
[PZC95]. They also do a lock coarsening optimization similar to that in [DR98]. Our research
extends and generalizes their results by optimizing enclosing locks and thread-local objects.

Our concept of an unshared field is similar to idea of a unique pointer [M96] or unique
aliasing mode [H91][NVP98]. Unlike the previous work, we find unshared fields
automatically, rather than requiring annotations from the programmer. Our unshared field
analysis is similar to an analysis used by Dolby to inline object fields [D97]. In order to safely
inline a field, his system propagates tags to determine which fields could alias particular
variables. The precision of his analysis is identical to ours given a similar analysis framework,
but his work requires more strict conditions to inline a field than ours requires to identify an
unshared field.

Work from the model-checking community [C98] performs shape analyses similar to ours in
order to simplify models of concurrent systems. These analyses remove recursive locks and
locks on thread-local objects from formal models. This allows a model checker to more easily
reason about the concurrency properties of a Java program. An analysis similar to enclosing
lock analysis is also performed, not to eliminate enclosed locks, but to reason about which
objects might be subject to concurrent (unprotected) access. The analyses are intraprocedural,
and thus are only applicable to small programs where all methods are inlined. The work does

not describe the anayses precisely, nor does it consider the potentia performance
improvements of removing unnecessary synchronization. Our work precisdy describes a
family of interprocedural analyses for removing unnecessary synchronization and provides an
initid evaluation of their effects on set of benchmarks.

The Extended Static Checking System [DLN+98] dlows a programmer to specify a locking
protocol using code annotations. The program is then checked for simple errors such as
deadlocks or race conditions. This system complements ours by focusing on the correctness of
the source code, while our anadysesincrease the efficiency of the generated code.

7. Conclusion

This paper presented a set of interprocedura static analyses that effectively detect and eliminate
unnecessary synchronization. These analyses identify excess synchronization operations due to
reentrant locks, enclosed locks, and thread-loca locks. A partiad implementation of our
anayses eiminates 30-70% of synchronization overhead on three Java benchmarks. Our
optimizations support a style of programming in which synchronization code is written for
software engineering objectives rather than hand-optimized for efficiency.

Acknowledgements

Thiswork has been supported in part by a Nationa Defense Science and Engineering Graduate
Fellowship from the Depatment of Defense, NSF grant CCR-9503741, NSF Young
Investigator Award CCR-9457767, and gifts from Sun Microsystems, IBM, Xerox PARC,
Object Technology International, Edison Design Group, and Pure Software. We appreciate
feedback and pointers to related work from David Grove, Martin Rinard, William Chan,
Satoshi Matsuoka, members of the Vortex group, and the anonymous reviewers. We also thank
the authors of our benchmarks. JavaSoft (javac), Philip Wadler (pizza), Andrew Appel (jlex and
javacup), and Greg Badros (cassowary).

References

[ALL89] T. E. Anderson, E. D. Lazowska and H. M. Levy. The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors. |EEE Transactions
on Computers 38(12), December 1989, pp. 1631-1644.

[BKM+98] D. Bacon, R. Konuru, C. Murthy, M. Serrano. Thin Locks: Featherweight
Synchronization for Java. In Proceedings of the 1998 Conference on Programming
Language Design and Implementation, Montreal, Canada, June 1998.

[BW88] H. Boehm and M. Weiser. Garbage Collection in an Uncooperative Environment.
Software Practice & Experience, September 1988, pp. 807-820.

[C98] J. Corbett. Using Shape Analysis to Reduce Finite-State Models of Concurrent Java
Programs. In Proceedings of the Internationd Symposium on Software Testing and
Analysis, March 1998. A more recent verson is University of Hawaii 1CS-TR-98-20,
available at http://www.ics.hawaii.edw/~corbett/pubs.html.

[DDG+96] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An
Optimizing Compiler for Object-Oriented Languages. In Proceedings of the Eleventh

Conference on Object-Oriented Programming, Systems, Languages, and Applications,
October 1996.

[DLN+98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
Static Checking. Compag SRC Research Report 159. 1998.

[DR98] P. Diniz and M. Rinard. Lock Coarsening: Eliminating Lock Overhead in
Automatically Parallelized Object-based Programs. In Journa of Paralel and Distributed
Computing, Volume 49, Number 2, March 1998, pp. 218-244.

[D97] J. Dalby. Automatic Inline Allocation of Objects. In Proceedings of the 1997 ACM
SIGPLAN Conference on Programming Language Design and Implementation, June 1997.

[GMST77] C. M. Geschke, J. H. Morris and E. H. Satterthwaite. Early Experiences with Mesa.
Communications of the Association for Computing Machinery, 20(8), August 1977, pp.
540-553.

[GJS96] J. Godling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wedey,
1996.

[GDD+97] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call Graph Construction in
Object-Oriented Languages. In Proceedings of the 12 Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1997.

[H91] J. Hogg. Idands: Aliasing Protection in Object-Oriented Languages. In Proceedings of
the Sixth Conference on Object-Oriented Programming, Systems, Languages, and
Applications, November 1991.

[K93] D. Keppe. Tools and Techniques for Building Fast Portable Thread Packages.
University of Washington Technical Report UW CSE 93-05-06, May 1993.

[KP98] A. Krall and M. Probst. Monitors and Exceptions: How to implement Java efficiently.
ACM 1998 Workshop on Java for High-Performance Network Computing, 1998.

[LR80] B. Lampson and D. Redell. Experience with Processes and Monitors in Mesa. In
Communications of the Association for Computing Machinery 23(2), February 1980, pp.
105-117.

[M96] N. Minsky. Towards Alias-Free Pointers. In Proceedings of the 10th European
Conference on Object Oriented Programming, Linz, Austria July 1996.

[NVP98] J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection. In Proceedings of the 12th
European Conference on Object Oriented Programming, Brussels, Belgium, July 1998.

[PZC95] J. Plevyak, X. Zhang, and A. Chien. Obtaining Sequentia Efficiency for Concurrent
Object-Oriented Languages. In Proceedings of the 22™ Symposium on Principles of
Programming Languages, San Francisco, CA, January 1995.

[S88] Olin Shivers. Control-Flow Analysis in Scheme. SIGPLAN Notices, 23(7):164-174,
July 1988. In Proceedings of the ACM SIGPLAN '88 Conference on Programming
Language Design and Implementation.

[SNR+97] S. Singhd, B. Nguyen, R. Redpath, M. Fraenkel, and J. Nguyen. Building High-
Performance Applications and Services in Java: An Experientia Study. IBM T.J. Watson
Research Center white paper, available a
http://www.ibm.com/javaleducati on/javahipr.html. 1997.

[SGA+98] E. G. Sirer, A. J. Gregory, N.R. Anderson, B.N. Bershad. Distributed Virtua
Machines. A System Architecture for Network Computing. In Proceedings of the Eighth
ACM SIGOPS European Workshop, September 1998.

Effective Synchronization Removal for Java

Erik Ruf
Microsoft Research
Redmond, WA 98025

erikruf@microsoft.com

Abstract

We present a new technique for removing unnecessary syn-
chronization operations from statically compiled Java pro-
grams. Our approach improves upon current efforts based
on escape analysis, as it can eliminate synchronization oper-
ations even on objects that escape their allocating threads.
It makes use of a compact, equivalence-class-based repre-
sentation that eliminates the need for fixed point operations
during the analysis.

We describe and evaluate the performance of an im-
plementation in the Marmot native Java compiler. For
the benchmark programs examined, the optimization re-
moves 100% of the dynamic synchronization operations in
single-threaded programs, and 0-99% in multi-threaded pro-
grams, at a low cost in additional compilation time and code
growth.

1 Introduction

The Java™ programming language [GJS96] provides syn-
chronization constructs (synchronized methods and blocks)
to permit safe use of concurrently-accessed data structures.
These constructs are used pervasively in both the standard
libraries and the runtime system. In many cases, a large
number of these operations may be safely removed without
compromising program semantics, thus improving perfor-
mance. Removing these operations manually may be incon-
venient, error-prone or even impossible.!

A dynamic synchronization operation in thread 7" on an
object O is eliminable whenever no other thread 7' attempts
to synchronize O during the execution of the guarded code.
Algorithms for automatic, static elimination of synchroniza-
tion operations prove conservative approximations of this
condition. Existing work falls broadly into two categories.
One approach [BS96, FKR*00] proves that the program
spawns no threads, making contention impossible and all

I Most Java-to-bytecode translators implement the string concate-
nation primitive '+’ via a call to a synchronized library method. Short
of reimplementing strings, users cannot avoid this behavior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLDI 2000, Vancouver, British Columbia, Canada.

Copyright 2000 ACM 1-58113-199-2/00/0006. . . $5.00.

208

synchronization operations removable. This is both fast and
effective, but has the disadvantages of having no effect on
multithreaded programs and being unsound in the presence
of notification operations.?

The second approach [ACSE99, Bla99, BH99, CGS'99,
WR99] proves that the object O cannot escape its creating
thread, and thus cannot be subject to contention. This ap-
proach fares poorly on programs (even single-threaded ones)
where synchronized data structures are stored in static vari-
ables; the median synchronization removal ratio for single-
threaded programs in existing systems is below 55%. The
compile-time costs of escape analysis can also be problem-
atic: context-sensitive dependence-graph-based implemen-
tations such as [WR99] can take an hour or more to opti-
mize programs of 10? statements [Rin99]. Some approaches
improve performance at the cost of precision: [BH99] is
context-insensitive and models only a single level of field
dereferences, while [Bla99] blurs distinctions between sib-
ling fields. [ACSE99] supplements escape analysis by elim-
inating synchronization operations that are always guarded
by other synchronization operations. This promising ex-
tension is limited by cost/precision issues in an underlying
pointer analysis, which does not scale up to programs such
as javacup or javac. In general, it is difficult to assess
the compile-time costs of escape-analysis-based implemen-
tations as only [Bla99] discloses analysis times.

We present a simple yet effective extension to the es-
cape analysis approach, along with a high performance im-
plementation technique. Owur optimization achieves a su-
perior degree of synchronization removal at a low cost in
optimization time. It handles both synchronized methods
and blocks, and preserves the Java synchronization, mem-
ory, and notification semantics. The distinguishing features
of our approach are:

o Explicit modeling of inter-thread object flow.
Instead of preserving all synchronization on escaping
objects, our optimization finds cases where an object
is synchronized only by a single thread (not necessar-
ily its creating thread) during program execution, and
eliminates synchronization for this case. This addi-
tional precision significantly improves the optimization
in some cases, yet is obtained at little additional cost.

2Removing synchronization guarding a wait, notify, or
notifyAll may cause the optimized program to throw a
IllegalMonitorStateException not thrown in the original pro-
gram. Such operations make little sense in single-threaded code,
but may be present in code fragments or libraries also intended for
multi-threaded use.

e An equivalence class based representation with
polymorphic summaries. Our optimization models
aliasing in a flow-insensitive manner by grouping poten-
tially aliased expressions into equivalence classes, and
models synchronization behavior as attributes of these
equivalence classes. The representation is constructed
in a single pass without fixed point operations, and en-
ables context-sensitive analysis and specialization via
a simple mapping function. It is sufficiently compact
that large programs (10° statements) can be optimized
without depth limiting or other explicit abstraction of
nonrecursive field access paths.

This paper describes our optimization and evaluates its
utility on both single- and multi-threaded programs, as well
as its costs in terms of compilation time and code expansion.

2 Overview and motivation

2.1 Explicit thread modeling

In contrast with escape based techniques, which preserve
synchronization on objects reachable from global state (and
thus visible to multiple threads), our goal is to preserve
synchronization only on objects potentially synchronized by
more than one thread instance during program execution.

This relatively coarse abstraction of the problem yields
benefits in several cases. It allows for the removal of global
synchronization in singly-executing threads, which can arise
when “helper” threads (e.g., asynchronous I/O, user inter-
face code, or watchdog timers) are added to an otherwise
single-threaded program having static instances of thread-
safe data structures. Another common case involves library
abstractions that safely share internal data structures (e.g.,
buffer pools or graphics resources) via a static lock object,
but are then used only by a single thread. In the important
degenerate case of purely single-threaded programs, this ab-
straction renders all synchronization operations removable.

Making this finer distinction requires two extensions to
escape analysis. First, it is necessary to track value flow
through global state, rather than merely marking globally-
reachable values as “escaped.” In other words, an alias anal-
ysis, rather than an escape analysis, is required. This is a
simple extension, since escape analyses already model com-
plex value flow, including aliasing, for local state. Second,
the analysis must be able to identify the thread instances
in which particular escaping values are synchronized. In
our implementation, this is accomplished via a straightfor-
ward call-closure analysis that bounds the code executed by
thread instances.

A primary limitation of this approach is that it only
proves properties that hold for an object’s entire lifetime.
Thus, it fails to recognize cases where contention is limited
to particular program scopes (e.g., fork-join parallelism) or
lock scopes (e.g., enclosing synchronization).

2.2 [Equivalence class based representation

Like many other systems [Bla99, CGS™99, CmHO00, WR99],
our optimization achieves context sensitivity by construct-
ing reusable, polymorphic method summaries that can be
independently applied at multiple call sites. In most exist-
ing work, aliasing is modeled via directed dependence arcs
encoding “points-to” relationships, while escape properties

209

are formulated as reachability queries over the resulting de-
pendence graphs.

In an effort to minimize analysis time and space usage,
our optimization relies on an equivalence based representa-
tion, in which potentially aliased values are forced to share
common representative nodes. This choice enables single
pass flow-insensitive analysis of any unit of code without
the need for iteration to model flow across back arcs (e.g.,
loops and recursion) in the program’s flow graph.

The convenience and efficiency of this representation
come at a cost in precision. Within methods, the direction-
ality of flow is lost, resulting in false aliasing between multi-
ple values assigned into a single variable or field. A similar
problem arises with recursion, where we give up context sen-
sitivity within a recursive component to avoid iterating the
analysis.

3 Algorithm

3.1 Preliminaries

The algorithm is implemented in the Marmot native com-
pilation system for Java [FKR100]. Marmot implements
most Java 1.1 semantics and libraries, but does not support
dynamic loading and limits the use of reflection. The result-
ing “closed-world” assumption enables a number of whole-
program analyses, including the construction of a static call
graph (using Rapid Type Analysis [BS96] and intraprocedu-
ral type propagation) used by our optimization.

For purposes of this exposition, the Marmot intermedi-
ate representation can be viewed as a statically-typed three-
address format with local variables in static single assign-
ment (SSA) form [CFRW91]. Control operations other than
return and throw are irrelevant as the analysis is flow insen-
sitive. Both synchronized blocks and methods are imple-
mented with explicit monitorEnter and monitorExit prim-
itives.

3.2 Phase 1: Computing thread properties

The first optimization phase identifies thread allocation sites
(including those in library code, plus an artificial site for the
main thread) and computes two attributes for each site:

e the set of methods potentially executed by the thread
being allocated, and

e whether the allocation site (and thus the thread(s) it
allocates) can be executed more than once at runtime.

At each thread allocation site, the corresponding run
method(s) are derived from the thread’s type and class hi-
erarchy information. In the special case of a site t = new
Thread(r), where r is an instance of Runnable, we com-
pute r’s type via intraprocedural type propagation. In many
cases, r is allocated in the current method, enabling r.run
to be precisely identified. A call graph closure analysis finds
all methods reachable from the run method(s) and and as-
sociates them with the allocation site.

A thread allocation site is marked as multiply executed
if it is in a loop, is reachable from a non-class-initialization
method having multiple or multiply-executed call sites, or
is reachable from a run method associated with a multiply
executed thread allocation site. An annotation mechanism
allows sites to be declared as singly-executed; we use this in
library code for sites that allocate multiple threads known
not to be simultaneously live.

3.3 Phase 2: Building method summaries
The second optimization phase computes

e for each global value (reference constant or static field)
and its (transitive) fields and array elements, the set
of allocation sites of threads potentially synchronizing
the value, and

e for each method, the alias and synchronization effects
of the method and its (transitive) callees.

Alias sets The optimization represents runtime values
with instances of the alias set data structure:

aliasSet := L |
(fieldMap, synchronized, syncThreads, global).

The L case indicates a nonreference value, while the tuple
case describes a reference value. The tuple elements define
properties of the value:

e fieldMap. A mapping from fully qualified instance field
names to alias sets for the corresponding field values;
the distinguished fieldname $ELT denotes the contents
of an array object.

e synchronized. A boolean, true if the value may be the
target of a synchronization operation.

e syncThreads. For escaping values, a set of thread allo-
cation sites representing the thread instances that may
synchronize the value.

e global. A boolean, true if the value can be reached from
a reference constant or static field (i.e., it escapes). If
true, all alias sets reachable via fieldMap must also have
global=true. This ensures that referents of an escaping
object also escape.

Alias sets support a unification operation that merges two
alias sets in place via a union-find data structure [ASUS6].
The resulting alias set’s attributes are the join of the input
attributes under the function, boolean, set, and boolean lat-
tices, respectively. In addition, joining the field maps causes
alias sets corresponding to fieldnames present in the domains
of both maps to be unified. The unifier is also responsible
for noticing when a potentially synchronized value escapes.
Thus, unifying a global alias set with a non-global, synchro-
nized alias set causes the syncThreads attribute of the result
to be augmented with the set of thread allocation sites as-
sociated with the current method.?

Another operation, new instance creation, allows the ab-
straction of the aliasing and synchronization properties of
an alias set. New instance creation returns an alias set iso-
morphic to an existing one, in which only global alias sets
are shared between the old and new instances.

Alias contexts The alias context data structure models
the aliasing and synchronization behavior of parameter, nor-
mal result, and exception result values transmitted between
call sites and methods. It is a tuple

aliasContext ::= ({fo,..., fn), T, €)

3In effect, the optimization records the fact that a thread executes
a synchronization operation on a value V at the point where V es-
capes, not at the point where V is synchronized. Doing so improves
precision because V may not escape all threads that synchronize it.

210

where f;, r, and e are alias sets corresponding to the param-
eter, return, and exception values. Alias contexts are used
to represent the information both for methods (in which case
the f; represent formal values received from the caller, and
r and e represent values returned to the caller) and for call
sites (in which case the f; represent actual values transmit-
ted to the callee, and r and e represent values returned by
the callee). We call the former use a method contezt and the
latter a site contest.

Like alias sets, alias contexts support unification and new
instance creation. Unification is the pointwise extension of
alias set unification to tuples. The alias context returned
by new instance creation preserves (recursively) all relation-
ships between the original f;, r, and e.

3.3.1 Interprocedural analysis

The interprocedural analysis associates each global value
with an alias set and each method with a method context.
It begins by binding each static field and object constant
(e.g., string literal or statically allocated array) to a new
alias set with global=true. It also constructs initial alias
sets for compiler-generated runtime data structures whose
initialization is not explicit in the intermediate code (e.g.,
class objects, interning and reflection tables, etc).

The analysis then partitions the static call graph into
strongly connected components (SCCs) and traverses them
in bottom-up topological order. Processing an SCC consists
of creating an initial method context object for each method
in the SCC, then applying the intraprocedural analysis to
each of the SCC’s methods individually.

3.3.2 Intraprocedural analysis

The intraprocedural analysis ensures that any aliasing or
synchronization by the method and its callees is appropri-
ately represented in the method’s context and in global alias
sets. It begins by associating each formal parameter variable
with the corresponding formal alias set from the method
context. It then walks the method’s statements, unifying
alias sets using the rules in Figure 1. Because local vari-
ables obey SSA invariants, our implementation saves time
and space by binding locals to new alias sets lazily upon use,
and implements assignments to unbound locals by updating
the binding table instead of performing unification.

Only statements that modify reference variables or val-
ues are processed. Primitive operations that induce aliasing
cause the alias sets of potentially aliased expressions to be
unified. For example, the assignment x.f = y (where x and
y are local variables) causes the analysis to unify y’s alias
set with the alias set returned by xz.fieldmap(f), where z is
the alias set for x. Similarly, analyzing throw z unifies z’s
alias set with those of all relevant handlers (including the
returned-exception value e of the method context if z could
be uncaught by the method).*

The synchronization operations monitorEnter and
monitorExit set the synchronized property of their argu-
ment alias set. In addition, if the argument alias set is global,
all thread allocation sites reaching the current method are
added to the argument alias set’s syncThreads property.

At method invocations, the analysis constructs a site
context S whose formal, return, and exception alias sets

4We can safely ignore implicit exceptions from primitives, as these
are always newly constructed, unaliased objects without reference
fields.

Domains

v € V local variables
g € G global values (constants, static fields)
f €F field names

a,r,e € A alias sets

mc,sc € C method, site contexts

m,p € M methods
s € S thread creation sites
tel types

Analysis State

GAS : G — A alias set lookup for globals
AS: V — A alias set lookup for locals
MC: M — C method context lookup

CALLEES : M xV — 2M
SCC: M —2M
TC : M — 25

method target lookup
SCC lookup
thread creation site lookup

Analysis Rules

statement action

vo = v1 unify(AS(vo), AS(v1))

v = (t)v1

v=yg unify(AS(v), GAS(g))

g=v

vo =v1.f unify(AS(vo), AS(v1).fieldmap(f))
vi.f =wvo

vo = v1] unify(AS(vg), AS(v1).fieldmap ($ELT))
vi[] = wvo

v = ¢(vo,...,vn) Vu; unify(AS(v), AS(v;))

v =newT no action
return v unify(AS(v),r)
throw v unify(AS(v),e)

monitorEnter v
monitorExit v

AS(v).synchronized = true
if AS(v).global
AS(v).syncThreads =
AS(v).syncThreads U TC(m)

let sc = ((AS(vo), ..., AS(vn)), AS(v), €)
Vp; € CALLEES(p,vo)
let me = MC (p;)
if SCC(m) # SCC(p;)
let mc’ = newlnstance(mc)
unify(sc, mc')

v = p(v0, -+, Un)

else
unify(sc, me)

Figure 1: Intraprocedural analysis rules for relevant state-
ment types. The rules assume that the statements be-
ing analyzed belong to a method m with method context
((ag, ..., an), r, €), where the AS relation maps formal vari-
ables to the corresponding a;. This description slightly over-
simplifies the handling of exceptions and assignments to lo-
cals (see text).

211

correspond to the actual, result, and relevant exception alias
sets at the call site. It then iterates over the methods in-
voked by the call site, performing one of the following two
operations:

1. Nonrecursive target. The analysis computes a new in-
stance M’ of the method context M and unifies it with
the site context S.° This has the combined effect of
(1) reflecting callee-side aliases to the call site, and (2)
propagating callee-side properties to the call site. Cre-
ating a new instance each time a method is applied
prevents the accumulation of call-site-specific informa-
tion in the method context, allowing context-sensitive
analysis.

2. Recursive target. In this case, the analysis unifies the
method context M and site context S. While this intro-
duces context insensitivity at recursive call sites, it has
a large performance benefit in that the analysis does
not need to iterate over the entire SCC until a fixed
point is reached.®

After a method has been analyzed, the analysis drops the
reference to the local variable mapping, allowing all alias sets
not escaping the method’s stack frame to be reclaimed. Sub-
sequent phases requiring information about local variables
reconstitute it by reexecuting the intraprocedural analysis.”

3.3.3 Example

Figure 2 shows part of a toy vector class and three of
its clients immediately prior to synchronization optimiza-
tion. We use a Java-like syntax for the intermediate
code, in which virtual calls have been statically bound,
and each statement executes a single operation. In addi-
tion, explicit monitorEnter, monitorExit, and catch op-
erations are used to implement the synchronized method
SimpleVector.elementAt and the synchronized block en-
circling the ellipsis in method test3. The results of the first
analysis phase are shown as comments: we will assume that
both T1 and T2 represent single-instance thread allocation
sites.

The second phase begins by assigning a new alias
set o {{}, false, {},true) to the static variable
SimpleVector.v, and computes the bottom-up schedule
<init>, elementAt, testO, testl, test2. The method con-
text constructed for <init> is ((a1), L,as), where a1 =
({elements — o}, false, {}, false) and @z and a3 have de-
fault attributes (({}, false, {}, false)). This context indi-
cates that the formal parameter may have a field elements
described by a2, and there is no return value. Neither the
formal, any value reachable from it, nor any thrown excep-
tion can be synchronized by <init>.

50ur implementation folds these operations into a single, parallel
traversal of M and S.

6Given the relative imprecision of the RTA based call graph, SCCs
can sometimes be quite large (e.g., most toString methods end up
in a single SCC). Iteration is further complicated by the size of the
alias context data structures, and because convergence is not guar-
anteed (e.g., the “add to head of linked list” method will grow its
list argument on each iteration). We experimented with an adap-
tive, iteration-based scheme that could degenerate into the direct-
unification scheme described above. In most cases, the space bounds
were violated before convergence was achieved, so little to no addi-
tional precision was obtained.

"Because all callee method contexts, even for recursive callees, are
complete at reconstitution time, the nonrecursive strategy (item 1
above) is always used.

class SimpleVector {
Object[] elements;
static SimpleVector v;

/* invoked by T1, T2 %/

static void <init>(SimpleVector thisl) {
Object[] temp = new Object[10];
thisl.elements = temp;

}

/* invoked by T1, T2 %/
static Object elementAt(SimpleVector this2,
int index) {
monitorEnter(this2)
try {
Object[] elts = this2.elements;
Object elt = elts[index];
monitorExit(this2);
return elt;

catch (Throwable t) {
monitorExit (this2);
throw t;
}
}
}

/* invoked by T1 */

static void test1() {
SimpleVector vl = new SimpleVector;
SimpleVector.<init>(vl);
Object ol = SimpleVector.elementAt(vi, 0);

}

/* invoked by T1 */

static void test2() {
SimpleVector v2 = new SimpleVector;
SimpleVector.<init>(v2);
Object 02 = SimpleVector.elementAt(v2, 0);
SimpleVector.v = v2;

}

/* invoked by T2 */

static void test3() {
SimpleVector v3 = SimpleVector.v;
Object 03 = SimpleVector.elementAt(v3, 0);
monitorEnter (03);

try {

monitorExit(03);
return;

catch (Throwable t) {
monitorExit (03);
throw t;

}
}

Figure 2: Example program fragments

The method context for elementAt is ({aa,Ll),as,ar),
where ({elements — as}, true, {}, false), s
({$ELT — as}, false, {}, false), and as and a7 have default
attributes. In this case, the first parameter may be syn-

212

chronized, and the contents of its elements array may be
returned.

The intraprocedural analysis on testl finds that the
value of variable vl may be synchronized, but does
not escape either into either testl’s method context
or a global alias set. Analyzing the first three state-
ments of test2 yield a similar configuration of locals,
with v2 bound to as = ({elements — a9}, true, {}, false),
ag = ({$ELT — auo}, false, {}, false), and o2 bound to
ai10, where aip has default attributes. The assignment
SimpleVector.v = v2 unifies as with ap, producing (due
to the unification of global and a nonglobal alias sets) the
alias set ap = as ({elements — v}, true, {T1}, true)
where a9 = ({$ELT — auo}, false, {}, true) and aio
({}, false,{}, true). At this point, we know that v and v2
may be aliases holding a value that escapes and is synchro-
nized by a thread allocated at site T1, and that the value in
02 escapes but is not synchronized.

The analysis of test3 binds v3 to ap. The applica-
tion of elementAt marks o as synchronized under the
thread allocated at T2 and binds the variable o3 to «io.
The synchronization of o3 causes «ip to be marked as
synchronized, but only by T2. At the end of phase 2,
the method contexts for <init> and elementAt are as
given above, while the alias set for SimpleVector.v, v2,
and v3 is ap ({elements — o}, true, {T1, T2}, true),
where a9 ({$ELT — aio0}, false,{}, true), and
aro = ({}, true, {T2}, true).

3.4 Phase 3: Specialization and transformation

The third optimization phase propagates synchronization in-
formation from call sites to callees, and uses this information
to remove or simplify synchronization operations in callees.
It also constructs specialized versions of methods where dif-
ferent call sites allow distinct simplifications.

3.4.1 Interprocedural analysis

The interprocedural analysis processes SCCs in a top-down
topological order while maintaining per-SCC queues of spe-
cialization requests (in the form of (method, method Contest)
pairs). The analysis iteratively executes the intraprocedu-
ral analysis over all specialization requests for methods in a
given SCC until all have been satisfied.

3.4.2 Intraprocedural analysis

The intraprocedural analysis both optimizes the method
body (removing or simplifying synchronization operations
and redirecting calls to specialized targets) and requests
the creation of specialized method bodies. Given a
(method, methodContext) pair, the analysis begins by exe-
cuting the intraprocedural analysis of Section 3.3.2, associ-
ating each local variable with an alias set. It then walks the
method’s statements, rewriting synchronization operations
and calls as follows.

e Synchronization operations. An alias set is said
to be contention free if its syncThreads set is empty
or contains a single thread allocation site that exe-
cutes at most once. Given a statement of the form
monitorEnter(o) or monitorExit(o), where o has
alias set o, the analysis checks to see if o0 is contention

free. If so, it removes the statement and, if the pro-
gram is multi-threaded (i.e., the analysis found a non-
artificial thread allocation site), inserts a memory bar-
rier primitive so that later optimizations will obey the
Java memory semantics at this point.

e Call sites. Given a call statement, the analysis con-
structs a site summary S from the actual, return, and
reachable exception handler alias sets. For each target
method with method context M, it constructs a new
instance M' of M and then walks M’ and S in par-
allel; for each alias set m’ in M’ that is synchronized,
the syncThreadSet attribute of the corresponding alias
set s is added to the syncThreadSet attribute of m’'.%
The updated M’ is then compared with both M and
the method contexts of all existing or pending special-
izations of the target method, under the condition that
two alias sets match if their contention free status is the
same. If no match is found, the method is cloned and
a request to specialize the cloned method on M’ is en-
queued. If M’ does not match M, the call is rewritten
to invoke the appropriate specialized method.’

Marmot’s intermediate representation is constructed
from the Java bytecode, which uses explicit synchroniza-
tion operations to implement synchronized blocks. Because
bytecode verification does not prove any invariants about
the use of these operations, it is up to the optimizer to find
correlated groups of monitorEnter and monitorExit opera-
tions to remove.

Enter/exit correspondences that do not span method
boundaries are easily handled by our optimization. Within
a method, all potentially aliased objects have identical sync-
Threads attributes, ensuring that all synchronization opera-
tions on a particular object will be preserved or eliminated
as a whole. All of our benchmarks (and, presumably, all
bytecode generated by reasonable Java front ends) have only
intra-method enter/exit correspondences.

Correspondences that span multiple procedures are more
difficult, as removing or preserving a synchronization op-
eration in one method may require the removal or preser-
vation of omne or more corresponding operations in an-
other method. Our specialization strategy handles this by
aggressively specializing callees with respect to the con-
tention status of values at call sites, ensuring that caller
and (specialized) callee methods will always agree on the re-
moval/preservation choice for any given runtime value. Less
aggressive specialization strategies (in which contexts induc-
ing differing contention properties can share a common spe-
cialization) must place additional restrictions on synchro-
nization removal.

8There is no need to transfer aliasing information from caller
to callee, (e.g., by unifying site and method contexts) since all
potentially-aliased caller-side expressions will have identical alias sets.

9Indirect calls require additional effort, as the call must invoke the
specialized clone only for a subset of the receiver objects arriving at
runtime. To handle this, new selectors (method names) are intro-
duced at the appropriate points in the class hierarchy; these tail-call
the appropriate clones with identical arguments. Such “trampolines”
allow specializations to be shared at the cost of additional direct call
operations. This overhead is later eliminated by the Marmot code
generator, which “inlines” the tail calls into the dispatch tables and
removes the trampoline method bodies.

213

3.4.3 Example

We continue the example of Section 3.3.3 into the final trans-
formation of the optimization. This phase makes no changes
to testl, as the syncThreads attribute of v1’s alias set (and
its elements) matches that of this1l and this2’s alias sets.
The same is true for the invocation of <init> in test2. Since
the syncThreads attribute of v2’s alias set denotes multiple
threads and the corresponding alias set in elementAt’s con-
text does not, test2’s call to elementAt is rebound to a
clone, elementAt2, with context ((a11,Ll),a1s,a14), where
ail ({elements — ai2}, true, {T1, T2}, false), ai2
({$ELT — «us}, false, {}, false), and a3 and «l4 have de-
fault attributes. In other words, elementAt2 is a specializa-
tion of elementAt that preserves synchronization behavior
on the formal parameter this2.

The call to elementAt in test3 is also retargeted to
elementAt2. Local 03 is found to have the alias set a9 =
({}, true, {T2}, true), which is synchronized, but only by a
singleton thread. This means that all three synchroniza-
tion operations on o3 are eliminable, so they are replaced
by memory barrier primitives.

The <init> method is not processed because it has nei-
ther synchronization operations nor callees. Processing of
elementAt finds that this2 cannot be synchronized (recall
that both invocations that passed synchronized arguments
were redirected to elementAt2), and successfully replaces
the synchronization operations on this2 with barriers. The
alias set a1 in the context for elementAt2 is synchronized
by two threads, causing all three synchronization operations
to be preserved.

3.5 Other issues
3.5.1 Complexity

The worst-case time/space complexity of the optimization
is at least exponential in program size. A method m; re-
turning a new pair, both of whose arms point to the meth-
ods’s argument, will have a return alias set with field map
{left — a,right — a} where « is the formal alias set. A
method m»> containing a cascade of k calls to m; can con-
struct a formal alias set with a field map of size 2*.

That said, few programs construct large recursive data
structures without the use of iteration or recursion. Given
that the analysis does not explore recursive paths in con-
trol flow graphs or the call graph, exponential cascades of
the sort described above are rare. The method-local na-
ture of many objects also limits duplication, as such objects
do not contribute to method summaries. In practice, opti-
mization costs are greater than linear in program size but
remain manageable (> 7500 stmts/sec) even for our largest
benchmarks.

3.5.2 Event notification operations

The Java threading model supports event notification via
the Object.wait, Object.notify, and Object.notifyAll
methods, all of which require that their this argument be
locked (otherwise an exception is thrown). Preserving this
behavior in the face of synchronization elimination requires
some additional effort.

When a notification method is invoked on an object, a
boolean notified attribute in the object’s alias set is set to
true. When the analysis finds an otherwise removable syn-
chronization operation whose alias set has notified=true, it

replaces the operation with a specialized version that per-
forms enough bookkeeping to satisfy the notification meth-
ods, without actually performing any machine-level synchro-
nization operations.'°

3.5.3 Object cloning

The method Java.lang.0bject.clone returns a new object
whose reference fields are aliased to the corresponding fields
in the original. Representing this using the scheme described
above is difficult because the analysis may add fields to the
argument object long after the application of clone has been
processed. Explicitly constructing aliases for all possible
fields would be impractical.

Instead, we move the fieldMap attribute of the alias set
data structure into a separate contents object that supports
unification and new instance creation. Field and array ele-
ment operations on alias sets are delegated to the contents
object, while unify/new instance operations are performed
recursively on the contents object. The Object.clone
method can then be given a special method context in which
the contents objects of the argument and return values are
aliased, but the values themselves are not. This avoids false
aliasing of the base and clone objects, but is still imprecise
on field values that are immediately, strongly updated by a
subclass’s clone method.

3.5.4 Indirect synchronization removal

For a restricted case, our optimization is able to remove
synchronization operations on objects subject to contention
by multiple threads. In the Marmot runtime, an object’s
lock and hashcode data are stored in a corresponding, dy-
namically created extension object. The object extension
operation must synchronize on a global lock, rather than on
the object being extended, as the object’s lock is not yet
created.

The analysis described above does not eliminate exten-
sion synchronization in multithreaded programs because the
object being synchronized (the global lock) is indeed syn-
chronized by multiple threads. We extend the analysis by
adding the alias set attributes eztended and extThreads,
which mirror synchronized and syncThreads, but track ex-
tension events rather than synchronization events. Exten-
sion operations on objects with contention-free extThreads
sets are redirected to a version that does not perform syn-
chronization.

3.5.5 Single-threaded programs

The thread-allocation-site analysis described in Section 3.2
declares a program single-threaded when it is unable to lo-
cate any thread construction sites other than that for the
main thread. This knowledge allows our algorithm to avoid
the insertion of memory barrier operations. It also en-
ables the use of a garbage collector and runtime system
customized for the single-threaded case.

3.5.6 Performance improvements

We lower the optimization’s compile time costs by avoid-
ing work that cannot enable the removal of synchronization

19The Jalapeno system [CGST99] performs a similar optimization
dynamically by predicating machine-level synchronization primitives
on a bit in the lock object.

214

// a. original implementation
void f(Object obj) {
if (obj == null) {
obj = (default);

// b. modified implementation
void f(Object obj2) {
if (obj2 == null) {
£2((default)) ;
} else {
£2(obj2);

}

void f2(obj) {
}

Figure 3: Rewriting a method to avoid aliasing the param-
eter obj with the global-valued expression (default).

operations. During the second phase, we identify methods
that cannot (transitively) execute synchronization opera-
tions. Such methods will never require removal of synchro-
nization operations or retargeting of call sites, and thus can
be ignored in the transformation phase. This optimization
reduces costs by as much as 50%.

Another optimization lowers memory usage and reduces
unification, comparison, and new instance costs by com-
pressing method contexts. An alias set can be removed from
a context if (1) it is not synchronized, (2) it is not global, (3)
it only appears once in the context, and (4) all of its fields
are removable. Restrictions (2) and (3) ensure that aliases
are propagated from callees to callers. While the additional
context traversal required by compression can increase costs
on our smaller benchmarks, it reduces optimization times
by as much as 30% on larger ones.

3.5.7 Avoiding false aliasing

Figure 3(a) shows source code for a common Java idiom in
which a null formal parameter value is replaced with a de-
fault value prior to the execution of a method body. Our op-
timization assigns a common alias set to the variable obj and
the expression (default). If (default) denotes a global value,
the method signature for £ will be marked as global. Since
globals are modeled monomorphically, the alias sets of the
actual parameters at all of £’s call sites will be unified even
though f induces no callee-side aliasing. In this case, the
(otherwise convenient) bidirectional nature of unification-
based flow is problematic.

If the identity of the default value doesn’t matter, the
programmer can avoid this problem by constructing new
default values (e.g., via new or cloning) as necessary. If iden-
tity does matter, or construction is too expensive, one can
use the strategy of Figure 3(b). Binding obj via parame-
ter passing instead of assignment keeps (default)’s alias set
out of the contexts of both £ and £2, avoiding undesirable
aliasing at call sites invoking f. For the dual case in which a
global value is returned, only the new/clone approach can be
used. The Marmot library uses these approaches in meth-

name methods stmts | dyn syncs | sync ovhd | description

javac 1,877 40,758 | 1.693E4-T7 15.62% | javac compiling jlex 4 times

javacup 859 21,657 | 5.926E45 5.19% | javacup generating Java parser

jess 1,339 26,172 | 4.797TE+6 5.97% | expert system shell

jlex100 536 15,698 | 1.665E48 57.66% | jlex generating lexer for sample.lex, 100 times
marmot 8,193 | 211,332 | 1.172E+8 10.33% | compile javac to native code

mtrt 716 16,500 | 7.486E+5 1.49% | multithreaded ray tracer

multimarmot 8,225 | 212,160 | 1.183E+8 9.99% | multithreaded compile of javac

plasma 1,038 | 17,857 | 4.159E+4 0.01% | constrained plasma field simulation/visualization
slice 1,059 18,697 | 1.388E+4 0.02% | viewer for 2D slices of 3D radiology data
volano 741 13,085 | 4.623E+7 5.52% | chat room simulator

Figure 4: Benchmark programs. Method and statement counts were performed on the intermediate form just prior to application of

the synchronization optimization algorithm.

name sync operations

original opt
complete | partial
javac 1.693E+7 0 3,740
javacup 5.926E45 0 0
jess 4.797TE+6 0 0
jlex100 1.665E+8 0 0
marmot 1.172E+8 0 0
mtrt 7.486E+5 948 0
multimarmot | 1.183E+8 | 7.810E+7 0
plasma 4.159E+4 3,188 0
slice 1.388E+4 8,664 0
volano 4.623E+7 | 4.610E45 0

Figure 5: Dynamic synchronization measurements.

ods of the String and StringBuffer classes when the null
value is replaced by the string "null". It also returns clones
of string literals in some contexts where returning a single
value causes undesirable aliasing.

4 Results

4.1 Benchmark programs

We tested our algorithm on five single-threaded and five
multi-threaded programs, described in Figure 4. Most
of these programs are well known. Marmot is the
bytecode-to-native-code compiler described in [FKR*00],
while multiMarmot is a version of marmot reconfigured to
perform per-method optimizations (amounting to approx-
imately 25% of total compilation time) in two parallel
threads. Plasma and slice are modified versions of public-
domain applet code.'' Volano is the VolanoMark™" 1.0 net-
working benchmark; we optimized both the client and server
but report results only for the client.

The method and statement counts were performed af-
ter unreachable methods (in both the benchmark program
and the libraries) were removed by a “treeshake” pass. The
“synchronization overhead” column approximates the frac-
tion of execution time spent performing synchronization op-
erations in the unoptimized program. We computed this
value by measuring the average cost of an executing an
empty synchronized block (7.5E-8 seconds, or 58 machine
cycles), multiplying it by the number of dynamic synchro-
nization operations, and dividing by the unoptimized exe-

1 Available from the author.

215

100% - — —
90% || || Oesc
Hopt
80% 1]] o bgund]
70% -
60% -
50% -
40% -
30% +
20% = =
10% -+ = =
0% + = = —L
'\'Z’@o A”’OOQ A\@(’? ; @§Q 'z§®0\ & éé\o‘ \'Zé& é\\& 40\%00
& DR @0\@‘ N

Figure 6: Fraction of synchronization operations removed

cution time.'? Interestingly, the single-threaded programs
execute far more synchronization operations as a function
of running time than the multi-threaded programs do.

Testing was performed on a dual-processor 770Mhz Intel
Pentium III workstation with 512MB of memory under Win-
dows 2000 Professional. All results are the mean of multiple
executions; standard deviations were nominal.

4.2 Synchronization removal

Figure 5 shows dynamic synchronization counts for the orig-
inal and optimized versions of the benchmark applications.
The “partial” category refers to operations that were only
partially removed to preserve the notification semantics (c.f.,
section 3.5.2); only javac had removals of this sort.

Figure 6 presents the fraction of synchromizations re-
moved in each of three scenarios. The leftmost column
of each bar represents our optimization with all methods
treated as executing in all threads, restricting removals to
those enabled by escape analysis. As an escape analysis,
our system is roughly comparable to existing work, except
on javac, where it does much better, and jess, where it fails
almost completely due to an imprecision in the call graph
causing false aliasing with a static. The central column rep-

12This figure overestimates the cost of recursive synchronization
(no machine level lock is required) and underestimates the cost of ini-
tial synchronization (a lock object must be allocated) and contention
(queue operations are required). The estimate does not account for
secondary effects due to caches, missed optimizations, etc.

name execution time
original opt geopt
javac 8.13 6.44 5.97
javacup 0.86 0.76 0.66
jess 6.03 5.63 5.12
jlex100 21.66 8.37 8.09
marmot 85.10 | 71.35 | 61.83
mtrt 3.78 3.73 3.73
multimarmot 88.85 | 80.67 | 80.67
plasma 22.41 | 22.51 | 22.51
slice 4.64 4.64 4.64
volano 6.29 6.29 6.29

Figure 7: Execution time measurements (user+kernel time in
seconds).
2.8
26] Ogcopt
I Hopt
2.4 Osync
2.2 4
2,
1.8 4
1.6 4
14
B ol A
1 T = . .
o Q o N ~ & ~ > . o
F N F O X S IS
SRR A S R R
S

Figure 8: Speedup.

resents the optimization with thread information enabled.
This version achieved 100% elimination in single threaded
code and improvements over our escape analysis in plasma
and slice.

The rightmost column represents a rough upper bound
on the degree of synchronization removal possible using tech-
niques that prove an object to be synchronizable by at most
one thread during the object’s lifetime. We computed this
value by instrumenting the library to count the number of
objects synchronized by more than one thread during exe-
cution, and assuming that all other synchronizations were
removable. In mtrt, the optimization improved upon the
bound because some synchronization operations referencing
multiply-synchronized objects were found to be removable
(c.f., section 3.5.4). In multimarmot, worker threads per-
forming per-method optimizations never contend for per-
method data, but since that data is reached from a shared
symbol table, a large number of unnecessary synchronization
operations are preserved. All three scenarios fare poorly
on volano, where 98% of the synchronization takes place
on BufferedInputStream objects that are synchronized by
multiple threads.!?

13 An analysis tracking relationships between locks may be able to
remove these synchronizations, which appear to be guarded by an
escaping, but less frequently synchronized, DataInputStream object.

216

4.3 Execution time

Figure 7 presents execution times for unoptimized and op-
timized versions of the benchmark programs. For programs
found to be single-threaded by our analysis, we examined
two strategies. The first performs synchronization elimi-
nation only, while the second passes a threading flag to
the code generator and runtime system, enabling the use
of memory allocation and collection primitives specialized
for the single-threaded case.

In Figure 8, each speedup result is divided into three seg-
ments. The lower segment represents an estimated speedup
computed from the measured synchronization counts and
the average-case synchronization cost described in Sec-
tion 4.1. Together, the lower two segments represent the
speedup measured when our optimization is applied. This
value exceeds the estimate because synchronization removal
enables additional optimization.'* The sum of all three seg-
ments is the speedup measured when the optimization and
the single-threaded flag are enabled. In cases where nontriv-
ial speedup is achieved, the additional optimizations account
for a significant fraction of the improvement (the majority
of the improvement in 4 of 6 cases).

Other than multimarmot, which improved by 10%, the
multi-threaded benchmarks did not become faster as a re-
sult of synchronization removal. Mtrt performs all of its
synchronization as part of loading its data file, which repre-
sents a small fraction of the overall computation. All of the
synchronization in plasma and slice occurs in the AWT
libraries; the inner loops of the applets are floating point
computations that do not perform synchronization. No per-
formance improvement was obtained on volano, as very few
synchronization operations were removed.

4.4 Static costs

Figure 9 presents various static measures of our optimiza-
tion. The absolute costs of the synchronization analysis were
quite low (seconds), and represented only a small fraction
of overall compilation time.*® At the same time, by shrink-
ing method sizes (removing synchronization code) and in-
creasing method counts (generating specialized methods),
the optimization significantly altered the costs of subse-
quent phases of the Marmot optimizing compiler. Overall
compilation times fell by 79% in javacup, but rose by 20%
in multimarmot. With the exception of javac, which con-
tains notification operations, the single-threaded programs
did not require specialization. For multithreaded programs,
the average number of specializations per method ranged
from .08 (mtrt) to .20 (volano).

The optimization’s effect on the amount of code gener-
ated!® varied greatly. In some cases, the removal of syn-
chronization code (which Marmot always inlines) more than
compensated for the addition of specialized methods and any

41n the single-threaded case, memory barriers are eliminated, en-
abling a small amount of additional load caching. Most of the benefit
comes from additional inlining made possible (under Marmot’s size-
based heuristics) by reductions in method sizes when synchronization
code is removed.

151t is worth noting that the analysis allocates a large amount of
storage while analyzing a method, much of which becomes dead when
the method summary is constructed. Not surprisingly, the optimiza-
tion performs better under Marmot’s generational garbage collector
than under its copying collector.

6The “code growth” column in Figure 9 refers only to executable
code generated for the user program and Java libraries. It does not
include C or assembly runtime code, static data, or static metadata.

name opt frac of comp specs | tramps code
time | comp time growth
(sec) time change
javac 4.17 | 6.75% 3.45% 3 0 9.88%
javacup 1.01 | 2.75% | -79.15% 0 0| -21.76%
jess 1.59 | 4.55% | -14.05% 0 0 6.82%
jlex100 0.56 | 3.28% -8.79% 0 0 -1.03%
marmot 22.00 | 5.41% | 12.99% 0 0| 20.35%
mtrt 0.86 | 3.85% 2.73% 58 49 -0.93%
multimarmot | 28.03 | 6.46% 20.38% 1198 775 4.32%
plasma 1.11 | 4.04% | 10.59% 132 124 8.73%
slice 1.16 | 3.90% | 18.35% 152 124 | 12.43%
volano 0.73 | 3.91% 10.69% 148 86 7.8%

Figure 9:

additional inlining enabled by method size decreases. For
the single-threaded programs, almost all of the code size in-
crease is attributable to the inlining of allocation operations
under the single-threaded storage management regime.

5 Related work

This section describes work not addressed in the introduc-
tion or in the text.

5.1 Synchronization optimizations

[DR96, DR97] describe schemes for aggregating multiple
critical regions guarded by the same lock into a single, larger
critical region, and for replacing multiple lock objects with
a single lock that guards all of the subobjects’ operations.
These techniques reduce the number of lock operations per-
formed at the risk of reducing parallelism due to coarser lock
granularity. [Tse95] automatically restructures parallel pro-
grams to replace barrier synchronization with less expensive
operations, or to remove it entirely. In both cases, the trans-
formations were developed for a particular style of thread
synchronization produced by a parallelizing compiler, so it
is not clear that they are sound for general monitor synchro-
nization as in Java.

Another way to reduce the runtime cost of synchroniza-
tion operations is to implement them more efficiently. The
IBM “thin locks” work [BKMS98] and the Marmot lock im-
plementation [FKR00] are examples of fast locking mech-
anisms.

5.2 Related analyses

The construction of abstract summary functions for use
in interprocedural analysis dates back at least to the
“functional approach” of [SP81]. Alias analysis based
on equivalence classes and unification was introduced
in [Ste96b, Ste96a]. Recent work in the context of summary-
based pointer analysis includes [CRL99, CmHO00] and the
summary-based escape analyses [Bla99, CGS*99, WR99]
discussed in the introduction. [FRDO00] explores a combina-
tion of equivalence-class-based analysis and procedure sum-
maries that supports higher-order procedures.

6 Future work

While our optimization did very well on single-threaded
benchmarks and had some success in the multithreaded case,

217

Static statistics. Optimization time includes the cost of call graph construction.

there is much work to be done for multithreaded programs.
Our optimization treats all threads as though they run for
the duration of program execution, while many programs
(including multimarmot) use fork/join strategies in which
thread lifetimes are far shorter. This suggests the pursuit
of more temporally sensitive strategies. Another open issue
is the treatment of threads themselves; all existing analysis,
including ours, treat all data reachable from thread objects
as escaping. More powerful techniques are required to show
that some state held in instance variables of threads remains
unaliased.

Our flow analysis is fragile in the presence of cycles in
the call graph (e.g., jess). Possible improvements include
enhancing the Marmot static call graph analysis via context
sensitive techniques or modeling of polymorphic data struc-
tures. Alternatively, we could avoid the use of a static call
graph by encoding method dispatch into types and using
the instantiation constraint based flow analysis technique
of [FRDO00]. A third option would allow limited use of sets of
aliasSet to represent values in cases where unification yields
false aliases [SHO7].

The high speed of our analysis opens several opportuni-
ties. One possibility is to use the analysis as a preprocessing
phase to reduce the cost of a more precise model. Another is
an iterative, pessimistic call graph optimization in the style
of [HH98], in which the analysis is used to model class sets,
which are used to improve the call graph, enabling reanaly-
sis, etc., until convergence is achieved.

We plan to apply equivalence-class-based summarization
techniques to other interprocedural problems such as stack
allocation, memory disambiguation, and type propagation.

Finally, we believe it is important to continue the search
for and the development of additional, more realistic mul-
tithreaded programs for use in the design and testing of
optimizations.

7 Conclusion

We have described an effective, efficient technique for stati-
cally removing unnecessary synchronization operations from
Java programs. The distinguishing features of this approach
are

e the use of thread closure and alias analyses rather
than escape analysis, enabling more precise modeling
of value flow in the face of global variables and multiple
threads, and

e the use of equivalence class based method summaries,
enabling simple, fast, non-fixed-point, context-sensitive
analysis and transformation.

Our optimization handles both synchronized methods
and blocks, and preserves the Java synchronization, mem-
ory, and notification semantics. Our experiments, performed
in the context of an optimizing compiler, demonstrate im-
provements in dynamic synchronization counts and execu-
tion time in both single- and multi-threaded programs, at a
reasonable cost in compilation time and code growth.

Acknowledgments

We thank the members of the Advanced Programming Lan-
guages group at Microsoft Research for their support of
the Marmot compiler infrastructure, Bjarne Steensgaard for
finding unifier bugs, and the anonymous referees for their
suggestions.

References

[ACSE99)]

[ASUS6]

[BHY9]

[BKMS98]

[Bla99]

[BS96]

[CFRW91]

[CGST99]

[CmHO00]

J. Aldrich, C. Chambers, E. G. Sirer, and S. Eg-
gers. Static analyses for eliminating unnecessary syn-
chronization from Java programs. In SAS’99, LNCS.
Springer-Verlag, September 1999.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, MA, USA, 1986.

J. Bogda and U. Hélzle. Removing unnecessary syn-
chronizations in Java. In Proceedings of the 1jth
Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’99),
November 1999.

D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano.
Thin locks: Featherweight synchronization for Java.
In Proceedings of the SIGPLAN ’98 Conference on
Programming Language Design and Implementation,
pages 258-268, June 1998.

B. Blanchet. Escape analysis for object oriented lan-
guages. application to Java. In Proceedings of the 14th
Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’99),
November 1999.

D. F. Bacon and P. F. Sweeney. Fast static analysis
of C++ virtual function calls. In Proceedings OOP-
SLA 96, ACM SIGPLAN Notices, pages 324-341,
October 1996. Published as Proceedings OOPSLA
96, ACM SIGPLAN Notices, volume 31, number 10.

R. Cytron, J. Ferrante, B. K. Rosen, and M. N.
Wegman. Efficiently computing static single assign-
ment form and the control dependence graph. ACM
Transactions on Programming Languages and Sys-
temns, 13(4):451-490, October 1991.

J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In Pro-
ceedings of the 14th Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA ’99), November 1999.

B.-C. Cheng and W. mei Hwu. Modular interpro-
cedural pointer analysis using access paths: Design,
implementation, and evaluation. In Proceedings of the
SIGPLAN 2000 Conference on Programming Lan-
guage Design and Implementation, June 2000.

218

[CRL99]

[DRY6]

[DR97]

[FKR100]

[FRDO0O]

[GIS96]

[HHO8]

[Rin99]
[SHY7]

[sPs1]

[Ste96a]

[Ste96b]

[Tse95]

[WR99]

R. Chatterjee, B. G. Rynder, and W. A. Landi.
Relevant context inference. In Proceedings 26th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 133-146, January
1999.

P. Diniz and M. Rinard. Lock coarsening: Eliminat-
ing lock overhead in automatically parallelized object-
based programs. In Proceedings of the Ninth Work-
shop on Languages and Compilers for Parallel Com-
puting, LNCS 1239, pages 285-299, August 1996.

P. Diniz and M. Rinard. Synchronization transfor-
mations for parallel computing. In Proceedings 24th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 187-200, 1997.

R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steens-
gaard, and D. Tarditi. Marmot: An optimizing com-
piler for Java. Software: Practice and Ezperience,
30(3):199-232, March 2000.

M. Féhndrich, J. Rehof, and M. Das. Scalable
context-sensitive flow analysis using instantiation
constraints. In Proceedings of the SIGPLAN 2000
Conference on Programming Language Design and
Implementation, 2000.

J. Gosling, B. Joy, and G. Steele. The Java Lan-
guage Specification. The Java Series. Addison-Wesley,
Reading, MA, USA, June 1996.

R. Hasti and S. Horwitz. Using static single assign-
ment form to improve flow-insensitive pointer analy-
sis. In Proceedings of the SIGPLAN ’98 Conference
on Programming Language Design and Implementa-
tion, pages 97-105, June 1998.

M. Rinard. Personal communication. 1999.

M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In Proceedings 2/th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 1-14, January
1997.

M. Sharir and A. Pnueli. Two approaches to interpro-
cedural data flow analysis. In Program Flow Analysis:
Theory and Applications, chapter 7, pages 189-284.
Prentice-Hall, 1981.

B. Steensgaard. Points-to analysis by type inference
of programs with structures and unions. In Interna-
tional Conference on Compiler Construction, num-
ber 1060 in Lecture Notes in Computer Science, pages
136-150, April 1996.

B. Steensgaard. Points-to analysis in almost lin-
ear time. In Proceedings 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 32-41, January 1996.

C. Tseng. Compiler optimizations for eliminating bar-
rier synchronization. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practices of
Parallel Programming, pages 144-155, July 1995.

J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings
of the 14th Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA ’99), November 1999.

Encapsulating Objects with Confined Types

Christian Grothoff

Jens Palsberg

Jan Vitek

S3 Lab, Department of Computer Sciences, Purdue University

{grothoff,palsberg,jv}Qcs.purdue.edu

ABSTRACT

Object-oriented languages provide little support for encap-
sulating objects. Reference semantics allows objects to es-
cape their defining scope. The pervasive aliasing that ensues
remains a major source of software defects. This paper in-
troduces Kacheck/J a tool for inferring object encapsulation
properties in large Java programs. Our goal is to develop
practical tools to assist software engineers, thus we focus on
simple and scalable techniques. Kacheck/J is able to infer
confinement for Java classes. A class and its subclasses are
confined if all of their instances are encapsulated in their
defining package. This simple property can be used to iden-
tify accidental leaks of sensitive objects. The analysis is
scalable and efficient; Kacheck/J is able to infer confinement
on a corpus of 46,000 classes (115 MB) in 6 minutes.

1. INTRODUCTION

Object-oriented languages rely on reference semantics to al-
low sharing of objects. Sharing occurs when an object is
accessible to different clients; an object is aliased when it
is accessible from the same client through different access
paths. Sharing is both a powerful tool and a source of subtle
program defects. A potential consequence of aliasing is that
methods invoked on an object may depend on each other in
a manner not anticipated by designers of those objects, and
updates in one sub-system can affect apparently unrelated
sub-systems, undermining the reliability of the program.

While object-oriented languages provide linguistic support
for protecting access to variables, methods, and even entire
classes, they fail to provide any systematic way of protect-
ing objects. A class may well declare some variable private
and yet return the contents of that variable from a public
method. In other words, object-oriented languages protect
the state of individual objects, but cannot guarantee the
integrity of systems of interacting objects. They lack a no-
tion of an encapsulation boundary that would ensure that
references to ‘protected’ objects do not escape.

The goal of this paper is to experiment with pragmatic no-
tions of encapsulation in order to provide software engineers
with tools to guide them in the design of robust systems.
To this end, we focus on simple models of encapsulation
that can easily be understood. We deliberately ignore more
powerful escape analyses [2, 3, 9] which are sensitive to small
source code changes and return results that may be difficult
to interpret. Of course, the tradeoff is that our analysis will
sometime deem an object as ’escaping’ when a more precise
analysis would discover that this is not the case.

We have chosen to investigate confined types [5] as they give
rise to a form of encapsulation that is both simple to under-
stand and that can be checked with little cost. The basic
idea underlying confined types is the following:

Objects of a confined type are
encapsulated in their defining package.

Thus, if a class is confined, instances of that class and all
of its subclasses cannot be manipulated by code belonging
to other packages. In terms of aliasing, confinement allows
aliases within a package but prevents them from spreading
to other packages as illustrated graphically in Figure 1.

Confined

Unconfined

inside
outside

Figure 1: Objects in package outside cannot hold refer-
ences to objects encapsulated in package inside.

The definition of confinement in [5] requires explicit annota-
tions and thus pre-supposes that software is designed with
confinement in mind. In this work we take a different ap-
proach: Kacheck/J infers confinement in existing Java pack-
ages. We begin with the following controversial thesis:

Thesis: All package-scoped classes in Java
programs should be confined.

Furthermore, we show that a majority of large Java appli-
cations were written such that confinement would hold for
package-scoped classes. In other words, confinement is a
natural property to expect of package-scoped classes and

one that should be enforced by compilers. To validate our
hypothesis we gathered a large number of Java programs
(46,000 class files—to the best of our knowledge the largest
such benchmark suite) and implemented the Kacheck/J tool
to infer confinement properties of these classes. The results
of our analysis show that without any change to source pro-
grams, 3,998 classes (or 25% of the package-scoped classes)
are confined. Furthermore, we found that if one adds fea-
tures to Java that address the lack of generic container types,
then the number of confined types can be increased to over
4,800. Finally, we were surprised to discover that with ap-
propriate tool support, the number of confined classes can
be well over 14,500 for that same benchmark suite (or 32%
of all classes). Even though we can agree that there are valid
uses of package-scoped classes that break confinement, we
feel that these uses should be flagged and treated specially
rather than the converse.

While more powerful program analysis may yield higher
numbers of confined classes, especially if a whole-program
approach is taken, our current numbers are already surpris-
ingly high. Another pleasant surprise is that these results
can be obtained efficiently. The average time to analyze
a class file is less than 8 ms (or about 350s for the whole
benchmark suite) for a tool entirely written in Java running
on stock hardware.

The contributions of this paper are:

1. A simpler and less restrictive set of confinement rules
than in [5] (Section 3).

2. A constraint-based confinement analysis (Section 4).

3. A presentation of the Kacheck/J confinement inference
tool (Section 5).

4. Confinement results for a large-scale benchmark suite
(Section 6).

5. A discussion of refactorings aimed at improving con-
finement as well as proposals for better language sup-
port for confinement (Section 6).

2. AN EXAMPLE OF CONFINEMENT

In modern object-oriented programming languages such as
Java, confinement can be achieved by a disciplined use of
built-in access control mechanisms and some simple coding
idioms. We will give a simple motivating example and use
it to discuss our analysis.

Consider the class HashtableEntry used within the imple-
mentation of Hashtable in the Sun JDK’s java.util pack-
age. The access modifier for this class is set to default ac-
cess, which, in Java, means that the class is scoped by its
defining package. HashtableEntry instances are used to im-
plement linked lists of elements which have the same hash
code modulo table size. They are a prime example of an in-
ternal data structure which is only relevant to one particular
implementation of a hashtable and that should not escape
the context of Hashtable and definitely not of the defining
package java.util. Yet how can we be sure that code out-
side of the package cannot get access to a HashtableEntry
object?

Since HashtableEntry is package-scoped we need not worry
that outside code will create instances of the class. But in
case a public method were to return a HashtableEntry ob-
ject or a public field held a reference to such an object, out-
side code would be able to cast that reference to Object and
either store it or use it as an argument. The implementation
of Hashtable itself could cast a HashtableEntry object to
some public superclass, and then expose a reference to the
object. It is likely that a programmer would consider such
a scenario to be the result of a programming error, and a
good programmer would be careful and prevent such con-
finement breaches. One can view this as an escape problem:
can references to instances of a package-scoped class escape
their enclosing package? If not, then the objects of such a
class are said to be encapsulated in the package. In the ex-
ample at hand, HashtableEntry is indeed encapsulated as
programmers have carefully avoided exposing them to code
outside of the java.util package.

Kacheck/J discovers potential confinement violations and
returns a list of confined types for each package analyzed
by the tool. For instance, in the above example, the ex-
pected result of the analysis would be that HashtableEntry
is confined to the package java.util, while Hashtable is
not since it has been declared public. The analysis relies on
access modifiers of classes, fields and methods, along with
results of a simple intra-procedural analysis of the bytecode
of all methods defined in the enclosing package (this part
of the analysis performs confinement checks). Furthermore,
for package-scoped classes, the code of inherited methods
is also analyzed (this part of the analysis performs the so-
called anonymity checks). Figure 2 illustrates the checks
performed by the tool.

77777777 _._.] Anonymity checks
Confinement checks

java.util

Hashtable I

HashtableEntry l

Figure 2: Analysis overview. All classes in the enclosing
package, java.util in this case, are checked for confine-
ment. Parent classes of confined classes (e.g. Object) are
checked for anonymity. Client code need not be checked.

The analysis is modular since only one package needs to be
considered at a time; this turns out to be a key feature for
scalability. Furthermore, since client code is not required
when checking confinement, it is possible to use Kacheck/J
on library code.

In fact, our analysis infers that the class HashtableEntry is
not confined because the method clone is invoked on one of
its instances. The Hashtable’s clone method clones all of
the entries in the table. The problem with clone is that it
returns a copy of the receiver cast to Object.

Manual inspection of the code reveals that each invocation of
HashtableEntry.clone() is immediately followed by a cast
to HashtableEntry. Thus instances of the class do not es-
cape. But our analysis is not precise enough to discover that.
A simple and efficient fix is to refactor the code by replac-
ing HashtableEntry.clone() with a new method clone_
that returns a HashtableEntry. This refactoring is simple
enough and has the advantage of removing unnecessary type
casts.

Simplifying Assumptions
Kacheck/J operates under some simplifying assumptions
which we detail here.

Sealed packages

We assume that all classes of a package are known at analysis
time. This assumption is important for the analysis results
as a new class may break confinement of pre-existing classes
(e.g. creating a HashtableEntry and returning it from a
public method). In Java, user code may load new classes
which declare themselves a member of a package. There
are several possible approaches here. For example, pack-
ages loaded from a jar file may be declared sealed [14, 16],
in which case no user class can be added to that package.
Another solution would be to add support for incremental
confinement analysis as part of bytecode verification.

Reflection

The analysis assumes that reflection does not violate lan-
guage access control. In other words, it assumes that the
semantics of private, protected and default access modifiers
are respected by the reflection mechanisms. This assump-
tion can be violated by changing the settings of the Java
Security Manager. This may result in additional confine-
ment breaches.

Native code

Native methods are not checked by Kacheck/J and may
breach confinement. We assume that native methods de-
fined in the current package do not directly breach confine-
ment, while we make no assumptions about the behavior of
native methods defined in other packages. Manual inspec-
tion of a large number of native methods indicates that this
assumption is reasonable. Furthermore, we assume that na-
tive code in other parts of the system does not violate the
semantics of the language by ignoring access control decla-
rations.

3. CONFINED TYPES

The goal of confinement is to satisfy the following soundness
property:

Soundness: An object of confined type is en-
capsulated in the scope of that type.

In [5], the granularity of confinement is the package. Thus,
no instance of a confined type may escape the package in
which that type is defined. We say that instances of a con-
fined class are encapsulated in their defining package.

Confinement is enforced by two sets of constraints. The first
set of constraints, confinement rules, apply to the enclosing
package, the package in which the confined class is defined.

These rules track values of confined types and ensure that
they are neither exposed in public members, nor widened
to non-confined types. The second set of constraints, so-
called anonymity rules, applies to methods inherited by the
confined classes, potentially including library code, and en-
sures that these methods do not leak a reference to the dis-
tinguished variable this which may refer to an object of
confined type.

In this section, we adapt the rules of Bokowski and Vitek
to inference of confinement. The new rules are both simpler
and less restrictive (i.e., more classes can be shown con-
fined), while remaining sound. As in the original paper, the
rules presented here do not require a closed-world assump-
tion. Confinement inference is performed at the package
level. The rules assume that all classes in a package are
known and, for confined classes, that their superclasses are
available.

3.1 Anonymity Rules

Enforcing confinement relies on tracking the spread of en-
capsulated objects within a package and preventing them
from crossing package boundaries. We have chosen to track
encapsulated objects via their type. Thus, a confinement
breach will occur as soon as a value of a confined type can
escape its package. Since we track types, widening a value
from a confined type to a non-confined type is a violation of
the confinement property.

Anonymity rules apply to inherited methods which may (but
do not have to) reside in classes outside of the enclosing
package. The goal of this set of rules is to prevent a method
from leaking a reference to the distinguished this pointer.
The motivation for these rules is that if this refers to an
encapsulated object, returning or storing it amounts to hid-
den widening. Thus, we say that a method is anonymous if
the following three rules hold.

Al An anonymous method cannot widen this to a
non-confined type.

A2 | An anonymous method cannot be native.

A3 | Methods invoked on this must be anonymous.

Figure 3: Anonymity rules.

The first rule prevents an inherited method from storing
or returning this unless the static type of this also hap-
pens to be confined. The second rule ensures that native
methods are never anonymous. While rules A1 and A2 are
direct anonymity violations, the rule A3 tracks transitive vi-
olations. The call mentioned in rule 43 depends on the dy-
namic type of this (the target of the call). Thus, anonymity
of methods is determined in relation to a specific type.

3.2 Confinement Rules

Confinement rules are applied to all classes of a package. A
class is confined if it satisfies the five rules of Figure 4.

c1 All methods invoked on a confined type must be
anonymous.

C2 | A confined type cannot be public.

A confined type cannot appear in the type of a pub-
C3 | lic (or protected) field or the return type of a public
(or protected) method of a non-confined type.

C4 | Subtypes of a confined type must be confined.

cs A confined type cannot be widened to a non-
confined type.

Figure 4: Confinement rules.

Rule C1 ensures that no inherited method invoked on a con-
fined type will leak the this pointer. This rule does not
preclude a confined type from inheriting non-anonymous
methods, as long as they are never called. Rule C2 prevents
public classes from being confined. Rule C3 ensures that
no exposed member (private or protected) is of a confined
type. This applies to all non-confined types in the package.
Rule C4 prevents non-confined classes (or interfaces) from
extending confined types. Finally, rule C5 prevents values
of confined type from being cast to non-confined types.

Exceptions are a case of widening which is not explicitly
listed in these rules. Instead, we consider that throw widens
its argument to the class Throwable, which is declared public
and thus violates rule C5.

Our confinement rules do not forbid packages from hav-
ing native code, but rule A2 explicitly states that native
methods are not anonymous. The motivation for this de-
sign choice is that while the developer of a package may
be expected to manually inspect native code in the current
package, it would be difficult to check native code of parent
classes belonging to standard libraries. Furthermore, uses of
this that violate A1 are usually not perceived as bad behav-
ior for native code. Essentially, we assume that native code
within the enclosing package is, to some extent, trusted.

4. CONSTRAINT-BASED ANALYSIS

We use a constraint-based program analysis to infer method
anonymity and confinement. Constraint-based analyses have
previously been used for a wide variety of purposes, includ-
ing type inference and flow analysis. Constraint-based anal-
ysis proceeds in two steps:

1. Generate a system of constraints from program text.
2. Solve the constraint system.

The solution to the constraint system is the desired infor-
mation. In our case, constraints are of the following forms:
A = not-anon(methodId)
T not-conf(classId)
C = A|T|T=>A|A=A|A=T | T=T

A constraint not-anon(methodld) asserts that the method

methodld is not anonymous; similarly, not-conf(classld) as-
serts that the class classld is nmot confined. The remaining
four forms of constraints denote logical implications. For
example, not-anon(A.m()) = not-conf(C) is read “if method
m in class A is not anonymous then class C will not be con-
fined.”

We generate constraints from the program text in a straight-
forward manner. The example of Figure 5 illustrates the
generation of constraints. For each syntactic construct, we
have indicated in comments the associated rule from Sec-
tion 3. Figure 6 details the constraints that are generated
for that example. A complete description of the constraints
generated from Java bytecode is given in Appendix A.

public class A {

A a;

public A m() {
a = this; // (A1)
new B().t(this); // (A1)
return this; // (A1)

}

native void o(); // (A2)

}
class B extends A {
void t(A a) {}
ApO {
return this.m(); // (A3)
}
public A getD() {
return new DO).pQ); // (C1)

}
}
public class C { /7 (C2)
public D getD() { // (C3)
return new D(Q);
}
public D d = new DQ); // (C3)
}
class D extends B { // (C4)
A geta() {
this.t(this); // (C5)
a = new DO); // (C5)
return new DQ); // (C5)
}
}

Figure 5: Example program.

All our constraints are ground Horn clauses. Our solution
procedure computes the set of clauses not-conf(classId)
that are either immediate facts or derivable via logical im-
plication. This computation can be done in linear time.

Control Flow Analysis

The rule C1 poses a control flow problem as it mandates
that only methods that are actually invoked on a confined
type need to be anonymous. Any conservative control flow
analysis can be used to yield a set of candidate methods.
We have chosen to perform a simple flow insensitive analysis
that is practical and precise enough for our purposes.

Case || Constraint

| Explanation

(A1) not-conf(A) = not-anon(A.m()) this widened to A

(A2) not-anon(A.o()) o is native

(A3) || not-anon(A.m()) = not-anon(B.p()) | B.p() calls m() with this being the receiver object

(C1) not-anon(D.p()) = not-conf(D) p() invoked on a D-object

(C2) not-conf(C) class C declared to be public

(C3) not-conf(C) = not-conf(D) public method C.getD() has return type D; public field C.d has type D
(C4) not-conf(D) = not-conf(B) D extends B

(C5H) not-conf(4) = not-conf(D) D widened to A

Figure 6: The constraints generated from the example in Figure 5.

Since, by definition, confined types cannot be invoked from
outside of their defining package and cannot be widened to
non-confined types, the analysis only needs to record meth-
ods invoked on instances of a confined type. Thus, only
invocations of the type x.m(), where the type of x is con-
fined, need to be retained. This forms the root set for the
control flow analysis. Transitive calls from within a con-
fined method in this root set (e.g. this.m()) are recorded
by anonymity rule A3. The type of x in x.m() is determined
as the union of the most general type inferred during byte-
code verification with all subtypes of that type that are ever
widened to it.

The analysis does not attempt to perform dead-code detec-
tion, so while the method that includes an invocation such
as a.m() may be dead, we will nevertheless add m to the
root set. This simplifies the analysis but costs some preci-
sion. Doing dead code detection would also lead to analysis
results that are much more sensitive to changes in the source
program. We strongly believe that the results of confinement
inference should be stable in the face of trivial changes to
the source program and that any changes should have only
local effects.

5. IMPLEMENTING KACHECK/J

Although the confinement and anonymity rules have been
described as source level constraints, we have chosen to im-
plement Kacheck/J as a bytecode analyzer. The main ad-
vantage of working at the bytecode level is the large number
of class files freely available. The implementation of Kach-
eck/J leverages the Open Virtual Machine project’s byte-
code verification framework.

In OVM, bytecode verification has been implemented using
the flyweight pattern. For each of the 200 bytecode instruc-
tions defined in the Java Virtual Machine Specification, the
OVM verifier creates an Instruction object that is respon-
sible for computing the effect this instruction will have on an
abstract state. Verification is a simple fixed-point iteration.
The verification starts with an initial state which includes
the instruction pointer, operand stack and variables. The
verifier follows all possible control flows within the method.

This flyweight approach allows us to use the OVM bytecode
verifier as a static analysis engine. We generate constraints
by subclassing only 9 of the 200 Instruction objects. These
special purpose instructions perform some simple checks and

record basic facts about the program execution. For in-
stance, the areturn instruction checks if this is used as
return value, and if so, it reports that this is widened to
the return type of the method. The invoke instructions
record dependencies like the use of this as an argument or
when a method is invoked on this.

Overall, the following changes were applied to the verifier:

In non-static methods, local variable 0 (this) is tracked.

e Uses of this are recorded.

All widenings are recorded.

Types of thrown exceptions are recorded.

Widenings are captured by intercepting subtype checks.

Anonymity checks only require slight modifications to the
code that simulates the nine instructions: a check is added to
record operations on this. See the Appendix A for details.

The flow analysis computes the implication chains for each
potentially confined type 74, such that

To= (A=)A=T
is collapsed to
Ty = T1.

The constraints of the form 1" and 7' = T are solved imme-
diately while they are recorded.

The code specific to confined types (including verbose re-
porting of violations) is about 5,600 lines. The code reused
from OVM (including class loading) is about 25,000 lines of
code. The current version of the OVM is about 74,000 lines
of code.

Example

Figure 7 gives an example of a chain of constraints that
results in classes being not confined. Mind that the tool
reorders parts of the solving process, while here only the
final chain of constraints is explained.

The method P.nonAnon () is not anonymous because it widens
this to java.lang.Object, which is a non-confined class

(because it is public). This will generate a constraint of
type C = A:

not-conf(Object) = not-anon(P.nonAnon())

The invocation of nonAnon in nonAnonInd with this as the
receiver generates a constraint of the type A = A:

not-anon(P.nonAnon())

= not-anon(B.nonAnonInd())

The method nonAnonInd() is invoked on C. By rule C1 a
constraint of the type A = C' is generated:

not-anon(B.nonAnonInd()) = not-conf(C)

As C extends B, a constraint of the type C' = C is gener-
ated by rule C4:

not-conf(C) = not-conf(B)
Solving this constraint system will result in B and C being

non-confined (and P and X cannot be confined either because
they are public).

public class P {
public Object nonAnon() {

return this; // (1)
}
}
class B extends P {
public Object nonAnonInd() {
return this.nonAnon(); // (2)
}
}
class C extends B { // (3)
}

public class X {
public Object invocation() {
return new C().nonAnonInd(); // (4)
}

Figure 7: Sample constraint chain.

6. RESULTS

Kacheck/J has been evaluated on a large data set. This
section gives an overview of the benchmark programs and
presents the results of the analysis. We also discuss ex-
tensions of Kacheck/J, coding idioms for confinement and
improved language support.

6.1 The Purdue Benchmark Suite

The Purdue Benchmark Suite (PBS) consists of 33 Java pro-
grams and libraries of varying size, purpose and origin. The
entire suite contains 46,165 classes (or 115 MB of bytecode)
and 1,771 packages. To the best of our knowledge the PBS
is the largest such collection of Java programs. Most of the
benchmarks are freely available and can be obtained from
the Kacheck/J web page.

Name || Description |

Aglets Mobile agent toolkit ag
AlgebraDB Relational database db
Bloat Purdue bytecode optimizer bl
Denim Design tool de
Forte Integrated dev. environment fo
GFC Graphic foundation classes of
GJ Java compiler gj
HyperJ IBM composition framework hj
JAX Packaging tool ja
JDK 1.1.8 Library code (Sun) j1
JDK 1.2.2 Library code (Sun) j2
JDK 1.3.0 Library code (IBM) i3
JDK 1.3.1 Library code (Sun) j4
JavaSeal Mobile agent system js
Jalapeno 1.1 || Java JIT compiler ip
JPython Python implementation jy
JTB Purdue Java tree builder jb
JTOpen IBM toolbox for Java jt
Kawa Scheme compiler kw
OVM Java virtual machine o4
Ozone ODBMS 0z
Rhino Javascript interpreter rh
SableCC Java to HTML translator sc
Satin Toolkit from Berkeley sa
Schroeder Audio editor sh
Soot Bytecode optimizer framework | so
Symjpack Symbolic math package sy
Tomcat Java servlet reference impl. tc
Toba Bytecode-to-C translator to
Voyager Distributed object system vy
Web Server Java Web Server wSs
Xerces XML parser xe
Zeus Java/XML data binding ze

Figure 8: The Purdue Benchmark Suite (PBS v1.0).

Figure 9 gives an overview of the sizes, in number of classes,
for each program or library that is part of the PBS. Ap-
pendix B provides additional data about the benchmarks.
Our largest benchmarks, over 2,000 classes each, are Forte,
JDK 1.2.2, JDK 1.3.*%, Ozone, Voyager and JTOpen. Ozone
and Forte are applications, while the others are libraries.
The number of package-scoped classes is indicated in light
gray for each application. This number is an upper bound
for the number of confined classes; public classes can not be
confined.

Bl rubic
Package-scoped

classes
4000 6000
I |

2000
I

o 4 HeSEN SSm

agdb bl de fo of gj hj ja jl j2 j3 j4 jy jb jt jp js kw04 oz th sc sa sh S0 Sy to tc vy ws xe ze
Figure 9: Benchmark characteristics: program sizes.

Figure 10 relates the proportion of package-scoped mem-
bers to package-scoped classes. Package-scoped members

are fields and methods that are declared to have either pri-
vate or default access. Most coding disciplines encourage the
use of package-scoped methods and package-scoped classes.
Not surprisingly, programs that were designed with reuse in
mind, such as libraries and frameworks, are better-written
than one-shot applications. For instance, the Aglet work-
bench and JTOpen, both libraries, exhibit high degrees of
encapsulation. Forte is noteworthy because even though it
is an application, it has over 50% package-scoped classes and
members. Compilers and optimizers written in an object-
oriented style, such as Bloat, Toba and Soot, have high num-
bers of package-scoped classes because of the many classes
used to represent syntactic elements or individual bytecode
instructions. At the other extreme, we have applications
like Jax and Kawa which have almost no package-scoped
classes. It is also worth noting the increase in encapsula-
tion between different versions of the JDK. The percentage
of package-scoped classes doubled between JDK1.1.8 and
JDK1.3.1, while the absolute number of classes tripled.

o agfo

sh is

04

sy

9% package-scoped members

% package-scoped classes

Figure 10: Benchmark characteristics: member en-
capsulation.

Coding style has an impact on confinement. While the re-
lation between package-scoped classes and confined types is
obvious, there is a more subtle connection between package-
scoped members and confined types: public and protected
methods can return potentially confined types. So it is rea-
sonable to expect that programs with low proportions of
package-scoped members will also have comparatively fewer
confined types.

6.2 Confined Types

Running Kacheck/J over the PBS yields 3,998 confined classes,

25% of the package-scoped classes are confined. Figure 11
shows confined classes in percentage of all classes. The
numbers are broken down per program with confined inner
classes in light gray. Raw numbers are given in Appendix B.

There are 6 programs where more than 40% of the package-
scoped types are confined (db, gf, jy, jb, jp, 04). It is inter-
esting to note that these programs have very little in com-
mon: they are a mix of libraries (gf), frameworks (o4) and
applications (db, jy, jb, jp). Their ratio of package-scoped
classes and their sizes vary widely. Indeed, manual inspec-
tion of the programs indicates that programming style is
essential to confinement. For example, in early versions of
OVM and Kacheck/J, unit tests were systematically stored

I confined
Inner classes

, i Al

ag db bl de fo of gj hj ja jL j2 |3 4 Jy jb jt jp js kw04 0z rh sC sa sh S0 sy to tc vy ws xe ze

60 80
)
|

9% of package-scoped classes

20

Figure 11: Confined types.

in a sub-package of the current package. Some methods
and classes were declared public only to allow testing of the
code. This in turn prevented many classes from being con-
fined. The large number of confined inner classes in OVM
(04) comes from the objects representing bytecode instruc-
tions nested in an instruction set class. For Jalapeno, the
high confinement ratio (153 classes out of 994) is partially
the result of the single package structure of the program.

04

40

% of confined classes
20
I

db 2
m 2

10
I
=

i of #ile woo oz sy bl ag
sc is

o o jakw sh

% of package-scoped classes

Figure 12: Confinement and package-scoping.

Quite predictably, programs with very few package-scoped
classes (e.g. ja, kw, sh, gf) end up with few confined classes.
Figure 12 shows the relationship between package-scoped
classes and confined classes. The variability in this figure
is quite high. For instance, libraries like Aglets (ag) which
have very high ratios of package-scoped members and classes
still perform quite poorly with only 13 classes being confined
out of 410. Why does this happen? There can be two ex-
planations: either the classes are really confined and our
analysis is simply not powerful enough to discover that this
is the case, or our original assumption that package-scoped
classes are naturally confined is wrong. The first case leads
to the question of how to improve our analysis. The second
case raises the question of whether we can refactor the code
to make them confined. To answer these questions, we start
with a discussion of confinement violations.

6.3 Confinement Violations

Confinement breaches are caused by a small number of widely
used programming idioms. For any violation Kacheck/J re-
turns a textual representation of the implication chain that
caused the violation. We give examples of the main causes
for classes not being confined.

6.3.1 Anonymity Violations

The top three anonymity violations (accounting for 133 non-
confined classes) in the entire JDK come from methods in
the AWT library which register the current object for noti-
fication. The method addImpl is representative:

protected void addImpl(Component comp,
Object constraints,
int index) {
synchronized (getTreeLock()) {
ContainerEvent e
= new ContainerEvent

(this,
ContainerEvent .COMPONENT_ADDED,
comp) ; ..}

6.3.2 Widening to superclass

Widening to a superclass is among the most frequent kind
of confinement breach. For instance, Kacheck/J signals the
following widening in the Aglet benchmark:

com/ibm/aglets/tahiti/SecurityPermissionEditor:
- illegal widening to:
- com/ibm/aglets/tahiti/PermissionEditor

PermissionEditor is an abstract superclass of the non-public
SecurityPermissionEditor. PermissionEditor is the part
of the interface that is exported outside the package.

6.3.3 Widening in Containers

A large number of violations comes from the use of container
classes in Java. Data structures such as vectors and hashta-
bles always take arguments of type Object, thus any use of
a container will entail widening to the most generic super
type. For instance, Kacheck/J reports that NativeLibrary,
an inner class of ClassLoader, is not confined.

java/lang/ClassLoader$NativeLibrary:
Illegal Widening to java/lang/Object

The error occurs because an instance of NativeLibrary is
stored in a vector:

systemNativeLibraries.addElement (1ib) ;

As such, this violation may indicate a security problem. The
internals of class loaders should really be encapsulated. In-
spection of the code reveals that the Vector in which the
object is stored is private.

private static Vector systemNativeLibraries
= new Vector();

After a little more checking it is obvious that the vector
does not escape from its defining class. But this requires
inspection of the source code and only remains true only
until the next patch is applied to the class. This example
shows the usefulness of tools such as Kacheck/J as they can
direct the attention of software engineers towards potential
security breaches or software defects.

6.3.4 Anonymous Inner Classes

This violation occurs frequently when inner classes are used
to implement call-backs. For example in Aglets the Mouse-
Listener class is public. Thus, the following code violates
confinement of the anonymous inner class.

MouseListener mlistener = new MouseAdapter() {
public void mouseEntered(MouseEvent e)

{...}y X

Similar situations occur with package-scoped classes that
implement public interfaces. They are package-scoped to
protect their members, but are exported outside of the pack-
age.

6.4 Confinement with Generics

In Java, vectors, hashtables and other containers are om-
nipresent. Every time an object is stored in a container, its
type is widened to Object leading to a widening violation
for the object’s class. If Java supported proper parametric
polymorphism, the large majority of the violations would
disappear (there can be a few heterogenous data structures,
but they seem be the exception).

In order to try to assess the impact of generics, without
rewriting all of the programs in the PBS, we modified Kach-
eck/J to ignore widening violations linked to containers.
This is done by ignoring all widenings to Object that oc-
cur in calls to methods of classes java.util. Figure 13
gives the percentages of confined classes without generic vi-
olations; we call these classes Generic-Confined (GC). The
light gray bars show the original number of confined classes.
The dark grey bars show the effect of adding genericity. The
number of confined types increases by 875 (over all programs
in the PBS).

I Generic-Confined

| Confined

g I I|I
el
nE B
- [|]

ag db bl de fo of gj hj ja jL j2 j3 4 Jy jb jt jp js kw04 0z th sC sa sh S0 sy to tc vy ws xe ze

40

9% of package-scoped classes
L

Figure 13: Generic-confined types.

These results should be viewed with caution because they
can represent an overestimate of the potential gains since we
do not guarantee that the container instances are package-
scoped.

6.5 Inferring Access Modifiers

The low number of confined classes in some of the bench-
marks is surprising. Looking at the access modifiers of
classes in these benchmarks, the reason is immediately clear.
For example, in Kawa, out of 443 classes, only 5 are package-
scoped. Similarly, many benchmarks contain methods and

or fields that are declared as public and thus prevent cer-
tain types from being confined. Are these access modes the
tightest possible, or are they sometimes randomly chosen?
To answer this question we infer the tightest access modes
during analysis and then use the inferred modes for confine-
ment checking. Figure 14 shows the result of this analysis.
Classes that become confined with modifier inference are
called Confinable (CA). With mode inference, the number
of confinable classes jumps to 13,064 for the entire PBS. Fur-
thermore if we combine confinable and generics, we obtain
14,591 Generic-Confinable classes.

2 4
8

I confinable
0 inner classes

60
I

% of inferred package-scoped classes
40
L

agdb bl de fo gf gj hj ja jl j2 j3 j4 jy jb jt jp js kw04 0z rh sc sa sh so Sy to tc vy ws xe ze

Figure 14: Confinable types.

Figure 15 relates the results of this new analysis to the orig-
inal number of package-scoped classes. It is quite telling to
see that Jax and Kawa, which were applications with the
lowest number of confined classes suddenly have about 40%
of their classes confinable.

o4

% of confinable classes
30
I
8
=
Q
<

20
I

20 40 60 80

% of infered package-scoped classes
Figure 15: Confinable types and package-scoping.

Of course, using this option on library code may yield an
overestimate of the potential gains as some classes that are
never used from within the library can be made package-
scoped, even though client code requires access to these
classes. Nevertheless, the results give a good indication of
the potential gains.

6.6 Hierarchical Packages

Our last experiment involves changing the semantics of the
Java package mechanism. Currently, Java has a flat pack-
age namespace; that is to say, even though package names
can be nested, there is no semantics in this nesting. This
creates a dilemma between data abstraction and modularity.
Good design practice suggests that applications be split into

packages according to functional characteristics of the code.
On the other hand, creating packages forces certain classes
to become public even if those classes should not be used
by clients of the program. From a confinement perspective,
we could say more packages result in fewer confined classes.
One extreme is Jalapeno, which is structured as a single
package. This diminishes the usefulness of the confinement
property.

To evaluate the impact of the package structure on confine-
ment, we modified Kacheck/J to use a hierarchical package
model. The general idea is that package-access would be
extended to neighbor packages. We introduce a definition of
scope that we call n-package-scoped. n-package-scoped lim-
its access to classes in packages that are less than n nodes in
the tree of package names away from the defining package.
For example, the class java.util.HashtableEntry would
be visible for java.lang.System for n = 2. The unnamed
package is defined to have distance oo from all other pack-
ages, making a n-package-scoped class a.A invisible for b.B
regardless of the choice of n.

Figure 16 shows the cumulative improvements yielded by
increasing the proximity threshold n. With n = 9 most
programs are treated as a single package and the benefits
are 3,691 additional confined classes. The largest increase
in confined classes comes from the Voyager benchmark with
813 new confined classes. The most important increment is
at n = 3 with 2,679 additional confined classes. This thresh-
old value allows classes to access package-scoped members
(and classes) of sibling classes.

9
8 4
2

n Confinable
400 600
I I

200
I

agdb bl de fo gf gj hj ja jl j2 j3 j4 jy jb jt jp js kw 04 0z rh sc sa sh so Sy to tc vy ws xe ze

Figure 16: Hierarchical packages.

6.7 Coding for Confinement

Our results clearly point to containers as one source of con-
finement violations. We considered using generic extensions
of Java (such as GJ) to increase confinement. Unfortunately,
the homogeneous translation strategies adopted by most of
these extensions imply that at the bytecode level, code writ-
ten with GJ is translated back to code that uses the stan-
dard Java container classes. Thus, it is not possible for
Kacheck/J to verify that classes stored in generic containers
remain confined. Heterogeneous translation strategies have
the drawback of causing code duplication. Fortunately, it
is possible to achieve the desired result with some coding
techniques. The basic idea is to use the adapter pattern to
wrap an unconfined object around each confined object that
must be stored in a container.

A confined implementation of a hashtable could provide an
interface Entry with two methods boolean equal(Entry e)
and int hashCode(). In the package that contains the con-
fined class C, the programmer would define an implementa-
tion RealEntry of Entry with a package-scoped constructor
that takes the key and value (where for example the value
has the type of the confined class) and package-scoped ac-
cessor methods. The Hashtable itself would only be able to
access the public methods defined in Entry.

The cost of this change would be the creation of the extra
Entry object that might not be required by other imple-
mentations of Hashtable. On the other hand, to access a
key-value pair, this implementation only requires one cast
(Entry to the RealEntry to access key and value), where
the default implementation requires a cast on key and value.
For other containers, the tradeoffs may be worse.

public interface Entry {
public boolean equal(Entry e);
public int hashCode(); }
public class Hashtable {
public void put(Entry e) {...}
public Entry get(Entry e) {...} 1}
class MyEntry implements Entry {
ConfinedKey key;
ConfinedValue val;
public boolean equal(Entry e) {...}
public int hashCode() {...} }

Figure 17: Example Hashtable interface.

6.8 Runtime Performance

All benchmarks were performed on a Pentium IIT 800 with
256 MB of RAM running Linux 2.2.19 with IBM JDK 1.3.
Except for the JDK tests (j1, j2, j3, j4) all running times in-
clude loading and analyzing required parts of the Sun JDK
1.3.1 libraries. The longest running time is that of JDK
1.3.1 which consists of 7,037 classes and is analyzed in 41
seconds. On average, Kacheck/J needs 7.5 ms per class. Fig-
ure 18 summarizes the cost of confinement checking, detailed
timings are in the appendix.

2010305 ja

729473

Opcodes

215799 hj

al
ag
98781 Ja iy 1o

Y kw
db of
b
sh®°

60857

34933 is

2685 3281 3862 5629 6723 9463 28259
Time

Figure 18: Running times in ms (logl0 scale).

7. RELATED WORK

Reference semantics permeate object-oriented programming
languages, and the issue of controlling aliasing has been the

public class Parent {
protected Parent nonAnonymousMethod() {
return this; // violation of Al
} o3
class NotConf extends Parent {
Parent violation() {
return nonAnonymousMethod() ;
// hidden widening
o3

Figure 19: Confinement violation C1.

focus of numerous papers in the recent years [12, 11, 8, 1,
15, 10, 13, 7]. We will discuss briefly the most relevant work.

Bokowski and Vitek [5] introduced the notion of confined
types. In their paper, confined types are explicitly declared.
The implication is that software must be designed and imple-
mented with confinement in mind. Their paper discussed an
implementation of a source-level confinement checker based
on Bokowski’s CoffeeStrainer [4]. Kacheck/J infers confine-
ment from existing Java code. The main difference between
that work and the present paper lies in the definition of
anonymity. The most interesting confinement breach is hid-
den widening of confined types to public types that can oc-
cur with inherited methods (rule C1).

Consider the example of Figure 19. Intra-procedural anal-
ysis would not reveal that (new NotConf()).violation()
will widen NotConfined to Parent. So, Bokowski and Vitek
chose to rely on explicit anonymity declarations and added
an additional anonymity constraint:

Ad Anonymity declarations must be preserved when
overriding methods.

Thus, once a method is declared anonymous, all overriding
definitions of that method have to abide by the constraints.
When inferring anonymity, the rule .44 is not necessary. The
goal of A4 was to ensure that anonymity of a method is
independent from the result of method lookup. If anonymity
of methods is inferred, dynamic binding can be taken into
account.

public class A { // A is not confined
Object m() {
// m() is anonymous in relation to C
// but not in relation to B
return null; }
public Object n() {
return new C().m(); } }
class B extends A { // B is not confined
Object m() { // m() is not anonymous
return this; } ¥
class C extends A{} // C is confined

Figure 20: Anonymity need not be preserved in all
subtypes.

Figure 20 shows a confined class C that extends a class A.
The method A.m() meets all anonymity criteria except for
rule A4. The violation of that rule occurs in class B, be-
cause B extends A and redefines m() with an implementation
that returns this. The key point to notice here is that the
anonymity violation cannot occur if the dynamic type of
this is A. We say the method A.m() is anonymous in rela-
tion to C, but not in relation to B.

Another difference between the old and the new anonymity
rules is that we allow widening of the this reference to other
confined types. The old rules forbid returning this or using
this as an argument completely. The new rules allow such
cases, if the type of the return value or the argument is again
a confined type. An example is shown in figure 21, which is
a minimal variation of figure 19. In this case the new rules
would allow both classes to be confined.

class Parent {
protected Parent anonymousMethod() {
return this; // not a violation of Al
} o3
class Confined extends Parent {
Parent noViolation() {
return anonymousMethod();
// widening, but no escape

T}

Figure 21: Confinement!

In [15], flexible alias protection is presented as a means to
control potential aliasing amongst components of an aggre-
gate object (or owner). Aliasing-mode declarations specify
constraints on the sharing of references. The mode rep pro-
tects representation objects from exposure. In essence, rep
objects belong to a single owner object and the model guar-
antees that all paths that lead to a representation object go
through that object’s owner. The mode arg marks argu-
ment objects which do not belong to the current owner, and
therefore may be aliased from the outside. Argument ob-
jects can have different roles, and the model guarantees that
an owner cannot introduce aliasing between roles. Clarke,
Potter, and Noble [7] have formalized representation con-
tainment by means of ownership types.

Hogg’s Islands [11] and Almeida’s Balloons [1] have similar
aims. An Island or Balloon is an owner object that pro-
tects its internal representation from aliasing. The main
difference from [15] is that both proposals strive for full en-
capsulation, that is, all objects reachable from an owner are
protected from aliasing. This is equivalent to declaring ev-
erything inside an Island or Balloon as rep. This is restric-
tive, since it prevents many common programming styles;
it is not possible to mix protected and unprotected objects
as done with flexible alias protection and confined types.
Hogg’s proposal extends Smalltalk-80 with sharing anno-
tations but it has neither been implemented nor formally
validated. Almeida did present an abstract interpretation
algorithm to decide if a class meets his balloon invariants,
but it was also not implemented so far. Balloon types are
similar to confined types in that they only require an anal-
ysis of the code of the balloon type and not of the whole
program.

Boyland, Noble and Retert [6] introduced capabilities as
a uniform system to describe restrictions imposed on ref-
erences. Their system can model many of the different
modifiers used to address the aliasing problem, such as im-
mutable, unique, readonly or borrowed. They also model a
notion of anonymous references, which is different from the
one used in this paper. Their system of access rights cannot
be used to model confined types, mainly because it lacks
support for modeling package-scoped access.

Kent and Maung [13] proposed an informal extension of
the Eiffel programming language with ownership annota-
tions that are tracked and monitored at run-time. In the
field of static program analysis, a number of techniques have
been developed. Static escape analyses such as the ones pro-
posed by Blanchet [2] and others [3, 9] provide much more
precise results than our technique, but come at a higher
analysis cost. They often require whole program analyses,
and are sensitive to small changes in the source code. More
than anything, their results can be hard to interpret for a
programmer; knowing that an object escapes may not be
enough to have an idea how to re-engineer the code to avoid
such an occurrence.

8. CONCLUSION

We have presented the Kacheck/J tool for inferring confine-
ment in Java programs and used the tool to analyze over
46,000 classes. The results of the analysis are surprisingly
high, about 25% of all package-scoped classes and interfaces
are confined. Furthermore, we discovered that many of the
confinement violations are caused by the use of container
classes and thus might be solved by extending Java with
genericity, this would increase confinement to 30%. The
biggest surprise was the number of violations due to badly
chosen access modifiers. After inferring tighter access mod-
ifiers, 45% of all package-scoped classes were confined. We
expect that these numbers will rise even further once pro-
grammers start to write code with confinement in mind..

Confinement is an important property. It bounds aliasing of
encapsulated objects to the defining package of their class,
and helps in re-engineering object-oriented software by ex-
posing potential software defects, or at least making, often
subtle, dependencies visible. We have demonstrated that
inferring confined types is fast and scalable. Kacheck/J is
available from

http://gecko.cs.purdue.edu/kacheck/

Acknowledgments

This work is supported by grants from DAAD, Lockheed-
Martin, CERIAS, and NSF (CCR-9734265). The authors
wish to thank Ben Titzer and Theodore Witkamp for devel-
oping the modifier inference package, and Mario Siidholt as
well as the members of IFIP WG2.4 for helpful comments.
Some of the programs from the Purdue Benchmark Suite
originate from the Ashes suite, we wish to thank the Sable
research group at McGill for making these available.

9.
(1]

(2]

[9]

(10]

(11]

(12]

13]

(14]

(15]

[16]

REFERENCES

Paulo Sérgio Almeida. Balloon Types: Controlling sharing
of state in data types. In ECOOP Proceedings, June 1997.

Bruno Blanchet. Escape analysis for object oriented
languages. application to Java. In OOPSLA’99 ACM
Conference on Object-Oriented Systems, Languages and
Applications, volume 34(10) of ACM SIGPLAN Notices,
pages 20-34, Denver, CO, October 1999. ACM Press.

Jeff Bogda and Urs Hélzle. Removing unnecessary
synchronization in Java. In OOPSLA’99 ACM Conference
on Object-Oriented Systems, Languages and Applications,
volume 34(10) of ACM SIGPLAN Notices, pages 3546,
Denver, CO, October 1999. ACM Press.

Boris Bokowski. CoffeeStrainer: Statically-checked
constraints on the definition and use of types in Java. In
Proceedings of ESEC/FSE’99, Toulouse, France, September
1999.

Boris Bokowski and Jan Vitek. Confined Types. In
Proceedings 14th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’99), Denver, Colorado, USA,
November 1999.

John Boyland, James Noble, and William Retert.
Capabilities for aliasing: A generalisation of uniqueness and
read-only. In ECOOP’01 — Object-Oriented Programming,
15th European Conference, number to appear in Lecture
Notes in Computer Science, Berlin, Heidelberg, New York,
2001. Springer.

David G. Clarke, John M. Potter, and James Noble.
Ownership types for flexible alias protection. In OOPSLA
798 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 48—64. ACM, October 1998.

D. Detlefs, K. Rustan M. Leino, and G. Nelson. Wrestling
with rep exposure. Technical report, Digital Equipment
Corporation Systems Research Center, 1996.

Alain Deutsch. Semantic models and abstract interpretation
techniques for inductive data structures and pointers. In
Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation,
pages 226229, La Jolla, California, June 21-23, 1995.

Daniela Genius, Martin Trapp, and Wolf Zimmermann. An
approach to improve locality using Sandwich Types. In
Proceedings of the 2nd Types in Compilation workshop,
volume LNCS 1473, Kyoto, Japan, March 1998. Springer
Verlag.

John Hogg. Islands: Aliasing protection in object-oriented
languages. In OOPSLA Proceedings, November 1991.

John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux,
and Richard Holt. The Geneva convention on the treatment
of object aliasing. OOPS Messenger, 3(2), April 1992.

S.J.H. Kent and I. Maung. Encapsulation and Aggregation.
In Proceedings of TOOLS PACIFIC 95 (TOOLS 18).
Prentice Hall, 1995.

Sun Microsystems. Support for extensions and applications
in the version 1.2 of the Java platform. 2000.

James Noble, John Potter, and Jan Vitek. Flexible alias
protection. In Proceedings of ECOOP’98, volume 1543 of
LNCS, Brussels, Belgium, July 20 - 24 1998.
Springer-Verlag.

Ayal Zaks, Vitaly Feldman, and Nava Aizikowitz. Sealed
calls in Java packages. In OOPSLA ’2000 Conference
Proceedings, ACM SIGPLAN Notices. ACM, October 2000.

APPENDIX
A. CONSTRAINT GENERATION

In this section we present which opcodes generate which
constraints for confined types.

InvokeStatic
e If this occurs in the argument list, record widening
of this to the type T of the matching argument in
the current method m. This generates the constraint:
C = A where C is not-conf(T") and A is not-anon(m).

e For each argument a of inferred type 1" that is an ob-
ject, record the corresponding declared type 17" of the
parameter. This generates constraints C’ = C where
(" is not-conf(T") and C is not-conf(T).

Areturn, Putfield, Putstatic, Aastore
e If the variable that is returned or stored is this, record
widening of this to the declared type T" (the return
type, type of the field or the type of the array). This
generates a constraint A = C' where C is not-conf(T")
and A is not-anon(m) with m being the current method.

e If the variable that is used is an object but not this
and has inferred type T, record widening to the corre-
sponding declared type T”. This generates constraints
C = C' where C is not-conf(T") and C is not-conf(T).

Invokelnterface, InvokeVirtual, InvokeSpecial
e If this occurs in the argument list, record widening
of this to the type T of the matching argument in
the current method m. This generates the constraint:

C = A where C is not-conf(T") and A is not-anon(m).

e If the call is of the form this.n(), calling a method n
from method m on this, record method invocation dis-
tinguishing between invokevirtual, invokeinterface and
invokespecial. This generates the constraint A = A’
where A is not-anon(n) and A’ is not-anon(m).

e If the call is not on this but of the form a.n(), record
an invocation on type 1" where T is the inferred type
of a. This generates the constraint A = C where A is
not-anon(n) and C is not-conf(T).

e For each argument a of inferred type 1" that is an ob-
ject, record the corresponding declared type T” of the
parameter. This generates constraints C = C’ where
C is not-conf(T") and C is not-conf(T).

Athrow

e [f the variable that is thrown is this, record widening of
this to Throwable. This generates a constraint C = A
where C' is not-conf(Throwable) and A is not-anon(m)
with m being the current method. Because the con-
dition not-conf(Throwable) is always true, a primitive
constraint A can be used, too.

e If the thrown variable is an object but not this and has
inferred type T, record widening to Throwable. This
generates a constraint C' = C’ where C is again always
true (not-conf(Throwable)) and C’ is not-conf(T).

Call Propagation
A call to method m on a type T' must generate additional
constraints for all subtypes S; of T that are widened to T'.

B. BENCHMARK DATA

Classes Confinement Time
Benchmarlk All | Public | Inner | D85 | OPeodes | o) go | oA | cca | (ms)
Aglets 410 193 133 18 107846 13 15 60 66 4979
AlgebraDB 161 130 9 6 51218 20 24 81 97 3009
Bloat 282 150 127 17 84212 10 17 29 39 3623
Denim 949 684 271 63 288140 65 71 187 211 9463
Forte 6535 3053 3769 192 1123362 306 437 1149 1346 37565
GFC 153 143 8 15 58003 5 5 58 58 3284
GJ 338 202 189 12 105323 27 27 51 52 4245
HyperJ 1007 862 70 26 211269 32 38 193 212 6711
JAX 255 255 0 9 97932 0 0 99 104 3790
JDK 1.1.8 1704 1423 29 80 917132 71 96 712 744 13103
JDK 1.2.2 4338 2655 1365 130 958619 527 603 1062 1173 23463
JDK 1.3.0 5438 3326 1780 176 1180406 581 685 1297 1476 29336
JDK 1.3.1 7037 4569 2043 213 2010305 756 891 2126 2344 41304
JPython 214 134 35 7 103094 40 45 90 107 4107
JTB 158 150 1 6 48900 4 4 8 8 3009
JTOpen 3022 1439 557 52 1048704 438 467 1049 1113 23950
Jalapeno 1.1 994 730 132 29 255436 155 159 543 549 6770
JavaSeal 75 56 19 9 34933 1 2 14 17 2685
Kawa 443 438 100 6 68733 1 1 177 177 3910
OVM 763 391 539 26 89975 313 313 427 428 6072
Ozone 2442 1705 490 112 447984 93 221 754 920 13245
Rhino 95 67 1 5 51752 11 15 28 33 3201
SableCC 342 290 47 8 45621 3 5 24 28 3470
Satin 938 559 455 48 194985 48 52 206 218 7955
Schroeder 108 103 7 2 41422 0 1 6 7 3270
Soot 721 302 79 6 65137 45 47 90 92 5622
Symjpack 194 125 0 11 73465 8 10 53 89 3559
Toba 762 327 79 11 98993 53 55 102 104 6020
Tomcat 1271 916 221 93 286368 65 109 377 448 8918
Voyager 5667 4430 1305 294 996077 208 295 1268 1442 34082
Web Server 1024 787 52 60 370664 51 72 255 301 9308
Xerces 622 508 125 35 233919 22 47 221 279 6038
Zeus 604 517 74 39 180437 20 38 237 278 5640
Total [46165 | 30277 | 13555 | 1771 | 10917301 | 3998 | 4873 | 13064 | 14591 [347567

Figure 22: Statistics for the benchmarks. C is Confined, GC is Generic-Confined, CA is Confinable and GCA
is Genrice-Confinable.

	How to Solve Set Constraints
	Optimal register allocation for SSA-form programsin polynomial time
	Register Allocation via Coloringof Chordal Graphs
	Register Allocation after Classical SSAElimination is NP-complete
	A Verifiable SSA Program Representation for AggressiveCompiler Optimization
	Object-Oriented Type Inference
	Optimization ofObject-Oriented ProgramsUsing Static Class Hierarchy Analysis
	Efficient lmpl?met:tation of the Smalltalk-80 S ystem
	Fast Static Analysis of C++ Virtual Function Calls
	Scalable PropagationBasedCall Graph ConstructionAlgorithms
	Ultra-fast Aliasin9 Analysis using CLA:A Million Lines of C Code in a Second
	Cloning-Based Context-Sensitive Pointer Alias AnalysisUsing Binary Decision Diagrams
	Type-Safe Method Inlining
	Linear Time Control Flow Analysis
	A Type System Equivalent to Flow Analysis�
	Assertion Checking over Combined Abstractionof Linear Arithmetic and UninterpretedFunctions
	Undecidability of Context-Sensitive Data-Dependence Analysis
	The Undecidability of A asing
	Generalized Theory of Bit Vector DataFlow Analysis
	Stack Size Analysis forInterrupt-driven Programs
	A Proof of the Schroder-Bernstein Theorem
	Closure Analysis in Constraint Form
	Access Rights Analysis for Java
	Static Analyses for Eliminating UnnecessarySynchronization from Java Programs
	E�ective Synchronization Removal for Java
	Encapsulating Objects with Confined Types

