
CSci 135 Software Analysis and Design I

Biology Background

Stewart Weiss

Biology Background

Introduction

The application of computer science to other disciplines seems to be increasing at an exponential rate.
Each day that passes sees new ways to apply the ideas of computer science to problems in all walks of life,
and especially the �hard� sciences. The �elds of computational biology and bioinformatics are of particular
interest here at Hunter because we have a bioinformatics/quantitative biology concentration in computer
science. There are many examples of simple problems in these areas in which to demonstrate programming
concepts, but to do so, the student needs to know a bit about the underlying biology. The purpose of these
notes is to provide that �bit of knowledge.� They are written for a prospective computer scientist rather
than a biologist.

Background

A DNA string , also called a DNA strand , is a �nite sequence consisting of the four letters A, C, G,
and T in any order1. The four letters stand for the four nucleotides: adenine , cytosine , guanine , and
thymine . Nucleotides, which are the molecular units from which DNA and RNA are composed, are also
called bases. Each nucleotide has a complement among the four: A and T are complements, and C and G

are complements. Complements are chemically-related in that when they are close to each other, they form
hydrogen bonds between them.

A special enzyme called RNA polymerase uses the information in DNA to create RNA. The process of
creating RNA from DNA is called transcription . A RNA string or RNA strand is a �nite sequence
consisting of the four lowercase letters A, C, G, and U. The A, C, and G have the same names as they do in
DNA, but the U represents uracil . When DNA is transcribed to RNA by RNA polymerase, each thymine
base is converted to uracil. Hence RNA strings have U's wherever DNA has T's.

RNA in turn serves as a template for the construction of proteins, which are sequences of amino acids.
Proteins are synthesized within the ribosomes of living cells by a process called translation . In translation,
the RNA string is viewed as a sequence of three-letter groups called codons. Each codon codes for a
particular amino acid. For example, GUU codes for valine, and UCA codes for cysteine. Let us count how
many possible three-letter sequences are there in which each letter can be A, C, G, or T. There are four choices
for the �rst letter, four independent choices for the second letter, and four for the third, so there are 43 = 64
di�erent codons. On the other hand, there are only 20 di�erent amino acids. Some amino acids are coded
for by multiple codons. For example, UCA, UCC, UCG, and UCU all code for cysteine. Some codons do not code
for any amino acids; they are stop codes. There are three stop codons: UAA, UAG, and UGA.

Stop codes are used during protein synthesis to terminate reading of the RNA string. Not all of a RNA
string is translated into protein; there are large regions that act like gaps. As the RNA is read, when a gap
is reached, it is skipped over until a special start codon is found that tells the ribosome to begin creating
amino acids again. When it sees a stop codon it stops and keeps reading until it �nds another start codon,
and so on, until the entire strand is read. The process is just like the way comments in shell scripts are
treated by the shell. The # tells the shell to stop parsing the command, and the next newline character tells
it to start again. The # is a stop code and the newline is a start code. As an example, the RNA strand

AUGGUUUAUGGUCUCUGA

1Some sources use lowercase while others use uppercase. Here they will be used interchangeably

1

CSci 135 Software Analysis and Design I

Biology Background

Stewart Weiss

is read as the following sequence of codons

AUG GUU UAU GGU CUC UGA

Consulting a table of these mappings, we see that AUG is a start codon that codes for methionine (Met), GUU,
for valine (Val), UAU, for tyrosine (Tyr), GGU, for glycine (Gly), CUC, for leucine (Leu), and UGA is a stop
codon. Therefore, the sequence Met-Val-Tyr-Gly-Leu is created from this RNA fragment.

Amino acids have long names like cysteine but they also have three-letter names such as Cys, for cysteine,
and one-letter uppercase names, such as C for cysteine. It is not always true that the one-letter name is the
�rst letter of the amino acid's long name. The above sequence would be written MVYGL using the one-letter
names.

Direction and Shape

In its most common form, DNA is actually a double helix consisting of two strands that wrap around each
other. Each DNA strand has direction . Direction is usually indicated by putting a 5' at one end and a 3'
at the other. The 5' and 3' refer to the names of the carbon atoms to which these ends attach. The carbons
are part of a ring structure with multiple carbon atoms, so they get names for the purpose of distinguishing
them from each other. For example,

5'-GTATCC-3'

is a fragment of DNA that runs from the 5' to the 3' position. The 5' end is called the upstream end, and
the 3' end is the downstream end. The two strands of nucleotides are in reverse directions of each other.
In other words, if you could unwind the helix so that the two strands were lying on a �at surface parallel
to each other, in one strand the 5' end would be to the left, and in the other, it would be to the right. The
two strands are chemically-related because the bases that would be across from each other on the table are
complements of each other. For example, the two strands below

5'-G T A T C C A A T G C C-3'

| | | | | | | | | | | |

3'-C A T A G G T T A C G G-5'

could be a fragment of the unwound double helix. The vertical lines connect complements in the forward
and reverse strands to each other. Each C in one is matched by a G in the other, and each A is matched by
a T in the other.

Characteristic Properties of DNA

Scientists use various heuristic rules in their study of DNA. Among the many metrics that they use are the
following:

• A poly-T sequence of length N is a sequence of N or more consecutive T nucleotides.

• The GC content of a DNA strand is the ratio of the total number of C and G nucleotides to the length
of the strand. For example, the sequence 'atcgtttgga' is of length 10 and has a total of 4 C's and G's,
so its GC content is 0.4.

• A CpG island is a C followed by a G in a DNA strand. (The p in between the C and G represents the
fact that a phosphodiester bond connects them.)

2

CSci 135 Software Analysis and Design I

Biology Background

Stewart Weiss

Restriction Enzymes

Bacteria produce special enzymes called restriction enzymes that can cut DNA at speci�ed sites, called
cleavage sites. Some theorize that these enzymes evolved to provide a defense mechanism against invading
viruses. Inside a bacterial host, the restriction enzymes selectively cut up foreign DNA in a process called
restriction ; the host DNA is protected from the restriction enzyme's activity.

The cleavage site is a position between two nucleotides in the DNA. The enzyme �nds its site by a type
of biological pattern-matching. These enzymes usually cut both strands of the DNA, but for simplicity we
describe how the cut works on a single strand. The pattern speci�es where in the DNA the enzyme will
match. For example, the enzyme EcoRI has a recognition site de�ned by

5'-G'AATTC-3'

This means that it will search for a substring of the DNA consisting of the bases GAATTC in the 5' to 3'
direction, and cut the DNA between the G and the �rst A. The apostrophe ' indicates the cleavage site. So,
if the DNA string is

ATGAAAGGGTTTCCCTTTGAATTCCCCATGGTATTGTTGCCGGAATTCTTTCCGGCCCCC

it will be cut into the three pieces

ATGAAAGGGTTTCCCTTTG AATTCCCCATGGTATTGTTGCCGG AATTCTTTCCGGCCCCC

by EcoRI. The restriction enzyme NotI is de�ned by

5'-GC'GGCCGC-3'

which indicates that it will �nd all occurrences of the string GCGGCCGC in the 5' to 3' direction and cut the
DNA between the �rst C and the second G.

You may have noticed that if you form the complement of GAATTC, you get CTTAAG, which is the string spelled
backwards. Similarly, the complement of GCGGCCGC is CGCCGGCG, which is also the string spelled backwards.
Certain types of restriction enzymes have this complement palindromic property.

There are four di�erent types of restriction enzymes, di�ering in chemical ways and in the nature of their
target sequence and the position of their DNA cleavage site relative to the target sequence. Some restriction
enzymes have a cleavage site outside of the recognition site. AceIII is de�ned by

CAGCTCNNNNNNN'

The N matches any of A, C, G, or T. Therefore, this enzyme cuts the DNA between the 7th and 8th nucleotides
after its recognition site. For example

CAGCTCAAATGCCAGGGGGGG

will be cut between the A and the G:

CAGCTCAAATGCCA GGGGGGG

Some types of enzymes cut the DNA very far away from the recognition site, on the order of hundreds
of nucleotides away. Some of these restriction enzymes will have more than one recognition sequence, and
inversely, there are di�erent enzymes that have the same sequence and cut in the same place.

A restriction enzyme can be described in a format known as the Staden format. The form is

3

CSci 135 Software Analysis and Design I

Biology Background

Stewart Weiss

enzyme_acronym/recognition_sequence/recognition_sequence/.../recognition_sequence//

Most enzymes have a single recognition sequence. Some have two. The cut point will be denoted by an
apostrophe in the recognition sequence. Some enzymes from an actual Staden enzyme �le are:

AatI/AGG'CCT//

AatII/GACGT'C//

AbsI/CC'TCGAGG//

AccI/GT'MKAC//

AccII/CG'CG//

AccIII/T'CCGGA//

Acc16I/TGC'GCA//

BbvI/GCAGCNNNNNNNN'/'NNNNNNNNNNNNGCTGC//

BglI/GCCNNNN'NGGC//

BglII/A'GATCT//

BinI/GGATCNNNN'/'NNNNNGATCC//

The �rst line is the enzyme named AatI and its cut point is between the second G and the �rst C. You will
notice that in the fourth line, there are letters other than A, C, G, and T in the recognition sequences. These
letters are part of a standard set of abbreviations de�ned as follows:

R = G or A

Y = C or T

M = A or C

K = G or T

S = G or C

W = A or T

B = not A (C or G or T)

D = not C (A or G or T)

H = not G (A or C or T)

V = not T (A or C or G)

N = A or C or G or T

The letters act like simple patterns for matching DNA. For example, GTMKAC matches GTAGAC, GTCGAC,
GTATAC, and GTCTAC since the M matches an A or a C and the K matches a G or a T. There are therefore four
possible combinations that the two together can match. The enzyme BbvI has two recognition sites, which
are reverse palindromic.

4

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

Creating Functions in C/C++

Motivation

There are many reasons to create functions for your programs.

• A fragment of code that appears in your program in multiple places can be placed into a function
de�nition and replaced by a function call instead, resulting in a smaller, more maintainable program.
It is smaller because there are fewer lines of code. It is more maintainable because if you decide to
change the code, you only have to do it in one place, instead of searching through the entire program
for all occurrences of that code fragment. This makes it less error-prone, since it is possible to miss
one of the fragments if they are dispersed throughout the program.

• By creating a function and putting a code fragment into it, the program becomes easier to read and
more modular. For example, if you have code that displays a menu on the screen and gets the user's
entered choice, you could create a function named GetUserSelection() that returns the user's choice,
making it obvious to the reader what the code does. The program becomes more modular because it
now contains another separately maintainable function.

• Functions can be reused more easily in other programs. You may �nd that you need the same code
fragment in many programs. By creating a function that encapsulates it, you can put that code into
other programs without having to rename variables and reorganize the program code.

There is one downside to creating a function: the function call overhead . I will discuss this later.

How do you create a function?

To de�ne a function in your C or C++ program, you write a function de�nition , which has the form

result_type function_name (parameter_list)

{ function_body }

where

• result_type is any type such as int, double, char, or string, but may also be the word void.

If the result_type is void, it means the function does not �return� anything.

• function_name is any valid C++ identi�er

• parameter_list is a list of the form typespec parameter, typespec parameter,... typespec

parameter

where typespec is a speci�cation of a type (such as int or char but might be a bit more complex
than this) and parameter is in the simplest case just a C/C++ identi�er. (In C++ there are things
that can appear here that cannot appear in a C function.)

• function_body is just like the body of a main program. In fact main() is just a special function. It
consists of declarations and statements.

The �rst line, which contains the result type, the function name, and the parameter list is called the function
header.

1

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

Examples

double eva l (double a , double b , double c , double x) // The header
{ // The body

// r e tu rn s va lue o f polynomial a∗x^2 + b∗x + c
return a∗x∗x + b∗x + c ;

}

double volumeOfSphere (double rad iu s) // The header
{

// r e tu rn s the volume o f a sphere with g iven rad iu s
re turn 4∗3.141592∗ rad iu s /3 ;

}

void insertNewLines (i n t N) // The header
{

// i n s e r t N newl ines in to cout
f o r (i n t i = 0 ; i < N; i++)
std : : cout << std : : endl ;

}

The �rst two examples are of functions that return something. This means that when they �nish running,
the value of the expression in the return statement is the value that they �return�. The third example has a
void return type. This means it does not return a value. It runs and does something, and it can even have
return statements, but they cannot return a value.

Where do you put function de�nitions?

In the beginning, you should put all function de�nitions after all #include and using directives but before
the main() program. Once your understanding is solidi�ed, you will put them after main() but will put a
function prototype before main().

How do you use functions that you de�ne?

You use them the same way that you use library functions, by putting calls to them in the code. The program
that contains the call is the caller , and we say that it calls the function. For example the following partly
incomplete program calls the �rst function.

i n t main ()
{

double A, B, C, x ;
// get va lue s A, B, C, and x here
cout << "The value o f the polynomial i s " << eva l (A, B, C, x) << endl ;

}

In the function call, you must make sure to put the arguments in the correct order. Parameters are positional,
which means that it is their position in the list that matters, not their names. In the above call, the value of
A is copied into the parameter a, B into b, C into c, and x into x, and then the function executes. When it
returns, the value that it returns is used in the caller wherever the call was written. For example, if A = 1,
B = 8, C = 16, and x = -4, then eval(A,B,C,x) returns 0, and it would be the same e�ect as if the program
had the line

cout <�< "The value of the polynomial is " <�< 0 <�< endl;

If you change the order of the arguments, the result will be di�erent. If you call eval(C,B,A,x) you will get
a di�erent answer.

2

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

Some Guidelines About Writing Functions

• Functions that return values should not have side e�ects. A side e�ect is a change to the values of
variables in the program other than those that are declared within the function or in its parameter list.

• Functions should do one thing only.

• Functions should do one thing completely.

• Functions should have meaningful names.

• Functions should be grouped together in the program �le.

• Functions should always have comments that summarize its purpose, pre-conditions and post-conditions,
and what it returns.

• If a function is more than 50 to 100 lines, it is probably too long and should be broken into smaller
functions.

• Never write a function that is essentially a main program just to call it from main().

Examples of Functions Not to Write

double workerPay(double salary)

{

cout <�< �The pay is $�;

return salary;

}

This just prints something that could be printed by the caller and it returns what it was passed. It has a
side e�ect (it changes cout) and it returns a value too.

void mysqrt(double num)

{

cout <�< �The square root of � <�< num <�< � is � <�< sqrt(num) <�< endl;

}

This just calls a library function and prints some stu�. No need to do this.

Can functions call other functions?

They certainly can, and often do. In fact main() is a function and main() calls the functions you write as
well as the ones in the libraries. But to give you a better idea, the following is perfectly legitimate, albeit
silly, code.

void func1 (i n t n)
{

cout << " In func1 : " << n << "\n " ;
}

void func2 (i n t m)
{

cout << " In func2 : " << m << "\n " ;
func1 (m) ;

}

3

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

void func3 (i n t k)
{

cout << " In func3 : " << k << "\n " ;
func2 (k) ;

}

void func4 (i n t m, i n t n)
{

func3 (m) ;
func2 (n) ;

}

Can a function call itself?

Yes, but for now we will avoid this topic. It is perilous ground and we will visit it after you can walk, run,
and jump on solid ground.

Scope

The variables (and other identi�ers) in a program have various properties. You know about some of them
already. For example, variables have associated type , and at any given instant of time, they have a value .
They also have storage requirements, i.e., do they need two bytes, four bytes, or something larger?
Another property associated with variables and program identi�ers in general is their scope .

The scope of a name is the part of the program in which the name can be used. You already know one
scope rule : if you use a for-loop such as this:

for (int i = 0; i < 10; i++) {

// do something here

}

you should know that the name i extends only to the end of the for-loop statement itself, i.e., to everything
within the body of the loop, and no further. You should also know that this is C++ and not C. The C
standard does not let you declare the index within the loop, although some compilers allow it.)

For now, you should know about two types of scope.

Block Scope: A block is the code between a pair of matching curly braces. An identi�er declared inside
a block has block scope. It is visible from the point at which it is declared until the innermost right
curly brace containing the declaration. Function parameters have block scope � they are visible only
within the body of the function.

File Scope: An identi�er declared outside of any function including main is visible from the point of the
declaration to the end of the �le in which it was declared.

Local Variables

Functions can have variable declarations. The variables declared within functions have block scope � they
are visible until the end of the innermost right curly brace, which is in the simplest case, the function body.
For example, in each of the following functions

4

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

long arithmeticsum (i n t num)
{

long sum = 0 ;
i n t j ;

f o r (j = 1 ; j <= num; j++)
sum = sum + j ;

re turn sum ;
}

long sumsquares (i n t num)
{

long sum = 0 ;
i n t j ;

f o r (j = 1 ; j <= num; j++)
sum = sum + j ∗ j ;

r e turn sum ;
}

both sum and j have scope that extends to the end of the function block. They are called local variables

and are said to have local scope. Each function has a variable named sum (and a variable named j). They
are di�erent variables that just happen to have the same name. The variables declared in your main program
have local scope too. They are visible only from the point at which they are de�ned until the end of the
curly brace that ends the main program block.

Global Variables

Variables declared outside of any function (which therefore have �le scope) are called global variables. They
are visible to all functions in the �le from the point of their declarations forward. There are many reasons
not to use global variables in programs, because it makes program harder to read, understand, debug, and
maintain. The one exception to this is constant global variables. It is acceptable to de�ne global constants in
a program, if these de�nitions are placed at the very top of the �le after the #include and using directives.
This is because it makes them easy to see and makes changing them easier.

Example

// var i ous cons tant s used in the program
const double PI = 3 .14159236 ;
const i n t MAXSIZE = 1000 ;
const s t r i n g MESSAGE = "The f i l e could not be opened . \ n " ;

i n t main ()
{

// s t u f f here
re turn 0 ;

}

Function Prototypes (Declarations): Moving Towards Data Abstraction

If a program has several functions in it and their de�nitions precede the main program, the main program
ends up at the bottom of the �le. This is inconvenient, because when you read a program you usually want
to �rst read the main program to get a general sense of how it works. The functions in it are often solving

5

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

small problems while the main program provides structure. The C and C++ languages provide the means
to declare the functions in the beginning and put the de�nitions of them elsewhere.

What do we mean by declaring and de�ning functions, and how are they di�erent?

A function de�nition is what you just learned how to write. It is the function's header together with its
block. The function header by itself does not say what the function does, but it provides enough information
to the compiler so that it can check whether the calls to the function are valid. The function header, when
it is terminated by a semicolon, is called a function declaration or function prototype.

How does having the function prototype help?

This is the nice part. We put all of the function prototypes at the beginning of the �le, before main(), and
the de�nitions after main(). The comments that describe what the function does stay with the prototype
at the beginning of the �le. They do not need to be repeated with the function de�nitions. The comments
and the prototype ar all that a programmer needs to �gure out how to call the function and what it does.
The actual function body should be thought of as a black box, a hidden piece of code that does what the
comments say it does, but which the programmer does not need to see to use the function. This is the
essence of procedural abstraction, an important principle of good software engineering practice, and the
underpinning of object-oriented programming.

Example

#inc lude <s t r i ng>
#inc lude <iostream>
us ing namespace std ;

/∗∗∗/
/∗ Function Prototypes ∗/
/∗∗∗/

/∗ eva l (a , b , c , x) r e tu rn s va lue o f polynomial a∗x^2 + b∗x + c ∗/
double eva l (double a , double b , double c , double x) ;

/∗ volumeOfSphere (r) r e tu rn s the volume o f a sphere with rad iu s r ∗/
double volumeOfSphere (double rad iu s) ;

/∗ insertNewLines (N) i n s e r t s N newl ine cha ra c t e r s i n to cout ∗/
void insertNewLines (i n t N) ;

/∗∗∗/
/∗ Main Program ∗/
/∗∗∗/

i n t main ()
{

// tbe main program ' s body i s here
}

/∗∗∗/
/∗ Function De f i n i t i o n ∗/

6

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

/∗∗∗/

double eva l (double a , double b , double c , double x)
{

re turn a∗x∗x + b∗x + c ;
}

double volumeOfSphere (double rad iu s)
{

re turn 4∗3.141592∗ rad iu s /3 ;
}

void insertNewLines (i n t N)
{

f o r (i n t i = 0 ; i < N; i++)
std : : cout << std : : endl ;

}

The next step after this is to put the function declarations into one �le, called a header �le , and the function
de�nitions into a second �le, called the implementation �le . This will be discussed in a future lesson.

Call-by-Reference Parameters

What if we want to write a function that actually changes the value of its parameters? For example, suppose
we want a function that can be called like this:

swap(x,y)

that will swap the values of arguments x and y. In other words if x = 10 and y = 20 before the call, then
after the call x = 10 and y = 10. If we write the function like this:

void swap (int x, int y)

{

int temp = x;

x = y;

y = temp;

}

will this do the trick?

Try it and you will see that it does not. Remember that when a function is called, the values of the

arguments are copied into the storage cells of the parameters. The function runs and when it
terminates, the parameter storage cell contents are not copied back to the arguments. When you think
about it, it would make no sense. Suppose we de�ne a function double() like this:

int double (int x)

{

x = 2*x;

return x;

}

and we call it with the call

7

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

cout <�< double(10);

If the value of parameter x were copied back to its argument, it would mean we could replace a constant
literal 10 by the value 20, which is impossible.

The kind of parameters we have been using so far are known as call-by-value parameters. This is because
the value of the argument is passed to them. So what is the alternative?

The Concept Of A Reference

We mentioned before that variables have several di�erent properties, such as their type, their storage re-
quirements, and their scope. Every variable also has contents and location . In

int x = 5;

int y;

x is the name of a variable of type int with contents of 5. x also has a location. We don't know its actual
location exactly but we know that it has some storage location in memory and that location has a speci�c,
numbered address. In the picture below, think of each box as a storage location capable of storing an integer:

. . .

x y

 5

The boxes, which are actually memory words (4-byte units), have addresses but we don't care what they
are. The assignment statement

y = x;

causes the contents of x to be copied into the location of y1:

. . .

x y

 5 5

A reference variable is like another name for a location that already exists. A reference variable really stores
an address. If we de�ne two variables x and y as follows:

int x = 5;

int& y = x;

then y is called a reference to x. The variable y stores the location, or address, of x, but it can be used in
place of x. The two statements

cout <�< x;

cout <�< y;

1Notice the asymmetry of the = operator: the value of its right hand side operand is the contents of the operand , but

the value of the left hand side operand is the location of the operand . In other words, putting a variable on the right hand

side of "=" causes its value to be extracted whereas putting it on the left hand side causes its location to be found.

The lvalue of a variable is its location. The rvalue is its contents. lvalue and rvalue are just abstractions; they are not

really stored anywhere, but they help to make things clearer.

8

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

print the same value because y is just a pseudonym, another name, for x. If we increment x and output the
value of y, we will see it has changed as well:

x++;

cout <�< y;

and we can increment y and output the value of x and see that it has also changed.

y++;

cout <�< x;

The &-operator used in this way creates a reference variable :

type & identifier = variable;

makes the identi�er a reference to the variable. The reference variable type must be the same as type of the
variable whose address is being assigned to it.

char c;

char & refTochar = c;

int x;

int & refToint = x;

are two valid reference declarations, but not this:

char c;

int & cref = c;

because cref is of type int& and it should be of type char&. It does not matter whether there is space to
the left or right of the &-operator. The following three statements are equivalent:

int& y = x;

int & y = x;

int &y = x;

We can use reference variables as parameters of functions. They are then known as call-by-reference

parameters.

Examples

void swap (i n t & x , i n t & y)
// r e p l a c e s x by y and y by x
{

i n t temp = x ;
x = y ;
y = temp ;

}

i n t main ()
{

9

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

i n t a = 10 ;
i n t b = 20 ;
swap (a . b) ;
cout << a << " " << b << endl ;
r e turn 0 ;

}

This program will print 20 and then 10 because swap(a,b) caused the values of a and b to be swapped. This
is because x is just another name for a in swap() and y is another name for b. Each assignment statement
in swap() is actually altering the values of a and/or b.

void cas tActor s (s t r i n g & Romeo ,
s t r i n g & Ju l i e t)

{
Romeo = "Leonardo DiCaprio " ;
J u l i e t = " C la i r e Danes " ;

}

i n t main ()
{

s t r i n g lead_male_role ;
s t r i n g lead_female_role ;

ca s tActor s (lead_male_role , lead_female_role) ;
cout << "Romeo w i l l be played by " << lead_male_role << "\n " ;
cout << " Ju l i e t w i l l be played by " << lead_female_role << "\n " ;
re turn 0 ;

}

In this second example, the strings in the main program have no initial value but after the call to castActors(),
they are given values. Call-by-reference parameters are the key to writing functions that must give values
to multiple variables, such as functions that initialize many variables.

Overloading Functions

Functions can be overloaded in C++, but not in C. Simply put, it means that the same name can be used
for two di�erent functions, provided that the compiler can distinguish which function is being called when it
tries to compile the code. This can be convenient sometimes, but most of the time there is little need for this
feature of C++. Nonetheless, because you may be called upon to read a program that contains overloaded
functions, I discuss them very brie�y here.

The rule sounds simple at �rst: The same name can be used for two di�erent functions provided that they
have a di�erent number of formal parameters, or they have one or more formal parameters of di�erent types.
So these are valid overloads:

int max(int a, int b);

int max(int x, int y, int z);

and so are these:

void sort(int & x, int & y);

void sort(double & x, double & y);

because the �rst pair have a di�erent number of parameters and the second pair have di�erent types for
their parameters.

These are not valid overloads:

10

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

int max(int a, int b);

long max(int x, int y);

because they only di�er in their return type. (The names of the parameters are irrelevant.) These are not
valid either:

void sort(int & x, int & y);

void sort(int x, int y);

because the types are the same and kind of parameter passing is not used to distinguish them.

Overloading can get complicated because of type casting and type conversion. If you have two functions
such as

void foo(int x, double y);

void foo(double x, int y);

and your program makes the call

foo(1,2);

which one should the compiler use? Guess what? It can't really decide either, so it generates an error.
Unless you have a good reason to overload function names, it is best to avoid it.

Default Arguments

C++, and not C, lets you assign default values to the call-by-value parameters of a function, in right to
left order. In other words, you can declare a function so that the rightmost parameters have default values,
as in the following example:

string repeatedstr(string str, int numcopies = 1);

The calling program can omit the second argument, in which case numcopies will be assigned 1:

cout <�< repeatedstr(�*�);

will print a single '*' whereas

cout <�< repeatedstr(�*�, 10);

will print ten of them.

Note: You can not assign default values to call-by-reference parameters.

You can have any number of default arguments but the rule is that a parameter can only have a default
argument if the parameter to its right has one. So these are valid:

void foo(int a, int b, int c = 1, int d = 2, int e = 3);

void bar(int a, int b, int c = 1);

but not these

11

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

void foo(int a = 1, int b);

void bar(int a = 1, int b = 2, int c);

Moreover, you can run into problems with overloading and default arguments, as in the following:

void f(int x, int y, int z = 1);

void f(int x, int y);

If the program calls f(1,2), is it the �rst or the second function that will be invoked? Guess what? The
compiler can't know either, so it generates an error.

The C++ iostream library has two prototypes for getline():

istream& getline (istream& is, string& str, char delim);

istream& getline (istream& is, string& str);

Do you think it is overloaded, or do you think that getline() is really de�ned with the header

istream& getline (istream& is, string& str, char delim = '\n');

What do you think is the better solution?

The real bene�t of being able to assign default values to parameters comes with class constructors, a topic
that will be covered when we get to classes. My advice is that you avoid overloading unless you have a really
good reason to use it.

12

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Arrays

Motivation

Suppose that we want a program that can read in a list of numbers and sort that list, or �nd the largest
value in that list. To be concrete about it, suppose we have 15 numbers to read in from a �le and sort into
ascending order. We could declare 15 variables to store the numbers, but then how could we use a loop to
compare the variables to each other? The answer is that we cannot.

The problem is that we would like to have variables with subscripts or something like them, so that we could
write something like

max = 0;

for (i = 0; i < 15 ; i++) {

if (number_i > max)

max = number_i ;

}

where somehow the variable referred to by number_i would change as i changed.

You have seen something like this already with C++ strings: if we declare

string str;

then we can write a loop like

for (int i = 0; i < str.size(); i++)

cout <�< str[i] <�< �-� ;

in which each individual character in str is accessed using the subscript operator []. The characters in
a string form what we call an array . An array is conceptually a linear collection of elements, indexed by
subscripts, all of the same type. If we could create an array named number with 15 elements, it would look
like this:

number:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Each element could be accessed using the subscript operator, as in number[1] or number[7], and we could
write a loop like

max = 0;

for (i = 0; i < 15 ; i++) {

if (number_i > max)

max = number[i] ;

}

This would make it possible to manipulate large collections of homogeneous data, meaning data of the
same type, with a single subscripted variable. Such is possible in C and C++ and all modern programming
languages. Arrays are of fundamental importance to algorithms and computer science.

1

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Declaring a (one-Dimensional) Array

Syntax:

elementtype arrayname [size_expression]

where

• elementtype is any type that already exists

• arrayname is the name of the array

• size_expression is the number of elements in the array

This declares an array named arrayname whose elements will be of type elementtype , and that has
size_expression many elements.

Examples

char fname[24]; // an array named fname with 24 chars

int grade[35]; // an array named grade with 35 ints

int pixel[1024*768]; // an array named pixel with 1024*768 ints

const int MAX_STUDENTS = 100;

double average[MAX_STUDENTS]; // an array named average with 100 doubles

string fruit[5]; // an array of 5 C++ strings

The element type of an array is often called its base type . The �rst example is an array with base type
char, for example. One can say that fname is �an array of char.�

Things to remember about arrays:

• The starting index of an array is 0, not 1.

• The last index is one less than the size of the array.

• If the array has size elements, the range is 0..size-1.

• Arrays contain data of a single type.

• An array is a sequence of consecutive elements in memory and the start of the array is the address of
its �rst element.

• Because the starting address of the array in memory is the address of its �rst element, and all elements
are the same size and type, the compiler can calculate the locations of the remaining elements. If B is
the starting address of the array array, and each element is 4 bytes long, the elements are at addresses
B, B + 4, B + 8, B + 12, and so on, and in general, element array[k] is at address B + 12k.

• Although C and C++ allow the size expression to be variable, you should not use a variable, for reasons
having to do with concepts of dynamic allocation and the lifetime of variables.

• Use constants such as macro de�nitions or const ints as the sizes of arrays.

2

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Initializing Declarations

Arrays can be initialized at declaration time in two di�erent ways.

elementtype arrayname[size expr] = { list with <= sizeexpr vals };

elementtype arrayname[] = { list with any number of values };

Examples

#define MAXSCORES 200

#define NUMFRUIT 5

const int SIZE = 100;

double numbers[SIZE]; // not initialized

string fruit[NUMFRUIT] = {"apple","pear","peach","lemon","mango"};

int power[] = {0,1,2,4,9,16,25,36,49,64,81,100};

int counts[SIZE] = {0};

int score[MAXSCORES] = {1,1,1};

The �rst declaration declares but does not initialize the array named numbers. The next declares and
initializes an array named fruit with �ve strings:

apple pear peach lemon mango

0 1 2 3 4

The third initializes an array named power, whose size is determined by the number of values in the brace-
delimited list. When the array size is given in square brackets but the number of values in the list is less
than the size, the remainder of the array is initialized to 0. In the fourth example, all elements will be set
to 0, and in the last, the �rst three are set to 1 and the rest, to 0.

Rules

• If the array size is given in brackets, then the initialized list must have at most that many values in it.
If it has fewer, the rest of the array is initialized to 0's.

• If the size is not given in brackets, then the size is equal to the number of elements in the initializer
list.

• If there is no initializer list, none of the array elements are initialized. They are not set to 0.

Advice

• Always named constants for the sizes of arrays. It makes it easier to write, maintain, and read the
code.

Accessing Array Elements

An element of an array is accessed by using the subscript operator . The syntax is:

arrayname [integer-valued-expression-within-range]

3

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Examples

cout <�< fruit[0] ; // prints apple

cout <�< powers[1] <�< � � <�< powers[2] ; // prints 1 2

fruit[3] = �apricot�; // replaces �peach� by �apricot in fruit[3]

counts[SIZE-10] = counts[SIZE-11] + 2; // sets counts[90] to counts[89] + 2 = 2

cout <�< score[power[4]]; // power[4] = 9, so this outputs scores[9]

Notice in the last two examples that the index expression can be arbitrary integer-valued expressions, even
the value of an array of integers.

Loops and Arrays

Without loops it is very hard to use arrays. Conversely, with them they are easy to use. In general, a loop
can be used to initialize an array, to modify all elements, to access all elements, or to search for elements
within the array. An example follows.

Example 1. Finding a minimum element.

This example shows how an array can be initialized with values from an input stream using a for-loop. The
for-loop guarantees that the array is not �over�lled� because it runs only as many times as the array has
elements. The example uses the preceding declarations.

// read va lues in to array from standard input
f o r (i = 0 ; i < MAXSCORES; i++)

c in >> sco r e [i] ;

// Let minscore be the f i r s t element as a s t a r t i n g guess
i n t minscore = sco r e [0] ;

// Compare remaining array alements to cur rent maxscore
f o r (i = 1 ; i < MAXSCORES; i++) {

i f (minscore > sco r e [i]) // i f cur r ent element < minscore
minscore = sco r e [i] ; // make i t new minscore

// At t h i s point , maxscore >= sco r e [j] , f o r a l l j = 0 , 1 , 2 , . . . i
}

cout << The minimum sco r e i s << minscore << endl ;

In this example, the score array is �lled from values entered on the standard input stream, cin. After the
entire array has been �lled, a variable named minscore is set to the value of score[0]. Then a second
loop examines each element of score from score[1], to score[2], and so on up to score[MAXSCORE-1]. If
an element is smaller than minscore, its value is copied into minscore. This implies that in each iteration
of the second loop, minscore is the smallest of the elements seen so far. This is how one searches for the
minimum value in an unsorted array.

Danger

If your program tries to access an element outside of the range of the array, bad things can happen. Typically
the program will be aborted by the opeating system with an error message. As an example:

int score[10];

for (int i = 0; i < 20; i++)

cin >�> score[i];

4

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

When i eventually has the value 10, score[i] is a memory address outside of the score array (since it is
0-based and the last index is 9) and the program will be aborted.

Partially Filled Arrays

Although an array might be declared to have so many elements, that does not always mean that all of the
cells in the array actually have meangingful data. Sometimes a program does not know how much data it
will read in from a �le or external source, so it declares an array much larger than it needs. Then after it
reads the data, only part of the array has been �lled. If a loop that is processing the array tries to process
all array elements, errors will result.

This implies that when an array is �lled and the number of data items is not known in advance, then the
code needs to count how many values are written into the array, and stop if it exceeds the array size, or if
it runs out of data �rst. The while loop has two conditions to check in this case:

i n t l i s t [1 0 0] ;
i n t temp ;
l ength = 0 ;

c in >> temp ; // try to read to f o r c e eo f () to become true i f the f i l e i s empty
whi l e (l ength < 100 && ! c in . e o f ()) {

l i s t [l ength] = temp ; // temp has a value , so copy i t i n to the l i s t
l ength++; // increment because we copied a value in to l i s t
c in >> temp ; // read a new value ; might make eo f () t rue

}

The variable length keeps a count of what has been put into the array and when the loop ends, it is
guaranteed to be at most 100. Either the loop ends because length became 100 or because the data stream
ended. In either case, the array has been �lled with length many values. Therefore, all future processing
of this array must iterate only from 0 to length -1. The following code would �nd the minimum element of
list:

f o r (i = 1 ; i < length ; i++) {
i f (min > l i s t [i])

min = l i s t [i] ;
}

Arrays in Functions

Suppose that you want to write a function that can �nd the minimum element of any array it is given. Can
we write such a function? Let us rephrase a simpler question for now. Can we write a function that can �nd
the minimum integer in an array of integers? We can safely answer yes to this question, whether it is C or
C++. The heart of the matter is how we can pass an entire array into a function.

How can you pass an entire array into a function?

An array parameter in a function is written as a name followed by empty square brackets:

result_type function_name (..., elementtype arrayname [] ,...) ;

For example,

int max(int array[]);

void foo(int a[], int b[], double c[]);

5

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

The size of the array is not put between the square brackets. When you declare a function with an array
parameter, you just put the type and a name for the parameter followed by a pair of empty square brackets.
This tells the compiler that the corresponding argument will be an array of that type.

How does the function know how many elements are in the array?

It doesn't. Arrays do not �know� their size. It is not stored anywhere. The function acts on any array of
any size whose type matches the base type.

So how can you write a function that works with an array parameter?

You must always pass the size of the array as an extra parameter. For example, if we want to write a function
that �nds the minimum in an integer array, the function prototype would be

int min(int array[], int size);

We would call the function by passing just the array name to it. not the name with square brackets after it.
For example

int score[MAXSCORES];

for (i = 0; i < MAXSCORES; i++)

cin >�> score[i];

cout <�< �The minimum score is � <�< min(score, MAXSCORES);

Notice that the score array is passed to the min() function just by writing its name. The min() function
de�nition would be

i n t min (i n t array [] , i n t s i z e)
{

i n t minvalue = array [0] ;

// Compare remaining array alements to cur rent minvalue
f o r (i n t i = 1 ; i < s i z e ; i++) {

i f (minvalue > array [i])
minvalue = array [i] ;

// minvalue <= array [j] , f o r a l l j <= i
}
return minvalue ;

}

When the function is called as in cout <�< max(score, MAXSCORES), the score array is passed to the array
parameter array, and within the function array[i] is in fact a reference to score[i], not a copy of

it , but a reference to it, i.e., another name for it. This means that changes made to array[i] within the
function are actually made to score[i] outside of the function. The following example will make this clearer.

void i n i t Squa r e s (i n t array [] , i n t s i z e)
{

f o r (i n t i = 0 ; i < s i z e ; i++) {
array [i] = i ∗ i ;

}
}

6

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

The function initSquares() puts into each element array[i] the value i*i. The remarkable thing about
array parameters is that each element of the array parameter acts like a reference to the corresponding
element of its argument, so the output of this code snippet

int squares[20];

initSquares(squares, 20);

for (int i = 1; i < 20; i++)

cout <�< squares[i] <�< endl;

will be the squares 0, 1, 4, 9, ... 400, because the changes made to the array parameter array[] are actually
changes made to the calling program's squares array. To emphasize this

There are three types of parameter passing:

• call by value parameters

• call by reference parameters

• array parameters

Array parameters are like call by reference parameters � changes made to the array are changes

made to the corresponding array argument.

Searching and Sorting

Two of the most common types of processing of array data are searching for speci�c values and sorting the
elements.

Searching

The problem of searching for a particular value in an array or in a list of anything is called the search

problem . The value being sought is called the search key , or just the key when the meaning is clear.

Suppose, for example, that want to know whether anyone had a score of 75, assuming that we already read a
list of scores into our array scores. We can search through our array of scores for the number 75 as follows:

cout << "Enter the number to look f o r : " ;
c in >> searchkey ;

bool found = f a l s e ; // f l a g to con t r o l loop
i n t i = 0 ; // index to go through array

whi l e (! found && (i < length)) {
i f (searchkey == sco r e [i]) // found i t !

found = true ;
e l s e

i++; // didn ' t f i nd i t yet , so advance to next element
}

// I f found == f a l s e then we did not f i nd the item
i f (found)

cout << searchkey << " i s in index " << i << endl ;

There are some very important concepts here.

7

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

• We do not want to use a for-loop because if we �nd what we are looking for, we want to stop searching.
So we use a while-loop that is re-entered if we have not found what we are looking for and our index
variable is still within the range of the array. Therefore we set found to false initially and set it to
true if we �nd a matching value in the array.

• If we do �nd an element in the array whose value equals searchkey, then we set found to true. This
causes the loop to be exited. Because i is declared outside of the loop body, it still has a valid value
after the loop exits. It was not incremented since found became true, so it is the index at which
score[i] == searchkey.

• If we search through the entire array and do not �nd searchkey, then found is false when the loop
exits, because the condition (i < length) became false. By checking the value of found after the
loop, we can tell whether it was found or not.

This is the �rst example of a non-trivial algorithm. We can state its requirement more generally as,

�Given an array A of N values, and a searchkey X, �nd the position in A in which X occurs
or report that it is not there.�

The preceding solution searched through the array one element at a time, starting with the �rst and ending
with the last, until either it found it or it examined every element.

This is the best we can do when searching through a list of values that is not in sorted order. We have to
look at every value in the array until we �nd the key. If there are N items in the array, we need to check
compare our search key to N values in the absolute worst case that either it is not there or it is in the last
position.

If however, the array is sorted, then it is possible to search in a much faster way. In general it is better to
sort the values in the array for faster searching later. Presumably we will search the data very often, so if
sorting it costs us a bit of time, it is worth the savings we get from faster searching later.

Sorting

There are many di�erent ways to sort an array, some much faster than others. Some are easy to understand
and some are harder to understand. Some require additional memory to sort, others can be done �in place�,
meaning by rearranging the elements of the array without using extra memory. The sorting problem can be
stated as follows,

�Given an array A of size N, rearrange the elements of A so that A[0] <= A[1] <= A[2] <=
... <= A[N-1].�

Notice that the elements are rearranged. In other words, sorting is a permutation, a rearranegment of an
array.

We will start with a very intuitive sorting algorithm that is called selection sort. You will see why it is called
selection sort very soon. The idea is simple:

Find the minimum element of the array from 0 to N-1. Suppose it is in index K.

Swap A[0] and A[K]. Now A[0] has the smallest element.

Find the minimum element of the array from 1 to N-1. Suppose it is in index K.

Swap A[1] and A[K]. Now A[1] has the second smallest element.

Find the minimum element of the array from 2 to N-1. Suppose it is in index K.

Swap A[2] and A[K]. Now A[2] has the third smallest element.

Repeat this procedure until there are two elements remaining: A[N-2] and A[N-1}. Find the
smaller of the two and swap it into A[N-2].

8

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

When the above procedure has �nished, the array is in sorted order, smallest to largest. The procedure can
be stated more succinctly and abstractly as follows:

let bottom = 0, 1, 2, ... N-2 {

let k = index_of_minimum(A, bottom, N-1)

swap(A[k], A[bottom)

}

This pseudocode translates directly into the following C++ function. Because you can sort any types of
values that can be compared using ordinary comparison operators, rather than writing it with a �xed type,
we use the type T, and a typedef that can be changed easily that here makes T another name for the string
type.

typede f s t r i n g T;

// Returns the index o f the sma l l e s t element in A between
// A[bottom] and A[maxIndex]
i n t indexofMin (const T A[] , i n t bottom , i n t maxIndex) ;

// Swaps the va lue s s to r ed in x and y
void swap (T & x , T & y)

// Precond i t ion : A [0 . . N−1] conta in s data o f type T, to be so r t ed
// Postcond i t i on : A [0 . . N−1] i s s o r t ed in ascending order .
void s e l e c t i o n S o r t (T A[] , i n t N)
{

i n t sma l l e s t ; // index o f sma l l e s t item in unsorted part o f A
in t f i r s t ; // index o f f i r s t item in unsorted part o f A

f i r s t = 0 ; // s t a r t with l a s t at h i ghe s t index in A
whi le (f i r s t < N−1) {

sma l l e s t = indexofMin (A, f i r s t , N−1);
swap (A[sma l l e s t] , A[f i r s t]) ;
f i r s t ++;

}
}

i n t indexofMin (const T A[] , i n t bottom , i n t maxIndex)
{

i n t m = bottom ;
f o r (i n t k = bottom+1; k <= maxIndex ; k++)

i f (A[k] < A[m])
m = k ;

re turn m;
}

void swap (T & x , T & y) ;
{

T temp = x ;
x = y ;
y = temp ;

}

9

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Notes

• This algorithm can be written symmetrically using maximums instead of minimums. That is a good
exercise to try.

• If the call to swap() were replaced by the three instructions that do the swap, this would compile with
a C compiler.

• This always takes the exact same amount of time, even if the array is already sorted. The call to
indexofMin() always iterates its loop (N-first) times and the swap is always performed, even if the
two indices are the same. It will swap a value with itself in this case. It is an example of an unnatural

sort . A sorting algorithm is natural if arrays that are already in order require less swapping than
arrays that are very out of order.

Once an array has been sorted, searching it is much faster. Later we will see a method of searching called
binary search, in which the portion of the array being searched is cut roughly in half in each iteration.

Multidimensional Arrays

The arrays we have studied so far have a single dimension � they represent data items that can be arranged
in a sequence, and therefore they are also called linear arrays. Arrays can have more than one dimension
in C and C++.

Declaring a Multidimensional Array

You declare an array with multiple dimensions using a syntax that is similar to one-dimensional arrays.

Syntax:

elementtype arrayname [size1] [size2] ... [sizeD];

where

• elementtype is any type that already exists

• arrayname is the name of the array

• size1 is the number of elements in the �rst dimension, size2, the number in the second dimension,
and so on, and D is the number of dimensions in the array.

Basically you tack on a pair of square brackets with a number in between for every dimension that you want
the array to have.

Examples

char tictactoe [3][3]; // a 3 by 3 grid of chars

string chessboard[8][8]; // an 8 by 8 grid of strings

int pixel[1024][768]; // a 1024 by 768 grid of ints

double cube [5][5][5]; // a 5 by 5 by 5 cubic grid of doubles

In two dimensions, we think of the �rst dimension as the row, the next as the column. There is no rule for
this and there is nothing in the language that associates the dimensions with rows or columns. It depends
how you program it. In a three dimensional array, the �rst subscript would be like the row, the second like
the column, and the third, like the plane in which this row and column are located, i.e., the height. People
usually refer to the �rst dimension as the row, the second as the column, and the third, if it exists, as the
plane.

10

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Accessing Elements of Multidimensional Arrays

Higher dimensional arrays are accessed just like one dimensional arrays. The subscripts match their dimen-
sion:

tictactoe[0][2] = 'x'; // puts an 'x' in first row, last column.

chessboard[7][7] = �redqueen�; // puts the string �redqueen� into the lower

// right hand corner of the chessboard.

The following example shows how we could �color� the elements of a checkerboard. It demonstrates accessing
two-dimensional array accesses.

const char RED = ' r ' ;
const char BLACK = 'b ' ;
char checkerboard [ROWS] [COLS] ;
i n t i , j ;

f o r (i = 0 ; i < 8 ; i++)
f o r (j = 0 ; j < 8 ; j++)

i f ((i + j) % 2 == 0)
checkerboard [i] [j] = RED;

e l s e
checkerboard [i] [j] = BLACK;

f o r (i = 0 ; i < 8 ; i++) {
f o r (j = 0 ; j < 8 ; j++)

cout << checkerboard [i] [j] << ' ' ;
cout << "\n " ;

}

Processing Higher Dimensional Arrays

The most commonly used higher dimensional arrays are two-dimensional. They can be used to represent a
wide assortment of objects, such as graphical images, mathematical matrices, screen representations, two-
dimensional surfaces in general, mazes and other 2D cellular arrangements (chess boards, game boards).
Just as one dimensional arrays go hand in hand with for-loops, two-dimensional arrays are naturally paired
with nested for-loops.

The following example shows a code snippet that creates a random grid of asterisks. Notice that the middle
loop is not a nested loop. Sometimes two-dimensional data can be processed within a single loop.

const i n t COLS = 100 ;
const i n t ROWS = 80 ;
const i n t MAXSTARS = COLS∗ROWS/10 ;
char g r id [ROWS] [COLS] ;
i n t i , j , count = 0 ;

srand (time (0)) ;

11

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

// I n i t i a l i z e the g r id to a l l b lanks
f o r (i = 0 ; i < ROWS; i++)

f o r (j = 0 ; j < COLS; j++)
gr id [i] [j] = ' ' ;

whi l e (count < MAXSTARS) {
i = random(ROWS) ; // generate a random row index
j = random(COLS) ; // generate a random column index
g r id [i] [j] = ' ∗ ' ; // put an a s t e r i s k the re
count++;

}

// Pr int out the g r id
f o r (i = 0 ; i < ROWS; i++) {

f o r (j = 0 ; j < COLS; j++)
cout << gr id [i] [j] ;

cout << "\n " ;
}

Multidimensional Array Parameters1

To understand how to use multidimensional array parameters, you need to remember how one-dimensional
array parameters are used. When you write a function declaration such as

void process(double data[], int size);

you are telling the compiler that the function named process will be given an array of basetype double as
the �rst argument and an integer as the second argument. The array parameter data[] is just the starting
address of the array that is passed to it. The compiler knows that it is of type double, so it knows where
the remaining array elements are loacted in memory, because it knows how many bytes are in the double
type. In other words, the array parameter tells the compiler where the start of the array is and how many
bytes are in each entry, and this is all that the compiler needs.

This same logic applies to multidimensional arrays. The compiler needs to know the size of each element and
the starting address. This means that the array parameter must be written with the size of every dimension
except the leftmost one, as in

void processdata(int data[][10][20], int size);

which declares that processdata is a function with a 3D array parameter whose second dimension has 10
elements, and third has 20 elements. The compiler thus knows that data[1] starts 200 integers after data[0]
and data[2] starts 200 integers after data[1], and so on.

1This material will not be covered in class.

12

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

About Compiling

What most people mean by the phrase "compiling a program" is actually two separate
steps in the creation of that program. The first step is proper compilation. Compilation is
translating high level programming instructions into machine language instructions. The
input to compilation is a source code file in a high level language such as C or C++.
Source code files have extensions such as ".c", ".cpp", or ".cc". The output of
compilation is an object file, which is not quite an executable file. Object files usually
have a ".o" or ".obj" extension.

Consider the C++ code fragment

#include <iostream>
#include <math.h>
using namespace std;
double number;
cout << "Enter a positive number here:";
cin >> number;
cout << "The square root is " << sqrt(number) << endl;

The first two lines tell the compiler to copy the contents of the header files iostream
and <math.h> into the program at those points in the file. The third line tells the
compiler to use the std namespace for resolving symbols, since the iostream header
file just copied into the program is declared within this std namespace. In other words,
every declaration and definition in this header file is contained within the namespace
known as std. A namespace is essentially just a scope, so all of iostream has scope
std.

In particular, cout and cin are really known to the world outside of the std scope by
their proper names, std::cout and std::cin. If you wrote std::cout instead of
cout, std::cin instead of cin, and std::endl instead of endl. you could eliminate
the third line. The "using namespace std" directive tells the compiler that whenever
it finds a symbol in the program that is not defined in the program, it should search the
std namespace in case it is defined there. Names like cin and cout are called external
symbols in a program because their definitions are not contained in the program itself.

The inclusion of the header files <iostream> and <math.h> in the program allows the
compiler to determine whether the names cin, cout, and sqrt are being used properly,
thereby allowing it to compile the code, but it cannot create an executable module,
because the objects associated with the names cin and cout are not defined in your
program. Because the name cin is defined in a separate file, the compiler cannot create a
jump instruction to jump to the code that does stream extraction, i.e., "cin >>", because
there is no memory address associated with this code. Names like cin and cout that are
defined outside of the program module are said to be unresolved at compile time.

1

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

The most that the compiler can do is to create an entry in a table in the code that allows
the second stage to solve the problem. This table contains the location of every
instruction in the program that refers to a name whose location is unresolved, or external,
to the program. The second stage is linking, and it is performed by, not surprisingly, the
linker. The linker's job is to find the unresolved names listed in the table in the
executable module and to link them to the actual objects to which they refer. To link a
name means to replace it with the address to which it refers. Of course a name cannot be
associated with an address unless the object that it names actually has an address, which
implies that before the name can be resolved, the associated object must be incorporated
into the address space of the executable file. There is a special type of linking called
dynamic linking that is an exception to this rule, but how that works is a subject for a
different chapter. Static linking is the type of linking in which all code needed at runtime
is actually copied into the program

What is Separate Compilation?

Projects should be organized into collections of small files that can be compiled
individually. Typically, large classes are given their own files and smaller classes may be
grouped together into a single file. Sometimes collections of functions that are not
members of any class are placed into a separate file. As long as each of the files is
included in the project file, the compiler will usually compile each of them when it is
given the instruction to compile the project.

The usu

A set of functions that all provide various forms of randomization, for example, would be
placed into two files named myrandstuff.h and myrandstuff.cpp. The
myrandstuff.h file contains the function prototypes.. Files that end in a ".h" are
called header files. They are usually not compiled by the compiler. Instead they are
included into the implementation files at compile time so that the compiler will have
access to the symbols defined in the header file. The myrandstuff.cpp file contains
the definitions of the functions defined in the header file. The files will usually have the
following form.

2

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

myrandstuff.h:
#ifndef MYRANDSTUFF_H
#define MYRANDSTUFF_H

// whatever header files need to be included go here
// any typedefs or other type or class definitions go here

// description of func1
void func1(...);

// description of func2
void func2(...);

// and so on

#endif // MYRANDSTUFF_H

myrandstuff.cpp:
#include "myrandstuff.h"

void func1(...)
{
 // implementation for func1
}

void func2(...)
{
 // implementation for func2
}

// and all implementation code for remaining functions here

The main program only includes the header files, not the .cpp files, so that it can make
reference to functions declared there and used in .. Therefore, the main program will
contain a line of the form

 #include "myrandstuff.h"

among the other header files included by it. Notice that the header file name is enclosed
in double quotes, not angle braces. When the file to be included is in the same directory
as the program, its name should be in double quotes.

What, you may be wondering, is the purpose of those lines at the beginning and end of
the file that look like preprocessor directives?

When the macro preprocessor sees the #include directive, it finds the file that is to be
included and copies it into the program at the point at which the #include directive
was found. Every included file is copied into the main program.

3

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

Suppose that you have a second implementation file, say mylist.cpp, that uses the
functions declared or the types defined in myrandstuff.h. It is possible that the
header file mylist.h needs to include myrandstuff.h. Supoose also that the
main program uses the functions declared in mylist.h. Then mylist.h has the line

 #include "myrandstuff.h"

and the main program has the two lines

 #include "myrandstuff.h"
 #include "mylist.h"

When the compiler runs, it copies the myrandstuff.h file twice, one after the other,
first because of the first #include directive, then again because when it includes
mylist.h, it will copy myrandstuff.h again because of the #include directive in
that file. Now we can explain the reason for the lines

#ifndef MYRANDSTUFF_H
#define MYRANDSTUFF_H

#endif // MYRANDSTUFF_H

The first line translates to “if the macro symbol MYRANDSTUFF_H is not defined then
continue reading and copying lines into the file until the matching occurrence of endif.
On the other hand, if it is defined, then skip reading code until immediately after that
matching endif”. The second line is therefore only read if the symbol was not defined.
In this case that line defines it, and the code is read and copied. When the preprocessor
opens the next file, mylist.h, the symbol MYRANDSTUFF_H is defined already and
the code from myrandstuff.h is not copied twice into the main() function. Thus,
these three lines prevent the macro preprocessor from putting multiple copies of code
into other compilation units. These lines are often called a header guard.

You can use whatever symbol you want in this directive, but it must be unique in your
project. It is best to follow a convention that ensures this uniqueness. The most common
is to use the symbol consisting of the file name. in caps, with an underscore between the
root and the extension. Some people use a leading underscore also.

Compiling and Linking the Program

When a program consists of a collection of files, some of which are header files and their
corresponding implementation files, and of course a single file containing the main()
function, it is compiled and linked in a specific way.

Assume the project contains the files f1.h, f2.h, f3.h, f1.cpp, f2.cpp, f3.cpp,
and main.cpp and that main.cpp includes all header files, but that the remaining
.cpp files include only their own header files.

The set of steps that must be taken if this is to be done manually, using g++, for example,
is

 g++ -c f1.cpp

4

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

 g++ -c f2.cpp
 g++ -c f3.cpp
 g++ -c main.cpp

This creates the object files f1.o, f2.o, f3.o, and main.o. Then the main program
would be created by linking these together, using

 g++ -o progname main.o f1.o f2.o f3.o

The compiler, g++, will not compile in this last step; it will just link the files and create
the program named progname.

If you edit the file f2.cpp, you only need to do two steps to rebuild the program:

 g++ -c f2.cpp
 g++ -o progname main.o f1.o f2.o f3.o

because only the object file f2.o must be changed, and the main program needs to be
relinked to it. If you edit a header file, such as f3.h, then you would also do two steps:

 g++ -c f3.cpp
 g++ -o progname main.o f1.o f2.o f3.o

because presumably f3.cpp depends on f3.h in such a way that the object file f3.o
needs to be rebuilt, and then the program relinked.

This can be simplified by using a makefile. A makefile is a file that is read by the make
program. It contains a set of instructions for carrying out various tasks, usually for
building programs. This tutorial on separate compilation does not cover how to create
makefiles, but I include one here that could be used to keep the program progname up
to date whenever any of the files change, with minimal recompilation and linking:

CXX := /usr/bin/g++
CXXFLAGS += -Wall -g
OBJECTS := main.o f1.o f2.o f3.o

all: progname

progname: $(OBJECTS)
<TAB>$(CXX) $(CXX_FLAGS) -o progname $(OBJECTS)

main.o: f1.h f2.h f3.h

clean:
<TAB>$(RM) $(OBJECTS)

The <TAB> means that there should be a tab character in this position. Anything else and
make will not work. To build the program or update it, one just types "make" on the
command line in the directory containing this makefile and the program files. The
makefile should be named either makefile or Makefile.

5

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

C Strings and Pointers

Motivation

The C++ string class makes it easy to create and manipulate string data, and is a good thing to learn when
�rst starting to program in C++ because it allows you to work with string data without understanding much
about why it works or what goes on behind the scenes. You can declare and initialize strings, read data into
them, append to them, get their size, and do other kinds of useful things with them. However, it is at least
as important to know how to work with another type of string, the C string.

The C string has its detractors, some of whom have well-founded criticism of it. But much of the negative
image of the maligned C string comes from its abuse by lazy programmers and �hackers�. Because C strings
are found in so much legacy code, you cannot call yourself a C++ programmer unless you understand
them. Even more important, C++'s input/output library is harder to use when it comes to input validation,
whereas the C input/output library, which works entirely with C strings, is easy to use, robust, and powerful.

In addition, the C++ main() function has, in addition to the prototype

int main()

the more important prototype

int main (int argc, char* argv[])

and this latter form is in fact, a prototype whose second argument is an array of C strings. If you ever want
to write a program that obtains the command line arguments entered by its user, you need to know how to
use C strings.

All of this is why we turn our attention to them here.

Declaring and Initializing C Strings

A C string is an array of characters terminated by a special character called the NULL character, also called
a NULL byte. The NULL character is the character whose binary value is 0. One can write the NULL character
as '\0' in a program. Because the NULL character takes up one character position in the array, a C string
that can store N characters must be declared to have length N+1.

Examples

char lastname[21]; // can store up to 20 characters, no more

char socsecuritynumber[10]; // can store a 9 digit social security number

char filename[500]; // can store up to 499 characters

Unfortunately this little fact seems to be forgotten by many programmers, and when that happens, trouble
starts, as you will soon see.

You can initialize a C string in its declaration the same way that you initialize a C++ string, in one of two
ways:

1

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

char lastname[21] = �Ritchie�;

char socsecuritynumber[] = �123456789�;

The �rst method speci�es the length of the array. In this case the number of characters in the string

literal must be at most one less than this length . In the second method the compiler determines how
large to make the array of characters.

Notice that there is no NULL character in either of these initializing declarations. The compiler ensures that
the resulting string does have a trailing NULL byte.

You will also �nd declarations of C strings that look like this:

char* errmessage = �You did not enter a valid menu choice.�;

or equivalently

char *errmessage = �You did not enter a valid menu choice.�;

The '*' in these declarations means that the variable errmessage is a pointer . Later we will talk about
pointers. For now, just be aware that both of these declarations declare errmessage to be a C string,
initialized with the given string, and terminated with a NULL byte.

Unlike C++ strings, C strings are of �xed size. They cannot grow automatically by appending

more characters to them. They cannot be resized. They are just arrays of characters, nothing

more. Later we will see how to change the amount of memory allocated to strings as they need to grow.

Using C Strings

You can treat a C string as an array of characters, using the subscript operator to access each individual
character, as in

char name[30] = �Thompson�;

/* more code here that might change contents of name */

int i = 0;

while (i < 30 && name[i] != '\0') {

name[i] = toupper(name[i]);

i++;

}

which converts the characters in name to uppercase. Notice how the loop entry condition has two conjuncts:
the �rst makes sure that we do not exceed the array bounds and the second looks for the end of the string
in case it is shorter than 29 characters (not 30, remember!) In this simple case using a C string is almost
the same as using an array. The big di�erence is that when you have an array, you have to keep track of
its length and keep it in a separate variable. With a C string that has been properly initialized, you do not
need to know its length because you can search for the NULL byte at the end of it.

Searching for the end of a C string is unnecessary because there is a function named strlen() in the C
string library that does this for you. Its prototype is

size_t strlen(const char * str);

Do not be intimidated by the return type. It is just a typedef for unsigned int. Sizes are never negative
numbers. The argument is a string, expressed not as an array but as a char*.

The C string library's header �le is <cstring> in C++, not <string>. The C string library header
�le is <string.h> in C. Therefore, to use the strlen() function you need to include <cstring>:

2

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

#include <cstring>

using namespace std;

char name[30] = �Thompson�;

/* more code here that might change name */

int i = 0;

while (i < 30 && i < strlen(name)) {

name[i] = toupper(name[i]);

i++;

}

C++ Input and Output

The C++ insertion and extraction operators both work with C strings, when used properly. The following
program illustrates:

#inc lude <iostream>
#inc lude <cctype>
#inc lude <cs t r i ng >
us ing namespace std ;

i n t main ()
{

char name [1 0] ;
i n t i = 0 ;

cout << "Enter at most 9 cha ra c t e r s : " ;
c in >> name ;

whi l e (i < 10 && name [i] != '\0 ') {
name [i] = toupper (name [i]) ;
i++;

}
cout << name << endl ;
r e turn 0 ;

}

This program will extract the characters entered by the user, until it �nds a valid whitespace character or
end-of-�le character, storing them into the character array name. It will then append a NULL character to
the end of name automatically. The insertion operator <�< will insert the characters from name until it �nds
a NULL character.

There is a great danger with C strings and the extraction operator. It does not check that the input can �t
into the string argument. The user can enter more characters than there are room for in the array, and these
characters will be stored in the memory positions that logically follow the array of characters, overwriting
whatever was there. This is called bu�er over�ow . Purposefully trying to create bu�er over�ow is a
standard technique used by hackers to try to break into computer systems.

To illustrate, suppose that we enter the string �abcdefghijkl� when prompted by the program. It will
store these characters into the memory locations starting at name[0], then name[1], name[2], and so on,
and continue past the end of the array, storing k into the next byte after name[9] and l into the byte after
that. These bytes might actually be part of the storage allocated to the integer i, in which case they will
overwrite i. If the entered string is large enough, the program will crash with a segmentation fault.

To prevent the user from entering more characters than can �t into the array, you can use the I/O manipula-
tor, setw() which will limit the number of characters entered to one less than its argument . Remember
to #include <iomanip> in this case:

3

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

#inc lude <iostream>
#inc lude <cctype>
#inc lude <cs t r i ng >
#inc lude <iomanip>
us ing namespace std ;

i n t main ()
{

char name [1 0] ;
i n t i = 0 ;

cout << "Enter at most 9 cha ra c t e r s : " ;
c in >> setw (10) >> name ;

whi l e (i < 10 && i < name [i] != '\0 ') {
name [i] = toupper (name [i]) ;
i++;

}
cout << name << endl ;

r e turn 0 ;
}

This program will prevent bu�er over�ow. If you intend to use the C++ extraction operator as your primary
means of reading data into strings of any kind, you should make a habit of using the setw() manipulator.

Things You Cannot Do With C Strings (That You Can Do With C++ Strings)

You cannot assign one string to another, as in

char name1[10];

char name2[10];

name1 = name2; // This is an error (invalid array assignment)

You cannot assign a string literal to a C string:

name = �Harry�; // This is illegal (incompatible types in assignment)

You cannot compare two C strings with comparison operators such as <, <=, >, and >= to �nd which
precedes the other lexicographically. For example

(name1 < name2)

will simply check whether the starting address of name1 in memory is smaller than the starting address of
name2 in memory. It does not compare them character by character.

You cannot compare two strings for equality:

(name1 == name2)

is true only if they have the same address.

The + operator does not append C strings. It is just an illegal operation.

4

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

Pointers, Very Very Brie�y

This is a brief introduction to pointers. We need to know a bit about pointers because C strings are closely
related to them. Some people tremble at the mention of pointers, as if they are very hard to understand. If
you understand reference variables, you can understand pointers.

A pointer variable contains a memory address as its value . Normally, a variable contains a speci�c
value; a pointer variable, in contrast, contains the memory address of another object. We say that a pointer
variable, or pointer for short, points to the object whose address it stores.

Pointers are declared to point to a speci�c type and can point to objects of that type only . The
asterisk * is used to declare pointer types.

int* intptr; // intptr can store the address of an integer variable

double* doubleptr; // doubleptr can store the address of a double variable

char* charptr; // charptr can store the address of a character

We say that intptr is �a pointer to int� and that doubleptr is �a pointer to double.� Although we could
also say that charptr is a pointer to char, we say instead that charptr is a string. Pointers to char are
special.

It does not matter where you put the asterisk as long as it is between the type and the variable name� these
three are equivalent:

int* intptr;

int * intptr;

int *intptr;

In general, if T is some existing type, T* is the type of a variable that can store the address of objects of
type T, whether it is a simple scalar variable such as int, double, or char, or a more structured variable
such as a structure or a class:

struct Point { int x; int y; };

Point* Pointptr;

The address-of operator, &, can be used to get the memory address of an object. It is the same symbol
as the reference operator, unfortunately, and might be a source of confusion. However, if you remember this
rule, you will not be confused:

If the symbol "&" appears in a declaration , it is declaring that the variable to its right is a
reference variable, whereas if it appears in an expression that is not a declaration , it is the
address-of operator and its value is the address of the variable to its right.

int x = 972384;

int y = 100;

int &ref = x; // a declaration, so & is the reference operator

int *p = &x; // appears on right of =, so it is in an

// expression and is address-of operator; p stores address of x

p = &y; // address-of operator; p stores the address of y

int &z = y; // reference operator; z is an alias for y

5

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

Dereferencing Pointers

Accessing the object to which a pointer points is called dereferencing the pointer . The "*" operator,
when it appears in an expression, dereferences the pointer to its right. Again we have a symbol that appears
to have two meanings, and I will shortly give you a way to remain clear about it.

Once a pointer is dereferenced, it can be used as a normal variable. Using the declarations and instructions
above,

cout <�< *p; // p contains address of y, which stores 100,

// so 100 is printed. p has been dereferenced.

cin >�> *p; // p is dereferenced before the input operation.

// *p is the variable y, so this stores the input into y.

*p = *p + *p; // just like y = y + y

*p = *p * *p; // just like y = y * y

The dereference operator and the address-of operator have higher precedence than any arithmetic operators,
except the increment and decrement operators, ++ and --.

If you think about a declaration such as

int * p;

and treat the * as a dereference operator, then it says that *p is of type int, or in other words, p is a variable
that, when dereferenced, produces an int. If you remember this, then you should not be confused about
this operator.

Relationship Between Pointers And Arrays

An array name is a constant pointer; i.e., it is pointer that cannot be assigned a new value. It always contains
the address of its �rst element.

int list[5] = {2,4,6,8,10};

cout <�< *list <�< endl; // prints 2 because *list is the contents of list[0]

int * const aPtr = list; // aPtr has the same address as list

// &list[0] is stored in aPtr.

aPtr[2] += 10; // adds 10 to list[2]

The fact that array names are essentially constant pointers will play an important role in being able to create
arrays of arbitrary size while the program is running, rather than by declaring them statically (at compile
time).

This is all we need to know for now in order to be able to talk more about C strings and the C string library.

Using The C String Library

The C string library (header �le <cstring> in C++) contains useful functions for manipulating C strings.
On a UNIX system you can read about it by typing man string.h. You can also read about it online
in many places, such as http://www.cplusplus.com/reference/clibrary/cstring/. There are a couple
dozen functions de�ned there, but we will start by looking at the most basic of these. All require the
<cstring> header �le, which is placed into the std namespace.

6

http://www.cplusplus.com/reference/clibrary/cstring/

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

strcmp()

The strcmp() function is how you can compare two C strings. Its prototype is

int strcmp (const char * str1, const char * str2);

This compares two C strings, str1 and str2 and returns

0 if the two strings are identical, character for character

< 0 if str1 precedes str2 lexicographically

> 0 if str1 follows str2 lexicographically

�Lexicographically� means that the ascii (or binary) values of the corresponding characters are compared
until one is di�erent than the other. If one string is a pre�x of the other, it is de�ned to be smaller.

str1 str2 strcmp(str1, str2) comment

abc abe < 0 (str1 < str2)

Abc abc > 0 (str1 > str2)

abc abcd < 0 (str1 < str2)

This little program compares two inputted strings and outputs their relationship:

#inc lude <iostream>
#inc lude <iomanip>
#inc lude <cs t r i ng >
#inc lude <cctype>
us ing namespace std ;

i n t main ()
{

char name1 [1 0] ;
char name2 [1 0] ;

cout << "Enter at most 9 cha ra c t e r s : " ;
c in >> setw (10) >> name1 ;
cout << "Enter at most 9 cha ra c t e r s : " ;
c in >> setw (10) >> name2 ;

i f (strcmp (name1 , name2) > 0)
cout << name1 << " i s l a r g e r than " << name2 << endl ;

e l s e i f (strcmp (name1 , name2) < 0)
cout << name1 << " i s sma l l e r than " << name2 << endl ;

e l s e
cout << name1 << " i s equal to " << name2 << endl ;

r e turn 0 ;
}

strcat()

The strcat() function allows you to append one string to another. Its prototype is:

7

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

char * strcat (char * destination, const char * source);

This appends a copy of the source string to the destination string. The terminating NULL character in
destination is overwritten by the �rst character of source, and a NULL-character is included at the end of
the new string formed by the concatenation of both in destination. The destination string must be large
enough to store the resulting string plus the NULL byte, and the two strings are not allowed to overlap. The
return value is a pointer to the resulting string.

#inc lude <iostream>
#inc lude <iomanip>
#inc lude <cs t r i ng >
us ing namespace std ;

i n t main ()
{

char name1 [1 0 0] ;
char name2 [1 0 0] ;

cout << "Enter your f i r s t name : " ;
c in >> setw (49) >> name1 ; // l im i t to 49 chars
cout << "Enter your l a s t name : " ;
c in >> setw (49) >> name2 ; // l im i t to 49 chars

s t r c a t (name1 , " ") ; // name1 might be 50 bytes now

cout << "Then you must be " << s t r c a t (name1 , name2) << ".\n " ;
// name1 might be 50+49+1 = 100 bytes i n c l ud ing the NULL byte
cout << "Nice to meet you , " << name1 << endl ;
r e turn 0 ;

}

Notice that this program uses the result of strcat() in two di�erent ways. The �rst call to it modi�es name1
by appending a space character to it. It ignores the return value. The second call, as the argument to the
insertion operator, uses the return value. name1 is also modi�ed, as the �nal output statement demonstrates
when you run this program.

strcpy()

The strcpy() function copies one string into another. Its prototype is

char *strcpy(char *destination, const char *source);

This copies the source string, including its terminating NULL byte, to the destination string. The strings
may not overlap, and the destination string must be large enough to receive the copy, including the NULL

byte. The strcpy() function takes the place of the C++ string assignment operator. The following example
shows how it can be used.

#inc lude <iostream>
#inc lude <iomanip>
#inc lude <cs t r i ng >

8

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

us ing namespace std ;

i n t main ()
{

char lastname [5 0] ;
char f i r s tname [3 0] [1 0] ;
char temp [3 0] ;
i n t i = 0 , j = 0 ;

cout << "Enter your fami ly name : " ;
c in >> setw (50) >> lastname ;
cout << "Enter the names o f your ch i l d r en (Ctrl−D to stop) : " ;
c in >> setw (30) >> temp ;
whi l e (! c in . e o f () && i < 10) {

s t r cpy (f i r s tname [i] , temp) ;
i++;
c in >> setw (30) >> temp ;

}
i f (i > 0) {

cout << "Your ch i l d r en are \n " ;
whi l e (j < i)

cout << f i r s tname [j++] << " " << lastname << endl ;
}
re turn 0 ;

}

The strcpy() function is used to copy the string stored in temp into the array of children's �rst names.
Even though the declaration of firstname makes it look like a two dimensional array, and technically it is,
it is really an array of C strings, or at least the program treats it as an array of C strings.

Summary

The following table summarizes the di�erences between the most common string operations using C++
strings and C strings.

C++ string operation C string equivalent

n = name.size(); n = strlen(name);

str1 = str2; strcpy(str1, str2);

str1 = str1 + str2; strcat(str1, str2);

if (str1 > str2) if (strcmp(str1, str2) > 0)

if (str1 < str2) if (strcmp(str1, str2) < 0)

if (str1 == str2) if (strcmp(str1, str2) == 0)

9

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

Safer Functions

The three functions described above all work in the same way internally. They all need to �nd the end of
the string by looking for the NULL byte. This is not a problem when the strings are always NULL-terminated,
but either for malicious reasons or because of honest mistakes, they can be called with strings that are not
NULL-terminated, and in this case, many problems can result. Therefore, some time ago, safer versions of
these functions were written that take another argument, which is a length argument. They all have the
letter 'n' in their names:

int strncmp(const char *str1, const char *str2, size_t n);

char *strncat(char *destination, const char *source, size_t n);

char *strncpy(char *destination, const char *source, size_t n);

Each di�ers from its unsafe counterpart in that the third parameter limits the number of characters to
be processed. For example, strncmp() only compares the �rst n characters of the two strings when given
argument n, and strncat() only appends the �rst n characters of source to destination, and strncpy()

only copies the �rst n characters of source into destination.

More C String Library Functions

strchr()

Sometimes you would like to �nd a particular character in a C string. The strchr() function lets you do that
easily. Its prototype is

char *strchr(const char *str, int ch);

This returns a pointer to the �rst occurrence in the string str of the character ch. Note that it does not
return an index, but a pointer! If the character does not occur in the string, it returns a NULL pointer. For
example,

char psswdline[] = �nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin�;

char * colonptr = strchr(psswdline, ':') ;

would set colonptr to point to the �rst colon in the string psswdline. One could repeatedly call this
function to get all of the positions, but there is a better way to do something like this using strtok().

strspn() and strcspn()

Suppose that you wanted to �nd the length of the pre�x of a string that contains only the characters in a
given set of characters. For example, suppose that you wanted to �nd the longest pre�x of a string that
contained only the characters a, c, g, and t. Of course you could write your own loop, and it would not be
very hard (I hope), but there is already a function that does this. Its prototype is

10

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

size_t strspn(const char *s, const char *accept);

strspn(str, �acgt�) would return the length of the longest pre�x of str that contained only those
characters. If hat length was equal to strlen(str), then that would imply that str had no other characters
in it.

On the other hand, what if you wanted the length of the longest pre�x of str that did not contain any of
the characters in a given set of characters? That is what strcspn() is for.

size_t strcspn(const char *s, const char *reject);

The �c� in the name is for complement. Thus, strcspn(str, �:�) would return the length of the longest
pre�x of str that did not contain a colon. This is something like strchr() except that you get a length
instead of a pointer to the colon.

strstr()

This function �nds substrings of a string. Finding a substring of a string is a harder problem to solve
e�ciently than the preceding ones. It takes a bit of ingenuity to do it well. For a beginning programmer,
this function is handy. If you want to �nd the �rst occurrence of the string �acgaa� in a string consisting of
thousands of occurrences of the characters a, c, g, and t, this will do it nicely. Its prototype is

char *strstr(const char *haystack, const char *needle);

The choice of parameter names is from its man page on my Linux system. strstr(haystack, needle)

returns a pointer to the �rst occurrence of the string pointed to by needle in the string pointed to by
haystack. If it has no such substring, NULL is returned.

strtok()

The strtok() function is di�erent from all of the others in that it can remember the fact that it was called
before by your program. The technical way of stating this is that it retains state . It allows you to parse
a string into a sequence of tokens. Parsing a string means decomposing it into its grammatical elements.
The individual elements are called tokens in this case. For example, a comma-separated-values �le consists
of lines each of which is a sequence of tokens separated by commas, as in

Harry,Jones,32,photographer,333-33-1234

The strtok() function will let us break this line into the sequence of tokens

Harry

Jones

32

photographer

333-33-1234

11

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

with very little programming e�ort. Its prototype is

char *strtok(char *str, const char *delim);

The �rst argument is a pointer to the string to be parsed and the second is a pointer to a string consisting of
the characters that can act as a delimiter. A delimiter is always a single character. If we want to break up a
string on commas, we would use the delimiter string �,�. If we want to allow both commas and semicolons,
we would use the delimiter string �,;�.

strtok() remembers its state in the following way. The �rst time you call it, you give it a pointer to the
string you want to parse. Then you repeatedly call it passing a NULL �rst argument instead, and it knows
that you still want it to parse the string that you �rst passed to it. It returns a pointer to a null-terminated
string containing the next token on each call until there are no more tokens, when it returns a NULL pointer
instead. An example will illustrate.

#inc lude <cs td io>
#inc lude <c s td l i b >
#inc lude <cs t r i ng >
#inc lude <iostream>
us ing namespace std ;

i n t main (i n t argc , char ∗argv [])
{

char ∗ s t r , ∗ token , ∗del im ;
i n t j = 1 ;

i f (argc < 3) {
c e r r << "usage : argv [0] s t r i ng−to−parse delim−chars \n " ;
e x i t (1) ;

}
s t r = strdup (argv [1]) ;
del im = strdup (argv [2]) ;

token = s t r t ok (s t r , del im) ;
cout << j << " " << token << endl ;

whi l e (1) {
token = s t r t ok (NULL, del im) ;
i f (token == NULL)

break ;
cout << j++ << " " << token << endl ;

}
re turn 0 ;

}

The program expects two command-line arguments: the string to be parsed and a string of delimiters. For
example, if we name this program parseline, we would use it like this:

parseline �Harry,Jones,32,photographer,333-33-1234� �,�

It would decompose the �rst string on commas, printing

12

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

1 Harry

2 Jones

3 32

4 photographer

5 333-33-1234

There are several important points to make about strtok().

• It treats adjacent delimiters as a single delimiter. Also, it ignores delimiters at the beginning and end
of the string. Thus

parseline ,�Harry,Jones,32��photographer�,333-33-1234,� �,�

would produce the same output as the �rst invocation above. It will never return an empty string. If
you need to detect when a token might be empty, you cannot use strtok() for this purpose1.

• It cannot be used on constant strings, meaning strings declared as arrays of chars or with the const

char* type because it modi�es its �rst argument as it works. Therefore you should copy the string to
be parsed into a temporary copy. The strdup() function makes a non-constant copy of a string and
returns a pointer to it. The program above copies the command-line arguments using strdup() and
then calls strtok() on the copy.

• The returned token must also be a non-constant string, so it too should be declared as a char*.

• If you call strtok() with a non-NULL �rst argument, it stops parsing the previous string and starts
parsing the new string.

Character Handling: The ctype Library

The C language, and C++ as well, has a rich library of character classi�cation and mapping functions, all of
which are declared in the C header <ctype.h>, or <cctype> in C++. By a mapping function, we mean one
that associates one character to another. For example, the function toupper() returns the corresponding
uppercase letter for a given lower case letter.

All of the functions in the <ctype> library take a single character as their argument, but this character is
declared as an int, not a char, and they all return an int as well. For example

int toupper(int ch);

is the prototype for the toupper() function. You can pass a character to them, as if they had a char

parameter, e.g.

char ch;

ch = toupper('a'); // store 'A' into ch

Although the return type is an int, you can still assign the return value to a variable of type char. The two
useful mapping functions in the library are

1You can use strsep(), but not all systems have this function.

13

Software Design Lecture Notes

C Strings and Pointers

Prof. Stewart Weiss

int toupper(int ch);

int tolower(int ch);

which return the corresponding character in the opposite case when given a letter, and return the same
character as the argument otherwise. Because these functions return an int, you have to be a bit careful
about how you use them. For example, the instruction

cout <�< toupper('a');

prints the code for 'A' (most likely 65 on your computer) instead of the character 'A' because it can have
an argument of type int. If you want to print the 'A' then either you have to force that return value to be
interpreted as a char. You can do this by assigning the return value to a variable of type char, as I showed
above, or by casting, as in

for (char c = 'a'; c <= 'z'; c++)

cout <�< (char) toupper(c);

which will print the uppercase letters.

Classi�cation functions take a single character and report on the type of character that it is. There is much
overlap in the classi�cations. The disjoint classes are the lower and upper case letters, digits, space characters,
and punctuation. Several functions report on various combinations of those. For example, isalnum() reports
whether a character is a digit or an alphabetic character. The set of classi�cation functions includes the
following:

int islower(int ch); // tests whether ch is a lowercase letter

int isupper(int ch); // tests whether ch is an uppercase letter

int isalpha(int ch); // true iff (islower(ch) || isupper(ch))

int isdigit(int ch); // tests whether ch is a digit

int isalnum(int ch); // true iff (isalpha(ch) || isdigit(ch))

int isblank(int ch); // tests whether ch is a blank (tab or ' ')

int isspace(int ch); // tests for ' ','\t', '\n', '\f', '\r', '\v'

int iscntrl(int ch); // tests for control characters

int isgraph(int ch); // tests whether is printable but not blank

int isprint(int ch); // tests whether ch is printable

int ispunct(int ch); // tests whether ch is punctuation

All of these return a non-zero for true and a zero for false. The precise de�nitions of these functions is di�erent
than the comments above; it actually depends upon the locale , which is a collection of environment settings
that de�nes such things as the language, character set, how monetary units are displayed, and so on. The
descriptions above are stated for the standard �C� locale, which is what most users have by default.

14

CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

Processing Command-Line Arguments

In a UNIX environment, when you type a command such as

g++ main.cpp utils.cpp fileio.cpp

or

rm file1 file2 file3 file4

and press the Enter key, the shell program parses this command-line into words separated by whitespace
characters. A word is usually any sequence of non-whitespace characters1. The �rst word on the command
line, except in certain unusual commands, is the name of a program or a shell built-in command to be
run. In the above examples, it is g++ and rm respectively. The words that follow the program name are
called command-line arguments. In the �rst example above, the command-line arguments are main.cpp,
utils.cpp, and fileio.cpp. In the second example, they are file1, file2, file3, and file4.

In UNIX and in other POSIX-compliant operating systems, the operating system arranges for the program
name and the command-line arguments to be made available to the program itself via parameters to the
main() function. Programs can ignore this information by writing the main function as

int main () { /* program here ... */ }

However, the C and C++ standards require compliant implementations of C and C++ to accept a main()

with two parameters as follows:

int main (int argc, char * argv[]) { /* program here ... */ }

The �rst parameter is an integer specifying the number of words on the command-line, including the name
of the program, so argc is always at least one. The second parameter is an array of C strings that stores all
of the words from the command-line, including the name of the program, which is always in argv[0]. The
command-line arguments, if they exist, are stored in argv[1], ..., up to argv[argc-1]. If you have not seen
the char* type, refer to the notes on C strings and pointers on this website.

Also note that there is nothing special about the names of two parameters argc and argv; they can be
whatever names you want them to be. It is a convention to use the names argc and argv, although you will
often �nd programs that use ac and av instead. You can name them foo and bar but that would be pretty
bad programming style.

A simple C++ example that illustrates how a program can access the command-line arguments is below.
This simple program does nothing more than display the name that the user typed to execute the program,
followed by the command-line arguments that it received from the shell.

#include <iostream >

using namespace std;

int main(int argc , char *argv [])

{

1Certain symbols such as the shell redirection operators, semicolons, quotes, and so on, are not considered words in this

sense.

1

CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

cout << argv [0] << " : ";

for (int i = 1; i < argc ; i++){

cout << argv[i] << " ";

}

cout << endl;

return 0;

}

Whenever you write a program that expects command-line arguments you must check whether the expected
number of arguments was provided by the user. Otherwise, the program will attempt to access locations in
the array of arguments that do not exist.

For example, suppose that you write a program that expects the names of two �les on the command-line,
the �rst being the name of a �le to open for reading and the second being the name of a �le to open for
writing. Suppose that the name you give to the program executable is myprog. Then proper use of myprog
would be something like

myprog inputfile outputfile

There have to be at least three words on the command-line for your program to run properly. There might
be more, but it can ignore those words. Therefore, the program should only run if the �rst parameter to
main() is at least 3. The program must therefore begin with

int main (int argc , char * argv[])

{

/* declarations here */

if (argc < 3) {

/* handle the incorrect usage here */

cerr << usage: << argv [0] << " i n p u t F i l e N a m e o u t p u t F i l e N a m e \ n ";

exit (1);

}

/* rest of program */

}

If the user did supply the correct number of arguments, then it is safe for the program to access the strings
from the second parameter. The program might look something like

int main (int argc , char * argv[])

{

ifstream fin;

ofstream fout;

if (argc < 3) {

/* handle the incorrect usage here */

cerr << usage: << argv [0] << " i n p u t F i l e N a m e o u t p u t F i l e N a m e \ n ";

exit (1);

}

fin.open(argv [1]);

if (fin.fail()) /* handle the error here */

fout.open(argv [2]);

if (fout.fail()) /* handle the error here */

/* rest of program */

}

2

CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

A Re�nement

If the user types a command such as

../../proj1/testcode/myprog infile

and forgot to include the output �le, the above code would produce output such as

usage: ../../proj1/testcode/myprog inputFileName outputFileName

If you do not want to display the entire path name of the program, but prefer that it only displays

usage: myprog inputFileName outputFileName

then you have to strip o� the leading part of the argv[0] string so that the only thing left is what comes
after the �nal '/' character. The C string library has a function that will make this easy, provided you are
familiar with pointers.

You can use the strrchr() function, whose prototype is

char *strrchr(const char *source, int ch);

This function �nds the last occurrence in the string source of the character ch. If ch is not in source, then
it returns a NULL pointer. Therefore a strategy for displaying the characters of the program name after the
�nal '/' is to check whether it has a slash, and if it does, display the part after it. The simplest way to do
this is to take advantage of the fact that the program is allowed to modify the argv[] array. In particular,
it can change what argv[0] points to. The following C++ program does just this.

#include <iostream >

#include <cstring >

using namespace std;

int main(int argc , char * argv [])

{

char *forwardslashptr;

forwardslashptr = strrchr(argv[0], '/ ');

if (forwardslashptr != NULL)

/* argv [0] does contain the '/', so reset it so it points to

the character just past the '/' character. Nothing needs

to be done if it has no slash.

*/

argv [0] = forwardslashptr +1;

cout << argv [0] << " : ";

for (int i = 1; i < argc ; i++){

cout << argv[i] << " ";

}

cout << endl;

return 0;

}

This program uses �pointer arithmetic�. The line

3

CSci 135 Software Analysis and Design I

Command Line Arguements

Stewart Weiss

argv[0] = forwardslashptr+1;

sets the argv[0] string, which is, remember, a pointer to an array of characters, to the value obtained by
adding one to the address stored in forwardslashptr. The compiler translates pointer addition to add
however many bytes are needed by the type of thing that the pointer points to. In other words, if a pointer
points to a char and a char takes up one byte, it adds 1. Therefore the above instruction causes argv[0]
to point to the �rst character after the slash.

4

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Namespaces, Structures and Classes

Namespaces

A namespace is a collection of name declarations and/or de�nitions. Your program's interaction with
namespaces so far has been limited to using them via the using directive , as in

#include <iostream>

using namespace std;

The reason that a program with a line like

cout <�< �Hello world.�;

fails to compile unless the using namespace std directive precedes this statement is that the name cout,
de�ned in the header �le <iostream> has been placed into the namespace std within that header �le and
is unknown outside of that namespace. A namespace de�nes its own scope and the only way to refer to the
members of that namespace outside of it are either to

• put a using namespace directive into the program before the point at which you want to refer to those
members, or

• precede each member's name with explicit scope resolution .

The former is what you've done so far, but you have also seen that instead of using the namespace in the
program you can write something like

std::cout <�< �Hello world�;

which tells the compiler to use the name cout de�ned in the namespace std. The �::� is called the scope
resolution operator . The name on the left of it is the name of a scope region such as a namespace, and
the name on the right is a member of that scope region. The construct std::cout is how you refer to the
cout member of the namespace std.

All of the declarations that you write in a program have scope of one form or another. Recall that block
scope is the scope that extends from a point of a declaration within a block to the end of that block, and
that �le scope is the region of program text from the point of a declaration that is not in any block until the
end of the �le containing that declaration. All of the names that have �le scope in your program actually
belong to an unnamed namespace called the global namespace. This does not mean that the namespace is
named global! It has no name, but we call it the global namespace.

You can create namespaces of your own. To create a namespace with the name spacetime for example, you
would write

namespace spacetime

{

/* declarations and definitions here */

}

The keyword namespace introduces the namespace de�nition. The name of the namespace follows, in this
case spacetime, and then what looks like a block: a pair of curly braces with whatever declarations and/or
de�nitions you want to place in them. Notice though that there is no semicolon after the namespace de�nition.
It is not required.

1

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Example

namespace spacet ime
{

void pr in tda t e (ostream & out , i n t y , i n t m, i n t d)
{

out << m <, "/" << d <, "/" << y ;
}

void p r i n tpo in t (ostream & out , double x , double y , double z) ;
}

If you then put a directive

using namespace spacetime;

in your program, you will be able to call the function printdate() by writing just the function name itself,
but if you do not put this using directive into the program, then you must qualify the name printdata()

with the name of its namespace, i.e., you must call spacetime::printdata() to use it:

spacetime::printdata(2012, 11, 6);

The printpoint() function is declared in the namespace but its de�nition is not contained in it. Suppose
for some reason that we wanted to write the de�nition of printpoint() outside of the namespace. (Imagine
that the namespace has prototypes of functions and only prototypes, and di�erent programmers need to
write di�erent implementations of these functions in their own code.) Then you would have to write the
function de�nition as follows:

void spacetime::printpoint(ostream & out, double x, double y, double z)

{

/* code here */

}

To summarize, a namespace is a collection of names. To refer to any of those names outside of the namespace
itself, you must either insert a using namespace directive before the �rst use of any of those names, or you
must qualify those names with the namespace name followed by the scope resolution operator.

Structures

Suppose that we would like to store a student's academic record for processing. It will have string data
such as names and id numbers, numeric data such as GPA and the number of credits earned, the courses
the student has taken so far, the grades in each, and so on. You could create a separate variable for each
data item, and that might be �ne for a program that manages one student record, but if you can imagine a
program that reads in a list of these records from a text �le, perhaps stored one record per line, and has to
store each record separately, then you should realize that putting the separate parts of the student records in
separate variables is a messy solution. Clearly the data types you have learned about so far, such as strings,
scalar types, and arrays, cannot be used very easily to store this complex set of data.

One solution in C and C++ is a type known as a structure . A structure is a heterogeneous collection

of data. It can store data of di�erent types, each with its own name. A structure is introduced with the
struct keyword, as in the example below.

2

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

s t r u c t User
{

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s co r e ;

} ;

This de�nes a new data type named User that has three members. Each member is a variable that can
be assigned data independently of the other members. The �rst two members of the structure are string

variables named firstname and lastname. The third member is an int named score.

The syntax of the structure de�nition is

struct structurename { list_of_member_declarations };

where structurename is a valid identi�er and list_of_member_declarations is a list of variable declara-
tions. The structure de�nition must be terminated by a semicolon.

The structure does not have to contain di�erent types of data. Here is a useful structure whose members
are all integers:

s t r u c t Date
{

i n t year ;
i n t month ;
i n t day ;

} ;

Because a structure de�nition de�nes a type and not a variable, it can be placed into the global scope so
that all functions have access to the de�nition.

Structures can be initialized when they are declared using the same form of initialization as arrays:

User default_user = {"Jody", "Jones", 0 };

The values are assigned to the members in the same order as they appear in the declaration. I.e.., it
is positional assignment . Variables whose type is a structure are declared the same way as ordinary
variables:

User current_user;

User default_user;

Having declared a variable of the given structure type, the individual members of that variable are accessed
using the �dot operator�. The syntax is

variable_name.member_name

as in

cin >�> current_user.firstname;

cin >�> current_user.lastname;

current_user.score = 0;

Two variables of the same structure type can be assigned one to the other, and the entire structure is copied
from one to the other:

3

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

current_user = default_user;

is the same as

current_user.firstname = default_user.firstname;

current_user.lastname = default_user.lastname;

current_user.score = default_user.score = 0;

Suppose a text �le has lines consisting of a �rst name, last name, and a score, such as

Elmer Fudd 82

A program fragment like the following could be used to read the data from the �le so that it can be sorted
or processed in other ways.

i n t main ()
{

User scoredata [MAXUSERS] ; // an array o f 100 User s t r u c t u r e s
User temp ; // temp va r i ab l e f o r input
f s t ream f i n ;
i n t l ength = 0 ;

/∗ open a f i l e and a s s o c i a t e with the i f s t r e am f i n ∗/
/∗ sk ipp ing t h i s part . . . ∗/

f i n >> temp . f i r s tname >> temp . lastname >> temp . s co r e ;
whi l e (l ength < MAXUSERS && ! f i n . e o f ()) {

scoredata [l ength] = temp ; // s t ruc t−to−s t r u c t ass ignment ! !
l ength++;
f i n >> temp . f i r s tname >> temp . lastname >> temp . s co r e ;

}

/∗ now proce s s the data ∗/
}

The following function could be used to sort the data by score in ascending order. It uses a simple selection
sort.

void sortByScore (User l i s t [] , i n t l en)
{

i n t sma l l e s t ; // index o f sma l l e s t item in so r t ed part
i n t f i r s t ; // index o f f i r s t item in unsorted part
User temp ;

f o r (f i r s t = 0 ; f i r s t < len −1; f i r s t++) {
// f i nd index o f sma l l e s t element in range f i r s t to N−1
sma l l e s t = f i r s t ;
f o r (i n t k = f i r s t +1; k <= len −1; k++)

i f (l i s t [k] . s c o r e < l i s t [sma l l e s t] . s c o r e)
sma l l e s t = k ;

temp = l i s t [sma l l e s t] ;
l i s t [sma l l e s t] = l i s t [f i r s t] ;
l i s t [f i r s t] = temp ;

4

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

}

}

Structures can contain other structures. There is no restriction on the type of the members of a structure.
They can contain arrays, structures, arrays of structures, and so on.

Example:

s t r u c t Date
{

unsigned i n t year ;
unsigned i n t month ;
unsigned i n t day ;

} ;

s t r u c t User
{

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

Note: If an array is a member of a structure, it should be declared with constant size.

To access the members of a structure that is a member of another structure, you need the dot operator
twice. The following example illustrates how the array elements and substructure members are accessed.
This function reads from an input stream into a call by reference parameter of type User, assuming the data
is stored in the stream in the order

firstname lastname birthmonth birthday birthyear score1 score 2 score3 score4 score5

void get_one_record (i s t ream & instream ,
User & record)

{
instream >> record . f i r s tname >> record . lastname ;
instream >> record . b i r thday . month

>> record . b i r thday . day
>> record . b i r thday . year ;

f o r (i n t i = 0 ; i < 5 ; i++)
instream >> record . s c o r e s [i] ;

}

A program fragment to read a �le of such records into an array of User structures would look like the
following:

i n t main ()
{

User scoredata [MAXUSERS] ;
User temp ;
f s t ream f i n ;
i n t l ength = 0 ;

5

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

/∗ open a f i l e and a s s o c i a t e with the i f s t r e am f i n ∗/
/∗ sk ipp ing t h i s part . . . ∗/

// This code l ook s the same as read ing a s i n g l e va lue . The d e t a i l s
// are hidden in the func t i on c a l l s .
get_one_record (f in , temp) ;
whi l e (l ength < MAXUSERS && ! f i n . e o f ()) {

scoredata [l ength] = temp ; // s t ruc t−to−s t r u c t ass ignment ! !
l ength++;
get_one_record (f in , temp) ;

}

/∗ now proce s s the data ∗/

}

This program fragment demonstrates a subtle point. Although you cannot assign one array to another, as
in this code fragment:

int a[10]={0}, b[10];

b = a;

because it is a syntax error, you can assign structures containing arrays to each other, as in this fragment:

struct S {

int list[10]

};

S a, b;

for (int i = 0; i < 10; i++)

a.list[i] = i;

b = a;

and it will do a copy of the entire a structure to the entire b structure including all elements of their arrays.
In the listing above, the variable temp is assigned to scoredata[length] and this is a structure to structure
assignment of a structure type containing an array.

Classes

In the preceding example, the get_one_record() function is intimately connected to the de�nition of the
User structure above. If that structure is changed, this function must also be changed. In order to access
the members of the User structure, that structure is an explicit call-by-reference parameter of the function.

The connection between the function and the data de�nition is a strong one, but the programmer is free
to screw everything up because, as the program is currently designed, there is no language mechanism to
prevent the programmer from breaking the program by failing to make modi�cations correctly.

In general, the connection between structure de�nition and the functions that act on them is weak and prone
to error. If the de�nition changes, so must every function that acts on instances of it. To reduce this chance,
one should put all functions and the de�nition into a single �le, with clear instructions. The programmer
is still able to foul everything up because there is no language mechanism to prevent the programmer from
breaking the program. This is one reason for the invention of an alternative language model known as
classes.

6

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

A class is a collection of data and functions. It is like a structure with functions in it, except that it is
much more than that. The data and the functions are part of a single entity. When you declare a variable
whose type is a class, it has a special name. It is called an object . Do not get confused between objects and
members. The members of a class are the things de�ned between the curly braces, its elements. They are
like members of a structure. An object of a class is an instance of that class, i.e., a variable whose type is
that class.

Access to the members of a class may be restricted by the class's designer. Every member of a class, whether
a function or data, has either

• public,

• protected, or

• private

access. We will ignore protected access for now and focus on public and private access.

• A public member is one that can be accessed by any function in the program. It is just like a member
of a struct.

• A private member cannot be accessed by any functions in the program except those that are members
of that class (and some others, to be explained later).

In object-oriented programming, we hide the data of our class so that no code can see it except the functions
of the class to which it belongs. This is called data-hiding . We put all related data together into the class's
private data part. This is data encapsulation . The functions that act on this data are the only things
that are made public. These functions are the only means by which other parts of the program can access
or change the data of the class. Only the function prototypes are put in the public part of the class. The
actual de�nitions will be written someplace else. This is because it is no one's business how they work , but
just what they do. This concept of separating how functions work from what they do is called procedural

abstraction . The idea of encapsulating the data and functions that act on it into a single entity is called
data abstraction .

We will introduce class de�nitions by example rather than by formal syntax rules.

In the simplest case, the syntax of a class de�nition is similar to that of a structure de�nition, except that
it includes function prototypes and has access quali�ers:

c l a s s User
{
// The pub l i c i n t e r f a c e :
pub l i c :

void get_one_record (i s t ream & instream) ; // note no User parameter
void print_one_record (ostream & outstream) ; // note no User parameter

// The p r i va t e s t u f f :
p r i va t e :

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ; // an array o f 5 s c o r e s
Date birthday ; // This member i s a l s o a s t r u c t . Members can be ANY

// pr ev i ou s l y DECLARED type .
} ;

7

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Points to Remember:

• The keyword class introduces the de�nition.

• The de�nition ends with a semicolon (just like a struct).

• public: (don't forget the colon) introduces the list of members that have public access. Until
another quali�er is reached, all following members, whether functions or data, have public access.

• The phrase private: (again there is a colon) introduces the list of members that have private access.
Until another quali�er is reached, all following members, whether functions or data, have private access.

• If the class has no access quali�er, then all members default to private access until another access
quali�er is reached. So the above could also have been written as

c l a s s User
{

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ; // an array o f 5 s c o r e s
Date birthday ; // This member i s a l s o a s t r u c t . Members can be ANY

// pr ev i ou s l y DECLARED type .
// The pub l i c i n t e r f a c e :
pub l i c :

void get_one_record (i s t ream & instream) ; // note no User parameter
void print_one_record (ostream & outstream) ; // note no User parameter

} ;

because the members firstname, lastname, scores, and birthday precede the public: section.

• Function members are not de�ned in the class, but only declared. This means only their prototypes
are written in the class de�nition.

• As with structures, array members should have constant size.

The public members of the class are accessed the same way that the members of a structure are accessed,
using the dot operator. For example, a main program could contain the lines

User user1, user2;

user1.get_one_record(cin);

Two instances of the User class named user1 and user2 are declared, and the member function get_one_record()
is called on the user1 instance. We use the language �called on an object� or �called on an instance� to
emphasize that the member function is a member of the class but that when it runs, it is acting on the data
contained in a speci�c instance of that class. In this case get_one_record() will run on user1.

Now we turn to the function de�nitions. Since the functions are declared within the class but not de�ned
there, their de�nitions are written outside of the class de�nition. Because their de�nitions are outside of
the class de�nition, their form is a bit di�erent than that of a function which is not a member function of
a class. This is because a class acts like a namespace; the names declared within the class de�nition have
scope that is limited to that de�nition. In order to use those names outside of the class de�nition, they
must be quali�ed in the same way that names in a namespace must be quali�ed. Thus, the de�nitions of
the get_one_record() and print_one_record() functions would be as shown in the listing below.

// Read a user record from the input stream in to a User s t r u c tu r e
void User : : get_one_record (i s t ream & instream)
{

8

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

instream >> f i r s tname >> lastname ;
instream >> birthday . month // birthday i s the c l a s s member , but i t i s a

>> birthday . day // s t r u c t and the dot i s needed to get to i t s
>> birthday . year ; // month , day , and year members

f o r (i n t i = 0 ; i < 5 ; i++)
instream >> sco r e s [i] ; // s c o r e s i s the c l a s s member too .

}

// Write a User s t r u c tu r e to the output stream , with some formatt ing
void User : : print_one_record (ostream & outstream)
{

outstream << lastname
<< " , " << f i r s tname
<< "\ t " << birthday . month
<< "/" << birthday . day
<< "/" << birthday . year
<< "\ t " ;

f o r (i n t i = 0 ; i < 5 ; i++)
outstream << sco r e s [i] << " " ;

outstream << endl ;
}

It is only the name of the function that gets quali�ed, not the entire prototype. It is incorrect to write the
de�nition like this:

User::void get_one_record(istream & instream)

{

... // INCORRECT

}

because this would mean that void is a name de�ned in the namespace User and get_one_record is a name
de�ned in the global scope.

Observe that the functions do not have a parameter that is an instance of the class, but they access the private
members such as firstname and lastname. This may seem confusing because firstname and lastname are
not written using the dot operator. Think about it though. If you were to try to use the dot operator, what
would be on its left side within this function?

When the function is called, it is called like this:

user1.get_one_record(cin);

In other words, it is called on a particular instance of the User class named user1, and so when it runs, the
member variables firstname, lastname, score and so on are the members of the object user1. This is why
they are written without the dot operator.

Separating Class Interface and Implementation

A class interface, or de�nition, should always be written separately from its implementation and they should
be placed into separate �les. The interface should be placed in a .h �le (a header �le) and its implementation
in a .cpp �le. This is in the spirit of procedural abstraction. The client code, and the people who write
it, do not need to see how the functions are written; they only need to see the prototypes. Because the
implementation �le has to have access to the class de�nition, it needs to include the interface �le usually, so
you should put an #include directive in the .cpp �le.

9

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Imagine that you are writing some class that you would like to distribute to many users. You want to
protect your code because you think it may have value. The way that you do this is by compiling the
implementation �le into an object �le and then distributing the header �le and the the object �le (either in
a .o �le or compiled into a library �le.) The header �le should be thoroughly documented.

Header Guards

As with any header �le, you need to enclose the code in a header guard . The #ifndef directive is used
to prevent multiple includes of the same �le, which would cause compiler errors. #ifndef X is evaluated to
true by the preprocessor if the symbol X is not de�ned at that point. X can be de�ned by either a #define

directive, or by a -DX in the compiler's command-line options. The convention is

#ifndef __HEADERNAME_H #define __HEADERNAME_H

// interface definitions appear here

#endif // __HEADERNAME_H

For those wondering why we need this, remember that the #include incorporates the named �le into the
current �le at the point of the directive. If we do not enclose the header �le in this pair of directives, and
two or more included �les contain an include directive for the header �le, then multiple de�nitions of the
same class (or anything else declared in the header �le) will occur and this is a syntax error.

Constructors

When you declare an object of a class, such as in this declaration of user1:

User user1;

you are telling the compiler to create an instance of the User class named user1. For this particular example,
it may not seem too hard for the compiler to �gure out how to create a variable of this type. But there are
questions. Should the compiler initialize the elements of the scores array to some particular value? Should
the last and �rst names be given a particular initial value?

C++ provides a way to initialize the members of a class object when the object is instantiated. When you
de�ne a class, you have the option to de�ne a special member function called a constructor . A constructor
is a member function that is executed when the object is initialized. Its de�nition is di�erent from that of
an ordinary function in that:

• Constructors have the same name as the class.

• They have no return values and cannot contain a return statement.

As an example prototype for a constructor for our User class:

User(string fname, string lname, Date bday);

de�nes a constructor with three arguments. Notice that there is no return type. Like ordinary functions,
constructors can have arguments. Like ordinary functions, they can be overloaded. Unlike ordinary functions,

• Constructors can have a special feature called an initializer list .

10

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

• Whether or not you create a constructor for a class, it does have one. If you do not provide a constructor
for a class, the compiler will generate one for it. This automatically generated constructor will create
an uninitialized object of that class. If you do provide any constructor for your class, the compiler will
not generate one for it. A constructor that you de�ne is called a user-de�ned constructor .

• If a class must initialize its data members, then the class needs a user-de�ned constructor because the
compiler-generated constructor will not be able to do this.

• Your program cannot call a constructor! It is called by the run-time library when the object must be
initialized.

We illustrate with an example. We enhance the User class to contain two overloaded constructors.

Example

c l a s s User
{
pub l i c :

User () ;
User (s t r i n g fname , s t r i n g lname , Date bday) ;
void get_one_record (i s t ream & instream) ; // note no User parameter
void print_one_record (ostream & outstream) ; // note no User parameter

p r i va t e :
s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

The �rst constructor has no parameters. It is an example of a default constructor . A default constructor
is a constructor that can be called with no arguments.

The second has three arguments. It can be called with a �rst and last name and a date to be assigned to
the birthday member, and it could initialize the scores array to all zeros.

Your program cannot call the constructor. It is called automatically during program execution. When it is
called depends upon the type of variable that it is. For now you can think of variables with block scope as
being instantiated when the declaration within the block is reached.

The above constructors could be used to declare User objects as follows:

User user1; // default constructor invoked

Date bday = {1950,12,30}; // Create a date object

User user2(�Bjarne�, �Stroustrup�, bday); // second constructor invoked

User user3, user4; // default constructor invoked twice

• The default constructor is called when you declare an object of the class in the ordinary way, just by
writing the variable name after the class name, as in the �rst line.

• The non-default constructor is called by writing the class name, then the variable name, and after that
the parenthesized argument list, as in the third line. This is very di�erent from ana ordinary function
call!

The following are illegal ways to declare objects that have user-de�ned constructors:

11

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

User user5(); // ILLEGAL - no parentheses allowed

User user6;

const Date bday = {1900,1,1};

user6.User(�Sam�, �Spade�, bday); // ILLEGAL - user6 already exists and

// cannot call by name on an existing object

User user7 = {�Sam�, �Spade�, bday }; // Cannot initialize using ={}

• You cannot put empty parentheses after the variable name. The compiler sees this as a prototype for
a function. The �rst line for example looks like a function named user5 that returns a User object
and has no parameters.

• You cannot use a constructor to give values to an object that already exists. The object user6 was
created in line 2, and then a constructor was called on it in line 4, but it was already constructed.
That is an error.

• Although you can initialize structures using the curly brace initializer, in general you cannot do this
with classes. The only time you can do this with classes is if they have no private section, roughly.
Just avoid it.

De�ning Constructors

The two constructors above could be implemented as follows.

User : : User ()
{

f i r s tname = "" ;
lastname = "" ;
f o r (i n t i = 0 ; i < 5 ; i++) s c o r e s [i] = 0 ;
b i r thday . year = birthday . month = birthday . day = 0 ;

}

User : User (s t r i n g fname , s t r i n g lname , Date bday)
{

f i r s tname = fname ;
lastname = lname ;
f o r (i n t i = 0 ; i < 5 ; i++) s c o r e s [i] = 0 ;
b i r thday = bday ;

}

Notice that the constructor name is quali�ed since its de�nition is outside of the class de�nition. The
default constructor assigns empty strings to string variables and zeros to integer variables. The non-default
constructor assigns the string arguments to the string member variables, and the Date bday to the birthday
member of the object, using a structure assignment.

We can also de�ne a default constructor in another way. Instead of writing it with no arguments, we can
give default arguments to all of its parameters, so that it can be called with no arguments. For example:

c l a s s User
{
pub l i c :

User (s t r i n g fname = "" , s t r i n g lname = "") ;
User (s t r i n g fname , s t r i n g lname , Date bday) ;
void get_one_record (i s t ream & instream) ;
void print_one_record (ostream & outstream) ;

p r i va t e :
s t r i n g f i r s tname ;

12

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

The �rst constructor can be called with no arguments, in which case lname and fname will be assigned empty
strings.

The following class interface is illegal because there are two constructors that can be called with no arguments,
i.e., two default constructors.

c l a s s User
{ // ILLEGAL CLASS DEFINITION
pub l i c :

User () ; // d e f au l t con s t ruc to r
User (s t r i n g fname = "" , s t r i n g lname = "") ; // d e f au l t con s t ruc to r
User (s t r i n g fname , s t r i n g lname , Date bday) ;
void get_one_record (i s t ream & instream) ;
void print_one_record (ostream & outstream) ;

p r i va t e :
s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

An important rule to remember is that a class cannot have more than one default constructor.

Initializer Lists

Constructors are di�erent from ordinary functions in another way: they can have a special section called an
initializer section , or initializer list , in their de�nitions. A simple one looks like this:

User : User (s t r i n g fname , s t r i n g lname , Date bday) :
b i r thday (bday) , f i r s tname (fname) , lastname (lname)

{
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
}

An initializer list is a comma-separated list of initializations introduced by a colon, immediately after the
function header and before the function block. An initialization is not an assignment operation. It looks
a bit like a function call. You write the name of a member variable from the class, followed by a pair of
parentheses, between which is the expression that initializes that variable. Its form is

member-variable-name(initial-value)

In the above example

firstname(fname)

is an initialization. Its e�ect is to copy the value of fname into firstname, as if it were an assignment
operation, but in fact it is more generally a call to a special initializer for the variable. You can think of it
like an assignment operation, but it is not. In general, the members of a class can be objects of other classes,
as we will see later, and the initializer will invoke their constructors when possible. Note that the birthday
member, which is a struct, has no �constructor� but we can initialize it just the same using

13

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

birthday(bday)

because the compiler creates what is e�ectively a constructor for it.

Two important thing to remember about initializer lists are that

• they are executed before the body of the constructor,

• the order in which the individual initializations take place is not the order in which they are listed but
the order in which they appear in the class's declaration, which is called their declaration order .

The member variables will be assigned initial values in the following order:

• firstname gets a copy of fname

• lastname gets a copy of lname

• birthday gets a copy of bday

We will say more about initializer lists later.

Explicit Constructor Calls

There is another way for constructors to be invoked, using an explicit constructor call. This is something you
may occasionally have to do, but it is an advanced idea. For now we just note it in passing. The following
is an alternative way to declare and initialize an object of the User class:

User newuser;

newuser = User(�Sam�, �Spade�, bday);

Let us break down what this means. The object newuser is declared in the �rst line. The default constructor
is used to create newuser. It has whatever values are given to it by the default constructor. In the second
line, the non-default constructor for the User class is invoked explicitly, with what looks like a function call
(even though I said that you can never do this earlier). But this explicit call to the constructor is not on any
object. It creates an object with no name, called an anonymous object . That anonymous object is then
copied into the newuser object.

To confuse things even further, you can invoke a default constructor explicitly, as in

User newuser;

newuser = User();

This is di�erent from the illegal

User newuser(); // remember that this is illegal!!

because the empty parentheses follow the class name, not the object name.

14

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Classes with Class Member Variables

Classes can have members of any type. The members can be members of another class. We can modify our
example by turning the Date structure into a class to demonstrate.

c l a s s Date
{
pub l i c :

Date (i n t year = 1972 , i n t month = 1 , i n t day = 1) ;
void s e t (unsigned i n t y , unsigned i n t m, unsigned i n t d) ;
i n t getday () ;
i n t getmonth () ;
i n t getyear () ;

p r i va t e :
unsigned i n t year ;
unsigned i n t month ;
unsigned i n t day ;

} ;

Now Date is a class with a single constructor that can be called with no arguments. If it is called with no
arguments, the date is set to January 1, 1972. Assume that our User class remains the same. It now has a
member that is a member of the Date class. We are forced to rewrite our member functions because they
access the members of the Date class, which are now private. The User class is not allowed to access the
private members of the Date class. Just because it contains a Date member does not give it this privilege.
Its functions are not member functions of the Date class.

It has to use the public member functions of the Date class to do its work. They now become

User : : User ()
{

f i r s tname = "" ;
lastname = "" ;
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
b i r thday . s e t (0 , 0 , 0) ;

}

User : User (s t r i n g fname , s t r i n g lname , Date bday) :
b i r thday (bday) , f i r s tname (fname) , lastname (lname)

{
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
}

The �rst constructor calls the set() member function of the Date class to set the date of its birthday

member. The second constructor did not change. A very subtle thing is going on in the second constructor.
The initializer list

birthday(bday), firstname(fname), lastname(lname)

has an initialization of the birthday member. This has to invoke an initializer for the Date class. There is
only one user-de�ned constructor for this class and its prototype looks like

Date (int year = 1972, int month = 1, int day = 1);

15

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

If we were calling this constructor, we would have to ahve three integer arguments, but we do not. We just
have a Date argument, so this is not the constructor that is used to perform the initialization. What is?
The compiler generates an initializer that copies the members of bday into birthday.

We could also create a third User class constructor with the prototype

User(string firstname, string lastname, int y, int m, int d);

and implement it like this:

User : : User (s t r i n g f i r s tname , s t r i n g lastname , i n t y , i n t m, i n t d) :
b i r thday (y ,m, d) , fname (f i r s tname) , lname (lastname)

{
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
}

explicitly calling the constructor of the Date class on the birthday member of the User class. Although
this makes the User class a bit more �exible, it breaks the data abstraction because the User class is given
values for the private member variables of the Date class in its own constructor.

const Member Functions

Every member function of a class falls into one of two categories: either it modi�es some data member of
the class or it does not. If it does not modify any member of the class, it is called an accessor function
� it retrieves data from the class object but does not modify it. Usually a class will have several accessor
functions. If it modi�es any part of the class object, it is called a mutator function.

You can tell the compiler and the reader of the code that a function is an accessor by putting the const

keyword after the parameter list in the function's prototype as well as in its de�nition. The const keyword
used in this way says that the function is guaranteed not to modify the object on which it is called. To
illustrate, we will supplement our Date class to use the const modi�er wherever we can:

c l a s s Date
{
pub l i c :

Date (i n t y = 1972 , i n t m = 1 , i n t d = 1) ;
void s e t (unsigned i n t y , unsigned i n t m, unsigned i n t d) ;
i n t getday () const ;
i n t getmonth () const ;
i n t getyear () const ;

p r i va t e :
unsigned i n t year ;
unsigned i n t month ;
unsigned i n t day ;

} ;

The three functions that do not change the object are the getX() type functions: getday(), getmonth(),
and getyear(). They are marked as const. We can now modify the User class interface as well:

c l a s s User
{
// The pub l i c i n t e r f a c e :
pub l i c :

16

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

User () ;
User (s t r i n g f i r s tname , s t r i n g lastname , Date bday) ;
User (s t r i n g f i r s tname , s t r i n g lastname , i n t y , i n t m, i n t d) ;
s t r i n g f i r s tname () const ;
s t r i n g lastname () const ;
i n t h i gh sco r e () const ;
i n t lowscore () const ;
void getb i r thday (unsigned i n t &m, unsigned i n t &d) const ;
void read_record (i s t ream & instream) ;
void write_record (ostream & outstream) const ;

// The p r i va t e s t u f f :
p r i va t e :

s t r i n g fname ;
s t r i n g lname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

Remember to put the const keyword after the header in the function de�nitions as well.

If you tell the compiler that the getbirthday() member function of the User class is const, but you do not
mark the functions that it calls on that birthday member as const, then the compiler will issue an error
message. This is because the compiler assumes that any function not marked const may modify the object
on which it is called. The getbirthday() function looks like this

void User : : ge tb i r thday (unsigned i n t &m, unsigned i n t &d) const
{

m = birthday . getmonth () ;
d = birthday . getday () ;

}

If getmonth() and getday() are not const member functions of the Date class, the compiler will assume
that they modify the Date object, birthday, on which they are called. Since getbirthday() is supposed to
be a const function, this contradicts the requirement, so the compiler issues an error message.

You should get into the habit of marking every accessor as a const member function.

Static Member Variables

A member of a class, whether a data member or a member function, can be designated as static by preceding
its declaration with the keyword static. Static data members are a bit easier to understand so we will start
with them. A static data member of a class is one that is not a part of any of the objects of the class,
but is instead a single member that they all share. It is like a global variable in a program except that it is
restricted to be "global" among the objects of the class.

To declare that a data member is static, you have to do two things:

1. You must precede its declaration within the class with the static keyword (before the type and any
other quali�ers such as const), and

2. You must put its de�nition outside of the class de�nition, in a surrounding namespace scope, without
the static keyword but with its name quali�ed by the :: operator.

As this is surely confusing, here is an example.

17

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Example

class Myclass

{

public:

static int counter; // declares counter to be static

static const int maxvalue = 10; // a static constant member

int sum;

};

int Myclass::counter; // defines Myclass::counter

const int Myclass::maxvalue; // defines Myclass::maxvalue

In this example, the variables counter and maxvalue are static. The declarations within the class are just
declarations, not a de�nitions. (In this example, you cannot see the di�erence; trust me for now that there
is a di�erence.) Each must be de�ned outside of the class but within a surrounding namespace scope. The
simplest thing to do is to put its de�nition in the same �le, so that Myclass and Myclass::counter and
Myclass::maxvalue are de�ned in �le scope (known as the global namespace.)

If we declare a couple of objects of class Myclass,

Myclass obj1, obj2;

and each will have its own copy of sum, but they will share counter.

obj1.sum = 1;

obj2.sum = 2;

obj1.counter = 0;

obj2.counter = 20;

cout <�< obj1.counter <�< endl; // outputs 20

Notice that we accessed counter using the member access syntax (i.e., using the dot operator) on speci�c
classes. Because counter does not belong to any one object but is really like a part of the class itself, we can
also access it using the syntax Myclass::counter. So we can also write

Myclass::counter = 20;

obj2.counter += 10;

cout <�< Myclass::counter <�< endl; // outputs 30

Does this look a bit familiar? Recall how, when formatting output on an output stream, you used the
instructions

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

to display numbers as �xed decimals. The ios::fixed argument is a static member of the class known as
ios.

The maxvalue member is a constant member. We are allowed to initialize it within the class declaration.
We could have also initialized it in the de�nition ouside of the class de�nition.

A static member function is a member function that cannot access the non-static parts of the class. This
implies that it can only access the static data members of the class. If multiple objects share a static data
member, they each have the ability to update that member. Although this is possible, it is better if they all
call a function that is not called on any particular object. This is one use of a static member function. In
the above example, we could de�ne a static member function that resets the counter:

18

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

class Myclass

{

public:

static int counter; // declares counter to be static

static const int maxvalue = 10; // a static constant member

static void reset(); // a static function that resets counter

int sum;

};

int Myclass::counter; // defines Myclass::counter

const int Myclass::maxvalue; // defines Myclass::maxvalue

void Myclass::reset() : counter(0) {}

The keyword static is not repeated when the function is de�ned.

19

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

A Bit More About I/O in C++

Member Functions of the istream Class

The extraction operator is of limited use because it always uses whitespace to delimit its reads of the input
stream. It cannot be used to read those whitespace characters, for example. The istream class, has an
assortment of other methods of input that are useful for di�erent types of tasks. Remember that all input
�le streams (ifstream objects), all iostream objects (cin, cout, and cerr), and all input string streams
(istringstream objects) are types of istream objects, meaning that they �inherit� all public member
functions (and other public and protected members) from istream. This is a very short tutorial on some of
the member functions of the istream class that may prove to be useful.

The get() Member Functions

The get() member function has six overloaded versions, but only four will be discussed here. The �rst two
versions are for reading single characters at a time.

One Character at a Time

The �rst of these is

int get();

This extracts a single character from the stream and returns its value cast to an integer. It does not return
a char because the char type is unsigned, and when get fails, it might return -1, depending upon the
implementation. get() reads every single character: blanks, tabs, newlines, and so on, one at a time. When
there are no characters, the eof bit is set. This means that you can use this form of get() as follows.

i n t main ()
{

char c ;
whi l e ((c = c in . get ()) && ! c in . e o f ())

cout << c ;
re turn 0 ;

}

This little program will copy the standard input stream to the standard output stream. If you compile this
into a command named copy, for example, and type

copy < oldfile > newfile

it will make a copy of oldfile in newfile.

A second overload has the signature

istream& get (char& ch);

1

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

This also extracts a single character from the stream, but does not return it. Instead it stores it in its
call-by-reference parameter ch. Like the �rst, if the end of �le is reached, it sets the eof bit and does not
alter the value of ch. The preceding program could be written using this version of get() as follows.

i n t main ()
{

char c ;
whi l e (c in . get (c) && ! c in . e o f ())

cout << c ;
re turn 0 ;

}

Reading Strings

The two remaining overloads can be used to read data into C strings, not C++ strings! Unlike the
versions that read one character at a time, these reads are delimited. This means that they read until either
they read a certain number of characters or they see a delimiter character, which is by default a newline,
and they do not remove that delimiter from the input stream. Because the delimiter is not removed from
the input stream, the next time they are called on that stream, they will read nothing because the delimiter
is the next character they would read. Therefore, for the next call to read beyond the delimiter, it must be
removed by some other means. These functions are really more useful when it is expected that the delimiter
will not be found, and that �nding the delimiter is the exceptional case. The examples will clarify this point.

There are two prototypes:

istream& get (char* str, streamsize n);

istream& get (char* s, streamsize n, char delim);

The only di�erence between these is that the �rst uses the newline character as the delimiter and the second
lets the caller choose the delimiter. They both extract characters from the input stream and store them into
the C string beginning at str. Characters are extracted until either (n - 1) characters have been extracted
or the delimiting character is found. In other words, if the delimiter is reached before (n-1) characters have
been read, reading stops, or if (n-1) characters have been read but the delimiter has not been reached,
reading also stops. In either case the string is padded with a NULL byte after the last character. The
extraction also stops if the end of �le is reached in the input sequence or if an error occurs during the input
operation. If get() extracts no characters, it sets the failbit on the stream.

If the delimiter is found, it is not extracted from the input sequence. The next call to this version of the get()
function will return nothing, will not remove it, and will set the failbit to true preventing any further input
operations on the stream. If you want to force this character to be extracted, you must use the getline()
member function.

The point of providing a second argument is to prevent the C string from being over�owed. You should
always set it to no more than the size of the array pointed to by the �rst argument.

The number of characters read by any of the previous input operations can be obtained by calling the
member function gcount(). The gcount() function is useful when using the string-reading versions of
get() because you can test when they have stopped reading anything. The next program will read a single
line of text, breaking it up into chunks of size 10 with a ':' between the chunks.

i n t main ()
{

char s t r [1 0] ;
c in . get (s t r , 1 0) ;

whi l e (c in . gcount () > 0) {
cout << s t r << " : " ;

2

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

c in . get (s t r , 1 0) ;
}
cout << endl ;

r e turn 0 ;
}

The following program shows how to use get() properly when either stopping criterion may occur: a
delimiter was found or (n-1) characters were read. It uses getline() to read the delimiter, and it clears the
failbit when it reads nothing.

#inc lude <iostream>
#inc lude <sstream>
#inc lude <s t r i ng>
us ing namespace std ;

#de f i n e CHUNKSIZE 14

i n t main ()
{

char s t r [CHUNKSIZE] ;
char junk [2] ;
i s t r i n g s t r e am i s s ;
i n t i = 0 ;

s t r i n g s t rda ta =
"12345678901234\n"
"123456789012345678\n"
"123456\n"
"1234567890123\n"
"123456789012\n"
"1234567890123456789012345678\n"
"12345678901\n"
"123456789012345678901\n"
"12345678901234567\n"
"1234567890123\n " ;

i s s . s t r (s t rda ta) ; // Make i s s a stream l i k e a text f i l e with t h i s s t r i n g

whi l e (! i s s . e o f ()) {
i s s . get (s t r , CHUNKSIZE) ;
// i f get () read no charac te r s , i t s e t the f a i l b i t , so we c l e a r i t
// Otherwise we p r in t what we got
i f (i s s . gcount () == 0)

i s s . c l e a r () ;
e l s e

cout << i << " " << s t r << endl ;

// I f gcount < CHUNKSIZE−1 we found the de l im i t e r , so remove i t
i f (i s s . gcount () < CHUNKSIZE−1)

i s s . g e t l i n e (junk , 2) ;
i++;

}
cout << endl ;
r e turn 0 ;

}

3

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

The output is the sequence of chunks that are read by successive calls to get(). A line of output can never
be larger than the chunk size minus one, and will be smaller when the newline is found �rst. After each call
to get() we check whether get() read nothing. If it did, it set the failbit, and no input will be possible on
the stream after that, so we must clear it.

After that we check whether (CHUNKSIZE-1) chars were read. If less, it found the delimiter, so getline() is
used to extract it. Because the last character in the stream is a newline, getline() will read it. The next
call to get() will read nothing, and iss.gcount() will be less than (CHUNKSIZE-1), causing getline() to
run again. This time getline() will encounter the end-of-�le condition and set the eofbit on the stream
and the loop will exit.

The getline() Member Functions

The getline() functions that are members of the istream class are not the same as the global getline()
function. The ones that are part of istream are called on an istream object, just like the get() functions
above, e.g.

char str[10];

cin.getline(str, 10);

The global getline() function is called with a stream object as its argument, and has a C++ string
argument:

string s;

getline(cin, s, 10);

It is easy to get these confused. The distinction, once again:

• member function needs C string

• global function needs C++ string

The getline() member functions of the istream class are similar to the get() member functions that take a
C string argument, except that they extract the delimiter and they set the failbit under di�erent conditions.
Their prototypes are

istream& getline (char* str, streamsize n);

istream& getline (char* str, streamsize n, char delim);

Unlike the get() functions, these work nicely for reading text �les line by line, and they are suitable for
any type of reading tasks where the text is delimited and the delimiter must be read and discarded. The
only caveat is that the size of the read should be large enough that the delimiter is found within the �rst
(n-1) characters, otherwise you have to deal with the failbit being set. Thus, if you know the line size, for
example, is never larger than 200 characters, call it with

cin.getline(str, 200);

Now the details. Calling

input.getline(str, n, delim) ;

4

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

where input is an input stream, str is a C string, and delim is some character used as a delimiter, will
extract characters from the stream until one of three conditions occurs:

1. end-of-�le occurs on input, in which case it sets the eofbit on the input stream;

2. the delimiter delim is the next available input character, in which case the delimiter is extracted but
not stored into str;

3. n is less than one or (n-1) characters are stored into str, in which case the failbit is set on the input
stream.

These checks are made in the stated order. This way, if there are (n-1) characters followed by a delimiter,
it will not set the failbit, because it �rst �nds the delimiter before checking whether (n-1) characters have
been stored.

The implication of the above is that when you use getline(), you have to check whether it stopped reading
because it found the delimiter, or it stopped because it read (n-1) characters, or it reached end-of-�le. The
following examples show how to do this.

The �rst program reads from an input �le speci�ed on the command line and outputs a copy of that �le on
the standard output, i.e., the terminal.

#inc lude <iostream>
#inc lude <fstream>
#inc lude <c s td l i b >
us ing namespace std ;

/∗ copy from f i l e argument to stdout ∗/
i n t main (i n t argc , char ∗ argv [])
{

char bu f f e r [1 0] ;
i f s t r e am f i n ;

i f (argc < 2) {
c e r r << "Usage : " << argv [0] << " f i l e \n " ;
e x i t (1) ;

}

f i n . open (argv [1]) ;
i f (! f i n) {

c e r r << "Could not open" << argv [1] << " f o r read ing . \ n " ;
e x i t (1) ;

}

f i n . g e t l i n e (bu f f e r , 1 0) ;
whi l e (! f i n . e o f ()) {

cout << bu f f e r ;
i f (f i n . f a i l ())

f i n . c l e a r () ;
e l s e

cout << endl ;
f i n . g e t l i n e (bu f f e r , 1 0) ;

}
cout << endl ;
r e turn 0 ;

}

5

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

It uses a string of size 10, which we will call buffer, to store the characters read by getline(). Therefore,
we repeatedly call getline() with 10 as its streamsize argument.

After the appropriate error-checking, it enters a loop in which it checks for end-of-�le upon entry, and
repeatedly calls getline(). It checks whether the failbit was set by the immediately preceding call. If it was
not set, this means that getline() found the delimiter, so the program prints a newline (since getline()

does not store it into buffer). If the failbit was set, it implies that 9 characters were read but no delimiter
was found, and all we have to do is unset the failbit using the clear() member function of the istream

class. It cannot be the case that we reached end-of-�le, otherwise we would not be in the loop, so clearing
the �ags is safe here.

An alternative to the loop in the above listing is the following:

whi l e (! f i n . e o f ()) {
f i n . g e t l i n e (bu f f e r , 1 0) ;
cout << bu f f e r ;
i f (! f i n . e o f () && f i n . f a i l ())

f i n . c l e a r () ;
e l s e

cout << endl ;
}
re turn 0 ;

Instead of calling getline() before entering the loop and again at the bottom, we can call it upon entering
the loop. But in this case we cannot simply clear the �ags if the failbit is set, because the eofbit might be set
by the last call to getline(). Therefore the condition for clearing is slightly di�erent. Also, we can remove
the last output of a newline when the loop ends, since that is now super�uous.

6

Software Design Lecture Notes Prof. Stewart Weiss
Introduction to Vectors

Vectors

Vectors are one of the container class templates defined in the Standard Template Library. To
understand vectors, you need to understand template classes.

There are three ways to declare a vector.

Syntax
#include <vector> // must include this file
using namespace std; // might need this as well

vector<base type> arrayname; // contains 0 cells
vector<base type> arrayname(size expression);
vector<base type> arrayname(size expression, value);
 // contains size-expression cells, each initialized to value

The expression can be any expression that evaluates to a number. If the number is not an integer,
it is truncated.

Examples
vector<int> grades(5,0); // vector of 5 ints, all 0
vector<string> trees(50); // vector of 50 strings
vector<Point> hexagon(6); // vector of 6 Points
 // because Point had a default constructor)

or, more interestingly:

cout << "Enter the number of sides:";
cin >> n;
vector<Point> polygon(n);
vector<double> chordlengths(n*(n+1)/2);

But,

vector<MyClass> Object(2);

will be illegal if MyClass does not have a default constructor.

To access an individual element, use the vector name and an index:

grades[0] = 100;
cin >> grade[1];
cout << "The grade is " << grade[1];
for (int i = 0; i < 5; i++)
 cin >> grades[i];

To initialize a vector to 0:

for (int k = 0; k < 5; k++)
 grades[k] = 0;

To compute the average of the values:

1

Software Design Lecture Notes Prof. Stewart Weiss
Introduction to Vectors

sum = 0.0;
for (int k = 0; k < 5; k++)
 sum += grades[k];
average = sum/5;

Example

This simulates rolling a pair of dice with NSIDES many sides 20,000 times and counts how many
times each possible sum (2,3,4,5,..., 2*NSIDES) occurs.

#include <vector>

// use vector to simulate rolling of two dice
const int NSIDES = 4;
int main()
{
 int sum, k;
 Dice d(NSIDES); // Dice defined elsewhere
 vector<int> diceStats(2*NSIDES+1); // room for largest sum
 int rollCount = 20000;

 for (k = 2; k <= 2*NSIDES; k++) // initialize to zero
 diceStats[k] = 0;

 // could have done this at declaration time
 for(k=0; k < rollCount; k++) // simulate all the rolls
 { sum = d.Roll() + d.Roll();
 diceStats[sum]++;
 }

 cout << "roll\t\t# of occurrences" << endl;
 for(k=2; k <= 2*NSIDES; k++)
 cout << k << "\t\t" << diceStats[k] << endl;
 return 0;
}

vector parameters

Vectors can be passed as parameters to functions.

int Sum(const vector<int> & numbers, int length)
{
 sum = 0;

for (int k = 0; k < length; k++)
 sum += numbers[k];

 return sum;
}

void Shuffle(vector<string> & words, int count)

2

Software Design Lecture Notes Prof. Stewart Weiss
Introduction to Vectors

{
 RandGen gen; // for random # generator
 int randWord;
 string temp;
 int k;
 // choose a random word from [k..count-1] for song # k

 for (k=0; k < count - 1; k++)
 { randWord = gen.RandInt(k,count-1); // random track
 temp = words[randWord]; // swap entries
 words[randWord] = words[k];
 words[k] = temp;
 }
}

Collections and Lists Using vectors

A vector's size is not the same as its capacity. Suppose we have

vector<string> trees(8);

and we have filled it with 6 tree names as follows.

 0 1 2 3 4 5 6 7

The capacity is 8 but the size is 6. We don't have to keep track of this in our program if we use
the methods of the vector class.

The vector class has methods of growing itself and keeping track of how big it is.

vector::size() // returns current size
vector::push_back(value) // adds another value to a tvector
 // and if it does not have enough
 // cells it doubles capacity

vector<double> prices(1000); // prices.size() == 1000
vector<int> scores(20); // scores.size() == 20
vector<string> words; // words.size() == 0;

words.push_back("camel"); // size() == 1, capacity() = 2
words.push_back("horse"); // size() == 2, capacity() = 2
words.push_back("llama"); // size() == 3, capacity() = 4
words.push_back("okapi"); // size() == 4, capacity() = 4
words.push_back("bongo"); // size() == 5, capacity() = 8

3

birch oak ebony cherry maple ash

Software Design Lecture Notes Prof. Stewart Weiss
Introduction to Vectors

size() always returns current size, not the number of elements added by push_back. If a
vector is initially size 0, and push_back is used exclusively to grow it, size() will return the
number of elements pushed onto it.

vector::reserve(size expression)
//allocates an initial capacity but keeps size at 0:

vector<int> votes;
votes.reserve(32000); size() == 0 but capacity == 32000
vector<int> ballots(32000) size() = 32000 and capacity == 32000
for (int i = 0; i < 100; i++){
 cin >> x;
 votes.push_back(x);
} // what is capacity now?

Vector Idioms: Insertion, Deletion, Searching

Typical operations in data processing are:

• insert into a vector (or array)
• delete data from a vector
• search a vector for data

Building an unsorted vector

for (int i = 0; i < 100; i++){
 cin >> x;
 v.push_back(x);
}

or, reading from a file:
 vector<double> v;
 ifstream fin;
 fin.open("inputdata.txt");
 double x;
 while (fin >> x) {
 v.push_back(x);
 }

The data are in the order read from the file now.

Deleting from a vector using pop_back()

The pop_back() member function of the vector class deletes the last element of a vector and
reduces the size by 1. It does not affect capacity. E.g., assume
vector <double> v(5) contains 8,4,2,10,3

v.pop_back(); => 8 4 2 10

4

Software Design Lecture Notes Prof. Stewart Weiss
Introduction to Vectors

v.pop_back(); => 8 4 2
v.pop_back(); => 8 4

If the vector is unsorted, deletion from position pos is easy. We overwrite the item in position
pos by copying the last element into v[pos], then we delete the last element with
pop_back():

 int lastIndex = v.size() – 1;
 v[pos] = v[lastIndex];
 v.pop_back();

Searching an unsorted vector (linear search)

To search an unsorted vector it is necessary to look through the entire vector. To look for the cell
with the value key:

int k;
for (k = 0; k < v.size(); k++){
 if (v[k] == key)
 break;
}
if (k < v.size())
 // not found

 Or, the function:
void LinSearch(const vector<double> & v, double key, int & loc)
{
 int k;
 for (k = 0; k < v.size(); k++){
 if (v[k] == key)
 loc = k;
 return;
 }
 loc = -1;
}

Sorted vectors
Vectors can be built in sorted order by inserting data in the right position during creation.
This makes later searching faster but makes creation a little slower.
Idea:
 while there is more data available
 read the next data item
 let k be the index of the largest element of
 the vector that is smaller than the item
 put this data item into position k+1, shifting
 all larger elements of the vector up one cell

This is one way to do it. The author does it slightly differently. To be more precise
declare

5

Software Design Lecture Notes Prof. Stewart Weiss
Introduction to Vectors

 vector<double> sortedNums;
 double s;
 while there is more data available
 let count = sortedNums.size(); //current size of vector
 cin >> s; //read the next data item s
 sortedNums.push_back(s) //push onto the end of vector
 // now it has count+1 items
 let k = count;
 while (0 < k && s <= sortedNums[k-1]) {
 sortedNums[k] = sortedNums[k-1];
 k--;
 }

Use the example data
 4.5 10 6.3 3.0 1.0

Suppose we have a sorted vector with some large number of items. To delete the item at index n,
0 <= n < size(), we can shift items n+1 to size()-1 down 1 and delete the last:

for (k = n; k < a.size()-1; k++)
 a[k] = a[k+1];
a.pop_back();

More generally, a function to delete an item from an int vector

void delete(vector<int> & a, int p)
{
 int k;
 if ((p < 0) || (a.size() <= p))
 return;

 for (k = p; k < a.size()-1; k++)
 a[k] = a[k+1];
 a.pop_back();
}

Searching a sorted vector

If a vector is sorted we can use more efficient method called binary search.

Binary Search
int bsearch(const vector<string>& list, const string& key)
// precondition: list.size() == # elements in list
// postcondition: returns index of key in list, -1 if key not found
{
 int low = 0; // leftmost possible entry
 int high = list.size()-1; // rightmost possible entry
 int mid; // middle of current range
 while (low <= high)

6

Software Design Lecture Notes Prof. Stewart Weiss
Introduction to Vectors

 {
 mid = (low + high)/2;
 if (list[mid] == key) // found key, exit search
 { return mid;
 }
 else if (list[mid] < key) // key in upper half
 { low = mid + 1;
 }
 else // key in lower half
 { high = mid - 1;
 }
 }
 return -1; // not in list
}

Example

Search for each of: "ash" "kapok" "elm" in

7

ash birch cherry dogwood ebony imbuya kapok maple

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

Pointers and Dynamic Variables

Motivation

Sometimes when you write a program you do not know at compile-time how large an array needs to be,
or how many instances of a class you might need because it depends what happens when the program is
running. For example, imagine a program that asks a user interactively to enter some data that must be
stored in an array, but the program does not know how many items will be entered. If the array is declared
of �xed size at compile time, either it can be too small or too large, depending on how much data is entered.
C and C++ have (di�erent) instructions for solving this problem. We look at C++'s solutions here.

Pointers

A pointer variable contains a memory address as its value . Normally, a variable contains a speci�c
value; a pointer variable, in contrast, contains the memory address of another object. We say that a pointer
variable, or pointer for short, points to the object whose address it stores.

Pointers are declared to point to a speci�c type of object and can point to objects of that type

only . The asterisk * is used to declare pointer types.

int* intptr; // intptr can store the address of an integer variable

double* doubleptr; // doubleptr can store the address of a double variable

char* charptr; // charptr can store the address of a character

We say that intptr is �a pointer to int� and that doubleptr is �a pointer to double.� Although we could
also say that charptr is a pointer to char, we say instead that charptr is a string. Pointers to char are
special.

The * is a pointer declarator operator. In a declaration, it turns the name to its right into a pointer to the
type to the left. It is a unary, right associative operator. It does not matter whether you leave space to the
right or left of it, as demonstrated below. These three are equivalent:

int* intptr;

int * intptr;

int *intptr;

In general, if T is some existing type, T* is the type of a variable that can store the address of objects of
type T, whether it is a simple scalar variable such as int, double, or char, or a more structured variable
such as a structure or a class:

struct Point { int x, int y };

Point* Pointptr;

You can even write a declaration like this:

struct Spline

{

int x;

int y;

Spline *nextpoint;

};

1

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

which we will not even attempt to explain here (since it is a topic for the sequel to this class). What do you
think it de�nes?

Pointers are even more general than this. The following are all valid declarations that declare pointers to
many di�erent kinds of things.

int *intp; // pointer to an integer memory cell

char *pc; // pointer to char, also known as a C string

int * N[10]; // N is array of pointers to int (NOT POINTER TO ARRAY OF INTS)

int (*B)[10]; // B is a pointer to an array of 10 ints

int* f(int x); // f is a function returning a pointer to an int

int (*pf)(int x); // pf is a pointer to a function returning an int

int* (*pg)(int x); // pg is a pointer to a function returning a pointer to an int

Notice the di�erence in how an array of int* is declared versus a pointer to an array of ints, and how a
pointer to a function is declared versus a function that returns pointers to other things.

The typedef statement is useful for declaring types that are pointers to things:

typedef int* intptr;

intptr intp, intq; // p and q are both pointers to int

intptr func(intptr np); // func returns a pointer to an int

This is even more interesting:

typedef bool (*MessageFunc) (char* mssge);

// This defines a MessageFunc to be a pointer to a function with a

// null-terminated string as an argument, returning a bool.

A MessageFunc is a pointer to a function. This makes it possible to pass one function to another, as in the
following handle_error() function, which calls f() with a message and either exits the program or not
depending on the boolean value returned by f().

void handle_error(MessageFunc f, char* err_mssge)

{

if (f(err_mssge))

exit(1);

}

The address-of operator, &, can be used to get the memory address of an object. It is the same symbol as
the reference operator, unfortunately, and might be a source of confusion. However, if you remember this
rule, you will not be confused:

If the symbol "&" appears in a declaration , it is declaring that the variable to its right is a reference
variable, whereas if it appears in an expression that is not a declaration , it is the address-of operator
and its value is the address of the variable to its right.

int x = 200;

int y = 100;

int &ref = x; // a declaration, so & is the reference operator

int *p = &x; // appears on right of =, so it is in an

// expression and is address-of operator; p stores address of x

p = &y; // address-of operator; now p stores the address of y

int &z = y; // reference operator; z is an alias for y

2

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

Dereferencing Pointers

Accessing the object to which a pointer points is called dereferencing the pointer . The "*" operator,
when it appears in an expression, dereferences the pointer to its right. Again we have a symbol that appears
to have two meanings, and I will shortly give you a way to remain clear about it.

Once a pointer is dereferenced, it can be used as a normal variable. Using the declarations and instructions
above,

p = &y;

cout <�< *p; // p contains address of y, which stores 100,

// so 100 is printed. p has been dereferenced.

cin >�> *p; // p is dereferenced before the input operation.

// *p is the variable y, so this stores the input into y.

*p = *p + *p; // just like y = y + y

*p = *p * *p; // just like y = y * y

(*p)++; // * has lower precedence than the post-increment ++

// so this increments *p which is y so y = 101

int a[100] = {0}; // a is an array of 100 ints, initially all 0

int *q = &a[0]; // q is the address of a[0]

q++; // q is address of a[1]

*q = 2; // now a[1] contains 2

cout <�< *q++; // increment q (so q is address of a[2]) and print a[2]

The dereference operator and the address-of operator have higher precedence than any arithmetic operators,
except the increment and decrement operators, ++ and --.

If you think about a declaration such as

int * p;

and treat the * as a dereference operator, then it says that *p is of type int, or in other words, p is a variable
that, when dereferenced, produces an int. If you remember this, then you should not be confused about
this operator.

Relationship Between Pointers And Arrays

An array name is a constant pointer; i.e., it is pointer that cannot be assigned a new value. It always contains
the address of its �rst element.

int list[5] = {2,4,6,8,10}; // list is the address of list[0]

cout <�< *list <�< endl; // prints 2 because *list is the contents of list[0]

int * const aPtr = list; // aPtr has the same address as list

// &list[0] is stored in aPtr.

aPtr[2] += 10; // adds 10 to list[2]

The fact that array names are essentially constant pointers will play an important role in being able to create
arrays of arbitrary size while the program is running, rather than by declaring them statically (at compile
time).

This is all we need to know for now in order to be able to talk more about C strings and the C string library.

3

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

Classes, Structures, and Pointers

There is a special notation that is used when a dereference operator is combined with a member access
operator. Suppose we have the following declarations:

struct Point

{

double x;

double y;

};

Point * pptr;

and we dynamically allocate a Point variable using pptr :

pptr = new Point;

Then to access the x member of the Point pointed to by pptr, we could write either of these:

(*pptr).x

pptr->x

They are equivalent. The arrow operator -> dereferences the pointer to its left and accesses the member
of the structure or class to which it points to its right, so pptr->x is a shortcut for (*pptr).x.

The same thing is true for classes. Given

class CPoint

{

public:

void print(ostream & out) const;

private:

double x;

double y;

};

CPoint * cpptr;

we would write

cpptr->print(fout);

to call the print() member function of the class on the dynamic object pointed to by cpptr.

The this Pointer

C++ de�nes a special pointer variable that is part of every class, called this. The this pointer points to
the object on which a function is being called. In essence it points to the object itself. A few examples will
make this clearer.

4

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

c l a s s Simple
{

pub l i c :
Simple ()
Simple ∗ addr ()
void s e t (double x)
double va l ()

p r i va t e :
double x ;

} ;

Simple∗ Simple : : addr ()
{

re turn t h i s ; // re turn a po in t e r to the ob j e c t i t s e l f
}

void Simple : : s e t (double x)
{

th i s−>x = x ;
}

In this �rst example, the addr() member function returns a pointer to the object on which it is called, so
we can use it as follows:

Simple s1 ;
Simple s2 ;

cout << "The address o f s1 i s " << s1 . addr () << endl ;
cout << "The address o f s2 i s " << s2 . addr () << endl ;

and the output might look like

The address of s1 is 0xbfc03718

The address of s2 is 0xbfc03710

The set() member function is poorly designed because the parameter has the same name as the private
variable. Without a this pointer we could not write its de�nition. But with it, we can write the assignment

this->x = x;

so that we can tell that the left-hand side is the private member of the object and the right-hand side is the
parameter.

Dynamic Memory Allocation

Variables declared with block scope are created on what we call the runtime stack . They get created when
the program's execution enters the block and they get destroyed when it leaves that block. Global variables,
i.e., variables with �le scope, get created when the program �rst starts up and they get destroyed when the
program terminates. You have no control over the lifetimes of either of these types of variables.

C++ provides an operator named new that lets you create a new, nameless variable while the program is
running. The simplest use of it looks like this:

5

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

int * p;

p = new int;

The new operator has a single argument which is the name of an already de�ned type. When it is executed,
it creates an object of this type. The value of the expression

new int

is the address of the new object of type int. This can be assigned to a pointer of type int. We can say
informally that new �returns� the address of an int, even though this is not an accurate statement, because
new is not a function and it has no return value. A variable that si created by the new operator is called
a dynamically allocated variable , or just a dynamic variable , because it is created at runtime by the
program.

More generally

T * p = new T;

creates a new dynamic variable of type T and assigns its address to the T pointer p.

If the type is the name of a class, the constructor of that class is invoked. For example,

Class MyClass

{

public:

MyClass();

MyClass(int x, int y);

// other stuff here

};

MyClass *cptr = new MyClass;

creates an instance of MyClass, causing the default constructor to be invoked, and assigns its address to
cptr and

MyClass *c2ptr = newMyClass(4,5);

creates a second instance of MyClass, invoking the non-default constructor.

You can also use the initializer notation with elementary types, like this:

int * p = new int (100);

which creates a new variable of type int with initial value 100.

More About Memory Management

Block scope variables �live on the stack� and �le scope variables are allocated in a special part of your
program's memory when the program starts up. Variables created with the new operator come from a part
of the memory called the heap or freestore . The heap is of �nite size. If you allocate too much of it the
program will terminate. It is pretty big and most programs that are written properly do not run out of heap
space. Programs that have memory-related errors may run out of heap space. This program will use up its
heap store on a 32-bit machine:

6

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

int main()

{

for (int i = 0; i < 100000000000; i++)

int *p = new int;

return 0;

}

because it asks for 400 billion bytes of heap, and a program's heap on a 32-bit machine is not that large.
When new cannot allocate memory, it causes the program to exit1. With older C++ compilers, new returns
a NULL pointer instead of making the program terminate.

It is very important that you assign the address of the new variable to a pointer. If you do not, your program
will have created a chunk of memory that is completely inaccessible. When it does this, it is just wasting
the machine's memory. That memory cannot be reused until the program terminates. If you reassign the
value of a pointer to a new dynamic variable you also create unusable memory.

int *p;

p = new int (10);

p = new int (20);

The �rst dynamic variable with value 10 cannot be accessed after p is assigned the address of the second
one. It is an example of a memory leak .

To enable you to return memory that you no longer need, C++ has a delete operator. The delete operator
has a single argument � the pointer whose memory is to be deleted. It deletes the dynamic variable pointed
to by that pointer:

delete p;

deletes the dynamic variable pointed to by p.

Since p contains just an address, how does the runtime system know how many bytes of memory should be
deleted? Remember that pointers are declared to point to speci�c types of objects. If p points to a 4 byte
int, 4 bytes starting at p will be deleted. If it points to an 8 byte double, 8 bytes will be deleted.

If you do something like this:

int x;

int *p = &x;

delete p;

your program will crash, because x is a block scope variable, not a dynamic variable, and the machine will
be very unhappy about your trying to delete what p points to.

This type of code is also a major problem:

int *p1, *p2;

p1 = new int(10);

p2 = p1;

// do stuff ...

delete p1;

cout <�< *p2 ; // get junk!

When the memory pointed to by p1 is deleted, since p2 also points to it, it now points to junk. The address
it contains is meaningless, and trying to dereference it is equally meaningless. We say that p2 is a dangling
pointer . Dangling pointers are a common programming error.

1It throws an exception that is unhandled unless you speci�cally handled it. Exception handling is covered in CSci 235.

7

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

Dynamic Arrays

A dynamic array is an array that is created on the heap using the new operator. The advantage of a
dynamic array over a static array is that its size can be determined at runtime. The syntax is slightly
di�erent when creating dynamic arrays:

int * q;

q = new int[100]; // 100 ints are allocated and q points to the start of the array

The general form of a statement to dynamically allocate an N element array of type T is

T * p = new T[N];

Notice that what comes after the new token is the type name followed by the square brackets with the
expression in square brackets. If we allocated q dynamically as above we can use it as if it were an ordinary
array, as follows:

for (int i = 0; i < 100; i++)

q[i] = i*i;

Now q can be treated like the name of an array, but it is di�erent, because unlike an array name, q is not a
const pointer. It can be assigned to a di�erent memory location. Note that *q is the �rst element of the
array, i.e., q[0], and *(q+1) is the same as q[1]. More generally, *(q+k) is the same as q[k].

To delete the memory associated with a dynamic array, you have to use a slightly di�erent form of the
delete operator:

delete[] q; // or delete [] q;

The square brackets go between the delete and the pointer name. You do not put anything in between the
square brackets.

delete q[]; // WRONG

delete [100] q; // WRONG

delete q; // WRONG

A few examples will illustrate. The �rst asks the user to enter a string and stores it in an array of �xed size.
It then allocates an array of twice the size and puts two copies of the string into it.

#inc lude <iostream>
#inc lude <cs t r i ng >
us ing namespace std ;

i n t main ()
{

char input [1 0 0] ;

cout << "Enter a s t r i n g : " ;
c in >> input ;
i n t l en = s t r l e n (input) ;
char ∗ d i t t o = new char [2∗ l en] ;

s t r cpy (d i t to , input) ;

8

Software Design Lecture Notes

Pointers and Dynamic Variables

Prof. Stewart Weiss

s t r c a t (d i t to , input) ;
cout << d i t t o << endl ;
d e l e t e [] d i t t o ;

r e turn 0 ;
}

The next program shows how a function can create a dynamic array and return a pointer to it.

#inc lude <iostream>
#inc lude <cs t r i ng >
us ing namespace std ;

i n t ∗ doub l e s i z e (i n t a [] , i n t s i z e)
{

i n t ∗ p = new in t [s i z e ∗ 2] ;
f o r (i n t i = 0 ; i < s i z e ; i++)

p [i] = a [i] ;

r e turn p ;
}

i n t main ()
{

i n t n ;
i n t ∗ squares , ∗moresquares ;

cout << "How many squares to c r e a t e ?" ;
c in >> n ;
i f (n <= 0 | | n > 10000)

re turn 1 ;

squares = new in t [n] ;
f o r (i n t i = 0 ; i < n ; i++)

squares [i] = i ∗ i ;

p2 = doub l e s i z e (squares , n) ;

f o r (i n t i = n+1; i < 2∗n ; i++)
p2 [i] = i ∗ i ;

f o r (i n t i = 0 ; i < 2∗n ; i++)
cout << p2 [i] << " " ;

cout << endl ;

d e l e t e [] squares ;
d e l e t e [] p2 ;

r e turn 0 ;
}

9

Software Lecture Notes Prof. Stewart Weiss
Binary Search

Binary Search

Binary search is a method of searching a sorted array. Assume that the array is named list and
that it has N elements. The elements are list[0], list[1], list[2], ..., list[N-1].
The array is being searched to see if it contains a particular value. That value is called the search
key. For example, if the array contains names of animals, and we are searching for the word
"gorilla", then "gorilla" is the search key.

The idea is to compute the middle position, middle = N/2, and compare list[middle] to the
search key. If it is bigger, then the key must be in the lower half, so we repeat this procedure in
the lower half. For example, if list[middle] contains "leopard", then if "gorilla" is in the
list at all, it must be somewhere between list[0] and list[middle-1]. So we repeat the
same algorithm on the array that starts at 0 and ends at middle-1.

Summarizing, if list is the array being searched, N is the size of the array, and key is the item
being sought, binary search is of the form

start of search region = 0;
end of search region = N-1;
while key is not found in list and the search region is not empty
 middle = (start of search region + end of search region)/2
 if key is smaller than list[middle]
 search the lower half
 else if key is larger than list[middle]
 search the upper half
 else
 key is found at position middle

This can be refined as follows:

int first = 0;
int last = N-1;
bool found = false;

while (!found and (last - first >= 0)) {
 int middle = (first + last)/2;
 if (key < list[middle])
 last = middle - 1;
 else if key > list[middle]
 first = middle + 1;
 else
 found = true;
}
if (found)
 return middle;
else
 return -1;

1

Software Lecture Notes Prof. Stewart Weiss
Binary Search

This can be packaged into a function and tidied up a bit to make it a little more efficient, but the
idea is still the same. We can eliminate the Boolean variable found since it is redundant. We
can return from within the loop if we find our key.

int bsearch(const element list[], int size, const element & key)
// precondition: size == # elements in list AND list is sorted
// postcondition: returns index of key in list, -1 if key not found
{
 int low = 0; // leftmost possible entry
 int high = size-1; // rightmost possible entry
 int mid; // middle of current range
 while (low <= high) {
 mid = (low + high)/2;
 if (key < list[mid]) // key in lower half
 high = mid - 1;
 else if (key > list[mid]) // key in upper half
 low = mid + 1;
 else // key == list[mid]
 return mid;

 }
 return -1; // not in list
}

We can analyze the performance of this algorithm. Suppose list has N elements and N is a
power of 2, i.e., N = 2k. Each time that the while loop is executed, the size of the list being
searched is cut in half. Either high is reduced to mid-1 or low is increased to mid+1.
Therefore the size of the sub-array being searched goes roughly from 2k to 2k-1 to 2k-2, and so on,
until it becomes size 4, then 2, then 1, and then 0 in the worst possible situation. (Actually, it is
slightly less than this each time, because we are removing the middle element each time.) So in
the worst case, it loops log2 N times. In other words, the total number of comparisons in which
the key is compared to an element of the list is at most 2 * log2 N (twice in each loop iteration).
This is MUCH smaller than the time used by linear search.

Example

If we search for "kapok" in

 0
1

2 3 4 5 6 7

We first compare "kapok" to "dogwood" because 3 = (0 + 7)/2. Since "kapok" is larger, we set
first = 4 and compare "kapok" to "imbuya" because (4+7)/2 = 11/2 = 5. Since it is still larger, we
set first = 6 and we compare "kapok" to "kapok" because (6+7)/2 = 13/2 = 6, and that is where
we find the key.

2

ash birch cherry dogwood ebony imbuya kapok maple

CSci 136 Supervised Programming Lab
Lab 1 Tutorial: Working in the Terminal and More

Prof. Stewart Weiss

Lab 1 - Working in the Terminal and More

Getting Used to the Linux computers in the Lab 1000G.

In CSci 127, you should have learned the basics of getting around on the Department’s Lab 1000G Linux systems.
This tutorial assumes that you know at the very least how to login and logout when in Lab 1000G, and how to use the
Linux desktop environment, including its menus and file browsers. (Our lab uses Fedora Linux, which defaults to the
Gnome desktop, but you might have learned another such as KDE.) When you are not in the lab but connect remotely
to the Linux hosts, you will have no choice but to work within a terminal window. Even when you are in the lab, you
will have to do much of the work within a terminal window. Therefore, the main purpose of this tutorial is to teach
you the basics of working within terminal windows.

Why, you may be wondering, do you have to work in a terminal window? There are two reasons.

• UNIX systems, which includes Linux systems, support the ability for someone who is in a remote location to
login to their UNIX account. For example, you can connect from your home computer to a computer in the lab
and work on your files on that lab computer from home. However, for reasons of efficiency, the only way that
you can do this is to work within a terminal window. If you are at home and try to run an application on a CS
lab machine that uses the full graphical user interface (GUI), everything will “crawl”1. Therefore, to be able to
work from home or work or any other remote location, you need to know how to use the command-line interface
in a terminal.

• When you are in the lab and you want to work on C++ programs, you will need to use the command-line tools for
compiling and running your program. All of your programs will be run by typing their names on the command
line because you will not learn in this course or any of its sequels how to design programs that create their
own graphical user interfaces. So at the very least you will need to work in a terminal to run your programs.
Furthermore, many of the tools for working on software are command line tools. The most basic tool is, of
course, the compiler/linker. We will be using the GNU compiler collection for this purpose.

How can you open a terminal window when you are in the lab?

• After you have logged in and are looking at your desktop, you can open a terminal in one of two ways. There
may be a Terminal icon on the toolbar. In this case you can click it. If not, then open the Applications menu,
select System Tools, and select the Terminal tool that is displayed in its sub-menu. If you do not have a Terminal
icon in your menu-bar, you can drag it to your toolbar for easy access in the future.

Once you have an open Terminal window, you can start entering Linux commands in that window.

You should be aware that, although you are working on a computer that is physically in the lab, all of the files that
you will work with are actually stored on the CS Department file server, whose name is biocs2. Each CS computer,
including eniac, remotely mounts the biocs file system containing your home directory. This makes it possible for you
to access your files from any computer in the CS network. Although you may not understand how this works, just trust
it for now. Later we will explore commands related to file systems and mounting, and some of it will be demystified.

1 The reason for this is simply that the amount of data that must be passed back and forth with each mouse movement, mouse click, and so on is
generally in the range of tens of thousands of bytes or more, whereas in a terminal it is dozens of characters that get transferred back and forth.

2 Its full name is biocs.geo.hunter.cuny.edu.

1

CSci 136 Supervised Programming Lab
Lab 1 Tutorial: Working in the Terminal and More

Prof. Stewart Weiss

What if you cannot login to the computer in the lab?

• To login to any computer in the lab, you will need to have a Computer Science Department account. You should
have been given that account at the start of the semester. Use your account’s username and password in the
dialog boxes on the Linux startup screen. If you have problems logging in, talk to your instructor or email the
lab administrator, Tom Walter at twalter@hunter.cuny.edu with the description of your problem.

Some Rules When Working in the Lab

• It is very important that you do not turn off the computer on which you are working! Other students or
instructors may be logged in to these machines remotely. If you turn off your computer they lose their work!
If something goes wrong and the machine crashes or becomes unresponsive, do not turn it off, put a sign on
it, saying that it is out of order, login to another machine and email Tom Walter describing what happened
(twalter@hunter.cuny.edu).

• Never unplug any machines! If you want to use your laptop in the lab, that is fine, but you will have to run it on
its battery.

• Never unplug any cables in general, and in particular, do not unplug a machine’s Ethernet cable! If you want to
connect to the network from your laptop while in the lab, use its wireless card.

Accessing Your Account From Other Locations

From anywhere outside of the CS network, the only way to access any CS machine is by logging in to the CS gateway
machine, which is named eniac. Its full name is eniac.geo.hunter.cuny.edu. To login to eniac remotely you will need
an ssh client (for working on the lab machines and/or eniac remotely) and / or sftp client (for transferring files to
and from your CS lab account). There are many free clients available on the Internet; here are a few:

• SSH Client 3.2.9, Windows, SSH and SFTP client (link via my website)

• PUTTY, Windows, SSH client

• FileZilla, cross-platform, SFTP client

• Apple systems should come with SSH client built in, you may need to enable it

• Linux systems come with SSH client built in, and many SFTP clients.

iIf you never used ssh, read my tutorial “SSH, SFTP, and Remote Logins”.

Assuming that you have a Computer Science Department account and an ssh client, you can login to eniac. Once you
login to eniac, you must login to one of the lab machines (e.g., ssh cslab10). The names of the lab machines are
cslab1, cslab2, ..., cslab28. It does not matter which one you use; all of your files are accessible identically from every
host, and they are all the same type of machine (same computing power, memory, etc.) Just pick a number you like.

Getting around in Unix/Linux

Passwords

If you just got a new account on the system, the first thing you must do is change your password. Always. No
exceptions. If someone intercepted the email that contained your password, they can access your account and even
change your password so that you cannot get into it!

2

mailto:twalter@hunter.cuny.edu
mailto:twalter@hunter.cuny.edu
http://www.compsci.hunter.cuny.edu/~sweiss/resources.php#Applications
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://filezilla-project.org/
http://www.compsci.hunter.cuny.edu/~sweiss/resources/SecureShells.pdf

CSci 136 Supervised Programming Lab
Lab 1 Tutorial: Working in the Terminal and More

Prof. Stewart Weiss

To change the password, type the command passwd at the prompt in the terminal window. Note that it is ’password’
without the ’or’. You will be asked to enter the current password and then asked for the new password, twice. If you
make any mistakes, the password will not be changed. The prompt will always be denoted by the dollar sign $ in these
notes.

$ passwd

Changing password for user sweiss.

(current) UNIX password: you type here

New UNIX password: you type here

Retype new UNIX password: you type here

passwd: password has been changed.

$

If you give a poor password, it will not accept it. You must enter a strong password, which is one that contains:

• at least one uppercase letter

• at least one lowercase letter

• at least one digit

• preferably some punctuation mark such as a hyphen, period, underscore, and so on.

What does a command look like in UNIX?

First of all, when you use a terminal, you are really providing input to a special program generally called a command
line interpreter, which reads your entered command, interprets what it means, and then executes it. In UNIX these
command line interpreters are called shells, and on most Linux systems, the specific shell that people use is called
bash. bash is short for “Bourne-again shell.”

In all shells, a simple command is of the form

$ commandname command-options argument1 argument2 ... argumentn

The command is executed only after you type a newline character. The command has three parts: the command name,
command options, which are, as the name implies, optional things you can give to the command, and arguments. Many
commands require no arguments. Examples of simple commands:

date display the current date and time

who list who is currently using the computer

man <command> display the online manual page for the given command

This last command is very important – it is how you can learn all about a command whose name you know. Remember
it. In fact, try typing the commands

$ man who

and

$ man date

Then type

$ man man

to learn about the man command itself!

3

CSci 136 Supervised Programming Lab
Lab 1 Tutorial: Working in the Terminal and More

Prof. Stewart Weiss

Fig. 1: Partial directory structure on eniac.

Navigating the File System

Whenever you are logged into a Unix/Linux system, you have a unique, special directory called your current or
present working directory (PWD for short). The present working directory is where you "are" in the file system at the
moment, i.e., the directory that you feel like you are currently "in". This is more intuitive when you are working with
the command line, but it carries over to the GUI as well.

Many commands operate on the PWD if you do not give them an explicit argument. We say that the PWD is their
default argument. (Defaults are fall-backs – what happens when you don’t do something.) For example, when you
enter the "ls" command (list files) without an argument, it displays the contents of your PWD. The dot "." is the name
of the PWD:

$ ls .

and

$ ls

both display the files in the PWD; the first command because the name of the directory (“.”) is provided, the second
because it is the default directory for ls.

When you first login, your present working directory is set to your home directory. Your home directory is a directory
created for you by the system administrator. It is the top level of the part of the file system that belongs to you. You
can create files and directories within your home directory, and usually almost nowhere else. Usually your home
directory’s name is the same as your username.

In Unix/Linux, files have filenames and pathnames. The filename is the name of the file, i.e., the name listed when
you type the ls command. You might name one of your files, hwk1.cpp for example, and its filename would be
hwk1.cpp. Someone else might also create a file with that exact same name. How can they be told apart? The answer

4

CSci 136 Supervised Programming Lab
Lab 1 Tutorial: Working in the Terminal and More

Prof. Stewart Weiss

is by their pathnames. A pathname is a unique name for the file. It specifies the location of the file in the file system
by its position in the hierarchy. The POSIX.1-2008 standard specifies a system-dependent limit on the number of
characters in a pathname (including the terminating null byte).3.

There are two types of pathnames: absolute and relative. An absolute pathname is a pathname that starts at the root.
It begins with a "/" and is followed by zero or more filenames separated by "/" characters. All filenames except
the last must be directory names. For example, /data/biocs/b/student.accounts/cs135_sw is the absolute
pathname to the directory that we will use in class, as is /data/biocs/b///student.accounts////cs135_sw.
The extra slashes are ignored. Observe that UNIX (actually POSIX) uses slashes, not backslashes (as in Windows), in
pathnames: /usr/local, not \usr\local.

The image in Figure 1 shows a partial directory structure on biocs. Your home directory is located in
student.accounts which is in a directory called b which in turn is in a directory called biocs, which in turn is in
data which is at the root level of the file system. The absolute pathname to the home directory of jbgoode would be
/data/biocs/b/student.accounts/jbgoode.

A relative pathname is a pathname to a file relative to the PWD. It never starts with a slash! If the current working
directory of jbgoode is his home directory, and this contains a directory named cs136, which contains another
directory called lab01 which contains the file called lab01_solution.pdf, then the relative pathname of that file
from his PWD is

cs136/lab01/lab01_solution.pdf

and its absolute pathname is

/data/biocs/b/student.accounts/jbgoode/cs136/lab01/lab01_solution.pdf

Dot-dot or .. is a shorthand name for the parent directory. The parent directory is the one in which the directory is con-
tained. It is the one that is one level up in the file hierarchy. If my PWD is currently /data/biocs/b/student.accounts/cs135_sw/,
then

.. is the directory /data/biocs/b/student.accounts

and

../../ is the directory /data/biocs/b/.

Tilde, or ~, is a shorthand for your home directory.

$ ls ~

displays the contents of your home directory. If your username is jbgoode, then ~jbgoode is also a shorthand for
your home directory.

Simple Versions of Unix/Linux commands

Listed below are the most basic UNIX commands related to navigating around the file system. Only the simple forms
of each are listed. Many have more complex forms. You can learn more about them using the man command.

ls list content of the current working directory

ls dir_name list content of the directory named dir_name

cd dir_name cd stands for change directory, changes the current working directory to dir_name

cd .. move one directory up in the directory tree

cd change the current working directory to your home directory
3 The variable PATH_MAX contains the maximum length of a string representing a pathname. On many Linux systems it is 4096 bytes.

5

CSci 136 Supervised Programming Lab
Lab 1 Tutorial: Working in the Terminal and More

Prof. Stewart Weiss

pwd print the name of the present working directory

cp file1 file2 copy file1 into file2, where file1 and file2 can be either relative or complete path names

mv file1 file2 move file1 into file2, where file1 and file2 can be either relative or complete path
names

rm file remove a file (there is no undoing it, so be very careful!)

mkdir path make a new directory at the specified path

rmdir path remove the empty directory specified by the path (there is no undoing it, so be very careful!)

Class Directory

I will put code, tutorials and labs that you need to access in the directory

/data/biocs/b/student.accounts/cs135_sw

Do not be bothered about why it is cs135_sw and not cs136_sw. There are so many students who are in both classes
that it is easier just to use a single directory for both. The 135 and 136 classes will share materials.

If you don’t want to worry about remembering the path to this directory you can make a link to it in your home
directory. To do that, first navigate to your home directory and then create the link:

$ cd

$ ln -s /data/yoda/b/student.accounts/cs135_sw cs135link

Then, you can always navigate to it by typing

$ cd ~/cs135link

This directory has several subdirectories, including one named labs and one named tutorials. Files placed in these
directories can be copied into your own directories so that you have your own private copies of them. It is a good idea
to copy assignments and tutorials when they become available. There will be code examples as well, and these should
also be copied. You have only read permission on the files inside this directory, so if you ever need to edit something,
you should copy the files first to your own directory (you can do so from the command line, or simply drag files from
one directory to another in the gui - of course the second option is not available when you are logged in remotely).

Compiling Your C++ Programs

One of the things that you going to do over and over again in this class is compiling and running your code. We will
use the GNU C++ compiler, named g++, for this purpose. I have written a more detailed tutorial on the GNU C++
compiler, which is on my website; see A Tutorial and Brief Summary of GCC.

The exercise portion of Lab01 goes through several examples of how to use g++ to compile and build your programs.

6

http://www.compsci.hunter.cuny.edu/~sweiss/resources/The%20GCC%20Compilers.pdf

CSci 136 Supervised Programming Lab
Lab 1 Tutorial: Working in the Terminal and More

Prof. Stewart Weiss

Documentation and Comments

You should make a habit of writing documentation and comments even for the simplest programs. I will talk about
documentation in separate files later on in the semester, for now, let’s start with comments. Comments should serve as
a way of documenting your code. You do not need to explain the programming language in the comments, since we
assume that whoever reads your code knows C++. You do have to explain the purpose of variables (unless you give
them descriptive names) and the methods of doing things. You might look at your own code several weeks or months
(or even years) after you have written it and not know why you chose to do something; the comments will help you to
remember if you write them well.

Every distinct source code must contain a preamble with a title, author, brief purpose and description, date of creation,
and a revision history. The description should be a few sentences long at the minimum. A revision history is a list of
brief sentences describing revisions to the file, with the date and author (you in most of the cases) of the revision. This
is an example of a suitable preamble:

/∗ ∗∗∗
T i t l e : s imple_C++_ i o . cpp
Author : S t e w a r t Weiss
Crea ted on : January 26 , 2006
D e s c r i p t i o n : Copies s t a n d a r d i n p u t t o o u t p u t a char a t a t i m e
Purpose : To d e m o n s t r a t e t y p i c a l t e x t I /O i n C++
Usage : s imple_C++_ i o
B u i l d w i t h : g++ −o s imple_C++_ i o s imple_C++_ i o . cpp
M o d i f i c a t i o n s :

∗∗∗ ∗ /

For the simple programs at the beginning of the course you may not really need all the parts of the preamble - just leave
them blank if that is the case. The required parts, those you should always specify, are: Title, Author, Description,
Usage, and Build with.

Sometimes there is information you may want to include at the very top of the program, to help the reader understand
more about it. I usually include notes in the preamble for this reason. Following is an example of a preamble that you
will find in one of the demo programs in our class directory. In fact, the preamble contains the name of the file itself
(nestedfor_01.cc), so you can look for it.

/∗∗∗
T i t l e : n e s t e d f o r _ 0 1 . cc
Author : S t e w a r t Weiss
C r e a t e d on : Feb . 28 , 2007
D e s c r i p t i o n :
Pu rpose : To i n t r o d u c e t h e c o n c e p t o f a n e s t f o r−loop , t h i s

program shows how t h e i n n e r and o u t e r l oop i n d e x v a r i a b l e s
change .

Usage : n e s t e d f o r _ 0 1
B u i l d wi th : g++ −o n e s t e d f o r _ 0 1 n e s t e d f o r _ 0 1 . cc
M o d i f i c a t i o n s :
Notes : The program i n t r o d u c e s a c o n v e n i e n t f u n c t i o n found i n

UNIX o p e r a t i n g s y s t e m s c a l l e d u s l e e p () . u s l e e p () i s g i v e n
i n t e g e r a rgument t h a t i s t h e number o f m i c r o s e c o n d s t o
d e l a y t h e program . u s l e e p (1000000) d e l a y s 1 second f o r
example , and u s l e e p (5 0 0 0 0 0) d e l a y s 1 / 2 second . I t adds
e f f e c t t o t h e program .

∗∗∗ /

7

CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

Lab 3: Pseudo-Random Numbers and Strings

Random number generation in C/C++

Random number generation is critical to many simulations and games. C (and therefore C++)
provides two different functions that can generate pseudo-random integers in the range from 0

to RAND_MAX inclusive. RAND_MAX is a large positive integer that is implementation dependent.
It really does not matter what its actual value is for most applications. There are many pseudo-
random number generators available and some are better than others. What is meant by the word
“better”? The quality of a pseudo-random number generator is measured by various statistical
measures, but intuitively, the better it is, the more its output will be like truly random numbers.
Pseudo-random number generators are called weak or strong depending on how good they are.

If you want a very strong pseudo-random generator, you may have to write it yourself. The func-
tions in the C/C++ library are pretty strong, but not suitable for all applications. The two functions
of choice in that library are rand() and random(). Because the textbook for the course describes
rand(), these notes will be limited to rand(). Almost everything to be said about rand() is true
of random() as well.

The rand() Function

The rand() function is part of the C Standard Library and therefore you need to include the header
<cstdlib> in your C++ program to use it. (In C, you would include <stdlib.h>.) The function
generates a pseudo-random integer in the range 0 to RAND_MAX. RAND_MAX is a constant defined in
<cstdlib>. Its default value may vary between implementations but it is granted to be at least
32767. On the cslab hosts in the lab this header file has the following line:

#define RAND_MAX 2147483647

which gives RAND_MAX the value 231− 1. (You can see this line by typing the command “grep
RAND_MAX /usr/include/stdlib.h”.)

What if you want to generate a random number between 1 and 100? How would you use this
function to do this? One simple way is to use the modulus operator % to narrow the range. This is
not the best way, but it works. To illustrate:

number = rand() % 50;

assigns to number a value between 0 and 49. If we add 1 to it we get a number from 1 to 50.

1

CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

number = (rand() % 50) + 1;

More generally, suppose we want to generate pseudo-random numbers in the range [lower...upper]
inclusive, where lower and upper are any pair of integers such that lower < upper. There are
(upper - lower +1) numbers in this range. Let

rangesize = upper-lower+1;

The expression

rand() % rangesize

generates a number between 0 and rangesize-1, or equivalently, between 0 and upper-lower.
To get numbers that range between lower and upper, we just have to add lower to the result.
This way, the numbers lie between 0+lower and (upper-lower+lower), which is from lower to
upper:

number = (rand() % rangeSize) + lower;

Example: To generate numbers in the range from 100 to 400, let lower = 100 and upper=400 in
the above formula. Then the rangesize is (400−100+1) = 301. Using this, the assignment would
be

number = (rand() % 301) + 100;

Note. I mentioned above that this is not a very good method of narrowing the range of pseudo-
random numbers. This is because the % operator is throwing away many valuable bits of informa-
tion. For greater strength, it is usually better to use a different approach in which you use division
instead of modulus.

The srand() Function

The rand() function cannot be used reliably without first giving its internal generator a starting
value. The process of giving it a starting value is called seeding the generator. There is a function
whose sole purpose is to seed rand(). Its name is easy to remember: srand(). This function
seeds the pseudo-random number generator. The seed is passed as the argument to the function.
The prototype (or declaration) of srand() is

void srand(unsigned int)

Therefore you use it like this:

srand(1000000);

2

CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

In this case you gave it a seed of 1000000.

When it is given the same seed, rand() will always produce the same sequence. Therefore, if you
give srand() the same seed each time a program is run, the sequence of numbers generated by
rand() will be the same. This little program can be used to illustrate this:

i n c l u d e < i o s t r e a m >
i n c l u d e < c s t d l i b >
u s i n g namespace s t d ;

i n t main ()
{

s r a n d (1 0 0) ;
f o r (i n t i = 0 ; i < 10 ; i ++)

c o u t << rand () << e n d l ;

r e t u r n 0 ;
}

Compile it and run it repeatedly. You will see the same ten numbers each time.

To get a new sequence each time, the value given to srand() must be different in each run. The
most common way of doing this is to seed srand() with the current time. UNIX has a function
that returns the current time. The function time() (declared in the C header file <ctime>) returns
the current time as an integer. You give it a 0 as an argument:

current_time = time(0);

and it returns an integer value. To be more precise, time(0) returns the number of seconds that
have elapsed since since 00:00 hours, Jan 1, 1970 UTC. (This is due to historical reasons, since it
corresponds to a UNIX timestamp, but is widely implemented in C libraries across all platforms.)
The important fact is that the value returned by time(0) is guaranteed to be different almost every
time that the program runs, it is a perfect choice for the seed. Try running this program:

i n c l u d e < i o s t r e a m >
i n c l u d e < c s t d l i b >
i n c l u d e <ct ime >
u s i n g namespace s t d ;

i n t main ()
{

s r a n d (t ime (0)) ;
f o r (i n t i = 0 ; i < 10 ; i ++)

c o u t << rand () << e n d l ;

r e t u r n 0 ;
}

and you will see the sequence vary from one run to another.

3

CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

A Bit About Strings

C++ allows you to declare variables of type string in your code. In order to declare and use
such variables, the program must include the <string> header file, which is placed into the std

namespace, so you need the lines

#include <string>

using namespace std;

in the beginning of your program. The type string is different from elementary types such as
int, float, and char. It is a class. C++ has libraries that define complex things called classes.
You should think of a class, for now, as a collection of data values together with operations and
functions that act on those values.

Declaring string objects

There are several ways to declare and initialize string objects. Two equivalent ones are

string filename = "input_file";

and

string filename("input_file");

Which one you use is a matter of taste.

Concatenating strings

The word concatenation means juxtaposing two strings one after the other. For example, the con-
catenation of “butter” and “flies” is “butterflies”. The operator used for adding numbers, +,
has a different meaning when it is placed between two string objects; it forms their concatenation1.

If username and hostname are two string variables, and username contains the string “stewart.weiss”
and hostname contains the string �hunter.cuny.edu”, then the statement

cout <�< username + �@� + hostname;

will output “stewart.weiss@hunter.cuny.edu”, and if email is a string variable

1The reuse of the + sign here is an example of an overloaded operator: it works on objects of the string class
differently than it does on numbers.

4

CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

email = username + �@� + hostname;

will assign “stewart.weiss@hunter.cuny.edu” to email. We could also have written the above
with the @ symbol as a character, not a string:

email = username + '@' + hostname;

The concatenation operator lets you concatenate characters and string variables, string literals and
string variables, and two string variables, but not string literals or characters with each other. As-
sume username and hostname are string variables that have values. The following illustrates what
you can and cannot do:

username + hostname // legal expression

username + '@' // legal expression

username + �@hunter.cuny.edu� // legal expression

�hunter� + �.cuny.edu� // illegal expression

�hunter� + '.' // illegal expression

Getting the size of a string object

Variables of the string class have a size() function that can return their size, which means the
number of characters in them. To use this function, you have to put “.size()” after the variable
name, just the way you use the open() function after an ifstream or ofstream variable. For
example:

string input_line;

cin >�> input_line;

cout <�< �You entered � <�< input_line.size() <�< � characters.\n�;

In the third line, the value of input_line.size() is the number of characters presently stored in
that string variable.

Accessing individual characters in a string object

There is a way to access each individual character in a string object using what is called the sub-
script operator. The subscript operator is a pair of square brackets [] placed after the name of the
string, with a number in between. The numbering starts at 0 and goes up to the size of the string
minus 1. The number in brackets is called the index value. Thus:

cout <�< �The first character you entered was � <�< input_line[0] <�< �.\n�;

5

CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

will display the character in the first position in the string input_line. Notice that the first position
is at index 0, not 1! It will be hard getting used to this idea and you will likely forget, but try, try
to remember that the positions in the string are numbered 0, 1, 2, 3, and so on up to size()-1:

int last_index = input_line.size() - 1;

cout <�< �The last character you entered was � <�< input_line[last_index] <�< �.\n�;

will output the character in the last position of the string. You can modify individual characters
using an assignment statement and the subscript operator:

input_line[0] = 'L';

will replace the first character in the string by the letter ’L’.

Warning: C++ compilers do not check if you are trying to access or modify a location outside of
bounds of your string object. But if you do, your program may work incorrectly or even crash!
Be careful!

6

CSci 136 Supervised Programming Lab
Pair Programming Tutorial

Prof. Stewart Weiss

Pair Programming Tutorial
This material is excerpted almost entirely from the webpage http://ecee.colorado.edu/~ecen2120/Manual/

pair.html.

Background

Pair programming is a structured technique, with clear guidelines and methods, for improving the process of program-
ming by using collaboration. Pair Programming is most effective when programmers have some basic understandings:

• Programmers should think of their work as a shared, collective project. Each programmer should be able to see
his or her contribution in the final product, and each programmer should take equal ownership for the program-
ming process that created that product: Each programmer should “own” both the process and the product of
their shared work.

• Programmers should avoid the temptation to break projects into smaller parts to be completed independently
and the integrated together. In pair programming, programmers work together, side by side, for most of the
time. Pair programming aims to be truly collaborative.

• Programmers agree to perform specific activities while programming with their partners. Sitting side by side
at one computer, programmers assume either the role of the Driver or the Navigator. Both of these roles are
“programming”. The pair programming method depends on these set roles being carried out fully. Partners can
switch roles when they wish and should work to feel comfortable with both sets of practices.

• Pair programming requires that partners communicate with each other openly and honestly. Yet, the Driver and
the Navigator must work to balance their abilities to voice their own opinions while also being open to their
partners’ input. This means staying away from a “my way or the highway” attitude. It also means having the
ability to speak up and voice their own concerns. Pair programmers need to balance too much ego with too little.

Pair programming may seem to be more effort, or to be less efficient because it requires two people to work together,
when most other programming practices are done with just one person. The efficiency of pair programming is shown
in the outcome: generally reduced development time, generally better programs, and improved awareness of the logic
and practices of programming.

Role Guidelines and Procedures

Effective pair programming requires some planning, and an understanding of the Driver and Navigator roles.

Set Up

Physical Space. The work space needs to be set up so that both programmers are able to sit next to each other, with
both orienting to the computer. Programmers should have any materials on hand that they may need.

Planning Period. Before starting on their destination, programmers need to develop a mental map of where they
are going. This includes discussing what they intend to do, their thoughts on the problem or design, and any
questions or suggestions they may have at the start. At the end of this period, programmers have a shared sense
of where they are going.

Role Assignment. Programmers must have an initial discussion to address who will navigate and who will drive.

1

http://ecee.colorado.edu/~ecen2120/Manual/pair.html
http://ecee.colorado.edu/~ecen2120/Manual/pair.html

CSci 136 Supervised Programming Lab
Pair Programming Tutorial

Prof. Stewart Weiss

The Driver

The Driver does the following:

1. Controls whatever is being used to record the program as it is developed, such as a pencil, mouse, or keyboard.

2. Has responsibility for the details of developing or writing the code. (We will refer to this as entering code.)

3. Talks out loud about what they are thinking about or why they are entering any particular element of the code.
The intent here is to make reasoning or thought processes explicit so they can be discussed, rather than leaving
them implicit and perhaps difficult to understand. This is one key to pair programming.

4. Responds constructively to feedback given by the Navigator. Recognizes that comments from the Navigator are
part of the process, and doesn’t become annoyed, defensive or dismissive. The Driver must be open to working
out/talking through problems.

The Navigator

The Navigator does the following:

1. Does not enter the code. This is important. Partners should make every attempt to talk through the ideas rather
than simply hand off the keyboard or pencil to each other. Hand-offs prevent truly understanding the program
as it is being developed.

2. Keeps an objective view and thinks strategically about the direction in which the program is going. Navigators
keep a big picture view.

3. Watches and alerts the Driver if there are tactical or strategic problems with the work.

4. Continues to think of alternatives and looks up resources that may help the partners pursue other ways of going
about solving a problem. These are things the Driver shouldn’t do while focusing on developing code, yet could
be critical to developing a good program.

5. Looks for the strategic implications of the developing code. Asks questions at the appropriate times, such as:
where are we going, and what does it mean to be doing it this certain way over others?

6. Asks questions of the Driver, especially if the Driver is doing something that is unclear, cloudy, or unknown to
the analyzer. Asks these questions in constructive and supportive ways, rather than in ways that are directing or
commanding. Listens to the Driver’s answers and discusses if appropriate. These include: Try this ..., I notice
that ..., etc.

Procedural Checklist

Before Entering Code:

• Physical space is correctly arranged and materials needed are present.

• Discussed what you are working on and who is doing what.

Driver:

• Should be the only one entering code.

• Talks through their actions.

• Accepts feedback and direction from the navigator.

2

CSci 136 Supervised Programming Lab
Pair Programming Tutorial

Prof. Stewart Weiss

Navigator:

• Focuses on the big picture.

• Thinks strategically–is watchful and alert to what the Driver is doing.

• Shares alternatives and consulting resources when needed.

• Asks questions of the Driver.

Programmers:

• Both are listening and responding to each other.

• Neither programmer is holding back their opinion(s) or question(s).

• Criticism/suggestions are made constructively.

• Both programmers own the project.

3

Fall 2012, Csci 136.02 Lab 1, page 1/7 Stewart Weiss
__

LAB 01 Name: __

Before you start these exercises, you should read the tutorial named lab01_tutorial.pdf, located in
the class directory,

 /data/biocs/b/student.accounts/cs135_sw/tutorials

It explains everything you need to know to so this assignment. It is also on the course website
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci135/csci135_36_fall12.php
for your convenience.

Getting Around the File System

Let's make sure that you know how to get around the Unix/Linux file system before you start writing
code. All of the exercises below are supposed to be done in the command line, unless otherwise stated.
When I write a command, I always put the dollar sign $ to represent the shell prompt. You do not type a
dollar sign!!

The easy way to figure out “where you are” in the file system is to ask what your present working
directory is: type the pwd command:

$ pwd

In the space below, write the output of that command.

Before continuing, try running the following commands to see what they output: try typing

$ who

and

$ who am I.

Now type the following compound command

$ date ; hostname

and write the output in the space below:

If you are not in your home directory, you can get there by simply typing cd followed by enter (with
no additional arguments) – this will always bring you home.

Now, you will create several directories and files. Use the mkdir command to create the following

http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci135/csci135_36_fall12.php

Fall 2012, Csci 136.02 Lab 1, page 2/7 Stewart Weiss
__

directories in your home directory:
cs135, cs136, old_files, scratch.

If you type ls, you should see the list of all the files in your home directory, including the directories
that you just created. If you see a long list of files zooming by, then you probably need to do some
cleanup in your directory: it is not the best idea to keep all of your files at the top level of your
directory; after this class you should be able to organize your files better.
Change your PWD to cs136 and create two more directories there: labs and testing. Within labs,
create a subdirectory named lab01.

Change your current working directory to lab01 and type

$ ls -l

to see its contents. Write its output below.

What single command will change your PWD to testing?

Make sure that your PWD is now testing. You can create an empty text file by typing touch
followed by the file name. Enter

$ touch test1
and then use ls to see if a file named test1 was created. You can edit the content of this file in many
ways. gedit is one of the friendlier simple editors on Linux and I suggest you use that for editing
your text files, including your C++ source code files. Type

$ gedit test1 &

and a window with an empty file should pop-up (the & at the end of the last command runs the
command in the background, i.e. it allows you to continue using the terminal window while the gedit
window is open – if you omit & your terminal will be blocked until you close the gedit window).
You will see some output in the terminal such as

[1] 1276

Fall 2012, Csci 136.02 Lab 1, page 3/7 Stewart Weiss
__

Ignore it for now. Later I will explain it.

Enter some text into the body of the file (at this point it does not matter what text you type), save it and
close it. This is exactly what you will do to write your code. After you close gedit and enter another
command, you will see a message like you might see a message appear on the screen like

[1]+ Done gedit test1

Ignore this as well. It says that gedit exited.
What command will remove the file test1 from the directory testing? Write it in the space below
and delete test1 with it.

Now, create a new, empty text file called test1 inside the directory testing again (yes, the one that I
just told you to delete). Change your PWD to lab01 (parent of testing) and try to remove the
directory testing itself. What command should do this? What happens when you try? What do you
need to do first to remove a directory? Write the answer in the space below.

You can now move back to your home directory and remove some other directories that you created
before if you want, or you can leave them there.

Using the g++ Compiler

Let's make sure you can use the g++ compiler. The class directory

/data/biocs/b/student.accounts/cs135_sw/cs136demos/lab01/

contains a C++ source file named johnnybgoode.cpp. Assuming that you read the tutorial and when
doing so, you created a link to the class directory in your home directory that is called cs135link (if
you did not, now is the time to do it), you can copy this file to the directory cs136/labs/lab01/ in
your home directory using the cp command:

$ cp ~/cs135link/cs136demos/lab01/johnnybgoode.cpp ~/cs136/labs/lab01

(~ is another shortcut notation that stands for your home directory: whatever you type after is relative
to your home directory.) There are other ways to copy the file, but this is relatively simple. Once the
file is in your directory you can compile it, build executable code and run it (make sure that at the end
of this lab you understand the difference between these three terms).

Fall 2012, Csci 136.02 Lab 1, page 4/7 Stewart Weiss
__

Change your PWD to the directory cs136/labs/lab01 and make sure that the file is really there. A
simple way to compile and build this program is to run

$ g++ -o johnnybgoode johnnybgoode.cpp

The -o option to g++ tells g++ that the string that follows it is what it should name the executable
file that it creates for your program. If you omit this option, g++ will use the default name which is
a.out. Run g++ again, but without specifying the name of the executable file. Look at the list of the
files in your PWD, what do you see? Write it here.

To run the program type ./johnnybgoode (it is the name of the executable file preceded by dot and
forward slash) or ./a.out. These programs are identical since they were created from the same source
code.

Now edit the file johnnybgoode.cpp and save it as johnnybgoode2.cpp. Remove the line from
the file (the line that contains using namespace std;), save and compile this new code. Write what
happens when you run g++?

The compiler performs multiple steps when it is taking your source code and creating the executable
program. Let's look at these steps:

1) Preprocessing. Remember all those lines in the program that start with #? These are called
preprocessor directives. Their purpose is to insert the contents of the included file into the
program at that point. When you type #include <iostream> in your code, the compiler
replaces this line with the contents of the iostream library header file iostream.h. g++ runs
only the preprocessor1 if you use -E option:

g++ -E johnnybgoode.cpp > johnnybgoode.i

By default the output is written to the screen; the bash redirection
 > johnnybgoode.i
redirects the output to a file named johnnybgoode.i. You can use gedit to look at this file
(it is much larger than the original johnnybgoode.cpp). Look at last sixty lines of this file.
What do you find there? Describe what is there in the space below.

1 The preprocessor is actually a program named cpp. You can read about it by typing man cpp.

Fall 2012, Csci 136.02 Lab 1, page 5/7 Stewart Weiss
__

2) Compilation. After preprocessing, the compiler actually reads the code and makes sure that it is

syntactically correct. Compilation itself has a few sub-steps: parsing your code to validate it
syntactically, creating assembly code, optimizing it, and then creating the executable code. g++
stops after the creating the assembly code if you use -S option:

g++ -S johnnybgoode.cpp

By default the output is written to a file with .s suffix, so you should have a file called
johnnybgoode.s. (Yes, it is a bit confusing that the output of g++ -E goes to the screen but
the output of g++ -S goes to a file.) Look at this file. This is the assembler code for your
program. The command wc (word count) followed by the name of the file tells you how many
newlines, words and bytes the file has, in that order. Use this command to find out how many
newlines are in your file johnnybgoode.s . How many lines does it have?

The second part of compilation is creation of the executable code of your program alone (this
code will rarely be all that is needed to actually run the program). g++ stops after this part if
you use -c option:

g++ -c johnnybgoode.cpp

By default the output is written to a file with .o suffix, so you should have a file called
johnnybgoode.o. This is not a text file anymore, so you cannot look at it with a text editor
such as gedit. It is not an executable program yet; it does not have definitions for the symbols
defined outside of itself such as cout and cin. They are in the iostream library. Files
produced by this stage are called object code, or object files. The next step produces the final
runnable program.

3) Linking. At this point the object code for your source code exists, but the missing definitions
need to be linked to it. These definitions usually come from the C++ libraries that the program
uses; for now we are only using iostream, but soon we will use other ones as well. The last

Fall 2012, Csci 136.02 Lab 1, page 6/7 Stewart Weiss
__

step that is performed is called linking2. The command

 g++ -o johnnybgoode johnnybgoode.cpp

runs all the steps including the linking.

Display the list of all the files in your directory now:

Finally, write your own small C++ program: it should ask user for his or her age and then print a
greeting using that information. The sample output of such program is:

Enter your age: 75

++++++++++++++++++++++++++++++++++++
 Hi Stranger, You are 75 years old.
 Welcome to CSci 136, section 2
++++++++++++++++++++++++++++++++++++

Name this file username_welcome.cpp, where username is replaced by your username on our
system, i.e., the name with which you login. Compile and run your program.

How To Submit Your Work

The exercise has two parts, this document and your program. To submit this lab document, with
everything you filled in, use Acrobat Reader's Print to File feature. Select Print, and in the dialog box,
check the Print To File check-box. Then click the Browse button and name the file
username_lab01.ps. where username is replaced by your username on our system.

2 The linker program used by g++ is called ld. You can read about it by typing man ld.

Fall 2012, Csci 136.02 Lab 1, page 7/7 Stewart Weiss
__

To submit both this file and the file username_welcome.cpp that you created above,
1. Create a directory in

/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab01/submissions
whose name is your username. For example, I would create the directory sweiss.

2. Copy the two files, username_lab01.ps and username_welcome.cpp, to this directory.
3. Change your PWD to

 /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab01/submissions
4. Execute the command

$ chmod 700 username
where username is the name of the directory you created. I would type "chmod 700 sweiss"
for example. This prevents everyone else from reading your files.

You must do all of this by the end of the class on Thursday, August 30. If you do not complete all the
work, you have until the end of the day on Friday, August 31, to receive full credit.

CSci 136 Supervised Programming Lab
Lab 2

Prof. Stewart Weiss

Lab 2: Bakhshali Approximation for Computing Square Roots

Finding the positive square root of a positive number (e.g.,
√

5) is an example of a problem that
requires a numerical solution. There is no formula that expresses the square root of an arbitrary
number S in an exact way as a function of S. However, there are many methods for numerically
computing square roots. A numerical computation is an approximation to the solution. Algorithms
that compute successively better approximations to the solution are called approximation methods,
or approximation algorithms.

In this lab exercise you will write a program that implements one particular square root approxima-
tion algorithm. It is a variation of a method known as the Bakhshali approximation algorithm. The
Bakhshali method for finding an approximation to a square root was described in an ancient Indian
mathematical manuscript called the Bakhshali manuscript (see the Wikipedia page on Methods of
computing square roots for details). The Bakhshali method is really just two iterations of a more
general, and ancient, algorithm dating back to the Babylonians. In this assignment, we will ex-
tend the Bakhshali method so that it can be iterated indefinitely, like the Babylonian method. The
description of the algorithm follows.

The Bakhshali algorithm to compute the square root of a number S is defined by the following
steps:

1. Make an initial guess at the square root by picking any number smaller than S.

2. Compute the difference d between the square of your guess and S:

d = S−guess2.

3. Compute the ratio r of d and twice the guess:

r =
d

2 ·guess
.

4. Compute sum of the guess and the ratio r:

a = guess+ r.

5. Compute your next guess as

guess = a− r2

2a
.

6. Go back to step 2 using the guess just computed.

Steps 2 through 6 are repeated as many times as the implementer sees fit. It can be proven math-
ematically that the guess gets closer and closer to the actual square root of n as the number of
iterations increases1. But the process needs to stop somewhere for it to be useful.

1In fact, one can show mathematically how much more accurate it gets each time, but that fact will be a secret for
now.

1

http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Method_of_bisecting_intervals
http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Method_of_bisecting_intervals

CSci 136 Supervised Programming Lab
Lab 2

Prof. Stewart Weiss

Exercises

Problem 1. Write a program that reads a positive integer for S from the user. You can assume
that the user will always enter an integer, but the program does have to detect if the user entered a
negative integer, and if she did, it should exit with an error message. The program then applies five
iterations of the above Bakhshali algorithm to compute the square root of S. Your program should
display the answer with ten decimal places (if there are fewer than ten digits after the decimal
point, your program should display zeros). How will you choose the initial guess?

Problem 2. Modify the program from Problem 1 so that the computed answer is more accurate.
Execute as many iterations as are needed until the values computed in two consecutive iterations
differ in absolute value by less than 0.0000001. For example, when oen iteration is 2.23606783
and the next is 2.23606791 the difference is 0.00000008. Add a counter to your program that
keeps track of the number of iterations needed before the loop terminates. Output the number of
iterations together with the answer. What happens as you choose to compute square roots of larger
and larger integers? How can you make this second program more general? If you can think of a
way, add that to a comment in the program. If not, do not worry about answering it.

Testing Your Work

Before you hand in your programs, you have to make sure that they work correctly. For these two
programs, this means that when they are given a number, their output should be an approximation
to its square root. One way to test is to manually square the answer to make sure it is close to the
original number. Another way is to use a calculator to verify the answer. Still a third way is to pick
perfect squares as input, so that their square roots are whole numbers. For example, when given
the input 144, your program ought to produce something close to 12.

The second program is easier to test than the first, because it is supposed to be accurate to a specific
number of decimal places. If your program’s result is not that accurate, it is not correct. The first is
harder, because the accuracy is not specified, only the number of iterations. In this case just make
sure it really iterates five times as specified.

What to Submit

Submit both programs by the end of today’s lab, i.e., before the end of the class at 2:00 P.M. To do
this,

1. Create a directory in

/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab02/submissions

whose name is your username. For example, I would create the directory sweiss.

2

CSci 136 Supervised Programming Lab
Lab 2

Prof. Stewart Weiss

2. Copy the two files, which should be named username _lab02a.cpp and
username _lab02b.cpp to this directory. The first program is username _lab02a.cpp and
the second is username _lab02b.cpp. It is critical that you name these properly. You will
lose 5% of the grade if you misname either file!

3. Change the permission on the directory that you created so that no one else can read or
modify it. You do this with the commands

$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab02/submissions

$ chmod 700 username

where username is the name of the directory you created.

Do not submit executable files. (Make sure that your files have the .cpp extension.) Remember to
document your code (both preamble and comments in the code) and make it easy to read. Your
work will be judged using the rubric I outline in the Programming Rules document.

If you do not complete all the tasks, submit whatever you have by the end of class. There are
absolutely no extensions to the deadline. You can submit a revised version of either program by
8:00 P.M. on Friday, Sept. 7. If you do, you must name it with a different name than what you
first posted, e.g., username _lab02a_v2.cpp. and put it in the same directory as the original
programs. Code submitted after the end of class will receive only partial credit and must look
like a revision of the original file. If you do this, you must send email to me before 8:00 P.M. at
myHunter address, telling me to look there!

3

CSci 136 Supervised Programming Lab
Lab 3

Prof. Stewart Weiss

Lab 3: Generating and Analyzing Random Strings

Scientists routinely need random data for experiments and simulations. Natural events appear to be
random, and in order to study and simulate them, scientists use randomization. Computer scientists
especially need to know how to generate random data since they are the ones who are often called
upon to design the software. It is sufficient to be able to generate random numbers, because if we
have a sequence of random numbers, we can generate random data of other types from it.1

There is a contradiction in the idea that a computer program can generate random numbers, because
if a computer program generates anything, it is the result of an algorithm and is therefore not
random! A computer program can generate numbers that look random because no mere mortal
can detect a pattern in them, nor could another very smart computer, even if given a very long
time. Such “random looking numbers” are called pseudo-random numbers.

In this exercise you will write a program that generates pseudo-random text strings of a specific
form, consisting only of the lowercase letters ’a’, ’c’, ’g’, and ’t’. In other words, the program
will generate a string that contains just these letters, but the order of the letters and the quantity of
each type of letter is pseudo-random. Such a string will be called a pseudo-random DNA string
here. Once you have successfully completed this first program, you will enhance it a bit.

Exercises

Problem 1. Write a program that begins by prompting a user to enter a positive integer N. You can
assume that the user will always enter an integer, but the program must detect if the user entered
a negative integer or zero, and if she did, it should exit with an error message. The program then
prompts the user to enter the name of file into which it will store the generated DNA string. The
program then generates a pseudo-random DNA string of length N and writes it into a file with the
chosen name, in its current working directory.

Problem 2. Once the program from Problem 1 is working correctly, and only when it is working
correctly, you will make a small modification to it. In addition to writing the pseudo-random DNA
string to the file, it must display on the terminal window the fractions of ’a’s, ’c’s, ’g’s, and ’t’s
in the string. For example, if the string is length 50 and it contains exactly 20 ’a’s, 10 ’c’s, 5 ’g’s,
and 15 ’t’s, then it would display something like:

a: 0.4000 ; c: 0.2000 ; g: 0.1000 ; t: 0.3000

Notice that the sum of these fractions must be 1.0. The program should display the fractions with
four digits of precision to the right of the decimal point.

1In fact it is a theorem of computer science that all data, however complex it may appear, is representable as a set
of non-negative integers.

1

CSci 136 Supervised Programming Lab
Lab 3

Prof. Stewart Weiss

Testing Your Work

Before you submit your program, you have to make sure it is correct. It is not easy to test a
program that generates random data, because in order to test, one needs to reproduce a result
repeatedly. The srand() function is useful here. If srand() is given the same value, the sequence
of random numbers produced by rand() will be the same. You should make sure also that the
length of the string is correct, that the data looks random, and that your fractions add up to 1. If
you give srand() a new value in each run of the program, then you should see a different DNA
string each time.

What to Submit

Unlike the previous lab assignment, you will submit just one program. If you finished the second
problem and it is working correctly, submit that program and not the first. I will not look at the
first program and it will not count toward your grade.

If you did not get the second program working, but the first was working, you may either submit
the first, or submit the partially working second one. The first program is worth only 6 out of 10
points. The second is 10 points. If the second is almost working, and you think you will lose fewer
than 4 points on it, submit it. If you know it needs much more work, submit the first instead.

Submit your program, whichever it is, by the end of today’s lab, i.e., before the end of the class at
2:00 P.M. The instructions are just like the previous lab’s:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab03/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your program, which should be named either username _lab03a.cpp or
username _lab03b.cpp to this directory. You will lose 5% of the grade if you misname the
file!

3. Change the permission on the directory that you created so that no one else can read or
modify it. You do this with the commands

$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab03/submissions

$ chmod 700 username

Do not submit executable files. Remember to document your code (both preamble and comments
in the code) and make it easy to read. Your work will be judged using the rubric I outline in the
Programming Rules document.

There are absolutely no extensions to the deadline. You can submit a revised version of the program
by 10:00 P.M. on Thursday, Sept. 13 for partial credit. If you do, you must name it with a different
name than what you first posted, e.g., username _lab03b_v2.cpp. and put it in the same directory
as the original. It must be a revision of the original file, with only fixes to things that were not
working before. I will adjust the grade based on how well the first version worked and how many
changes you made.

2

CSci 136 Supervised Programming Lab
Lab 4

Prof. Stewart Weiss

Lab 4: An Interactive 3D Distance Calculator

This lab will give you practice in writing your own functions and in designing an interactive, menu-driven program.

Math Background

You should know what the distance between two points in the plane is: the distance between the points (x1,y1) and
(x2,y2) is given by the formula √

(x2− x1)2 +(y2− y1)2

When we deal with points in space, it is defined similarly. The distance between the points (x1,y1,z1) and (x2,y2,z2)
is given by the formula √

(x2− x1)2 +(y2− y1)2 +(z2− z1)2

This kind of distance is called Euclidean distance. It is not the only way to measure distance.

In Manhattan, you cannot walk on a diagonal1. If you are at the intersection of 120th Street and Fifth Avenue and need
to walk to 86th Street and First Avenue, you have to walk down 120− 86 = 34 blocks and across 5− 1 = 4 blocks,
for a total of 38 blocks. (We will ignore the fact that blocks are not square.) Therefore the distance between these
two corners is 38 blocks. This type of distance is sometimes called Manhattan distance2. The Manhattan distance
between the points (x1,y1) and (x2,y2) is given by the formula

|x2− x1|+ |y2− y1|

It can be generalized to three dimensions easily.

A third way to measure distance is known as the Chebyshev distance3. The Chebyshev distance between the points
(x1,y1,z1) and (x2,y2,z2) is the maximum of the distances between the x, y, and z coordinates respectively:

max(|x2− x1|, |y− y1|, |z2− z1|)

Exercise

You will write a program that displays the following menu to the user:

^ 3D D i s t a n c e C a l c u l a t o r ^ ^^^ ^^^ ^^^ ^^^ ^^^^ ^^^ ^^
[1] Change t h e f i r s t p o i n t
[2] Change t h e second p o i n t
[S / s] D i s p l a y t h e c u r r e n t two p o i n t s
[E / e] C a l c u l a t e and d i s p l a y t h e E u c l i d e a n d i s t a n c e between t h e two p o i n t s
[M/m] C a l c u l a t e and d i s p l a y t h e Manhat tan d i s t a n c e between t h e two p o i n t s
[C / c] C a l c u l a t e and d i s p l a y t h e Chebyshev d i s t a n c e between t h e two p o i n t s
[Q/ q] Qu i t t h e program

1We ignore streets like Broadway.
2It is actually based on what mathematicians call the L1 norm.
3In two dimensions it is known as chessboard distance.

1

CSci 136 Supervised Programming Lab
Lab 4

Prof. Stewart Weiss

^ ^

E n t e r your c h o i c e :

The characters in square brackets are what the user is supposed to type to select the menu item. The notation “[E/e]”
means enter either an upper or lowercase e. Once the user presses a valid key, the program should perform the indicated
action. The selections to change a point (1 and 2) should prompt the user to enter the x, y, and z coordinates of that
point and not display anything else. After the action is performed, the prompt

Enter your choice:

should be redisplayed, but not the menu. If the user enters an invalid choice, the program should just ignore it. Points
1 and 2 should each have the initial value (0,0,0). All numbers should be printed to the screen with four digits of
precision.

When you first write the program, you may use the math library’s sqrt() function, but to receive full credit for this
program, you must write your own sqrt() function by converting the second version of the Bakhshali program of
Lab 2 into a function. Without your own sqrt() function, the program is worth at most 8 out of 10 points. There is a
correct version of the Bakhshali program in the lab04 directory on the server.

Note. Your main program should use a switch statement, not nested if-statements.

What to Submit

Submit your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M.
The instructions are just like the previous lab’s:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab04/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your program, which should be named username _lab04.cpp. You will lose 5% of the grade if you
misname the file!

3. Change the permission on the directory that you created so that no one else can read or modify it. You do this
with the commands

$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab04/submissions

$ chmod 700 username

Do not submit executable files. Remember to document your code (both preamble and comments in the code) and
make it easy to read. Your work will be graded based on the rubric outlined in the Programming Rules document.

There are absolutely no extensions to the deadline. You can submit a revised version of the program by 10:00 P.M. on
Thursday, Sept. 20 for partial credit. If you do, you must name it with a different name than what you first posted,
e.g., username _lab04_v2.cpp. and put it in the same directory as the original. It must be a revision of the original
file, with only fixes to things that were not working before. I will adjust the grade based on how well the first version
worked and how many changes you made.

2

CSci 135 Software Analysis and Design I
Lab 5

Stewart Weiss

Lab 5: Simulations

Overview

In a software development company, programmers are often asked to write the implementation of a func-
tion, given its prototype and a precise description of what it is supposed to do. To make it easier for them,
they are also given a driver program. A driver program is one that calls their function, so that they can test
it and make sure it works.
In this lab assignment you are given a few function prototypes and precise descriptions of what these
functions must do. These prototypes and descriptions are in a header file. A header file is simply a file
containing function prototypes, possibly constant and type definitions, and sufficiently detailed comments
so that a programmer can make calls to those functions in his or her own program. Your job will be to create
a file called an implementation file, which contains the actual definitions of the functions in the header file.
The names of the header file and the implementation file are usually coordinated so that they differ only
in the file extension. If the header file is named duel.h, then its implementation file is named duel.cpp

in C++ (or duel.c in C). Header files are always given the extension “.h”, whether in C, C++, or another
programming language.
Once you have written the function definitions in the file duel.cpp, you will be able to compile the file into
an object file using the command

g++ -c duel.cpp

This will create the file duel.o.
You will not be given the source code to the driver program. You don’t need it. But you will have its object
file, which will be named lab05_main.o. With your duel.o file and lab05_main.o, can create the executable
program with the command

g++ -o lab05 lab05_main.o duel.o

If your code has no syntax errors, the file lab05 will be created in your working directory. If it has errors
you will have to look at the messages and correct them. It is better to use the command

g++ -Wall -g -o lab05 lab05_main.o duel.o

turning on all warning messages and compiling code that can be run under the GDB debugger. For a more
detailed explanation, see my tutorial, http:///∼stewart/resources/separateCompilation.pdf.

Exercises

You will be writing functions that are used in a game. This exercise will also give you practice with random
number generation. The game simulates three people with different shooting skill levels trying to duel each
other. In the imaginary land of Moronia, Aaron, Bob, and Charlie had an argument over which one of them
was the greatest logician of all time. To end the argument once and for all, they agreed on a duel to the
death, which seemed quite logical to all of them.
The facts surrounding the duel and their skill levels are that

• Aaron is a poor shooter and only hits his target with a probability of 1/3.

1

http:///~stewart/resources/separateCompilation.pdf

CSci 135 Software Analysis and Design I
Lab 5

Stewart Weiss

• Bob is a bit better and hits his target with a probability of 1/2.

• Charlie is an expert marksman and never misses.

A hit means a kill and the person hit drops out of the duel. A duel is carried out in a specific order. To
compensate for the inequities in their marksmanship skills, they decided that they would take turns firing,
starting with Aaron, then Bob, and then Charlie. Since each is a smart person, they each adopt the strategy
to shoot at the most accurate shooter still alive, on the grounds that this shooter is the deadliest and has the
best chance of hitting back. The duel is carried out until only one of them is left alive. It is not possible for
all to die because only one person shoots at a time and either kills or does not kill the intended target.
There is a header file named duel.h and an object file named lab05_main.o in the directory

/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05

You are to copy these files into your working directory and create a file there named duel.cpp. The header
file contains the prototypes of four functions that you must implement in duel.cpp. After you have success-
fully written duel.cpp and compiled without error, create the executable program using the instructions
that I wrote above. Run the executable, lab05. It will display a prompt to enter the number of duels to run.
Enter a number and look at the output. Aaron should win about 36 to 37% of the time, Bob, about 41 to
42%, and Charlie, about 21 to 22%. If you make the number of duels large enough, this is what you should
see. If not, your implementation is flawed.
Advice: To simplify writing the .cpp file, and avoid typing mistakes, copy duel.h into duel.cpp and
replace the semicolons by curly braces.
Hint: How can you make a program simulate an event that happens with probability p, where 0 ≤ p ≤ 1.0?
Suppose you generate a random number between 0 and 1. If it is less than or equal to p, then the event
happened. If it is greater than p, then it did not.

What to Submit

Submit your implementation file, however complete it is, by the end of today’s lab, i.e., before the end of
the class at 2:00 P.M. The instructions are just like the previous lab’s:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05/submissions

whose name is your username.
2. Copy your file, renaming it to username _duel.cpp. You will lose 5% of the grade if you misname the

file!
3. Change the permission on the directory that you created so that no one else can read it. You do this

with the commands
$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05/submissions

$ chmod 700 username

Do not submit executable files. Remember to document your code (both preamble and comments in the
code) and make it easy to read. Your work will be graded based on the rubric outlined in the Programming
Rules document.
There are absolutely no extensions to the deadline. You can submit a revised version of the program by
10:00 P.M. on Thursday, Sept. 27 for partial credit. If you do, you must name it with a different name than
what you first posted, e.g., username _duel_v2.cpp. and put it in the same directory as the original. It must
be a revision of the original file, with only fixes to things that were not working before. I will adjust the
grade based on how well the first version worked and how many changes you made.

2

CSci 135 Software Analysis and Design I
Lab 6

Stewart Weiss

Lab 6: Software Testing and Debugging

Overview

The purpose of these exercises is threefold:

1. to give you practice in identifying and correcting syntax errors in programs,
2. to give you practice in identifying and correcting obvious runtime errors in programs, and
3. to give you practice in devising software tests.

The first problem asks you to compile a program, look at the error messages produced by the compiler,
and then read the program and correct the mistakes. The faster you can do this, the more efficient you will
become at writing syntactically correct software. You do not need to know what the program is supposed
to do because the errors are not in logic but in using the language properly.
The second problem asks you to compile a program, which will compile without error, and then run it.
When it runs, there will be obvious errors. You will not need to know what the program is supposed to
do because the program’s behavior will be unacceptable no matter what it is. For example, it might loop
forever or produce no output or produce garbled output. You will have access to the source code so that
you can correct the mistake(s) or at least suggest what is wrong.
The third problem asks you to test a program to determine whether it has any faults, and if so, to determine
what they are. You will not be able to see the source code of the program, but you will be able to run it.
This type of testing is called black box testing, because the program is essentially like a black box, an object
whose inside is invisible to you. You will be given a precise description of what the program is supposed
to do, which is called a requirements specification. This specification can be used to decide what tests to
use on the program.

A Bit About Software Testing

A test is an input to a program. A test case is an input together with the expected output. Running a
program on a test input is meaningless unless you know what the output for that test input should be. For
example, if the program’s requirements specification states that the program computes the positive square
root of any non-negative number, then a test case could be (input = 25.0, expected output = 5.0), because
5.0 is the positive square root of 25.0. Therefore, your job as a program tester is to devise a suitable set of
test cases. Such a set is often called a test suite.
Usually, before you start testing the program, you would create the list of all test cases – inputs and expected
outputs – and put that list into a file, perhaps into a spreadsheet. When you run the program on a test, either
it passes or fails the test. If a program fails the test, we say that the test exposed an error in the program.
A spreadsheet might contain information such as when you tested it, whether the error was reported and
corrected, and so on.
If a program passes all of your tests, you have to decide whether the program is error-free. Just because it
passed all of the tests does not mean that it has no errors. It might mean that your test cases were not very
good. If you think your tests were thorough enough to detect all possible errors in the program, then you
can conclude that the program is error-free. You might decide that the tests were not thorough enough and
continue testing further.
How can you decide whether the tests were thorough enough? Many people have spent much time trying
to answer this question, and there are hundreds of scientific articles about the subject. We cannot begin to
tackle that problem in very much depth here. However, there is some common sense that you can apply.

1

CSci 135 Software Analysis and Design I
Lab 6

Stewart Weiss

If the program’s specification says that for all inputs that satisfy some condition C, the output is supposed
to be X, and for inputs that satisfy a different condition D, the output should be Y, then clearly any good
set of test cases would include some inputs that satisfy condition C and some that satisfy condition D. This
type of thinking will suffice in the exercises that you have to do today.

Exercises

This is a three-part lab.

Problem 1. There is a directory named syntaxbugs in the cs136labs/lab06 directory. Within it are five
files named syntaxbug01.cpp, syntaxbug02.cpp, ..., syntaxbug05.cpp. None of these compile without
error. Study the error messages and find a fix, then make sure your corrected file compiles. Name the
corrected version of syntaxbug0x.cpp syntaxbug0x_fixed.cpp, x=1,2,3,4,5. In the corrected program, put
a comment line like this:
/* ERROR FIXED HERE: */

to the right of the code on the line that you fixed. If there is more than one line, put this on each such line.
Each corrected program is worth 0.5 out of 10 points for this lab.

Problem 2. There is a directory named runtimebugs in the cs136labs/lab06 directory. Within it are three
files named runtimebug01.cpp, runtimebug02.cpp, and runtimebug03.cpp. Each of these compiles with-
out error but does not run correctly. Determine what is wrong with each and try to correct the code. Make
sure that your corrected code compiles and runs correctly. Follow the same instructions as in Problem 1
and add comment lines to indicate where you fixed the program. Once it is correct, name the corrected
version runtimebug0x_fixed.cpp, x =1,2,3. Each corrected program is worth 1 out of 10 points for this lab.

Problem 3. The third directory is named softwaretesting. It contains the following files:

program_specification A precise description of what the program classifytriangle is supposed to do.
classifytriangle1 A version of classifytriangle that does not work correctly.
classifytriangle2 A version of classifytriangle that does not work correctly.
classifytriangle3 A version of classifytriangle that does not work correctly.
angleof A program that can be useful in checking whether the output of classifytriangle is correct.

Your job is to find tests of the three classifytriangle programs that expose their errors. Each of these
programs has one bug, i.e., a single mistake in its code that causes one or more inputs to result in incorrect
output. Therefore, for each it is enough to find a single test case that exposes that bug. When you find the
test case, your job is to characterize what the program is doing wrong. In other words, it is not enough
to say, for example, that the program does not work when given the input (5,12,15). You also have to
say something like, “it appears that the program sometimes says a triangle is acute when it is not”, or “it
appears that it sometimes accepts inputs that are not valid triangles.” You will get partial credit if you find
a bug but cannot describe it accurately. You will get full credit if you describe it accurately as well.
In case you do not remember your geometry, a triangle is acute if all angles in it are less than 90 degrees, it
is obtuse if there is a single angle greater than 90 degrees, and it is a right triangle if there is 90 degree angle
in it. These are mutually exclusive possibilities. A triangle is scalene if no two sides are equal, isosceles
if exactly two sides are equal, and equilateral if all three sides are equal. The program angleof accepts
command line arguments like triangleclassify.

angleof a b c

will output the number of degrees in the angle between the sides whose lengths are a and b. You might
find this useful when you need to know whether the classifytriangle program correctly identified the
type of triangle.

2

CSci 135 Software Analysis and Design I
Lab 6

Stewart Weiss

For this problem, you should create a single file named triangletests. For each of the buggy classifytriangle

programs, write the test case that exposes an error and a description of what you believe is the error. There
should be three short paragraphs in this file. Each correctly identified error is worth 1.5 out of 10 points for
this lab.

What and How to Submit

Submit your work, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00
P.M. The instructions are just like the previous lab’s:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab06/submissions

whose name is your username.
2. Put all of your files into this directory. Make sure they are named correctly. There should be five files

from Problem 1, three from Problem 2, and one from Problem 3. You will lose 5% of the grade if you
misname the file!

3. Change the permission on the directory that you created so that no one else can read it. You do this
with the commands
$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05/submissions

$ chmod 700 username

Remember to add the comment lines described in the problems above. There are absolutely no extensions
to the deadline for this lab.

3

CSci 136 Supervised Programming Lab
Lab 7

Prof. Stewart Weiss

Lab 7: Array processing

Overview

This lab will give you practice with arrays, sorting and searching, and file I/O. The program will read input data from
a file and produce its output in a file. The only interaction with the user will be limited to asking for the names of the
files1.

More About Opening Files

So far you have only used the open() member function of the fstream class to open files with fixed names, as in

ifstream fin;

fin.open(�dna.txt�);

which will attempt to open a file named dna.txt in the program’s current working directory when it runs. If you want
to ask the user for the name of a file to open, store it into a string variable, and then use it to open that file, you
cannot write this:

ifstream fin;

string filename;

cin >�> filename;

fin.open(filename); // error -- this will not work

because the open() function expects a different type of string called a C string. C strings are the progenitors of C++
strings – they were defined in the C language originally and became part of C++ by the fact that they are part of C.
People call them C strings to distinguish them from C++’s string class. You are not going to learn about C strings
here2, but you will learn how to circumvent this problem.
The string class has several functions that can be called on its string objects. You know about the size() function
already. It also has a c_str() function. This function, whose name is pronounced “C string”, does exactly what the
doctor ordered for this problem – it returns the C string equivalent of the string itself.
For example, if filename is declared to be a string:

string filename;

and if the string �../../data/mydata.txt� is stored into it via an input instruction such as

cin >�> filename;

then filename.c_str() will be the C string �../../data/mydata.txt�. This means you can use it as the argu-
ment of open() as in the following:

ifstream fin;

string filename;

cin >�> filename;

fin.open(filename.c_str()); // this will open the file whose name the user entered

This is how you can ask the user to enter a file name and then try to open that file. Of course you need to check that
the open() succeeded. This expands your programming toolkit for opening files.

1In a future lab exercise, you will learn how to write programs that can get these file names directly from the command line.
2You first need to learn about pointers.

1

CSci 136 Supervised Programming Lab
Lab 7

Prof. Stewart Weiss

Exercises

Problem 1. You will write a program that prompts the user to enter the names of an input file and an output file,
and then reads input from the input file, processes the input, and sends its output to the output file. If the input files
cannot be opened, or if the output file cannot be opened, the program returns with an error value (1). The input file
will consist of real numbers separated by white space (blanks, tabs, newlines). These numbers should be thought of
as sample values from some experiment. The numbers in the file are not in any particular order. The program will
compute various statistics about the file’s data and write these one per line into the output file in the order listed below:

1. the smallest number in the file,

2. the largest number in the file,

3. the median of the numbers in the file,

4. the mean of the numbers in the file, and

5. the standard deviation of the numbers in the file.

The median of a set of sample values (i.e., numbers) is the numerical value for which half of the numbers in the set
are larger and half of the numbers in the set are lower. If there is an odd number of samples in the set, the median is
one of the values. For example, if the list of numbers is 2.3, 8.4, 9.3, 10.0, 12.0, then the median is 9.3, since there
are two values below 9.3 and two above it. If the set has an even number of values, the median is halfway between the
two middle values. For example, if the list is 2.3, 8.4, 9.3, 10.0, then the median is halfway between 8.4 and 9.3, i.e.,
the average of 8.4 and 9.3, which is 8.85.
The mean is the sum of the values divided by the number of values. (It is the same as the average value.)

The standard deviation is defined as
√(

∑
N−1
i=0 (xi−a)2

)
/N, where x0, . . . ,xN−1 are the N values, and a is their mean.

In order to compute the standard deviation, it is easiest to first compute the mean. If you have somehow made it into
this class never having seen the summation symbol ∑

N−1
i=0 (xi) it means the sum of the values x0,x1, ...,xN−1 .

You can assume that the file contains at most 1000 numbers. It might contain fewer, but never more, than that. It is
possible that the file is empty, in which case the output file should be created and should be empty as well, but an error
message should be written to the standard error stream (cerr).
Advice. Although there are algorithms that can find the median of a list of unordered numbers, the simplest solution is
to first sort the numbers. Your program should sort the numbers before doing anything else. This will make the other
computations much easier.

What to Submit

Submit your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M.
There is no grace period for this. Programs submitted after 2:00 PM will not be accepted. The instructions for
submitting are:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab07/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your program, which should be named username _lab07.cpp. You will lose 5% of the grade if you
misname the file!

3. Change the permission on the directory that you created so that no one else can read or modify it. You do this
with the commands

$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab07/submissions

$ chmod 700 username

2

CSci 136 Supervised Programming Lab
Lab 7

Prof. Stewart Weiss

Do not submit executable files. Remember to document your code (both preamble and comments in the code) and
make it easy to read. Your work will be graded based on the rubric outlined in the Programming Rules document.
There are absolutely no extensions to the deadline. You can submit a revised version of the program by 10:00 P.M.
on Thursday, Oct. 11 for partial credit. If you do, you must name it with a different name than what you first posted,
e.g., username _lab07_v2.cpp. and put it in the same directory as the original. It must be a revision of the original
file, with only fixes to things that were not working before. I will adjust the grade based on how well the first version
worked and how many changes you made.

3

CSci 136 Supervised Programming Lab
Lab 8

Prof. Stewart Weiss

Lab 8: Arrays and Reusable Code

Overview

Large projects are usually not written as a single source code file, for various reasons:

• When more than one person works on a project, each person works on a different piece of it and it is more
efficient if these pieces are in separate files, otherwise they would have to take turns editing the file.

• Putting frequently needed portions of code into distinct files makes it possible to incorporate this code into
multiple projects without actually having to rewrite the code or have multiple copies of it, making that code
reusable.

• If all of the code is in one large file, then each time any small part of it is changed, the entire file has to be
recompiled. These days with such fast computers, compiling takes very little time so this is not an issue for
small programs, but for very large programs, this can still take some time. If the program is composed of several
small files, then only the changed file needs to be recompiled, and the program re-linked to the changed file.
This is usually much faster than recompiling the entire program.

• Maintaining the code is easier because logically related code is all in a single small file, making it easier to find
the parts of the code that need to be revised.

This exercise is designed to give you practice creating a multiple-file program whose parts can be compiled separately.
It also gives you more practice with arrays, sorting, and file input and output.

Exercise

You will write a program that prompts the user to enter the names of an input file and an output file, and then reads
input from the input file, processes the input, and sends its output to the output file. If the input files cannot be opened,
or if the output file cannot be opened, the program returns with the error value 1. The input file will consist of lines
containing single words, one per line. You can think of the words as the usernames of people who have used some
online service. The service provider is interested in seeing usage patterns for its users, so they have commissioned
you to do some very simple analysis of this data. Specifically, your program must read the words and store them into
an array. It must sort that array using the usual comparison operation for strings (i.e., str1 < str2 for strings str1
and str2). The data will probably have many words that are the same, and when the data is sorted, these lines will be
adjacent. For example, if the data file has the names

haley, sue, bingo, sam, sue, bingo, cranky, mel, sam, sue

(one per line, but here written separated by commas to save space), then after sorting it will look like

bingo, bingo, cranky, haley, mel, sam, sam, sue, sue, sue

Your program must create a new array that contains the data from the original array but without any repeats. In other
words, it must create a new array that is also sorted, but such that every word in that new array is unique. For the above
example, the array would contain

bingo, cranky, haley, mel, sam, sue

It must write the contents of this array to the output file whose name the user specified.

1

CSci 136 Supervised Programming Lab
Lab 8

Prof. Stewart Weiss

Program Design

The program must consist of exactly five files, named as follows:

• A header file named file_io.h

• An implementation file for this header file, named file_io.cpp

• A header file named list.h

• An implementation file for this header file, named list.cpp

• A main program file named lab08_main.cpp

The file_io.h header file must contain the prototypes of the two functions needed to do file I/O: one that reads the
contents of an input file stream into an array, and one that writes the contents of an array into an output file stream. The
following listing uses DOxygen-style comments to describe what these functions must do and what their prototypes
should look like.

/∗∗ r e a d l i s t (i n p u t s t r e a m , names , l i m i t , l e n g t h)
∗ @param i s t r e a m& i n p u t s t r e a m [i n / o u t] t h e s t r e a m t o r e a d from
∗ one s t r i n g p e r l i n e
∗ @param s t r i n g names [] [o u t] t h e a r r a y t o f i l l w i th s t r i n g s
∗ @param i n t l i m i t [i n] max s i z e o f t h e a r r a y
∗ @param i n t& l e n g t h [o u t] number o f names s t o r e d i n names []
∗ @pre i n p u t s t r e a m i s open && l i m i t > 0 && names i s s i z e l i m i t
∗ @post 0 <= l e n g t h <= l i m i t && names [0] . . [l e n g t h −1] i s f i l l e d wi th s t r i n g s
∗ from i n p u t s t r e a m
∗ /

/∗∗ w r i t e l i s t (o u t p u t s t r e a m , names , l e n g t h)
∗ @param o s t r e a m& o u t p u t s t r e a m [i n / o u t] t h e s t r e a m t o w r i t e t o
∗ @param s t r i n g names [] [i n] t h e a r r a y o f s t r i n g s t o w r i t e
∗ @param i n t& l e n g t h [i n] number o f names s t o r e d i n names []
∗ @pre o u t p u t s t r e a m i s open && l e n g t h >= 0 && names [0] . . names [l e n g t h −1]
∗ c o n t a i n s words t o w r i t e , one p e r l i n e
∗ @post none
∗ /

file_io.cpp must contain the definitions of those two functions.
The list.h header file must contain the prototypes of the two functions needed to do array processing: one that sorts
an array of strings, and one that, given a sorted array of strings, fills a second array with the unique list of words
contained in the first array. Because the size of the second array may be smaller than the first, this function must also
fill a parameter with the size of the second array. The following listing describes what these functions must do and
what their prototypes should look like.

/∗∗ s o r t (l i s t , l e n g t h)
∗ @param s t r i n g l i s t [] [i n / o u t] t h e a r r a y o f s t r i n g s t o be s o r t e d
∗ @param i n t l e n g t h [i n] number o f s t r i n g s s t o r e d i n l i s t
∗ @pre l i s t [] has 0 o r more s t r i n g s
∗ @post l i s t [0] <= l i s t [1] <= . . . <= l i s t [l e n g t h −1] and e v e r y s t r i n g
∗ t h a t was i n l i s t b e f o r e i s i n l i s t e x a c t l y once a f t e r s o r t f i n i s h e s
∗ (none g o t d e l e t e d o r r e p l i c a t e d)
∗ /

/∗∗ un iq (o r i g l i s t , n e w l i s t , o r i g l e n g t h , newleng th)
∗ @param s t r i n g o r i g l i s t [] [i n] a s o r t e d a r r a y o f s t r i n g s

2

CSci 136 Supervised Programming Lab
Lab 8

Prof. Stewart Weiss

∗ @param s t r i n g n e w l i s t [] [o u t] an a r r a y o f s t r i n g s c o n t a i n i n g no d u p l i c a t e s
∗ @param i n t o r i g l e n g t h [i n] number o f s t r i n g s s t o r e d i n o r i g l i s t
∗ @param i n t& newleng th [o u t] number o f s t r i n g s s t o r e d i n n e w l i s t
∗ @pre o r i g l i s t [] i s s o r t e d (and may have d u p l i c a t e a d j a c e n t s t r i n g s)
∗ @post n e w l i s t i s s o r t e d and has un iq ue s t r i n g s && newleng th <= o r i g l e n g t h
∗ && newleng th i s t h e number o f e l e m e n t s i n n e w l i s t .
∗ /

The file list.cpp must contain the definitions of those two functions.
The main program, lab08_main.cpp, will be very small. It must prompt the user to enter the names of the files,
open streams for these files, and then call the functions in the other files to (1) read the input file data into the array,
(2) sort it, (3) create the unique word array, and (4) print that unique word array to the output file stream, one word per
line.
Advice. First create the two header files. Then create your main program. Then create the two implementation files.
You can check the main program file by compiling with the g++ -c option. This will not attempt to do any linking,
so you can see programming errors in main() even if you do not have the implementation files.
There are files in the lab08 directory containing a list of names that you use for testing your program. The command

$ sort -u filename

will sort the contents of the file filename, removing duplicates, and display the result on the standard output. You
can redirect it to a file using

$ sort -u filename > sortedfile

You can check if your program is correct by comparing your output file to the file produced by the above command
using the diff command. diff has no putput if two files are identical:

$ diff file1 file2

will produce no output if file1 is an exact copy of file2.

What to Submit

Submit your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M.
There is no grace period for this. Programs submitted after 2:00 PM will not be accepted. The instructions for
submitting are:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab08/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your five files, which should be named as described above, to that directory. You will lose 5% of the
grade if you misname the files! Make sure that each file has a preamble with your name and other appropriate
information in it.

3. Change the permission on the directory that you created so that no one else can read or modify it. You do this
with the commands

$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab08/submissions

$ chmod 700 username

Do not submit executable files. Remember to document your code (both preamble and comments in the code) and
make it easy to read. Your work will be graded based on the rubric outlined in the Programming Rules document.
There are absolutely no extensions to the deadline.

3

CSci 136 Supervised Programming Lab
Lab 9

Prof. Stewart Weiss

Lab 9: Structures and Data Abstraction

Overview

This exercise is a prelude to the design of classes. C++ structures can be used, with discipline, to design abstract data
types. They do not provide the protections that classes do, but they are a good means to warm up to classes. The
exercise also gives you more practice creating a multiple-file program whose parts can be compiled separately, and
still more practice with file I/O.
In this lab you will define and implement an abstract data type that represents a student record. It will consist of a
structure and associated functions for manipulating the data in the student record.

Review of Data Abstraction and Abstract Data Types

Procedural abstraction is the separation of what a function does from how it does it. The idea is to write descriptions
of what functions do without actually writing the functions, and separate the what from the how. The client software,
i.e., the software calling the function, only needs to know the parameters to pass to it, the return value, and what
the function does; it should not know how the function works. In this sense, functions become like black boxes that
perform tasks.
Data abstraction separates what can be done to data from how it is actually done. It focuses on the operations of data,
not on the implementation of the operations. For example, in data abstraction, you might specify that a set of numbers
provides functions to find the largest or smallest values, or the average value, but never to display all of the data in the
set. It might also provide a function that answers yes or no to queries such as, "is this number present in the set?" In
data abstraction, data and the operations that act on it form an entity, an object, inseparable from each other, and the
implementation of these operations is hidden from the client.
Information hiding takes data abstraction one step further. Not only are the implementations of the operations hidden
within the module, but the data itself can be hidden. The client software does not know the form of the data inside the
black box, so clients cannot tamper with the hidden data.
An abstract data type is a representation of an object. It is a collection of data and a set of operations that act on the
data. An ADT’s operations can be used without knowing their implementations or how data is stored, as long as the
interface to the ADT is precisely specified.
There are two views of an abstract data type: its public view, called its interface, and its private view, called its
implementation. The parts of a class that are in its public view are said to be exposed by the class.

Example

A soft drink vending machine is a good analogy. From a consumer’s perspective, a vending machine contains soft
drinks that can be selected and dispensed when the appropriate money has been inserted and the appropriate buttons
pressed. The consumer sees its interface alone. Inputs are money and button-presses. The vending machine outputs
soft drinks and change. The user does not need to know how a vending machine works, only what its abstract data
type is.
The vending machine company’s support staff need to know the vending machines internal workings, its data structure.
The person that restocks the machine has to know the internal structure, i.e., where the spring water goes, where the
sodas go, and so on. That person is like the programmer who implements the ADT with data structures and other
programming constructs.
The ADT is sometimes characterized as a wall with slits in it for data to pass in and out. The wall prevents outside
users from accessing the internal implementation, but allows them to request services of the ADT.
ADT operations can be broadly classified into the following types:

1

CSci 136 Supervised Programming Lab
Lab 9

Prof. Stewart Weiss

• operations that add new data to the ADT’s data collection,

• operations that remove data from the ADT’s data collection,

• operations that modify the data in the ADT’s collection,

• operations to query the ADT about the data in the collection.

The student ADT

The student abstract data type contains the student’s last name, first name, id (9 digit number with possible leading
zeros), GPA (a real number in the range of 0.0 to 4.0, a whole non-negative number of credits completed to date, and
a single letter status indicating full time (’F’) or part time (’P’).
The functions that the ADT should make available to client software (i.e., should expose) are:

1. Given a first name, last name, id, and status, create a new student record with those values, setting the GPA and
number of completed credits to zero.

2. Given a student record, return the student’s id.

3. Given a student record, return the student’s last name.

4. Given a student record, return the student’s status.

5. Given a student record and a new status, change the student’s status.

6. Given a student record and a number of credits, change number of completed credits for a student by adding the
new number to the current number of credits.

7. Given a student record and a GPA, change the student’s GPA to the new value.

8. Given a student record and an output stream, print the members of the record on that output stream in the format:

lastname firstname id status GPA credits_earned

separated by tab characters ('\t').

Exercise

You will write a small program that implements the student ADT described above. Specifically, you will first design
a header file that contains a structure definition that represents the student data, as well as the prototypes of all functions
described above. Each function prototype must be thoroughly documented. Name this header file student.h.
You will then create an implementation file named student.cpp in which you implement each of the above eight
functions.
This exercise is a bit unusual because the main program does not do anything particularly logical. It exists just to
exercise your student ADT. Specifically, it must do the following:

• The main program must read a file containing at most ten lines of the form

lastname firstname id status

and for each line, create a student record with that data and a GPA and total credits earned of 0. These records
should be elements of an array of student records. For simplicity assume that the file is named studentdata.
You may hard-code its name into the main program.

• After the data is read in, the main program must display on the screen the last name and the id of every student
record.

2

CSci 136 Supervised Programming Lab
Lab 9

Prof. Stewart Weiss

• It must then display the last name of every student whose status is ’F’.

• The program must then change the GPA of every student to 4.0, the credits earned to 16, and the status to ’P’.

• Finally, the main program must write all of the records to a file named newstudentrecords.

Remember that the main program is not allowed to access the data members of the structure. It must do everything
only by calling the functions whose prototypes are in your header file. Name the main program lab09_main.cpp.
In short, the program must consist of exactly three files:

• A header file named student.h

• An implementation file for this header file, named student.cpp

• A main program file named lab09_main.cpp

What to Submit

Submit your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M.
There is no grace period for this. Programs submitted after 2:00 PM will not be accepted. The instructions for
submitting are:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab09/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your three files, which should be named as described above, to that directory. You will lose 5% of the
grade if you misname the files! Make sure that each file has a preamble with your name and other appropriate
information in it.

3. Change the permission on the directory that you created so that no one else can read or modify it. You do this
with the commands

$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab09/submissions

$ chmod 700 username

Do not submit executable files. Remember to document your code (both preamble and comments in the code) and
make it easy to read. Your work will be graded based on the rubric outlined in the Programming Rules document.
There are absolutely no extensions to the deadline.

3

CSci 136 Supervised Programming Lab
Lab 10

Prof. Stewart Weiss

Lab 10: Classes and Data Abstraction

Overview

This lab will give you practice designing and implementing a simple class. It is similar to Lab 9, except that I have
written most of a main program that you need to solve this problem. I include the same review of data abstraction that
was contained in Lab 9’s description.

Review of Data Abstraction and Abstract Data Types

Procedural abstraction is the separation of what a function does from how it does it. The idea is to write descriptions
of what functions do without actually writing the functions, and separate the what from the how. The client software,
i.e., the software calling the function, only needs to know the parameters to pass to it, the return value, and what
the function does; it should not know how the function works. In this sense, functions become like black boxes that
perform tasks.
Data abstraction separates what can be done to data from how it is actually done. It focuses on the operations of data,
not on the implementation of the operations. For example, in data abstraction, you might specify that a set of numbers
provides functions to find the largest or smallest values, or the average value, but never to display all of the data in the
set. It might also provide a function that answers yes or no to queries such as, "is this number present in the set?" In
data abstraction, data and the operations that act on it form an entity, an object, inseparable from each other, and the
implementation of these operations is hidden from the client.
Information hiding takes data abstraction one step further. Not only are the implementations of the operations hidden
within the module, but the data itself can be hidden. The client software does not know the form of the data inside the
black box, so clients cannot tamper with the hidden data.
An abstract data type is a representation of an object. It is a collection of data and a set of operations that act on the
data. An ADT’s operations can be used without knowing their implementations or how data is stored, as long as the
interface to the ADT is precisely specified.
There are two views of an abstract data type: its public view, called its interface, and its private view, called its
implementation. The parts of a class that are in its public view are said to be exposed by the class.

The student class

The student class represents a student record in a single college class. It contains the student’s last name, first name,
email address, a set of five homework grades, the number of graded homeworks, a set of three exam scores, and the
number of graded exams. The homework and exam scores are whole numbers. If the number of graded homeworks is
N < 5, then the first N homeworks are the ones with grades, and the same holds true for exams.
The member functions that the student class should make available to client software (i.e., should expose) are:

1. A function which, when given a first name, last name, and email address, initializes the student record with
those values, setting all homework and exam scores to zero.

2. A function which returns the student’s first name.

3. A function which returns the student’s last name.

4. A function which returns the student’s email address.

5. A function which returns the list of graded homework scores.

6. A function which returns the list of graded exam scores.

1

CSci 136 Supervised Programming Lab
Lab 10

Prof. Stewart Weiss

7. A function which returns the student’s current composite grade, which is 0.6 times the average of all graded
exams plus 0.4 times the average of all graded homeworks

8. A function to add a new homework grade to the student’s record, provided the total number of homework grades
is no more than 5. If the total is already 5, it should return an error value.

9. A function to add a new exam grade to the student’s record, provided the total number of exam grades is no
more than 3. If the total is already 3, it should return an error value.

10. A function to output to a given stream, the student data in the following format:

lastname firstname email N hwkscore1 ...hwkscoreN M examscore1 ... examscoreM

where N is the number of graded homeworks and M is the number of graded exams, and hwkscore1, etc are the
scores on the homeworks and examscore1, etc are the exam scores.

Exercise

You will write a program that implements the student class described above. Specifically, you will design the
student class header and implementation files, named student.h and student.cpp respectively. Each member
function must be thoroughly documented. in the header file.
I will supply most of a main program. This program will prompt the user to enter the name of an input file, and then
read input from that file. The file will consist of lines that represent student records, and these will be stored in an array
of such records by the main program. The program will display a menu-driven interface that will allow the user to
interactively add new grades to a given student’s record, display a student’s grades and/or grade average, and display
the set of all student records. The main program will be missing various pieces, which have comments as placeholders.
You will have to fill in the missing pieces.
The

What to Submit

Submit your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M.
There is no grace period for this. Programs submitted after 2:00 PM will not be accepted. The instructions for
submitting are:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab10/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your three files, which should be named student.h, student.cpp, and lab10_main.cpp, to that direc-
tory. You will lose 5% of the grade if you misname the files! Make sure that each file has a preamble with your
name and other appropriate information in it.

3. Change the permission on the directory that you created so that no one else can read or modify it.

Do not submit executable files. Remember to document your code (both preamble and comments in the code) and
make it easy to read. Your work will be graded based on the rubric outlined in the Programming Rules document.

2

CSci 136 Supervised Programming Lab
Lab 11

Prof. Stewart Weiss

Lab 11: Write your own string class

In this lab you will get practice designing and implementing a class with constructors, and working with C strings.
This project is a pair programming project. You will be working in pairs following the guidelines and procedures
described in http://ecee.colorado.edu/∼ecen2120/Manual/pair.html. I have taken excerpts from this University of
Colorado webpage as the basis for a short tutorial on pair programming, which is included in the lab’s directory
on the server. Before you begin this assignment, make sure you know who is the driver and who is the navigator, and
know what your respective roles are.

Exercise

Write a program that defines a class called String. The class should have a data member that is an array of 80
characters to store the characters of the string (yes, the largest number of characters in an object of type String,
including the newline character at the end, is 80). A proper empty object of type String should have a single character
it in (this character is '\0', and is located in the first array location. You should have the following functions for this
class. The functions are described in plain sentences. You must determine their signatures and create their prototypes.

• A default constructor that creates an empty string;

• A constructor that initializes the object to the C string passed as its argument;

• copy(), which copies its C string argument into the current object, overwriting whatever was in the current
object before;

• concat(), which appends its C string argument at the end of the string in the current object, provided that there
is storage available;

• size(), which returns the current size of the string in the object;

• str(), which returns a constant pointer to the current C string in the object, exactly as the c_str() member
function of the C++ string class does.

If the C string passed to either copy() or concat() would cause the internal String array to be overflowed, then the
function should copy whatever can be copied and make sure that the last character is set to the NULL character.
You must write a main() function that demonstrates the correctness of your String class. The main() function must
ensure that every function of the class is called, and it must demonstrate that the function works properly. It should
purposely try to overflow the array and show what happens as a result.
You are free to use the C string library functions if you like, or you may implement the functionality without using any
library functions. It is your choice.
For full credit, make sure all documentation meets the standard rules. Think of ways to make your program efficient
in its use of time and its use of storage.

Extra Credit

If you complete all the above, try to add a few other features to the class. You can add the following functions and
modify the main() function to demonstrate their correctness. You will not get credit for any one of them unless it is
correct and shown to be so in main(), so try them one at a time.

• An overload of copy() that has a parameter of type String and has the same action as the original copy();
(10% extra)

1

http://ecee.colorado.edu/~ecen2120/Manual/pair.html

CSci 136 Supervised Programming Lab
Lab 11

Prof. Stewart Weiss

• An overload of concat()that has a parameter of type String and has the same action as the original concat();
(10% extra)

• A comparedto() function that has a parameter that is either a C string or an object of type String and performs
comparison, returning the same result as the C library strcmp() would. I.e., if mystring and yourstring

are String objects, then mystring.comparedto(yourstring) would return a negative value if mystring
precedes yourstring, zero if they are identical, and positive if mystring follows yourstring. (10% extra)

What to Submit

Because this is a pair programming project, the submission requirement is slightly different. As usual, you will submit
your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M. But what
you submit is differrent. The instructions for submitting are:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab10/submissions

whose name is username1_username2, where these are the usernames of the two people working on the project.

2. Copy all files, which should be named String.h, String.cpp, and lab11_main.cpp, to that directory. You
will lose 5% of the grade if you misname the files! Make sure that each file has a preamble with both names and
other appropriate information in it. Make sure both partners have a copy of these files in their home directories.

3. Change the permission on the submitted directory that you created so that no one else can read or modify it. It
does not matter who the owner of that directory is as long as both names are part of its name.

Do not submit executable files. Your work will be graded based on the rubric outlined in the Programming Rules
document.

2

CSci 136 Supervised Programming Lab
Lab 12

Prof. Stewart Weiss

Lab 12: Extending the String class

In the last lab, you developed your own version of the C++ string class, with a very small set of member functions. In
this lab you will get more practice designing and implementing a class and working with C strings and character data.
This project is again a pair programming project. You will be working in pairs following the guidelines and procedures
described in http://ecee.colorado.edu/∼ecen2120/Manual/pair.html. I have taken excerpts from this University of
Colorado webpage as the basis for a short tutorial on pair programming, which is included in the lab’s directory
on the server. Before you begin this assignment, make sure you know who is the driver and who is the navigator, and
know what your respective roles are.

Exercise

Write a program that extends the String class that was developed in Lab 11. The class should have a data member
that is an array of 80 characters to store the characters of the string including the NULL character at the end. A proper
empty object of type String should have a single character it in (this character is '\0', and is located in the first array
location). The String class specified in the previous lab was defined to have the following functions:

• A default constructor that creates an empty string;

• A constructor that initializes the object to the C string passed as its argument;

• copy(), which copies its C string argument into the current object, overwriting whatever was in the current
object before;

• concat(), which appends its C string argument at the end of the string in the current object, provided that there
is storage available;

• size(), which returns the current size of the string in the object;

• str(), which returns a constant pointer to the current C string in the object, exactly as the c_str() member
function of the C++ string class does.

This extension to the String class must also have the additional functions described in plain English below. You must
determine their signatures and create their prototypes.

• A constructor that initializes the object to the String object passed as its argument;

• find(), which returns the index of the first occurrence of its string argument in the string in the String object,
or -1 if it is not found;

• find(), which returns the index of the first occurrence of its string argument in the String object after a
given position in the string in the String object specified as its second argument, or -1 if it is not found; e.g.
find(str,6) returns the position of the first occurrence of str in the String object starting at or after position
6;

• toupper(), which changes the string in the object by changing all lowercase letters in it to uppercase letters;

• tolower(), which changes the string in the object by changing all uppercase letters in it to lowercase letters;

• replace(), which replaces every occurrence of its second character argument by its first character argument
in the string in the object. In other words, replace('a', '1') would replace all '1's by 'a's. As a special
case, if replace() has just a single argument, it replaces every character in the string by that character, so
replace(' ') replaces all characters by the blank.

1

http://ecee.colorado.edu/~ecen2120/Manual/pair.html

CSci 136 Supervised Programming Lab
Lab 12

Prof. Stewart Weiss

You must write a main() function that demonstrates the correctness of the new features of the String class. The
main() function must ensure that every new function of the class is called, and it must demonstrate that the function
works properly.
You are free to use the C string library and C character handling functions if you like, or you may implement the
functionality without using any library functions. It is your choice. You are free to use my solution to Lab 11 as a
starting point.
For full credit, make sure all documentation meets the standard rules. Think of ways to make your program efficient
in its use of time and its use of storage.

What to Submit

Because this is a pair programming project, the submission requirement is slightly different. As usual, you will submit
your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M. But what
you submit is differrent. The instructions for submitting are:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab12/submissions

whose name is username1_username2, where these are the usernames of the two people working on the project.

2. Copy all files, which should be named String.h, String.cpp, and lab12_main.cpp, to that directory. You
will lose 5% of the grade if you misname the files! Make sure that each file has a preamble with both names and
other appropriate information in it. Make sure both partners have a copy of these files in their home directories.

3. Change the permission on the submitted directory that you created so that no one else can read or modify it. It
does not matter who the owner of that directory is as long as both names are part of its name.

Do not submit executable files. Your work will be graded based on the rubric outlined in the Programming Rules
document.

2

CSci 136 Supervised Programming Lab
Lab 13

Prof. Stewart Weiss

Lab 13: Using Vectors

In this lab you will get practice working with vectors. The project will use a class similar to the student class that
was created in Lab 10. You will write a main program that uses my versions of the student.h and student.cpp

files.

Exercise

Write a program that creates a vector whose base type is the class student. The vector is initially empty. It should
be filled with the data coming from an input file. The program should have a single argument on the command line
that is the name of the input file. For this lab assume that the file contains valid data. Each line consists of a record for
a single student and has the following format:

last_name first_name id status gpa number_of_credits

The last two fields on the line are optional (they are either both there, or both missing). The entries on a single line are
separated by any number of space characters, meaning spaces or tabs.
Once the list of students from the file is read into your vector, your program should display a menu that gives the user
the following options:

[a] Display all records, in alphabetical order by last name.

[g] Display all records sorted in descending order of gpa.

[q] Exit.

and repeatedly respond to the user’s choice and then redisplay the menu until the user quits. In all cases, when the
records are displayed, the fields must be tab-separated. For option 'a', if last names are the same, first names should
be used to break ties. In option 'g', if gpas are the same, any order is acceptable.

Implementation Suggestions

Since the number of entries on a line in the input file is variable, you cannot use the >> stream extraction opera-
tor for reading one element at a time. You need to read an entire line and then parse that line. There are a few
different ways that you can do this, such as using the global getline() function to read into a C++ string, or the
istream::getline() member function to read into a C string. Once your data is in a string of either kind you have
many ways to extract the fields.
If you store into a C string, you could use one of the C string library functions to get the words within the string.
If you store into a C++ string, you could also do this by extracting the C string from it, or you could use one of several
string class member functions, such as:

find_first_of() Find character in string (public member function)

find_last_of() Find character in string from the end (public member function)

find_first_not_of() Find absence of character in string

find_last_not_of() Find absence of character in string from the end (public member function)

You can find a more detailed explanation and the exact parameter list on the website for the string class. Regardless
of which method you choose, remember that the gpa and number of credits either are both present or both absent from
the line.

1

http://www.cplusplus.com/reference/string/string/

CSci 136 Supervised Programming Lab
Lab 13

Prof. Stewart Weiss

Extra Credit

• If the gpa is present but not the number of credits, catch this. (5%)

• If the gpa or number of credit is not numeric, catch this (5%)

• In the gpa sort, use the last name in increasing alphabetic order as the tie-breaker. (10%)

What to Submit

Submit your program, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00 P.M.
There is no grace period for this. Programs submitted after 2:00 PM will not be accepted. The instructions for
submitting are:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab13/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your file, which should be named lab13_main.cpp, and the student.h and student.cpp files, to that
directory. You will lose 5% of the grade if you misname the file! Make sure that each file has a preamble with
your name and other appropriate information in it.

3. Change the permission on the directory that you created so that no one else can read or modify it.

Do not submit executable files. Remember to document your code (both preamble and comments in the code) and
make it easy to read. Your work will be graded based on the rubric outlined in the Programming Rules document.

2

CSci 135 Software Analysis and Design I
Assignment 1

Stewart Weiss

Assignment 1: Computing with DNA sequences
Summary
Deoxyribonucleic acid (DNA) is a nucleic acid containing the genetic instructions used in the development and
functioning of all known living organisms. In this assignment you will be extracting information from strands
of DNA, which you can simply think of as sequences of the letters a, c, g, and t in any order (assume that the
letters are always in lower case). Although you do not need to know anything else about DNA other than what
is written here, it would be useful to read my tutorial containing biological background information (found
here: http://www.compsci.hunter.cuny.edu/∼sweiss/course_materials/csci135/biobackground.pdf) to get a
better perspective on the project.
You will write a program that performs several computations given strands of DNA read from a file. The
results of computations should be written to the standard output stream and any error messages should be
sent to the standard error stream.

Input
The input DNA strings will come from a file that the program is expected to open and read. The program
should expect that the file is named “dna.txt” and is in its current working directory. However, if the
program cannot open this file for any reason, it should report this error on the standard error stream and
then exit gracefully. This might happen for a number of reasons, including that the name is wrong, the file
is not there, or the permissions on the file are wrong.
The file will contain two DNA strings, on separate lines. There will be no blank lines in the file. The
program should not assume that the strings are valid DNA strings. If for some reason, any of the strings
have characters other than a, c, g, or t it should report the error on the standard error stream and gracefully
exit.
The DNA strings in the file will not be larger than 4095 characters long. This is an arbitrary length chosen
just for the assignment.

Computational Tasks
The program must be able to perform the following computational tasks. Each of these must be implementing
by a user-defined function.

GC Content: The GC content of a single DNA strand is the ratio of the total number of c’s and g’s to
the length of the strand. For example, the sequence ’atcgtttgga’ is of length 10 and has a total of 4 c’s
and g’s, so its GC content is 0.4.
Given a DNA string, count the GC content of the string and report this as the fraction (number of c’s and
g’s)/(length of string). The result of this computation is therefore a number between 0 and 1 inclusive.

Poly-T sequences: A poly-T sequence of length at least N is a sequence of N or more consecutive t
nucleotides. It is maximal if it is not contained in a longer poly-T sequence.
Given a DNA string, count the number of occurrences of maximal poly-T sequences of length at least N in
the string and report this as a whole number.
For example, actttaattttactttcctta has 3 poly-t sequences of length 3 or more:

actttaattttactttcctta

and only one of length 4 or more:

actttaattttactttcctta.

Note: The sequence tttt has only one maximal poly-T sequence of length at least 3. Similarly, the sequence
ttttttt has only one maximal poly-T sequence of length at least 3. This is because we are looking for
sequences of 3 or more consecutive t’s.

1

http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci135/biobackground.pdf

CSci 135 Software Analysis and Design I
Assignment 1

Stewart Weiss

Mutations: A mutation is a change in one or more bases in the DNA sequence. Mutations are essential
to evolution.
Given two DNA strands, not necessarily of the same length, count and report the positions at which they
differ. If one is longer than the other, then treat each extra positions in the longer as a mutation. For
example, the two strings ’aaaataa’ and ’aaaaaaaccc’ differ in just one common position, the fifth letter, but
the second has three extra letters, so the result should be 4 (1 plus 3).

Phylogenetic distance: The phylogenetic distance between two DNA strands is the number of mutations
that occurred in the transition from one strand to the other.
Given two DNA strands of equal size, compute and output the phylogenetic distance between them, measured
as the number of mutations between them divided by the length of the strings, producing a value between
0 and 1. For example the phylogenetic distance between ’aaaataaggg’ and ’aaaaaaaccc’ is 4/10 = 0.4.

User Interface
This program provides a menu driven user interface. It should display the following menu on the screen:

1 compute GC content of DNA string 1
2 compute GC content of DNA string 2
3 compute number of poly-T sequences of length N or more in DNA string 1
4 compute number of poly-T sequences of length N or more in DNA string 2
5 compute number of mutations between the two DNA strings
6 compute phylogenetic distance between the two DNA strings
7 quit

After displaying the menu the program should display a prompt and wait for the user to enter one of the
above numbers. When the user enters a valid choice (a digit 1, 2, 3, 4, 5, 6, or 7) the task should be
performed and then menu should be redisplayed unless the user chooses to quit.
When the user enters either 3 or 4 to compute the number of poly-T sequences of length N or more, he/she
should be prompted for the value of N. N can be any integer greater than zero. Your program should verify
that the number entered is greater than zero. If the user types anything other than one of the numbers 1
through 6, the program should display the message “Invalid choice. Try again.”

Programming Rules
Your program must conform to the programming rules described in the Programming Rules document on
the course website. Remember in particular that:

• You must write your program yourself. I will on occasion ask you to explain the code to me, so you
need to make sure that you understand the code that you write. If you want to use features of C++
that we did not cover in class, you need to understand them thoroughly.

• You must document your program (preamble, function pre- and post-conditions, comments throughout
the code, appropriately choosing variable and function names).

• Input from the standard input stream and output to the standard output and error streams should be
performed by the main function only, i.e. no other functions should perform any I/O operations).

• Late programs lose 20% for each 24 hours they are late.

Also, you must implement and use at least four functions that perform the four computational tasks described
above. Each of these functions has to take at least one parameter, i.e. the DNA string. It may take other
parameters if you want. It is up to you whether the main program or your functions should validate that
the string is a valid DNA string. (Remember that a valid DNA string contains only the letters a, c, g, and
t in any order and in lower case.)

2

CSci 135 Software Analysis and Design I
Assignment 1

Stewart Weiss

Grading
The program will be graded based on the following rubric.

• Does the program compile (on a cslab machine): 15%

• Correctness and implementation of the four functions: 45%

– compute GC content (10%)
– compute number of poly-T sequences of length N or more (15%)
– compute mutation between two strings (10%)
– compute phylogenetic distance (10%)

• Correctness and implementation of the main function and any other functions in the program: 20%

• Documentation: 15%

• Style and proper naming: 5%

Submitting the Assignment
This assignment is due by the end of the day (i.e. 11:59PM, EST) on October 4, 2012. You need to submit a
single file for this assignment. Its name should be username_hwk1.cpp. where username is to be replaced
by your username on our system. Do not name it anything else. If it is named anything else, it loses 3%
of the program’s value. Before you submit the assignment, make sure that it compiles and runs correctly
on one of the cslab machines. Do not enhance your program beyond this specification. Do not make it do
anything except what is written above.
You are to put your file into the directory

/data/biocs/b/student.accounts/cs135_sw/cs135projects/project1

Give it permission 600 so that only you have access to it. To do this, cd to the above directory and run the
command

chmod 600 yourfilename

where yourfilename is the name of the file you put in that directory.
If you put a program there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date.

3

CSci 135 Software Analysis and Design I
Assignment 2

Stewart Weiss

Assignment 2: A Library Catalog
Summary
This program manages the catalog of an old-fashioned library, i.e., one that actually has books. A catalog
entry for a book consists of a unique catalog number, the author’s last name, the author’s first name, the
name of the book, the genre, and whether it is available for checkout. The program is not very useful or
robust because that would be too hard for a second project, but it will give you practice in many different
aspects of computing. The program will open two input files specified on the command line, one containing a
database of library holdings (books), and a second containing a list of requested books. The list of requested
books is something like a batch processing system for the library. Imagine that at the end of every day, all
requests made that day, which were recorded in a file, are then processed. This is what that file represents.
The program will produce three reports, one for each of the computational tasks described below, and these
will be saved in three different output files whose names are also specified on the command line. The order
of the file names on the command line is as follows:

1. library holdings input file

2. book request input file

3. author-sort output file

4. genre-sort output file

5. checkout output file

Input
There are two input files. If an input file is missing, the program should output an error message and quit.
You can assume the input files will have the formats described below; there is no need to error check the
format.

Library Holdings File

The library holdings file contains a list of all of the library’s books in a specific format. Each line represents
a single book, and will have six tokens (fields). Tokens are separated by tab characters in each line. Tokens
can have non-tab whitespace characters in them. Let <T> denote a tab character. Then a line has the form

catalog number<T>author last name<T>author first name<T>book title<T>genre<T>availability

A sample input file might look like the following, in which tabs are also denoted by <T>:

C0594<T>Woolf<T>Virginia<T>A Room of One’s Own<T>essay<T>available
C7495<T>Gibson<T>William<T>Neuromencer<T>science fiction<T>available
C1934<T>Heidegger<T>Martin<T>Being and Time<T>philosophy<T>unavailable
C8394<T>Kundera<T>Milan<T>The Unbearable Lightness of Being<T>novel<T>available

There will be no more than 10000 entries in the library holdings file.

1

CSci 135 Software Analysis and Design I
Assignment 2

Stewart Weiss

Book Request File

The book request file contains a list of catalog numbers, one per line. These are the books being requested
by various library users, and the program should check if they are available. A sample input file might look
like the following:

C0594
C7495
C1934
C2237

There will be no more than 500 entries in the book request file.

Computational Tasks
There are three different tasks that the program must perform on the input files.

author-sort. List all of the books in the library in ascending alphabetical order of author last name. If two
authors have the same last name, they should be listed in ascending order by first name.

genre-sort. List all the books in the library in ascending alphabetical order of genre. Within a genre, books
should be ordered by author last name in ascending alphabetical order.

checkout. Given a list of requested catalog numbers, check if those books are available for checkout, and if
so, for each one, indicate availability.

User Interface
There is no user interface to this program. The arguments are given on the program command line, and
they are the names of files that the program uses for its input.

Output
The program will produce three output files with the names specified on the command line. If those files
exist already they will be overwritten by the program.

Author-Sort Output File

The output file for the author-sort task will list the library holdings sorted by author last name, in ascending
alphabetical order. The format is the same as that of the “library holdings input file”. If two authors have
the same last name, the books should be listed in ascending order by first name within that set of last names.

Genre-Sort Output File

The output file for the genre-sort task will list the library holdings sorted by genre, in ascending alphabetical
order. The format is the same as that of the “library holdings input file”. Within a genre, books should be
ordered by author last name in ascending alphabetical order.

Checkout Output File

The output file for the checkout task will list the catalog numbers appearing in the “book request input file”
followed by the corresponding title and availability. The books should be listed in the same order in which
they appear in the input file. If a requested catalog number does not appear in the library holdings, the
program should list the catalog number followed by the word unavailable.
A sample output file for computational task 3 might be:

C0594 A Room of One’s Own available
C7495 Neuromencer available
C1934 Being and Time unavailable
C2237 unavailable

2

CSci 135 Software Analysis and Design I
Assignment 2

Stewart Weiss

Programming Rules
Your program must conform to the programming rules described in the Programming Rules document on
the course website. Remember in particular that:

• You must write your program yourself. I will on occasion ask you to explain the code to me, so you
need to make sure that you understand the code that you write. If you want to use features of C++
that we did not cover in class, you need to understand them thoroughly.

• You must document your program (preamble, function pre- and post-conditions, comments throughout
the code, appropriately choosing variable and function names).

• All input and output must be performed by the main function only, i.e. no other functions should
perform any I/O operations. The functions that perform the computational tasks must pass all data
through their parameter lists.

• Late programs lose 20% for each 24 hours they are late.

Grading
The program will be graded based on the following rubric.

• Does the program compile (on a cslab machine): 15%

• Correctness and implementation of the book class: 10%

• Correctness and implementation of the sort and search functions: 15%

• Correctness and implementation of I/O, main(), and any other features in the program: 35%

• Correctness of multiple file implementation and modularity: 10%

• Documentation: 10%

• Style and proper naming: 5%

Submitting the Assignment
This assignment is due by the end of the day (i.e. 11:59PM, EST) on November 5, 2012. You need to submit
multiple files for this assignment, so they must be placed into a directory and zipped up as the instructions
below describe. The name of your directory must be username_hwk2. where username is to be replaced
by your username on our system. Do not name it anything else. If it is named anything else, you lose 3%
of the program’s value. Before you submit the assignment, make sure that it compiles and runs correctly
on one of the cslab machines. Do not enhance your program beyond this specification. Do not make it do
anything except what is written above.
You are to create the above named directory and place all of your source code files into it. Do not place any
executable files or object files into this directory. You will lose 1% for each file that does not belong there.
With all files in your directory, run the command

zip -r username_hwk2.zip ./username_hwk2

This will compress all of your files into the file named username_hwk2.zip. Put this zip file into the directory

/data/biocs/b/student.accounts/cs135_sw/cs135projects/project2

Give it permission 600 so that only you have access to it. To do this, cd to the above directory and run the
command

chmod 600 username_hwk2.zip

If you put a file there and then decide to change it before the deadline, just replace it by the new version.
Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end of the
day on the due date.

3

CSci 135 Software Analysis and Design I
Assignment 3

Stewart Weiss

Assignment 3: Playlist Creator
Summary
Many software audio players let the user organize his or her music in various playlists that are saved as
separate files without duplicating the music files themselves. In this assignment you will design and develop
a program named jukebox that implements a simple playlist creator. It will be able to open a database
of songs and create a new playlist consisting of a subset of the songs in the database. This project will
exercise your knowledge of classes, string processing, and general program organization. It is the largest of
the programs you will have written. The program will be run with a single comment line argument that
specifies the name of the song database file that the program will open. If there is no command line argument,
the program will attempt to open a file in its current working directory named songs.csv. If there is no
command line argument and no file named songs.csv in the current working directory, the program will
exit with a useful error message to the user.

Program Description
The program should open a file that contains a database of songs. The input file will contain zero or more
songs, one per line. The format of this file is specified below in the section entitled Input. If the program is
unable to open the song database for one reason or another, it will display an error message and exit. The
error handling is described below in the Input section. If the program successfully opens the song database
file, it will then prompt the user to enter the name of the playlist that he or she wishes to create. Once the
user enters the name of the playlist, the program will display a menu of choices to the user. The user will
be able to view the songs from the database in various ways and select songs from among the listed songs
to add to the playlist. The user will also be able to save the playlist to an output file.

User Interface

The program will display the following menu:

[A/a] List all.
[R/r] List all matching an artist keyword ...
[T/t] List all matching a title keyword ...
[V/v] View the playlist.
[S/s] Save
[Q/q] Exit.

The details follow.

List all. All songs in the database should be printed on the screen , 20 songs at a time, followed by the
prompt string “action:”. The user should either type next to see the next 20 songs, or add followed
by one or more numbers n1, n2, ..., nk to add the song with indices n1, n2, ..., nk to the playlist, or stop
to stop the display of songs and redisplay the main menu.

List all by matching an artist keyword ... The user should be prompted for the keyword to match.
A keyword cannot contain blanks or tabs. Then the program should display on the screen, 20 songs
at a time, all the songs in the database whose artist matches or contains the keyword, followed by the
prompt string “action:”. The user should either type next to see the next 20 songs, or add followed
by one or more numbers n1, n2, ..., nk to add the song with indices n1, n2, ..., nk to the playlist, or stop
to stop the display of songs and redisplay the main menu.

List all by matching a title keyword ... The user should be prompted for the keyword to match.
A keyword cannot contain blanks or tabs. Then the program should display on the screen, 20 songs

1

CSci 135 Software Analysis and Design I
Assignment 3

Stewart Weiss

at a time, all the songs in the database whose title matches or contains the keyword, followed by the
prompt string “action:”. The user should either type next to see the next 20 songs, or add followed
by one or more numbers n1, n2, ..., nk to add the song with indices n1, n2, ..., nk to the playlist, or stop
to stop the display of songs and redisplay the main menu.

View the playlist. This is how the user can delete songs from the playlist. All songs in the playlist
should be printed on the screen , 20 songs at a time, followed by the prompt string “action:”. The
user should either type next to see the next 20 songs, or remove num to remove the song with index
num from the playlist.

Save. The playlist should be saved to a file whose name matches the name of the playlist. (See the format
of the output file below). If the file exists, it will be overwritten by the new playlist1.

Exit. The program exits.

Displaying a list of songs. When the user chooses any of the first four menu items above, the program
should display the list of songs, 20 songs at a time (a smaller number of songs should only be printed on
the last screen). Each song should be displayed on a single line using no more than 80 characters (since this
is the typical width of the terminal window). You should organize the information as follows:

NNNN. AAAAAAAAAAAAAAAAAAAA TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT BBBBBBBBBB MM:SS YYYY

NNNN. is a four digit, right justified index number of a song in the playlist followed by a single dot.
AAAAAAAAAAAAAAAAAAAA is a twenty character wide, left justified name of the artist, possibly with spaces.
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT is a thirty character wide, left justified title, possibly with spaces.
BBBBBBBBBB is ten character wide, left justified name of an album containing the song.
MM:SS is the duration of the song displayed using exactly two digits for minutes, followed by the colon,
followed by exactly two digits for seconds.
YYYY is the year associated with the song.
If the exact artist name, title, or album name does not fit in those limits, they should be truncated. If it is
too short, the rest of the allotted characters should be filled with spaces.
Each entry on the line is separated by a single space.
A sample display may appear as follows:

1. Adele Melt My Heart To Stone 19 03:23 2008
2. Adele First Love 19 03:10 2008

13. Norah Jones Wish I Could Not Too La 04:18 2007
44. Norah Jones Not Too Late Not Too La 03:31 2007

137. Joni Mitchell One Week Last Summer Shine 04:59 2007
139. Joni Mitchell This Place Shine 03:54 2007
231. Sara Bareilles Love Song Little Voi 04:20 2007

5202. Sia Little Black Sandals Some Peopl 04:14 2007

Note that the index numbers may not be consecutive if the search results are displayed.
A typical terminal is 24 rows tall. If 20 songs are displayed followed by 3 blank lines, the prompt will appear
on bottom line. If the user has resized the terminal so that it is shorter than 24 rows, the program will not
display nicely. Your program does not have to contend with this problem.
After the user enters an action in response to the prompt, if the program again displays 20 songs followed by
3 blank lines, the prompt will again be on the bottom line. This is how you can control to a limited extent
how “nice” your program’s display looks.

1In C++ using the iostream library, it is not easy to alter this behavior. It is much easier when using the C library’s file
I/O functions to prevent a file from being overwritten.

2

CSci 135 Software Analysis and Design I
Assignment 3

Stewart Weiss

Input
As noted above, the input file is either a command line argument or the default songs.csv file in the current
working directory. Whichever it is, when the program tries to open it, if the open fails, it must exit and
report this error on the standard error stream.
If the file is opened successfully, it must be read into an appropriate data structure in the program’s memory.
The input file is a tab-separated text file. This means that each field on a line is separated from the adjacent
fields by a single tab character. In addition, each field is delimited by double quotes.
Each line, except for the first one, should contain a description of a single song. The first row in the file will
contain a set of headings. The headings are always the same in a valid input file:
"Name" " Ar t i s t " "Album" "Genre " " S i z e " "Time " " Year " "Comments "

If the heading in the input file does not match the above ones, the program should detect such an input file
as invalid and report on the standard error stream that the input file heading is not valid.
The remaining lines contain descriptions of songs. Each line contains eight fields, corresponding to the above
named headings. Although your program must display the time using the format mm:ss, the time stored in
a file is given in seconds. An example might look like:
"Melt My Heart To Stone" "Adele" "19" "R&B" "6772679" "203" "2008" "my favorite "
"First Love" "Adele" "19" "R&B" "6651186" "190" "2008" "it ’s ok"
"Wish I Could" "Norah Jones" "Not Too Late" "Jazz" "8536495" "258" "2007" "from Otis"
"Not Too Late" "Norah Jones" "Not Too Late" "Jazz" "6913447" "211" "2007" "from Otis"
"One Week Last Summer " "Joni Mitchell " "Shine" "Pop" "9936667" "299" "2007" ""
"This Place" "Joni Mitchell " "Shine" "Pop" "7695743" "234" "2007" ""
"Love Song" "Sara Bareilles " " Little Voice" "Pop" "4210858" "260" "2007" "send to Joe"
" Little Black Sandals " "Sia" "Some People Have Real Problems " "Pop" "" "254" "2007" ""

Only the first two fields: Name and Artist are mandatory on the line. Any field past the first two can be
left blank. A blank field is indicated by an empty set of quotes (not even white spaces should be allowed).
For example, if the Album, Genre, Size and Comments are all blank, an entry could look as follows (with
tabs separating the entries):
"One Week Last Summer " "Joni Mitchell " "" "" "" "299" "2007" ""

Validation of the input file. Summarizing the validity of an input file, a valid file must satisfy all of the
following conditions:

• the headings must be valid and all present;

• the first two fields on each line must be non empty;

• each line has to contain exactly eight fields;

• the fields are separated by tabs (and therefore there are seven tabs in each line).

No other checks on the validity must be performed. You can assume that the following will be true in every
input file that is valid according to the above conditions:

• the time is always specified as the number of seconds;

• the size is the number of bytes;

• there are no empty lines, but each line ends with a newline character (specifically, the last line in the
file will have a newline at the end).

Output
The format of the output file should be identical to the format of the input file. It should contain the same
heading and each line should be in exactly the same format as an input line’s format. This way, an output
file from one run of the program can be used as an input file for another run of the program.

3

CSci 135 Software Analysis and Design I
Assignment 3

Stewart Weiss

Programming Rules
Your program must conform to the programming rules described in the Programming Rules document on
the course website. Remember in particular that:

• You must write your program yourself. I will on occasion ask you to explain the code to me, so you
need to make sure that you understand the code that you write. If you want to use features of C++
that we did not cover in class, you need to understand them thoroughly.

• You must document your program (preamble, function pre- and post-conditions, comments throughout
the code, appropriately choosing variable and function names).

• All input and output must be performed by the main function only, i.e. no other functions should
perform any I/O operations. The functions that perform the computational tasks must pass all data
through their parameter lists.

• You must use a class to represent a single song.

• You must use a class to represent a playlist.

• Late programs lose 20% for each 24 hours they are late.

Grading
The program will be graded based on the following rubric.

• Does the program compile (on a cslab machine): 10%

• Correctness and implementation of the song class: 10%

• Correctness and implementation of the playlist class: 20%

• Correctness and implementation of the user interface: 15%

• Correctness and implementation of the file I/O operations: 10%

• Correctness and implementation of main() and any other features in the program: 15%

• Correctness of multiple file implementation and modularity: 10%

• Documentation: 10%

Submitting the Assignment
This assignment is due by the end of the day (i.e. 11:59PM, EST) on December 10, 2012. You need to submit
multiple files for this assignment, so they must be placed into a directory and zipped up as the instructions
below describe. The name of your directory must be username_hwk3. where username is to be replaced
by your username on our system. Do not name it anything else. If it is named anything else, you lose 3%
of the program’s value. Before you submit the assignment, make sure that it compiles and runs correctly
on one of the cslab machines. Do not enhance your program beyond this specification. Do not make it do
anything except what is written above.
You are to create the above named directory and place all of your source code files into it. Do not place any
executable files or object files into this directory. You will lose 1% for each file that does not belong there.
With all files in your directory, run the command

zip -r username_hwk3.zip ./username_hwk3

This will compress all of your files into the file named username_hwk3.zip. Put this zip file into the directory

/data/biocs/b/student.accounts/cs135_sw/cs135projects/project3

4

CSci 135 Software Analysis and Design I
Assignment 3

Stewart Weiss

Give it permission 600 so that only you have access to it. To do this, cd to the above directory and run the
command

chmod 600 username_hwk3.zip

If you put a file there and then decide to change it before the deadline, just replace it by the new version.
Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end of the
day on the due date.

5

	Biology Background
	Creating Functions in C/C++
	Arrays
	About Compiling
	C Strings and Pointers
	Processing Command-Line Arguments
	Namespaces, Structures and Classes
	A Bit More About I/O in C++
	Introduction to Vectors
	Pointers and Dynamic Variables
	Binary Search
	Lab 1 - Working in the Terminal and More
	Lab 3: Pseudo-Random Numbers and Strings
	Pair Programming Tutorial
	LAB 01
	Lab 2: Bakhshali Approximation for Computing Square Roots
	Lab 3: Generating and Analyzing Random Strings
	Lab 4: An Interactive 3D Distance CalculatorThis
	Lab 5: Simulations
	Lab 6: Software Testing and Debugging
	Lab 7: Array processing
	Lab 8: Arrays and Reusable Code
	Lab 9: Structures and Data Abstraction
	Lab 10: Classes and Data Abstraction
	Lab 11: Write your own string class
	Lab 12: Extending the String class
	Lab 13: Using Vectors
	Assignment 1: Computing with DNA sequences
	Assignment 2: A Library Catalog
	Assignment 3: Playlist Creator

