
Chapter 1

Introduction and Overview

The course has a website at

http://www.theory.caltech.edu/∼preskill/ph229
General information can be found there, including a course outline and links
to relevant references.

Our topic can be approached from a variety of points of view, but these
lectures will adopt the perspective of a theoretical physicist (that is, it’s my
perspective and I’m a theoretical physicist). Because of the interdisciplinary
character of the subject, I realize that the students will have a broad spectrum
of backgrounds, and I will try to allow for that in the lectures. Please give
me feedback if I am assuming things that you don’t know.

1.1 Physics of information

Why is a physicist teaching a course about information? In fact, the physics

of information and computation has been a recognized discipline for at least
several decades. This is natural. Information, after all, is something that is
encoded in the state of a physical system; a computation is something that
can be carried out on an actual physically realizable device. So the study of
information and computation should be linked to the study of the underlying
physical processes. Certainly, from an engineering perspective, mastery of
principles of physics and materials science is needed to develop state-of-the-
art computing hardware. (Carver Mead calls his Caltech research group,
dedicated to advancing the art of chip design, the “Physics of Computation”
(Physcmp) group).
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From a more abstract theoretical perspective, there have been noteworthy
milestones in our understanding of how physics constrains our ability to use
and manipulate information. For example:

• Landauer’s principle. Rolf Landauer pointed out in 1961 that erasure
of information is necessarily a dissipative process. His insight is that erasure
always involves the compression of phase space, and so is irreversible.

For example, I can store one bit of information by placing a single molecule
in a box, either on the left side or the right side of a partition that divides
the box. Erasure means that we move the molecule to the left side (say) irre-
spective of whether it started out on the left or right. I can suddenly remove
the partition, and then slowly compress the one-molecule “gas” with a piston
until the molecule is definitely on the left side. This procedure reduces the
entropy of the gas by ∆S = k ln 2 and there is an associated flow of heat from
the box to the environment. If the process is isothermal at temperature T ,
then work W = kT ln 2 is performed on the box, work that I have to provide.
If I am to erase information, someone will have to pay the power bill.

• Reversible computation. The logic gates used to perform computa-
tion are typically irreversible, e.g., the NAND gate

(a, b) → ¬(a ∧ b) (1.1)

has two input bits and one output bit, and we can’t recover a unique input
from the output bit. According to Landauer’s principle, since about one
bit is erased by the gate (averaged over its possible inputs), at least work
W = kT ln 2 is needed to operate the gate. If we have a finite supply of
batteries, there appears to be a theoretical limit to how long a computation
we can perform.

But Charles Bennett found in 1973 that any computation can be per-
formed using only reversible steps, and so in principle requires no dissipation
and no power expenditure. We can actually construct a reversible version
of the NAND gate that preserves all the information about the input: For
example, the (Toffoli) gate

(a, b, c) → (a, b, c⊕ a ∧ b) (1.2)

is a reversible 3-bit gate that flips the third bit if the first two both take
the value 1 and does nothing otherwise. The third output bit becomes the
NAND of a and b if c = 1. We can transform an irreversible computation
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to a reversible one by replacing the NAND gates by Toffoli gates. This
computation could in principle be done with negligible dissipation.

However, in the process we generate a lot of extra junk, and one wonders
whether we have only postponed the energy cost; we’ll have to pay when we
need to erase all the junk. Bennett addressed this issue by pointing out that
a reversible computer can run forward to the end of a computation, print
out a copy of the answer (a logically reversible operation) and then reverse

all of its steps to return to its initial configuration. This procedure removes
the junk without any energy cost.

In principle, then, we need not pay any power bill to compute. In prac-
tice, the (irreversible) computers in use today dissipate orders of magnitude
more than kT ln 2 per gate, anyway, so Landauer’s limit is not an important
engineering consideration. But as computing hardware continues to shrink
in size, it may become important to beat Landauer’s limit to prevent the
components from melting, and then reversible computation may be the only
option.

• Maxwell’s demon. The insights of Landauer and Bennett led Bennett
in 1982 to the reconciliation of Maxwell’s demon with the second law of ther-
modynamics. Maxwell had envisioned a gas in a box, divided by a partition
into two parts A and B. The partition contains a shutter operated by the
demon. The demon observes the molecules in the box as they approach the
shutter, allowing fast ones to pass from A to B, and slow ones from B to A.
Hence, A cools and B heats up, with a negligible expenditure of work. Heat
flows from a cold place to a hot place at no cost, in apparent violation of the
second law.

The resolution is that the demon must collect and store information about
the molecules. If the demon has a finite memory capacity, he cannot continue
to cool the gas indefinitely; eventually, information must be erased. At that
point, we finally pay the power bill for the cooling we achieved. (If the demon
does not erase his record, or if we want to do the thermodynamic accounting
before the erasure, then we should associate some entropy with the recorded
information.)

These insights were largely anticipated by Leo Szilard in 1929; he was
truly a pioneer of the physics of information. Szilard, in his analysis of the
Maxwell demon, invented the concept of a bit of information, (the name “bit”
was introduced later, by Tukey) and associated the entropy ∆S = k ln 2 with
the acquisition of one bit (though Szilard does not seem to have fully grasped
Landauer’s principle, that it is the erasure of the bit that carries an inevitable
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cost).
These examples illustrate that work at the interface of physics and infor-

mation has generated noteworthy results of interest to both physicists and
computer scientists.

1.2 Quantum information

The moral we draw is that “information is physical.” and it is instructive to
consider what physics has to tell us about information. But fundamentally,
the universe is quantum mechanical. How does quantum theory shed light
on the nature of information?

It must have been clear already in the early days of quantum theory that
classical ideas about information would need revision under the new physics.
For example, the clicks registered in a detector that monitors a radioactive
source are described by a truly random Poisson process. In contrast, there is
no place for true randomness in deterministic classical dynamics (although
of course a complex (chaotic) classical system can exhibit behavior that is in
practice indistinguishable from random).

Furthermore, in quantum theory, noncommuting observables cannot si-
multaneously have precisely defined values (the uncertainty principle), and in
fact performing a measurement of one observable A will necessarily influence
the outcome of a subsequent measurement of an observable B, if A and B
do not commute. Hence, the act of acquiring information about a physical
system inevitably disturbs the state of the system. There is no counterpart
of this limitation in classical physics.

The tradeoff between acquiring information and creating a disturbance is
related to quantum randomness. It is because the outcome of a measurement
has a random element that we are unable to infer the initial state of the
system from the measurement outcome.

That acquiring information causes a disturbance is also connected with
another essential distinction between quantum and classical information:
quantum information cannot be copied with perfect fidelity (the no-cloning
principle annunciated by Wootters and Zurek and by Dieks in 1982). If we
could make a perfect copy of a quantum state, we could measure an observ-
able of the copy without disturbing the original and we could defeat the
principle of disturbance. On the other hand, nothing prevents us from copy-
ing classical information perfectly (a welcome feature when you need to back
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up your hard disk).

These properties of quantum information are important, but the really
deep way in which quantum information differs from classical information
emerged from the work of John Bell (1964), who showed that the predictions
of quantum mechanics cannot be reproduced by any local hidden variable
theory. Bell showed that quantum information can be (in fact, typically is)
encoded in nonlocal correlations between the different parts of a physical
system, correlations with no classical counterpart. We will discuss Bell’s
theorem in detail later on, and I will also return to it later in this lecture.

The study of quantum information as a coherent discipline began to
emerge in the 1980’s, and it has blossomed in the 1990’s. Many of the
central results of classical information theory have quantum analogs that
have been discovered and developed recently, and we will discuss some of
these developments later in the course, including: compression of quantum
information, bounds on classical information encoded in quantum systems,
bounds on quantum information sent reliably over a noisy quantum channel.

1.3 Efficient quantum algorithms

Given that quantum information has many unusual properties, it might have
been expected that quantum theory would have a profound impact on our
understanding of computation. That this is spectacularly true came to many
of us as a bolt from the blue unleashed by Peter Shor (an AT&T computer
scientist and a former Caltech undergraduate) in April, 1994. Shor demon-
strated that, at least in principle, a quantum computer can factor a large
number efficiently.

Factoring (finding the prime factors of a composite number) is an example
of an intractable problem with the property:

— The solution can be easily verified, once found.

— But the solution is hard to find.

That is, if p and q are large prime numbers, the product n = pq can be
computed quickly (the number of elementary bit operations required is about
log2 p · log2 q). But given n, it is hard to find p and q.

The time required to find the factors is strongly believed (though this has
never been proved) to be superpolynomial in log(n). That is, as n increases,
the time needed in the worst case grows faster than any power of log(n). The
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best known factoring algorithm (the “number field sieve”) requires

time ' exp[c(lnn)1/3(ln lnn)2/3] (1.3)

where c = (64/9)1/3 ∼ 1.9. The current state of the art is that the 65 digit
factors of a 130 digit number can be found in the order of one month by a
network of hundreds of work stations. Using this to estimate the prefactor
in Eq. 1.3, we can estimate that factoring a 400 digit number would take
about 1010 years, the age of the universe. So even with vast improvements
in technology, factoring a 400 digit number will be out of reach for a while.

The factoring problem is interesting from the perspective of complexity
theory, as an example of a problem presumed to be intractable; that is, a
problem that can’t be solved in a time bounded by a polynomial in the size
of the input, in this case logn. But it is also of practical importance, because
the difficulty of factoring is the basis of schemes for public key cryptography,
such as the widely used RSA scheme.

The exciting new result that Shor found is that a quantum computer can
factor in polynomial time, e.g., in time O[(lnn)3]. So if we had a quantum
computer that could factor a 130 digit number in one month (of course we
don’t, at least not yet!), running Shor’s algorithm it could factor that 400
digit number in less than 3 years. The harder the problem, the greater the
advantage enjoyed by the quantum computer.

Shor’s result spurred my own interest in quantum information (were it
not for Shor, I don’t suppose I would be teaching this course). It’s fascinating
to contemplate the implications for complexity theory, for quantum theory,
for technology.

1.4 Quantum complexity

Of course, Shor’s work had important antecedents. That a quantum system
can perform a computation was first explicitly pointed out by Paul Benioff
and Richard Feynman (independently) in 1982. In a way, this was a natural
issue to wonder about in view of the relentless trend toward miniaturization
in microcircuitry. If the trend continues, we will eventually approach the
regime where quantum theory is highly relevant to how computing devices
function. Perhaps this consideration provided some of the motivation behind
Benioff’s work. But Feynman’s primary motivation was quite different and
very interesting. To understand Feynman’s viewpoint, we’ll need to be more
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explicit about the mathematical description of quantum information and
computation.

The indivisible unit of classical information is the bit: an object that can
take either one of two values: 0 or 1. The corresponding unit of quantum
information is the quantum bit or qubit. The qubit is a vector in a two-
dimensional complex vector space with inner product; in deference to the
classical bit we can call the elements of an orthonormal basis in this space
|0〉 and |1〉. Then a normalized vector can be represented

|ψ〉 = a|0〉 + b|1〉, |a|2 + |b|2 = 1. (1.4)

where a, b ∈ C. We can perform a measurement that projects |ψ〉 onto the
basis |0〉, |1〉. The outcome of the measurement is not deterministic — the
probability that we obtain the result |0〉 is |a|2 and the probability that we
obtain the result |1〉 is |b|2.

The quantum state of N qubits can be expressed as a vector in a space
of dimension 2N . We can choose as an orthonormal basis for this space the
states in which each qubit has a definite value, either |0〉 or |1〉. These can
be labeled by binary strings such as

|01110010 · · · 1001〉 (1.5)

A general normalized vector can be expanded in this basis as

2N−1
∑

x=0

ax|x〉 , (1.6)

where we have associated with each string the number that it represents in
binary notation, ranging in value from 0 to 2N −1. Here the ax’s are complex
numbers satisfying

∑

x |ax|2 = 1. If we measure all N qubits by projecting
each onto the {|0〉, |1〉} basis, the probability of obtaining the outcome |x〉 is
|ax|2.

Now, a quantum computation can be described this way. We assemble N
qubits, and prepare them in a standard initial state such as |0〉|0〉 · · · |0〉, or
|x = 0〉. We then apply a unitary transformation U to the N qubits. (The
transformation U is constructed as a product of standard quantum gates,
unitary transformations that act on just a few qubits at a time). After U is
applied, we measure all of the qubits by projecting onto the {|0〉, |1〉} basis.
The measurement outcome is the output of the computation. So the final
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output is classical information that can be printed out on a piece of paper,
and published in Physical Review.

Notice that the algorithm performed by the quantum computer is a prob-

abilistic algorithm. That is, we could run exactly the same program twice
and obtain different results, because of the randomness of the quantum mea-
surement process. The quantum algorithm actually generates a probability
distribution of possible outputs. (In fact, Shor’s factoring algorithm is not
guaranteed to succeed in finding the prime factors; it just succeeds with
a reasonable probability. That’s okay, though, because it is easy to verify
whether the factors are correct.)

It should be clear from this description that a quantum computer, though
it may operate according to different physical principles than a classical com-
puter, cannot do anything that a classical computer can’t do. Classical com-
puters can store vectors, rotate vectors, and can model the quantum mea-
surement process by projecting a vector onto mutually orthogonal axes. So
a classical computer can surely simulate a quantum computer to arbitrarily
good accuracy. Our notion of what is computable will be the same, whether
we use a classical computer or a quantum computer.

But we should also consider how long the simulation will take. Suppose we
have a computer that operates on a modest number of qubits, like N = 100.
Then to represent the typical quantum state of the computer, we would need
to write down 2N = 2100 ∼ 1030 complex numbers! No existing or foreseeable
digital computer will be able to do that. And performing a general rotation
of a vector in a space of dimension 1030 is far beyond the computational
capacity of any foreseeable classical computer.

(Of course, N classical bits can take 2N possible values. But for each
one of these, it is very easy to write down a complete description of the
configuration — a binary string of length N . Quantum information is very
different in that writing down a complete description of just one typical
configuration of N qubits is enormously complex.)

So it is true that a classical computer can simulate a quantum computer,
but the simulation becomes extremely inefficient as the number of qubits N
increases. Quantum mechanics is hard (computationally) because we must
deal with huge matrices – there is too much room in Hilbert space. This
observation led Feynman to speculate that a quantum computer would be
able to perform certain tasks that are beyond the reach of any conceivable
classical computer. (The quantum computer has no trouble simulating itself!)
Shor’s result seems to bolster this view.
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Is this conclusion unavoidable? In the end, our simulation should provide
a means of assigning probabilities to all the possible outcomes of the final
measurement. It is not really necessary, then, for the classical simulation
to track the complete description of the N -qubit quantum state. We would
settle for a probabilistic classical algorithm, in which the outcome is not
uniquely determined by the input, but in which various outcomes arise with
a probability distribution that coincides with that generated by the quantum
computation. We might hope to perform a local simulation, in which each
qubit has a definite value at each time step, and each quantum gate can act on
the qubits in various possible ways, one of which is selected as determined by
a (pseudo)-random number generator. This simulation would be much easier
than following the evolution of a vector in an exponentially large space.

But the conclusion of John Bell’s powerful theorem is precisely that this
simulation could never work: there is no local probabilistic algorithm that
can reproduce the conclusions of quantum mechanics. Thus, while there is
no known proof, it seems highly likely that simulating a quantum computer
is a very hard problem for any classical computer.

To understand better why the mathematical description of quantum in-
formation is necessarily so complex, imagine we have a 3N -qubit quantum
system (N � 1) divided into three subsystems of N qubits each (called sub-
systems (1),(2), and (3)). We randomly choose a quantum state of the 3N
qubits, and then we separate the 3 subsystems, sending (1) to Santa Barbara
and (3) to San Diego, while (2) remains in Pasadena. Now we would like to
make some measurements to find out as much as we can about the quantum
state. To make it easy on ourselves, let’s imagine that we have a zillion copies
of the state of the system so that we can measure any and all the observables
we want.1 Except for one proviso: we are restricted to carrying out each
measurement within one of the subsystems — no collective measurements
spanning the boundaries between the subsystems are allowed. Then for a
typical state of the 3N -qubit system, our measurements will reveal almost
nothing about what the state is. Nearly all the information that distinguishes
one state from another is in the nonlocal correlations between measurement
outcomes in subsystem (1) (2), and (3). These are the nonlocal correlations
that Bell found to be an essential part of the physical description.

1We cannot make copies of an unknown quantum state ourselves, but we can ask a
friend to prepare many identical copies of the state (he can do it because he knows what
the state is), and not tell us what he did.
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We’ll see that information content can be quantified by entropy (large
entropy means little information.) If we choose a state for the 3N qubits
randomly, we almost always find that the entropy of each subsystem is very
close to

S ∼= N − 2−(N+1), (1.7)

a result found by Don Page. Here N is the maximum possible value of the
entropy, corresponding to the case in which the subsystem carries no accessi-
ble information at all. Thus, for large N we can access only an exponentially
small amount of information by looking at each subsystem separately.

That is, the measurements reveal very little information if we don’t con-
sider how measurement results obtained in San Diego, Pasadena, and Santa
Barbara are correlated with one another — in the language I am using, a
measurement of a correlation is considered to be a “collective” measurement
(even though it could actually be performed by experimenters who observe
the separate parts of the same copy of the state, and then exchange phone
calls to compare their results). By measuring the correlations we can learn
much more; in principle, we can completely reconstruct the state.

Any satisfactory description of the state of the 3N qubits must charac-
terize these nonlocal correlations, which are exceedingly complex. This is
why a classical simulation of a large quantum system requires vast resources.
(When such nonlocal correlations exist among the parts of a system, we say
that the parts are “entangled,” meaning that we can’t fully decipher the state
of the system by dividing the system up and studying the separate parts.)

1.5 Quantum parallelism

Feynman’s idea was put in a more concrete form by David Deutsch in 1985.
Deutsch emphasized that a quantum computer can best realize its compu-
tational potential by invoking what he called “quantum parallelism.” To
understand what this means, it is best to consider an example.

Following Deutsch, imagine we have a black box that computes a func-
tion that takes a single bit x to a single bit f(x). We don’t know what is
happening inside the box, but it must be something complicated, because the
computation takes 24 hours. There are four possible functions f(x) (because
each of f(0) and f(1) can take either one of two possible values) and we’d
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like to know what the box is computing. It would take 48 hours to find out
both f(0) and f(1).

But we don’t have that much time; we need the answer in 24 hours, not
48. And it turns out that we would be satisfied to know whether f(x) is
constant (f(0) = f(1)) or balanced (f(0) 6= f(1)). Even so, it takes 48 hours
to get the answer.

Now suppose we have a quantum black box that computes f(x). Of course
f(x) might not be invertible, while the action of our quantum computer is
unitary and must be invertible, so we’ll need a transformation Uf that takes
two qubits to two:

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉 . (1.8)

(This machine flips the second qubit if f acting on the first qubit is 1, and
doesn’t do anything if f acting on the first qubit is 0.) We can determine if
f(x) is constant or balanced by using the quantum black box twice. But it
still takes a day for it to produce one output, so that won’t do. Can we get
the answer (in 24 hours) by running the quantum black box just once. (This
is “Deutsch’s problem.”)

Because the black box is a quantum computer, we can choose the input
state to be a superposition of |0〉 and |1〉. If the second qubit is initially
prepared in the state 1√

2
(|0〉 − |1〉), then

Uf : |x〉 1√
2
(|0〉 − |1〉) → |x〉 1√

2
(|f(x)〉 − |1 ⊕ f(x)〉)

= |x〉(−1)f(x) 1√
2
(|0〉 − |1〉), (1.9)

so we have isolated the function f in an x-dependent phase. Now suppose
we prepare the first qubit as 1√

2
(|0〉 + |1〉). Then the black box acts as

Uf :
1√
2
(|0〉 + |1〉) 1√

2
(|0〉 − |1〉) →

1√
2

[

(−1)f(0)|0〉 + (−1)f(1)|1〉
] 1√

2
(|0〉 − |1〉) . (1.10)

Finally, we can perform a measurement that projects the first qubit onto the
basis

|±〉 =
1√
2
(|0〉 ± |1〉). (1.11)
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Evidently, we will always obtain |+〉 if the function is balanced, and |−〉 if
the function is constant.2

So we have solved Deutsch’s problem, and we have found a separation be-
tween what a classical computer and a quantum computer can achieve. The
classical computer has to run the black box twice to distinguish a balanced
function from a constant function, but a quantum computer does the job in
one go!

This is possible because the quantum computer is not limited to com-
puting either f(0) or f(1). It can act on a superposition of |0〉 and |1〉, and
thereby extract “global” information about the function, information that
depends on both f(0) and f(1). This is quantum parallelism.

Now suppose we are interested in global properties of a function that acts
on N bits, a function with 2N possible arguments. To compute a complete
table of values of f(x), we would have to calculate f 2N times, completely
infeasible for N � 1 (e.g., 1030 times for N = 100). But with a quantum
computer that acts according to

Uf : |x〉|0〉 → |x〉|f(x)〉 , (1.12)

we could choose the input register to be in a state

[

1√
2
(|0〉 + |1〉)

]N

=
1

2N/2

2N−1
∑

x=0

|x〉 , (1.13)

and by computing f(x) only once, we can generate a state

1

2N/2

2N−1
∑

x=0

|x〉|f(x)〉 . (1.14)

Global properties of f are encoded in this state, and we might be able to
extract some of those properties if we can only think of an efficient way to
do it.

This quantum computation exhibits “massive quantum parallelism;” a
simulation of the preparation of this state on a classical computer would

2In our earlier description of a quantum computation, we stated that the final mea-
surement would project each qubit onto the {|0〉, |1〉} basis, but here we are allowing
measurement in a different basis. To describe the procedure in the earlier framework, we
would apply an appropriate unitary change of basis to each qubit before performing the
final measurement.
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require us to compute f an unimaginably large number of times (for N � 1).
Yet we have done it with the quantum computer in only one go. It is just
this kind of massive parallelism that Shor invokes in his factoring algorithm.

As noted earlier, a characteristic feature of quantum information is that
it can be encoded in nonlocal correlations among different parts of a physical
system. Indeed, this is the case in Eq. (1.14); the properties of the function f
are stored as correlations between the “input register” and “output register”
of our quantum computer. This nonlocal information, however, is not so easy
to decipher.

If, for example, I were to measure the input register, I would obtain a
result |x0〉, where x0 is chosen completely at random from the 2N possible
values. This procedure would prepare a state

|x0〉|f(x0)〉. (1.15)

We could proceed to measure the output register to find the value of f(x0).
But because Eq. (1.14) has been destroyed by the measurement, the intricate
correlations among the registers have been lost, and we get no opportunity
to determine f(y0) for any y0 6= x0 by making further measurements. In this
case, then, the quantum computation provided no advantage over a classical
one.

The lesson of the solution to Deutsch’s problem is that we can sometimes
be more clever in exploiting the correlations encoded in Eq. (1.14). Much
of the art of designing quantum algorithms involves finding ways to make
efficient use of the nonlocal correlations.

1.6 A new classification of complexity

The computer on your desktop is not a quantum computer, but still it is a
remarkable device: in principle, it is capable of performing any conceivable
computation. In practice there are computations that you can’t do — you
either run out of time or you run out of memory. But if you provide an
unlimited amount of memory, and you are willing to wait as long as it takes,
then anything that deserves to be called a computation can be done by your
little PC. We say, therefore, that it is a “universal computer.”

Classical complexity theory is the study of which problems are hard and
which ones are easy. Usually, “hard” and “easy” are defined in terms of how
much time and/or memory are needed. But how can we make meaningful
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distinctions between hard and easy without specifying the hardware we will
be using? A problem might be hard on the PC, but perhaps I could design
a special purpose machine that could solve that problem much faster. Or
maybe in the future a much better general purpose computer will be available
that solves the problem far more efficiently. Truly meaningful distinctions
between hard and easy should be universal — they ought not to depend on
which machine we are using.

Much of complexity theory focuses on the distinction between “polyno-
mial time” and “exponential time” algorithms. For any algorithm A, which
can act on an input of variable length, we may associate a complexity func-

tion TA(N), where N is the length of the input in bits. TA(N) is the longest
“time” (that is, number of elementary steps) it takes for the algorithm to
run to completion, for any N -bit input. (For example, if A is a factoring
algorithm, TA(N) is the time needed to factor an N -bit number in the worst
possible case.) We say that A is polynomial time if

TA(N) ≤ Poly (N), (1.16)

where Poly (N) denotes a polynomial of N . Hence, polynomial time means
that the time needed to solve the problem does not grow faster than a power
of the number of input bits.

If the problem is not polynomial time, we say it is exponential time
(though this is really a misnomer, because of course that are superpoly-
nomial functions like N log N that actually increase much more slowly than
an exponential). This is a reasonable way to draw the line between easy and
hard. But the truly compelling reason to make the distinction this way is
that it is machine-independent: it does not matter what computer we are
using. The universality of the distinction between polynomial and exponen-
tial follows from one of the central results of computer science: one universal
(classical) computer can simulate another with at worst “polynomial over-
head.” This means that if an algorithm runs on your computer in polynomial
time, then I can always run it on my computer in polynomial time. If I can’t
think of a better way to do it, I can always have my computer emulate how
yours operates; the cost of running the emulation is only polynomial time.
Similarly, your computer can emulate mine, so we will always agree on which
algorithms are polynomial time.3

3To make this statement precise, we need to be a little careful. For example, we
should exclude certain kinds of “unreasonable” machines, like a parallel computer with an
unlimited number of nodes.
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Now it is true that information and computation in the physical world
are fundamentally quantum mechanical, but this insight, however dear to
physicists, would not be of great interest (at least from the viewpoint of
complexity theory) were it possible to simulate a quantum computer on a
classical computer with polynomial overhead. Quantum algorithms might
prove to be of technological interest, but perhaps no more so than future
advances in classical algorithms that might speed up the solution of certain
problems.

But if, as is indicated (but not proved!) by Shor’s algorithm, no polynomial-
time simulation of a quantum computer is possible, that changes everything.
Thirty years of work on complexity theory will still stand as mathematical
truth, as theorems characterizing the capabilities of classical universal com-
puters. But it may fall as physical truth, because a classical Turing machine
is not an appropriate model of the computations that can really be performed
in the physical world.

If the quantum classification of complexity is indeed different than the
classical classification (as is suspected but not proved), then this result will
shake the foundations of computer science. In the long term, it may also
strongly impact technology. But what is its significance for physics?

I’m not sure. But perhaps it is telling that no conceivable classical com-
putation can accurately predict the behavior of even a modest number of
qubits (of order 100). This may suggest that relatively small quantum sys-
tems have greater potential than we suspected to surprise, baffle, and delight
us.

1.7 What about errors?

As significant as Shor’s factoring algorithm may prove to be, there is another
recently discovered feature of quantum information that may be just as im-
portant: the discovery of quantum error correction. Indeed, were it not for
this development, the prospects for quantum computing technology would
not seem bright.

As we have noted, the essential property of quantum information that a
quantum computer exploits is the existence of nonlocal correlations among
the different parts of a physical system. If I look at only part of the system
at a time, I can decipher only very little of the information encoded in the
system.
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Unfortunately, these nonlocal correlations are extremely fragile and tend
to decay very rapidly in practice. The problem is that our quantum system
is inevitably in contact with a much larger system, its environment. It is
virtually impossible to perfectly isolate a big quantum system from its en-
vironment, even if we make a heroic effort to do so. Interactions between a
quantum device and its environment establish nonlocal correlations between
the two. Eventually the quantum information that we initially encoded in
the device becomes encoded, instead, in correlations between the device and
the environment. At that stage, we can no longer access the information by
observing only the device. In practice, the information is irrevocably lost.
Even if the coupling between device and environment is quite weak, this
happens to a macroscopic device remarkably quickly.

Erwin Schrödinger chided the proponents of the mainstream interpreta-
tion of quantum mechanics by observing that the theory will allow a quantum
state of a cat of the form

|cat〉 =
1√
2

(|dead〉 + |alive〉) . (1.17)

To Schrödinger, the possibility of such states was a blemish on the theory,
because every cat he had seen was either dead or alive, not half dead and
half alive.

One of the most important advances in quantum theory over the past
15 years is that we have learned how to answer Schrödinger with growing
confidence. The state |cat〉 is possible in principle, but is rarely seen because
it is extremely unstable. The cats Schrödinger observed were never well
isolated from the environment. If someone were to prepare the state |cat〉,
the quantum information encoded in the superposition of |dead〉 and |alive〉
would immediately be transferred to correlations between the cat and the
environment, and become completely inaccessible. In effect, the environment
continually measures the cat, projecting it onto either the state |alive〉 or
|dead〉. This process is called decoherence. We will return to the study of
decoherence later in the course.

Now, to perform a complex quantum computation, we need to prepare a
delicate superposition of states of a relatively large quantum system (though
perhaps not as large as a cat). Unfortunately, this system cannot be perfectly
isolated from the environment, so this superposition, like the state |cat〉,
decays very rapidly. The encoded quantum information is quickly lost, and
our quantum computer crashes.
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To put it another way, contact between the computer and the environ-
ment (decoherence) causes errors that degrade the quantum information. To
operate a quantum computer reliably, we must find some way to prevent or
correct these errors.

Actually, decoherence is not our only problem. Even if we could achieve
perfect isolation from the environment, we could not expect to operate a
quantum computer with perfect accuracy. The quantum gates that the ma-
chine executes are unitary transformations that operate on a few qubits at a
time, let’s say 4 × 4 unitary matrices acting on two qubits. Of course, these
unitary matrices form a continuum. We may have a protocol for applying
U0 to 2 qubits, but our execution of the protocol will not be flawless, so the
actual transformation

U = U0 (1 +O(ε)) (1.18)

will differ from the intended U0 by some amount of order ε. After about 1/ε
gates are applied, these errors will accumulate and induce a serious failure.
Classical analog devices suffer from a similar problem, but small errors are
much less of a problem for devices that perform discrete logic.

In fact, modern digital circuits are remarkably reliable. They achieve
such high accuracy with help from dissipation. We can envision a classical
gate that acts on a bit, encoded as a ball residing at one of the two minima
of a double-lobed potential. The gate may push the ball over the intervening
barrier to the other side of the potential. Of course, the gate won’t be
implemented perfectly; it may push the ball a little too hard. Over time,
these imperfections might accumulate, causing an error.

To improve the performance, we cool the bit (in effect) after each gate.
This is a dissipative process that releases heat to the environment and com-
presses the phase space of the ball, bringing it close to the local minimum
of the potential. So the small errors that we may make wind up heating the
environment rather than compromising the performance of the device.

But we can’t cool a quantum computer this way. Contact with the en-
vironment may enhance the reliability of classical information, but it would
destroy encoded quantum information. More generally, accumulation of er-
ror will be a problem for classical reversible computation as well. To prevent
errors from building up we need to discard the information about the errors,
and throwing away information is always a dissipative process.

Still, let’s not give up too easily. A sophisticated machinery has been
developed to contend with errors in classical information, the theory of er-
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ror correcting codes. To what extent can we coopt this wisdom to protect
quantum information as well?

How does classical error correction work? The simplest example of a
classical error-correcting code is a repetition code: we replace the bit we
wish to protect by 3 copies of the bit,

0 → (000),

1 → (111). (1.19)

Now an error may occur that causes one of the three bits to flip; if it’s the
first bit, say,

(000) → (100),

(111) → (011). (1.20)

Now in spite of the error, we can still decode the bit correctly, by majority
voting.

Of course, if the probability of error in each bit were p, it would be
possible for two of the three bits to flip, or even for all three to flip. A double
flip can happen in three different ways, so the probability of a double flip is
3p2(1 − p), while the probability of a triple flip is p3. Altogether, then, the
probability that majority voting fails is 3p2(1− p) + p3 = 3p2 − 2p3. But for

3p2 − 2p3 < p or p <
1

2
, (1.21)

the code improves the reliability of the information.
We can improve the reliability further by using a longer code. One such

code (though far from the most efficient) is an N -bit repetition code. The
probability distribution for the average value of the bit, by the central limit
theorem, approaches a Gaussian with width 1/

√
N as N → ∞. If P = 1

2
+ ε

is the probability that each bit has the correct value, then the probability
that the majority vote fails (for large N) is

Perror ∼ e−Nε2

, (1.22)

arising from the tail of the Gaussian. Thus, for any ε > 0, by introducing
enough redundancy we can achieve arbitrarily good reliability. Even for
ε < 0, we’ll be okay if we always assume that majority voting gives the
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wrong result. Only for P = 1
2

is the cause lost, for then our block of N bits
will be random, and encode no information.

In the 50’s, John Von Neumann showed that a classical computer with
noisy components can work reliably, by employing sufficient redundancy. He
pointed out that, if necessary, we can compute each logic gate many times,
and accept the majority result. (Von Neumann was especially interested in
how his brain was able to function so well, in spite of the unreliability of
neurons. He was pleased to explain why he was so smart.)

But now we want to use error correction to keep a quantum computer on
track, and we can immediately see that there are difficulties:

1. Phase errors. With quantum information, more things can go wrong.
In addition to bit-flip errors

|0〉 → |1〉,
|1〉 → |0〉. (1.23)

there can also be phase errors

|0〉 → |0〉,
|1〉 → −|1〉. (1.24)

A phase error is serious, because it makes the state 1√
2
[|0〉+ |1〉] flip to

the orthogonal state 1√
2
[|0〉− |1〉]. But the classical coding provided no

protection against phase errors.

2. Small errors. As already noted, quantum information is continuous.
If a qubit is intended to be in the state

a|0〉 + b|1〉, (1.25)

an error might change a and b by an amount of order ε, and these small
errors can accumulate over time. The classical method is designed to
correct large (bit flip) errors.

3. Measurement causes disturbance. In the majority voting scheme,
it seemed that we needed to measure the bits in the code to detect and
correct the errors. But we can’t measure qubits without disturbing the
quantum information that they encode.

4. No cloning. With classical coding, we protected information by mak-
ing extra copies of it. But we know that quantum information cannot
be copied with perfect fidelity.
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1.8 Quantum error-correcting codes

Despite these obstacles, it turns out that quantum error correction really
is possible. The first example of a quantum error-correcting code was con-
structed about two years ago by (guess who!) Peter Shor. This discovery
ushered in a new discipline that has matured remarkably quickly – the the-
ory of quantum error-correcting codes. We will study this theory later in the
course.

Probably the best way to understand how quantum error correction works
is to examine Shor’s original code. It is the most straightforward quantum
generalization of the classical 3-bit repetition code.

Let’s look at that 3-bit code one more time, but this time mindful of the
requirement that, with a quantum code, we will need to be able to correct
the errors without measuring any of the encoded information.

Suppose we encode a single qubit with 3 qubits:

|0〉 → |0̄〉 ≡ |000〉,
|1〉 → |1̄〉 ≡ |111〉, (1.26)

or, in other words, we encode a superposition

a|0〉 + b|1〉 → a|0̄〉 + b|1̄〉 = a|000〉 + b|111〉 . (1.27)

We would like to be able to correct a bit flip error without destroying this
superposition.

Of course, it won’t do to measure a single qubit. If I measure the first
qubit and get the result |0〉, then I have prepared the state |0̄〉 of all three
qubits, and we have lost the quantum information encoded in the coefficients
a and b.

But there is no need to restrict our attention to single-qubit measure-
ments. I could also perform collective measurements on two-qubits at once,
and collective measurements suffice to diagnose a bit-flip error. For a 3-qubit
state |x, y, z〉 I could measure, say, the two-qubit observables y⊕ z, or x⊕ z
(where ⊕ denotes addition modulo 2). For both |x, y, z〉 = |000〉 and |111〉
these would be 0, but if any one bit flips, then at least one of these quantities
will be 1. In fact, if there is a single bit flip, the two bits

(y ⊕ z, x⊕ z), (1.28)
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just designate in binary notation the position (1,2 or 3) of the bit that flipped.
These two bits constitute a syndrome that diagnoses the error that occurred.

For example, if the first bit flips,

a|000〉 + b|111〉 → a|100〉 + b|011〉, (1.29)

then the measurement of (y⊕z, x⊕z) yields the result (0, 1), which instructs
us to flip the first bit; this indeed repairs the error.

Of course, instead of a (large) bit flip there could be a small error:

|000〉 → |000〉 + ε|100〉
|111〉 → |111〉 − ε|011〉. (1.30)

But even in this case the above procedure would work fine. In measuring
(y ⊕ z, x ⊕ z), we would project out an eigenstate of this observable. Most
of the time (probability 1 − |ε|2) we obtain the result (0, 0) and project the
damaged state back to the original state, and so correct the error. Occasion-
ally (probability |ε|2) we obtain the result (0, 1) and project the state onto
Eq. 1.29. But then the syndrome instructs us to flip the first bit, which re-
stores the original state. Similarly, if there is an amplitude of order ε for each
of the three qubits to flip, then with a probability of order |ε|2 the syndrome
measurement will project the state to one in which one of the three bits is
flipped, and the syndrome will tell us which one.

So we have already overcome 3 of the 4 obstacles cited earlier. We see
that it is possible to make a measurement that diagnoses the error without
damaging the information (answering (3)), and that a quantum measurement
can project a state with a small error to either a state with no error or a state
with a large discrete error that we know how to correct (answering (2)). As
for (4), the issue didn’t come up, because the state a|0̄〉+b|1̄〉 is not obtained
by cloning – it is not the same as (a|0〉 + b|1〉)3; that is, it differs from three
copies of the unencoded state.

Only one challenge remains: (1) phase errors. Our code does not yet
provide any protection against phase errors, for if any one of the three qubits
undergoes a phase error then our encoded state a|0̄〉 + b|1̄〉 is transformed
to a|0̄〉 − b|1̄〉, and the encoded quantum information is damaged. In fact,
phase errors have become three times more likely than if we hadn’t used the
code. But with the methods in hand that conquered problems (2)-(4), we can
approach problem (1) with new confidence. Having protected against bit-flip
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errors by encoding bits redundantly, we are led to protect against phase-flip
errors by encoding phases redundantly.

Following Shor, we encode a single qubit using nine qubits, according to

|0〉 → |0̄〉 ≡ 1

23/2
(|000) + |111〉) (|000〉 + |111〉) (|000〉 + |111〉) ,

|1〉 → |1̄〉 ≡ 1

23/2
(|000) − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) .(1.31)

Both |0̄〉 and |1̄〉 consist of three clusters of three qubits each, with each
cluster prepared in the same quantum state. Each of the clusters has triple
bit redundancy, so we can correct a single bit flip in any cluster by the method
discussed above.

Now suppose that a phase flip occurs in one of the clusters. The error
changes the relative sign of |000〉 and |111〉 in that cluster so that

|000〉 + |111〉 → |000〉 − |111〉,
|000〉 − |111〉 → |000〉 + |111〉. (1.32)

This means that the relative phase of the damaged cluster differs from the
phases of the other two clusters. Thus, as in our discussion of bit-flip cor-
rection, we can identify the damaged cluster, not by measuring the relative
phase in each cluster (which would disturb the encoded information) but
by comparing the phases of pairs of clusters. In this case, we need to mea-
sure a six-qubit observable to do the comparison, e.g., the observable that
flips qubits 1 through 6. Since flipping twice is the identity, this observable
squares to 1, and has eigenvalues ±1. A pair of clusters with the same sign
is an eigenstate with eigenvalue +1, and a pair of clusters with opposite sign
is an eigenstate with eigenvalue −1. By measuring the six-qubit observable
for a second pair of clusters, we can determine which cluster has a different
sign than the others. Then, we apply a unitary phase transformation to one
of the qubits in that cluster to reverse the sign and correct the error.

Now suppose that a unitary error U = 1 + 0(ε) occurs for each of the 9
qubits. The most general single-qubit unitary transformation (aside from a
physically irrelevant overall phase) can be expanded to order ε as

U = 1 + iεx

(

0 1
1 0

)

+ iεy

(

0 −i
i 0

)

+ iεz

(

1 0
0 −1

)

.
(1.33)
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the three terms of order ε in the expansion can be interpreted as a bit flip
operator, a phase flip operator, and an operator in which both a bit flip
and a phase flip occur. If we prepare an encoded state a|0̄〉 + b|1̄〉, allow
the unitary errors to occur on each qubit, and then measure the bit-flip and
phase-flip syndromes, then most of the time we will project the state back
to its original form, but with a probability of order |ε|2, one qubit will have
a large error: a bit flip, a phase flip, or both. From the syndrome, we learn
which bit flipped, and which cluster had a phase error, so we can apply the
suitable one-qubit unitary operator to fix the error.

Error recovery will fail if, after the syndrome measurement, there are
two bit flip errors in each of two clusters (which induces a phase error in
the encoded data) or if phase errors occur in two different clusters (which
induces a bit-flip error in the encoded data). But the probability of such a
double phase error is of order |ε|4. So for |ε| small enough, coding improves
the reliability of the quantum information.

The code also protects against decoherence. By restoring the quantum
state irrespective of the nature of the error, our procedure removes any en-
tanglement between the quantum state and the environment.

Here as always, error correction is a dissipative process, since information
about the nature of the errors is flushed out of the quantum system. In this
case, that information resides in our recorded measurement results, and heat
will be dissipated when that record is erased.

Further developments in quantum error correction will be discussed later
in the course, including:

• As with classical coding it turns out that there are “good” quantum
codes that allow us to achieve arbitrarily high reliability as long as the error
rate per qubit is small enough.

• We’ve assumed that the error recovery procedure is itself executed flaw-
lessly. But the syndrome measurement was complicated – we needed to mea-
sure two-qubit and six-qubit collective observables to diagnose the errors – so
we actually might further damage the data when we try to correct it. We’ll
show, though, that error correction can be carried out so that it still works
effectively even if we make occasional errors during the recovery process.

• To operate a quantum computer we’ll want not only to store quantum
information reliably, but also to process it. We’ll show that it is possible to
apply quantum gates to encoded information.

Let’s summarize the essential ideas that underlie our quantum error cor-
rection scheme:
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1. We digitized the errors. Although the errors in the quantum information
were small, we performed measurements that projected our state onto
either a state with no error, or a state with one of a discrete set of
errors that we knew how to convert.

2. We measured the errors without measuring the data. Our measure-
ments revealed the nature of the errors without revealing (and hence
disturbing) the encoded information.

3. The errors are local, and the encoded information is nonlocal. It is im-
portant to emphasize the central assumption underlying the construc-
tion of the code – that errors affecting different qubits are, to a good
approximation, uncorrelated. We have tacitly assumed that an event
that causes errors in two qubits is much less likely than an event caus-
ing an error in a single qubit. It is of course a physics question whether
this assumption is justified or not – we can easily envision processes
that will cause errors in two qubits at once. If such correlated errors
are common, coding will fail to improve reliability.

The code takes advantage of the presumed local nature of the errors by
encoding the information in a nonlocal way - that is the information is stored
in correlations involving several qubits. There is no way to distinguish |0̄〉
and |1̄〉 by measuring a single qubit of the nine. If we measure one qubit
we will find |0〉 with probability 1

2
and |1〉 with probability 1

2
irrespective of

the value of the encoded qubit. To access the encoded information we need
to measure a 3-qubit observable (the operator that flips all three qubits in a
cluster can distinguish |000〉 + |111〉 from |000〉 − |111〉).

The environment might occasionally kick one of the qubits, in effect “mea-
suring” it. But the encoded information cannot be damaged by disturbing
that one qubit, because a single qubit, by itself, actually carries no informa-
tion at all. Nonlocally encoded information is invulnerable to local influences
– this is the central principle on which quantum error-correcting codes are
founded.

1.9 Quantum hardware

The theoretical developments concerning quantum complexity and quantum
error correction have been accompanied by a burgeoning experimental effort
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to process coherent quantum information. I’ll briefly describe some of this
activity here.

To build hardware for a quantum computer, we’ll need technology that
enables us to manipulate qubits. The hardware will need to meet some
stringent specifications:

1. Storage: We’ll need to store qubits for a long time, long enough to
complete an interesting computation.

2. Isolation: The qubits must be well isolated from the environment, to
minimize decoherence errors.

3. Readout: We’ll need to measure the qubits efficiently and reliably.

4. Gates: We’ll need to manipulate the quantum states of individual
qubits, and to induce controlled interactions among qubits, so that we
can perform quantum gates.

5. Precision: The quantum gates should be implemented with high pre-
cision if the device is to perform reliably.

1.9.1 Ion Trap

One possible way to achieve these goals was suggested by Ignacio Cirac and
Peter Zoller, and has been pursued by Dave Wineland’s group at the National
Institute for Standards and Technology (NIST), as well as other groups. In
this scheme, each qubit is carried by a single ion held in a linear Paul trap.
The quantum state of each ion is a linear combination of the ground state
|g〉 (interpreted as |0〉) and a particular long-lived metastable excited state
|e〉 (interpreted as |1〉). A coherent linear combination of the two levels,

a|g〉 + beiωt|e〉, (1.34)

can survive for a time comparable to the lifetime of the excited state (though
of course the relative phase oscillates as shown because of the energy splitting
~ω between the levels). The ions are so well isolated that spontaneous decay
can be the dominant form of decoherence.

It is easy to read out the ions by performing a measurement that projects
onto the {|g〉, |e〉} basis. A laser is tuned to a transition from the state |g〉
to a short-lived excited state |e′〉. When the laser illuminates the ions, each
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qubit with the value |0〉 repeatedly absorbs and reemits the laser light, so
that it flows visibly (fluoresces). Qubits with the value |1〉 remain dark.

Because of their mutual Coulomb repulsion, the ions are sufficiently well
separated that they can be individually addressed by pulsed lasers. If a laser
is tuned to the frequency ω of the transition and is focused on the nth ion,
then Rabi oscillations are induced between |0〉 and |1〉. By timing the laser
pulse properly and choosing the phase of the laser appropriately, we can
apply any one-qubit unitary transformation. In particular, acting on |0〉, the
laser pulse can prepare any desired linear combination of |0〉 and |1〉.

But the most difficult part of designing and building quantum computing
hardware is getting two qubits to interact with one another. In the ion
trap, interactions arise because of the Coulomb repulsion between the ions.
Because of the mutual Couloumb repulsion, there is a spectrum of coupled
normal modes of vibration for the trapped ions. When the ion absorbs or
emits a laser photon, the center of mass of the ion recoils. But if the laser
is properly tuned, then when a single ion absorbs or emits, a normal mode
involving many ions will recoil coherently (the Mössbauer effect).

The vibrational mode of lowest frequency (frequency ν) is the center-of-
mass (cm) mode, in which the ions oscillate in lockstep in the harmonic well
of the trap. The ions can be laser cooled to a temperature much less than ν,
so that each vibrational mode is very likely to occupy its quantum-mechanical
ground state. Now imagine that a laser tuned to the frequency ω − ν shines
on the nth ion. For a properly time pulse the state |e〉n will rotate to |g〉n,
while the cm oscillator makes a transition from its ground state |0〉cm to its
first excited state |1〉cm (a cm “phonon” is produced). However, the state
|g〉n|0〉cm is not on resonance for any transition and so is unaffected by the
pulse. Thus the laser pulse induces a unitary transformation acting as

|g〉n|0〉cm → |g〉n|0〉cm,
|e〉n|0〉cm → −i|g〉n|1〉cm. (1.35)

This operation removes a bit of information that is initially stored in the
internal state of the nth ion, and deposits that bit in the collective state of
motion of all the ions.

This means that the state of motion of the mth ion (m 6= n) has been in-
fluenced by the internal state of the nth ion. In this sense, we have succeeded
in inducing an interaction between the ions. To complete the quantum gate,
we should transfer the quantum information from the cm phonon back to
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the internal state of one of the ions. The procedure should be designed so
that the cm mode always returns to its ground state |0〉cm at the conclusion
of the gate implementation. For example, Cirac and Zoller showed that the
quantum XOR (or controlled not) gate

|x, y〉 → |x, y ⊕ x〉, (1.36)

can be implemented in an ion trap with altogether 5 laser pulses. The condi-
tional excitation of a phonon, Eq. (1.35) has been demonstrated experimen-
tally, for a single trapped ion, by the NIST group.

One big drawback of the ion trap computer is that it is an intrinsically
slow device. Its speed is ultimately limited by the energy-time uncertainty
relation. Since the uncertainty in the energy of the laser photons should be
small compared to the characteristic vibrational splitting ν, each laser pulse
should last a time long compared to ν−1. In practice, ν is likely to be of
order 100 kHz.

1.9.2 Cavity QED

An alternative hardware design (suggested by Pellizzari, Gardiner, Cirac,
and Zoller) is being pursued by Jeff Kimble’s group here at Caltech. The
idea is to trap several neutral atoms inside a small high finesse optical cavity.
Quantum information can again be stored in the internal states of the atoms.
But here the atoms interact because they all couple to the normal modes of
the electromagnetic field in the cavity (instead of the vibrational modes as
in the ion trap). Again, by driving transitions with pulsed lasers, we can
induce a transition in one atom that is conditioned on the internal state of
another atom.

Another possibility is to store a qubit, not in the internal state of an ion,
but in the polarization of a photon. Then a trapped atom can be used as
the intermediary that causes one photon to interact with another (instead of
a photon being used to couple one atom to another). In their “flying qubit”
experiment two years ago. The Kimble group demonstrated the operation of
a two-photon quantum gate, in which the circular polarization of one photon
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influences the phase of another photon:

|L〉1|L〉2 → |L〉1|L〉2
|L〉1|R〉2 → |L〉1|R〉2
|R〉1|L〉2 → |R〉1|L〉2
|R〉1|R〉2 → ei∆|R〉1|R〉2 (1.37)

where |L〉, |R〉 denote photon states with left and right circular polarization.
To achieve this interaction, one photon is stored in the cavity, where the |L〉
polarization does not couple to the atom, but the |R〉 polarization couples
strongly. A second photon transverses the cavity, and for the second photon
as well, one polarization interacts with the atom preferentially. The second
photon wave pocket acquires a particular phase shift ei∆ only if both pho-
tons have |R〉 polarization. Because the phase shift is conditioned on the
polarization of both photons, this is a nontrivial two-qubit quantum gate.

1.9.3 NMR

A third (dark horse) hardware scheme has sprung up in the past year, and
has leap frogged over the ion trap and cavity QED to take the current lead
in coherent quantum processing. The new scheme uses nuclear magnetic
resonance (NMR) technology. Now qubits are carried by certain nuclear
spins in a particular molecule. Each spin can either be aligned (| ↑〉 = |0〉)
or antialigned (| ↓〉 = |1〉) with an applied constant magnetic field. The
spins take a long time to relax or decohere, so the qubits can be stored for a
reasonable time.

We can also turn on a pulsed rotating magnetic field with frequency
ω (where the ω is the energy splitting between the spin-up and spin-down
states), and induce Rabi oscillations of the spin. By timing the pulse suitably,
we can perform a desired unitary transformation on a single spin (just as in
our discussion of the ion trap). All the spins in the molecule are exposed to
the rotating magnetic field but only those on resonance respond.

Furthermore, the spins have dipole-dipole interactions, and this coupling
can be exploited to perform a gate. The splitting between | ↑〉 and | ↓〉 for
one spin actually depends on the state of neighboring spins. So whether a
driving pulse is on resonance to tip the spin over is conditioned on the state
of another spin.
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All this has been known to chemists for decades. Yet it was only in the
past year that Gershenfeld and Chuang, and independently Cory, Fahmy, and
Havel, pointed out that NMR provides a useful implementation of quantum
computation. This was not obvious for several reasons. Most importantly,
NMR systems are very hot. The typical temperature of the spins (room
temperature, say) might be of order a million times larger than the energy
splitting between |0〉 and |1〉. This means that the quantum state of our
computer (the spins in a single molecule) is very noisy – it is subject to
strong random thermal fluctuations. This noise will disguise the quantum
information. Furthermore, we actually perform our processing not on a single
molecule, but on a macroscopic sample containing of order 1023 “computers,”
and the signal we read out of this device is actually averaged over this ensem-
ble. But quantum algorithms are probabilistic, because of the randomness of
quantum measurement. Hence averaging over the ensemble is not equivalent
to running the computation on a single device; averaging may obscure the
results.

Gershenfeld and Chuang and Cory, Fahmy, and Havel, explained how to
overcome these difficulties. They described how “effective pure states” can
be prepared, manipulated, and monitored by performing suitable operations
on the thermal ensemble. The idea is to arrange for the fluctuating properties
of the molecule to average out when the signal is detected, so that only the
underlying coherent properties are measured. They also pointed out that
some quantum algorithms (including Shor’s factoring algorithm) can be cast
in a deterministic form (so that at least a large fraction of the computers give
the same answer); then averaging over many computations will not spoil the
result.

Quite recently, NMR methods have been used to prepare a maximally
entangled state of three qubits, which had never been achieved before.

Clearly, quantum computing hardware is in its infancy. Existing hardware
will need to be scaled up by many orders of magnitude (both in the number of
stored qubits, and the number of gates that can be applied) before ambitious
computations can be attempted. In the case of the NMR method, there is
a particularly serious limitation that arises as a matter of principle, because
the ratio of the coherent signal to the background declines exponentially with
the number of spins per molecule. In practice, it will be very challenging to
perform an NMR quantum computation with more than of order 10 qubits.

Probably, if quantum computers are eventually to become practical de-
vices, new ideas about how to construct quantum hardware will be needed.
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1.10 Summary

This concludes our introductory overview to quantum computation. We
have seen that three converging factors have combined to make this subject
exciting.

1. Quantum computers can solve hard problems. It seems that
a new classification of complexity has been erected, a classification
better founded on the fundamental laws of physics than traditional
complexity theory. (But it remains to characterize more precisely the
class of problems for which quantum computers have a big advantage
over classical computers.)

2. Quantum errors can be corrected. With suitable coding methods,
we can protect a complicated quantum system from the debilitating
effects of decoherence. We may never see an actual cat that is half dead
and half alive, but perhaps we can prepare and preserve an encoded cat

that is half dead and half alive.

3. Quantum hardware can be constructed. We are privileged to be
witnessing the dawn of the age of coherent manipulation of quantum
information in the laboratory.

Our aim, in this course, will be to deepen our understanding of points
(1), (2), and (3).
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2
Foundations I: States and Ensembles

2.1 Axioms of quantum mechanics

In this chapter and the next we develop the theory of open quantum
systems. We say a system is open if it is imperfectly isolated, and therefore
exchanges energy and information with its unobserved environment. The
motivation for studying open systems is that all realistic systems are open.
Physicists and engineers may try hard to isolate quantum systems, but
they never completely succeed.

Though our main interest is in open systems we will begin by recalling
the theory of closed quantum systems, which are perfectly isolated. To
understand the behavior of an open system S, we will regard S combined
with its environment E as a closed system (the whole “universe”), then
ask how S behaves when we are able to observe S but not E.

Quantum theory is a mathematical model of the physical world. For
the case of closed systems we can characterize the model by stating five
axioms; these specify how to represent states, observables, measurements,
and dynamics, and also how to combine two systems to obtain a composite
system.

Axiom 1. States. A state is a complete description of a physical
system. In quantum mechanics, a state is a ray in a Hilbert space.

What is a Hilbert space?

a) It is a vector space over the complex numbers C. Vectors will be
denoted |ψ〉 (Dirac’s ket notation).

b) It has an inner product 〈ψ|ϕ〉 that maps an ordered pair of vectors to
C, and that has the properties:

i) Positivity: 〈ψ|ψ〉 > 0 for |ψ〉 6= 0.

3
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ii) Linearity: 〈ϕ|(a|ψ1〉+ b|ψ2〉) = a〈ϕ|ψ1〉+ b〈ϕ|ψ2〉.
iii) Skew symmetry: 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗.

(The ∗ denotes complex conjugation.)

c) It is complete in the norm ||ψ|| = 〈ψ|ψ〉1/2.

(Completeness is an important proviso in infinite-dimensional function
spaces, since it ensures the convergence of certain eigenfunction expan-
sions. But mostly we will be content to work with finite-dimensional
inner-product spaces.)

What is a ray? It is an equivalence class of vectors that differ by
multiplication by a nonzero complex scalar. For any nonzero ray, we can
by convention choose a representative of the class, denoted |ψ〉, that has
unit norm:

〈ψ|ψ〉 = 1. (2.1)

Thus states correspond to normalized vectors, and the overall phase of
the vector has no physical significance: |ψ〉 and eiα|ψ〉 describe the same
state, where |eiα| = 1.

Since every ray corresponds to a possible state, given two states |ϕ〉, |ψ〉,
another state can be constructed as the linear superposition of the two,
a|ϕ〉 + b|ψ〉. The relative phase in this superposition is physically sig-
nificant; we identify a|ϕ〉 + b|ϕ〉 with eiα(a|ϕ〉 + b|ψ〉) but not with
a|ϕ〉+ eiαb|ψ〉.

We use the notation 〈ψ| (Dirac’s bra notation) for a linear function (a
dual vector) that takes vectors to complex numbers, defined by |ϕ〉 →
〈ψ|ϕ〉.

Axiom 2. Observables. An observable is a property of a physical
system that in principle can be measured. In quantum mechanics,
an observable is a self-adjoint operator.

An operator is a linear map taking vectors to vectors,

A : |ψ〉 7→ A|ψ〉, A (a|ψ〉+ b|ϕ〉) = aA|ψ〉+ bA|ϕ〉. (2.2)

(We will often denote operators by boldface letters.) The adjoint A† of
the operator A is defined by

〈ϕ|Aψ〉 = 〈A†ϕ|ψ〉, (2.3)

for all vectors |ϕ〉, |ψ〉 (where here A|ψ〉 has been denoted as |Aψ〉). A
is self-adjoint if A = A†, or in other words, if 〈ϕ|A|ψ〉 = 〈ψ|A|ϕ〉∗ for all
vectors |ϕ〉 and |ψ〉. If A and B are self adjoint, then so is A+B (because
(A + B)† = A† + B†), but (AB)† = B†A†, so that AB is self adjoint
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only if A and B commute. Note that AB + BA and i(AB −BA) are
always self-adjoint if A and B are.

A self-adjoint operator in a Hilbert space H has a spectral representa-
tion – its eigenstates form a complete orthonormal basis in H. We can
express a self-adjoint operator A as

A =
∑

n

anEn. (2.4)

Here each an is an eigenvalue of A, and En is the corresponding orthog-
onal projection onto the space of eigenvectors with eigenvalue an. The
En’s satisfy

EnEm = δn,mEn.

E†
n = En. (2.5)

The orthogonal projector onto the one-dimensional space spanned by the
vector |ψ〉 may be expressed as |ψ〉〈ψ|, where 〈ψ| is the bra that annihi-
lates vectors orthogonal to |ψ〉. Therefore, an alternative notation for the
spectral representation of A is

A =
∑

n

|n〉an〈n|, (2.6)

where {|n〉} is the orthonormal basis of eigenstates of A, with A|n〉 =
an|n〉.

(For unbounded operators in an infinite-dimensional space, the defini-
tion of self-adjoint and the statement of the spectral theorem are more
subtle, but this need not concern us.)

Axiom 3. Measurement. A measurement is a process in which in-
formation about the state of a physical system is acquired by an
observer. In quantum mechanics, the measurement of an observ-
able A prepares an eigenstate of A, and the observer learns the
value of the corresponding eigenvalue. If the quantum state just
prior to the measurement is |ψ〉, then the outcome an is obtained
with a priori probability

Prob(an) = ‖En|ψ〉‖2 = 〈ψ|En|ψ〉 ; (2.7)

if the outcome an is attained, then the (normalized) quantum state
just after the measurement is

En|ψ〉
‖En|ψ〉‖

. (2.8)
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If the measurement is immediately repeated, then according to this rule
the same outcome is obtained again, with probability one. If many iden-
tically prepared systems are measured, each described by the state |ψ〉,
then the expectation value of the outcomes is

〈a〉 ≡
∑

n

anProb(an) =
∑

n

an〈ψ|En|ψ〉 = 〈ψ|A|ψ〉. (2.9)

Axiom 4. Dynamics. Dynamics describes how a state evolves over
time. In quantum mechanics, the time evolution of a closed system
is described by a unitary operator.

In the Schrödinger picture of dynamics, if the initial state at time t is
|ψ(t〉, then the final state |ψ(t′)〉 at time t′ can be expressed as

|ψ(t′)〉 = U(t′, t)|ψ(t)〉|ψ(t)〉, (2.10)

where U(t′, t) is the unitary time evolution operator. Infinitesimal time
evolution is governed by the Schrödinger equation

d

dt
|ψ(t)〉 = −iH(t)|ψ(t)〉, (2.11)

where H(t) is a self-adjoint operator, called the Hamiltonian of the sys-
tem. (The Hamiltonian has the dimensions of energy; we have chosen
units in which Planck’s constant ~ = h/2π = 1, so that energy has the
dimensions of inverse time.) To first order in the infinitesimal quantity
dt, the Schrödinger equation can be expressed as

|ψ(t+ dt)〉 = (I − iH(t)dt)|ψ(t)〉. (2.12)

Thus the operator U(t + dt, t) ≡ I − iH(t)dt is unitary; because H is
self-adjoint it satisfies U †U = 1 to linear order in dt. Since a product of
unitary operators is unitary, time evolution governed by the Schrödinger
equation over a finite interval is also unitary. In the case where H is time
independent we may write U(t′, t) = e−i(t′−t)H .

Our final axiom relates the description of a composite quantum system
AB to the description of its component parts A and B.

Axiom 5. Composite Systems. If the Hilbert space of system A
is HA and the Hilbert space of system B is HB, then the Hilbert
space of the composite systems AB is the tensor product HA⊗HB.
If system A is prepared in the state |ψ〉A and system B is prepared
in the state |ϕ〉B, then the composite system’s state is the product
|ψ〉A ⊗ |ϕ〉B.
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What is a tensor product of Hilbert spaces? If {|i〉A} denotes an or-
thonormal basis for HA and {|µ〉B} a basis for HB, then the states
|i, µ〉AB ≡ |i〉A ⊗ |µ〉B are a basis for HA ⊗HB, where the inner product
on HA ⊗HB is defined by

AB〈i, µ|j, ν〉AB = δijδµν . (2.13)

The tensor product operator MA⊗NB is the operator that applies MA

to system A and NB to system B. Its action on the orthonormal basis
|i, µ〉AB is

MA ⊗NB|i, µ〉AB = MA|i〉A ⊗NB|µ〉B =
∑
j,ν

|j, ν〉AB (MA)ji (NB)νµ .

(2.14)
An operator that acts trivially on system B can be denoted MA ⊗ IB,
where IB is the identity on HB, and an operator that acts trivially on
system A can be denoted IA ⊗NB.

These five axioms provide a complete mathematical formulation of
quantum mechanics. We immediately notice some curious features. One
oddity is that the Schrödinger equation is linear, while we are accustomed
to nonlinear dynamical equations in classical physics. This property seems
to beg for an explanation. But far more curious is a mysterious dualism;
there are two quite distinct ways for a quantum state to change. On the
one hand there is unitary evolution, which is deterministic. If we specify
the initial state |ψ(0)〉, the theory predicts the state |ψ(t)〉 at a later time.

But on the other hand there is measurement, which is probabilistic.
The theory does not make definite predictions about the measurement
outcomes; it only assigns probabilities to the various alternatives. This is
troubling, because it is unclear why the measurement process should be
governed by different physical laws than other processes.

The fundamental distinction between evolution and measurement, and
in particular the intrinsic randomness of the measurement process, is
sometimes called the measurement problem of quantum theory. Seeking a
more pleasing axiomatic formulation of quantum theory is a worthy task
which may eventually succeed. But these five axioms correctly account
for all that we currently know about quantum physics, and provide the
foundation for all that follows in this book.

2.2 The Qubit

The indivisible unit of classical information is the bit, which takes one
of the two possible values {0, 1}. The corresponding unit of quantum
information is called the “quantum bit” or qubit. It describes a state in
the simplest possible quantum system.
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The smallest nontrivial Hilbert space is two-dimensional. We may de-
note an orthonormal basis for a two-dimensional vector space as {|0〉, |1〉}.
Then the most general normalized state can be expressed as

a|0〉+ b|1〉, (2.15)

where a, b are complex numbers that satisfy |a|2+ |b|2 = 1, and the overall
phase is physically irrelevant. A qubit is a quantum system described by
a two-dimensional Hilbert space, whose state can take any value of the
form eq.(2.15).

We can perform a measurement that projects the qubit onto the basis
{|0〉, |1〉}. Then we will obtain the outcome |0〉 with probability |a|2, and
the outcome |1〉 with probability |b|2. Furthermore, except in the cases
a = 0 and b = 0, the measurement irrevocably disturbs the state. If the
value of the qubit is initially unknown, then there is no way to determine
a and b with that single measurement, or any other conceivable measure-
ment. However, after the measurement, the qubit has been prepared in a
known state – either |0〉 or |1〉 – that differs (in general) from its previous
state.

In this respect, a qubit differs from a classical bit; we can measure a
classical bit without disturbing it, and we can decipher all of the infor-
mation that it encodes. But suppose we have a classical bit that really
does have a definite value (either 0 or 1), but where that value is initially
unknown to us. Based on the information available to us we can only say
that there is a probability p0 that the bit has the value 0, and a probability
p1 that the bit has the value 1, where p0 + p1 = 1. When we measure
the bit, we acquire additional information; afterwards we know the value
with 100% confidence.

An important question is: what is the essential difference between a
qubit and a probabilistic classical bit? In fact they are not the same, for
several reasons that we will explore. To summarize the difference in brief:
there is only one way to look at a bit, but there is more than one way to
look at a qubit.

2.2.1 Spin-1
2

First of all, the coefficients a and b in eq.(2.15) encode more than just the
probabilities of the outcomes of a measurement in the {|0〉, |1〉} basis. In
particular, the relative phase of a and b also has physical significance.

The properties of a qubit are easier to grasp if we appeal to a geomet-
rical interpretation of its state. For a physicist, it is natural to interpret
eq.(2.15) as the spin state of an object with spin-1

2 (like an electron).
Then |0〉 and |1〉 are the spin up (| ↑〉) and spin down (| ↓〉) states along
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a particular axis such as the z-axis. The two real numbers characterizing
the qubit (the complex numbers a and b, modulo the normalization and
overall phase) describe the orientation of the spin in three-dimensional
space (the polar angle θ and the azimuthal angle ϕ).

We will not go deeply here into the theory of symmetry in quantum
mechanics, but we will briefly recall some elements of the theory that
will prove useful to us. A symmetry is a transformation that acts on
a state of a system, yet leaves all observable properties of the system
unchanged. In quantum mechanics, observations are measurements of
self-adjoint operators. If A is measured in the state |ψ〉, then the outcome
|a〉 (an eigenvector of A) occurs with probability |〈a|ψ〉|2. A symmetry
should leave these probabilities unchanged, when we “rotate” both the
system and the apparatus.

A symmetry, then, is a mapping of vectors in Hilbert space

|ψ〉 7→ |ψ′〉, (2.16)

that preserves the absolute values of inner products

|〈ϕ|ψ〉| = |〈ϕ′|ψ′〉|, (2.17)

for all |ϕ〉 and |ψ〉. According to a famous theorem due to Wigner, a
mapping with this property can always be chosen (by adopting suitable
phase conventions) to be either unitary or antiunitary. The antiunitary
alternative, while important for discrete symmetries, can be excluded for
continuous symmetries. Then the symmetry acts as

|ψ〉 7→ |ψ′〉 = U |ψ〉, (2.18)

where U is unitary (and in particular, linear).
Symmetries form a group: a symmetry transformation can be inverted,

and the product of two symmetries is a symmetry. For each symmetry op-
eration R acting on our physical system, there is a corresponding unitary
transformation U(R). Multiplication of these unitary operators must re-
spect the group multiplication law of the symmetries – applying R1 ◦R2

should be equivalent to first applying R2 and subsequently R1. Thus we
demand

U(R1)U(R2) = Phase(R1, R2) ·U(R1 ◦R2) (2.19)

A phase depending on R1 and R2 is permitted in eq.(2.19) because quan-
tum states are rays; we need only demand that U(R1 ◦R2) act the same
way as U(R1)U(R2) on rays, not on vectors. We say that U(R) provides
a unitary representation, up to a phase, of the symmetry group.

So far, our concept of symmetry has no connection with dynamics.
Usually, we demand of a symmetry that it respect the dynamical evolu-
tion of the system. This means that it should not matter whether we
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first transform the system and then evolve it, or first evolve it and then
transform it. In other words, the diagram

Initial Final

New Initial New Final

-

-

? ?

dynamics

dynamics

transformation transformation

is commutative, and therefore the time evolution operator eitH commutes
with the symmetry transformation U(R) :

U(R)e−itH = e−itHU(R) ; (2.20)

expanding to linear order in t we obtain

U(R)H = HU(R). (2.21)

For a continuous symmetry, we can choose R infinitesimally close to the
identity, R = I + εT , and then U is close to I:

U = I − iεQ +O(ε2), (2.22)

where Q is an operator determined by T . From the unitarity of U (to
order ε) it follows that Q is an observable, Q = Q†. Expanding eq.(2.21)
to linear order in ε we find

[Q,H] = 0 ; (2.23)

the observable Q commutes with the Hamiltonian.
Eq.(2.23) is a conservation law. It says, for example, that if we pre-

pare an eigenstate of Q, then time evolution governed by the Schrödinger
equation will preserve the eigenstate. Thus we see that symmetries imply
conservation laws. Conversely, given a conserved quantity Q satisfying
eq.(2.23) we can construct the corresponding symmetry transformations.
Finite transformations can be built as a product of many infinitesimal
ones:

R = (1 +
θ

N
T )N ⇒ U(R) = (I + i

θ

N
Q)N → eiθQ, (2.24)

taking the limit N →∞. Once we have decided how infinitesimal symme-
try transformations are represented by unitary operators, then it is also
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determined how finite transformations are represented, for these can be
built as a product of infinitesimal transformations. We say that Q is the
generator of the symmetry.

Let us briefly recall how this general theory applies to spatial ro-
tations and angular momentum. An infinitesimal rotation by dθ (in
the counterclockwise sense) about the axis specified by the unit vector
n̂ = (n1, n2, n3) can be expressed as

R(n̂, dθ) = I − idθn̂ · ~J, (2.25)

where (J1, J2, J3) are the components of the angular momentum. A finite
rotation is expressed as

R(n̂, θ) = exp(−iθn̂ · ~J). (2.26)

Rotations about distinct axes don’t commute. From elementary proper-
ties of rotations, we find the commutation relations

[Jk, J`] = iεk`mJm, (2.27)

where εk`m is the totally antisymmetric tensor with ε123 = 1, and repeated
indices are summed. To implement rotations on a quantum system, we
find self-adjoint operators J1,J2,J3 in Hilbert space that satisfy these
relations.

The “defining” representation of the rotation group is three dimen-
sional, but the simplest nontrivial irreducible representation is two di-
mensional, given by

Jk =
1
2
σk, (2.28)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.29)

are the Pauli matrices. This is the unique two-dimensional irreducible
representation, up to a unitary change of basis. Since the eigenvalues of
Jk are ±1

2 , we call this the spin-1
2 representation. (By identifying J as

the angular-momentum, we have implicitly chosen units with ~ = 1.)
The Pauli matrices also have the properties of being mutually anticom-

muting and squaring to the identity,

σkσ` + σ`σk = 2δk`I ; (2.30)

therefore (n̂ · ~σ)2 = nkn`σkσ` = nknkI = I (where repeated indices
are summed). By expanding the exponential series, we see that finite
rotations are represented as

U(n̂, θ) = e−i θ
2
n̂·~σ = I cos

θ

2
− in̂ · ~σ sin

θ

2
. (2.31)
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The most general 2×2 unitary matrix with determinant 1 can be expressed
in this form. Thus, we are entitled to think of a qubit as a spin-1

2 object,
and an arbitrary unitary transformation acting on the qubit’s state (aside
from a possible physically irrelevant rotation of the overall phase) is a
rotation of the spin.

A peculiar property of the representation U(n̂, θ) is that it is double-
valued. In particular a rotation by 2π about any axis is represented non-
trivially:

U(n̂, θ = 2π) = −I. (2.32)

Our representation of the rotation group is really a representation “up to
a sign”

U(R1)U(R2) = ±U(R1 ◦R2). (2.33)

But as already noted, this is acceptable, because the group multiplication
is respected on rays, though not on vectors. These double-valued repre-
sentations of the rotation group are called spinor representations. (The
existence of spinors follows from a topological property of the group —
that it is not simply connected.)

While it is true that a rotation by 2π has no detectable effect on a
spin-1

2 object, it would be wrong to conclude that the spinor property
has no observable consequences. Suppose I have a machine that acts on
a pair of spins. If the first spin is up, it does nothing, but if the first spin
is down, it rotates the second spin by 2π. Now let the machine act when
the first spin is in a superposition of up and down. Then

1√
2

(| ↑〉1 + | ↓〉1) | ↑〉2 7→
1√
2

(| ↑〉1 − | ↓〉1) | ↑〉2 . (2.34)

While there is no detectable effect on the second spin, the state of the
first has flipped to an orthogonal state, which is very much observable.

In a rotated frame of reference, a rotation R(n̂, θ) becomes a rotation
through the same angle but about a rotated axis. It follows that the three
components of angular momentum transform under rotations as a vector:

U(R)JkU(R)† = Rk`J `. (2.35)

Thus, if a state |m〉 is an eigenstate of J3

J3|m〉 = m|m〉, (2.36)

then U(R)|m〉 is an eigenstate of RJ3 with the same eigenvalue:

RJ3 (U(R)|m〉) = U(R)J3U(R)†U(R)|m〉
= U(R)J3|m〉 = m (U(R)|m〉) . (2.37)
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Therefore, we can construct eigenstates of angular momentum along the
axis n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) by applying a counterclockwise rota-
tion through θ, about the axis n̂′ = (− sinϕ, cosϕ, 0), to a J3 eigenstate.
For our spin-1

2 representation, this rotation is

exp
(
−iθ

2
n̂′ · ~σ

)
= exp

[
θ

2

(
0 −e−iϕ

eiϕ 0

)]
=

(
cos θ

2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ

2

)
, (2.38)

and applying it to
(

1
0

)
, the J3 eigenstate with eigenvalue 1, we obtain

|ψ(θ, ϕ)〉 =
(
e−iϕ/2 cos θ

2

eiϕ/2 sin θ
2

)
, (2.39)

(up to an overall phase). We can check directly that this is an eigenstate
of

n̂ · ~σ =
(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
, (2.40)

with eigenvalue one. We now see that eq.(2.15) with a = e−iϕ/2 cos θ
2 ,

b = eiϕ/2 sin θ
2 , can be interpreted as a spin pointing in the (θ, ϕ) direction.

We noted that we cannot determine a and b with a single measurement.
Furthermore, even with many identical copies of the state, we cannot
completely determine the state by measuring each copy only along the
z-axis. This would enable us to estimate |a| and |b|, but we would learn
nothing about the relative phase of a and b. Equivalently, we would find
the component of the spin along the z-axis

〈ψ(θ, ϕ)|σ3|ψ(θ, ϕ)〉 = cos2
θ

2
− sin2 θ

2
= cos θ, (2.41)

but we would not learn about the component in the x-y plane. The prob-
lem of determining |ψ〉 by measuring the spin is equivalent to determining
the unit vector n̂ by measuring its components along various axes. Alto-
gether, measurements along three different axes are required. E.g., from
〈σ3〉 and 〈σ1〉 we can determine n3 and n1, but the sign of n2 remains
undetermined. Measuring 〈σ2〉 would remove this remaining ambiguity.

If we are permitted to rotate the spin, then only measurements along
the z-axis will suffice. That is, measuring a spin along the n̂ axis is
equivalent to first applying a rotation that rotates the n̂ axis to the axis
ẑ, and then measuring along ẑ.

In the special case θ = π
2 and ϕ = 0 (the x̂-axis) our spin state is

| ↑x〉 =
1√
2

(| ↑z〉+ | ↓z〉) (2.42)
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(“spin-up along the x-axis”). The orthogonal state (“spin down along the
x-axis”) is

| ↓x〉 =
1√
2

(| ↑z〉 − | ↓z〉) . (2.43)

For either of these states, if we measure the spin along the z-axis, we will
obtain | ↑z〉 with probability 1

2 and | ↓z〉 with probability 1
2 .

Now consider the combination

1√
2

(| ↑x〉+ | ↓x〉) . (2.44)

This state has the property that, if we measure the spin along the x-axis,
we obtain | ↑x〉 or | ↓x〉, each with probability 1

2 . Now we may ask, what
if we measure the state in eq.(2.44) along the z-axis?

If these were probabilistic classical bits, the answer would be obvious.
The state in eq.(2.44) is in one of two states, and for each of the two,
the probability is 1

2 for pointing up or down along the z-axis. So of
course we should find up with probability 1

2 when we measure the state
1√
2
(| ↑x〉+ | ↓x〉) along the z-axis.

But not so for qubits! By adding eq.(2.42) and eq.(2.43), we see that
the state in eq.(2.44) is really | ↑z〉 in disguise. When we measure along
the z-axis, we always find | ↑z〉, never | ↓z〉.

We see that for qubits, as opposed to probabilistic classical bits, proba-
bilities can add in unexpected ways. This is, in its simplest guise, the phe-
nomenon called “quantum interference,” an important feature of quantum
information.

To summarize the geometrical interpretation of a qubit: we may think
of a qubit as a spin-1

2 object, and its quantum state is characterized
by a unit vector n̂ in three dimensions, the spin’s direction. A unitary
transformation rotates the spin, and a measurement of an observable has
two possible outcomes: the spin is either up or down along a specified
axis.

It should be emphasized that, while this formal equivalence with a spin-
1
2 object applies to any two-level quantum system, not every two-level
system transforms as a spinor under spatial rotations!

2.2.2 Photon polarizations

Another important two-state system is provided by a photon, which can
have two independent polarizations. These photon polarization states also
transform under rotations, but photons differ from our spin-1

2 objects in
two important ways: (1) Photons are massless. (2) Photons have spin-1
(they are not spinors).
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We will not present here a detailed discussion of the unitary represen-
tations of the Poincare group. Suffice it to say that the spin of a particle
classifies how it transforms under the little group, the subgroup of the
Lorentz group that preserves the particle’s momentum. For a massive
particle, we may always boost to the particle’s rest frame, and then the
little group is the rotation group.

For massless particles, there is no rest frame. The finite-dimensional
unitary representations of the little group turn out to be representations
of the rotation group in two dimensions, the rotations about the axis de-
termined by the momentum. For a photon, this corresponds to a familiar
property of classical light — the waves are polarized transverse to the
direction of propagation.

Under a rotation about the axis of propagation, the two linear polariza-
tion states (|x〉 and |y〉 for horizontal and vertical polarization) transform
as

|x〉 → cos θ|x〉+ sin θ|y〉
|y〉 → − sin θ|x〉+ cos θ|y〉. (2.45)

This two-dimensional representation is actually reducible. The matrix(
cos θ sin θ
− sin θ cos θ

)
(2.46)

has the eigenstates

|R〉 =
1√
2

(
1
i

)
|L〉 =

1√
2

(
i
1

)
, (2.47)

with eigenvalues eiθ and e−iθ, the states of right and left circular polar-
ization. That is, these are the eigenstates of the rotation generator

J =
(

0 −i
i 0

)
= σ2, (2.48)

with eigenvalues ±1. Because the eigenvalues are ±1 (not ±1
2) we say

that the photon has spin-1.
In this context, the quantum interference phenomenon can be described

as follows. The polarization states

|+〉 =
1√
2

(|x〉+ |y〉) ,

|−〉 =
1√
2

(−|x〉+ |y〉) , (2.49)



16 2 Foundations I: States and Ensembles

are mutually orthogonal and can be obtained by rotating the states |x〉
and |y〉 by 45◦. Suppose that we have a polarization analyzer that allows
only one of two orthogonal linear photon polarizations to pass through,
absorbing the other. Then an x or y polarized photon has probability 1

2
of getting through a 45◦ rotated polarizer, and a 45◦ polarized photon
has probability 1

2 of getting through an x or y analyzer. But an x photon
never passes through a y analyzer.

Suppose that a photon beam is directed at an x analyzer, with a y
analyzer placed further downstream. Then about half of the photons will
pass through the first analyzer, but every one of these will be stopped
by the second analyzer. But now suppose that we place a 45◦-rotated
analyzer between the x and y analyzers. Then about half of the photons
pass through each analyzer, and about one in eight will manage to pass all
three without being absorbed. Because of this interference effect, there
is no consistent interpretation in which each photon carries one classical
bit of polarization information. Qubits are different than probabilistic
classical bits.

A device can be constructed that rotates the linear polarization of a
photon, and so applies the transformation Eq. (2.45) to our qubit; it
functions by “turning on” a Hamiltonian for which the circular polar-
ization states |L〉 and |R〉 are nondegenerate energy eigenstates. This
is not the most general possible unitary transformation. But if we also
have a device that alters the relative phase of the two orthogonal linear
polarization states

|x〉 → e−iϕ/2|x〉,
|y〉 → eiϕ/2|y〉 (2.50)

(by turning on a Hamiltonian whose nondegenerate energy eigenstates are
the linear polarization states), then the two devices can be employed to-
gether to apply an arbitrary 2×2 unitary transformation (of determinant
1) to the photon polarization state.

2.3 The density operator

2.3.1 The bipartite quantum system

Having understood everything about a single qubit, we are ready to ad-
dress systems with two qubits. Stepping up from one qubit to two is a
bigger leap than you might expect. Much that is weird and wonderful
about quantum mechanics can be appreciated by considering the proper-
ties of the quantum states of two qubits.

The axioms of §2.1 provide a perfectly acceptable general formulation
of the quantum theory. Yet under many circumstances, we find that the
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axioms appear to be violated. The trouble is that our axioms are intended
to characterize the quantum behavior of a closed system that does not
interact with its surroundings. In practice, closed quantum systems do
not exist; the observations we make are always limited to a small part of
a much larger quantum system.

When we study open systems, that is, when we limit our attention to
just part of a larger system, then (contrary to the axioms):

1. States are not rays.

2. Measurements are not orthogonal projections.

3. Evolution is not unitary.

To arrive at the laws obeyed by open quantum systems, we must recall
our fifth axiom, which relates the description of a composite quantum
system to the description of its component parts. As a first step toward
understanding the quantum description of an open system, consider a
two-qubit world in which we observe only one of the qubits. Qubit A is
here in the room with us, and we are free to observe or manipulate it any
way we please. But qubit B is locked in a vault where we can’t get access
to it. The full system AB obeys the axioms of §2.1. But we would like
to find a compact way to characterize the observations that can be made
on qubit A alone.

We’ll use {|0〉A, |1〉A} and {|0〉B, |1〉B} to denote orthonormal bases for
qubits A and B respectively. Consider a quantum state of the two-qubit
world of the form

|ψ〉AB = a|0〉A ⊗ |0〉B + b|1〉A ⊗ |1〉B. (2.51)

In this state, qubits A and B are correlated. Suppose we measure qubit
A by projecting onto the {|0〉A, |1〉A} basis. Then with probability |a|2
we obtain the result |0〉A, and the measurement prepares the state

|0〉A ⊗ |0〉B ; (2.52)

with probability |b|2, we obtain the result |1〉A and prepare the state

|1〉A ⊗ |1〉B. (2.53)

In either case, a definite state of qubit B is picked out by the measure-
ment. If we subsequently measure qubit B, then we are guaranteed (with
probability one) to find |0〉B if we had found |0〉A, and we are guaran-
teed to find |1〉B if we had found |1〉A. In this sense, the outcomes of the
{|0〉A, |1〉A} and {|0〉B, |1〉B} measurements are perfectly correlated in the
state |ψ〉AB.
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But now we would like to consider more general observables acting on
qubit A, and we would like to characterize the measurement outcomes for
A alone (irrespective of the outcomes of any measurements of the inac-
cessible qubit B). An observable acting on qubit A only can be expressed
as

MA ⊗ IB, (2.54)
where MA is a self-adjoint operator acting on A, and IB is the identity
operator acting on B. The expectation value of the observable in the
state |ψ〉 is:

〈MA〉 = 〈ψ|MA ⊗ IB|ψ〉
= (a∗〈00|+ b∗〈11|) (MA ⊗ IB) (a|00〉+ b|11〉)
= |a|2〈0|MA|0〉+ |b|2〈1|MA|1〉 (2.55)

(where we have used the orthogonality of |0〉B and |1〉B). This expression
can be rewritten in the form

〈MA〉 = tr (MAρA) , ρA = |a|2 |0〉〈0|+ |b|2 |1〉〈1| (2.56)

and tr(·) denotes the trace. The operator ρA is called the density operator
(or density matrix) for qubit A. It is self-adjoint, positive (its eigenvalues
are nonnegative) and it has unit trace (because |ψ〉 is a normalized state.)

Because 〈MA〉 has the form eq.(2.56) for any observable MA acting
on qubit A, it is consistent to interpret ρA as representing an ensemble of
possible quantum states, each occurring with a specified probability. That
is, we would obtain precisely the same result for 〈MA〉 if we stipulated
that qubit A is in one of two quantum states. With probability p0 = |a|2 it
is in the quantum state |0〉, and with probability p1 = |b|2 it is in the state
|1〉. If we are interested in the result of any possible measurement, we can
consider MA to be the projection EA(a) onto the relevant eigenspace of
a particular observable. Then

Prob(a) = p0〈0|EA(a)|0〉+ p1〈1|EA(a)|1〉, (2.57)

which is the probability of outcome a summed over the ensemble, and
weighted by the probability of each state in the ensemble.

We have emphasized previously that there is an essential difference be-
tween a coherent superposition of the states |0〉 and |1〉, and a probabilistic
ensemble, in which |0〉 and |1〉 can each occur with specified probabilities.
For example, for a spin-1

2 object we have seen that if we measure σ1 in
the state 1√

2
(| ↑z〉+ | ↓z〉), we will obtain the result | ↑x〉 with probability

one. But the ensemble in which | ↑z〉 and | ↓z〉 each occur with probability
1
2 is represented by the density operator

ρ =
1
2

(| ↑z〉〈↑z |+ | ↓z〉〈↓z |) =
1
2
I, (2.58)



2.3 The density operator 19

and the projection onto | ↑x〉 then has the expectation value

tr (| ↑x〉〈↑x |ρ) = 〈↑x |ρ| ↑x〉 =
1
2
. (2.59)

Similarly, if we measure the spin along any axis labeled by polar angles θ
and ϕ, the probability of obtaining the result “spin up” is

〈|ψ(θ, ϕ)〉〈ψ(θ, ϕ)|〉 = tr (|ψ(θ, ϕ)〉〈ψ(θ, ϕ)|ρ)

= 〈ψ(θ, ϕ)|1
2
I|ψ(θ, ϕ)〉 =

1
2
. (2.60)

Therefore, if in the two-qubit world an equally weighted coherent su-
perposition of |00〉 and |11〉 is prepared, the state of qubit A behaves
incoherently – along any axis it is an equiprobable mixture of spin up and
spin down.

This discussion of the correlated two-qubit state |ψ〉AB is easily gener-
alized to an arbitrary state of any bipartite quantum system (a system di-
vided into two parts). The Hilbert space of a bipartite system is HA⊗HB

where HA,B are the Hilbert spaces of the two parts. This means that if
{|i〉A} is an orthonormal basis for HA and {|µ〉B} is an orthonormal basis
for HB, then {|i〉A ⊗ |µ〉B} is an orthonormal basis for HA ⊗ HB. Thus
an arbitrary pure state of HA ⊗HB can be expanded as

|ψ〉AB =
∑
i,µ

aiµ|i〉A ⊗ |µ〉B, (2.61)

where
∑

i,µ |aiµ|2 = 1. The expectation value of an observable MA ⊗ IB

that acts only on subsystem A is

〈MA〉 = AB〈ψ|MA ⊗ IB|ψ〉AB

=
∑
j,ν

a∗jν (A〈j| ⊗ B 〈ν|) (MA ⊗ IB)
∑
i,µ

aiµ (|i〉A ⊗ |µ〉B)

=
∑
i,j,µ

a∗jµaiµ〈j|MA|i〉 = tr (MAρA) , (2.62)

where

ρA = trB (|ψ〉〈ψ|) ≡
∑
i,j,µ

aiµa
∗
jµ|i〉〈j| (2.63)

is the density operator of subsystem A.
We may say that the density operator ρA for subsystem A is obtained

by performing a partial trace over subsystem B of the density operator
(in this case a pure state) for the combined system AB. We may regard a
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dual vector (or bra) B〈µ| as a linear map that takes vectors in HA ⊗HB

to vectors of HA, defined through its action on a basis:

B〈µ|iν〉AB = δµν |i〉A ; (2.64)

similarly, the ket |µ〉B defines a map from the HA⊗HB dual basis to the
HA dual basis, via

AB〈iν|µ〉B = δµν A〈i|. (2.65)

The partial trace operation is a linear map that takes an operator MAB

on HA ⊗HB to an operator on HA defined as

trB MAB =
∑

µ

B〈µ|MAB|µ〉B. (2.66)

We see that the density operator acting on A is the partial trace

ρA = trB (|ψ〉〈ψ|) . (2.67)

From the definition eq.(2.63), we can immediately infer that ρA has the
following properties:

1. ρA is self-adjoint: ρA = ρ†
A.

2. ρA is positive: For any |ϕ〉, 〈ϕ|ρA|ϕ〉 =
∑

µ |
∑

i aiµ〈ϕ|i〉|2 ≥ 0.

3. tr(ρA) = 1: We have tr(ρA) =
∑

i,µ |aiµ|2 = 1, since |ψ〉AB is
normalized.

It follows that ρA can be diagonalized in an orthonormal basis, that the
eigenvalues are all real and nonnegative, and that the eigenvalues sum to
one.

If we are looking at a subsystem of a larger quantum system, then, even
if the state of the larger system is a ray, the state of the subsystem need
not be; in general, the state is represented by a density operator. In the
case where the state of the subsystem is a ray, and we say that the state is
pure. Otherwise the state is mixed. If the state is a pure state |ψ〉A, then
the density matrix ρA = |ψ〉〈ψ| is the projection onto the one-dimensional
space spanned by |ψ〉A. Hence a pure density matrix has the property
ρ2 = ρ. A general density matrix, expressed in the basis {|a〉} in which
it is diagonal, has the form

ρA =
∑

a

pa|a〉〈a|, (2.68)

where 0 < pa ≤ 1 and
∑

a pa = 1. If the state is not pure, there are two
or more terms in this sum, and ρ2 6= ρ; in fact, tr ρ2 =

∑
p2

a <
∑
pa = 1.
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We say that ρ is an incoherent mixture of the states {|a〉}; “incoherent”
means that the relative phases of the |a〉’s are experimentally inaccessible.

Since the expectation value of any observable M acting on the subsys-
tem can be expressed as

〈M〉 = tr Mρ =
∑

a

pa〈a|M |a〉, (2.69)

we see as before that we may interpret ρ as describing an ensemble of pure
quantum states, in which the state |a〉 occurs with probability pa. We
have, therefore, come a long part of the way to understanding how prob-
abilities arise in quantum mechanics when a quantum system A interacts
with another system B. A and B become entangled, that is, correlated.
The entanglement destroys the coherence of a superposition of states of
A, so that some of the phases in the superposition become inaccessible if
we look at A alone. We may describe this situation by saying that the
state of system A collapses — it is in one of a set of alternative states,
each of which can be assigned a probability.

2.3.2 Bloch sphere

Let’s return to the case in which system A is a single qubit, and consider
the form of the general density matrix. The most general self-adjoint
2× 2 matrix has four real parameters, and can be expanded in the basis
{I,σ1,σ2,σ3}. Since each σi is traceless, the coefficient of I in the
expansion of a density matrix ρ must be 1

2 (so that tr(ρ) = 1), and ρ
may be expressed as

ρ(~P ) =
1
2

(
I + ~P · ~σ

)
≡ 1

2
(I + P1σ1 + P2σ2 + P3σ3)

=
1
2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
, (2.70)

where P1, P2, P3 are real numbers. We can compute detρ = 1
4

(
1− ~P 2

)
.

Therefore, a necessary condition for ρ to have nonnegative eigenvalues is
detρ ≥ 0 or ~P 2 ≤ 1. This condition is also sufficient; since tr ρ = 1,
it is not possible for ρ to have two negative eigenvalues. Thus, there is
a 1− 1 correspondence between the possible density matrices of a single
qubit and the points on the unit 3-ball 0 ≤ |~P | ≤ 1. This ball is usually
called the Bloch sphere (although it is really a ball, not a sphere).

The boundary
(
|~P | = 1

)
of the ball (which really is a sphere) contains

the density matrices with vanishing determinant. Since tr ρ = 1, these
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density matrices must have the eigenvalues 0 and 1 — they are one-
dimensional projectors, and hence pure states. We have already seen
that any pure state of a single qubit is of the form |ψ(θ, ϕ)〉 and can be
envisioned as a spin pointing in the (θ, ϕ) direction. Indeed using the
property

(n̂ · ~σ)2 = I, (2.71)

where n̂ is a unit vector, we can easily verify that the pure-state density
matrix

ρ(n̂) =
1
2

(I + n̂ · ~σ) (2.72)

satisfies the property

(n̂ · ~σ) ρ(n̂) = ρ(n̂) (n̂ · ~σ) = ρ(n̂), (2.73)

and, therefore is the projector

ρ(n̂) = |ψ(n̂)〉〈ψ(n̂)| ; (2.74)

that is, n̂ is the direction along which the spin is pointing up. Alterna-
tively, from the expression

|ψ(θ, φ)〉 =
(
e−iϕ/2 cos (θ/2)
eiϕ/2 sin (θ/2)

)
, (2.75)

we may compute directly that

ρ(θ, φ) = |ψ(θ, φ)〉〈ψ(θ, φ)|

=
(

cos2 (θ/2) cos (θ/2) sin (θ/2)e−iϕ

cos (θ/2) sin (θ/2)eiϕ sin2 (θ/2)

)
=

1
2
I +

1
2

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
=

1
2
(I + n̂ · ~σ) (2.76)

where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). One nice property of the Bloch
parametrization of the pure states is that while |ψ(θ, ϕ)〉 has an arbitrary
overall phase that has no physical significance, there is no phase ambiguity
in the density matrix ρ(θ, ϕ) = |ψ(θ, ϕ)〉〈ψ(θ, ϕ)|; all the parameters in ρ
have a physical meaning.

From the property
1
2
tr σiσj = δij (2.77)

we see that
〈n̂ · ~σ〉~P = tr

(
n̂ · ~σρ(~P )

)
= n̂ · ~P . (2.78)

We say that the vector ~P in Eq. (2.70) parametrizes the polarization of
the spin. If there are many identically prepared systems at our disposal,
we can determine ~P (and hence the complete density matrix ρ(~P )) by
measuring 〈n̂ · ~σ〉 along each of three linearly independent axes.
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2.4 Schmidt decomposition

A bipartite pure state can be expressed in a standard form (the Schmidt
decomposition) that is often very useful.

To arrive at this form, note that an arbitrary vector in HA ⊗HB can
be expanded as

|ψ〉AB =
∑
i,µ

ψiµ|i〉A ⊗ |µ〉B ≡
∑

i

|i〉A ⊗ |̃i〉B. (2.79)

Here {|i〉A} and {|µ〉B} are orthonormal basis forHA andHB respectively,
but to obtain the second equality in eq.(2.79) we have defined

|̃i〉B ≡
∑

µ

ψiµ|µ〉B. (2.80)

Note that the |̃i〉B’s need not be mutually orthogonal or normalized.
Now let’s suppose that the {|i〉A} basis is chosen to be the basis in

which ρA is diagonal,
ρA =

∑
i

pi|i〉〈i|. (2.81)

We can also compute ρA by performing a partial trace,

ρA = trB(|ψ〉〈ψ|)

= trB(
∑
i,j

|i〉〈j| ⊗ |̃i〉〈j̃|) =
∑
i,j

〈j̃ |̃i〉 (|i〉〈j|) . (2.82)

We obtained the last equality in eq.(2.82) by noting that

trB

(
|̃i〉〈j̃|

)
=
∑

k

〈k|̃i〉〈j̃|k〉

=
∑

k

〈j̃|k〉〈k|̃i〉 = 〈j̃ |̃i〉, (2.83)

where {|k〉} is a complete orthonormal basis for HB. By comparing
eq.(2.81) and eq. (2.82), we see that

B〈j̃ |̃i〉B = piδij . (2.84)

Hence, it turns out that the {|̃i〉B} are orthogonal after all. We obtain
orthonormal vectors by rescaling,

|i′〉B = p
−1/2
i |̃i〉B (2.85)



24 2 Foundations I: States and Ensembles

(we may assume pi 6= 0, because we will need eq.(2.85) only for i appearing
in the sum eq.(2.81)), and therefore obtain the expansion

|ψ〉AB =
∑

i

√
pi |i〉A ⊗ |i′〉B, (2.86)

in terms of a particular orthonormal basis of HA and HB.
Eq.(2.86) is the Schmidt decomposition of the bipartite pure state

|ψ〉AB. Any bipartite pure state can be expressed in this form, but the
bases used depend on the pure state that is being expanded. In general,
we can’t simultaneously expand both |ψ〉AB and |ϕ〉AB ∈ HA⊗HB in the
form eq.(2.86) using the same orthonormal bases for HA and HB.

It is instructive to compare the Schmidt decomposition of the bipartite
pure state |ψ〉AB with its expansion in a generic orthonormal basis

|ψ〉AB =
∑
a,µ

ψaµ|a〉A ⊗ |µ〉B. (2.87)

The orthonormal bases {|a〉A} and {|µ〉B} are related to the Schmidt
bases {|i〉A} and {|i′〉B} by unitary transformations UA and UB, hence

|i〉A =
∑

a

|a〉A (UA)ai , |i′〉B =
∑

µ

|µ〉B (UB)µi′ . (2.88)

By equating the expressions for |ψ〉AB in eq.(2.86) and eq.(2.87), we find

ψaµ =
∑

i

(UA)ai

√
pi

(
UT

B

)
iµ
. (2.89)

We see that by applying unitary transformations on the left and right,
any matrix ψ can be transformed to a matrix which is diagonal and non-
negative. (The “diagonal” matrix will be rectangular rather than square
if the Hilbert spaces HA and HB have different dimensions.) Eq.(2.89) is
said to be the singular value decomposition of ψ, and the weights {√pi}
in the Schmidt decomposition are ψ’s singular values.

Using eq.(2.86), we can also evaluate the partial trace overHA to obtain

ρB = trA (|ψ〉〈ψ|) =
∑

i

pi|i′〉〈i′|. (2.90)

We see that ρA and ρB have the same nonzero eigenvalues. If HA and
HB do not have the same dimension, the number of zero eigenvalues of
ρA and ρB will differ.

If ρA (and hence ρB) have no degenerate eigenvalues other than zero,
then the Schmidt decomposition of |ψ〉AB is essentially uniquely deter-
mined by ρA and ρB. We can diagonalize ρA and ρB to find the |i〉A’s
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and |i′〉B’s, and then we pair up the eigenstates of ρA and ρB with the
same eigenvalue to obtain eq.(2.86). We have chosen the phases of our
basis states so that no phases appear in the coefficients in the sum; the
only remaining freedom is to redefine |i〉A and |i′〉B by multiplying by
opposite phases (which leaves the expression eq.(2.86) unchanged).

But if ρA has degenerate nonzero eigenvalues, then we need more in-
formation than that provided by ρA and ρB to determine the Schmidt
decomposition; we need to know which |i′〉B gets paired with each |i〉A.
For example, if both HA and HB are d-dimensional and Uij is any d× d
unitary matrix, then

|ψ〉AB =
1√
d

d∑
i,j=1

|i〉AUij ⊗ |j′〉B, (2.91)

will yield ρA = ρB = 1
dI when we take partial traces. Furthermore, we

are free to apply simultaneous unitary transformations in HA and HB;
writing

|i〉A =
∑

a

|a〉AUai, |i′〉B =
∑

b

|b′〉BU∗
bi, (2.92)

we have

|ψ〉AB =
1√
d

∑
i

|i〉A ⊗ |i′〉B =
1√
d

∑
i,a,b

|a〉AUai ⊗ |b′〉BU †
ib

=
1√
d

∑
a

|a〉A ⊗ |a′〉B. (2.93)

This simultaneous rotation preserves the state |ψ〉AB, illustrating that
there is an ambiguity in the basis used when we express |ψ〉AB in the
Schmidt form.

2.4.1 Entanglement

With any bipartite pure state |ψ〉AB we may associate a positive integer,
the Schmidt number, which is the number of nonzero eigenvalues in ρA

(or ρB) and hence the number of terms in the Schmidt decomposition
of |ψ〉AB. In terms of this quantity, we can define what it means for a
bipartite pure state to be entangled: |ψ〉AB is entangled (or nonseparable)
if its Schmidt number is greater than one; otherwise, it is separable (or
unentangled). Thus, a separable bipartite pure state is a direct product
of pure states in HA and HB,

|ψ〉AB = |ϕ〉A ⊗ |χ〉B; (2.94)
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then the reduced density matrices ρA = |ϕ〉〈ϕ| and ρB = |χ〉〈χ| are pure.
Any state that cannot be expressed as such a direct product is entangled;
then ρA and ρB are mixed states.

When |ψ〉AB is entangled we say that A and B have quantum corre-
lations. It is not strictly correct to say that subsystems A and B are
uncorrelated if |ψ〉AB is separable; after all, the two spins in the separable
state

| ↑〉A| ↑〉B, (2.95)

are surely correlated – they are both pointing in the same direction. But
the correlations between A and B in an entangled state have a different
character than those in a separable state. One crucial difference is that
entanglement cannot be created locally. The only way to entangle A and
B is for the two subsystems to directly interact with one another.

We can prepare the state eq.(2.95) without allowing spins A and B to
ever come into contact with one another. We need only send a (classical!)
message to two preparers (Alice and Bob) telling both of them to prepare
a spin pointing along the z-axis. But the only way to turn the state
eq.(2.95) into an entangled state like

1√
2

(| ↑〉A| ↑〉B + | ↓〉A| ↓〉B) , (2.96)

is to apply a collective unitary transformation to the state. Local unitary
transformations of the form UA⊗UB, and local measurements performed
by Alice or Bob, cannot increase the Schmidt number of the two-qubit
state, no matter how much Alice and Bob discuss what they do. To
entangle two qubits, we must bring them together and allow them to
interact.

As we will discuss in Chapter 4, it is also possible to make the distinction
between entangled and separable bipartite mixed states. We will also
discuss various ways in which local operations can modify the form of
entanglement, and some ways that entanglement can be put to use.

2.5 Ambiguity of the ensemble interpretation

2.5.1 Convexity

Recall that an operator ρ acting on a Hilbert space H may be interpreted
as a density operator if it has the three properties:

(1) ρ is self-adjoint.

(2) ρ is nonnegative.

(3) tr(ρ) = 1.



2.5 Ambiguity of the ensemble interpretation 27

It follows immediately that, given two density matrices ρ1, and ρ2, we can
always construct another density matrix as a convex linear combination
of the two:

ρ(λ) = λρ1 + (1− λ)ρ2 (2.97)

is a density matrix for any real λ satisfying 0 ≤ λ ≤ 1. We easily see that
ρ(λ) satisfies (1) and (3) if ρ1 and ρ2 do. To check (2), we evaluate

〈ψ|ρ(λ)|ψ〉 = λ〈ψ|ρ1|ψ〉+ (1− λ)〈ψ|ρ2|ψ〉 ≥ 0; (2.98)

〈ρ(λ)〉 is guaranteed to be nonnegative because 〈ρ1〉 and 〈ρ2〉 are. We
have, therefore, shown that in a Hilbert space H of dimension d, the
density operators are a convex subset of the real vector space of d × d
hermitian operators. (A subset of a vector space is said to be convex if
the set contains the straight line segment connecting any two points in
the set.)

Most density operators can be expressed as a sum of other density
operators in many different ways. But the pure states are special in this
regard – it is not possible to express a pure state as a convex sum of two
other states. Consider a pure state ρ = |ψ〉〈ψ|, and let |ψ⊥〉 denote a
vector orthogonal to |ψ〉, 〈ψ⊥|ψ〉 = 0. Suppose that ρ can be expanded
as in eq.(2.97); then

〈ψ⊥|ρ|ψ⊥〉 = 0 = λ〈ψ⊥|ρ1|ψ⊥〉
+ (1− λ)〈ψ⊥|ρ2|ψ⊥〉. (2.99)

Since the right hand side is a sum of two nonnegative terms, and the
sum vanishes, both terms must vanish. If λ is not 0 or 1, we conclude
that ρ1 and ρ2 are orthogonal to |ψ⊥〉. But since |ψ⊥〉 can be any vector
orthogonal to |ψ〉, we see that ρ1 = ρ2 = ρ.

The vectors in a convex set that cannot be expressed as a linear com-
bination of other vectors in the set are called the extremal points of the
set. We have just shown that the pure states are extremal points of the
set of density matrices. Furthermore, only the pure states are extremal,
because any mixed state can be written ρ =

∑
i pi|i〉〈i| in the basis in

which it is diagonal, and so is a convex sum of pure states.
We have already encountered this structure in our discussion of the

special case of the Bloch sphere. We saw that the density operators are a
(unit) ball in the three-dimensional set of 2 × 2 hermitian matrices with
unit trace. The ball is convex, and its extremal points are the points on
the boundary. Similarly, the d× d density operators are a convex subset
of the (d2−1)-dimensional set of d×d hermitian matrices with unit trace,
and the extremal points of the set are the pure states.

However, the 2× 2 case is atypical in one respect: for d > 2, the points
on the boundary of the set of density matrices are not necessarily pure
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states. The boundary of the set consists of all density matrices with
at least one vanishing eigenvalue (since there are nearby matrices with
negative eigenvalues). Such a density matrix need not be pure, for d > 2,
since the number of nonvanishing eigenvalues can exceed one.

2.5.2 Ensemble preparation

The convexity of the set of density matrices has a simple and enlightening
physical interpretation. Suppose that a preparer agrees to prepare one of
two possible states; with probability λ, the state ρ1 is prepared, and with
probability 1− λ, the state ρ2 is prepared. (A random number generator
might be employed to guide this choice.) To evaluate the expectation
value of any observable M , we average over both the choices of preparation
and the outcome of the quantum measurement:

〈M〉 = λ〈M〉1 + (1− λ)〈M〉2
= λtr(Mρ1) + (1− λ)tr(Mρ2)
= tr (Mρ(λ)) . (2.100)

All expectation values are thus indistinguishable from what we would
obtain if the state ρ(λ) had been prepared instead. Thus, we have an
operational procedure, given methods for preparing the states ρ1 and ρ2,
for preparing any convex combination.

Indeed, for any mixed state ρ, there are an infinite variety of ways to
express ρ as a convex combination of other states, and hence an infinite
variety of procedures we could employ to prepare ρ, all of which have
exactly the same consequences for any conceivable observation of the sys-
tem. But a pure state is different; it can be prepared in only one way.
(This is what is “pure” about a pure state.) Every pure state is an eigen-
state of some observable, e.g., for the state ρ = |ψ〉〈ψ|, measurement of
the projection E = |ψ〉〈ψ| is guaranteed to have the outcome 1. (For
example, recall that every pure state of a single qubit is “spin-up” along
some axis.) Since ρ is the only state for which the outcome of measuring
E is 1 with 100% probability, there is no way to reproduce this observ-
able property by choosing one of several possible preparations. Thus, the
preparation of a pure state is unambiguous (we can infer a unique prepa-
ration if we have many copies of the state to experiment with), but the
preparation of a mixed state is always ambiguous.

How ambiguous is it? Since any ρ can be expressed as a sum of pure
states, let’s confine our attention to the question: in how many ways
can a density operator be expressed as a convex sum of pure states?
Mathematically, this is the question: in how many ways can ρ be written
as a sum of extremal states?
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As a first example, consider the “maximally mixed” state of a single
qubit:

ρ =
1
2
I. (2.101)

This can indeed be prepared as an ensemble of pure states in an infinite
variety of ways. For example,

ρ =
1
2
| ↑z〉〈↑z |+

1
2
| ↓z〉〈↓z |, (2.102)

so we obtain ρ if we prepare either | ↑z〉 or | ↓z〉, each occurring with
probability 1

2 . But we also have

ρ =
1
2
| ↑x〉〈↑x |+

1
2
| ↓x〉〈↓x |, (2.103)

so we obtain ρ if we prepare either | ↑x〉 or | ↓x〉, each occurring with
probability 1

2 . Now the preparation procedures are undeniably different.
Yet there is no possible way to tell the difference by making observations
of the spin.

More generally, the point at the center of the Bloch ball is the sum of
any two antipodal points on the sphere – preparing either | ↑n̂〉 or | ↓n̂〉,
each occurring with probability 1

2 , will generate ρ = 1
2I.

Only in the case where ρ has two (or more) degenerate eigenvalues
will there be distinct ways of generating ρ from an ensemble of mutually
orthogonal pure states, but there is no good reason to confine our attention
to ensembles of mutually orthogonal pure states. We may consider a point
in the interior of the Bloch ball

ρ(~P ) =
1
2
(I + ~P · ~σ), (2.104)

with 0 < |~P | < 1, and it too can be expressed as

ρ(~P ) = λρ(n̂1) + (1− λ)ρ(n̂2), (2.105)

if ~P = λn̂1 +(1−λ)n̂2 (or in other words, if ~P lies somewhere on the line
segment connecting the points n̂1 and n̂2 on the sphere). Evidently, for
any ~P , there is a an expression for ρ(~P ) as a convex combination of pure
states associated with any chord of the Bloch sphere that passes through
the point ~P ; all such chords comprise a two-parameter family.

This highly ambiguous nature of the preparation of a mixed quantum
state is one of the characteristic features of quantum information that
contrasts sharply with classical probability distributions. Consider, for
example, the case of a probability distribution for a single classical bit.
The two extremal distributions are those in which either 0 or 1 occurs
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with 100% probability. Any probability distribution for the bit is a convex
sum of these two extremal points. Similarly, if there are d possible states,
there are d extremal distributions, and any probability distribution has
a unique decomposition into extremal ones (the convex set of probability
distributions is a simplex, the convex hull of its d vertices). If 0 occurs
with 21% probability, 1 with 33% probability, and 2 with 46% probability,
there is a unique “preparation procedure” that yields this probability
distribution.

2.5.3 Faster than light?

Let’s now return to our earlier viewpoint — that a mixed state of system
A arises because A is entangled with system B — to further consider the
implications of the ambiguous preparation of mixed states. If qubit A has
density matrix

ρA =
1
2
| ↑z〉〈↑z |+

1
2
| ↓z〉〈↓z |, (2.106)

this density matrix could arise from an entangled bipartite pure state
|ψ〉AB with the Schmidt decomposition

|ψ〉AB =
1√
2

(| ↑z〉A| ↑z〉B + | ↓z〉A| ↓z〉B) . (2.107)

Therefore, the ensemble interpretation of ρA in which either | ↑z〉A or
| ↓z〉A is prepared (each with probability p = 1

2) can be realized by
performing a measurement of qubit B. We measure qubit B in the
{| ↑z〉B, | ↓z〉B} basis; if the result | ↑z〉B is obtained, we have prepared
| ↑z〉A, and if the result | ↓z〉B is obtained, we have prepared | ↓z〉A.

But as we have already noted, in this case, because ρA has degenerate
eigenvalues, the Schmidt basis is not unique. We can apply simultaneous
unitary transformations to qubits A and B (actually, if we apply U to A
we must apply U∗ to B as in eq.(2.92)) without modifying the bipartite
pure state |ψ〉AB. Therefore, for any unit 3-vector n̂, |ψ〉AB has a Schmidt
decomposition of the form

|ψ〉AB =
1√
2

(| ↑n̂〉A| ↑n̂′〉B + | ↓n̂〉A| ↓n̂′〉B) . (2.108)

We see that by measuring qubit B in a suitable basis, we can realize any
interpretation of ρA as an ensemble of two pure states.

This property suggests a mechanism for faster-than-light communica-
tion. Many copies of |ψ〉AB are prepared. Alice takes all of the A qubits
to the Andromeda galaxy and Bob keeps all of the B qubits on earth.
When Bob wants to send a one-bit message to Alice, he chooses to mea-
sure either σ1 or σ3 for all his spins, thus preparing Alice’s spins in either
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the {| ↑z〉A, | ↓z〉A} or {| ↑x〉A, | ↓x〉A} ensembles. (U is real in this case, so
U = U∗ and n̂ = n̂′.) To read the message, Alice immediately measures
her spins to see which ensemble has been prepared.

This scheme has a flaw. Though the two preparation methods are
surely different, both ensembles are described by precisely the same den-
sity matrix ρA. Thus, there is no conceivable measurement Alice can
make that will distinguish the two ensembles, and no way for Alice to tell
what action Bob performed. The “message” is unreadable.

Why, then, do we confidently state that “the two preparation methods
are surely different?” To qualm any doubts about that, imagine that Bob
either (1) measures all of his spins along the ẑ-axis, or (2) measures
all of his spins along the x̂-axis, and then calls Alice on the intergalactic
telephone. He does not tell Alice whether he did (1) or (2), but he does
tell her the results of all his measurements: “the first spin was up, the
second was down,” etc. Now Alice performs either (1) or (2) on her
spins. If both Alice and Bob measured along the same axis, Alice will
find that every single one of her measurement outcomes agrees with what
Bob found. But if Alice and Bob measured along different (orthogonal)
axes, then Alice will find no correlation between her results and Bob’s.
About half of her measurements agree with Bob’s and about half disagree.
If Bob promises to do either (1) or (2), and assuming no preparation or
measurement errors, then Alice will know that Bob’s action was different
than hers (even though Bob never told her this information) as soon as
one of her measurements disagrees with what Bob found. If all their
measurements agree, then if many spins are measured, Alice will have
very high statistical confidence that she and Bob measured along the
same axis. (Even with occasional measurement errors, the statistical test
will still be highly reliable if the error rate is low enough.) So Alice does
have a way to distinguish Bob’s two preparation methods, but in this case
there is certainly no faster-than-light communication, because Alice had
to receive Bob’s phone call before she could perform her test.

2.5.4 Quantum erasure

We had said that the density matrix ρA = 1
2I describes a spin in an

incoherent mixture of the pure states | ↑z〉A and | ↓z〉A. This was to be
distinguished from coherent superpositions of these states, such as

| ↑x, ↓x〉 =
1√
2

(| ↑z〉 ± | ↓z〉) ; (2.109)

in the case of a coherent superposition, the relative phase of the two states
has observable consequences (distinguishes | ↑x〉 from | ↓x〉). In the case
of an incoherent mixture, the relative phase is completely unobservable.
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The superposition becomes incoherent if spin A becomes entangled with
another spin B, and spin B is inaccessible.

Heuristically, the states | ↑z〉A and | ↓z〉A can interfere (the relative
phase of these states can be observed) only if we have no information
about whether the spin state is | ↑z〉A or | ↓z〉A. More than that, in-
terference can occur only if there is in principle no possible way to find
out whether the spin is up or down along the z-axis. Entangling spin A
with spin B destroys interference, (causes spin A to decohere) because it
is possible in principle for us to determine if spin A is up or down along
ẑ by performing a suitable measurement of spin B.

But we have now seen that the statement that entanglement causes
decoherence requires a qualification. Suppose that Bob measures spin B
along the x̂-axis, obtaining either the result | ↑x〉B or | ↓x〉B, and that he
sends his measurement result to Alice. Now Alice’s spin is a pure state
(either | ↑x〉A or | ↓x〉A) and in fact a coherent superposition of | ↑z〉A and
| ↓z〉A. We have managed to recover the purity of Alice’s spin before the
jaws of decoherence could close!

Suppose that Bob allows his spin to pass through a Stern–Gerlach appa-
ratus oriented along the ẑ-axis. Well, of course, Alice’s spin can’t behave
like a coherent superposition of | ↑z〉A and | ↓z〉A; all Bob has to do is
look to see which way his spin moved, and he will know whether Al-
ice’s spin is up or down along ẑ. But suppose that Bob does not look.
Instead, he carefully refocuses the two beams without maintaining any
record of whether his spin moved up or down, and then allows the spin to
pass through a second Stern–Gerlach apparatus oriented along the x̂-axis.
This time he looks, and communicates the result of his σ1 measurement
to Alice. Now the coherence of Alice’s spin has been restored!

This situation has been called a quantum eraser. Entangling the two
spins creates a “measurement situation” in which the coherence of | ↑z〉A
and | ↓z〉A is lost because we can find out if spin A is up or down along ẑ by
observing spin B. But when we measure spin B along x̂, this information
is “erased.” Whether the result is | ↑x〉B or | ↓x〉B does not tell us anything
about whether spin A is up or down along ẑ, because Bob has been careful
not to retain the “which way” information that he might have acquired
by looking at the first Stern–Gerlach apparatus. Therefore, it is possible
again for spin A to behave like a coherent superposition of | ↑z〉A and
| ↓z〉A (and it does, after Alice hears about Bob’s result).

We can best understand the quantum eraser from the ensemble view-
point. Alice has many spins selected from an ensemble described by
ρA = 1

2I, and there is no way for her to observe interference between
| ↑z〉A and | ↓z〉A. When Bob makes his measurement along x̂, a partic-
ular preparation of the ensemble is realized. However, this has no effect
that Alice can perceive – her spin is still described by ρA = 1

2I as before.
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But, when Alice receives Bob’s phone call, she can select a subensemble
of her spins that are all in the pure state | ↑x〉A. The information that
Bob sends allows Alice to distill purity from a maximally mixed state.

Another wrinkle on the quantum eraser is sometimes called delayed
choice. This just means that the situation we have described is really
completely symmetric between Alice and Bob, so it can’t make any dif-
ference who measures first. (Indeed, if Alice’s and Bob’s measurements
are spacelike separated events, there is no invariant meaning to which
came first; it depends on the frame of reference of the observer.) Alice
could measure all of her spins today (say along x̂) before Bob has made
his mind up how he will measure his spins. Next week, Bob can decide
to “prepare” Alice’s spins in the states | ↑n̂〉A and | ↓n̂〉A (that is the
“delayed choice”). He then tells Alice which were the | ↑n̂〉A spins, and
she can check her measurement record to verify that

〈σ1〉n̂ = n̂ · x̂ . (2.110)

The results are the same, irrespective of whether Bob “prepares” the spins
before or after Alice measures them.

We have claimed that the density matrix ρA provides a complete phys-
ical description of the state of subsystem A, because it characterizes all
possible measurements that can be performed on A. One might object
that the quantum eraser phenomenon demonstrates otherwise. Since the
information received from Bob enables Alice to recover a pure state from
the mixture, how can we hold that everything Alice can know about A is
encoded in ρA?

I prefer to say that quantum erasure illustrates the principle that “in-
formation is physical.” The state ρA of system A is not the same thing
as ρA accompanied by the information that Alice has received from Bob.
This information (which attaches labels to the subensembles) changes the
physical description. That is, we should include Alice’s “state of knowl-
edge” in our description of her system. An ensemble of spins for which
Alice has no information about whether each spin is up or down is a dif-
ferent physical state than an ensemble in which Alice knows which spins
are up and which are down. This “state of knowledge” need not really
be the state of a human mind; any (inanimate) record that labels the
subensemble will suffice.

2.5.5 The HJW theorem

So far, we have considered the quantum eraser only in the context of
a single qubit, described by an ensemble of equally probable mutually
orthogonal states, (i.e., ρA = 1

2I). The discussion can be considerably
generalized.



34 2 Foundations I: States and Ensembles

We have already seen that a mixed state of any quantum system can
be realized as an ensemble of pure states in an infinite number of different
ways. For a density matrix ρA, consider one such realization:

ρA =
∑

i

pi|ϕi〉〈ϕi|,
∑

pi = 1. (2.111)

Here the states {|ϕi〉A} are all normalized vectors, but we do not assume
that they are mutually orthogonal. Nevertheless, ρA can be realized as
an ensemble, in which each pure state |ϕi〉〈ϕi| occurs with probability pi.

For any such ρA, we can construct a “purification” of ρA, a bipartite
pure state |Φ1〉AB that yields ρA when we perform a partial trace over
HB. One such purification is of the form

|Φ1〉AB =
∑

i

√
pi |ϕi〉A ⊗ |αi〉B, (2.112)

where the vectors |αi〉B ∈ HB are mutually orthogonal and normalized,

〈αi|αj〉 = δij . (2.113)

Clearly, then,
trB (|Φ1〉〈Φ1|) = ρA. (2.114)

Furthermore, we can imagine performing an orthogonal measurement in
system B that projects onto the |αi〉B basis. (The |αi〉B’s might not span
HB, but in the state |Φ1〉AB, measurement outcomes orthogonal to all
the |αi〉B’s never occur.) The outcome |αi〉B will occur with probability
pi, and will prepare the pure state |ϕi〉〈ϕi| of system A. Thus, given
the purification |Φ1〉AB of ρA, there is a measurement we can perform in
system B that realizes the |ϕi〉A ensemble interpretation of ρA. When
the measurement outcome in B is known, we have successfully extracted
one of the pure states |ϕi〉A from the mixture ρA.

What we have just described is a generalization of preparing | ↑z〉A by
measuring spin B along ẑ (in our discussion of two entangled qubits). But
to generalize the notion of a quantum eraser, we wish to see that in the
state |Φ1〉AB, we can realize a different ensemble interpretation of ρA by
performing a different measurement of B. So let

ρA =
∑

µ

qµ|ψµ〉〈ψµ|, (2.115)

be another realization of the same density matrix ρA as an ensemble of
pure states. For this ensemble as well, there is a corresponding purification

|Φ2〉AB =
∑

µ

√
qµ |ψµ〉A ⊗ |βµ〉B, (2.116)
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where again the {|βµ〉B’s} are orthonormal vectors in HB. So in the state
|Φ2〉AB, we can realize the ensemble by performing a measurement in HB

that projects onto the {|βµ〉B} basis.
Now, how are |Φ1〉AB and |Φ2〉AB related? In fact, we can easily show

that
|Φ1〉AB = (IA ⊗UB) |Φ2〉AB; (2.117)

the two states differ by a unitary change of basis acting in HB alone, or

|Φ1〉AB =
∑

µ

√
qµ |ψµ〉A ⊗ |γµ〉B, (2.118)

where
|γµ〉B = UB|βµ〉B, (2.119)

is yet another orthonormal basis for HB. We see, then, that there is a sin-
gle purification |Φ1〉AB of ρA, such that we can realize either the {|ϕi〉A}
ensemble or {|ψµ〉A} ensemble by choosing to measure the appropriate
observable in system B!

Similarly, we may consider many ensembles that all realize ρA, where
the maximum number of pure states appearing in any of the ensembles
is d. Then we may choose a Hilbert space HB of dimension d, and a
pure state |Φ〉AB ∈ HA ⊗ HB, such that any one of the ensembles can
be realized by measuring a suitable observable of B. This is the HJW
theorem (for Hughston, Jozsa, and Wootters); it expresses the quantum
eraser phenomenon in its most general form.

In fact, the HJW theorem is an easy corollary to the Schmidt decom-
position. Both |Φ1〉AB and |Φ2〉AB have Schmidt decompositions, and
because both yield the same ρA when we take the partial trace over B,
these decompositions must have the form

|Φ1〉AB =
∑

k

√
λk |k〉A ⊗ |k′1〉B,

|Φ2〉AB =
∑

k

√
λk |k〉A ⊗ |k′2〉B, (2.120)

where the λk’s are the eigenvalues of ρA and the |k〉A’s are the correspond-
ing eigenvectors. But since {|k′1〉B} and {|k′2〉B} are both orthonormal
bases for HB, there is a unitary UB such that

|k′1〉B = UB|k′2〉B, (2.121)

from which eq.(2.117) immediately follows.
In the ensemble of pure states described by Eq. (2.111), we would say

that the pure states |ϕi〉A are mixed incoherently — an observer in sys-
tem A cannot detect the relative phases of these states. Heuristically, the
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reason that these states cannot interfere is that it is possible in principle
to find out which representative of the ensemble is actually realized by
performing a measurement in system B, a projection onto the orthonor-
mal basis {|αi〉B}. However, by projecting onto the {|γµ〉B} basis instead,
and relaying the information about the measurement outcome to system
A, we can extract one of the pure states |ψµ〉A from the ensemble, even
though this state may be a coherent superposition of the |ϕi〉A’s. In effect,
measuring B in the {|γµ〉B} basis “erases” the “which way” information
(whether the state of A is |ϕi〉A or |ϕj〉A). In this sense, the HJW theorem
characterizes the general quantum eraser. The moral, once again, is that
information is physical — the information acquired by measuring system
B, when relayed to A, changes the physical description of a state of A.

2.6 How far apart are two quantum states?

2.6.1 Fidelity and Uhlmann’s theorem

The distinguishability of two pure states |ψ〉 and |ϕ〉 is quantified by the
deviation from 1 of their overlap |〈ϕ|ψ〉|2, also called fidelity. For two
density operators ρ and σ the fidelity is defined by

F (ρ,σ) ≡
(

tr
√

ρ
1
2 σρ

1
2

)2

. (2.122)

(Some authors use the name “fidelity” for the square root of this quantity.)
The fidelity is nonnegative, vanishes if ρ and σ have support on mutually
orthogonal subspaces, and attains its maximum value 1 if and only if the
two states are identical. If ρ = |ψ〉〈ψ| is a pure state, then the fidelity is

F (ρ,σ) = 〈ψ|σ|ψ〉. (2.123)

Suppose we perform an orthogonal measurement on ρ with the two out-
comes: “Yes” if the state if |ψ〉, “No” if the state is orthogonal to |ψ〉.
Then the fidelity is the probability that the outcome is “Yes.”

We may also express the fidelity in terms of the L1 norm,

F (ρ,σ) =
∥∥∥σ 1

2 ρ
1
2

∥∥∥2

1
, (2.124)

where
‖A‖1 = tr

√
A†A. (2.125)

The L1 norm is also sometimes called the trace norm. (For Hermitian
A, ‖A‖1 is just the sum of the absolute values of its eigenvalues.) The
fidelity F (ρ,σ) is actually symmetric in its two arguments, although the
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symmetry is not manifest in eq. (2.122). To verify the symmetry, note
that for any Hermitian A and B, the L1 norm obeys

‖AB‖1 = ‖BA‖1 . (2.126)

This holds because BAAB and ABBA have the same eigenvalues —
if |ψ〉 is an eigenstate of ABBA with eigenvalue λ, the BA|ψ〉 is an
eigenstate of BAAB with eigenvalue λ.

It is useful to know how the fidelity of two density operators is related
to the overlap of their purifications. We say that |Φ〉AB is a purification
of the density operator ρA if

ρA = trB (|Φ〉〈Φ|) . (2.127)

If
ρ =

∑
i

pi|i〉〈i| (2.128)

(where |i〉A is an orthonormal basis for system A), then a particular pu-
rification of ρ has the form

|Φρ〉 =
∑

i

√
pi |i〉A ⊗ |i〉B (2.129)

where |i〉B is an orthonormal basis for system B. According to the HJW
theorem, a general purification has the form

|Φρ(V )〉 = I ⊗ V |Φρ〉 (2.130)

where V is unitary, which may also be written

|Φρ(V )〉 =
(
ρ

1
2 ⊗ V

)
|Φ̃〉, (2.131)

where |Φ̃〉 is the unconventionally normalized maximally entangled state

|Φ̃〉AB =
∑

i

|i〉A ⊗ |i〉B. (2.132)

If ρ and σ are two density operators on A, the inner product of their
purifications on AB can be expressed as

〈Φσ(W )|Φρ(V )〉 = 〈Φ̃|σ
1
2 ρ

1
2 ⊗W †V |Φ̃〉. (2.133)

Noting that

U ⊗ I|Φ̃〉 =
∑
i,j

|j〉 ⊗ |i〉Uji =
∑
i,j

|j〉 ⊗ |i〉UT
ij = I ⊗UT |Φ̃〉, (2.134)
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we have

〈Φσ(W )|Φρ(V )〉 = 〈Φ̃|σ
1
2 ρ

1
2 U ⊗ I|Φ̃〉 = tr

(
σ

1
2 ρ

1
2 U
)
, (2.135)

where U =
(
W †V

)T
.

Now we may use the polar decomposition

A = U ′
√

A†A, (2.136)

where U ′ is unitary, to rewrite the inner product as

〈Φσ(W )|Φρ(V )〉 = tr
(

UU ′
√

ρ
1
2 σρ

1
2

)
=
∑

a

λa〈a|UU ′|a〉, (2.137)

where {λa} are the nonnegative eigenvalues of
√

ρ
1
2 σρ

1
2 and {|a〉} are

the corresponding eigenvectors. It is now evident that the inner product
has the largest possible absolute value when we choose U = U ′−1, and
hence we conclude

F (ρ,σ) =
(

tr
√

ρ
1
2 σρ

1
2

)2

= max
V ,W

|〈Φσ(W )|Φρ(V )〉|2. (2.138)

The fidelity of two density operators is the maximal possible overlap of
their purifications, a result called Uhlmann’s theorem.

One corollary of Uhlmann’s theorem is the monotonicity of fidelity:

F (ρAB,ρAB) ≤ F (ρA,ρA), (2.139)

which says that tracing out a subsystem cannot decrease the fidelity of
two density operators. Monotonicity means, unsurprisingly, that throwing
away a subsystem does not make two quantum states easier to distinguish.
It follows from Uhlmann’s theorem because any state purifying ρAB also
provides a purification of A; therefore the optimal overlap of the purifi-
cations of ρAB and σAB is surely achievable by purifications of ρA and
σA.

2.6.2 Relations among distance measures

There are other possible ways besides fidelity for quantifying the difference
between quantum states ρ and σ, such as the distance between the states
using the L1 or L2 norm,

‖ρ− σ‖1 or ‖ρ− σ‖2, (2.140)
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where the L2 norm of an operator is defined by

‖A‖2 =
√

trA†A. (2.141)

(For Hermitian A, ‖A‖2 is the square root of the sum of the squares
of its eigenvalues.) The L1 distance is a particularly natural measure
of state distinguishability, because (as shown in Exercise 2.5) it can be
interpreted as the distance between the corresponding probability dis-
tributions achieved by the optimal measurement for distinguishing the
states. Although the fidelity, L1 distance, and L2 distance are not simply
related to one another in general, there are useful inequalities relating
these different measures.

If {|λi|, i = 0, 1, 2, . . . d−1} denotes the eigenvalues of
√

A†A, then

‖A‖1 =
d−1∑
i=0

|λi|; ‖A‖2 =

√√√√d−1∑
i=0

|λi|2. (2.142)

If we regard ‖A‖1 as the inner product of the two vectors (1, 1, 1, . . . , 1)
and (|λ0|, |λ1|, . . . , |λd−1|), then from the Cauchy-Schwarz inequality we
find

‖A‖1 ≤
√
d ‖A‖2. (2.143)

Because of the factor of
√
d on the right hand side, for a high-dimensional

system density operators which are close together in the L2 norm might
not be close in the L1 norm.

There is, however, a dimension-independent inequality relating the L1

distance between ρ and σ and the L2 distance between their square roots:

‖√ρ−
√

σ‖2
2 ≤ ‖ρ− σ‖1. (2.144)

To derive this inequality, we first expand the difference of square roots in
its basis of eigenvectors,

√
ρ−

√
σ =

∑
i

λi|i〉〈i|, (2.145)

and note that the absolute value of this difference may be written as

|√ρ−
√

σ| =
∑

i

|λi| |i〉〈i| =
(√

ρ−
√

σ
)
U = U

(√
ρ−

√
σ
)
, (2.146)

where
U =

∑
i

sign(λi)|i〉〈i|. (2.147)
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Using

ρ− σ =
1
2
(√

ρ−
√

σ
) (√

ρ +
√

σ
)

+
1
2
(√

ρ +
√

σ
) (√

ρ−
√

σ
)

(2.148)

and the cyclicity of the trace, we find

tr (ρ− σ) U = tr|√ρ−
√

σ|
(√

ρ +
√

σ
)

=
∑

i

|λi| 〈i|
√

ρ +
√

σ|i〉

≥
∑

i

|λi|
∣∣〈i|√ρ−

√
σ|i〉

∣∣ =∑
i

|λi|2 = ‖√ρ−
√

σ‖2
2.

(2.149)

Finally, using

‖ρ− σ‖1 = tr|ρ− σ| ≥ tr (ρ− σ) U , (2.150)

which is true for any unitary U , we obtain eq.(2.144).
This L2 distance between square roots can be related to fidelity. First

we note that∥∥√ρ−
√

σ
∥∥2

2
= tr

(√
ρ−

√
σ
)2 = 2− 2 tr

(√
ρ
√

σ
)
, (2.151)

since tr ρ = tr σ = 1. From the polar decomposition A = U
√

A†A

(where U is unitary), we see that tr
√

A†A ≥ |tr A|, and therefore√
F (ρ,σ) = tr

√
ρ

1
2 σρ

1
2 ≥

∣∣tr (√ρ
√

σ
)∣∣ (2.152)

and hence√
F (ρ,σ) ≥ 1− 1

2

∥∥√ρ−
√

σ
∥∥2

2
≥ 1− 1

2
‖ρ− σ‖1 . (2.153)

Eq.(2.153) tells us that if ρ and σ are close to one another in the L1 norm,
then their fidelity is close to one.

The L1 distance also provides an upper bound on fidelity:

F (ρ,σ) ≤ 1− 1
4
‖ρ− σ‖2

1 . (2.154)

To derive eq.(2.154) we first show that it holds with equality for pure
states. Any two vectors |ψ〉 and |ϕ〉 lie in some two-dimensional subspace,
and by choosing a basis and phase conventions appropriately we may write

|ψ〉 =
(

cos θ/2
sin θ/2

)
, |ϕ〉 =

(
sin θ/2
cos θ/2

)
, (2.155)
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for some angle θ; then

|ψ〉〈ψ| − |ϕ〉〈ϕ| =
(

cos θ 0
0 − cos θ

)
. (2.156)

and
|〈ϕ|ψ〉|2 = sin2 θ. (2.157)

Therefore,

‖|ψ〉〈ψ| − |ϕ〉〈ϕ|‖2
1 = (2 cos θ)2 = 4 (1− F (|ψ〉〈ψ|, |ϕ〉〈ϕ|)) . (2.158)

Next, note that L1 distance, like fidelity, is monotonic:

‖ρAB − σAB‖1 ≥ ‖ρA − σA‖1 . (2.159)

This follows because the L1 distance is the optimal distance between
probability distributions when we measure the two states, and the optimal
measurement for distinguishing ρA and σA is also a possible measurement
for ρAB and σAB, one that happens to act trivially on B.

Finally, we invoke Uhlmann’s theorem. If ρAB and σAB are the purifi-
cations of ρA and σA with the largest possible overlap, then

F (ρA,σA) = F (ρAB,σAB) = 1− 1
4
‖ρAB − σAB‖2

1

≤ 1− 1
4
‖ρA − σA‖2

1 , (2.160)

where the first equality uses Uhlmann’s theorem, the second uses
eq.(2.158), and the final inequality uses monotonicity. By combining
eq.(2.160) with eq.(2.153) we have

1−
√
F (ρ,σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F (ρ,σ); (2.161)

hence ρ and σ are close to one another in the L1 norm if and only if their
fidelity is close to one.

2.7 Summary

Axioms. The arena of quantum mechanics is a Hilbert space H. The
fundamental assumptions are:

(1) A state is a ray in H.

(2) An observable is a self-adjoint operator on H.

(3) A measurement is an orthogonal projection.
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(4) Time evolution is unitary.

(5) A composite system AB is described by the tensor product HA⊗HB.

Density operator. But if we confine our attention to only a portion
of a larger quantum system, assumptions (1)-(4) need not be satisfied. In
particular, a quantum state is described not by a ray, but by a density
operator ρ, a nonnegative operator with unit trace. The density operator
is pure (and the state can be described by a ray) if ρ2 = ρ; otherwise, the
state is mixed. An observable M has expectation value tr(Mρ) in this
state.

Qubit. A quantum system with a two-dimensional Hilbert space is
called a qubit. The general density matrix of a qubit is

ρ(~P ) =
1
2
(I + ~P · ~σ) (2.162)

where ~P is a three-component vector of length |~P | ≤ 1. Pure states have
|~P | = 1.

Schmidt decomposition. For any pure state |ψ〉AB of a bipartite
system, there are orthonormal bases {|i〉A} for HA and {|i′〉B} for HB

such that
|ψ〉AB =

∑
i

√
pi |i〉A ⊗ |i′〉B; (2.163)

Eq.(2.163) is called the Schmidt decomposition of |ψ〉AB. In a bipartite
pure state, subsystems A and B separately are described by density op-
erators ρA and ρB; it follows from eq.(2.163) that ρA and ρB have the
same nonvanishing eigenvalues (the pi’s). The number of nonvanishing
eigenvalues is called the Schmidt number of |ψ〉AB. A bipartite pure state
is said to be entangled if its Schmidt number is greater than one.

Ensembles. The density operators on a Hilbert space form a convex
set, and the pure states are the extremal points of the set. A mixed
state of a system A can be prepared as an ensemble of pure states in
many different ways, all of which are experimentally indistinguishable if
we observe system A alone. Given any mixed state ρA of system A,
any preparation of ρA as an ensemble of pure states can be realized in
principle by performing a measurement in another system B with which A
is entangled. In fact given many such preparations of ρA, there is a single
entangled state of A and B such that any one of these preparations can
be realized by measuring a suitable observable in B (the HJW theorem).
By measuring in system B and reporting the measurement outcome to
system A, we can extract from the mixture a pure state chosen from one
of the ensembles.
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Fidelity. The fidelity F (ρ,σ) =
∥∥∥σ 1

2 ρ
1
2

∥∥∥2

1
, quantifies the distinguisha-

bility of two density operators — it is the maximum overlap achieved by
their purifications (Uhlmann’s theorem). The fidelity F (ρ,σ) is close to
one if and only if the L1 distance ‖ρ− σ‖1 is small.

Further important ideas are developed in the Exercises.

2.8 Exercises

2.1 Fidelity of measurement

a) For two states |ψ1〉 and |ψ2〉 in an N -dimensional Hilbert space,
define the relative angle θ between the states by

|〈ψ2|ψ1〉| ≡ cos θ , (2.164)

where 0 ≤ θ ≤ π/2. Suppose that the two states are selected
at random. Find the probability distribution p(θ)dθ for the
relative angle. Hint: We can choose a basis such that

|ψ1〉 = (1,~0)
|ψ2〉 = (eiϕ cos θ, ψ⊥

2 ) . (2.165)
(2.166)

“Selected at random” means that the probability distribution
for the normalized vector |ψ2〉 is uniform on the (real) (2N−1)-
sphere (this is the unique distribution that is invariant under
arbitary unitary transformations). Note that, for fixed θ, eiϕ

parametrizes a circle of radius cos θ, and |ψ⊥
2 〉 is a vector that

lies on a 2N − 3 sphere of radius sin θ.

b) A density operator ρ is said to approximate a pure state |ψ〉 with
fidelity

F = 〈ψ|ρ|ψ〉 . (2.167)

Imagine that a state |ψ1〉 in an N -dimensional Hilbert space is
selected at random, and we guess at random that the state is
|ψ2〉. On the average, what will be the fidelity of our guess?

c) When we measure, we collect information and cause a distur-
bance – an unknown state is replaced by a different state that
is known. Suppose that the state |ψ〉 is selected at random,
and then an orthogonal measurement is performed, projecting
onto an orthonormal basis {|Ea〉}. After the measurement, the
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state (averaged over all possible outcomes) is described by the
density matrix

ρ =
∑

a

Ea|ψ〉〈ψ|Ea , (2.168)

where Ea = |Ea〉〈Ea|; this ρ approximates |ψ〉 with fidelity

F =
∑

a

(〈ψ|Ea|ψ〉)2 . (2.169)

Evaluate F , averaged over the choice of |ψ〉. Hint: Use Bayes’s
rule and the result from (a) to find the probability distribution
for the angle θ between the state |ψ〉 and the projected state
Ea|ψ〉/‖Ea|ψ〉‖. Then evaluate

〈
cos2 θ

〉
in this distribution.

Remark: The improvement in F in the answer to (c) compared to
the answer to (b) is a crude measure of how much we learned by
making the measurement.

2.2 Measurement without disturbance?

Charlie prepares the system A in one of two nonorthogonal states,
|ϕ〉A or |ϕ̃〉A, and he challenges Alice to collect some information
about which state he prepared without in any way disturbing the
state. Alice has an idea about how to meet the challenge.

Alice intends to prepare a second “ancillary” system B in the state
|β〉B, and then apply to the composite system AB a unitary trans-
formation U that acts according to

U : |ϕ〉A ⊗ |β〉B → |ϕ〉A ⊗ |β′〉B
|ϕ̃〉A ⊗ |β〉B → |ϕ̃〉A ⊗ |β̃′〉B, (2.170)

which does indeed leave the state of system A undisturbed. Then
she plans to perform a measurement on system B that is designed
to distinguish the states |β′〉B and |β̃′〉B.

a) What do you think of Alice’s idea? Hint: What does the uni-
tarity of U tell you about how the states |β′〉B and |β̃′〉B are
related to one another?

b) Would you feel differently if the states |ϕ〉A and |ϕ̃〉A were or-
thogonal?

2.3 Quantum bit commitment

The Yankees are playing the Dodgers in the World Series. Alice is
sure that she knows who will win. Alice doesn’t like Bob, so she
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doesn’t want to tell him who the winner will be. But after the Series
is over, Alice wants to be able to convince Bob that she knew the
outcome all along. What to do?

Bob suggests that Alice write down her choice (0 if the Yankees will
win, 1 if the Dodgers will win) on a piece of paper, and lock the
paper in a box. She is to give the box to Bob, but she will keep the
key for herself. Then, when she is ready to reveal her choice, she
will send the key to Bob, allowing him to open the box and read
the paper.

Alice rejects this proposal. She doesn’t trust Bob, and she knows
that he is a notorious safe cracker. Who’s to say whether he will be
able to open the box and sneak a look, even if he doesn’t have the
key?

Instead, Alice proposes to certify her honesty in another way, using
quantum information. To commit to a value a ∈ {0, 1} of her bit, she
prepares one of two distinguishable density operators (ρ0 or ρ1) of
the bipartite system AB, sends system B to Bob, and keeps system
A for herself. Later, to unveil her bit, Alice sends system A to Bob,
and he performs a measurement to determine whether the state of
AB is ρ0 or ρ1. This protocol is called quantum bit commitment.

We say that the protocol is binding if, after commitment, Alice is
unable to change the value of her bit. We say that the protocol is
concealing if, after commitment and before unveiling, Bob is unable
to discern the value of the bit. The protocol is secure if it is both
binding and concealing.

Show that if a quantum bit commitment protocol is concealing, then
it is not binding. Thus quantum bit commitment is insecure.

Hint: First argue that without loss of generality, we may assume
that the states ρ0 and ρ1 are both pure. Then apply the HJW
Theorem.

Remark: Note that the conclusion that quantum bit commitment
is insecure still applies even if the shared bipartite state (ρ0 or ρ1) is
prepared during many rounds of quantum communication between
Alice and Bob, where in each round one party performs a quantum
operation on his/her local system and on a shared message system,
and then sends the message system to the other party.

2.4 Completeness of subsystem correlations

Consider a bipartite system AB. Suppose that many copies of the
(not necessarily pure) state ρAB have been prepared. An observer
Alice with access only to subsystem A can measure the expectation



46 2 Foundations I: States and Ensembles

value of any observable of the form MA⊗IB, while an observer Bob
with access only to subsystem B can measure the expectation value
of any observable of the form IA⊗NB. Neither of these observers,
working alone, can expect to gain enough information to determine
the joint state ρAB.

But now suppose that Alice and Bob can communicate, exchang-
ing (classical) information about how their measurement outcomes
are correlated. Thereby, they can jointly determine the expecta-
tion value of any observable of the form MA ⊗NB (an observable
whose eigenstates are separable direct products states of the form
|ϕ〉A ⊗ |χ〉B).

The point of this exercise is to show that if Alice and Bob have
complete knowledge of the nature of the correlations between sub-
systems A and B (know the expectation values of any tensor product
observable MA⊗NB), then in fact they know everything about the
bipartite state ρAB – there will be no surprises when they measure
entangled observables, those whose eigenstates are entangled states.

a) Let {Ma, a = 1, 2, . . . , d2} denote a set of d2 linearly inde-
pendent self-adjoint operators acting on a Hilbert space H of
dimension d. Show that if ρ is a density operator acting on H,
and tr (ρMa) is known for each a, then 〈ϕ|ρ|ϕ〉 is known for
any vector |ϕ〉 in H.

b) Show that if 〈ϕ|ρ|ϕ〉 is known for each vector |ϕ〉, then ρ is
completely known.

c) Show that if {Ma} denotes a basis for self-adjoint operators on
HA, and {N b} denotes a basis for self-adjoint operators on
HB, then {Ma ⊗N b} is a basis for the self-adjoint operators
on HA ⊗HB.

Remark: It follows from (c) alone that the correlations of the “lo-
cal” observables determine the expectation values of all the observ-
ables. Parts (a) and (b) serve to establish that ρ is completely
determined by the expectation values of a complete set of observ-
ables.

d) State and prove the result corresponding to (c) that applies to
a n-part system with Hilbert space H1 ⊗H2 ⊗ · · · ⊗ Hn.

e) Discuss how the world would be different if quantum states
resided in a real Hilbert space rather than a complex Hilbert
space. Consider, in particular, whether (c) is true for symmet-
ric operators acting on a real vector space.
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2.5 Optimal measurement distinguishing two quantum states

Consider two quantum states described by density operators ρ and
σ in an d-dimensional Hilbert space, and consider the complete
orthogonal measurement {Ea, a = 0, 1, 2, . . . d−1}, where the Ea’s
are one-dimensional projectors satisfying

d−1∑
a=0

Ea = I. (2.171)

When the measurement is performed, outcome a occurs with proba-
bility pa = tr ρEa if the state is ρ and with probability qa = tr σEa

if the state is σ.

The L1 distance between the two probability distributions is defined
as

d(p, q) ≡ ‖p− q‖1 ≡
d−1∑
a=0

|pa − qa| ; (2.172)

this distance is zero if the two distributions are identical, and attains
its maximum value two if the two distributions have support on
disjoint sets.

a) Show that

d(p, q) ≤
d−1∑
i=0

|λi| = ‖ρ− σ‖1 ≡ d(ρ,σ), (2.173)

where the λi’s are the eigenvalues of the Hermitian operator
ρ−σ. Hint: Working in the basis in which ρ−σ is diagonal,
find an expression for |pa − qa|, and then find an upper bound
on |pa − qa|. Finally, use the completeness property eq.(2.171)
to bound d(p, q).

b) Find a choice for the orthogonal projector {Ea} that saturates
the upper bound eq.(2.173).

c) If the states ρ = |ψ〉〈ψ| and σ = |ϕ〉〈ϕ| are pure, show that

d(p, q) ≤ 2 ‖|ψ〉 − |ϕ〉‖ (2.174)

where ‖ · ‖ denotes the Hilbert space norm.

2.6 What probability distributions are consistent with a mixed
state?
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A density operator ρ, expressed in the orthonormal basis {|αi〉} that
diagonalizes it, is

ρ =
∑

i

pi|αi〉〈αi|. (2.175)

We would like to realize this density operator as an ensemble of pure
states {|ϕµ〉}, where |ϕµ〉 is prepared with a specified probability qµ.
This preparation is possible if the |ϕµ〉’s can be chosen so that

ρ =
∑

µ

qµ|ϕµ〉〈ϕµ|. (2.176)

We say that a probability vector q (a vector whose components are
nonnegative real numbers that sum to 1) is majorized by a proba-
bility vector p (denoted q ≺ p), if there exists a doubly stochastic
matrix D such that

qµ =
∑

i

Dµi pi. (2.177)

A matrix is doubly stochastic if its entries are nonnegative real num-
bers such that

∑
µDµi =

∑
iDµi = 1. That the columns sum to one

assures that D maps probability vectors to probability vectors (i.e.,
is stochastic). That the rows sum to one assures that D maps the
uniform distribution to itself. Applied repeatedly, D takes any input
distribution closer and closer to the uniform distribution (unless D
is a permutation, with one nonzero entry in each row and column).
Thus we can view majorization as a partial order on probability
vectors such that q ≺ p means that q is more nearly uniform than p
(or equally close to uniform, in the case where D is a permutation).

Show that normalized pure states {|ϕµ〉} exist such that eq.(2.176)
is satisfied if and only if q ≺ p, where p is the vector of eigenvalues
of ρ.

Hint: Recall that, according to the HJW Theorem, if eq.(2.175)
and eq.(2.176) are both satisfied then there is a unitary matrix Vµi

such that
√
qµ |ϕµ〉 =

∑
i

√
pi Vµi|αi〉. (2.178)

You may also use (but need not prove) Horn’s Lemma: if q ≺ p,
then there exists a unitary (in fact, orthogonal) matrix Uµi such
that q = Dp and Dµi = |Uµi|2.

2.7 Alice does Bob a favor
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Alice, in Anaheim, and Bob, in Boston, share a bipartite pure state
|Ψ〉, which can be expressed in the Schmidt form

|Ψ〉 =
∑

i

√
pi |αi〉 ⊗ |βi〉, (2.179)

where {|αi〉} is an orthonormal basis for Alice’s system A, {|βi〉}
is an orthonormal basis for Bob’s system B, and the {pi} are non-
negative real numbers summing to 1. Bob is supposed to perform a
complete orthogonal local measurement on B, characterized by the
set of projectors {EB

a } — if the measurement outcome is a, then
Bob’s measurement prepares the state

|Ψ〉 7→ |Ψa〉 =

(
I ⊗EB

a

)
|Ψ〉

〈Ψ|
(
I ⊗EB

a

)
|Ψ〉1/2

. (2.180)

|Ψa〉 can also be expressed in the Schmidt form if we choose ap-
propriate orthonormal bases for A and B that depend on the mea-
surement outcome. The new Schmidt basis elements can be written
as

|α′a,i〉 = UA
a |αi〉, |β′a,i〉 = UB

a |βi〉, (2.181)

where UA
a ,U

B
a are unitary.

Unfortunately, Bob’s measurement apparatus is broken, though he
still has the ability to perform local unitary transformations on B.
Show that Alice can help Bob out by performing a measurement
that is “locally equivalent” to Bob’s. That is, there are orthogonal
projectors {EA

a } and unitary transformations V A
a ,V

B
a such that

|Ψa〉 = V A
a ⊗ V B

a

( (
EA

a ⊗ I
)
|Ψ〉

〈Ψ|
(
EA

a ⊗ I
)
|Ψ〉1/2

)
(2.182)

for each a, and furthermore, both Alice’s measurement and Bob’s
yield outcome a with the same probability. This means that instead
of Bob doing the measurement, the same effect can be achieved if
Alice measures instead, tells Bob the outcome, and both Alice and
Bob perform the appropriate unitary transformations. Construct
EA

a (this is most conveniently done by expressing both EA
a and EB

a

in the Schmidt bases for |Ψ〉) and express V A
a and V B

a in terms of
UA

a and UB
a .

Remark: This result shows that for any protocol involving local
operations and “two-way” classical communication (2-LOCC) that
transforms an initial bipartite pure state to a final bipartite pure
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state, the same transformation can be achieved by a “one-way” (1-
LOCC) protocol in which all classical communication is from Alice
to Bob (the Lo-Popescu Theorem). In a two-way LOCC protocol,
Alice and Bob take turns manipulating the state for some finite
(but arbitrarily large) number of rounds. In each round, one party
or the other performs a measurement on her/his local system and
broadcasts the outcome to the other party. Either party might use
a local “ancilla” system in performing the measurement, but we
may include all ancillas used during the protocol in the bipartite
pure state |Ψ〉. Though a party might discard information about
the measurement outcome, or fail to broadcast the information to
the other party, we are entitled to imagine that the complete in-
formation about the outcomes is known to both parties at each
step (incomplete information is just equivalent to the special case
in which the parties choose not to use all the information). Thus
the state is pure after each step.

The solution to the exercise shows that a round of a 2-LOCC pro-
tocol in which Bob measures can be simulated by an operation per-
formed by Alice and a local unitary applied by Bob. Thus, we can
allow Alice to perform all the measurements herself. When she is
through she sends all the outcomes to Bob, and he can apply the
necessary product of unitary transformations to complete the pro-
tocol.

2.8 The power of noncontextuality

We may regard a quantum state as an assignment of probabilities
to projection operators. That is, according to Born’s rule, if ρ is a
density operator and E is a projector, then p(E) = tr (ρE) is the
probability that the outcome E occurs, if E is one of a complete
set of orthogonal projectors associated with a particular quantum
measurement. A notable feature of this rule is that the assignment of
a probability p(E) to E is noncontextual. This means that, while the
probability p(E) depends on the state ρ, it does not depend on how
we choose the rest of the projectors that complete the orthogonal
set containing E.

In a hidden variable theory, the probabilistic description of quantum
measurement is derived from a more fundamental and complete de-
terministic description. The outcome of a measurement could be
perfectly predicted if the values of the hidden variables were pre-
cisely known — then the probability p(E) could take only the values
0 and 1. The standard probabilistic predictions of quantum theory
arise when we average over the unknown values of the hidden vari-
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ables. The purpose of this exercise is to show that such deterministic
assignments conflict with noncontextuality. Thus a hidden variable
theory, if it is to agree with the predictions of quantum theory after
averaging, must be contextual.

Let {I,X,Y ,Z} denote the single-qubit observables

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =
(

0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2.183)

and consider the nine two-qubit observables:

X ⊗ I I ⊗X X ⊗X
I ⊗ Y Y ⊗ I Y ⊗ Y
X ⊗ Y Y ⊗X Z ⊗Z

. (2.184)

The three observables in each row and in each column are mutu-
ally commuting, and so can be simultaneously diagonalized. In fact
the simultaneous eigenstates of any two operators in a row or col-
umn (the third operator is not independent of the other two) are
a complete basis for the four-dimensional Hilbert space of the two
qubits. Thus we can regard the array eq.(2.184) as a way of present-
ing six different ways to choose a complete set of one-dimensional
projectors for two qubits.

Each of these observables has eigenvalues ±1, so that in a determin-
istic and noncontextual model of measurement (for a fixed value of
the hidden variables), each can be assigned a definite value, either
+1 or −1.

a) Any noncontextual deterministic assignment has to be consis-
tent with the multiplicative structure of the observables. For
example, the product of the three observables in the top row is
the identity I ⊗ I. Therefore, if we assign a value ±1 to each
operator, the number of −1’s assigned to the first row must be
even. Compute the product of the three observables in each
row and each column to find the corresponding constraints.

b) Show that there is no way to satisfy all six constraints simulta-
neously.

Thus a deterministic and noncontextual assignment does not exist.

2.9 Schmidt-decomposable states
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We have seen that any vector in a bipartite Hilbert space HAB =
HA ⊗HB can be expressed in the Schmidt form: Given the vector
|ψ〉AB ∈ HA ⊗HB, where HA and HB are both d-dimensional, we
can choose orthonormal bases {|i〉A} for HA and {|i〉B} for HB so
that

|ψ〉AB =
d−1∑
i=0

√
λi |i〉A ⊗ |i〉B, (2.185)

where the λi’s are real and nonnegative. (We’re not assuming here
that the vector has unit norm, so the sum of the λi’s is not con-
strained.) Eq.(2.185) is called the Schmidt decomposition of the
vector |ψ〉AB. Of course, the bases in which the vector has the
Schmidt form depend on which vector |ψ〉AB is being decomposed.

A unitary transformation acting on HAB is called a local unitary
if it is a tensor product UA ⊗ UB, where UA, UB are unitary
transformations acting on HA, HB respectively. The word “local”
is used because if the two parts A and B of the system are widely
separated from one another, so that Alice can access only part A
and Bob can access only part B, then Alice and Bob can apply this
transformation by each acting locally on her or his part.

a) Now suppose that Alice and Bob choose standard fixed bases
{|i〉A} and {|i〉B} for their respective Hilbert spaces, and are
presented with a vector |ψAB〉 that is not necessarily in the
Schmidt form when expressed in the standard bases. Show
that there is a local unitary UA ⊗UB that Alice and Bob can
apply so that the resulting vector

|ψ〉′AB = UA ⊗UB|ψ〉AB (2.186)

does have the form eq.(2.185) when expressed in the standard
bases.

b) Let’s verify that the result of (a) makes sense from the point
of view of parameter counting. For a generic vector in the
Schmidt form, all λi’s are nonvanishing and no two λi’s are
equal. Consider the orbit that is generated by letting arbitrary
local unitaries act on one fixed generic vector in the Schmidt
form. What is the dimension of the orbit, that is, how many
real parameters are needed to specify one particular vector
on the orbit? (Hint: To do the counting, consider the local
unitaries that differ infinitesimally from the identity IA ⊗ IB.
Choose a basis for these, and count the number of independent
linear combinations of the basis elements that annihilate the
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Schmidt-decomposed vector.) Compare the dimension of the
orbit to the (real) dimension ofHAB, and check the consistency
with the number of free parameters in eq.(2.185).

A vector |ψ〉A1...Ar in a Hilbert space HA1 ⊗ · · · ⊗HAr with r parts
is said to be Schmidt decomposable if it is possible to choose or-
thonormal bases for HA1 , . . .HAr such that vector can be expressed
as

|ψ〉A1...Ar =
∑

i

√
λi |i〉A1 ⊗ |i〉A2 ⊗ · · · ⊗ |i〉Ar . (2.187)

Though every vector in a bipartite Hilbert space is Schmidt decom-
posable, this isn’t true for vectors in Hilbert spaces with three or
more parts.

c) Consider a generic Schmidt-decomposable vector in the tripartite
Hilbert space of three qubits. Find the dimension of the orbit
generated by local unitaries acting on this vector.

d) By considering the number of free parameters in the Schmidt
form eq.(2.187), and the result of (c), find the (real) dimension
of the space of Schmidt-decomposable vectors for three qubits.
What is the real codimension of this space in the three-qubit
Hilbert space C8?
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3
Foundations II: Measurement and

Evolution

3.1 Orthogonal measurement and beyond

In Chapter 2 we discussed how to describe the state of an open quantum
system, one which is part of a larger system. In this Chapter we will
extend the theory of open quantum systems further. In particular, we
will develop two important concepts: generalized measurements, which are
performed by making use of an auxiliary system, and quantum channels,
which describe how open systems evolve.

3.1.1 Orthogonal Measurements

An axiom of quantum theory asserts that a measurement may be de-
scribed as an orthogonal projection operator. But if a measurement of
system S is realized by performing an orthogonal measurement on a larger
system that contains S, the resulting operation performed on S alone need
not be an orthogonal projection. We would like to find a mathematical
description of such “generalized measurements” on system S. But first
let’s recall how measurement of an arbitrary Hermitian operator can be
achieved in principle, following the classic treatment of Von Neumann.

To measure an observable M , we will modify the Hamiltonian of the
world by turning on a coupling between that observable and another vari-
able that represents the apparatus. Depending on the context, we will
refer to the auxiliary system used in the measurement as the “pointer,”
the “meter,” or the “ancilla.” (The word “ancilla” just means something
extra which is used to achieve a desired goal.) The coupling establishes a
correlation between the eigenstates of the observable and the distinguish-
able states of the pointer, so that we can prepare an eigenstate of the
observable by “observing” the pointer.

This may not seem like a fully satisfying model of measurement because

4
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we have not explained how to measure the pointer. Von Neumann’s atti-
tude was that it is possible in principle to correlate the state of a micro-
scopic quantum system with the value of a macroscopic classical variable,
and we may take it for granted that we can perceive the value of the
classical variable. A quantum measurement, then, is a procedure for am-
plifying a property of the microscopic world, making it manifest in the
macroscopic world.

We may think of the pointer as a particle of mass m that propagates
freely apart from its tunable coupling to the quantum system being mea-
sured. Since we intend to measure the position of the pointer, it should be
prepared initially in a wavepacket state that is narrow in position space
— but not too narrow, because a vary narrow wave packet will spread too
rapidly. If the initial width of the wave packet is ∆x, then the uncertainty
in it velocity will be of order ∆v = ∆p/m ∼ ~/m∆x, so that after a time
t, the wavepacket will spread to a width

∆x(t) ∼ ∆x+
~t
∆x

, (3.1)

which is minimized for (∆x(t))2 ∼ (∆x)2 ∼ ~t/m. Therefore, if the
experiment takes a time t, the resolution we can achieve for the final
position of the pointer is limited by

∆x >∼(∆x)SQL ∼
√

~t
m
, (3.2)

the “standard quantum limit.” We will choose our pointer to be suffi-
ciently heavy that this limitation is not serious.

The Hamiltonian describing the coupling of the quantum system to the
pointer has the form

H = H0 +
1

2m
P 2 + λ(t)M ⊗ P , (3.3)

where P 2/2m is the Hamiltonian of the free pointer particle (which we
will henceforth ignore on the grounds that the pointer is so heavy that
spreading of its wavepacket may be neglected), H0 is the unperturbed
Hamiltonian of the system to be measured, and λ is a coupling constant
that we are able to turn on and off as desired. The observable to be
measured, M , is coupled to the momentum P of the pointer.

If M does not commute with H0, then we have to worry about how
the observable M evolves during the course of the measurement. To
simplify the analysis, let us suppose that either [M ,H0] = 0, or else the
measurement is carried out quickly enough that the free evolution of the
system can be neglected during the measurement procedure. Then the
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Hamiltonian can be approximated as H ' λ(t)M ⊗ P If the coupling λ
switches on suddenly at time zero and switches off suddenly at time T ,
the resulting time evolution operator is

U(T ) ' exp (−iλTM ⊗ P ) . (3.4)

Expanding in the basis in which M is diagonal,

M =
∑

a

|a〉Ma〈a|, (3.5)

we express U(T ) as

U(T ) =
∑

a

|a〉 exp (−iλtMaP ) 〈a|. (3.6)

Now we recall that P generates a translation of the position of the
pointer: P = −i d

dx in the position representation, so that e−ix0P =
exp

(
−x0

d
dx

)
, and by Taylor expanding,

e−ix0Pψ(x) = ψ(x− x0); (3.7)

In other words e−ix0P acting on a wavepacket translates the wavepacket
by x0. We see that if our quantum system starts in a superposition of
M eigenstates, initially unentangled with the position-space wavepacket
|ψ(x) of the pointer, then after time T the quantum state has evolved to

U(T )

(∑
a

αa|a〉 ⊗ |ψ(x)〉

)
=
∑

a

αa|a〉 ⊗ |ψ(x− λTMa)〉; (3.8)

the position of the pointer has become correlated with the value of the
observable M . If the pointer wavepacket is narrow enough for us to
resolve all values of the Ma that occur (that is, the width ∆x of the packet
is small compared to λT∆Ma, where ∆Ma is the minimal gap between
eigenvalues of M), then when we observe the position of the pointer
(never mind how!) we will prepare an eigenstate of the observable. With
probability |αa|2, we will detect that the pointer has shifted its position
by λTMa, in which case we will have prepared the M eigenstate |a〉. We
conclude that the initial state |ϕ〉 of the quantum system is projected to
|a〉 with probability |〈a|ϕ〉|2. This is Von Neumann’s model of orthogonal
measurement.

The classic example is the Stern–Gerlach apparatus. To measure σ3

for a spin-1
2 object, we allow the object to pass through a region of inho-

mogeneous magnetic field
B3 = λz. (3.9)
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The magnetic moment of the object is µ~σ, and the coupling induced by
the magnetic field is

H = −λµzσ3. (3.10)

In this case σ3 is the observable to be measured, coupled to the position
z rather than the momentum of the pointer; thus, because z generates a
translation of P z, the coupling imparts an impulse to the pointer which
is correlated with its spin. We can perceive whether the object is pushed
up or down, and so project out the spin state | ↑z〉 or | ↓z〉. By rotating
the magnet, we could measure the observable n̂ · ~σ instead.

Thinking more abstractly, suppose that {Ea, a = 0, 1, 2, . . . N−1} is a
complete set of orthogonal projectors satisfying

EaEb = δabEa, Ea = E†
a,

∑
a

Ea = I. (3.11)

To perform an orthogonal measurement with these outcomes, we intro-
duce an N -dimensional pointer system with fiducial orthonormal basis
states {|a〉, a = 0, 1, 2, . . . , N−1}, and, by coupling the system to the
pointer, perform the unitary transformation

U =
∑
a,b

Ea ⊗ |b+ a〉〈b|. (3.12)

Thus the pointer advances by an amount a if the state of the system
is within the support of the projector Ea. (The addition in |b + a〉 is
understood to be modulo N ; we may envision the pointer as a circular
dial with N uniformly spaced tick marks.) The unitarity of U is easy to
verify:

UU † =

∑
a,b

Ea ⊗ |b+ a〉〈b|

∑
c,d

Ec ⊗ |d〉〈d+ c|


=
∑

a,b,c,d

δacEa ⊗ δbd|b+ a〉〈d+ c|

=
∑

a

Ea ⊗
∑

b

|b+ a〉〈b+ a| = I ⊗ I. (3.13)

This unitary transformation acts on an initial product state of system
and pointer according to

U : |Ψ〉 = |ψ〉 ⊗ |0〉 7→ |Ψ′〉 =
∑

a

Ea|ψ〉 ⊗ |a〉; (3.14)

if the pointer is then measured in the fiducial basis, the measurement
postulate implies that the outcome a occurs with probability

Prob(a) = 〈Ψ′| (I ⊗ |a〉〈a|) |Ψ′〉 = 〈ψ|Ea|ψ〉, (3.15)
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and that when this outcome occurs the normalized post-measurement
state is

Ea|ψ〉
‖Ea|ψ〉‖

. (3.16)

If the measurement is performed and its outcome is not known, the initial
pure state of the system becomes a mixture of these post-measurement
states: ∑

a

Prob(a)
Ea|ψ〉〈ψ|Ea

〈ψ|Ea|ψ〉
=
∑

a

Ea|ψ〉〈ψ|Ea. (3.17)

In fact, the system is described by this density operator once it becomes
entangled with the pointer, whether we bother to observe the pointer or
not. If the initial state of the system before the measurement is a mixed
state with density matrix ρ, then by expressing ρ as an ensemble of pure
states we conclude that the measurement modifies the state according to

ρ 7→
∑

a

EaρEa. (3.18)

We see that if, by coupling the system to our pointer, we can execute
suitable unitary transformations correlating the system and the pointer,
and if we can observe the pointer in its fiducial basis, then we are empow-
ered to perform any conceivable orthogonal measurement on the system.

3.1.2 Generalized measurements

In this discussion of orthogonal measurement, the fiducial basis of the
pointer had two different roles — we assumed that the fiducial pointer
states become correlated with the system projectors {Ea}, and also that
the measurement of the pointer projects onto the fiducial basis. In princi-
ple we could separate these two roles. Perhaps the unitary transformation
applied to system and pointer picks out a different preferred basis than
the basis in which the pointer is easily measured. Or perhaps the pointer
which becomes entangled with the system is itself microscopic, and we
may entangle it with a second macroscopic pointer in order to measure
the microscopic pointer in whatever basis we prefer.

Suppose, to be concrete, that the system A is a single qubit, and so is
the pointer B. They interact, resulting in the unitary map

U : (α|0〉+ β|1〉)A ⊗ |0〉B 7→ α|0〉A ⊗ |0〉B + β|1〉A ⊗ |1〉B. (3.19)

Measuring the pointer by projecting onto the basis {|0〉, |1〉} would induce
an orthogonal measurement of the system, also in the {|0〉, |1〉} basis. But
suppose that we measure the pointer in a different basis instead, such as
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{|±〉 = 1√
2
(|0〉 ± |1〉)}. Then the measurement postulate dictates that the

two outcomes + and − occur equiprobably, and that the corresponding
post-measurement states of the system are

α|0〉 ± β|1〉. (3.20)

In contrast to an orthogonal measurement of the system, these two post-
measurement states are not orthogonal, unless |α| = |β|. Furthermore,
also in contrast to an orthogonal measurement, if two such measurements
are performed in rapid succession, the outcomes need not be the same.
We use the term generalized measurement to mean a measurement, like
this one, which is not necessarily an orthogonal projection acting on the
system.

It is convenient to describe this measurement procedure by expanding
the entangled state of system and pointer in the basis in which the pointer
is measured; hence we rewrite eq.(3.21) as

U : |ψ〉A ⊗ |0〉B 7→ M+|ψ〉A ⊗ |+〉B + M−|ψ〉A ⊗ |−〉B, (3.21)

where

M+ =
1√
2

(
1 0
0 1

)
=

1√
2
I, M− =

1√
2

(
1 0
0 −1

)
=

1√
2
σ3. (3.22)

Evidently, by measuring B in the basis {|±〉}, we prepare A in one of the
states M±|ψ〉, up to a normalization factor.

Now let’s generalize this idea to the case where the pointer system
B is N -dimensional, and the measurement of the pointer projects onto
an orthonormal basis {|a〉, a = 0, 1, 2, . . . , N−1}. Again we’ll assume
that the system A and pointer B are initially in a product state, then
an entangling unitary transformation U correlates the system with the
pointer. By expanding the action of U in the basis for B we obtain

U : |ψ〉A ⊗ |0〉B 7→
∑

a

Ma|ψ〉A ⊗ |a〉B. (3.23)

Since U is unitary, it preserves the norm of any input, which means that

1 =

∥∥∥∥∥∑
a

Ma|ψ〉 ⊗ |a〉

∥∥∥∥∥
2

=
∑
a,b

〈ψ|M †
aM b|ψ〉〈a|b〉 =

∑
a

〈ψ|M †
aMa|ψ〉

(3.24)

for any |ψ〉; hence ∑
a

M †
aMa = I. (3.25)
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The complete orthogonal measurement projecting onto the pointer ba-
sis {|a〉B} is equivalent to the incomplete orthogonal measurement on
AB with projectors {I ⊗ |a〉〈a|}; the measurement postulate asserts that
outcome a occurs with probability

Prob(a) = ‖Ma|ψ〉‖2, (3.26)

and that if outcome a occurs the post-measurement state of the system
is

Ma|ψ〉
‖Ma|ψ〉‖

. (3.27)

The completeness relation
∑

a M †
aMa = I ensures that the probabilities

sum to one, but the possible post-measurement states need not be mu-
tually orthogonal, nor are the measurements necessarily repeatable. If
we perform the measurement twice in succession and obtain outcome a
the first time, the conditional probability of obtaining outcome b in the
second measurement is

Prob(b|a) =
‖M bMa|ψ〉‖2

‖Ma|ψ〉‖2
. (3.28)

The two measurements agree if Prob(b|a) = δba, which is satisfied for
arbitrary initial states of the system only if M bMa = δbaMa up to a
phase factor, i.e. in the case where the measurement is projective.

We see that if the initial state of the system is the density operator
ρ (realized as an ensemble of pure states), there is an operator Ea =
M †

aMa associated with each possible measurement outcome a, such that
the probability of outcome a is

Prob(a) = tr (ρEa) . (3.29)

The measurement operators {Ea} form a complete set of Hermitian non-
negative operators; that is, they satisfy the properties:

1. Hermiticity. Ea = E†
a.

2. Positivity. 〈ψ|Ea|ψ〉 ≥ 0 for any vector |ψ〉; we abbreviate this
property by simply writing Ea ≥ 0.

3. Completeness.
∑

a Ea = I.

Such a partition of unity by nonnegative operators is called a positive
operator-valued measure, or POVM. (The word term measure is a bit
heavy-handed in this finite-dimensional context; it becomes more apt
when the index a can be continuously varying.)
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We have seen how a POVM can arise when an orthogonal measurement
is performed on a meter after the meter interacts with the system. In
fact any POVM can be realized this way. We need only observe that a
nonnegative Hermitian operator Ea has a nonnegative square root

√
Ea;

more generally, the operator

Ma = Ua

√
Ea (3.30)

obeys M †
aMa = Ea where Ua is an arbitrary unitary operator —

eq.(3.30) is called the polar decomposition of the operator Ma. Plugging
into eq.(3.23) yields the unitary interaction which realizes the POVM
{Ea}. In this formulation, the post-measurement state corresponding to
outcome a,

Ua

( √
Ea|ψ〉

‖
√

Ea|ψ〉‖

)
, (3.31)

is arbitrary, since we are free to choose the unitary Ua however we please
for each possible outcome. The POVM attributes a probability to each
measurement outcome, but provides no guidance regarding the state after
the measurement. Indeed, after the measurement we have the freedom
to discard the state and replace it by whatever freshly prepared state we
desire.

3.2 Quantum channels

3.2.1 The operator-sum representation

We now proceed to the next step in our program of understanding the
behavior of one part of a bipartite quantum system. We have seen that
a pure state of the bipartite system AB may behave like a mixed state
when we observe subsystem A alone, and that an orthogonal measurement
of the bipartite system can realize a (nonorthogonal) POVM on A alone.
Next we ask, if a state of the bipartite system undergoes unitary evolution,
how do we describe the evolution of A alone?

In effect, we have already answered this question in our discussion of
generalized measurements. If system A starts out in a pure state |ψ〉
(unentangled withB), and then interacts withB, the joint state of AB has
the form eq.(3.23); the resulting density operator for A is found by tracing
out B. Equivalently, we may imagine measuring system B in the basis
{|a〉}, but failing to record the measurement outcome, so we are forced to
average over all the possible post-measurement states, weighted by their
probabilities. The result is that the initial density operator ρ = |ψ〉〈ψ| is
subjected to a linear map E , which acts as

E(ρ) =
∑

a

MaρM †
a, (3.32)
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where the operators {Ma} obey the completeness relation eq.(3.25). Be-
ing linear, E acts as in eq.(3.32) not just on pure states, but on any density
operator.

A linear map of the form eq.(3.32), where the {Ma} obey eq.(3.25), is
called a quantum channel. The word “channel” is drawn from communi-
cation theory — we are to imagine a sender who transmits the state ρ
though a communication link to another party who receives the modified
state E(ρ). Sometimes the word superoperator is used as a synonym for
quantum channel, where “super” conveys that the map takes operators
to operators rather than vectors to vectors. Yet another name for the
same object is trace-preserving completely positive map, or TPCP map
for short. The justification for this name will emerge shortly. Eq.(3.32)
is said to be an operator-sum representation of the quantum channel, and
the operators {Ma} are called the Kraus operators or operation elements
of the channel.

A quantum channel maps density operators to density operators; that
is, has the following easily verified properties:

1. Linearity. E(αρ1 + βρ2) = αE(ρ1) + βE(ρ2).

2. Preserves Hermiticity. ρ = ρ† implies E(ρ) = E(ρ)† .

3. Preserves positivity. ρ ≥ 0 implies E(ρ) ≥ 0.

4. Preserves trace. tr (E(ρ)) = tr (ρ).

These properties partially explain the locution “trace-preserving com-
pletely positive map,” except that we are still missing the reason for the
modifier “completely.” That’s coming soon.

We’ve seen how a quantum channel acting on system A arises from
a unitary transformation acting on A and B followed by a partial trace
on B. As in our discussion of generalized measurements, we can also
run this argument backwards to see that any quantum channel may be
realized this way. Given a quantum channel E acting on A with Kraus
operators {Ma}, we may introduce the auxiliary system B with Hilbert
space dimension matching the number of Kraus operators. A unitary
transformation may then be constructed whose action on |ψ〉A ⊗ |0〉B is
as in eq.(3.23), from which the quantum channel E is obtained by tracing
out B.

The operator-sum representation of a given quantum channel E is not
unique, because we can perform the partial trace on B in any basis we
please. When expressed in terms of rotated basis states {|µ〉} such that

|a〉 =
∑

µ

|µ〉Vµa (3.33)
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for unitary V , the joint state of AB becomes∑
a,µ

Ma|ψ〉A ⊗ |µ〉BVµa =
∑

µ

Nµ|ψ〉A ⊗ |µ〉B (3.34)

where the new Kraus operators are

Nµ =
∑

a

VµaMa. (3.35)

We will see soon that any two operator-sum representations of the same
quantum channel are always related by such a unitary change of basis for
the Kraus operators.

Quantum channels are important because they provide us with a for-
malism for discussing decoherence, the evolution of pure states into mixed
states. Unitary evolution of ρA is the special case in which there is only
one term in the operator sum. If there are two or more terms, then there
are pure initial states of A which become entangled with B under evolu-
tion governed by the joint unitary transformation UAB, and therefore the
state of A becomes mixed when we trace out B.

Two channels E1 and E2 can be composed to obtain another channel
E2 ◦ E1; if E1 describes evolution from yesterday to today, and E2 de-
scribes evolution from today to tomorrow, then E2 ◦ E1 describes the evo-
lution from yesterday to tomorrow. Specifically, if E1 has an operator-sum
representation with N Kraus operators {Ma}, and E2 has an operator-
sum representation with M Kraus operators {Nµ}, then E2 ◦ E1 has an
operator-sum representation with NM Kraus operators {NµMa}. Be-
cause we can compose them in this way, we say that quantum channels
form a dynamical semigroup.

3.2.2 Reversibility

A unitary transformation U has a unitary inverse U †. Thus if today’s
quantum state was obtained by applying U to yesterday’s state, we can
in principle recover yesterday’s state by applying U † to today’s state.
Unitary time evolution is reversible.

Is the same true for general quantum channels? If channel E1 with
Kraus operators {Ma} is inverted by channel E2 with Kraus operators
{Nµ}, then for any pure state |ψ〉 we have

E2 ◦ E1(|ψ〉〈ψ|) =
∑
µ,a

NµMa|ψ〉〈ψ|M †
aN

†
µ = |ψ〉〈ψ|. (3.36)

Since the left-hand side is a sum of positive terms, eq.(3.36) can hold only
if each of these terms is proportional to |ψ〉〈ψ|, hence

NµMa = λµaI (3.37)
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for each µ and a. Using the completeness relation, we find

M †
bMa = M †

b

(∑
µ

N †
µNµ

)
Ma =

∑
µ

λ∗µbλµaI ≡ βbaI. (3.38)

where each βaa is real and positive unless Ma = 0. The polar decompo-
sition of Ma yields

Ma = Ua

√
M †

aMa =
√
βaa Ua (3.39)

for some unitary Ua, and it then follows that

M †
bMa =

√
βaaβbb U †

bUa = βbaI, (3.40)

and hence
Ua =

βba√
βaaβbb

U b (3.41)

for each a and b. We conclude that each Kraus operator Ma is propor-
tional to a single unitary matrix, and hence that E1 is a unitary map. A
quantum channel can be inverted by another quantum channel only if it
is unitary.

We have found that decoherence is irreversible. Once system A becomes
entangled with system B, we can’t undo the damage to A if we don’t
have access to B. Decoherence causes quantum information to leak to
a system’s environment, and because we cannot control the environment
this information cannot be recovered.

3.2.3 Quantum channels in the Heisenberg picture

We have described quantum channels using the Schrödinger picture in
which the quantum state evolves with time. Sometimes it is convenient
to use the Heisenberg picture, in which the state is stationary and the
operators evolve instead.

When time evolution is unitary, in the Schrödinger picture the state
vector at time t is obtained from the state vector at time 0 by

|ψ(t)〉 = U(t)|ψ(0)〉 (3.42)

where U(t) is unitary, and correspondingly a density operator evolves
according to

ρ(t) = U(t)ρ(0)U(t)†. (3.43)

In the Heisenberg picture the density operator ρ is fixed, and an operator
A evolves according to

A(t) = U(t)†A(0)U(t). (3.44)
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This evolution law is chosen so that the two pictures agree on the expec-
tation values of observables at any time:

〈A〉t,Schr = tr (A(0)ρ(t)) = tr (A(t)ρ(0)) = 〈A〉t,Heis, (3.45)

where we have used the cyclic property of the trace.
Likewise, if the E is a quantum channel which acts on density operators

according to
ρ′ = E(ρ) =

∑
a

MaρM †
a, (3.46)

we may use an alternative description in which the state is fixed, but
operators evolve as

A′ = E∗(A) =
∑

a

M †
aAMa, (3.47)

so that
tr (A E(ρ)) = tr (E∗(A)ρ) . (3.48)

We say that E∗ is the dual or adjoint of E .
Note that the dual of a channel need not be a channel, that is, might

not be trace preserving. Instead, the completeness property of the Kraus
operators {Ma} implies that

E∗(I) = I (3.49)

if E is a channel. We say that a map is unital if it preserves the identity
operator, and conclude that the dual of a channel is a unital map.

Not all quantum channels are unital, but some are. If the Kraus oper-
ators of E satisfy ∑

a

M †
aMa = I =

∑
a

MaM
†
a, (3.50)

then E is unital and its dual E∗ is also a unital channel. A unital quan-
tum channel maps a maximally mixed density operator to itself; it is the
quantum version of a doubly stochastic classical map, which maps proba-
bility distributions to probability distributions and preserves the uniform
distribution.

3.2.4 Quantum operations

Generalized measurements and quantum channels are actually special
cases of a more general notion called a quantum operation. As already
noted, a generalized measurement can be realized by entangling a sys-
tem with a meter and performing orthogonal measurement on the meter,
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while a quantum channel arises if we measure the meter but completely
forget the measurement outcome. In a quantum operation, we imagine
measuring the meter, then retaining some of the information about the
outcome while discarding the rest.

We may consider a generalized measurement described by Kraus op-
erators {Maµ} which carry two labels, a and µ. These obey the usual
completeness relation ∑

a,µ

M †
aµMaµ = I. (3.51)

Suppose that, after a measurement that projects onto a definite value
for both a and µ, we remember a but forget µ. Then, if the quantum
state is ρ before the measurement, the post-measurement state (up to a
normalization factor) is

Ea(ρ) ≡
∑

µ

MaµρM †
aµ, (3.52)

where the outcome a occurs with probability

Prob(a) = tr Ea(ρ). (3.53)

Eq.(3.52) looks like the operator-sum representation for a quantum chan-
nel, except that now instead of the completeness relation the Kraus op-
erators obey an inequality constraint∑

µ

M †
aµMaµ ≤ I. (3.54)

(We write A ≤ I as a shorthand for the statement that I −A is a non-
negative operation; that is, the eigenvalues of the Hermitian operator A
are no larger than 1.) Our earlier notion of a generalized measurement is
recovered when µ takes just one value (all information about the outcome
is retained), and the operation becomes a channel when a takes just one
value (all information about the outcome is discarded).

The state needs to be renormalized to restore the unit trace condition;
therefore under an operation the state really evolves nonlinearly according
to

ρ 7→ Ea(ρ)
tr Ea(ρ)

. (3.55)

It is often convenient, though, to regard the operation as a linear map
that takes ρ to a subnormalized state. For example, we may want
to consider a sequence of n consecutive measurements with outcomes
{a1, a2, . . . , an−1, an}, where the ith measurement transforms the state
according to the operation Eai . Rather than renormalizing the state after
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each measurement, we can wait until after the final measurement in the
sequence before renormalizing. The final state can then be written

ρ 7→
Ean ◦ Ean−1 ◦ · · · ◦ Ea2 ◦ Ea1(ρ)

tr Ean ◦ Ean−1 ◦ · · · ◦ Ea2 ◦ Ea1(ρ)
(3.56)

where the normalizing factor in the denominator is just the probability
of the observed sequence of measurement outcomes.

3.2.5 Linearity

A quantum channel specifies how an initial density operator evolves to a
final density operator. Why on general grounds should we expect evolu-
tion of a quantum state to be described by a linear map? One possible
answer is that nonlinear evolution would be incompatible with interpret-
ing the density operator as an ensemble of possible states.

Suppose that E maps an initial state at time t = 0 to a final state at
time t = T , and suppose that at time t = 0 the initial state ρi is prepared
with probability pi. Then the time-evolved state at t = T will be E(ρi)
with probability pi.

On the other hand we argued in Chapter 2 that an ensemble in which
σi is prepared with probability qi can be described by the convex combi-
nation of density operators

σ =
∑

i

qiσi. (3.57)

Therefore the initial state is described by
∑

i piρi, which evolves to

ρ′ = E

(∑
i

piρi

)
. (3.58)

But we can also apply eq.(3.57) to the ensemble of final states, concluding
that the final state may alternatively be described by

ρ′ =
∑

i

piE(ρi). (3.59)

Equating the two expressions for ρ′ we find that E must act linearly, at
least on convex combinations of states.

Similar reasoning applies to quantum operations, if we regard the nor-
malization of an operation Ea as indicating the probability of the corre-
sponding measurement outcome. Suppose again that the initial state ρi

is prepared with a priori probability pi and subsequently measured. If the
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state is ρi then measurement outcome a occurs with conditional proba-
bility p(a|i), and the post-measurement state is Ea(ρi)/p(a|i); hence the
state ensemble after the measurement is described by the density operator

ρ′ =
∑

i

p(i|a)Ea(ρi)
p(a|i)

, (3.60)

where p(i|a) is the a posteriori probability that state ρi was prepared,
taking into account the information gained by doing the measurement.
On the other hand, applying the operation Ea to the convex combination
of the initial states {ρi} yields

ρ′ =
Ea (
∑

i piρi)
pa

. (3.61)

Invoking Bayes’ rule
pip(a|i) = pap(i|a) (3.62)

we see that the operation Ea is required to be a linear map:

Ea

(∑
i

piρi

)
=
∑

i

piEa(ρi). (3.63)

3.2.6 Complete positivity

A quantum channel is a linear map taking density operators to density
operators. In particular, if its input is a nonnegative operator than so is
its output. We therefore say that a channel is a positive map.

But a channel has a stronger property than mere positivity; it is com-
pletely positive. This means that the channel remains positive even when
we consider it to be acting on just part of a larger system.

If a channel E maps linear operators on Hilbert space HA to linear
operators on Hilbert space HA′ , we will usually express this more eco-
nomically by saying E maps A to A′. We may extend the input Hilbert
space to HA⊗HB, and consider the extended channel E ⊗ I mapping AB
to A′B. We say that E is completely positive if any such extension of E
is positive.

Clearly, quantum channels are completely positive, because if E has
an operator-sum representation with Kraus operators {Ma}, then E ⊗
I has an operator-sum representation with Kraus operators {Ma ⊗ I}.
Likewise, quantum operations, though not necessarily trace preserving,
are also completely positive.

It is perfectly reasonable to demand that a channel be completely pos-
itive if it is to describe the time evolution of a quantum system — even
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though the channel acts on just part of the world, it should map an initial
state of the whole world to a final state of the whole world. It is there-
fore important to note that not all positive maps are completely positive;
complete positivity is a stronger condition.

A simple example is the transpose map T , mapping the d-dimensional
system A to itself. In a particular basis {|i〉}, T acts as

T : |i〉〈j| 7→ |j〉〈i| (3.64)

and hence
T : ρ 7→ ρT . (3.65)

The map T is evidently positive because

〈ψ|ρT |ψ〉 =
∑
i,j

ψ∗j
(
ρT
)
ji
ψi =

∑
i,j

ψi (ρ)ij ψ
∗
j = 〈ψ∗|ρ|ψ∗〉 (3.66)

for any vector |ψ〉; therefore ρT is nonnegative if ρ is.
But T is not completely positive. Consider the (unconventionally nor-

malized) maximally entangled state on AB, whereB is also d-dimensional:

|Φ̃〉AB =
d−1∑
i=0

|i〉A ⊗ |i〉B ≡
∑

i

|i, i〉. (3.67)

The extension of T acts on this state as

T ⊗ I : |Φ̃〉〈Φ̃| =
∑
i,j

|i〉〈j| ⊗ |i〉〈j| 7→
∑
i,j

|j〉〈i| ⊗ |i〉〈j| ≡
∑
i,j

|j, i〉〈i, j|;

(3.68)

that is, it maps |Φ̃〉〈Φ̃| to the SWAP operator which interchanges the
systems A and B:

SWAP : |ψ〉A ⊗ |ϕ〉B =
∑
i,j

ψiϕj |i, j〉 =7→
∑
i,j

ϕjψi|j, i〉 = |ϕ〉A ⊗ |ψ〉B

(3.69)
Since the square of SWAP is the identity, its eigenvalues are ±1. States
which are symmetric under interchange of A and B have eigenvalue 1,
while antisymmetric states have eigenvalue -1. Thus SWAP has negative
eigenvalues, which means that T ⊗ I is not positive and therefore T is not
completely positive.

3.3 Channel-state duality and the dilation of a channel

We have now seen that a quantum channel acting on A, which arises from
a unitary map on an extension of A, is a completely positive linear map of



20 3 Foundations II: Measurement and Evolution

density operators to density operators. We have also argued that linearity
and complete positivity are properties that should hold for any reasonable
evolution law on quantum states. It is therefore satisfying to note that
any trace-preserving completely positive linear map is a quantum channel
— it has an operator sum representation and a unitary realization. When
considering the (in general nonunitary) evolution of A, we are entitled to
imagine that A is part of an extended system which evolves unitarily.

3.3.1 Channel-state duality

To prove this statement we will use a trick which is interesting in its
own right and also has other applications. For the purpose of studying
the properties of a map E taking A to A′, we introduce an auxiliary
system R with the same dimension as A, which we call the reference
system. If E is completely positive, it maps a maximally entangled state
on RA to a nonnegative operator on RA′. Conversely, we may associate
with any nonnegative operator on RA′ a corresponding CP map taking
A to A′. This correspondence between maps and states, called the Choi-
Jamiolkowski isomorphism or channel-state duality, is a very useful tool.

To see how it works, consider how I⊗E acts on the maximally entangled
state

|Φ̃〉RA =
d−1∑
i=0

|i〉R ⊗ |i〉A. (3.70)

where A and R both have dimension d. This vector has norm
√
d instead

of norm 1; we choose this unconventional normalization, highlighted by
the tilde over Φ, to avoid annoying factors of d in the formulas that
follow. If EA→A′ is completely positive, then I ⊗ E maps |Φ̃〉〈Φ̃| (up
to normalization) to a density operator on RA′, which like any density
operator can be realized by an ensemble of pure states; hence

(I ⊗ E)
((
|Φ̃〉〈Φ̃|

)
RA

)
=
∑

a

(
|Ψ̃a〉〈Ψ̃a|

)
RA′

. (3.71)

Here the normalization of |Ψ̃a〉 may depend on a; in order to make the
equation look less cluttered, we’ve absorbed the probability of each pure
state occurring in the ensemble into that state’s normalization.

Now we notice that

|ϕ〉A =
∑

i

ϕi|i〉A =
∑

i

ϕi

(
R〈i|Φ̃〉RA

)
= R〈ϕ∗|Φ̃〉RA; (3.72)

using the linearity of E , eq.(3.71) then implies

E ((|ϕ〉〈ϕ|)A) =
∑

a

(
〈ϕ∗|Ψ̃a〉〈Ψ̃a|ϕ∗〉

)
A′
. (3.73)
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(This scheme for extracting the action on |ϕ〉A using the dual vector R〈ϕ∗|
is called the relative-state method.) Given a vector |Φ̃〉RA′ , where R is d
dimensional, we may define an operator Ma mapping HA to HA′ (where
A is d dimensional) by

Ma|ϕ〉A = R〈ϕ∗|Ψ̃a〉RA′ ; (3.74)

it is easy to check that Ma is linear. Thus eq.(3.73) provides an operator-
sum representation of E acting on the pure state (|ϕ〉〈ϕ|)A (and hence by
linearity acting on any density operator):

E(ρ) =
∑

a

MaρM †
a. (3.75)

We have now established the desired isomorphism between states and
CP maps: Eq.(3.71) tells us how to obtain a state on RA′ from the
channel EA→A′ , and eq.(3.71) tells us how to recover the CP map from
the state. Furthermore, the {Ma} must obey the completeness relation∑

a M †
aMa = I if E is trace-preserving.

Put succinctly, the argument went as follows. Because EA→A′ is com-
pletely positive, I ⊗ E takes a maximally entangled state on RA to a
density operator on RA′, up to normalization. This density operator can
be expressed as an ensemble of pure states, and each of these pure states
is associated with a Kraus operator in the operator-sum representation of
E .

From this viewpoint, we see that the freedom to choose the Kraus
operators representing a channel in many different ways is really the same
thing as the freedom to choose the ensemble of pure states representing a
density operator in many different ways. According to the HJW theorem,
two different ensemble realizations of the same density operator,

(I ⊗ E)
((
|Φ̃〉〈Φ̃|

)
RA

)
=
∑

a

(
|Ψ̃a〉〈Ψ̃a|

)
RA′

=
∑

µ

(|γ̃µ〉〈γ̃µ|)RA′ , (3.76)

are related by a unitary change of basis,

|γ̃µ〉 =
∑

a

Vµa|Ψ̃a〉. (3.77)

Correspondingly, two different sets of Kraus operators {Ma} and {Nµ}
representing the same channel are related by

Nµ =
∑

a

VµaMa (3.78)

where Vµa is a unitary matrix.
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Channel-state duality also makes clear how many Kraus operators are
needed to describe a channel. A channel E mapping A to A′, where
A has dimension d and A′ has dimension d′, is equivalent to a density
operator on RA′, where R has dimension d, and the minimal number
of Kraus operators needed to represent the channel is the same as the
minimal number of pure states needed in an ensemble representation of
the density operator. This is the density operator’s rank (number of
nonzero eigenvalues), which is no larger than dd′. Of course, there may
be operator-sum representations of E which use many more than this
minimal number of Kraus operators, just as an ensemble representation
of a density operator might use many more than the minimal number of
pure states.

The number of free parameters needed to specify a channel mapping A
to A′ is the number (dd′)2 needed to specify a density operator on RA′,
except that there are d2 constraints because the map is trace preserving
for each of d2 linearly independent inputs. Therefore the number of real
free parameters is

d2
(
d′2 − 1

)
. (3.79)

This is 12 parameters for a general channel taking qubits to qubits. In
contrast, a unitary map on qubits has only 3 parameters, aside from the
physically irrelevant overall phase.

3.3.2 Stinespring dilation

Once we have an operator-sum representation of the channel EA→A′ , it is
easy to see how E can be realized by a unitary map acting on an extended
system. We introduce an extra system E, the channel’s environment,
which has dimension equal to the number of Kraus operators and or-
thonormal basis {|a〉}. Then we define an inner-product preserving map
(an isometry) which takes A to A′E according to

UA→A′E : |ψ〉 7→
∑

a

Ma|ψ〉 ⊗ |a〉. (3.80)

The completeness relation satisfied by the {Ma} implies U †U = IA.
Though U may not actually be unitary, it might as well be, because we
can easily extend an isometry to a unitary transformation by expanding
the input Hilbert space. This isometry, which yields EA→A′ when we trace
out the environment, is called the Stinespring dilation of the channel

Another way to think about the construction of the Stinespring dilation
is that we have used E to construct a purification of the density operator
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arising from channel-state duality:

|Φ̄〉RA′E =
∑

a

|Φ̃a〉RA′ ⊗ |a〉E . (3.81)

Apart from a normalization factor of
√
d, this is the pure state of RA′E

that results when the dilation acts on the maximally entangled state
|Φ̃〉RA; we may recover the dilation from |Φ̄〉 using

UA→A′E |ψ〉A = R〈ψ∗|Φ̄〉RA′E . (3.82)

This succinct way to characterize a channel using a pure state is sometimes
quite convenient, and we’ll make heavy use of it when studying quantum
channels in Chapter 10.

3.3.3 Axioms revisited

In Chapter 2 we stated the axioms of quantum mechanics in a form ap-
propriate for closed systems. With the theory of open systems now in
hand, we can give an alternative formulation with revised notions of how
states, measurements, and evolution are described.

States. A state is a density operator, a nonnegative Hermitian operator
in Hilbert space with unit trace.

Measurement. A measurement is a positive operator-valued measure
(POVM), a partition of unity by nonnegative operators. When the
measurement {Ea} is performed on the state ρ, the outcome a
occurs with probability tr (Eaρ).

Dynamics. Time evolution is described by a trace-preserving completely
positive map (TPCP map).

One could regard either the open-system or closed-system version as
the fundamental formulation of the theory; it’s really a matter of taste.
We have already seen how the open-system axioms are obtained starting
from the closed-system axioms. Alternatively, starting with the open-
system axioms, pure states arise as the extremal points in the space of
density operators, or from the observation that every density operator has
a purification in an extended system. Similarly, orthogonal measurements
and unitary evolution arise naturally because every POVM can be realized
by an orthogonal measurement in an extended system, and every trace-
preserving completely positive map has an isometric Stinespring dilation.
The notion that an open system may always be regarded as part of a
larger closed system is fondly known as the church of the larger Hilbert
space.
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3.4 Three quantum channels

The best way to familiarize ourselves with the concept of a quantum
channel is to study a few examples. We will now consider three examples
(all interesting and useful) of channels acting on a single qubit. If we
wish we may imagine that the channel E describes the fate of quantum
information that is transmitted with some loss of fidelity from a sender
to a receiver. Or, if we prefer, we may imagine that the transmission is
in time rather than space; that is, E describes the time evolution of a
quantum system that interacts with its environment.

3.4.1 Depolarizing channel

The depolarizing channel is a model of a decohering qubit that has par-
ticularly nice symmetry properties. We can describe it by saying that,
with probability 1− p the qubit remains intact, while with probability p
an “error” occurs. The error can be of any one of three types, where each
type of error is equally likely. If {|0〉, |1〉} is an orthonormal basis for the
qubit, the three types of errors can be characterized as:

1. Bit flip error: |0〉7→|1〉
|1〉7→|0〉 or |ψ〉 7→ σ1|ψ〉,σ1 =

(
0 1
1 0

)
,

2. Phase flip error: |0〉7→|0〉
|1〉7→−|1〉 or |ψ〉 7→ σ3|ψ〉,σ3 =

(
1 0

0 −1

)
,

3. Both: |0〉7→+i|1〉
|1〉7→−i|0〉 or |ψ〉 7→ σ2|ψ〉,σ2 =

(
0 −i
i 0

)
.

If an error occurs, then |ψ〉 evolves to an ensemble of the three states
σ1|ψ〉,σ2|ψ〉,σ3|ψ〉, all occurring with equal likelihood.

Unitary representation. The depolarizing channel mapping qubit A to A
can be realized by an isometry mapping A to AE, where E is a four-
dimensional environment, acting as

UA→AE : |ψ〉A 7→
√

1− p |ψ〉A ⊗ |0〉E

+
√
p

3
(σ1|ψ〉A ⊗ |1〉E + σ2|ψ〉A ⊗ |2〉E + σ3|ψ〉A ⊗ |3〉E) .

(3.83)

The environment evolves to one of four mutually orthogonal states that
“keep a record” of what transpired; if we could only measure the environ-
ment in the basis {|a〉E , a = 0, 1, 2, 3}, we would know what kind of error
had occurred (and we would be able to intervene and reverse the error).
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Operator-sum representation. To obtain an operator-sum representation
of the channel, we evaluate the partial trace over the environment in the
{|a〉E} basis. Then

Ma = E〈a|U , (3.84)

so that

M0 =
√

1− p I, M1 =
√
p

3
σ1, M2 =

√
p

3
σ2, M3 =

√
p

3
σ3. (3.85)

Using σ2
i = I, we can readily check the normalization condition∑

a

M †
aMa =

(
(1− p) + 3

p

3

)
I = I. (3.86)

A general initial density matrix ρ of the qubit evolves as

ρ 7→ ρ′ = (1− p)ρ +
p

3
(σ1ρσ1 + σ2ρσ2 + σ3ρσ3) . (3.87)

where we are summing over the four (in principle distinguishable) possible
final states of the environment.

Relative-state representation. We can also characterize the channel by in-
troducing a reference qubit R and describing how a maximally-entangled
state of the two qubits RA evolves, when the channel acts only on A.
There are four mutually orthogonal maximally entangled states, which
may be denoted

|φ+〉 =
1√
2
(|00〉+ |11〉),

|φ−〉 =
1√
2
(|00〉 − |11〉),

|ψ+〉 =
1√
2
(|01〉+ |10〉),

|ψ−〉 =
1√
2
(|01〉 − |10〉). (3.88)

If the initial state is |φ+〉RA, then when the depolarizing channel acts on
qubit A, the entangled state evolves as

|φ+〉〈φ+| 7→ (1− p)|φ+〉〈φ+|+ p

3

(
|ψ+〉〈ψ+|+ |ψ−〉〈ψ−|+ |φ−〉〈φ−|

)
.

(3.89)
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The “worst possible” quantum channel has p = 3/4, for in that case the
initial entangled state evolves as

|φ+〉〈φ+| 7→ 1
4

(
|φ+〉〈φ+|+ |φ−〉〈φ−|+ |ψ+〉〈ψ+|+ |ψ−〉〈ψ−|

)
=

1
4
I;

(3.90)

it becomes the maximally mixed density matrix on RA. By the relative-
state method, then, we see that a pure state |ψ〉 of qubit A evolves as

(|ψ〉〈ψ|)A 7→ R〈ψ∗|2
(

1
4
IRA

)
|ψ∗〉R =

1
2
IA, (3.91)

where the factor of two has been inserted because here we have used the
standard normalization of the entangled states, instead of the unconven-
tional normalization used in our earlier discussion of the relative-state
method. We see that, for p = 3/4, the qubit is mapped to the maximally
mixed density operator on A, irrespective of the value of the initial state
|ψ〉A. It is as though the channel threw away the initial quantum state,
and replaced it by completely random junk.

An alternative way to express the evolution of the maximally entangled
state is

|φ+〉〈φ+| 7→
(

1− 4
3
p

)
|φ+〉〈φ+|+ 4

3
p

(
1
4
IRA

)
. (3.92)

Thus instead of saying that an error occurs with probability p, with errors
of three types all equally likely, we could instead say that an error occurs
with probability 4/3p, where the error completely “randomizes” the state
(at least we can say that for p ≤ 3/4). The existence of two natural ways
to define an “error probability” for this channel can sometimes cause
confusion.

One useful measure of how well the channel preserves the original quan-
tum information is called the “entanglement fidelity” Fe. It quantifies how
“close” the final density matrix is to the original maximally entangled
state |φ+〉 after the action of I ⊗ E :

Fe = 〈φ+|ρ′|φ+〉. (3.93)

For the depolarizing channel, we have Fe = 1 − p, and we can interpret
Fe as the probability that no error occurred.

Bloch-sphere representation. It is also instructive to see how the depolar-
izing channel acts on the Bloch sphere. An arbitrary density matrix for
a single qubit can be written as

ρ(~P ) =
1
2

(
I + ~P · ~σ

)
, (3.94)
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where ~P is the “spin polarization” of the qubit. The depolarizing channel
maps this state to

ρ′ =
(

1− 4
3
p

)
ρ +

4
3
pI = ρ(~P ′) (3.95)

where
~P ′ =

(
1− 4

3
p

)
~P (3.96)

Hence the Bloch sphere contracts uniformly under the action of the chan-
nel (for p ≤ 3/4); the spin polarization shrinks by the factor 1− 4

3p (which
is why we call it the depolarizing channel).

Reversibility? Why do we say that the channel is not invertible? Evi-
dently we can reverse a uniform contraction of the sphere with a uniform
inflation. But the trouble is that the inflation of the Bloch sphere is not
a channel, because it is not positive. Inflation will take some values of ~P
with |~P | ≤ 1 to values with |~P | > 1, and so will take a density operator
to an operator with a negative eigenvalue. Decoherence can shrink the
ball, but no physical process can blow it up again! A channel running
backwards in time is not a channel.

3.4.2 Dephasing channel

Our next example is the dephasing channel, also called the phase-damping
channel. This case is particularly instructive, because it provides a re-
vealing caricature of decoherence in realistic physical situations, with all
inessential mathematical details stripped away.

Unitary representation. An isometric representation of the channel is

|0〉A 7→
√

1− p |0〉A ⊗ |0〉E +
√
p |0〉A ⊗ |1〉E ,

|1〉A 7→
√

1− p |1〉A ⊗ |0〉E +
√
p |1〉A ⊗ |2〉E . (3.97)

In this case, unlike the depolarizing channel, qubit A does not make any
transitions in the {|0〉, |1〉} basis. Instead, the environment “scatters” off
of the qubit occasionally (with probability p), being kicked into the state
|1〉E if A is in the state |0〉A and into the state |2〉E if A is in the state
|1〉A. Furthermore, also unlike the depolarizing channel, the channel picks
out a preferred basis for qubit A; the basis {|0〉, |1〉} is the only basis in
which bit flips never occur.
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Kraus operators. Evaluating the partial trace over E in the
{|0〉E , |1〉E , |2〉E} basis, we obtain the Kraus operators

M0 =
√

1− p I, M1 =
√
p

(
1 0
0 0

)
, M2 =

√
p

(
0 0
0 1

)
. (3.98)

It is easy to check that M2
0 + M2

1 + M2
2 = I. In this case, three Kraus

operators are not really needed; a representation with two Kraus operators
is possible. Expressing

M1 =
√
p

2
(I + σ3) , M2 =

√
p

2
(I − σ3) , (3.99)

we find

E(ρ) =
∑

a

MaρMa =
(

1− 1
2
p

)
ρ +

1
2
p σ3ρσ3, (3.100)

so an alternative description of the channel is that σ3 is applied with
probability p/2 and nothing happens with probability (1 − p/2). An
initial density matrix ρ evolves to

E
(
ρ00 ρ01

ρ10 ρ11

)
=
(

ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)
; (3.101)

the on-diagonal terms in ρ remain invariant while the off-diagonal terms
decay.

Continuous dephasing. We may also consider dephasing that occurs con-
tinuously in time. Suppose that the probability of a scattering event per
unit time is Γ, so that p = Γ∆t� 1 when a brief time interval ∆t elapses.
The evolution over a time t = n∆t is governed by En (E repeated n times
in succession), so that the off-diagonal terms in the density operator be-
come suppressed by

(1− p)n = (1− Γt/n)n → e−Γt, (3.102)

taking the limit n → 0 with t fixed. Thus, if we prepare an initial pure
state α|0〉+ β|1〉, then after a time t� Γ−1, the density operator evolves
as (

|α|2 αβ∗

α∗β |β|2
)
7→
(
|α|2 0
0 |β|2

)
; (3.103)

The state decoheres, in the preferred basis {|0〉, |1〉}.
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Bloch-sphere representation. We can compute how the polarization of
the density operator evolves using the representation of the channel
eq.(3.100), finding

ρ(~P ) =
1
2

(
I + ~P · ~σ

)
7→ ρ(~P ′) (3.104)

where
P ′

1,2 = (1− p)P1,2, P ′
3 = P3; (3.105)

the Bloch ball shrinks to a prolate spheroid aligned with the z axis. Under
continuous dephasing, the ball deflates in the x-y plane, degenerating to
the z axis in the limit of large Γt.

You might wonder whether there is a quantum channel which causes
just one component of the polarization to decay, mapping the Bloch ball
to an oblate spheroid which touches the Bloch sphere along its equator.
In fact no such map can be completely positive (the no-pancake theorem).

Interpretation. We might interpret the phase-damping channel as describ-
ing a heavy “classical” particle (e.g., an interstellar dust grain) interacting
with a background gas of light particles (e.g., the 3K microwave photons).
We can imagine that the dust is initially prepared in a superposition of
position eigenstates |ψ〉 = 1√

2
(|x〉 + |−x〉) (or more realistically a super-

position of position-space wavepackets with little overlap). We might be
able to monitor the behavior of the dust particle, but it is hopeless to
keep track of the quantum state of all the photons that scatter from the
particle; for our purposes, the quantum state of the particle is described
by the density matrix ρ obtained by tracing over the photon degrees of
freedom.

Our analysis of the phase damping channel indicates that if photons are
scattered by the dust particle at a rate Γ, then the off-diagonal terms in
ρ decay like exp(−Γt), and so become completely negligible for t� Γ−1.
At that point, the coherence of the superposition of position eigenstates is
completely lost – there is no chance that we can recombine the wavepack-
ets and induce them to interfere. If we attempt to do a double-slit in-
terference experiment with dust grains, we will not see any interference
pattern if it takes a time t� Γ−1 for the grain to travel from the source
to the screen.

The dust grain is heavy. Because of its large inertia, its state of motion
is little affected by the scattered photons. Thus, there are two disparate
time scales relevant to its dynamics. On the one hand, there is a damping
time scale, the time for a significant amount of the particle’s momentum
to be transfered to the photons, which is a long time for such a heavy
particle. On the other hand, there is the decoherence time scale. In this
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model, the time scale for decoherence is of order Γ, the time for a single
photon to be scattered by the dust grain, which is far shorter than the
damping time scale. For a macroscopic object, decoherence is fast.

As we have already noted, the phase-damping channel picks out a pre-
ferred basis for decoherence, which in our “interpretation” we have as-
sumed to be the position-eigenstate basis. Physically, decoherence prefers
the spatially localized states of the dust grain because the interactions
of photons and grains are localized in space. Grains in distinguishable
positions tend to scatter the photons of the environment into mutually
orthogonal states.

Even if the separation between the “grains” were so small that it could
not be resolved very well by the scattered photons, the decoherence pro-
cess would still work in a similar way. Perhaps photons that scatter off
grains at positions x and −x are not mutually orthogonal, but instead
have an overlap

〈γ + |γ−〉 = 1− ε, ε� 1. (3.106)

The phase-damping channel would still describe this situation, but with p
replaced by pε (if p is still the probability of a scattering event). Thus, the
decoherence rate would become Γdec = εΓscat, where Γscat is the scattering
rate.

The intuition we distill from this simple model applies to a wide va-
riety of physical situations. A coherent superposition of macroscopically
distinguishable states of a “heavy” object decoheres very rapidly com-
pared to its damping rate. The spatial locality of the interactions of the
system with its environment gives rise to a preferred “local” basis for de-
coherence. The same principle applies to Schrödinger’s unfortunate cat,
delicately prepared in a coherent superposition of its dead state and its
alive state, two states that are easily distinguished by spatially localized
probes. The cat quickly interacts with its environment, which is “scat-
tered” into one of two mutually orthogonal states perfectly correlated
with the cat’s state in the {|dead〉, |alive〉} basis, thus transforming the
cat into an incoherent mixture of those two basis states.

Visibility. On the other hand, for microscopic systems the time scale for
decoherence need not be short compared to dynamical time scales. Con-
sider for example a single atom, initially prepared in a uniform superposi-
tion of its ground state |0〉 and an excited state |1〉 with energy ~ω above
the ground state energy. Neglecting decoherence, after time t the atom’s
state will be

|ψ(t)〉 =
1√
2

(
|0〉+ e−iωt|1〉

)
. (3.107)
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If dephasing occurs in the {|0〉, |1〉} basis with rate Γ, the off-diagonal
terms in the density operator decay, yielding the density operator

ρ(t) =
1
2

(
1 eiωte−Γt

e−iωte−Γt 1

)
. (3.108)

If after time t we measure the atom in the basis

|±〉 =
1√
2

(|0〉 ± |1〉) , (3.109)

the probability of the + outcome is

Prob(+, t) = 〈+|ρ(t)|+〉 =
1
2
(
1 + e−Γt cosωt

)
. (3.110)

In principle this time dependence of the probability can be measured by
varying the time t between the preparation and measurement, and by re-
peating the experiment many times for each t to estimate the probability
with high statistical confidence. The decoherence rate Γ can be deter-
mined experimentally by fitting the declining visibility of the coherent
oscillations of Prob(+, t) to a decaying exponential function of t.

3.4.3 Amplitude-damping channel

The amplitude-damping channel is a schematic model of the decay of an
excited state of a (two-level) atom due to spontaneous emission of a pho-
ton. By detecting the emitted photon (“observing the environment”) we
can perform a POVM that gives us information about the initial prepa-
ration of the atom.

Unitary representation. We denote the atomic ground state by |0〉A and
the excited state of interest by |1〉A. The “environment” is the electro-
magnetic field, assumed initially to be in its vacuum state |0〉E . After we
wait a while, there is a probability p that the excited state has decayed to
the ground state and a photon has been emitted, so that the environment
has made a transition from the state |0〉E (“no photon”) to the state |1〉E
(“one photon”). This evolution is described by a unitary transformation
that acts on atom and environment according to

|0〉A ⊗ |0〉E 7→ |0〉A ⊗ |0〉E
|1〉A ⊗ |0〉E 7→

√
1− p |1〉A ⊗ |0〉E +

√
p |0〉A ⊗ |1〉E . (3.111)

(Of course, if the atom starts out in its ground state, and the environment
in its vacuum state, then no transition occurs.)
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Kraus operators. By evaluating the partial trace over the environment in
the basis {|0〉E , |1〉E}, we find the Kraus operators

M0 =
(

1 0
0

√
1− p

)
, M1 =

(
0

√
p

0 0

)
, (3.112)

and we can check that

M †
0M0 + M †

1M1 =
(

1 0
0 1− p

)
+
(

0 0
0 p

)
= I. (3.113)

The operator M1 induces a “quantum jump,” the decay from |1〉A to
|0〉A, and M0 describes how the state changes if no jump occurs. The
density matrix evolves as

ρ 7→ E(ρ) = M0ρM †
0 + M1ρM †

1

=
(

ρ00
√

1− p ρ01√
1− p ρ10 (1− p) ρ11

)
+
(
pρ11 0

0 0

)
=
(

ρ00 + pρ11
√

1− p ρ01√
1− p ρ10 (1− p) ρ11

)
. (3.114)

Time dependence. If Γ is the spontaneous decay rate per unit time, then
the decay occurs with probability p = Γ∆t � 1 in a small time interval
∆t. We find the density operator after time t = n∆t by applying the
channel n times in succession. The ρ11 matrix element then decays as

ρ11 7→ (1− p)nρ11,= (1− Γt/n)n → e−Γt, (3.115)

the expected exponential decay law, while the off-diagonal entries decay
by the factor (1− p)n/2 = e−Γt/2; hence we find

ρ(t) =
(
ρ00 +

(
1− e−Γt

)
ρ11 e−Γt/2ρ01

e−Γt/2 ρ10 e−Γtρ11

)
(3.116)

It is customary to use “T1” to denote the exponential decay time for the
excited population, and to use “T2” to denote the exponential decay time
for the off-diagonal terms in the density operator. In some systems where
dephasing is very rapid T2 is much shorter than T1, but we see that for the
amplitude-damping channel these two times are related and comparable:

T2 = 2Γ−1 = 2T1. (3.117)

By the time that t � T1, the atom is in its ground state with high
probability (ρ00(t) ≈ 1).
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Watching the environment. So far we have described the evolution of
the qubit under the assumption that the state of the environment is not
observed. But now suppose we surround the atom with photon detectors,
so we know whether a photon has been emitted or not. Rather than a
channel, then, we consider a POVM performed on the atom.

Returning to the joint unitary dynamics of system and environment,
we see that a coherent superposition of the atomic ground and excited
states evolves as

(α|0〉A + β|1〉A)⊗ |0〉E
7→ (α|0〉A + β

√
1− p |1〉A)⊗ |0〉E +

√
p |0〉A ⊗ |1〉E ; (3.118)

To describe the system evolving continuously in time, we may consider
applying this unitary map n� 1 times in succession, but where photons
emitted at different times are perfectly distinguishable and hence orthog-
onal. The resulting POVM has n+1 Kraus operators, associated with the
vacuum state of the environment and n different possible single photon
states:

M0 =
(

1 0
0
√

(1− p)n

)
, Mk =

(
0
√

(1− p)k−1p
0 0

)
, (3.119)

for k = 1, 2, . . . n. Taking the continuous-time limit we find that if no
spontaneous decay occurs for time t, the corresponding Kraus operator is

M0 =
(

1 0
0 e−Γt/2

)
. (3.120)

If we detect a photon (and so project out a single-photon state of the
environment), then we have prepared the state |0〉A of the atom. Not only
that, we have prepared a state in which we know with certainty that the
initial atomic state was the excited state |1〉A; if the atom had started out
in the ground state than it could not have decayed and no photon could
have been detected.

On the other hand, if we detect no photon, and our photon detector
has perfect efficiency, then we have projected out the vacuum state of the
environment, and so have prepared the atomic state

M0 (α|0〉+ β|1〉) = α|0〉+ e−Γt/2β|1〉, (3.121)

up to a normalization factor. As time goes by, the a posteriori quantum
state has larger and larger overlap with the ground state, because if it
had started out in the excited state it should have decayed by now. In
the limit t→∞ our POVM becomes an orthogonal measurement: either
a photon is detected, in which case the initial state of the atom must have
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been |1〉, or no photon is detected, in which case the initial state must
have been |0〉. It’s odd but true: we can project out the state |0〉 of the
atom by not detecting anything.

3.5 Master equations for open quantum systems

3.5.1 Markovian evolution

Quantum channels provide a general description of the evolution of den-
sity operators, including the evolution of pure states to mixed states (de-
coherence). In the same sense, unitary transformations provide a general
description of coherent quantum evolution. But in the case of coherent
evolution, we often find it very convenient to characterize the dynamics
of a quantum system with a Hamiltonian, which describes the evolution
over an infinitesimal time interval. The dynamics is then encoded in a
differential equation, the Schrödinger equation, and we may calculate the
evolution over a finite time interval by integrating the equation, that is, by
piecing together the evolution over many infinitesimal intervals. Likewise,
it is often possible to describe the (not necessarily coherent) evolution of
a density operator, at least to a good approximation, by a differential
equation which is called the master equation.

It is not obvious that there should be a differential equation that de-
scribes the decoherence of an open system. Such a description is possible
only if the evolution of the quantum system is Markovian, that is, local
in time. For the evolution of the density operator ρ(t) to be governed
by a (first-order) differential equation in t, ρ(t+ dt) must be completely
determined by ρ(t).

In the case of an open system A, we are to imagine that its evolution is
actually unitary on the extended system AE, where E is the environment.
But though the evolution of AE may be governed by a Schrödinger equa-
tion, that’s not enough to ensure that the time evolution is Markovian
for A by itself. The trouble is that information can flow from A to E and
then return at a later time, In that case the density operator ρA(t + dt)
is not fully determined by ρA(t); we need to know ρA at earlier times as
well.

This quandary arises because information flow is a two-way street. An
open system (whether classical or quantum) is dissipative because infor-
mation and energy can flow from the system to the environment. But that
means that information can also flow back from environment to system,
resulting in non-Markovian fluctuations of the system. This inescapable
connection underlies the fluctuation-dissipation theorem, a widely appli-
cable tool of statistical physics.

For any open system these fluctuations are inevitable, and an exact
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Markovian description of quantum dynamics is impossible. Nevertheless,
a Markovian description can be a very good approximation if there is a
clean separation between the typical correlation time of the fluctuations
and the time scale of the evolution that we want to follow. Crudely
speaking, we may denote by (∆t)env the time it takes for the environment
to “forget” information it acquired from the system — after time (∆t)env

we can regard that information as lost forever, and neglect the possibility
that the information may return to influence the subsequent evolution of
the system.

To describe the evolution we “coarse-grain” in time, perceiving the dy-
namics through a filter that screens out the high frequency components
of the motion with ω � (∆tcoarse)−1. An approximately Markovian de-
scription should be possible for (∆t)env � (∆t)coarse; we may neglect
the memory of the reservoir if we are unable to resolve its effects. This
Markovian approximation is useful if the time scale of the dynamics that
we want to observe is long compared to (∆t)coarse, for example if the
damping time scale (∆t)damp satisfies

(∆t)damp � (∆t)coarse � (∆t)env. (3.122)

This is a good approximation in some physical settings, like an atom
interacting with the radiation field, but more dubious in other cases, like
an electron spin interacting with nuclear spins in a semiconductor.

We could attempt to derive the master equation starting with the
Schrödinger equation for AE, treating the coupling between A and E
in time-dependent perturbation theory, and carefully introducing a fre-
quency cutoff, but we won’t do that here. Instead let’s take it for granted
that the dynamics is Markovian, and use the theory of quantum channels
to infer the form of the master equation.

3.5.2 The Liouvillian

For a closed quantum system, time evolution is governed by a self-adjoint
Hamiltonian H according to

|ψ(t+ dt)〉 = (I − idtH) |ψ(t)〉, (3.123)

and correspondingly the density operator evolves as

ρ(t+ dt) = ρ(t)− idt[H,ρ(t)]. (3.124)

In the case of an open quantum system, Markovian evolution for the
infinitesimal time interval dt may be expressed as

ρ(t+ dt) = Edt(ρ(t)), (3.125)
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where Edt is a quantum channel. By adopting this Markovian form, we
take the view that, after each infinitesimal time increment in the joint
evolution of the system and its environment, the state of the environment
is discarded and replaced by a fresh state of the environment unentan-
gled with the system. We already made this assumption implicitly when
discussing continuous-time dephasing and spontaneous decay in §3.4.

Expanding Edt to linear order,

Edt = I + dtL (3.126)

we find
ρ̇ = L(ρ), (3.127)

where the linear map L generating time evolution is called the Liouvillian
or Lindbladian. This evolution equation has the formal solution

ρ(t) = lim
n→∞

(
1 +

Lt
n

)n

(ρ(0)) = eLt(ρ(0)) (3.128)

if L is time independent.
The channel has an operator-sum representation

ρ(t+ dt) = Edt(ρ(t)) =
∑

a

Maρ(t)M †
a = ρ(t) +O(dt), (3.129)

where, if we retain only terms up to linear order in dt, we may assume
without loss of generality that M0 = I + O(dt), and that Ma is of
order

√
dt for a > 0. Each of the Kraus operators M1,2,... describes a

possible “quantum jump” that the system might undergo, which occurs
during time interval dt with probability O(dt), and M0 describes how the
system evolves when no jump occurs. We may write

M0 = I + (−iH + K)dt,

Ma =
√
dt La, a = 1, 2, 3, (3.130)

where H and K are both hermitian and La,H, and K are all zeroth
order in dt. In fact, we can determine K by invoking the Kraus-operator
completeness relation; keeping terms up to linear order in O(dt), we find

I =
∑

µ

M †
aMa = I + dt

2K +
∑
µ>0

L†
aLa

+ · · · , (3.131)

or
K = −1

2

∑
a>0

L†
aLa. (3.132)
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Substituting into eq. (3.129), we obtain the Lindblad master equation:

ρ̇ = L(ρ) = −i[H,ρ] +
∑
a>0

(
LaρL†

a −
1
2
L†

aLaρ−
1
2
ρL†

aLa

)
. (3.133)

This is the general Markovian evolution law for quantum states, assuming
time evolution is a trace-preserving completely positive linear map. The
first term in L(ρ) is the familiar Hermitian Schrödinger term generating
unitary evolution. The other terms describe the possible transitions that
the system may undergo due to interactions with the environment. The
operators La are called Lindblad operators or quantum jump operators.
Each LaρL†

a term induces one of the possible quantum jumps, while the
terms −1/2L†

aLaρ−1/2ρL†
aLa are needed to normalize properly the case

in which no jumps occur.
As for any nonunitary quantum channel, we have the freedom to rede-

fine the Kraus operators in the operator-sum representation of Edt, replac-
ing {Ma} by operators {Nµ} which differ by a unitary change of basis.
In particular, invoking this freedom for the jump operators (while leaving
M0 untouched), we may replace {La} by {L′

µ} where

L′
µ =

∑
a

VµaLa (3.134)

and Vµa is a unitary matrix. We say that these two ways of choosing
the jump operators are two different unravelings of the same Markovian
dynamics.

The master equation describes what happens when the system interacts
with an unobserved environment, but we may also consider what happens
if the environment is continuously monitored. In that case each quantum
jump is detected; we update the quantum state of the system whenever
a jump occurs, and an initial pure state remains pure at all later times.
Specifically, a jump of type a occurs during the interval (t, t + dt) with
probability

Prob(a) = dt〈ψ(t)|L†
aLa|ψ(t)〉, (3.135)

and when a type-a jump is detected the updated state is

|ψ(t+ dt)〉 =
La|ψ(t)〉
‖La|ψ(t)〉‖

, (3.136)

while when no jump occurs the state evolves as

|ψ(t+ dt)〉 =
M0|ψ(t)〉
‖M0|ψ(t)〉‖

. (3.137)

This stochastic Schrödinger evolution can be numerically simulated; each
simulated quantum trajectory is different, but averaging over a sample of
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many such trajectories reproduces the evolution of the density operator as
described by the master equation. Simulating the stochastic Schrödinger
equation may have advantages over simulating the master equation, since
it is less costly to follow the evolution of a d-dimensional state vector than
a d× d density matrix.

3.5.3 Damped harmonic oscillator

As an example to illustrate the master equation, consider the case of a
harmonic oscillator coupled to the electromagnetic field via

H ′ =
∑

k

gk(ab†k + a†bk), (3.138)

where a is the annihilation operator of the oscillator, b†k creates a pho-
ton in mode k, and gk is a coupling constant. Let’s also suppose that
the environment is at zero temperature; then the excitation level of the
oscillator can cascade down by successive emission of photons, but no
absorption of photons will occur. If each photon, once emitted, never
interacts again with the oscillator, the evolution is Markovian, and there
is only one Lindblad jump operator:

L =
√

Γa. (3.139)

Here Γ is the rate for the oscillator to decay from the first excited (n = 1)
state to the ground (n = 0) state, which can be computed as Γ =

∑
i Γi,

where Γi is the rate for emission into mode i. The rate for the decay from
level n to n−1 is nΓ. (The nth level of excitation of the oscillator may be
interpreted as a state of n noninteracting particles; the rate is nΓ because
any one of the n particles can decay.)

The master equation in the Lindblad form becomes

ρ̇ = −i[H0,ρ] + Γ(aρa† − 1
2
a†aρ− 1

2
ρa†a) (3.140)

where H0 = ωa†a is the Hamiltonian of the oscillator. The jump term
describes the damping of the oscillator due to photon emission. To study
the effect of the jumps, it is convenient to adopt the interaction picture;
we define interaction picture operators ρI and aI by

ρ(t) = e−iH0tρI(t)e
iH0t,

a = e−iH0taI(t)eiH0t, (3.141)
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so that

ρ̇I = Γ(aIρIa
†
I −

1
2
a†IaIρI −

1
2
ρIa

†
IaI)

= Γ(aρIa
† − 1

2
a†aρI −

1
2
ρIa

†a) (3.142)

where we use aI(t) = ae−iωt to replace aI by a in the second line. By
observing the evolution in a “rotating frame,” we have frozen the unper-
turbed motion of the oscillator, isolating the effect of the damping.

The variable ã(t) = e−iH0tae+iH0t = eiωta remains constant in the
absence of damping. Including damping, its expectation value

〈ã(t)〉 = tr (ã(t)ρ(t)) = tr (aρI(t)) (3.143)

evolves according to
d

dt
〈ã(t)〉 = tr (aρ̇I) (3.144)

and from eq. (3.142) we have

d

dt
〈ã(t)〉 = tr (aρ̇I) = Γ tr

(
a2ρIa

† − 1
2
aa†aρI −

1
2
aρIa

†a

)
= Γ tr

(
1
2
[a†,a]aρI

)
= −Γ

2
tr(aρI) = −Γ

2
〈ã(t)〉. (3.145)

Integrating this equation, we obtain

〈ã(t)〉 = e−Γt/2〈ã(0)〉. (3.146)

Similarly, the occupation number of the oscillator n ≡ a†a = ã†ã decays
according to

d

dt
〈n〉 =

d

dt
〈ã†ã〉 = tr(a†aρ̇I)

= Γ tr
(

a†aaρIa
† − 1

2
a†aa†aρI −

1
2
a†aρIa

†a

)
= Γ tr

(
a†[a†,a]aρI

)
= −Γ tr

(
a†aρI

)
= −Γ〈n〉, (3.147)

which integrates to
〈n(t)〉 = e−Γt〈n(0)〉. (3.148)

Thus Γ is indeed the damping rate of the oscillator. (If we interpret
the nth excitation state of the oscillator as a state of n noninteracting
particles, each with a decay probability Γ per unit time, then eq. (3.148) is
just the exponential law satisfied by the population of decaying particles.)
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More interesting is what the master equation tells us about decoherence.
In our amplitude damping model, it is the annihilation operator a and
its adjoint that appear in the coupling H ′ of oscillator to environment,
so we can anticipate that the oscillator’s state will decohere in the basis
of a eigenstates. The coherent state

|α〉 = e−|α|
2/2eαa† |0〉 = e−|α|

2/2
∞∑

n=0

αn

√
n!
|n〉, (3.149)

is the normalized eigenstate of a with complex eigenvalue α. The operator
a is not Hermitian, and two coherent states with distinct eigenvalues α
and β are not orthogonal; rather

|〈α|β〉|2 = e−|α|
2
e−|β|

2
e2Re(α∗β)

= exp(−|α− β|2), (3.150)

so the overlap is very small when |α− β| is large.
The solution to the master equation eq.(3.142) is worked out in Exercise

3.9, where we find that an initial coherent state remains coherent, but with
a decaying amplitude; after time t the state |α〉 evolves as

|α〉 7→ |αe−Γt〉 (3.151)

(in the rotating frame). We may also consider what happens when the
initial state is a superposition of coherent states (a “cat state”)

|ψ〉 = Nα,β(|α〉+ |β〉), (3.152)

(where Nα,β is a normalization factor), or

ρ = N2
α,β (|α〉〈α|+ |α〉〈β|+ |β〉〈α|+ |β〉〈β|) . (3.153)

The off-diagonal terms in this density operator evolve as

|α〉〈β| 7→ eiφ(α,β)e−Γt|α−β|2/2|αe−Γt/2〉〈βe−Γt/2|, (3.154)

where eiφ(α,β) is a phase factor. Thus the off-diagonal terms decay expo-
nentially with time, at a rate

Γdecohere =
1
2
Γ|α− β|2 (3.155)

proportional to the distance squared |α−β|2, and hence much larger than
the damping rate for |α − β|2 � 1. This behavior is easy to interpret.
The expectation value of the occupation number n in a coherent state is
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〈α|a†a|α〉 = |α|2. Therefore, if α, β have comparable moduli but signif-
icantly different phases (as for a superposition of minimum uncertainty
wave packets centered at x and −x), the decoherence rate is of the order
of the rate for emission of a single photon. This rate is very large com-
pared to the rate for a significant fraction of the oscillator energy to be
dissipated.

We can also consider an oscillator coupled to an environment with a
nonzero temperature. Again, the decoherence rate is roughly the rate for a
single photon to be emitted or absorbed, but the rate may be much faster
than at zero temperature. Because the photon modes with frequency
comparable to the oscillator frequency ω have a thermal occupation num-
ber

nγ ≈
T

~ω
, (3.156)

(for T � ~ω), the interaction rate is further enhanced by the factor nγ .
We have then

Γdec

Γdamp
∼ noscnγ ∼

E

~ω
T

~ω

∼ mω2x2

~ω
T

~ω
∼ x2mT

~2
∼ x2

λ2
T

, (3.157)

where x is the amplitude of oscillation and λT is the thermal de Broglie
wavelength of the oscillating object. For macroscopic objects, decoherence
is really fast.

3.6 Non-Markovian noise

3.6.1 Gaussian phase noise

The master equation describes the evolution of a quantum system subject
to Markovian noise, but in some experimental systems the Markovian
approximation is not very accurate. In this section we will discuss some
of the features of decoherence for a system subjected to non-Markovian
noise.

As a simple example, consider a single qubit with energy eigenstates |0〉
and |1〉, where the energy splitting between the two states fluctuates. For
example, the qubit could be a spin-1

2 particle in a magnetic field pointing
along the z-axis, where the magnetic field is not perfectly controlled in
the laboratory. The Hamiltonian for this system is

H = −1
2
ω01σ3 −

1
2
f(t)σ3 , (3.158)
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where f(t) is the fluctuating component of the magnetic field. This is
a model of classical noise, arising not because the system interacts with
an unobserved environment, but rather because a term in the system’s
Hamiltonian fluctuates.

The function f is treated stochastically; that is, we consider an ensem-
ble of possible functions {f}, each with an assigned probability weight
µ(f). We imagine that the actual f(t) in each run of the experiment is
selected by sampling from this distribution, and predict the observed be-
havior of the system by averaging over the distribution µ(f). The model is
particularly simple because the unperturbed Hamiltonian H0 = 1

2ω01σ3

commutes with the noise term Hf = 1
2f(t)σ3, and in fact we can trans-

form H0 away by going to the interaction picture.
The fluctuations induce dephasing of the qubit in the energy eigenstate

basis. To analyze the dephasing, we will make a further simplifying as-
sumption, that the noise is Gaussian. Whether the noise is classical of
quantum, this Gaussian approximation often applies in laboratory situ-
ations where the system is weakly coupled to many different fluctuating
variables in the environment. We denote averaging over the distribution
µ(f) by [·], and assume the distribution to be stationary with mean zero;
that is [f(t)] = 0, and [f(t)f(t′)] = K(t − t′) is a function only of the
difference t − t′, which is called the covariance of the distribution. The
Gaussian distribution can be characterized by its generating functional
Z[J ], which can be expressed in terms of the covariance as

Z[J ] ≡
[
e

R
dtJ(t)f(t)

]
f

= exp
(

1
2

∫
dtdt′J(t)K(t− t′)J(t′)

)
. (3.159)

An initial density operator ρ(0) evolves in time T to

ρ(T ) =
[
exp

(
i

∫ T

o

1
2
f(t)σ3

)
ρ(0) exp

(
−i
∫ T

o

1
2
f(t)σ3

)]
. (3.160)

The energy eigenstates |0〉〈0| or |1〉〈1| are not affected, but using
eq.(3.159) we see that the coefficients of the off-diagonal entries |0〉〈1|
and |1〉〈0| decay by the factor

exp
(
−1

2

∫ T

0
dt

∫ T

0
dt′K(t− t′)

)
= exp

(
−1

2

∫ T

0
dt

∫ T

0
dt′
∫ ∞

−∞

dω

2π
e−iω(t−t′)K̃(ω)

)
; (3.161)

here we have introduced the Fourier transform K̃(ω) of the covariance
K(t), which is said to be the spectral density or power spectrum of the
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noise. Doing the t and t′ integrals we obtain

exp
(
−1

2

∫ ∞

−∞

dω

2π
K̃(ω)WT (ω)

)
(3.162)

where WT (ω) is the smooth window function

WT (ω) =
∣∣∣∣∫ T

0
dt e−iωt

∣∣∣∣2 =
4
ω2

sin2(ωT/2), (3.163)

which has most of its support on the interval [0, 2π/T ].
Assuming that K̃(ω = 0) is finite, we expect that for T sufficiently

large, K̃(ω) can be regarded as approximately constant in the region
where WT (ω) is supported. Using

∫∞
−∞ dx sin2 x

x2 = π, we then obtain the
decay factor e−Γ2T , where the dephasing rate Γ2 is

Γ2 = K̃(ω = 0). (3.164)

(Here we’ve assumed that K̃(ω) is continuous at ω = 0 — otherwise
we should average its limiting values as ω approaches zero from positive
and negative values.) If the spectral density is flat (“white noise”), this
formula for Γ2 applies at any time T , but in general, the time scale for
which dephasing can be described by a rate Γ2 depends on the shape of
the noise’s spectral density. In effect, an experimentalist who measures
the dephasing time T2 = Γ−1

2 of a qubit is probing the noise power at low
frequency.

Crudely speaking, we expect K̃(ω) to be roughly constant in the interval
[0, ωc], where ωc = 2π/τc, and τc is a characteristic “autocorrelation” or
“memory” time of the noise. That is, τc is chosen so that the correlation
function K(t − t′) is small for |t − t′| � τc. Thus we see that in order
to speak of a “dephasing rate” Γ2 (and a corresponding dephasing time
T2 = Γ−1

2 ) we must consider evolution that has been “coarse-grained” in
time. For the purpose of describing evolution over a time period T �
τc, the non-Markovian noise model can be replaced by a corresponding
effective Markovian model in which the memory of the fluctuations can
be neglected, as in our analysis of dephasing in §3.4.2. But for T � τc
such a description is not applicable.

3.6.2 Spin echo

Strategies for mitigating the damaging effects of the noise become possible
when the noise autocorrelation time τc is long compared to the time scale
over which the experimentalist can manipulate the system. For example,
when observing the dephasing of a spin evolving for time T , we may apply
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a fast pulse that flips the spin about the x-axis at time T/2. Then the
effects of low-frequency phase noise during the second half of the evolution
will tend to compensate for the effects of the phase noise during the first
half. This trick is called the spin echo phenomenon.

If we use this trick, the damping factor applied to |0〉〈1| is again given
by

exp
(
−1

2

∫ ∞

−∞

dw

2π
K̃(ω)WT (ω)

)
(3.165)

but with a modified window function

WT (ω) =
∣∣∣∣∫ T

0
dtJ(t)eiωt

∣∣∣∣2 , (3.166)

where J(t) is a modulating function that expresses the effect of the spin
echo pulse sequence. For example, if we flip the spin at time T/2, then
J(t) is +1 in the interval [0, T/2] and -1 in the interval [T/2, T ]; therefore

WT (w) =
1
ω2

∣∣∣1− 2eiωT/2 + eiωT
∣∣∣2

=
1
ω2

∣∣∣∣∣1− eiωT/2

1 + eiωT/2

(
1− eiωT

)∣∣∣∣∣
2

= tan2(ωT/4) · 4
ω2

sin2(ωt/2). (3.167)

In effect, the spin echo modifies K̃(ω) by the multiplicative factor
tan2(ωT/4), which suppresses the low frequency noise.

The suppression can be improved further by using more pulses. In prac-
tice, pulses have bounded strength and nonzero duration, which places
limitations on the effectiveness of this strategy.

3.6.3 Qubits as noise spectrometers

Now let’s consider a different model of classical noise, in which the fluc-
tuating term does not commute with the unperturbed Hamiltonian:

H = −1
2
ω01σ3 + f(t)σ1. (3.168)

In this model the fluctuating field can induce transitions among the energy
eigenstates, at a rate that can be computed using lowest-order interaction-
picture perturbation theory if the noise is weak. The probability that a
qubit prepared in the state |1〉 at time 0 is observed in the state |0〉 at
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time T , averaged over the fluctuating classical field, is

Prob(1 → 0) =

[ ∣∣∣∣−i∫ T

0
dt f(t)e−iω01t〈0|σ1|1〉

∣∣∣∣2
]

=
∫ T

0
dt

∫ T

0
dt′ e−iω01(t−t′)

[
f(t)f(t′)

]
=

∫ ∞

−∞

dω

2π
K̃(ω)WT (ω − ω01) . (3.169)

This expression is similar to the formula eq.(3.162) for the off-diagonal
term in the density operator obtained in the dephasing model, except that
now the center of the window function has been shifted to the frequency
ω01 of the transition.

As before, if we consider the observation time T to be large compared
to the autocorrelation time τc of the noise, then the support of the window
function is narrow, and K̃(ω) is approximately constant in the window.
Thus, after a suitable coarse-graining of the time evolution, we may iden-
tify a rate for the decay of the qubit

Γ↓ = K̃(ω = ω01). (3.170)

Similarly, for the transition from ground state to excited state, we find

Γ↑ = K̃(ω = −ω01). (3.171)

Thus negative frequency noise transfers energy from the noise reservoir
to the qubit, exciting the qubit, while positive frequency noise transfers
energy from qubit to the noise reservoir, returning the excited qubit to
the ground state. (Dephasing of a qubit, in contrast, involves a negligible
exchange of energy and therefore is controlled by low frequency noise.) We
conclude that an experimentalist capable of varying the energy splitting
ω01 and measuring the qubit’s transition rate can determine how the noise
power depends on the frequency.

For the case we have considered in which the noise source is classical,
f(t) and f(t′) are real commuting variables; therefore K(t) is an even
function of t and correspondingly K̃(ω) is an even function of ω. Classical
noise is spectrally symmetric, and the rates for excitation and decay are
equal.

On the other hand, noise driven by a quantized thermal “bath” can
be spectrally asymmetric. When the qubit comes to thermal equilibrium
with the bath, up and down transitions occur at equal rates. If p0 denotes
the probability that the qubit is in the ground state |0〉 and p1 denotes the
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probability that the qubit is in the excited state |1〉, then in equilibrium

p0Γ↑ = p1Γ↓ ⇒
K̃(−ω01)
K̃(ω01)

=
p1

p0
= e−βω01 ; (3.172)

the ratio of noise strengths at positive and negative frequencies is given
(for a thermal bath) by a Boltzmann factor; this property of the noise is
called the Kubo-Martin-Schwinger (KMS) condition. The noise becomes
classical in the high-temperature limit βω01 � 1, and is in the deeply
quantum regime for βω01 � 1.

3.6.4 Spin-boson model at nonzero temperature

To turn our model of classical dephasing noise into a quantum model,
we replace the stochastic classical field f(t) by an operator acting on a
quantized bath. The noise will still be Gaussian if the bath is a system of
harmonic oscillators, uncoupled to one another and each coupled linearly
to the dephasing qubit. The Hamiltonian for the system A and bath B is

HA + HB + HAB = −1
2
ω01σ3 +

∑
k

ωka
†
kak −

1
2
σ3

(∑
k

gkak + g∗ka
†
k

)
,

(3.173)
which is called the spin-boson model, as it describes a single spin-1

2 par-
ticle coupled to many bosonic variables. This is a model of dephasing
because the coupling of the spin to the bath is diagonal in the spin’s
energy eigenstate basis. (Otherwise the physics of the model would be
harder to analyze.) Despite its simplicity, the spin-boson model provides
a reasonably realistic description of dephasing for a qubit weakly coupled
to many degrees of freedom in the environment.

If there are many oscillators, the sum over k can be approximated by
a frequency integral: ∑

k

|gk|2 ≈
∫ ∞

0
dωJ(ω), (3.174)

where J(ω) is said to be the spectral function of the oscillator bath. Let’s
assume that the bath is in thermal equilibrium at temperature β−1. In
principle, the coupling to the system could tweak the equilibrium distri-
bution of the bath, but we assume that this effect is negligible, because
the bath is much bigger than the system. The fluctuations of the bath
are Gaussian, and the average over the ensemble of classical functions in
our previous analysis can be replaced by the thermal expectation value:

[f(t)f(0)] 7→ 〈f(t)f(0)〉β ≡ tr
(
e−βHBf(t)f(0)

)
, (3.175)
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where now f(t) denotes the operator

f(t) = eitHBf(0)e−itHB =
∑

k

(
gkake

−iωkt + g∗ka
†
ke

iωkt
)
. (3.176)

We see that

Kβ(t) ≡ 〈f(t)f(0)〉β =
∑

k

|gk|2 〈e−iωktaka
†
k + eiωkta†kak〉β. (3.177)

From the Planck distribution, we find

〈a†kak〉β =
1

eβω − 1
=

1
2

coth(βωk/2)− 1
2
,

〈aka
†
k〉β = 〈a†kak + 1〉β =

1
2

coth(βωk/2) +
1
2
, (3.178)

and by Fourier transforming we obtain the spectral density of the noise

K̃β(ω) ≡
∫ ∞

−∞
dt eiωtKβ(t)

=
∑

k

|gk|2
(
2πδ(ω − ωk)〈aka

†
k〉β + 2πδ(ω + ωk)〈a†kak〉β

)
,

(3.179)

which may be written as

K̃β(ω) = πJ(ω) (coth(βω/2) + 1) , ω > 0,

K̃β(ω) = πJ(ω) (coth(βω/2)− 1) , ω < 0. (3.180)

Thus, as we anticipated, noise power spectrum exhibits the spectral asym-
metry required by the KMS condition — the spectral density K̃β(−ω) of
the noise at negative frequency is suprressed relative to the spectral den-
sity K̃β(ω) at positive frequency by the Boltzmann factor e−βω.

Since the window functionWT (ω) is an even function of ω, only the even
part of K̃β(ω) contributes to the attenuation of |0〉〈1|; the attenuation
factor

exp
(
−1

2

∫ ∞

−∞

dω

2π
K̃β(ω)WT (ω)

)
, (3.181)

therefore becomes

exp
(
−
∫ ∞

0
dωJ(ω)

2 sin2(ωT/2)
ω2

coth(βω/2)
)
. (3.182)

A dephasing rate can be identified if the spectral function J(ω) behaves
suitably at low frequency; the attenuation factor is e−Γ2T in the limit
T →∞ where

Γ2 = lim
ω→0

K̃β(ω) = lim
ω→0

2πJ(ω)/(βω), (3.183)
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assuming that this limit exists. The noise is said to be Ohmic if J(ω) ≈
Aω is linear in ω at low frequency, and in that case the dephasing rate
becomes Γ2 = 2πAβ−1 in the limit of long time T .

3.7 Summary

POVM. If we restrict our attention to a subspace of a larger Hilbert
space, then an orthogonal (Von Neumann) measurement performed on the
larger space cannot in general be described as an orthogonal measurement
on the subspace. Rather, it is a generalized measurement or POVM —
the outcome a occurs with a probability

Prob(a) = tr (Eaρ) , (3.184)

where ρ is the density matrix of the subsystem, each Ea is a positive
hermitian operator, and the Ea’s satisfy∑

a

Ea = I . (3.185)

A POVM in HA can be realized as a unitary transformation on the tensor
product HA ⊗HB, followed by an orthogonal measurement in HB.

Quantum channel. Unitary evolution on HA⊗HB will not in general
appear to be unitary if we restrict our attention to HA alone. Rather,
evolution in HA will be described by a quantum channel, (which can be
inverted by another channel only if unitary). A general channel E has an
operator-sum representation:

E : ρ → E(ρ) =
∑

a

MaρM †
a , (3.186)

where ∑
a

M †
aMa = I. (3.187)

In fact, any reasonable (linear, trace preserving, and completely positive)
mapping of density operators to density operators has such an operator-
sum representation.

Decoherence. Decoherence — the decay of quantum information due
to the interaction of a system with its environment — can be described
by a quantum channel. If the environment frequently “scatters” off the
system, and the state of the environment is not monitored, then off-
diagonal terms in the density operator of the system decay rapidly in a
preferred basis (typically a spatially localized basis selected by the nature
of the coupling of the system to the environment). The time scale for
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decoherence is set by the scattering rate, which may be much larger than
the damping rate for the system.

Master Equation. When the relevant dynamical time scale of an
open quantum system is long compared to the time for the environment
to “forget” quantum information, the evolution of the system is effectively
local in time (the Markovian approximation). Much as general unitary
evolution is generated by a Hamiltonian, a general Markovian superoper-
ator is generated by a Liouvillian L as described by the master equation:

ρ̇ ≡ L(ρ) = −i[H,ρ] +
∑

a

(
LaρL†

a −
1
2
L†

aLaρ−
1
2
ρL†

aLa

)
. (3.188)

Here each Lindblad operator (or quantum jump operator) La describes a
“quantum jump” that could in principle be detected if we monitored the
environment faithfully. By solving the master equation, we can compute
the decoherence rate of an open system.

Non-Markovian noise. Non-Markovian noise can be characterized
by its power spectrum, and the effects of the noise on dephasing over a
long time period are determined by the behavior of the power spectrum
at low frequency. Quantum noise in thermal equilibrium at temperature
β−1 has a spectral asymmetry — the noise at negative frequency (−ω) is
suppressed compared to the noise at positive frequency ω by a Boltzmann
factor e−βω (the KMS condition).

Further important ideas are developed in the Exercises.

3.8 Exercises

3.1 Which state did Alice make?

Consider a game in which Alice prepares one of two possible states:
either ρ1 with a priori probability p1, or ρ2 with a priori probability
p2 = 1− p1. Bob is to perform a measurement and on the basis of
the outcome to guess which state Alice prepared. If Bob’s guess is
right, he wins; if he guesses wrong, Alice wins.

In this exercise you will find Bob’s best strategy, and determine his
optimal probability of error.

Let’s suppose (for now) that Bob performs a POVM with two pos-
sible outcomes, corresponding to the two nonnegative Hermitian
operators E1 and E2 = I −E1. If Bob’s outcome is E1, he guesses
that Alice’s state was ρ1, and if it is E2, he guesses ρ2. Then the
probability that Bob guesses wrong is

perror = p1 tr (ρ1E2) + p2 tr (ρ2E1) . (3.189)
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a) Show that
perror = p1 +

∑
i

λi〈i|E1|i〉 , (3.190)

where {|i〉} denotes the orthonormal basis of eigenstates of the
Hermitian operator p2ρ2 − p1ρ1, and the λi’s are the corre-
sponding eigenvalues.

b) Bob’s best strategy is to perform the two-outcome POVM that
minimizes this error probability. Find the nonnegative opera-
tor E1 that minimizes perror, and show that error probability
when Bob performs this optimal two-outcome POVM is

(perror)optimal = p1 +
∑
neg

λi . (3.191)

where
∑

neg denotes the sum over all of the negative eigenvalues
of p2ρ2 − p1ρ1.

c) It is convenient to express this optimal error probability in terms
of the L1 norm of the operator p2ρ2 − p1ρ1,

‖p2ρ2 − p1ρ1‖1 = tr |p2ρ2 − p1ρ1| =
∑
pos

λi −
∑
neg

λi , (3.192)

the difference between the sum of positive eigenvalues and
the sum of negative eigenvalues. Use the property tr (p2ρ2 −
p1ρ1) = p2 − p1 to show that

(perror)optimal =
1
2
− 1

2
‖p2ρ2 − p1ρ1‖1 . (3.193)

Check whether the answer makes sense in the case where ρ1 =
ρ2 and in the case where ρ1 and ρ2 have support on orthogonal
subspaces.

d) Now suppose that Alice decides at random (with p1 = p2 = 1/2)
to prepare one of two pure states |ψ1〉, |ψ2〉 of a single qubit,
with

|〈ψ1|ψ2〉| = sin(2α) , 0 ≤ α ≤ π/4 . (3.194)

With a suitable choice of basis, the two states can be expressed
as

|ψ1〉 =
(

cosα
sinα

)
, |ψ2〉 =

(
sinα
cosα

)
. (3.195)

Find Bob’s optimal two-outcome measurement, and compute
the optimal error probability.
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e) Bob wonders whether he can find a better strategy if his POVM
{Ei} has more than two possible outcomes. Let p(a|i) de-
note the probability that state a was prepared, given that the
measurement outcome was i; it can be computed using the
relations

pip(1|i) = p1p(i|1) = p1 tr ρ1Ei ,

pip(2|i) = p2p(i|2) = p2 tr ρ2Ei ; (3.196)

here p(i|a) denotes the probability that Bob finds measurement
outcome i if Alice prepared the state ρa, and pi denotes the
probability that Bob finds measurement outcome i, averaged
over Alice’s choice of state. For each outcome i, Bob will make
his decision according to which of the two quantities

p(1|i) , p(2|i) (3.197)

is the larger; the probability that he makes a mistake is the
smaller of these two quantities. This probability of error, given
that Bob obtains outcome i, can be written as

perror(i) = min (p(1|i), p(2|i)) =
1
2
− 1

2
|p(2|i)− p(1|i)| .

(3.198)
Show that the probability of error, averaged over the measure-
ment outcomes, is

perror =
∑

i

pi perror(i) =
1
2
− 1

2

∑
i

|tr (p2ρ2 − p1ρ1) Ei| .

(3.199)
f) By expanding in terms of the basis of eigenstates of p2ρ2−p1ρ1,

show that
perror ≥

1
2
− 1

2
‖p2ρ2 − p1ρ1‖1 . (3.200)

(Hint: Use the completeness property
∑

i Ei = I.) Since we
have already shown that this bound can be saturated with a
two-outcome POVM, the POVM with many outcomes is no
better.

3.2 Eavesdropping and disturbance

Alice wants to send a message to Bob. Alice is equipped to prepare
either one of the two states |u〉 or |v〉. These two states, in a suitable
basis, can be expressed as

|u〉 =
(

cosα
sinα

)
, |v〉 =

(
sinα
cosα

)
, (3.201)
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where 0 < α < π/4. Suppose that Alice decides at random to send
either |u〉 or |v〉 to Bob, and Bob is to make a measurement to
determine what she sent. Since the two states are not orthogonal,
Bob cannot distinguish the states perfectly.

a) Bob realizes that he can’t expect to be able to identify Alice’s
qubit every time, so he settles for a procedure that is successful
only some of the time. He performs a POVM with three pos-
sible outcomes: ¬u, ¬v, or DON’T KNOW. If he obtains the
result ¬u, he is certain that |v〉 was sent, and if he obtains ¬v,
he is certain that |u〉 was sent. If the result is DON’T KNOW,
then his measurement is inconclusive. This POVM is defined
by the operators

E¬u = A(I − |u〉〈u|) , E¬v = A(I − |v〉〈v|) ,
EDK = (1− 2A)I +A (|u〉〈u|+ |v〉〈v|) , (3.202)

where A is a positive real number. How should Bob choose
A to minimize the probability of the outcome DK, and what
is this minimal DK probability (assuming that Alice chooses
from {|u〉, |v〉} equiprobably)? Hint: If A is too large, EDK

will have negative eigenvalues, and Eq.(3.202) will not be a
POVM.

b) Eve also wants to know what Alice is sending to Bob. Hoping
that Alice and Bob won’t notice, she intercepts each qubit
that Alice sends, by performing an orthogonal measurement
that projects onto the basis

{(
1
0

)
,
(

0
1

)}
. If she obtains the

outcome
(

1
0

)
, she sends the state |u〉 on to Bob, and if she

obtains the outcome
(

0
1

)
, she sends |v〉 on to Bob. Therefore

each time Bob’s POVM has a conclusive outcome, Eve knows
with certainty what that outcome is. But Eve’s tampering
causes detectable errors; sometimes Bob obtains a “conclusive”
outcome that actually differs from what Alice sent. What is the
probability of such an error, when Bob’s outcome is conclusive?

3.3 Minimal disturbance

Consider a game in which Alice decides at random (equiprobably)
whether to prepare one of two possible pure states of a single qubit,
either

|ψ〉 =
(

cosα
sinα

)
, or |ψ̃〉 =

(
sinα
cosα

)
, (3.203)

and sends the state to Bob. By performing an orthogonal measure-
ment in the basis {|0〉, |1〉}, Bob can identify the state with minimal
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error probability

(perror)optimal = sin2 α =
1
2
(1− sin θ) , (3.204)

where we have defined θ by

〈ψ|ψ̃〉 ≡ cos θ = sin(2α) . (3.205)

But now let’s suppose that Eve wants to eavesdrop on the state as it
travels from Alice to Bob. Like Bob, she wishes to extract optimal
information that distinguishes |ψ〉 from |ψ̃〉, and she also wants to
minimize the disturbance introduced by her eavesdropping, so that
Alice and Bob are not likely to notice that anything is amiss.

Eve realizes that the optimal POVM can be achieved by measure-
ment operators

M0 = |φ0〉〈0| , M1 = |φ1〉〈1| , (3.206)

where the vectors |φ0〉, and |φ1〉 are arbitrary. If Eve performs this
measurement, then Bob receives the state

ρ′ = cos2 α|φ0〉〈φ0|+ sin2 α|φ1〉〈φ1| , (3.207)

if Alice sent |ψ〉, and the state

ρ̃′ = sin2 α|φ0〉〈φ0|+ cos2 α|φ1〉〈φ1| , (3.208)

if Alice sent |ψ̃〉.
Eve wants the average fidelity of the state received by Bob to be as
large as possible. The quantity that she wants to minimize, which
we will call the “disturbance” D, measures how close this average
fidelity is to one:

D = 1− 1
2
(F + F̃ ) , (3.209)

where
F = 〈ψ|ρ′|ψ〉 , F̃ = 〈ψ̃|ρ̃′|ψ̃〉 . (3.210)

The purpose of this exercise is to examine how effectively Eve can re-
duce the disturbance by choosing her measurement operators prop-
erly.

a) Show that F + F̃ can be expressed as

F + F̃ = 〈φ0|A|φ0〉+ 〈φ1|B|φ1〉 , (3.211)
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where

A =
(

1− 2 cos2 α sin2 α cosα sinα
cosα sinα 2 cos2 α sin2 α

)
,

B =
(

2 cos2 α sin2 α cosα sinα
cosα sinα 1− 2 cos2 α sin2 α

)
. (3.212)

b) Show that if |φ0〉 and |φ1〉 are chosen optimally, the minimal
disturbance that can be attained is

Dmin(cos2 θ) =
1
2
(1−

√
1− cos2 θ + cos4 θ) . (3.213)

[Hint: We can choose |φ0〉 and |φ1〉 to maximize the two terms
in eq. (3.211) independently. The maximal value is the maxi-
mal eigenvalue of A, which since the eigenvalues sum to 1, can
be expressed as λmax = 1

2

(
1 +

√
1− 4 · det A

)
.] Of course,

Eve could reduce the disturbance further were she willing to
settle for a less than optimal probability of guessing Alice’s
state correctly.

c) Sketch a plot of the function Dmin(cos2 θ). Interpret its value for
cos θ = 1 and cos θ = 0. For what value of θ is Dmin largest?
Find Dmin and (perror)optimal for this value of θ.

3.4 The price of quantum state encryption
Alice and Bob are working on a top secret project. I can’t tell you
exactly what the project is, but I will reveal that Alice and Bob
are connected by a perfect quantum channel, and that Alice uses
the channel to send quantum states to Bob. Alice and Bob are
worried that an eavesdropper (Eve) might intercept some of Alice’s
transmissions. By measuring the intercepted quantum state, Eve
could learn something about what Alice is sending, and perhaps
make an inference about the nature of the project.
To protect against eavesdropping, Alice and Bob decide to encrypt
the quantum states that Alice sends. They share a secret key, a
string of random bits about which the eavesdropper knows nothing.
By consuming 2n bits of secret key, Alice can encrypt, and Bob can
decrypt, an arbitrary n-qubit state ρ. For every possible state ρ,
the encrypted state looks exactly the same to Eve, so she cannot
find out anything about ρ.
Here is how the encryption procedure works: We may express the
2n bit string x as x = x0x1x2 · · ·xn−1, where xi ∈ {0, 1, 2, 3}, and
denote a tensor product of n Pauli operators as

σ(x) = σx0 ⊗ σx2 ⊗ · · · ⊗ σxn−1 (3.214)
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(where σ0 = I). Note that σ(x)2 = I⊗n, the identity operator
acting on n qubits. To encrypt, Alice consults her random string
to determine x (which is chosen uniformly at random), and applies
σ(x) to the state, obtaining σ(x)ρσ(x). To decrypt, Bob, consults
the same string and applies σ(x) to recover ρ.

a) Since Eve does not know the secret key, to her the encrypted
state is indistinguishable from

E(ρ) =
1

22n

∑
x

σ(x)ρσ(x) . (3.215)

Show that, for any n-qubit state ρ

E(ρ) =
1
2n

I⊗n . (3.216)

Since E(ρ) is independent of ρ, no information about ρ is ac-
cessible to Eve.

b) Alice wonders if it is possible to encrypt the state using a shorter
key. Alice and Bob could use their shared randomness to sam-
ple an arbitrary probability distribution. That is, they could
agree on a set of N unitary matrices {Ua, a = 1, 2, 3, . . . , N},
and Alice could encrypt by applying Ua with probability pa.
Then Bob could decrypt by applying U−1

a . To Eve, the en-
crypted state would then appear to be

E ′(ρ) =
∑

a

paUaρU−1
a . (3.217)

Show that, if E ′(ρ) = I⊗n, then pa ≤ 2−2n for each a.
Hint: Note that E has an operator sum representation with
Kraus operators {σ(x)/2n} and that E ′ has an operator sum
representation with Kraus operators {√pa Ua}. Further-
more E = E ′. Therefore, there exists an M × M unitary
matrix Vax (where M = max(N, 22n)) such that

√
p

a
Ua =∑

x Vaxσ(x)/2n. Now express patr
(
UaU

†
a

)
in terms of V .

Remark: The result shows that encryption requires N ≥ 22n, and
that at least 2n bits of key are required to specify Ua. Thus the
encryption scheme in which σ(x) is applied is the most efficient
possible scheme. (For encryption to be effective, it is enough for
E(ρ) to be independent of ρ; it is not necessary that E(ρ) = I⊗n/2n.
But the same result applies under the weaker assumption that E(ρ)
is independent of ρ.)
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3.5 Unital maps and majorization

Recall that the action of a trace-preserving completely positive
(TPCP) map E can be expressed as

E(ρ) =
∑

a

MaρM †
a , (3.218)

where ∑
a

M †
aMa = I . (3.219)

A TPCP map is said to be unital if E(I) = I, or equivalently if∑
a

MaM
†
a = I . (3.220)

If A is a nonnegative Hermitian operator with unit trace (tr A = 1),
let λ(A) denote the vector of eigenvalues of A, which can be re-
garded as a probability vector. If A and B are nonnegative Hermi-
tian operators with unit trace, we say that A ≺ B (“A is majorized
by B”) if λ(A) ≺ λ(B). (Recall that for two probability vectors p
and q, we say that p ≺ q if there is a doubly stochastic matrix D
such that p = Dq.)

Show that if ρ is a density operator and E is a unital map, then

E(ρ) ≺ ρ . (3.221)

Hint: Express ρ = U∆U † where ∆ is diagonal and U is unitary,
and express ρ′ ≡ E(ρ) = V ∆′V †, where ∆′ is diagonal and V
is unitary. Then try to show that the diagonal entries of ∆′ can
be expressed as a doubly stochastic matrix acting on the diagonal
entries of ∆.

Remark: A unital map is the natural quantum generalization of
a doubly stochastic map (a doubly stochastic map can be regarded
as the special case of a unital map that preserves the basis in which
ρ is diagonal). The result of the exercise shows that a unital map
takes an input density operator to an output density operator that
is no less random than the input.

3.6 What transformations are possible for bipartite pure states?

Alice and Bob share a bipartite pure state |Ψ〉. Using a 2-LOCC
protocol, they wish to transform it to another bipartite pure state
|Φ〉. Furthermore, the protocol must be deterministic — the state
|Φ〉 is obtained with probability one irrespective of the outcomes of
the measurements that Alice and Bob perform.
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Suppose that these initial and final states have Schmidt decompo-
sitions

|Ψ〉 =
∑

i

√
(pΨ)i |αi〉 ⊗ |βi〉 , |Φ〉 =

∑
i

√
(pΦ)i |α′i〉 ⊗ |β′i〉 .

(3.222)
Show that if the deterministic transformation |Ψ〉 7→ |Φ〉 is possible,
then pΨ ≺ pΦ.

Hints: Using the Lo-Popescu Theorem from Exercise 2.9, we can
reduce the 2-LOCC to an equivalent 1-LOCC. That is, if the de-
terministic transformation is possible, then there is a generalized
measurement that can be applied by Alice, and an operation de-
pending on Alice’s measurement outcome that can be applied by
Bob, such that for each possible measurement outcome Alice’s mea-
surement followed by Bob’s operation maps |Ψ〉 to |Φ〉. Recall that
a generalized measurement is defined by a set of operators {Ma}
such that

∑
a M †

aMa = I, and that the action of the measurement
on a pure state |ψ〉 if outcome a occurs is

|ψ〉 7→ Ma|ψ〉√
〈ψ|M †

aMa|ψ〉
. (3.223)

Think about how the 1-LOCC protocol transforms Alice’s density
operator. You might want to use the polar decomposition: a matrix
A can be expressed as

√
AA† U , where U is unitary.

Remark: The converse is also true. Thus majorization provides the
necessary and sufficient condition for the deterministic transforma-
tion of one bipartite pure state to another (Nielsen’s Theorem). In
this respect, majorization defines a partial order on bipartite pure
states such that we may say that |Ψ〉 is no less entangled than |Φ〉
if pΨ ≺ pΦ.

3.7 Fidelity and overlap

The overlap of two probability distributions {pi} and {p̃i} is defined
as

Overlap({pi}, {p̃i}) ≡
∑

i

√
pi · p̃i . (3.224)

Suppose that we try to distinguish the two states ρ and ρ̃ by per-
forming the POVM {Ei}. Then the two corresponding probability
distributions have the overlap

Overlap(ρ, ρ̃; {Ei}) ≡
∑

i

√
tr ρEi ·

√
tr ρ̃Ei . (3.225)
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It turns out that the minimal overlap that can be achieved by any

POVM is related to the fidelity F (ρ, ρ̃) =
∥∥∥ρ̃ 1

2 ρ
1
2

∥∥∥2

1
:

min{Ei} [Overlap(ρ, ρ̃; {Ei})] =
√
F (ρ, ρ̃) . (3.226)

In this exercise, you will show that the square root of the fidelity
is a lower bound on the overlap, but not that the bound can be
saturated.

b) The space of linear operators acting on a Hilbert space is itself a
Hilbert space, where the inner product (A,B) of two operators
A and B is

(A,B) ≡ tr
(
A†B

)
. (3.227)

For this inner product, the Schwarz inequality becomes

|tr A†B| ≤
(
tr A†A

)1/2 (
tr B†B

)1/2
, (3.228)

Choosing A = ρ
1
2 E

1
2
i and B = Uρ̃

1
2 E

1
2
i (for an arbitrary uni-

tary U), use this form of the Schwarz inequality to show that

Overlap(ρ, ρ̃; {Ei}) ≥ |tr ρ
1
2 Uρ̃

1
2 | . (3.229)

c) Now use the polar decomposition

A = V
√

A†A (3.230)

(where V is unitary) to write

ρ̃
1
2 ρ

1
2 = V

√
ρ

1
2 ρ̃ρ

1
2 , (3.231)

and by choosing the unitary U in eq. (3.229) to be U = V −1,
show that

Overlap(ρ, ρ̃; {Ei}) ≥
√
F (ρ, ρ̃) . (3.232)

d) We can obtain an explicit formula for the fidelity in the case of
two states of a single qubit. Using the Bloch parametrization

ρ(~P ) =
1
2

(
I + ~σ · ~P

)
, (3.233)

show that the fidelity of two single-qubit states with polariza-
tion vectors ~P and ~Q is

F (~P , ~Q) =
1
2

(
1 + ~P · ~Q+

√
(1− ~P 2)(1− ~Q2)

)
. (3.234)
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Hint: First note that the eigenvalues of a 2× 2 matrix can be
expressed in terms of the trace and determinant of the matrix.
Then evaluate the determinant and trace of

(
ρ

1
2 ρ̃ρ

1
2

)
, and

calculate the fidelity using the corresponding expression for
the eigenvalues.

3.8 Semicausal and semilocal maps in the Heisenberg picture

In the Schrödinger picture, a completely positive (CP) map E leaves
observables fixed and takes an input density operator to an output
density operator, E : ρin 7→ ρout = E(ρin). In the Heisenberg pic-
ture, the dual map E∗ leaves density operators fixed and takes an in-
put observable to an output observable, E∗ : ain 7→ aout = E∗(ain).
If E has the operator sum representation E(ρ) =

∑
µ MaρM †

a, then
its dual has operator sum representation

E∗(a) =
∑

a

M †
aaMa . (3.235)

a) If E is a TPCP map, show that its dual E∗ can be represented
as

E∗(a) = C〈0|U †
AC (aA ⊗ IC) UAC |0〉C , (3.236)

where UAC is a unitary transformation on AC, aA is an ob-
servable on A, IC is the identity on C, and |0〉C is a fixed pure
state in HC . (You may use the corresponding property of the
TPCP map E .)

b) Consider a CP map E acting on a bipartite quantum system AB.
We way that E is semicausal if the map does not convey any
information from B to A. That is, suppose that Alice and Bob
share an initial state ρAB. Then if Bob performs an operation
on B before the map E acts, and Alice makes a measurement
on A after the map E acts, Alice’s measurement collects no
information about the operation that Bob performed. Show
that if E is semicausal, then there is an operation Ẽ on A such
that

E∗(aA ⊗ IB) = Ẽ∗(aA)⊗ IB . (3.237)

c) We say that E is semilocal if it can be performed by means of
local operations and one-way quantum communication from A
to B. That is, there is a message system C that can be passed
from Alice to Bob. We may assume that the initial state of
ABC is a product ρAB ⊗ ρC — the state of the message is
uncorrelated with the joint state held by Alice and Bob. To
apply E to ρAB, Alice applies an operation to AC, and sends
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C to Bob. Then Bob applies an operation to BC, and discards
C. Show that if E is semilocal, then there are CP maps GAC

from A to AC and FBC from BC to B such that

E∗ = (G∗AC ⊗ IB) ◦ (IA ⊗F∗
BC) ; (3.238)

here ◦ denotes composition of maps, with the map on the right
acting first.

d) Using the Heisenberg-picture characterizations of semicausal and
semilocal maps found in (b) and (c), show that a semilocal map
is semicausal, and express Ẽ in terms of F and G.

Remark. The result (d) is intuitively obvious — communication
from Alice to Bob cannot convey a signal from Bob to Alice. What
is less obvious is that the converse is also true: every semicausal
map is semilocal.

3.9 Damped harmonic oscillator at zero temperature

Let’s suppose the oscillations of a quantum harmonic oscillator with
circular frequency ω are damped because the oscillator can emit
photons with energy ~ω. When a photon is emitted, the oscillator
makes a transition from the energy eigenstate with energy En = n~ω
to the energy eigenstate with enenrgy En−1 = (n − 1)~ω, and the
photon carries away the lost energy. The probability that a photon
is emitted in an infinitesimal time interval dt is Γdt; we say that Γ is
the emission rate. Therefore, the coupled evolution of the oscillator
and the electromagnetic field for time interval dt can be described
as:

|Ψ(0)〉 = |ψ〉 ⊗ |0〉 7→

|Ψ(dt)〉 =
√

Γdt a|ψ〉 ⊗ |1〉+
(

I − 1
2
Γdt a†a

)
|ψ〉 ⊗ |0〉.

(3.239)

Here |ψ〉 is the initial normalized state vector of the oscillator and
{|0〉, |1〉} are orthonormal states of the electromagnetic field; |0〉
denotes the state in which no photon has been emitted and |1〉
denotes the state containing one photon. The operator a reduces
the excitation level of the oscillator by one unit, and the a†a factor
in the second term is needed to ensure that the evolution is unitary.

a) Check unitarity by verifying that 〈Ψ(dt)|Ψ(dt)〉 = 1, to linear
order in the small quantity dt.
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Because the states {|0〉, |1〉} of the electromagnetic field are orthog-
onal, the quantum state of the oscillator may decohere. Summing
over these basis states, we see that the initial pure state |ψ〉〈ψ| of
the oscillator evolves in time dt as

|ψ〉〈ψ| 7→ 〈0|Ψ(dt)〉〈Ψ(dt)|0〉+ 〈1|Ψ(dt)〉〈Ψ(dt)|1〉

= Γdt a|ψ〉〈ψ|a† +
(

I − 1
2
Γdt a†a

)
|ψ〉〈ψ|

(
I − 1

2
Γdt a†a

)
;

More generally, the initial (not necessarily pure) density operator ρ
of the oscillator evolves as

ρ 7→ Γdt aρa† +
(

I − 1
2
Γdt a†a

)
ρ

(
I − 1

2
Γdt a†a

)
. (3.240)

Now suppose that the initial state of the oscillator is a coherent
state

|α〉 = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n〉, (3.241)

where α is a complex number. For this problem, we will ignore the
usual dynamics of the oscillator that causes α to rotate uniformly in
time: α 7→ αe−iωt; equivalently, we will assume that the dynamics
is described in a “rotating frame” such that the rotation of α is
transformed away. We will only be interested in how the states of
the oscillator are affected by the damping described by eq.(3.240).

b) Show that, to linear order in dt,(
I − 1

2
Γdt a†a

)
≈ e−Γdt|α|2/2|α e−Γdt/2〉. (3.242)

Note that there are two things to check in eq.(3.242): that the
value of α decays with time, and that the normalization of the
state decays with time.

c) Verify that, also to linear order in dt,

Γdt a|α〉〈α|a† ≈ Γdt|α|2 |α e−Γdt/2〉〈α e−Γdt/2|, (3.243)

and thus show that, to linear order in dt, |α〉〈α| evolves as

|α〉〈α| 7→ |α e−Γdt/2〉〈α e−Γdt/2|. (3.244)
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By considering many consecutive small time increments, argue
that, in a finite time t, the initial coherent state evolves as

|α〉 7→ |α e−Γt/2〉. (3.245)

Thus, the state remains a (pure) coherent state at all times,
with the value of α decaying exponentially with time. Since
the energy stored in the oscillator is proportional to α2, which
decays like e−Γt, we say that Γ is the damping rate of the
oscillator.

Now consider what happens if the initial state of the oscillator is a
superposition of two coherent states:

|ψ〉 = Nα,β (|α〉+ |β〉) . (3.246)

Here Nα,β is a real nonnegative normalization constant (note that,
though the states |α〉 and β〉 are both normalized, they are not
orthogonal).

d) Evaluate 〈β|α〉, and determine Nα,β.

For example we might choose α = ξ0/
√

2 and β = −ξ0/
√

2, so
that the two superposed coherent states are minimum uncertainty
wavepackets (with width ∆ξ = 1/

√
2) centered at dimensionless

positions ±ξ0. If |α − β| � 1, then the two wavepackets are well
separated compared to their width, and we might say that oscilla-
tor state |ψ〉 is “in two places at once.” How quickly will such a
superposition of two separated wavepackets decohere?
The initial density operator of the oscillator is

ρ = N2
α,β

(
|α〉〈α|+ |α〉〈β|+ |β〉〈α|+ |β〉〈β|

)
. (3.247)

We already know from part (c) how the “diagonal” terms |α〉〈α| and
|β〉〈β| evolve, but what about the “off-diagonal” terms |α〉〈β| and
|β〉〈α|?

e) Using arguments similar to those used in parts (b) and (c), show
that in time t, the operator |α〉〈β| evolves as

|α〉〈β| 7→ eiφ(α,β)e−Γt|α−β|2/2|αe−Γt/2〉〈βe−Γt/2|, (3.248)

and find the phase factor eiφ(α,β). Thus the off-diagonal terms
decay exponentially with time, at a rate

Γdecohere =
1
2
Γ|α− β|2 (3.249)

proportional to the distance squared |α− β|2.
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f) Consider an oscillator with mass m = 1 g, circular frequency
ω = 1 s−1 and (very good) quality factor Q ≡ ω/Γ = 109. Thus
the damping time is very long: over 30 years. A superposition
of minimum uncertainty wavepackets is prepared, centered at
positions x = ±1 cm. Estimate the decoherence rate. (Wow!
For macroscopic objects, decoherence is really fast!)

3.10 One-qubit decoherence

The matrices I,σ1,σ2,σ3, where σ1,2,3 are the Pauli matrices and
bfI is the identity matrix, are a basis for the four-dimensional space
of 2× 2 matrices. Let us denote I as σ0.

a) Let E be a quantum operation (a completely positive map) acting
on the density operator ρ of a single qubit. Show that we may
express E(ρ) as

E(ρ) =
3∑

µ,ν=0

Eµν σµρσν , (3.250)

where the Eµν ’s are complex numbers satisfying Eµν = E∗νµ.
Hint: The operation E has an operator-sum representation
with operation elements {Ma}. Each Ma can be expanded in
the basis {σµ, µ = 0, 1, 2, 3}.

b) Find four independent conditions that must be satisfied by the
Eµν ’s in order that the operation E be trace-preserving (a chan-
nel).

c) A Hermitian 2× 2 operator can be expressed as

ρ(P ) =
1
2

3∑
µ=0

Pµσµ , (3.251)

where P0, P1, P2, P3 are real numbers. Show that a linear map
that takes Hermitian operators to Hermitian operators acts as

E(ρ(P )) = ρ(P ′) , (3.252)

where P ′ = MP and M is a real matrix. What is the (real)
dimension of the space of such linear maps?

d) Suppose that tr ρ = 1 and that E is trace preserving, so that
P0 = P ′

0 = 1. Show that

~P ′ = M ~P + ~v , (3.253)
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where ~P and ~P ′ are real three-component polarization vec-
tors, M is a real matrix, and ~v is a real three-component vec-
tor. What is the (real) dimension of the space of such trace-
preserving maps?

e) Express ~v in terms of the E0k’s. Hint: Use the result of (b).
f) On a Hilbert space of dimension d, the space of linear maps from

Hermitian operators to Hermitian operators has real dimension
d4. What is the dimension of the space of trace-preserving
maps? Hint: Count the number of independent conditions
that must be imposed to ensure that the map is trace preserv-
ing.

3.11 Orthogonal or not?

Consider a generalized measurement (POVM) on an d-dimensional
Hilbert space. There are d possible outcomes for the measure-
ment corresponding to the d nonnegative operators Ea, a =
0, 1, 2, . . . , d−1, where

∑d−1
a=0 Ea = I. Suppose that each Ea is one-

dimensional (has one nonzero eigenvalue). Is this POVM necessarily
an orthogonal measurement? Explain your answer.

3.12 Heterodyne measurement of an oscillator

The coherent states {|α〉, α ∈ C} are an overcomplete basis for a
one-dimensional harmonic oscillator, satisfying

〈β|α〉 = exp
(
−1

2
|β|2 + β∗α− 1

2
|α|2

)
(3.254)

a) Show that ∫
d2α Eα = I , (3.255)

where
Eα =

1
π
|α〉〈α| . (3.256)

Hint: Evaluate matrix elements of both sides of the equation
between coherent states.

b) Since the Eα’s provide a partition of unity, they define a POVM
(an “ideal heterodyne measurement” of the oscillator). Sup-
pose that a coherent state |β〉 is prepared, and that an ideal
heterodyne measurement is performed, so that the coherent
state |α〉 is obtained with probability distribution P (α) d2α =
〈β|Eα|β〉 d2α. With what fidelity does the measurement out-
come |α〉 approximate the initial coherent state |β〉, averaged
over the possible outcomes?
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3.13 Master equation for the depolarizing channel

a) Consider a depolarizing qubit that is subjected to “Pauli errors”
at a rate Γ̃, where σ1, σ2, and σ3 errors are all equally likely.
The depolarization can be described by a master equation with

Lindblad operators
√

Γ̃/3 σ1,
√

Γ̃/3 σ2, and
√

Γ̃/3 σ3. Show
that this master equation has the form

ρ̇ = −i[H,ρ]− Γ
(

ρ− 1
2
I

)
. (3.257)

How is Γ related to Γ̃?
b) Up to an irrelevant term proportional to the identity, the most

general 2× 2 Hermitian matrix is

H =
ω

2
n · σ , (3.258)

where n is a unit vector. Use this form of H and the Bloch
parametrization

ρ =
1
2
(I + ~P · ~σ) , (3.259)

to show that the master equation eq. (3.257) can be rewritten
as

~̇P = ω(n× ~P )− Γ~P . (3.260)

Thus the polarization precesses uniformly with circular fre-
quency ω about the n-axis as it contracts with lifetime Γ−1.

c) Alice and Bob play a game in which Alice decides to “turn on”
one of the two Hamiltonians

H =
ω

2
σ3 , H ′ = 0 , (3.261)

and Bob is to guess which Hamiltonian Alice chose. Bob has
a supply of qubits, and he can observe whether the qubits
“precess” in order to distinguish H from H ′. However, his
qubits are also subject to depolarization at the rate Γ as in
eq. (3.257). Suppose that Bob prepares his qubits at time 0
with polarization ~P0 = (1, 0, 0); after time t elapses, (1) find
the polarization ~P (t) if the Hamiltonian is H and (2) find the
polarization ~P ′(t) if the Hamiltonian is H ′.

d) What is Bob’s optimal measurement for distinguishing the po-
larizations ~P (t) and ~P ′(t) (assuming that Alice is as likely to
choose H as H ′? What is his optimal probability of error
(pe)opt (t)?
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e) The probability of error is smallest if Bob waits for a time tbest

before measuring. Find tbest as a function of Γ and ω. Does
your answer make sense in the limits Γ � ω and Γ � ω?
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4
Quantum Entanglement

4.1 Nonseparability of EPR pairs

4.1.1 Hidden quantum information

The deep ways that quantum information differs from classical informa-
tion involve the properties, implications, and uses of quantum entangle-

ment. Recall from §2.4.1 that a bipartite pure state is entangled if its
Schmidt number is greater than one. Entangled states are interesting
because they exhibit correlations that have no classical analog. We will
study these correlations in this chapter.

Recall, for example, the maximally entangled state of two qubits (or
EPR pair) defined in §3.4.1:

|φ+〉AB =
1√
2

(|00〉AB + |11〉AB) . (4.1)

“Maximally entangled” means that when we trace over qubit B to find
the density operator ρA of qubit A, we obtain a multiple of the identity
operator

ρA = trB(|φ+〉〈φ+|) =
1

2
IA , (4.2)

(and similarly ρB = 1
2IB). This means that if we measure spin A along

any axis, the result is completely random — we find spin up with proba-
bility 1/2 and spin down with probability 1/2. Therefore, if we perform
any local measurement of A or B, we acquire no information about the
preparation of the state, instead we merely generate a random bit. This
situation contrasts sharply with case of a single qubit in a pure state;
there we can store a bit by preparing, say, either | ↑n̂〉 or | ↓n̂〉, and we
can recover that bit reliably by measuring along the n̂-axis. With two

4
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qubits, we ought to be able to store two bits, but in the state |φ+〉AB this
information is hidden; at least, we can’t acquire it by measuring A or B.

In fact, |φ+〉 is one member of a basis of four mutually orthogonal states
for the two qubits, all of which are maximally entangled — the basis

|φ±〉 =
1√
2
(|00〉 ± |11〉) ,

|ψ±〉 =
1√
2
(|01〉 ± |10〉) , (4.3)

introduced in §3.4.1. Imagine that Alice and Bob play a game with Char-
lie. Charlie prepares one of these four states, thus encoding two bits in
the state of the two-qubit system. One bit is the parity bit (|φ〉 or |ψ〉):
are the two spins aligned or antialigned? The other is the phase bit (+ or
−): what superposition was chosen of the two states of like parity. Then
Charlie sends qubit A to Alice and qubit B to Bob. To win the game,
Alice (or Bob) has to identify which of the four states Charlie prepared.

Of course, if Alice and Bob bring their qubits together, they can iden-
tify the state by performing an orthogonal measurement that projects
onto the {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} basis. But suppose that Alice and Bob
are in different cities, and that they are unable to communicate at all.
Acting locally, neither Alice nor Bob can collect any information about
the identity of the state.

What they can do locally is manipulate this information. Alice may
apply σ3 to qubit A, flipping the relative phase of |0〉A and |1〉A. This
action flips the phase bit stored in the entangled state:

|φ+〉 ↔ |φ−〉 ,
|ψ+〉 ↔ |ψ−〉 . (4.4)

On the other hand, she can apply σ1, which flips her spin (|0〉A ↔ |1〉A),
and also flips the parity bit of the entangled state:

|φ+〉 ↔ |ψ+〉 ,
|φ−〉 ↔ −|ψ−〉 . (4.5)

Bob can manipulate the entangled state similarly. In fact, as we discussed
in §2.4, either Alice or Bob can perform a local unitary transformation
that changes one maximally entangled state to any other maximally en-
tangled state.∗ What their local unitary transformations cannot do is alter

∗ But of course, this does not suffice to perform an arbitrary unitary transformation on
the four-dimensional space HA ⊗HB, which contains states that are not maximally
entangled. The maximally entangled states are not a subspace — a superposition of
maximally entangled states typically is not maximally entangled.
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ρA = ρB = 1
2I — the information they are manipulating is information

that neither one can read.

But now suppose that Alice and Bob are able to exchange (classical)
messages about their measurement outcomes; together, then, they can
learn about how their measurements are correlated. The entangled basis
states are conveniently characterized as the simultaneous eigenstates of
two commuting observables:

σ
(A)
1 ⊗ σ

(B)
1 ,

σ
(A)
3 ⊗ σ

(B)
3 ; (4.6)

the eigenvalue of σ
(A)
3 ⊗ σ

(B)
3 is the parity bit, and the eigenvalue of

σ
(A)
1 ⊗σ

(B)
1 is the phase bit. Since these operators commute, they can in

principle be measured simultaneously. But they cannot be measured si-
multaneously if Alice and Bob perform localized measurements. Alice and
Bob could both choose to measure their spins along the z-axis, preparing

a simultaneous eigenstate of σ
(A)
3 and σ

(B)
3 . Since σ

(A)
3 and σ

(B)
3 both

commute with the parity operator σ
(A)
3 ⊗σ

(B)
3 , their orthogonal measure-

ments do not disturb the parity bit, and they can combine their results

to infer the parity bit. But σ
(A)
3 and σ

(B)
3 do not commute with phase

operator σ
(A)
1 ⊗ σ

(B)
1 , so their measurement disturbs the phase bit. On

the other hand, they could both choose to measure their spins along the
x-axis; then they would learn the phase bit at the cost of disturbing the
parity bit. But they can’t have it both ways. To have hope of acquiring
the parity bit without disturbing the phase bit, they would need to learn

about the product σ
(A)
3 ⊗ σ

(B)
3 without finding out anything about σ

(A)
3

and σ
(B)
3 separately. That cannot be done locally.

Now let us bring Alice and Bob together, so that they can operate on
their qubits jointly. How might they acquire both the parity bit and the
phase bit of their pair? By applying an appropriate unitary transforma-
tion, they can rotate the entangled basis {|φ±〉, |ψ±〉} to the unentan-
gled basis {|00〉, |01〉, |10〉, |11〉}. Then they can measure qubits A and
B separately to acquire the bits they seek. How is this transformation
constructed?

This is a good time to introduce notation that will be used heavily
in later chapters, the quantum circuit notation. Qubits are denoted by
horizontal lines, and the single-qubit unitary transformation U is denoted:

U
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A particular single-qubit unitary we will find useful is the Hadamard

transform

H =
1√
2

(

1 1
1 −1

)

=
1√
2
(σ1 + σ3) , (4.7)

which has the properties

H2 = I , (4.8)

and

Hσ1H = σ3 ,

Hσ3H = σ1 . (4.9)

(We can envision H (up to an overall phase) as a θ = π rotation about
the axis n̂ = 1√

2
(n̂1 + n̂3) that rotates x̂ to ẑ and vice-versa; we have

U (n̂, θ) = I cos
θ

2
+ in̂ · ~σ sin

θ

2
= i

1√
2
(σ1 + σ3) = iH .)

(4.10)

Also useful is the two-qubit transformation known as the reversible XOR
or controlled-NOT transformation; it acts as

CNOT : |a, b〉 → |a, a⊕ b〉 , (4.11)

on the basis states a, b = 0, 1, where a ⊕ b denotes addition modulo 2.
The CNOT is denoted:

a

b

w

�
��

a⊕ b

a

Thus this transformation flips the second bit if the first is 1, and acts
trivially if the first bit is 0; it has the property

(CNOT)2 = I ⊗ I . (4.12)

We call a the control (or source) bit of the CNOT, and b the target bit.
By composing these “primitive” transformations, or quantum gates, we

can build other unitary transformations. For example, the “circuit”

H u

i
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(to be read from left to right) represents the product of H applied to
the first qubit followed by CNOT with the first bit as the source and
the second bit as the target. It is straightforward to see that this circuit
transforms the standard basis to the entangled basis,

|00〉 → 1√
2
(|0〉+ |1〉)|0〉 → |φ+〉,

|01〉 → 1√
2
(|0〉+ |1〉)|1〉 → |ψ+〉,

|10〉 → 1√
2
(|0〉 − |1〉)|0〉 → |φ−〉,

|11〉 → 1√
2
(|0〉 − |1〉)|1〉 → |ψ−〉, (4.13)

so that the first bit becomes the phase bit in the entangled basis, and the
second bit becomes the parity bit.

Similarly, we can invert the transformation by running the circuit back-
wards (since both CNOT and H square to the identity); if we apply the
inverted circuit to an entangled state, and then measure both bits, we
can learn the value of both the phase bit and the parity bit.

Of course, H acts on only one of the qubits; the “nonlocal” part of
our circuit is the controlled-NOT gate — this is the operation that estab-
lishes or removes entanglement. If we could only perform an “interstellar
CNOT,” we would be able to create entanglement among distantly sep-
arated pairs, or extract the information encoded in entanglement. But
we can’t. To do its job, the CNOT gate must act on its target without
revealing the value of its source. Local operations and classical commu-
nication will not suffice.

4.1.2 Einstein locality and hidden variables

Einstein was disturbed by quantum entanglement. Eventually, he along
with Podolsky and Rosen (EPR) sharpened their discomfort into what
they regarded as a paradox. As later reinterpreted by Bohm, the situa-
tion they described is really the same as that discussed in §2.5.3. Given
a maximally entangled state of two qubits shared by Alice and Bob, Al-
ice can choose one of several possible measurements to perform on her
spin that will realize different possible ensemble interpretations of Bob’s
density matrix; for example, she can prepare either σ1 or σ3 eigenstates.

We have seen that Alice and Bob are unable to exploit this phenomenon
for faster-than-light communication. Einstein knew this but he was still
dissatisfied. He felt that in order to be considered a complete description
of physical reality a theory should meet a stronger criterion, that might
be called Einstein locality (also sometimes known as local realism):
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Suppose that A and B are spacelike separated systems. Then in a
complete description of physical reality an action performed on system
A must not modify the description of system B.

But if A and B are entangled, a measurement of A is performed and a
particular outcome is known to have been obtained, then the density ma-
trix of B does change. Therefore, by Einstein’s criterion, the description
of a quantum system by a wavefunction or density operator cannot be
considered complete.

Einstein seemed to envision a more complete description that would
remove the indeterminacy of quantum mechanics. A class of theories with
this feature are called local hidden-variable theories. In a hidden-variable
theory, measurement is actually fundamentally deterministic, but appears
to be probabilistic because some degrees of freedom are not precisely
known. For example, perhaps when a spin is prepared in what quantum
theory would describe as the pure state | ↑ẑ〉, there is actually a deeper
theory in which the state prepared is parametrized as (ẑ, λ) where λ (0 ≤
λ ≤ 1) is the hidden variable. Suppose that with present-day experimental
technique, we have no control over λ, so when we prepare the spin state,
λ might take any value — the probability distribution governing its value
is uniform on the unit interval.

Now suppose that when we measure the spin along an axis n̂ rotated
by θ from the ẑ axis, the outcome will be

| ↑n̂〉 , for 0 ≤ λ ≤ cos2
θ

2
,

| ↓n̂〉 , for cos2
θ

2
< λ ≤ 1 . (4.14)

If we know λ, the outcome is deterministic, but if λ is completely un-
known, then the probability distribution governing the measurement will
agree with the predictions of quantum theory. In a hidden-variable the-
ory, the randomness of the measurement outcome is not intrinsic; rather,
it results from ignorance — our description of the system is not the most
complete possible description.

Now, what about entangled states? When we say that a hidden-variable
theory is local, we mean that it satisfies the Einstein locality constraint.
A measurement of A does not modify the values of the variables that
govern the measurements of B. Rather, when Alice measures her half of
an entangled state that she shares with Bob, she gains information about
the values of the hidden variables, sharpening her ability to predict what
Bob will find when he measures the other half. This seems to be what
Einstein had in mind when he envisioned a more complete description.
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4.2 The Bell inequality

4.2.1 Three quantum coins

Is a local hidden-variable theory merely a reformulation of quantum me-
chanics, or is it a testable hypothesis? John Bell’s fruitful idea was to test
Einstein locality by considering the quantitative properties of the correla-
tions between measurement outcomes obtained by two parties, Alice and
Bob, who share an entangled state. Let us consider an example of the
sort of correlations that Alice and Bob would like to explain.

The system that Alice and Bob are studying might be described this
way: Alice, in Pasadena, has in her possession three coins laid out on a
table, labeled 1, 2, 3. Each coin has either its heads (H) or tails (T ) side
facing up, but it is hidden under an opaque cover, so that Alice is not able
to tell whether it is an H or a T . Alice can uncover any one of the three
coins, and so learn its value (H or T ). However, as soon as that one coin
is uncovered, the other two covered coins instantly disappear in a puff of
smoke, and Alice never gets an opportunity to uncover the other coins.
She has many copies of the three-coin set, and eventually she learns that,
no matter which coin she exposes, she is just as likely to find an H as a
T . Bob, in Chicago, has a similar set of coins, also labeled 1, 2, 3. He too
finds that each one of his coins, when revealed, is as likely to be an H as
a T .

In fact, Alice and Bob have many identical copies of their shared set
of coins, so they conduct an extensive series of experiments to investigate
how their coin sets are correlated with one another. They quickly make
a remarkable discovery: Whenever Alice and Bob uncover coins with the
same label (whether 1, 2, or 3), they always find coins with the same value
— either both are H or both are T . They conduct a million trials, just
to be sure, and it works every single time! Their coin sets are perfectly
correlated.

Alice and Bob suspect that they have discovered something important,
and they frequently talk on the phone to brainstorm about the implica-
tions of their results. One day, Alice is in an especially reflective mood:

Alice: You know, Bob, sometimes it’s hard for me to decide which of
the three coins to uncover. I know that if I uncover coin 1, say, then
coins 2 and 3 will disappear, and I’ll never have a chance to find
out the values of those coins. Once, just once, I’d love to be able to
uncover two of the three coins, and find out whether each is an H
or a T . But I’ve tried and it just isn’t possible — there’s no way to
look at one coin and prevent the other from going poof!

Bob: [Long pause] Hey . . . wait a minute Alice, I’ve got an idea . . .
Look, I think there is a way for you to find the value of two of your
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coins, after all! Let’s say you would like to uncover coin 1 and coin
2. Well, I’ll uncover my coin 2 here in Chicago, and I’ll call you to
tell you what I found, let’s say its an H . We know, then, that you
are certain to find an H if you uncover your coin 2 also. There’s
absolutely no doubt about that, because we’ve checked it a million
times. Right?

Alice: Right . . .

Bob: But now there’s no reason for you to uncover your coin 2; you
know what you’ll find anyway. You can uncover coin 1 instead.
And then you’ll know the value of both coins.

Alice: Hmmm . . . yeah, maybe. But we won’t be sure, will we? I mean,
yes, it always worked when we uncovered the same coin before,
but this time you uncovered your coin 2, and your coins 1 and 3
disappeared, and I uncovered my coin 1, and my coins 2 and 3
disappeared. There’s no way we’ll ever be able to check anymore
what would have happened if we had both uncovered coin 2.

Bob: We don’t have to check that anymore, Alice; we’ve already checked
it a million times. Look, your coins are in Pasadena and mine are in
Chicago. Clearly, there’s just no way that my decision to uncover
my coin 2 can have any influence on what you’ll find when you
uncover your coin 2. That’s not what’s happening. It’s just that
when I uncover my coin 2 we’re collecting the information we need
to predict with certainty what will happen when you uncover your
coin 2. Since we’re already certain about it, why bother to do it!

Alice: Okay, Bob, I see what you mean. Why don’t we do an experiment
to see what really happens when you and I uncover different coins?

Bob: I don’t know, Alice. We’re not likely to get any funding to do
such a dopey experiment. I mean, does anybody really care what
happens when I uncover coin 2 and you uncover coin 1?

Alice: I’m not sure, Bob. But I’ve heard about a theorist named Bell.
They say that he has some interesting ideas about the coins. He
might have a theory that makes a prediction about what we’ll find.
Maybe we should talk to him.

Bob: Good idea! And it doesn’t really matter whether his theory makes
any sense or not. We can still propose an experiment to test his
prediction, and they’ll probably fund us.

So Alice and Bob travel to CERN to have a chat with Bell. They tell
Bell about the experiment they propose to do. Bell listens closely, but for
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a long time he remains silent, with a faraway look in his eyes. Alice and
Bob are not bothered by his silence, as they rarely understand anything
that theorists say anyway. But finally Bell speaks.

Bell: I think I have an idea . . . . When Bob uncovers his coin in Chicago,
that can’t exert any influence on Alice’s coin in Pasadena. Instead,
what Bob finds out by uncovering his coin reveals some information

about what will happen when Alice uncovers her coin.

Bob: Well, that’s what I’ve been saying . . .

Bell: Right. Sounds reasonable. So let’s assume that Bob is right about
that. Now Bob can uncover any one of his coins, and know for sure
what Alice will find when she uncovers the corresponding coin. He
isn’t disturbing her coin in any way; he’s just finding out about it.
We’re forced to conclude that there must be some hidden variables

that specify the condition of Alice’s coins. And if those variables
are completely known, then the value of each of Alice’s coins can be
unambiguously predicted.

Bob: [Impatient with all this abstract stuff] Yeah, but so what?

Bell: When your correlated coin sets are prepared, the values of the hid-
den variables are not completely specified; that’s why any one coin
is as likely to be an H as a T . But there must be some probabil-
ity distribution P (x, y, z) (with x, y, z ∈ {H, T}) that characterizes
the preparation and governs Alice’s three coins. These probabilities
must be nonnegative, and they sum to one:

∑

x,y,z∈{H,T }
P (x, y, z) = 1 . (4.15)

Alice can’t uncover all three of her coins, so she can’t measure
P (x, y, z) directly. But with Bob’s help, she can in effect uncover
any two coins of her choice. Let’s denote with Psame(i, j), the prob-
ability that coins i and j (i, j = 1, 2, 3) have the same value, either
both H or both T . Then we see that

Psame(1, 2) = P (HHH) + P (HHT ) + P (TTH) + P (TTT ) ,

Psame(2, 3) = P (HHH) + P (THH) + P (HTT ) + P (TTT ) ,

Psame(1, 3) = P (HHH) + P (HTH) + P (THT ) + P (TTT ) ,

(4.16)

and it immediately follows from eq. (4.15) that

Psame(1, 2) + Psame(2, 3) + Psame(1, 3)

= 1 + 2 P (HHH) + 2 P (TTT ) ≥ 1 . (4.17)
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So that’s my prediction: Psame should obey the inequality

Psame(1, 2) + Psame(2, 3) + Psame(1, 3) ≥ 1 . (4.18)

You can test it my doing your experiment that “uncovers” two coins
at a time.

Bob: Well, I guess the math looks right. But I don’t really get it. Why
does it work?

Alice: I think I see . . . . Bell is saying that if there are three coins on a
table, and each one is either an H or a T , then at least two of the
three have to be the same, either both H or both T . Isn’t that it,
Bell?

Bell stares at Alice, a surprised look on his face. His eyes glaze, and
for a long time he is speechless. Finally, he speaks:

Bell: Yes

So Alice and Bob are amazed and delighted to find that Bell is that
rarest of beasts — a theorist who makes sense. With Bell’s help, their pro-
posal is approved and they do the experiment, only to obtain a shocking
result. After many careful trials, they conclude, to very good statistical
accuracy that

Psame(1, 2) ' Psame(2, 3) ' Psame(1, 3) ' 1

4
, (4.19)

and hence

Psame(1, 2) + Psame(2, 3) + Psame(1, 3) ' 3 · 1

4
=

3

4
< 1 .

(4.20)

The correlations found by Alice and Bob flagrantly violate Bell’s inequal-
ity!

Alice and Bob are good experimenters, but dare not publish so dis-
turbing a result unless they can find a plausible theoretical interpreta-
tion. Finally, they become so desperate that they visit the library to see
if quantum mechanics can offer any solace . . .

4.2.2 Quantum entanglement vs. Einstein locality

What Alice and Bob read about is quantum entanglement. Eventually,
they learn that their magical coins are governed by a maximally entangled
state of two qubits. What Alice and Bob really share are many copies of
the state |ψ−〉. When Alice uncovers a coin, she is measuring her qubit
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along one of three possible axes, no two of which are orthogonal. Since
the measurements don’t commute, Alice can uncover only one of her three
coins. Similarly, when Bob uncovers his coin, he measures his member
of the entangled pair along any one of three axes, so he too is limited to
uncovering just one of his three coins. But since Alice’s measurements
commute with Bob’s, they can uncover one coin each, and study how
Alice’s coins are correlated with Bob’s coins.

To help Alice and Bob interpret their experiment, let’s see what quan-
tum mechanics predicts about these correlations. The state |ψ−〉 has the
convenient property that it remains invariant if Alice and Bob each apply
the same unitary transformation,

U ⊗ U |ψ〉 = |ψ〉 . (4.21)

For infinitesimal unitaries, this becomes the property

(

~σ(A) + ~σ(B)
)

|ψ−〉 = 0 (4.22)

(the state has vanishing total angular momentum, as you can easily check
by an explicit computation). Now consider the expectation value

〈ψ−|
(

~σ(A) · â
) (

~σ(B) · b̂
)

|ψ−〉 , (4.23)

where â and b̂ are unit 3-vectors. Acting on |ψ−〉, we can replace ~σ(B) by

−~σ(A); therefore, the expectation value can be expressed as a property of
Alice’s system, which has density operator ρA = 1

2I:

− 〈ψ−|
(

~σ(A) · â
) (

~σ(A) · b̂
)

|ψ−〉

= −aibjtr
(

ρAσ
(A)
i σ

(A)
j

)

= −aibjδij = −â · b̂ = − cos θ ,
(4.24)

where θ is the angle between the axes â and b̂. Thus we find that the
measurement outcomes are always perfectly anticorrelated when we mea-
sure both spins along the same axis â, and we have also obtained a more
general result that applies when the two axes are different.

The projection operator onto the spin up (spin down) states along n̂ is
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E(n̂,±) = 1
2 (I ± n̂ · ~σ); we therefore obtain

P (++) = 〈ψ−|E(A)(â,+)E(B)(b̂,+)|ψ−〉 =
1

4
(1 − cos θ) ,

P (−−) = 〈ψ−|E(A)(â,−)E(B)(b̂,−)|ψ−〉 =
1

4
(1 − cos θ) ,

P (+−) = 〈ψ−|E(A)(â,+)E(B)(b̂,−)|ψ−〉 =
1

4
(1 + cos θ) ,

P (−+) = 〈ψ−|E(A)(â,−)E(B)(b̂,+)|ψ−〉 =
1

4
(1 + cos θ) ;

(4.25)

here P (++) is the probability that Alice and Bob both obtain the spin-

up outcome when Alice measures along â and Bob measures along b̂, etc.
The probability that their outcomes are the same is

Psame = P (++) + P (−−) =
1

2
(1 − cos θ) , (4.26)

and the probability that their outcomes are opposite is

Popposite = P (+−) + P (−+) =
1

2
(1 + cos θ) . (4.27)

Now suppose that Alice measures her spin along one of the three sym-
metrically distributed axes in the x− z plane,

â1 = (0, 0, 1) ,

â2 =

(√
3

2
, 0,−1

2

)

,

â3 =

(

−
√

3

2
, 0,−1

2

)

, (4.28)

so that

â1 · â2 = â2 · â3 = â3 · â1 = −1

2
. (4.29)

And suppose that Bob measures along one of three axes that are diamet-
rically opposed to Alice’s:

b̂1 = −â1 , b̂2 = −â2 , b̂3 = −â3 . (4.30)

When Alice and Bob choose opposite axes, then θ = 180◦ and Psame = 1.
But otherwise θ = ±60◦ so that cos θ = 1/2 and Psame = 1/4. This is just
the behavior that Alice and Bob found in their experiment, in violation
of Bell’s prediction.
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Bell’s logic seemed compelling but something went wrong, so we are
forced to reconsider his tacit assumptions. First, Bell assumed that there
is a joint probability distribution that governs the possible outcomes of
all measurements that Alice and Bob might perform. This is the hidden-
variable hypothesis. He imagines that if the values of the hidden variables
are exactly known, then the outcome of any measurement can be predicted
with certainty — measurement outcomes are described probabilistically
because the values of the hidden variables are drawn from an ensemble
of possible values. Second, Bell assumed that Bob’s decision about what
to measure in Chicago has no effect on the hidden variables that govern
Alice’s measurement in Pasadena. This is the assumption that the hid-
den variables are local. If we accept these two assumptions, there is no
escaping Bell’s conclusion. We have found that the correlations predicted
by quantum theory are incompatible with theses assumptions.

What are the implications? Perhaps the moral of the story is that it
can be dangerous to reason about what might have happened, but didn’t
actually happen — what are sometimes called counterfactuals. Of course,
we do this all the time in our everyday lives, and we usually get away with
it; reasoning about counterfactuals seems to be acceptable in the classical
world, but sometimes it gets us into trouble in the quantum world. We
claimed that Alice knew what would happen when she measured along â1,
because Bob measured along −â1, and every time we have ever checked,
their measurement outcomes are always perfectly correlated. But Alice
did not measure along â1; she measured along â2 instead. We got into
trouble by trying to assign probabilities to the outcomes of measurements
along â1, â2, and â3, even though Alice can perform just one of those
measurements. In quantum theory, assuming that there is a probability
distribution that governs the outcomes of all three measurements that
Alice might have made, even though she was able to carry out only one
of these measurements, leads to mathematical inconsistencies, so we had
better not do it. We have affirmed Bohr’s principle of complementary —
we are forbidden to consider simultaneously the possible outcomes of two
mutually exclusive experiments.

One who rejects the complementarity principle may prefer to say that
violations of the Bell inequalities (confirmed experimentally) have exposed
an essential nonlocality built into the quantum description of Nature. If

we do insist that it is legitimate to talk about outcomes of mutually ex-
clusive experiments then we are forced to conclude that Bob’s choice of
measurement actually exerted a subtle influence on the outcome of Al-
ice’s measurement. Thus advocates of this viewpoint speak of “quantum
nonlocality.”

By ruling out local hidden variables, Bell demolished Einstein’s dream
that the indeterminacy of quantum theory could be eradicated by adopt-
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ing a more complete, yet still local, description of Nature. If we accept
locality as an inviolable principle, then we are forced to accept random-
ness as an unavoidable and intrinsic feature of quantum measurement,
rather than a consequence of incomplete knowledge.

To some, the peculiar correlations unmasked by Bell’s inequality call
out for a deeper explanation than quantum mechanics seems to provide.
They see the EPR phenomenon as a harbinger of new physics awaiting
discovery. But they may be wrong. We have been waiting over 65 years
since EPR, and so far no new physics.

The human mind seems to be poorly equipped to grasp the correlations
exhibited by entangled quantum states, and so we speak of the weirdness
of quantum theory. But whatever your attitude, experiment forces you
to accept the existence of the weird correlations among the measurement
outcomes. There is no big mystery about how the correlations were estab-
lished — we saw that it was necessary for Alice and Bob to get together
at some point to create entanglement among their qubits. The novelty is
that, even when A and B are distantly separated, we cannot accurately
regard A and B as two separate qubits, and use classical information to
characterize how they are correlated. They are more than just correlated,
they are a single inseparable entity. They are entangled.

4.3 More Bell inequalities

4.3.1 CHSH inequality

Experimental tests of Einstein locality typically are based on another
form of the Bell inequality, which applies to a situation in which Alice can
measure either one of two observables a and a′, while Bob can measure
either b or b′. Suppose that the observables a, a′, b, b′ take values in
{±1}, and are functions of hidden random variables.

If a,a′ = ±1, it follows that either a+a′ = 0, in which case a−a′ = ±2,
or else a − a′ = 0, in which case a + a′ = ±2; therefore

C ≡ (a + a′)b + (a− a′)b′ = ±2 . (4.31)

(Here is where the local hidden-variable assumption sneaks in — we have
imagined that values in {±1} can be assigned simultaneously to all four
observables, even though it is impossible to measure both of a and a′, or
both of b and b′.) Evidently

|〈C〉| ≤ 〈|C|〉 = 2, (4.32)

so that

|〈ab〉 + 〈a′b〉 + 〈ab′〉 − 〈a′b′〉| ≤ 2. (4.33)
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This result is called the CHSH inequality (for Clauser-Horne-Shimony-
Holt). It holds for any random variables a,a′, b, b′ taking values in ±1
that are governed by a joint probability distribution.

To see that quantum mechanics violates the CHSH inequality, let a,a′

denote the Hermitian operators

a = ~σ(A) · â , a′ = ~σ(A) · â′ , (4.34)

acting on a qubit in Alice’s possession, where â, â′ are unit 3-vectors.
Similarly, let b, b′ denote

b = ~σ(B) · b̂ , b′ = ~σ(B) · b̂′ , (4.35)

acting on Bob’s qubit. Each observable has eigenvalues ±1 so that an
outcome of a measurement of the observable takes values in ±1.

Recall that if Alice and Bob share the maximally-entangled state |ψ−〉,
then

〈ψ−|
(

~σ(A) · â
)(

~σ(B) · b̂
)

|ψ−〉 = −â · b̂ = − cos θ ,
(4.36)

where θ is the angle between â and b̂. Consider the case where â′, b̂, â, b̂′

are coplanar and separated by successive 45◦ angles. so that the quantum-
mechanical predictions are

〈ab〉 = 〈a′b〉 = 〈ab′〉 = − cos
π

4
= − 1√

2
,

〈a′b′〉 = − cos
3π

4
=

1√
2
. (4.37)

The CHSH inequality then becomes

4 · 1√
2

= 2
√

2 ≤ 2 , (4.38)

which is clearly violated by the quantum-mechanical prediction.

4.3.2 Maximal violation

In fact the case just considered provides the largest possible quantum-
mechanical violation of the CHSH inequality, as we can see by the fol-
lowing argument. Suppose that a,a′, b, b′ are Hermitian operators with
eigenvalues ±1, so that

a2 = a′2 = b2 = b′2 = I , (4.39)
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and suppose that “Alice’s observables” a,a′ commute with “Bob’s ob-
servables” b, b′:

0 = [a, b] = [a, b′] = [a′, b] = [a′, b′] . (4.40)

Defining

C = ab + a′b + ab′ − a′b′ , (4.41)

we evaluate

C2 =

I +aa′ +bb′ −aa′bb′

+a′a +I +a′abb′ −bb′

+b′b +aa′b′b +I −aa′

−a′ab′b −b′b −a′a +I

, (4.42)

using eq. (4.39). All the quadratic terms cancel pairwise, so that we are
left with

C2 = 4I − aa′bb′ + a′abb′ + aa′b′b − a′ab′b

= 4I − [a,a′][b, b′] . (4.43)

Now recall that the sup norm ‖ M ‖sup of a bounded operator M is
defined by

‖ M ‖sup=
sup

|ψ〉

(‖ M |ψ〉 ‖
‖ |ψ〉 ‖

)

; (4.44)

that is, the sup norm of M is the maximum eigenvalue of
√

M †M . It is
easy to verify that the sup norm has the properties

‖ MN ‖sup ≤‖ M ‖sup · ‖ N ‖sup ,

‖ M + N ‖sup ≤‖ M ‖sup + ‖ N ‖sup . (4.45)

A Hermitian operator with eigenvalues ±1 has unit sup norm, so that

‖ C2 ‖sup≤ 4 + 4 ‖ a ‖sup · ‖ a′ ‖sup · ‖ b ‖sup · ‖ b′ ‖sup= 8 .
(4.46)

Because C is Hermitian,

‖ C2 ‖sup=‖ C ‖2
sup , (4.47)

and therefore

‖ C ‖sup≤ 2
√

2 , (4.48)

which is known as Cirel’son’s inequality.
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The CHSH inequality is the statement |〈C〉| ≤ 2. Quantum mechani-
cally, the absolute value of the expectation value of the Hermitian operator
C can be no larger than its largest eigenvalue,

|〈C〉| ≤‖ C ‖sup≤ 2
√

2 . (4.49)

We saw that this upper bound is saturated in the case where a′, b,a, b′

are separated by successive 45o angles. Thus the violation of the CHSH
inequality that we found is the largest violation allowed by quantum the-
ory.

4.3.3 Quantum strategies outperform classical strategies

The CHSH inequality is a limitation on the strength of the correlations
between the two parts of a bipartite classical system, and the Cirel’son in-
equality is a limitation on the strength of the correlations between the two
parts of a bipartite quantum system. We can deepen our appreciation of
how quantum correlations differ from classical correlations by considering
a game for which quantum strategies outperform classical strategies.

Alice and Bob are playing a game with Charlie. Charlie prepares two
bits x, y ∈ {0, 1}; then he sends x to Alice and y to Bob. After receiving
the input bit x, Alice is to produce an output bit a ∈ {0, 1}, and after
receiving y, Bob is to produce output bit b ∈ {0, 1}. But Alice and Bob
are not permitted to communicate, so that Alice does not know y and
Bob does not know x.

Alice and Bob win the game if their output bits are related to the input
bits according to

a⊕ b = x ∧ y , (4.50)

where ⊕ denotes the sum modulo 2 (the XOR gate) and ∧ denotes the
product (the AND gate). Can Alice and Bob find a strategy that enables
them to win the game every time, no matter how Charlie chooses the
input bits?

No, it is easy to see that there is no such strategy. Let a0, a1 denote the
value of Alice’s output if her input is x = 0, 1 and let b0, b1 denote Bob’s
output if his input is y = 0, 1. For Alice and Bob to win for all possible
inputs, their output bits must satisfy

a0 ⊕ b0 = 0 ,

a0 ⊕ b1 = 0 ,

a1 ⊕ b0 = 0 ,

a1 ⊕ b1 = 1 . (4.51)
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But this is impossible, since by summing the four equations we obtain
0=1.

Suppose that Charlie generates the input bits at random. Then there is
a very simple strategy that enables Alice and Bob to win the game three
times our of four: they always choose the output a = b = 0 so that they
lose only if the input is x = y = 1. The CHSH inequality can be regarded
as the statement that, if Alice and Bob share no quantum entanglement,
then there is no better strategy.

To connect this statement with our previous formulation of the CHSH
inequality, define random variables taking values ±1 as

a = (−1)a0 , a′ = (−1)a1 ,

b = (−1)b0 , b′ = (−1)b1 . (4.52)

Then the CHSH inequality says that for any joint probability distribution
governing a,a′, b, b′ ∈ {±1}, the expectation values satisfy

〈ab〉 + 〈ab′〉 + 〈a′b〉 − 〈a′b′〉 ≤ 2 . (4.53)

Furthermore, if we denote by pxy the probability that eq. (4.51) is satisfied
when the input bits are (x, y), then

〈ab〉 = 2p00 − 1 ,

〈ab′〉 = 2p01 − 1 ,

〈a′b〉 = 2p10 − 1 ,

〈a′b′〉 = 1 − 2p11 ; (4.54)

for example 〈ab〉 = p00 − (1 − p00) = 2p00 − 1, because the value of ab is
+1 when Alice and Bob win and −1 when they lose. The CHSH inequality
eq. (4.53) becomes

2 (p00 + p01 + p10 + p11)− 4 ≤ 2 , (4.55)

or

〈p〉 ≡ 1

4
(p00 + p01 + p10 + p11) ≤

3

4
, (4.56)

where 〈p〉 denotes the probability of winning averaged over a uniform
ensemble for the input bits. Thus, if the input bits are random, Alice and
Bob cannot attain a probability of winning higher than 3/4.

It is worthwhile to consider how the assumption that Alice and Bob
take actions governed by “local hidden variables” limits their success in
playing the game. Although Alice and Bob do not share any quantum
entanglement, they are permitted to share a table of random numbers that
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they may consult to produce their output bits. Thus we may imagine that
hidden variables drawn from an ensemble of possible values guide Alice
and Bob to make correlated decisions. These correlations are limited
by locality — Alice does not know Bob’s input and Bob does not know
Alice’s. In fact, we have learned that for playing this game their shared
randomness is of no value — their best strategy does not use the shared
randomness at all.

But if Alice and Bob share quantum entanglement, they can devise
a better strategy. Based on the value of her input bit, Alice decides to
measure one of two Hermitian observables with eigenvalues ±1: a if x = 0
and a′ is x = 1. Similarly, Bob measures b if y = 0 and b′ if y = 1. Then
the quantum-mechanical expectation values of these observables satisfy
the Cirel’son inequality

〈ab〉 + 〈ab′〉 + 〈a′b〉 − 〈a′b′〉 ≤ 2
√

2 , (4.57)

and the probability that Alice and Bob win the game is constrained by

2 (p00 + p01 + p10 + p11) − 4 ≤ 2
√

2 , (4.58)

or

〈p〉 ≡ 1

4
(p00 + p01 + p10 + p11) ≤

1

2
+

1

2
√

2
≈ .853 .

(4.59)

Furthermore, we have seen that this inequality can be saturated if Al-
ice and Bob share a maximally entangled state of two qubits, and the
observables a,a′, b, b′ are chosen appropriately.

Thus we have found that Alice and Bob can play the game more suc-
cessfully with quantum entanglement than without it. At least for this
purpose, shared quantum entanglement is a more powerful resource than
shared classical randomness. But even the power brought by entangle-
ment has limits, limits embodied by the Cirel’son inequality.

4.3.4 All entangled pure states violate Bell inequalities

Separable states do not violate Bell inequalities. For example, in the case
of a separable pure state, if a is an observable acting on Alice’s qubit, and
b is an observable acting on Bob’s, then

〈ab〉 = 〈a〉〈b〉. (4.60)

No Bell-inequality violation can occur, because we have already seen that
a (local) hidden-variable theory does exist that correctly reproduces the
predictions of quantum theory for a pure state of a single qubit. A general
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separable state is just a probabilistic mixture of separable pure states, so
that the correlations between the subsystems are entirely classical, and
the Bell inequalities apply.

On the other hand, we have seen that a maximally entangled state such
as |ψ−〉 is Bell-inequality violating. But what about pure states that are
only partially entangled such as

|φ〉 = α|00〉+ β|11〉 ? (4.61)

Any pure state of two qubits can be expressed this way in the Schmidt
basis; with suitable phase conventions, α and β are real and nonnegative.

Suppose that Alice and Bob both measure along an axis in the x-z
plane, so that their observables are

a = σ
(A)
3 cos θA + σ

(A)
1 sin θA ,

b = σ
(B)
3 cos θB + σ

(B)
1 sin θB . (4.62)

The state |φ〉 has the properties

〈φ|σ3 ⊗ σ3|φ〉 = 1 , 〈φ|σ1 ⊗ σ1|φ〉 = 2αβ ,

〈φ|σ3 ⊗ σ1|φ〉 = 0 = 〈φ|σ1 ⊗ σ3|φ〉 , (4.63)

so that the quantum-mechanical expectation value of ab is

〈ab〉 = 〈φ|ab|φ〉 = cos θA cos θB + 2αβ sin θA sin θB
(4.64)

(and we recover cos(θA − θB) in the maximally entangled case α = β =
1/

√
2). Now let us consider, for simplicity, the (nonoptimal!) special case

θA = 0, θ′A =
π

2
, θ′B = −θB , (4.65)

so that the quantum predictions are:

〈ab〉 = cos θB = 〈ab′〉 ,
〈a′b〉 = 2αβ sin θB = −〈a′b′〉 . (4.66)

Plugging into the CHSH inequality, we obtain

| cos θB − 2αβ sin θB | ≤ 1 , (4.67)

and we easily see that violations occur for θB close to 0 or π. Expanding
to linear order in θB , the left-hand side is

' 1− 2αβθB , (4.68)
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which surely exceeds 1 for αβ > 0 and θB negative and small.

We have shown that any entangled pure state of two qubits violates
some Bell inequality. It is not hard to generalize the argument to an
arbitrary bipartite pure state. For bipartite pure states, then, “entangled”
is equivalent to “Bell-inequality violating.” For bipartite mixed states,
however, we will see later that the situation is more subtle.

4.3.5 Photons

Experiments that test the Bell inequality usually are done with entangled
photons, not with spin-1

2 objects. What are the quantum-mechanical
predictions for photons?

Recall from §2.2.2 that for a photon traveling in the ẑ direction, we use
the notation |x〉, |y〉 for the states that are linearly polarized along the x
and y axes respectively. In terms of these basis states, the states that are
linearly polarized along “horizontal” and “vertical” axes that are rotated
by angle θ relative to the x and y axes can be expressed as

|H(θ)〉 =

(

cos θ
sin θ

)

, |V (θ)〉 =

( − sin θ
cos θ

)

. (4.69)

We can construct a 2×2 matrix whose eigenstates are |H(θ)〉 and |V (θ)〉,
with respective eigenvalues ±1; it is

τ (θ) ≡ |H(θ)〉〈H(θ)| − |V (θ)〉〈V (θ)| =

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

.
(4.70)

The generator of rotations about the ẑ axis is J = σ2, and the eigen-
states of J with eigenvalues ±1 are the circularly polarized states

|+〉 =
1√
2

(

1
i

)

, |−〉 =
1√
2

(

i
1

)

. (4.71)

Suppose that an excited atom emits two photons that come out back to
back, with vanishing angular momentum and even parity. The two-photon
states

|+〉A|−〉B
|−〉A|+〉B (4.72)

are invariant under rotations about ẑ. The photons have opposite val-
ues of Jz, but the same helicity (angular-momentum along the axis of
propagation), since they are propagating in opposite directions. Under a



4.3 More Bell inequalities 25

reflection in the y−z plane, the polarization states are modified according
to

|x〉 → −|x〉 , |y〉 → |y〉 , (4.73)

or

|+〉 → +i|−〉 , |−〉 → −i|+〉 ; (4.74)

therefore, the parity eigenstates are entangled states

1√
2
(|+〉A|−〉B ± |−〉A|+〉B) . (4.75)

The state with Jz = 0 and even parity, then, expressed in terms of the
linear polarization states, is

− i√
2
(|+ −〉AB + | − +〉AB)

=
1√
2
(|xx〉AB + |yy〉AB) ≡ |φ+〉AB . (4.76)

Because of invariance under rotations about ẑ, the state has this form
irrespective of how we orient the x and y axes.

Alice or Bob can use a polarization analyzer to project the polarization
state of a photon onto the basis {|H(θ)〉, |V (θ)〉}, and hence measure τ (θ).
For two photons in the state |φ+〉, if Alice orients her polarizer with angle
θA and Bob with angle θB , then the correlations of their measurement
outcomes are encoded in the expectation value

〈φ+|τ (A)(θA)τ (B)(θB)|φ+〉. (4.77)

Using rotational invariance:

= 〈φ+|τ (A)(0)τ (B)(θB − θA)|φ+〉

=
1

2
〈x|τ (B)(θB − θA)|x〉 − 1

2
〈y|τ (B)(θB − θA)|y〉

= cos 2(θB − θA) . (4.78)

Recall that for the measurement of qubits on the Bloch sphere, we found
the similar expression cos θ, where θ is the angle between Alice’s polariza-
tion axis and Bob’s. Here we have cos 2θ instead, because photons have
spin-1 rather than spin-1

2 .

If Alice measures one of the two observables a = τ (A)(θA) or a′ =
τ (A)(θ′A) and Bob measures either b = τ (B)(θB) or b′ = τ (B)(θB), then
under the local hidden-variable assumption the CHSH inequality applies.
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If we plug in the quantum predictions for the expectation values, we
obtain

∣

∣cos 2(θB − θA) + cos 2(θB − θ′A) + cos 2(θ′B − θA) − cos 2(θ′B − θ′A)
∣

∣ ≤ 2 .
(4.79)

The maximal violation that saturates Cirel’son’s inequality — left-hand
side equal to 2

√
2 — occurs when θ′A, θB , θA and θ′B are separated by

successive 22 1
2
◦

angles, so that

1√
2

= cos 2(θB − θA) = cos 2(θB − θ′A)

= = cos 2(θ′B − θA) = − cos 2(θ′B − θ′A) . (4.80)

4.3.6 Experiments and loopholes

Locality loophole. Experiments with entangled pairs of photons have tested
the CHSH inequality in the form eq. (4.79). The experiments confirm the
quantum predictions, and demonstrate convincingly that the CHSH in-
equality is violated. These experiments, then, seem to show that Nature
cannot be accurately described by a local hidden-variable theory.

Or do they? A skeptic might raise objections. For example, in the
derivation of the CHSH inequality, we assumed that after Alice decides
to measure either a or a′, no information about Alice’s decision reaches
Bob’s detector before Bob measures (and likewise, we assumed that if Bob
measures first, no information about Bob’s decision reaches Alice before
she measures). Otherwise, the marginal probability distribution for Bob’s
outcomes could be updated after Alice’s measurement and before Bob’s,
so that the CHSH inequality need not apply. The assumption that no such
update can occur is justified by relativistic causality if Alice’s decision
and measurement are events spacelike separated from Bob’s decision and
measurement. The skeptic would insist that the experiment fulfill this
condition, which is called the locality loophole.

In 1982, Aspect and collaborators conducted an experiment that ad-
dressed the locality loophole. Two entangled photons were produced in
the decay of an excited calcium atom, and each photon was directed by a
switch to one of two polarization analyzers, chosen pseudo-randomly. The
photons were detected about 12m apart, corresponding to a light travel
time of about 40 ns. This time was considerably longer than either the
cycle time of the switch, or the difference in the times of arrival of the
two photons. Therefore the “decision” about which observable to measure
was made after the photons were already in flight, and the events that
selected the axes for the measurement of photons A and B were spacelike
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separated. The results were consistent with the quantum predictions, and
violated the CHSH inequality by five standard deviations. Since Aspect,
many other experiments have confirmed this finding, including ones in
which detectors A and B are kilometers apart.

Detection loophole. Another objection that the skeptic might raise is
called the detection loophole. In experiments with photons, the detection
efficiency is low. Most entangled photon pairs do not result in detections
at both A and B. Among the things that can go wrong: a photon might
be absorbed before reaching the detector, a photon might miss the detec-
tor, or a photon might arrive in the detector but fail to trigger it. Data
is accepted by the experiment only when two photons are detected in co-
incidence, and in testing the CHSH inequality, we must assume that the
data collected is a fair sample of all the entangled pairs.

But, what if the local hidden variables govern not just what polarization
state is detected, but also whether the detector fires at all? Then the data
collected might be a biased sample, and the CHSH inequality need not
apply.

In Exercise 4.??, we will show that the detection loophole can be closed
if the photons are detected with an efficiency above 82.84%. Current ex-
periments with photons don’t approach the necessary efficiency. Experi-
ments that use ion traps have tested the CHSH inequality with detection
efficiency close to 100%, but these experiments do not address the local-
ity loophole. No experiment that simultaneously closes the locality and
detection loopholes has yet been done.

Free-will loophole. Suppose that an experiment is done in which the pho-
ton detection efficiency is perfect, and in which Alice and Bob appear to
make spacelike-separated decisions. A skeptic might still resist the con-
clusion that local hidden-variable theories are ruled out, by invoking the
free-will loophole. Conceivably, the decisions that Alice and Bob make
about what to measure are themselves governed by the local hidden vari-
ables. Then their decisions might be correlated with the values of the
hidden variables that determine the measurement outcomes, so that they
are unable to obtain a fair sample of the distribution of the hidden vari-
ables, and the CHSH inequality might be violated.

All of us have to decide for ourselves how seriously to take this objec-
tion.

4.4 Using entanglement

After Bell’s work, quantum entanglement became a subject of intensive
study, among those interested in the foundations of quantum theory.
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Gradually, a new viewpoint evolved: entanglement is not just a unique
tool for exposing the weirdness of quantum mechanics, but also a poten-
tially valuable resource. By exploiting entangled quantum states, we can
perform tasks that are otherwise difficult or impossible.

4.4.1 Dense coding

Our first example is an application of entanglement to communication.
Alice wants to send messages to Bob. She might send classical bits (like
dots and dashes in Morse code), but let’s suppose that Alice and Bob are
linked by a quantum channel. For example, Alice can prepare qubits (like
photons) in any polarization state she pleases, and send them to Bob,
who measures the polarization along the axis of his choice. Is there any
advantage to sending qubits instead of classical bits?

In principle, if their quantum channel has perfect fidelity, and Alice and
Bob perform the preparation and measurement with perfect efficiency,
then they are no worse off using qubits instead of classical bits. Alice can
prepare, say, either | ↑z〉 or | ↓z〉, and Bob can measure along ẑ to infer
the choice she made. This way, Alice can send one classical bit with each
qubit. But in fact, that is the best she can do. Sending one qubit at a
time, no matter how she prepares it and no matter how Bob measures it,
no more than one classical bit can be carried by each qubit (even if the
qubits are entangled with one another). This statement, a special case
of the Holevo bound on the classical information capacity of a quantum
channel, will be derived in Chapter 5.

But now, let’s change the rules a bit — let’s suppose that Alice and
Bob share an entangled pair of qubits in the state |φ+〉AB . The pair was
prepared last year; one qubit was shipped to Alice and the other to Bob,
in the hope that the shared entanglement would come in handy someday.
Now, use of the quantum channel is very expensive, so Alice can afford to
send only one qubit to Bob. Yet it is of the utmost importance for Alice
to send Bob two classical bits of information.

Fortunately, Alice remembers about the entangled state |φ+〉AB that
she shares with Bob, and she carries out a protocol that she and Bob had
arranged for just such an emergency. On her member of the entangled
pair, she can perform one of four possible unitary transformations:

1) I (she does nothing) ,

2) σ1 (180o rotation about x̂-axis) ,

3) σ2 (180o rotation about ŷ-axis) ,

4) σ3 (180o rotation about ẑ-axis) .
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As we have seen, by doing so, she transforms |φ+〉AB to one of 4 mutually
orthogonal states:

1) |φ+〉AB ,

2) |ψ+〉AB ,

3) |ψ−〉AB (up to a phase) ,

4) |φ−〉AB .

Now, she sends her qubit to Bob, who receives it and then performs
an orthogonal collective measurement on the pair that projects onto the
maximally entangled basis. The measurement outcome unambiguously
distinguishes the four possible actions that Alice could have performed.
Therefore the single qubit sent from Alice to Bob has successfully carried
2 bits of classical information! Hence this procedure is called “dense
coding.”

A nice feature of this protocol is that, if the message is highly con-
fidential, Alice need not worry that an eavesdropper will intercept the
transmitted qubit and decipher her message. The transmitted qubit has
density matrix ρA = 1

2IA, and so carries no information at all. All the
information is in the correlations between qubits A and B, and this infor-
mation is inaccessible unless the adversary is able to obtain both members
of the entangled pair. (Of course, the adversary can “jam” the channel,
preventing the information from reaching Bob.)

From one point of view, Alice and Bob really did need to use the channel
twice to exchange two bits of information. For example, we can imagine
that Alice prepared the state |φ+〉 herself. Last year, she sent half of the
state to Bob, and now she sends him the other half. So in effect, Alice
has sent two qubits to Bob in one of four mutually orthogonal states, to
convey two classical bits of information as the Holevo bound allows.

Still, dense coding is rather weird, for several reasons. First, Alice sent
the first qubit to Bob long before she knew what her message was going
to be. Second, each qubit by itself carries no information at all; all the
information is encoded in the correlations between the qubits. Third, it
would work just as well for Bob to prepare the entangled pair and send
half to Alice; then two classical bits are transmitted from Alice to Bob
by sending a single qubit from Bob to Alice and back again.

Anyway, when an emergency arose and two bits had to be sent immedi-
ately while only one use of the channel was possible, Alice and Bob could
exploit the pre-existing entanglement to communicate more efficiently.
They used entanglement as a resource.
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4.4.2 Quantum teleportation

In dense coding, quantum information could be exploited to enhance the
transmission of classical information. Specifically, if Alice and Bob share
entanglement, then sending one qubit is sufficient to convey two classi-
cal bits. Now one wonders about the converse. If Alice and Bob share
entanglement, can sending two classical bits suffice to convey a qubit?

Imagine that Charlie has prepared for Alice a qubit in the state |ψ〉,
but Alice doesn’t know anything about what state Charlie prepared. Bob
needs this qubit desperately, and Alice wants to help him. But that darn
quantum channel is down again! Alice can send only classical information
to Bob.

She could try measuring ~σ · n̂, projecting her qubit to either | ↑n̂〉 or
| ↓n̂〉. She could send the one-bit measurement outcome to Bob who could
then proceed to prepare the state that Alice found. But you showed in
Exercise ?? that Bob’s state |ϕ〉 will not be a perfect copy of Alice’s; on
the average it will match Alice’s qubit with fidelity

F = |〈ϕ|ψ〉|2 =
2

3
, (4.81)

This fidelity is better than could have been achieved if Bob had merely
chosen a state at random (F = 1

2 ), but it is not nearly as good as the
fidelity that Bob requires. Furthermore, as we will see in Chapter 5,
there is no protocol in which Alice measures the qubit and sends classical
information to Bob that achieves a fidelity better than 2/3.

Fortunately, Alice and Bob recall that they share the maximally en-
tangled state |φ+〉AB, which they prepared last year. Why not use the
entanglement as a resource? If they are willing to consume the shared
entanglement and communicate classically, can Alice send her qubit to
Bob with fidelity better than 2/3?

In fact they can achieve fidelity F = 1, by carrying out the following
protocol: Alice unites the unknown qubit |ψ〉C she wants to send to Bob
with her half of the |φ+〉AB pair that she shares with Bob. She measures
the two commuting observables

σ
(C)
1 ⊗ σ

(A)
1 , σ

(C)
3 ⊗ σ

(A)
3 , (4.82)

thus performing Bell measurement — a projection of the two qubits onto
one of the four maximally entangled states |φ±〉CA, |ψ±〉CA. She sends
her measurement outcome (two bits of classical information) to Bob over
the classical channel. Upon receiving this information, Bob performs one
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of four operations on his qubit

Alice measures |φ+〉CA → Bob applies I(B) ,

Alice measures |ψ+〉CA → Bob applies σ
(B)
1 ,

Alice measures |ψ−〉CA → Bob applies σ
(B)
2 ,

Alice measures |φ−〉CA → Bob applies σ
(B)
3 .

(4.83)

This action transforms Bob’s qubit (his member of the entangled pair that
he initially shared with Alice) into a perfect copy of |ψ〉C. This magic
trick is called quantum teleportation.

How does it work? We merely note that for |ψ〉 = a|0〉+ b|1〉, we may
write

|ψ〉C|φ+〉AB = (a|0〉C + b|1〉C)
1√
2
(|00〉AB + |11〉AB)

=
1√
2
(a|000〉CAB + a|011〉CAB + b|100〉CAB + b|111〉CAB)

=
1

2
a(|φ+〉CA + |φ−〉CA)|0〉B +

1

2
a(|ψ+〉CA + |ψ−〉CA)|1〉B

+
1

2
b(|ψ+〉CA − |ψ−〉CA)|0〉B +

1

2
b(|φ+〉CA − |φ−〉CA)|1〉B

=
1

2
|φ+〉CA(a|0〉B + b|1〉B)

+
1

2
|ψ+〉CA(a|1〉B + b|0〉B)

+
1

2
|ψ−〉CA(a|1〉B − b|0〉B)

+
1

2
|φ−〉CA(a|0〉B − b|1〉B)

=
1

2
|φ+〉CA|ψ〉B +

1

2
|ψ+〉CAσ1|ψ〉B

+
1

2
|ψ−〉CA(−iσ2)|ψ〉B +

1

2
|φ−〉CAσ3|ψ〉B. (4.84)

Thus we see that when Alice performs the Bell measurement on qubits
C and A, all four outcomes are equally likely. Once Bob learns Alice’s
measurement outcome, he possesses the pure state σ|ψ〉, where σ is a
known Pauli operator, one of {I,σ1,σ2,σ3}. The action prescribed in
eq. (4.83) restores Bob’s qubit to the initial state |ψ〉.

Quantum teleportation is a curious procedure. Initially, Bob’s qubit is
completely uncorrelated with the unknown qubit |ψ〉C, but Alice’s Bell
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measurement establishes a correlation between A and C. The measure-
ment outcome is in fact completely random, so Alice (and Bob) actually
acquire no information at all about |ψ〉 by making this measurement.
And that is a good thing, as we know that if they were to collect any
information about the state they would unavoidably disturb the state.

How then does the quantum state manage to travel from Alice to Bob?
It is a bit puzzling. On the one hand, we can hardly say that the two
classical bits that were transmitted carried this information — the bits
were random. So we are tempted to say that the shared entangled pair
made the teleportation possible. But remember that the entangled pair
was actually prepared last year, long before Alice ever dreamed that she
would be sending the qubit to Bob . . .

We should also note that the teleportation procedure is fully consistent
with the no-cloning principle. True, a copy of the state |ψ〉B appeared
in Bob’s hands. But the original |ψ〉C had to be destroyed by Alice’s
measurement before the copy could be created.

Our findings about dense coding and quantum teleportation can be
summarized as statements about how one type of resource can simulate
another. Let us introduce the terminology ebit for an entangled pair of
qubits shared by two parties (e for entangled), and cbit for a classical bit
(c for classical). We teleport one qubit from Alice to Bob by consuming
one ebit and sending two cbits, and we send two cbits from Alice and
Bob via dense coding by consuming one ebit and transporting one qubit.
Thus we may say

1 ebit + 2 cbits → 1 qubit ,

1 ebit + 1 qubit → 2 cbits , (4.85)

meaning that the resources on the left suffice to simulate the resources on
the right. Entanglement is essential in these protocols. Without ebits, a
qubit is worth only one cbit, and without ebits, a “teleported” qubit has
fidelity F ≤ 2/3.

4.4.3 Quantum teleportation and maximal entanglement

The teleportation concept has an air of mystery. One would like to un-
derstand more deeply why it works. A helpful clue is that to teleport
with fidelity F = 1 the entangled state consumed in the protocol must
be maximally entangled. And the crucial feature of bipartite maximally
entangled states is that either Alice or Bob can transform one maximally
entangled state to another by applying a local unitary transformation.

To see more clearly how quantum teleportation works, consider tele-
porting an N -dimensional system using an N ×N maximally entangled
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state of the form

|Φ〉 =
1√
N

N−1
∑

i=0

|i〉 ⊗ |i〉 . (4.86)

A useful property of this state is

CA〈Φ|Φ〉AB =
1

N

∑

i,j

(C〈i| ⊗ A〈i|) (|j〉A ⊗ |j〉B)

=
1

N

∑

i

|i〉B C〈i| ≡
1

N
(T )BC (4.87)

Here we have defined the transfer operator (T )BC which has the property

T BC|ϕ〉C = T BC

(

∑

i

ai|i〉C
)

=
∑

i

ai|i〉B = |ϕ〉B ;
(4.88)

it maps a state in C to the identical state in B. This property has no
invariant meaning independent of the choice of basis in B and C; rather
T BC just describes an arbitrary way to relate the orthonormal bases of
the two systems. Of course, Alice and Bob would need to align their bases
in some way to verify that teleportation has really succeeded.

Now recall that any other N × N maximally entangled state has a
Schmidt decomposition of the form

1√
N

N−1
∑

i=0

|i′〉 ⊗ |i〉 , (4.89)

and so can be expressed as

|Φ(U)〉 ≡ U ⊗ I|Φ〉 , (4.90)

where

U |i〉 = |i′〉 =
∑

j

|j〉Uji . (4.91)

Writing

|Φ(U)〉AB =
1√
N

∑

i,j

|j〉A ⊗ |i〉B Uji , (4.92)

we can easily verify that

CA〈Φ(U)|Φ(V T )〉AB =
1

N

(

V U−1
)

B
T BC , (4.93)
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where V T denotes the transpose of V in the standard basis (V T
ij = Vji);

in particular, then, the transfer operator can be expressed as

1

N
T BC = CA〈Φ(U)|Φ((UT )〉AB , (4.94)

for any unitary U .
Now suppose that Alice and Bob share |Φ〉AB, and that Charlie has pre-

pared the state |ψ〉C and has deposited it in Alice’s laboratory. Alice per-
forms a measurement that projects CA onto a maximally entangled basis,
obtaining the outcome |Φ(Ua)〉CA for some unitary U a. Then we know
from eq. (4.94) that if Alice and Bob had shared the state |Φ((UT

a )〉AB

instead of |Φ〉AB, then Alice’s measurement would have prepared in Bob’s
lab a perfect replica of the state |ψ〉. Unfortunately, they did not have
the foresight to share the right state to begin with. But it’s not too late!
Bob realizes that

|Φ(UT
a )〉 = IA ⊗ (U a)B |Φ〉AB , (4.95)

and of course (Ua)B commutes with Alice’s measurement. Hence, when
Bob hears from Alice that her measurement outcome was |Φ((UT

a )〉AB, he
applies (U a)B to his half of the state he had shared with Alice. Then the
protocol is equivalent to one in which they had shared the right maximally
entangled state to begin with, and Bob’s state has been transformed into
|ψ〉B!

This approach to teleportation has some conceptual advantages. For
one, we can easily see that Alice is not required to perform an orthogonal
measurement. To achieve teleportation with fidelity F = 1 it suffices that
she perform a POVM with operation elements Ma, where each Ma has
the property

M †
aMa ∝ |Φ(Ua)〉〈Φ(Ua)| (4.96)

for some unitary U a. Also, we can easily see how the teleportation proto-
col should be modified if the initial maximally entangled state that Alice
and Bob share is not |Φ〉AB but rather

|Φ(V T )〉AB = IA ⊗ V B|Φ〉AB . (4.97)

If Alice’s measurement outcome is |Φ(Ua)〉CA, then eq. (4.93) tells us that
the state Bob receives is

V U−1
a |ψ〉B . (4.98)

To recover |ψ〉B, Bob must apply U aV
−1.
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The operator ordering in eq. (4.98) may seem counterintuitive at first —
it seems as though Alice’s measurement (Ua) precedes the preparation of
the shared entangled state (V ). But this “time reversal” has a straight-
forward interpretation. If Alice’s measurement outcome is |Φ(Ua)〉CA,
then Bob would have received a perfect copy of |ψ〉 if the initial entangled
state had been IA ⊗ (U a)B |Φ〉AB. To simulate the situation in which
the entangled state had been chosen properly from the start, Bob first
applies V −1 to undo the “twist” in |Φ(V T )〉AB, recovering |Φ〉AB, and
then applies U a to transform the entangled state to the desired one.

There is a more fanciful interpretation of eq. (4.98) which, while not
necessary, is nonetheless irresistable. We might “explain” how quantum
information is transferred from Alice and Bob by following the world
line of a qubit traveling in spacetime. The qubit moves forward in time
from Charlie’s preparation to Alice’s measurement, then backward in time
from the measurement to the initial preparation of the entangled pair,
and finally forward in time again from the preparation of the pair to
Bob’s laboratory. Since this world line visits Alice’s measurement before
arriving at the preparation of the entanglement, U−1

a acts “first” and V

acts “later on.”

4.4.4 Quantum software

Teleportation has some interesting applications. For example, imagine
that Alice and Bob wish to apply the “quantum gate” V to the unknown
state |ψ〉C. But applying V requires sophisitcated hardware that they
can’t afford.

A more economical alternative is to purchase quantum software from a
vendor. The software is a bipartite state that the vendor certifies to be

|Φ(V T )〉AB = IA ⊗ V B|φ〉AB . (4.99)

Alice’s hardware is powerful enough for her to perform a measurement
that projects onto the basis {|Φ(Ua)〉CA}; once the outcome a is known,
the state V U−1

a |ψ〉B has been prepared. Bob can then complete the
execution of V to |ψ〉 by applying V U aV

−1

This procedure may seem silly — why assume that Bob is able to apply
V UaV

−1 but unable to apply V ? In fact it is not so silly, and has im-
portant applications to fault-tolerant quantum computation that we will
explore further in Chapter 8. In some cases, executing V U aV

−1 really is
a lot easier than applying V . Furthermore, Alice and Bob might be able
to prepare the quantum software themselves, instead of buying it, even
though they can’t apply V reliably. This is possible because it is easier
to verify that a known quantum state has been properly prepared than to
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verify that a known unitary transformation has been successfully applied
to an unknown state. If the hardware that applies V cannot be trusted,
then we prefer to use it to prepare software offline, and then subject the
software to quality assurance, rather than risk causing irrevocable damage
to our unknown state through a faulty execution of V .

Each application of V consumes one copy of the quantum software.
Thus, this protocol for executing V with the help of quantum software
uses entanglement as a resource.

4.5 Quantum cryptography

4.5.1 EPR quantum key distribution

Everyone has secrets, including Alice and Bob. Alice needs to send a
highly private message to Bob, but Alice and Bob have a very nosy friend,
Eve, who they know will try to listen in. Can they communicate with
assurance that Eve is unable to eavesdrop?

Obviously, they should use some kind of code. Trouble is, aside from
being very nosy, Eve is also very smart. Alice and Bob are not confident
that they are clever enough to devise a code that Eve cannot break.

Except there is one coding scheme that is surely unbreakable. If Alice
and Bob share a private key, a string of random bits known only to them,
then Alice can convert her message to ASCII (a string of bits no longer
than the key) add each bit of her message (module 2) to the corresponding
bit of the key, and send the result to Bob. Receiving this string, Bob can
add the key to it to extract Alice’s message.

This scheme is secure because even if Eve should intercept the trans-
mission, she will not learn anything because the transmitted string itself
carries no information — the message is encoded in a correlation between
the transmitted string and the key (which Eve doesn’t know).

There is still a problem, though, because Alice and Bob need to estab-
lish a shared random key, and they must ensure that Eve can’t know the
key. They could meet to exchange the key, but that might be impractical.
They could entrust a third party to transport the key, but what if the in-
termediary is secretly in cahoots with Eve? They could use “public key”
distribution protocols, but the security of such protocols is founded on
assumptions about the computational resources available to a potential
adversary. Indeed, we will see in Chapter 6 that public key protocols are
vulnerable to attack by an eavesdropper who is equipped with a quantum
computer.

Can Alice and Bob exploit quantum information (and specifically en-
tanglement) to solve the key exchange problem? They can! Quantum key

distribution protocols can be devised that are invulnerable to any attack
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allowed by the laws of physics.
Let’s suppose that Alice and Bob share a supply of entangled pairs,

each prepared in the state |φ+〉. To establish a shared private key, they
may carry out this protocol:

For each qubit in her/his possession, Alice and Bob decide to measure
either σ1 or σ3. The decision is pseudo-random, each choice occuring
with probability 1/2. Then, after the measurements are performed, both
Alice and Bob publicly announce what observables they measured, but
do not reveal the outcomes they obtained. For those cases (about half)
in which they measured their qubits along different axes, their results are
discarded (as Alice and Bob obtained uncorrelated outcomes). For those
cases in which they measured along the same axis, their results, though
random, are perfectly correlated. Hence, they have established a shared
random key.

But, is this protocol really invulnerable to a sneaky attack by Eve? In
particular, Eve might have clandestinely tampered with the pairs at some
time in the past. Then the pairs that Alice and Bob possess might be
(unbeknownst to Alice and Bob) not perfect |φ+〉’s, but rather pairs that
are entangled with qubits in Eve’s possession. Eve can then wait until
Alice and Bob make their public announcements, and proceed to measure
her qubits in a manner designed to acquire maximal information about
the results that Alice and Bob obtained. Alice and Bob must protect
themselves against this type of attack.

If Eve has indeed tampered with Alice’s and Bob’s pairs, then the most
general possible state for an AB pair and a set of E qubits has the form

|Υ〉ABE = |00〉AB|e00〉E + |01〉AB|e01〉E
+ |10〉AB|e10〉E + |11〉AB|e11〉E , (4.100)

where Eve’s states |eij〉E are neither normalized nor mutually orthogonal.
Now recall that the defining property or |φ+〉 is that it is an eigenstate

with eigenvalue +1 of both σ
(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 . Suppose that A and

B are able to verify that the pairs in their possession have this property.

To satisfy σ
(A)
3 σ

(B)
3 = 1, we must have

|Υ〉AB = |00〉AB|e00〉E + |11〉AB|e11〉E , (4.101)

and to also satisfy σ
(A)
1 σ

(B)
1 = 1, we must have

|Υ〉ABE =
1√
2
(|00〉AB + |11〉AB)|e〉E = |φ+〉AB|e〉E .

(4.102)

We see that it is possible for the AB pairs to be eigenstates of σ
(A)
1 σ

(B)
1

and σ
(A)
3 σ

(B)
3 only if they are completely unentangled with Eve’s qubits.
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Therefore, Eve will not be able to learn anything about Alice’s and Bob’s
measurement results by measuring her qubits. The random key is secure.

To verify the properties σ
(A)
1 σ

(B)
1 = 1 = σ

(A)
3 σ

(B)
3 , Alice and Bob

can sacrifice a portion of their shared key, and publicly compare their
measurement outcomes. They should find that their results are indeed
perfectly correlated. If so they will have high statistical confidence that
Eve is unable to intercept the key. If not, they have detected Eve’s nefar-
ious activity. They may then discard the key, and make a fresh attempt
to establish a secure key.

As I have just presented it, the quantum key distribution protocol seems
to require entangled pairs shared by Alice and Bob, but this is not really
so. We might imagine that Alice prepares the |φ+〉 pairs herself, and then
measures one qubit in each pair before sending the other to Bob. This is
completely equivalent to a scheme in which Alice prepares one of the four
states

| ↑z〉, | ↓z〉, | ↑x〉, | ↓x〉, (4.103)

(chosen at random, each occuring with probability 1/4) and sends the
qubit to Bob. Bob’s measurement and the verification are then carried
out as before. This scheme (known as the BB84 quantum key distribution
protocol) is just as secure as the entanglement-based scheme.†

Another intriguing variation is called the “time-reversed EPR” scheme.
Here both Alice and Bob prepare one of the four states in eq. (4.103),
and they both send their qubits to Charlie. Then Charlie performs a Bell

measurement on the pair — that is, he measures σ
(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 ,

orthogonally projecting out one of |φ±〉|ψ±〉, and he publicly announces
the result. Since all four of these states are simultaneous eigenstates of

σ
(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 , when Alice and Bob both prepared their spins

along the same axis (as they do about half the time) they share a single
bit.‡ Of course, Charlie could be allied with Eve, but Alice and Bob
can verify that Charlie and Eve have acquired no information as before,
by comparing a portion of their key. This scheme has the advantage
that Charlie could operate a central switching station by storing qubits
received from many parties, and then perform his Bell measurement when
two of the parties request a secure communication link. (Here we assume
that Charlie has a stable quantum memory in which qubits can be stored

† Except that in the EPR scheme, Alice and Bob can wait until just before they need
to talk to generate the key, thus reducing the risk that Eve might at some point
burglarize Alice’s safe to learn what states Alice prepared (and so infer the key).

‡ Until Charlie makes his measurement, the states prepared by Bob and Alice are
totally uncorrelated. A definite correlation (or anti-correlation) is established after
Charlie performs his measurement.
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accurately for as long as necessary.) A secure key can be established even
if the quantum communication line is down temporarily, as long as both
parties had the foresight to send their qubits to Charlie on an earlier
occasion (when the quantum channel was open).

So far, we have made the unrealistic assumption that the quantum
communication channel is perfect, but of course in the real world errors
will occur. Therefore even if Eve has been up to no mischief, Alice and
Bob will sometimes find that their verification test will fail. But how are
they to distinguish errors due to imperfections of the channel from errors
that occur because Eve has been eavesdropping?

To address this problem, Alice and Bob can enhance their protocol in
two ways. First they implement (classical) error correction to reduce the
effective error rate. For example, to establish each bit of their shared
key they could actually exchange a block of three random bits. If the
three bits are not all the same, Alice can inform Bob which of the three
is different than the other two; Bob can flip that bit in his block, and
then use majority voting to determine a bit value for the block. This way,
Alice and Bob share the same key bit even if an error occured for one bit
in the block of three.

However, error correction alone does not suffice to ensure that Eve has
acquired negligible information about the key — error correction must
be supplemented by (classical) privacy amplification. For example, after
performing error correction so that they are confident that they share the
same key, Alice and Bob might extract a bit of “superkey” as the parity

of n key bits. To know anything about the parity of n bits, Eve would
need to know something about each of the bits. Therefore, the parity bit
is considerably more secure, on the average, than each of the individual
key bits.

If the error rate of the channel is low enough, one can show that quan-
tum key distribution, supplemented by error correction and privacy am-
plification, is invulnerable to any attack that Eve might muster (in the
sense that the information acquired by Eve can be guaranteed to be ar-
bitrarily small). We will return to the problem of proving the security of
quantum key distribution in Chapter 7.

4.5.2 No cloning

The security of quantum key distribution is based on an essential differ-
ence between quantum information and classical information. It is not
possible to acquire information that distinguishes between nonorthogonal
quantum states without disturbing the states.

For example, in the BB84 protocol, Alice sends to Bob any one of the
four states | ↑z〉| ↓z〉| ↑x〉| ↓x〉, and Alice and Bob are able to verify that
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none of their states are perturbed by Eve’s attempt at eavesdropping.
Suppose, more generally, that |ϕ〉 and |ψ〉 are two nonorthogonal states
in H (〈ψ|ϕ〉 6= 0) and that a unitary transformationU is applied to H⊗HE

(where HE is a Hilbert space accessible to Eve) that leaves both |ψ〉 and
|ϕ〉 undisturbed. Then

U : |ψ〉 ⊗ |0〉E → |ψ〉 ⊗ |e〉E ,

|ϕ〉 ⊗ |0〉E → |ϕ〉 ⊗ |f〉E , (4.104)

and unitarity implies that

〈ψ|φ〉 = (E〈0| ⊗ 〈ψ|)(|ϕ〉⊗ |0〉E)

= (E〈e| ⊗ 〈ψ|)(|ϕ〉⊗ |f〉E)

= 〈ψ|ϕ〉〈e|f〉 . (4.105)

Hence, for 〈ψ|ϕ〉 6= 0, we have 〈e|f〉 = 1, and therefore since the states
are normalized, |e〉 = |f〉. This means that no measurement in HE can
reveal any information that distinguishes |ψ〉 from |ϕ〉. In the BB84 case
this argument shows that, if Eve does not disturb the states sent by Alice,
then the state in HE is the same irrespective of which of the four states
| ↑z〉, | ↓z〉, | ↑x〉, | ↓x〉 is sent by Alice, and therefore Eve learns nothing
about the key shared by Alice and Bob. On the other hand, if Alice is
sending to Bob one of the two orthogonal states | ↑z〉 or | ↓z〉, there is
nothing to prevent Eve from acquiring a copy of the information (as with
classical bits).

We have noted earlier that if we have many identical copies of a qubit,
then it is possible to measure the mean value of noncommuting observ-
ables like σ1,σ2, and σ3 to completely determine the density matrix of
the qubit. Inherent in the conclusion that nonorthogonal state cannot
be distinguished without disturbing them, then, is the implicit provision
that it is not possible to make a perfect copy of a qubit. (If we could,
we would make as many copies as we need to find 〈σ1〉, 〈σ2〉, and 〈σ3〉 to
any specified accuracy.) Let’s now make this point explicit: there is no
such thing as a perfect quantum Xerox machine.

Orthogonal quantum states (like classical information) can be reliably
copied. For example, the unitary transformation that acts as

U : |0〉A|0〉E → |0〉A|0〉E ,

|1〉A|0〉E → |1〉A|1〉E , (4.106)

copies the first qubit onto the second if the first qubit is in one of the
states |0〉A or |1〉A. But if instead the first qubit is in the state |ψ〉 =
a|0〉A + b|1〉A, then

U : (a|0〉A + b|1〉A)|0〉E
→ a|0〉A|0〉E + b|1〉A|1〉E . (4.107)



4.6 Mixed-state entanglement 41

This is not the state |ψ〉 ⊗ |ψ〉 (a tensor product of the original and the
copy); rather it is something very different – an entangled state of the
two qubits.

To consider the most general possible quantum Xerox machine, we allow
the full Hilbert space to be larger than the tensor product of the space of
the original and the space of the copy. Then the most general “copying”
unitary transformation acts as

U : |ψ〉A|0〉E|0〉F → |ψ〉A|ψ〉E|e〉F
|ϕ〉A|0〉E|0〉F → |ϕ〉A|ϕ〉E|f〉F . (4.108)

Unitarity then implies that

〈ψ|ϕ〉 = 〈ψ|ϕ〉〈ψ|ϕ〉〈e|f〉 ; (4.109)

therefore, if 〈ψ|ϕ〉 6= 0, then

1 = 〈ψ|ϕ〉〈e|f〉. (4.110)

Since the states are normalized, we conclude that

|〈ψ|ϕ〉| = 1, (4.111)

so that |ψ〉 and |ϕ〉 actually represent the same ray. No unitary ma-
chine can make a copy of both |ϕ〉 and |ψ〉 if |ϕ〉 and |ψ〉 are distinct,
nonorthogonal states. This result is called the no-cloning theorem.

4.6 Mixed-state entanglement

The crucial property of quantum entanglement is that it cannot be created
locally. Up to now in this chapter we have limited our attention to the
properties of entangled pure states, but it is important to recognize that
mixed states can be entangled, too.

Recall that a bipartite pure state |Ψ〉AB is separable if and only if it
is a product state |Ψ〉AB = |α〉A ⊗ |β〉B. We say that a bipartite mixed
state ρAB is separable if and only if it can be realized as an ensemble of
separable pure states,

ρAB =
∑

i

pi (|αi〉〈αi|)A ⊗ (|βi〉〈βi|)B , (4.112)

where the pi’s are positive and sum to one. Alternatively, we may say
that ρAB is separable if and only if it can be expressed as

ρAB =
∑

i,j

pijρA,i ⊗ ρB,j , (4.113)
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where each ρA,i and ρB,j is a density operator, and the pij’s are positive
and sum to one. Thus if a state is separable, the correlations between the
state of part A and the state of part B are entirely classical, and embodied
by the joint probability distribution pij. The two criteria eq. (4.112) and
eq. (4.113) are equivalent because ρA,i and ρB,j can be realized as an
ensemble of pure states.

Of course, it may be possible to realize a separable mixed state as an
ensemble of entangled pure states as well. A simple example is that the
random state ρ = 1

4I ⊗ I of two qubits can be expressed as either

ρ =
1

4
(|00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|)

(4.114)

(an ensemble of product states) or

ρ =
1

4

(

|φ+〉〈φ+|+ |φ−〉〈φ−| + |ψ+〉〈ψ+|+ |ψ−〉〈ψ−|
)

(4.115)

(an ensemble of maximally entangled states). The state is separable if
and only if there is some way to represent is as an ensemble of product
states. As for a pure state, if a mixed state is not separable, we say that
it is inseparable or entangled.

Consider two distantly separated parties Alice and Bob who carry out a
protocol involving local operations and classical communication. That is,
Alice is permitted to perform quantum operations on her system A, Bob
is permitted to perform quantum operations on his system B, and Alice
and Bob are permitted to exchange classical bits as many times as they
want. But no exchange of qubits is permitted. Then if Alice and Bob
share a separable state to start with, their state will still be separable at
the end of the protocol. The reason is that neither a local operation nor
exchange of a classical bit can increase the Schmidt number of a bipartite
pure state from the value 1 to a value greater than 1. Of course, Alice
and Bob might have a mixed state, but in each step of the protocol an
ensemble of product states is transformed to another ensemble of product
states. Alice and Bob cannot create entanglement locally if they have
none to begin with. In discussions of entanglement, the concept of a
protocol that uses only Local Operations and Classical Communication is
so prevalent that we will find it convenient to use the abbreviation LOCC.

On the other hand, with LOCC, Alice and Bob can prepare any separa-
ble state. To prepare ρAB in eq. (4.112), Alice generates random numbers
to sample the probability distribution {pi}; if outcome i is found, she in-
forms Bob, and Alice prepares the |αi〉A while Bob prepares |βi〉B.
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4.6.1 Positive-partial-transpose criterion for separability

Now, consider a bipartite density operator ρAB on HA ⊗ HB , presented
as (say) a matrix in some basis. We would like to know whether ρAB is
separable. How do we decide? It is not obvious how to devise an efficient
algorithm that will definitively answer whether ρAB can be realized as an
ensemble of product states. However, it is useful to note that there are
necessary conditions for separability that are easy to check.

Recall that relative to a specified orthonormal basis {|i〉} for a Hilbert
space H, a transpose operation T can be defined — the transpose acts on
a basis for the linear operators according to

T : |i〉〈j| → (|i〉〈j|)T = |j〉〈i| ; (4.116)

its action on a matrix Mij expressed in this basis is
(

MT
)

ij
= Mji . (4.117)

Evidently transposition preserves the trace of the matrix M . If M is
Hermitian, then its transpose is its complex conjugate, which has the
same (real) eigenvalues. Therefore, the transpose of a density operator is
another density operator with the same eigenvalues — the transpose is a
trace-preserving positive map.

But we saw in §3.?? that the transpose, although positive, is not com-
pletely positive; that is, the partial transpose I ⊗ T can map a bipartite
positive operator to an operator that is not positive. For example, the
maximally entangled state

|Φ〉 =
1√
N

N−1
∑

i=0

|i〉A ⊗ |i〉B (4.118)

has density operator

ρ =
1

N

∑

i,j

|ii〉〈jj| . (4.119)

Its partial transpose is

(I ⊗ T )(ρ) =
1

N

∑

i,j

|ij〉〈ji|= 1

N
(SWAP) ; (4.120)

the SWAP operator has eigenstates with eigenvalue +1 (symmetric states)
and eigenstates with eigenvalue −1 (antisymmetric states) — hence it is
not positive. We will use the notation

ρPT = (I ⊗ T )(ρ) (4.121)
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for the partial transpose of the bipartite density operator ρ.
While the partial transpose is not a positive map in general, it is positive

acting on separable states. The partial transpose of ρAB in eq. (4.113) is

ρPT
AB =

∑

i,j

pijρA,i ⊗ ρT
B,j ; (4.122)

since ρT
B,j is a density operator, so is ρPT

AB . Thus we arrive at a useful
necessary condition for separability.

Positive partial-transpose criterion for separability: If ρAB is separa-
ble, then ρPT

AB
is nonnegative.

We will say that a bipartite density operator is PPT (for “positive partial
transpose) if its partial transpose is nonnegative.

Thus, if we are presented with a density operator ρAB, we may compute
the eigenvalues of ρPT

AB; if negative eigenvalues are found, then ρAB is
known to be inseparable. But because the PPT condition is necessary
but not sufficient for separability, if ρPT

AB is found to be nonnegative,
then whether ρAB is separable remains unsettled. The PPT criterion is
sometimes called the Peres-Horodecki criterion for separability.

Let’s apply the PPT criterion to a two-qubit state of the form

ρ(λ) = λ|φ+〉〈φ+|+ 1

4
(1− λ)I . (4.123)

This state may also be expressed as

ρ(F ) = F |φ+〉〈φ+|

+
1

3
(1 − F )

(

|φ−〉〈φ−| + |ψ+〉〈ψ+| + |ψ−〉〈ψ−|
)

,(4.124)

where (1−F ) = 3
4 (1−λ), and as we saw in §3.??, it results from subjecting

half of the state |φ+〉 to the depolarizing channel with error probability
p = 1−F . This state is sometimes called a Werner state with fidelity F .

Now
(

|φ+〉〈φ+|
)PT

=
1

2
(SWAP) =

1

2
I − |ψ−〉〈ψ−| ,

(4.125)

where the second equality follows from the property that |φ±〉, |ψ+〉 (which
are symmetric) are eigenvalues of SWAP with eigenvalue 1, and |ψ−〉
(which is antisymmetric) is an eigenstate of SWAP with eigenvalue −1.
Since also IPT = I, we see that the partial transpose of a Werner state is

ρ(λ)PT = λ
(1

2
I − |ψ−〉〈ψ−|

)

+
1

4
(1 − λ)I

=
1

4
(1 + λ)I − λ|ψ−〉〈ψ−| . (4.126)
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This operator has a negative eigenvalue if λ > 1/3, and we conclude that
the Werner state is inseparable for λ > 1/3. Therefore, if half of the
maximally entangled state |φ+〉 is subjected to the depolarizing channel
with error probability p < 1/2, the resulting state remains entangled.

Although we won’t prove it here, it turns out that for the case of two-
qubit states, the PPT criterion is both necessary and sufficient for sepa-
rability. Thus the Werner state with λ < 1/3 (or F < 1/2) is separable.

While we found that a bipartite pure state is entangled if and only if
it violates some Bell inequality, this equivalence does not hold for mixed
states. You will show in Exercise 4.?? that for a Werner state with
λ = 1/2 (or any smaller value of λ) there is a local hidden-variable theory
that fully accounts for the correlations between measurements of Alice’s
qubit and Bob’s. Thus, Werner states with 1/3 < λ < 1/2 are inseparable
states that violate no Bell inequality.

Oddly, though a Werner state with 1/3 < λ < 1/2 is not Bell-inequality
violating, it is nonetheless a shared resource more powerful than classical
randomness. You will also show in Exercise 4.?? that by consuming a
Werner state Alice and Bob can teleport a qubit in an unknown state
with fidelity

Fteleport =
1

2
(1 + λ) . (4.127)

This fidelity exceeds the maximal fidelity Fteleport = 2/3 that can be
achieved without any shared entanglement, for any λ > 1/3 — that is,
for any inseparable Werner state, whether Bell-inequality violating or not.
Even if well described by local hidden variables, an entangled mixed state
can be useful.

It seems rather strange that shared entangled states described by local
hidden-variable theory should be a more powerful resource than classical
shared randomness. Further observations to be discussed in §5.?? will
deepen our grasp of the situation. There we will find that if Alice and
Bob share many copies of the Werner state ρ(λ) with 1/3 < λ < 1/2,
then while local hidden variables provide an adequate description of the
correlations if Alice and Bob are restricted to measuring the pairs one at

a time, violations of Bell inequalities still arise if they are permitted to
perform more general kinds of measurements. These observations illus-
trate that mixed-state entanglement is a surprisingly subtle and elusive
concept.

4.7 Nonlocality without entanglement

Quantum entanglement typifies the principle that there are bipartite
quantum operations that cannot be implemented using only local op-
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erations and classical communication (LOCC). For example, if Alice and
Bob share no prior entanglement, they cannot perform Bell measurement
or prepare the entangled state |φ+〉AB unless they get together. Now we
will encounter an interesting surprise: some things that Alice and Bob
are unable to do with LOCC do not involve quantum entanglement, at
least not directly.

Consider a game played by Alice, Bob, and Charlie. Charlie prepares a
state |ψi〉AB selected from an ensemble of mutually orthogonal bipartite
states, and distributes |ψi〉AB to Alice and Bob. To win the game, Alice
and Bob must identify the state that Charlie prepared. Of course, if Alice
and Bob were permitted to unite, they could perform an orthogonal mea-
surement that would identify the state with certainty, and they would be
able to win every time. But the rules of the game require Alice and Bob to
stay separated, and they are forbidden to exchange quantum information
— only LOCC is allowed. Thus, if Charlie’s ensemble includes entangled
states, Alice and Bob won’t be able to win in general.

To make things easier for Alice and Bob, let’s impose a new rule: Char-
lie is required to prepare a product state

|ψ〉AB = |αi〉A ⊗ |βi〉B . (4.128)

Now, since Alice has a pure state, and so does Bob, we might expect them
to be able to devise a winning strategy. But on further reflection, this
is not so obvious. Though the states {|ψi〉AB} in Charlie’s ensemble are
mutually orthogonal, the states {|αi〉A} that Alice could receive need not
be mutually orthogonal, and the same is true of the states {|βi〉B} that
Bob could receive.

Indeed, even under the new rules, there is no winning strategy for Alice
and Bob in general. Though Charlie sends a pure state to Alice and a
pure state to Bob, there is no way for Alice and Bob, using LOCC, to fully
decipher the message that Charlie has sent to them. This phenomenon is
called nonlocality without entanglement.

The best way to understand nonlocality without entanglement is to con-
sider an example. Suppose that Alice and Bob share a pair of qutrits (3-
level quantum systems), and denote the three elements of an orthonormal
basis for the qutrit by {|0〉, |1〉, |2〉}. In a streamlined notation, Charlie’s
ensemble of nine mutually orthogonal states is

|ψ〉1,2 = |0, 0± 1〉 ,
|ψ〉3,4 = |0 ± 1, 2〉 ,
|ψ〉5,6 = |2, 1± 2〉 ,
|ψ〉7,8 = |1 ± 2, 0〉 ,
|ψ〉9 = |1, 1〉 . (4.129)
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(Here, |0, 0± 1〉 denotes |0〉A ⊗ 1√
2
(|0〉B ± |1〉B), etc.) For ease of visual-

ization, it is very convenient to represent this basis pictorially, as a tiling
of a square by rectangles:

2

1

0

0 1 2

Bob

Alice

|ψ1,2〉
|ψ3,4〉

|ψ7,8〉
|ψ9〉

|ψ5,6〉

In the picture, the mutual orthogonality of the elements of Charlie’s basis
is reflected in the property that the rectangles are nonoverlapping.

When Charlie prepares one of these 9 states and distributes it, Alice
receives one of the states

|0〉, |1〉, |2〉, |0± 1〉, |1± 2〉 , (4.130)

and similarly for Bob. These states are not mutually orthogonal, and so
cannot be perfectly distinguished by the recipient.

For example, Alice might perform an incomplete orthogonal measure-
ment that distinguishes the state |2〉 from its orthogonal complement.
Pictorially, this measurement “cuts” the square into two nonoverlapping
parts. If Charlie prepared one of |ψ5,6〉, |ψ7,8〉, then Alice’s outcome could
be |2〉〈2|; in that case the state prepared by her measurement can be
represented as:

2

0 1 2

Bob

Alice |ψ7,8〉 |ψ5,6〉

After learning Alice’s measurement outcome, Bob can perform an orthog-
onal measurement that projects on the basis

{|0〉, |1+ 2〉, |1− 2〉} . (4.131)
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If his outcome is |1 + 2〉 or |1 − 2〉, then Alice and Bob have successfully
identified Charlie’s state as |ψ5〉 or |ψ6〉. But if Bob’s outcome is |0〉, then
Alice and Bob remain uncertain whether Charlie prepared |ψ7〉 of |ψ8〉. On
the other hand, if Charlie prepared one of |ψ1,2〉, |ψ3,4〉, |ψ7,8〉, |ψ9〉, then
Alice’s outcome could be |0〉〈0|+ |1〉〈1|; in that case the state prepared
by her measurement can be represented as:

1

0

0 1 2

Bob

Alice

|ψ1,2〉
|ψ3,4〉

|ψ7,8〉 |ψ9〉

Once again, Alice and Bob have lost any hope of distinguishing |ψ7〉 from
|ψ8〉, but in a few more rounds of LOCC, they can successfully identify
any of the other five states. Bob projects onto |2〉 or its complement; if he
finds |2〉〈2|, then Alice projects onto |0 ± 1〉 to complete the protocol. If
Bob’s outcome is |0〉〈0|+ |1〉〈1|, then Alice projects onto {|0〉, |1〉}; finally
Bob measures in either the |0±1〉 basis (if Alice found |0〉) or the {|0〉, |1〉}
basis (if Alice found |1〉).

By choosing one of nine mutually orthogonal product states, Charlie
has sent two trits of classical information to Alice and Bob. But their
LOCC protocol, which fails to distinguish |ψ7〉 from |ψ8〉, has not been
able to recover all of the information in Charlie’s message. Of course, this
is just one possible protocol, but one can prove (we won’t here) that no
LOCC protocol can extract two trits of classical information. The trouble
is that with LOCC, Alice and Bob cannot fully “dissect” the square into
nonoverlapping rectangles. This is nonlocality without entanglement.

4.8 Multipartite entanglement

Up until now, we have mostly limited our attention to quantum states
shared by two parties. We will conclude this chapter with some obser-
vations about the properties of entanglement shared by three or more
parties: multipartite entanglement.

Consider for example the case of a pure state |ψ〉A1,A2,...An
shared by

n parties A1, A2, . . .An, and suppose that there is no way to divide the
parties into two smaller camps, where each camp shares a pure state.
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Thus the state is entangled, and furthermore, it can’t be expressed as a
product of states each involving fewer than n parties. Hence we might
say that the state exhibits n-party entanglement. If the parties start out
with an n-fold product state |ψ1〉A1

⊗ |ψ2〉A2
⊗ · · · |ψn〉An

, then there is
no way for them to assemble the state |ψ〉A1,A2,...An

using LOCC alone —
quantum communication is required. Indeed, no matter how we divide
the n parties into two subsystems A and B, quantum communication
between A and B is needed.

What if we disallow quantum communication, but we do equip the
parties with pairwise entanglement that has been established in advance?
Then for the purpose of constructing the state |ψ〉A1,A2,...An

, it clearly
sufficies for the first party A1 to share bipartite entanglement with each
of the other n−1 parties. PartyA1 can build the state |ψ〉A1,A2,...An

in her
own laboratory, and then teleport the corresponding share of the state to
each of the n−1 other parties. In this sense, then, bipartite entanglement
and LOCC is as powerful a resource as multiparty entanglement.

Nonetheless, multipartite entangled states exhibit some qualitatively
new phenomena that we don’t encounter in the study of bipartite entan-
glement, such as nonprobabilistic tests of Einstein locality, and entanglement-
enhanced multiparty communication.

4.8.1 Three quantum boxes

In the wake of the wildly successful experiment with the three coins on
the table, Alice and Bob are now world famous. They are both tenured
professors, Alice at Caltech, and Bob at Chicago. They are much too
important to spend much time in the lab, but they have many graduate
students and remain scientifically active.

Their best student, Charlie, who did all the hard work on the coin
experiment, has graduated and is now an assistant professor at Princeton.
Alice and Bob would like to nurture Charlie’s career, and help him earn
tenure. One day, Alice and Bob are chatting on the phone:

Alice: You know, Bob, we really ought to help Charlie. Can you think
of a neat experiment that the three of us can do together?

Bob: Well, I dunno, Alice. There are a lot of experiments I’d like to do
with our entangled pairs of qubits. But in each experiment, there’s
one qubit for me and one for you. It looks like Charlie’s the odd
man out.

Alice: [Long pause] Bob . . . . Have you ever thought of doing an exper-
iment with three qubits?
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Bob’s jaw drops and his pulse races. In a sudden epiphany, his whole
future career seems mapped out before him. Truth be told, Bob was
beginning to wonder if pairs of qubits were getting to be old hat. Now
he knows that for the next five years, he will devote himself slavishly to
performing the definitive three-qubit experiment. By that time, he, Alice,
and Charlie will have trained another brilliant student, and will be ready
for a crack at four qubits. Then another student, and another qubit. And
so on to retirement.

Here is the sort of three-qubit experiment that Alice and Bob decide
to try: Alice instructs her technician in her lab at Caltech to prepare
carefully a state of three quantum boxes. (But Alice doesn’t know exactly
how the technician does it.) She keeps one box for herself, and she ships
the other two by quantum express, one to Bob and one to Charlie. Each
box has a ball inside that can be either black or white, but the box is
sealed tight shut. The only way to find out what is inside is to open the
box, but there are two different ways to open it — the box has two doors,
clearly marked X and Y . When either door opens, a ball pops out whose
color can be observed. It isn’t possible to open both doors at once.

Alice, Bob, and Charlie decide to study how the boxes are correlated.
They conduct many carefully controlled trials. Each time, one of the
three, chosen randomly, opens door X, while the other two open door
Y. Lucky as ever, Alice, Bob, and Charlie make an astonishing discovery.
They find that every single time they open the boxes this way, the number
of black balls they find is always odd.

That is, Alice, Bob and Charlie find that when they open door X on
one box and door Y on the other two, the colors of the balls in the boxes
are guaranteed to be one of

0A0B1C , 0A1B0C , 1A0B0C , 1A1B1C ,
(4.132)

(0 for white, 1 for black); They never see any of

1A1B0C , 1A0B1C , 0A1B1C , 0A0B0C .
(4.133)

It makes no difference which of the three boxes is opened through door
X .

After a while, Alice, Bob, and Charlie catch on that after opening two
of the boxes, they can always predict what will happen before they open
the third box. If the first two balls are the same color, the last ball is sure
to be black, and if the first two are different colors, the last ball is sure
to be white. They’ve tried it a zillion times, and it always works!
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Even after all the acclaim showered upon the three-coin experiment,
Alice, Bob, and Charlie have never quite shaken their attachment to Ein-
stein locality. One day they are having a three-way conference call:

Alice: You know, guys, sometimes I just can’t decide whether to open
door X or door Y of my box. I know I have to choose carefully . . .
If I open door X , that’s sure to disturb the box; so I’ll never know
what would have happened if I had opened door Y instead. And
if I open door Y , I’ll never know what I would have found if I had
opened door X . It’s frustrating!

Bob: Alice, you’re so wrong! Our experiment shows that you can have
it both ways. Don’t you see? Let’s say that you want to know what
will happen when you open door X . Then just ask Charlie and me
to open door Y of our boxes and to tell you what we find. You’ll
know absolutely for sure, without a doubt, what’s going to happen
when you open door X . We’ve tested that over and over again, and
it always works. So why bother to open door X? You can go ahead
and open door Y instead, and see what you find. That way, you
really do know the result of opening both doors!

Charlie: But how can you be sure? If Alice opens door Y , she passes
up the opportunity to open door X . She can’t really ever have it
both ways. After she opens door Y , we can never check whether
opening door X would have given the result we expected.

Bob: Oh come on, how can it be otherwise? Look, you don’t really
believe that what you do to your box in Princeton and I do to mine
in Chicago can exert any influence on what Alice finds when she
opens her box in Pasadena, do you? When we open our boxes, we
can’t be changing anything in Alice’s box; we’re just finding the
information we need to predict with certainty what Alice is going
to find.

Charlie: Well, maybe we should do some more experiments to find out
if you’re right about that.

Indeed, the discovery of the three-box correlation has made Alice and
Bob even more famous than before, but Charlie hasn’t gotten the credit
he deserves — he still doesn’t have tenure. No wonder he wants to do
more experiments! He continues:

Charlie: Here’s something we can try. In all the experiments we’ve
done up to now, we have always opened door Y on two boxes and
door X on the other box. Maybe we should try something different.



52 4 Quantum Entanglement

Like, maybe we should see what happens if we open the same door
on all three boxes. We could try opening three X doors.

Bob: Oh, come on! I’m tired of three boxes. We already know all about
three boxes. It’s time to move on, and I think Diane is ready to
help out. Let’s do four boxes!

Alice: No, I think Charlie’s right. We can’t really say that we know
everything there is to know about three boxes until we’ve experi-
mented with other ways of opening the doors.

Bob: Forget it. They’ll never fund us! After we’ve put all that effort
into opening two Y ’s and an X , now we’re going to say we want to
open three X ’s? They’ll say we’ve done whiffnium and now we’re
proposing whaffnium . . . We’ll sound ridiculous!

Alice: Bob has a point. I think that the only way we can get funding
to do this experiment is if we can make a prediction about what
will happen. Then we can say that we’re doing the experiment to
test the prediction. Now, I’ve heard about some theorists named
Greenberger, Horne, Zeilinger, and Mermin (GHZM). They’ve been
thinking a lot about our three-box experiments; maybe they’ll be
able to suggest something.

Bob: Well, these boxes are my life, and they’re just a bunch of theorists.
I doubt that they’ll have anything interesting or useful to say. But
I suppose it doesn’t really matter whether their theory makes any
sense . . . If we can test it, then even I will accept that we have a
reason for doing another three-box experiment.

And so it happens that Alice, Bob, and Charlie make the pilgrimage
to see GHZM. And despite Bob’s deep skepticism, GHZM make a very
interesting suggestion indeed:

GHZM: Bob says that opening a box in Princeton and a box in Chicago
can’t possibly have any influence on what will happen when Alice
opens a box in Pasadena. Well, let’s suppose that he’s right. Now
you guys are going to do an experiment in which you all open your
X doors. No one can say what’s going to happen, but we can reason
this way: Let’s just assume that if you had opened three Y doors,
you would have found three white balls. Then we can use Bob’s
argument to see that if you open three X doors instead, you will
have to find three black balls. It goes like this: if Alice opens X ,
Bob opens Y , and Charlie opens Y , then you know for certain that
the number of black balls has to be odd. So, if we know that Bob



4.8 Multipartite entanglement 53

and Charlie both would find white when they open door Y , then
Alice has to find black when she opens door X . Similarly, if Alice
and Charlie both would find white when they open Y , then Bob has
to find black when he opens X , and if Alice and Bob both would
find white when they open Y , then Charlie must find black when
he opens X . So we see that§

YAYBYC = 000 −→ XAXBXC = 111 . (4.134)

Don’t you agree?

Bob: Well, maybe that’s logical enough, but what good is it? We don’t
know what we’re going to find inside a box until we open it. You’ve
assumed that we know YAYBYC = 000, but we never know that
ahead of time.

GHZM: Sure, but wait. Yes, you’re right that we can’t know ahead of
time what we would find if we opened door Y on each box. But
there are only eight possibilities for three boxes, and we can easily
list them all. And for each of those eight possibilities for YAYBYC we
can use the same reasoning as before to infer the value of XAXBXC .
We obtain a table, like this:

YAYBYC = 000 −→ XAXBXC = 111

YAYBYC = 001 −→ XAXBXC = 001

YAYBYC = 010 −→ XAXBXC = 010

YAYBYC = 100 −→ XAXBXC = 100

YAYBYC = 011 −→ XAXBXC = 100

YAYBYC = 101 −→ XAXBXC = 010

YAYBYC = 110 −→ XAXBXC = 001

YAYBYC = 111 −→ XAXBXC = 111 (4.135)

Bob: Okay, but so what?

GHZM: There’s something interesting about the table, Bob! Look at
the values for XAXBXC . . . Every single entry has an odd number
of 1’s. That’s our prediction: when you all open door X on your
boxes, you’ll always find an odd number of black balls! Could be
one, or could be three, but always odd.

Naturally, Alice, Bob, and Charlie are delighted by this insight from
GHZM. They proceed to propose the experiment, which is approved and

§ Here 0 stands for white and 1 stands for black; YA is what Alice finds when she opens
door Y on her box, and so on.
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generously funded. Finally the long awaited day arrives when they are to
carry out the experiment for the first time. And when Alice, Bob, and
Charlie each open door X on their boxes, can you guess what they find?
Three white balls. Whaaaa??!!

Suspecting an error, Alice and Bob and Charlie repeat the experiment,
very carefully, over and over and over again. And in every trial, every
single time, they find an even number of black balls when they open door
X on all three boxes. Sometimes none, sometimes two, but never one
and never three. What they find, every single time, is just the opposite
of what GHZM had predicted would follow from the principle of Einstein
locality!

Desperation once again drives Alice, Bob, and Charlie into the library,
seeking enlightenment. After some study of a quantum mechanics text-
book, and a thorough interrogation of Alice’s lab technician, they realize
that their three boxes had been prepared in a GHZM quantum state

|ψ〉ABC =
1√
2

(|000〉ABC + |111〉ABC) , (4.136)

a simultaneous eigenstate with eigenvalue one of the three observables

ZA ⊗ ZB ⊗ IC , IA ⊗ ZB ⊗ ZC , XA ⊗ XB ⊗ XC .
(4.137)

And since ZX = iY , they realize that this state has the properties

Y A ⊗ Y B ⊗ XC = −1

XA ⊗ Y B ⊗ Y C = −1

Y A ⊗ XB ⊗ Y C = −1

XA ⊗ XB ⊗ XC = 1 . (4.138)

In opening the box through door X or door Y , Alice, Bob, and Charlie
are measuring the observable X or Y , where the outcome 1 signifies a
white ball, and the outcome −1 a black ball. Thus if the three qubit state
eq. (4.136) is prepared, eq. (4.138) says that an odd number of black balls
will be found if door Y is opened on two boxes and door X on the third,
while an even number of black balls will be found if door X is opened
on all three boxes. This behavior, unambiguously predicted by quantum
mechanics, is just what had seemed so baffling to Alice, Bob, and Charlie,
and to their fellow die-hard advocates of Einstein locality.

After much further study of the quantum mechanics textbook, Alice,
Bob, and Charlie gradually come to recognize the flaw in their reasoning.
They learn of Bohr’s principle of complementarity, of the irreconcilable
incompatibility of noncommuting observables. And they recognized that
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to arrive at their prediction, they had postulated an outcome for the
measurement of Y Y Y , and then proceeded to infer the consequences for
a measurement of XXX . By failing to heed the insistent admonitions of
Niels Bohr, they had fallen prey to the most pernicious of fallacies.

As they had hoped, the experiment of the three boxes brings even
further acclaim to Alice and Bob, and tenure to Charlie. Of course,
the three-coin experiment had already convincingly struck down Einstein
locality; even so, the three-box experiment had a different character. In
the coin experiment, Alice and Bob could uncover any two of the three
coins, finding any one of four possible configurations: HH , HT , TH , TT .
Only by carrying out many trials could they amass a convincing statistical
case for the violation of the Bell inequality. In contrast, in the three-box
experiment, Alice, Bob, and Charlie had found a result inconsistent with
Einstein locality in every single trial in which they opened door X on all
three boxes!

4.8.2 Cat states

The GHZM state studied by Alice, Bob, and Charlie is a natural three-
qubit generalization of the maximally entangled Bell pair. A Bell pair
can be characterized as the simultaneous eigenstate of the two commuting
operators ZZ, whose eigenvalue is the “parity bit” of the pair, and XX ,
whose eigenvalue is the phase bit. (Here we use a compressed notation in
which the tensor product symbol ⊗ is suppressed — e.g., XX denotes the
operator that simultaneously applies X to both Alice’s qubit and Bob’s.)
The GHZM state is the simultaneous eigenstate of ZZI , IZZ, andXXX .

An n-qubit generalization of the GHZM state can be defined, which is
the simultaneous eigenstate of the n commuting operators

ZZIII . . . I ,

IZZII . . . I ,

IIZZI . . . I ,

. . .

III . . . IZZ ,

XX . . .XX . (4.139)

Each such simultaneous eigenstate has the form

1√
2

(

|x〉 ± |¬x〉
)

, (4.140)

where ¬x denotes the complement of the binary string x. Since for large n
this state is a coherent superposition of two “macroscopically distinguish-



56 4 Quantum Entanglement

able” states, it is called an n-qubit cat state, in homage to Schrödinger’s
cat. The n-qubit cat state has n− 1 parity bits, and just one phase bit.

Some noteworthy properties of cat states are:

• Each qubit is maximally entangled with the rest. That is, if we trace
over the other n− 1 qubits, the qubit’s density operator is ρ = 1

2I.
For this reason, it is sometimes said that a cat state is a maximally
entangled state of n qubits.

• But this is a rather misleading locution. Because its parity and phase
bits are treated quite asymmetrically, the cat is not so profoundly
entangled as some other multiqubit states that we will encounter in
Chapter 7. For example, for the cat state with x = 000 . . .0, if we
trace over n − 2 qubits, the density operator of the remaining two
is

ρ2−qubit =
1

2

(

|00〉〈00|+ |11〉〈11|
)

, (4.141)

which has rank two rather than four. Correspondingly, we can ac-
quire a bit of information about a cat state (one of its parity bits)
by observing only two of the qubits in the state. Other multiqubit
states, which might be regarded as more highly entangled than cat
states, have the property that the density operator of two (or more)
qubits is proportional to the identity, if we trace over the rest.

• Suppose that Charlie prepares one of the 2n possible cat states and
distributes it to n parties. Using LOCC, the parties can determine
all n − 1 parity bits of the state — each pary measures Z and all
broadcast their results. But by measuring Z they destroy the phase
bit. Alternatively, they can all measure X to determine the phase
bit, but at the cost of destroying all the parity bits.

• Each party, by applying one of {I,X,Y ,Z} can transform a given
cat state to any one of four other cat states; that is, the party
can modify the phase bit and one of the n − 1 parity bits. All n
parties, working together, can transform one cat state to any one of
the 2n mutually orthogonal cat states; for example, one party can
manipulate the phase bit while each of the the other n − 1 parties
controls a parity bit.

• If the parties unite, the phase bit and all parity bits can be simulta-
neously measured.

If the parties start out with a product state, the three-qubit cat state
(for example) can be prepared by executing the quantum circuit:
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phase bit (0, 1)

parity bits x̃

1√
2

(

|0, x̃〉 ± |1, x̃〉
)

H u
i

u

i

For the n-party case, a similar circuit with n − 1 CNOT gates does the
job. Thus, to prepare the state, it suffices for the first party to visit each
of the other n − 1 parties. By running the circuit in reverse, a cat state
can be transformed to a product state that can be measured locally.

4.8.3 Entanglement-enhanced communication

An intriguing property of the n-qubit cat state is that its phase bit can
be manipulated by each one of the n parties that share the state. One
wonders how this shared resource might be exploited.

We will describe a setting in which possession of a cat state reduces the
amount of communication that is required to accomplish a distributed
information processing task. Suppose that each one of n parties labeled
by index i = 1, 2, 3, . . . , n resides on a separate planet, and that party i
possesses some data (a string of bits xi) known only to that party. The
goal of the parties is to compute a function f (with a one-bit output) that
depends on all the data:

f(x1, x2, x3, . . . , xn) ∈ {0, 1} . (4.142)

In this universe, computation is cheap, and communication is expensive.
Each party has unlimited computational power at her disposal, but since
no party knows the full input of the function f , no one can compute
f unless the parties communicate. For this purpose, they are equipped
with a broadcast channel — if any party speaks, all the others can hear
her. However, use of the broadcast channel is very expensive, so that the
parties wish to compute f while making minimal use of the channel.

With this motivation, we define the classical communication complexity

CCC[f ] of the function f :

CCC[f ]= the minimum of bits that must be broadcast (in the worst
case) for all the parties to know the value of f(x1, x2, x3, . . . , xn).

Here “in the worst case” means that we maximize the number of bits
of communication required over all possible values for the input strings
x1, x2, x3, . . . , xn.
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We are interested in whether using quantum information can reduced
the amount of communication required to compute a function. Hence
we contrast the function’s classical communication complexity with its
quantum communication complexity. There are actually several different
natural ways to generalize a classical communication setting to a quantum
setting. In one, to which we return in Chapter 6, the parties are allowed
to exchange qubits instead of classical bits. Here, we consider a scenario
in which all communication is via the classical broadcast channel, but the
parties are allowed to share entangled states that have been prepared in
advance, and to manipulate their shared entanglement locally. Thus we
define the quantum communication complexity QCC[f ] as

QCC[f ]= the minimum of bits that must be broadcast (in the worst
case) for all the parties to know the value of f(x1, x2, x3, . . . , xn),
where the parties are permitted to share prior quantum entanglement.

One way to argue that multipartite entanglement can be a useful resource
is to establish that there are functions f such that

QCC[f ] < CCC[f ] . (4.143)

Here is an example of such a function: Each party holds anm-bit string,
and they are to compute

n
∑

i=1

xi (mod 2m) . (4.144)

Except that they have been promised that the answer is either 0 or 2m−1;
therefore, their function has just a one-bit output.

First consider what strategy the parties should play if they share no
entanglement. Suppose that parties 2 through n broadcast their data,
and that the first party computes f and broadcasts the result. But note
that it is not necessary for the parties to broadcast all of their bits, since
some of the bits cannot affect the answer. Indeed, the k least significant
bits are irrelevant as long as

(n − 1)
(

2k − 1
)

< 2m−1 , (4.145)

which is satisfied provided that

(n− 1)2k ≤ 2m−1 . (4.146)

It suffices then, for parties 2 through n to broadcast their m − k most
significant bits, where

m− k ≥ log2(n− 1) + 1 ; (4.147)
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including one more bit for the first party to broadcast the answer, we
conclude that

CCC[f ] ≤ (n− 1)
(

log2(n− 1) + 1
)

+ 1 . (4.148)

In fact, this protocol is close to optimal — it can be proved that

CCC[f ] > n log2 n− n . (4.149)

But the amount of communication required can be reduced if the parties
share an n-qubit cat state, for they can imprint the answer on their shared
phase bit! Each applies to her qubit the transformation

|0〉 → |0〉 ,
|1〉 → e2πi(xi/2m)|1〉 . (4.150)

Thus the cat state

|cat〉 =
1√
2

(

|000 . . .0〉 + |111 . . .1〉
)

(4.151)

is transformed to

|cat′〉 =
1√
2

(

|000 . . .0〉 + η|111 . . .1〉
)

, (4.152)

where the phase η is

η = exp

(

2πi

(

n
∑

i=1

xi

)

/2m

)

= (−1)f(x1,x2,...,xn) .
(4.153)

Thus the fu
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4.10 Summary

Summary 1.
Summary 2.
Summary 3.

4.11 Bibliographical notes

4.12 Exercises

4.1 Hardy’s theorem
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Bob (in Boston) and Claire (in Chicago) share many identically
prepared copies of the two-qubit state

|ψ〉 =
√

(1 − 2x) |00〉+
√
x |01〉+

√
x |10〉 ,

(4.154)

where x is a real number between 0 and 1/2. They conduct many
trials in which each measures his/her qubit in the basis {|0〉, |1〉},
and they learn that if Bob’s outcome is 1 then Claire’s is always 0,
and if Claire’s outcome is 1 then Bob’s is always 0.

Bob and Claire conduct further experiments in which Bob measures
in the basis {|0〉, |1〉} and Claire measures in the orthonormal basis
{|ϕ〉, |ϕ⊥〉}. They discover that if Bob’s outcome is 0, then Claire’s
outcome is always ϕ and never ϕ⊥. Similarly, if Claire measures in
the basis {|0〉, |1〉} and Bob measures in the basis {|ϕ〉, |ϕ⊥〉}, then
if Claire’s outcome is 0, Bob’s outcome is always ϕ and never ϕ⊥.

a) Express the basis {|ϕ〉, |ϕ⊥〉} in terms of the basis {|0〉, |1〉}.

Bob and Claire now wonder what will happen if they both measure
in the basis {|ϕ〉, |ϕ⊥〉}. Their friend Albert, a firm believer in
local realism, predicts that it is impossible for both to obtain the
outcome ϕ⊥ (a prediction known as Hardy’s theorem). Albert argues
as follows:

When both Bob and Claire measure in the basis {|ϕ〉, |ϕ⊥〉}, it
is reasonable to consider what might have happened if one or
the other had measured in the basis {|0〉, |1〉} instead.

So suppose that Bob and Claire both measure in the basis
{|ϕ〉, |ϕ⊥〉}, and that they both obtain the outcome ϕ⊥. Now if
Bob had measured in the basis {|0〉, |1〉} instead, we can be cer-
tain that his outcome would have been 1, since experiment has
shown that if Bob had obtained 0 then Claire could not have
obtained ϕ⊥. Similarly, if Claire had measured in the basis
{|0〉, |1〉}, then she certainly would have obtained the outcome
1. We conclude that if Bob and Claire both measured in the
basis {|0〉, |1〉}, both would have obtained the outcome 1. But
this is a contradiction, for experiment has shown that it is not
possible for both Bob and Claire to obtain the outcome 1 if
they both measure in the basis {|0〉, |1〉}.
We are therefore forced to conclude that if Bob and Claire
both measure in the basis {|ϕ〉, |ϕ⊥〉}, it is impossible for both
to obtain the outcome ϕ⊥.
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Though impressed by Albert’s reasoning, Bob and Claire decide to
investigate what predictions can be inferred from quantum mechan-
ics.

b) If Bob and Claire both measure in the basis {|ϕ〉, |ϕ⊥〉}, what
is the quantum-mechanical prediction for the probability P (x)
that both obtain the outcome ϕ⊥?

c) Find the “maximal violation” of Hardy’s theorem: show that the
maximal value of P (x) is P [(3−

√
5)/2] = (5

√
5−11)/2 ≈ .0902.

d) Bob and Claire conduct an experiment that confirms the pre-
diction of quantum mechanics. What was wrong with Albert’s
reasoning?

4.2 Closing the detection loophole

Recall that the CHSH inequality

|〈ab〉+ 〈a′b〉+ 〈ab′〉 − 〈a′b′〉| ≤ 2 (4.155)

holds if the random variables a, b, a′b′ take values ±1 and are gov-
erned by a joint probability distribution. The maximal violation of
this inequality by the quantum-mechanical predictions occurs when
the left-hand-side is 2

√
2, which is achieved if Alice and Bob share

the maximally entangled state |φ+〉, a, a′ are measurements of Al-
ice’s qubit along axes x̂ and ẑ, and b, b′ are measurements of Bob’s
qubit along axes (x̂+ ẑ)/

√
2 and (x̂− ẑ)/

√
2.

Alice and Bob have done a beautiful experiment measuring the
polarizations of entangled photon pairs, and have confirmed the
CHSH inequality violation predicted by quantum mechanics. Al-
bert is skeptical. He points out that the detectors used by Alice
and Bob in their experiment are not very efficient. Usually, when
Alice detects a photon, Bob does not, and when Bob detects a pho-
ton, Alice does not. Therefore, they discard the data for most of
the photon pairs, and retain the results only in the case when two
photons are detected in coincidence. In their analysis of the data,
Alice and Bob assume that their results are based on a fair sample of
the probability distribution governing the measured variables. But
Albert argues that their conclusions could be evaded if whether a
photon is detected is correlated with the outcome of the polarization
measurement.

Alice and Bob wonder how much they will need to improve their
detector efficiency to do an experiment that will impress Albert.

Alice can choose to orient her detector along any axis, and if she
aligns the detector with the axis a, then ideally the detector will
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click when her qubit’s spin is pointing up along a, but because of
detector inefficiencies it sometimes fails to click even though the
qubit points up. For pair number i, let xi ∈ {0, 1} be a variable
indicating whether Alice’s detector would click when aligned with
a — if there would be a click then xi = 1, and if there would be no
click then xi = 0. Since the detector is imperfect, xi may be 0 even
though the qubit points up along a. Similarly, x′i ∈ {0, 1} indicates
whether Alice’s detector would click if aligned with a′, yi ∈ {0, 1}
indicates whether Bob’s detector would click if aligned with b and
y′i ∈ {0, 1} indicates whether Bob’s detector would click if aligned
with b′. Under the assumption of local realism, each pair can be
assigned values of x, x′, y, y′ that are determined by local hidden
variables.

Alice and Bob are free to decide how to align their detectors in
each measurement; therefore they can fairly sample the values of
x, x′, y, y′ and infer from their measurements the values of

P++(ab) = N−1
N
∑

i=1

xiyi ,

P++(a′b) = N−1
N
∑

i=1

x′iyi ,

P++(ab′) = N−1
N
∑

i=1

xiy
′
i ,

P++(a′b′) = N−1
N
∑

i=1

x′iy
′
i , (4.156)

where N is the total number of pairs tested. Here e.g P++(ab)
is the probability that both detectors click when Alice and Bob
orient their detectors along a and b (including the effects of detector
inefficiency).

a) If x, x′, y, y′ ∈ {0, 1}, show that

xy + xy′ + x′y − x′y′ ≤ x+ y . (4.157)

b) Show that

P++(ab) + P++(a′b) + P++(ab′)− P++(a′b′) ≤ P+·(a) + P·+(b) ;
(4.158)

here P+·(a) denotes the probability that Alice’s detector clicks
if oriented along a, and P·+(b) denotes the probability that
Bob’s detector clicks if oriented along b.
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c) Now compare with the predictions of quantum mechanics, where
Alice’s detector has efficiency ηA and Bob’s detector has effi-
ciency ηB. This means that Alice’s detector clicks with prob-
ability P = ηAPperf , where Pperf is the probability of a click if
her detector were perfect, and similarly for Bob. Choosing the
a, a′, b, b′ that maximally violate the CHSH inequality, show
that the quantum-mechanical predictions violate eq. (4.158)
only if

ηAηB

ηA + ηB
>

1

1 +
√

2
. (4.159)

Thus, if ηA = ηB, Alice and Bob require detectors with effi-
ciency above 82.84% to overcome Albert’s objection.

4.3 Teleportation with continuous variables

One complete orthonormal basis for the Hilbert space of two par-
ticles on the real line is the (separable) position eigenstate basis
{|q1〉 ⊗ |q2〉}. Another is the entangled basis {|Q, P 〉}, where

|Q, P 〉 =
1√
2π

∫

dq eiPq|q〉 ⊗ |q +Q〉 ; (4.160)

these are the simultaneous eigenstates of the relative position oper-
ator Q ≡ q2 − q1 and the total momentum operator P ≡ p1 + p2.

a) Verify that

〈Q′, P ′|Q, P 〉 = δ(Q′ −Q)δ(P ′ − P ) .
(4.161)

b) Since the states {|Q, P 〉} are a basis, we can expand a position
eigenstate as

|q1〉 ⊗ |q2〉 =

∫

dQdP |Q, P 〉〈Q, P | (|q1〉 ⊗ |q2〉) .
(4.162)

Evaluate the coefficients 〈Q, P | (|q1〉 ⊗ |q2〉).
c) Alice and Bob have prepared the entangled state |Q, P 〉AB of

two particles A and B; Alice has kept particle A and Bob
has particle B. Now Alice has received an unknown single-
particle wavepacket |ψ〉C =

∫

dq |q〉C C〈q|ψ〉C that she intends
to teleport to Bob. Design a protocol that they can execute to
achieve the teleportation. What should Alice measure? What
information should she send to Bob? What should Bob do
when he receives this information, so that particle B will be
prepared in the state |ψ〉B?
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4.4 Teleportation with mixed states.

An operational way to define entanglement is that an entangled
state can be used to teleport an unknown quantum state with better
fidelity than could be achieved with local operations and classical
communication only. In this exercise, you will show that there are
mixed states that are entangled in this sense, yet do not violate any
Bell inequality. Hence, for mixed states (in contrast to pure states)
“entangled” and “Bell-inequality-violating” are not equivalent.

Consider a “noisy” entangled pair with density matrix.

ρ(λ) = (1− λ)|ψ−〉〈ψ−| + λ
1

4
1. (4.163)

a) Find the fidelity F that can be attained if the state ρ(λ) is used
to teleport a qubit from Alice to Bob. [Hint: Recall that you
showed in an earlier exercise that a “random guess” has fidelity
F = 1

2 .]

b) For what values of λ is the fidelity found in (a) better than what
can be achieved if Alice measures her qubit and sends a classical
message to Bob? [Hint: Earlier, you showed that F = 2/3 can
be achieved if Alice measures her qubit. In fact this is the best
possible F attainable with classical communication.]

c) Compute

Prob(↑n̂↑m̂) ≡ tr (EA(n̂)EB(m̂)ρ(λ)) ,
(4.164)

where EA(n̂) is the projection of Alice’s qubit onto | ↑n̂〉 and
EB(m̂) is the projection of Bob’s qubit onto | ↑m̂〉.

d) Consider the case λ = 1/2. Show that in this case the state ρ(λ)
violates no Bell inequalities. Hint: It suffices to construct a
local hidden-variable model that correctly reproduces the spin
correlations found in (c), for λ = 1/2. Suppose that the hidden
variable α̂ is uniformly distributed on the unit sphere, and that
there are functions fA and fB such that

ProbA(↑n̂) = fA(α̂ · n̂), ProbB(↑m̂) = fB(α̂ · m̂).
(4.165)

The problem is to find fA and fB (where 0 ≤ fA,B ≤ 1) with
the properties

∫

α̂
fA(α̂ · n̂) = 1/2,

∫

α̂
fB(α̂ · m̂) = 1/2,

∫

α̂
fA(α̂ · n̂)fB(α̂ · m̂) = Prob(↑n̂↑m̂). (4.166)
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4.5 Quantum key distribution

Alice and Bob want to execute a quantum key distribution protocol.
Alice is equipped to prepare either one of the two states |u〉 or |v〉.
These two states, in a suitable basis, can be expressed as

|u〉 =

(

cosα
sinα

)

, |v〉 =

(

sinα
cosα

)

, (4.167)

where 0 < α < π/4. Alice decides at random to send either |u〉
or |v〉 to Bob, and Bob is to make a measurement to determine
what she sent. Since the two states are not orthogonal, Bob cannot
distinguish the states perfectly.

a) Bob realizes that he can’t expect to be able to identify Alice’s
qubit every time, so he settles for a procedure that is successful
only some of the time. He performs a POVM with three pos-
sible outcomes: ¬u, ¬v, or DON’T KNOW. If he obtains the
result ¬u, he is certain that |v〉 was sent, and if he obtains ¬v,
he is certain that |u〉 was sent. If the result is DON’T KNOW,
then his measurement is inconclusive. This POVM is defined
by the operators

f¬u = A(I − |u〉〈u|) , f¬v = A(I − |v〉〈v|) ,
fDK = (1 − 2A)I +A (|u〉〈u|+ |v〉〈v|) , (4.168)

where A is a positive real number. How should Bob choose
A to minimize the probability of the outcome DK, and what
is this minimal DK probability (assuming that Alice chooses
from {|u〉, |v〉} equiprobably)? [Hint: If A is too large, fDK

will have negative eigenvalues, and eq.(4.168) will not be a
POVM.]

b) Design a quantum key distribution protocol using Alice’s source
and Bob’s POVM.

c) Of course, Eve also wants to know what Alice is sending to Bob.
Hoping that Alice and Bob won’t notice, she intercepts each
qubit that Alice sends, by performing an orthogonal measure-

ment that projects onto the basis
{(

1
0

)

,
(

0
1

)}

. If she obtains

the outcome
(

1
0

)

, she sends the state |u〉 on to Bob, and if she

obtains the outcome
(

0
1

)

, she sends |v〉 on to Bob. Therefore

each time Bob’s POVM has a conclusive outcome, Eve knows
with certainty what that outcome is. But Eve’s tampering
causes detectable errors; sometimes Bob obtains a “conclusive”
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outcome that actually differs from what Alice sent. What is
the probability of such an error?

4.6 Minimal disturbance

In Exercise 2.1, we studied a game in which Alice decides at random
(equiprobably) whether to prepare one of two possible pure states
of a single qubit, either

|ψ〉 =

(

cosα
sinα

)

, or |ψ̃〉 =

(

sinα
cosα

)

,
(4.169)

and sends the state to Bob. By performing an orthogonal measure-
ment in the basis {|0〉, |1〉}, Bob can identify the state with minimal
error probability

(perror)optimal = sin2 α =
1

2
(1− sin θ) , (4.170)

where we have defined θ by

〈ψ|ψ̃〉 ≡ cos θ = sin(2α) . (4.171)

But now let’s suppose that Eve wants to eavesdrop on the state as it
travels from Alice to Bob. Like Bob, she wishes to extract optimal
information that distinguishes |ψ〉 from |ψ̃〉, and she also wants to
minimize the disturbance introduced by her eavesdropping, so that
Alice and Bob are not likely to notice that anything is amiss.

Eve realizes that the optimal POVM can be achieved by measure-
ment operators

M0 = |φ0〉〈0| , M1 = |φ1〉〈1| , (4.172)

where the vectors |φ0〉, and |φ1〉 are arbitrary. If Eve performs this
measurement, then Bob receives the state

ρ′ = cos2 α|φ0〉〈φ0| + sin2 α|φ1〉〈φ1| , (4.173)

if Alice sent |ψ〉, and the state

ρ̃′ = sin2 α|φ0〉〈φ0| + cos2 α|φ1〉〈φ1| , (4.174)

if Alice sent |ψ̃〉.
Eve wants the average fidelity of the state received by Bob to be as
large as possible. The quantity that she wants to minimize, which
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we will call the “disturbance” D, measures how close this average
fidelity is to one:

D = 1− 1

2
(F + F̃ ) , (4.175)

where

F = 〈ψ|ρ′|ψ〉 , F̃ = 〈ψ̃|ρ̃′|ψ̃〉 . (4.176)

The purpose of this exercise is to examine how effectively Eve can re-
duce the disturbance by choosing her measurement operators prop-
erly.

a) Show that F + F̃ can be expressed as

F + F̃ = 〈φ0|A|φ0〉 + 〈φ1|B|φ1〉 , (4.177)

where

A =

(

1 − 2 cos2 α sin2 α cosα sinα
cosα sinα 2 cos2 α sin2 α

)

,

B =

(

2 cos2 α sin2 α cosα sinα
cosα sinα 1 − 2 cos2 α sin2 α

)

. (4.178)

b) Show that if |φ0〉 and |φ1〉 are chosen optimally, the minimal
disturbance that can be attained is

Dmin(cos2 θ) =
1

2
(1 −

√

1− cos2 θ + cos4 θ) .
(4.179)

[Hint: We can choose |φ0〉 and |φ1〉 to maximize the two terms
in eq. (4.177) independently. The maximal value is the maxi-
mal eigenvalue of A, which since the eigenvalues sum to 1, can

be expressed as λmax = 1
2

(

1 +
√

1− 4 · det A
)

.] Of course,

Eve could reduce the disturbance further were she willing to
settle for a less than optimal probability of guessing Alice’s
state correctly.

c) Sketch a plot of the function Dmin(cos2 θ). Interpret its value for
cos θ = 1 and cos θ = 0. For what value of θ is Dmin largest?
Find Dmin and (perror)optimal for this value of θ.

4.7 Approximate cloning

The no-cloning theorem shows that we can’t build a unitary machine
that will make a perfect copy of an unknown quantum state. But
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suppose we are willing to settle for an imperfect copy — what fidelity
might we achieve?

Consider a machine that acts on three qubit states according to

|000〉ABC →
√

2

3
|00〉AB|0〉C +

√

1

3
|ψ+〉AB|1〉C

|100〉ABC →
√

2

3
|11〉AB|1〉C +

√

1

3
|ψ+〉AB|0〉C . (4.180)

a) Is such a device physically realizable, in principle?

If the machine operates on the initial state |ψ〉A|00〉BC , it pro-
duces an pure entangled state |Ψ〉ABC of the three qubits. But
if we observe qubit A alone, its final state is the density operator
ρ′

A = trBC (|Ψ〉ABC ABC〈Ψ|). Similarly, the qubit B, observed in
isolation, has the final state ρ′

B . It is easy to see that ρ′
A = ρ′

B —
these are the identical, but imperfect, copies of the input pure state
|ψ〉A.

b) The mapping from the initial state |ψ〉A A〈ψ| to the final state
ρ′

A of qubit A defines a superoperator $. Find an operator-sum
representation of $.

c) For |ψ〉A = a|0〉A + b|1〉A, find ρ′
A, and compute its fidelity F ≡

A〈ψ|ρ′
A|ψ〉A.

4.8 We’re so sorry, Uncle Albert

Consider the n-qubit “cat” state

|ψ〉n =

√

1

2
(|000 . . .0〉 + |111 . . .1〉) . (4.181)

This state can be characterized as the simultaneous eigenstate (with
eigenvalue 1) of the n operators

σ3 ⊗ σ3 ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ I

I ⊗ σ3 ⊗ σ3 ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ I

. . .

I ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ σ3 ⊗ σ3

σ1 ⊗ σ1 ⊗ σ1 ⊗ · · · ⊗ σ1 ⊗ σ1 ⊗ σ1 (4.182)

a) Show that |ψ〉n is an eigenstate of the operator

(σ1 + iσ2)
⊗n + (σ1 − iσ2)

⊗n , (4.183)

and compute its eigenvalue.



4.12 Exercises 69

b) If we believe in local hidden variables, then we believe that, for
each of the n qubits, both σ1 and σ2 have definite values once
the hidden variables are specified. If so, then what can we say
about the modulus of (σ1 + iσ2)

⊗n or (σ1 − iσ2)
⊗n, assuming

definite values for the hidden variables?

c) From (b), derive an upper bound on

1

2

∣

∣

∣(σ1 + iσ2)
⊗n + (σ1 − iσ2)

⊗n
∣

∣

∣ (4.184)

that follows from the local hidden-variable hypothesis.

d) Compare with (a). What would Einstein say?

4.9 Entanglement manipulation

a) Twenty-five players on the New York Yankees, and twenty-five
players on the San Diego Padres, want to share a 50-qubit cat
state. The Yankees prepare a 26-qubit cat state, and give one
of the qubits to Alice; so do the Padres. Now Alice is to sew the
states together and prepare the 50-qubit state. What should
she do? [Hint: Think about stabilizers.]

b) After joining the Yankees, Alice assumed custody of one of the
qubits in their 25-qubit cat state. But today she has been
traded! Alice is ordered to pull her qubit out of the cat state,
leaving an undamaged 24-qubit cat state for the other players.
What should she do? [Hint: Think about stabilizers.]

4.10 Peres-Horodecki criterion in d dimensions

Recall that a Werner state of a pair of qubits can be expressed as

ρ(λ) = λ|φ+〉〈φ+| + 1

4
(1− λ)I , (4.185)

and that the partial transpose ρPT
AB of a bipartite density operator

ρAB is defined as

ρPT
AB ≡ (IA ⊗ TB)(ρAB) (4.186)

where T is the transpose operation that acts in the computational
basis {|i〉} as

T (|i〉〈j|) = |j〉〈i| . (4.187)

We saw in class that the partial transpose of the Werner state ρ(λ)
is negative for λ > 1/3; therefore, by the Peres-Horodecki criterion,
the Werner state is inseparable for λ > 1/3.
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a) One natural way to generalize the Werner state to a pair of d-
dimensional systems is to consider

ρΦ(λ) = λ|Φ〉〈Φ|+ 1

d2
(1− λ)I , (4.188)

where |Φ〉 is the maximally entangled state

|Φ〉 =
1√
d

d
∑

i=1

|i〉 ⊗ |i〉 . (4.189)

Show that

(|Φ〉〈Φ|)PT =
1

d
(I − 2Eantisym) , (4.190)

where Eantisym is the projector onto the space that is antisym-
metric under interchange of the two systems A and B.

b) For what values of λ does the state ρΦ(λ) have a negative partial
transpose?

c) If the Werner state for two qubits is chosen to be

ρ(λ) = λ|ψ−〉〈ψ−|+ 1

4
(1 − λ)I , (4.191)

then another natural way to generalize the Werner state to a
pair of d-dimensional systems is to consider

ρanti(λ) = λ

(

1
1
2d(d− 1)

)

Eantisym +
1

d2
(1 − λ)I . (4.192)

For what values of λ does ρanti(λ) have a negative partial trans-
pose?
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5
Classical and quantum circuits

5.1 Classical Circuits

The concept of a quantum computer was introduced in Chapter 1. Here
we will specify our model of quantum computation more precisely, and we
will point out some basic properties of the model; later we will investigate
the power of the model. But before we explain what a quantum computer
does, we should say what a classical computer does.

5.1.1 Universal gates

A (deterministic) classical computer evaluates a function: given n-bits of
input it produces m-bits of output that are uniquely determined by the
input; that is, it finds the value of the function

f : {0, 1}n → {0, 1}m, (5.1)

for a particular specified n-bit argument x. A function with an m-bit
output is equivalent to m functions, each with a one-bit output, so we
may just as well say that the basic task performed by a computer is the
evaluation of

f : {0, 1}n → {0, 1}. (5.2)

A function talking an n-bit input to a one-bit output is called a Boolean
function. We may think of such a function as a binary string of length 2n,
where each bit of the string is the output f(x) for one of the 2n possible
values of the input x. Evidently, there are 22n

such strings; that’s a lot of
functions! Already for n = 5 there are 232 ≈ 4.3× 109 Boolean functions
— you’ve encountered only a tiny fraction of these in your lifetime.

It is sometimes useful to regard a Boolean function as a subset Σ of the
n-bit strings containing those values of the input x such that f(x) = 1; we

3
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say these strings are “accepted” by f . The complementary set Σ̄ contains
values of x such that f(x) = 0, which we say are “rejected” by f .

The evaluation of a Boolean function f can be reduced to a sequence of
simple logical operations. To see how, denote the n-bit strings accepted
by f as Σ = {x(1), x(2), x(3), . . . } and note that for each x(a) we can define
a function f (a) : {0, 1}n → {0, 1} such that

f (a)(x) =
{

1 x = x(a)

0 otherwise
(5.3)

Then f can be expressed as

f(x) = f (1)(x) ∨ f (2)(x) ∨ f (3)(x) ∨ . . . , (5.4)

the logical OR (∨) of all the f (a)’s. In binary arithmetic the ∨ operation
of two bits may be represented

x ∨ y = x+ y − x · y; (5.5)

it has the value 0 if x and y are both zero, and the value 1 otherwise.
Now consider the evaluation of f (a). We express the n-bit string x as

x = xn−1xn−2 . . . x2x1x0. (5.6)

In the case where x(a) = 11 . . . 111, we may write

f (a)(x) = xn−1 ∧ xn−2 ∧ . . . ∧ x2 ∧ x1 ∧ x0; (5.7)

it is the logical AND (∧) of all n bits. In binary arithmetic, the AND is
the product

x ∧ y = x · y. (5.8)

For any other x(a), f (a) is again obtained as the AND of n bits, but where
the NOT (¬) operation is first applied to each xi such that x(a)

i = 0; for
example

f (a)(x) = . . . (¬x3) ∧ x2 ∧ x1 ∧ (¬x0) (5.9)

if
x(a) = . . . 0110. (5.10)

The NOT operation is represented in binary arithmetic as

¬x = 1− x. (5.11)

We have now constructed the function f(x) from three elementary log-
ical connectives: NOT, AND, OR. The expression we obtained is called
the “disjunctive normal form” (DNF) of f(x). We have also implicitly
used another operation INPUT(xi), which inputs the ith bit of x.
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These considerations motivate the circuit model of computation. A
computer has a few basic components that can perform elementary oper-
ations on bits or pairs of bits, such as NOT, AND, OR. It can also input a
variable bit or prepare a constant bit. A computation is a finite sequence
of such operations, a circuit, applied to a specified string of input bits.
Each operation is called a gate. The result of the computation is the final
value of all remaining bits, after all the elementary operations have been
executed. For a Boolean function (with a one-bit output), if there are
multiple bits still remaining at the end of the computation, one is desig-
nated as the output bit. A circuit can be regarded as a directed acyclic
graph, where each vertex in the graph is a gate, and the directed edges
indicate the flow of bits through the circuit, with the direction specifying
the order in which gates are applied. By acyclic we mean that no directed
closed loops are permitted.

We say that the gate set {NOT, AND, OR, INPUT} is “universal,”
meaning that any function can be evaluated by building a circuit from
these components. It is a remarkable fact about the world that an arbi-
trary computation can be performed using such simple building blocks.

5.1.2 Most functions require large circuits

Our DNF construction shows that any Boolean function with an n-bit
input can be evaluated using no more than 2n OR gates, n2n AND gates,
n2n NOT gates, and n2n INPUT gates, a total of (3n + 1)2n gates. Of
course, some functions can be computed using much smaller circuits, but
for most Boolean functions the smallest circuit that evaluates the function
really does have an exponentially large (in n) number of gates. The point
is that if the circuit size (i.e., number of gates) is subexponential in n,
then there are many, many more functions than circuits.

How many circuits are there with G gates acting on an n-bit input?
Consider the gate set from which we constructed the DNF, where we will
also allow inputting of a constant bit (either 0 or 1) in case we want to
use some scratch space when we compute. Then there are n+ 5 different
gates: NOT, AND, OR, INPUT(0), INPUT(1), and INPUT(xi) for i =
0, 1, 2, . . . n − 1. Each two-qubit gate acts on a pair of bits which are
outputs from preceding gates; this pair can be chosen in fewer than G2

ways. Therefore the total number of size-G circuits can be bounded as

Ncircuit(G) ≤
(
(n+ 5)G2

)G
. (5.12)
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If G = c2n

2n , where c is a constant independent of n, then

log2Ncircuit(G) ≤ G (log2(n+ 5) + 2 log2G)

= c2n

(
1 +

1
2n

log2

(
c2(n+ 5)

4n2

))
≤ c2n, (5.13)

where the second inequality holds for n sufficiently large. Comparing with
the number of Boolean functions, Nfunction(n) = 22n

, we find

log2

(
Ncircuit(G)
Nfunction(n)

)
≤ (c− 1)2n (5.14)

for n sufficiently large. Therefore, for any c < 1, the number of circuits
is smaller than the number of functions by a huge factor. We did this
analysis for one particular universal gate set, but the counting would
not have been substantially different if we had used a different gate set
instead.

We conclude that for any positive ε, then, most Boolean functions re-
quire circuits with at least (1 − ε)2n

2n gates. The circuit size is so large
because most functions have no structure that can be exploited to con-
struct a more compact circuit. We can’t do much better than consulting
a “look-up table” that stores a list of all accepted strings, which is essen-
tially what the DNF does.

5.1.3 Circuit complexity

So far, we have only considered a computation that acts on an input with
a fixed (n-bit) size, but we may also consider families of circuits that act
on inputs of variable size. Circuit families provide a useful scheme for
analyzing and classifying the complexity of computations, a scheme that
will have a natural generalization when we turn to quantum computation.

Boolean functions arise naturally in the study of complexity. A Boolean
function f may be said to encode a solution to a “decision problem” — the
function examines the input and issues a YES or NO answer. Often, what
might not be stated colloquially as a question with a YES/NO answer can
be “repackaged” as a decision problem. For example, the function that
defines the FACTORING problem is:

f(x, y) =
{

1 if integer x has a divisor z such that 1 < z < y,
0 otherwise;

(5.15)
knowing f(x, y) for all y < x is equivalent to knowing the least nontrivial
factor of x (if there is one).



5.1 Classical Circuits 7

Another example of a decision problem is the HAMILTONIAN PATH
problem: let the input be an `-vertex graph, represented by an ` × `
adjacency matrix ( a 1 in the ij entry means there is an edge linking
vertices i and j); the function is

f(x) =
{

1 if graph x has a Hamiltonian path,
0 otherwise. (5.16)

A path on the graph is Hamiltonian if it visits each vertex exactly once.
For the FACTORING problem the size of the input is the number of

bits needed to specify x and y, while for the HAMILTONIAN PATH
problem the size of the input is the number of bits needed to specify the
graph. Thus each problem really defines a family of Boolean functions
with variable input size. We denote such a function family as

f : {0, 1}∗ → {0, 1}, (5.17)

where the ∗ indicates that the input size is variable. When x is an n-
bit string, by writing f(x) we mean the Boolean function in the family
which acts on an n-bit input is evaluated for input x. The set L of strings
accepted by a function family

L = {x ∈ {0, 1}∗ : f(x) = 1} (5.18)

is called a language.
We can quantify the hardness of a problem by stating how the compu-

tational resources needed to solve the problem scale with the input size
n. In the circuit model of computation, it is natural to use the circuit size
(number of gates) to characterize the required resources. Alternatively,
we might be interested in how much time it takes to do the computation if
many gates can be executed in parallel; the depth of a circuit is the num-
ber of time steps required, assuming that gates acting on distinct bits can
operate simultaneously (that is, the depth is the maximum length of a
directed path from the input to the output of the circuit). The width of a
circuit, the maximum number of gates (including identity gates acting on
“resting” bits) that act in any one time step, quantifies the storage space
used to execute the computation.

We would like to divide the decision problems into two classes: easy
and hard. But where should we draw the line? For this purpose, we
consider decision problems with variable input size, where the number of
bits of input is n, and examine how the size of the circuit that solves the
problem scales with n.

If we use the scaling behavior of a circuit family to characterize the
difficulty of a problem, there is a subtlety. It would be cheating to hide the
difficulty of the problem in the design of the circuit. Therefore, we should
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restrict attention to circuit families that have acceptable “uniformity”
properties — it must be “easy” to build the circuit with n + 1 bits of
input once we have constructed the circuit with an n-bit input.

Associated with a family of functions {fn} (where fn has n-bit input)
are circuits {Cn} that compute the functions. We say that a circuit family
{Cn} is “polynomial size” if the size |Cn| of Cn grows with n no faster
than a power of n,

size (Cn) ≤ poly(n), (5.19)

where poly denotes a polynomial. Then we define:

P = {decision problems solved by polynomial-size
uniform circuit families}

(P for “polynomial time”). Decision problems in P are “easy.” The rest
are “hard.” Notice that Cn computes fn(x) for every possible n-bit input,
and therefore, if a decision problem is in P we can find the answer even for
the “worst-case” input using a circuit of size no greater than poly(n). As
already noted, we implicitly assume that the circuit family is “uniform”
so that the design of the circuit can itself be solved by a polynomial-
time algorithm. Under this assumption, solvability in polynomial time
by a circuit family is equivalent to solvability in polynomial time by a
universal Turing machine.

Of course, to determine the size of a circuit that computes fn, we must
know what the elementary components of the circuit are. Fortunately,
though, whether a problem lies in P does not depend on what gate set
we choose, as long as the gates are universal, the gate set is finite, and
each gate acts on a constant number of bits. One universal gate set can
simulate another efficiently.

The way of distinguishing easy and hard problems may seem rather ar-
bitrary. If |Cn| ∼ n1000 we might consider the problem to be intractable in
practice, even though the scaling is “polynomial,” and if |Cn| ∼ nlog log log n

we might consider the problem to be easy in practice, even though the
scaling is “superpolynomial.” Furthermore, even if |Cn| scales like a mod-
est power of n, the constants in the polynomial could be very large. Such
pathological cases seem to be uncommon, however. Usually polynomial
scaling is a reliable indicator that solving the problem is feasible.

Of particular interest are decision problems that can be answered by
exhibiting an example that is easy to verify. For example, given x and
y < x, it is hard (in the worst case) to determine if x has a factor less than
y. But if someone kindly provides a z < y that divides x, it is easy for us
to check that z is indeed a factor of x. Similarly, it is hard to determine if
a graph has a Hamiltonian path, but if someone kindly provides a path,
it is easy to verify that the path really is Hamiltonian.
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This concept that a problem may be hard to solve, but that a solution
can be easily verified once found, can be formalized. The complexity class
of decision problems for which the answer can be checked efficiently, called
NP, is defined as

Definition. NP. A language L is in NP iff there is a polynomial-size
verifier V (x, y) such that

If x ∈ L, then there exists y such that V (x, y) = 1 (completeness),

If x 6∈ L, then, for all y, V (x, y) = 0 (soundness).

The verifier V is the uniform circuit family that checks the answer. Com-
pleteness means that for each input in the language (for which the answer
is YES), there is an appropriate “witness” such that the verifier accepts
the input if that witness is provided. Soundness means that for each input
not in the language (for which the answer is NO) the verifier rejects the
input no matter what witness is provided. It is implicit that the witness
is of polynomial length, |y| = poly(|x|); since the verifier has a polynomial
number of gates, including input gates, it cannot make use of more than
a polynomial number of bits of the witness. NP stands for “nondeter-
ministic polynomial time;” this name is used for historical reasons, but
it is a bit confusing since the verifier is actually a deterministic circuit
(evaluates a function).

If is obvious that P ⊆ NP; if the problem is in P then the polynomial-
time verifier can decide whether to accept x on its own, without any
help from the witness. But some problems in NP seem to be hard, and
are believed not to be in P. Much of complexity theory is built on a
fundamental conjecture:

Conjecture : P 6= NP. (5.20)

Proving or refuting this conjecture is the most important open problem
in computer science, and one of the most important problems in mathe-
matics.

Why should we believe P 6= NP? If P = NP that would mean we could
easily find the solution to any problem whose solution is easy to check. In
effect, then, we could automate creativity; in particular, computers would
be able to discover all the mathematical theorems which have short proofs.
The conjecture P 6= NP asserts that our machines will never achieve
such awesome power — that the mere existence of a succinct proof of a
statement does not ensure that we can find the proof by any systematic
procedure in any reasonable amount of time.

An important example of a problem in NP is CIRCUIT-SAT. In this
case the input is a Boolean circuit C, and the problem is to determine



10 5 Classical and quantum circuits

whether any input x is accepted by C. The function to be evaluated is

f(C) =
{

1 if there exists x with C(x) = 1,
0 otherwise. (5.21)

This problem is in NP because if the circuit C has polynomial size, then
if we are provided with an input x accepted by C it is easy to check that
C(x) = 1.

The problem CIRCUIT-SAT is particularly interesting because it has a
remarkable property — if we have a machine that solves CIRCUIT-SAT
we can use it to solve any other problem in NP. We say that every problem
in NP is (efficiently) reducible to CIRCUIT-SAT. More generally, we say
that problem B reduces to problem A if a machine that solves A can be
used to solve B as well.

That is, if A and B are Boolean function families, then “B reduces to
A” means there is a function family R, computed by poly-size circuits,
such that B(x) = A(R(x)). Thus B accepts x iff A accepts R(x). In
particular, then, if we have a poly-size circuit family that solves A, we
can hook A up with R to obtain a poly-size circuit family that solves B.

A problem B in NP reduces to CIRCUIT-SAT because problem B has
a poly-size verifier V (x, y), such that B accepts x iff there exists some
witness y such that V accepts (x, y). For each fixed x, asking whether
such a witness y exists is an instance of CIRCUIT-SAT. So a poly-size
circuit family that solves CIRCUIT-SAT can also be used to solve problem
B.

We say a problem A in NP is NP-complete if every problem in NP is
reducible to A. Hence, CIRCUIT-SAT is NP-complete. The NP-complete
problems are the “hardest” problems in NP, in the sense that if we can
solve any NP-complete problem then we can solve every NP problem.
Furthermore, to show that problem A is NP-complete, it is enough to
show that B reduces to A where B is NP-complete. If C is any problem in
NP and B is NP-complete then there is a poly-size reduction R such that
C(x) = B(R(x)), and if B is reducible to A then there is another poly-size
reduction R′ such that B(y) = A(R′(y)). Hence C(x) = A(R′(R(x))), and
since the composition R′ ◦R of two poly-size reductions is also poly-size,
we see that an arbitrary problem C in NP reduces to A, and therefore A
is NP-complete. NP-completeness is a useful concept because hundreds
of “natural” computational problems turn out to be NP-complete. For
example, one can exhibit a polynomial reduction of CIRCUIT-SAT to
HAMILTONIAN PATH, and it follows that HAMILTONIAN PATH is
also NP-complete.

Another noteworthy complexity class is called co-NP. While NP prob-
lems can be decided by exhibiting an example if the answer is YES, co-NP
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problems can be answered by exhibiting a counter-example if the answer
is NO. More formally:

Definition. co-NP. A language L is in co-NP iff there is a polynomial-
size verifier V̄ (x, y) such that

If x 6∈ L, then there exists y such that V̄ (x, y) = 1,

If x ∈ L, then, for all y, V̄ (x, y) = 0.

For NP the witness y testifies that x is in the language while for co-NP
the witness testifies that x is not in the language. Thus if language L is
in NP, then its complement L̄ is in co-NP and vice-versa. We see that
whether we consider a problem to be in NP or in co-NP depends on how
we choose to frame the question — while “Is there a Hamiltonian path?”
is in NP, the complementary question “Is there no Hamiltonian path?” is
in co-NP.

Though the distinction between NP and co-NP may seem arbitrary, it
is nevertheless interesting to ask whether a problem is in both NP and
co-NP. If so, then we can easily verify the answer (once a suitable witness
is in hand) regardless of whether the answer is YES or NO. It is believed
(though not proved) that NP 6= co-NP. For example, we can show that
a graph has a Hamiltonian path by exhibiting an example, but we don’t
know how to show that it has no Hamiltonian path that way!

If we assume that P 6= NP, it is known that there exist problems in
NP of intermediate difficulty (the class NPI), which are neither in P nor
NP-complete. Furthermore, assuming that that NP 6= co-NP, it is known
that no co-NP problems are NP-complete. Therefore, problems in the
intersection of NP and co-NP, if not in P, are good candidates for inclusion
in NPI.

In fact, a problem in NP ∩ co-NP believed not to be in P is the FAC-
TORING problem. As already noted, FACTORING is in NP because,
if we are offered a factor of x, we can easily check its validity. But it is
also in co-NP, because it is known that if we are given a prime number
we can efficiently verify its primality. Thus, if someone tells us the prime
factors of x, we can efficiently check that the prime factorization is right,
and can exclude that any integer less than y is a divisor of x. Therefore,
it seems likely that FACTORING is in NPI.

We are led to a crude (conjectured) picture of the structure of NP ∪ co-
NP. NP and co-NP do not coincide, but they have a nontrivial intersection.
P lies in NP ∩ co-NP but the intersection also contains problems not in
P (like FACTORING). No NP-complete or co-NP-complete problems lie
in NP ∩ co-NP.
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5.1.4 Randomized computation

It is sometimes useful to consider probabilistic circuits that have access
to a random number generator. For example, a gate in a probabilistic
circuit might act in either one of two ways, and flip a fair coin to decide
which action to execute. Such a circuit, for a single fixed input, can
sample many possible computational paths. An algorithm performed by
a probabilistic circuit is said to be “randomized.”

If we run a randomized computation many times on the same input,
we won’t get the same answer every time; rather there is a probability
distribution of outputs. But the computation is useful if the probability
of getting the right answer is high enough. For a decision problem, we
would like a randomized computation to accept an input x which is in
the language L with probability at least 1

2 + δ, and to accept an input
x which is not in the language with probability no greater than 1

2 − δ,
where δ > 0 is a constant independent of the input size. In that case
we can amplify the probability of success by performing the computation
many times and taking a majority vote on the outcomes. For x ∈ L, if we
run the computation N times, the probability of rejecting in more than
half the runs is no more than e−2Nδ2

(the Chernoff bound). Likewise, for
x 6∈ L, the probability of accepting in the majority of N runs is no more
than e−2Nδ2

.
Why? There are all together 2N possible sequences of outcomes in the

N trials, and the probability of any particular sequence with NW wrong
answers is (

1
2
− δ

)NW
(

1
2

+ δ

)N−NW

. (5.22)

The majority is wrong only if NW ≥ N/2, so the probability of any
sequence with an incorrect majority is no larger than(

1
2
− δ

)N/2(1
2

+ δ

)N/2

=
1

2N

(
1− 4δ2

)N/2
. (5.23)

Using 1− x ≤ e−x and multiplying by the total number of sequences 2N ,
we obtain the Chernoff bound:

Prob(wrong majority) ≤
(
1− 4δ2

)N/2 ≤ e−2Nδ2
. (5.24)

If we are willing to accept a probability of error no larger than ε, then,
it suffices to run the computation a number of times

N ≥ 1
2δ2

ln (1/ε) . (5.25)
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Because we can make the error probability very small by repeating a
randomized computation a modest number of times, the value of the con-
stant δ does not really matter for the purpose of classifying complexity,
as long as it is positive and independent of the input size. The standard
convention is to specify δ = 1/6, so that x ∈ L is accepted with proba-
bility at least 2/3 and x 6∈ L is accepted with probability no more than
1/3. This criterion defines the class BPP (“bounded-error probabilistic
polynomial time”) containing decision problems solved by polynomial-size
randomized uniform circuit families.

It is clear that BPP contains P, since a deterministic computation is a
special case of a randomized computation, in which we never consult the
source of randomness. It is widely believed that BPP=P, that randomness
does not enhance our computational power, but this has not been proven.
It is not even known whether BPP is contained in NP.

We may define a randomized class analogous to NP, called MA
(“Merlin-Arthur”), containing languages that can be checked when a ran-
domized verifier is provided with a suitable witness:

Definition. MA. A language L is in MA iff there is a polynomial-size
randomized verifier V (x, y) such that

If x ∈ L, then there exists y such that Prob(V (x, y) = 1) ≥ 2/3,
If x 6∈ L, then, for all y, Prob(V (x, y) = 1) ≤ 1/3.

The colorful name evokes a scenario in which the all-powerful Merlin uses
his magical powers to conjure the witness, allowing the mortal Arthur,
limited to polynomial time computation, to check the answer. Obviously
BPP is contained in MA, but we expect BPP 6= MA just as we expect P
6= NP.

5.2 Reversible computation

In devising a model of a quantum computer, we will generalize the cir-
cuit model of classical computation. But our quantum logic gates will
be unitary transformations, and hence will be invertible, while classical
logic gates like the AND gate are not invertible. Before we discuss quan-
tum circuits, it is useful to consider some features of reversible classical
computation.

5.2.1 Landauer’s principle

Aside from providing a bridge to quantum computation, classical re-
versible computing is interesting in its own right, because of Landauer’s
principle. Landauer observed that erasure of information is necessarily a
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dissipative process. His insight is that erasure always involves the com-
pression of phase space, and so is thermodynamically, as well as logically,
irreversible.

For example, I can store one bit of information by placing a single
molecule in a box, either on the left side or the right side of a partition that
divides the box. Erasure means that we move the molecule to the right
side (say) irrespective of whether it started out on the left or right. I can
suddenly remove the partition, and then slowly compress the one-molecule
“gas” with a piston until the molecule is definitely on the right side. This
procedure changes the entropy of the gas by ∆S = −k ln 2 (where k is
Boltzmann’s constant) and there is an associated flow of heat from the
box to its environment. If the process is quasi-static and isothermal at
temperature T , then work W = −kT∆S = kT ln 2 is performed on the
box, work that I have to provide. If I erase information, someone has to
pay the power bill.

Landauer also observed that, because irreversible logic elements erase
information, they too are necessarily dissipative, and therefore require an
unavoidable expenditure of energy. For example, an AND gate maps two
input bits to one output bit, with 00, 01, and 10 all mapped to 0, while
11 is mapped to one. If the input is destroyed and we can read only the
output, then if the output is 0 we don’t know for sure what the input was
— there are three possibilities. If the input bits are chosen uniformly at
random, than on average the AND gate destroys 3

4 log2 3 ≈ 1.189 bits of
information. Indeed, if the input bits are uniformly random any 2-to-1
gate must “erase” at least one bit on average. According to Landauer’s
principle, then, we need to do an amount of work at least W = kT ln 2 to
operate a 2-to-1 logic gate at temperature T .

But if a computer operates reversibly, then in principle there need be
no dissipation and no power requirement. We can compute for free! At
present this idea is not of great practical importance, because the power
consumed in today’s integrated circuits exceeds kT per logic gate by at
least three orders of magnitude. As the switches on chips continue to
get smaller, though, reversible computing might eventually be invoked to
reduce dissipation in classical computing hardware.

5.2.2 Reversible gates

A reversible computer evaluates an invertible function taking n bits to n
bits

f : {0, 1}n → {0, 1}n . (5.26)

An invertible function has a unique input for each output, and we can
run the computation backwards to recover the input from the output. We
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may regard an invertible function as a permutation of the 2n strings of
n bits — there are (2n)! such functions. If we did not insist on invert-
ibility, there would be

(
22n)n = (2n)2

n

functions taking n bits to n bits
(the number of ways to choose n Boolean functions); using the Stirling
approximation, (2n)! ≈ (2n/e)2

n
, we see that the fraction of all functions

which are invertible is quite small, about e−2n
.

Any irreversible computation can be “packaged” as an evaluation of an
invertible function. For example, for any f : {0, 1}n → {0, 1}, we can
construct f̃ : {0, 1}n+1 → {0, 1}n+1 such that

f̃(x, y) = (x, y ⊕ f(x)). (5.27)

Here y is a bit and ⊕ denotes the XOR gate (addition mod 2) — the
n-bit input x is preserved and the last bit flips iff f(x) = 1. Applying f̃
a second time undoes this bit flip; hence f̃ is invertible, and equal to its
own inverse. If we set y = 0 initially and apply f̃ , we can read out the
value of f(x) in the last output bit.

Just as for Boolean functions, we can ask whether a complicated re-
versible computation can be executed by a circuit built from simple com-
ponents — are there universal reversible gates? It is easy to see that
one-bit and two-bit reversible gates do not suffice; we will need three-bit
gates for universal reversible computation.

Of the four 1-bit → 1-bit gates, two are reversible; the trivial gate and
the NOT gate. Of the (24)2 = 256 possible 2-bit → 2-bit gates, 4! = 24
are reversible. One of special interest is the controlled-NOT (CNOT) or
reversible XOR gate that we already encountered in Chapter 4:

XOR : (x, y) 7→ (x, x⊕ y), (5.28)

x

y

x

x⊕ y

sg
This gate flips the second bit if the first is 1, and does nothing if the first
bit is 0 (hence the name controlled-NOT). Its square is trivial; hence it
inverts itself. Anticipating the notation that will be convenient for our
discussion of quantum gates, we will sometimes use Λ(X) to denote the
CNOT gate. More generally, by Λ(G) we mean a gate that applies the
operation G to a “target” conditioned on the value of a “control bit;” G
is applied if the control bit is 1 and the identity is applied if the control
bit is 0. In the case of the CNOT gate, G is the Pauli operator X, a bit
flip.
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The CNOT gate performs a NOT on the second bit if the first bit x is
set to 1, and it performs the copy operation if y is initially set to zero:

CNOT : (x, 0) 7→ (x, x). (5.29)

With the circuit

x

y

y

x

sg gs sg
constructed from three XOR’s, we can swap two bits:

(x, y) → (x, x⊕ y) → (y, x⊕ y) → (y, x). (5.30)

With these swaps we can shuffle bits around in a circuit, bringing them
together if we want to act on them with a “local gate” at a fixed location.

To see that the one-bit and two-bit gates are nonuniversal, we observe
that all these gates are linear. Each reversible two-bit gate has an action
of the form (

x
y

)
7→
(
x′

y′

)
= M

(
x
y

)
+
(
a
b

)
; (5.31)

the pair of bits
(

a
b

)
can take any one of four possible values, and the

matrix M is one of the six invertible matrices with binary entries

M =
(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
,(

1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
. (5.32)

(All addition is performed modulo 2.) Combining the six choices for M
with the four possible constants, we obtain 24 distinct gates, exhausting
all the reversible 2 → 2 gates.

Since the linear transformations are closed under composition, any cir-
cuit composed from reversible 2 → 2 (and 1 → 1) gates will compute a
linear function

x 7→Mx+ a. (5.33)

But for n ≥ 3, there are invertible functions on n-bits that are nonlinear.
An important example is the 3-bit Toffoli gate (or controlled-controlled-
NOT) Λ2(X)

Λ2(X) : (x, y, z) → (x, y, z ⊕ xy); (5.34)
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x

y

z

x

y

z ⊕ xy

ssg

it flips the third bit if the first two are 1 and does nothing otherwise, thus
invoking the (nonlinear) multiplication of the two bits x and y. The Λ2(·)
notation indicates that the operation acting on the target bit is triggered
only if both control bits are set to 1. Like the CNOT gate Λ(X), Λ2(X)
is its own inverse.

Unlike the reversible 2-bit gates, the Toffoli gate serves as a universal
gate for Boolean logic, if we can provide constant input bits and ignore
output bits. If we fix x = y = 1, then the Toffoli gate performs NOT
acting on the third bit, and if z is set to zero initially, then the Toffoli
gate outputs z = x ∧ y in the third bit. Since NOT/AND/OR are a
universal gate set, and we can construct OR from NOT and AND (x∨y =
¬(¬x ∧ ¬y)), this is already enough to establish that the Toffoli gate is
universal. Note also that if we fix x = 1 the Toffoli gate functions like a
CNOT gate acting on y and z; we can use it to copy.

The Toffoli gate Λ2(X) is also universal in the sense that we can build a
circuit to compute any reversible function using Toffoli gates alone (if we
can fix input bits and ignore output bits). It will be instructive to show
this directly, without relying on our earlier argument that NOT/AND/OR
is universal for Boolean functions. Specifically, we can show the following:
From the NOT gate and the Toffoli gate Λ2(X), we can construct any
invertible function on n bits, provided we have one extra bit of scratchpad
space available.

The first step is to show that from the three-bit Toffoli-gate Λ2(X) we
can construct an n-bit Toffoli gate Λn−1(X) that acts as

(x1, x2, . . . xn−1, y) → (x1, x2, . . . , xn−1, y ⊕ x1x2 . . . xn−1) (5.35)

using one extra bit of scratch space. For example, we construct Λ3(X)
from Λ2(X)’s with the circuit
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x1

x2

0

x3

y

x1

x2

0

x3

y ⊕ x1x2x3

ssg ssg

ssg

The purpose of the last Λ3(X) gate is to reset the scratch bit back to
its original value 0. Actually, with one more gate we can obtain an im-
plementation of Λ3(X) that works irrespective of the initial value of the
scratch bit:

x1

x2

w

x3

y

x1

x2

w

x3

y ⊕ x1x2x3

ssg ssg

ssg ssg
We can see that the scratch bit really is necessary, because Λ3(X)

is an odd permutation (in fact a transposition) of the 4-bit strings —
it transposes 1111 and 1110. But Λ2(X) acting on any three of the
four bits is an even permutation; e.g., acting on the last three bits it
transposes both 0111 with 0110 and 1111 with 1110. Since a product of
even permutations is also even, we cannot obtain Λ3(X) as a product of
Λ2(X)’s that act only on the four bits.

This construction of Λ3(X) from four Λ2(X)’s generalizes immediately
to the construction of Λn−1(X) from two Λn−2(X)’s and two Λ2(X)’s
(just expand x1 to several control bits in the above diagram). Iterating
the construction, we obtain Λn−1(X) from a circuit with 2n−2 + 2n−3− 2
Λ2(X)’s. Furthermore, just one bit of scratch suffices. (With more scratch
space, we can build Λn−1(X) from Λ2(X)’s much more efficiently — see
Exercise 5.1.)

The next step is to note that, by conjugating Λn−1(X) with NOT gates,
we can in effect modify the value of the control string that “triggers” the
gate. For example, the circuit
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x1

x2

x3

y

g
g

sssg

g
g

flips the value of y if x1x2x3 = 010, and it acts trivially otherwise. Thus
this circuit transposes the two strings 0100 and 0101. In like fashion, with
Λn−1(X) and NOT gates, we can devise a circuit that transposes any two
n-bit strings that differ in only one bit. (The location of the bit where
they differ is chosen to be the target of the Λn−1(X) gate.)

But in fact a transposition that exchanges any two n-bit strings can
be expressed as a product of transpositions that interchange strings that
differ in only one bit. If a0 and as are two strings that are Hamming
distance s apart (differ in s places), then there is a sequence of strings

a0, a1, a2, a3, . . . , as, (5.36)

such that each string in the sequence is Hamming distance one from its
neighbors. Therefore, each of the transpositions

(a0a1), (a1a2), (a2a3), . . . , (as−1as), (5.37)

can be implemented as a Λn−1(X) gate conjugated by NOT gates. By
composing transpositions we find

(a0as) = (as−1as)(as−2as−1) . . . (a2a3)(a1a2)(a0a1)(a1a2)(a2a3)
. . . (as−2as−1)(as−1as); (5.38)

we can construct the Hamming-distance-s transposition from 2s − 1
Hamming-distance-one transpositions. It follows that we can construct
(a0as) from Λn−1(X)’s and NOT gates.

Finally, since every permutation is a product of transpositions, we have
shown that every invertible function on n-bits (every permutation of the
n-bit strings) is a product of Λn−1(X)’s and NOT’s, using just one bit of
scratch space.

Of course, a NOT can be performed with a Λ2(X) gate if we fix two
input bits at 1. Thus the Toffoli gate Λ2(X) is universal for reversible
computation, if we can fix input bits and discard output bits.
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5.2.3 Saving space: the pebble game

We have seen that with Toffoli and NOT gates we can compute any in-
vertible function using very little scratch space, and also that by fixing
constant input bits and ignoring output bits, we can simulate any (irre-
versible) Boolean circuit using only reversible Toffoli gates. In the latter
case, though, we generate two bits of junk every time we simulate an
AND gate. Our memory gradually fills with junk, until we reach the
stage where we cannot continue with the computation without erasing
some bits to clear some space. At that stage, we will finally have to pay
the power bill for the computing we have performed, just as Landauer
had warned.

Fortunately, there is a general procedure for simulating an irreversible
circuit using reversible gates, in which we can erase the junk without
using any power. We accumulate and save all the junk output bits as
the simulation proceeds, and when we reach the end of the computation
we make a copy of the output. The COPY operation, which is logically
reversible, can be done with a CNOT or Toffoi gate. Then we run the
full computation in reverse, executing the circuit in the opposite order
and replacing each gate by its inverse. This procedure cleans up all the
junk bits, and returns all registers to their original settings, without any
irreversible erasure steps. Yet the result of the computation has been
retained, because we copied it before reversing the circuit.

Because we need to run the computation both forward and backward,
the reversible simulation uses roughly twice as many gates as the irre-
versible circuit it simulates. Far worse than that, this simulation method
requires a substantial amount of memory, since we need to be able to
store about as many bits as the number of gates in the circuit before we
finally start to clear the memory by reversing the computation.

It is possible, though, at the cost of modestly increasing the simula-
tion time, to substantially reduce the space required. The trick is to
clear space during the course of the simulation by running a part of the
computation backward. The resulting tradeoff between time and space is
worth discussing, as it illustrates both the value of “uncomputing” and
the concept of a recursive simulation.

We imagine dividing the computation into steps of roughly equal size.
When we run step k forward, the first thing we do is make a copy of
the output from the previous step, then we execute the gates of step k,
retaining all the junk accumulated by those gates. We cannot run step k
forward unless we have previously completed step k−1. Furthermore, we
will not be able to run step k backward if we have already run step k− 1
backward. The trouble is that we will not be able to reverse the COPY
step at the very beginning of step k unless we have retained the output
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from step k − 1.
To save space in our simulation we want to minimize at all times the

number of steps that have already been computed but have not yet been
uncomputed. The challenge we face can be likened to a game — the
reversible pebble game. The steps to be executed form a one-dimension
directed graph with sites labeled 1, 2, 3, . . . , T . Execution of step k is
modeled by placing a pebble on the kth site of the graph, and executing
step k in reverse is modeled as removal of a pebble from site k. At the
beginning of the game, no sites are covered by pebbles, and in each turn
we add or remove a pebble. But we cannot place a pebble at site k (except
for k = 1) unless site k− 1 is already covered by a pebble, and we cannot
remove a pebble from site k (except for k = 1) unless site k−1 is covered.
The object is to cover site T (complete the computation) without using
more pebbles than necessary (generating a minimal amount of garbage).

We can construct a recursive procedure that enables us to reach site
t = 2n using n+1 pebbles and leaving only one pebble in play. Let F1(k)
denote placing a pebble at site k, and F1(k)−1 denote removing a pebble
from site k. Then

F2(1, 2) = F1(1)F1(2)F1(1)−1, (5.39)

leaves a pebble at site k = 2, using a maximum of two pebbles at inter-
mediate stages. Similarly

F3(1, 4) = F2(1, 2)F2(3, 4)F2(1, 2)−1, (5.40)

reaches site k = 4 using three pebbles, and

F4(1, 8) = F3(1, 4)F3(5, 8)F3(1, 4)−1, (5.41)

reaches k = 8 using four pebbles. Proceeding this way we construct
Fn(1, 2n) which uses a maximum of n + 1 pebbles and leaves a single
pebble in play.

Interpreted as a routine for simulating Tirr = 2n steps of an irreversible
computation, this strategy for playing the pebble game represents a re-
versible simulation requiring space Srev scaling like

Srev ≈ Sstep log2 (Tirr/Tstep) , (5.42)

where Tstep is the number of gates is a single step, and Sstep is the amount
of memory used in a single step. How long does the simulation take?
At each level of the recursive procedure described above, two steps for-
ward are replaced by two steps forward and one step back. Therefore,
an irreversible computation with Tirr/Tstep = 2n steps is simulated in
Trev/Tstep = 3n steps, or

Trev = Tstep (Tirr/Tstep)
log 3/ log 2 = Tstep(Tirr/Tstep)1.58, (5.43)
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a modest power law slowdown.
We can improve this slowdown to

Trev ∼ (Tirr)1+ε, (5.44)

for any ε > 0. Instead of replacing two steps forward with two forward
and one back, we replace ` forward with ` forward and ` − 1 back. A
recursive procedure with n levels reaches site `n using a maximum of
n(`− 1) + 1 pebbles. Now we have Tirr ∝ `n and Trev ∝ (2`− 1)n, so that

Trev = Tstep(Tirr/Tstep)log(2`−1)/ log `; (5.45)

the power characterizing the slowdown is

log(2`− 1)
log `

=
log 2`+ log

(
1− 1

2`

)
log `

' 1 +
log 2
log `

≡ 1 + ε, (5.46)

and the space requirement scales as

Srev/Sstep ≈ `n ≈ 21/ε log` (Tirr/Tstep) ≈ ε 21/ε log2 (Tirr/Tstep) , (5.47)

where 1/ε = log2 `. The required space still scales as Srev ∼ log Tirr, yet
the slowdown is no worse than Trev ∼ (Tirr)1+ε. By using more than the
minimal number of pebbles, we can reach the last step faster.

You might have worried that, because reversible computation is
“harder” than irreversible computation, the classification of complexity
depends on whether we compute reversibly or irreversibly. But don’t
worry — we’ve now seen that a reversible computer can simulate an irre-
versible computer pretty easily.

5.3 Quantum Circuits

Now we are ready to formulate a mathematical model of a quantum com-
puter. We will generalize the circuit model of classical computation to
the quantum circuit model of quantum computation.

A classical computer processes bits. It is equipped with a finite set of
gates that can be applied to sets of bits. A quantum computer processes
qubits. We will assume that it too is equipped with a discrete set of
fundamental components, called quantum gates. Each quantum gate is
a unitary transformation that acts on a fixed number of qubits. In a
quantum computation, a finite number n of qubits are initially set to the
value |00 . . . 0〉. A circuit is executed that is constructed from a finite
number of quantum gates acting on these qubits. Finally, an orthogonal
measurement of all the qubits (or a subset of the qubits) is performed,
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projecting each measured qubit onto the basis {|0〉, |1〉}. The outcome of
this measurement is the result of the computation.

Several features of this model invite comment:
(1) Preferred decomposition into subsystems. It is implicit but impor-

tant that the Hilbert space of the device has a preferred decomposition
into a tensor product of low-dimensional subsystems, in this case the
qubits. Of course, we could have considered a tensor product of, say,
qutrits instead. But anyway we assume there is a natural decomposition
into subsystems that is respected by the quantum gates — the gates act
on only a few subsystems at a time. Mathematically, this feature of the
gates is crucial for establishing a clearly defined notion of quantum com-
plexity. Physically, the fundamental reason for a natural decomposition
into subsystems is locality; feasible quantum gates must act in a bounded
spatial region, so the computer decomposes into subsystems that interact
only with their neighbors.

(2) Finite instruction set. Since unitary transformations form a contin-
uum, it may seem unnecessarily restrictive to postulate that the machine
can execute only those quantum gates chosen from a discrete set. We
nevertheless accept such a restriction, because we do not want to invent a
new physical implementation each time we are faced with a new computa-
tion to perform. (When we develop the theory of fault-tolerant quantum
computing we will see that only a discrete set of quantum gates can be
well protected from error, and we’ll be glad that we assumed a finite gate
set in our formulation of the quantum circuit model.)

(3) Unitary gates and orthogonal measurements. We might have allowed
our quantum gates to be trace-preserving completely positive maps, and
our final measurement to be a POVM. But since we can easily simulate
a TPCP map by performing a unitary transformation on an extended
system, or a POVM by performing an orthogonal measurement on an
extended system, the model as formulated is of sufficient generality.

(4) Simple preparations. Choosing the initial state of the n input qubits
to be |00 . . . 0〉 is merely a convention. We might want the input to be
some nontrivial classical bit string instead, and in that case we would just
include NOT gates in the first computational step of the circuit to flip
some of the input bits from 0 to 1. What is important, though, is that
the initial state is easy to prepare. If we allowed the input state to be a
complicated entangled state of the n qubits, then we might be hiding the
difficulty of executing the quantum algorithm in the difficulty of preparing
the input state. We start with a product state instead, regarding it as
uncontroversial that preparation of a product state is easy.

(5) Simple measurements. We might allow the final measurement to be
a collective measurement, or a projection onto a different basis. But
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any such measurement can be implemented by performing a suitable
unitary transformation followed by a projection onto the standard ba-
sis {|0〉, |1〉}n. Complicated collective measurements can be transformed
into measurements in the standard basis only with some difficulty, and it
is appropriate to take into account this difficulty when characterizing the
complexity of an algorithm.

(6) Measurements delayed until the end. We might have allowed mea-
surements at intermediate stages of the computation, with the subsequent
choice of quantum gates conditioned on the outcome of those measure-
ments. But in fact the same result can always be achieved by a quan-
tum circuit with all measurements postponed until the end. (While we
can postpone the measurements in principle, it might be very useful in
practice to perform measurements at intermediate stages of a quantum
algorithm.)

A quantum gate, being a unitary transformation, is reversible. In fact,
a classical reversible computer is a special case of a quantum computer.
A classical reversible gate

x→ y = f(x), (5.48)

implementing a permutation of k-bit strings, can be regarded as a unitary
transformation U acting on k qubits, which maps the “computational
basis” of product states

{|xi〉, i = 0, 1, . . . 2k − 1} (5.49)

to another basis of product states {|yi〉} according to

U |xi〉 = |yi〉. (5.50)

Since U maps one orthonormal basis to another it is manifestly unitary.
A quantum computation constructed from such reversible classical gates
takes |0 . . . 0〉 to one of the computational basis states, so that the outcome
of the final measurement in the {|0〉, |1〉} basis is deterministic.

There are four main issues concerning our model that we would like to
address in this Chapter. The first issue is universality. The most general
unitary transformation that can be performed on n qubits is an element of
U(2n). Our model would seem incomplete if there were transformations
in U(2n) that we were unable to reach. In fact, we will see that there
are many ways to choose a discrete set of universal quantum gates. Using
a universal gate set we can construct circuits that compute a unitary
transformation coming as close as we please to any element in U(2n).

Thanks to universality, there is also a machine independent notion
of quantum complexity. We may define a new complexity class BQP
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(“bounded-error quantum polynomial time”) — the class of languages
that can be decided with high probability by polynomial-size uniform
quantum circuit families. Since one universal quantum computer can
simulate another efficiently, the class does not depend on the details of
our hardware (on the universal gate set that we have chosen).

Notice that a quantum computer can easily simulate a probabilistic clas-
sical computer: it can prepare 1√

2
(|0〉+ |1〉) and then project to {|0〉, |1〉},

generating a random bit. Therefore BQP certainly contains the class BPP.
But as we discussed in Chapter 1, it seems quite reasonable to expect
that BQP is actually larger than BPP, because a probabilistic classical
computer cannot easily simulate a quantum computer. The fundamental
difficulty is that the Hilbert space of n qubits is huge, of dimension 2n,
and hence the mathematical description of a typical vector in the space
is exceedingly complex.

Our second issue is to better characterize the resources needed to sim-
ulate a quantum computer on a classical computer. We will see that,
despite the vastness of Hilbert space, a classical computer can simulate
an n-qubit quantum computer even if limited to an amount of memory
space that is polynomial in n. This means the BQP is contained in the
complexity class PSPACE, the decision problems that can be solved with
polynomial space, but may require exponential time. We also know that
NP is contained in PSPACE, because we can determine whether a verifier
V (x, y) accepts the input x for any witness y by running the verifier for all
possible witnesses. Though there are an exponential number of candidate
witnesses to interrogate, each one can be checked in polynomial time and
space.

The third important issue we should address is accuracy. The class
BQP is defined formally under the idealized assumption that quantum
gates can be executed with perfect precision. Clearly, it is crucial to relax
this assumption in any realistic implementation of quantum computation.
A polynomial size quantum circuit family that solves a hard problem
would not be of much interest if the quantum gates in the circuit were
required to have exponential accuracy. In fact, we will show that this is
not the case. An idealized T -gate quantum circuit can be simulated with
acceptable accuracy by noisy gates, provided that the error probability
per gate scales like 1/T .

The fourth important issue is coverage. We saw that polynomial-size
classical circuits can reach only a tiny fraction of all Boolean functions,
because there are many more functions than circuits. A similar issue
arises for unitary transformations — the unitary group acting on n qubits
is vast, and there are not nearly enough polynomial-size quantum circuits
to explore it thoroughly. Most quantum states of n qubits can never



26 5 Classical and quantum circuits

be realized in Nature, because they cannot be prepared using reasonable
resources.

Despite this limited reach of polynomial-size quantum circuits, quan-
tum computers nevertheless pose a serious challenge to the strong Church–
Turing thesis, which contends that any physically reasonable model of
computation can be simulated by probabilistic classical circuits with at
worst a polynomial slowdown. We have good reason to believe that clas-
sical computers are unable in general to simulate quantum computers
efficiently, in complexity theoretic terms that

BPP 6= BQP, (5.51)

yet this remains an unproven conjecture. Proving BPP 6= BQP is a great
challenge, and no proof should be expected soon. Indeed, a corollary
would be

BPP 6= PSPACE, (5.52)

which would settle a long-standing and pivotal open question in classical
complexity theory.

It might be less unrealistic to hope for a proof that BPP 6= BQP follows
from another standard conjecture of complexity theory such as P 6= NP,
though no such proof has been found so far. The most persuasive evidence
we have suggesting that BPP 6= BQP is that there are some problems
which seem to be hard for classical circuits yet can be solved efficiently
by quantum circuits.

It seems likely, then, that the classification of complexity will be dif-
ferent depending on whether we use a classical computer or a quantum
computer to solve problems. If such a separation really holds, it is the
quantum classification that should be regarded as the more fundamental,
for it is better founded on the physical laws that govern the universe.

5.3.1 Accuracy

Let’s discuss the issue of accuracy. We imagine that we wish to implement
a computation in which the quantum gates U1,U2, . . . ,UT are applied
sequentially to the initial state |ϕ0〉. The state prepared by our ideal
quantum circuit is

|ϕT 〉 = UT UT−1 . . .U2U1|ϕ0〉. (5.53)

But in fact our gates do not have perfect accuracy. When we attempt
to apply the unitary transformation U t, we instead apply some “nearby”
unitary transformation Ũ t. If we wish to include environmental deco-
herence in our model of how the actual unitary deviates from the ideal
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one, we may regard Ũ t as a transformation acting jointly on the system
and environment, where the ideal unitary is a product U t ⊗V t, with U t

acting on the computer and V t acting on the environment.
The errors cause the actual state of the computer to wander away from

the ideal state. How far does it wander? After one step, the ideal state
would be

|ϕ1〉 = U1|ϕ0〉. (5.54)

But if the actual transformation Ũ1 where applied instead the state would
be

Ũ1|ϕ0〉 = |ϕ1〉+ |E1〉, (5.55)

where
|E1〉 = (Ũ1 −U1)|ϕ0〉 (5.56)

is an unnormalized vector. (We could also suppose that the initial state
deviates from |ϕ0〉, which would contribute an additional error to the
computation that does not depend on the size of the circuit. We’ll ignore
that error because we are trying to understand how the error scales with
the circuit size.)

Now, if Ũ t denotes the actual gate applied at step t, |ϕ̃t〉 denotes the
actual state after t steps, and |ϕt〉 denotes the ideal state, then we may
write

|ϕ̃t〉 = Ũ t|ϕ̃t−1〉 = U t|ϕt−1〉+
(
Ũ t −U t

)
|ϕt−1〉+ Ũ t (|ϕ̃t−1〉 − |ϕt−1〉)

= |ϕt〉+ |Et〉+ Ũ t (|ϕ̃t−1〉 − |ϕt−1〉) , (5.57)

where |Et〉 =
(
Ũ t −U t

)
|ϕt−1〉. Hence,

|ϕ̃2〉 = Ũ2|ϕ̃1〉 = |ϕ2〉+ |E2〉+ Ũ2|E1〉,
|ϕ̃3〉 = Ũ3|ϕ̃2〉 = |ϕ3〉+ |E3〉+ Ũ3|E2〉+ Ũ3Ũ2|E1〉, (5.58)

and so forth, and after T steps we obtain

|ϕ̃T 〉 = |ϕT 〉+ |ET 〉+ ŨT |ET−1〉+ ŨT ŨT−1|ET−2〉
+ . . .+ ŨT ŨT−1 . . . Ũ2|E1〉. (5.59)

Thus we have expressed the difference between |ϕ̃T 〉 and |ϕT 〉 as a sum of
T remainder terms. The worst case yielding the largest deviation of |ϕ̃T 〉
from |ϕT 〉 occurs if all remainder terms line up in the same direction, so
that the errors interfere constructively. Therefore, we conclude that

‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ ‖ |ET 〉 ‖ + ‖ |ET−1〉 ‖
+ . . .+ ‖ |E2〉 ‖ + ‖ |E1〉 ‖, (5.60)
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where we have used the property ‖ U |Et〉 ‖=‖ |Et〉 ‖ for any unitary U .
Let ‖ A ‖sup denote the sup norm of the operator A — that is, the

largest eigenvalue of
√

A†A. We then have

‖ |Et〉 ‖=‖
(
Ũ t −U t

)
|ϕt−1〉 ‖ ≤ ‖ Ũ t −U t ‖sup (5.61)

(since |ϕt−1〉 is normalized). Now suppose that, for each value of t, the
error in our quantum gate is bounded by

‖ Ũ t −U t ‖sup ≤ ε; (5.62)

then after T quantum gates are applied, we have

‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ Tε; (5.63)

in this sense, the accumulated error in the state grows linearly with the
length of the computation.

The distance bounded in eq.(5.62) can equivalently be expressed as
‖ W t − I ‖sup, where W t = Ũ tU

†
t . Since W t is unitary, each of its

eigenvalues is a phase eiθ, and the corresponding eigenvalue of W t − I
has modulus

|eiθ − 1| = (2− 2 cos θ)1/2, (5.64)

so that eq.(5.62) is the requirement that each eigenvalue satisfies

cos θ > 1− ε2/2, (5.65)

(or |θ| <∼ ε, for ε small). The origin of eq.(5.63) is clear. In each time
step, |ϕ̃〉 rotates relative to |ϕ〉 by (at worst) an angle of order ε, and the
distance between the vectors increases by at most of order ε.

How much accuracy is good enough? In the final step of our compu-
tation, we perform an orthogonal measurement, and the probability of
outcome a, in the ideal case, is

p(a) = |〈a|ϕT 〉|2. (5.66)

Because of the errors, the actual probability is

p̃(a) = |〈a|ϕ̃T 〉|2. (5.67)

It is shown in Exercise 2.5 that the L1 distance between the ideal and
actual probability distributions satisfies

1
2
‖p̃− p‖1 =

1
2

∑
a

|p̃(a)− p(a)| ≤ ‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ Tε. (5.68)



5.3 Quantum Circuits 29

Therefore, if we keep Tε fixed (and small) as T gets large, the error in
the probability distribution also remains fixed (and small).

If we use a quantum computer to solve a decision problem, we want the
actual quantum circuit to get the right answer with success probability
1
2 + δ̃, where δ̃ is a positive constant. If the ideal quantum circuit con-
tains T gates and has success probability 1

2 + δ, where δ > 0, eq.(5.68)
shows that δ̃ is also positive provided ε < δ/T . We should be able to
solve hard problems using quantum computers as long as we can improve
the accuracy of the gates linearly with the circuit size. This is still a de-
manding requirement, since performing very accurate quantum gates is a
daunting challenge for the hardware builder. Fortunately, we will be able
to show, using the theory of quantum fault tolerance, that physical gates
with constant accuracy (independent of T ) suffice to achieve logical gates
acting on encoded quantum states with accuracy improving like 1/T , as
is required for truly scalable quantum computing.

5.3.2 BQP ⊆ PSPACE

A randomized classical computer can simulate any quantum circuit if we
grant the classical computer enough time and storage space. But how
much memory does the classical computer require? Naively, since the
simulation of an n-qubit circuit involves manipulating matrices of size 2n,
it may seem that an amount of memory space exponential in n is needed.
But we will now show that the classical simulation of a quantum computer
can be done to acceptable accuracy (albeit very slowly!) in polynomial
space. This means that the quantum complexity class BQP is contained
in the class PSPACE of problems that can be solved with polynomial
space on a classical computer.

The object of the randomized classical simulation is to sample from
a probability distribution that closely approximates the distribution of
measurement outcomes for the specified quantum circuit. We will actually
exhibit a classical simulation that performs a potentially harder task —
estimating the probability p(a) for each possible outcome a of the final
measurement, which can be expressed as

p(a) = |〈a|U |0〉|2, (5.69)

where
U = UT UT−1 . . .U2U1, (5.70)

is a product of T quantum gates. Each U t, acting on the n qubits, can
be represented by a 2n×2n unitary matrix, characterized by the complex
matrix elements

〈y|U t|x〉, (5.71)
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where x, y ∈ {0, 1 . . . , 2n − 1}. Writing out the matrix multiplication
explicitly, we have

〈a|U |0〉 =
∑
{xt}

〈a|UT |xT−1〉〈xT−1|UT−1|xT−2〉 . . .

. . . 〈x2|U2|x1〉〈x1|U1|0〉. (5.72)

Eq.(5.72) is a sort of “path integral” representation of the quantum com-
putation – the probability amplitude for the final outcome a is expressed
as a coherent sum of amplitudes for each of a vast number (2n(T−1)) of
possible computational paths that begin at 0 and terminate at a after T
steps.

Our classical simulator is to add up the 2n(T−1) complex numbers in
eq.(5.72) to compute 〈a|U |0〉. The first problem we face is that finite
size classical circuits do integer arithmetic, while the matrix elements
〈y|U t|x〉 need not be rational numbers. The classical simulator must
therefore settle for an approximate calculation to reasonable accuracy.
Each term in the sum is a product of T complex factors, and there are
2n(T−1) terms in the sum. The accumulated errors are sure to be small
if we express the matrix elements to m bits of accuracy, with m large
compared to nT log T . Therefore, we can replace each complex matrix
element by pairs of signed integers — the binary expansions, each m bits
long, of the real and imaginary parts of the matrix element.

Our simulator will need to compute each term in the sum eq.(5.72) and
accumulate a total of all the terms. But each addition requires only a
modest amount of scratch space, and furthermore, since only the accu-
mulated subtotal need be stored for the next addition, not much space is
needed to sum all the terms, even though there are exponentially many.

So it only remains to consider the evaluation of a typical term in the
sum, a product of T matrix elements. We will require a classical circuit
that evaluates

〈y|U t|x〉; (5.73)

this circuit receives the 2n-bit input (x, y), and outputs the 2m-bit value of
the (complex) matrix element. Given a circuit that performs this function,
it will be easy to build a circuit that multiplies the complex numbers
together without using much space.

This task would be difficult if U t were an arbitrary 2n × 2n unitary
transformation. But now we may appeal to the properties we have de-
manded of our quantum gate set — the gates from a discrete set, and each
gate acts on a bounded number of qubits. Because there are a fixed finite
number of gates, there are only a fixed number of gate subroutines that
our simulator needs to be able to call. And because the gate acts on only
a few qubits, nearly all of its matrix elements vanish (when n is large),
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and the value 〈y|U t|x〉 can be determined (to the required accuracy) by
a simple circuit requiring little memory.

For example, in the case of a single-qubit gate acting on the first qubit,
we have

〈yn−1 . . . y1y0|U t|xn−1 . . . x1x0〉 = 0 if yn−1 . . . y1 6= xn−1 . . . x1. (5.74)

A simple circuit can compare x1 with y1, x2 with y2, etc., and output zero
if the equality is not satisfied. In the event of equality, the circuit outputs
one of the four complex numbers

〈y0|U t|x0〉, (5.75)

to m bits of precision. A simple classical circuit can encode the 8m bits
of this 2× 2 complex-valued matrix. Similarly, a simple circuit, requiring
only space polynomial in m, can evaluate the matrix elements of any gate
of fixed size.

We see, then, that a classical computer with memory space scaling like
nT log T suffices to simulate a quantum circuit with T gates acting on n
qubits. If we wished to consider quantum circuits with superpolynomial
size T , we would need a lot of memory, but for a quantum circuit families
with size poly(n), a polynomial amount of space is enough. We have
shown that BQP ⊆ PSPACE.

But it is also evident that the simulation we have described requires
exponential time, because we need to evaluate the sum of 2n(T−1) complex
numbers (where each term in the sum is a product of T complex numbers).
Though most of these terms vanish, there are still an exponentially large
number of nonvanishing terms to sum.

5.3.3 Most unitary transformations require large quantum circuits

We saw that any Boolean function can be computed by an exponential-
size classical circuit, and also that exponential-size circuits are needed to
compute most functions. What are the corresponding statements about
unitary transformations and quantum circuits? We will postpone for now
consideration of how large a quantum circuit suffices to reach any uni-
tary transformation, focusing instead on showing that exponential-size
quantum circuits are required to reach most unitaries.

The question about quantum circuits is different than the correspond-
ing question about classical circuits because there is a finite set of Boolean
functions acting on n input bits, and a continuum of unitary transforma-
tions acting on n qubits. Since the quantum circuits are countable (if the
quantum computer’s gate set is finite), and the unitary transformations



32 5 Classical and quantum circuits

are not, we can’t reach arbitrary unitaries with finite-size circuits. We’ll
be satisfied to accurately approximate an arbitrary unitary.

As noted in our discussion of quantum circuit accuracy, to ensure that
we have a good approximation in the L1 norm to the probability distri-
bution for any measurement performed after applying a unitary trans-
formation, it suffices for the actual unitary Ũ to be close to the ideal
unitary U in the sup norm. Therefore we will say that Ũ is δ-close to U
if ‖Ũ −U‖sup ≤ δ. How large should the circuit size T be if we want to
approximate any n-qubit unitary to accuracy δ?

If we imagine drawing a ball of radius δ (in the sup norm) centered at
each unitary achieved by some circuit with T gates, we want the balls to
cover the unitary group U(N), where N = 2n. The number Nballs of balls
needed satisfies

Nballs ≥
Vol(U(N))
Vol(δ−ball)

, (5.76)

where Vol(U(N)) means the total volume of the unitary group and
Vol(δ−ball) means the volume of a single ball with radius δ. The ge-
ometry of U(N) is actually curved, but we may safely disregard that
subtlety — all we need to know is that U(N)) contains a ball centered
at the identity element with a small but constant radius C (independent
of N). Ignoring the curvature, because U(N) has real dimension N2, the
volume of this ball (a lower bound on the volume of U(N)) is ΩN2CN2

,
where ΩN2 denotes the volume of a unit ball in flat space; likewise, the
volume of a δ-ball is ΩN2δN2

. We conclude that

Nballs ≥
(
C

δ

)N2

. (5.77)

On the other hand, if our universal set contains a constant number of
quantum gates (independent of n), and each gate acts on no more than
k qubits, where k is a constant, then the number of ways to choose the
quantum gate at step t of a circuit is no more than constant ×

(
n
k

)
=

poly(n). Therefore the number NT of quantum circuits with T gates
acting on n qubits is

NT ≤ (poly(n))T . (5.78)

We conclude that if we want to reach every element of U(N) to accuracy
δ with circuits of size T , hence NT ≥ Nballs, we require

T ≥ 22n log(C/δ)
log(poly(n))

; (5.79)

the circuit size must be exponential. With polynomial-size quantum cir-
cuits, we can achieve a good approximation to unitaries that occupy only
an exponentially small fraction of the volume of U(2n)!
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Reaching any desired quantum state by applying a suitable quantum
circuit to a fixed initial (e.g., product) state is easier than reaching any
desired unitary, but still hard, because the volume of the 2n-dimensional
n-qubit Hilbert space is exponential in n. Hence, circuits with size ex-
ponential in n are required. Future quantum engineers will know the joy
of exploring Hilbert space, but no matter how powerful their technology,
most quantum states will remain far beyond their grasp. It’s humbling.

5.4 Universal quantum gates

We must address one more fundamental question about quantum compu-
tation; how do we construct an adequate set of quantum gates? In other
words, what constitutes a universal quantum computer?

We will find a pleasing answer. Any generic two-qubit gate suffices for
universal quantum computation. That is, for all but a set of measure
zero of 4× 4 unitary matrices, if we can apply that matrix to any pair of
qubits, then we can construct a circuit acting on n qubits which computes
a transformation coming as close as we please to any element of U(2n).

Mathematically, this is not a particularly deep result, but physically it is
significant. It means that, in the quantum world, as long as we can devise
a generic interaction between any two qubits, and we can implement that
interaction accurately, we can build up any quantum computation, no
matter how complex. Nontrivial computation is ubiquitous in quantum
theory.

Aside from this general result, it is also of some interest to exhibit
particular universal gate sets that might be particularly easy to implement
physically. We will discuss a few examples.

5.4.1 Notions of universality

In our standard circuit model of quantum computation, we imagine that
our circuit has a finite set of “hard-wired” quantum gates

G = {U1,U2, . . . ,Um}, (5.80)

where U j acts on kj qubits, and kj ≤ k (a constant) for each j. Nor-
mally we also assume that the gate U j can be applied to any kj of the n
qubits in the computer. Actually, placing some kind of geometric locality
constraints on the gates would not drastically change our analysis of com-
plexity, as long as we can construct (a good approximation to a) a SWAP
gate (which swaps the positions of two neighboring qubits) using our gate
set. If we want to perform U j on kj qubits that are widely separated, we
may first perform a series of SWAP gates to bring the qubits together,
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then perform the gate, and finally perform SWAP gates to return the
qubits to their original positions.

When we say the gate set G is universal we mean that the unitary
transformations that can be constructed as quantum circuits using this
gate set are dense in the unitary group U(2n), up to an overall phase.
That is for any V ∈ U(2n) and any δ > 0, there is a unitary Ṽ achieved
by a finite circuit such that

‖Ṽ − eiφV ‖sup ≤ δ (5.81)

for some phase eiφ. (It is natural to use the sup norm to define the
deviation of the circuit from the target unitary, but we would reach similar
conclusions using any reasonable topology on U(2n).) Sometimes it is
useful to relax this definition of universality; for example we might settle
for encoded universality, meaning that the circuits are dense not in U(2n)
but rather some subgroup U(N), where N is exponential (or at least
superpolynomial) in n.

There are several variations on the notion of universality that are note-
worthy, because they illuminate the general theory or are useful in appli-
cations.

(1) Exact universality. If we are willing to allow uncountable gate sets,
then we can assert that for certain gate sets we can construct a circuit
that achieves an arbitrary unitary transformation exactly. We will see
that two-qubit gates are exactly universal — any element of U(2n) can be
constructed as a finite circuit of two qubit gates. Another example is that
the two-qubit CNOT gate, combined with arbitrary single-qubit gates, is
exactly universal (Exercise 5.2).

In fact the CNOT gate is not special in this respect. Any “entangling”
two-qubit gate, when combined with arbitrary single-qubit gates, is uni-
versal (Exercise 5.6). We say a two-qubit gate is entangling if it maps
some product state to a state which is not a product state.

An example of a two-gate which is not entangling is a “local gate” —
a product unitary V = A ⊗B; another example is the SWAP gate, or
any gate “locally equivalent” to SWAP, i.e., of the form

V = (A⊗B) (SWAP) (C ⊗D) . (5.82)

In fact these are the only non-entangling two-qubit gates. Every two-qubit
unitary which is not local or locally equivalent to SWAP is entangling,
and hence universal when combined with arbitrary single-qubit gates.

(2) Generic universality. Gates acting on two or more qubits which are
not local are typically universal. For example, almost any two-qubit gate
is universal, if the gate can be applied to any pair of the n qubits. By
“almost any” we mean except for a set of measure zero in U(4).
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(3) Particular finite universal gate sets. It is shown in the Exercises
5.3-5.5 that each one of the following gate sets is universal:

G = {H,Λ(S)}, {H,T ,Λ(X)}, {H,S,Λ2(X)}, (5.83)

where H, S, T are the single-qubit gates

H =
1√
2

(
1 1
1 −1

)
, S =

(
e−iπ/4 0

0 eiπ/4

)
, T =

(
e−iπ/8 0

0 eiπ/8

)
.

(5.84)
In Bloch sphere language, the “Hadamard gate” H = 1√

2
(X + Z) is a

rotation by π about the axis x̂+ ẑ, S = exp
(
−iπ4 Z

)
is a rotation by π/2

about the ẑ axis, and T = exp
(
−iπ8 Z

)
is a rotation by π/4 about the ẑ

axis. By Λ(S) we mean the two-qubit in which S is applied to the target
qubit iff the control qubit is |1〉. More generally, we use the notation
Λ(U), where U is a single-qubit gate, to denote the two-qubit gate

Λ(U) = |0〉〈0| ⊗ I + |1〉〈1| ⊗U ; (5.85)

likewise we use Λ2(U) to denote the three-qubit gate

Λ2(U) = (I − |11〉〈11|)⊗ I + |11〉〈11| ⊗U , (5.86)

etc.
That particular finite gates sets are universal is especially important

in the theory of quantum fault tolerance, in which highly accurate logi-
cal gates acting on encoded quantum states are constructed from noisy
physical gates. As we’ll discuss in Chapter 8, only a discrete set of log-
ical gates can be well protected against noise, where the set depends on
how the quantum information is encoded. The goal of fault-tolerant gate
constructions is to achieve a universal set of such protected gates.

(4) Efficient circuits of universal gates. The above results concern only
the “reachability” of arbitrary n-qubit unitaries; they say nothing about
the circuit size needed for a good approximation. Yet the circuit size is
highly relevant if we want to approximate one universal gate set by using
another one, or if we want to approximate the steps in an ideal quantum
algorithm to acceptable accuracy.

We already know that circuits with size exponential in n are needed to
approximate arbitrary n-qubit unitaries using a finite gate set. However,
we will see that, for any fixed k, a k-qubit unitary can be approximated to
accuracy ε using a circuit whose size scales with the error like polylog(1/ε).
This result, the Solovay-Kitaev theorem, holds for any universal gate set
which is “closed under inverse” — that is, such that the inverse of each
gate in the set can be constructed exactly using a finite circuit.
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The Solovay-Kitaev theorem (which we prove in §5.4.4) tells us that
one universal gate set can accurately approximate another one at a mod-
est cost; therefore a characterization of the complexity of a computation
based on quantum circuit size is not very sensitive to how the universal
gate set is chosen. For example, suppose I build a unitary transformation
U using T gates chosen from gate set G1, and I want to approximate
U to constant accuracy ε using gates chosen from gate set G2. It will
suffice to approximate each gate from G1 to accuracy ε/T , which can be
achieved using a circuit of polylog(T/ε) gates from G2. Therefore U can
be approximated with all together O(T polylog(T )) G2 gates.

Another consequence of the Solovay-Kitaev theorem concerns our con-
clusion that polynomial-size circuits can reach (to constant accuracy) only
a tiny fraction of U(2n). How is the conclusion modified if we build circuits
using arbitrary k-qubit unitaries (where k is constant) rather than gates
chosen from a finite gate set? Because approximating the k-qubit uni-
taries using the finite gate set inflates the circuit size by only a polylog(T )
factor, if we can achieve an accuracy-δ approximation using a circuit of
size T built from arbitrary k-qubit unitaries, then we can also achieve an
accuracy-(2δ) approximation using a circuit of size T polylog(T/δ) built
from a finite gate set. Thus the criterion eq.(5.79) for reaching all uni-
taries to accuracy δ using circuits of size T constructed from the finite
gate set is replaced by

T polylog(T/δ) ≥ 22n log(C/2δ)
log n

. (5.87)

if we use circuits constructed from arbitrary k-qubit gates. The required
circuit size is smaller than exponential by only a poly(n) factor. The group
U(2n) is unimaginably vast not because we are limited to a discrete set
of gates, but rather because we are unable to manipulate more than a
constant number of qubits at a time.

5.4.2 Two-qubit gates are exactly universal

We will show in two steps that an arbitrary element of U(2n) can be
achieved by a finite circuit of two-qubit gates. First we will show how
to express an element of U(N) as a product of “2 × 2” unitaries; then
we will show how to obtain any 2× 2 unitary from a circuit of two-qubit
unitaries.

What is a 2 × 2 unitary? Fix a standard orthonormal basis
{|0〉, |1〉, |2〉, . . . |N − 1〉} for an N -dimensional space. We say a unitary
transformation U is 2×2 if it acts nontrivially only in the two-dimensional
subspace spanned by two basis elements |i〉 and |j〉; that is, U decomposes
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as a direct sum
U = U (2) ⊕ I(N−2), (5.88)

where U (2) is a 2 × 2 unitary matrix acting on the span of |i〉 and |j〉,
and I(N−2) is the identity matrix acting on the complementary (N − 2)-
dimensional subspace.

We should be careful not to confuse a 2 × 2 unitary with a two-qubit
unitary acting on the n-qubit space of dimension N = 2n. A two-qubit
unitary U decomposes as a tensor product

U = U (4) ⊗ I(2n−2), (5.89)

where U (4) is a 4×4 unitary matrix acting on a pair of qubits, and I(2n−2)

is the identity matrix acting on the remaining n−2 qubits. We can regard
the two-qubit unitary as a direct sum of 2n−2 4×4 blocks, with each block
labeled by a basis state of the (n−2)-qubit Hilbert space, and U (4) acting
on each block.

Let’s see how to express U ∈ U(N) as a product of 2 × 2 unitaries.
Consider the action of U on the basis state |0〉:

U |0〉 =
N−1∑
i=0

ai|i〉. (5.90)

We can see that U |0〉 can be written as W 0|0〉, where W 0 is a product
of (N − 1) 2× 2 unitaries which act as follows:

|0〉 7→ a0|0〉+ b0|1〉,
b0|1〉 7→ a1|1〉+ b1|2〉,
b1|2〉 7→ a2|2〉+ b2|3〉,
. . .

bN−2|N−2〉 7→ aN−2|N−2〉+ aN−1|N−1〉.
(5.91)

Next define U1 = W−1
0 U , and note that U1|0〉 = |0〉, so U1 acts

nontrivially only in the (N−1)-dimensional span of {|1〉, |2〉, . . . |N − 1〉}.
By the same construction as above, we construct W 1 as a product of
(N−2) 2 × 2 unitaries such that W 1|0〉 = |0〉 and W 1|1〉 = U1|1〉, then
define U2 = W−1

1 U1 such that U2 preserves both |0〉 and |1〉. Proceeding
in this way we construct W 2, W 3, . . . W N−2 such that

W−1
N−2W

−1
N−3 . . .W

−1
1 W−1

0 U = I; (5.92)

that is, we may express U as

U = W 0W 1 . . .W N−3W N−2 , (5.93)
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a product of (N − 1)+ (N − 2)+ · · ·+2+1 = 1
2N(N − 1) 2× 2 unitaries.

Now it remains to show that we can construct any 2 × 2 unitary as a
circuit of two-qubit unitaries. It will be helpful to notice that the three-
qubit gate Λ2(U2) can be constructed as a circuit of Λ(U), Λ(U †), and
Λ(X) gates. Using the notation

U

s

for the Λ(U) gate, the circuit

x

y

x

y

x

y

ss
U2

= s
U

sg s
U †

sg s
U

does the job. We can check that the power of U applied to the third qubit
is

y − (x⊕ y) + x = y − (x+ y − 2xy) + x = 2xy. (5.94)

That is, U2 is applied if x = y = 1, and the identity is applied otherwise;
hence this circuit achieves the Λ2(U2) gate. Since every unitary V has
a square root U such that V = U2, the construction shows that, using
two-qubit gates, we can achieve Λ2(V ) for any single-qubit V .

Generalizing this construction, we can find a circuit that constructs
Λm(U2) using Λm−1(U), Λm−1(X), Λ(U), and Λ(U †) gates. If we replace
the Λ(X) gates in the previous circuit by Λm−1(X) gates, and replace
the last Λ(U) gate by Λn−1(U), then, if we denote the m control bits by
x1, x2, x3, . . . xm, the power of U applied to the last qubit is

xm + x1x2x3 . . . xm−1 − (xm ⊕ x1x2x3 . . . xm−1)
= xm + x1x2x3 . . . xm−1

− (xm + x1x2x3 . . . xm−1 − 2x1x2x3 . . . xm−1xm)
= 2x1x2x3 . . . xm−1xm, (5.95)

where we have used the identity x⊕y = x+y−2xy. Now U2 is applied if
x1 = x2 = · · · = xm = 1 and the identity is applied otherwise; this circuit
achieves the Λm(U2) gate.
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Using the construction recursively, we see that with two-qubit gates
we can construct Λ2(V ) for any V , then with these gates and two-qubit
gates we can construct Λ3(V ) for any V , which allows us to construct
Λ4(V ) for any V and so on. We have shown, therefore, how to construct
the n-qubit gate Λn−1(V ) for any V using a circuit of two-qubit gates.

To complete the argument showing that any element of U(2n) is a
product of two-qubit unitaries, it will suffice to show that arbitrary 2× 2
unitaries can be constructed from Λn−1(V ) and two-qubit gates. Note
that Λn−1(V ) is, in fact, a 2 × 2 unitary — it applies V in the two-
dimensional space spanned by the two computational basis states

{|111 . . . 110〉 , |111 . . . 111〉} . (5.96)

If we wish to apply V in the space spanned by computational states
{|x〉, |y〉} instead, we can use a permutation Σ of the computational basis
states with the action

Σ : |x〉 7→ |111 . . . 110〉 ,
|y〉 7→ |111 . . . 111〉 , (5.97)

constructing
Σ−1 ◦ Λn−1(V ) ◦Σ . (5.98)

This is to be read from right to left, with Σ acting first and Σ−1 acting
last. But we have already seen in §5.2.2 how to construct an arbitrary per-
mutation of computational basis states using Λn−1(X) gates and (single-
qubit) NOT gates, and we now know how to construct Λn−1(X) (a special
case of Λn−1(U)) from two-qubit gates. Therefore, using two-qubit gates,
we have constructed the general 2× 2 unitary (in the computational ba-
sis) as in eq.(5.98). That completes the proof that any element of U(2n)
can be achieved by a circuit of two-qubit gates. In fact we have proven a
somewhat stronger result: that the two-qubit gates {Λ(U)}, where U is
an arbitrary single-qubit gate, constitute an exactly universal gate set.

5.4.3 Finite universal gate sets

Denseness on the circle. A finite gate set is universal if circuits con-
structed using that gate set are dense in U(2n). As a first simple example
of denseness, consider the group U(1) of rotations of the circle, e.g. the
rotations of the Bloch sphere about the ẑ axis:{

U(θ) = exp
(
i
θ

2
σ3

)
, θ ∈ [0, 4π)

}
. (5.99)
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We claim that the positive integer powers of U(4πα) are dense in U(1) if
α ∈ [0, 1) is irrational. Equivalently, the points

{nα (mod 1), n = 1, 2, 3, . . . , } (5.100)

are dense in the unit interval.
To see why, first note that the points {nα (mod 1)} are all distinct,

since nα = mα + k for integers k and n 6= m would imply that α is a
rational number α = k/(n−m). Now consider open intervals of width ε
centered on each of the N points {nα (mod 1), n = 1, 2, 3, . . . , N}. For
Nε > 1, at least two of these intervals must intersect — if all intervals
were disjoint then their total length Nε would exceed the length of the
interval. Hence there exist distinct positive integers n and m less than
1/ε such that |n−m|α (mod 1) < ε; in other words, the positive integer
r = |n − m| < 1/ε satisfies rα (mod 1) < ε. Now the positive integer
multiples of rα (mod 1) are equally spaced points on the unit interval
separated by less than ε. Therefore, for sufficiently large M , the intervals
of width ε centered on the points {krα (mod 1), k = 1, 2, 3, . . . ,M} fill
the unit interval. Since ε can be any positive real number, we conclude
that the points {nα (mod 1), n = 1, 2, 3, . . . } are dense in the interval.

Powers of a generic gate. Generalizing this argument, consider the
positive integer powers of a generic element of U(N). In a suitable basis,
U ∈ U(N) is diagonal, with eigenvalues

{eiθ1/2, eiθ2/2, . . . , eiθN/2}. (5.101)

Since rational numbers are countable and real numbers are not, for a
generic U (that is, for all elements of U(N) except for a set of measure
zero) each θi/π and θi/θj is an irrational number. For each positive integer
k, the eigenvalues {e−ikθi/2, i = 1, 2, . . . , N} of Uk define a point on the
N -dimensional torus (the product of N circles), and as k ranges over all
positive integers, these points densely fill the whole N -torus. We conclude
that for any generic U , the elements {Uk, k = 1, 2, 3, . . . } are dense in
the group U(1)N , i.e., come as close as we please to every unitary matrix
which is diagonal in the same basis as U .

Note that this argument does not provide any upper bound on how
large k must be for Uk to be ε-close to any specified element of U(1)N .
In fact, the required value of k could be extremely large if, for some m
and i, |mθi (mod 4π)| << ε. It might be hard (that is, require many
gates) to approximate a specified unitary transformation with circuits of
commuting quantum gates, because the unitary achieved by the circuit
only depends on how many times each gate is applied, not on the order
in which the gates are applied. It is much easier (requires fewer gates)
to achieve a good approximation using circuits of noncommuting gates.
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If the gates are noncommuting, then the order in which the gates are
applied matters, and many more unitaries can be reached by circuits of
specified size than if the gates are noncommuting.

Reaching the full Lie algebra. Suppose we can construct the two gates
U = exp (iA) ,V = exp (iB) ∈ U(N), where A and B are N × N
Hermitian matrices. If these are generic gates, positive powers of U come
as close as we please to eiαA for any real α and positive powers of V come
as close as we please to eiβB for any real β. That is enough to ensure
that there is a finite circuit constructed from U and V gates that comes
as close as we please to eiC , where C is any Hermitian element of the Lie
algebra generated by A and B.

We say that a unitary transformation U is reachable if for any ε > 0
there is a finite circuit achieving Ũ which is ε-close to U in the sup norm.
Noting that

lim
n→∞

(eiαA/neiβB/n)n = lim
n→∞

(
1 +

i

n
(αA + βB) +O

(
1
n2

))n

= ei(αA+βB), (5.102)

we see that any ei(αA+βB) is reachable if each eiαA/n and eiβB/n is reach-
able. Furthermore, because

lim
n→∞

(
eiA/

√
neiB/

√
ne−iA/

√
ne−iB/

√
n
)n

= lim
n→∞

(
1− 1

n
(AB −BA) +O

(
1

n3/2

))n

= e−[A,B], (5.103)

we see that e−[A,B] is also reachable.
For example, positive integer powers of a generic element of SU(2) allow

us to reach a U(1) subgroup; if we orient our axes on the Bloch sphere
appropriately, this is the subgroup generated by the Pauli operator Z.
Positive integer powers of a second generic element of SU(2) allow us to
reach a different U(1) subgroup, generated by X̃ = X + γZ (for some
real γ) with an appropriate choice of axes. Because [Z,X] = iY , the
elements {Z, X̃,−i[Z, X̃]} span the three-dimensional SU(2) Lie algebra.
It follows that circuits built from any two generic elements of SU(2) suffice
to reach any element of SU(2).

This observation applies to higher-dimensional Lie algebras as well.
For example, the SU(4) Lie algebra is 15 dimensional. It contains various
lower-dimensional subalgebras, such as the Lie algebras of the SU(4) sub-
groups U(1)3, SU(2)×SU(2)×U(1), SU(3)×U(1), etc. But two generic
elements of the SU(4) Lie algebra already suffice to general the full Lie
algebra. The generated algebra closes on one of the lower-dimensional
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subalgebras only if some nested commutators vanish “by accident,” a cri-
terion satisfied by only a set of measure zero among all pairs of SU(4)
generators. Actually, as we have already noted, a generic element of
SU(4) allows us to reach the torus U(1)3, and no nontrivial subgroup
of SU(4) contains two generic U(1)3 subgroups. Therefore, circuits built
from two generic two-qubit gates suffice to reach any two-qubit gate (up
to an overall phase). And since we can reach any element of U(2n) with
two-qubit gates, a pair of generic two-qubit gates provides a universal
gate set, assuming we can apply the gates to any pair of qubits.

But in fact just one generic two-qubit gate is already enough, if we are
free to choose not just the pair of qubits on which the gate acts but also
the ordering of the qubits. That is, a generic two-qubit gate does not
commute with the operator SWAP which interchanges the two qubits.
If U is a generic two-qubit gate, then

V = SWAP ◦U ◦ SWAP (5.104)

(the same gate applied to the same two qubits, but in the opposite order)
is another two-qubit gate not commuting with U . Positive powers of U
reach one U(1)3 subgroup of SU(4) while positive powers of V reach a
different U(1)3, so that circuits built from U and V reach all of SU(4).

Even nongeneric universal gates, in particular gates whose eigenvalues
are all rational multiples of π, can suffice for universality. One example
discussed in the homework is the gate set {CNOT,H,T }, where H ro-
tates the Bloch sphere by the angle π about the axis 1√

2
(x̂+ x̂), and T

rotates the Bloch sphere by the angle π/4 about the ẑ axis. If we replaced
T with the π/2 rotation T 2, then the gate set would not be universal; in
that case the only achievable single-qubit rotations would be those in a
finite subgroup of SU(2), the symmetry group of the cube. But SU(2)
has few such finite nonabelian subgroups (the only finite nonabelian sub-
groups of the rotation group SO(3) are the symmetry groups of regular
polygons and of regular three-dimensional polyhedra, the platonic solids).
If the gate set reaches beyond these finite subgroups it will reach either a
U(1) subgroup of SU(2) or all of SU(2).

5.4.4 The Solovay-Kitaev approximation

Up until now our discussion of universal gates has focused on reachability
and has ignored complexity. But when we have a finite universal gate
set, we want to know not only whether we can approximate a desired
unitary transformation to accuracy ε, but also how hard it is to achieve
that approximation. How large a circuit suffices? The question really has
two parts. (1) Given a unitary transformation U , how large a quantum
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circuit is needed to construct Ũ such that ‖Ũ − eiφU‖sup ≤ ε? (2) How
large a classical circuit is needed to find the quantum circuit that achieves
Ũ? We will see that, for any universal set of gates (closed under inverse)
used to approximate elements of a unitary group of constant dimension,
the answer to both questions is polylog(1/ε). We care about the answer
to the second question because it would not be very useful to know that
U can be well approximated by small quantum circuits if these circuits
are very hard to find.

We will prove this result by devising a recursive algorithm which
achieves successively better and better approximations. We say that a
finite repertoire of unitary transformations R is an “ε-net” in U(N) if
every element of U(N) is no more than distance ε away (in the sup norm)
from some element of R, and we say that R is “closed under inverse” if
the inverse of every element of R is also in R. The key step of the recur-
sive algorithm is to show that if R is an ε-net, closed under inverse, then
we can construct a new repertoire R′, also closed under inverse, with the
following properties: (1) each element of R′ is achieved by a circuit of at
most 5 gates from R. (2) R′ is an ε′-net, where

ε′ = Cε3/2 , (5.105)

and C is a constant.
Before explaining how this step works, let’s see why it ensures that we

can approximate any unitary using a quantum circuit with size polylog-
arithmic in the accuracy. Suppose to start with that we have found an
ε0-net R0, closed under inverse, where each element of R0 can be achieved
by a circuit with no more than L0 gates chosen from our universal gate
set. If ε0 < 1/C2, then we can invoke the recursive step to find an ε1-net
R1, where ε1 < ε0, and each element of R1 can be achieved by a circuit
of L1 = 5L0 gates. By repeating this step k times, we can make the error
εk much smaller than the level-0 error ε0. Iterating the relation

C2εk =
(
C2εk−1

)3/2 (5.106)

k times we obtain

C2εk =
(
C2ε0

)(3/2)k

, (5.107)

and by taking logs of both sides we find(
3
2

)k

=
log
(
1/C2εk

)
log (1/C2ε0)

. (5.108)

After k recursive steps the circuit size for each unitary in the εk-net Rk
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is no larger than Lk where

Lk/L0 = 5k =

((
3
2

)k
)log 5/ log(3/2)

=

(
log
(
1/C2εk

)
log (1/C2ε0)

)log 5/ log(3/2)

.

(5.109)

Thus the circuit size scales with the accuracy εk as [log(1/εk)]
3.97.

Now let’s see how the ε′-net R′ is constructed from the ε-net R. For
any U ∈ SU(N) there is an element Ũ ∈ R such that ‖U − Ũ‖sup ≤ ε,
or equivalently ‖UŨ

−1 − I‖sup ≤ ε. Now we will find W , constructed
as a circuit of 4 elements of R, such that ‖UŨ

−1 − W |sup ≤ ε′, or
equivalently ‖U −WŨ |sup ≤ ε′. Thus U is approximated to accuracy ε′

by WŨ , which is achieved by a circuit of 5 elements of R.
We may write UŨ

−1
= eiA, where A = O(ε). (By A = O(ε) we mean

‖A‖sup = O(ε), i.e., ‖A‖sup is bounded above by a constant times ε for ε
sufficiently small. ) It is possible to find Hermitian B, C, both O(ε1/2),
such that [B,C] = −iA. Furthermore, because R is an ε-net, there is an
element eiB̃ of R which is ε-close to eiB, and an element eiC̃ of R which
is ε-close to eiC . It follows that B − B̃ = O(ε) and C − C̃ = O(ε).

Now we consider the circuit

W = eiB̃eiC̃e−iB̃e−iC̃ = I − [B̃, C̃] +O(ε3/2); (5.110)

the remainder term is cubic order in B̃ and C̃, hence O(ε3/2). First note
that the inverse of this circuit, eiC̃eiB̃e−iC̃e−iB̃, can also be constructed
as a size-4 circuit of gates from R. Furthermore,

W = I − [B +O(ε),C +O(ε)] +O(ε3/2) = I + iA +O(ε3/2)

= eiA +O(ε3/2); (5.111)

thus W , a circuit of 4 gates from R, approximates UŨ
−1

to O(ε3/2)
accuracy, as we wanted to show.

Finally, let’s consider the classical computational cost of finding the
quantum circuit which approximates a unitary transformation. The clas-
sical algorithm receives a unitary transformation U as input, and pro-
duces as output a quantum circuit evaluating Ũ , which approximates U
to accuracy ε. To improve the accuracy of the approximation to ε′, we
need to call the accuracy-ε algorithm three times, to find circuits evalu-
ating Ũ , eiB̃, and eiC̃ . Therefore, if the classical cost of the accuracy-ε
algorithm is t, the classical cost of the improved accuracy-ε′ algorithm is
t′ = 3t+constant, where the additive constant is needed to cover the cost
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of tasks that do not scale with ε, such as finding the matrices B and C
satisfying [B,C] = −iA. After k iterations, the classical cost scales like

O(3k) = O
(
[log(1/εk)]

log 3/ log(3/2)
)

= O
(
[log(1/εk)]

2.71
)
, (5.112)

polylogarithmic in the accuracy achieved by the level-k version of the
algorithm.

What we have accomplished is a bit surprising. By composing unitary
transformations with O(ε) errors we have obtained unitary transforma-
tions with smaller O(ε3/2) errors. How could we achieve such sharp results
with such blunt tools? The secret is that we have constructed our circuit
so that the O(ε) errors cancel, leaving only the higher-order errors. This
would not have worked if R had not been closed under inverse. If instead
of the inverses of eiB̃ and eiC̃ we had been forced to use O(ε) approxima-
tions to these inverses, the cancellations would not have occurred, and our
quest for an improved approximation would have failed. But if our uni-
versal gate set allows us to construct the exact inverse of each element of
the gate set, then we can use the Solovay-Kitaev approach to recursively
improve the approximation.

This scheme works for any universal gate set that is closed under in-
verse. For particular gate sets improved approximations are possible. For
example, the gate set {H,T } can be used to approximate an arbitrary
single-qubit unitary to accuracy ε using O(log(1/ε)) gates, a substantial
improvement over O([log(1/ε)]3.97) established by the general argument,
and the circuits achieving this improved overhead cost can be efficiently
constructed.

5.5 Summary

Classical circuits. The complexity of a problem can be characterized
by the size of a uniform family of logic circuits that solve the problem:
The problem is hard if the size of the circuit is a superpolynomial func-
tion of the size of the input, and easy otherwise. One classical universal
computer can simulate another efficiently, so the classification of com-
plexity is machine independent. The 3-bit Toffoli gate is universal for
classical reversible computation. A reversible computer can simulate an
irreversible computer without a significant slowdown and without unrea-
sonable memory resources.

Quantum Circuits. Although there is no proof, it seems likely
that polynomial-size quantum circuits cannot be simulated in general
by polynomial-size randomized classical circuits (BQP 6= BPP); however,
polynomial space is sufficient (BQP ⊆ PSPACE). A noisy quantum circuit
can simulate an ideal quantum circuit of size T to acceptable accuracy
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if each quantum gate has an accuracy of order 1/T . Any n-qubit uni-
tary transformation can be constructed from two-qubit gates. A generic
two-qubit quantum gate, if it can act on any two qubits in a device, is
sufficient for universal quantum computation. One universal quantum
computer can simulate another to accuracy ε with a polylog(1/ε) over-
heard cost; therefore the complexity class BQP is machine independent.

Do the Exercises to learn more about universal sets of quantum gates.

5.6 Exercises

5.1 Linear simulation of Toffoli gate.

In §5.2.2 we constructed the n-bit Toffoli gate Λn−1(X) from 3-bit
Toffoli gates (Λ2(X)’s). The circuit required only one bit of scratch
space, but the number of gates was exponential in n. With more
scratch, we can substantially reduce the number of gates.

a) Find a circuit family with 2n − 5 Λ2(X)’s that evaluates
Λn−1(X). (Here n − 3 scratch bits are used, which are set
to 0 at the beginning of the computation and return to the
value 0 at the end.)

b) Find a circuit family with 4n − 12 Λ2(X)’s that evaluates
Λn−1(X), which works irrespective of the initial values of the
scratch bits. (Again the n−3 scratch bits return to their initial
values, but they don’t need to be set to zero at the beginning.)

5.2 An exactly universal quantum gate set.

The purpose of this exercise is to complete the demonstration that
the controlled-NOT gate Λ(X) and arbitrary single-qubit gates con-
stitute an exactly universal set.

a) If U is any unitary 2 × 2 matrix with determinant one, find
unitary A,B, and C such that

ABC = I (5.113)

AXBXC = U . (5.114)

Hint: From the Euler angle construction, we know that

U = Rz(ψ)Ry(θ)Rz(φ), (5.115)

where, e.g., Rz(φ) denotes a rotation about the z-axis by the
angle φ. We also know that, e.g.,

XRz(φ)X = Rz(−φ). (5.116)
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b) Consider a two-qubit controlled phase gate which applies U =
eiα1 to the second qubit if the first qubit has value |1〉, and
acts trivially otherwise. Show that it is actually a one-qubit
gate.

c) Draw a circuit using Λ(X) gates and single-qubit gates that im-
plements Λ(U), where U is an arbitrary 2 × 2 unitary trans-
formation.

Since the argument in §5.4.2 shows that the gate set {Λ(U)} is
exactly universal, we have shown that Λ(X) together with single-
qubit gates are an exactly universal set.

5.3 Universal quantum gates I

In this exercise and the two that follow, we will establish that several
simple sets of gates are universal for quantum computation.

The Hadamard transformation H is the single-qubit gate that acts
in the standard basis {|0〉, |1〉} as

H =
1√
2

(
1 1
1 −1

)
; (5.117)

in quantum circuit notation, we denote the Hadamard gate as

H

The single-qubit phase gate S acts in the standard basis as

S =
(

1 0
0 i

)
, (5.118)

and is denoted

S

A two-qubit controlled phase gate Λ(S) acts in the standard basis
{|00〉, 01〉, |10〉, |11〉} as the diagonal 4× 4 matrix

Λ(S) = diag(1, 1, 1, i) (5.119)

and can be denoted

S

s
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Despite this misleading notation, the gate Λ(S) actually acts sym-
metrically on the two qubits:

S

s
=

Ss
We will see that the two gates H and Λ(S) comprise a universal gate
set – any unitary transformation can be approximated to arbitrary
accuracy by a quantum circuit built out of these gates.

a) Consider the two-qubit unitary transformations U1 and U2 de-
fined by quantum circuits

U1 =
H s

S

H

and

U2 =
H sS H

Let |ab〉 denote the element of the standard basis where a labels
the upper qubit in the circuit diagram and b labels the lower
qubit. Write out U1 and U2 as 4× 4 matrices in the standard
basis. Show that U1 and U2 both act trivially on the states

|00〉, 1√
3

(|01〉+ |10〉+ |11〉) . (5.120)

b) Thus U1 and U2 act nontrivially only in the two-dimensional
space spanned by{

1√
2

(|01〉 − |10〉) , 1√
6

(|01〉+ |10〉 − 2|11〉)
}
. (5.121)

Show that, expressed in this basis, they are

U1 =
1
4

(
3 + i

√
3(−1 + i)√

3(−1 + i) 1 + 3i

)
, (5.122)

and

U2 =
1
4

(
3 + i

√
3(1− i)√

3(1− i) 1 + 3i

)
. (5.123)
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c) Now express the action of U1 and U2 on this two-dimensional
subspace in the form

U1 =
√
i

(
1√
2
− i

1√
2
n̂1 · ~σ

)
, (5.124)

and

U2 =
√
i

(
1√
2
− i

1√
2
n̂2 · ~σ

)
. (5.125)

What are the unit vectors n̂1 and n̂2?

d) Consider the transformation U−1
2 U1 (Note that U−1

2 can also
be constructed from the gates H and Λ(S).) Show that it
performs a rotation with half-angle θ/2 in the two-dimensional
space spanned by the basis eq.(5.121), where cos(θ/2) = 1/4.

5.4 Universal quantum gates II

We have seen in Exercise 5.3 how to compose the quantum gates
H and Λ(S) to perform, in a two-dimensional subspace of the four-
dimensional Hilbert space of two qubits, a rotation with cos(θ/2) =
1/4. In this exercise, we will show that the angle θ is not a rational
multiple of π. Equivalently, we will show that

eiθ/2 ≡ cos(θ/2) + i sin(θ/2) =
1
4

(
1 + i

√
15
)

(5.126)

is not a root of unity: there is no finite integer power n such that
(eiθ/2)n = 1.

Recall that a polynomial of degree n is an expression

P (x) =
n∑

k=0

akx
k (5.127)

with an 6= 0. We say that the polynomial is rational if all of the ak’s
are rational numbers, and that it is monic if an = 1. A polynomial
is integral if all of the ak’s are integers, and an integral polynomial
is primitive if the greatest common divisor of {a0, a1, . . . , an} is 1.

a) Show that the monic rational polynomial of minimal degree that
has eiθ/2 as a root is

P (x) = x2 − 1
2
x+ 1 . (5.128)

The property that eiθ/2 is not a root of unity follows from the result
(a) and the
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Theorem If a is a root of unity, and P (x) is a monic rational
polynomial of minimal degree with P (a) = 0, then P (x) is integral.

Since the minimal monic rational polynomial with root eiθ/2 is not
integral, we conclude that eiθ/2 is not a root of unity. In the rest of
this exercise, we will prove the theorem.

b) By “long division” we can prove that if A(x) and B(x) are ra-
tional polynomials, then there exist rational polynomials Q(x)
and R(x) such that

A(x) = B(x)Q(x) +R(x) , (5.129)

where the “remainder” R(x) has degree less than the degree
of B(x). Suppose that an = 1, and that P (x) is a rational
polynomial of minimal degree such that P (a) = 0. Show that
there is a rational polynomial Q(x) such that

xn − 1 = P (x)Q(x) . (5.130)

c) Show that if A(x) and B(x) are both primitive integral polyno-
mials, then so is their product C(x) = A(x)B(x). Hint: If
C(x) =

∑
k ckx

k is not primitive, then there is a prime num-
ber p that divides all of the ck’s. Write A(x) =

∑
l alx

l, and
B(x) =

∑
m bmx

m, let ar denote the coefficient of lowest order
in A(x) that is not divisible by p (which must exist if A(x) is
primitive), and let bs denote the coefficient of lowest order in
B(x) that is not divisible by p. Express the product arbs in
terms of cr+s and the other al’s and bm’s, and reach a contra-
diction.

d) Suppose that a monic integral polynomial P (x) can be factored
into a product of two monic rational polynomials, P (x) =
A(x)B(x). Show that A(x) and B(x) are integral. Hint:
First note that we may write A(x) = (1/r) · Ã(x), and
B(x) = (1/s) · B̃(x), where r, s are positive integers, and Ã(x)
and B̃(x) are primitive integral; then use (c) to show that
r = s = 1.

e) Combining (b) and (d), prove the theorem.

What have we shown? Since U−1
2 U1 is a rotation by an irrational

multiple of π, the powers of U−1
2 U1 are dense in a U(1) subgroup.

Similar reasoning shows that U1U
−1
2 is a rotation by the same angle

about a different axis, and therefore its powers are dense in another
U(1) subgroup. Products of elements of these two noncommuting
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U(1) subgroups are dense in the SU(2) subgroup that contains both
U1 and U2.

Furthermore, products of

Λ(S)U−1
2 U1Λ(S)−1 and Λ(S)U1U

−1
2 Λ(S)−1 (5.131)

are dense in another SU(2), acting on the span of{
1√
2
(|01〉 − |10〉), 1√

6
(|01〉+ |10〉 − 2i|11〉)

}
. (5.132)

Together, these two SU(2) subgroups close on the SU(3) subgroup
that acts on the three-dimensional space orthogonal to |00〉. Con-
jugating this SU(3) by H ⊗ H we obtain another SU(3) act-
ing on the three-dimensional space orthogonal to |+,+〉, where
|+〉 = 1√

2
(|0〉 + |1〉). The only subgroup of SU(4) that contains

both of these SU(3) subgroups is SU(4) itself.

Therefore, the circuits constructed from the gate set {H,Λ(S)}
are dense in SU(4) — we can approximate any two-qubit gate to
arbitrary accuracy, which we know suffices for universal quantum
computation. Whew!

5.5 Universal quantum gates III

We have shown in Exercises 5.3 and 5.4 that the gate set {H,Λ(S)}
is universal. Thus any gate set from which both H and Λ(S) can
be constructed is also universal. In particular, we can see that
{H,S,Λ2(X)} and {H,T ,Λ(X)} are universal gates sets, where
T = exp

(
−iπ8 Z

)
.

a) It is sometimes convenient to characterize a quantum gate by
specifying the action of the gate when it conjugates a Pauli
operator. Show that H and S have the properties

HXH = Z , HY H = −Y , HZH = X , (5.133)

and

SXS−1 = Y , SY S−1 = −X , SZS−1 = Z . (5.134)

b) Note that, since S−1 = S3, the gate K = HS−1HSH can be
constructed using H and S. Show that

KXK = Y , KY K = X , KZK = −Z . (5.135)
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c) Construct circuits for Λ2(Y ) and Λ2(Z) using the gate set
{H,S,Λ2(X)}. Then complete the proof of universality for
this gate set by constructing Λ(S) ⊗ I using Λ2(X), Λ2(Y ),
and Λ2(Z).

d) Show that {H,T ,Λ(X)} is a universal gate set by constructing
a circuit for Λ(S) from Λ(X) and T . Hint: Observe that
T 2 = e−iπ/4S, then use the construction suggested in Exercise
5.2, noting that T−1T−1T 2 = I and T−1XT−1XT 2 = T 2.

The Toffoli gate Λ2(X) is universal for reversible classical compu-
tation. What must be added to realize the full power of quantum
computing? We have just seen that the single-qubit gates H and S,
together with the Toffoli gate, are adequate for reaching any unitary
transformation. But in fact, just H and Λ2(X) suffice to efficiently
simulate any quantum computation.

Of course, since H and Λ2(X) are both real orthogonal matrices,
a circuit composed from these gates is necessarily real — there are
complex n-qubit unitaries that cannot be constructed with these
tools. But a 2n-dimensional complex vector space is isomorphic to
a 2n+1–dimensional real vector space. A complex vector can be
encoded by a real vector according to

|ψ〉 =
∑

x

ψx|x〉 7→ |ψ̃〉 =
∑

x

(Re ψx)|x, 0〉+(Im ψx)|x, 1〉 , (5.136)

and the action of the unitary transformation U can be represented
by a real orthogonal matrix UR defined as

UR : |x, 0〉 7→ (Re U)|x〉 ⊗ |0〉+ (Im U)|x〉 ⊗ |1〉 ,
|x, 1〉 7→ −(Im U)|x〉 ⊗ |0〉+ (Re U)|x〉 ⊗ |1〉 .(5.137)

To show that the gate set {H,Λ2(X)} is “universal,” it suffices
to demonstrate that the real encoding Λ(S)R of Λ(S) can be con-
structed from Λ2(X) and H.

d) Verify that Λ(S)R = Λ2(XZ).

e) Use Λ2(X) and H to construct a circuit for Λ2(XZ).

Thus, the classical Toffoli gate does not need much help to unleash
the power of quantum computing. In fact, any nonclassical single-
qubit gate (one that does not preserve the computational basis),
combined with the Toffoli gate, is sufficient.
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5.6 Universality from any entangling two-qubit gate

We say that a two-qubit unitary quantum gate is local if it is a tensor
product of single-qubit gates, and that the two-qubit gates U and
V are locally equivalent if one can be transformed to the other by
local gates:

V = (A⊗B)U(C ⊗D) . (5.138)

It turns out (you are not asked to prove this) that every two-qubit
gate is locally equivalent to a gate of the form:

V (θx, θy, θz) = exp [i (θxX ⊗X + θyY ⊗ Y + θzZ ⊗Z)] ,
(5.139)

where
−π/4 < θx ≤ θy ≤ θz ≤ π/4 . (5.140)

a) Show that V (π/4, π/4, π/4) is (up to an overall phase) the
SWAP operation that interchanges the two qubits:

SWAP (|ψ〉 ⊗ |φ〉) = |φ〉 ⊗ |ψ〉 . (5.141)

b) Show that V (0, 0, π/4) is locally equivalent to the CNOT gate
Λ(X).

As shown in Exercise 5.2, the CNOT gate Λ(X) together with ar-
bitrary single-qubit gates form an exactly universal gate set. But in
fact there is nothing special about the CNOT gate in this regard.
Any two-qubit gate U , when combined with arbitrary single-qubit
gates, suffices for universality unless U is either local or locally
equivalent to SWAP.
To demonstrate that U is universal when assisted by local gates it
suffices to construct Λ(X) using a circuit containing only local gates
and U gates.
Lemma If U is locally equivalent to V (θx, θy, θz), then Λ(X) can
be constructed from a circuit using local gates and U gates except in
two cases: (1) θx = θy = θz = 0 (U is local), (2) θx = θy = θz = π/4
(U is locally equivalent to SWAP)..
You will prove the Lemma in the rest of this exercise.

c) Show that:

(I ⊗X)V (θx, θy, θz)(I ⊗X)V (θx, θy, θz) = V (2θx, 0, 0) ,
(I ⊗ Y )V (θx, θy, θz)(I ⊗ Y )V (θx, θy, θz) = V (0, 2θy, 0) ,
(I ⊗Z)V (θx, θy, θz)(I ⊗Z)V (θx, θy, θz) = V (0, 0, 2θz) .

(5.142)
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d) Show that V (0, 0, θ) is locally equivalent to the controlled ro-
tation Λ[R(n̂, 4θ)], where R(n̂, 4θ) = exp[−2iθ(n̂ · ~σ)], for an
arbitrary axis of rotation n̂. (Here ~σ = (X,Y ,Z).)

e) Now use the results of (c) and (d) to prove the Lemma.



Chapter 6

Quantum Computation

6.1 Classical Circuits

The concept of a quantum computer was introduced in Chapter 1. Here we
will specify our model of quantum computation more precisely, and we will
point out some basic properties of the model. But before we explain what a
quantum computer does, perhaps we should say what a classical computer
does.

6.1.1 Universal gates

A classical (deterministic) computer evaluates a function: given n-bits of
input it producesm-bits of output that are uniquely determined by the input;
that is, it finds the value of

f : {0, 1}n → {0, 1}m, (6.1)

for a particular specified n-bit argument. A function with an m-bit value is
equivalent to m functions, each with a one-bit value, so we may just as well
say that the basic task performed by a computer is the evaluation of

f : {0, 1}n → {0, 1}. (6.2)

We can easily count the number of such functions. There are 2n possible
inputs, and for each input there are two possible outputs. So there are
altogether 22n

functions taking n bits to one bit.

1
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The evaluation of any such function can be reduced to a sequence of
elementary logical operations. Let us divide the possible values of the input

x = x1x2x3 . . . xn, (6.3)

into one set of values for which f(x) = 1, and a complementary set for which
f(x) = 0. For each x(a) such that f(x(a)) = 1, consider the function f (a) such
that

f (a)(x) =

{

1 x = x(a)

0 otherwise
(6.4)

Then

f(x) = f (1)(x) ∨ f (2)(x) ∨ f (3)(x) ∨ . . . . (6.5)

f is the logical OR (∨) of all the f (a)’s. In binary arithmetic the ∨ operation
of two bits may be represented

x ∨ y = x+ y − x · y; (6.6)

it has the value 0 if x and y are both zero, and the value 1 otherwise.
Now consider the evaluation of f (a). In the case where x(a) = 111 . . . 1,

we may write

f (a)(x) = x1 ∧ x2 ∧ x3 . . . ∧ xn; (6.7)

it is the logical AND (∧) of all n bits. In binary arithmetic, the AND is the
product

x ∧ y = x · y. (6.8)

For any other x(a), f (a) is again obtained as the AND of n bits, but where the
NOT (¬) operation is first applied to each xi such that x

(a)
i = 0; for example

f (a)(x) = (¬x1) ∧ x2 ∧ x3 ∧ (¬x4) ∧ . . . (6.9)

if

x(a) = 0110 . . . . (6.10)
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The NOT operation is represented in binary arithmetic as

¬x = 1 − x. (6.11)

We have now constructed the function f(x) from three elementary logi-
cal connectives: NOT, AND, OR. The expression we obtained is called the
“disjunctive normal form” of f(x). We have also implicitly used another
operation, COPY, that takes one bit to two bits:

COPY : x→ xx. (6.12)

We need the COPY operation because each f (a) in the disjunctive normal
form expansion of f requires its own copy of x to act on.

In fact, we can pare our set of elementary logical connectives to a smaller
set. Let us define a NAND (“NOT AND”) operation by

x ↑ y = ¬(x ∧ y) = (¬x) ∨ (¬y). (6.13)

In binary arithmetic, the NAND operation is

x ↑ y = 1 − xy. (6.14)

If we can COPY, we can use NAND to perform NOT:

x ↑ x = 1 − x2 = 1 − x = ¬x. (6.15)

(Alternatively, if we can prepare the constant y = 1, then x ↑ 1 = 1−x = ¬x.)
Also,

(x ↑ y) ↑ (x ↑ y) = ¬(x ↑ y) = 1 − (1 − xy) = xy = x ∧ y,
(6.16)

and

(x ↑ x) ↑ (y ↑ y) = (¬x) ↑ (¬y) = 1 − (1 − x)(1 − y)

= x+ y − xy = x ∨ y. (6.17)

So if we can COPY, NAND performs AND and OR as well. We conclude
that the single logical connective NAND, together with COPY, suffices to
evaluate any function f . (You can check that an alternative possible choice
of the universal connective is NOR:

x ↓ y = ¬(x ∨ y) = (¬x) ∧ (¬y).) (6.18)
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If we are able to prepare a constant bit (x = 0 or x = 1), we can reduce
the number of elementary operations from two to one. The NAND/NOT
gate

(x, y) → (1 − x, 1 − xy), (6.19)

computes NAND (if we ignore the first output bit) and performs copy (if
we set the second input bit to y = 1, and we subsequently apply NOT to
both output bits). We say, therefore, that NAND/NOT is a universal gate.
If we have a supply of constant bits, and we can apply the NAND/NOT
gates to any chosen pair of input bits, then we can perform a sequence of
NAND/NOT gates to evaluate any function f : {0, 1}n → {0, 1} for any
value of the input x = x1x2 . . . xn.

These considerations motivate the circuit model of computation. A com-
puter has a few basic components that can perform elementary operations
on bits or pairs of bits, such as COPY, NOT, AND, OR. It can also prepare
a constant bit or input a variable bit. A computation is a finite sequence of
such operations, a circuit, applied to a specified string of input bits.1 The
result of the computation is the final value of all remaining bits, after all the
elementary operations have been executed.

It is a fundamental result in the theory of computation that just a few
elementary gates suffice to evaluate any function of a finite input. This
result means that with very simple hardware components, we can build up
arbitrarily complex computations.

So far, we have only considered a computation that acts on a particular
fixed input, but we may also consider families of circuits that act on inputs
of variable size. Circuit families provide a useful scheme for analyzing and
classifying the complexity of computations, a scheme that will have a natural
generalization when we turn to quantum computation.

6.1.2 Circuit complexity

In the study of complexity, we will often be interested in functions with a
one-bit output

f : {0, 1}n → {0, 1}. (6.20)

1The circuit is required to be acyclic, meaning that no directed closed loops are
permitted.



6.1. CLASSICAL CIRCUITS 5

Such a function f may be said to encode a solution to a “decision problem”
— the function examines the input and issues a YES or NO answer. Often, a
question that would not be stated colloquially as a question with a YES/NO
answer can be “repackaged” as a decision problem. For example, the function
that defines the FACTORING problem is:

f(x, y) =

{

1 if integer x has a divisor less than y,
0 otherwise;

(6.21)

knowing f(x, y) for all y < x is equivalent to knowing the least nontrivial
factor of y. Another important example of a decision problem is the HAMIL-
TONIAN path problem: let the input be an `-vertex graph, represented by
an `× ` adjacency matrix ( a 1 in the ij entry means there is an edge linking
vertices i and j); the function is

f(x) =

{

1 if graph x has a Hamiltonian path,
0 otherwise.

(6.22)

(A path is Hamiltonian if it visits each vertex exactly once.)
We wish to gauge how hard a problem is by quantifying the resources

needed to solve the problem. For a decision problem, a reasonable measure
of hardness is the size of the smallest circuit that computes the corresponding
function f : {0, 1}n → {0, 1}. By size we mean the number of elementary
gates or components that we must wire together to evaluate f . We may also
be interested in how much time it takes to do the computation if many gates
are permitted to execute in parallel. The depth of a circuit is the number of
time steps required, assuming that gates acting on distinct bits can operate
simultaneously (that is, the depth is the maximum length of a directed path
from the input to the output of the circuit). The width of a circuit is the
maximum number of gates that act in any one time step.

We would like to divide the decision problems into two classes: easy and
hard. But where should we draw the line? For this purpose, we consider
infinite families of decision problems with variable input size; that is, where
the number of bits of input can be any integer n. Then we can examine how
the size of the circuit that solves the problem scales with n.

If we use the scaling behavior of a circuit family to characterize the dif-
ficulty of a problem, there is a subtlety. It would be cheating to hide the
difficulty of the problem in the design of the circuit. Therefore, we should
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restrict attention to circuit families that have acceptable “uniformity” prop-
erties — it must be “easy” to build the circuit with n+ 1 bits of input once
we have constructed the circuit with an n-bit input.

Associated with a family of functions {fn} (where fn has n-bit input) are
circuits {Cn} that compute the functions. We say that a circuit family {Cn}
is “polynomial size” if the size of Cn grows with n no faster than a power of
n,

size (Cn) ≤ poly (n), (6.23)

where poly denotes a polynomial. Then we define:

P = {decision problem solved by polynomial-size circuit families}

(P for “polynomial time”). Decision problems in P are “easy.” The rest are
“hard.” Notice that Cn computes fn(x) for every possible n-bit input, and
therefore, if a decision problem is in P we can find the answer even for the
“worst-case” input using a circuit of size no greater than poly(n). (As noted
above, we implicitly assume that the circuit family is “uniform” so that the
design of the circuit can itself be solved by a polynomial-time algorithm.
Under this assumption, solvability in polynomial time by a circuit family is
equivalent to solvability in polynomial time by a universal Turing machine.)

Of course, to determine the size of a circuit that computes fn, we must
know what the elementary components of the circuit are. Fortunately, though,
whether a problem lies in P does not depend on what gate set we choose, as
long as the gates are universal, the gate set is finite, and each gate acts on a
set of bits of bounded size. One universal gate set can simulate another.

The vast majority of function families f : {0, 1}n → {0, 1} are not in
P . For most functions, the output is essentially random, and there is no
better way to “compute” f(x) than to consult a look-up table of its values.
Since there are 2n n-bit inputs, the look-up table has exponential size, and a
circuit that encodes the table must also have exponential size. The problems
in P belong to a very special class — they have enough structure so that the
function f can be computed efficiently.

Of particular interest are decision problems that can be answered by
exhibiting an example that is easy to verify. For example, given x and y < x,
it is hard (in the worst case) to determine if x has a factor less than y. But
if someone kindly provides a z < y that divides x, it is easy for us to check
that z is indeed a factor of x. Similarly, it is hard to determine if a graph
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has a Hamiltonian path, but if someone kindly provides a path, it is easy to
verify that the path really is Hamiltonian.

This concept that a problem may be hard to solve, but that a solution
can be easily verified once found, can be formalized by the notion of a “non-
deterministic” circuit. A nondeterministic circuit C̃n,m(x(n), y(m)) associated
with the circuit Cn(x(n)) has the property:

Cn(x(n)) = 1 iff C̃n,m(x(n), y(m)) = 1 for some y(m). (6.24)

(where x(n) is n bits and y(m) is m bits.) Thus for a particular x(n) we can
use C̃n,m to verify that Cn(x

(n) = 1, if we are fortunate enough to have the
right y(m) in hand. We define:

NP : {decision problems that admit a polynomial-size nondeter-
ministic circuit family}

(NP for “nondeterministic polynomial time”). If a problem is in NP , there
is no guarantee that the problem is easy, only that a solution is easy to check
once we have the right information. Evidently P ⊆ NP . Like P , the NP
problems are a small subclass of all decision problems.

Much of complexity theory is built on a fundamental conjecture:

Conjecture : P 6= NP ; (6.25)

there exist hard decision problems whose solutions are easily verified. Un-
fortunately, this important conjecture still awaits proof. But after 30 years
of trying to show otherwise, most complexity experts are firmly confident of
its validity.

An important example of a problem in NP is CIRCUIT-SAT. In this case
the input is a circuit C with n gates, m input bits, and one output bit. The
problem is to find if there is any m-bit input for which the output is 1. The
function to be evaluated is

f(C) =

{

1 if there exists x(m) with C(x(m)) = 1,
0 otherwise.

(6.26)

This problem is in NP because, given a circuit, it is easy to simulate the
circuit and evaluate its output for any particular input.

I’m going to state some important results in complexity theory that will
be relevant for us. There won’t be time for proofs. You can find out more
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by consulting one of the many textbooks on the subject; one good one is
Computers and Intractability: A Guide to the Theory of NP-Completeness,
by M. R. Garey and D. S. Johnson.

Many of the insights engendered by complexity theory flow from Cook’s
Theorem (1971). The theorem states that every problem in NP is poly-
nomially reducible to CIRCUIT-SAT. This means that for any PROBLEM
∈ NP , there is a polynomial-size circuit family that maps an “instance” x(n)

of PROBLEM to an “instance” y(m) of CIRCUIT-SAT; that is

CIRCUIT− SAT (y(m)) = 1 iff PROBLEM (x(n)) = 1.
(6.27)

It follows that if we had a magical device that could efficiently solve CIRCUIT-
SAT (a CIRCUIT-SAT “oracle”), we could couple that device with the poly-
nomial reduction to efficiently solve PROBLEM. Cook’s theorem tells us that
if it turns out that CIRCUIT-SAT ∈ P , then P = NP .

A problem that, like CIRCUIT-SAT, has the property that every prob-
lem in NP is polynomially reducible to it, is called NP -complete (NPC).
Since Cook, many other examples have been found. To show that a PROB-
LEM ∈ NP is NP -complete, it suffices to find a polynomial reduction to
PROBLEM of another problem that is already known to be NP -complete.
For example, one can exhibit a polynomial reduction of CIRCUIT-SAT to
HAMILTONIAN. It follows from Cook’s theorem that HAMILTONIAN is
also NP -complete.

If we assume that P 6= NP , it follows that there exist problems in NP
of intermediate difficulty (the class NPI). These are neither P nor NPC .

Another important complexity class is called co-NP . Heuristically, NP
decision problems are ones we can answer by exhibiting an example if the an-
swer is YES, while co-NP problems can be answered with a counter-example
if the answer is NO. More formally:

{C} ∈ NP :C(x) = 1 iff C(x, y) = 1 for some y (6.28)

{C} ∈ co−NP :C(x) = 1 iff C(x, y) = 1 for all y. (6.29)

Clearly, there is a symmetry relating the classes NP and co-NP — whether
we consider a problem to be in NP or co-NP depends on how we choose to
frame the question. (“Is there a Hamiltonian circuit?” is in NP . “Is there
no Hamiltonian circuit?” is in co-NP ). But the interesting question is: is a
problem in both NP and co-NP? If so, then we can easily verify the answer
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(once a suitable example is in hand) regardless of whether the answer is YES
or NO. It is believed (though not proved) that NP 6= co−NP . (For example,
we can show that a graph has a Hamiltonian path by exhibiting an example,
but we don’t know how to show that it has no Hamiltonian path that way!)
Assuming that NP 6= co−NP , there is a theorem that says that no co-NP
problems are contained in NPC. Therefore, problems in the intersection of
NP and co-NP , if not in P , are good candidates for inclusion in NPI.

In fact, a problem in NP ∩ co−NP that is believed not in P is the
FACTORING problem. As already noted, FACTORING is in NP because,
if we are offered a factor of x, we can easily check its validity. But it is also in
co-NP , because it is known that if we are given a prime number then (at least
in principle), we can efficiently verify its primality. Thus, if someone tells us
the prime factors of x, we can efficiently check that the prime factorization is
right, and can exclude that any integer less than y is a divisor of x. Therefore,
it seems likely that FACTORING is in NPI .

We are led to a crude (conjectured) picture of the structure of NP ∪
co−NP . NP and co-NP do not coincide, but they have a nontrivial inter-
section. P lies in NP ∩ co−NP (because P = co−P ), but the intersection
also contains problems not in P (like FACTORING). Neither NPC nor co-
NPC intersects with NP ∩ co−NP .

There is much more to say about complexity theory, but we will be con-
tent to mention one more element that relates to the discussion of quantum
complexity. It is sometimes useful to consider probabilistic circuits that have
access to a random number generator. For example, a gate in a probabilistic
circuit might act in either one of two ways, and flip a fair coin to decide which
action to execute. Such a circuit, for a single fixed input, can sample many
possible computational paths. An algorithm performed by a probabilistic
circuit is said to be “randomized.”

If we attack a decision problem using a probabilistic computer, we attain
a probability distribution of outputs. Thus, we won’t necessarily always get
the right answer. But if the probability of getting the right answer is larger
than 1

2
+ δ for every possible input (δ > 0), then the machine is useful. In

fact, we can run the computation many times and use majority voting to
achieve an error probability less than ε. Furthermore, the number of times
we need to repeat the computation is only polylogarithmic in ε−1.

If a problem admits a probabilistic circuit family of polynomial size that
always gives the right answer with probability larger than 1

2
+δ (for any input,

and for fixed δ > 0), we say the problem is in the class BPP (“bounded-error
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probabilistic polynomial time”). It is evident that

P ⊆ BPP, (6.30)

but the relation of NP to BPP is not known. In particular, it has not been
proved that BPP is contained in NP .

6.1.3 Reversible computation

In devising a model of a quantum computer, we will generalize the circuit
model of classical computation. But our quantum logic gates will be unitary
transformations, and hence will be invertible, while classical logic gates like
the NAND gate are not invertible. Before we discuss quantum circuits, it is
useful to consider some features of reversible classical computation.

Aside from the connection with quantum computation, another incentive
for studying reversible classical computation arose in Chapter 1. As Lan-
dauer observed, because irreversible logic elements erase information, they
are necessarily dissipative, and therefore, require an irreducible expenditure
of power. But if a computer operates reversibly, then in principle there need
be no dissipation and no power requirement. We can compute for free!

A reversible computer evaluates an invertible function taking n bits to n
bits

f : {0, 1}n → {0, 1}n, (6.31)

the function must be invertible so that there is a unique input for each output;
then we are able in principle to run the computation backwards and recover
the input from the output. Since it is a 1-1 function, we can regard it as a
permutation of the 2n strings of n bits — there are (2n)! such functions.

Of course, any irreversible computation can be “packaged” as an evalu-
ation of an invertible function. For example, for any f : {0, 1}n → {0, 1}m,
we can construct f̃ : {0, 1}n+m → {0, 1}n+m such that

f̃(x; 0(m)) = (x; f(x)), (6.32)

(where 0(m) denotes m-bits initially set to zero). Since f̃ takes each (x; 0(m))
to a distinct output, it can be extended to an invertible function of n + m
bits. So for any f taking n bits to m, there is an invertible f̃ taking n + m
to n+m, which evaluates f(x) acting on (x, 0(m))
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Now, how do we build up a complicated reversible computation from
elementary components — that is, what constitutes a universal gate set? We
will see that one-bit and two-bit reversible gates do not suffice; we will need
three-bit gates for universal reversible computation.

Of the four 1-bit → 1-bit gates, two are reversible; the trivial gate and
the NOT gate. Of the (24)2 = 256 possible 2-bit → 2-bit gates, 4! = 24 are
reversible. One of special interest is the controlled-NOT or reversible XOR
gate that we already encountered in Chapter 4:

XOR : (x, y) 7→ (x, x⊕ y), (6.33)

x

y

x

x⊕ y

s

g

This gate flips the second bit if the first is 1, and does nothing if the first bit
is 0 (hence the name controlled-NOT). Its square is trivial, that is, it inverts
itself. Of course, this gate performs a NOT on the second bit if the first bit
is set to 1, and it performs the copy operation if y is initially set to zero:

XOR : (x, 0) 7→ (x, x). (6.34)

With the circuit

x

y

y

x

s

g

g

s

s

g

constructed from three X0R’s, we can swap two bits:

(x, y) → (x, x⊕ y) → (y, x⊕ y) → (y, x). (6.35)

With these swaps we can shuffle bits around in a circuit, bringing them
together if we want to act on them with a particular component in a fixed
location.

To see that the one-bit and two-bit gates are nonuniversal, we observe
that all these gates are linear. Each reversible two-bit gate has an action of
the form

(

x

y

)

→
(

x′

y′

)

= M
(

x

y

)

+
(

a

b

)

, (6.36)
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where the constant
(

a
b

)

takes one of four possible values, and the matrix M
is one of the six invertible matrices

M =

(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

1 1
0 1

)

,

(

1 0
1 1

)

,

(

0 1
1 1

)

,

(

1 1
1 0

)

.
(6.37)

(All addition is performed modulo 2.) Combining the six choices for M with
the four possible constants, we obtain 24 distinct gates, which exhausts all
the reversible 2 → 2 gates.

Since the linear transformations are closed under composition, any circuit
composed from reversible 2 → 2 (and 1 → 1) gates will compute a linear
function

x→ Mx+ a. (6.38)

But for n ≥ 3, there are invertible functions on n-bits that are nonlinear. An
important example is the 3-bit Toffoli gate (or controlled-controlled-NOT)
θ(3)

θ(3) : (x, y, z) → (x, y, z ⊕ xy); (6.39)

x

y

z

x

y

z ⊕ xy

s

s

g

it flips the third bit if the first two are 1 and does nothing otherwise. Like
the XOR gate, it is its own inverse.

Unlike the reversible 2-bit gates, the Toffoli gate serves as a universal gate
for Boolean logic, if we can provide fixed input bits and ignore output bits.
If z is initially 1, then x ↑ y = 1 − xy appears in the third output — we can
perform NAND. If we fix x = 1, the Toffoli gate functions like an XOR gate,
and we can use it to copy.

The Toffoli gate θ(3) is universal in the sense that we can build a circuit to
compute any reversible function using Toffoli gates alone (if we can fix input
bits and ignore output bits). It will be instructive to show this directly,
without relying on our earlier argument that NAND/NOT is universal for
Boolean functions. In fact, we can show the following: From the NOT gate
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and the Toffoli gate θ(3), we can construct any invertible function on n bits,
provided we have one extra bit of scratchpad space available.

The first step is to show that from the three-bit Toffoli-gate θ(3) we can
construct an n-bit Toffoli gate θ(n) that acts as

(x1, x2, . . . xn−1, y) → (x1, x2, . . . , xn−1y ⊕ x1x2 . . . xn−1).
(6.40)

The construction requires one extra bit of scratch space. For example, we
construct θ(4) from θ(3)’s with the circuit

x1

x2

0

x3

y

x1

x2

0

x3

y ⊕ x1x2x3

s

s

g s

s

g

s

s

g

The purpose of the last θ(3) gate is to reset the scratch bit back to its original
value zero. Actually, with one more gate we can obtain an implementation
of θ(4) that works irrespective of the initial value of the scratch bit:

x1

x2

w

x3

y

x1

x2

w

x3

y ⊕ x1x2x3

s

s

g s

s

g

s

s

g s

s

g

Again, we can eliminate the last gate if we don’t mind flipping the value of
the scratch bit.

We can see that the scratch bit really is necessary, because θ(4) is an odd
permutation (in fact a transposition) of the 24 4-bit strings — it transposes
1111 and 1110. But θ(3) acting on any three of the four bits is an even
permutation; e.g., acting on the last three bits it transposes 0111 with 0110,
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and 1111 with 1110. Since a product of even permutations is also even, we
cannot obtain θ(4) as a product of θ(3)’s that act on four bits only.

The construction of θ(4) from four θ(3)’s generalizes immediately to the
construction of θ(n) from two θ(n−1)’s and two θ(3)’s (just expand x1 to several
control bits in the above diagram). Iterating the construction, we obtain θ(n)

from a circuit with 2n−2 +2n−3 −2 θ(3)’s. Furthermore, just one bit of scratch
space is sufficient.2) (When we need to construct θ(k), any available extra
bit will do, since the circuit returns the scratch bit to its original value. The
next step is to note that, by conjugating θ(n) with NOT gates, we can in
effect modify the value of the control string that “triggers” the gate. For
example, the circuit

x1

x2

x3

y

g

g

s

s

s

g

g

g

flips the value of y if x1x2x3 = 010, and it acts trivially otherwise. Thus
this circuit transposes the two strings 0100 and 0101. In like fashion, with
θ(n) and NOT gates, we can devise a circuit that transposes any two n-bit
strings that differ in only one bit. (The location of the bit where they differ
is chosen to be the target of the θ(n) gate.)

But in fact a transposition that exchanges any two n-bit strings can be
expressed as a product of transpositions that interchange strings that differ
in only one bit. If a0 and as are two strings that are Hamming distance s
apart (differ in s places), then there is a chain

a0, a1, a2, a3, . . . , as, (6.41)

such that each string in the chain is Hamming distance one from its neighbors.
Therefore, each of the transpositions

(a0a1), (a1a2), (a2a3), . . . (as−1as), (6.42)

2With more scratch space, we can build θ(n) from θ(3)’s much more efficiently — see
the exercises.
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can be implemented as a θ(n) gate conjugated by NOT gates. By composing
transpositions we find

(a0as) = (as−1as)(as−2as−1) . . . (a2a3)(a1a2)(a0a1)(a1a2)(a2a3)

. . . (as−2as−1)(as−1as); (6.43)

we can construct the Hamming-distance-s transposition from 2s−1 Hamming-
distance-one transpositions. It follows that we can construct (a0as) from
θ(n)’s and NOT gates.

Finally, since every permutation is a product of transpositions, we have
shown that every invertible function on n-bits (every permutation on n-bit
strings) is a product of θ(3)’s and NOT’s, using just one bit of scratch space.

Of course, a NOT can be performed with a θ(3) gate if we fix two input
bits at 1. Thus the Toffoli gate θ(3) is universal for reversible computation,
if we can fix input bits and discard output bits.

6.1.4 Billiard ball computer

Two-bit gates suffice for universal irreversible computation, but three-bit
gates are needed for universal reversible computation. One is tempted to
remark that “three-body interactions” are needed, so that building reversible
hardware is more challenging than building irreversible hardware. However,
this statement may be somewhat misleading.

Fredkin described how to devise a universal reversible computer in which
the fundamental interaction is an elastic collision between two billiard balls.
Balls of radius 1√

2
move on a square lattice with unit lattice spacing. At

each integer valued time, the center of each ball lies at a lattice site; the
presence or absence of a ball at a particular site (at integer time) encodes
a bit of information. In each unit of time, each ball moves unit distance
along one of the lattice directions. Occasionally, at integer-valued times, 90o

elastic collisions occur between two balls that occupy sites that are distance√
2 apart (joined by a lattice diagonal).
The device is programmed by nailing down balls at certain sites, so that

those balls act as perfect reflectors. The program is executed by fixing ini-
tial positions and directions for the moving balls, and evolving the system
according to Newtonian mechanics for a finite time. We read the output
by observing the final positions of all the moving balls. The collisions are
nondissipative, so that we can run the computation backward by reversing
the velocities of all the balls.
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To show that this machine is a universal reversible computer, we must
explain how to operate a universal gate. It is convenient to consider the
three-bit Fredkin gate

(x, y, z) → (x, xz + x̄y, xy + x̄z), (6.44)

which swaps y and z if x = 0 (we have introduced the notation x̄ = ¬x).
You can check that the Fredkin gate can simulate a NAND/NOT gate if we
fix inputs and ignore outputs.

We can build the Fredkin gate from a more primitive object, the switch
gate. A switch gate taking two bits to three acts as

(x, y) → (x, xy, x̄y). (6.45)

x
xy
x̄y

x
y S

The gate is “reversible” in that we can run it backwards acting on a con-
strained 3-bit input taking one of the four values
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 (6.46)

Furthermore, the switch gate is itself universal; fixing inputs and ignoring
outputs, it can do NOT (y = 1, third output) AND (second output), and
COPY (y = 1, first and second output). It is not surprising, then, that we
can compose switch gates to construct a universal reversible 3 → 3 gate.
Indeed, the circuit

builds the Fredkin gate from four switch gates (two running forward and two
running backward). Time delays needed to maintain synchronization are not
explicitly shown.

In the billiard ball computer, the switch gate is constructed with two
reflectors, such that (in the case x = y = 1) two moving balls collide twice.
The trajectories of the balls in this case are:
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A ball labeled x emerges from the gate along the same trajectory (and at the
same time) regardless of whether the other ball is present. But for x = 1, the
position of the other ball (if present) is shifted down compared to its final
position for x = 0 — this is a switch gate. Since we can perform a switch
gate, we can construct a Fredkin gate, and implement universal reversible
logic with a billiard ball computer.

An evident weakness of the billiard-ball scheme is that initial errors in the
positions and velocities of the ball will accumulate rapidly, and the computer
will eventually fail. As we noted in Chapter 1 (and Landauer has insistently
pointed out) a similar problem will afflict any proposed scheme for dissipa-
tionless computation. To control errors we must be able to compress the
phase space of the device, which will necessarily be a dissipative process.

6.1.5 Saving space

But even aside from the issue of error control there is another key question
about reversible computation. How do we manage the scratchpad space
needed to compute reversibly?

In our discussion of the universality of the Toffoli gate, we saw that in
principle we can do any reversible computation with very little scratch space.
But in practice it may be impossibly difficult to figure out how to do a
particular computation with minimal space, and in any case economizing on
space may be costly in terms of the run time.

There is a general strategy for simulating an irreversible computation on
a reversible computer. Each irreversible NAND or COPY gate can be simu-
lated by a Toffoli gate by fixing inputs and ignoring outputs. We accumulate
and save all “garbage” output bits that are needed to reverse the steps of
the computation. The computation proceeds to completion, and then a copy
of the output is generated. (This COPY operation is logically reversible.)
Then the computation runs in reverse, cleaning up all garbage bits, and re-
turning all registers to their original configurations. With this procedure
the reversible circuit runs only about twice as long as the irreversible circuit
that it simulates, and all garbage generated in the simulation is disposed of
without any dissipation and hence no power requirement.

This procedure works, but demands a huge amount of scratch space – the
space needed scales linearly with the length T of the irreversible computation
being simulated. In fact, it is possible to use space far more efficiently (with
only a minor slowdown), so that the space required scales like log T instead
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of T . (That is, there is a general-purpose scheme that requires space ∝
log T ; of course, we might do even better in the simulation of a particular
computation.)

To use space more effectively, we will divide the computation into smaller
steps of roughly equal size, and we will run these steps backward when pos-
sible during the course of the computation. However, just as we are unable
to perform step k of the computation unless step k − 1 has already been
completed, we are unable to run step k in reverse if step k−1 has previously
been executed in reverse.3 The amount of space we require (to store our
garbage) will scale like the maximum value of the number of forward steps
minus the number of backward steps that have been executed.

The challenge we face can be likened to a game — the reversible pebble
game.4 The steps to be executed form a one-dimension directed graph with
sites labeled 1, 2, 3 . . . T . Execution of step k is modeled by placing a pebble
on the kth site of the graph, and executing step k in reverse is modeled as
removal of a pebble from site k. At the beginning of the game, no sites are
covered by pebbles, and in each turn we add or remove a pebble. But we
cannot place a pebble at site k (except for k = 1) unless site k− 1 is already
covered by a pebble, and we cannot remove a pebble from site k (except for
k = 1) unless site k − 1 is covered. The object is to cover site T (complete
the computation) without using more pebbles than necessary (generating a
minimal amount of garbage).

In fact, with n pebbles we can reach site T = 2n − 1, but we can go no
further.

We can construct a recursive procedure that enables us to reach site
T = 2n−1 with n pebbles, leaving only one pebble in play. Let F1(k) denote
placing a pebble at site k, and F1(k)

−1 denote removing a pebble from site
k. Then

F2(1, 2) = F1(1)F1(2)F1(1)
−1, (6.47)

leaves a pebble at site k = 2, using a maximum of two pebbles at intermediate

3We make the conservative assumption that we are not clever enough to know ahead
of time what portion of the output from step k − 1 might be needed later on. So we store
a complete record of the configuration of the machine after step k − 1, which is not to be
erased until an updated record has been stored after the completion of a subsequent step.

4as pointed out by Bennett. For a recent discussion, see M. Li and P. Vitanyi,
quant-ph/9703022.
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stages. Similarly

F3(1, 4) = F2(1, 2)F2(3, 4)F2(1, 2)
−1, (6.48)

reaches site k = 4 using a maximum of three pebbles, and

F4(1, 8) = F3(1, 4)F3(5, 8)F3(1, 4)
−1, (6.49)

reaches k = 8 using four pebbles. Evidently we can construct Fn(1, 2
n−1)

which uses a maximum of n pebbles and leaves a single pebble in play. (The
routine

Fn(1, 2
n−1)Fn−1(2

n−1 + 1, 2n−1 + 2n−2) . . . F1(2
n − 1),

(6.50)

leaves all n pebbles in play, with the maximal pebble at site k = 2n − 1.)
Interpreted as a routine for executing T = 2n−1 steps of a computation,

this strategy for playing the pebble game represents a simulation requiring
space scaling like n ∼ log T . How long does the simulation take? At each level
of the recursive procedure described above, two steps forward are replaced by
two steps forward and one step back. Therefore, an irreversible computation
with Tirr = 2n steps is simulated in Trev = 3n steps, or

Trev = (Tirr)
log 3/ log 2,= (Tirr)

1.58, (6.51)

a modest power law slowdown.
In fact, we can improve the slowdown to

Trev ∼ (Tirr)
1+ε, (6.52)

for any ε > 0. Instead of replacing two steps forward with two forward and
one back, we replace ` forward with ` forward and ` − 1 back. A recursive
procedure with n levels reaches site `n using a maximum of n(` − 1) + 1
pebbles. Now we have Tirr = `n and Trev = (2`− 1)n, so that

Trev = (Tirr)
log(2`−1)/ log `; (6.53)

the power characterizing the slowdown is

log(2`− 1)

log `
=

log 2` + log
(

1 − 1
2`

)

log `
' 1 +

log 2

log `
, (6.54)
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and the space requirement scales as

S ' n` ' `
log T

log `
. (6.55)

Thus, for any fixed ε > 0, we can attain S scaling like logT , and a slowdown
no worse than (Tirr)

1+ε. (This is not the optimal way to play the Pebble game
if our objective is to get as far as we can with as few pebbles as possible. We
use more pebbles to get to step T , but we get there faster.)

We have now seen that a reversible circuit can simulate a circuit com-
posed of irreversible gates efficiently — without requiring unreasonable mem-
ory resources or causing an unreasonable slowdown. Why is this important?
You might worry that, because reversible computation is “harder” than ir-
reversible computation, the classification of complexity depends on whether
we compute reversibly or irreversibly. But this is not the case, because a
reversible computer can simulate an irreversible computer pretty easily.

6.2 Quantum Circuits

Now we are ready to formulate a mathematical model of a quantum com-
puter. We will generalize the circuit model of classical computation to the
quantum circuit model of quantum computation.

A classical computer processes bits. It is equipped with a finite set of
gates that can be applied to sets of bits. A quantum computer processes
qubits. We will assume that it too is equipped with a discrete set of funda-
mental components, called quantum gates. Each quantum gate is a unitary
transformation that acts on a fixed number of qubits. In a quantum com-
putation, a finite number n of qubits are initially set to the value |00 . . . 0〉.
A circuit is executed that is constructed from a finite number of quantum
gates acting on these qubits. Finally, a Von Neumann measurement of all the
qubits (or a subset of the qubits) is performed, projecting each onto the basis
{|0〉, |1〉}. The outcome of this measurement is the result of the computation.

Several features of this model require comment:

(1) It is implicit but important that the Hilbert space of the device has a pre-
ferred decomposition into a tensor product of low-dimensional spaces,
in this case the two-dimensional spaces of the qubits. Of course, we
could have considered a tensor product of, say, qutrits instead. But
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anyway we assume there is a natural decomposition into subsystems
that is respected by the quantum gates — which act on only a few
subsystems at a time. Mathematically, this feature of the gates is cru-
cial for establishing a clearly defined notion of quantum complexity.
Physically, the fundamental reason for a natural decomposition into
subsystems is locality; feasible quantum gates must act in a bounded
spatial region, so the computer decomposes into subsystems that inter-
act only with their neighbors.

(2) Since unitary transformations form a continuum, it may seem unneces-
sarily restrictive to postulate that the machine can execute only those
quantum gates chosen from a discrete set. We nevertheless accept such
a restriction, because we do not want to invent a new physical imple-
mentation each time we are faced with a new computation to perform.

(3) We might have allowed our quantum gates to be superoperators, and our
final measurement to be a POVM. But since we can easily simulate a
superoperator by performing a unitary transformation on an extended
system, or a POVM by performing a Von Neumann measurement on
an extended system, the model as formulated is of sufficient generality.

(4) We might allow the final measurement to be a collective measurement,
or a projection into a different basis. But any such measurement can be
implemented by performing a suitable unitary transformation followed
by a projection onto the standard basis {|0〉, |1〉}n. Of course, compli-
cated collective measurements can be transformed into measurements
in the standard basis only with some difficulty, but it is appropriate to
take into account this difficulty when characterizing the complexity of
an algorithm.

(5) We might have allowed measurements at intermediate stages of the
computation, with the subsequent choice of quantum gates conditioned
on the outcome of those measurements. But in fact the same result
can always be achieved by a quantum circuit with all measurements
postponed until the end. (While we can postpone the measurements in
principle, it might be very useful in practice to perform measurements
at intermediate stages of a quantum algorithm.)

A quantum gate, being a unitary transformation, is reversible. In fact, a
classical reversible computer is a special case of a quantum computer. A
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classical reversible gate

x(n) → y(n) = f(x(n)), (6.56)

implementing a permutation of n-bit strings, can be regarded as a unitary
transformation that acts on the “computational basis {|xi〉} according to

U : |xi〉 → |yi〉. (6.57)

This action is unitary because the 2n strings |yi〉 are all mutually orthogonal.
A quantum computation constructed from such classical gates takes |0 . . . 0〉
to one of the computational basis states, so that the final measurement is
deterministic.

There are three main issues concerning our model that we would like to
address. The first issue is universality. The most general unitary transfor-
mation that can be performed on n qubits is an element of U(2n). Our model
would seem incomplete if there were transformations in U(2n) that we were
unable to reach. In fact, we will see that there are many ways to choose a
discrete set of universal quantum gates. Using a universal gate set we can
construct circuits that compute a unitary transformation that comes as close
as we please to any element in U(2n).

Thanks to universality, there is also a machine independent notion of
quantum complexity. We may define a new complexity classBQP — the class
of decision problems that can be solved, with high probability, by polynomial-
size quantum circuits. Since one universal quantum computer can simulate
another efficiently, the class does not depend on the details of our hardware
(on the universal gate set that we have chosen).

Notice that a quantum computer can easily simulate a probabilistic clas-
sical computer: it can prepare 1√

2
(|0〉 + |1〉) and then project to {|0〉, |1〉},

generating a random bit. Therefore BQP certainly contains the class BPP .
But as we discussed in Chapter 1, it seems to be quite reasonable to expect
that BQP is actually larger than BPP , because a probabilistic classical
computer cannot easily simulate a quantum computer. The fundamental dif-
ficulty is that the Hilbert space of n qubits is huge, of dimension 2n, and
hence the mathematical description of a typical vector in the space is ex-
ceedingly complex. Our second issue is to better characterize the resources
needed to simulate a quantum computer on a classical computer. We will see
that, despite the vastness of Hilbert space, a classical computer can simulate
an n-qubit quantum computer even if limited to an amount of memory space
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that is polynomial in n. This means the BQP is contained in the complexity
class PSPACE, the decision problems that can be solved with polynomial
space, but may require exponential time. (We know that NP is also con-
tained in PSPACE, since checking if C(x(n), y(m)) = 1 for each y(m) can be
accomplished with polynomial space.5

The third important issue we should address is accuracy. The class BQP
is defined formally under the idealized assumption that quantum gates can be
executed with perfect precision. Clearly, it is crucial to relax this assumption
in any realistic implementation of quantum computation. A polynomial size
quantum circuit family that solves a hard problem would not be of much
interest if the quantum gates in the circuit were required to have exponential
accuracy. In fact, we will show that this is not the case. An idealized T -gate
quantum circuit can be simulated with acceptable accuracy by noisy gates,
provided that the error probability per gate scales like 1/T .

We see that quantum computers pose a serious challenge to the strong
Church–Turing thesis, which contends that any physically reasonable model
of computation can be simulated by probabilistic classical circuits with at
worst a polynomial slowdown. But so far there is no firm proof that

BPP 6= BQP. (6.58)

Nor is such a proof necessarily soon to be expected.6 Indeed, a corollary
would be

BPP 6= PSPACE, (6.59)

which would settle one of the long-standing and pivotal open questions in
complexity theory.

It might be less unrealistic to hope for a proof that BPP 6= BQP follows
from another standard conjecture of complexity theory such as P 6= NP . So
far no such proof has been found. But while we are not yet able to prove
that quantum computers have capabilities far beyond those of conventional
computers, we nevertheless might uncover evidence suggesting that BPP 6=
BQP . We will see that there are problems that seem to be hard (in classical
computation) yet can be efficiently solved by quantum circuits.

5Actually there is another rung of the complexity hierarchy that may separate BQP
and PSPACE; we can show that BQP ⊆ P #P ⊆ PSPACE, but we won’t consider P #P

any further here.
6That is, we ought not to expect a “nonrelativized proof.” A separation between BPP

and BQP “relative to an oracle” will be established later in the chapter.
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Thus it seems likely that the classification of complexity will be different
depending on whether we use a classical computer or a quantum computer
to solve a problem. If such a separation really holds, it is the quantum
classification that should be regarded as the more fundamental, for it is
better founded on the physical laws that govern the universe.

6.2.1 Accuracy

Let’s discuss the issue of accuracy. We imagine that we wish to implement
a computation in which the quantum gates U1,U2, . . . ,UT are applied se-
quentially to the initial state |ϕ0〉. The state prepared by our ideal quantum
circuit is

|ϕT 〉 = UTUT−1 . . .U 2U 1|ϕ0〉. (6.60)

But in fact our gates do not have perfect accuracy. When we attempt to ap-
ply the unitary transformation U t, we instead apply some “nearby” unitary
transformation Ũ t. (Of course, this is not the most general type of error that
we might contemplate – the unitary U t might be replaced by a superoperator.
Considerations similar to those below would apply in that case, but for now
we confine our attention to “unitary errors.”)

The errors cause the actual state of the computer to wander away from
the ideal state. How far does it wander? Let |ϕt〉 denote the ideal state after
t quantum gates are applied, so that

|ϕt〉 = U t|ϕt−1〉. (6.61)

But if we apply the actual transformation Ũ t, then

Ũ t|ϕt−1〉 = |ϕt〉 + |Et〉, (6.62)

where

|Et〉 = (Ũ t − U t)|ϕt−1〉, (6.63)

is an unnormalized vector. If |ϕ̃t〉 denotes the actual state after t steps, then
we have

|ϕ̃1〉 = |ϕ1〉 + |E1〉,
|ϕ̃2〉 = Ũ 2|ϕ̃1〉 = |ϕ2〉 + |E2〉 + Ũ 2|E1〉, (6.64)
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and so forth; we ultimately obtain

|ϕ̃T 〉 = |ϕT 〉 + |ET 〉 + ŨT |ET−1〉 + ŨT ŨT−1|ET−2〉
+ . . .+ ŨT ŨT−1 . . . Ũ 2|E1〉. (6.65)

Thus we have expressed the difference between |ϕ̃T 〉 and |ϕT 〉 as a sum of T
remainder terms. The worst case yielding the largest deviation of |ϕ̃T 〉 from
|ϕT 〉 occurs if all remainder terms line up in the same direction, so that the
errors interfere constructively. Therefore, we conclude that

‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ ‖ |ET 〉 ‖ + ‖ |ET−1〉 ‖
+ . . .+ ‖ |E2〉 ‖ + ‖ |E1〉 ‖, (6.66)

where we have used the property ‖ U |Ei〉 ‖=‖ |Ei〉 ‖ for any unitary U .
Let ‖ A ‖sup denote the sup norm of the operator A — that is, the

maximum modulus of an eigenvalue of A. We then have

‖ |Et〉 ‖=‖
(

Ũ t − U t

)

|ϕt−1〉 ‖≤‖ Ũ t − U t ‖sup (6.67)

(since |ϕt−1〉 is normalized). Now suppose that, for each value of t, the error
in our quantum gate is bounded by

‖ Ũ t − U t ‖sup< ε. (6.68)

Then after T quantum gates are applied, we have

‖ |ϕ̃T 〉 − |ϕT 〉 ‖< Tε; (6.69)

in this sense, the accumulated error in the state grows linearly with the length
of the computation.

The distance bounded in eq. (6.68) can equivalently be expressed as ‖
W t−1 ‖sup, where W t = Ũ tU

†
t . Since W t is unitary, each of its eigenvalues

is a phase eiθ, and the corresponding eigenvalue of W t − 1 has modulus

|eiθ − 1| = (2 − 2 cos θ)1/2, (6.70)

so that eq. (6.68) is the requirement that each eigenvalue satisfies

cos θ > 1 − ε2/2, (6.71)
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(or |θ| <∼ε, for ε small). The origin of eq. (6.69) is clear. In each time step,
|ϕ̃〉 rotates relative to |ϕ〉 by (at worst) an angle of order ε, and the distance
between the vectors increases by at most of order ε.

How much accuracy is good enough? In the final step of our computation,
we perform an orthogonal measurement, and the probability of outcome a,
in the ideal case, is

P (a) = |〈a|ϕT 〉|2. (6.72)

Because of the errors, the actual probability is

P̃ (a) = |〈a|ϕ̃T 〉|2. (6.73)

If the actual vector is close to the ideal vector, then the probability distribu-
tions are close, too. If we sum over an orthonormal basis {|a〉}, we have

∑

a

|P̃ (a) − P (a)| ≤ 2 ‖ |ϕ̃T 〉 − |ϕT 〉 ‖, (6.74)

as you will show in a homework exercise. Therefore, if we keep Tε fixed (and
small) as T gets large, the error in the probability distribution also remains
fixed. In particular, if we have designed a quantum algorithm that solves a
decision problem correctly with probability greater 1

2
+ δ (in the ideal case),

then we can achieve success probability greater than 1
2

with our noisy gates,
if we can perform the gates with an accuracy Tε < O(δ). A quantum circuit
family in the BQP class can really solve hard problems, as long as we can
improve the accuracy of the gates linearly with the computation size T .

6.2.2 BQP ⊆ PSPACE

Of course a classical computer can simulate any quantum circuit. But how
much memory does the classical computer require? Naively, since the simu-
lation of an n-qubit circuit involves manipulating matrices of size 2n, it may
seem that an amount of memory space exponential in n is needed. But we
will now show that the simulation can be done to acceptable accuracy (albeit
very slowly!) in polynomial space. This means that the quantum complexity
class BQP is contained in the class PSPACE of problems that can be solved
with polynomial space.

The object of the classical simulation is to compute the probability for
each possible outcome a of the final measurement

Prob(a) = |〈a|UT |0〉|2, (6.75)



6.2. QUANTUM CIRCUITS 27

where

UT = UT UT−1 . . .U2U 1, (6.76)

is a product of T quantum gates. Each U t, acting on the n qubits, can be
represented by a 2n×2n unitary matrix, characterized by the complex matrix
elements

〈y|U t|x〉, (6.77)

where x, y ∈ {0, 1 . . . , 2n − 1}. Writing out the matrix multiplication explic-
itly, we have

〈a|UT |0〉 =
∑

{xt}
〈a|UT |xT−1〉〈xT−1|UT−1|xT−2〉 . . .

. . . 〈x2|U2|x1〉〈x1|U1|0〉. (6.78)

Eq. (6.78) is a sort of “path integral” representation of the quantum compu-
tation – the probability amplitude for the final outcome a is expressed as a
coherent sum of amplitudes for each of a vast number (2n(T−1)) of possible
computational paths that begin at 0 and terminate at a after T steps.

Our classical simulator is to add up the 2n(T−1) complex numbers in
eq. (6.78) to compute 〈a|UT |0〉. The first problem we face is that finite size
classical circuits do integer arithmetic, while the matrix elements 〈y|U t|x〉
need not be rational numbers. The classical simulator must therefore settle
for an approximate calculation to reasonable accuracy. Each term in the sum
is a product of T complex factors, and there are 2n(T−1) terms in the sum.
The accumulated errors are sure to be small if we express the matrix elements
to m bits of accuracy, with m large compared to n(T − 1). Therefore, we
can replace each complex matrix element by pairs of signed integers, taking
values in {0, 1, 2, . . . , 2m−1}. These integers give the binary expansion of the
real and imaginary part of the matrix element, expressed to precision 2−m.

Our simulator will need to compute each term in the sum eq. (6.78)
and accumulate a total of all the terms. But each addition requires only a
modest amount of scratch space, and furthermore, since only the accumulated
subtotal need be stored for the next addition, not much space is needed to
sum all the terms, even though there are exponentially many.

So it only remains to consider the evaluation of a typical term in the
sum, a product of T matrix elements. We will require a classical circuit that
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evaluates

〈y|U t|x〉; (6.79)

this circuit accepts the 2n bit input (x, y), and outputs the 2m-bit value of
the (complex) matrix element. Given a circuit that performs this function, it
will be easy to build a circuit that multiplies the complex numbers together
without using much space.

Finally, at this point, we appeal to the properties we have demanded of
our quantum gate set — the gates from a discrete set, and each gate acts on
a bounded number of qubits. Because there are a fixed (and finite) number
of gates, there are only a fixed number of gate subroutines that our simulator
needs to be able to call. And because the gate acts on only a few qubits,
nearly all of its matrix elements vanish (when n is large), and the value
〈y|U |x〉 can be determined (to the required accuracy) by a simple circuit
requiring little memory.

For example, in the case of a single-qubit gate acting on the first qubit,
we have

〈y1y2 . . . yn|U |x1x2 . . . xn〉 = 0 if x2x3 . . . xn 6= y2y3 . . . yn.
(6.80)

A simple circuit can compare x2 with y2, x3 with y3, etc., and output zero if
the equality is not satisfied. In the event of equality, the circuit outputs one
of the four complex numbers

〈y1|U |x1〉, (6.81)

to m bits of precision. A simple circuit can encode the 8m bits of this
2×2 complex-valued matrix. Similarly, a simple circuit, requiring only space
polynomial in n and m, can evaluate the matrix elements of any gate of fixed
size.

We conclude that a classical computer with space bounded above by
poly(n) can simulate an n-qubit universal quantum computer, and therefore
that BQP ⊆ PSPACE. Of course, it is also evident that the simulation we
have described requires exponential time, because we need to evaluate the
sum of 2n(T−1) complex numbers. (Actually, most of the terms vanish, but
there are still an exponentially large number of nonvanishing terms.)
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6.2.3 Universal quantum gates

We must address one more fundamental question about quantum computa-
tion; how do we construct an adequate set of quantum gates? In other words,
what constitutes a universal quantum computer?

We will find a pleasing answer. Any generic two-qubit gate suffices for
universal quantum computation. That is, for all but a set of measure zero
of 4 × 4 unitary matrices, if we can apply that matrix to any pair of qubits,
then we can construct an n-qubit circuit that computes a transformation
that comes as close as we please to any element of U(2n).

Mathematically, this is not a particularly deep result, but physically it
is very interesting. It means that, in the quantum world, as long as we can
devise a generic interaction between two qubits, and we can implement that
interaction accurately between any two qubits, we can compute anything,
no matter how complex. Nontrivial computation is ubiquitous in quantum
theory.

Aside from this general result, it is also of some interest to exhibit partic-
ular universal gate sets that might be particularly easy to implement physi-
cally. We will discuss a few examples.

There are a few basic elements that enter the analysis of any universal
quantum gate set.

(1) Powers of a generic gate

Consider a “generic” k-qubit gate. This is a 2k × 2k unitary matrix
U with eigenvalues eiθ1 , eiθ2, . . . eiθ

2k . For all but a set of measure zero
of such matrices, each θi is an irrational multiple of π, and all the θi’s
are incommensurate (each θi/θj is also irrational). The positive integer
power Un of U has eigenvalues

einθ1 , einθ2 , . . . , einθ
2k . (6.82)

Each such list of eigenvalues defines a point in a 2k-dimensional torus
(the product of 2k circles). As n ranges over positive integer values,
these points densely fill the whole torus, if U is generic. If U = eiA,
positive integer powers of U come as close as we please to U(λ) = eiλA,
for any real λ. We say that any U(λ) is reachable by positive integer
powers of U .

(2) Switching the leads



30 CHAPTER 6. QUANTUM COMPUTATION

There are a few (classical) transformations that we can implement just
by switching the labels on k qubits, or in other words, by applying the
gate U to the qubits in a different order. Of the (2k)! permutations
of the length-k strings, k! can be realized by swapping qubits. If a
gate applied to k qubits with a standard ordering is U , and P is a
permutation implemented by swapping qubits, then we can construct
the gate

U ′ = PUP−1, (6.83)

just by switching the leads on the gate. For example, swapping two
qubits implements the transposition

P : |01〉 ↔ |10〉, (6.84)

or

P =











1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1











, (6.85)

acting on basis {|00〉, |01〉, |10〉, |11〉}. By switching leads, we obtain a
gate

U ′ = P U P−1

We can also construct any positive integer power of U ′, (PUP−1)n =
PUnP−1.

(3) Completing the Lie algebra

We already remarked that if U = eiA is generic, then powers of U are
dense in the torus {eiλA}. We can further argue that if U = eiA and
U ′ = eiB are generic gates, we can compose them to come arbitrarily
close to

ei(αA+βB) or e−γ[A,B], (6.86)
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for any real α, β, γ. Thus, the “reachable” transformations have a
closed Lie algebra. We say that U = eiA is generated by A; then if
A and B are both generic generators of reachable transformations, so
are real linear combinations of A and B, and (i times) the commutator
of A and B.

We first note that

lim
n→∞(eiαA/neiβB/n)n = lim

n→∞

(

1 +
i

n
(αA + βB)

)n

= ei(αA+βB). (6.87)

Therefore, any ei(αA+βB) is reachable if each eiαA/n and eiβB/n is. Fur-
thermore

lim
n→∞

(

eiA/
√

neiB/
√

ne−iA/
√

ne−iB/
√

n
)n

= lim
n→∞

[

1 − 1

n
(AB − BA)

]n

= e−[A,B], (6.88)

so e−[A,B] is also reachable.

By invoking the observations (1), (2), and (3) above, we will be able to
show that a generic two-qubit gate is universal.

Deutsch gate. It was David Deutsch (1989) who first pointed out the
existence of a universal quantum gate. Deutsch’s three-bit universal gate
is a quantum cousin of the Toffoli gate. It is the controlled-controlled-R
transformation

s

s

R

that applies R to the third qubit if the first two qubits have the value 1;
otherwise it acts trivially. Here

R = −iRx(θ) = (−i) exp

(

i
θ

2
σx

)

= (−i)
(

cos
θ

2
+ iσx sin

θ

2

)

(6.89)

is, up to a phase, a rotation by θ about the x-axis, where θ is a particular
angle incommensurate with π.
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The nth power of the Deutsch gate is the controlled-controlled-Rn. In
particular, R4 = Rx(4θ), so that all one-qubit transformations generated by
σx are reachable by integer powers of R. Furthermore the (4n+ 1)st power
is

(−i)
[

cos
(4n + 1)θ

2
+ iσx sin

(4n + 1)θ

2

]

, (6.90)

which comes as close as we please to σx. Therefore, the Toffoli gate is
reachable with integer powers of the Deutsch gate, and the Deutsch gate is
universal for classical computation.

Acting on the three-qubit computational basis

{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}, (6.91)

the generator of the Deutsch gate transposes the last two elements

|110〉 ↔ |111〉. (6.92)

We denote this 8 × 8 matrix as

(σx)67 =











0 0

0 σx











. (6.93)

With Toffoli gates, we can perform any permutation of these eight elements,
in particular

P = (6m)(7n), (6.94)

for any m and n. So we can also reach any transformation generated by

P (σx)67P = (σx)mn. (6.95)

Furthermore,

[(σx)56, (σx)67] =













0 1 0
1 0 0
0 0 0





 ,







0 0 0
0 0 1
0 1 0











 =







0 0 1
0 0 0
−1 0 0





 = i(σy)57,
(6.96)
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and similarly, we can reach any unitary generated by (σy)mn. Finally

[(σx)mn, (σy)mn] = i(σz)mn, (6.97)

So we can reach any transformation generated by a linear combination of the
(σx,y,z)mn’s. These span the whole SU(8) Lie Algebra, so we can generate
any three-qubit unitary (aside from an irrelevant overall phase).

Now recall that we have already found that we can construct the n-bit
Toffoli gate by composing three-bit Toffoli gates. The circuit

|0〉

s

s

g s

s

R

s

s

g

uses one scratch bit to construct a four-bit Deutsch gate ((controlled)3-R)
from the three-bit Deutsch gate and two three-bit Toffoli gates, and a similar
circuit constructs the n-bit Deutsch gate from a three-bit Deutsch gate and
two (n − 1)-bit Toffoli gates. Once we have an n-bit Deutsch gate, and
universal classical computation, exactly the same argument as above shows
that we can reach any transformation in SU(2n).

Universal two-qubit gates. For reversible classical computation, we
saw that three-bit gates are needed for universality. But in quantum compu-
tation, two-bit gates turn out to be adequate. Since we already know that the
Deutsch gate is universal, we can establish this by showing that the Deutsch
gate can be constructed by composing two-qubit gates.

In fact, if

U

s
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denotes the controlled-U gate (the 2 × 2 unitary U is applied to the second
qubit if the first qubit is 1; otherwise the gate acts trivially) then a controlled-
controlled-U2 gate is obtained from the circuit

x

y

x

y

x

y

s

s

U2

= s

U

s

g s

U †

s

g

s

U

the power of U applied to the third qubit is

y − (x⊕ y) + x = x+ y − (x+ y − 2xy) = 2xy. (6.98)

Therefore, we can construct Deutsch’s gate from the controlled-U , controlled
U−1 and controlled-NOT gates, where

U 2 = −iRx(θ); (6.99)

we may choose

U = e−i π
4 Rx

(

θ

2

)

. (6.100)

Positive powers of U came as close as we please to σx and U−1, so from
the controlled-U alone we can construct the Deutsch gate. Therefore, the
controlled-

(

e−i π
4 Rx

(

θ
2

))

is itself a universal gate, for θ/π irrational.

(Note that the above construction shows that, while we cannot construct
the Toffoli gate from two-bit reversible classical gates, we can construct it
from a controlled “square root of NOT” — a controlled-U with U 2 = σx.)

Generic two-bit gates. Now we have found particular two-bit gates
(controlled rotations) that are universal gates. Therefore, for universality, it
is surely sufficient if we can construct transformations that are dense in the
U(4) acting on a pair of qubits.

In fact, though, any generic two-qubit gate is sufficient to generate all of

U(4). As we have seen, if eiA is a generic element of U(4), we can reach
any transformation generated by A. Furthermore, we can reach any trans-
formations generated by an element of the minimal Lie algebra containing A

and

B = PAP−1 (6.101)
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where P is the permutation (|01〉 ↔ |10〉) obtained by switching the leads.
Now consider a general A, (expanded in terms of a basis for the Lie

algebra of U(4)), and consider a particular scheme for constructing 16 ele-
ments of the algebra by successive commutations, starting from A and B.
The elements so constructed are linearly independent (and it follows that
any transformation in U(4) is reachable) if the determinant of a particular
16× 16 matrix vanishes. Unless this vanishes identically, its zeros occur only
on a submanifold of vanishing measure. But in fact, we can choose, say

A = (αI + βσx + γσy)23, (6.102)

(for incommensurate α, β, γ), and show by explicit computation that the
entire 16-dimension Lie Algebra is actually generated by successive commu-
tations, starting with A and B. Hence we conclude that failure to generate
the entire U(4) algebra is nongeneric, and find that almost all two-qubit gates
are universal.

Other adequate sets of gates. One can also see that universal quan-
tum computation can be realized with a gate set consisting of classical multi-
qubit gates and quantum single-qubit gates. For example, we can see that
the XOR gate, combined with one-qubit gates, form a universal set. Consider
the circuit

x x

A g B g C

s s

which applies ABC to the second qubit if x = 0, and AσxBσxC to the
second qubit if x = 1. If we can find A,B,C such that

ABC = 1

AσxBσxC = U , (6.103)

then this circuit functions as a controlled-U gate. In fact unitary 2 × 2
A,B,C with this property exist for any unitary U with determinant one
(as you’ll show in an exercise). Therefore, the XOR plus arbitrary one-qubit
transformations form a universal set. Of course, two generic (noncommuting)
one-qubit transformations are sufficient to reach all. In fact, with an XOR



36 CHAPTER 6. QUANTUM COMPUTATION

and a single generic one-qubit rotation, we can construct a second one-qubit
rotation that does not commute with the first. Hence, an XOR together with
just one generic single-qubit gate constitutes a universal gate set.

If we are able to perform a Toffoli gate, then even certain nongeneric
one-qubit transformations suffice for universal computation. For example
(another exercise) the Toffoli gate, together with π/2 rotations about the x
and z axes, are a universal set.

Precision. Our discussion of universality has focused on reachability
without any regard for complexity. We have only established that we can
construct a quantum circuit that comes as close as we please to a desired
element of U(2n), and we have not considered the size of the circuit that we
need. But from the perspective of quantum complexity theory, universality is
quite significant because it implies that one quantum computer can simulate
another to reasonable accuracy without an unreasonable slowdown.

Actually, we have not been very precise up until now about what it means
for one unitary transformation to be “close” to another; we should define a
topology. One possibility is to use the sup norm as in our previous discussion
of accuracy — the distance between matrices U and W is then ‖ U−W ‖sup.
Another natural topology is associated with the inner product

〈W |U 〉 ≡ tr W †U (6.104)

(if U and W are N × N matrices, this is just the usual inner product on
CN2

, where we regard U ij as a vector with N2 components). Then we may
define the distance squared between matrices as

‖ U − W ‖2≡ 〈U − W |U − W 〉. (6.105)

For the purpose of analyzing complexity, just about any reasonable topology
will do.

The crucial point is that given any universal gate set, we can reach within
distance ε of any desired unitary transformation that acts on a fixed num-
ber of qubits, using a quantum circuit whose size is bounded above by a
polynomial in ε−1. Therefore, one universal quantum computer can simulate
another, to accuracy ε, with a slowdown no worse than a factor that is poly-
nomial in ε−1. Now we have already seen that to have a high probability of
getting the right answer when we perform a quantum circuit of size T , we
should implement each quantum gate to an accuracy that scales like T−1.
Therefore, if you have a quantum circuit family of polynomial size that runs
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on your quantum computer, I can devise a polynomial size circuit family that
runs on my machine, and that emulates your machine to acceptable accuracy.

Why can a poly(ε−1)-size circuit reach a given k-qubit U to within dis-
tance ε? We know for example that the positive integer powers of a generic

k-qubit eiA are dense in the 2k-torus {eiλA}. The region of the torus within
distance ε of any given point has volume of order ε2k

, so (asymptotically

for ε sufficiently small) we can reach any {eiλA} to within distance ε with
(

eiλA
)n

, for some integer n of order ε−2k

. We also know that we can ob-

tain transformations {eiAa} where the Aa’s span the full U(2k) Lie algebra,
using circuits of fixed size (independent of ε). We may then approach any
exp (i

∑

a αaAa) as in eq. (6.87), also with polynomial convergence.
In principle, we should be able to do much better, reaching a desired

k-qubit unitary within distance ε using just poly(log(ε−1)) quantum gates.
Since the number of size-T circuits that we can construct acting on k qubits
is exponential in T , and the circuits fill U(2k) roughly uniformly, there should
be a size-T circuit reaching within a distance of order e−T of any point in
U(2k). However, it might be a computationally hard problem classically
to work out the circuit that comes exponentially close to the unitary we are
trying to reach. Therefore, it would be dishonest to rely on this more efficient
construction in an asymptotic analysis of quantum complexity.

6.3 Some Quantum Algorithms

While we are not yet able to show that BPP 6= BQP , there are three ap-
proaches that we can pursue to study the differences between the capabilities
of classical and quantum computers:

(1) Nonexponential speedup. We can find quantum algorithms that are
demonstrably faster than the best classical algorithm, but not expo-
nentially faster. These algorithms shed no light on the conventional
classification of complexity. But they do demonstrate a type of separa-
tion between tasks that classical and quantum computers can perform.
Example: Grover’s quantum speedup of the search of an unsorted data
base.

(2) “Relativized” exponential speedup. We can consider the problem of
analyzing the contents of a “quantum black box.” The box performs an
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a priori unknown) unitary transformation. We can prepare an input
for the box, and we can measure its output; our task is to find out
what the box does. It is possible to prove that quantum black boxes
(computer scientists call them oracles7) exist with this property: By
feeding quantum superpositions to the box, we can learn what is inside
with an exponential speedup, compared to how long it would take if we
were only allowed classical inputs. A computer scientist would say that
BPP 6= BQP “relative to the oracle.” Example: Simon’s exponential
quantum speedup for finding the period of a 2 to 1 function.

(3) Exponential speedup for “apparently” hard problems. We can
exhibit a quantum algorithm that solves a problem in polynomial time,
where the problem appears to be hard classically, so that it is strongly
suspected (though not proved) that the problem is not in BPP . Ex-
ample: Shor’s factoring algorithm.

Deutsch’s problem. We will discuss examples from all three approaches.
But first, we’ll warm up by recalling an example of a simple quantum algo-
rithm that was previously discussed in §1.5: Deutsch’s algorithm for dis-
tinguishing between constant and balanced functions f : {0, 1} → {0, 1}.
We are presented with a quantum black box that computes f(x); that is, it
enacts the two-qubit unitary transformation

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉, (6.106)

which flips the second qubit iff f(first qubit) = 1. Our assignment is to
determine whether f(0) = f(1). If we are restricted to the “classical” inputs
|0〉 and |1〉, we need to access the box twice (x = 0 and x = 1) to get the
answer. But if we are allowed to input a coherent superposition of these
“classical” states, then once is enough.

The quantum circuit that solves the problem (discussed in §1.5) is:

|0〉

|1〉

MeasureH

H Uf

Hs

7The term “oracle” signifies that the box responds to a query immediately; that is, the
time it takes the box to operate is not included in the complexity analysis.
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Here H denotes the Hadamard transform

H : |x〉 → 1√
2

∑

y

(−1)xy|y〉, (6.107)

or

H : |0〉 → 1√
2
(|0〉 + |1〉)

|1〉 → 1√
2
(|0〉 − |1〉); (6.108)

that is, H is the 2 × 2 matrix

H :

( 1√
2

1√
2

1√
2

− 1√
2

)

. (6.109)

The circuit takes the input |0〉|1〉 to

|0〉|1〉 →1

2
(|0〉 + |1〉)(|0〉 − |1〉)

→1

2

(

(−1)f(0)|0〉 + (−1)f(1)|1〉
)

(|0〉 − |1〉)

→1

2





(

(−1)f(0) + (−1)f(1)
)

|0〉

+
(

(−1)f(0) − (−1)f(1)
)

|1〉




1√
2
(|0〉 − |1〉).

(6.110)

Then when we measure the first qubit, we find the outcome |0〉 with prob-
ability one if f(0) = f(1) (constant function) and the outcome |1〉 with
probability one if f(0) 6= f(1) (balanced function).

A quantum computer enjoys an advantage over a classical computer be-
cause it can invoke quantum parallelism. Because we input a superposition
of |0〉 and |1〉, the output is sensitive to both the values of f(0) and f(1),
even though we ran the box just once.

Deutsch–Jozsa problem. Now we’ll consider some generalizations of
Deutsch’s problem. We will continue to assume that we are to analyze a
quantum black box (“quantum oracle”). But in the hope of learning some-
thing about complexity, we will imagine that we have a family of black boxes,
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with variable input size. We are interested in how the time needed to find
out what is inside the box scales with the size of the input (where “time” is
measured by how many times we query the box).

In the Deutsch–Jozsa problem, we are presented with a quantum black
box that computes a function taking n bits to 1,

f : {0, 1}n → {0, 1}, (6.111)

and we have it on good authority that f is either constant (f(x) = c for all
x) or balanced (f(x) = 0 for exactly 1

2
of the possible input values). We are

to solve the decision problem: Is f constant or balanced?
In fact, we can solve this problem, too, accessing the box only once, using

the same circuit as for Deutsch’s problem (but with x expanded from one
bit to n bits). We note that if we apply n Hadamard gates in parallel to
n-qubits.

H(n) = H ⊗ H ⊗ . . .⊗ H , (6.112)

then the n-qubit state transforms as

H(n) : |x〉 →
n
∏

i=1





1√
2

∑

yi={0,1}
(−1)xiyi |yi〉



 ≡ 1

2n/2

2n−1
∑

y=0

(−1)x·y|y〉,
(6.113)

where x, y represent n-bit strings, and x · y denotes the bitwise AND (or mod
2 scalar product)

x · y = (x1 ∧ y1) ⊕ (x2 ∧ y2) ⊕ . . .⊕ (xn ∧ yn). (6.114)

Acting on the input (|0〉)n|1〉, the action of the circuit is

(|0〉)n|1〉 →
(

1

2n/2

2n−1
∑

x=0

|x〉
)

1√
2
(|0〉 − |1〉)

→
(

1

2n/2

2n−1
∑

x=0

(−1)f(x)|x〉
)

1√
2
(|0〉 − |1〉)

→




1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)f(x)(−1)x·y|y〉




1√
2
(|0〉 − |1〉)

(6.115)

Now let us evaluate the sum

1

2n

2n−1
∑

x=0

(−1)f(x)(−1)x·y. (6.116)
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If f is a constant function, the sum is

(−1)f(x)

(

1

2n

2n−1
∑

x=0

(−1)x·y
)

= (−1)f(x)δy,0; (6.117)

it vanishes unless y = 0. Hence, when we measure the n-bit register, we
obtain the result |y = 0〉 ≡ (|0〉)n with probability one. But if the function
is balanced, then for y = 0, the sum becomes

1

2n

2n−1

∑

x=0

(−1)f(x) = 0, (6.118)

(because half of the terms are (+1) and half are (−1)). Therefore, the prob-
ability of obtaining the measurement outcome |y = 0〉 is zero.

We conclude that one query of the quantum oracle suffices to distinguish
constant and balanced function with 100% confidence. The measurement
result y = 0 means constant, any other result means balanced.

So quantum computation solves this problem neatly, but is the problem
really hard classically? If we are restricted to classical input states |x〉, we
can query the oracle repeatedly, choosing the input x at random (without
replacement) each time. Once we obtain distinct outputs for two different
queries, we have determined that the function is balanced (not constant).
But if the function is in fact constant, we will not be certain it is constant
until we have submitted 2n−1+1 queries and have obtained the same response
every time. In contrast, the quantum computation gives a definite response
in only one go. So in this sense (if we demand absolute certainty) the classical
calculation requires a number of queries exponential in n, while the quantum
computation does not, and we might therefore claim an exponential quantum
speedup.

But perhaps it is not reasonable to demand absolute certainty of the
classical computation (particularly since any real quantum computer will be
susceptible to errors, so that the quantum computer will also be unable to
attain absolute certainty.) Suppose we are satisfied to guess balanced or
constant, with a probability of success

P (success) > 1 − ε. (6.119)

If the function is actually balanced, then if we make k queries, the probability
of getting the same response every time is p = 2−(k−1). If after receiving the
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same response k consecutive times we guess that the function is balanced,
then a quick Bayesian analysis shows that the probability that our guess is
wrong is 1

2k−1+1
(assuming that balanced and constant are a priori equally

probable). So if we guess after k queries, the probability of a wrong guess is

1 − P (success) =
1

2k−1(2k−1 + 1)
. (6.120)

Therefore, we can achieve success probability 1−ε for ε−1 = 2k−1(2k−1 +1) or

k ∼ 1
2
log

(

1
ε

)

. Since we can reach an exponentially good success probability
with a polynomial number of trials, it is not really fair to say that the problem
is hard.

Bernstein–Vazirani problem. Exactly the same circuit can be used
to solve another variation on the Deutsch–Jozsa problem. Let’s suppose that
our quantum black box computes one of the functions fa, where

fa(x) = a · x, (6.121)

and a is an n-bit string. Our job is to determine a.
The quantum algorithm can solve this problem with certainty, given just

one (n-qubit) quantum query. For this particular function, the quantum
state in eq. (6.115) becomes

1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)a·x(−1)x·y|y〉. (6.122)

But in fact

1

2n

2n−1
∑

x=0

(−1)a·x(−1)x·y = δa,y, (6.123)

so this state is |a〉. We can execute the circuit once and measure the n-qubit
register, finding the n-bit string a with probability one.

If only classical queries are allowed, we acquire only one bit of information
from each query, and it takes n queries to determine the value of a. Therefore,
we have a clear separation between the quantum and classical difficulty of
the problem. Even so, this example does not probe the relation of BPP
to BQP , because the classical problem is not hard. The number of queries
required classically is only linear in the input size, not exponential.
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Simon’s problem. Bernstein and Vazirani managed to formulate a vari-
ation on the above problem that is hard classically, and so establish for the
first time a “relativized” separation between quantum and classical complex-
ity. We will find it more instructive to consider a simpler example proposed
somewhat later by Daniel Simon.

Once again we are presented with a quantum black box, and this time we
are assured that the box computes a function

f : {0, 1}n → {0, 1}n, (6.124)

that is 2-to-1. Furthermore, the function has a “period” given by the n-bit
string a; that is

f(x) = f(y) iff y = x⊕ a, (6.125)

where here ⊕ denotes the bitwise XOR operation. (So a is the period if we
regard x as taking values in (Z2)

n rather than Z2n.) This is all we know
about f . Our job is to determine the value of a.

Classically this problem is hard. We need to query the oracle an exponen-
tially large number of times to have any reasonable probability of finding a.
We don’t learn anything until we are fortunate enough to choose two queries
x and y that happen to satisfy x ⊕ y = a. Suppose, for example, that we
choose 2n/4 queries. The number of pairs of queries is less than (2n/4)2, and
for each pair {x, y}, the probability that x ⊕ y = a is 2−n. Therefore, the
probability of successfully finding a is less than

2−n(2n/4)2 = 2−n/2; (6.126)

even with exponentially many queries, the success probability is exponentially
small.

If we wish, we can frame the question as a decision problem: Either f
is a 1-1 function, or it is 2-to-1 with some randomly chosen period a, each
occurring with an a priori probability 1

2
. We are to determine whether the

function is 1-to-1 or 2-to-1. Then, after 2n/4 classical queries, our probability
of making a correct guess is

P (success) <
1

2
+

1

2n/2
, (6.127)

which does not remain bounded away from 1
2

as n gets large.
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But with quantum queries the problem is easy! The circuit we use is
essentially the same as above, but now both registers are expanded to n
qubits. We prepare the equally weighted superposition of all n-bit strings
(by acting on |0〉 with H(n)), and then we query the oracle:

Uf :

(

2n−1
∑

x=0

|x〉
)

|0〉 →
2n−1
∑

x=0

|x〉|f(x)〉. (6.128)

Now we measure the second register. (This step is not actually necessary,
but I include it here for the sake of pedagogical clarity.) The measurement
outcome is selected at random from the 2n−1 possible values of f(x), each
occurring equiprobably. Suppose the outcome is f(x0). Then because both
x0 and x0 ⊕ a, and only these values, are mapped by f to f(x0), we have
prepared the state

1√
2
(|x0〉 + |x0 ⊕ a〉) (6.129)

in the first register.
Now we want to extract some information about a. Clearly it would

do us no good to measure the register (in the computational basis) at this
point. We would obtain either the outcome x0 or x0 ⊕a, each occurring with
probability 1

2
, but neither outcome would reveal anything about the value of

a.
But suppose we apply the Hadamard transform H(n) to the register before

we measure:

H(n) :
1√
2
(|x0〉 + |x0 + a〉)

→ 1

2(n+1)/2

2n−1
∑

y=0

[

(−1)x0·y + (−1)(x0⊕a)·y
]

|y〉

=
1

2(n−1)/2

∑

a·y=0

(−1)x0·y|y〉. (6.130)

If a · y = 1, then the terms in the coefficient of |y〉 interfere destructively.
Hence only states |y〉 with a · y = 0 survive in the sum over y. The measure-
ment outcome, then, is selected at random from all possible values of y such
that a · y = 0, each occurring with probability 2−(n−1).
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We run this algorithm repeatedly, each time obtaining another value of y
satisfying y · a = 0. Once we have found n such linearly independent values
{y1, y2, y3 . . . yn} (that is, linearly independent over (Z2)

n), we can solve the
equations

y1 · a = 0

y2 · a = 0

...

yn · a = 0, (6.131)

to determine a unique value of a, and our problem is solved. It is easy to
see that with O(n) repetitions, we can attain a success probability that is
exponentially close to 1.

So we finally have found an example where, given a particular type of
quantum oracle, we can solve a problem in polynomial time by exploiting
quantum superpositions, while exponential time is required if we are limited
to classical queries. As a computer scientist might put it:

There exists an oracle relative to which BQP 6= BPP .

Note that whenever we compare classical and quantum complexity rela-
tive to an oracle, we are considering a quantum oracle (queries and replies
are states in Hilbert space), but with a preferred orthonormal basis. If we
submit a classical query (an element of the preferred basis) we always receive
a classical response (another basis element). The issue is whether we can
achieve a significant speedup by choosing more general quantum queries.

6.4 Quantum Database Search

The next algorithm we will study also exhibits, like Simon’s algorithm, a
speedup with respect to what can be achieved with a classical algorithm. But
in this case the speedup is merely quadratic (the quantum time scales like the
square root of the classical time), in contrast to the exponential speedup in
the solution to Simon’s problem. Nevertheless, the result (discovered by Lov
Grover) is extremely interesting, because of the broad utility of the algorithm.
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Heuristically, the problem we will address is: we are confronted by a
very large unsorted database containing N � 1 items, and we are to lo-
cate one particular item, to find a needle in the haystack. Mathemat-
ically, the database is represented by a table, or a function f(x), with
x ∈ {0, 1, 2, . . . , N − 1}. We have been assured that the entry a occurs
in the table exactly once; that is, that f(x) = a for only one value of x. The
problem is, given a, to find this value of x.

If the database has been properly sorted, searching for x is easy. Perhaps
someone has been kind enough to list the values of a in ascending order.
Then we can find x by looking up only log2N entries in the table. Let’s
suppose N ≡ 2n is a power of 2. First we look up f(x) for x = 2n−1 − 1, and
check if f(x) is greater than a. If so, we next look up f at x = 2n−2 − 1, etc.
With each table lookup, we reduce the number of candidate values of x by a
factor of 2, so that n lookups suffice to sift through all 2n sorted items. You
can use this algorithm to look up a number in the Los Angeles phone book,
because the names are listed in lexicographic order.

But now suppose that you know someone’s phone number, and you want
to look up her name. Unless you are fortunate enough to have access to
a reverse directory, this is a tedious procedure. Chances are you will need
to check quite a few entries in the phone book before you come across her
number.

In fact, if the N numbers are listed in a random order, you will need to
look up 1

2
N numbers before the probability is P = 1

2
that you have found

her number (and hence her name). What Grover discovered is that, if you
have a quantum phone book, you can learn her name with high probability
by consulting the phone book only about

√
N times.

This problem, too, can be formulated as an oracle or “black box” problem.
In this case, the oracle is the phone book, or lookup table. We can input
a name (a value of x) and the oracle outputs either 0, if f(x) 6= a, or 1, if
f(x) = a. Our task is to find, as quickly as possible, the value of x with

f(x) = a. (6.132)

Why is this problem important? You may have never tried to find in the
phone book the name that matches a given number, but if it weren’t so hard
you might try it more often! More broadly, a rapid method for searching an
unsorted database could be invoked to solve any problem in NP . Our oracle
could be a subroutine that interrogates every potential “witness” y that could
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potentially testify to certify a solution to the problem. For example, if we
are confronted by a graph and need to know if it admits a Hamiltonian path,
we could submit a path to the “oracle,” and it could quickly answer whether
the path is Hamiltonian or not. If we knew a fast way to query the oracle
about all the possible paths, we would be able to find a Hamiltonian path
efficiently (if one exists).

6.4.1 The oracle

So “oracle” could be shorthand for a subroutine that quickly evaluates a func-
tion to check a proposed solution to a decision problem, but let us continue
to regard the oracle abstractly, as a black box. The oracle “knows” that of
the 2n possible strings of length n, one (the “marked” string or “solution” ω)
is special. We submit a query x to the oracle, and it tells us whether x = ω
or not. It returns, in other words, the value of a function fω(x), with

fω(x) = 0, x 6= ω,

fω(x) = 1, x = ω. (6.133)

But furthermore, it is a quantum oracle, so it can respond to queries that are
superpositions of strings. The oracle is a quantum black box that implements
the unitary transformation

U fω : |x〉|y〉 → |x〉|y ⊕ fω(x)〉, (6.134)

where |x〉 is an n-qubit state, and |y〉 is a single-qubit state.
As we have previously seen in other contexts, we may choose the state of

the single-qubit register to be 1√
2
(|0〉 − |1〉), so that the oracle acts as

U fω : |x〉 1√
2
(|0〉 − |1〉)

→ (−1)fω(x)|x〉 1√
2
(|0〉 − |1〉). (6.135)

We may now ignore the second register, and obtain

Uω : |x〉 → (−1)fω(x)|x〉, (6.136)

or

Uω = 1 − 2|ω〉〈ω|. (6.137)
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The oracle flips the sign of the state |ω〉, but acts trivially on any state or-
thogonal to |ω〉. This transformation has a simple geometrical interpretation.
Acting on any vector in the 2n-dimensional Hilbert space, Uω reflects the vec-
tor about the hyperplane orthogonal to |ω〉 (it preserves the component in
the hyperplane, and flips the component along |ω〉).

We know that the oracle performs this reflection for some particular com-
putational basis state |ω〉, but we know nothing a priori about the value of
the string ω. Our job is to determine ω, with high probability, consulting
the oracle a minimal number of times.

6.4.2 The Grover iteration

As a first step, we prepare the state

|s〉 =
1√
N

(

N−1
∑

x=0

|x〉
)

, (6.138)

The equally weighted superposition of all computational basis states – this
can be done easily by applying the Hadamard transformation to each qubit
of the initial state |x = 0〉. Although we do not know the value of ω, we do
know that |ω〉 is a computational basis state, so that

|〈ω|s〉| =
1√
N
, (6.139)

irrespective of the value of ω. Were we to measure the state |s〉 by project-
ing onto the computational basis, the probability that we would “find” the
marked state |ω〉 is only 1

N
. But following Grover, we can repeatedly iterate

a transformation that enhances the probability amplitude of the unknown
state |ω〉 that we are seeking, while suppressing the amplitude of all of the
undesirable states |x 6= ω〉. We construct this Grover iteration by combining
the unknown reflection Uω performed by the oracle with a known reflection
that we can perform ourselves. This known reflection is

U s = 2|s〉〈s| − 1 , (6.140)

which preserves |s〉, but flips the sign of any vector orthogonal to |s〉. Geo-
metrically, acting on an arbitrary vector, it preserves the component along
|s〉 and flips the component in the hyperplane orthogonal to |s〉.
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We’ll return below to the issue of constructing a quantum circuit that
implements U s; for now let’s just assume that we can perform U s efficiently.

One Grover iteration is the unitary transformation

Rgrov = U sUω, (6.141)

one oracle query followed by our reflection. Let’s consider how Rgrov acts in
the plane spanned by |ω〉 and |s〉. This action is easiest to understand if we
visualize it geometrically. Recall that

|〈s|ω〉| =
1√
N

≡ sin θ, (6.142)

so that |s〉 is rotated by θ from the axis |ω⊥〉 normal to |ω〉 in the plane. Uω

reflects a vector in the plane about the axis |ω⊥〉, and U s reflects a vector
about the axis |s〉. Together, the two reflections rotate the vector by 2θ:

The Grover iteration, then, is nothing but a rotation by 2θ in the plane
determined by |s〉 and |ω〉.

6.4.3 Finding 1 out of 4

Let’s suppose, for example, that there are N = 4 items in the database, with
one marked item. With classical queries, the marked item could be found
in the 1st, 2nd, 3rd, or 4th query; on the average 21

2
queries will be needed

before we are successful and four are needed in the worst case.8 But since
sin θ = 1√

N
= 1

2
, we have θ = 30o and 2θ = 60o. After one Grover iteration,

then, we rotate |s〉 to a 90o angle with |ω⊥〉; that is, it lines up with |ω〉.
When we measure by projecting onto the computational basis, we obtain the
result |ω〉 with certainty. Just one quantum query suffices to find the marked
state, a notable improvement over the classical case.

8Of course, if we know there is one marked state, the 4th query is actually superfluous,
so it might be more accurate to say that at most three queries are needed, and 2 1

4
queries

are required on the average.
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There is an alternative way to visualize the Grover iteration that is some-
times useful, as an “inversion about the average.” If we expand a state |ψ〉
in the computational basis

|ψ〉 =
∑

x

ax|x〉, (6.143)

then its inner product with |s〉 = 1√
N

∑

x |x〉 is

〈s|ψ〉 =
1√
N

∑

x

ax =
√
N〈a〉, (6.144)

where

〈a〉 =
1

N

∑

x

ax, (6.145)

is the mean of the amplitude. Then if we apply U s = 2|s〉〈s| − 1 to |ψ〉, we
obtain

U s|ψ〉 =
∑

x

(2〈a〉 − ax)|x〉; (6.146)

the amplitudes are transformed as

U s : ax − 〈a〉 → 〈a〉 − ax, (6.147)

that is the coefficient of |x〉 is inverted about the mean value of the amplitude.
If we consider again the case N = 4, then in the state |s〉 each amplitude

is 1
2
. One query of the oracle flips the sign of the amplitude of marked state,

and so reduces the mean amplitude to 1
4
. Inverting about the mean then

brings the amplitudes of all unmarked states from 1
2

to zero, and raises the
amplitude of the marked state from −1

2
to 1. So we recover our conclusion

that one query suffices to find the marked state with certainty.
We can also easily see that one query is sufficient to find a marked state

if there are N entries in the database, and exactly 1
4

of them are marked.
Then, as above, one query reduces the mean amplitude from 1√

N
to 1

2
√

N
,

and inversion about the mean then reduces the amplitude of each unmarked
state to zero.

(When we make this comparison between the number of times we need
to consult the oracle if the queries can be quantum rather than classical, it



6.4. QUANTUM DATABASE SEARCH 51

may be a bit unfair to say that only one query is needed in the quantum
case. If the oracle is running a routine that computes a function, then some
scratch space will be filled with garbage during the computation. We will
need to erase the garbage by running the computation backwards in order
to maintain quantum coherence. If the classical computation is irreversible
there is no need to run the oracle backwards. In this sense, one query of the
quantum oracle may be roughly equivalent, in terms of complexity, to two
queries of a classical oracle.)

6.4.4 Finding 1 out of N

Let’s return now to the case in which the database contains N items, and
exactly one item is marked. Each Grover iteration rotates the quantum state
in the plane determined by |s〉 and |ω〉; after T iterations, the state is rotated
by θ + 2Tθ from the |ω⊥〉 axis. To optimize the probability of finding the
marked state when we finally perform the measurement, we will iterate until
this angle is close to 90o, or

(2T + 1)θ ' π

2
⇒ 2T + 1 ' π

2θ
, (6.148)

we recall that sin θ = 1√
N

, or

θ ' 1√
N
, (6.149)

for N large; if we choose

T =
π

4

√
N (1 +O(N−1/2)), (6.150)

then the probability of obtaining the measurement result |ω〉 will be

Prob(ω) = sin2 ((2T + 1)θ) = 1 − O
(

1

N

)

. (6.151)

We conclude that only about π
4

√
N queries are needed to determine ω with

high probability, a quadratic speedup relative to the classical result.
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6.4.5 Multiple solutions

If there are r > 1 marked states, and r is known, we can modify the number
of iterations so that the probability of finding one of the marked states is still
very close to 1. The analysis is just as above, except that the oracle induces
a reflection in the hyperplane orthogonal to the vector

|ω̃〉 =
1√
r

(

r
∑

i=1

|ωi〉
)

, (6.152)

the equally weighted superposition of the marked computational basis states
|ωi〉. Now

〈s|ω̃〉 =

√

r

N
≡ sin θ, (6.153)

and a Grover iteration rotates a vector by 2θ in the plane spanned by |s〉
and |ω̃〉; we again conclude that the state is close to |ω̃〉 after a number of
iterations

T ' π

4θ
=
π

4

√

N

r
. (6.154)

If we then measure by projecting onto the computational basis, we will find
one of the marked states (each occurring equiprobably) with probability close
to one. (As the number of solutions increases, the time needed to find one
of them declines like r−1/2, as opposed to r−1 in the classical case.)

Note that if we continue to perform further Grover iterations, the vector
continues to rotate, and so the probability of finding a marked state (when
we finally measure) begins to decline. The Grover algorithm is like baking a
soufflé – if we leave it in the oven for too long, it starts to fall. Therefore, if
we don’t know anything about the number of marked states, we might fail to
find one of them. For example, T ∼ π

4

√
N iterations is optimal for r = 1, but

for r = 4, the probability of finding a marked state after this many iterations
is quite close to zero.

But even if we don’t know r a priori, we can still find a solution with
a quadratic speed up over classical algorithms (for r � N). For example,
we might choose the number of iterations to be random in the range 0 to
π
4

√
N . Then the expected probability of finding a marked state is close to

1/2 for each r, so we are unlikely to fail to find a marked state after several
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repetitions. And each time we measure, we can submit the state we find to
the oracle as a classical query to confirm whether that state is really marked.

In particular, if we don’t find a solution after several attempts, there
probably is no solution. Hence with high probability we can correctly answer
the yes/no question, “Is there a marked state?” Therefore, we can adopt
the Grover algorithm to solve any NP problem, where the oracle checks
a proposed solution, with a quadratic speedup over a classical exhaustive
search.

6.4.6 Implementing the reflection

To perform a Grover iteration, we need (aside from the oracle query) a unitary
transformation

U s = 2|s〉〈s| − 1 , (6.155)

that reflects a vector about the axis defined by the vector |s〉. How do
we build this transformation efficiently from quantum gates? Since |s〉 =
H(n)|0〉, where H(n) is the bitwise Hadamard transformation, we may write

U s = H(n)(2|0〉〈0| − 1 )H(n), (6.156)

so it will suffice to construct a reflection about the axis |0〉. We can easily
build this reflection from an n-bit Toffoli gate θ(n).

Recall that

HσxH = σz; (6.157)

a bit flip in the Hadamard rotated basis is equivalent to a flip of the relative
phase of |0〉 and |1〉. Therefore:
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s

s

s

...

gH H

=

s

s

s

Z

after conjugating the last bit by H , θ(n) becomes controlled(n−1)-σz, which
flips the phase of |11 . . . |1〉 and acts trivially on all other computational
basis states. Conjugating by NOT(n), we obtain U s, aside from an irrelevant
overall minus sign.

You will show in an exercise that the n-bit Toffoli gate θ(n) can be con-
structed from 2n − 5 3-bit Toffoli gates θ(3) (if sufficient scratch space is
available). Therefore, the circuit that constructs U s has a size linear in
n = logN . Grover’s database search (assuming the oracle answers a query
instantaneously) takes a time of order

√
N logN . If we regard the oracle as

a subroutine that performs a function evaluation in polylog time, then the
search takes time of order

√
Npoly(logN).

6.5 The Grover Algorithm Is Optimal

Grover’s quadratic quantum speedup of the database search is already inter-
esting and potentially important, but surely with more cleverness we can do
better, can’t we? No, it turns out that we can’t. Grover’s algorithm provides
the fastest possible quantum search of an unsorted database, if “time” is
measured according to the number of queries of the oracle.

Considering the case of a single marked state |ω〉, let U(ω, T ) denote a
quantum circuit that calls the oracle T times. We place no restriction on the
circuit aside from specifying the number of queries; in particular, we place
no limit on the number of quantum gates. This circuit is applied to an initial
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state |ψ(0)〉, producing a final state

|ψω(t)〉 = U (ω, T )|ψ(0)〉. (6.158)

Now we are to perform a measurement designed to distinguish among the
N possible values of ω. If we are to be able to perfectly distinguish among
the possible values, the states |ψω(t)〉 must all be mutually orthogonal, and
if we are to distinguish correctly with high probability, they must be nearly
orthogonal.

Now, if the states {|ψω〉 are an orthonormal basis, then, for any fixed
normalized vector |ϕ〉,

N−1
∑

ω=0

‖ |ψω〉 − |ϕ〉 ‖2≥ 2N − 2
√
N. (6.159)

(The sum is minimized if |ϕ〉 is the equally weighted superposition of all the
basis elements, |ϕ〉 = 1√

N

∑

ω |ψω〉, as you can show by invoking a Lagrange

multiplier to perform the constrained extremization.) Our strategy will be
to choose the state |ϕ〉 suitably so that we can use this inequality to learn
something about the number T of oracle calls.

Our circuit with T queries builds a unitary transformation

U(ω, T ) = UωUT UωUT−1 . . .UωU1, (6.160)

where Uω is the oracle transformation, and the U t’s are arbitrary non-oracle
transformations. For our state |ϕ(T )〉 we will choose the result of applying
U(ω, T ) to |ψ(0)〉, except with each Uω replaced by 1 ; that is, the same
circuit, but with all queries submitted to the “empty oracle.” Hence,

|ϕ(T )〉 = UTUT−1 . . .U 2U 1|ψ(0)〉, (6.161)

while

|ψω(T )〉 = UωUT UωUT−1 . . .UωU 1|ψ(0)〉. (6.162)

To compare |ϕ(T )〉 and |ψω(T )〉, we appeal to our previous analysis of the
effect of errors on the accuracy of a circuit, regarding the ω oracle as an
“erroneous” implementation of the empty oracle. The error vector in the
t-th step (cf. eq. (6.63)) is

‖ |E(ω, t)〉 ‖ =‖ (Uω − 1 )|ϕ(t)〉 ‖
= 2|〈ω|ϕ(t)〉|, (6.163)
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since Uω = 1 − 2|ω〉〈ω|. After T queries we have (cf. eq. (6.66))

‖ |ψω(T )〉 − |ϕ(T )〉 ‖≤ 2
T
∑

t=1

|〈ω|ϕ(t)〉|. (6.164)

From the identity

(

T
∑

t=1

ct

)2

+
1

2

T
∑

s,t=1

(cs − ct)
2

=
T
∑

s,t=1

(

ctcs +
1

2
c2s − ctcs +

1

2
c2s

)

= T
T
∑

t=1

c2t , (6.165)

we obtain the inequality

(

T
∑

t=1

ct

)2

≤ T
T
∑

t=1

c2t , (6.166)

which applied to eq. (6.164) yields

‖ |ψω(T )〉 − |ϕ(T )〉 ‖2≤ 4T

(

T
∑

t=1

|〈ω|ϕ(t)〉|2
)

. (6.167)

Summing over ω we find

∑

ω

‖ |ψω(T )〉 − |ϕ(T )〉 ‖2≤ 4T
T
∑

t=1

〈ϕ(t)|ϕ(t)〉 = 4T 2.
(6.168)

Invoking eq. (6.159) we conclude that

4T 2 ≥ 2N − 2
√
N, (6.169)

if the states |ψω(T )〉 are mutually orthogonal. We have, therefore, found
that any quantum algorithm that can distinguish all the possible values of
the marked state must query the oracle T times where

T ≥
√

N

2
, (6.170)

(ignoring the small correction as N → ∞). Grover’s algorithm finds ω in
π
4

√
N queries, which exceeds this bound by only about 11%. In fact, it is
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possible to refine the argument to improve the bound to T ≥ π
4

√
N(1 − ε),

which is asymptotically saturated by the Grover algorithm.9 Furthermore,
we can show that Grover’s circuit attains the optimal success probability in
T ≤ π

4

√
N queries.

One feels a twinge of disappointment (as well as a surge of admiration
for Grover) at the realization that the database search algorithm cannot be
improved. What are the implications for quantum complexity?

For many optimization problems in the NP class, there is no better
method known than exhaustive search of all the possible solutions. By ex-
ploiting quantum parallelism, we can achieve a quadratic speedup of exhaus-
tive search. Now we have learned that the quadratic speedup is the best
possible if we rely on the power of sheer quantum parallelism, if we don’t de-
sign our quantum algorithm to exploit the specific structure of the problem
we wish to solve. Still, we might do better if we are sufficiently clever.

The optimality of the Grover algorithm might be construed as evidence
that BQP 6⊇ NP . At least, if it turns out that NP ⊆ BQP and P 6= NP ,
then the NP problems must share a deeply hidden structure (for which there
is currently no evidence) that is well-matched to the peculiar capabilities of
quantum circuits.

Even the quadratic speedup may prove useful for a variety ofNP -complete
optimization problems. But a quadratic speedup, unlike an exponential
one, does not really move the frontier between solvability and intractabil-
ity. Quantum computers may someday outperform classical computers in
performing exhaustive search, but only if the clock speed of quantum devices
does not lag too far behind that of their classical counterparts.

6.6 Generalized Search and Structured Search

In the Grover iteration, we perform the transformation U s = 2|s〉〈s| − 1 ,
the reflection in the axis defined by |s〉 = 1√

N

∑N−1
x=0 |x〉. Why this axis? The

advantage of the state |s〉 is that it has the same overlap with each and every
computational basis state. Therefore, the overlap of any marked state |ω〉
with |s〉 is guaranteed to be |〈ω|s〉| = 1/

√
N . Hence, if we know the number

of marked states, we can determine how many iterations are required to find
a marked state with high probability – the number of iterations needed does

9C. Zalka, “Grover’s Quantum Searching Algorithm is Optimal,” quant-ph/9711070.
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not depend on which states are marked.
But of course, we could choose to reflect about a different axis. If we can

build the unitary U (with reasonable efficiency) then we can construct

U (2|0〉〈0| − 1 )U † = 2U |0〉〈0|U † − 1 , (6.171)

which reflects in the axis U |0〉.
Suppose that

|〈ω|U |0〉| = sin θ, (6.172)

where |ω〉 is the marked state. Then if we replace U s in the Grover iteration
by the reflection eq. (6.171), one iteration performs a rotation by 2θ in the
plane determined by |ω〉 and U |0〉 (by the same argument we used for U s).
Thus, after T iterations, with (2T + I)θ ∼= π/2, a measurement in the com-
putational basis will find |ω〉 with high probability. Therefore, we can still
search a database if we replace H(n) by U in Grover’s quantum circuit, as
long as U |0〉 is not orthogonal to the marked state.10 But if we have no a
priori information about which state is marked, then H(n) is the best choice,
not only because |s〉 has a known overlap with each marked state, but also
because it has the largest average overlap with all the possible marked states.

But sometimes when we are searching a database, we do have some infor-
mation about where to look, and in that case, the generalized search strategy
described above may prove useful.11

As an example of a problem with some auxiliary structure, suppose that
f(x, y) is a one-bit-valued function of the two n-bit strings x and y, and we
are to find the unique solution to f(x, y) = 1. With Grover’s algorithm,
we can search through the N2 possible values (N = 2n) of (x, y) and find
the solution (x0, y0) with high probability after π

4
N iterations, a quadratic

speedup with respect to classical search.
But further suppose that g(x) is a function of x only, and that it is

known that g(x) = 1 for exactly M values of x, where 1 � M � N . And
furthermore, it is known that g(x0) = 1. Therefore, we can use g to help us
find the solution (x0, y0).

10L.K. Grover “Quantum Computers Can Search Rapidly By Using Almost Any Trans-
formation,” quant-ph/9712011.

11E. Farhi and S. Gutmann, “Quantum-Mechanical Square Root Speedup in a Struc-
tured Search Problem,” quant-ph/9711035; L.K. Grover, “Quantum Search On Structured
Problems,” quant-ph/9802035.
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Now we have two oracles to consult, one that returns the value of f(x, y),
and the other returning the value of g(x). Our task is to find (x0, y0) with a
minimal number of queries.

Classically, we need of order NM queries to find the solution with reason-
able probability. We first evaluate g(x) for each x; then we restrict our search
for a solution to f(x, y) = 1 to only those M values of x such that g(x) = 1.
It is natural to wonder whether there is a way to perform a quantum search
in a time of order the square root of the classical time. Exhaustive search
that queries only the f oracle requires time N �

√
NM , and so does not do

the job. We need to revise our method of quantum search to take advantage
of the structure provided by g.

A better method is to first apply Grover’s algorithm to g(x). In about
π
4

√

N
M

iterations, we prepare a state that is close to the equally weighted

superposition of the M solutions to g(x) = 1. In particular, the state |x0〉
appears with amplitude 1√

M
. Then we apply Grover’s algorithm to f(x, y)

with x fixed. In about π
4

√
N iterations, the state |x0〉|s〉 evolves to a state

quite close to |x0〉|y0〉. Therefore |x0, y0〉 appears with amplitude 1√
M

.

The unitary transformation we have constructed so far, in about π
4

√
N

queries, can be regarded as the transformation U that defines a generalized
search. Furthermore, we know that

〈x0, y0|U |0, 0〉 ∼=
1√
M
. (6.173)

Therefore, if we iterate the generalized search about π
4

√
M times, we will

have prepared a state that is quite close to |x0, y0〉. With altogether about

(

π

4

)2 √
NM, (6.174)

queries, then, we can find the solution with high probability. This is indeed
a quadratic speedup with respect to the classical search.

6.7 Some Problems Admit No Speedup

The example of structured search illustrates that quadratic quantum speedups
over classical algorithms can be attained for a variety of problems, not just
for an exhaustive search of a structureless database. One might even dare
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to hope that quantum parallelism enables us to significantly speedup any
classical algorithm. This hope will now be dashed – for many problems, no
quantum speedup is possible.

We continue to consider problems with a quantum black box, an oracle,
that computes a function f taking n bits to 1. But we will modify our
notation a little. The function f can be represented as a string of N = 2n

bits

X = XN−1XN−2 . . . X1X0, (6.175)

where Xi denotes f(i). Our problem is to evaluate some one-bit-valued
function of X, that is, to answer a yes/no question about the properties
of the oracle. What we will show is that for some functions of X, we can’t
evaluate the function with low error probability using a quantum algorithm,
unless the algorithm queries the oracle as many times (or nearly as many
times) as required with a classical algorithm.12

The key idea is that any Boolean function of the Xi’s can be represented
as a polynomial in the Xi’s. Furthermore, the probability distribution for
a quantum measurement can be expressed as a polynomial in X, where the
degree of the polynomial is 2T , if the measurement follows T queries of the
oracle. The issue, then, is whether a polynomial of degree 2T can provide a
reasonable approximation to the Boolean function of interest.

The action of the oracle can be represented as

UO : |i, y; z〉 → |i, y ⊕Xi; z〉, (6.176)

where i takes values in {0, 1, . . . , N − 1}, y ∈ {0, 1}, and z denotes the state
of auxiliary qubits not acted upon by the oracle. Therefore, in each 2 × 2
block spanned by |i, 0, z〉 and |i, 1, z〉,UO is the 2 × 2 matrix

(

1 −Xi Xi

Xi 1 −Xi

)

. (6.177)

Quantum gates other than oracle queries have no dependence on X. There-
fore after a circuit with T queries acts on any initial state, the resulting state
|ψ〉 has amplitudes that are (at most) T th-degree polynomials in X. If we
perform a POVM on |ψ〉, then the probability 〈ψ|F |ψ〉 of the outcome asso-
ciated with the positive operator F can be expressed as a polynomial in X
of degree at most 2T .

12E. Farhi, et al., quant-ph/9802045; R. Beals, et al., quant-ph/9802049.
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Now any Boolean function of the Xi’s can be expressed (uniquely) as a
polynomial of degree ≤ N in the Xi’s. For example, consider the OR function
of the N Xi’s; it is

OR(X) = 1 − (1 −X0)(1 −X1) · · · (1 −XN−1), (6.178)

a polynomial of degree N .
Suppose that we would like our quantum circuit to evaluate the OR func-

tion with certainty. Then we must be able to perform a measurement with
two outcomes, 0 and 1, where

Prob(0) = 1 −OR(X),

Prob(1) = OR(X). (6.179)

But these expressions are polynomials of degree N , which can arise only if
the circuit queries the oracle at least T times, where

T ≥ N

2
. (6.180)

We conclude that no quantum circuit with fewer than N/2 oracle calls can
compute OR exactly. In fact, for this function (or any function that takes
the value 0 for just one of its N possible arguments), there is a stronger
conclusion (exercise): we require T ≥ N to evaluate OR with certainty.

On the other hand, evaluating the OR function (answering the yes/no
question, “Is there a marked state?”) is just what the Grover algorithm can
achieve in a number of queries of order

√
N . Thus, while the conclusion is

correct that N queries are needed to evaluate OR with certainty, this result is
a bit misleading. We can evaluate OR probabilistically with far fewer queries.
Apparently, the Grover algorithm can construct a polynomial in X that,
though only of degree O(

√
N ), provides a very adequate approximation to

the N -th degree polynomial OR(X).
But OR, which takes the value 1 for every value of X except X = ~0,

is a very simple Boolean function. We should consider other functions that
might pose a more serious challenge for the quantum computer.

One that comes to mind is the PARITY function: PARITY(X) takes the
value 0 if the string X contains an even number of 1’s, and the value 1 if
the string contains an odd number of 1’s. Obviously, a classical algorithm
must query the oracle N times to determine the parity. How much better
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can we do by submitting quantum queries? In fact, we can’t do much better
at all – at least N/2 quantum queries are needed to find the correct value of
PARITY(X), with probability of success greater than 1

2
+ δ.

In discussing PARITY it is convenient to use new variables

X̃i = 1 − 2Xi, (6.181)

that take values ±1, so that

PARITY(X̃) =
N−1
∏

i=0

X̃i, (6.182)

also takes values ±1. Now, after we execute a quantum circuit with alto-
gether T queries of the oracle, we are to perform a POVM with two possible
outcomes F even and F odd; the outcome will be our estimate of PARITY(X̃).
As we have already noted, the probability of obtaining the outcome even
(say) can be expressed as a polynomial P (2T )

even of degree (at most) 2T in X̃,

〈F even〉 = P (2T )
even (X̃). (6.183)

How often is our guess correct? Consider the sum

∑

{X̃}
P (2T )

even (X̃) · PARITY(X̃)

=
∑

{X̃}
P (2T )

even (X̃)
N−1
∏

i=0

X̃i. (6.184)

Since each term in the polynomial P (2T )
even (X̃) contains at most 2T of the X̃i’s,

we can invoke the identity

∑

X̃i∈{0,1}
X̃i = 0, (6.185)

to see that the sum in eq. (6.184) must vanish if N > 2T . We conclude that

∑

par(X̃)=1

P (2T )
even (X̃) =

∑

par(X̃)=−1

P (2T )
even (X̃); (6.186)

hence, for T < N/2, we are just as likely to guess “even” when the actual
PARITY(X̃) is odd as when it is even (on average). Our quantum algorithm
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fails to tell us anything about the value of PARITY(X̃); that is, averaged
over the (a priori equally likely) possible values of Xi, we are just as likely
to be right as wrong.

We can also show, by exhibiting an explicit algorithm (exercise), that
N/2 queries (assuming N even) are sufficient to determine PARITY (either
probabilistically or deterministically.) In a sense, then, we can achieve a
factor of 2 speedup compared to classical queries. But that is the best we
can do.

6.8 Distributed database search

We will find it instructive to view the quantum database search algorithm
from a fresh perspective. We imagine that two parties, Alice and Bob, need
to arrange to meet on a mutually agreeable day. Alice has a calendar that
lists N = 2n days, with each day marked by either a 0, if she is unavailable
that day, or a 1, if she is available. Bob has a similar calendar. Their task is
to find a day when they will both be available.

Alice and Bob both have quantum computers, but they are very far apart
from one another. (Alice is on earth, and Bob has traveled to the Andromeda
galaxy). Therefore, it is very expensive for them to communicate. They
urgently need to arrange their date, but they must economize on the amount
of information that they send back and forth.

Even if there exists a day when both are available, it might not be easy to
find it. If Alice and Bob communicate by sending classical bits back and forth,
then in the worst case they will need to exchange of order N = 2n calendar
entries to have a reasonable chance of successfully arranging their date.. We
will ask: can they do better by exchanging qubits instead?13 (The quantum

13In an earlier version of these notes, I proposed a different scenario, in which Alice and
Bob had nearly identical tables, but with a single mismatched entry; their task was to find
the location of the mismatched bit. However, that example was poorly chosen, because
the task can be accomplished with only logN bits of classical communication. (Thanks
to Richard Cleve for pointing out this blunder.) We want Alice to learn the address (a
binary string of length n) of the one entry where her table differs from Bob’s. So Bob
computes the parity of the N/2 entries in his table with a label that takes the value 0 in
its least significant bit, and he sends that one parity bit to Alice. Alice compares to the
parity of the same entries in her table, and she infers one bit (the least significant bit) of
the address of the mismatched entry. Then they do the same for each of the remaining
n − 1 bits, until Alice knows the complete address of the “error”. Altogether just n bits
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information highway from earth to Andromeda was carefully designed and
constructed, so it does not cost much more to send qubits instead of bits.)

To someone familiar with the basics of quantum information theory, this
sounds like a foolish question. Holevo’s theorem told us once and for all that
a single qubit can convey no more than one bit of classical information. On
further reflection, though, we see that Holevo’s theorem does not really settle
the issue. While it bounds the mutual information of a state preparation with
a measurement outcome, it does not assure us (at least not directly) that
Alice and Bob need to exchange as many qubits as bits to compare their
calendars. Even so, it comes as a refreshing surprise14 to learn that Alice
and Bob can do the job by exchanging O(

√
N logN) qubits, as compared to

O(N) classical bits.
To achieve this Alice and Bob must work in concert, implementing a

distributed version of the database search. Alice has access to an oracle
(her calendar) that computes a function fA(x), and Bob has an oracle (his
calendar) that computes fB(x). Together, they can query the oracle

fAB(x) = fA(x) ∧ fB(x) . (6.187)

Either one of them can implement the reflection U s, so they can perform a
complete Grover iteration, and can carry out exhaustive search for a suitable
day x such that fAB(x) = 1 (when Alice and Bob are both available). If a
mutually agreeable day really exists, they will succeed in finding it after of
order

√
N queries.

How do Alice and Bob query fAB? We’ll describe how they do it acting
on any one of the computational basis states |x〉. First Alice performs

|x〉|0〉 → |x〉|fA(x)〉, (6.188)

and then she sends the n+ 1 qubits to Bob. Bob performs

|x〉|fA(x)〉 → (−1)fA(x)∧fB(x)|x〉|fA(x)〉. (6.189)

This transformation is evidently unitary, and you can easily verify that Bob
can implement it by querying his oracle. Now the phase multiplying |x〉 is
(−1)fAB(x) as desired, but |fA(x)〉 remains stored in the other register, which

are sent (and all from Bob to Alice).
14H. Burhman, et al., “Quantum vs. Classical Communication and Computation,”

quant-ph/9802040.
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would spoil the coherence of a superposition of x values. Bob cannot erase
that register, but Alice can. So Bob sends the n + 1 qubits back to Alice,
and she consults her oracle once more to perform

(−1)fA(x)∧fB(x)|x〉|fA(x)〉 → (−1)fA(x)∧fB(x)|x〉|0〉.
(6.190)

By exchanging 2(n+ 1) qubits, the have accomplished one query of the fAB

oracle, and so can execute one Grover iteration.

Suppose, for example, that Alice and Bob know that there is only one
mutually agreeable date, but they have no a priori information about which
date it is. After about π

4

√
N iterations, requiring altogether

Q ∼= π

4

√
N · 2(logN + 1), (6.191)

qubit exchanges, Alice measures, obtaining the good date with probability
quite close to 1.

Thus, at least in this special context, exchanging O(
√
N logN) qubits

is as good as exchanging O(N) classical bits. Apparently, we have to be
cautious in interpreting the Holevo bound, which ostensibly tells us that a
qubit has no more information-carrying capacity than a bit!

If Alice and Bob don’t know in advance how many good dates there are,
they can still perform the Grover search (as we noted in §6.4.5), and will
find a solution with reasonable probability. With 2 · logN bits of classical
communication, they can verify whether the date that they found is really
mutually agreeable.

6.8.1 Quantum communication complexity

More generally, we may imagine that several parties each possess an n-bit
input, and they are to evaluate a function of all the inputs, with one party
eventually learning the value of the function. What is the minimum amount
of communication needed to compute the function (either deterministically
or probabilistically)? The well-studied branch of classical complexity theory
that addresses this question is called communication complexity. What we
established above is a quadratic separation between quantum and classical
communication complexity, for a particular class of two-party functions.
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Aside from replacing the exchange of classical bits by the exchange of
qubits, there are other interesting ways to generalize classical communica-
tion complexity. One is to suppose that the parties share some preexisting
entangled state (either Bell pairs or multipartite entanglement), and that
they may exploit that entanglement along with classical communication to
perform the function evaluation. Again, it is not immediately clear that the
shared entanglement will make things any easier, since entanglement alone
doesn’t permit the parties to exchange classical messages. But it turns out
that the entanglement does help, at least a little bit.15

The analysis of communication complexity is a popular past time among
complexity theorists, but this discipline does not yet seem to have assumed
a prominent position in practical communications engineering. Perhaps this
is surprising, considering the importance of efficiently distributing the com-
putational load in parallelized computing, which has become commonplace.
Furthermore, it seems that nearly all communication in real life can be re-
garded as a form of remote computation. I don’t really need to receive all the
bits that reach me over the telephone line, especially since I will probably re-
tain only a few bits of information pertaining to the call tomorrow (the movie
we decided to go to). As a less prosaic example, we on earth may need to
communicate with a robot in deep space, to instruct it whether to enter and
orbit around a distant star system. Since bandwidth is extremely limited, we
would like it to compute the correct answer to the Yes/No question “Enter
orbit?” with minimal exchange of information between earth and robot.

Perhaps a future civilization will exploit the known quadratic separation
between classical and quantum communication complexity, by exchanging
qubits rather than bits with its flotilla of spacecraft. And perhaps an expo-
nential separation will be found, at least in certain contexts, which would
significantly boost the incentive to develop the required quantum communi-
cations technology.

6.9 Periodicity

So far, the one case for which we have found an exponential separation be-
tween the speed of a quantum algorithm and the speed of the corresponding

15R. Cleve, et al., “Quantum Entanglement and the Communication Complexity of the
Inner Product Function,” quant-ph/9708019; W. van Dam, et al., “Multiparty Quantum
Communication Complexity,” quant-ph/9710054.
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classical algorithm is the case of Simon’s problem. Simon’s algorithm exploits
quantum parallelism to speed up the search for the period of a function. Its
success encourages us to seek other quantum algorithms designed for other
kinds of period finding.

Simon studied periodic functions taking values in (Z2)
n. For that purpose

the n-bit Hadamard transform H(n) was a powerful tool. If we wish instead to
study periodic functions taking values in Z2n , the (discrete) Fourier transform
will be a tool of comparable power.

The moral of Simon’s problem is that, while finding needles in a haystack
may be difficult, finding periodically spaced needles in a haystack can be far
easier. For example, if we scatter a photon off of a periodic array of needles,
the photon is likely to be scattered in one of a set of preferred directions,
where the Bragg scattering condition is satisfied. These preferred directions
depend on the spacing between the needles, so by scattering just one photon,
we can already collect some useful information about the spacing. We should
further explore the implications of this metaphor for the construction of
efficient quantum algorithms.

So imagine a quantum oracle that computes a function

f : {0, 1}n → {0, 1}m, (6.192)

that has an unknown period r, where r is a positive integer satisfying

1 � r � 2n. (6.193)

That is,

f(x) = f(x+mr), (6.194)

where m is any integer such that x and x + mr lie in {0, 1, 2, . . . , 2n − 1}.
We are to find the period r. Classically, this problem is hard. If r is, say,
of order 2n/2, we will need to query the oracle of order 2n/4 times before we
are likely to find two values of x that are mapped to the same value of f(x),
and hence learn something about r. But we will see that there is a quantum
algorithm that finds r in time poly (n).

Even if we know how to compute efficiently the function f(x), it may
be a hard problem to determine its period. Our quantum algorithm can
be applied to finding, in poly(n) time, the period of any function that we
can compute in poly(n) time. Efficient period finding allows us to efficiently
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solve a variety of (apparently) hard problems, such as factoring an integer,
or evaluating a discrete logarithm.

The key idea underlying quantum period finding is that the Fourier trans-
form can be evaluated by an efficient quantum circuit (as discovered by Peter
Shor). The quantum Fourier transform (QFT) exploits the power of quantum
parallelism to achieve an exponential speedup of the well-known (classical)
fast Fourier transform (FFT). Since the FFT has such a wide variety of
applications, perhaps the QFT will also come into widespread use someday.

6.9.1 Finding the period

The QFT is the unitary transformation that acts on the computational basis
according to

QFT : |x〉 → 1√
N

N−1
∑

y=0

e2πixy/N |y〉, (6.195)

whereN = 2n. For now let’s suppose that we can perform the QFT efficiently,
and see how it enables us to extract the period of f(x).

Emulating Simon’s algorithm, we first query the oracle with the input
1√
N

∑

x |x〉 (easily prepared by applying H(n) to |0〉), and so prepare the
state

1√
N

N−1
∑

x=0

|x〉|f(x)〉. (6.196)

Then we measure the output register, obtaining the result |f(x0)〉 for some
0 ≤ x0 < r. This measurement prepares in the input register the coherent
superposition of the A values of x that are mapped to f(x0):

1√
A

A−1
∑

j=0

|x0 + jr〉, (6.197)

where

N − r ≤ x0 + (A− 1)r < N, (6.198)

or

A− 1 <
N

r
< A + 1. (6.199)
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Actually, the measurement of the output register is unnecessary. If it is omit-
ted, the state of the input register is an incoherent superposition (summed
over x0 ∈ {0, 1, . . . r − 1}) of states of the form eq. (6.197). The rest of the
algorithm works just as well acting on this initial state.

Now our task is to extract the value of r from the state eq. (6.197) that we
have prepared. Were we to measure the input register by projecting onto the
computational basis at this point, we would learn nothing about r. Instead
(cf. Simon’s algorithm), we should Fourier transform first and then measure.

By applying the QFT to the state eq. (6.197) we obtain

1√
NA

N−1
∑

y=0

e2πix0y
A−1
∑

j=0

e2πijry/N |y〉. (6.200)

If we now measure in the computational basis, the probability of obtaining
the outcome y is

Prob(y) =
A

N

∣

∣

∣

∣

∣

∣

1

A

A−1
∑

j=0

e2πijry/N

∣

∣

∣

∣

∣

∣

2

. (6.201)

This distribution strongly favors values of y such that yr/N is close to an
integer. For example, if N/r happened to be an integer (and therefore equal
to A), we would have

Prob(y) =
1

r

∣

∣

∣

∣

∣

∣

1

A

A−1
∑

j=0

e2πijy/A

∣

∣

∣

∣

∣

∣

=











1
r

y = A · (integer)

0 otherwise. (6.202)

More generally, we may sum the geometric series

A−1
∑

j=0

eiθj =
eiAθ − 1

eiθ − 1
, (6.203)

where

θy =
2πyr(mod N)

N
. (6.204)

There are precisely r values of y in {0, 1, . . . , N − 1} that satisfy

− r

2
≤ yr(mod N) ≤ r

2
. (6.205)
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(To see this, imagine marking the multiples of r and N on a number line
ranging from 0 to rN − 1. For each multiple of N , there is a multiple of r no
more than distance r/2 away.) For each of these values, the corresponding
θy satisfies.

−π r
N

≤ θy ≤ π
r

N
. (6.206)

Now, since A − 1 < N
r
, for these values of θy all of the terms in the sum

over j in eq. (6.203) lie in the same half-plane, so that the terms interfere
constructively and the sum is substantial.

We know that

|1 − eiθ| ≤ |θ|, (6.207)

because the straight-line distance from the origin is less than the arc length
along the circle, and for A|θ| ≤ π, we know that

|1 − eiAθ| ≥ 2A|θ|
π

, (6.208)

because we can see (either graphically or by evaluating its derivative) that
this distance is a convex function. We actually have A < N

r
+ 1, and hence

Aθy < π
(

1 + r
N

)

, but by applying the above bound to

∣

∣

∣

∣

∣

ei(A−1)θ − 1

eiθ − 1
+ ei(A−1)θ

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

ei(A−1)θ − 1

eiθ − 1

∣

∣

∣

∣

∣

− 1, (6.209)

we can still conclude that
∣

∣

∣

∣

∣

eiAθ − 1

eiθ − 1

∣

∣

∣

∣

∣

≥ 2(A− 1)|θ|
π|θ| − 1 =

2

π
A−

(

1 +
2

π

)

. (6.210)

Ignoring a possible correction of order 2/A, then, we find

Prob(y) ≥
(

4

π2

)

1

r
, (6.211)

for each of the r values of y that satisfy eq. (6.205). Therefore, with a
probability of at least 4/π2, the measured value of y will satisfy

k
N

r
− 1

2
≤ y ≤ k

N

r
+

1

2
, (6.212)



6.9. PERIODICITY 71

or

k

r
− 1

2N
≤ y

N
≤ k

r
+

1

2N
, (6.213)

where k is an integer chosen from {0, 1, . . . , r − 1}. The output of the com-
putation is reasonable likely to be within distance 1/2 of an integer multiple
of N/r.

Suppose that we know that r < M � N . Thus N/r is a rational number
with a denominator less than M . Two distinct rational numbers, each with
denominator less than M , can be no closer together than 1/M2, since a

b
−

c
d

= ad−bc
bd

. If the measurement outcome y satisfies eq. (6.212), then there
is a unique value of k/r (with r < M) determined by y/N , provided that
N ≥ M2. This value of k/r can be efficiently extracted from the measured
y/N , by the continued fraction method.

Now, with probability exceeding 4/π2, we have found a value of k/r where
k is selected (roughly equiprobably) from {0, 1, 2, . . . , r−1}. It is reasonably
likely that k and r are relatively prime (have no common factor), so that we
have succeeded in finding r. With a query of the oracle, we may check
whether f(x) = f(x+ r). But if GCD(k, r) 6= 1, we have found only a factor
(r1) of r.

If we did not succeed, we could test some nearby values of y (the measured
value might have been close to the range −r/2 ≤ yr(mod N) ≤ r/2 without
actually lying inside), or we could try a few multiples of r (the value of
GCD(k, r), if not 1, is probably not large). That failing, we resort to a
repetition of the quantum circuit, this time (with probability at least 4/π2)
obtaining a value k′/r. Now k′, too, may have a common factor with r,
in which case our procedure again determines a factor (r2) of r. But it
is reasonably likely that GCD(k, k′) = 1, in which case r = LCM, (r1, r2).
Indeed, we can estimate the probability that randomly selected k and k′ are
relatively prime as follows: Since a prime number p divides a fraction 1/p of
all numbers, the probability that p divides both k and k′ is 1/p2. And k and
k′ are coprime if and only if there is no prime p that divides both. Therefore,

Prob(k, k′ coprime) =
∏

prime p

(

1 − 1

p2

)

=
1

ζ(2)
=

6

π2
' .607

(6.214)

(where ζ(z) denotes the Riemann zeta function). Therefore, we are likely to
succeed in finding the period r after some constant number (independent of
N) of repetitions of the algorithm.
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6.9.2 From FFT to QFT

Now let’s consider the implementation of the quantum Fourier transform.
The Fourier transform

∑

x

f(x)|x〉 →
∑

y

(

1√
N

∑

x

e2πixy/Nf(x)

)

|y〉, (6.215)

is multiplication by an N×N unitary matrix, where the (x, y) matrix element
is (e2πi/N)xy. Naively, this transform requires O(N2) elementary operations.
But there is a well-known and very useful (classical) procedure that reduces
the number of operations to O(N logN). Assuming N = 2n, we express x
and y as binary expansions

x = xn−1 · 2n−1 + xn−2 · 2n−2 + . . . + x1 · 2 + x0

y = yn−1 · 2n−1 + yn−2 · 2n−2 + . . .+ y1 · 2 + y0. (6.216)

In the product of x and y, we may discard any terms containing n or more
powers of 2, as these make no contribution to e2πixy/2n. Hence

xy

2n
≡ yn−1(.x0) + yn−2(.x1x0) + yn−3(.x2x1x0) + . . .

+ y1(.xn−2xn−3 . . . x0) + y0(.xn−1xn−2 . . . x0), (6.217)

where the factors in parentheses are binary expansions; e.g.,

.x2x1x0 =
x2

2
+
x1

22
+
x0

23
. (6.218)

We can now evaluate

f̃ (x) =
1√
N

∑

y

e2πixy/Nf(y), (6.219)

for each of the N values of x. But the sum over y factors into n sums over
yk = 0, 1, which can be done sequentially in a time of order n.

With quantum parallelism, we can do far better. From eq. (6.217) we
obtain

QFT :|x〉 → 1√
N

∑

y

e2πixy/N |y〉

=
1√
2n

(

|0〉 + e2πi(.x0)|1〉
) (

|0〉 + e2πi(.x1x0)|1〉
)

. . .
(

|0〉 + e2πi(.xn−1xn−2...x0)|1〉
)

. (6.220)
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The QFT takes each computational basis state to an unentangled state of
n qubits; thus we anticipate that it can be efficiently implemented. Indeed,
let’s consider the case n = 3. We can readily see that the circuit

|x2〉

|x1〉

|x0〉

|y2〉

|y1〉

|y0〉

s

s s

H R1 R2

H R1

H

does the job (but note that the order of the bits has been reversed in the
output). Each Hadamard gate acts as

H : |xk〉 →
1√
2

(

|0〉 + e2πi(.xk)|1〉
)

. (6.221)

The other contributions to the relative phase of |0〉 and |1〉 in the kth qubit
are provided by the two-qubit conditional rotations, where

Rd =

(

1 0

0 eiπ/2d

)

, (6.222)

and d = (k − j) is the “distance” between the qubits.
In the case n = 3, the QFT is constructed from three H gates and three

controlled-R gates. For general n, the obvious generalization of this circuit
requires n H gates and

(

n
2

)

= 1
2
n(n − 1) controlled R’s. A two qubit gate

is applied to each pair of qubits, again with controlled relative phase π/2d,
where d is the “distance” between the qubits. Thus the circuit family that
implements QFT has a size of order (logN)2.

We can reduce the circuit complexity to linear in logN if we are will-
ing to settle for an implementation of fixed accuracy, because the two-qubit
gates acting on distantly separated qubits contribute only exponentially small
phases. If we drop the gates acting on pairs with distance greater than m,
than each term in eq. (6.217) is replaced by an approximation to m bits of
accuracy; the total error in xy/2n is certainly no worse than n2−m, so we
can achieve accuracy ε in xy/2n with m ≥ logn/ε. If we retain only the
gates acting on qubit pairs with distance m or less, then the circuit size is
mn ∼ n logn/ε.
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In fact, if we are going to measure in the computational basis immedi-
ately after implementing the QFT (or its inverse), a further simplification
is possible – no two-qubit gates are needed at all! We first remark that the
controlled – Rd gate acts symmetrically on the two qubits – it acts trivially
on |00〉, |01〉, and |10〉, and modifies the phase of |11〉 by eiθd. Thus, we
can interchange the “control” and “target” bits without modifying the gate.
With this change, our circuit for the 3-qubit QFT can be redrawn as:

|x2〉

|x1〉

|x0〉

|y2〉

|y1〉

|y0〉

s s

s

H

R1 H

R2 R1 H

Once we have measured |y0〉, we know the value of the control bit in the
controlled-R1 gate that acted on the first two qubits. Therefore, we will
obtain the same probability distribution of measurement outcomes if, instead
of applying controlled-R1 and then measuring, we instead measure y0 first,
and then apply (R1)

y0 to the next qubit, conditioned on the outcome of the
measurement of the first qubit. Similarly, we can replace the controlled-R1

and controlled-R2 gates acting on the third qubit by the single qubit rotation

(R2)
y0(R1)

y1 , (6.223)

(that is, a rotation with relative phase π(.y1y0)) after the values of y1 and y0

have been measured.
Altogether then, if we are going to measure after performing the QFT,

only n Hadamard gates and n − 1 single-qubit rotations are needed to im-
plement it. The QFT is remarkably simple!

6.10 Factoring

6.10.1 Factoring as period finding

What does the factoring problem (finding the prime factors of a large com-
posite positive integer) have to do with periodicity? There is a well-known
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(randomized) reduction of factoring to determining the period of a function.
Although this reduction is not directly related to quantum computing, we
will discuss it here for completeness, and because the prospect of using a
quantum computer as a factoring engine has generated so much excitement.

Suppose we want to find a factor of the n-bit number N . Select pseudo-
randomly a < N , and compute the greatest common divisor GCD(a,N),
which can be done efficiently (in a time of order (logN)3) using the Euclidean
algorithm. If GCD(a,N) 6= 1 then the GCD is a nontrivial factor of N , and
we are done. So suppose GCD(a,N) = 1.

[Aside: The Euclidean algorithm. To compute GCD(N1, N2) (for N1 >
N2) first divide N1 by N2 obtaining remainder R1. Then divide N2 by
R1, obtaining remainder R2. Divide R1 by R2, etc. until the remainder
is 0. The last nonzero remainder is R = GCD(N1, N2). To see that the
algorithm works, just note that (1) R divides all previous remainders
and hence also N1 and N2, and (2) any number that divides N1 and
N2 will also divide all remainders, including R. A number that divides
both N1 and N2, and also is divided by any number that divides both
N1 and N2 must be GCD(N1, N2). To see how long the Euclidean
algorithm takes, note that

Rj = qRj+1 +Rj+2, (6.224)

where q ≥ 1 and Rj+2 < Rj+1; therefore Rj+2 <
1
2
Rj. Two divisions

reduce the remainder by at least a factor of 2, so no more than 2 logN1

divisions are required, with each division using O((logN)2) elementary
operations; the total number of operations is O((logN)3).]

The numbers a < N coprime to N (having no common factor with N)
form a finite group under multiplication modN . [Why? We need to establish
that each element a has an inverse. But for given a < N coprime to N , each
ab (mod N) is distinct, as b ranges over all b < N coprime to N .16 Therefore,
for some b, we must have ab ≡ 1 (mod N); hence the inverse of a exists.]
Each element a of this finite group has a finite order r, the smallest positive
integer such that

ar ≡ 1 (mod N). (6.225)

16If N divides ab − ab′, it must divide b − b′.
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The order of a mod N is the period of the function

fN,a(x) = ax (mod N). (6.226)

We know there is an efficient quantum algorithm that can find the period of
a function; therefore, if we can compute fN,a efficiently, we can find the order
of a efficiently.

Computing fN,a may look difficult at first, since the exponent x can be
very large. But if x < 2m and we express x as a binary expansion

x = xm−1 · 2m−1 + xm−2 · 2m−2 + . . . + x0, (6.227)

we have

ax(mod N) = (a2m−1

)xm−1(a2m−2

)xm−2 . . . (a)x0 (mod N).
(6.228)

Each a2j

has a large exponent, but can be computed efficiently by a classical
computer, using repeated squaring

a2j

(mod N) = (a2j−1

)2 (mod N). (6.229)

So only m − 1 (classical) mod N multiplications are needed to assemble a
table of all a2j

’s.
The computation of ax(mod N) is carried out by executing a routine:

INPUT 1

For j = 0 to m− 1, if xj = 1, MULTIPLY a2j

.

This routine requires at most m mod N multiplications, each requiring of
order (logN)2 elementary operations.17 Since r < N , we will have a rea-
sonable chance of success at extracting the period if we choose m ∼ 2 logN .
Hence, the computation of fN,a can be carried out by a circuit family of size
O((logN)3). Schematically, the circuit has the structure:

17Using tricks for performing efficient multiplication of very large numbers, the number
of elementary operations can be reduced to O(log N log log N log log logN); thus, asymp-
totically for large N , a circuit family with size O(log2 N log logN log log log N) can com-
pute fN,a.
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|x2〉
|x1〉
|x0〉
|1〉

s

s

s

a a2 a4

Multiplication by a2j

is performed if the control qubit xj has the value 1.
Suppose we have found the period r of a mod N . Then if r is even, we

have

N divides
(

a
r
2 + 1

) (

a
r
2 − 1

)

. (6.230)

We know that N does not divide ar/2 − 1; if it did, the order of a would be
≤ r/2. Thus, if it is also the case that N does not divide ar/2 + 1, or

ar/2 6= −1 (mod N), (6.231)

thenN must have a nontrivial common factor with each of ar/2±1. Therefore,
GCD(N, ar/2 + 1) 6= 1 is a factor (that we can find efficiently by a classical
computation), and we are done.

We see that, once we have found r, we succeed in factoring N unless
either (1) r is odd or (2) r is even and ar/2 ≡ −1 (mod N). How likely is
success?

Let’s suppose that N is a product of two prime factors p1 6= p2,

N = p1p2 (6.232)

(this is actually the least favorable case). For each a < p1p2, there exist
unique a1 < p1 and a2 < p2 such that

a ≡ a1 (mod p1)

a ≡ a2 (mod p2). (6.233)

Choosing a random a < N is, therefore, equivalent to choosing random
a,< p1 and a2 < p2.

[Aside: We’re using the Chinese Remainder Theorem. The a solving
eq. (6.233) is unique because if a and b are both solutions, then both
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p1 and p2 must divide a− b. The solution exists because every a < p1p2

solves eq. (6.233) for some a1 and a2. Since there are exactly p1p2 ways
to choose a1 and a2, and exactly p1p2 ways to choose a, uniqueness
implies that there is an a corresponding to each pair a1, a2.]

Now let r1 denote the order of a1 mod p1 and r2 denote the order of
a2 mod p2. The Chinese remainder theorem tells us that ar ≡ 1 (mod p1p2)
is equivalent to

ar
1 ≡ 1 (mod p1)

ar
2 ≡ 1 (mod p2). (6.234)

Therefore r = LCM(r1, r2). If r1 and r2 are both odd, then so is r, and we
lose.

But if either r1 or r2 is even, then so is r, and we are still in the game. If

ar/2 ≡ −1 (mod p1)

ar/2 ≡ −1 (mod p2). (6.235)

Then we have ar/2 ≡ −1 (mod p1p2) and we still lose. But if either

ar/2 ≡ −1 (mod p1)

ar/2 ≡ 1 (mod p2), (6.236)

or

ar/2 ≡ 1 (mod p1)

ar/2 ≡ −1 (mod p2), (6.237)

then ar/2 6≡ −1(mod p1p2) and we win. (Of course, ar/2 ≡ 1 (mod p1) and
ar/2 ≡ 1 (mod p2) is not possible, for that would imply ar/2 ≡ 1 (mod p1p2),
and r could not be the order of a.)

Suppose that

r1 = 2c1 · odd

r2 = 2c2 · odd, (6.238)

where c1 > c2. Then r = LCM(r1, r2) = 2r2· integer, so that ar/2 ≡
1 (mod p2) and eq. (6.236) is satisfied – we win! Similarly c2 > c1 im-
plies eq. (6.237) – again we win. But for c1 = c2, r = r1 · (odd) = r2 · (odd′)
so that eq. (6.235) is satisfied – in that case we lose.
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Okay – it comes down to: for c1 = c2 we lose, for c1 6= c2 we win. How
likely is c1 6= c2?

It helps to know that the multiplicative group mod p is cyclic – it contains
a primitive element of order p − 1, so that all elements are powers of the
primitive element. [Why? The integers mod p are a finite field. If the group
were not cyclic, the maximum order of the elements would be q < p− 1, so
that xq ≡ 1 (mod p) would have p − 1 solutions. But that can’t be: in a
finite field there are no more than q qth roots of unity.]

Suppose that p − 1 = 2k · s, where s is odd, and consider the orders of
all the elements of the cyclic group of order p− 1. For brevity, we’ll discuss
only the case k = 1, which is the least favorable case for us. Then if b is a
primitive (order 2s) element, the even powers of b have odd order, and the
odd powers of b have order 2· (odd). In this case, then, r = 2c· (odd) where
c ∈ {0, 1}, each occuring equiprobably. Therefore, if p1 and p2 are both of
this (unfavorable) type, and a1, a2 are chosen randomly, the probability that
c1 6= c2 is 1

2
. Hence, once we have found r, our probability of successfully

finding a factor is at least 1
2
, if N is a product of two distinct primes. If N has

more than two distinct prime factors, our odds are even better. The method
fails if N is a prime power, N = pα, but prime powers can be efficiently
factored by other methods.

6.10.2 RSA

Does anyone care whether factoring is easy or hard? Well, yes, some people
do.

The presumed difficulty of factoring is the basis of the security of the
widely used RSA18 scheme for public key cryptography, which you may have
used yourself if you have ever sent your credit card number over the internet.

The idea behind public key cryptography is to avoid the need to exchange
a secret key (which might be intercepted and copied) between the parties
that want to communicate. The enciphering key is public knowledge. But
using the enciphering key to infer the deciphering key involves a prohibitively
difficult computation. Therefore, Bob can send the enciphering key to Alice
and everyone else, but only Bob will be able to decode the message that Alice
(or anyone else) encodes using the key. Encoding is a “one-way function”
that is easy to compute but very hard to invert.

18For Rivest, Shamir, and Adleman
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(Of course, Alice and Bob could have avoided the need to exchange the
public key if they had decided on a private key in their previous clandestine
meeting. For example, they could have agreed to use a long random string
as a one-time pad for encoding and decoding. But perhaps Alice and Bob
never anticipated that they would someday need to communicate privately.
Or perhaps they did agree in advance to use a one-time pad, but they have
now used up their private key, and they are loath to reuse it for fear that an
eavesdropper might then be able to break their code. Now they are two far
apart to safely exchange a new private key; public key cryptography appears
to be their most secure option.)

To construct the public key Bob chooses two large prime numbers p and
q. But he does not publicly reveal their values. Instead he computes the
product

N = pq. (6.239)

Since Bob knows the prime factorization of N , he also knows the value of the
Euler function ϕ(N) – the number of number less than N that are coprime
with N . In the case of a product of two primes it is

ϕ(N) = N − p− q + 1 = (p− 1)(q − 1), (6.240)

(only multiples of p and q share a factor with N). It is easy to find ϕ(N) if
you know the prime factorization of N , but it is hard if you know only N .

Bob then pseudo-randomly selects e < ϕ(N) that is coprime with ϕ(N).
He reveals to Alice (and anyone else who is listening) the value of N and e,
but nothing else.

Alice converts her message to ASCII, a number a < N . She encodes the
message by computing

b = f(a) = ae(mod N), (6.241)

which she can do quickly by repeated squaring. How does Bob decode the
message?

Suppose that a is coprime to N (which is overwhelmingly likely if p and
q are very large – anyway Alice can check before she encodes). Then

aϕ(N) ≡ 1 (mod N) (6.242)

(Euler’s theorem). This is so because the numbers less than N and coprime
to N form a group (of order ϕ(N)) under mod N multiplication. The order of
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any group element must divide the order of the group (the powers of a form
a subgroup). Since GCD(e, ϕ(N) = 1, we know that e has a multiplicative
inverse d = e−1 mod ϕ(N):

ed ≡ 1 (mod ϕ(N)). (6.243)

The value of d is Bob’s closely guarded secret; he uses it to decode by com-
puting:

f−1(b) = bd (mod N)

= aed (mod N)

= a · (aϕ(N))integer (mod N)

= a (mod N). (6.244)

[Aside: How does Bob compute d = e−1? The multiplicative inverse is a
byproduct of carrying out the Euclidean algorithm to compute GCD(e, ϕ(N)) =
1. Tracing the chain of remainders from the bottom up, starting with
Rn = 1:

1 = Rn = Rn−2 − qn−1Rn−1

Rn−1 = Rn−3 − qn−2Rn−2

Rn−2 = Rn−4 − qn−3Rn−3

etc. . . . (6.245)

(where the qj’s are the quotients), so that

1 = (1 + qn−1qn−2)Rn−2 − qn−1Rn−3

1 = (−qn−1 − qn−3(1 + qn−1qn−2))Rn−3

+ (1 + qn−1qn−2)Rn−4,

etc. . . . . (6.246)

Continuing, we can express 1 as a linear combination of any two suc-
cessive remainders; eventually we work our way up to

1 = d · e+ q · ϕ(N), (6.247)

and identify d as e−1 (mod ϕ(N)).]
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Of course, if Eve has a superfast factoring engine, the RSA scheme is
insecure. She factors N , finds ϕ(N), and quickly computes d. In fact, she
does not really need to factor N ; it is sufficient to compute the order modulo
N of the encoded message ae (mod N). Since e is coprime with ϕ(N), the
order of ae (mod N) is the same as the order of a (both elements generate
the same orbit, or cyclic subgroup). Once the order Ord(a) is known, Eve
computes d̃ such that

d̃e ≡ 1 (mod Ord(a)) (6.248)

so that

(ae)d̃ ≡ a · (aOrd(a))integer (mod N) ≡ a (mod N),
(6.249)

and Eve can decipher the message. If our only concern is to defeat RSA,
we run the Shor algorithm to find r = Ord(ae), and we needn’t worry about
whether we can use r to extract a factor of N or not.

How important are such prospective cryptographic applications of quan-
tum computing? When fast quantum computers are readily available, con-
cerned parties can stop using RSA, or can use longer keys to stay a step
ahead of contemporary technology. However, people with secrets sometimes
want their messages to remain confidential for a while (30 years?). They may
not be satisfied by longer keys if they are not confident about the pace of
future technological advances.

And if they shun RSA, what will they use instead? Not so many suitable
one-way functions are known, and others besides RSA are (or may be) vul-
nerable to a quantum attack. So there really is a lot at stake. If fast large
scale quantum computers become available, the cryptographic implications
may be far reaching.

But while quantum theory taketh away, quantum theory also giveth;
quantum computers may compromise public key schemes, but also offer an
alternative: secure quantum key distribution, as discussed in Chapter 4.

6.11 Phase Estimation

There is an alternative way to view the factoring algorithm (due to Kitaev)
that deepens our insight into how it works: we can factor because we can
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measure efficiently and accurately the eigenvalue of a certain unitary opera-
tor.

Consider a < N coprime to N , let x take values in {0, 1, 2, . . . , N − 1},
and let Ua denote the unitary operator

Ua : |x〉 → |ax (mod N)〉. (6.250)

This operator is unitary (a permutation of the computational basis) because
multiplication by a mod N is invertible.

If the order of a mod N is r, then

U r
a = 1 . (6.251)

It follows that all eigenvalues of Ua are rth roots of unity:

λk = e2πik/r, k ∈ {0, 1, 2, . . . , r − 1}. (6.252)

The corresponding eigenstates are

|λk〉 =
1√
r

r−1
∑

j=0

e−2πikj/r|ajx0(mod N)〉; (6.253)

associated with each orbit of length r generated by multiplication by a, there
are r mutually orthogonal eigenstates.

Ua is not hermitian, but its phase (the Hermitian operator that generates
Ua) is an observable quantity. Suppose that we can perform a measurement
that projects onto the basis of U a eigenstates, and determines a value λk

selected equiprobably from the possible eigenvalues. Hence the measurement
determines a value of k/r, as does Shor’s procedure, and we can proceed to
factor N with a reasonably high success probability. But how do we measure
the eigenvalues of a unitary operator?

Suppose that we can execute the unitary U conditioned on a control bit,
and consider the circuit:

|0〉

|λ〉

Measure

|λ〉

sH H

U
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Here |λ〉 denotes an eigenstate of U with eigenvalue λ (U |λ〉 = λ|λ〉). Then
the action of the circuit on the control bit is

|0〉 → 1√
2
(|0〉 + |1〉) → 1√

2
(|0〉 + λ|1〉)

→ 1

2
(1 + λ)|0〉 +

1

2
(1 − λ)|1〉. (6.254)

Then the outcome of the measurement of the control qubit has probability
distribution

Prob(0) =
∣

∣

∣

∣

1

2
(1 + λ)

∣

∣

∣

∣

2

= cos2(πφ)

Prob(1) =
∣

∣

∣

∣

1

2
(1 − λ)

)

|2 = sin2(πφ), (6.255)

where λ = e2πiφ.
As we have discussed previously (for example in connection with Deutsch’s

problem), this procedure distinguishes with certainty between the eigenval-
ues λ = 1 (φ = 0) and λ = −1 (φ = 1/2). But other possible values of λ can
also be distinguished, albeit with less statistical confidence. For example,
suppose the state on which U acts is a superposition of U eigenstates

α1|λ1〉 + α2|λ2〉. (6.256)

And suppose we execute the above circuit n times, with n distinct control
bits. We thus prepare the state

α1|λ1〉
(

1 + λ1

2
|0〉 +

1 − λ1

2
|1〉
)⊗n

+α2|λ2〉
(

1 + λ2

2
|0〉 +

1 − λ2

2
|1〉
)⊗n

. (6.257)

If λ1 6= λ2, the overlap between the two states of the n control bits is ex-
ponentially small for large n; by measuring the control bits, we can perform
the orthogonal projection onto the {|λ1〉, |λ2〉} basis, at least to an excellent
approximation.

If we use enough control bits, we have a large enough sample to measure
Prob (0)= 1

2
(1 + cos 2πφ) with reasonable statistical confidence. By execut-

ing a controlled-(iU), we can also measure 1
2
(1 + sin 2πφ) which suffices to

determine φ modulo an integer.
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However, in the factoring algorithm, we need to measure the phase of
e2πik/r to exponential accuracy, which seems to require an exponential number
of trials. Suppose, though, that we can efficiently compute high powers of U

(as is the case for U a) such as

U 2j

. (6.258)

By applying the above procedure to measurement of U2j

, we determine

exp(2πi2jφ), (6.259)

where e2πiφ is an eigenvalue of U . Hence, measuring U 2j

to one bit of accu-
racy is equivalent to measuring the jth bit of the eigenvalue of U .

We can use this phase estimation procedure for order finding, and hence
factorization. We invert eq. (6.253) to obtain

|x0〉 =
1√
r

r−1
∑

k=0

|λk〉; (6.260)

each computational basis state (for x0 6= 0) is an equally weighted superpo-
sition of r eigenstates of U a.

Measuring the eigenvalue, we obtain λk = e2πik/r, with k selected from
{0, 1 . . . , r−1} equiprobably. If r < 2n, we measure to 2n bits of precision to
determine k/r. In principle, we can carry out this procedure in a computer
that stores fewer qubits than we would need to evaluate the QFT, because
we can attack just one bit of k/r at a time.

But it is instructive to imagine that we incorporate the QFT into this
phase estimation procedure. Suppose the circuit

|0〉

|0〉

|0〉

|λ〉

1√
2
(|0〉 + λ4|1〉)

1√
2
(|0〉 + λ2|1〉)

1√
2
(|0〉 + λ|1〉)s

s

sH

H

H

U U2 U4
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acts on the eigenstate |λ〉 of the unitary transformation U . The conditional
U prepares 1√

2
(|0〉 + λ|1〉), the conditional U2 prepares 1√

2
(|0〉 + λ2|1〉), the

conditional U 4 prepares 1√
2
(|0〉 + λ4|1〉), and so on. We could perform a

Hadamard and measure each of these qubits to sample the probability dis-
tribution governed by the jth bit of φ, where λ = e2πiφ. But a more efficient
method is to note that the state prepared by the circuit is

1√
2m

2m−1
∑

y=0

e2πiφy|y〉. (6.261)

A better way to learn the value of φ is to perform the QFT(m), not the
Hadamard H(m), before we measure.

Considering the case m = 3 for clarity, the circuit that prepares and then
Fourier analyzes the state

1√
8

7
∑

y=0

e2πiφy|y〉 (6.262)

is

|0〉
|0〉
|0〉

|ỹ0〉
|ỹ1〉
|ỹ2〉r

r

r r r

r

H

H

H

H

1 H

2 1 H

U U2 U4

This circuit very nearly carries out our strategy for phase estimation out-
lined above, but with a significant modification. Before we execute the final
Hadamard transformation and measurement of ỹ1 and ỹ2, some conditional
phase rotations are performed. It is those phase rotations that distinguish
the QFT(3) from Hadamard transform H(3), and they strongly enhance the
reliability with which we can extract the value of φ.

We can understand better what the conditional rotations are doing if we
suppose that φ = k/8, for k ∈ {0, 1, 2 . . . , 7}; in that case, we know that the
Fourier transform will generate the output ỹ = k with probability one. We
may express k as the binary expansion

k = k2k1k0 ≡ k2 · 4 + k1 · 2 + k0. (6.263)
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In fact, the circuit for the least significant bit ỹ0 of the Fourier transform
is precisely Kitaev’s measurement circuit applied to the unitary U 4, whose
eigenvalue is

(e2πiφ)4 = eiπk = eiπk0 = ±1. (6.264)

The measurement circuit distinguishes eigenvalues ±1 perfectly, so that ỹ0 =
k0.

The circuit for the next bit ỹ1 is almost the measurement circuit for U2,
with eigenvalue

(e2πiφ)2 = eiπk/2 = eiπ(k1·k0). (6.265)

Except that the conditional phase rotation has been inserted, which multi-
plies the phase by exp[iπ(·k0)], resulting in eiπk1. Again, applying a Hadamard
followed by measurement, we obtain the outcome ỹ1 = k1 with certainty.
Similarly, the circuit for ỹ2 measures the eigenvalue

e2πiφ = eiπk/4 = eiπ(k2·k1k0), (6.266)

except that the conditional rotation removes eiπ(·k1k0), so that the outcome
is ỹ2 = k2 with certainty.

Thus, the QFT implements the phase estimation routine with maximal
cleverness. We measure the less significant bits of φ first, and we exploit
the information gained in the measurements to improve the reliability of our
estimate of the more significant bits. Keeping this interpretation in mind,
you will find it easy to remember the circuit for the QFT(n)!

6.12 Discrete Log

Sorry, I didn’t have time for this.

6.13 Simulation of Quantum Systems

Ditto.
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6.14 Summary

Classical circuits. The complexity of a problem can be characterized by the
size of a uniform family of logic circuits that solve the problem: The problem
is hard if the size of the circuit is a superpolynomial function of the size of
the input. One classical universal computer can simulate another efficiently,
so the classification of complexity is machine independent. The 3-bit Toffoli
gate is universal for classical reversible computation. A reversible computer
can simulate an irreversible computer without a significant slowdown and
without unreasonable memory resources.

Quantum Circuits. Although there is no proof, it seems likely that
polynomial-size quantum circuits cannot be simulated by polynomial-size
probabilistic classical circuits (BQP 6= BPP ); however, polynomial space is
sufficient (BQP ⊆ PSPACE). A noisy quantum circuit can simulate an
ideal quantum circuit of size T to acceptable accuracy if each quantum gate
has an accuracy of order 1/T . One universal quantum computer can simulate
another efficiently, so that the complexity classBQP is machine independent.
A generic two-qubit quantum gate, if it can act on any two qubits in a device,
is adequate for universal quantum computation. A controlled-NOT gate plus
a generic one-qubit gate is also adequate.

Fast Quantum Searching. Exhaustive search for a marked item in an
unsorted database of N items can be carried out by a quantum computer
in a time of order

√
N , but no faster. Quadratic quantum speedups can be

achieved for some structured search problems, too, but some oracle prob-
lems admit no significant quantum speedup. Two parties, each in possession
of a table with N entries, can locate a “collision” between their tables by
exchanging O(

√
N ) qubits, in apparent violation of the spirit (but not the

letter) of the Holevo bound.

Period Finding. Exploiting quantum parallelism, the Quantum Fourier
Transform in an N -dimensional space can be computed in time of order
(logN)2 (compared to time N logN for the classical fast Fourier transform);
if we are to measure immediately afterward, one qubit gates are sufficient
to compute the QFT. Thus quantum computers can efficiently solve certain
problems with a periodic structure, such as factoring and the discrete log
problem.



6.15. EXERCISES 89

6.15 Exercises

6.1 Linear simulation of Toffoli gate.

In class we constructed the n-bit Toffoli gate (θ(n)) from 3-bit Toffoli
gates (θ(3)’s). The circuit required only one bit of scratch space, but
the number of gates was exponential in n. With more scratch, we can
substantially reduce the number of gates.

a) Find a circuit family with 2n − 5 θ(3)’s that evaluates θ(n). (Here n −
3 scratch bits are used, which are set to 0 at the beginning of the
computation and return to the value 0 at the end.)

b) Find a circuit family with 4n−12 θ(3)’s that evaluates θ(n), which works
irrespective of the initial values of the scratch bits. (Again the n − 3
scratch bits return to their initial values, but they don’t need to be set
to zero at the beginning.)

6.2 A universal quantum gate set.

The purpose of this exercise is to complete the demonstration that the
controlled-NOT and arbitrary one-qubit gates constitute a universal
set.

a) If U is any unitary 2×2 matrix with determinant one, find unitary A,B,
and C such that

ABC = 1 (6.267)

AσxBσxC = U . (6.268)

Hint: From the Euler angle construction, we know that

U = Rz(ψ)Ry(θ)Rz(φ), (6.269)

where, e.g., Rz(φ) denotes a rotation about the z-axis by the angle φ.
We also know that, e.g.,

σxRz(φ)σx = Rz(−φ). (6.270)

b) Consider a two-qubit controlled phase gate: it applies U = eiα1 to the
second qubit if the first qubit has value |1〉, and acts trivially otherwise.
Show that it is actually a one-qubit gate.
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c) Draw a circuit using controlled-NOT gates and single-qubit gates that
implements controlled-U , where U is an arbitrary 2× 2 unitary trans-
formation.

6.3 Precision.

The purpose of this exercise is to connect the accuracy of a quantum
state with the accuracy of the corresponding probability distribution.

a) Let ‖ A ‖sup denote the sup norm of the operator A, and let

‖ A ‖tr= tr
[

(A†A)1/2
]

, (6.271)

denote its trace norm. Show that

‖ AB ‖tr ≤ ‖ B ‖sup · ‖ A ‖tr and | tr A | ≤ ‖ A ‖tr .
(6.272)

b) Suppose ρ and ρ̃ are two density matrices, and {|a〉} is a complete or-
thonormal basis, so that

Pa = 〈a|ρ|a〉,

P̃a = 〈a|ρ̃|a〉, (6.273)

are the corresponding probability distributions. Use (a) to show that

∑

a

|Pa − P̃a| ≤ ‖ ρ − ρ̃ ‖tr . (6.274)

c) Suppose that ρ = |ψ〉〈ψ| and ρ̃ = |ψ̃〉〈ψ̃| are pure states. Use (b) to show
that

∑

a

|Pa − P̃a| ≤ 2 ‖ |ψ〉 − |ψ̃〉 ‖ . (6.275)

6.4 Continuous-time database search

A quantum system with an n-qubit Hilbert space has the Hamiltonian

Hω = E|ω〉〈ω|, (6.276)
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where |ω〉 is an unknown computational-basis state. You are to find
the value of ω by the following procedure. Turn on a time-independent
perturbation H ′ of the Hamiltonian, so that the total Hamiltonian
becomes

H = Hω + H ′. (6.277)

Prepare an initial state |ψ0〉, and allow the state to evolve, as governed
by H , for a time T . Then measure the state. From the measurement
result you are to infer ω.

a) Suppose the initial state is chosen to be

|s〉 =
1

2n/2

2n−1
∑

x=0

|x〉, (6.278)

and the perturbation is

H ′ = E|s〉〈s|. (6.279)

Solve the time-independent Schrödinger equation

i
d

dt
|ψ〉 = H|ψ〉 (6.280)

to find the state at time T . How should T be chosen to optimize the
likelihood of successfully determining ω?

b) Now suppose that we may choose |ψ0〉 and H ′ however we please, but
we demand that the state of the system after time T is |ω〉, so that
the measurement determines ω with success probability one. Derive a
lower bound that T must satisfy, and compare to your result in (a).
(Hint: As in our analysis in class, compare evolution governed by H

with evolution governed by H ′ (the case of the “empty oracle”), and
use the Schrödinger equation to bound how rapidly the state evolving
according to H deviates from the state evolving according to H ′.)



Chapter 7

Quantum Error Correction

7.1 A Quantum Error-Correcting Code

In our study of quantum algorithms, we have found persuasive evidence that
a quantum computer would have extraordinary power. But will quantum
computers really work? Will we ever be able to build and operate them?

To do so, we must rise to the challenge of protecting quantum information
from errors. As we have already noted in Chapter 1, there are several as-
pects to this challenge. A quantum computer will inevitably interact with its
surroundings, resulting in decoherence and hence in the decay of the quan-
tum information stored in the device. Unless we can successfully combat
decoherence, our computer is sure to fail. And even if we were able to pre-
vent decoherence by perfectly isolating the computer from the environment,
errors would still pose grave difficulties. Quantum gates (in contrast to clas-
sical gates) are unitary transformations chosen from a continuum of possible
values. Thus quantum gates cannot be implemented with perfect accuracy;
the effects of small imperfections in the gates will accumulate, eventually
leading to a serious failure in the computation. Any effective strategem to
prevent errors in a quantum computer must protect against small unitary
errors in a quantum circuit, as well as against decoherence.

In this and the next chapter we will see how clever encoding of quan-
tum information can protect against errors (in principle). This chapter will
present the theory of quantum error-correcting codes. We will learn that
quantum information, suitably encoded, can be deposited in a quantum mem-
ory, exposed to the ravages of a noisy environment, and recovered without

1
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damage (if the noise is not too severe). Then in Chapter 8, we will extend the
theory in two important ways. We will see that the recovery procedure can
work effectively even if occasional errors occur during recovery. And we will
learn how to process encoded information, so that a quantum computation

can be executed successfully despite the debilitating effects of decoherence
and faulty quantum gates.

A quantum error-correcting code (QECC) can be viewed as a mapping
of k qubits (a Hilbert space of dimension 2k) into n qubits (a Hilbert space
of dimension 2n), where n > k. The k qubits are the “logical qubits” or
“encoded qubits” that we wish to protect from error. The additional n − k
qubits allow us to store the k logical qubits in a redundant fashion, so that
the encoded information is not easily damaged.

We can better understand the concept of a QECC by revisiting an ex-
ample that was introduced in Chapter 1, Shor’s code with n = 9 and k = 1.
We can characterize the code by specifying two basis states for the code sub-
space; we will refer to these basis states as |0̄〉, the “logical zero” and |1̄〉, the
“logical one.” They are

|0̄〉 = [
1√
2
(|000〉 + |111〉)]⊗3,

|1̄〉 = [
1√
2
(|000〉 − |111〉)]⊗3; (7.1)

each basis state is a 3-qubit cat state, repeated three times. As you will
recall from the discussion of cat states in Chapter 4, the two basis states
can be distinguished by the 3-qubit observable σ(1)

x ⊗ σ(2)
x ⊗ σ(3)

x (where
σ(i)

x denotes the Pauli matrix σx acting on the ith qubit); we will use the
notation X1X2X3 for this operator. (There is an implicit I ⊗ I ⊗ · · · ⊗ I

acting on the remaining qubits that is suppressed in this notation.) The
states |0̄〉 and |1̄〉 are eigenstates of X1X2X3 with eigenvalues +1 and −1
respectively. But there is no way to distinguish |0̄〉 from |1̄〉 (to gather any
information about the value of the logical qubit) by observing any one or two
of the qubits in the block of nine. In this sense, the logical qubit is encoded
nonlocally; it is written in the nature of the entanglement among the qubits
in the block. This nonlocal property of the encoded information provides
protection against noise, if we assume that the noise is local (that it acts
independently, or nearly so, on the different qubits in the block).

Suppose that an unknown quantum state has been prepared and encoded
as a|0̄〉+ b|1̄〉. Now an error occurs; we are to diagnose the error and reverse
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it. How do we proceed? Let us suppose, to begin with, that a single bit flip
occurs acting on one of the first three qubits. Then, as discussed in Chapter
1, the location of the bit flip can be determined by measuring the two-qubit
operators

Z1Z2 , Z2Z3. (7.2)

The logical basis states |0̄〉 and |1̄〉 are eigenstates of these operators with
eigenvalue 1. But flipping any of the three qubits changes these eigenvalues.
For example, if Z1Z2 = −1 and Z2Z3 = 1, then we infer that the first
qubit has flipped relative to the other two. We may recover from the error
by flipping that qubit back.

It is crucial that our measurement to diagnose the bit flip is a collective
measurement on two qubits at once — we learn the value of Z1Z2, but we
must not find out about the separate values of Z1 and Z2, for to do so
would damage the encoded state. How can such a collective measurement
be performed? In fact we can carry out collective measurements if we have
a quantum computer that can execute controlled-NOT gates. We first intro-
duce an additional “ancilla” qubit prepared in the state |0〉, then execute the
quantum circuit

– Figure –

and finally measure the ancilla qubit. If the qubits 1 and 2 are in a state
with Z1Z2 = −1 (either |0〉1|1〉2 or |1〉1|0〉2), then the ancilla qubit will flip
once and the measurement outcome will be |1〉. But if qubits 1 and 2 are
in a state with Z1Z2 = 1 (either |0〉1|0〉2 or |1〉1|1〉2), then the ancilla qubit
will flip either twice or not at all, and the measurement outcome will be |0〉.
Similarly, the two-qubit operators

Z4Z5, Z7Z8,

Z5Z6, Z8Z9, (7.3)

can be measured to diagnose bit flip errors in the other two clusters of three
qubits.

A three-qubit code would suffice to protect against a single bit flip. The
reason the 3-qubit clusters are repeated three times is to protect against



4 CHAPTER 7. QUANTUM ERROR CORRECTION

phase errors as well. Suppose now that a phase error

|ψ〉 → Z|ψ〉 (7.4)

occurs acting on one of the nine qubits. We can diagnose in which cluster
the phase error occurred by measuring the two six-qubit observables

X1X2X3X4X5X6,

X4X5X6X7X8X9. (7.5)

The logical basis states |0̄〉 and |1̄〉 are both eigenstates with eigenvalue one
of these observables. A phase error acting on any one of the qubits in a
particular cluster will change the value of XXX in that cluster relative to
the other two; the location of the change can be identified by measuring the
observables in eq. (7.5). Once the affected cluster is identified, we can reverse
the error by applying Z to one of the qubits in that cluster.

How do we measure the six-qubit observable X1X2X3X4X5X6? Notice
that if its control qubit is initially in the state 1√

2
(|0〉+ |1〉), and its target is

an eigenstate of X (that is, NOT) then a controlled-NOT acts according to

CNOT :
1√
2
(|0〉 + |1〉) ⊗ |x〉 → 1√

2
(|0〉 + (−1)x|1〉) ⊗ |x〉;

(7.6)

it acts trivially if the target is the X = 1 (x = 0) state, and it flips the
control if the target is the X = −1 (x = 1) state. To measure a product of
X’s, then, we execute the circuit

– Figure –

and then measure the ancilla in the 1√
2
(|0〉 ± |1〉) basis.

We see that a single error acting on any one of the nine qubits in the block
will cause no irrevocable damage. But if two bit flips occur in a single cluster
of three qubits, then the encoded information will be damaged. For example,
if the first two qubits in a cluster both flip, we will misdiagnose the error and
attempt to recover by flipping the third. In all, the errors, together with our



7.2. CRITERIA FOR QUANTUM ERROR CORRECTION 5

mistaken recovery attempt, apply the operator X1X2X3 to the code block.
Since |0̄〉 and |1̄〉 are eigenstates of X1X2X3 with distinct eigenvalues, the
effect of two bit flips in a single cluster is a phase error in the encoded qubit:

X1X2X3 : a|0̄〉 + b|1̄〉 → a|0̄〉 − b|1̄〉 . (7.7)

The encoded information will also be damaged if phase errors occur in two
different clusters. Then we will introduce a phase error into the third cluster
in our misguided attempt at recovery, so that altogether Z1Z4Z7 will have
been applied, which flips the encoded qubit:

Z1Z4Z7 : a|0̄〉 + b|1̄〉 → a|1̄〉 + b|0̄〉 . (7.8)

If the likelihood of an error is small enough, and if the errors acting on
distinct qubits are not strongly correlated, then using the nine-qubit code
will allow us to preserve our unknown qubit more reliably than if we had not
bothered to encode it at all. Suppose, for example, that the environment
acts on each of the nine qubits, independently subjecting it to the depolar-
izing channel described in Chapter 3, with error probability p. Then a bit
flip occurs with probability 2

3
p, and a phase flip with probability 2

3
p. (The

probability that both occur is 1
3
p). We can see that the probability of a phase

error affecting the logical qubit is bounded above by 4p2, and the probability
of a bit flip error is bounded above by 12p2. The total error probability is no
worse than 16p2; this is an improvement over the error probability p for an
unprotected qubit, provided that p < 1/16.

Of course, in this analysis we have implicitly assumed that encoding,
decoding, error syndrome measurement, and recovery are all performed flaw-
lessly. In Chapter 8 we will examine the more realistic case in which errors
occur during these operations.

7.2 Criteria for Quantum Error Correction

In our discussion of error recovery using the nine-qubit code, we have assumed
that each qubit undergoes either a bit-flip error or a phase-flip error (or both).
This is not a realistic model for the errors, and we must understand how to
implement quantum error correction under more general conditions.

To begin with, consider a single qubit, initially in a pure state, that in-
teracts with its environment in an arbitrary manner. We know from Chapter
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3 that there is no loss or generality (we may still represent the most gen-
eral superoperator acting on our qubit) if we assume that the initial state
of the environment is a pure state, which we will denote as |0〉E . Then the
evolution of the qubit and its environment can be described by a unitary
transformation

U : |0〉 ⊗ |0〉E → |0〉 ⊗ |e00〉E + |1〉 ⊗ |e01〉E ,

|1〉 ⊗ |0〉E → |0〉 ⊗ |e10〉E + |1〉 ⊗ |e11〉E ; (7.9)

here the four |eij〉E are states of the environment that need not be normalized
or mutually orthogonal (though they do satisfy some constraints that follow
from the unitarity of U). Under U , an arbitrary state |ψ〉 = a|0〉 + b|1〉 of
the qubit evolves as

U : (a|0〉 + b|1〉)|0〉E → a(|0〉|e00〉E + |1〉|e01〉E)

+ b(|0〉|e10〉E + |1〉|e11〉E)

= (a|0〉 + b|1〉) ⊗ 1

2
(|e00〉E + |e11〉E)

+ (a|0〉 − b|1〉) ⊗ 1

2
(|e00〉E − |e11〉E)

+ (a|1〉 + b|0〉) ⊗ 1

2
(|e01〉E + |e10〉E)

+ (a|1〉 − b|0〉) ⊗ 1

2
(|e01〉E − |e10〉E)

≡ I |ψ〉 ⊗ |eI〉E + X|ψ〉 ⊗ |eX〉E + Y |ψ〉 ⊗ |eY 〉E
+ Z|ψ〉 ⊗ |eZ〉E . (7.10)

The action of U can be expanded in terms of the (unitary) Pauli operators
{I ,X,Y ,Z}, simply because these are a basis for the vector space of 2 × 2
matrices. Heuristically, we might interpret this expansion by saying that one
of four possible things happens to the qubit: nothing (I), a bit flip (X), a
phase flip (Z), or both (Y = iXZ). However, this classification should not
be taken literally, because unless the states {|eI〉, |eX〉, |eY 〉, |eZ〉} of the en-
vironment are all mutually orthogonal, there is no conceivable measurement
that could perfectly distinguish among the four alternatives.
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Similarly, an arbitrary 2n × 2n matrix acting on an n-qubit Hilbert space
can be expanded in terms of the 22n operators

{I,X,Y ,Z}⊗n; (7.11)

that is, each such operator can be expressed as a tensor-product “string” of
single-qubit operators, with each operator in the string chosen from among
the identity and the three Pauli matrices X,Y , and Z. Thus, the action
of an arbitrary unitary operator on n qubits plus their environment can be
expanded as

|ψ〉 ⊗ |0〉E →
∑

a

Ea|ψ〉 ⊗ |ea〉E ; (7.12)

here the index a ranges over 22n values. The {Ea} are the linearly inde-
pendent Pauli operators acting on the n qubits, and the {|ea〉E} are the
corresponding states of the environment (which are not assumed to be nor-
malized or mutually orthogonal). A crucial feature of this expansion for what
follows is that each Ea is a unitary operator.

Eq. (7.12) provides the conceptual foundation of quantum error correc-
tion. In devising a quantum error-correcting code, we identify a subset E of
all the Pauli operators,

E ⊆ {Ea} ≡ {I ,X,Y ,Z}⊗n ; (7.13)

these are the errors that we wish to be able to correct. Our aim will be
to perform a collective measurement of the n qubits in the code block that
will enable us to diagnose which error Ea ∈ E occurred. If |ψ〉 is a state
in the code subspace, then for some (but not all) codes this measurement
will prepare a state Ea|ψ〉 ⊗ |ea〉E , where the value of a is known from the
measurement outcome. Since Ea is unitary, we may proceed to apply E†

a(=
Ea) to the code block, thus recovering the undamaged state |ψ〉.

Each Pauli operator can be assigned a weight, an integer t with 0 ≤ t ≤ n;
the weight is the number of qubits acted on by a nontrivial Pauli matrix
(X,Y , or Z). Heuristically, then, we can interpret a term in the expansion
eq. (7.12) where Ea has weight t as an event in which errors occur on t
qubits (but again we cannot take this interpretation too literally if the states
{|ea〉E} are not mutually orthogonal). Typically, we will take E to be the set
of all Pauli operators of weight up to and including t; then if we can recover
from any error superoperator with support on the set E, we will say that the
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code can correct t errors. In adopting such an error set, we are implicitly
assuming that the errors afflicting different qubits are only weakly correlated
with one another, so that the amplitude for more than t errors on the n
qubits is relatively small.

Given the set E of errors that are to be corrected, what are the necessary
and sufficient conditions to be satisfied by the code subspace in order that
recovery is possible? Let us denote by { |̄i〉 } an orthonormal basis for the
code subspace. (We will refer to these basis elements as “codewords”.) It
will clearly be necessary that

〈j̄|E†
bEa |̄i〉 = 0, i 6= j, (7.14)

where Ea,b ∈ E. If this condition were not satisfied for some i 6= j, then
errors would be able to destroy the perfect distinguishability of orthogonal
codewords, and encoded quantum information could surely be damaged. (A
more explicit derivation of this necessary condition will be presented below.)
We can also easily see that a sufficient condition is

〈j̄|E†
bEa |̄i〉 = δabδij. (7.15)

In this case the Ea’s take the code subspace to a set of mutually orthogonal
“error subspaces”

Ha = EaHcode. (7.16)

Suppose, then that an arbitrary state |ψ〉 in the code subspace is prepared,
and subjected to an error. The resulting state of code block and environment
is

∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E , (7.17)

where the sum is restricted to the errors in the set E. We may then perform
an orthogonal measurement that projects the code block onto one of the
spaces Ha, so that the state becomes

Ea|ψ〉 ⊗ |ea〉E . (7.18)

We finally apply the unitary operator E†
a to the code block to complete the

recovery procedure.
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A code that satisfies the condition eq. (7.15) is called a nondegenerate

code. This terminology signifies that there is a measurement that can unam-
biguously diagnose the error Ea ∈ E that occurred. But the example of the
nine-qubit code has already taught us that more general codes are possible.
The nine-qubit code is degenerate, because phase errors acting on different
qubits in the same cluster of three affect the code subspace in precisely the
same way (e.g., Z1|ψ〉 = Z2|ψ〉). Though no measurement can determine
which qubit suffered the error, this need not pose an obstacle to successful
recovery.

The necessary and sufficient condition for recovery to be possible is easily
stated:

〈j̄|E†
bEa |̄i〉 = Cbaδij, (7.19)

where Ea,b ∈ E, and Cba = 〈̄i|E†
bEa |̄i〉 is an arbitrary Hermitian matrix. The

nontrivial content of this condition that goes beyond the weaker necessary
condition eq. (7.14) is that 〈̄i|E†

bEa|̄i〉 does not depend on i. The origin of
this condition is readily understood — were it otherwise, in identifying an
error subspace Ha we would acquire some information about the encoded
state, and so would inevitably disturb that state.

To prove that the condition eq. (7.19) is necessary and sufficient, we
invoke the theory of superoperators developed in Chapter 3. Errors acting
on the code block are described by a superoperator, and the issue is whether
another superoperator (the recovery procedure) can be constructed that will
reverse the effect of the error. In fact, we learned in Chapter 3 that the only
superoperators that can be inverted are unitary operators. But now we are
demanding a bit less. We are not required to be able to reverse the action of
the error superoperator on any state in the n-qubit code block; rather, it is
enough to be able to reverse the errors when the initial state resides in the
k-qubit encoded subspace.

An alternative way to express the action of an error on one of the code
basis states |̄i〉 (and the environment) is

|̄i〉 ⊗ |0〉E →
∑

µ

Mµ |̄i〉 ⊗ |µ〉E , (7.20)

where now the states |µ〉E are elements of an orthonormal basis for the envi-
ronment, and the matrices Mµ are linear combinations of the Pauli operators
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Ea contained in E, satisfying the operator-sum normalization condition
∑

µ

M †
µMµ = I . (7.21)

The error can be reversed by a recovery superoperator if there exist operators
Rν such that

∑

ν

R†
νRν = I, (7.22)

and
∑

µ,ν

RνMµ|̄i〉 ⊗ |µ〉E ⊗ |ν〉A

= |̄i〉 ⊗ |stuff〉EA; (7.23)

here the |ν〉A’s are elements of an orthonormal basis for the Hilbert space of
the ancilla that is employed to implement the recovery operation, and the
state |stuff〉EA of environment and ancilla must not depend on i. It follows
that

RνMµ|̄i〉 = λνµ |̄i〉; (7.24)

for each µ and ν; the product RνMµ acting on the code subspace is a multiple
of the identity. Using the normalization condition satisfied by the Rν’s, we
infer that

M
†
δMµ|̄i〉 = M

†
δ

(

∑

ν

R†
νRν

)

Mµ|̄i〉 =
∑

ν

λ∗νδλνµ |̄i〉, (7.25)

so that M
†
δMµ is likewise a multiple of the identity acting on the code

subspace. In other words

〈j̄|M †
δMµ |̄i〉 = Cδµδij; (7.26)

since each Ea in E is a linear combination of Mµ’s, eq. (7.19) then follows.
Another instructive way to understand why eq. (7.26) is a necessary con-

dition for error recovery is to note that if the code block is prepared in the
state |ψ〉, and an error acts according to eq. (7.20), then the density matrix
for the environment that we obtain by tracing over the code block is

ρE =
∑

µ,ν

|µ〉E〈ψ|M †
νMµ|ψ〉E〈ν|. (7.27)
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Error recovery can proceed successfully only if there is no way to acquire
any information about the state |ψ〉 by performing a measurement on the
environment. Therefore, we require that ρE be independent of |ψ〉, if |ψ〉 is
any state in the code subspace; eq. (7.26) then follows.

To see that eq. (7.26) is sufficient for recovery as well as necessary, we
can explicitly construct the superoperator that reverses the error. For this
purpose it is convenient to choose our basis {|µ〉E} for the environment so
that the matrix Cδµ in eq. (7.26) is diagonalized:

〈j̄|M †
δMµ|̄i〉 = Cµδδµδij , (7.28)

where
∑

µ Cµ = 1 follows from the operator-sum normalization condition.
For each ν with Cν 6= 0, let

Rν =
1√
Cν

∑

i

|̄i〉〈̄i|M †
ν , (7.29)

so that Rν acts according to

Rν : Mµ |̄i〉 →
√

Cνδµν |̄i〉. (7.30)

Then we easily see that

∑

µ,ν

RνMµ |̄i〉 ⊗ |µ〉E ⊗ |ν〉A

= |̄i〉 ⊗ (
∑

ν

√

Cν |ν〉E ⊗ |ν〉A); (7.31)

the superoperator defined by the Rν ’s does indeed reverse the error. It only
remains to check that the Rν’s satisfy the normalization condition. We have

∑

ν

R†
νRν =

∑

ν,i

1

Cν

∑

ν

M ν |̄i〉〈̄i|M †
ν , (7.32)

which is the orthogonal projection onto the space of states that can be reached
by errors acting on codewords. Thus we can complete the specification of
the recovery superoperator by adding one more element to the operator sum
— the projection onto the complementary subspace.

In brief, eq. (7.19) is a sufficient condition for error recovery because it is
possible to choose a basis for the error operators (not necessarily the Pauli
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operator basis) that diagonalizes the matrix Cab, and in this basis we can
unambiguously diagnose the error by performing a suitable orthogonal mea-
surement. (The eigenmodes of Cab with eigenvalue zero, like Z1 −Z2 in the
case of the 9-qubit code, correspond to errors that occur with probability
zero.) We see that, once the set E of possible errors is specified, the recov-
ery operation is determined. In particular, no information is needed about
the states |ea〉E of the environment that are associated with the errors Ea.
Therefore, the code works equally effectively to control unitary errors or de-
coherence errors (as long as the amplitude for errors outside of the set E is
negligible). Of course, in the case of a nondegenerate code, Cab is already
diagonal in the Pauli basis, and we can express the recovery basis as

Ra =
∑

i

|̄i〉〈̄i|E†
a ; (7.33)

there is an Ra corresponding to each Ea in E.
We have described error correction as a two step procedure: first a col-

lective measurement is conducted to diagnose the error, and secondly, based
on the measurement outcome, a unitary transformation is applied to reverse
the error. This point of view has many virtues. In particular, it is the quan-
tum measurement procedure that seems to enable us to tame a continuum of
possible errors, as the measurement projects the damaged state into one of a
discrete set of outcomes, for each of which there is a prescription for recov-
ery. But in fact measurement is not an essential ingredient of quantum error
correction. The recovery superoperator of eq. (7.31) may of course be viewed
as a unitary transformation acting on the code block and an ancilla. This
superoperator can describe a measurement followed by a unitary operator if
we imagine that the ancilla is subjected to an orthogonal measurement, but
the measurement is not necessary.

If there is no measurement, we are led to a different perspective on the
reversal of decoherence achieved in the recovery step. When the code block
interacts with its environment, it becomes entangled with the environment,
and the Von Neumann entropy of the environment increases (as does the
entropy of the code block). If we are unable to control the environment, that
increase in its entropy can never be reversed; how then, is quantum error
correction possible? The answer provided by eq. (7.31) is that we may apply
a unitary transformation to the data and to an ancilla that we do control.
If the criteria for quantum error correction are satisfied, this unitary can be
chosen to transform the entanglement of the data with the environment into
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entanglement of ancilla with environment, restoring the purity of the data in
the process, as in:

– Figure –

While measurement is not a necessary part of error correction, the ancilla
is absolutely essential. The ancilla serves as a depository for the entropy in-
serted into the code block by the errors — it “heats” as the data “cools.” If
we are to continue to protect quantum information stored in quantum mem-
ory for a long time, a continuous supply of ancilla qubits should be provided
that can be discarded after use. Alternatively, if the ancilla is to be recycled,
it must first be erased. As discussed in Chapter 1, the erasure is dissipative
and requires the expenditure of power. Thus principles of thermodynamics
dictate that we cannot implement (quantum) error correction for free. Errors
cause entropy to seep into the data. This entropy can be transferred to the
ancilla by means of a reversible process, but work is needed to pump entropy
from the ancilla back to the environment.

7.3 Some General Properties of QECC’s

7.3.1 Distance

A quantum code is said to be binary if it can be represented in terms of
qubits. In a binary code, a code subspace of dimension 2k is embedded in a
space of dimension 2n, where k and n > k are integers. There is actually no
need to require that the dimensions of these spaces be powers of two (see the
exercises); nevertheless we will mostly confine our attention here to binary
coding, which is the simplest case.

In addition to the block size n and the number of encoded qubits k,
another important parameter characterizing a code is its distance d. The
distance d is the minimum weight of a Pauli operator E such that

〈̄i|Ea|j̄〉 6= Caδij. (7.34)

We will describe a quantum code with block size n, k encoded qubits, and
distance d as an “[[n, k, d]] quantum code.” We use the double-bracket no-
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tation for quantum codes, to distinguish from the [n, k, d] notation used for
classical codes.

We say that an QECC can correct t errors if the set E of Ea’s that allow
recovery includes all Pauli operators of weigh t or less. Our definition of
distance implies that the criterion for error correction

〈̄i|E†
aEb|j̄〉 = Cabδij, (7.35)

will be satisfied by all Pauli operators Ea,b of weight t or less, provided that
d ≥ 2t+1. Therefore, a QECC with distance d = 2t+1 can correct t errors.

7.3.2 Located errors

A distance d = 2t+1 code can correct t errors, irrespective of the location of
the errors in the code block. But in some cases we may know that particular
qubits are especially likely to have suffered errors. Perhaps we saw a hammer
strike those qubits. Or perhaps you sent a block of n qubits to me, but t < n
of the qubits were lost and never received. I am confident that the n − t
qubits that did arrive were well packaged and were received undamaged. But
I replace the t missing qubits with the (arbitrarily chosen) state |00 . . . 0〉,
realizing full well that these qubits are likely to be in error.

A given code can protect against more errors if the errors occur at known
locations instead of unknown locations. In fact, a QECC with distance d =
t+ 1 can correct t errors at known locations. In this case, the set E of errors
to be corrected is the set of all Pauli operators with support at the t specified
locations (each Ea acts trivially on the other n−t qubits). But then, for each
Ea and Eb in E, the product E†

aEb also has weight at most t. Therefore,
the error correction criterion is satisfied for all Ea,b ∈ E, provided the code
has distance at least t+ 1.

In particular, a QECC that corrects t errors in arbitrary locations can
correct 2t errors in known locations.

7.3.3 Error detection

In some cases we may be satisfied to detect whether an error has occurred,
even if we are unable to fully diagnose or reverse the error. A measurement
designed for error detection has two possible outcomes: “good” and “bad.”
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If the good outcome occurs, we are assured that the quantum state is un-
damaged. If the bad outcome occurs, damage has been sustained, and the
state should be discarded.

If the error superoperator has its support on the set E of all Pauli op-
erators of weight up to t, and it is possible to make a measurement that
correctly diagnoses whether an error has occurred, then it is said that we can
detect t errors. Error detection is easier than error correction, so a given code
can detect more errors than it can correct. In fact, a QECC with distance
d = t+ 1 can detect t errors.

Such a code has the property that

〈̄i|Ea|j̄〉 = Caδij (7.36)

for every Pauli operator Ea of weight t or less, or

Ea |̄i〉 = Ca |̄i〉 + |ϕ⊥
ai〉 , (7.37)

where |ϕ⊥
ai〉 is an unnormalized vector orthogonal to the code subspace.

Therefore, the action on a state |ψ〉 in the code subspace of an error su-
peroperator with support on E is

|ψ〉 ⊗ |0〉E →
∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E = |ψ〉 ⊗





∑

Ea∈E
Ca|ea〉E



 + |orthog〉 ,
(7.38)

where |orthog〉 denotes a vector orthogonal to the code subspace.
Now we can perform a “fuzzy” orthogonal measurement on the data, with

two outcomes: the state is projected onto either the code subspace or the
complementary subspace. If the first outcome is obtained, the undamaged
state |ψ〉 is recovered. If the second outcome is found, an error has been
detected. We conclude that our QECC with distance d can detect d − 1
errors. In particular, then, a QECC that can correct t errors can detect 2t
errors.

7.3.4 Quantum codes and entanglement

A QECC protects quantum information from error by encoding it nonlo-

cally, that is, by sharing it among many qubits in a block. Thus a quantum
codeword is a highly entangled state.
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In fact, a distance d = t+1 nondegenerate code has the following property:
Choose any state |ψ〉 in the code subspace and any t qubits in the block.
Trace over the remaining n − t qubits to obtain

ρ(t) = tr(n−t)|ψ〉〈ψ| , (7.39)

the density matrix of the t qubits. Then this density matrix is totally random:

ρ(t) =
1

2t
I; (7.40)

(In any distance-(t+ 1) code, we cannot acquire any information about the
encoded data by observing any t qubits in the block; that is, ρ(t) is a constant,
independent of the codeword. But only if the code is nondegenerate will the
density matrix of the t qubits be a multiple of the identity.)

To verify the property eq. (7.40), we note that for a nondegenerate distance-
(t+ 1) code,

〈̄i|Ea|j̄〉 = 0 (7.41)

for any Ea of nonzero weight up to t, so that

tr(ρ(t)Ea) = 0, (7.42)

for any t-qubit Pauli operator Ea other than the identity. Now ρ(t), like any
Hermitian 2t × 2t matrix, can be expanded in terms of Pauli operators:

ρ(t) =
(

1

2t

)

I +
∑

Ea 6=I

ρaEa . (7.43)

Since the Ea’s satisfy

(

1

2t

)

tr(EaEb) = δab , (7.44)

we find that each ρa = 0, and we conclude that ρ(t) is a multiple of the
identity.
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7.4 Probability of Failure

7.4.1 Fidelity bound

If the support of the error superoperator contains only the Pauli operators
in the set E that we know how to correct, then we can recover the encoded
quantum information with perfect fidelity. But in a realistic error model,
there will be a small but nonzero amplitude for errors that are not in E, so
that the recovered state will not be perfect. What can we say about the
fidelity of the recovered state?

The Pauli operator expansion of the error superoperator can be divided
into a sum over the “good” operators (those in E), and the “bad” ones (those
not in E), so that it acts on a state |ψ〉 in the code subspace according to

|ψ〉 ⊗ |0〉E →
∑

a

Ea|ψ〉 ⊗ |ea〉E

≡
∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E +

∑

Eb 6∈E
Eb|ψ〉 ⊗ |eb〉E

≡ |GOOD〉 + |BAD〉 . (7.45)

The recovery operation (a unitary acting on the data and the ancilla) then
maps |GOOD〉 to a state |GOOD′〉 of data, environment, and ancilla, and
|BAD〉 to a state |BAD′〉, so that after recovery we obtain the state

|GOOD′〉 + |BAD′〉 ; (7.46)

here (since recovery works perfectly acting on the good state)

|GOOD′〉 = |ψ〉 ⊗ |s〉EA , (7.47)

where |s〉EA is some state of the environment and ancilla.
Suppose that the states |GOOD〉 and |BAD〉 are orthogonal. This would

hold if, in particular, all of the “good” states of the environment are orthog-
onal to all of the “bad” states; that is, if

〈ea|eb〉 = 0 for Ea ∈ E, Eb 6∈ E. (7.48)

Let ρrec denote the density matrix of the recovered state, obtained by tracing
out the environment and ancilla, and let

F = 〈ψ|ρrec|ψ〉 (7.49)
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be its fidelity. Now, since |BAD′〉 is orthogonal to |GOOD′〉 (that is, |BAD′〉
has no component along |ψ〉|s〉EA), the fidelity will be

F = 〈ψ|ρGOOD′ |ψ〉 + 〈ψ|ρBAD′|ψ〉 , (7.50)

where

ρGOOD′ = trEA (|GOOD′〉〈GOOD′|) , ρBAD′ = trEA (|BAD′〉〈BAD′|) .
(7.51)

The fidelity of the recovered state therefore satisfies

F ≥ 〈ψ|ρGOOD′ |ψ〉 =‖ |s〉EA ‖2=‖ |GOOD′〉 ‖2 . (7.52)

Furthermore, since the recovery operation is unitary, we have ‖ |GOOD′〉 ‖=
‖ |GOOD〉 ‖, and hence

F ≥ ‖ |GOOD〉 ‖2=‖
∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E ‖2 . (7.53)

In general, though, |BAD〉 need not be orthogonal to |GOOD〉, so that
|BAD′〉 need not be orthogonal to |GOOD′〉. Then |BAD′〉 might have a
component along |GOOD′〉 that interferes destructively with |GOOD′〉 and
so reduces the fidelity. We can still obtain a lower bound on the fidelity in
this more general case by resolving |BAD′〉 into a component along |GOOD′〉
and an orthogonal component, as

|BAD′〉 = |BAD′
‖〉 + |BAD′

⊥〉 (7.54)

Then reasoning just as above we obtain

F ≥ ‖ |GOOD′〉 + |BAD′
‖〉 ‖2 (7.55)

Of course, since both the error operation and the recovery operation are uni-
tary acting on data, environment, and ancilla, the complete state |GOOD′〉+
|BAD′〉 is normalized, or

‖ |GOOD′〉 + |BAD′
‖〉 ‖2 + ‖ |BAD′

⊥〉 ‖2= 1 , (7.56)

and eq. (7.55) becomes

F ≥ 1− ‖ |BAD′
⊥〉 ‖2 . (7.57)
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Finally, the norm of |BAD′
⊥〉 cannot exceed the norm of |BAD′〉, and we

conclude that

1 − F ≤ ‖ |BAD′〉 ‖2=‖ |BAD〉 ‖2≡‖
∑

Eb 6∈E
Eb|ψ〉 ⊗ |eb〉E ‖2 .

(7.58)

This is our general bound on the “failure probability” of the recovery oper-
ation. The result eq. (7.53) then follows in the special case where |GOOD〉
and |BAD〉 are orthogonal states.

7.4.2 Uncorrelated errors

Let’s now consider some implications of these results for the case where errors
acting on distinct qubits are completely uncorrelated. In that case, the error
superoperator is a tensor product of single-qubit superoperators. If in fact
the errors act on all the qubits in the same way, we can express the n-qubit
superoperator as

$(n)
error =

[

$(1)
error

]⊗n
, (7.59)

where $(1)
error is a one-qubit superoperator whose action (in its unitary repre-

sentation) has the form

|ψ〉 ⊗ |0〉E → |ψ〉 ⊗ |eI〉E + X |ψ〉⊗ |eX〉E + Y |ψ〉 ⊗ |eY 〉E
+Z|ψ〉 ⊗ |eZ〉E . (7.60)

The effect of the errors on encoded information is especially easy to analyze
if we suppose further that each of the three states of the environment |eX,Y,Z〉
is orthogonal to the state |eI〉. In that case, a record of whether or not an
error occurred for each qubit is permanently imprinted on the environment,
and it is sensible to speak of a probability of error perror for each qubit, where

〈eI |eI〉 = 1 − perror . (7.61)

If our quantum code can correct t errors, then the “good” Pauli operators
have weight up to t, and the “bad” Pauli operators have weight greater than
t; recovery is certain to succeed unless at least t+ 1 qubits are subjected to
errors. It follows that the fidelity obeys the bound

1 − F ≤
n
∑

s=t+1

(

n

s

)

ps
error (1 − perror)

n−s ≤
(

n

t+ 1

)

pt+1
error .

(7.62)



20 CHAPTER 7. QUANTUM ERROR CORRECTION

(For each of the
(

n

t+1

)

ways of choosing t+ 1 locations, the probability that

errors occurs at every one of those locations is pt+1
error, where we disregard

whether additional errors occur at the remaining n− t− 1 locations. There-
fore, the final expression in eq. (7.62) is an upper bound on the probability
that at least t+1 errors occur in the block of n qubits.) For perror small and t
large, the fidelity of the encoded data is a substantial improvement over the
fidelity F = 1 − O(p) maintained by an unprotected qubit.

For a general error superoperator acting on a single qubit, there is no clear
notion of an “error probability;” the state of the qubit and its environment
obtained when the Pauli operator I acts is not orthogonal to (and so cannot
be perfectly distinguished from) the state obtained when the Pauli operators
X, Y , and Z act. In the extreme case there is no decoherence at all — the
“errors” arise because unknown unitary transformations act on the qubits.
(If the unitary transformation U acting on a qubit were known, we could
recover from the “error” simply by applying U †.)

Consider uncorrelated unitary errors acting on the n qubits in the code
block, each of the form (up to an irrelevant phase)

U (1) =
√

1 − p+ i
√
p W , (7.63)

where W is a (traceless, Hermitian) linear combination of X, Y , and Z,
satisfying W 2 = I . If the state |ψ〉 of the qubit is prepared, and then the
unitary error eq. (7.63) occurs, the fidelity of the resulting state is

F =
∣

∣

∣〈ψ|U (1)|ψ〉
∣

∣

∣

2
= 1 − p

(

1 − (〈ψ|W |ψ〉)2
)

≥ 1 − p .
(7.64)

If a unitary error of the form eq. (7.63) acts on each of the n qubits in the
code block, and the resulting state is expanded in terms of Pauli operators
as in eq. (7.45), then the state |BAD〉 (which arises from terms in which W

acts on at least t + 1 qubits) has a norm of order (
√
p)t+1, and eq. (7.58)

becomes

1 − F = O(pt+1) . (7.65)

We see that coding provides an improvement in fidelity of the same order
irrespective of whether the uncorrelated errors are due to decoherence or due
to unknown unitary transformations.
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To avoid confusion, let us emphasize the meaning of “uncorrelated” for
the purpose of the above discussion. We consider a unitary error acting on
n qubits to be “uncorrelated” if it is a tensor product of single-qubit unitary
transformations, irrespective of how the unitaries acting on distinct qubits
might be related to one another. For example, an “error” whereby all qubits
rotate by an angle θ about a common axis is effectively dealt with by quantum
error correction; after recovery the fidelity will be F = 1 − O(θ2(t+1)), if the
code can protect against t uncorrelated errors. In contrast, a unitary error
that would cause more trouble is one of the form U (n) ∼ 1 + iθE

(n)
bad, where

E
(n)
bad is an n-qubit Pauli operator whose weight is greater than t. Then

|BAD〉 has a norm of order θ, and the typical fidelity after recovery will be
F = 1 − O(θ2).

7.5 Classical Linear Codes

Quantum error-correcting codes were first invented less than four years ago,
but classical error-correcting codes have a much longer history. Over the past
fifty years, a remarkably beautiful and powerful theory of classical coding has
been erected. Much of this theory can be exploited in the construction of
QECC’s. Here we will quickly review just a few elements of the classical
theory, confining our attention to binary linear codes.

In a binary code, k bits are encoded in a binary string of length n. That
is, from among the 2n strings of length n, we designate a subset containing
2k strings – the codewords. A k-bit message is encoded by selecting one of
these 2k codewords.

In the special case of a binary linear code, the codewords form a k-
dimensional closed linear subspace C of the binary vector space F n

2 . That is,
the bitwise XOR of two codewords is another codeword. The space C of the
code is spanned by a basis of k vectors v1, v2, . . . , vk; an arbitrary codeword
may be expressed as a linear combination of these basis vectors:

v(α1, . . . , αk) =
∑

i

αivi , (7.66)

where each αi ∈ {0, 1}, and addition is modulo 2. We may say that the
length-n vector v(α1 . . . αk) encodes the k-bit message α = (α1, . . . , αk).
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The k basis vectors v1, . . . vk may be assembled into a k × n matrix

G =









v1
...
vk









, (7.67)

called the generator matrix of the code. Then in matrix notation, eq. (7.66)
can be rewritten as

v(α) = αG ; (7.68)

the matrix G, acting to the left, encodes the message α.
An alternative way to characterize the k-dimensional code subspace of

F n
2 is to specify n − k linear constraints. There is an (n − k) × n matrix H

such that

Hv = 0 (7.69)

for all those and only those vectors v in the code C . This matrix H is called
the parity check matrix of the code C . The rows of H are n − k linearly
independent vectors, and the code space is the space of vectors that are
orthogonal to all of these vectors. Orthogonality is defined with respect to
the mod 2 bitwise inner product; two length-n binary strings are orthogonal
is they “collide” (both take the value 1) at an even number of locations. Note
that

HGT = 0 ; (7.70)

where GT is the transpose of G; the rows of G are orthogonal to the rows of
H.

For a classical bit, the only kind of error is a bit flip. An error occurring
in an n-bit string can be characterized by an n-component vector e, where
the 1’s in e mark the locations where errors occur. When afflicted by the
error e, the string v becomes

v → v + e . (7.71)

Errors can be detected by applying the parity check matrix. If v is a code-
word, then

H(v + e) = Hv +He = He . (7.72)
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He is called the syndrome of the error e. Denote by E the set of errors
{ei} that we wish to be able to correct. Error recovery will be possible if
and only if all errors ei have distinct syndromes. If this is the case, we can
unambiguously diagnose the error given the syndrome He, and we may then
recover by flipping the bits specified by e as in

v + e→ (v + e) + e = v . (7.73)

On the other hand, if He1 = He2 for e1 6= e2 then we may misinterpret an
e1 error as an e2 error; our attempt at recovery then has the effect

v + e1 → v + (e1 + e2) 6= v. (7.74)

The recovered message v + e1 + e2 lies in the code, but it differs from the
intended message v; the encoded information has been damaged.

The distance d of a code C is the minimum weight of any vector v ∈ C ,
where the weight is the number of 1’s in the string v. A linear code with
distance d = 2t+1 can correct t errors; the code assigns a distinct syndrome
to each e ∈ E, where E contains all vectors of weight t or less. This is so
because, if He1 = He2, then

0 = He1 +He2 = H(e1 + e2) , (7.75)

and therefore e1 + e2 ∈ C . But if e1 and e2 are unequal and each has weight
no larger than t, then the weight of e1 + e2 is greater than zero and no larger
than 2t. Since d = 2t+ 1, there is no such vector in C . Hence He1 and He2

cannot be equal.

A useful concept in classical coding theory is that of the dual code. We
have seen that the k×n generator matrix G and the (n−k)×n parity check
matrix H of a code C are related by HGT = 0. Taking the transpose, it
follows that GHT = 0. Thus we may regard HT as the generator and G as
the parity check of an (n − k)-dimensional code, which is denoted C⊥ and
called the dual of C . In other words, C⊥ is the orthogonal complement of
C in F n

2 . A vector is self-orthogonal if it has even weight, so it is possible
for C and C⊥ to intersect. A code contains its dual if all of its codewords
have even weight and are mutually orthogonal. If n = 2k it is possible that
C = C⊥, in which case C is said to be self-dual.

An identity relating the code C and its dual C⊥ will prove useful in the
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following section:

∑

v∈C

(−1)v·u =











2k u ∈ C⊥

0 u 6∈ C⊥
. (7.76)

The nontrivial content of the identity is the statement that the sum vanishes
for u 6∈ C⊥. This readily follows from the familiar identity

∑

v∈{0,1}k

(−1)v·w = 0, w 6= 0, (7.77)

where v and w are strings of length k. We can express v ∈ G as

v = αG, (7.78)

where α is a k-vector. Then

∑

v∈C

(−1)v·u =
∑

α∈{0,1}k

(−1)α·Gu = 0, (7.79)

for Gu 6= 0. Since G, the generator matrix of C , is the parity check matrix
for C⊥, we conclude that the sum vanishes for u 6∈ C⊥.

7.6 CSS Codes

Principles from the theory of classical linear codes can be adapted to the
construction of quantum error-correcting codes. We will describe here a
family of QECC’s, the Calderbank–Shor–Steane (or CSS) codes, that exploit
the concept of a dual code.

Let C1 be a classical linear code with (n−k1)×n parity check matrix H1,
and letC2 be a subcode of C1, with (n−k2)×n parity checkH2, where k2 < k1.
The first n− k1 rows of H2 coincide with those of H1, but there are k1 − k2

additional linearly independent rows; thus each word in C2 is contained in
C1, but the words in C2 also obey some additional linear constraints.

The subcode C2 defines an equivalence relation in C1; we say that u, v ∈
C1 are equivalent (u ≡ v) if and only if there is a w in C2 such that u = v+w.
The equivalence classes are the cosets of C2 in C1.
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A CSS code is a k = k1 − k2 quantum code that associates a codeword
with each equivalence class. Each element of a basis for the code subspace
can be expressed as

|w̄〉 =
1√
2k2

∑

v∈C2

|v + w〉 , (7.80)

an equally weighted superposition of all the words in the coset represented by
w. There are 2k1−k2 cosets, and hence 2k1−k2 linearly independent codewords.
The states |w̄〉 are evidently normalized and mutually orthogonal; that is,
〈w̄|w̄′〉 = 0 if w and w′ belong to different cosets.

Now consider what happens to the codeword |w̄〉 if we apply the bitwise
Hadamard transform H(n):

H(n) : |w̄〉F ≡ 1√
2k2

∑

v∈C2

|v + w〉

→ |w̄〉P ≡ 1√
2n

∑

u

1√
2k2

∑

v∈C2

(−1)u·v(−1)u·w|u〉

=
1√

2n−k2

∑

u∈C⊥
2

(−1)u·w|u〉 ; (7.81)

we obtain a coherent superposition, weighted by phases, of words in the dual
code C⊥

2 (in the last step we have used the identity eq. (7.76)). It is again
manifest in this last expression that the codeword depends only on the C2

coset that w represents — shifting w by an element of C2 has no effect on
(−1)u·w if u is in the code dual to C2.

Now suppose that the code C1 has distance d1 and the code C⊥
2 has

distance d⊥2 , such that

d1 ≥ 2tF + 1 ,

d⊥2 ≥ 2tP + 1 . (7.82)

Then we can see that the corresponding CSS code can correct tF bit flips
and tP phase flips. If e is a binary string of length n, let E(flip)

e denote the
Pauli operator with an X acting at each location i where ei = 1; it acts on
the state |v〉 according to

E(flip)
e : |v〉 → |v + e〉 . (7.83)
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And let E(phase)
e denote the Pauli operator with a Z acting where ei = 1; its

action is

E(phase)
e : |v〉 → (−1)v.e|v〉 , (7.84)

which in the Hadamard rotated basis becomes

E(phase)
e : |u〉 → |u+ e〉 . (7.85)

Now, in the original basis (the F or “flip” basis), each basis state |w̄〉F of
the CSS code is a superposition of words in the code C1. To diagnose bit flip
error, we perform on data and ancilla the unitary transformation

|v〉 ⊗ |0〉A → |v〉 ⊗ |H1v〉A , (7.86)

and then measure the ancilla. The measurement result H1eF is the bit flip

syndrome. If the number of flips is tF or fewer, we may correctly infer from
this syndrome that bit flips have occurred at the locations labeled by eF . We
recover by applying X to the qubits at those locations.

To correct phase errors, we first perform the bitwise Hadamard transfor-
mation to rotate from the F basis to the P (“phase”) basis. In the P basis,
each basis state |w̄〉P of the CSS code is a superposition of words in the code
C⊥

2 . To diagnose phase errors, we perform a unitary transformation

|v〉 ⊗ |0〉A → |v〉 ⊗ |G2v〉A , (7.87)

and measure the ancilla (G2, the generator matrix of C2, is also the parity
check matrix of C⊥

2 ). The measurement result G2eP is the phase error syn-

drome. If the number of phase errors is tP or fewer, we may correctly infer
from this syndrome that phase errors have occurred at locations labeled by
eP . We recover by applying X (in the P basis) to the qubits at those lo-
cations. Finally, we apply the bitwise Hadamard transformation once more
to rotate the codewords back to the original basis. (Equivalently, we may
recover from the phase errors by applying Z to the affected qubits after the
rotation back to the F basis.)

If eF has weight less than d1 and eP has weight less than d⊥2 , then

〈w̄|E(phase)
eP

E(flip)
eF

|w̄′〉 = 0 (7.88)

(unless eF = eP = 0). Any Pauli operator can be expressed as a product of
a phase operator and a flip operator — a Y error is merely a bit flip and
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phase error both afflicting the same qubit. So the distance d of a CSS code
satisfies

d ≥ min(d1, d
⊥
2 ) . (7.89)

CSS codes have the special property (not shared by more general QECC’s)
that the recovery procedure can be divided into two separate operations, one
to correct the bit flips and the other to correct the phase errors.

The unitary transformation eq. (7.86) (or eq. (7.87)) can be implemented
by executing a simple quantum circuit. Associated with each of the n − k1

rows of the parity check matrix H1 is a bit of the syndrome to be extracted.
To find the ath bit of the syndrome, we prepare an ancilla bit in the state
|0〉A,a, and for each value of λ with (H1)aλ = 1, we execute a controlled-NOT
gate with the ancilla bit as the target and qubit λ in the data block as the
control. When measured, the ancilla qubit reveals the value of the parity
check bit

∑

λ(H1)aλvλ.

Schematically, the full error correction circuit for a CSS code has the
form:

– Figure –

Separate syndromes are measured to diagnose the bit flip errors and the phase
errors. An important special case of the CSS construction arises when a code
C contains its dual C⊥. Then we may choose C1 = C and C2 = C⊥ ⊆ C ; the
C parity check is computed in both the F basis and the P basis to determine
the two syndromes.

7.7 The 7-Qubit Code

The simplest of the CSS codes is the [[n, k, d]] = [7, 1, 3] quantum code first
formulated by Andrew Steane. It is constructed from the classical 7-bit
Hamming code.

The Hamming code is an [n, k, d] = [7, 4, 3] classical code with the 3 × 7
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parity check matrix

H =







1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1





 . (7.90)

To see that the distance of the code is d = 3, first note that the weight-3
string (1110000) passes the parity check and is, therefore, in the code. Now
we need to show that there are no vectors of weight 1 or 2 in the code. If e1

has weight 1, then He1 is one of the columns of H. But no column of H is
trivial (all zeros), so e1 cannot be in the code. Any vector of weight 2 can be
expressed as e1 + e2, where e1 and e2 are distinct vectors of weight 1. But

H(e1 + e2) = He1 +He2 6= 0, (7.91)

because all columns of H are distinct. Therefore e1 + e2 cannot be in the
code.

The rows of H themselves pass the parity check, and so are also in the
code. (Contrary to one’s usual linear algebra intuition, a nonzero vector over
the finite field F2 can be orthogonal to itself.) The generator matrix G of
the Hamming code can be written as

G =











1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 0 0 0 0











; (7.92)

the first three rows coincide with the rows of H, and the weight-3 codeword
(1110000) is appended as the fourth row.

The dual of the Hamming code is the [7, 3, 4] code generated by H. In
this case the dual of the code is actually contained in the code — in fact, it
is the even subcode of the Hamming code, containing all those and only those
Hamming codewords that have even weight. The odd codeword (1110000)
is a representative of the nontrivial coset of the even subcode. For the CSS
construction, we will choose C1 to be the Hamming code, and C2 to be its
dual, the even subcode.. Therefore, C⊥

2 = C1 is again the Hamming code;
we will use the Hamming parity check both to detect bit flips in the F basis
and to detect phase flips in the P basis.
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In the F basis, the two orthonormal codewords of this CSS code, each
associated with a distinct coset of the even subcode, can be expressed as

|0̄〉F =
1√
8

∑

even v

∈ Hamming

|v〉 ,

|1̄〉F =
1√
8

∑

odd v

∈ Hamming

|v〉 . (7.93)

Since both |0̄〉 and |1̄〉 are superpositions of Hamming codewords, bit flips
can be diagnosed in this basis by performing an H parity check. In the
Hadamard rotated basis, these codewords become

H(7) : |0̄〉F → |0̄〉P ≡
(

1

4

)

∑

v∈ Hamming

|v〉 =
1√
2
(|0̄〉F + |1̄〉F )

|1̄〉F → |1̄〉P ≡
(

1

4

)

∑

v∈ Hamming

(−1)wt(v)|v〉 =
1√
2
(|0̄〉F − |1̄〉F ).

(7.94)

In this basis as well, the states are superpositions of Hamming codewords,
so that bit flips in the P basis (phase flips in the original basis) can again
be diagnosed with an H parity check. (We note in passing that for this
code, performing the bitwise Hadamard transformation also implements a
Hadamard rotation on the encoded data, a point that will be relevant to our
discussion of fault-tolerant quantum computation in the next chapter.)

Steane’s quantum code can correct a single bit flip and a single phase
flip on any one of the seven qubits in the block. But recovery will fail if
two different qubits both undergo either bit flips or phase flips. If e1 and e2

are two distinct weight-one strings then He1 +He2 is a sum of two distinct
columns of H, and hence a third column of H (all seven of the nontrivial
strings of length 3 appear as columns of H.) Therefore, there is another
weight-one string e3 such that He1 +He2 = He3, or

H(e1 + e2 + e3) = 0 ; (7.95)

thus e1 + e2 + e3 is a weight-3 word in the Hamming code. We will interpret
the syndrome He3 as an indication that the error v → v+ e3 has arisen, and
we will attempt to recover by applying the operation v → v+ e3. Altogether
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then, the effect of the two bit flip errors and our faulty attempt at recovery
will be to add e1 + e2 + e3 (an odd-weight Hamming codeword) to the data,
which will induce a flip of the encoded qubit

|0̄〉F ↔ |1̄〉F . (7.96)

Similarly, two phase flips in the F basis are two bit flips in the P basis, which
(after the botched recovery) induce on the encoded qubit

|0̄〉P ↔ |1̄〉P , (7.97)

or equivalently

|0̄〉F → |0̄〉F
|1̄〉F → −|1̄〉F , (7.98)

a phase flip of the encoded qubit in the F basis. If there is one bit flip and
one phase flip (either on the same qubit or different qubits) then recovery
will be successful.

7.8 Some Constraints on Code Parameters

Shor’s code protects one encoded qubit from an error in any single one of
nine qubits in a block, and Steane’s code reduces the block size from nine to
seven. Can we do better still?

7.8.1 The Quantum Hamming bound

To understand how much better we might do, let’s see if we can derive any
bounds on the distance d = 2t + 1 of an [[n, k, d]] quantum code, for given
n and k. At first, suppose we limit our attention to nondegenerate codes,
which assign a distinct syndrome to each possible error. On a given qubit,
there are three possible linearly independent errors X,Y , or Z. In a block
of n qubits, there are

(

n

j

)

ways to choose j qubits that are affected by errors,
and three possible errors for each of these qubits; therefore the total number
of possible errors of weight up to t is

N(t) =
t
∑

j=0

3j

(

n

j

)

. (7.99)



7.8. SOME CONSTRAINTS ON CODE PARAMETERS 31

If there are k encoded qubits, then there are 2k linearly independent
codewords. If all Ea|j̄〉’s are linearly independent, where Ea is any error
of weight up to t and |̄i〉 is any element of a basis for the codewords, then
the dimension 2n of the Hilbert space of n qubits must be large enough to
accommodate N(t) · 2k independent vectors; hence

N(t) =
t
∑

j=0

3j

(

n

j

)

≤ 2n−k. (7.100)

This result is called the quantum Hamming bound. An analogous bound
applies to classical block codes, but without the factor of 3j, since there is
only one type of error (a flip) that can affect a classical bit. We also emphasize
that the quantum Hamming bound applies only in the case of nondegenerate
coding, while the classical Hamming bound applies in general. However, no
degenerate quantum codes that violate the quantum Hamming code have yet
been constructed (as of January, 1999).

In the special case of a code with one encoded qubit (k = 1) that corrects
one error (t = 1), the quantum Hamming bound becomes

1 + 3n ≤ 2n−1, (7.101)

which is satisfied for n ≥ 5. In fact, the case n = 5 saturates the inequality
(1 + 15 = 16). A nondegenerate [[5, 1, 3]] quantum code, if it exists, is
perfect: The entire 32-dimensional Hilbert space of the five qubits is needed
to accommodate all possible one-qubit errors acting on all codewords — there
is no wasted space.

7.8.2 The no-cloning bound

We could still wonder, though, if there is a degenerate n = 4 code that can
correct one error. In fact, it is easy to see that no such code can exist. We
already know that a code that corrects t errors at arbitrary locations can
also be used to correct 2t errors at known locations. Suppose that we have
a [[4, 1, 3]] quantum code. Then we could encode a single qubit in the four-
qubit block, and split the block into two sub-blocks, each containing two
qubits.

– Figure –
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If we append |00〉 to each of those two sub-blocks, then the original block
has spawned two offspring, each with two located errors. If we were able to
correct the two located errors in each of the offspring, we would obtain two
identical copies of the parent block — we would have cloned an unknown
quantum state, which is impossible. Therefore, no [[4, 1, 3]] quantum code
can exist. We conclude that n = 5 is the minimal block size of a quantum
code that corrects one error, whether the code is degenerate or not.

The same reasoning shows that an [[n, k ≥ 1, d]] code can exist only for

n > 2(d − 1) . (7.102)

7.8.3 The quantum Singleton bound

We will now see that this result eq. (7.102) can be strengthened to

n− k ≥ 2(d − 1). (7.103)

Eq. (7.103) resembles the Singleton bound on classical code parameters,

n− k ≥ d − 1, (7.104)

and so has been called the “quantum Singleton bound.” For a classical linear

code, the Singleton bound is a near triviality: the code can have distance d
only if any d−1 columns of the parity check matrix are linearly independent.
Since the columns have length n− k, at most n− k columns can be linearly
independent; therefore d− 1 cannot exceed n− k. The Singleton bound also
applies to nonlinear codes.

An elegant proof of the quantum Singleton bound can be found that
exploits the subadditivity of the Von Neumann entropy discussed in §5.2.
We begin by introducing a k-qubit ancilla, and constructing a pure state
that maximally entangles the ancilla with the 2k codewords of the QECC:

|Ψ〉AQ =
1√
2k

∑

|x〉A|x̄〉Q , (7.105)

where {|x〉A} denotes an orthonormal basis for the 2k-dimensional Hilbert
space of the ancilla, and {|x̄〉Q} denotes an orthonormal basis for the 2k-
dimensional code subspace. If we trace over the length-n code block Q, the
density matrix ρA of the ancilla is 1

2k 1, which has entropy

S(A) = k = S(Q). (7.106)
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Now, if the code has distance d, then d − 1 located errors can be corrected;
or, as we have seen, no observable acting on d− 1 of the n qubits can reveal
any information about the encoded state. Equivalently, the observable can
reveal nothing about the state of the ancilla in the entangled state |Ψ〉.

Now, since we already know that n > 2(d − 1) (if k ≥ 1), let us imagine

dividing the code block Q into three disjoint parts: a set of d−1 qubits Q
(1)
d−1,

another disjoint set of d−1 qubits Q
(2)
d−1, and the remaining qubits Q

(3)
n−2(d−1).

If we trace out Q(2) and Q(3), the density matrix we obtain must contain no
correlations between Q(1) and the ancilla A. This means that the entropy of
system AQ(1) is additive:

S(Q(2)Q(3)) = S(AQ(1)) = S(A) + S(Q(1)). (7.107)

Similarly,

S(Q(1)Q(3)) = S(AQ(2)) = S(A) + S(Q(2)). (7.108)

Furthermore, in general, Von Neumann entropy is subadditive, so that

S(Q(1)Q(3)) ≤ S(Q(1)) + S(Q(3))

S(Q(2)Q(3)) ≤ S(Q(2)) + S(Q(3)) (7.109)

Combining these inequalities with the equalities above, we find

S(A) + S(Q(2)) ≤ S(Q(1)) + S(Q(3))

S(A) + S(Q(1)) ≤ S(Q(2)) + S(Q(3)). (7.110)

Both of these inequalities can be simultaneously satisfied only if

S(A) ≤ S(Q(3)) (7.111)

Now Q(3) has dimension n − 2(d − 1), and its entropy is bounded above by
its dimension so that

S(A) = k ≤ n− 2(d − 1), (7.112)

which is the quantum Singleton bound.
The [[5, 1, 3]] code saturates this bound, but for most values of n and

k the bound is not tight. Rains has obtained the stronger result that an
[[n, k, 2t+ 1]] code with k ≥ 1 must satisfy

t ≤
[

n + 1

6

]

, (7.113)
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(where [x] = “floor x” is the greatest integer greater than or equal to x.
Thus, the minimal length of a k = 1 code that can correct t = 1, 2, 3, 4, 5
errors is n = 5, 11, 17, 23, 29 respectively. Codes with all of these parameters
have actually been constructed, except for the [[23, 1, 9]] code.

7.9 Stabilizer Codes

7.9.1 General formulation

We will be able to construct a (nondegenerate) [[5, 1, 3]] quantum code, but
to do so, we will need a more powerful procedure for constructing quantum
codes than the CSS procedure.

Recall that to establish a criterion for when error recovery is possible, we
found it quite useful to expand an error superoperator in terms of the n-qubit
Pauli operators. But up until now we have not exploited the group structure
of these operators (a product of Pauli operators is a Pauli operator). In fact,
we will see that group theory is a powerful tool for constructing QECC’s.

For a single qubit, we will find it more convenient now to choose all of
the Pauli operators to be represented by real matrices, so I will now use a
notation in which Y denotes the anti-hermitian matrix

Y = ZX = iσy =

(

0 1
−1 0

)

, (7.114)

satisfying Y 2 = −I. Then the operators

{±I,±X,±Y ,±Z} ≡ ±{I,X,Y ,Z}, (7.115)

are the elements of a group of order 8.1 The n-fold tensor products of single-
qubit Pauli operators also form a group

Gn = ±{I,X,Y ,Z}⊕n, (7.116)

of order |Gn| = 22n+1 (since there are 4n possible tensor products, and another
factor of 2 for the ± sign) we will refer to Gn as the n-qubit Pauli group.
(In fact, we will use the term “Pauli group” both to refer to the abstract

1It is not the quaternionic group but the other non-abelian group of order 8 — the
symmetry group of the square. The element Y , of order 4, can be regarded as the 90◦

rotation of the plane, while X and Z are reflections about two orthogonal axes.
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group Gn, and to its dimension-2n faithful unitary representation by tensor
products of 2 × 2 matrices; its only irreducible representation of dimension
greater than 1.) Note that Gn has the two element center Z2 = {±I⊗n}. If
we quotient out its center, we obtain the group Ḡn ≡ Gn/Z2; this group can
also be regarded as a binary vector space of dimension 22n, a property that
we will exploit below.

The (2n-dimensional representation of the) Pauli group Gn evidently has
these properties:

(i) Each M ∈ Gn is unitary, M−1 = M †.

(ii) For each element M ∈ Gn,M
2 = ±I ≡ ±I⊗n. Furthermore, M 2 = I

if the number of Y ’s in the tensor product is even, and M 2 = −I if
the number of Y ’s is odd.

(iii) If M2 = I, then M is hermitian (M = M †); if M2 = −I , then M is
anti-hermitian (M = −M †).

(iv) Any two elements M ,N ∈ Gn either commute or anti-commute: MN =
±NM .

We will use the Pauli group to characterize a QECC in the following way:
Let S denote an abelian subgroup of the n-qubit Pauli group Gn. Thus all
elements of S acting on H2n can be simultaneously diagonalized. Then the
stabilizer code HS ⊆ H2n associated with S is the simultaneous eigenspace
with eigenvalue 1 of all elements of S. That is,

|ψ〉 ∈ HS iff M |ψ〉 = |ψ〉 for all M ∈ S. (7.117)

The group S is called the stabilizer of the code, since it preserves all of the
codewords.

The group S can be characterized by its generators. These are elements
{M i} that are independent (no one can be expressed as a product of others)
and such that each element of S can be expressed as a product of elements
of {M i}. If S has n−k generators, we can show that the code space HS has
dimension 2k — there are k encoded qubits.

To verify this, first note that each M ∈ S must satisfy M 2 = I; if
M2 = −I, then M cannot have the eigenvalue +1. Furthermore, for each
M 6= ±I in Gn that squares to one, the eigenvalues +1 and −1 have equal
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degeneracy. This is because for each M 6= ±I, there is an N ∈ Gn that
anti-commutes with M ,

NM = −MN ; (7.118)

therefore, M |ψ〉 = |ψ〉 if and only if M (N |ψ〉) = −N |ψ〉, and the action
of the unitary N establishes a 1 − 1 correspondence between the +1 eigen-
states of M and the −1 eigenstates. Hence there are 1

2
(2n) = 2n−1 mutually

orthogonal states that satisfy

M 1|ψ〉 = |ψ〉 , (7.119)

where M 1 is one of the generators of S.
Now let M 2 be another element of Gn that commutes with M 1 such that

M 2 6= ±I,±M1. We can find an N ∈ Gn that commutes with M1 but
anti-commutes with M2; therefore N preserves the +1 eigenspace of M 1,
but within this space, it interchanges the +1 and −1 eigenstates of M2. It
follows that the space satisfying

M 1|ψ〉 = M2|ψ〉 = |ψ〉, (7.120)

has dimension 2n−2.
Continuing in this way, we note that if M j is independent of {M1,M2, . . .M j−1},

then there is an N that commutes with M 1, . . . ,M j−1, but anti-commutes
with M j (we’ll discuss in more detail below how such an N can be found).
Therefore, restricted to the space with M 1 = M2 = . . . = M j−1 = 1,M j

has as many +1 eigenvectors as −1 eigenvectors. So adding another genera-
tor always cuts the dimension of the simultaneous eigenspace in half. With
n − k generators, the dimension of the remaining space is 2n (1/2)n−k = 2k.

The stabilizer language is useful because it provides a simple way to
characterize the errors that the code can detect and correct. We may think
of the n − k stabilizer generators M1, . . . ,Mn−k, as the check operators of
the code, the collective observables that we measure to diagnose the errors.
If the encoded information is undamaged, then we will find M i = 1 for each
of the generators; but if M i = −1 for some i, then the data is orthogonal to
the code subspace and an error has been detected.

Recall that the error superoperator can be expanded in terms of elements
Ea of the Pauli group. A particular Ea either commutes or anti-commutes
with a particular stabilizer generator M . If Ea and M commute, then

MEa|ψ〉 = EaM |ψ〉 = Ea|ψ〉, (7.121)
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for |ψ〉 ∈ HS, so the error preserves the value M = 1. But if Ea and M

anti-commute, then

MEa|ψ〉 = −EaM |ψ〉 = −Ea|ψ〉, (7.122)

so that the error flips the value of M , and the error can be detected by
measuring M .

For stabilizer generators M i and errors Ea, we may write

M iEa = (−1)siaEaM i. (7.123)

The sia’s, i = 1, . . . , n− k constitute a syndrome for the error Ea, as (−1)sia

will be the result of measuring M i if the error Ea occurs. In the case
of a nondegenerate code, the sia’s will be distinct for all Ea ∈ E, so that
measuring the n− k stabilizer generators will diagnose the error completely.

More generally, let us find a condition to be satisfied by the stabilizer
that is sufficient to ensure that error recovery is possible. Recall that it is
sufficient that, for each Ea,Eb ∈ E, and normalized |ψ〉 in the code subspace,
we have

〈ψ|E†
aEb|ψ〉 = Cab, (7.124)

where Cab is independent of |ψ〉. We can see that this condition is satisfied
provided that, for each Ea,Eb ∈ E, one of the following holds:

1) E†
aEb ∈ S ,

2) There is an M ∈ S that anti-commutes with E†
aEb.

Proof: In case (1) 〈ψ|E†
aEb|ψ〉 = 〈ψ|ψ〉 = 1, for |ψ〉 ∈ HS. In case (2),

suppose M ∈ S and ME†
aEb = −E†

aEbM . Then

〈ψ|E†
aEb|ψ〉 = 〈ψ|E†

aEbM |ψ〉

= −〈ψ|ME†
aEb|ψ〉 = −〈ψ|E†

aEb|ψ〉, (7.125)

and therefore 〈ψ|E†
aEb|ψ〉 = 0.
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Thus, a stabilizer code that corrects {E} is a space HS fixed by an abelian
subgroup S of the Pauli group, where either (1) or (2) is satisfied by each
E†

aEb with Ea,b ∈ E. The code is nondegenerate if condition (1) is not
satisfied for any E†

aEb.

Evidently we could also just as well choose the code subspace to be any
one of the 2n−k simultaneous eigenspaces of n − k independent commuting
elements of Gn. But in fact all of these codes are equivalent. We may regard
two stabilizer codes as equivalent if they differ only according to how the
qubits are labeled, and how the basis for each single-qubit Hilbert space is
chosen – that is the stabilizer of one code is transformed to the stabilizer
of the other by a permutation of the qubits together with a tensor prod-
uct of single-qubit transformations. If we partition the stabilizer generators
into two sets {M 1, . . . ,M j} and {M j+1, . . . ,Mn−k}, then there exists an
N ∈ Gn that commutes with each member of the first set and anti-commutes
with each member of the second set. Applying N to |ψ〉 ∈ Hs preserves the
eigenvalues of the first set while flipping the eigenvalues of the second set.
Since N is just a tensor product of single-qubit unitary transformations,
there is no loss of generality (up to equivalence) in choosing all of the eigen-
values to be one. Furthermore, since minus signs don’t really matter when
the stabilizer is specified, we may just as well say that two codes are equiva-
lent if, up to phases, the stabilizers differ by a permutation of the n qubits,
and permutations on each individual qubits of the operators X,Y ,Z.

Recovery may fail if there is an E†
aEb that commutes with the stabilizer

but does not lie in the stabilizer. This is an operator that preserves the
code subspace HS but may act nontrivially in that space; thus it can modify
encoded information. Since Ea|ψ〉 and Eb|ψ〉 have the same syndrome, we
might mistakenly interpret an Ea error as an Eb error; the effect of the error
together with the attempt at recovery is that E

†
bEa gets applied to the data,

which can cause damage.

A stabilizer code with distance d has the property that each E ∈ Gn of
weight less than d either lies in the stabilizer or anti-commutes with some
element of the stabilizer. The code is nondegenerate if the stabilizer contains
no elements of weight less than d. A distance d = 2t + 1 code can correct
t errors, and a distance s + 1 code can detect s errors or correct s errors at
known locations.
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7.9.2 Symplectic Notation

Properties of stabilizer codes are often best explained and expressed using the
language of linear algebra. The stabilizer S of the code, an order 2n−k abelian
subgroup of the Pauli group with all elements squaring to the identity, can
equivalently be regarded as a dimension n− k closed linear subspace of F 2n

2 ,
self orthogonal with respect to a certain (symplectic) inner product.

The group Ḡn = Gn/Z2 is isomorphic to the binary vector space F 2n
2 . We

establish this by observing that, since Y = ZX, any element M of the Pauli
group (up to the ± sign) can be expressed as a product of Z’s and X’s; we
may write

M = ZM · XM (7.126)

where ZM is a tensor product of Z’s and XM is a tensor product of X’s.
More explicitly, a Pauli operator may be written as

(α|β) ≡ Z(α)X(β) =
n
⊗

i=1

Zαi ·
n
⊗

i=1

Xβi, (7.127)

where α and β are binary strings of length n. (Then Y acts at the locations
where α and β “collide.”) Multiplication in Ḡn maps to addition in F 2n

2 :

(α|β)(α′|β ′) = (−1)α′·β(α+ α′|β + β ′) ; (7.128)

the phase arises because α′ ·β counts the number of times a Z is interchanged
with a X as the product is rearranged into the standard form of eq. (7.127).

It follows from eq. (7.128) that the commutation properties of the Pauli
operators can be expressed in the form

(α|β)(α′|β ′) = (−1)α·β′+α′·β(α′|β ′)(α|β) (7.129)

Thus two Pauli operators commute if and only if the corresponding vectors
are orthogonal with respect to the “symplectic” inner product

α · β ′ + α′ · β . (7.130)

We also note that the square of a Pauli operator is

(α|β)2 = (−1)α·βI , (7.131)
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since α·β counts the number of Y ’s in the operator; it squares to the identity
if and only if

α · β = 0 . (7.132)

Note that a closed subspace, where each element has this property, is auto-
matically self-orthogonal, since

α · β ′ + α′ · β = (α+ α′) · (β + β ′) − α · β − α′ · β ′ = 0 ;
(7.133)

in the group language, that is, a subgroup of Gn with each element squaring
to I is automatically abelian.

Using the linear algebra language, some of the statements made earlier
about the Pauli group can be easily verified by counting linear constraints.
Elements are independent if the corresponding vectors are linearly indepen-
dent over F 2n

2 , so we may think of the n − k generators of the stabilizer
as a basis for a linear subspace of dimension n − k. We will use the nota-
tion S to denote both the linear space and the corresponding abelian group.
Then S⊥ denotes the dimension-n + k space of vectors that are orthogonal
to each vector in S (with respect to the symplectic inner product). Note
that S⊥ contains S, since all vectors in S are mutually orthogonal. In the
group language, corresponding to S⊥ is the normalizer (or centralizer) group
N(S) (≡ S⊥) of S in Gn — the subgroup of Gn containing all elements that
commute with each element of S. Since S is abelian, it is contained in its
own normalizer, which also contains other elements (to be further discussed
below). The stabilizer of a distance d code has the property that each (α|β)
whose weight

∑

i(αi ∨ βi) is less than d either lies in the stabilizer subspace
S or lies outside the orthogonal space S⊥.

A code can be characterized by its stabilizer, a stabilizer by its generators,
and the n− k generators can be represented by an (n− k) × 2n matrix

H = (HZ|HX). (7.134)

Here each row is a Pauli operator, expressed in the (α|β) notation. The syn-
drome of an error Ea = (αa|βa) is determined by its commutation properties
with the generators M i = (α′

i|β ′
i); that is

sia = (αa|βa) · (α′
i|β ′

i) = αa · β ′
i + α′

i · βa. (7.135)
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In the case of a nondegenerate code, each error has a distinct syndrome. If
the code is degenerate, there may be several errors with the same syndrome,
but we may apply any one of the E†

a corresponding to the observed syndrome
in order to recover.

7.9.3 Some examples of stabilizer codes

(a) The nine-qubit code. This [[9, 1, 3]] code has eight stabilizer genera-
tors that can be expressed as

Z1Z2, Z2Z3 Z4Z5 Z5Z6, Z7Z8 Z8Z9

X1X2X3X4X5X6, X4X5X6X7X8X9.
(7.136)

In the notation of eq. (7.134) these become































1 1 0
0 1 1

0 0

0
1 1 0
0 1 1

0

0 0
1 1 0
0 1 1

0

0
1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1































(b) The seven-qubit code. This [[7, 1, 3]] code has six stabilizer genera-
tors, which can be expressed as

H̃ =

(

Hham 0
0 Hham

)

, (7.137)

where Hham is the 3 × 7 parity-check matrix of the classical [7,4,3]
Hamming code. The three check operators

M 1 = Z1Z3Z5Z7

M 2 = Z2Z3Z6Z7

M 3 = Z4Z5Z6Z7, (7.138)
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detect the bit flips, and the three check operators

M4 = X1X3X5X7

M5 = X2X3X6X7

M6 = X4X5X6X7, (7.139)

detect the phase errors. The space with M1 = M2 = M 3 = 1 is
spanned by the codewords that satisfy the Hamming parity check. Re-
calling that a Hadamard change of basis interchanges Z and X, we
see that the space with M 4 = M 5 = M6 is spanned by codewords
that satisfy the Hamming parity check in the Hadamard-rotated ba-
sis. Indeed, we constructed the seven-qubit code by demanding that
the Hamming parity check be satisfied in both bases. The generators
commute because the Hamming code contains its dual code; i.e., each
row of Hham satisfies the Hamming parity check.

(c) CSS codes. Recall whenever an [n, k, d] classical code C contains its
dual code C⊥, we can perform the CSS construction to obtain an
[[n, 2k−n, d]] quantum code. The stabilizer of this code can be written
as

H̃ =

(

H 0
0 H

)

(7.140)

where H is the (n− k)×n parity check matrix of C . As for the seven-
qubit code, the stabilizers commute because C contains C⊥, and the
code subspace is spanned by states that satisfy the H parity check in
both the F -basis and the P -basis. Equivalently, codewords obey the H
parity check and are invariant under

|v〉 → |v + w〉, (7.141)

where w ∈ C⊥.

(d) More general CSS codes. Consider, more generally, a stabilizer
whose generators can each be chosen to be either a product of Z’s
(α|0) or a product of X’s (0|β). Then the generators have the form

H̃ =

(

HZ 0
0 HX

)

. (7.142)
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Now, what condition must HX and HZ satisfy if the Z-generators and
X-generators are to commute? Since Z’s must collide with X’s an
even number of times, we have

HXH
T
Z = HZH

T
X = 0 . (7.143)

But this is just the requirement that the dual C⊥
X of the code whose

parity check is HX be contained in the code CZ whose parity check is
HZ . In other words, this QECC fits into the CSS framework, with

C2 = C⊥
X ⊆ C1 = CZ . (7.144)

So we may characterize CSS codes as those and only those for which
the stabilizer has generators of the form eq. (7.142).

However there is a caveat. The code defined by eq. (7.142) will be non-
degenerate if errors are restricted to weight less than d = min(dZ , dX)
(where dZ is the distance of CZ , and dX the distance of CX). But the
true distance of the QECC could exceed d. For example, the 9-qubit
code is in this generalized sense a CSS code. But in that case the
classical code CX is distance 1, reflecting that, e.g., Z1Z2 is contained
in the stabilizer. Nevertheless, the distance of the CSS code is d = 3,
since no weight-2 Pauli operator lies in S⊥ \ S.

7.9.4 Encoded qubits

We have seen that the troublesome errors are those in S⊥ \ S — those that
commute with the stabilizer, but lie outside of it. These Pauli operators are
also of interest for another reason: they can be regarded as the “logical”
operations that act on the encoded data that is protected by the code.

Appealing to the “linear algebra” viewpoint, we can see that the nor-
malizer S⊥ of the stabilizer contains n + k independent generators – in the
2n-dimensional space of the (α|β)’s, the subspace containing the vectors that
are orthogonal to each of n − k linearly independent vectors has dimension
2n − (n − k) = n + k. Of the n + k vectors that span this space, n − k
can be chosen to be the generators of the stabilizer itself. The remaining
2k generators preserve the code subspace because they commute with the
stabilizer, but act nontrivially on the k encoded qubits.

In fact, these 2k operations can be chosen to be the single-qubit operators
Z̄i, X̄ i, i = 1, 2, . . . , k, where Z̄i, X̄ i are the Pauli operators Z and X acting
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on the encoded qubit labeled by i. First, note that we can extend the n− k
stabilizer generators to a maximal set of n commuting operators. The k
operators that we add to the set may be denoted Z̄1, . . . Z̄k. We can then
regard the simultaneous eigenstates of Z̄1 . . . Z̄k (in the code subspace HS)
as the logical basis states |z̄1, . . . , z̄k〉, with z̄j = 0 corresponding to Z̄j = 1
and z̄j = 1 corresponding to Z̄j = −1.

The remaining k generators of the normalizer may be chosen to be mutu-
ally commuting and to commute with the stabilizer, but then they will not
commute with any of the Z̄i’s. By invoking a Gram-Schmidt orthonormaliza-
tion procedure, we can choose these generators, denoted X̄ i, to diagonalize
the symplectic form, so that

Z̄iX̄j = (−1)δijX̄jZ̄i. (7.145)

Thus, each X̄j flips the eigenvalue of the corresponding Z̄j, and it can so be
regarded as the Pauli operator X acting on encoded qubit i

(a) The 9-qubit Code. As we have discussed previously, the logical oper-
ators can be chosen to be

Z̄ = X1X2X3 ,

X̄ = Z1Z4Z7 . (7.146)

These anti-commute with one another (an X and a Z collide at position
1), commute with the stabilizer generators, and are independent of the
generators (no element of the stabilizer contains three X’s or three
Z’s).

(b) The 7-qubit code. We have seen that

X̄ = X1X2X3 ,

Z̄ = Z1Z2Z3 ; (7.147)

then X̄ adds an odd Hamming codeword and Z̄ flips the phase of an
odd Hamming codeword. These operations implement a bit flip and
phase flip respectively in the basis {|0〉F , |1〉F } defined in eq. (7.93).
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7.10 The 5-Qubit Code

All of the QECC’s that we have considered so far are of the CSS type — each
stabilizer generator is either a product of Z’s or a product of X’s. But not
all stabilizer codes have this property. An example of a non-CSS stabilizer
code is the perfect nondegenerate [[5,1,3]] code.

Its four stabilizer generators can be expressed

M1 = XZZXI,

M2 = IXZZX,

M3 = XIXZZ,

M4 = ZXIXZ, (7.148)

M2,3,4 are obtained from M1 by performing a cyclic permutation of the
qubits. (The fifth operator obtained by a cyclic permutation of the qubits,
M5 = ZZXIX = M 1M 2M3M4 is not independent of the other four.)
Since a cyclic permutation of a generator is another generator, the code itself
is cyclic — a cyclic permutation of a codeword is a codeword.

Clearly each M i contains no Y ’s and so squares to I. For each pair
of generators, there are two collisions between an X and a Z, so that the
generators commute. One can quickly check that each Pauli operator of
weight 1 or weight 2 anti-commutes with at least one generator, so that the
distance of the code is 3.

Consider, for example, whether there are error operators with support
on the first two qubits that commute with all four generators. The weight-2
operator, to commute with the IX in M 2 and the XI in M3, must be
XX. But XX anti-commutes with the XZ in M1 and the ZX in M 4.

In the symplectic notation, the stabilizer may be represented as

H̃ =











01100 10010
00110 01001
00011 10100
10001 01010











(7.149)

This matrix has a nice interpretation, as each of its columns can be regarded
as the syndrome of a single-qubit error. For example, the single-qubit bit flip
operator Xj , commutes with M i if M i has an I or X in position j, and
anti-commutes if M i has a Z in position j. Thus the table
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X1 X2 X3 X4 X5

M 1 0 1 1 0 0
M 2 0 0 1 1 0
M 3 0 0 0 1 1
M 4 1 0 0 0 1

lists the outcome of measuring M1,2,3,4 in the event of a bit flip. (For example,
if the first bit flips, the measurement outcomes M 1 = M 2 = M 3 = 1,M 4 =
−1, diagnose the error.) Similarly, the right half of H̃ can be regarded as the
syndrome table for the phase errors.

Z1 Z2 Z3 Z4 Z5

M 1 1 0 0 1 0
M 2 0 1 0 0 1
M 3 1 0 1 0 0
M 4 0 1 0 1 0

Since Y anti-commutes with both X and Z, we obtain the syndrome for the
error Y i by summing the ith columns of the X and Z tables:

Y 1 Y 2 Y 3 Y 4 Y 5

M 1 1 1 1 1 0
M 2 0 1 1 1 1
M 3 1 0 1 1 1
M 4 1 1 0 1 1

We find by inspection that the 15 columns of the X,Y , and Z syndrome
tables are all distinct, and so we verify again that our code is a nondegenerate
code that corrects one error. Indeed, the code is perfect — each of the 15
nontrivial binary strings of length 4 appears as a column in one of the tables.

Because of the cyclic property of the code, we can easily characterize all
15 nontrivial elements of its stabilizer. Aside from M1 = XZZXI and
the four operators obtained from it by cyclic permutations of the qubit, the
stabilizer also contains

M3M4 = −Y XXY I , (7.150)

plus its cyclic permutations, and

M2M5 = −ZY Y ZI, (7.151)
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and its cyclic permutations. Evidently, all elements of the stabilizer are
weight-4 Pauli operators.

For our logical operators, we may choose

Z̄ = ZZZZZ,

X̄ = XXXXX; (7.152)

these commute with M1,2,3,4, square to I, and anti-commute with one an-
other. Being weight 5, they are not themselves contained in the stabilizer.
Therefore if we don’t mind destroying the encoded state, we can determine
the value of Z̄ for the encoded qubit by measuring Z of each qubit and eval-
uating the parity of the outcomes. In fact, since the code is distance three,
there are elements of S⊥ \S of weight-three; alternate expressions for Z̄ and
X̄ can be obtained by multiplying by elements of the stabilizer. For example
we can choose

Z̄ = (ZZZZZ) · (−ZY Y ZI) = −IXXIZ, (7.153)

(or one of its cyclic permutations), and

X̄ = (XXXXX) · (−Y XXY I) = −ZIIZX,
(7.154)

(or one of its cyclic permutations). So it is possible to ascertain the value of
X̄ or Z̄ by measuring X or Z of only three of the five qubits in the block,
and evaluating the parity of the outcomes.

If we wish, we can construct an orthonormal basis for the code subspace,
as follows. Starting from any state |ψ0〉, we can obtain

|Ψ0〉 =
∑

M∈S

M |ψ0〉. (7.155)

This (unnormalized) state obeys M ′|Ψ0〉 = |Ψ0〉 for each M ′ ∈ S, since
multiplication by an element of the stabilizer merely permutes the terms in
the sum. To obtain the Z̄ = 1 encoded state |0̄〉, we may start with the state
|00000〉, which is also a Z̄ = 1 eigenstate, but not in the stabilizer; we find



48 CHAPTER 7. QUANTUM ERROR CORRECTION

(up to normalization)

|0̄〉 =
∑

M∈S

|00000〉

= |00000〉 + (M1 + cyclic perms) |00000〉
+ (M 3M4 + cyclic perms) |00000〉 + (M2M5 + cyclic perms) |00000〉
= |00000〉 + (110010〉 + cyclic perms)

− (|11110〉 + cyclic perms)

− (|01100〉 + cyclic perms). (7.156)

We may then find |1̄〉 by applying X̄ to |0̄〉, that is by flipping all 5 qubits:

|1̄〉 = X̄|0̄〉 = |11111〉 + (|01101〉 + cyclic perms)

− (|00001〉 + cyclic perms)

− (|10011〉 + cyclic perms) . (7.157)

How is the syndrome measured? A circuit that can be executed to mea-
sure M1 = XZZXI is:

– Figure –

The Hadamard rotations on the first and fourth qubits rotate M 1 to the
tensor product of Z’s ZZZZI, and the CNOT’s then imprint the value
of this operator on the ancilla. The final Hadamard rotations return the
encoded block to the standard code subspace. Circuits for measuring M 2,3,4

are obtained from the above by cyclically permuting the five qubits in the
code block.

What about encoding? We want to construct a unitary transformation

U encode : |0000〉 ⊗ (a|0〉 + b|1〉) → a|0̄〉 + b|1̄〉. (7.158)

We have already seen that |00000〉 is a Z̄ = 1 eigenstate, and that |00001〉 is
a Z̄ = −1 eigenstate. Therefore (up to normalization)

a|0̄〉 + b|1̄〉 =





∑

M∈S

M



 |0000〉 ⊗ (a|0〉 + b|1〉). (7.159)
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So we need to figure out how to construct a circuit that applies (
∑

M) to
an initial state.

Since the generators are independent, each element of the stabilizer can be
expressed as a product of generators as a unique way, and we may therefore
rewrite the sum as

∑

M∈S

M = (I + M 4)(I + M3)(I + M 2)(I + M 1) .
(7.160)

Now to proceed further it is convenient to express the stabilizer in an alter-
native form. Note that we have the freedom to replace the generator M i by
M iM j without changing the stabilizer. This replacement is equivalent to
adding the jth row to the ith row in the matrix H̃. With such row opera-
tions, we can perform a Gaussian elimination on the 4 × 5 matrix HX , and
so obtain the new presentation for the stabilizer

H̃ ′ =











11011 10001
00110 01001
11000 00101
10111 00011











, (7.161)

or

M1 = Y ZIZY

M2 = IXZZX

M3 = ZZXIX

M4 = ZIZY Y (7.162)

In this form M i applies an X (flip) only to qubits i and 5 in the block.
Adopting this form for the stabilizer, we can apply 1√

2
(I +M1) to a state

|0, z2, z3, z4, z5〉 by executing the circuit

– Figure –

The Hadamard prepares 1√
2
(|0〉 + |1〉. If the first qubit is |0〉, the other

operations don’t do anything, so I is applied. But if the first qubit is |1〉,
then X has been applied to this qubit, and the other gates in the circuit apply
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ZZIZY , conditioned on the first qubit being |1〉. Hence, Y ZIZY = M 1

has been applied. Similar circuits can be constructed that apply 1√
2
(I +M 2)

to |z1, 0, z3, z4, z5〉, and so forth. Apart from the Hadamard gates each of these
circuits applies only Z’s and conditional Z’s to qubits 1 through 4; these
qubits never flip. (It was to ensure thus that we performed the Gaussian
elimination on HX .) Therefore, we can construct our encoding circuit as

– Figure –

Furthermore, each Z gate acting on |0〉 can be replaced by the identity, so
we may simplify the circuit by eliminating all such gates, obtaining

– Figure –

This procedure can be generalized to construct an encoding circuit for any
stabilizer code.

Since the encoding transformation is unitary, we can use its adjoint to
decode. And since each gate squares to ±I , the decoding circuit is just the
encoding circuit run in reverse.

7.11 Quantum secret sharing

The [[5, 1, 3]] code provides a nice illustration of a possible application of
QECC’s.2

Suppose that some top secret information is to be entrusted to n parties.
Because none is entirely trusted, the secret is divided into n shares, so that
each party, with access to his share alone, can learn nothing at all about the
secret. But if enough parties get together and pool their shares, they can
decipher the secret or some part of it.

In particular, an (m,n) threshold scheme has the property that m shares
are sufficient to reconstruct all of the secret information. But from m − 1

2R. Cleve, D. Gottesman, and H.-K. Lo, “How to Share a Quantum Secret,” quant-
ph/9901025.
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shares, no information at all can be extracted. (This is called a threshold

scheme because as shares 1, 2, 3 . . . , m− 1 are collected one by one, nothing
is learned, but the next share crosses the threshold and reveals everything.)

We should distinguish too kinds of secrets: a classical secret is an a priori

unknown bit string, while a quantum secret is an a priori unknown quantum
state. Either type of secret can be shared. In particular, we can distribute
a classical secret among several parties by selecting one from an ensemble
of mutually orthogonal (entangled) quantum states, and dividing the state
among the parties.

We can see, for example, that the [[5, 1, 3]] code may be employed in
a (3, 5) threshold scheme, where the shared information is classical. One
classical bit is encoded by preparing one of the two orthogonal states |0̄〉 or
|1̄〉 and then the five qubits are distributed to five parties. We have seen that
(since the code is nondegenerate) if any two parties get together, then the
density matrix ρ their two qubits is

ρ(2) =
1

4
1 . (7.163)

Hence, they learn nothing about the quantum state from any measurement
of their two qubits. But we have also seen that the code can correct two
located errors or two erasures. When any three parties get together, they
may correct the two errors (the two missing qubits) and perfectly reconstruct
the encoded state |0̄〉 or |1̄〉.

It is also clear that by a similar procedure a single qubit of quantum infor-
mation can be shared – the [[5, 1, 3]] code is also the basis of a ((3, 5)) quan-
tum threshold scheme (we use the ((m,n)) notation if the shared information
is quantum information, and the (m,n) notation if the shared information
is classical). How does this quantum-secret-sharing scenario generalize to
more qubits? Suppose we prepare a pure state |ψ〉 of n qubits — can it be
employed in an ((m,n)) threshold scheme?

We know that m qubits must be sufficient to reconstruct the state; hence
n−m erasures can be corrected. It follows from our general error correction
criterion that the expectation value of any weight-(n−m) observable must
be independent of the state |ψ〉

〈ψ|E|ψ〉 independent of |ψ〉, wt(E) ≤ n −m. (7.164)

Thus, if m parties have all the information, the other n−m parties have no

information at all. That makes sense, since quantum information cannot be
cloned.
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On the other hand, we know that m− 1 shares reveal nothing, or that

〈ψ|E|ψ〉 independent of |ψ〉, wt(E) ≤ m− 1. (7.165)

It then follows thatm−1 erasures can be corrected, or that the other n−m+1
parties have all the information.

From these two observations we obtain the two inequalities

n −m < m ⇒ n < 2m ,

m− 1 < n−m+ 1 ⇒ n > 2m− 2 . (7.166)

It follows that

n = 2m− 1 , (7.167)

in an ((m,n)) pure state quantum threshold scheme, where each party has
a single qubit. In other words, the threshold is reached as the number of
qubits in hand crosses over from the minority to the majority of all n qubits.

We see that if each share is a qubit, a quantum pure state threshold
scheme is a [[2m−1, k,m]] quantum code with k ≥ 1. But in fact the [[3, 1, 2]]
and [[7, 1, 4]] codes do not exist, and it follows from the Rains bound that the
m > 3 codes do not exist. In a sense, then, the [[5, 1, 3]] code is the unique
quantum threshold scheme.

There are a number of caveats — the restriction n = 2m− 1 continues to
apply if each share is a q-dimensional system rather than a qubit, but various

[[2m− 1, 1, k]]q (7.168)

codes can be constructed for q > 2. (See the exercises for an example.)
Also, we might allow the shared information to be a mixed state (that

encodes a pure state). For example, if we discard one qubit of the five qubit
block, we have a ((3, 4)) scheme. Again, once we have three qubits, we can
correct two erasures, one arising because the fourth share is in the hands of
another party, the other arising because a qubit has been thrown away.

Finally, we have assumed that the shared information is quantum infor-
mation. But if we are only sharing classical information instead, then the
conditions for correcting erasures are less stringent. For example, a Bell pair
may be regarded as a kind of (2, 2) threshold scheme for two bits of classical
information, where the classical information is encoded by choosing one of
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the four mutually orthogonal states |φ±〉, |ψ±〉. A party in possession of one
of the two qubits is unable to access any of this classical information. But
this is not a scheme for sharing a quantum secret, since linear combinations
of these Bell states do not have the property that ρ = 1

2
1 if we trace out one

of the two qubits.

7.12 Some Other Stabilizer Codes

7.12.1 The [[6, 0, 4]] code

A k = 0 quantum code has a one-dimensional code subspace; that is, there is
only one encoded state. The code cannot be used to store unknown quantum
information, but even so, k = 0 codes can have interesting properties. Since
they can detect and diagnose errors, they might be useful for a study of the
correlations in decoherence induced by interactions with the environment.

If k = 0, then S and S⊥ coincide – a Pauli operator that commutes
with all elements of the stabilizer must lie in the stabilizer. In this case,
the distance d is defined as the minimum weight of any Pauli operator in
the stabilizer. Thus a distance-d code can “detect d − 1 errors;” that is, if
any Pauli operator of weight less than d acts on the code state, the result is
orthogonal to that state.

Associated with the [[5, 1, 3]] code is a [[6, 0, 4]] code, whose encoded state
can be expressed as

|0〉 ⊗ |0̄〉 + |1〉 ⊗ |1̄〉, (7.169)

where |0̄〉 and |1̄〉 are the Z̄ eigenstates of the [[5, 1, 3]] code. You can verify
that this code has distance d = 4 (an exercise).

The [[6, 0, 4]] code is interesting because its code state is maximally en-
tangled. We may choose any three qubits from among the six. The density
matrix ρ(3) of those three, obtained by tracing over the other three, is totally
random, ρ(3) = 1

8
I. In this sense, the [[6, 0, 4]] state is a natural multiparti-

cle analog of the two-qubit Bell states. It is far “more entangled” than the
six-qubit cat state 1√

2
(|000000〉+ |111111〉). If we measure any one of the six

qubits in the cat state, in the {|0〉, |1〉} basis, we know everything about the
state we have prepared of the remaining five qubits. But we may measure
any observable we please acting on any three qubits in the [[6, 0, 4]] state, and
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we learn nothing about the remaining three qubits, which are still described
by ρ(3) = 1

8
I.

Our [[6, 0, 4]] state is all the more interesting in that it turns out (but is not
so simple to prove) that its generalizations to more qubits do not exist. That
is, there are no [[2n, 0, n+ 1]] binary quantum codes for n > 3. You’ll see in
the exercises, though, that there are other, nonbinary, maximally entangled
states that can be constructed.

7.12.2 The [[2m, 2m − 2, 2]] error-detecting codes

The Bell state |φ+〉 = 1√
2
(|00〉 + |11〉) is a [[2, 0, 2]] code with stabilizer gen-

erators

ZZ ,
XX .

(7.170)

The code has distance two because no weight-one Pauli operator commutes
with both generators (none of X ,Y ,Z commute with both X and Z). Cor-
respondingly, a bit flip (X) or a phase flip (Z), or both (Y ) acting on either
qubit in |φ+〉, takes it to an orthogonal state (one of the other Bell states
|φ−〉, |ψ+〉, |ψ−〉).

One way to generalize the Bell states to more qubits is to consider the
n = 4, k = 2 code with stabilizer generators

ZZZZ ,
XXXX .

(7.171)

This is a distance d = 2 code for the same reason as before. The code
subspace is spanned by states of even parity (ZZZZ) that are invariant
under a simultaneous flip of all four qubits (XXX). A basis is:

|0000〉 + |1111〉 ,
|0011〉 + |1100〉 ,
|0101〉 + |1010〉 ,
|0110〉 + |1001〉 .

(7.172)

Evidently, an X or a Z acting on any qubit takes each of these states to
a state orthogonal to the code subspace; thus any single-qubit error can be
detected.
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A further generalization is the [[2m, 2m− 2, 2]] code with stabilizer gen-
erators

ZZ . . . Z ,
XX . . . X ,

(7.173)

(the length is required to be even so that the generators will commute. The
code subspace is spanned by our familiar friends the 2n−2 cat states

1√
2
(|x〉 + |¬x〉), (7.174)

where x is an even-weight string of length n = 2m.

7.12.3 The [[8, 3, 3]] code

As already noted in our discussion of the [[5, 1, 3]] code, a stabilizer code with
generators

H̃ = (HZ |HX), (7.175)

can correct one error if: (1) the columns of H̃ are distinct (a distinct syndrome
for each X and Z error) and (2) each sum of a column of HZ with the
corresponding column of HX is distinct from each column of H̃ and distinct
from all other such sums (each Y error can be distinguished from all other
one-qubit errors).

We can readily construct a 5 × 16 matrix H̃ with this property, and so
derive the stabilizer of an [[8, 3, 3]] code; we choose

H̃ =







H Hσ

11111111 00000000
00000000 11111111





 . (7.176)

Here H is the 3 × 8 matrix

H =







1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0





 (7.177)

whose columns are all the distinct binary strings of length 3, and Hσ is ob-
tained from H by performing a suitable permutation of the columns. This
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permutation is chosen so that the eight sums of columns of H with corre-
sponding columns of Hσ are all distinct. We may see by inspection that a
suitable choice is

Hσ =







0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 0 0 1 1 0 0





 (7.178)

as the column sums are then







1 1 0 0 1 1 0 0
0 1 1 1 1 0 0 0
1 1 0 1 0 0 1 0





 . (7.179)

The last two rows of H̃ serve to distinguish each X syndrome from each Y

syndrome or Z syndrome, and the above mentioned property of Hσ ensures
that all Y syndromes are distinct. Therefore, we have constructed a length-8
code with k = 8−5 = 3 that can correct one error. It is actually the simplest
in an infinite class of [[2m, 2m −m− 2, 3]] codes constructed by Gottesman,
with m ≥ 3.

The [[8, 3, 3]] quantum code that we have just described is a close cousin
of the “extended Hamming code,” the self-dual [8,4,4] classical code that
is obtained from the [7,3,4] dual of the Hamming code by adding an extra
parity bit. Its parity check matrix (which is also its generator matrix) is

HEH =











1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 1 1 1 1 1 1











(7.180)

This matrix HEH has the property that, not only are its eight columns dis-
tinct, but also each sum of two columns is distinct from all columns; since
the sum of two columns has 0, not 1, as its fourth bit.

7.13 Codes Over GF (4)

We constructed the [[5, 1, 3]] code by guessing the stabilizer generators, and
checking that d = 3. Is there a more systematic method?
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In fact, there is. Our suspicion that the [[5, 1, 3]] code might exist was
aroused by the observation that its parameters saturate the quantum sphere-
packing inequality for t = 1 codes:

1 + 3n = 2n−k, (7.181)

(16 = 16 for n = 5 and k = 1). To a coding theorist, this equation might
look familiar.

Aside from the binary codes we have focused on up to now, classical codes
can also be constructed from length-n strings of symbols that take values,
not in {0, 1}, but in the finite field with q elements GF (q). Such finite fields
exist for any q = pm, where p is prime. (GF is short for “Galois Field,” in
honor of their discoverer.)

For such nonbinary codes, we may model error as addition by an element
of the field, a cyclic shift of the q symbols. Then there are q − 1 nontrivial
errors. The weight of a vector in GF (q)n is the number of its nonzero ele-
ments, and the distance between two vectors is the weight of their difference
(the number of elements that disagree). An [n, k, d]q classical code consists
of qk codewords in GF (q)n, where the minimal distance between a pair is
d. The sphere packing bound that must be satisfied for an [n, k, d]q code to
exist becomes, for d = 3,

1 + (q − 1)n ≤ qn−k. (7.182)

In fact, the perfect binary Hamming codes that saturate this bound for q = 2
with parameters

n = 2m − 1, k = n−m, (7.183)

admit a generalization to any GF (q); perfect Hamming codes over GF (q)
can be constructed with

n =
qm − 1

q − 1
, k = n−m . (7.184)

The [[5, 1, 3]] quantum code is descended from the classical [5, 3, 3]4 Hamming
code (the case q = 4 and m = 2).

What do the classical GF (4) codes have to do with binary quantum sta-
bilizer codes? The connection arises because the stabilizer can be associated
with a set of vectors over GF (4) closed under addition.
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The field GF (4) has four elements that may be denoted 0, 1, ω, ω̄, where

1 + 1 = ω + ω = ω̄ + ω̄ = 0,

1 + ω = ω̄, (7.185)

and ω2 = ω̄, ωω̄ = 1. Thus, the additive structure of GF (4) echos the
multiplicative structure of the Pauli operators X,Y ,Z. Indeed, the length-
2n binary string (α|β) that we have used to denote an element of the Pauli
group can equivalently be regarded as a length-n vector in GF (4)n

(α|β) ↔ α+ βω. (7.186)

The stabilizer, with 2n−k elements, can be regarded as a subcode of GF (4),
closed under addition and containing 2n−k codewords.

Note that the code need not be a vector space over GF (4), as it is not
required to be closed under multiplication by a scalar ∈ GF (4). In the special
case where the code is a vector space, it is called a linear code.

Much is known about codes over GF (4), so this connection opened the
door for the (classical) coding theorists to construct many QECC’s.3 How-
ever, not every subcode of GF (4)n is associated with a quantum code; we
have not yet imposed the requirement that the stabilizer is abelian – the
(α|β)’s that span the code must be mutually orthogonal in the symplectic
inner product

α · β ′ + α′ · β . (7.187)

This orthogonality condition might look strange to a coding theorist, who is
more accustomed to defining the inner product of two vectors in GF (4)n as
an element of GF (4) given by

v ∗ u = v̄1u1 + · · · + v̄nun , (7.188)

where conjugation, denoted by a bar, interchanges ω and ω̄. If this “hermi-
tian” inner product ∗ of two vectors v and u is

v ∗ u = a+ bω ∈ GF (4) , (7.189)

3Calderbank, Rains, Shor, and Sloane, “Quantum error correction via codes over
GF (4),” quant-ph/9608006.
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then our symplectic inner product is

v · u = b . (7.190)

Therefore, vanishing of the symplectic inner product is a weaker condition
than vanishing of the hermitian inner product. In fact, though, in the special
case of a linear code, self-orthogonality with respect to the hermitian inner
product is actually equivalent to self-orthogonality with respect to the sym-
plectic inner product. We observe that if v ∗u = a+ bω, orthogonality in the
symplectic inner product requires b = 0. But if u is in a linear code, then so
is ω̄u where

v ∗ (ω̄u) = b+ aω̄ (7.191)

so that

v · (ω̄u) = a . (7.192)

We see that if v and u belong to a linear GF (4) code and are orthogonal
with respect to the symplectic inner product, then they are also orthogonal
with respect to the hermitian inner product. We conclude then, that a lin-
ear GF(4) code defines a quantum stabilizer code if and only if the code is
self-orthogonal in the hermitian inner product. Classical codes with these
properties have been much studied.

In particular, consider again the [5, 3, 3]4 Hamming code. Its parity check
matrix (in an unconventional presentation) can be expressed as

H =

(

1 ω ω 1 0
0 1 ω ω 1

)

, (7.193)

which is also the generator matrix of its dual, a linear self-orthogonal [5, 2, 4]4
code. In fact, this [5, 2, 4]4 code, with 42 = 16 codewords, is precisely the
stabilizer of the [[5, 1, 3]] quantum code. By identifying 1 ≡ X, ω ≡ Z, we
recognize the two rows of H as the stabilizer generators M 1,M2. The dual
of the Hamming code is a linear code, so linear combinations of the rows are
contained in the code. Adding the rows and multiplying by ω we obtain

ω(1, ω̄, 0, ω̄, 1) = (ω, 1, 0, 1, ω), (7.194)

which is M 4. And if we add M 4 to M 2 and multiply by ω̄, we find

ω̄(ω, 0, ω, ω̄, ω̄) = (1, 0, 1, ω, ω), (7.195)
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which is M 3.
The [[5, 1, 3]] code is just one example of a quite general construction.

Consider a subcode C of GF (4)n that is additive (closed under addition),
and self-orthogonal (contained in its dual) with respect to the symplectic
inner product. This GF (4) code can be identified with the stabilizer of a
binary QECC with length n. If the GF (4) code contains 2n−k codewords,
then the QECC has k encoded qubits. The distance d of the QECC is the
minimum weight of a vector in C⊥ \ C .

Another example of a self-orthogonal linear GF (4) code is the dual of the
m = 3 Hamming code with

n =
1

3
(43 − 1) = 21. (7.196)

The Hamming code has 4n−m codewords, and its dual has 4m = 26 codewords.
We immediately obtain a QECC with parameters

[[21, 15, 3]], (7.197)

that can correct one error.

7.14 Good Quantum Codes

A family of [[n, k, d]] codes is good if it contains codes whose “rate” R = k/n
and “error probability” p = t/n (where (t = (d − 1)/2) both approach a
nonzero limit as n → ∞. We can use the stabilizer formalism to prove
a “quantum Gilbert-Varshamov” bound that demonstrates the existence of
good quantum codes. In fact, good codes can be chosen to be nondegenerate.

We will only sketch the argument, without carrying out the requisite
counting precisely. Let E = {Ea} be a set of errors to be corrected, and
denote by E(2) = {E†

aEb}, the products of pairs of elements of E. Then to
construct a nondegenerate code that can correct the errors in E, we must
find a set of stabilizer generators such that some generator anti-commutes
with each element of E(2).

To see if a code with length n and k qubits can do the job, begin with the
set S(n−k) of all abelian subgroups of the Pauli group with n− k generators.
We will gradually pare away the subgroups that are unsuitable stabilizers for
correcting the errors in E, and then see if any are left.
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Each nontrivial error Ea commutes with a fraction ∼ 1/2n−k of all groups
contained in S(n−k), since it is required to commute with each of the n − k
generators of the group. (There is a small correction to this fraction that we
may ignore for large n.) Each time we add another element to E(2), a fraction
2k−n of all stabilizer candidates must be rejected. When E(2) has been fully
assembled, we have rejected at worst a fraction

|E(2)| · 2k−n, (7.198)

of all the subgroups contained in S(n−k) (where |E(2)| is the number of ele-
ments of E(2).) As long as this fraction is less than one, a stabilizer that does
the job will exist for large n.

If we want to correct t = pn errors, then E(2) contains operators of weight
at most 2t and we may estimate

log2 |E(2)| <∼ log2

[(

n

2pn

)

32pn

]

∼ n [H2(2p) + 2p log2 3] .
(7.199)

Therefore, nondegenerate quantum stabilizer codes that correct pn errors
exist, with asymptotic vote R = k/n given by

log2 |E(2)| + k − n < 0, or R < 1 −H2(2p) − 2p log2 3.
(7.200)

Thus is the (asymptotic form of the) quantum Gilbert–Varshamov bound.
We conclude that codes with a nonzero rate must exist that protect

against errors that occur with any error probability p < pGV ' .0946. The
maximum error probability allowed by the Rains bound is p = 1/6, for a
code that can protect against every error operator of weight ≤ pn.

Though good quantum codes exist, the explicit construction of families
of good codes is quite another matter. Indeed, no such constructions are
known.

7.15 Some Codes that Correct Multiple Er-

rors

7.15.1 Concatenated codes

Up until now, all of the QECC’s that we have explicitly constructed have
d = 3 (or d = 2), and so can correct one error (at best). Now we will
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describe some examples of codes that have higher distance.
A particularly simple way to construct codes that can correct more errors

is to concatenate codes that can correct one error. A concatenated code is
a code within a code. Suppose we have two k = 1 QECC’s, an [[n1, 1, d1]]
code C1 code and an [[n2, 1, d2]] code C2. Imagine constructing a length n2

codeword of C2, and expanding the codeword as a coherent superposition of
product states, in which each qubit is in one of the states |0〉 or |1〉. Now
replace each qubit by a length-n1 encoded state using the code C1; that is
replace |0〉 by |0̄〉 and |1〉 by |1̄〉 of C1. The result is a code with length
n = n1n2, k = 1, and distance no less than d = d1d2. We will call C2 the
“outer” code and C1 the “inner” code.

In fact, we have already discussed one example of this construction: Shor’s
9-qubit code. In that case, the inner code is the three-qubit repetition code
with stabilizer generators

ZZI , IZZ , (7.201)

and the outer code is the three-qubit “phase code” with stabilizer generators

XXI , IXX (7.202)

(the Hadamard rotated repetition code). We construct the stabilizer of the
concatenated code as follows: Acting on each of the three qubits contained
in the block of the outer code, we include the two generators Z1Z2,Z2Z3 of
the inner code (six generators altogether). Then we add the two generators
of the outer code, but with X,Z replaced by the encoded operations of the
inner code; in this case, these are the two generators

X̄X̄Ī, ĪX̄X̄, (7.203)

where Ī = III and X̄ = XXX. You will recognize these as the eight
stabilizer generators of Shor’s code that we have described earlier. In this
case, the inner and outer codes both have distance 1 (e.g., ZII commutes
with the stabilizer of the inner code), yet the concatenated code has distance
3 > d1d2 = 1. This happens because the code has been cleverly constructed
so that the weight 1 and 2 encoded operations of the inner code do not
commute with the stabilizer of the outer code. (It would have been different
if we had concatenated the repetition code with itself rather than with the
phase code!)
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We can obtain a distance 9 code (capable of correcting four errors) by
concatenating the [[5, 1, 3]] code with itself. The length n = 25 is the smallest
for any known code with k = 1 and d = 9. (An [[n, 1, 9]] code with n = 23, 24
would be consistent with the Rains bound, but it is unknown whether such
a code really exists.)

The stabilizer of the [[25, 1, 9]] concatenated code has 24 generators. Of
these, 20 are obtained as the four generators M 1,2,3,4 acting on each of the
five subblocks of the outer code, and the remaining four are the encoded

operators M̄ 1,2,3,4 of the outer code. Notice that the stabilizer contains
elements of weight 4 (the stabilizer elements acting on each of the five inner
codes); therefore, the code is degenerate. This is typical of concatenated
codes.

There is no need to stop at two levels of concatenation; from L QECC’s
with parameters [[n1, 1, d1]], . . . , [[nL, 1, dL]], we can construct a hierarchical
code with altogether L levels of codes within codes; it has length

n = n1n2 . . . nL, (7.204)

and distance

d ≥ d1d2 . . . dL. (7.205)

In particular, by concatenating the [[5, 1, 3]] code L times, we may construct
a code with parameters

[[5L, 1, 3L]]. (7.206)

Strictly speaking, this family of codes cannot protect against a number of
errors that scales linearly with the length. Rather the ratio of the number t
of errors that can be corrected to the length n is

t

n
∼ 1

2

(

3

5

)L

, (7.207)

which tends to zero for large L. But the distance d may be a deceptive
measure of how well the code performs — it is all right if recovery fails for
some ways of choosing t � pn errors, so long as recovery will be successful
for the typical ways of choosing pn faulty qubits. In fact, concatenated codes
can correct pn typical errors, for n large and p > 0.

Actually, the way concatenated codes are usually used does not fully
exploit their power to correct errors. To be concrete, consider the [[5, 1, 3]]
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code in the case where each of the five qubits is independently subjected to
the depolarizing channel with error probability p (that is X,Y ,Z errors each
occur with probability p/3). Recovery is sure to succeed if fewer than two
errors occur in the block. Therefore, as in §7.4.2, we can bound the failure
probability by

pfail ≡ p(1) ≤
(

5

2

)

p2 = 10p2. (7.208)

Now consider the performance of the concatenated [[25, 1, 9]] code. To
keep life easy, we will perform recovery in a simple (but nonoptimal) way:
First we perform recovery on each of the five subblocks, measuring M1,2,3,4

to obtain an error syndrome for each subblock. After correcting the sub-
blocks, we then measure the stabilizer generators M̄ 1,2,3,4 of the outer code,
to obtains its syndrome, and apply an encoded X̄, Ȳ , or Z̄ to one of the
subblocks if the syndrome reveals an error.

For the outer code, recovery will succeed if at most one of the subblocks
is damaged, and the probability p(1) of damage to a subblock is bounded as
in eq. (7.208); we conclude that the probability of a botched recovery for the
[[25, 1, 9]] code is bounded above by

p(2) ≤ 10(p(1))2 ≤ 10(10p2)2 = 1000p4 . (7.209)

Our recovery procedure is clearly not the best possible, because four errors
can induce failure if there are two each in two different subblocks. Since the
code has distance nine, there is a better procedure that would always recover
successfully from four errors, so that p(2) would be of order p5 rather than
p4. Still, the suboptimal procedure has the advantage that it is very easily
generalized, (and analyzed) if there are many levels of concatenation.

Indeed, if there are L levels of concatenation, we begin recovery at the
innermost level and work our way up. Solving the recursion

p(`) ≤ C [p(`−1)]2, (7.210)

starting with p(0) = p, we conclude that

p(L) ≤ 1

C
(Cp)2L

, (7.211)

(where here C = 10). We see that as long as p < 1/10, we can make the
failure probability as small as we please by adding enough levels to the code.
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We may write

p(L) ≤ po

(

p

po

)2L

, (7.212)

where po = 1
10

is an estimate of the threshold error probability that can be
tolerated (we will obtain better codes and better estimates of this threshold
below). Note that to obtain

p(L) < ε, (7.213)

we may choose the block size n = 5L so that

n ≤
[

log(po/ε)

log(po/p)

]log2 5

. (7.214)

In principle, the concatenated code at a high level could fail with many
fewer than n/10 errors, but these would have to be distributed in a highly
conspiratorial fashion that is quite unlikely for n large.

The concatenated encoding of an unknown quantum state can be carried
out level by level. For example to encode a|0〉 + b|1〉 in the [[25, 1, 9]] block,
we could first prepare the state a|0̄〉 + b|1̄〉 in the five qubit block, using the
encoding circuit described earlier, and also prepare four five-qubit blocks in
the state |0̄〉. The a|0̄〉+|1̄〉 can be encoded at the next level by executing the
encoded circuit yet again, but this time with all gates replaced by encoded
gates acting on five-qubit blocks. We will see in the next chapter how these
encoded gates are constructed.

7.15.2 Toric codes

The toric codes are another family of codes that, like concatenated codes,
offer much better performance than would be expected on the basis of their
distance. They’ll be described by Professor Kitaev (who discovered them).

7.15.3 Reed–Muller codes

Another way to construct codes that can correct many errors is to invoke the
CSS construction. Recall, in particular, the special case of that construction
that applies to a classical code C that is contained in its dual code (we
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then say that C is “weakly self-dual”). In the CSS construction, there is a
codeword associated with each coset of C in C⊥. Thus we obtain an [[n, k, d]]
quantum code, where n is the length of C , d is (at least) the distance of C⊥,
and k = dimC⊥ − dimC . Therefore, for the construction of CSS codes that
correct many errors, we seek weakly self-dual classical codes with a large
minimum distance.

One class of weakly self-dual classical codes are the Reed-Muller codes.
Though these are not especially efficient, they are very convenient, because
they are easy to encode, recovery is simple, and it is not difficult to explain
their mathematical structure.4

To prepare for the construction of Reed-Muller codes, consider Boolean
functions on m bits,

f : {0, 1}m → {0, 1} . (7.215)

There are 22m

such functions forming what we may regard as a binary vector
space of dimension 2m. It will be useful to have a basis for this space. Recall
(§6.1), that any Boolean function has a disjunctive normal form. Since the
NOT of a bit x is 1− x, and the OR of two bits x and y can be expressed as

x ∨ y == x+ y − xy , (7.216)

any of the Boolean functions can be expanded as a polynomial in them binary
variables xm−1, xm−2, . . . , x1, x0 . A basis for the vector space of polynomials
consists of the 2m functions

1, xi, xixj, xixjxk, . . . , (7.217)

(where, since x2 = x, we may choose the factors of each monomial to be
distinct). Each such function f can be represented by a binary string of length
2m, whose value in the position labeled by the binary string xm−1xm−2 . . . x1x0

4See, e.g., MacWilliams and Sloane, Chapter 13.
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is f(xm−1, xm−2, . . . x1, x0). For example, for m = 3,

1 = (11111111)

x0 = (10101010)

x1 = (11001100)

x2 = (11110000)

x0x1 = (10001000)

x0x2 = (10100000)

x1x2 = (11000000)

x0x1x2 = (10000000) . (7.218)

A subspace of this vector space is obtained if we restrict the degree of
the polynomial to r or less. This subspace is the Reed–Muller (or RM) code,
denoted R(r,m). Its length is n = 2m and its dimension is

k = 1 +

(

m

1

)

+

(

m

2

)

+ . . . +

(

m

r

)

. (7.219)

Some special cases of interest are:

• R(0, m) is the length-2m repetition code.

• R(m−1, m) is the dual of the repetition code, the space on all length-2m

even-weight strings.

• R(1, 3) is the n = 8, k = 4 code spanned by 1, x0, x1, x2; it is in fact
the [8, 4, 4] extended Hamming code that we have already discussed.

• More generally, R(m − 2, m) is a d = 4 extended Hamming code for
each m ≥ 3. If we puncture this code (remove the last bit from all
codewords) we obtain the [n = 2m − 1, k = n − m, d = 3] perfect
Hamming code.

• R(1, m) has d = 2m−1 = 1
2
n and k = m. It is the dual of the extended

Hamming code, and is known as a “first-order” Reed–Muller code. It
is of considerable practical interest in its own right, both because of its
large distance and because it is especially easy to decode.
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We can compute the distance of the code R(r,m) by invoking induction
on m. First we must determine how R(m + 1, r) is related to R(m, r). A
function of xm, . . . , x0 can be expressed as

f(xm, . . . , x0) = g(xm−1, . . . , x0) + xmh(xm−1, . . . , x0) ,
(7.220)

and if f has degree r, then g must be of degree r and h of degree r − 1.
Regarding f as a vector of length 2m+1, we have

f = (g|g) + (h|0) (7.221)

where g, h are vectors of length 2m. Consider the distance between f and

f ′ = (g′|g′) + (h′|0) . (7.222)

For h = h′ and f 6= f ′ this distance is wt(f − f ′) =2 · wt(g − g′) ≥ 2 ·
dist (R(r,m)); for h 6= h′ it is at least wt(h − h′) ≥ dist (R(r − 1, m)). If
d(r,m) denotes the distance of R(r,m), then we see that

d(r,m+ 1) = min (2 d(r,m), d(r − 1, m)) . (7.223)

Now we can show that d(r,m) = 2m−r by induction on m. To start with,
we check that d(r,m = 1) = 21−r for r = 0, 1; R(1, 1) is the space of all
length 2 strings, and R(0, 1) is the length-2 repetition code. Next suppose
that d = 2m−r for all m ≤ M and 0 ≤ r ≤ m. Then we infer that

d(r,m+ 1) = min(2m−r+1, 2m−r+1) = 2m−r+1, (7.224)

for each 1 ≤ r ≤ m. It is also clear that d(m + 1, m + 1) = 1, since
R(m + 1, m + 1) is the space of all binary strings of length 2m+1, and that
d(0, m + 1) = 2m+1, since R(0, m + 1) is the length-2m+1 repetition code.
This completes the inductive step, and proves d(r,m) = 2m−r .

It follows, in particular, that R(m − 1, m) has distance 2, and therefore
that the dual of R(r,m) is R(m−r−1, m). First we notice that the binomial

coefficients
(

m

j

)

sum to 2m, so that R(m − r − 1) has the right dimension

to be R(r,m)⊥. It suffices, then, to show that R(m− r − 1) is contained in
R(r,m). But if f ∈ R(r,m) and g ∈ R(m − r − 1, m), their product is a
polynomial of degree at most m− 1, and is therefore in R(m− 1, m). Each
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vector in R(m − 1, m) has even weight, so the inner product f · g vanishes;
hence g is in the dual R(v,m)⊥. This shows that

R(r,m)⊥ = R(m− r − 1, m). (7.225)

It is because of this nice duality property that Reed–Muller codes are well-
suited for the CSS construction of quantum codes.

In particular, the Reed–Muller code is weakly self-dual for r ≤ m− r−1,
or 2r ≥, m − 1, and self-dual for 2r = m − 1. In the self-dual case, the
distance is

d = 2m−r = 2
1
2
(m+1) =

√
2n , (7.226)

and the number of encoded bits is

k =
1

2
n = 2m−1 . (7.227)

These self-dual codes, for m = 3, 5, 7, have parameters

[8, 4, 4], [32, 16, 8], [128, 64, 16] . (7.228)

(The [8, 4, 4] code is the extended Hamming code as we have already noted.)
Associated with these self-dual codes are the k = 0 quantum codes with
parameters

[[8, 0, 4]], [[32, 0, 8]], [[128, 0, 16]] , (7.229)

and so forth.
One way to obtain a k = 1 quantum code is to puncture the self-dual

Reed–Muller code, that is, to delete one of the n = 2m bits from the code.
(It turns out not to matter which bit we delete.) The classical punctured

code has parameters n = 2m − 1, d = 2
1
2
(m−1) − 1 =

√

2(n+ 1) − 1, and

k = 1
2
(n + 1). Furthermore, the dual of the punctured code is its even

subcode. (The even subcode consists of those RM codewords for which the
bit removed by the puncture is zero, and it follows from the self-duality of
the RM code that these are orthogonal to all the words (both odd and even
weight) of the punctured code.) From these punctured codes, we obtain, via
the CSS construction, k = 1 quantum codes with parameters

[[7, 1, 3]], [[31, 1, 7]], [[127, 1, 15]] , (7.230)
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and so forth. The [7, 4, 3] Hamming code is obtained by puncturing the
[8, 4, 4] RM code, and the corresponding [7, 1, 3] QECC is of course Steane’s
code. These QECC’s have a distance that increases like the square root of
their length.

These k = 1 codes are not among the most efficient of the known QECC’s.
Nevertheless they are of special interest, since their properties are especially
conducive to implementing fault-tolerant quantum gates on the encoded data,
as we will see in Chapter 8. In particular, one useful property of the self-dual
RM codes is that they are “doubly even” — all codewords have a weight that
is an integral multiple of four.

Of course, we can also construct quantum codes with k > 1 by applying
the CSS construction to the RM codes. For example R(3, 6), with parameters

n = 2m = 64

d = 2m−r = 8

k = 1 + 6 +

(

6

2

)

+

(

6

3

)

= 1 + 6 + 15 + 20 = 42 , (7.231)

is dual to R(2, 6), with parameters

n = 2m = 64

d = 2m−r = 16

k = 1 + 6 +

(

6

2

)

= 1 + 6 + 15 = 22 , (7.232)

and so the CSS construction yields a QECC with parameters

[[64, 20, 8]] . (7.233)

Many other weakly self-dual codes are known and can likewise be employed.

7.15.4 The Golay Code

From the perspective of pure mathematics, the most important error-correcting
code (classical or quantum) ever discovered is also one of the first ever de-
scribed in a published article — the Golay code. Here we will briefly describe
the Golay code, as it too can be transformed into a nice QECC via the CSS
construction. (Perhaps this QECC is not really important enough to deserve
a section of this chapter; still, I have included it just for fun.)
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The (extended) Golay code is a self-dual [24, 12, 8] classical code. If we
puncture it (remove any one of its 24 bits), we obtain the [23, 12, 7] Golay
code, which can correct three errors. This code is actually perfect, as it
saturates the sphere-packing bound:

1 +

(

23

1

)

+

(

23

2

)

+

(

23

3

)

= 211 = 223−12. (7.234)

In fact, perfect codes that correct more than one error are extremely rare.
It can be shown5 that the only perfect codes (linear or nonlinear) over any

finite field that can correct more than one error are the [23, 12, 7] code and
one other binary code discovered by Golay, with parameters [11, 6, 5].

The [24, 12, 8] Golay code has a very intricate symmetry. The symmetry
is characterized by its automorphism group — the group of permutations of
the 24 bits that take codewords to codewords. This is the Mathieu group
M24, a sporadic simple group of order 244,823,040 that was discovered in the
19th century.

The 212 = 4096 codewords have the weight distribution (in an obvious
notation)

01875912257616759241 . (7.235)

Note in particular that each weight is a multiple of 4 (the code is doubly
even). What is the significance of the number 759 (= 3.11.23)? In fact it is

(

24

5

)

/

(

8

5

)

= 759, (7.236)

and it arises for this combination reason: with each weight-8 codeword we
associate the eight-element set (“octad”) where the codeword has its support.
Each 5-element subset of the 24 bits is contained in exactly one octad (a
reflection of the code’s large symmetry).

What makes the Golay code important in mathematics? Its discovery
in 1949 set in motion a sequence of events that led, by around 1980, to a
complete classification of the finite simple groups. This classification is one
of the greatest achievements of 20th century mathematics.

(A group is simple if it contains no nontrivial normal subgroup. The finite
simple groups may be regarded as the building blocks of all finite groups in

5MacWilliams and Sloane §6.10.
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the sense that for any finite group G there is a unique decomposition of the
form

G ≡ G0 ⊇ G1 ⊇ G2 ≥ . . . ⊇ Gn, (7.237)

where each Gj+1 is a normal subgroup of Gj , and each quotient group
Gj/Gj+1 is simple. The finite simple groups can be classified into various
infinite families, plus 26 additional “sporadic” simple groups that resist clas-
sification.)

The Golay code led Leech, in 1964, to discover an extraordinarily close
packing of spheres in 24 dimensions, known as the Leech Lattice Λ. The lattice
points (the centers of the spheres) are 24-component integer-valued vectors
with these properties: to determine if ~x = (x1, x2 . . . , x24) is contained in Λ,
write each component xj in binary notation,

xj = . . . xj3xj2xj1xj0 . (7.238)

Then ~x ∈ Λ if

(i) The xj0’s are either all 0’s or all 1’s.

(ii) The xj2’s are an even parity 24-bit string if the xj0’s are 0, and an odd
parity 24-bit string if the xj0’s are 1.

(iii) The xj1’s are a 24-bit string contained in the Golay code.

When these rules are applied, a negative number is represented by its binary
complement, e.g.

−1 = . . . 11111 ,

−2 = . . . 11110 ,

−3 = . . . 11101 ,

etc. (7.239)

We can easily check that Λ is a lattice; that is, it is closed under addition.
(Bits other than the last three in the binary expansion of the xj’s are unre-
stricted).

We can now count the number of nearest neighbors to the origin (or
the number of spheres that touch any given sphere). These points are all
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(distance)2 = 32 away from the origin:

(±2)8 : 27 · 759
(±3)(∓1)23 : 212 · 24

(±4)2 : 22 ·
(

24

2

)

. (7.240)

That is, there are 759 · 27 neighbors that have eight components with the
values ±2 — their support is on one of the 759 weight-8 Golay codewords,
and the number of − signs must be even. There are 212 · 24 neighbors that
have one component with value ±3 (this component can be chosen in 24
ways) and the remaining 23 components have the value (∓1). If, say, +3 is
chosen, then the position of the +3, together with the position of the −1’s,
can be any of the 211 Golay codewords with value 1 at the position of the
+3. There are 22 ·

(

24
2

)

neighbors with two components each taking the value

±4 (the signs are unrestricted). Altogether, the coordination number of the
lattice is 196, 560.

The Leech lattice has an extraordinary automorphism group discovered
by Conway in 1968. This is the finite subgroup of the 24-dimensional rotation
group SO(24) that preserves the lattice. The order of this finite group (known
as ·0, or “dot oh”) is

222 · 39 · 54 · 72 · 11 · 13 · 23 = 8, 315, 553, 613, 086, 720, 000 ' 8.3 × 1018.
(7.241)

If its two element center is modded out, the sporadic simple group ·1 is
obtained. At the time of its discovery, ·1 was the largest of the sporadic
simple groups that had been constructed.

The Leech lattice and its automorphism group eventually (by a route
that won’t be explained here) led Griess in 1982 to the construction of the
most amazing sporadic simple group of all (whose existence had been inferred
earlier by Fischer and Griess). It is a finite subgroup of the rotation group in
196,883 dimensions, whose order is approximately 8.08×1053. This behemoth
known as F1 has earned the nickname “the monster” (though Griess prefers
to call it “the friendly giant”.) It is the largest of the sporadic simple groups,
and the last to be discovered.

Thus the classification of the finite simple groups owes much to (classical)
coding theory, and to the Golay code in particular. Perhaps the theory of
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QECC’s can also bequeath to mathematics something of value and broad
interest!

Anyway, since the (extended) [24, 12, 8] Golay code is self-dual, the [23, 12, 7]
code obtained by puncturing it is weakly self dual; its [23, 11, 8] dual is its
even subcode. From it, a [23, 1, 7] QECC can be constructed by the CSS
method. This code is not the most efficient quantum code that can correct
three errors (there is a [17, 1, 7] code that saturates the Rains bound), but it
has especially nice properties that are conducive to fault-tolerant quantum
computation, as we will see in Chapter 8.

7.16 The Quantum Channel Capacity

As we have formulated it up until now, our goal in constructing quantum
error correcting codes has been to maximize the distance d of the code,
given its length n and the number k of encoded qubits. Larger distance
provides better protection against errors, as a distance d code can correct
d − 1 erasures, or (d − 1)/2 errors at unknown locations. We have observed
that “good” codes can be constructed, that maintain a finite rate k/n for n
large, and correct a number of errors pn that scales linearly with n.

Now we will address a related but rather different question about the
asymptotic performance of QECC’s. Consider a superoperator $ that acts on
density operators in a Hilbert space H. Now consider $ acting independently
each copy of H contained in the n-fold tensor product

H(n) = H⊗ . . .⊗H. (7.242)

We would like to select a code subspace H(n)
code of H(n) such that quantum

information residing in H(n)
code can be subjected to the superoperator

$(n) = $ ⊗ . . .⊗ $, (7.243)

and yet can still be decoded with high fidelity.
The rate of a code is defined as

R =
logH(n)

code

logH(n)
; (7.244)

this is the number of qubits employed to carry one qubit of encoded infor-
mation. The quantum channel capacity Q($) of the superoperator $ is the
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maximum asymptotic rate at which quantum information can be sent over
the channel with arbitrarily good fidelity. That is, Q($) is the largest number

such that for any R < Q($) and any ε > 0, there is a code H(n)
code with rate at

least R, such that for any |ψ〉 ∈ H(n)
code, the state ρ recovered after |ψ〉 passes

through $(n) has fidelity

F = 〈ψ|ρ|ψ〉 > 1 − ε. (7.245)

Thus, Q($) is a quantum version of the capacity defined by Shannon
for a classical noisy channel. As we have already seen in Chapter 5, this
Q($) is not the only sort of capacity that can be associated with a quantum
channel. It is also of considerable interest to ask about C($), the maximum
rate at which classical information can be transmitted through a quantum
channel with arbitrarily small probability of error. A formal answer to this
question was formulated in §5.4, but only for a restricted class of possible
encoding schemes; the general answer is still unknown. The quantum channel
capacity Q($) is even less well understood than the classical capacity C($) of
a quantum channel. Note that Q($) is not the same thing as the maximum
asymptotic rate k/n that can be achieved by “good” [[n, k, d]] QECC’s with
positive d/n. In the case of the quantum channel capacity we need not insist
that the code correct any possible distribution of pn errors, as long as the
errors that cannot be corrected become highly atypical for n large.

Here we will mostly limit the discussion to two interesting examples of
quantum channels acting on a single qubit — the quantum erasure channel
(for which Q is exactly known), and the depolarizing channel (for which Q
is still unknown, but useful upper and lower bounds can be derived).

What are these channels? In the case of the quantum erasure chan-
nel, a qubit transmitted through the channel either arrives intact, or (with
probability p) becomes lost and is never received. We can find a unitary rep-
resentation of this channel by embedding the qubit in the three-dimensional
Hilbert space of a qubit with orthonormal basis {|0〉, |1〉, |2〉}. The channel
acts according to

|0〉 ⊗ |0〉E →
√

1 − p|0〉 ⊗ |0〉E +
√
p|2〉 ⊗ |1〉E ,

|1〉 ⊗ |0〉E →
√

1 − p|1〉 ⊗ |0〉E +
√
p|2〉 ⊗ |2〉E , (7.246)

where {|0〉E , |1〉E , |2〉E} are mutually orthogonal states of the environment.
The receiver can measure the observable |2〉〈2| to determined whether the
qubit is undamaged or has been “erased.”



76 CHAPTER 7. QUANTUM ERROR CORRECTION

The depolarizing channel (with error probability p) was discussed at
length in §3.4.1. We see that, for p ≤ 3/4, we may describe the fate of
a qubit transmitted through the channel this way: with probability 1 − q
(where q = 4/3p), the qubit arrives undamaged, and with probability q it is
destroyed, in which case it is described by the random density matrix 1

2
1.

Both the erasure channel and the depolarizing channel destroy a qubit
with a specified probability. The crucial difference between the two channels
is that in the case of the erasure channel, the receiver knows which qubits
have been destroyed; in the case of the depolarizing channel, the damaged
qubits carry no identifying marks, which makes recovery more challenging.
Of course, for both channels, the sender has no way to know ahead of time
which qubits will be obliterated.

7.16.1 Erasure channel

The quantum channel capacity of the erasure channel can be precisely de-
termined. First we will derive an upper bound on Q, and then we will show
that codes exist that achieve high fidelity and attain a rate arbitrarily close
to the upper bound.

As the first step in the derivation of an upper bound on the capacity, we
show that Q = 0 for p > 1

2
.

– Figure –

We observe that the erasure channel can be realized if Alice sends a qubit
to Bob, and a third party Charlie decides at random to either steal the
qubit (with probability p) or allow the qubit to pass unscathed to Bob (with
probability 1 − p).

If Alice sends a large number n of qubits, then about (1− p)n reach Bob,
and pn are intercepted by Charlie. Hence for p > 1

2
, Charlie winds up in

possession of more qubits than Bob, and if Bob can recover the quantum
information encoded by Alice, then certainly Charlie can as well. Therefore,
if Q(p) > 0 for p > 1

2
, Bob and Charlie can clone the unknown encoded

quantum states sent by Alice, which is impossible. (Strictly speaking, they
can clone with fidelity F = 1− ε, for any ε > 0.) We conclude that Q(p) = 0
for p > 1

2
.
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To obtain a bound on Q(p) in the case p < 1
2
, we will appeal to the

following lemma. Suppose that Alice and Bob are connected by both a
perfect noiseless channel and a noisy channel with capacity Q > 0. And
suppose that Alice sends m qubits over the perfect channel and n qubits
over the noisy channel. Then the number r of encoded qubits that Bob may
recover with arbitrarily high fidelity must satisfy

r ≤ m+Qn. (7.247)

We derive this inequality by noting that Alice and Bob can simulate the m
qubits sent over the perfect channel by sending m/Q over the noisy channel
and so achieve a rate

R =
r

m/Q+ n
=

(

r

m+Qn

)

Q, (7.248)

over the noisy channel. Were r to exceed m+Qn, this rate R would exceed
the capacity, a contradiction. Therefore eq. (7.247) is satisfied.

How consider the erasure channel with error probability p1, and suppose
Q(p1) > 0. Then we can bound Q(p2) for p2 ≤ p1 by

Q(p2) ≤ 1 − p2

p1
+
p2

p1
Q(p1). (7.249)

(In other words, if we plotQ(p) in the (p,Q) plane, and we draw a straight line
segment from any point (p1, Q1) on the plot to the point (p = 0, Q = 1), then
the curve Q(p) must lie on or below the segment in the interval 0 ≤ p ≤ p1; if
Q(p) is twice differentiable, then its second derivative cannot be positive.) To
obtain this bound, imagine that Alice sends n qubits to Bob, knowing ahead
of time that n(1 − p2/p1) specified qubits will arrive safely. The remaining
n(p2/p1) qubits are erased with probability p1. Therefore, Alice and Bob are
using both a perfect channel and an erasure channel with erasure probability
p1; eq. (7.247) holds, and the rate R they can attain is bounded by

R ≤ 1 − p2

p1

+
p2

p1

Q(p1). (7.250)

On the other hand, for n large, altogether about np2 qubits are erased, and
(1 − p2)n arrive safely. Thus Alice and Bob have an erasure channel with
erasure probability p2, except that they have the additional advantage of
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knowing ahead of time that some of the qubits that Alice sends are invul-
nerable to erasure. With this information, they can be no worse off than
without it; eq. (7.249) then follows. The same bound applies to the depolar-
izing channel as well.

Now, the result Q(p) = 0 for p > 1/2 can be combined with eq. (7.249).
We conclude that the curve Q(p) must be on or below the straight line
connecting the points (p = 0, Q = 1) and (p = 1/2, Q = 0), or

Q(p) ≤ 1 − 2p, 0 ≤ p ≤ 1

2
. (7.251)

In fact, there are stabilizer codes that actually attain the rate 1 − 2p for
0 ≤ p ≤ 1/2. We can see this by borrowing an idea from Claude Shannon,
and averaging over random stabilizer codes. Imagine choosing, in succession,
altogether n − k stabilizer generators. Each is selected from among the
4n Pauli operators, where all have equal a priori probability, except that
each generator is required to commute with all generators chosen in previous
rounds.

Now Alice uses this stabilizer code to encode an arbitrary quantum state
in the 2k-dimensional code subspace, and sends the n qubits to Bob over an
erasure channel with erasure probability p. Will Bob be able to recover the
state sent by Alice?

Bob replaces each erased qubit by a qubit in the state |0〉, and then
proceeds to measure all n − k stabilizer generators. From this syndrome
measurement, he hopes to infer the Pauli operator E acting on the replaced
qubits. Once E is known, we can apply E† to recover a perfect duplicate
of the state sent by Alice. For n large, the number of qubits that Bob must
replace is about pn, and he will recover successfully if there is a unique Pauli
operator E that can produce the syndrome that he finds. If more than one
Pauli operator acting on the replaced qubits has this same syndrome, then
recovery may fail.

How likely is failure? Since there are about pn replaced qubits, there are
about 4pn Pauli operators with support on these qubits. Furthermore, for any
particular Pauli operator E, a random stabilizer code generates a random
syndrome — each stabilizer generator has probability 1/2 of commuting with
E, and probability 1/2 of anti-commuting with E. Therefore, the probability
that two Pauli operators have the same syndrome is (1/2)n−k .

There is at least one particular Pauli operator acting on the replaced
qubits that has the syndrome found by Bob. But the probability that an-
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other Pauli operator has this same syndrome (and hence the probability of
a recovery failure) is no worse than

Pfail ≤ 4pn

(

1

2

)n−k

= 2−n(1−2p−R). (7.252)

where R = k/n is the rate. Eq. (7.252) bounds the failure probability if
we average over all stabilizer codes with rate R; it follows that at least one
particular stabilizer code must exist whose failure probability also satisfies
the bound.

For that particular code, Pfail gets arbitrarily small as n→ ∞, for any rate
R = 1−2p−δ strictly less than 1−2p. Therefore R = 1−2p is asymptotically
attainable; combining this result with the inequality eq. (7.251) we obtain
the capacity of the quantum erasure channel:

Q(p) = 1 − 2p, 0 ≤ p ≤ 1

2
. (7.253)

If we wanted assurance that a distinct syndrome could be assigned to
all ways of damaging pn erased qubits, then we would require an [[n, k, d]]
quantum code with distance d > pn. Our Gilbert–Varshamov bound of §7.14
guarantees the existence of such a code for

R < 1 −H2(p) − p log2 3. (7.254)

This rate can be achieved by a code that recovers from any of the possible
ways of erasing up to pn qubits. It lies strictly below the capacity for p > 0,
because to achieve high average fidelity, it suffices to be able to correct the
typical erasures, rather than all possible erasures.

7.16.2 Depolarizing channel

The capacity of the depolarizing channel is still not precisely known, but we
can obtain some interesting upper and lower bounds.

As for the erasure channel, we can find an upper bound on the capacity
by invoking the no-cloning theorem. Recall that for the depolarizing channel
with error probability p < 3/4, each qubit either passes safely with prob-
ability 1 − 4/3p, or is randomized (replaced by the maximally mixed state
ρ = 1

2
1) with probability q = 4/3p. An eavesdropper Charlie, then, can

simulate the channel by intercepting qubits with probability q, and replacing
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each stolen qubit with a maximally mixed qubit. For q > 1/2, Charlie steals
more than half the qubits and is in a better position than Bob to decode the
state sent by Alice. Therefore, to disallow cloning, the rate at which quan-
tum information is sent from Alice to Bob must be strictly zero for q > 1/2
or p > 3/8:

Q(p) = 0, p >
3

8
. (7.255)

In fact we can obtain a stronger bound by noting that Charlie can choose
a better eavesdropping strategy – he can employ the optimal approximate

cloner that you studied in a homework problem. This device, applied to
each qubit sent by Alice, replaces it by two qubits that each approximate the
original with fidelity F = 5/6, or

|ψ〉〈ψ| →
[

(1 − q)|ψ〉〈ψ|+ q
1

2
1
]⊗2

, (7.256)

where F = 5/6 = 1 − 1/2q. By operating the cloner, both Charlie and
Bob can receive Alice’s state transmitted through the q = 1/3 depolarizing
channel. Therefore, the attainable rate must vanish; otherwise, by combin-
ing the approximate cloner with quantum error correction, Bob and Charlie
would be able to clone Alice’s unknown state exactly. We conclude that the
capacity vanishes for q > 1/3 or p > 1/4:

Q(p) = 0, p >
1

4
. (7.257)

Invoking the bound eq. (7.249) we infer that

Q(p) ≤ 1 − 4p, 0 ≤ p ≤ 1

4
. (7.258)

This result actually coincides with our bound on the rate of [[n, k, d]] codes
with k ≥ 1 and d ≥ 2pn + 1 found in §7.8. A bound on the capacity is not

the same thing as a bound on the allowable error probability for an [[n, k, d]]
code (and in the latter case the Rains bound is tighter). Still, the similarity
of the two results bound may not be a complete surprise, as both bounds are
derived from the no-cloning theorem.

We can obtain a lower bound on the capacity by estimating the rate that
can be attained through random stabilizer coding, as we did for the erasure
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channel. Now, when Bob measures the n−k (randomly chosen, commuting)
stabilizer generators, he hopes to obtain a syndrome that points to a unique
one among the typical Pauli error operators that can arise with nonnegligible
probability when the depolarizing channel acts on the n qubits sent by Alice.
The number Ntyp of typical Pauli operators with total probability 1 − ε can
be bounded by

Ntyp ≤ 2n(H2(p)+p log2 3+δ), (7.259)

for any δ, ε > 0 and n sufficiently large. Bob’s attempt at recovery can fail if
another among these typical Pauli operators has the same syndrome as the
actual error operator. Since a random code assigns a random (n − k)-bit
syndrome to each Pauli operator, the failure probability can be bounded as

Pfail ≤ 2n(H2(p)+p log2 3+δ)2k−n + ε . (7.260)

Here the second term bounds the probability of an atypical error, and the
first bounds the probability of an ambiguous syndrome in the case of a typical
error. We see that the failure probability, averaged over random stabilizer
codes, becomes arbitrarily small for large n, for any δ′ < 0 and rate R such
that

R ≡ k

n
< 1 −H2(p) − p log2 3 − δ′. (7.261)

If the failure probability, averaged over codes, is small, there is a particu-
lar code with small failure probability, and we conclude that the rate R is
attainable; the capacity of the depolarizing channel is bounded below as

Q(p) ≥ 1 −H2(p) − p log2 3 . (7.262)

Not coincidentally, the rate attainable by random coding agrees with the
asymptotic form of the quantum Hamming upper bound on the rate of nonde-
generate [[n, k, d]] codes with d > 2pn; we arrive at both results by assigning
a distinct syndrome to each of the typical errors. Of course, the Gilbert–
Varshamov lower bound on the rate of [[n, k, d]] codes lies below Q(p), as it
is obtained by demanding that the code can correct all the errors of weight
pn or less, not just the typical ones.

This random coding argument can also be applied to a somewhat more
general channel, in which X,Y , and Z errors occur at different rates. (We’ll
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call this a “Pauli channel.”) If an X error occurs with probability pX , a Y

error with probability pY , a Z error with probability pZ , and no error with
probability pI ≡ 1 − pX − pY − pZ , then the number of typical errors on n
qubits is

n!

(pXn)!(pY n)!(pZn)!(pIn)!
∼ 2nH(pI ,pX ,pY ,pZ), (7.263)

where

H ≡ H(pI , pX , pY , pZ) = −pI log2 pI − pX log2 pX − pY log2 pY − pZ log2 pZ ,
(7.264)

is the Shannon entropy of the probability distribution {pI , pX , pY , pZ}. Now
we find

Q(pI , pX , pY , pZ) ≥ 1 −H(pI , pX , pY , pZ) ; (7.265)

if the rate R satisfies R < 1−H, then again it is highly unlikely that a single
syndrome of a random stabilizer code will point to more than one typical
error operator.

7.16.3 Degeneracy and capacity

Our derivation of a lower bound on the capacity of the depolarizing channel
closely resembles the argument in §5.1.3 for a lower bound on the capacity
of the classical binary symmetric channel. In the classical case, there was
a matching upper bound. If the rate were larger, then there would not be
enough syndromes to attach to all of the typical errors.

In the quantum case, the derivation of the matching upper bound does
not carry through, because a quantum code can be degenerate. We may
not need a distinct syndrome for each typical error, as some of the possible
errors could act trivially on the code subspace. Indeed, not only does the
derivation fail; the matching upper bound is actually false – rates exceeding
1 −H2(p) − p log2 3 actually can be attained.6

Shor and Smolin investigated the rate that can be achieved by concate-
nated codes, where the outer code is a random stabilizer code, and the inner

6P.W. Shor and J.A. Smolin, “Quantum Error-Correcting Codes Need Not Completely
Reveal the Error Syndrome” quant-ph/9604006; D.P. DiVincen, P.W. Shor, and J.A.
Smolin, “Quantum Channel Capacity of Very Noisy Channels,” quant-ph/9706061.
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code is a degenerate code with a relatively small block size. Their idea is
that the degeneracy of the inner code will allow enough typical errors to act
trivially in the code space that a higher rate can be attained than through
random coding alone.

To investigate this scheme, imagine that encoding and decoding are each
performed in two stages. In the first stage, using the (random) outer code
that she and Bob have agreed on, Alice encodes the state that she has selected
in a large n-qubit block. In the second stage, Alice encodes each of these
n-qubits in a block of m qubits, using the inner code. Similarly, when Bob
receives the nm qubits, he first decodes each inner block of m, and then
subsequently decodes the block of n.

We can evidently describe this procedure in an alternative language —
Alice and Bob are using just the outer code, but the qubits are being trans-
mitted through a composite channel.

– Figure –

This modified channel consists (as shown) of: first the inner encoder, then
propagation through the original noisy channel, and finally inner decoding
and inner recovery. The rate that can be attained through the original chan-
nel, via concatenated coding, is the same as the rate that can be attained
through the modified channel, via random coding.

Specifically, suppose that the inner code is an m-qubit repetition code,
with stabilizer

Z1Z2, Z1Z3, Z1Z4, . . . ,Z1Zm. (7.266)

This is not much of a quantum code; it has distance 1, since it is insensi-
tive to phase errors — each Zj commutes with the stabilizer. But in the
present context its important feature is it high degeneracy, all Zi errors are
equivalent.

The encoding (and decoding) circuit for the repetition code consists of
just m− 1 CNOT’s, so our composite channel looks like (in the case m = 3)

– Figure –
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where $ denotes the original noisy channel. (We have also suppressed the
final recovery step of the decoding; e.g., if the measured qubits both read
1, we should flip the data qubit. In fact, to simplify the analysis of the
composite channel, we will dispense with this step.)

Since we recall that a CNOT propagates bit flips forward (from control
to target) and phase flips backward (from target to control), we see that for
each possible measurement outcome of the auxiliary qubits, the composite
channel is a Pauli channel. If we imagine that this measurement of the m−1
inner block qubits is performed for each of the n qubits of the outer block,
then Pauli channels act independently on each of the n qubits, but the chan-
nels acting on different qubits have different parameters (error probabilities

p
(i)
I , p

(i)
X , p

(i)
Y , p

(i)
Z for the ith qubit). Now the number of typical error operators

acting on the n qubits is

2
∑n

i=1
Hi (7.267)

where

Hi = H(p
(i)
I , p

(i)
X , p

(i)
Y , p

(i)
Z ), (7.268)

is the Shannon entropy of the Pauli channel acting on the ith qubit. By the
law of large numbers, we will have

n
∑

i=1

Hi = n〈H〉, (7.269)

for large n, where 〈H〉 is the Shannon entropy, averaged over the 2m−1 pos-
sible classical outcomes of the measurement of the extra qubits of the inner
code. Therefore, the rate that can be attained by the random outer code is

R =
1 − 〈H〉
m

, (7.270)

(we divide by m, because the concatenated code has a length m times longer
than the random code).

Shor and Smolin discovered that there are repetition codes (values of m)
for which, in a suitable range of p, 1−〈H〉 is positive while 1−H2(p)−p log2 3
is negative. In this range, then, the capacity Q(p) is nonzero, showing that
the lower bound eq. (7.262) is not tight.
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A nonvanishing asymptotic rate is attainable through random coding for
1 − H2(p) − p log2 3 > 0, or p < pmax ' .18929. If a random outer code is
concatenated with a 5-qubit inner repetition code (m = 5 turns out to be the
optimal choice), then 1−〈H〉 > 0 for p < p′max ' .19036; the maximum error
probability for which a nonzero rate is attainable increases by about 0.6%.
It is not obvious that the concatenated code should outperform the random
code in this range of error probability, though as we have indicated, it might
have been expected because of the (phase) degeneracy of the repetition code.
Nor is it obvious that m = 5 should be the best choice, but this can be
verified by an explicit calculation of 〈H〉.7

The depolarizing channel is one of the very simplest of quantum chan-
nels. Yet even for this case, the problem of characterizing and calculating
the capacity is largely unsolved. This example illustrates that, due to the
possibility of degenerate coding, the capacity problem is considerably more
subtle for quantum channels than for classical channels.

We have seen that (if the errors are well described by the depolarizing
channel), quantum information can be recovered from a quantum memory
with arbitrarily high fidelity, as long as the probability of error per qubit is
less than 19%. This is an improvement relative to the 10% error rate that
we found could be handled by concatenation of the [[5, 1, 3]] code. In fact
[[n, k, d]] codes that can recover from any distribution of up to pn errors do
not exist for p > 1/6, according to the Rains bound. Nonzero capacity is
possible for error rates between 16.7% and 19% because it is sufficient for the
QECC to be able to correct the typical errors rather than all possible errors.

However, the claim that recovery is possible even if 19% of the qubits
sustain damage is highly misleading in an important respect. This result
applies if encoding, decoding, and recovery can be executed flawlessly. But
these operations are actually very intricate quantum computations that in
practice will certainly be susceptible to error. We will not fully understand
how well coding can protect quantum information from harm until we have
learned to design an error recovery protocol that is robust even if the execu-
tion of the protocol is flawed. Such fault-tolerant protocols will be developed
in Chapter 8.

7In fact a very slight further improvement can be achieved by concatenating a random
code with the 25-qubit generalized Shor code described in the exercises – then a nonzero
rate is attainable for p < p′′

max
' .19056 (another 0.1% better than the maximum tolerable

error probability with repetition coding).
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7.17 Summary

Quantum error-correcting codes: Quantum error correction can protect
quantum information from both decoherence and “unitary errors” due to
imperfect implementations of quantum gates. In a (binary) quantum error-

correcting code (QECC), the 2k-dimensional Hilbert space Hcode of k encoded
qubits is embedded in the 2n-dimensional Hilbert space of n qubits. Errors
acting on the n qubits are reversible provided that 〈ψ|M †

νMµ|ψ〉/〈ψ|ψ〉 is
independent of |ψ〉 for any |ψ〉 ∈ Hcode and any two Kraus operators Mµ,ν

occuring in the expansion of the error superoperator. The recovery superop-
erator transforms entanglement of the environment with the code block into
entanglement of the environment with an ancilla that can then be discarded.

Quantum stabilizer codes: Most QECC’s that have been constructed
are stabilizer codes. A binary stabilizer code is characterized by its stabilizer
S, an abelian subgroup of the n-qubit Pauli group Gn = {I ,X,Y ,Z}⊗n

(where X,Y ,Z are the single-qubit Pauli operators). The code subspace is
the simultaneous eigenspace with eigenvalue one of all elements of S; if S has
n− k independent generators, then there are k encoded qubits. A stabilizer
code can correct each error in a subset E of Gn if for each Ea,Eb ∈ E,
E†

aEb either lies in the stabilizer S or outside of the normalizer S⊥ of the
stabilizer. If some E†

aEb is in S for Ea,b ∈ E the code is degenerate; otherwise
it is nondegenerate. Operators in S⊥ \ S are “logical” operators that act on
encoded quantum information. The stabilizer S can be associated with an
additive code over the finite field GF (4) that is self-orthogonal with respect
to a symplectic inner product. The weight of a Pauli operator is the number
of qubits on which its action is nontrivial, and the distance d of a stabilizer
code is the minimum weight of an element of S⊥ \ S. A code with length n,
k encoded qubits, and distance d is called an [[n, k, d]] quantum code. If the
code enables recovery from any error superoperator with support on Pauli
operators of weight t or less, we say that the code “can correct t errors.” A
code with distance d can correct [(d−1)/2] in unknown locations or d−1 errors
in known locations. “Good” families of stabilizer codes can be constructed
in which d/n and k/n remain bounded away from zero as n→ ∞.

Examples: The code of minimal length that can correct one error is a
[[5, 1, 3, ]] quantum code associated with a classical GF (4) Hamming code.
Given a classical linear code C1 and subcode C2 ⊆ C1, a Calderbank-Shor-
Steane (CSS) quantum code can be constructed with k = dim(C1)−dim(C2)
encoded qubits. The distance d of the CSS code satisfies d ≥ min(d1, d

⊥
2 ),
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where d1 is the distance of C1 and d⊥2 is the distance of C⊥
2 , the dual of

C2. The simplest CSS code is a [[7, 1, 3]] quantum code constructed from the
[7, 4, 3] classical Hamming code and its even subcode. An [[n1, 1, d1]] quantum
code can be concatenated with an [[n2, 1, d2]] code to obtain a degenerate
[[n1n2, 1, d]] code with d ≥ d1d2.

Quantum channel capacity: The quantum channel capacity of a su-
peroperator (noisy quantum channel) is the maximum rate at which quantum
information can be transmitted over the channel and decoded with arbitrar-
ily good fidelity. The capacity of the binary quantum erasure channel with
erasure probability p is Q(p) = 1 − 2p, for 0 ≤ p ≤ 1/2. The capacity of the
binary depolarizing channel is no yet known. The problem of calculating the
capacity is subtle because the optimal code may be degenerate; in particular,
random codes do not attain an asymptotically optimal rate over a quantum
channel.

7.18 Exercises

7.1 Phase error-correcting code

a) Construct stabilizer generators for an n = 3, k = 1 code that can
correct a single bit flip; that is, ensure that recovery is possible for
any of the errors in the set E = {III,XII, IXI , IIX}. Find
an orthonormal basis for the two-dimensional code subspace.

b) Construct stabilizer generators for an n = 3, k = 1 code that can
correct a single phase error; that is, ensure that recovery is possible
for any of the errors in the set E = {III ,ZII, IZI , IIZ}. Find
an orthonormal basis for the two-dimensional code subspace.

7.2 Error-detecting codes

a) Construct stabilizer generators for an [[n, k, d]] = [[3, 0, 2]] quantum
code. With this code, we can detect any single-qubit error. Find
the encoded state. (Does it look familiar?)

b) Two QECC’s C1 and C2 (with the same length n) are equivalent

if a permutation of qubits, combined with single-qubit unitary
transformations, transforms the code subspace of C1 to that of
C2. Are all [[3, 0, 2]] stabilizer codes equivalent?
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c) Does a [[3, 1, 2]] stabilizer code exist?

7.3 Maximal entanglement

Consider the [[5, 1, 3]] quantum code, whose stabilizer generators are
M1 = XZZXI , and M2,3,4 obtained by cyclic permutations of M1,
and choose the encoded operation Z̄ to be Z̄ = ZZZZZ. From the
encoded states |0̄〉 with Z̄|0̄〉 = |0̄〉 and |1̄〉 with Z̄|1̄〉 = −|1̄〉, construct
the n = 6, k = 0 code whose encoded state is

1√
2

(|0〉 ⊗ |0̄〉 + |1〉 ⊗ |1̄〉) . (7.271)

a) Construct a set of stabilizer generators for this n = 6, k = 0 code.

b) Find the distance of this code. (Recall that for a k = 0 code, the
distance is defined as the minimum weight of any element of the
stabilizer.)

c) Find ρ(3), the density matrix that is obtained if three qubits are
selected and the remaining three are traced out.

7.4 Codewords and nonlocality

For the [[5,1,3]] code with stabilizer generators and logical operators as
in the preceding problem,

a) Express Z̄ as a weight-3 Pauli operator, a tensor product of I’s,
X’s, and Z’s (no Y ’s). Note that because the code is cyclic,
all cyclic permutations of your expression are equivalent ways to
represent Z̄.

b) Use the Einstein locality assumption (local hidden variables) to pre-
dict a relation between the five (cyclically related) observables
found in (a) and the observable ZZZZZ. Is this relation among
observables satisfied for the state |0̄〉?

c) What would Einstein say?

7.5 Generalized Shor code

For integer m ≥ 2, consider the n = m2, k = 1 generalization of Shor’s
nine-qubit code, with code subspace spanned by the two states:

|0̄〉 = (|000 . . . 0〉 + |111 . . . 1〉)⊗m ,

|1̄〉 = (|000 . . . 0〉 − |111 . . . 1〉)⊗m . (7.272)
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a) Construct stabilizer generators for this code, and construct the log-
ical operations Z̄ and X̄ such that

Z̄|0̄〉 = |0̄〉 , X̄|0̄〉 = |1̄〉 ,
Z̄|1̄〉 = −|1̄〉 , X̄|1̄〉 = |0̄〉 . (7.273)

b) What is the distance of this code?

c) Suppose that m is odd, and suppose that each of the n = m2 qubits
is subjected to the depolarizing channel with error probability p.
How well does this code protect the encoded qubit? Specifically,
(i) estimate the probability, to leading nontrivial order in p, of a
logical bit-flip error |0̄〉 ↔ |1̄〉, and (ii) estimate the probability,
to leading nontrivial order in p, of a logical phase error |0̄〉 → |0̄〉,
|1̄〉 → −|1̄〉.

d) Consider the asymptotic behavior of your answer to (c) for m large.
What condition on p should be satisfied for the code to provide
good protection against (i) bit flips and (ii) phase errors, in the
n→ ∞ limit?

7.6 Encoding circuits

For an [[n,k,d]] quantum code, an encoding transformation is a unitary
U that acts as

U : |ψ〉 ⊗ |0〉⊗(n−k) → |ψ̄〉 , (7.274)

where |ψ〉 is an arbitrary k-qubit state, and |ψ̄〉 is the corresponding
encoded state. Design a quantum circuit that implements the encoding
transformation for

a) Shor’s [[9,1,3]] code.

b) Steane’s [[7,1,3]] code.

7.7 Shortening a quantum code

a) Consider a binary [[n, k, d]] stabilizer code. Show that it is possible
to choose the n − k stabilizer generators so that at most two act
nontrivially on the last qubit. (That is, the remaining n − k − 2
generators apply I to the last qubit.)
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b) These n−k−2 stabilizer generators that apply I to the last qubit will
still commute and are still independent if we drop the last qubit.
Hence they are the generators for a code with length n−1 and k+1
encoded qubits. Show that if the original code is nondegenerate,
then the distance of the shortened code is at least d − 1. (Hint:
First show that if there is a weight-t element of the (n− 1)-qubit
Pauli group that commutes with the stabilizer of the shortened
code, then there is an element of the n-qubit Pauli group of weight
at most t + 1 that commutes with the stabilizer of the original
code.)

c) Apply the code-shortening procedure of (a) and (b) to the [[5, 1, 3]]
QECC. Do you recognize the code that results? (Hint: It may
be helpful to exploit the freedom to perform a change of basis on
some of the qubits.)

7.8 Codes for qudits

A qudit is a d-dimensional quantum system. The Pauli operators
I ,X,Y ,Z acting on qubits can be generalized to qudits as follows.
Let {|0〉, |1〉, . . . , |d − 1〉} denote an orthonormal basis for the Hilbert
space of a single qudit. Define the operators:

X : |j〉 → |j + 1 (mod d)〉 ,
Z : |j〉 → ωj |j〉 , (7.275)

where ω = exp(2πi/d). Then the d × d Pauli operators Er,s are

Er,s ≡ XrZs , r, s = 0, 1, . . . , d− 1 (7.276)

a) Are the Er,s’s a basis for the space of operators acting on a qudit?
Are they unitary? Evaluate tr(E†

r,sEt,u).

b) The Pauli operators obey

Er,sEt,u = (ηr,s;t,u)Et,uEr,s , (7.277)

where ηr,s;t,u is a phase. Evaluate this phase.

The n-fold tensor products of these qudit Pauli operators form a group
G(d)

n of order d2n+1 (and if we mod out its d-element center, we obtain



7.18. EXERCISES 91

the group Ḡ(d)
n of order d2n). To construct a stabilizer code for qudits,

we choose an abelian subgroup of G(d)
n with n− k generators; the code

is the simultaneous eigenstate with eigenvalue one of these generators.
If d is prime, then the code subspace has dimension dk: k logical qudits
are encoded in a block of n qudits.

c) Explain how the dimension might be different if d is not prime.
Hint: Consider the case d = 4 and n = 1.)

7.9 Syndrome measurement for qudits

Errors on qudits are diagnosed by measuring the stabilizer generators.
For this purpose, we may invoke the two-qudit gate SUM (which gen-
eralizes the controlled-NOT), acting as

SUM : |j〉 ⊗ |k〉 → |j〉 ⊗ |k + j (mod d)〉 . (7.278)

a) Describe a quantum circuit containing SUM gates that can be exe-
cuted to measure an n-qudit observable of the form

⊗

a

Zsa

a . (7.279)

If d is prime, then for each r, s = 0, 1, 2, . . . , d−1, there is a single-qudit
unitary operator U r,s such that

U r,sEr,sU
†
r,s = Z . (7.280)

b) Describe a quantum circuit containing SUM gates and U r,s gates
that can be executed to measure an arbitrary element of G(d)

n of
the form

⊗

a

Era,sa . (7.281)

7.10 Error-detecting codes for qudits

A qudit with d = 3 is called a qutrit. Consider a qutrit stabilizer
code with length n = 3 and k = 1 encoded qutrit defined by the two
stabilizer generators

ZZZ , XXX . (7.282)
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a) Do the generators commute?

b) Find the distance of this code.

c) In terms of the orthonormal basis {|0〉, |1〉, |2〉} for the qutrit, write
out explicitly an orthonormal basis for the three-dimensional code
subspace.

d) Construct the stabilizer generators for an n = 3m qutrit code (where
m is any positive integer), with k = n − 2, that can detect one
error.

e) Construct the stabilizer generators for a qudit code that detects one
error, with parameters n = d, k = d − 2.

7.11 Error-correcting code for qudits

Consider an n = 5, k = 1 qudit stabilizer code with stabilizer generators

X Z Z−1 X−1 I

I X Z Z−1 X−1

X−1 I X Z Z−1

Z−1 X−1 I X Z

(7.283)

(the second, third, and fourth generators are obtained from the first by
a cyclic permutation of the qudits).

a) Find the order of each generator. Are the generators really in-
dependent? Do they commute? Is the fifth cyclic permutation
Z Z−1 X−1 I X independent of the rest?

b) Find the distance of this code. Is the code nondegenerate?

c) Construct the encoded operations X̄ and Z̄, each expressed as an
operator of weight 3. (Be sure to check that these operators obey
the right commutation relations for any value of d.)
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9
Topological quantum computation

9.1 Anyons, anyone?

A central theme of quantum theory is the concept of indistinguishable
particles (also called identical particles). For example, all electrons in the
world are exactly alike. Therefore, for a system with many electrons,
an operation that exchanges two of the electrons (swaps their positions)
is a symmetry — it leaves the physics unchanged. This symmetry is
represented by a unitary transformation acting on the many-electron wave
function.

For the indistinguishable particles in three-dimensional space that we
normally talk about in physics, particle exchanges are represented in one
of two distinct ways. If the particles are bosons (like, for example, 4He
atoms in a superfluid), then an exchange of two particles is represented by
the identity operator: the wave function is invariant, and we say the par-
ticles obey Bose statistics. If the particles are fermions (like, for example,
electrons in a metal), than an exchange is represented by multiplication
by (−1): the wave function changes sign, and we say that the particles
obey Fermi statistics.

The concept of identical-particle statistics becomes ambiguous in one
spatial dimension. The reason is that for two particles to swap positions
in one dimension, the particles need to pass through one another. If the
wave function changes sign when two identical particles are exchanged,
we could say that the particles are noninteracting fermions, but we could
just as well say that the particles are interacting bosons, such that the
sign change is induced by the interaction as the particles pass one an-
other. More generally, the exchange could modify the wavefunction by
a multiplicative phase eiθ that could take values other than +1 or −1,
but we could account for this phase change by describing the particles as
either bosons or fermions.

4
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Thus, identical-particle statistics is a rather tame concept in three (or
more) spatial dimensions and also in one dimension. But in between these
two dull cases, in two dimensions, a remarkably rich variety of types of
particle statistics are possible, so rich that we have far to go before we
can give a useful classification of all of the possibilities.

Indistinguishable particles in two dimensions that are neither bosons
nor fermions are called anyons. Anyons are a fascinating theoretical con-
struct, but do they have anything to do with the physics of real systems
that can be studied in the laboratory? The remarkable answer is: “Yes!”
Even in our three-dimensional world, a two-dimensional gas of electrons
can be realized by trapping the electrons in a thin layer between two slabs
of semiconductor, so that at low energies, electron motion in the direction
orthogonal to the layer is frozen out. In a sufficiently strong magnetic field
and at sufficiently low temperature, and if the electrons in the material
are sufficiently mobile, the two-dimensional electron gas attains a pro-
foundly entangled ground state that is separated from all excited states
by a nonzero energy gap. Furthermore, the low-energy particle excitations
in the systems do not have the quantum numbers of electrons; rather they
are anyons, and carry electric charges that are fractions of the electron
charge. The anyons have spectacular effects on the transport properties
of the sample, manifested as the fractional quantum Hall effect.

Anyons will be our next topic. But why? True, I have already said
enough to justify that anyons are a deep and fascinating subject. But this
is not a course about the unusual behavior of exotic phases attainable in
condensed matter systems. It is a course about quantum computation.

In fact, there is a connection, first appreciated by Alexei Kitaev in
1997: anyons provide an unusual, exciting and perhaps promising means
of realizing fault-tolerant quantum computation.

So that sounds like something we should be interested in. After all,
I have already given 12 lectures on the theory of quantum error correc-
tion and fault-tolerant quantum computing. It is a beautiful theory; I
have enjoyed telling you about it and I hope you enjoyed hearing about
it. But it is also daunting. We’ve seen that an ideal quantum circuit
can be simulated faithfully by a circuit with noisy gates, provided the
noisy gates are not too noisy, and we’ve seen that the overhead in cir-
cuit size and depth required for the simulation to succeed is reasonable.
These observations greatly boost our confidence that large scale quantum
computers will really be built and operated someday. Still, for fault tol-
erance to be effective, quantum gates need to have quite high fidelity (by
the current standards of experimental physics), and the overhead cost of
achieving fault tolerance is substantial. Even though reliable quantum
computation with noisy gates is possible in principle, there always will
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be a strong incentive to improve the fidelity of our computation by im-
proving the hardware rather than by compensating for the deficiencies of
the hardware through clever circuit design. By using anyons, we might
achieve fault tolerance by designing hardware with an intrinsic resistance
to decoherence and other errors, significantly reducing the size and depth
blowups of our circuit simulations. Clearly, then, we have ample motiva-
tion for learning about anyons. Besides, it will be fun!

In some circles, this subject has a reputation (not fully deserved in my
view) for being abstruse and inaccessible. I intend to start with the basics,
and not to clutter the discussion with details that are mainly irrelevant to
our central goals. That way, I hope to keep the presentation clear without
really dumbing it down.

What are these goals? I will not be explaining how the theory of anyons
connects with observed phenomena in fractional quantum Hall systems.
In particular, abelian anyons arise in most of these applications. From
a quantum information viewpoint, abelian anyons are relevant to robust
storage of quantum information (and we have already gotten a whiff of
that connection in our study of toric quantum codes). We will discuss
abelian anyons here, but our main interest will be in nonabelian anyons,
which as we will see can be endowed with surprising computational power.

Kitaev (quant-ph/9707021) pointed out that a system of nonabelian
anyons with suitable properties can efficiently simulate a quantum circuit;
this idea was elaborated by Ogburn and me (quant-ph/9712048), and gen-
eralized by Mochon (quant-ph/0206128, quant-ph/0306063). In Kitaev’s
original scheme, measurements were required to simulate some quantum
gates. Freedman, Larsen and Wang (quant-ph/000110) observed that if
we use the right kind of anyons, all measurements can be postponed until
the readout of the final result of the computation. Freedman, Kitaev,
and Wang (quant-ph/0001071) also showed that a system of anyons can
be simulated efficiently by a quantum circuit; thus the anyon quantum
computer and the quantum circuit model have equivalent computational
power. The aim of these lectures is to explain these important results.

We will focus on the applications of anyons to quantum computing, not
on the equally important issue of how systems of anyons with desirable
properties can be realized in practice.∗ It will be left to you to figure that
out!

∗ Two interesting approaches to realizing nonabelian anyons — using superconduct-
ing junction arrays and using cold atoms trapped in optical lattices — have been
discussed in the recent literature.
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9.2 Flux-charge composites

For those of us who are put off by abstract mathematical constructions, it
will be helpful to begin our exploration of the theory of anyons by thinking
about a concrete model. So let’s start by recalling a more familiar concept,
the Aharonov-Bohm effect.

Imagine electromagnetism in a two-dimensional world, where a “flux
tube” is a localized “pointlike” object (in three dimensions, you may en-
vision a plane intersecting a magnetic solenoid directed perpendicular to
the plane). The flux might be enclosed behind an impenetrable wall, so
that an object outside can never visit the region where the magnetic field
is nonzero. But even so, the magnetic field has a measurable influence on
charged particles outside the flux tube. If an electric charge q is adiabat-
ically transported (counterclockwise) around a flux Φ, the wave function
of the charge acquires a topological phase eiqΦ (where we use units with
h̄ = c = 1). Here the world “topological” means that the Aharonov-Bohm
phase is robust when we deform the trajectory of the charged particle —
all that matters is the “winding number” of the charge about the flux.

The concept of topological invariance arises naturally in the study of
fault tolerance. Topological properties are those that remain invariant
when we smoothly deform a system, and a fault-tolerant quantum gate is
one whose action on protected information remains invariant (or nearly
so) when we deform the implementation of the gate by adding noise. The
topological invariance of the Aharonov-Bohm phenomenon is the essential
property that we hope to exploit in the design of quantum gates that are
intrinsically robust.

We usually regard the Aharonov-Bohm effect as a phenomenon that
occurs in quantum electrodynamics, where the photon is exactly mass-
less. But it is useful to recognize that Aharonov-Bohm phenomena can
also occur in massive theories. For example, we might consider a “super-
conducting” system composed of charge e particles, such that composite
objects with charge ne form a condensate (where n is an integer). In
this superconductor, there is a quantum of flux Φ0 = 2π/ne, the minimal
nonzero flux such that a charge-(ne) particle in the condensate, when
transported around the flux, acquires a trivial Aharonov-Bohm phase.
An isolated region that contains a flux quantum is an island of normal
material surrounded by the superconducting condensate, prevented from
spreading because the magnetic flux cannot penetrate into the supercon-
ductor. That is, it is a stable particle, what we could call a “fluxon.”
When one of the charge-e particles is transported around a fluxon, its
wave function acquires the nontrivial topological phase eieΦ0 = e2πi/n.
But in the superconductor, the photon acquires a mass via the Higgs
mechanism, and there are no massless particles. That topological phases
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are compatible with massive theories is important, because massless par-
ticles are easily excited, a potentially copious source of decoherence.

Now, let’s imagine that, in our two-dimensional world, flux and electric
charge are permanently bound together (for some reason). A fluxon can
be envisioned as flux Φ confined inside an impenetrable circular wall,
and an electric charge q is stuck to the outside of the wall. What is
the angular momentum of this flux-charge composite? Suppose that we
carefully rotate the object counterclockwise by angle 2π, returning it to
its original orientation. In doing so, we have transported the charge q
about the flux Φ, generating a topological phase eiqΦ. This rotation by
2π is represented in Hilbert space by the unitary transformation

U (2π) = e−i2πJ = eiqΦ , (9.1)

where J is the angular momentum. We conclude, then, that the possible
eigenvalues of angular momentum are

J = m− qΦ
2π

(m = integer) . (9.2)

We can characterize this spectrum by an angular variable θ ∈ [0, 2π),
defined by θ = qΦ (mod 2π), and say that the eigenvalues are shifted
away from integer values by −θ/2π. We will refer to the phase eiθ that
represents a counterclockwise rotation by 2π as the topological spin of the
composite object.

But shouldn’t a rotation by 2π act trivially on a physical system (isn’t
it the same as doing nothing)? No, we know better than that, from our
experience with spinors in three dimensions. For a system with fermion
number F , we have

e−2πiJ = (−1)F ; (9.3)

if the fermion number is odd, the eigenvalues of J are shifted by 1/2
from the integers. This shift is physically acceptable because there is a
(−1)F superselection rule: no observable local operator can change the
value of (−1)F (there is no physical process that can create or destroy
an isolated fermion). Acting on a coherent superposition of states with
different values of (−1)F , the effect of e−2πiJ is

e−i2πJ (a| even F 〉 + b| odd F 〉) = a| even F 〉 − b| odd F 〉 . (9.4)

The relative sign in the superposition flips, but this has no detectable
physical effects, since all observables are block diagonal in the (−1)F

basis.
Similarly, in two dimensions, the shift in the angular momentum spec-

trum e−2πiJ = eiθ has no unacceptable physical consequences if there is
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a θ superselection rule, ensuring that the relative phase in a superposi-
tion of states with different values of θ is physically inaccessible (not just
in practice but even in principle). As for fermions, there is no allowed
physical process that can create of destroy an isolated anyon.

In three dimensions, only θ = 0, π are allowed, because (as you probably
know) of a topological property of the three-dimensional rotation group
SO(3): a closed path in SO(3) beginning at the identity and ending at a
rotation by 4π can be smoothly contracted to a trivial path. It follows
that a rotation by 4π really is represented by the identity, and therefore
that the eigenvalues of a rotation by 2π are +1 and −1. But the two-
dimensional rotation group SO(2) does not have this topological property,
so that any value of θ is possible in principle.

Note that the angular momentum J changes sign under time reversal
(T ) and also under parity (P ). Unless θ = 0 or π, the spectrum of J
is asymmetric about zero, and therefore a theory of anyons typically will
not be T or P invariant. In our flux-charge composite model the origin
of this symmetry breaking is not mysterious — it arises from the nonzero
magnetic field. But in a system with no intrinsic breaking of T and P , if
anyons occur then either these symmetries must be broken spontaneously,
or else the particle spectrum must be “doubled” so that for each anyon
with exchange phase eiθ there also exists an otherwise identical particle
with exchange phase e−iθ .

9.3 Spin and statistics

For identical particles in three dimensions, there is a well known connec-
tion between spin and statistics: indistinguishable particles with integer
spin are bosons, and those with half-odd-integer spin are fermions. In
two dimensions, the spin can be any real number. What does this new
possibility of “fractional spin” imply about statistics? The answer is that
statistics, too, can be “fractionalized”!

What happens if we perform an exchange of two of our flux-charge
composite objects, in a counterclockwise sense? Each charge q is adiabat-
ically transported half way around the flux Φ of the other object. We can
anticipate, then, that each charge will acquire an Aharonov-Bohm phase
that is half of the phase generated by a complete revolution of the charge
about the flux. Adding together the phases arising from the transport of
both charges, we find that the exchange of the two flux-charge composites
changes their wave function by the phase

exp
[
i

(
1
2
qΦ +

1
2
qΦ
)]

= eiqΦ = eiθ = e−2πiJ . (9.5)

The phase generated when the two objects are exchanged matches the
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phase generated when one of the two objects is rotated by 2π. Thus the
connection between spin and statistics continues to hold, in a form that
is a natural generalization of the connection that applies to bosons and
fermions.

The origin of this connection is fairly clear in our flux-charge composite
model, but in fact it holds much more generally. Why? Reading textbooks
on relativistic quantum field theory, one can easily get the impression that
the spin-statistics connection is founded on Lorentz invariance, and has
something to do with the properties of the complexified Lorentz group.
Actually, this impression is quite misleading. All that is essential for a
spin-statistics connection to hold is the existence of antiparticles. Special
relativity is not an essential ingredient.

Consider an anyon, characterized by the phase θ, and suppose that this
particle has a corresponding antiparticle. This means that the particle
and its antiparticle, when combined, have trivial quantum numbers (in
particular, zero angular momentum) and therefore that there are physical
processes in which particle-antiparticle pairs can be created and annihi-
lated. Draw a world line in spacetime that represents a process in which
two particle-antiparticle pairs are created (one pair on the left and the
other pair on the right), the particle from the pair on the right is ex-
changed in a counterclockwise sense with the particle from the pair on
the left, and then both pairs reannihilate. (The world line has an orien-
tation; if directed forward in time it represents a particle, and if directed
backward in time it represents an antiparticle.) Turning our diagram 90◦,
we obtain a depiction of a process in which a single particle-antiparticle
pair is created, the particle and antiparticle are exchanged in a clock-
wise sense, and then the pair reannihilates. Turning it 90◦ yet again, we
have a process in which two pairs are created and the antiparticle from
the pair on the right is exchanged, in a counterclockwise sense, with the
antiparticle from the pair on the left, before reannihilation.

aa
R

1

aa
R aa

R

What do we conclude from these manipulations? Denote by Rab the
unitary operator that represents a counterclockwise exchange of particles
of types a and b (so that the inverse operator R−1

ab represents a clockwise
exchange), and denote by ā the antiparticle of a. We have found that

Raa = R−1
aā = Rāā . (9.6)



9.4 Combining anyons 11

If a is an anyon with exchange phase eiθ , then its antiparticle ā also has
the same exchange phase. Furthermore, when a and ā are exchanged
counterclockwise, the phase acquired is e−iθ .

These conclusions are unsurprising when we interpret them from the
perspective of our flux-charge composite model of anyons. The antipar-
ticle of the object with flux Φ and charge q has flux −Φ and charge −q.
Hence, when we exchange two antiparticles, the minus signs cancel and
the effect is the same as though the particles were exchanged. But if we
exchange a particle and an antiparticle, then the relative sign of charge
and flux results in the exchange phase e−iqΦ = e−iθ .

But what is the connection between these observations about statistics
and the spin? Continuing to contemplate the same spacetime diagram, let
us consider its implications regarding the orientation of the particles. For
keeping track of the orientation, it is convenient to envision the particle
world line not as a thread but as a ribbon in spacetime. I claim that our
process can be smoothly deformed to one in which a particle-antiparticle
pair is created, the particle is rotated counterclockwise by 2π, and then
the pair reannihilates. A convenient way to verify this assertion is to take
off your belt (or borrow a friend’s). The buckle at one end specifies an
orientation; point your thumb toward the buckle, and following the right-
hand rule, twist the belt by 2π before rebuckling it. You should be able
to check that you can lay out the belt to match the spacetime diagram for
any of the exchange processes described earlier, and also for the process
in which the particle rotates by 2π.

Thus, in a topological sense, rotating a particle counterclockwise by 2π
is really the same thing as exchanging two particles in a counterclockwise
sense (or exchanging particle and antiparticle in a clockwise sense), which
provides a satisfying explanation for a general spin-statistics connection.†

I emphasize again that this argument invokes processes in which particle-
antiparticle pairs are created and annihilated, and therefore the existence
of antiparticles is an essential prerequisite for it to apply.

9.4 Combining anyons

We know that a composite object composed of two fermions is a bo-
son. What happens when we build a composite object by combining two
anyons?

† Actually, this discussion has been oversimplified. Though it is adequate for abelian
anyons, we will see that it must be amended for nonabelian anyons, because Rab has
more than one eigenvalue in the nonabelian case. Similarly, the discussion in the next
section of “combining anyons” will need to be elaborated because, in the nonabelian
case, more than one kind of composite anyon can be obtained when two anyons are
fused together.
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Suppose that a is an anyon with exchange phase eiθ , and that we build
a “molecule” from n of these a anyons. What phase is acquired under a
counterclockwise exchange of the two molecules?

The answer is clear in our flux-charge composite model. Each of the n
charges in one molecule acquires a phase eiθ/2 when transported half way
around each of the n fluxes in the other molecule. Altogether then, 2n2

factors of the phase eiθ/2 are generated, resulting in the total phase

eiθn = ein
2θ . (9.7)

Said another way, the phase eiθ occurs altogether n2 times because in
effect n anyons in one molecule are being exchanged with n anyons in
the other molecule. Contrary to what we might have naively expected, if
we split a fermion (say) into two identical constituents, the constituents
have, not an exchange phase of

√
−1 = i, but rather (eiπ)1/4 = eiπ/4.

This behavior is compatible with the spin-statistics connection: the
angular momentum J of the n-anyon molecule satisfies

e−2πiJn = e−2πin2J = ein
2θ . (9.8)

For example, consider a molecule of two anyons, and imagine rotating
the molecule counterclockwise by 2π. Not only does each anyon in the
molecule rotate by 2π; in addition one of the anyons revolves around the
other. One revolution is equivalent to two successive exchanges, so that
the phase generated by the revolution is ei2θ . The total effect of the two
rotations and the revolution is the phase

exp [i (θ + θ + 2θ)] = ei4θ . (9.9)

Another way to understand why the angular momenta of the anyons in
the molecule do not combine additively is to note that the total angular
momentum of the molecule consists of two parts — the spin angular
momentum S of each of the two anyons (which is additive) and the orbital
angular momentum L of the anyon pair. Because the counterclockwise
transport of one anyon around the other generates the nontrivial phase
ei2θ, the dependence of the two-anyon wavefunction ψ on the relative
azimuthal angle ϕ is not single-valued; instead,

ψ(ϕ+ 2π) = e−i2θψ(ϕ) . (9.10)

This means that the spectrum of the orbital angular momentum L is
shifted away from integer values:

e−i2πL = e2iθ , (9.11)
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and this orbital angular momentum combines additively with the spin S
to produce the total angular momentum

−2πJ = −2πL−2πS = 2θ+2θ+ 2π(integer) = 4θ+ 2π(integer) . (9.12)

What if, on the other hand, we build a molecule āa from an anyon a
and its antiparticle ā? Then, as we’ve seen, the spin S has the same value
as for the aa molecule. But the exchange phase has the opposite value, so
that the noninteger part of the orbital angular momentum is −2πL = −2θ
instead of −2πL = 2θ, and the total angular momentum J = L + S is
an integer. This property is necessary, of course, if the āa pair is to be
able to annihilate without leaving behind an object that carries nontrivial
angular momentum.

9.5 Unitary representations of the braid group

We have already noted that the angular momentum spectrum has differ-
ent properties in two spatial dimensions than in three dimensions because
SO(2) has different topological properties than SO(3) (SO(3) has a com-
pact simply connected covering group SU(2), but SO(2) does not). This
observation provides one way to see why anyons are possible in two di-
mensions but not in three. It is also instructive to observe that particle
exchanges have different topological properties in two spatial dimensions
than in three dimensions.

As we have found in our discussion of the relation between the statistics
of particles and of antiparticles, it is useful to envision exchanges of parti-
cles as processes taking place in spacetime. In particular, it is convenient
to imagine that we are computing the quantum transition amplitude for
a time-dependent process involving n particles by evaluating a sum over
particle histories (though for our purposes it will not actually be necessary
to calculate any path integrals).

Consider a system of n indistinguishable pointlike particles confined to
a two-dimensional spatial surface (which for now we may assume is the
plane), and suppose that no two particles are permitted to occupy coinci-
dent positions. We may think of a configuration of the particles at a fixed
time as a plane with n “punctures” at specified locations — that is, we
associate with each particle a hole in the surface with infinitesimal radius.
The condition that the particles are forbidden to coincide is enforced by
demanding that there are exactly n punctures in the plane at any time.
Furthermore, just as the particles are indistinguishable, each puncture
is the same as any other. Thus if we were to perform a permutation of
the n punctures, this would have no physical effect; all the punctures are
the same anyway, so it makes no difference which one is which. All that
matters is the n distinct particle positions in the plane.
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To evaluate the quantum amplitude for a configuration of n particles
at specified initial positions at time t = 0 to evolve to a configuration
of n particles at specified final positions at time t = T , we are to sum
over all classical histories for the n particles that interpolate between the
fixed initial configuration and the fixed final configuration, weighted by
the phase eiS , where S is the classical action of the history. If we envision
each particle world line as a thread, each history for the n particles be-
comes a braid, where each particle on the initial (t = 0) time slice can be
connected by a thread to any one of the particles on the final (t = T ) time
slice. Furthermore, since the particle world lines are forbidden to cross,
the braids fall into distinct topological classes that cannot be smoothly
deformed one to another, and the path integral can be decomposed as
a sum of contributions, with each contribution arising from a different
topological class of histories.

Nontrivial exchange operations acting on the particles on the final time
slice change the topological class of the braid. Thus we see that the
elements of the symmetry group generated by exchanges are in one-to-one
correspondence with the topological classes. This (infinite) group is called
Bn, the braid group on n strands; the group composition law corresponds
to concatenation of braids (that is, following one braid with another). In
the quantum theory, the quantum state of the n indistinguishable particles
belongs to a Hilbert space that transforms as a unitary representation of
the braid group Bn.

The group can be presented as a set of generators that obey particular
defining relations. To understand the defining relations, we may imag-
ine that the n particles occupy n ordered positions (labeled 1, 2, 3, . . . , n)
arranged on a line. Let σ1 denote a counterclockwise exchange of the
particles that initially occupy positions 1 and 2, let σ2 denote a counter-
clockwise exchange of the particles that initially occupy positions 2 and
3, and so on. Any braid can be constructed as a succession of exchanges
of neighboring particles; hence σ1, σ2, . . . , σn−1 are the group generators.

The defining relations satisfied by these generators are of two types.
The first type is

σjσk = σkσj , |j − k| ≥ 2 , (9.13)

which just says that exchanges of disjoint pairs of particles commute. The
second, slightly more subtle, type of relation is

σjσj+1σj = σj+1σjσj+1 , j = 1, 2, . . . , n− 2 , (9.14)

which is sometimes called the Yang-Baxter relation. You can verify the
Yang-Baxter relation by drawing the two braids σ1σ2σ1 and σ2σ1σ2 on
a piece of paper, and observing that both describe a process in which
the particles initially in positions 1 and 3 are exchanged counterclockwise
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about the particle labeled 2, which stays fixed — i.e., these are topologi-
cally equivalent braids.

2

1

2

1

2

1

Since the braid group is infinite, it has an infinite number of unitary
irreducible representations, and in fact there are an infinite number of one-
dimensional representations. Indistinguishable particles that transform as
a one-dimensional representation of the braid group are said to be abelian
anyons. In the one-dimensional representations, each generator σj ofBn is
represented by a phase σj = eiθj . Furthermore, the Yang-Baxter relation
becomes eiθjeiθj+1eiθj = eiθj+1eiθjeiθj+1 , which implies eiθj = eiθj+1 ≡ eiθ

— all exchanges are represented by the same phase. Of course, that
makes sense; if the particles are really indistinguishable, the exchange
phase ought not to depend on which pair is exchanged. For θ = 0 we
obtain bosons, and for θ = π, fermions

The braid group also has many nonabelian representations that are
of dimension greater than one; indistinguishable particles that transform
as such representations are said to be nonabelian anyons (or, sometimes,
nonabelions). To understand the physical properties of nonabelian anyons
we will need to understand the mathematical structure of some of these
representations. In these lectures, I hope to convey some intuition about
nonabelian anyons by discussing some examples in detail.

For now, though, we can already anticipate the main goal we hope to
fulfill. For nonabelian anyons, the irreducible representation of Bn real-
ized by n anyons acts on a “topological vector space” Vn whose dimension
Dn increases exponentially with n. And for anyons with suitable prop-
erties, the image of the representation may be dense in SU(Dn). Then
braiding of anyons can simulate a quantum computation — any (special)
unitary transformation acting on the exponentially large vector space Vn

can be realized with arbitrarily good fidelity by executing a suitably cho-
sen braid.

Thus we are keenly interested in the nonabelian representations of the
braid group. But we should also emphasize (and will discuss at greater
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length later on) that there is more to a model of anyons than a mere rep-
resentation of the braid group. In our flux tube model of abelian anyons,
we were able to describe not only the effects of an exchange of anyons, but
also the types of particles that can be obtained when two or more anyons
are combined together. Likewise, in a general anyon model, the anyons
are of various types, and the model incorporates “fusion rules” that spec-
ify what types can be obtained when two anyons of particular types are
combined. Nontrivial consistency conditions arise because fusion is asso-
ciate (fusing a with b and then fusing the result with c is equivalent to
fusing b with c and then fusing the result with a), and because the fusion
rules must be consistent with the braiding rules. Though these consis-
tency conditions are highly restrictive, many solutions exist, and hence
many different models of nonabelian anyons are realizable in principle.

9.6 Topological degeneracy

But before moving on to nonabelian anyons, there is another important
idea concerning abelian anyons that we should discuss. In any model of
anyons (indeed, in any local quantum system with a mass gap), there is a
ground state or vacuum state, the state in which no particles are present.
On the plane the ground state is unique, but for a two-dimensional surface
with nontrivial topology, the ground state is degenerate, with the degree of
degeneracy depending on the topology. We have already encountered this
phenomenon of “topological degeneracy” in the model of abelian anyons
that arose in our study of a particular quantum error-correcting code,
Kitaev’s toric code. Now we will observe that topological degeneracy is a
general feature of any model of (abelian) anyons.

We can arrive at the concept of topological degeneracy by examining
the representations of a simple operator algebra. Consider the case of the
torus, represented as a square with opposite sides identified, and consider
the two fundamental 1-cycles of the torus: C1, which winds around the
square in the x1 direction, and C2 which winds around in the x2 direction.
A unitary operator T1 can be constructed that describes a process in
which an anyon-antianyon pair is created, the anyon propagates around
C1, and then the pair reannihilates. Similarly a unitary operator T2 can
be constructed that describes a process in which the pair is created, and
the anyon propagates around the cycle C2 before the pair reannihilates.
Each of the operators T1 and T2 preserves the ground state of the system
(the state with no particles); indeed, each commutes with the Hamiltonian
H of the system and so either can be simultaneously diagonalized with
H (T1 and T2 are both symmetries).

However, T1 and T2 do not commute with one another. If our torus
has infinite spatial volume, and there is a mass gap (so that the only
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interactions among distantly separated anyons are due to the Aharonov-
Bohm effect), then the commutator of T1 and T2 is

T−1
2 T−1

1 T2T1 = e−i2θI , (9.15)

where eiθ is the anyon’s exchange phase. The nontrivial commutator
arises because the process in which (1) an anyon winds around C1, (2)
an anyon winds around C2 (3) an anyon winds around C1 in the reverse
direction, and (4) an anyon winds around C2 in the reverse direction, is
topologically equivalent to a process in which one anyon winds clockwise
around another. To verify this claim, view the action of T−1

2 T−1
1 T2T1

as a process in spacetime. First note that the process described by the
operator T−1

1 T1, in which an anyon world line first sweeps though C1 and
then immediately traverses C1 in the reverse order, can be deformed to
a process in which the anyon world line traverses a topologically trivial
loop that can be smoothly shrunk to a point (in keeping with the prop-
erty that T−1

1 T1 is really the identity operator). In similar fashion, the
process described by the operator T−1

2 T−1
1 T2T1 can be deformed to one

where the anyon world lines traverse two closed loops, but such that the
world lines link once with one another; furthermore, one loop pierces the
surface bounded by the other loop in a direction opposite to the orien-
tation inherited by the surface via the right-hand rule from its bounding
loop. This process can be smoothly deformed to one in which two pairs
are created, one anyon winds clockwise around the other, and then both
pairs annihilate. The clockwise winding is equivalent to two successive
clockwise exchanges, represented in our one-dimensional representation
of the braid group by the phase e−i2θ . We conclude that T1 and T2 are
noncommuting, except in the cases θ = 0 (bosons) and θ = π (fermions).

2

1
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Since T1 and T2 both commute with the Hamiltonian H , both preserve
the eigenspaces of H , but since T1 and T2 do not commute with one
another, they cannot be simultaneously diagonalized. Since T1 is unitary,
its eigenvalues are phases; let us use the angular variable α ∈ [0, 2π) to
label an eigenstate of T1 with eigenvalue eiα:

T1|α〉 = eiα|α〉 . (9.16)

Then applying T2 to the T1 eigenstate advances the value of α by 2θ:

T1 (T2|α〉) = ei2θT2T1|α〉 = ei2θeiα (T2|α〉) . (9.17)

Suppose that θ is a rational multiple of 2π, which we may express as

θ = πp/q , (9.18)

where q and p (p < 2q) are positive integers with no common factor. Then
we conclude that T1 must have at least q distinct eigenvalues; T1 acting
on α generates an orbit with q distinct values:

α+
(

2πp
q

)
k (mod 2π) , k = 0, 1, 2, . . . , q − 1 . (9.19)

Since T1 commutes with H , on the torus the ground state of our anyonic
system (indeed, any energy eigenstate) must have a degeneracy that is an
integer multiple of q. Indeed, generically (barring further symmetries or
accidental degeneracies), the degeneracy is expected to be exactly q.

For a two-dimensional surface with genus g (a sphere with g “handles”),
the degree of this topological degeneracy becomes qg, because there are
operators analogous to T1 and T2 associated with each of the g handles,
and all of the T1-like operators can be simultaneously diagonalized. Fur-
thermore, we can apply a similar argument to a finite planar medium if
single anyons can be created and destroyed at the edges of the system. For
example, consider an annulus in which anyons can appear or disappear
at the inner and outer edges. Then we could define the unitary opera-
tor T1 as describing a process in which an anyon winds counterclockwise
around the annulus, and a unitary operator T2 as describing a process in
which an anyon appears at the outer edge, propagates to the inner edge,
and disappears. These operators T1 and T2 have the same commutator
as the corresponding operators defined on the torus, and so we conclude
as before that the ground state on the annulus is q-fold degenerate for
θ = πp/q. For a disc with h holes, there is an operator analogous to
T1 that winds an anyon counterclockwise around each of the holes, and
an operator analogous to T2 that propagates an anyon from the outer
boundary of the disk to the edge of the hole; thus the degeneracy is qh.
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What we have described here is a robust topological quantum memory.
The phase ei2θ = ei2πp/q ≡ ω acquired when one anyon winds counter-
clockwise around another is a primitive qth root of unity, and in the case
of a planar system with holes, the operator T1 can be regarded as the en-
coded Pauli operator Z̄ acting on a q-dimension system associated with
a particular hole. Physically, the eigenvalue ωs of Z̄ just counts the num-
ber s of anyons that are “stuck” inside the hole. The operator T2 can
be regarded as the complementary Pauli operator X̄ that increments the
value of s by carrying one anyon from the boundary of the system and
depositing it in the hole. Since the quantum information is encoded in a
nonlocal property of the system, it is well protected from environmental
decoherence. By the same token depositing a quantum state in the mem-
ory, and reading it out, might be challenging for this system, though in
principle Z̄ could be measured by, say, performing an interference experi-
ment in which an anyon projectile scatters off of a hole. We will see later
that by using nonabelian anyons we will be able to simplify the readout;
in addition, with nonabelian anyons we can use topological properties to
process quantum information as well as to store it.

Just how robust is this quantum memory? We need to worry about er-
rors due to thermal fluctuations and due to quantum fluctuations. Ther-
mal fluctuations might excite the creation of anyons, and thermal anyons
might diffuse around one of the holes in the sample, or from one bound-
ary to another, causing an encoded error. Thermal errors are heavily
suppressed by the Boltzman factor e−∆/T , if the temperature T is suffi-
ciently small compared to the energy gap ∆ (the minimal energy cost of
creating a single anyon at the edge of the sample, or a pair of anyons in
the bulk). The harmful quantum fluctuations are tunneling processes in
which a virtual anyon-antianyon pair appears and the anyon propagates
around a hole before reannihilating, or a virtual anyon appears at the
edge of a hole and propagates to another boundary before disappearing.
These errors due to quantum tunneling are heavily suppressed if the holes
are sufficiently large and sufficiently well separated from one another and
from the outer boundary.‡

Note that our conclusion that the topological degeneracy is finite hinged
on the assumption that the angle θ is a rational multiple of π. We may
say that a theory of anyons is rational if the topological degeneracy is
finite for any surface of finite genus (and, for nonabelian anyons, if the

‡ If you are familiar with Euclidean path integral methods, you’ll find it easy to verify
that in the leading semiclassical approximation the amplitude A for such a tunneling
process in which the anyon propagates a distance L has the form A = Ce−L/L0 ,
where C is a constant and L0 = h̄ (2m∗∆)−1/2; here h̄ is Planck’s constant and m∗

is the effective mass of the anyon, defined so that the kinetic energy of an anyon
traveling at speed v is 1

2
m∗v2.
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topological vector space Vn is finite-dimensional for any finite number of
anyons n). We may anticipate that the anyons that arise in any physically
reasonable system will be rational in this sense, and therefore should be
expected to have exchange phases that are roots of unity.

9.7 Toric code revisited

If these observations about topological degeneracy seem hauntingly famil-
iar, it may be because we used quite similar arguments in our discussion
of the toric code.

The toric code can be regarded as the (degenerate) ground state of a
system of qubits that occupy the links of a square lattice on the torus,
with Hamiltonian

H = −1
4
∆

(∑

P

ZP +
∑

S

XS

)
, (9.20)

where the plaquette operator ZP = ⊗`∈PZ` is the tensor product of Z’s
acting on the four qubits associated with the links contained in plaquette
P , and the site operator XS ⊗`3S X` is the tensor product of X ’s acting
on the four qubits associated with the links that meet at the site S. These
plaquette and site operators are just the (commuting) stabilizer generators
for the toric code. The ground state is the simultaneous eigenstate with
eigenvalue 1 of all the stabilizer generators.

This model has two types of localized particle excitations — plaquette
excitations where ZP = −1, which we might think of as magnetic fluxons,
and site excitations where XS = −1, which we might think of as electric
charges. A Z error acting on a link creates a pair of charges on the two
site joined by the link, and an X error acting on a link creates a pair of
fluxons on the two plaquettes that share the link. The energy gap ∆ is
the cost of creating a pair of either type.

The charges are bosons relative to one another (they have a trivial
exchange phase eiθ = 0), and the fluxons are also bosons relative to one
another. Since the fluxons are distinguishable from the charges, it does
not make sense to exchange a charge with a flux. But what makes this
an anyon model is that a phase (−1) is acquired when a charge is carried
around a flux. The degeneracy of the ground state (the dimension of the
code space) can be understood as a consequence of this property of the
particles.

For this model on the torus, because there are two types of particles,
there are two types of T1 operators: T1,S, which propagates a charge (site
defect) around the 1-cycle C1, and T1,P , which propagates a fluxon (pla-
quette defect) around C1. Similarly there are two types of T2 operators,
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T2,S and T2,P . The nontrivial commutators are

T−1
2,PT

−1
1,ST2,PT1,S = −1 = T−1

2,ST
−1
1,PT2,ST1,P , (9.21)

both arising from processes in which world lines of charges and fluxon link
once with one another. Thus T1,S and T2,S can be diagonalized simulta-
neously, and can be regarded as the encoded Pauli operators Z̄1 and Z̄2

acting on two protected qubits. The operator T2,P , which commutes with
Z̄1 and anticommutes with Z̄2, can be regarded as the encoded X̄1, and
similarly T1,P is the encoded X̄2.

On the torus, the degeneracy of the four ground states is exact for
the ideal Hamiltonian we constructed (the particles have infinite effective
masses). Weak local perturbations will break the degeneracy, but only
by an amount that gets exponentially small as the linear size L of the
torus increases. To be concrete, suppose the perturbation is a uniform
“magnetic field” pointing in the ẑ direction, coupling to the magnetic
moments of the qubits:

H ′ = −h
∑

`

Z` . (9.22)

Because of the nonzero energy gap, for the purpose of computing in per-
turbation theory the leading contribution to the splitting of the degen-
eracy, it suffices to consider the effect of the perturbation in the four-
dimensional subspace spanned by the ground states of the unperturbed
system. In the toric code, the operators with nontrivial matrix elements
in this subspace are those such that Z`’s act on links that form a closed
loop that wraps around the torus (or X`’s act on links whose dual links
form a closed loop that wraps around the torus). For an L×L lattice on
the torus, the minimal length of such a closed loop is L; therefore nonva-
nishing matrix elements do not arise in perturbation theory until the Lth
order, and are suppressed by hL. Thus, for small h and large L, memory
errors due to quantum fluctuations occur only with exponentially small
amplitude.

9.8 The nonabelian Aharonov-Bohm effect

There is a beautiful abstract theory of nonabelian anyons, and in due
course we will delve into that theory a bit. But I would prefer to launch
our study of the subject by describing a more concrete model.

With that goal in mind, let us recall some properties of chromodynam-
ics, the theory of the quarks and gluons contained within atomic nuclei
and other strongly interacting particles. In the real world, quarks are per-
manently bound together and can never be isolated, but for our discussion
let us imagine a fictitious world in which the forces between quarks are
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weak, so that the characteristic distance scale of quark confinement is
very large.

Quarks carry a degree of freedom known metaphorically as color. That
is, there are three kinds of quarks, which in keeping with the metaphor
we call red (R), yellow (Y ), and blue (B). Quarks of all three colors are
physical identical, except that when we bring two quarks together, we can
tell whether their colors are the same (the Coulombic interaction between
like colors is repulsive), or different (distinct colors attract). There is
nothing to prevent me from establishing a quark bureau of standards in
my laboratory, where colored quarks are sorted into three bins; all the
quarks in the same bin have the same color, and quarks in different bins
have different colors. We may attach (arbitrary) labels to the three bins
— R, Y , and B.

If while taking a hike outside by lab, I discover a previously unseen
quark, I may at first be unsure of its color. But I can find out. I capture
the quark and carry it back to my lab, being very careful not to disturb
its color along the way (in chromodynamics, there is a notion of parallel
transport of color). Once back at the quark bureau of standards, I can
compare this new quark to the previously calibrated quarks in the bins,
and so determine whether the new quark should be labeled R, Y , or B.

It sounds simple but there is a catch: in chromodynamics, the paral-
lel transport of color is path dependent due to an Aharonov-Bohm phe-
nomenon that affects color. Suppose that at the quark bureau of stan-
dards a quark is prepared whose color is described by the quantum state

|ψq〉 = qR|R〉+ qY |Y 〉+ qB |B〉 ; (9.23)

it is a coherent superposition with amplitudes qR, qY , qB for the red, yel-
low, and blue states. The quark is carried along a path that winds around
a color magnetic flux tube and is returned to the quark bureau of stan-
dards where its color can be recalibrated. Upon its return the color state
has been rotated: 


q′R
q′Y
q′B


 = U



qR
qY
qB


 , (9.24)

where U is a (special) unitary 3 × 3 matrix. Similarly, when a newly
discovered quark is carried back to the bureau of standards, the outcome
of a measurement of its color will depend on whether it passed to the left
or the right of the flux tube during its voyage.

This path dependence of the parallel transport of color is closely analo-
gous to the path dependence of the parallel transport of a tangent vector
on a curved Riemannian manifold. In chromodynamics, a magnetic field
is the “curvature” whose strength determines the amount of path depen-
dence.
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In general, the SU(3) matrix U that describes the effect of parallel
transport of color about a closed path depends on the basepoint x0 where
the path begins and ends, as well as on the closed loop C traversed by the
path — when it is important to specify the loop and basepoint we will use
the notation U(C, x0). The eigenvalues of the matrix U have an invariant
“geometrical” meaning characterizing the parallel transport, but U itself
depends on the conventions we have established at the basepoint. You
might prefer to choose a different orthonormal basis for the color space
at the basepoint x0 than the basis I chose, so that your standard colors
R, Y , and B differ from mine by the action of an SU(3) matrix V (x0).
Then, while I characterize the effect or parallel transport around the loop
C with the matrix U , you characterize it with another matrix

V (x0)U(C, x0)V (x0)−1 , (9.25)

that differs from mine by conjugation by V (x0). Physicists sometimes
speak of this freedom to redefine conventions as a choice of gauge, and say
that U itself is gauge dependent while its eigenvalues are gauge invariant.

Chromodynamics, on the distance scales we consider here (much smaller
than the characteristic distance scale of quark confinement), is a the-
ory like electrodynamics with long-range Coulombic interactions among
quarks, mediated by “gluon” fields. We will prefer to consider a theory
that retains some of the features of chromodynamics (in particular the
path dependence of color transport), but without the easily excited light
gluons. In the case of electrodynamics, we eliminated the light photon
by considering a “superconductor” in which charged particles form a con-
densate, magnetic fields are expelled, and the magnetic flux of an isolated
object is quantized. Let us appeal to the same idea here. We consider a
nonabelian superconductor in two spatial dimensions. This world contains
particles that carry “magnetic flux” (similar to the color magnetic flux in
chromodynamics) and particles that carry charge (similar to the colored
quarks of chromodynamics). The flux takes values in a nonabelian finite
group G, and the charges are unitary irreducible representations of the
group G. In this setting, we can formulate some interesting models of
nonabelian anyons.

Let R denote a particular irreducible representation of G, whose di-
mension is denoted |R|. We may establish a “charge bureau of stan-
dards,” and define there an arbitrarily chosen orthonormal basis for the
|R|-dimensional vector space acted upon by R:

|R, i〉 , i = 1, 2, . . . |R| . (9.26)

When a charge R is transported around a closed path that encloses a flux
a ∈ G, there is a nontrivial Aharonov-Bohm effect — the basis for R is
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rotated by a unitary matrix DR(a) that represents a:

|R, j〉 7→
|R|∑

i=1

|R, i〉DR
ij(a) . (9.27)

The matrix elements DR
ij(a) are measurable in principle, for example by

conducting interference experiments in which a beam of calibrated charges
can pass on either side of the flux. (The phase of the complex number
DR

ij(a) determines the magnitude of the shift of the interference fringes,
and the modulus of DR

ij(a) determines the visibility of the fringes.) Thus
once we have chosen a standard basis for the charges, we can use the
charges to attach labels (elements of G) to all fluxes. The flux labels
are unambiguous as long as the representation R is faithful, and barring
any group automorphisms (which create ambiguities that we are free to
resolve however we please).

However, the group elements that we attach to the fluxes depend on our
conventions. Suppose I am presented with k fluxons (particles that carry
flux), and that I use my standard charges to measure the flux of each
particle. I assign group elements a1, a2, . . . , ak ∈ G to the k fluxons. You
are then asked to measure the flux, to verify my assignments. But your
standard charges differ from mine, because they have been surreptitiously
transported around another flux (one that I would label with g ∈ G).
Therefore you will assign the group elements ga1g

−1, ga2g
−1, . . . , gakg

−1

to the k fluxons; our assignments differ by an overall conjugation by g.
The moral of this story is that the assignment of group elements to

fluxons is inherently ambiguous and has no invariant meaning. But be-
cause the valid assignments of group elements to fluxons differ only by
conjugation by some element g ∈ G, the conjugacy class of the flux in
G does have an invariant meaning on which all observers will agree. In-
deed, even if we fix our conventions at the charge bureau of standards, the
group element that we assign to a particular fluxon may change if that
fluxon takes part in a physical process in which it braids with other flux-
ons. For that reason, the fluxons belonging to the same conjugacy class
should all be regarded as indistinguishable particles, even though they
come in many varieties (one for each representative of the class) that can
be distinguished when we make measurements at a particular time and
place: The fluxons are nonabelian anyons.

9.9 Braiding of nonabelian fluxons

We will see that, for a nonabelian superconductor with suitable properties,
it is possible to operate a fault-tolerant universal quantum computer by
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manipulating the fluxons. The key thing to understand is what happens
when two fluxons are exchanged with one another.

For this purpose, imagine that we carefully calibrate two fluxons, and
label them with elements of the group G. The labels are assigned by
establishing a standard basis for the charged particles at a basepoint x0.
Then a standard path, designated α, is chosen that begins at x0, winds
counterclockwise around the fluxon on the left, and returns to x0. Finally,
charged particles are carried around the closed path α, and it is observed
that under this parallel transport, the particles are acted upon by D(a),
where D is the representation of G according to which the charged parti-
cles transform, and a ∈ G is the particular group element that we assign
to the fluxon. Similarly, another standard path, designated β, is chosen
that begins at x0, winds counterclockwise around the fluxon on the right,
and returns to x0; the effect of parallel transport around β is found to be
D(b), and so the fluxon on the right is labeled with b ∈ G.

Now imagine that a counterclockwise exchange of the two fluxons is
performed, after which the calibration procedure is repeated. How will
the fluxons be labeled now?

To find the answer, consider the path αβα−1; here we use α−1 to denote
the path α traversed in reverse order, and we have adopted the convention
that αβα−1 denotes the path in which α−1 is traversed first, followed by
β and then α. Now observe that if, as the two fluxons are exchanged
counterclockwise, we deform the paths so that they are never crossed by
the fluxons, then the path αβα−1 is deformed to the path α, while the
path α is deformed to β:

αβα−1 7→ α , α 7→ β . (9.28)

0
x

0
x

1

It follows that the effect of transporting a charge around the path α, after
the exchange, is equivalent to the effect of transport around the path
αβα−1, before the exchange; similarly, the effect of transport around β,
after the exchange, is the same as the effect of transport around α before.
We conclude that the braid operator R representing a counterclockwise
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exchange acts on the fluxes according to

R : |a, b〉 → |aba−1, a〉 . (9.29)

Of course, if the fluxes a and b are commuting elements of G, all the
braiding does is swap the positions of the two labels. But if a and b do not
commute, the effect of the exchange is more subtle and interesting. The
asymmetric form of the action of R is a consequence of our conventions
and of the (counterclockwise) sense of the exchange; the inverse operator
R−1 representing a clockwise exchange acts as

R−1 : |a, b〉 → |b, b−1ab〉 . (9.30)

Note that the total flux of the pair of fluxons can be detected by a charged
particle that traverses the path αβ that encloses both members of the
pair. Since in principle the charge detecting this total flux could be far,
far away, the exchange ought not to alter the total flux; indeed, we find
that the product flux ab is preserved by R and by R−1.

The effect of two successive counterclockwise exchanges is the “mon-
odromy” operator R2, representing the counterclockwise winding of one
fluxon about the other, whose action is

R2 : |a, b〉 7→ |(ab)a(ab)−1, (ab)b(ab)−1〉 ; (9.31)

both fluxes are conjugated by the total flux ab. That is, winding a coun-
terclockwise about b conjugates b by a (and similarly, winding b clockwise
about a conjugates a by b−1). The nontrivial monodromy means that if
many fluxons are distributed in the plane, and one of these fluxons is to
be brought to my laboratory for analysis, the group element I assign to
the fluxon may depend on the path the flux follows as it travels to my lab.
If for one choice of path the flux is labeled by a ∈ G, then for other paths
any other element bab−1 might in principle be assigned. Thus, the conju-
gacy class in G represented by the fluxon is invariant, but the particular
representative of that class is ambiguous.

For example, suppose the group is G = S3, the permutation group
on three objects. One of the conjugacy classes contains all of the two-
cycle permutations (transpositions of two objects), the three elements
{(12), (23), (31)}. When two such two-cycles fluxes are combined, there
are three possibilities for the total flux — the trivial flux e, or one of the
three-cycle fluxes (123) or (132). If the total flux is trivial, the braiding
of the two fluxes is also trivial (a and b = a−1 commute). But if the total
flux is nontrivial, then the braid operator R has orbits of length three:

R : |(12), (23)〉 7→ |(31), (12)〉 7→ |(23), (31)〉 7→ |(12), (23)〉 ,
R : |(23), (12)〉 7→ |(31), (23)〉 7→ |(12), (31)〉 7→ |(23), (12)〉 ,

(9.32)
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Thus, if the two fluxons are exchanged three times, they swap positions
(the number of exchanges is odd), yet the labeling of the state is unmod-
ified. This observation means that there can be quantum interference
between the “direct” and “exchange” scattering of two fluxons that carry
distinct labels in the same conjugacy class, reinforcing the notion that
fluxes carrying conjugate labels ought to be regarded as indistinguishable
particles.

Since the braid operator acting on pairs of two-cycle fluxes satisfies
R3 = I , its eigenvalues are third roots of unity. For example, by taking
linear combinations of the three states with total flux (123), we obtain
the R eigenstates

R = 1 : |(12), (23)〉 + |(31), (12)〉 + |(23), (31)〉 ,
R = ω : |(12), (23)〉+ ω̄|(31), (12)〉+ ω|(23), (31)〉 ,
R = ω̄ : |(12), (23)〉+ ω|(31), (12)〉+ ω̄|(23), (31)〉 , (9.33)

where ω = e2πi/3.
Although a pair of fluxes |a, a−1〉 with trivial total flux has trivial braid-

ing properties, it is interesting for another reason — it carries charge. The
way to detect the charge of an object is to carry a flux b around the ob-
ject (counterclockwise); this modifies the object by the action ofDR(b) for
some representation R of G. If the charge is zero then the representation
is trivial — D(b) = I for all b ∈ G. But if we carry flux b counterclockwise
around the state |a, a−1〉, the state transforms as

|a, a−1〉 7→ |bab−1, ba−1b−1〉 , (9.34)

a nontrivial action (for at least some b) if a belongs to a conjugacy class
with more than one element. In fact, for each conjugacy class α, there is
a unique state |0;α〉 with zero charge, the uniform superposition of the
class representatives:

|0;α〉 =
1√
|α|

∑

a∈α

|a, a−1〉 , (9.35)

where |α| denotes the order of α. A pair of fluxons in the class α that can
be created in a local process must not carry any conserved charges and
therefore must be in the state |0;α〉. Other linear combinations orthogonal
to |0;α〉 carry nonzero charge. This charge carried by a pair of fluxons can
be detected by other fluxons, yet oddly the charge cannot be localized on
the core of either particle in the pair. Rather it is a collective property of
the pair. If two fluxons with a nonzero total charge are brought together,
complete annihilation of the pair will be forbidden by charge conservation,
even though the total flux is zero.
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In the case of a pair of fluxons from the two-cycle class of G = S3, for
example, there is a two-dimensional subspace with trivial total flux and
nontrivial charge, for which we may choose the basis

|0〉 = |(12), (12)〉+ ω̄|(23), (23)〉+ ω|(31), (31)〉 ,
|1〉 = |(12), (12)〉+ ω|(23), (23)〉+ ω̄|(31), (31)〉 . (9.36)

If a flux b is carried around the pair, both fluxes are conjugated by b;
therefore the action (by conjugation) of S3 on these states is

D(12) =
(

0 1
1 0

)
, D(23) =

(
0 ω̄
ω 0

)
, D(31) =

(
0 ω
ω̄ 0

)
,

D(123) =
(
ω 0
0 ω̄

)
, D(132) =

(
ω̄ 0
0 ω

)
. (9.37)

This action is just the two-dimensional irreducible representation R = [2]
of S3, and so we conclude that the charge of the pair of fluxons is [2].

Furthermore, under braiding this charge carried by a pair of fluxons can
be transferred to other particles. For example, consider a pair of particles,
each of which carries charge but no flux (I will refer to such particles as
chargeons), such that the total charge of the pair is trivial. If one of
the chargeons transforms as the unitary irreducible representation R of
G, there is a unique conjugate representation R̄ that can be combined
with R to give the trivial representation; if {|R, i〉} is a basis for R, then
a basis {|R̄, i〉} can be chosen for R̄, such that the chargeon pair with
trivial charge can be expressed as

|0;R〉 =
1√
|R|

∑

i

|R, i〉 ⊗ |R̄, i〉 . (9.38)

Imagine that we create a pair of fluxons in the state |0;α〉 and also
create a pair of chargeons in the state |0;R〉. Then we wind the chargeon
with charge R counterclockwise around the fluxon with flux in class α,
and bring the two chargeons together again to see if they will annihilate.
What happens?

For a fixed value a ∈ α of the flux, the effect of the winding on the
state of the two chargeons is

|0;R〉 7→ 1√
|R|

∑

i,j

|R, j〉 ⊗ |R̄, i〉DR
ji(a) ; (9.39)

if the charge of the pair were now measured, the probability that zero
total charge would be found is the square of the overlap of this state with
|0;R〉, which is

Prob(0) =
∣∣∣∣
χR(a)
|R|

∣∣∣∣
2

, (9.40)
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where
χR(a) =

∑

i

DR
ii (a) = tr DR(a) (9.41)

is the character of the representation R, evaluated at a. In fact, the
character (a trace) is unchanged by conjugation — it takes the same value
for all a ∈ α. Therefore, eq. (9.40) is also the probability that the pair of
chargeons has zero total charge when one chargeon (initially a member
of a pair in the state |0;R〉) winds around one fluxon (initially a member
of a pair in the state |0;α〉). Of course, since the total charge of all four
particles is zero and charge is conserved, after the winding the two pairs
have opposite charges — if the pair of chargeons has total charge R′, then
the pair of fluxons must have total charge R̄′, combined with R′ to give
trivial total charge. A pair of particles with zero total charge and flux can
annihilate, leaving no stable particle behind, while a pair with nonzero
charge will be unable to annihilate completely. We conclude, then, that
if the world lines of a fluxon pair and a chargeon pair link once, the
probability that both pairs will be able to annihilate is given by eq. (9.40).
This probability is less than one, provided that the representation of R
is not one dimensional and the class α is not represented trivially. Thus
the linking of the world lines induces an exchange of charge between the
two pairs.

For example, in the case where α is the two-cycle class of G = S3 and
R = [2] (the two-dimensional irreducible representation of S3), we see
from eq. (9.37) that χ[2](α) = 0. Therefore, charge is transfered with
certainty; after the winding, both the fluxon pair and the chargeon pair
transform as R′ = [2].

9.10 Superselection sectors of a nonabelian superconductor

In our discussion so far of the nonabelian superconductor, we have been
considering two kinds of particles: fluxons, which carry flux but no charge,
and chargeons, which carry charge but no flux. These are not the most
general possible particles. It will be instructive to consider what happens
when we build a composite particle by combining a fluxon with a chargeon.
In particular, what is the charge of the composite? This question is
surprisingly subtle; to answer cogently, we should think carefully about
how the charge can be measured.

In principle, charge can be measured in an Aharonov-Bohm interference
experiment. We could hide the object whose charge is to be found behind
a screen in between two slits, shoot a beam of carefully calibrated fluxons
at the screen, and detect the fluxons on the other side. From the shift and
visibility of the interference pattern revealed by the detected positions of
the fluxons, we can determine DR(b) for each b ∈ G, and so deduce R.
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However, there is a catch if the object being analyzed carries a nontrivial
flux a ∈ G as well as charge. Since carrying a flux b around the flux a
changes a to bab−1, the two possible paths followed by the b flux do not
interfere, if a and b do not commute. After the b flux is detected, we could
check whether the a flux has been modified, and determine whether the b
flux passed through the slit on the left or the slit on the right. Since the
flux (a or bab−1) is correlated with the “which way” information (left or
right slit), the interference is destroyed.

Therefore, the experiment reveals information about the charge only if
a and b commute. Hence the charge attached to a flux a is not described
as an irreducible representation of G; instead it is an irreducible repre-
sentation of a subgroup of G, the normalizer N(a) of a in G, which is
defined as

N(a) = {b ∈ G|ab = ba} . (9.42)

The normalizers N(a) and N(bab−1) are isomorphic, so we may associate
the normalizer with a conjugacy class α of G rather than with a par-
ticular element, and denote it as N(α). Therefore, each type of particle
that can occur in our nonabelian superconductor really has two labels:
a conjugacy class α describing the flux, and an irreducible representa-
tion R(α) of N(α) describing the charge. We say that α and R(α) label
the superselection sectors of the theory, as these are the properties of a
localized object that must be conserved in all local physical processes.
For particles that carry the labels (α,R(α)), it is possible to establish a
“bureau of standards” where altogether |α| · |R(α)| ≡ d(α,R(α)) different
particle species can be distinguished at a particular time and place —
this number is called the dimension of the sector. But if these particles
are braided with other particles the species may change, while the labels
(α,R(α)) remain invariant.

In any theory of anyons, a dimension can be assigned to each particle
type, although as we will see, in general the dimension need not be an
integer, and may have no direct interpretation in terms the counting of
distinct species of the same type. The total dimension D can be defined
by summing over all types; in the case of a nonabelian superconductor we
have

D2 =
∑

α

∑

R(α)

d2
(α,R(α))

=
∑

α

|α|2
∑

R(α)

|R(α)|2 . (9.43)

Since the sum over the dimension squared for all irreducible representa-
tions of a finite group is the order of the group, and the order of the
normalizer N(α) is |G|/|α|, we obtain

D2 =
∑

α

|α| · |G| = |G|2 ; (9.44)
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the total dimension is D = |G|.
For the case G = S3 there are 8 particle types, listed here:

Type Flux Charge Dim
A e [+] 1
B e [-] 1
C e [2] 2
D (12) [+] 3
E (12) [-] 3
F (123) [1] 2
G (123) [ω] 2
H (123) [ω̄] 2

If the flux is trivial (e), then the charge can be any one of the three
irreducible representations of S3 — the trivial one-dimensional represen-
tation [+], the nontrivial one-dimensional representation [-], or the two-
dimensional representation [2]. If the flux is a two-cycle, then the normal-
izer group is Z2, and the charge can be either the trivial representation
[+] or the nontrivial representation [-]. And if the flux is a three-cycle,
then the normalizer group is Z3, and the charge can be either the trivial
representation [1], the nontrivial representation [ω], or its conjugate rep-
resentation [ω̄]. You can verify that the total dimension is D = |S3| = 6,
as expected.

Note that since a commutes with all elements of N(a) by definition, the
matrix DR(a)

(a) that represents a in the irreducible representation R(a)

commutes with all matrices in the representation; therefore by Schur’s
lemma it is a multiple of the identity:

DR(a)
(a) = exp (iθR(a)) I . (9.45)

To appreciate the significance of the phase exp (iθR(a)), consider a flux-
charge composite in which a chargeon in representation R(a) is bound to
the flux a, and imagine rotating the composite object counterclockwise
by 2π. This rotation carries the charge around the flux, generating the
phase

e−2πiJ = eiθR(a) ; (9.46)

therefore each superselection sector has a definite value of the topological
spin, determined by θR(a) .

When two different particle types are fused together, the composite
object can be of various types, and the fusion rules of the theory specify
which types are possible. The flux of the composite can belong to any of
the conjugacy classes that can be obtained as a product of representatives
of the classes that label the two constituents. Finding the charge of the
composite is especially tricky, as we must decompose a tensor product of
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representations of two different normalizer groups as a sum of representa-
tions of the normalizer of the product flux. In the case G = S3, the rule
governing the fusion of two particles of type D, for example, is

D ×D = A+ C + F +G+H (9.47)

We have already noted that the fusion of two two-cycle fluxes can yield
either a trivial total flux or a three-cycle flux, and that the charge of the
composite with trivial total flux can be either [+] or [2]. If the total flux
is a three-cycle, then the charge eigenstates are just the braid operator
eigenstates that we constructed in eq. (9.33).

For a system of two anyons, why should the eigenstates of the total
charge also be eigenstates of the braid operator? We can understand this
connection more generally by thinking about the angular momentum of
the two-anyon composite object. The monodromy operator R2 captures
the effect of winding one particle counterclockwise around another. This
winding is almost the same thing as rotating the composite system coun-
terclockwise by 2π, except that the rotation of the composite system also
rotates both of the constituents. We can compensate for the rotation of
the constituents by following the counterclockwise rotation of the compos-
ite by a clockwise rotation of the constituents. Therefore, the monodromy
operator can be expressed as

(Rc
ab)

2 = e−2πiJce2πiJae2πiJb = ei(θc−θa−θb) . (9.48)

Here Rc
ab denotes the braid operator for a counterclockwise exchange of

particles of types a and b that are combined together into a composite
of type c, and we are using a more succinct notation than before, in
which a, b, c are complete labels for the superselection sectors (specifying,
in the nonabelian superconductor model, both the flux and the charge).
Since each superselection sector has a definite topological spin, and the
monodromy operator is diagonal in the topological spin basis, we see that
eigenstates of the braid operator coincide with charge eigenstates. Note
that eq. (9.48) generalizes our earlier observations about abelian anyons
— that a composite of two identical anyons has topological spin ei4θ, and
that the exchange phase of an anyon-antianyon pair (with trivial total
spin) is e−iθ .

9.11 Quantum computing with nonabelian fluxons

A model of anyons is characterized by the answers to two basic questions:
(1) What happens when two anyons are combined together (what are
the fusion rules)? (2) What happens when two anyons are exchanged
(what are the braiding rules)? We have discussed how these questions
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are answered in the special case of a nonabelian superconductor model
associated with a nonabelian finite group G, and now we wish to see
how these fusion and braiding rules can be invoked in a simulation of a
quantum circuit.

In formulating the simulation, we will assume these physical capabili-
ties:

Pair creation and identification. We can create pairs of particles, and
for each pair we can identify the particle type (the conjugacy class
α of the flux of each particle in the pair, and the particles’s charge
— an irreducible representation R(α) of the flux’s normalizer group
N(α)). This assumption is reasonable because there is no symmetry
relating particles of different types; they have distinguishable phys-
ical properties — for example, different energy gaps and effective
masses. In practice, the only particle types that will be needed are
fluxons that carry no charge and chargeons that carry no flux.

Pair annihilation. We can bring two particles together, and observe
whether the pair annihilates completely. Thus we obtain the answer
to the question: Does this pair of particles have trivial flux and
charge, or not? This assumption is reasonable, because if the pair
carries a nontrivial value of some conserved quantity, a localized
excitation must be left behind when the pair fuses, and this leftover
particle is detectable in principle.

Braiding. We can guide the particles along specified trajectories, and so
perform exchanges of the particles. Quantum gates will be simulated
by choosing particles world lines that realize particular braids.

These primitive capabilities allow us to realize some further derived
capabilities that will be used repeatedly. First, we can use the chargeons
to calibrate the fluxons and assemble a flux bureau of standards. Suppose
that we are presented with two pairs of fluxons in the states |a, a−1〉 and
|b, b−1〉, and we wish to determine whether the fluxes a and b match or
not. We create a chargeon-antichargeon pair, where the charge of the
chargeon is the irreducible representation R of G. Then we carry the
chargeon around a closed path that encloses the first member of the first
fluxon pair and the second member of the second fluxon pair, we reunite
the chargeon and antichargeon, and observed whether the chargeon pair
annihilates or not. Since the total flux enclosed by the chargeon’s path is
ab−1, the chargeon pair annihilates with probability

Prob(0) =
∣∣∣∣
χR(ab−1)

|R|

∣∣∣∣
2

, (9.49)
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which is less than one if the flux ab−1 is not the identity (assuming that the
representation R is not one-dimensional and represents ab−1 nontrivially).
Thus, if annihilation of the chargeon pair does not occur, we know for sure
that a and b are distinct fluxes, and each time annihilation does occur,
it becomes increasingly likely that a and b are equal. By repeating this
procedure a modest number of times, we can draw a conclusion about
whether a and b are the same, with high statistical confidence.

This procedure allows us to sort the fluxon pairs into bins, where each
pair in a bin has the same flux. If a bin contains n pairs, its state is, in
general, a mixture of states of the form

∑

a∈G

ψa|a, a−1〉⊗n . (9.50)

By discarding just one pair in the bin, each such state becomes a mixture
∑

a∈g

ρa (|a〉〈a|)⊗(n−1) ; (9.51)

we may regard each bin as containing (n − 1) pairs, all with the same
definite flux, but where that flux is as yet unknown.

Which bin is which? We want to label the bins with elements of G. To
arrive at a consistent labeling, we withdraw fluxon pairs from three dif-
ferent bins. Suppose the three pairs are |a, a−1〉, |b, b−1〉, and |c, c−1〉, and
that we want to check whether c = ab. We create a chargeon-antichargeon
pair, carry the chargeon around a closed path that encloses the first mem-
ber of the first fluxon pair, the first member of the second fluxon pair,
and second member of the third fluxon pair, and observe whether the
reunited chargeon pair annihilates or not. Since the total flux enclosed
by the chargeon’s path is abc−1, by repeating this procedure we can de-
termine with high statistical confidence whether ab and c are the same.
Such observations allow us to label the bins in some manner that is consis-
tent with the group composition rule. This labeling is unique apart from
group automorphisms (and ambiguities arising from any automorphisms
may be resolved arbitrarily).

Once the flux bureau of standards is established, we can use it to mea-
sure the unknown flux of an unlabeled pair. If the state of the pair to
be measured is |d, d−1〉, we can withdraw the labeled pair |a, a−1〉 from
a bin, and use chargeon pairs to measure the flux ad−1. By repeating
this procedure with other labeled fluxes, we can eventually determine the
value of the flux d, realizing a projective measurement of the flux.

For a simulation of a quantum circuit using fluxons, we will need to
perform logic gates that act upon the value of the flux. The basic gate we
will use is realized by winding counterclockwise a fluxon pair with state
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|a, a−1〉 around the first member of another fluxon pair with state |b, b−1〉.
Since the |a, a−1〉 pair has trivial total flux, the |b, b−1〉 pair is unaffected
by this procedure. But since in effect the flux b travels counterclockwise
about both members of the pair whose initial state was |a, a−1〉, this pair
is transformed as

|a, a−1〉 7→ |bab−1, ba−1b−1〉 . (9.52)

We will refer to this operation as the conjugation gate acting on the fluxon
pair.

To summarize what has been said so far, our primitive and derived
capabilities allow us to: (1) Perform a projective flux measurement, (2)
perform a destructive measurement that determines whether or not the
flux and charge of a pair is trivial, and (3) execute a conjugation gate.
Now we must discuss how to simulate a quantum circuit using these ca-
pabilities.

The next step is to decide how to encode qubits using fluxons. Ap-
propriate encodings can be chosen in many ways; we will stick to one
particular choice that illustrates the key ideas — namely we will encode a
qubit by using a pair of fluxons, where the total flux of the pair is trivial.
We select two noncommuting elements a, b ∈ G, where b2 = e, and choose
a computational basis for the qubit

|0̄〉 = |a, a−1〉 , |1̄〉 = |bab−1, ba−1b−1〉 . (9.53)

The crucial point is that a single isolated fluxon with flux a looks iden-
tical to a fluxon with the conjugate flux bab−1. Therefore, if the two
fluxons in a pair are kept far apart from one another, local interactions
with the environment will not cause a superposition of the states |0̄〉 and
|1̄〉 to decohere. The quantum information is protected from damage be-
cause it is stored nonlocally, by exploiting a topological degeneracy of the
states where the fluxon and antifluxon are pinned to fixed and distantly
separated positions.

However, in contrast with the topological degeneracy that arises in
systems with abelian anyons, this protected qubit can be measured rela-
tively easily, without resorting to delicate interferometric procedures that
extract Aharonov-Bohm phases. We have already described how to mea-
sure flux using previously calibrated fluxons; therefore we can perform
a projective measurement of the encoded Pauli operator Z̄ (a projection
onto the basis {|0̄〉, |1̄〉}). We can also measure the complementary Pauli
operator X̄ , albeit destructively and imperfectly. The X̄ eigenstates are

|±〉 =
1√
2

(|0̄〉 ± |1̄〉) ≡ 1√
2

(
|a, a−1〉 ± |bab−1, ba−1b−1〉

)
; (9.54)
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therefore the state |−〉 is orthogonal to the zero-charge state

|0;α〉 =
1√
|α|

(∑

c∈α

|c, c−1〉

)
, (9.55)

where α is the conjugacy class that contains a. On the other hand, the
state |+〉 has a nonzero overlap with |0;α〉

〈+|0;α〉 =
√

2/|α| ; (9.56)

Therefore, if the two members of the fluxon pair are brought together,
complete annihilation is impossible if the state of the pair is |−〉, and
occurs with probability Prob(0) = 2/|α| if the state is |+〉.

Note that it is also possible to prepare a fluxon pair in the state |+〉.
One way to do that is to create a pair in the state |0;α〉. If α contains
only the two elements a and bab−1 we are done. Otherwise, we compare
the newly created pair with calibrated pairs in each of the states |c, c−1〉,
where c ∈ α and c is distinct from both a and bab−1. If the pair fails to
match any of these |c, c−1〉 pairs, its state must be |+〉.

To go further, we need to characterize the computational power of the
conjugation gate. Let us use a more compact notation, in which the
state |x, x−1〉 of a fluxon pair is simply denoted |x〉, and consider the
transformations of the state |x, y, z〉 that can be built from conjugation
gates. By winding the third pair through the first, either counterclockwise
or clockwise, we can execute the gates

|x, y, z〉 7→ |x, y, xzx−1〉 , |x, y, z〉 7→ |x, y, x−1zx〉 , (9.57)

and by winding the third pair through the second, either counterclockwise
or clockwise, we can execute

|x, y, z〉 7→ |x, y, yzy−1〉 , |x, y, z〉 7→ |x, y, y−1zy〉 ; (9.58)

furthermore, by borrowing a pair with flux |c〉 from the bureau of stan-
dards, we can execute

|x, y, z〉 7→ |x, y, czc−1〉 (9.59)

for any constant c ∈ G. Composing these elementary operations, we can
execute any gate of the form

|x, y, z〉 7→ |x, y, fzf−1〉 , (9.60)

where the function f(x, y) can be expressed in product form — that is,
as a finite product of group elements, where the elements appearing in
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the product may be the inputs x and y, their inverses x−1 and y−1, or
constant elements of G, each of which may appear in the product any
number of times.

What are the functions f(x, y) that can be expressed in this form?
The answer depends on the structure of the group G, but the following
characterization will suffice for our purposes. Recall that a subgroup H
of a finite group G is normal if for any h ∈ H and any g ∈ G, ghg−1 ∈ H ,
and recall that a finite group G is said to be simple if G has no normal
subgroups other than G itself and the trivial group {e}. It turns out that
if G is a simple nonabelian finite group, then any function f(x, y) can be
expressed in product form. In the computer science literature, a closely
related result is often called Barrington’s theorem.

In particular, then, if the group G is a nonabelian simple group, there
is a function f realizable in product form such that

f(a, a) = f(a, bab−1) = f(bab−1, a) = e , f(bab−1, bab−1) = b . (9.61)

Thus for x, y, z ∈ {a, bab−1}, the action eq. (9.60) causes the flux of the
third pair to “flip” if and only if x = y = bab−1; we have constructed
from our elementary operations a Toffoli gate in the computational ba-
sis. Therefore, conjugation gates suffice for universal reversible classical
computation acting on the standard basis states.

The nonabelian simple group of minimal order is A5, the group of even
permutations of five objects, with |A5| = 60. Therefore, one concrete
realization of universal classical computation using conjugation gates is
obtained by choosing a to be the three-cycle element a = (345) ∈ A5, and
b to be the product of two-cycles b = (12)(34) ∈ A5, so that bab−1 = (435).

With this judicious choice of the group G, we achieve a topological real-
ization of universal classical computation, but how can be go still further,
to realize universal quantum computation? We have the ability to prepare
computational basis states, to measure in the computational basis, and
to execute Toffoli gates, but these tools are entirely classical. The only
nonclassical tricks at our disposal are the ability to prepare X̄ = 1 eigen-
states, and the ability to perform an imperfect destructive measurement
of X̄. Fortunately, these additional capabilities are sufficient.

In our previous discussions of quantum fault tolerance, we have noted
that if we can do the classical gates Toffoli and CNOT, it suffices for
universal quantum computation to be able to apply each of the Pauli op-
erators X , Y , and Z, and to be able to perform projective measurements
of each of X , Y , and Z. We already know how to apply the classical
gate X and to measure Z (that is, project onto the computational basis).
Projective measurement of X and Y , and execution of Z, are still missing
from our repertoire. (Of course, if we can apply X and Z, we can also
apply their product ZX = iY .)
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Next, let’s see how to elevate our imperfect destructive measurement
of X to a reliable projective measurement of X . Recall the action by
conjugation of a CNOT on Pauli operators:

CNOT : XI 7→ XX , (9.62)

where the first qubit is the control and the second qubit is the target of
the CNOT. Therefore, CNOT gates, together with the ability to prepare
X = 1 eigenstates and to perform destructive measurements of X , suffice
to realize projective measurements of X . We can prepare an ancilla qubit
in the X = 1 eigenstate, perform a CNOT with the ancilla as control
and the data to be measured as target, and then measure the ancilla
destructively. The measurement prepares the data in an eigenstate of X ,
whose eigenvalue matches the outcome of the measurement of the ancilla.
In our case, the destructive measurement is not fully reliable, but we
can repeat the measurement multiple times. Each time we prepare and
measure a fresh ancilla, and after a few repetitions, we have acceptable
statistical confidence in the inferred outcome of the measurement.

Now that we can measure X projectively, we can prepare X = −1
eigenstates as well as X = 1 eigenstates (for example, we follow a Z mea-
surement with an X measurement until we eventually obtain the outcome
X = −1). Then, by performing a CNOT gate whose target is an X = −1
eigenstate, we can realize the Pauli operator Z acting on the control qubit.
It only remains to show that a measurement of Y can be realized.

Measurement of Y seems problematic at first, since our physical capa-
bilities have not provided any means to distinguish between Y = 1 and
Y = −1 eigenstates (that is, between a state ψ and its complex conjugate
ψ∗). However, this ambiguity actually poses no serious difficulty, because
it makes no difference how the ambiguity is resolved. Were we to replace
measurement of Y by measurement of −Y in our simulation of a unitary
transformation U , the effect would be that U∗ is simulated instead; this
replacement would not alter the probability distributions of outcomes for
measurements in the standard computational basis.

To be explicit, we can formulate a protocol for measuring Y by noting
first that applying a Toffoli gate whose target qubit is an X = −1 eigen-
state realizes the controlled-phase gate Λ(Z) acting on the two control
qubits. By composing this gate with the CNOT gate Λ(X), we obtain
the gate Λ(iY ) acting as

Λ(iY ) : |X = +1〉 ⊗ |Y = +1〉 7→ |Y = +1〉 ⊗ |Y = +1〉 ,
|X = +1〉 ⊗ |Y = −1〉 7→ |Y = −1〉 ⊗ |Y = −1〉 ,
|X = −1〉 ⊗ |Y = +1〉 7→ |Y = −1〉 ⊗ |Y = +1〉 ,
|X = −1〉 ⊗ |Y = −1〉 7→ |Y = +1〉 ⊗ |Y = −1〉 , (9.63)
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where the first qubit is the control and the second is the target. Now
suppose that my trusted friend gives me just one qubit that he assures
me has been prepared in the state |Y = 1〉. I know how to prepare
|X = 1〉 states myself and I can execute Λ(iY ) gates; therefore since a
Λ(iY ) gate with |Y = 1〉 as its target transforms |X = 1〉 to |Y = 1〉, I
can make many copies of the |Y = 1〉 state I obtained from my friend.
When I wish to measure Y , I apply the inverse of Λ(iY ), whose target is
the qubit to be measured, and whose control is one of my Y = 1 states;
then I perform an X measurement of the ancilla to read out the result of
the Y measurement of the other qubit.

What if my friend lies to me, and gives me a copy of the state |Y = −1〉
instead? Then I’ll make many copies of the |Y = −1〉 state, and I will
be measuring −Y when I think I am measuring Y . My simulation will
work just the same as before; I’ll actually be simulating the complex
conjugate of the ideal circuit, but that won’t change the final outcome of
the quantum computation. If my friend flipped a coin to decide whether
to give me the |Y = 1〉 state or the |Y = −1〉, this too would have no
effect on the fidelity of my simulation. Therefore, it turns out I don’t
need by friend’s help at all — instead of using the |Y = 1〉 state I would
have received from him, I may use the random state ρ = I/2 (an equally
weighted mixture of |Y = 1〉 and |Y = −1〉, which I know how to prepare
myself).

This completes the demonstration that we can simulate a quantum cir-
cuit efficiently and fault tolerantly using the fluxons and chargeons of
a nonabelian superconductor, at least in the case where G is a simple
nonabelian finite group.§ Viewed as a whole, including all state prepara-
tion and calibration of fluxes, the simulation can be described this way:
Many pairs of anyons (fluxons and chargeons) are prepared, the anyon
world lines follow a particular braid, and pairs of anyons are fused to see
whether they will annihilate. The simulation is nondeterministic in the
sense that the actual braid executed by the anyons depends on the out-
comes of measurements performed (via fusion) during the course of the
simulation. It is robust if the temperature is low compared to the energy
gap, and if particles are kept sufficiently far apart from one another (ex-
cept when pairs are being created and fused), to suppress the exchange
of virtual anyons. Small deformations in the world lines of the particles
have no effect on the outcome of the computation, as long as the braiding
of the particles is in the correct topological class.

§ Mochon has shown that universal quantum computation is possible for a larger class
of groups.
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9.12 Anyon models generalized

Our discussion of the nonabelian superconductor model provides an exis-
tence proof for fault-tolerant quantum computation using anyons. But the
model certainly has drawbacks. The scheme we described lacks beauty,
elegance, or simplicity.

I have discussed this model in such detail because it is rather concrete
and so helps us to build intuition about the properties of nonabelian
anyons. But now that we understand better the key concepts of braiding
and fusing in anyon models, we are ready to start thinking about anyons
in a more general and abstract way. Our new perspective will lead us
to new models, including some that are far simpler than those we have
considered so far. We will be able to jettison much of the excess baggage
that burdened the nonabelian superconductor model, such as the distinc-
tion between fluxons and chargeons, the calibration of fluxes, and the
measurements required to simulate nonclassical gates. The simpler mod-
els we will now encounter are more naturally conducive to fault-tolerant
computing, and more plausibly realizable in reasonable physical systems.

A model of anyons is a theory of particles on a two-dimensional surface
(which we will assume to be the plane), where the particles carry locally
conserved charges. We also assume that the theory has a mass gap, so
that there are no long-range interactions between particles mediated by
massless particles. The model has three defining properties:

1. A list of particle types. The types are labels that specify the possible
values of the conserved charge that a particle can carry.

2. Rules for fusing and splitting, which specify the possible values of the
charge that can be obtained when two particles of known charge
are combined together, and the possible ways in which the charge
carried by a single particle can be split into two parts.

3. Rules for braiding, which specify what happens when two particles are
exchanged (or when one particle is rotated by 2π).

Let’s now discuss each of these properties in more detail.

9.12.1 Labels

I will use Latin letters {a, b, c, . . .} for the labels that distinguish different
types of particles. (For the case of the nonabelian superconductor, the
label was (α,R(α)), specifying a conjugacy class and an irreducible rep-
resentation of the normalizer of the class, but now our notation will be
more compact). We will assume that the set of possible labels is finite.
The symbol a represents the value of the conserved charge carried by the
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particle. Sometimes we say that this label specifies a superselection sector
of the theory. This term just means that the label a is a property of a
localized object that cannot be changed by any local physical process.
That is, if one particle is at all times well isolated from other particles,
its label will never change. In particular, local interactions between the
particle and its environment may jostle the particle, but will not alter the
label. This local conservation of charge is the essential reason that anyons
are amenable to fault-tolerant quantum information processing.

There is one special label — the identity label 1. A particle with the
label 1 is really the same thing as no particle at all. Furthermore, for
each particle label a there is a conjugate label ā, and there is a charge
conjugation operation C (where C2 = I) acting on the labels that maps
a label to its conjugate:

C : a 7→ ā 7→ a . (9.64)

It is possible for a label to be self-conjugate, so that ā = a. For example,
1̄ = 1.

We will want to consider states of n particles, where the particles have
a specified order. Therefore, it is convenient to imagine that the particles
are arranged on a particular line (such as the real axis) from left to right
in consecutive order. The n particles are labeled (a1, a2, a3 . . . , an), where
a1 is attached to the particle furthest to the left, an to the particle furthest
to the right.

9.12.2 Fusion spaces

When two particles are combined together, the composite object also has
a charge. The fusion rules of the model specify the possible values of the
total charge c when the constituents have charges a and b. These can be
written

a × b =
∑

c

N c
ab c , (9.65)

where each N c
ab is a nonnegative integer and the sum is over the complete

set of labels. Note that a, b and c are labels, not vector spaces; the
product on the left-hand side is not a tensor product and the sum on
the right-hand side is not a direct sum. Rather, the fusion rules can be
regarded as an abstract relation on the label set that maps the ordered
triple (a, b; c) to N c

ab. This relation is symmetric in a and b (a×b = b×a)
— the possible charges of the composite do not depend on whether a is on
the left or the right. Read backwards, the fusion rules specify the possible
ways for the charge c to split into two parts with charges a and b.

If N c
ab = 0, then charge c cannot be obtained when we combine a and

b. If N c
ab = 1, then c can be obtained — in a unique way. If N c

ab > 1,
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then c can be obtained in N c
ab distinguishable ways. The notion that

fusing two charges can yield a third charge in more than one possible way
should be familiar from group representation theory. For example, the
rule governing the fusion of two octet representations of SU(3) is

8× 8 = 1 + 8 + 8 + 10 + 10 + 27 , (9.66)

so that N8
88 = 2. We emphasize again, however, that while the fusion

rules for group representations can be interpreted as a decomposition of a
tensor product of vector spaces as a direct sum of vector spaces, in general
the fusion rules in an anyon model have no such interpretation.

The N c
ab distinguishable ways that c can arise by fusing a and b can

be regarded as the orthonormal basis states of a Hilbert space V c
ab. We

call V c
ab a fusion space and the states it contains fusion states. The basis

elements for V c
ab may be denoted

{|ab; c, µ〉 , µ = 1, 2, . . . , N c
ab} . (9.67)

It is quite convenient to introduce a graphical notation for the fusion basis
states:

a

c

b

| ; ,ab c

a

c

b

; , |ab c

The state |ab; c, µ〉 is represented as a circle containing the symbol µ;
connected to the circle are lines labeled a and b with incoming arrows,
representing the charges being fused, and a line labeled c with an outgoing
arrow, representing the result of the fusion. There is a dual vector space
V ab

c describing the states that arise when charge c splits into charges a
and b, and a dual basis with the sense of the arrow reversed (c coming in,
a and b going out). The spaces V c

ab with different values of c are mutually
orthogonal, so that the fusion basis elements satisfy

〈ab; c′µ′|ab; c, µ〉 = δc′
c δ

µ′
µ , (9.68)

and the completeness of the fusion basis can be expressed as
∑

c,µ

|ab; c, µ〉〈ab; c, µ| = Iab , (9.69)

where Iab denotes the projector onto the space ⊕cV
c
ab, the full Hilbert

space for the anyon pair ab.
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c

a

c´

´

b
c

c

a

c

b

a b

a b

,c

There are some natural isomorphisms among fusion spaces. First of all,
V c

ab
∼= V c

ba; these vector spaces are associated with different labelings of
the two particles (if a 6= b) and so should be regarded as distinct, but they
are isomorphic spaces because fusion is symmetric. We may also “raise
and lower indices” of a fusion space by replacing a label by its conjugate,
e.g.,

V c
ab

∼= V b̄
ac̄

∼= V 1
abc̄

∼= V b̄c
a ,∼= V āb̄

c̄
∼= · · · ; (9.70)

in the diagrammatic notation, we have the freedom to reverse the sense
of a line while conjugating the line’s label. The space V 1

abc̄, represented
as a diagram with three incoming lines, is the space spanned by the dis-
tinguishable ways to obtain the trivial total charge 1 when fusing three
particles with labels a, b, c̄.

The charge 1 deserves its name because it fuses trivially with other
particles:

a× 1 = a . (9.71)

Because of the isomorphism V a
a1

∼= V 1
aā, we conclude that ā is the unique

label that can fuse with a to yield 1, and that this fusion can occur in
only one way. Similarly, V a

a1
∼= V aā

1 means that pairs of particles created
out of the vacuum have conjugate charges.

An anyon model is nonabelian if

dim

(⊕

c

V c
ab

)
=
∑

c

N c
ab ≥ 2 (9.72)

for at least some pair of labels ab; otherwise the model is abelian. In an
abelian model, any two particles fuse in a unique way, but in a nonabelian
model, there are some pairs of particles that can fuse in more than one
way, and there is a Hilbert space of two or more dimensions spanned by
these distinguishable states. We will refer to this space as the “topological
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Hilbert space” of the pair of anyons, to emphasize that this quantum
information is encoded nonlocally — it is a collective property of the
pair, not localized on either particle. Indeed, when the two particles with
labels a and b are far apart, different states in the topological Hilbert
space look identical locally. Therefore, this quantum information is well
hidden, and invulnerable to decoherence due to local interactions with
the environment.

It is for this reason that we propose to use nonabelian anyons in the
operation of a quantum computer. Of course, nonlocally encoded infor-
mation is not only hidden from the environment; we are unable to read
it ourselves as well. However, with nonabelian anyons, we can have our
cake and eat it too! At the conclusion of a quantum computation, when
we are ready to perform the readout, we can bring the anyons together
in pairs and observe the result of this fusion. In fact, it will suffice to
distinguish the case where the charge of the composite is c = 1 from the
case c 6= 1 — that is, to distinguish a residual particle (unable to decay
because of its nontrivial conserved charge) from no particle at all.

Note that for each pair of anyons this topological Hilbert space is finite-
dimensional. An anyon model with this property is said to be rational.
As in our discussion of the topologically degenerate ground state for an
abelian model, anyons in rational nonabelian models always have topo-
logical spins that are roots of unity.

9.12.3 Braiding: the R-matrix

When two particles with labels a and b undergo a counterclockwise ex-
change, their total charge c is unchanged. Therefore, since the two parti-
cles swap positions on the line, the swap induces a natural isomorphism
mapping the Hilbert space V c

ba to V c
ab; this map is the braid operator

R : V c
ba → V c

ab . (9.73)

If we choose canonical bases {|ba; c, µ〉} and {|ab; c, µ′〉} for these two
spaces, R can be expressed as the unitary matrix

R : |ba; c, µ〉 7→
∑

µ′

|ab; c, µ′〉 (Rc
ab)

µ′

µ ; (9.74)

note that R may have a nontrivial action on the fusion states. When
we represent the action of R diagrammatically, it is convenient to fix the
positions of the labels a and b on the incoming lines, and twist the lines
counterclockwise as they move toward the fusion vertex (µ)— the graph
with twisted lines represents the state in V c

ab obtained by applying R to
|ba; c, µ〉, which can be expanded in terms of the canonical basis for V c

ab:
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a b

c

a b

c

c

ba
R

The monodromy operator

R2 : V c
ab → V c

ab (9.75)

is an isomorphism from V c
ab to itself, representing the effect of winding a

counterclockwise around b. As we already remarked in our discussion of
the nonabelian superconductor, the monodromy operator is equivalent to
rotating c by 2π while rotating a and b by −2π; therefore, the eigenvalues
of the monodromy operator are determined by the topological spins of the
particles:

(Rc
ab)

2 = e−2πiJce2πiJae2πiJb ≡ ei(θc−θa−θb) . (9.76)

Furthermore, as we argued for the case of abelian anyons, the topological
spin is determined by the braid operator acting on a particle-antiparticle
pair with trivial total charge:

e−iθa = R1
aā (9.77)

(because creating a pair, exchanging, and annihilating is equivalent to
rotating the particle by −2π).

9.12.4 Associativity of fusion: the F -matrix

Fusion is associative:

(a× b)× c = a× (b× c) . (9.78)

Mathematically, this is an axiom satisfied by the fusion rules of an anyon
model. Physically, it is imposed because the total charge of a system of
three particles is an intrinsic property of the three particles, and ought
not to depend on whether we first fuse a and b and then fuse the result
with c, or first fuse b and c and then fuse the result with a.

Therefore, when three particles with charges a, b, c are fused to yield a
total charge of d, there are two natural ways to decompose the topological
Hilbert space in terms of the fusion spaces of pairs of particles:

V d
abc

∼=
⊕

e

V e
ab ⊗ V d

eb
∼=
⊕

e′

V d
ae′ ⊗ V e′

bc . (9.79)
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Correspondingly, there are two natural orthonormal bases for V d
abc, which

we may denote

|(ab)c→ d; eµν〉 ≡ |ab; e, µ〉 ⊗ |ec; d, ν〉 ,
|a(bc) → d; e′µ′ν ′〉 ≡ |ae′; d, ν ′〉 ⊗ |bc; e′, µ′〉 , (9.80)

and which are related by a unitary transformation F :

|(ab)c→ d; eµν〉 =
∑

e′µ′ν′

|a(bc) → d; e′µ′ν ′〉
(
F d

abc

)e′µ′ν′

eµν
. (9.81)

a b c

d

a b c

e
d

abc
e

e

F
e e´

d

The unitary matrices F d
abc are sometimes called fusion matrices; how-

ever, rather than risk causing confusion between F and the fusion rules
N c

ab, I will just call it the F -matrix.

9.12.5 Many anyons: the standard basis

In an anyonic quantum computer, we process the topological quantum
state of n anyons by braiding the anyons. For describing this computation,
it is convenient to adopt a standard basis for such a Hilbert space.

Suppose that n anyons with total charge c, arranged sequentially along
a line, carry labels a1, a2, a3, . . . , an. Imagine fusing anyons 1 and 2, then
fusing the result with anyon 3, then fusing the result with anyon 4, and
so on. Associated with fusion in this order is a decomposition of the
topological Hilbert space of the n anyons

V c
a1a2a3···an

∼=
⊕

b1 ,b2,...,bn−2

V b1
a1a2

⊗ V b2
b1a3

⊗ V b3
b2a4

⊗ · · · ⊗ V c
bn−2an

. (9.82)

Note that this space does not have a natural decomposition as a tensor
product of subsystems associated with the localized particles; rather, we
have expressed it as a direct sum of many tensor products. For nonabelian
anyons, its dimension

dim
(
V c

a1a2a3···an

)
≡ N c

a1a2a3···an

=
∑

b1,b2 ,b3,...bn−2

N b1
a1a2

N b2
b1a3

N b3
b2a4

. . .N c
bn−2an

(9.83)



9.12 Anyon models generalized 47

is exponential in n; thus the topological Hilbert space is a suitable arena
for powerful quantum information processing.

This decomposition of V c
a1a2a3···an

suggests a standard basis whose ele-
ments are labeled by the intermediate charges b1, b2, . . . bn−2 and by the
basis elements {|µj〉} for the fusion spaces V bj

bj−1,aj+1
:

{|a1a2; b1, µ1〉|b1a3; b2, µ2〉 · · · |bn−3an−1; bn−2, µn−2〉|bn−2an; c, µn−1〉} ,
(9.84)

or in diagrammatic notation:

1na
1

a
2

b
1

a
3

b
2

a
4

b
n-2

a
n-1

c

a
n

1 2 2n3

b
3

b
n-3

Of course, this basis is chosen arbitrarily. If we preferred, we could imag-
ine fusing the particles in a different order, and would obtain a different
basis that can be expressed in terms of our standard one with help from
the F -matrix.

9.12.6 Braiding in the standard basis: the B-matrix

We would like to consider what happens to states of the topological vector
space V c

a1a2a3···an
of n anyons when the particles are exchanged with one

another. Actually, since exchanges can swap the positions of particles with
distinct labels, they may map one topological vector space to another by
permuting the labels. Nevertheless, we can consider the direct sums of the
vector spaces associated with all the possible permutations of the labels,
which will provide a representation of the braid group Bn.

We would like to describe how this representation acts on the standard
bases for these spaces. It suffices to say how exchanges of neighboring
particles are represented; that is, to specify the action of the generators
of the braid group. However, so far, we have discussed only the action of
the braid group on a pair of particles with definite total charge (the R-
matrix), which is not in itself enough to tell us its action on the standard
bases.

The way out of this quandary is to observe that, by applying the F -
matrix, we can move from the standard basis to the basis in which the
R-matrix is block diagonal, apply R, and then apply F−1 to return to the
standard basis:
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F R
1

F

The composition of these three operations, which expresses the effect of
braiding in the standard basis, is denoted B and sometimes called the
“braid matrix;” but to avoid confusion between B and R, I will just call
it the B-matrix.

Consider exchanging the anyons in positions j and j+1 along the line.
In our decomposition of V c

a1a2a3···an
, this exchange acts on the space

V
bj

bj−2,aj,aj+1
=
⊕

bj−1

V
bj−1

bj−2,aj
⊗ V

bj

bj−1,aj+1
. (9.85)

To reduce the number of subscripts, we will call this space V d
acb, which is

transformed by the exchange as

B : V d
acb → V d

abc . (9.86)

Let us express the action of B in terms of the standard bases for the two
spaces V d

acb and V d
abc.

b c

a d
e

a d

b c

e´

e
d

abc
e

e

B

To avoid cluttering the equations, I suppress the labels for the fusion
space basis elements (it is obvious where they should go). Hence we write

B|(ac)b→ d; e〉 =
∑

f

B|a(cb) → d; f〉
(
F d

acb

)f

e

=
∑

f

|a(bc) → d; f〉Rf
bc

(
F d

acb

)f

e

=
∑

f,g

|(ab)c→ d; g〉
[(
F−1

)d
abc

]g
f
Rf

bc

(
F d

acb

)f

e
,

(9.87)
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or

B : |(ac)b→ d; e〉 7→
∑

g

|(ab)c→ d; g〉
(
Bd

abc

)g

e
, (9.88)

where
(
Bd

abc

)g

e
=
∑

f

[(
F−1

)d
abc

]g
f
Rf

bc

(
F d

acb

)f

e
. (9.89)

We have expressed the action of the B-matrix in the standard basis in
terms of the F -matrix and R-matrix, as desired.

Thus, the representation of the braid group realized by n anyons is com-
pletely characterized by the F -matrix and the R-matrix. Furthermore, we
have seen that the R matrix also determines the topological spins of the
anyons, so that we have actually constructed a representation of a larger
group whose generators include both the exchanges of neighboring parti-
cles and 2π rotations of the particles. A good name for this group would
be the ribbon group, as its elements are in one-to-one correspondence with
the topological classes of braided ribbons (which can be twisted) rather
than braided strings; however, mathematicians have already named it
“the mapping class group for the sphere with n punctures.”

And with that observation we have completed our description of an
anyon model in this general setting. The model is specified by: (1) a
label set, (2) the fusion rules, (3) the R-matrix, and (4) the F matrix.

The mathematical object we have constructed is called a unitary topo-
logical modular functor, and it is closely related to two other objects that
have been much studied: topological quantum field theories in 2+1 space-
time dimensions, and conformal field theories in 1+1 spacetime dimen-
sions. However, we will just call it an anyon model.

9.13 Simulating anyons with a quantum circuit

A topological quantum computation is executed in three steps:

1. Initialization: Particle-antiparticle pairs c1c̄1, c2c̄2, c3c̄3, . . . , cmc̄m are
created. Each pair is of a specified type and has trivial total charge.

2. Processing. The n = 2m particles are guided along trajectories, their
world lines following a specified braid.

3. Readout. Pairs of neighboring particles are fused together, and it is
recorded whether each pair annihilates fully or not. This record is
the output of the computation.



50 9 Topological quantum computation

(In the case of the nonabelian superconductor model of computation, we
allowed the braiding to be conditioned on the outcome of fusing carried
out during the processing stage. But now we are considering a model in
which all measurements are delayed until the final readout.)

How powerful is this model of computation? I claim that this topologi-
cal quantum computer can be simulated efficiently by a quantum circuit.
Since the topological Hilbert space of n anyons does not have a simple
and natural decomposition as a tensor product of small subsystems, this
claim may not be immediately obvious. To show it we must explain:

1. How to encode the topological Hilbert space using ordinary qubits.

2. How to represent braiding efficiently using quantum gates.

3. How to simulate the fusion of an anyon pair.

Encoding. Since each pair produced during initialization has trivial
total charge, the initial state of the n anyons also has trivial total charge.
Therefore, the topological Hilbert space is

V 1
a1a2a3···an

∼=
⊕

b1 ,b2,...,bn−3

V b1
a1a2

⊗ V b2
b1a3

⊗ · · · ⊗ V ān
bn−3an−1

, (9.90)

for some choice of the labels a1, a2, a3, . . .an; there are n− 3 intermediate
charges and n− 2 fusion spaces appearing in each summand. Exchanges
of the particles swap the labels, but after each exchange the vector space
still has the form eq. (9.90) with labels given by some permutation of the
original labels.

Although each n-anyon topological Hilbert spaces is not itself a tensor
products of subsystems, all of these spaces are contained in

(Hd)
⊗(n−2) , (9.91)

where
Hd =

⊕

a,b,c

V 1
abc . (9.92)

Here, a, b, c are summed over the complete label set of the model (which
we have assumed is finite), so that Hd contains all the possible fusion
states of three particles, and the dimension d of Hd is

d =
∑

a,b,c

N1
abc . (9.93)

Thus the state of n anyons can be encoded in the Hilbert space of n− 2
qudits for some constant d (which depends on the anyon model but is



9.13 Simulating anyons with a quantum circuit 51

independent of n). The basis states of this qudit can be chosen to be
{|a, b, c;µ〉}, where µ labels an element of the basis for the fusion space
V 1

abc.
Braiding. In the topological quantum computer, a braid is executed by

performing a sequence of exchanges, each acting on a pair of neighboring
particles. The effect of each exchange in the standard basis is described by
the B-matrix. How is B represented acting on our encoding of the topo-
logical vector space (using qudits)? Suppressing fusion states, our basis
for two-qudit states can be denoted |a, b, c〉|d, e, f̄〉. But in the topolog-
ical quantum computer, the labels d and c̄ always match, and therefore
to perform our simulation of braiding we need only consider two-qudit
states whose labels match in this sense:

g
f

aeb d
g

B
a fdd

be

a fgg

be

Then the action of the B-matrix on these basis states is

B : |a, b, d̄〉|d, e, f̄〉 7→
∑

g

|a, e, ḡ〉|g, b, f̄〉
(
Bf

aeb

)g

d
. (9.94)

As desired, we have represented the B as a d2 × d2 matrix acting on a
pair of neighboring qudits.

Fusion. Fusion of a pair of anyons can be simulated by a two-qudit
measurement, which can be reduced to a single-qudit measurement with
a little help from the F -matrix:

g
f

abe d
g

F
a fdd

eb

a

e

g

f

b

g

Consider a basis state |a, b, d̄〉|d, e, f̄〉 for a pair of neighboring qudits;
what is the amplitude for the anyon pair (be) to have trivial total charge?
Using an F -move, the state can be expanded as

F : |a, b, d̄〉|d, e, f̄〉 7→
∑

g

|a, g, f̄〉|b, ḡ, e〉
(
F f

abe

)g

d

= |a, 1, f̄〉|b, 1, e〉
(
F f

abe

)1

d
+
∑

g 6=1

|a, g, f̄〉|b, ḡ, e〉
(
F f

abe

)g

d
;(9.95)
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we have separated the sum over g into the component for which (be) fuses
to 1, plus the remainder. After the F -move which (is just a particular
two-qudit unitary gate), we can sample the probability that (be) fuses to
1 by performing a projective measurement of the second qudit in the basis
{|b, ḡ, e〉}, and recording whether g = 1.

This completes our demonstration that a quantum circuit can simulate
efficiently a topological quantum computer.

9.14 Fibonacci anyons

Now we have established that topological quantum computation is no
more powerful than the quantum circuit model — any problem that can
be solved efficiently by braiding nonabelian anyons can also be solved
efficiently with a quantum circuit. But is it as powerful? Can we simulate
a universal quantum computer by braiding anyons? The answer depends
on the specific properties of the anyons: some nonabelian anyon models
are universal, others are not. To find the answer for a particular anyon
model, we need to understand the properties of the representations of the
braid group that are determined by the F -matrix and R-matrix.

Rather than give a general discussion, we will study one especially
simple nonabelian anyon model, and demonstrate its computational uni-
versality. This model is the very simplest nonabelian model — conformal
field theorists call it the “Yang-Lee model,” but I will call it the “Fibonacci
model” for reasons that will soon be clear.

In the Fibonacci model there are only two labels — the trivial label,
which I will now denote 0, and a single nontrivial label that I will call 1,
where 1̄ = 1. And there is only one nontrivial fusion rule:

1 × 1 = 0 + 1 ; (9.96)

when two anyons are brought together they either annihilate, or fuse to
become a single anyon. The model is nonabelian because two anyons can
fuse in two distinguishable ways.

Consider the standard basis for the Hilbert space V b
1n of n anyons, where

each basis element describes a distinguishable way in which the n anyons
could fuse to give total charge b ∈ {0, 1}. If the two anyons furthest to
the left were fused first, the resulting charge could be 0 or 1; this charge
could then fuse with the third anyon, yielding a total charge of 0 or 1,
and so on. Finally, the last anyon fuses with the total charge of the first
n − 1 anyons to give the total charge b. Altogether n − 2 intermediate
charges b1, b2, b3, . . . bn−2 appear in this description of the fusion process;
thus the corresponding basis element can be designated with a binary
string of length n − 2. If the total charge is 0, the result of fusing the
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first n− 1 anyons has to be 1, so the basis states are labeled by strings of
length n− 3.

However, not all binary strings are allowed — a 0 must always be
followed by a 1. There cannot be two zeros in a row because when the
charge 0 fuses with 1, a total charge of 1 is the only possible outcome.
Otherwise, there is no restriction on the sequence. Therefore, the basis
states are in one-to-one with the binary strings that do not contain two
successive 0’s.

Thus the dimensions N0
n ≡ N0

1n of the topological Hilbert spaces V 0
1n

obey a simple recursion relation. If the fusion of the first two particles
yields trivial total charge, then the remaining n − 2 particles can fuse
in N0

n−2 distinguishable ways, and if the fusion of the first two particles
yields an anyon with nontrivial charge, then that anyon can fuse with the
other n− 2 anyons in N0

n−1 ways; therefore,

N0
n = N0

n−1 +N0
n−2 . (9.97)

Since N0
1 = 0 and N0

2 = 1, the solution to this recursion relation is

n = 1 2 3 4 5 6 7 8 9 . . .
N0

n = 0 1 1 2 3 5 8 13 21 . . . (9.98)

— the dimensions are Fibonacci numbers (which is why I am calling this
model the “Fibonacci model”).

The Fibonacci numbers grow with n at a rate N0
n ≈ Cφn, where φ is

the golden mean φ = 1
2

(
1 +

√
5
)
≈ 1.618. Because φ governs the rate at

which the Hilbert space enlarges as anyons are added, we say that d = φ
is the quantum dimension of the Fibonacci anyon. That this “dimension”
is an irrational number illustrates vividly that the topological Hilbert
space has no natural decomposition as a tensor product of subsystems
— instead, the topologically encoded quantum information is a collective
property of the n anyons.

9.15 Quantum dimension

We will return shortly to the properties of the Fibonacci model, but first
let’s explore more deeply the concept of quantum dimension. For a general
anyon model, how should the dimension da of label a be defined? For this
purpose, it is convenient to imagine a physical process in which two aā
pairs are created (each with trivial total charge); then the particle a from
the pair on the right fuses with the antiparticle ā from the pair on the
left. Do these particles annihilate?

With suitable phase conventions, the amplitude for the annihilation
to occur is a real number in the unit interval [0,1]. Let us define this



54 9 Topological quantum computation

number to be 1/da, where da is the quantum dimension of a (and 1/d2
a

is the probability that annihilation occurs). Note that it is clear from
this definition that da = dā. For the case in which the a is the label
of an irreducible representation Ra of a group G, the dimension is just
da = |Ra|, the dimension of the representation. This is easily understood
pictorially:

aa

a a

a a a a
1

a
d

1

If two pairs are created and then each pair annihilates immediately, the
world lines of the pairs form two closed loops, and |R| counts the number
of distinct “colors” that propagate around each loop. But if the particle
from each pair annihilates the antiparticle from the other pair, there is
only one closed loop and therefore one sum over colors; if we normalize
the process on the left to unity, the amplitude for the process on the right
is suppressed by a factor of 1/|R|. To say the same thing in an equation,
the normalized state of an RR̄ pair is

|RR̄〉 =
1√
|R|

∑

i

|i〉|̄i〉 , (9.99)

where {|i〉} denotes an orthonormal basis for R and {|̄i〉} is a basis for R̄.
Suppose that two pairs |RR̄〉and |R′R̄′〉 are created; if the pairs are fused
after swapping partners, the amplitude for annihilation is

〈RR̄,R′R̄′|RR̄′, R′R̄〉 =
1

|R|2
∑

i,i′,j,j′

〈jj̄, j ′j̄ ′|īi′, i′̄i〉

=
1

|R|2
∑

i,i′,j,j′

δjiδji′δj′i′δj′i =
1

|R|2
∑

i

δii =
1
|R| . (9.100)

In general, though, the quantum dimension has no direct interpretation
in terms of counting “colors,” and there is no reason why it has to be an
integer.

How are such quantum dimensions related to the dimensions of topo-
logical Hilbert spaces? To see the connection, if is very useful to alter
our normalization conventions. Notice we can introduce many “zigzags”
in the world line of a particle of type a by creating many aā pairs, and
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fusing the particle from each pair with the antiparticle from the neighbor-
ing pair. However, each zigzag reduces the amplitude by another factor
of 1/da. We can compensate for these factors of 1/da if we weight each
pair creation or annihilation event by a factor of

√
da. With this new

convention, we can bend the world line of a particle forward or backward
in time without paying any penalty:

a

a

a
d

a
d

a
d

a
d

a
d

a
d

a

a

Now the weight assigned to a world line is a topological invariant (it is
unchanged when we distort the line), and a world line of type a forming
a closed loop is weighted by da.

With our new conventions, we can justify this sequence of manipula-
tions:

a
b

a b

ab

c c

a
b

c

,c

,c

c

ab

c

N
c

ab c

c

N d

a b
d d

Each diagram represents an inner product of two (unconventionally nor-
malized) states. We have inserted a complete sum over the labels (c) and
the corresponding fusion states (µ) that can arise when a and b fuse. Ex-
ploiting the topological invariance of the diagram, we have then turned it
“inside out,” then contracted the fusion states (acquiring the factor N c

ab
which counts the possible values of µ).

The equation that we have derived,

dadb =
∑

c

N c
abdc ≡

∑

c

(Na)
c
b dc , (9.101)
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says that the vector ~d, whose components are the quantum dimensions,
is an eigenvector with eigenvalue da of the matrix Na that describes how
the label a fuses with other labels:

Na
~d = da

~d . (9.102)

Furthermore, sinceNa has nonnegative entries and all components of ~d are
positive, da is the largest eigenvalue of Na and is nondegenerate. (This
simple observation is sometimes called the Perron-Frobenius theorem.)
For n anyons, each with label a, the topological Hilbert space V b

aaa···a for
the sector with total charge b has dimension

N b
aaa···a =

∑

{bi}

N b1
aaN

b2
ab1
N b3

ab2
. . .N b

abn−2
= 〈b| (Na)

n−1 |a〉 . (9.103)

The matrix Na can be diagonalized, and expressed as

Na = |v〉da〈v|+ · · · , (9.104)

where

|v〉 =
~d

D , D =
√∑

c

dc
2 , (9.105)

and subleading eigenvalues have been omitted; therefore

N b
aaa···a = dn

adb/D2 + · · · , (9.106)

where the ellipsis represents terms that are exponentially suppressed for
large n. We see that the quantum dimension da controls the rate of growth
of the n-particle Hilbert space for anyons of type a.

Because the label 0 with trivial charge fuses trivially, we have d0 = 1. In
the case of the Fibonacci model, it follows from the fusion rule 1×1 = 0+1
that d2

1 = 1 + d1, which is solved by d1 = φ as we found earlier; therefore
D2 = d2

0 + d2
1 = 1 + φ2 = 2 + φ. Our formula becomes

N0
111···1 =

(
1

2 + φ

)
φn , (9.107)

which is an excellent approximation to the Fibonacci numbers even for
modest values of n.

Suppose that an aā pair and a bb̄ pair are both created. If the a and b
particles are fused, with what probability p(ab→ c) will their total charge
be c? This question can be answered using the same kind of graphical
manipulations:
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a

c

c

c

abN
c

ab cN d

a
b

c( )a bd d p ab c b

Dividing by dadb to restore the proper renormalization of the inner prod-
uct, we conclude that

p(ab→ c) =
N c

abdc

dadb
, (9.108)

which generalizes the formula p(aā → 1) = 1/d2
a that we used to define

the quantum dimension, and satisfies the normalization condition
∑

c

p(ab→ c) = 1. (9.109)

To arrive at another interpretation of the quantum dimension, imagine
that a dense gas of anyons is created, which is then permitted to anneal
for awhile — anyons collide and fuse, gradually reducing the population of
particles. Eventually, but long before the thermal equilibrium is attained,
the collision rate becomes so slow that the fusion process effectively turns
off. By this stage, whatever the initial distribution of particles types, a
steady state distribution is attained that is preserved by collisions. If in
the steady state particles of type a appear with probability pa, then

∑

ab

papb p(ab→ c) = pc . (9.110)

Using ∑

a

N c
ab da =

∑

a

Na
bc̄ dā = dbdc̄ = dbdc , (9.111)

we can easily verify that this condition is satisfied by

pa =
d2

a

D2
. (9.112)

We conclude that if anyons are created in a random process, those carrying
labels with larger quantum dimension are more likely to be produced, in
keeping with the property that anyons with larger dimension have more
quantum states.
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9.16 Pentagon and hexagon equations

To assess the computational power of an anyon model like the Fibonacci
model, we need to know the braiding properties of the anyons, which are
determined by the R and F matrices. We will see that the braiding rules
are highly constrained by algebraic consistency conditions. For the Fi-
bonacci model, these consistency conditions suffice to determine a unique
braiding rule that is compatible with the fusion rules.

Consistency conditions arise because we can make a sequence of “F -
moves” and “R-moves” to obtain an isomorphism relating two topological
Hilbert spaces. The isomorphism can be regarded as a unitary matrix
that relates the canonical orthonormal bases for two different spaces; this
unitary transformation does not depend on the particular sequence of
moves from which the isomorphism is constructed, only on the initial and
final bases.

For example, there are five different ways to fuse four particles (without
any particle exchanges), which are related by F -moves:

1 2 3 4

5

a

b
d

1 2 3 4

5

c

1 2 3 4

5

1 2 3 4

5

1 2 3 4

5

a c

b

e e

d

F

FF

F F

The basis shown furthest to the left in this pentagon diagram is the “left
standard basis” {|left; a, b〉}, in which particles 1 and 2 are fused first,
the resulting charge a is fused with particle 3 to yield charge b, and then
finally b is fused with particle 4 to yield the total charge 5. The basis
shown furthest to the right is the “right standard basis” {|right; c, d〉}, in
which the particles are fused from right to left instead of left to right.
Across the top of the pentagon, these two bases are related by two F -
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moves, and we obtain

|left; a, b〉 =
∑

c,d

|right; c, d〉
(
F 5

12c

)d
a

(
F 5

a34

)c
b
. (9.113)

Across the bottom of the pentagon, the bases are related by three F -
moves, and we find

|left; a, b〉 =
∑

c,d,e

|right; c, d〉
(
F d

234

)c

e

(
F 5

1e4

)d
b

(
F b

123

)e

a
. (9.114)

Equating our two expressions for |left; a, b〉, we obtain the pentagon equa-
tion: (

F 5
12c

)d
a

(
F 5

a34

)c
b
=
(
F d

234

)c

e

(
F 5

1e4

)d
b

(
F b

123

)e

a
. (9.115)

Another nontrivial consistency condition is found by considering the
various ways that three particles can fuse:

1 2 3

4

b

1 2 3

4

a

2 3 1

4

b

2 3 1

4

c

2 1 3

4

c

2 1 3

4

a

F R F

F

R R

The basis {|left; a〉} furthest to the left in this hexagon diagram is obtained
if the particles are arranged in the order 123, and particles 1 and 2 are
fused first, while the basis {|right, c〉} furthest to the right is obtained if
the particles are arranged in order 231, and particles 1 and 3 are fused
first. Across the top of the hexagon, the two bases are related by the
sequence of moves FRF :

|left, a〉 =
∑

b,c

|right; c〉
(
F 4

231

)c
b
R4

1b

(
F 4

123

)b
a
. (9.116)

Across the bottom of the hexagon, the bases are related by the sequence
of moves RFR, and we find

|left, a〉 =
∑

c

|right; c〉Rc
13

(
F 4

213

)c
a
Ra

12 . (9.117)
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Equating our two expressions for |left; a〉, we obtain the hexagon equation:

Rc
13

(
F 4

213

)c
a
Ra

12 =
∑

b

(
F 4

231

)c
b
R4

1b

(
F 4

123

)b
a
. (9.118)

A beautiful theorem, which I will not prove here, says that there are
no further conditions that must be imposed to ensure the consistency of
braiding and fusing. That is, for any choice of an initial and final basis
for n anyons, all sequences of R-moves and F -moves that take the initial
basis to the final basis yield the same isomorphism, provided that the
pentagon equation and hexagon equation are satisfied. This theorem is
an instance of the MacLane coherence theorem, a fundamental result in
category theory. The pentagon and hexagon equations together are called
the Moore-Seiberg polynomial equations — their relevance to physics was
first appreciated in studies of (1+1)-dimensional conformal field theory
during the 1980’s.

A solution to the polynomial equations defines a viable anyon model.
Therefore, there is a systematic procedure for constructing anyon models:

1. Choose a set of labels and assume a fusion rule.

2. Solve the polynomial equations for R and F .

If no solutions exist, then the hypothetical fusion rule is incompatible with
the principles of local quantum physics and must be rejected. If there is
more than one solution (not related to one another by any reshuffling of
the labels, redefinition of bases, etc.), then each distinct solution defines
a distinct model with the assumed fusion rule.

To illustrate the procedure, consider the polynomial equations for the
Fibonacci fusion rule. There are only two F -matrices that arise, which
we will denote as

F0111 ≡ F0 , F1111 ≡ F1 . (9.119)

F0 is really the 1 × 1 matrix

(F0)
b
a = δ1aδ

b
1 , (9.120)

while F1 is a 2× 2 matrix. The pentagon equation becomes

(Fc)
d
a (Fa)

c
b =

∑

e

(Fd)
c
e (Fe)

d
b (Fb)

c
a . (9.121)

The general solution for F ≡ F1 is

F =
(

τ eiφ
√
τ

e−iφ
√
τ −τ

)
, (9.122)
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where eiφ is an arbitrary phase (which we can set to 1 with a suitable
phase convention), and τ =

(√
5 − 1

)
/2 = φ − 1 ≈ .618, which satisfies

τ2 + τ = 1 . (9.123)

The 2× 2 R-matrix that describes a counterclockwise exchange of two
Fibonacci anyons has two eigenvalues — R0 for the case where the total
charge of the pair of anyons is trivial, and R1 for the case where the total
charge is nontrivial. The hexagon equation becomes

Rc (F )c
aR

a = (F )c
0 (F )0a + (F )c

1R
1 (F )1a . (9.124)

Using the expression for F found by solving the pentagon equation, we
can solve the hexagon equation for R, finding

R =
(
e4πi/5 0

0 −e2πi/5

)
, F =

(
τ

√
τ√

τ −τ

)
. (9.125)

The only other solution is the complex conjugate of this one; this second
solution really describes the same model, but with clockwise and coun-
terclockwise braiding interchanged. Therefore, an anyon model with the
Fibonacci fusion rule really does exist, and it is essentially unique.

9.17 Simulating a quantum circuit with Fibonacci anyons

Now we know enough to address whether a universal quantum computer
can be simulated using Fibonacci anyons. We need to explain how qubits
can be encoded with anyons, and how a universal set of quantum gates
can be realized.

First we note that the Hilbert space V 0
4 ≡ V 0

1111 has dimension N0
4 = 2;

therefore a qubit can be encoded by four anyons with trivial total charge.
The anyons are lined up in order 1234, numbered from left to right; in the
standard basis state |0〉, anyons number 1 and number 2 fuse to yield total
charge 0, while in the standard basis state |1〉, anyons 1 and 2 fuse to yield
total charge 1. Acting on this standard basis, the braid group generator
σ1 (counterclockwise exchange of particles 1 and 2) is represented by

σ1 7→ R =
(
e4πi/5 0

0 −e2πi/5

)
, (9.126)

while the generator σ2 is represented by

σ2 7→ B = F−1RF , F =
(
τ

√
τ√

τ −τ

)
. (9.127)
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These matrices generate a representation of the braid group B3 on three
strands whose image is dense in SU(2). Indeed, R and B generate Z10

subgroups of U(2), about two distinct axes, and there is no finite sub-
group of U(2) that contains both of these subgroups — therefore, the
representation closes on the group containing all elements of U(2) with
determinant equal to a 10th root of unity. Similarly, for n anyons with
trivial total charge, the image of the representation of the braid group is
dense in SU(N0

n).
To simulate a quantum circuit acting on n qubits, altogether 4n anyons

are used. We have just seen that by braiding within each cluster of four
anyons, arbitrary single-qubit gates can be realized. To complete a uni-
versal set, we will need two-qubit gates as well. But two neighboring
qubits are encoded by eight anyons, and exchanges of these anyons gen-
erate a representation of B8 whose image is dense in SU(N0

8 )= SU(13),
which of course includes the SU(4) that acts on the two encoded qubits.
Therefore, each gate in a universal set can be simulated with arbitrary
accuracy by some finite braid.

Since we can braid clockwise as well as counterclockwise, the inverse
of each exchange gate is also in our repertoire. Therefore, we can ap-
ply the Solovay-Kitaev theorem to conclude that the universal gates of
the circuit model can be simulated to accuracy ε with braids of length
poly (log(1/ε)). It follows that an ideal quantum circuit with L gates
acting on all together n qubits can be simulated to fixed accuracy using
4n anyons and a braid of length O(L · poly(log(L)). As desired, we have
shown that a universal quantum computer can be simulated efficiently
with Fibonacci anyons. Note that, in contrast to the simulation using
the nonabelian superconductor model, no intermediate measurements are
needed to realize the universal gates.

In the analysis above, we have assumed that there are no errors in
the simulation other than those limiting the accuracy of the Solovay-
Kitaev approximation to the ideal gates. It is therefore implicit that the
temperature is small enough compared to the energy gap of the model
that thermally excited anyons are too rare to cause trouble, that the
anyons are kept far enough apart from one another that uncontrolled
exchange of charge can be neglected, and in general that errors in the
topological quantum computation are unimportant. If the error rate is
small but not completely negligible, then the standard theory of quantum
fault tolerance can be invoked to boost the accuracy of the simulation as
needed, at an additional overhead cost polylogarithmic in L. The fault-
tolerant procedure should include a method for controlling the “leakage”
of the encoded qubits — that is, to prevent the drift of the clusters of
four qubits from the two-dimensional computational space V 0

4 to its three-
dimensional orthogonal complement V 1

4 .
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9.18 Epilogue

That is as far as I got in class. I will mention briefly here a few other
topics that I might have covered if I had not run out of time.

9.18.1 Chern-Simons theory

We have discussed how anyon models can be constructed through a brute-
force solution to the polynomial equations. This method is foolproof,
but in practice models are often constructed using other, more efficient
methods. Indeed, most of the known anyon models have been found as
instances of Chern-Simons theory.

The fusion rules of a Chern-Simons theory are a truncated version of the
fusion rules for irreducible representations of a Lie group. For example,
associated with the group SU(2) there is a tower of Chern-Simons theories
indexed by a positive integer k. For SU(2), the irreducible representations
carry labels j = 0, 1

2 , 1,
3
2 , 2,

5
2 , . . . , and the fusion rules have the form

j1 × j2 =
j1+j2∑

j=|j2−j1 |

j . (9.128)

In the Chern-Simons theory denoted SU(2)k, the half-integer labels are
limited to j ≤ k/2, and the label j is contained in j1×j2 only if j1+j2+j ≤
k.

For example, the SU(2)1 model is abelian, and the nontrivial fusion
rules of the SU(2)2 model are

1
2 × 1

2 = 0 + 1 ,

1
2 × 1 =

1
2
,

1 × 1 = 0 . (9.129)

Therefore, the label 1
2 has quantum dimension d1/2 =

√
2, and the topo-

logical Hilbert space of 2m such anyons with total charge 0 has dimension

N0

(1
2)

2m = 2m−1 . (9.130)

The polynomial equations for these fusion rules have multiple solutions
(only one of which describes the braiding properties of the SU(2)2 model),
but none of the resulting models have computationally universal braiding
rules. The space V 0

1
2

1
2

1
2

1
2

is two-dimensional, and the 2 × 2 matrices F ≡
F 1

2
1
2

1
2

1
2

and R ≡ R 1
2

1
2

are, up to overall phases and complex conjugation,

F = H =
1√
2

(
1 1
1 −1

)
, R = P =

(
1 0
0 i

)
. (9.131)
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There are Clifford-group quantum gates, inadequate for universality.
However, the SU(2)k models for k ≥ 3 are computationally universal.

The nontrivial fusion rules of SU(2)3 are
1
2 × 1

2 = 0 + 1 ,

1
2 × 1 =

1
2

+
3
2
,

1
2 × 3

2 = 1 ,
1 × 1 = 0 + 1 ,

1 × 3
2 =

1
2
,

3
2 × 3

2 = 0 . (9.132)

The Fibonacci (Yang-Lee) model that we have studied is obtained by
truncating SU(2)3, further, eliminating the noninteger labels 1

2 and 3
2

(i.e., this is the Chern-Simons theory SO(3)3); then the only remaining
nontrivial fusion rule is 1 × 1 = 0 + 1.

Wang (unpublished) has recently constructed all anyons models with
no more than four labels, and has found that all of the models are closely
related to the models that are found in Chern-Simons theory.

9.18.2 S-matrix

The modular S-matrix of an anyon model can be defined in terms of two
anyon world lines that form a Hopf link:

1b

a
S

D

ba

Here D is the total quantum dimension of the model, and we have used
the normalization where unlinked loops would have the value dadb; then
the matrix Sb

a is symmetric and unitary. In abelian anyon models, the
Hopf link arose in our discussion of topological degeneracy, where we
characterized how the vacuum state of an anyon model on the torus is
affected when an anyon is transported around one of the cycles of the
torus. The S-matrix has a similar interpretation in the nonabelian case.
By elementary reasoning, S can be related to the fusion rules:

(Na)
c
b =

∑

d

Sd
b

(
Sd

a

Sd
1

)(
S−1

)c
d

; (9.133)
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that is, the S-matrix simulaneously diagonalizes all the matrices {Na}
(the Verlinde relation). Note that it follows from the definition that Sa

1 =
da/D.

9.18.3 Edge excitations

In our formulation of anyon models, we have discussed the fusing and
braiding of particles in the two-dimensional bulk. But there is another
aspect of the physics of two-dimensional media that we have not yet dis-
cussed, the properties of the one-dimensional edge of the sample. Typi-
cally, if a two-dimensional system supports anyons in the bulk, there are
also chiral massless excitations that propagate along the one-dimensional
edge. At nonzero temperature T , there is an energy flux along the edge
given by the expression

J =
π

12
c−T

2 ; (9.134)

here the constant c−, called the chiral central charge of the edge, is a
universal property that is unaffected by small changes in the underlying
Hamiltonian of the system.

While this chiral central charge is an intrinsic property of the two-
dimensional medium, the properties of the anyons in the bulk do not
determine it completely; rather we have

1
D
∑

a

d2
ae

2πiJa = e(2πi/8)c− , (9.135)

where the sum is over the complete label set of the anyon model, and
e2πiJa = R1

aā is the topological spin of the label a. This expression re-
lates the quantity c−, characteristic of the edge theory, to the quantum
dimensions and topological spins of the bulk theory, but determines c−
only modulo 8. Therefore, at least in principle, there can be multiple edge
theories corresponding to a single theory of anyons in the bulk.

9.19 Bibliographical notes

Some of the pioneering papers on the theory of anyons are reprinted in
[1].

What I have called the “nonabelian superconductor” model is often
referred to in the literature as the “quantum double,” and is studied
using the representation theory of Hopf algebras. For a review see [2].

That nonabelian anyons can be used for fault-tolerant quantum com-
puting was first suggested in [3]. This paper also discusses the toric code,
and related lattice models that have nonabelian phases. A particular real-
ization of universal quantum computation in a nonabelian superconductor
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was discussed in [4, 5]. My discussion of the universal gate set is based
on [6], where more general models are also discussed. Other schemes,
that make more extensive use of electric charges and that are universal
for smaller groups (like S3) are described in [7].

Diagrammatic methods, like those I used in the discussion of the quan-
tum dimension, are extensively applied to derive properties of anyons in
[8]. The role of the polynomial equations (pentagon and hexagon equa-
tions) in (1+1)-dimensional conformal field theory is discussed in [9].

Simulation of anyons using a quantum circuit is discussed in [10]. Simu-
lation of a universal quantum computer using the anyons of the SU(2)k=3

Chern-Simons theory is discussed in [11]. That the Yang-Lee model is
also universal was pointed out in [12].

I did not discuss physical implementations in my lectures, but I list a
few relevant references here anyway: Ideas about realizing abelian and
nonabelian anyons using superconducting Josephson-junction arrays are
discussed in [13]. A spin model with nearest-neighbor interactions that
has nonabelian anyons (though not ones that are computationally univer-
sal) is proposed and solved in [14], and a proposal for realizing this model
using cold atoms trapped in an optical lattice is described in [15]. Some
ideas about realizing the (computationally universal) SU(2)k=3 model in
a system of interacting electrons are discussed in [16].

Much of my understanding of the theory of computing with nonabelian
anyons was derived from many helpful discussions with Alexei Kitaev.
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Preface

This is the 10th and final chapter of my book Quantum Information, based on the course
I have been teaching at Caltech since 1997. An early version of this chapter (originally
Chapter 5) has been available on the course website since 1998, but this version is
substantially revised and expanded.

The level of detail is uneven, as I’ve aimed to provide a gentle introduction, but I’ve
also tried to avoid statements that are incorrect or obscure. Generally speaking, I chose
to include topics that are both useful to know and relatively easy to explain; I had to
leave out a lot of good stuff, but on the other hand the chapter is already quite long.

My version of Quantum Shannon Theory is no substitute for the more careful treat-
ment in Wilde’s book [1], but it may be more suitable for beginners. This chapter
contains occasional references to earlier chapters in my book, but I hope it will be in-
telligible when read independently of other chapters, including the chapter on quantum
error-correcting codes.

This is a working draft of Chapter 10, which I will continue to update. See the URL
on the title page for further updates and drafts of other chapters. Please send an email
to preskill@caltech.edu if you notice errors.

Eventually, the complete book will be published by Cambridge University Press. I
hesitate to predict the publication date — they have been far too patient with me.
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Quantum Shannon Theory

Quantum information science is a synthesis of three great themes of 20th century
thought: quantum physics, computer science, and information theory. Up until now,
we have given short shrift to the information theory side of this trio, an oversight now
to be remedied.

A suitable name for this chapter might have been Quantum Information Theory, but
I prefer for that term to have a broader meaning, encompassing much that has already
been presented in this book. Instead I call it Quantum Shannon Theory, to emphasize
that we will mostly be occupied with generalizing and applying Claude Shannon’s great
(classical) contributions to a quantum setting. Quantum Shannon theory has several
major thrusts:

1. Compressing quantum information.
2. Transmitting classical and quantum information through noisy quantum channels.
3. Quantifying, characterizing, transforming, and using quantum entanglement.

A recurring theme unites these topics — the properties, interpretation, and applications
of Von Neumann entropy.

My goal is to introduce some of the main ideas and tools of quantum Shannon theory,
but there is a lot we won’t cover. For example, we will mostly consider information theory
in an asymptotic setting, where the same quantum channel or state is used arbitrarily
many times, thus focusing on issues of principle rather than more practical questions
about devising efficient protocols.

10.1 Shannon for Dummies

Before we can understand Von Neumann entropy and its relevance to quantum infor-
mation, we should discuss Shannon entropy and its relevance to classical information.

Claude Shannon established the two core results of classical information theory in his
landmark 1948 paper. The two central problems that he solved were:

1. How much can a message be compressed; i.e., how redundant is the information?
This question is answered by the “source coding theorem,” also called the “noiseless
coding theorem.”

2. At what rate can we communicate reliably over a noisy channel; i.e., how much
redundancy must be incorporated into a message to protect against errors? This
question is answered by the “noisy channel coding theorem.”
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Both questions concern redundancy – how unexpected is the next letter of the message,
on the average. One of Shannon’s key insights was that entropy provides a suitable way
to quantify redundancy.

I call this section “Shannon for Dummies” because I will try to explain Shannon’s ideas
quickly, minimizing distracting details. That way, I can compress classical information
theory to about 14 pages.

10.1.1 Shannon entropy and data compression

A message is a string of letters, where each letter is chosen from an alphabet of k
possible letters. We’ll consider an idealized setting in which the message is produced
by an “information source” which picks each letter by sampling from a probability
distribution

X := {x, p(x)}; (10.1)

that is, the letter has the value

x ∈ {0, 1, 2, . . . k−1} (10.2)

with probability p(x). If the source emits an n-letter message the particular string x =
x1x2 . . . xn occurs with probability

p(x1x2 . . . xn) =
n∏
i=1

p(xi). (10.3)

Since the letters are statistically independent, and each is produced by consulting the
same probability distribution X, we say that the letters are independent and identically
distributed, abbreviated i.i.d. We’ll useXn to denote the ensemble of n-letter messages in
which each letter is generated independently by sampling from X, and ~x = (x1x2 . . . xn)
to denote a string of bits.

Now consider long n-letter messages, n � 1. We ask: is it possible to compress the
message to a shorter string of letters that conveys essentially the same information? The
answer is: Yes, it’s possible, unless the distribution X is uniformly random.

If the alphabet is binary, then each letter is either 0 with probability 1− p or 1 with
probability p, where 0 ≤ p ≤ 1. For n very large, the law of large numbers tells us that
typical strings will contain about n(1− p) 0’s and about np 1’s. The number of distinct
strings of this form is of order the binomial coefficient

(
n
np

)
, and from the Stirling

approximation log n! = n log n− n+O(log n) we obtain

log
(
n

np

)
= log

(
n!

(np)! (n(1− p))!

)
≈ n log n− n− (np log np− np+ n(1− p) log n(1− p)− n(1− p))

= nH(p), (10.4)

where

H(p) = −p log p− (1− p) log(1− p) (10.5)

is the entropy function.
In this derivation we used the Stirling approximation in the appropriate form for

natural logarithms. But from now on we will prefer to use logarithms with base 2, which
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is more convenient for expressing a quantity of information in bits; thus if no base is
indicated, it will be understood that the base is 2 unless otherwise stated. Adopting this
convention in the expression for H(p), the number of typical strings is of order 2nH(p).

To convey essentially all the information carried by a string of n bits, it suffices to
choose a block code that assigns a nonnegative integer to each of the typical strings. This
block code needs to distinguish about 2nH(p) messages (all occurring with nearly equal
a priori probability), so we may specify any one of the messages using a binary string
with length only slightly longer than nH(p). Since 0 ≤ H(p) ≤ 1 for 0 ≤ p ≤ 1, and
H(p) = 1 only for p = 1

2 , the block code shortens the message for any p 6= 1
2 (whenever

0 and 1 are not equally probable). This is Shannon’s result. The key idea is that we do
not need a codeword for every sequence of letters, only for the typical sequences. The
probability that the actual message is atypical becomes negligible asymptotically, i.e.,
in the limit n→∞.

Similar reasoning applies to the case where X samples from a k-letter alphabet. In
a string of n letters, x typically occurs about np(x) times, and the number of typical
strings is of order

n!Q
x (np(x))!

' 2−nH(X), (10.6)

where we have again invoked the Stirling approximation and now

H(X) = −
∑
x

p(x) log2 p(x). (10.7)

is the Shannon entropy (or simply entropy) of the ensemble X = {x, p(x)}. Adopting a
block code that assigns integers to the typical sequences, the information in a string of
n letters can be compressed to about nH(X) bits. In this sense a letter x chosen from
the ensemble carries, on the average, H(X) bits of information.

It is useful to restate this reasoning more carefully using the strong law of large
numbers, which asserts that a sample average for a random variable almost certainly
converges to its expected value in the limit of many trials. If we sample from the dis-
tribution Y = {y, p(y)} n times, let yi, i ∈ {1, 2, . . . , n} denote the ith sample, and
let

µ[Y ] = 〈y〉 =
∑
y

y p(y) (10.8)

denote the expected value of y. Then for any positive ε and δ there is a positive integer
N such that ∣∣∣∣∣ 1n

n∑
i=1

yi − µ[Y ]

∣∣∣∣∣ ≤ δ (10.9)

with probability at least 1−ε for all n ≥ N . We can apply this statement to the random
variable log2 p(x). Let us say that a sequence of n letters is δ-typical if

H(X)− δ ≤ − 1
n

log2 p(x1x2 . . . xn) ≤ H(X) + δ; (10.10)

then the strong law of large numbers says that for any ε, δ > 0 and n sufficiently large,
an n-letter sequence will be δ-typical with probability ≥ 1− ε.

Since each δ-typical n-letter sequence ~x occurs with probability p(~x) satisfying

pmin = 2−n(H+δ) ≤ p(~x) ≤ 2−n(H−δ) = pmax, (10.11)
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we may infer upper and lower bounds on the number Ntyp(ε, δ, n) of typical sequences:

Ntyp pmin ≤
∑

typical x

p(x) ≤ 1, Ntyp pmax ≥
∑

typical x

p(x) ≥ 1− ε, (10.12)

implies

2n(H+δ) ≥ Ntyp(ε, δ, n) ≥ (1− ε)2n(H−δ). (10.13)

Therefore, we can encode all typical sequences using a block code with length n(H + δ)
bits. That way, any message emitted by the source can be compressed and decoded
successfully as long as the message is typical; the compression procedure achieves a
success probability psuccess ≥ 1− ε, no matter how the atypical sequences are decoded.

What if we try to compress the message even further, say to H(X)−δ′ bits per letter,
where δ′ is a constant independent of the message length n? Then we’ll run into trouble,
because there won’t be enough codewords to cover all the typical messages, and we
won’t be able to decode the compressed message with negligible probability of error.
The probability psuccess of successfully decoding the message will be bounded above by

psuccess ≤ 2n(H−δ′)2−n(H−δ) + ε = 2−n(δ′−δ) + ε; (10.14)

we can correctly decode only 2n(H−δ′) typical messages, each occurring with probability
no higher than 2−n(H−δ); we add ε, an upper bound on the probability of an atypical
message, allowing optimistically for the possibility that we somehow manage to decode
the atypical messages correctly. Since we may choose ε and δ as small as we please, this
success probability becomes small as n→∞, if δ′ is a positive constant.

The number of bits per letter encoding the compressed message is called the rate of
the compression code, and we say a rate R is achievable asymptotically (as n → ∞) if
there is a sequence of codes with rate at least R and error probability approaching zero
in the limit of large n. To summarize our conclusion, we have found that

Compression Rate = H(X) + o(1) is achievable,

Compression Rate = H(X)− Ω(1) is not achievable, (10.15)

where o(1) denotes a positive quantity which may be chosen as small as we please, and
Ω(1) denotes a positive constant. This is Shannon’s source coding theorem.

We have not discussed at all the details of the compression code. We might imagine
a huge lookup table which assigns a unique codeword to each message and vice versa,
but because such a table has size exponential in n it is quite impractical for compressing
and decompressing long messages. It is fascinating to study how to make the coding
and decoding efficient while preserving a near optimal rate of compression, and quite
important, too, if we really want to compress something. But this practical aspect of
classical compression theory is beyond the scope of this book.

10.1.2 Joint typicality, conditional entropy, and mutual information

The Shannon entropy quantifies my ignorance per letter about the output of an infor-
mation source. If the source X produces an n-letter message, then n(H(X) + o(1)) bits
suffice to convey the content of the message, while n(H(X)− Ω(1)) bits do not suffice.

Two information sources X and Y can be correlated. Letters drawn from the sources
are governed by a joint distribution XY = {(x, y), p(x, y)}, in which a pair of letters
(x, y) appears with probability p(x, y). The sources are independent if p(x, y) = p(x)p(y),
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but correlated otherwise. If XY is a joint distribution, we use X to denote the marginal
distribution, defined as

X =

{
x, p(x) =

∑
y

p(x, y)

}
, (10.16)

and similarly for Y . If X and Y are correlated, then by reading a message generated
by Y n I reduce my ignorance about a message generated by Xn, which should make it
possible to compress the output of X further than if I did not have access to Y .

To make this idea more precise, we use the concept of jointly typical sequences. Sam-
pling from the distribution XnY n, that is, sampling n times from the joint distribution
XY , produces a message (~x, ~y) = (x1x2 . . . xn, y1y2 . . . yn) with probability

p(~x, ~y) = p(x1, y1)p(x2, y2) . . . p(xn, yn). (10.17)

Let us say that (~x, ~y) drawn from XnY n is jointly δ-typical if

2−n(H(X)+δ) ≤ p(~x) ≤ 2−n(H(X)−δ),

2−n(H(Y )+δ) ≤ p(~y) ≤ 2−n(H(Y )−δ),

2−n(H(XY )+δ) ≤ p(~x, ~y) ≤ 2−n(H(XY )−δ). (10.18)

Then, applying the strong law of large numbers simultaneously to the three distributions
Xn, Y n, and XnY n, we infer that for ε, δ > 0 and n sufficiently large, a sequence drawn
from XnY n will be δ-typical with probability ≥ 1 − ε. Using Bayes’ rule, we can then
obtain upper and lower bounds on the conditional probability p(~x|~y) for jointly typical
sequences:

p(~x|~y) =
p(~x, ~y)
p(~y)

≥ 2−n(H(XY )+δ)

2−n(H(Y )−δ) = 2−n(H(X|Y )+2δ),

p(~x|~y) =
p(~x, ~y)
p(~y)

≤ 2−n(H(XY )−δ)

2−n(H(Y )+δ)
= 2−n(H(X|Y )−2δ). (10.19)

Here we have introduced the quantity

H(X|Y ) = H(XY )−H(Y ) = 〈− log p(x, y) + log p(y)〉 = 〈− log p(x|y)〉, (10.20)

which is called the conditional entropy of X given Y .
The conditional entropy quantifies my remaining ignorance about x once I know y.

From eq.(10.19) we see that if (~x, ~y) is jointly typical (as is the case with high probability
for n large), then the number of possible values for ~x compatible with the known value of
~y is no more than 2n(H(X|Y )+2δ); hence we can convey ~x with a high success probability
using only H(X|Y ) + o(1) bits per letter. On the other hand we can’t do much better,
because if we use only 2n(H(X|Y )−δ′) codewords, we are limited to conveying reliably
no more than a fraction 2−n(δ′−2δ) of all the jointly typical messages. To summarize,
H(X|Y ) is the number of additional bits per letter needed to specify both ~x and ~y once
~y is known. Similarly, H(Y |X) is the number of additional bits per letter needed to
specify both ~x and ~y when ~x is known.

The information about X that I gain when I learn Y is quantified by how much the
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number of bits per letter needed to specify X is reduced when Y is known. Thus is

I(X;Y ) ≡ H(X)−H(X|Y )

= H(X) +H(Y )−H(XY )

= H(Y )−H(Y |X), (10.21)

which is called the mutual information. The mutual information I(X;Y ) quantifies how
X and Y are correlated, and is symmetric under interchange of X and Y : I find out
as much about X by learning Y as about Y by learning X. Learning Y never reduces
my knowledge of X, so I(X;Y ) is obviously nonnegative, and indeed the inequality
H(X) ≥ H(X|Y ) ≥ 0 follows easily from the convexity of the log function.

Of course, if X and Y are completely uncorrelated, we have p(x, y) = p(x)p(y), and

I(X;Y ) ≡
〈

log
p(x, y)
p(x)p(y)

〉
= 0; (10.22)

we don’t find out anything about X by learning Y if there is no correlation between X
and Y .

10.1.3 Distributed source coding

To sharpen our understanding of the operational meaning of conditional entropy, con-
sider this situation: Suppose that the joint distribution XY is sampled n times, where
Alice receives the n-letter message ~x and Bob receives the n-letter message ~y. Now Alice
is to send a message to Bob which will enable Bob to determine ~x with high success
probability, and Alice wants to send as few bits to Bob as possible. This task is harder
than in the scenario considered in §10.1.2, where we assumed that the encoder and the
decoder share full knowledge of ~y, and can choose their code for compressing ~x accord-
ingly. It turns out, though, that even in this more challenging setting Alice can compress
the message she sends to Bob down to n (H(X|Y ) + o(1)) bits, using a method called
Slepian-Wolf coding.

Before receiving (~x, ~y), Alice and Bob agree to sort all the possible n-letter messages
that Alice might receive into 2nR possible bins of equal size, where the choice of bins
is known to both Alice and Bob. When Alice receives ~x, she sends nR bits to Bob,
identifying the bin that contains ~x. After Bob receives this message, he knows both ~y

and the bin containing ~x. If there is a unique message in that bin which is jointly typical
with ~y, Bob decodes accordingly. Otherwise, he decodes arbitrarily. This procedure can
fail either because ~x and ~y are not jointly typical, or because there is more than one
message in the bin which is jointly typical with ~x. Otherwise, Bob is sure to decode
correctly.

Since ~x and ~y are jointly typical with high probability, the compression scheme works
if it is unlikely for a bin to contain an incorrect message which is jointly typical with ~y.
If ~y is typical, what can we say about the number Ntyp|~y of messages ~x that are jointly
typical with ~y? Using eq.(10.19), we have

1 ≥
∑

typical ~x|~y

p(~x|~y) ≥ Ntyp|~y 2−n(H(X|Y )+2δ), (10.23)

and thus

Ntyp|~y ≤ 2n(H(X|Y )+2δ). (10.24)
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Now, to estimate the probability of a decoding error, we need to specify how the bins
are chosen. Let’s assume the bins are chosen uniformly at random, or equivalently, let’s
consider averaging uniformly over all codes that divide the length-n strings into 2nR

bins of equal size. Then the probability that a particular bin contains a message jointly
typical with a specified ~y purely by accident is bounded above by

2−nRNtyp|~y ≥ 2−n(R−H(X|Y )−2δ). (10.25)

We conclude that if Alice sends R bits to Bob per each letter of the message x, where

R = H(X|Y ) + o(1), (10.26)

then the probability of a decoding error vanishes in the limit n→∞, at least when we
average over uniformly all codes. Surely, then, there must exist a particular sequence of
codes Alice and Bob can use to achieve the rate R = H(X|Y ) + o(1), as we wanted to
show.

In this scenario, Alice and Bob jointly know (x, y), but initially neither Alice nor Bob
has access to all their shared information. The goal is to merge all the information on
Bob’s side with minimal communication from Alice to Bob, and we have found that
H(X|Y ) + o(1) bits of communication per letter suffice for this purpose. Similarly, the
information can be merged on Alice’s side using H(Y |X) + o(1) bits of communication
per letter from Bob to Alice.

10.1.4 The noisy channel coding theorem

Suppose Alice wants to send a message to Bob, but the communication channel linking
Alice and Bob is noisy. Each time they use the channel, Bob receives the letter y with
probability p(y|x) if Alice sends the letter x. Using the channel n� 1 times, Alice hopes
to transmit a long message to Bob.

Alice and Bob realize that to communicate reliably despite the noise they should use
some kind of code. For example, Alice might try sending the same bit k times, with
Bob using a majority vote of the k noisy bits he receives to decode what Alice sent. One
wonders: for a given channel, is it possible to ensure perfect transmission asymptotically,
i.e., in the limit where the number of channel uses n→∞? And what can be said about
the rate of the code; that is, how many bits must be sent per letter of the transmitted
message?

Shannon answered these questions. He showed that any channel can be used for per-
fectly reliable communication at an asymptotic nonzero rate, as long as there is some
correlation between the channel’s input and its output. Furthermore, he found a useful
formula for the optimal rate that can be achieved. These results are the content of the
noisy channel coding theorem.

Capacity of the binary symmetric channel.

To be concrete, suppose we use the binary alphabet {0, 1}, and the binary symmetric
channel; this channel acts on each bit independently, flipping its value with probabil-
ity p, and leaving it intact with probability 1 − p. Thus the conditional probabilities
characterizing the channel are

p(0|0) = 1− p, p(0|1) = p,

p(1|0) = p, p(1|1) = 1− p.
(10.27)
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We want to construct a family of codes with increasing block size n, such that the
probability of a decoding error goes to zero as n → ∞. For each n, the code contains
2k codewords among the 2n possible strings of length n. The rate R of the code, the
number of encoded data bits transmitted per physical bit carried by the channel, is

R =
k

n
. (10.28)

To protect against errors, we should choose the code so that the codewords are as “far
apart” as possible. For given values of n and k, we want to maximize the number of bits
that must be flipped to change one codeword to another, the Hamming distance between
the two codewords. For any n-bit input message, we expect about np of the bits to flip
— the input diffuses into one of about 2nH(p) typical output strings, occupying an “error
sphere” of “Hamming radius” np about the input string. To decode reliably, we want
to choose our input codewords so that the error spheres of two different codewords do
not overlap substantially. Otherwise, two different inputs will sometimes yield the same
output, and decoding errors will inevitably occur. To avoid such decoding ambiguities,
the total number of strings contained in all 2k = 2nR error spheres should not exceed
the total number 2n of bits in the output message; we therefore require

2nH(p)2nR ≤ 2n (10.29)

or

R ≤ 1−H(p) := C(p). (10.30)

If transmission is highly reliable, we cannot expect the rate of the code to exceed C(p).
But is the rate R = C(p) actually achievable asymptotically?

In fact transmission with R = C − o(1) and negligible decoding error probability is
possible. Perhaps Shannon’s most ingenious idea was that this rate can be achieved by
an average over “random codes.” Though choosing a code at random does not seem like
a clever strategy, rather surprisingly it turns out that random coding achieves as high
a rate as any other coding scheme in the limit n → ∞. Since C is the optimal rate for
reliable transmission of data over the noisy channel it is called the channel capacity.

Suppose that X is the uniformly random ensemble for a single bit (either 0 with p = 1
2

or 1 with p = 1
2), and that we sample from Xn a total of 2nR times to generate 2nR

“random codewords.” The resulting code is known by both Alice and Bob. To send nR
bits of information, Alice chooses one of the codewords and sends it to Bob by using
the channel n times. To decode the n-bit message he receives, Bob draws a “Hamming
sphere” with “radius” slightly large than np, containing

2n(H(p)+δ) (10.31)

strings. If this sphere contains a unique codeword, Bob decodes the message accordingly.
If the sphere contains more than one codeword, or no codewords, Bob decodes arbitrarily.

How likely is a decoding error? For any positive δ, Bob’s decoding sphere is large
enough that it is very likely to contain the codeword sent by Alice when n is sufficiently
large. Therefore, we need only worry that the sphere might contain another codeword
just by accident. Since there are altogether 2n possible strings, Bob’s sphere contains a
fraction

f =
2n(H(p)+δ)

2n
= 2−n(C(p)−δ), (10.32)
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of all the strings. Because the codewords are uniformly random, the probability that
Bob’s sphere contains any particular codeword aside from the one sent by Alice is f ,
and the probability that the sphere contains any one of the 2nR − 1 invalid codewords
is no more than

2nRf = 2−n(C(p)−R−δ). (10.33)

Since δ may be as small as we please, we may choose R = C(p) − c where c is any
positive constant, and the decoding error probability will approach zero as n→∞.

When we speak of codes chosen at random, we really mean that we are averaging over
many possible codes. The argument so far has shown that the average probability of error
is small, where we average over the choice of random code, and for each specified code
we also average over all codewords. It follows that there must be a particular sequence of
codes such that the average probability of error (when we average over the codewords)
vanishes in the limit n → ∞. We would like a stronger result – that the probability of
error is small for every codeword.

To establish the stronger result, let pi denote the probability of a decoding error when
codeword i is sent. For any positive ε and sufficiently large n, we have demonstrated the
existence of a code such that

1
2nR

2nR∑
i=1

pi ≤ ε. (10.34)

Let N2ε denote the number of codewords with pi ≥ 2ε. Then we infer that

1
2nR

(N2ε)2ε ≤ ε or N2ε ≤ 2nR−1; (10.35)

we see that we can throw away at most half of the codewords, to achieve pi ≤ 2ε for
every codeword. The new code we have constructed has

Rate = R− 1
n
, (10.36)

which approaches R as n → ∞. We have seen, then, that the rate R = C(p) − o(1) is
asymptotically achievable with negligible probability of error, where C(p) = 1−H(p).

Mutual information as an achievable rate.

Now consider how to apply this random coding argument to more general alphabets and
channels. The channel is characterized by p(y|x), the conditional probability that the
letter y is received when the letter x is sent. We fix an ensemble X = {x, p(x)} for the
input letters, and generate the codewords for a length-n code with rate R by sampling
2nR times from the distribution Xn; the code is known by both the sender Alice and the
receiver Bob. To convey an encoded nR-bit message, one of the 2nR n-letter codewords
is selected and sent by using the channel n times. The channel acts independently on the
n letters, governed by the same conditional probability distribution p(y|x) each time it
is used. The input ensemble X, together with the conditional probability characterizing
the channel, determines the joint ensemble XY for each letter sent, and therefore the
joint ensemble XnY n for the n uses of the channel.

To define a decoding procedure, we use the notion of joint typicality introduced in
§10.1.2. When Bob receives the n-letter output message ~y, he determines whether there
is an n-letter input codeword ~x jointly typical with ~y. If such ~x exists and is unique,



10 Quantum Shannon Theory

Bob decodes accordingly. If there is no ~x jointly typical with ~y, or more than one such
~x, Bob decodes arbitrarily.

How likely is a decoding error? For any positive ε and δ, the (~x, ~y) drawn from XnY n

is jointly δ-typical with probability at least 1− ε if n is sufficiently large. Therefore, we
need only worry that there might more than one codeword jointly typical with ~y.

Suppose that Alice samples Xn to generate a codeword ~x, which she sends to Bob
using the channel n times. Then Alice samples Xn a second time, producing another
codeword ~x′. With probability close to one, both ~y and ~x′ are δ-typical. But what is the
probability that ~x′ is jointly δ-typical with ~y?

Because the samples are independent, the probability of drawing these two codewords
factorizes as p(~x′, ~x) = p(~x′)p(~x), and likewise the channel output ~y when the first
codeword is sent is independent of the second channel input ~x′, so p(~x′, ~y) = p(~x′)p(~y).
From eq.(10.18) we obtain an upper bound on the number Nj.t. of jointly δ-typical (~x, ~y):

1 ≥
∑

j.t. (~x,~y)

p(~x, ~y) ≥ Nj.t. 2−n(H(XY )+δ) =⇒ Nj.t. ≤ 2n(H(XY )+δ). (10.37)

We also know that each δ-typical ~x′ occurs with probability p(~x′) ≤ 2−n(H(X)−δ) and that
each δ-typical ~y occurs with probability p(~y) ≤ 2−n(H(Y )−δ). Therefore, the probability
that ~x′ and ~y are jointly δ-typical is bounded above by∑

j.t. (~x′,~y)

p(~x′)p(~y) ≤ Nj.t. 2−n(H(X)−δ)2−n(H(Y )−δ)

≤ 2n(H(XY )+δ)2−n(H(X)−δ)2−n(H(Y )−δ)

= 2−n(I(X;Y )−3δ). (10.38)

If there are 2nR codewords, all generated independently by sampling Xn, then the prob-
ability that any other codeword besides ~x is jointly typical with ~y is bounded above
by

2nR2−n(I(X;Y )−3δ) = 2n(R−I(X;Y )+3δ). (10.39)

Since ε and δ are as small as we please, we may choose R = I(X;Y )− c, where c is any
positive constant, and the decoding error probability will approach zero as n→∞.

So far we have shown that the error probability is small when we average over codes
and over codewords. To complete the argument we use the same reasoning as in our
discussion of the capacity of the binary symmetric channel. There must exist a particular
sequence of code with zero error probability in the limit n→∞, when we average over
codewords. And by pruning the codewords, reducing the rate by a negligible amount,
we can ensure that the error probability is small for every codeword. We conclude that
the rate

R = I(X;Y )− o(1) (10.40)

is asymptotically achievable with negligible probability of error. This result provides a
concrete operational interpretation for the mutual information I(X;Y ); it is the infor-
mation per letter we can transmit over the channel, supporting the heuristic claim that
I(X;Y ) quantifies the information we gain about X when we have access to Y .

The mutual information I(X;Y ) depends not only on the channel’s conditional prob-
ability p(y|x) but also on the a priori probability p(x) defining the codeword ensemble
X. The achievability argument for random coding applies for any choice of X, so we
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have demonstrated that errorless transmission over the noisy channel is possible for any
rate R strictly less than

C := max
X

I(X;Y ). (10.41)

This quantity C is called the channel capacity; it depends only on the conditional prob-
abilities p(y|x) that define the channel.

Upper bound on the capacity.

We have now shown that any rate R < C is achievable, but can R exceed C with
the error probability still approaching 0 for large n? To see that a rate for errorless
transmission exceeding C is not possible, we reason as follows.

Consider any code with 2nR codewords, and consider the uniform ensemble on the
codewords, denoted X̃n, in which each codeword occurs with probability 2−nR. Evi-
dently, then,

H(X̃n) = nR. (10.42)

Sending the codewords through n uses of the channel we obtain an ensemble Ỹ n of
output states, and a joint ensemble X̃nỸ n.

Because the channel acts on each letter independently, the conditional probability for
n uses of the channel factorizes:

p(y1y2 · · · yn|x1x2 · · ·xn) = p(y1|x1)p(y2|x2) · · · p(yn|xn), (10.43)

and it follows that the conditional entropy satisfies

H(Ỹ n|X̃n) = 〈− log p(~y|~x)〉 =
∑
i

〈− log p(yi|xi)〉

=
∑
i

H(Ỹi|X̃i), (10.44)

where X̃i and Ỹi are the marginal probability distributions for the ith letter deter-
mined by our distribution on the codewords. Because Shannon entropy is subadditive,
H(XY ) ≤ H(X) +H(Y ), we have

H(Ỹ n) ≤
∑
i

H(Ỹi), (10.45)

and therefore

I(Ỹ n; X̃n) = H(Ỹ n)−H(Ỹ n|X̃n)

≤
∑
i

(H(Ỹi)−H(Ỹi|X̃i))

=
∑
i

I(Ỹi; X̃i) ≤ nC. (10.46)

The mutual information of the messages sent and received is bounded above by the
sum of the mutual information per letter, and the mutual information for each letter is
bounded above by the capacity, because C is defined as the maximum of I(X;Y ) over
all input ensembles.

Recalling the symmetry of mutual information, we have

I(X̃n; Ỹ n) = H(X̃n)−H(X̃n|Ỹ n)

= nR−H(X̃n|Ỹ n) ≤ nC. (10.47)
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Now, if we can decode reliably as n → ∞, this means that the input codeword is
completely determined by the signal received, or that the conditional entropy of the
input (per letter) must get small

1
n
H(X̃n|Ỹ n) → 0. (10.48)

If errorless transmission is possible, then, eq. (10.47) becomes

R ≤ C + o(1), (10.49)

in the limit n→∞. The asymptotic rate cannot exceed the capacity. In Exercise 10.9,
you will sharpen the statement eq.(10.48), showing that

1
n
H(X̃n|Ỹ n) ≤ 1

n
H2(pe) + peR, (10.50)

where pe denotes the decoding error probability, and H2(pe) = −pe log2 pe − (1 −
pe) log2(1− pe) .

We have now seen that the capacity C is the highest achievable rate of communication
through the noisy channel, where the probability of error goes to zero as the number of
letters in the message goes to infinity. This is Shannon’s noisy channel coding theorem.
What is particularly remarkable is that, although the capacity is achieved by messages
that are many letters in length, we have obtained a single-letter formula for the capacity,
expressed in terms of the optimal mutual information I(X;Y ) for just a single use of
the channel.

The method we used to show that R = C − o(1) is achievable, averaging over random
codes, is not constructive. Since a random code has no structure or pattern, encoding
and decoding are unwieldy, requiring an exponentially large code book. Nevertheless, the
theorem is important and useful, because it tells us what is achievable, and not achiev-
able, in principle. Furthermore, since I(X;Y ) is a concave function of X = {x, p(x)}
(with {p(y|x)} fixed), it has a unique local maximum, and C can often be computed
(at least numerically) for channels of interest. Finding codes which can be efficiently
encoded and decoded, and come close to achieving the capacity, is a very interesting
pursuit, but beyond the scope of our lightning introduction to Shannon theory.

10.2 Von Neumann Entropy

In classical information theory, we often consider a source that prepares messages of
n letters (n � 1), where each letter is drawn independently from an ensemble X =
{x, p(x)}. We have seen that the Shannon entropy H(X) is the number of incompressible
bits of information carried per letter (asymptotically as n→∞).

We may also be interested in correlations among messages. The correlations between
two ensembles of letters X and Y are characterized by conditional probabilities p(y|x).
We have seen that the mutual information

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (10.51)

is the number of bits of information per letter about X that we can acquire by reading Y
(or vice versa). If the p(y|x)’s characterize a noisy channel, then, I(X;Y ) is the amount
of information per letter that can be transmitted through the channel (given the a priori
distribution X for the channel inputs).

We would like to generalize these considerations to quantum information. We may
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imagine a source that prepares messages of n letters, but where each letter is chosen
from an ensemble of quantum states. The signal alphabet consists of a set of quantum
states {ρ(x)}, each occurring with a specified a priori probability p(x).

As we discussed at length in Chapter 2, the probability of any outcome of any mea-
surement of a letter chosen from this ensemble, if the observer has no knowledge about
which letter was prepared, can be completely characterized by the density operator

ρ =
∑
x

p(x)ρ(x); (10.52)

for a POVM E = {Ea}, the probability of outcome a is

Prob(a) = tr(Eaρ). (10.53)

For this (or any) density operator, we may define the Von Neumann entropy

H(ρ) = −tr(ρ log ρ). (10.54)

Of course, we may choose an orthonormal basis {|a〉} that diagonalizes ρ,

ρ =
∑
a

λa|a〉〈a|; (10.55)

the vector of eigenvalues λ(ρ) is a probability distribution, and the Von Neumann en-
tropy of ρ is just the Shannon entropy of this distribution,

H(ρ) = H(λ(ρ)). (10.56)

If ρA is the density operator of system A, we will sometimes use the notation

H(A) := H(ρA). (10.57)

Our convention is to denote quantum systems with A,B,C, . . . and classical probability
distributions with X,Y, Z, . . . .

In the case where the signal alphabet {|ϕ(x)〉, p(x)} consists of mutually orthogonal
pure states, the quantum source reduces to a classical one; all of the signal states can be
perfectly distinguished, and H(ρ) = H(X), where X is the classical ensemble {x, p(x)}.
The quantum source is more interesting when the signal states {ρ(x)} are not mutually
commuting. We will argue that the Von Neumann entropy quantifies the incompressible
information content of the quantum source (in the case where the signal states are pure)
much as the Shannon entropy quantifies the information content of a classical source.

Indeed, we will find that Von Neumann entropy plays multiple roles. It quantifies not
only the quantum information content per letter of the pure-state ensemble (the mini-
mum number of qubits per letter needed to reliably encode the information) but also its
classical information content (the maximum amount of information per letter—in bits,
not qubits—that we can gain about the preparation by making the best possible mea-
surement). And we will see that Von Neumann information enters quantum information
in yet other ways — for example, quantifying the entanglement of a bipartite pure state.
Thus quantum information theory is largely concerned with the interpretation and uses
of Von Neumann entropy, much as classical information theory is largely concerned with
the interpretation and uses of Shannon entropy.

In fact, the mathematical machinery we need to develop quantum information theory
is very similar to Shannon’s mathematics (typical sequences, random coding, . . . ); so
similar as to sometimes obscure that the conceptual context is really quite different.
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The central issue in quantum information theory is that nonorthogonal quantum states
cannot be perfectly distinguished, a feature with no classical analog.

10.2.1 Mathematical properties of H(ρ)

There are a handful of properties of the Von Neumann entropyH(ρ) which are frequently
useful, many of which are closely analogous to corresponding properties of the Shannon
entropy H(X). Proofs of some of these are Exercises 10.1, 10.2, 10.3.

1. Pure states. A pure state ρ = |ϕ〉〈ϕ| has H(ρ) = 0.
2. Unitary invariance. The entropy is unchanged by a unitary change of basis,

H(UρU−1) = H(ρ), (10.58)

because H(ρ) depends only on the eigenvalues of ρ.
3. Maximum. If ρ has d nonvanishing eigenvalues, then

H(ρ) ≤ log d, (10.59)

with equality when all the nonzero eigenvalues are equal. The entropy is maximized
when the quantum state is maximally mixed.

4. Concavity. For λ1, λ2, · · · , λn ≥ 0 and λ1 + λ2 + · · ·+ λn = 1,

H(λ1ρ1 + · · ·+ λnρn) ≥ λ1H(ρ1) + · · ·+ λnH(ρn). (10.60)

The Von Neumann entropy is larger if we are more ignorant about how the state was
prepared. This property is a consequence of the convexity of the log function.

5. Subadditivity. Consider a bipartite system AB in the state ρAB. Then

H(AB) ≤ H(A) +H(B) (10.61)

(where ρA = trB (ρAB) and ρB = trA (ρAB)), with equality for ρAB = ρA ⊗ ρB.
Thus, entropy is additive for uncorrelated systems, but otherwise the entropy of the
whole is less than the sum of the entropy of the parts. This property is the quantum
generalization of subadditivity of Shannon entropy:

H(XY ) ≤ H(X) +H(Y ). (10.62)

6. Bipartite pure states. If the state ρAB of the bipartite system AB is pure, then

H(A) = H(B), (10.63)

because ρA and ρB have the same nonzero eigenvalues.
7. Quantum mutual information. As in the classical case, we define the mutual

information of two quantum systems as

I(A;B) = H(A) +H(B)−H(AB), (10.64)

which is nonnegative because of the subadditivity of Von Neumann entropy, and zero
only for a product state ρAB = ρA ⊗ ρB.

8. Triangle inequality (Araki-Lieb inequality). For a bipartite system,

H(AB) ≥ |H(A)−H(B)|. (10.65)

To derive the triangle inequality, consider the tripartite pure state |ψ〉ABC which
purifies ρAB = trC (|ψ〉〈ψ|). Since |ψ〉 is pure, H(A) = H(BC) and H(C) = H(AB);
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applying subadditivity to BC yields H(A) ≤ H(B) +H(C) = H(B) +H(AB). The
same inequality applies with A and B interchanged, from which we obtain eq.(10.65).

The triangle inequality contrasts sharply with the analogous property of Shannon en-
tropy,

H(XY ) ≥ H(X),H(Y ). (10.66)

The Shannon entropy of just part of a classical bipartite system cannot be greater
than the Shannon entropy of the whole system. Not so for the Von Neumann en-
tropy! For example, in the case of an entangled bipartite pure quantum state, we have
H(A) = H(B) > 0, while H(AB) = 0. The entropy of the global system vanishes be-
cause our ignorance is minimal — we know as much about AB as the laws of quantum
physics will allow. But we have incomplete knowledge of the parts A and B, with our
ignorance quantified by H(A) = H(B). For a quantum system, but not for a classical
one, information can be encoded in the correlations among the parts of the system, yet
be invisible when we look at the parts one at a time.

Equivalently, a property that holds classically but not quantumly is

H(X|Y ) = H(XY )−H(Y ) ≥ 0. (10.67)

The Shannon conditional entropy H(X|Y ) quantifies our remaining ignorance about X
when we know Y , and equals zero when knowing Y makes us certain about X. On the
other hand, the Von Neumann conditional entropy,

H(A|B) = H(AB)−H(B), (10.68)

can be negative; in particular we have H(A|B) = −H(A) = −H(B) < 0 if ρAB is an
entangled pure state. How can it make sense that “knowing” the subsystem B makes us
“more than certain” about the subsystem A? We’ll return to this intriguing question in
§10.8.2.

When X and Y are perfectly correlated, then H(XY ) = H(X) = H(Y ); the
conditional entropy is H(X|Y ) = H(Y |X) = 0 and the mutual information is
I(X;Y ) = H(X). In contrast, for a bipartite pure state of AB, the quantum state
for which we may regard A and B as perfectly correlated, the mutual information is
I(A;B) = 2H(A) = 2H(B). In this sense the quantum correlations are stronger than
classical correlations.

10.2.2 Mixing, measurement, and entropy

The Shannon entropy also has a property called Schur concavity, which means that if
X = {x, p(x)} and Y = {y, q(y)} are two ensembles such that p ≺ q, thenH(X) ≥ H(Y ).
In fact, any function on probability vectors is Schur concave if it is invariant under
permutations of its arguments and also concave in each argument. Recall that p ≺ q (q
majorizes p) means that “p is at least as random as q” in the sense that p = Dq for
some doubly stochastic matrix D. Thus Schur concavity of H says that an ensemble
with more randomness has higher entropy.

The Von Neumann entropy H(ρ) of a density operator is the Shannon entropy of its
vector of eigenvalues λ(ρ). Furthermore, we showed in Exercise 2.6 that if the quantum
state ensemble {|ϕ(x)〉, p(x)} realizes ρ, then p ≺ λ(ρ); therefore H(ρ) ≤ H(X), where
equality holds only for an ensemble of mutually orthogonal states. The decrease in
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entropyH(X)−H(ρ) quantifies how distinguishability is lost when we mix nonorthogonal
pure states. As we will soon see, the amount of information we can gain by measuring ρ

is no more than H(ρ) bits, so some of the information about which state was prepared
has been irretrievably lost if H(ρ) < H(X).

If we perform an orthogonal measurement on ρ by projecting onto the basis {|y〉},
then outcome y occurs with probability

q(y) = 〈y|ρ|y〉 =
∑
a

|〈y|a〉|2λa, where ρ =
∑
a

λa|a〉〈a| (10.69)

and {|a〉} is the basis in which ρ is diagonal. Since Dya = |〈y|a〉|2 is a doubly stochastic
matrix, q ≺ λ(ρ) and therefore H(Y ) ≥ H(ρ), where equality holds only if the measure-
ment is in the basis {|a〉}. Mathematically, the conclusion is that for a nondiagonal and
nonnegative Hermitian matrix, the diagonal elements are more random than the eigen-
values. Speaking more physically, the outcome of an orthogonal measurement is easiest
to predict if we measure an observable which commutes with the density operator, and
becomes less predictable if we measure in a different basis.

This majorization property has a further consequence, which will be useful for our dis-
cussion of quantum compression. Suppose that ρ is a density operator of a d-dimensional
system, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and that E′ =

∑d′

i=1 |ei〉〈ei| is a projector
onto a subspace Λ of dimension d′ ≤ d with orthonormal basis {|ei〉}. Then

tr
(
ρE′) =

d′∑
i=1

〈ei|ρ|ei〉 ≤
d′∑
i=1

λi, (10.70)

where the inequality follows because the diagonal elements of ρ in the basis {|ei〉}
are majorized by the eigenvalues of ρ. In other words, if we perform a two-outcome
orthogonal measurement, projecting onto either Λ or its orthogonal complement Λ⊥, the
probability of projecting onto Λ is no larger than the sum of the d′ largest eigenvalues
of ρ (the Ky Fan dominance principle).

10.2.3 Strong subadditivity

In addition to the subadditivity property I(X;Y ) ≥ 0, correlations of classical random
variables obey a further property called strong subadditivity:

I(X;Y Z) ≥ I(X;Y ). (10.71)

This is the eminently reasonable statement that the correlations of X with Y Z are at
least as strong as the correlations of X with Y alone.

There is another useful way to think about (classical) strong subadditivity. Recalling
the definition of mutual information we have

I(X;Y Z)− I(X;Y ) = −
〈

log
p(x)p(y, z)
p(x, y, z)

+ log
p(x, y)
p(x)p(y)

〉
= −

〈
log

p(x, y)
p(y)

p(y, z)
p(y)

p(y)
p(x, y, z)

〉
= −

〈
log

p(x|y)p(z|y)
p(x, z|y)

〉
=
∑
y

p(y)I(X;Z|y) ≥ 0. (10.72)

For each fixed y, p(x, z|y) is a normalized probability distribution with nonnegative
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mutual information; hence I(X;Y Z)− I(X;Y ) is a convex combination of nonnegative
terms and therefore nonnegative. The quantity I(X;Z|Y ) := I(X;Y Z) − I(X;Y ) is
called the conditional mutual information, because it quantifies how strongly X and Z

are correlated when Y is known; strong subadditivity can be restated as the nonnega-
tivity of conditional mutual information,

I(X;Z|Y ) ≥ 0. (10.73)

One might ask under what conditions strong subadditivity is satisfied as an equality;
that is, when does the conditional mutual information vanish? Since I(X;Z|Y ) is sum
of nonnegative terms, each of these terms must vanish if I(X;Z|Y ) = 0. Therefore for
each y with p(y) > 0, we have I(X;Z|y) = 0. The mutual information vanishes only for
a product distribution, therefore

p(x, z|y) = p(x|y)p(z|y) =⇒ p(x, y, z) = p(x|y)p(z|y)p(y). (10.74)

This means that the correlations between x and z arise solely from their shared corre-
lation with y, in which case we say that x and z are conditionally independent.

Correlations of quantum systems also obey strong subadditivity:

I(A;BC)− I(A;B) := I(A;C|B) ≥ 0. (10.75)

But while the proof is elementary in the classical case, in the quantum setting strong
subadditivity is a rather deep result with many important consequences. We will post-
pone the proof until §10.8.3, where we will be able to justify the quantum statement
by giving it a clear operational meaning. We’ll also see in Exercise 10.3 that strong
subadditivity follows easily from another deep property, the monotonicity of relative
entropy:

D(ρA‖σA) ≤ D(ρAB‖σAB), (10.76)

where

D(ρ‖σ) := tr ρ (log ρ− log σ) . (10.77)

The relative entropy of two density operators on a system AB cannot be less than
the induced relative entropy on the subsystem A. Insofar as we can regard the relative
entropy as a measure of the “distance” between density operators, monotonicity is the
reasonable statement that quantum states become no easier to distinguish when we look
at the subsystem A than when we look at the full system AB. It also follows (Exercise
10.3), that the action of a quantum channel N cannot increase relative entropy:

D(N (ρ)‖N (σ)) ≤ D(ρ‖σ) (10.78)

There are a few other ways of formulating strong subadditivity which are helpful
to keep in mind. By expressing the quantum mutual information in terms of the Von
Neumann entropy we find

H(ABC) +H(B) ≤ H(AB) +H(BC). (10.79)

While A,B,C are three disjoint quantum systems, we may view AB and BC as overlap-
ping systems with intersection B and union ABC; then strong subadditivity says that
the sum of the entropies of two overlapping systems is at least as large as the sum of the
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entropies of their union and their intersection. In terms of conditional entropy, strong
subadditivity becomes

H(A|B) ≥ H(A|BC); (10.80)

loosely speaking, our ignorance about A when we know only B is no smaller than our
ignorance about A when we know both B and C, but with the proviso that for quantum
information “ignorance” can sometimes be negative!

As in the classical case, it is instructive to consider the condition for equality in strong
subadditivity. What does it mean for systems to have quantum conditional independence,
I(A;C|B) = 0? It is easy to formulate a sufficient condition. Suppose that system B has
a decomposition as a direct sum of tensor products of Hilbert spaces

HB =
⊕
j

HBj =
⊕
j

HBL
j
⊗HBR

j
, (10.81)

and that the state of ABC has the block diagonal form

ρABC =
⊕
j

pj ρABL
j
⊗ ρBR

j C
. (10.82)

In each block labeled by j the state is a tensor product, with conditional mutual infor-
mation

I(A;C|Bj) = I(A;BjC)− I(A;Bj) = I(A;BL
j )− I(A;BL

j ) = 0; (10.83)

What is less obvious is that the converse is also true — any state with I(A;C|B) = 0
has a decomposition as in eq.(10.82). This is a useful fact, though we will not give the
proof here.

10.2.4 Monotonicity of mutual information

Strong subadditivity implies another important property of quantum mutual informa-
tion, its monotonicity — a quantum channel acting on system B cannot increase the
mutual information of A and B. To derive monotonicity, suppose that a quantum chan-
nel NB→B′

maps B to B′. Like any quantum channel, N has an isometric extension,
its Stinespring dilation UB→B′E , mapping B to B′ and a suitable environment system
E. Since the isometry U does not change the eigenvalues of the density operator, it
preserves the entropy of B and of AB,

H(B) = H(B′E), H(AB) = H(AB′E), (10.84)

which implies

I(A;B) = H(A) +H(B)−H(AB)

= H(A) +H(B′E)−H(ABE′) = I(A;B′E). (10.85)

From strong subadditivity, we obtain

I(A;B) = I(A;B′E) ≥ I(A,B′) (10.86)

the desired statement of monotonicity.
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10.2.5 Entropy and thermodynamics

The concept of entropy first entered science through the study of thermodynamics,
and the mathematical properties of entropy we have enumerated have many interesting
thermodynamic implications. Here we will just mention a few ways in which the non-
negativity and monotonicity of quantum relative entropy relate to ideas encountered in
thermodynamics.

There are two distinct ways to approach the foundations of quantum statistical
physics. In one, we consider the evolution of an isolated closed quantum system, but
ask what we will observe if we have access to only a portion of the full system. Even
though the evolution of the full system is unitary, the evolution of a subsystem is not,
and the subsystem may be accurately described by a thermal ensemble at late times.
Information which is initially encoded locally in an out-of-equilibrium state becomes
encoded more and more nonlocally as the system evolves, eventually becoming invisible
to an observer confined to the subsystem.

In the other approach, we consider the evolution of an open system A, in contact with
an unobserved environment E, and track the evolution of A only. From a fundamental
perspective this second approach may be regarded as a special case of the first, since
AE is closed, with A as a privileged subsystem. In practice, though, it is often more
convenient to describe the evolution of an open system using a master equation as
in Chapter 3, and to analyze evolution toward thermal equilibrium without explicit
reference to the environment.

Free energy and the second law.

Tools of quantum Shannon theory can help us understand why the state of an open
system with Hamiltonian H might be expected to be close to the thermal Gibbs state

ρβ =
e−βH

tr (e−βH)
, (10.87)

where kT = β−1 is the temperature. Here let’s observe one noteworthy feature of this
state. For an arbitrary density operator ρ, consider its free energy

F (ρ) = E(ρ)− β−1S(ρ) (10.88)

where E(ρ) = 〈H〉ρ denotes the expectation value of the Hamiltonian in this state; for
this subsection we respect the conventions of thermodynamics by denoting Von Neumann
entropy by S(ρ) rather than H(ρ) (lest H be confused with the Hamiltonian H), and
by using natural logarithms. Expressing F (ρ) and the free energy F (ρβ) of the Gibbs
state as

F (ρ) = tr (ρH)− β−1S(ρ) = β−1tr ρ (lnρ + βH) ,

F (ρβ) = −β−1 ln
(
tr e−βH

)
, (10.89)

we see that the relative entropy of ρ and ρβ is

D(ρ‖ρβ) = tr (ρ lnρ)− tr
(
ρ lnρβ

)
= β

(
F (ρ)− F (ρβ)

)
≥ 0, (10.90)

with equality only for ρ = ρβ. The nonnegativity of relative entropy implies that at a
given temperature β−1, the Gibbs state ρβ has the lowest possible free energy. Our open
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system, in contact with a thermal reservoir at temperature β−1, will prefer the Gibbs
state if it wishes to minimize its free energy.

What can we say about the approach to thermal equilibrium of an open system?
We may anticipate that the joint unitary evolution of system and reservoir induces a
quantum channel N acting on the system alone, and we know that relative entropy is
monotonic — if

N : ρ 7→ ρ′, N : σ 7→ σ′, (10.91)

then

D(ρ′‖σ′) ≤ D(ρ‖σ). (10.92)

Furthermore, if the Gibbs state is an equilibrium state, we expect this channel to preserve
the Gibbs state

N : ρβ 7→ ρβ; (10.93)

therefore,

D(ρ′‖ρβ) = β
(
F (ρ′)− F (ρβ)

)
≤ β

(
F (ρ)− F (ρβ)

)
= D(ρ‖ρβ), (10.94)

and hence

F (ρ′) ≤ F (ρ). (10.95)

Any channel that preserves the Gibbs state cannot increase the free energy; instead,
free energy of an out-of-equilibrium state is monotonically decreasing under open-state
evolution. This statement is a version of the second law of thermodynamics.

10.2.6 Bekenstein’s entropy bound.

Similar ideas lead to Bekenstein’s bound on entropy in quantum field theory. The field-
theoretic details, though interesting, would lead us far afield. The gist is that Bekenstein
proposed an inequality relating the energy and the entropy in a bounded spatial region.
This bound was motivated by gravitational physics, but can be formulated without
reference to gravitation, and follows from properties of relative entropy.

A subtlety is that entropy of a region is infinite in quantum field theory, because
of contributions coming from arbitrarily short-wavelength quantum fluctuations near
the boundary of the region. Therefore we have to make a subtraction to define a finite
quantity. The natural way to do this is to subtract away the entropy of the same region
in the vacuum state of the theory, as any finite energy state in a finite volume has the
same structure as the vacuum at very short distances. Although the vacuum is a pure
state, it, and any other reasonable state, has a marginal state in a finite region which is
highly mixed, because of entanglement between the region and its complement.

For the purpose of our discussion here, we may designate any mixed state ρ0 we choose
supported in the bounded region as the “vacuum,” and define a corresponding “modular
Hamiltonian” K by

ρ0 =
e−K

tr (e−K)
. (10.96)
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That is, we regard the state as the thermal mixed state of K, with the temperature arbi-
trarily set to unity (which is just a normalization convention for K). Then by rewriting
eq.(10.90) we see that, for any state ρ, D(ρ‖ρ0) ≥ 0 implies

S(ρ)− S(ρ0) ≤ tr (ρK)− tr (ρ0K) (10.97)

The left-hand side, the entropy with vacuum entropy subtracted, is not larger than
the right-hand side, the (modular) energy with vacuum energy subtracted. This is one
version of Bekenstein’s bound. Here K, which is dimensionless, can be loosely interpreted
as ER, where E is the energy contained in the region and R is its linear size.

While the bound follows easily from nonnegativity of relative entropy, the subtle part
of the argument is recognizing that the (suitably subtracted) expectation value of the
modular Hamiltonian is a reasonable way to define ER. The detailed justification for
this involves properties of relativistic quantum field theory that we won’t go into here.
Suffice it to say that, because we constructed K by regarding the marginal state of
the vacuum as the Gibbs state associated with the Hamiltonian K, we expect K to be
linear in the energy, and dimensional analysis then requires inclusion of the factor of R
(in units with ~ = c = 1).

Bekenstein was led to conjecture such a bound by thinking about black hole thermo-
dynamics. Leaving out numerical factors, just to get a feel for the orders of magnitude
of things, the entropy of a black hole with circumference ∼ R is S ∼ R2/G, and its mass
(energy) is E ∼ R/G, where G is Newton’s gravitational constant; hence S ∼ ER for a
black hole. Bekenstein realized that unless S = O(ER) for arbitrary states and regions,
we could throw extra stuff into the region, making a black hole with lower entropy than
the initial state, thus violating the (generalized) second law of thermodynamics. Though
black holes provided the motivation, G drops out of the inequality, which holds even in
nongravitational relativistic quantum field theories.

10.2.7 Entropic uncertainty relations

The uncertainty principle asserts that noncommuting observables cannot simultaneously
have definite values. To translate this statement into mathematics, recall that a Hermi-
tian observable A has spectral representation

A =
∑
x

|x〉a(x)〈x| (10.98)

where {|x〉} is the orthonormal basis of eigenvectors of A and {a(x)} is the corresponding
vector of eigenvalues; if A is measured in the state ρ, the outcome a(x) occurs with
probability p(x) = 〈x|ρ|x〉. Thus A has expectation value tr(ρA) and variance

(∆A)2 = tr
(
ρA2

)
− (trρA)2 . (10.99)

Using the Cauchy-Schwarz inequality, we can show that if A and B are two Hermitian
observables and ρ = |ψ〉〈ψ| is a pure state, then

∆A∆B ≥ 1
2
|〈ψ|[A,B]|ψ〉|. (10.100)

Eq.(10.100) is a useful statement of the uncertainty principle, but has drawbacks. It
depends on the state |ψ〉 and for that reason does not fully capture the incompatibility
of the two observables. Furthermore, the variance does not characterize very well the
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unpredictability of the measurement outcomes; entropy would be a more informative
measure.

In fact there are entropic uncertainty relations which do not suffer from these defi-
ciencies. If we measure a state ρ by projecting onto the orthonormal basis {|x〉}, the
outcomes define a classical ensemble

X = {x, p(x) = 〈x|ρ|x〉}; (10.101)

that is, a probability vector whose entries are the diagonal elements of ρ in the x-
basis. The Shannon entropy H(X) quantifies how uncertain we are about the outcome
before we perform the measurement. If {|z〉} is another orthonormal basis, there is a
corresponding classical ensemble Z describing the probability distribution of outcomes
when we measure the same state ρ in the z-basis. If the two bases are incompatible, there
is a tradeoff between our uncertainty about X and about Z, captured by the inequality

H(X) +H(Z) ≥ log
(

1
c

)
+H(ρ), (10.102)

where

c = max
x,z

|〈x|z〉|2. (10.103)

The second term on the right-hand side, which vanishes if ρ is a pure state, reminds us
that our uncertainty increases when the state is mixed. Like many good things in quan-
tum information theory, this entropic uncertainty relation follows from the monotonicity
of the quantum relative entropy.

For each measurement there is a corresponding quantum channel, realized by per-
forming the measurement and printing the outcome in a classical register,

MX : ρ 7→
∑
x

|x〉〈x|ρ|x〉〈x| =: ρX ,

MZ : ρ 7→
∑
z

|z〉〈z|ρ|z〉〈z| =: ρZ . (10.104)

The Shannon entropy of the measurement outcome distribution is also the Von Neumann
entropy of the corresponding channel’s output state,

H(X) = H(ρX), H(Z) = H(ρZ); (10.105)

the entropy of this output state can be expressed in terms of the relative entropy of
input and output, and the entropy of the channel input, as in

H(X) = −trρX log ρX = −trρ log ρX = D(ρ‖ρX) +H(ρ). (10.106)

Using the monotonicity of relative entropy under the action of the channel MZ , we
have

D(ρ‖ρX) ≥ D(ρZ‖MZ(ρX)), (10.107)

where

D(ρZ‖MZ(ρX)) = −H(ρZ)− trρZ logMZ(ρX), (10.108)

and

MZ(ρX) =
∑
x,z

|z〉〈z|x〉〈x|ρ|x〉〈x|z〉〈z|. (10.109)
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Writing

logMZ(ρX) =
∑
z

|z〉 log

(∑
x

〈z|x〉〈x|ρ|x〉〈x|z〉

)
〈z|, (10.110)

we see that

−trρZ logMZ(ρX) = −
∑
z

〈z|ρ|z〉 log

(∑
x

〈z|x〉〈x|ρ|x〉〈x|z〉

)
. (10.111)

Now, because − log(·) is a monotonically decreasing function, we have

− log

(∑
x

〈z|x〉〈x|ρ|x〉〈x|z〉

)
≥ − log

(
max
x,z

|〈x|z〉|2
∑
x

〈x|ρ|x〉

)

= log
(

1
c

)
, (10.112)

and therefore

−trρZ logMZ(ρX) ≥ log
(

1
c

)
. (10.113)

Finally, putting together eq.(10.106), (10.107) (10.108), (10.113), we find

H(X)−H(ρ) = D(ρ‖ρX) ≥ D(ρZ‖MZ(ρX))

= −H(Z)− trρZ logMZ(ρX) ≥ −H(Z) + log
(

1
c

)
, (10.114)

which is equivalent to eq.(10.102).
We say that two different bases {|x〉}, {|z〉} for a d-dimensional Hilbert space are

mutually unbiased if for all x, z

|〈x|z〉|2 =
1
d
; (10.115)

thus, if we measure any x-basis state |x〉 in the z-basis, all d outcomes are equally
probable. For measurements in two mutually unbiased bases performed on a pure state,
the entropic uncertainty relation becomes

H(X) +H(Z) ≥ log d. (10.116)

Clearly this inequality is tight, as it is saturated by x-basis (or z-basis) states, for which
H(X) = 0 and H(Z) = log d.

10.3 Quantum Source Coding

What is the quantum analog of Shannon’s source coding theorem?
Let’s consider a long message consisting of n letters, where each letter is a pure

quantum state chosen by sampling from the ensemble

{|ϕ(x)〉, p(x)}. (10.117)

If the states of this ensemble are mutually orthogonal, then the message might as well
be classical; the interesting quantum case is where the states are not orthogonal and
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therefore not perfectly distinguishable. The density operator realized by this ensemble
is

ρ =
∑
x

p(x)|ϕ(x)〉〈ϕ(x)|, (10.118)

and the entire n-letter message has the density operator

ρ⊗n = ρ⊗ · · · ⊗ ρ. (10.119)

How redundant is the quantum information in this message? We would like to devise
a quantum code allowing us to compress the message to a smaller Hilbert space, but
without much compromising the fidelity of the message. Perhaps we have a quantum
memory device, and we know the statistical properties of the recorded data; specifically,
we know ρ. We want to conserve space on our (very expensive) quantum hard drive by
compressing the data.

The optimal compression that can be achieved was found by Schumacher. As you
might guess, the message can be compressed to a Hilbert space H with

dimH = 2n(H(ρ)+o(1)) (10.120)

with negligible loss of fidelity as n → ∞, while errorless compression to dimension
2n(H(ρ)−Ω(1)) is not possible. In this sense, the Von Neumann entropy is the number
of qubits of quantum information carried per letter of the message. Compression is
always possible unless ρ is maximally mixed, just as we can always compress a classical
message unless the information source is uniformly random. This result provides a precise
operational interpretation for Von Neumann entropy.

Once Shannon’s results are known and understood, the proof of Schumacher’s com-
pression theorem is not difficult, as the mathematical ideas needed are very similar to
those used by Shannon. But conceptually quantum compression is very different from
its classical counterpart, as the imperfect distinguishability of nonorthogonal quantum
states is the central idea.

10.3.1 Quantum compression: an example

Before discussing Schumacher’s quantum compression protocol in full generality, it is
helpful to consider a simple example. Suppose that each letter is a single qubit drawn
from the ensemble

| ↑z〉 =
(

1
0

)
, p =

1
2
, (10.121)

| ↑x〉 =

(
1√
2

1√
2

)
, p =

1
2
, (10.122)

so that the density operator of each letter is

ρ =
1
2
| ↑z〉〈↑z |+

1
2
| ↑x〉〈↑x |

=
1
2

(
1 0
0 0

)
+

1
2

(
1
2

1
2

1
2

1
2

)
=

(
3
4

1
4

1
4

1
4

)
. (10.123)
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As is obvious from symmetry, the eigenstates of ρ are qubits oriented up and down along
the axis n̂ = 1√

2
(x̂+ ẑ),

|0′〉 ≡ | ↑n̂〉 =
(

cos π
8

sin π
8

)
,

|1′〉 ≡ | ↓n̂〉 =
(

sin π
8

− cos π
8

)
; (10.124)

the eigenvalues are

λ(0′) =
1
2

+
1

2
√

2
= cos2

π

8
,

λ(1′) =
1
2
− 1

2
√

2
= sin2 π

8
; (10.125)

evidently λ(0′) + λ(1′) = 1 and λ(0′)λ(1′) = 1
8 = detρ. The eigenstate |0′〉 has equal

(and relatively large) overlap with both signal states

|〈0′| ↑z〉|2 = |〈0′| ↑x〉|2 = cos2
π

8
= .8535, (10.126)

while |1′〉 has equal (and relatively small) overlap with both,

|〈1′| ↑z〉|2 = |〈1′| ↑x〉|2 = sin2 π

8
= .1465. (10.127)

Thus if we don’t know whether | ↑z〉 or | ↑x〉 was sent, the best guess we can make is
|ψ〉 = |0′〉. This guess has the maximal fidelity with ρ

F =
1
2
|〈↑z |ψ〉|2 +

1
2
|〈↑x |ψ〉|2, (10.128)

among all possible single-qubit states |ψ〉 (F = .8535).
Now imagine that Alice needs to send three letters to Bob, but she can afford to send

only two qubits. Still, she wants Bob to reconstruct her state with the highest possible
fidelity. She could send Bob two of her three letters, and ask Bob to guess |0′〉 for the
third. Then Bob receives two letters with perfect fidelity, and his guess has F = .8535
for the third; hence F = .8535 overall. But is there a more clever procedure that achieves
higher fidelity?

Yes, there is. By diagonalizing ρ, we decomposed the Hilbert space of a single qubit
into a “likely” one-dimensional subspace (spanned by |0′〉) and an “unlikely” one-
dimensional subspace (spanned by |1′〉). In a similar way we can decompose the Hilbert
space of three qubits into likely and unlikely subspaces. If |ψ〉 = |ψ1〉⊗ |ψ2〉⊗ |ψ3〉 is any
signal state, where the state of each qubit is either | ↑z〉 or | ↑x〉, we have

|〈0′0′0′|ψ〉|2 = cos6
(π

8

)
= .6219,

|〈0′0′1′|ψ〉|2 = |〈0′1′0′|ψ〉|2 = |〈1′0′0′|ψ〉|2 = cos4
(π

8

)
sin2

(π
8

)
= .1067,

|〈0′1′1′|ψ〉|2 = |〈1′0′1′|ψ〉|2 = |〈1′1′0′|ψ〉|2 = cos2
(π

8

)
sin4

(π
8

)
= .0183,

|〈1′1′1′|ψ〉|2 = sin6
(π

8

)
= .0031. (10.129)

Thus, we may decompose the space into the likely subspace Λ spanned by
{|0′0′0′〉, |0′0′1′〉, |0′1′0′〉, |1′0′0′〉}, and its orthogonal complement Λ⊥. If we make an
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incomplete orthogonal measurement that projects a signal state onto Λ or Λ⊥, the prob-
ability of projecting onto the likely subspace Λ is

plikely = .6219 + 3(.1067) = .9419, (10.130)

while the probability of projecting onto the unlikely subspace is

punlikely = 3(.0183) + .0031 = .0581. (10.131)

To perform this measurement, Alice could, for example, first apply a unitary trans-
formation U that rotates the four high-probability basis states to

|·〉 ⊗ |·〉 ⊗ |0〉, (10.132)

and the four low-probability basis states to

|·〉 ⊗ |·〉 ⊗ |1〉; (10.133)

then Alice measures the third qubit to perform the projection. If the outcome is |0〉,
then Alice’s input state has in effect been projected onto Λ. She sends the remaining
two unmeasured qubits to Bob. When Bob receives this compressed two-qubit state
|ψcomp〉, he decompresses it by appending |0〉 and applying U−1, obtaining

|ψ′〉 = U−1(|ψcomp〉 ⊗ |0〉). (10.134)

If Alice’s measurement of the third qubit yields |1〉, she has projected her input state
onto the low-probability subspace Λ⊥. In this event, the best thing she can do is send
the state that Bob will decompress to the most likely state |0′0′0′〉 – that is, she sends
the state |ψcomp〉 such that

|ψ′〉 = U−1(|ψcomp〉 ⊗ |0〉) = |0′0′0′〉. (10.135)

Thus, if Alice encodes the three-qubit signal state |ψ〉, sends two qubits to Bob, and
Bob decodes as just described, then Bob obtains the state ρ′

|ψ〉〈ψ| → ρ′ = E|ψ〉〈ψ|E + |0′0′0′〉〈ψ|(I −E)|ψ〉〈0′0′0′|, (10.136)

where E is the projection onto Λ. The fidelity achieved by this procedure is

F = 〈ψ|ρ′|ψ〉 = (〈ψ|E|ψ〉)2 + (〈ψ|(I −E)|ψ〉)(〈ψ|0′0′0′〉)2

= (.9419)2 + (.0581)(.6219) = .9234. (10.137)

This is indeed better than the naive procedure of sending two of the three qubits each
with perfect fidelity.

As we consider longer messages with more letters, the fidelity of the compression
improves, as long as we don’t try to compress too much. The Von-Neumann entropy of
the one-qubit ensemble is

H(ρ) = H
(
cos2

π

8

)
= .60088 . . . (10.138)

Therefore, according to Schumacher’s theorem, we can shorten a long message by the
factor, say, .6009, and still achieve very good fidelity.
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10.3.2 Schumacher compression in general

The key to Shannon’s noiseless coding theorem is that we can code the typical sequences
and ignore the rest, without much loss of fidelity. To quantify the compressibility of
quantum information, we promote the notion of a typical sequence to that of a typical
subspace. The key to Schumacher’s noiseless quantum coding theorem is that we can
code the typical subspace and ignore its orthogonal complement, without much loss of
fidelity.

We consider a message of n letters where each letter is a pure quantum state drawn
from the ensemble {|ϕ(x)〉, p(x)}, so that the density operator of a single letter is

ρ =
∑
x

p(x)|ϕ(x)〉〈ϕ(x)|. (10.139)

Since the letters are drawn independently, the density operator of the entire message is

ρ⊗n ≡ ρ⊗ · · · ⊗ ρ. (10.140)

We claim that, for n large, this density matrix has nearly all of its support on a sub-
space of the full Hilbert space of the messages, where the dimension of this subspace
asymptotically approaches 2nH(ρ).

This claim follows directly from the corresponding classical statement, for we may
consider ρ to be realized by an ensemble of orthonormal pure states, its eigenstates,
where the probability assigned to each eigenstate is the corresponding eigenvalue. In
this basis our source of quantum information is effectively classical, producing messages
which are tensor products of ρ eigenstates, each with a probability given by the product
of the corresponding eigenvalues. For a specified n and δ, define the δ-typical subspace
Λ as the space spanned by the eigenvectors of ρ⊗n with eigenvalues λ satisfying

2−n(H−δ) ≥ λ ≥ 2−n(H+δ). (10.141)

Borrowing directly from Shannon’s argument, we infer that for any δ, ε > 0 and n

sufficiently large, the sum of the eigenvalues of ρ⊗n that obey this condition satisfies

tr(ρ⊗nE) ≥ 1− ε, (10.142)

where E denotes the projection onto the typical subspace Λ, and the number dim(Λ) of
such eigenvalues satisfies

2n(H+δ) ≥ dim(Λ) ≥ (1− ε)2n(H−δ). (10.143)

Our coding strategy is to send states in the typical subspace faithfully. We can make a
measurement that projects the input message onto either Λ or Λ⊥; the outcome will be
Λ with probability pΛ = tr(ρ⊗nE) ≥ 1 − ε. In that event, the projected state is coded
and sent. Asymptotically, the probability of the other outcome becomes negligible, so it
matters little what we do in that case.

The coding of the projected state merely packages it so it can be carried by a minimal
number of qubits. For example, we apply a unitary change of basis U that takes each
state |ψtyp〉 in Λ to a state of the form

U |ψtyp〉 = |ψcomp〉 ⊗ |0rest〉, (10.144)

where |ψcomp〉 is a state of n(H + δ) qubits, and |0rest〉 denotes the state |0〉 ⊗ . . .⊗ |0〉
of the remaining qubits. Alice sends |ψcomp〉 to Bob, who decodes by appending |0rest〉
and applying U−1.
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Suppose that

|ϕ(~x)〉 = |ϕ(x1)〉 ⊗ . . .⊗ |ϕ(xn)〉, (10.145)

denotes any one of the n-letter pure state messages that might be sent. After coding,
transmission, and decoding are carried out as just described, Bob has reconstructed a
state

|ϕ(~x)〉〈ϕ(~x)| 7→ ρ′(~x) = E|ϕ(~x)〉〈ϕ(~x)|E
+ ρJunk(~x)〈ϕ(~x)|(I −E)|ϕ(~x)〉, (10.146)

where ρJunk(~x) is the state we choose to send if the measurement yields the outcome
Λ⊥. What can we say about the fidelity of this procedure?

The fidelity varies from message to message, so we consider the fidelity averaged over
the ensemble of possible messages:

F̄ =
∑
~x

p(~x)〈ϕ(~x)|ρ′(~x)|ϕ(~x)〉

=
∑
~x

p(~x)〈ϕ(~x)|E|ϕ(~x)〉〈ϕ(~x)|E|ϕ(~x)〉

+
∑
~x

p(~x)〈ϕ(~x)|ρJunk(~x)|ϕ(~x)〉〈ϕ(~x)|I −E|ϕ(~x)〉

≥
∑
~x

p(~x)〈ϕ(~x)|E|ϕ(~x)〉2, (10.147)

where the last inequality holds because the “Junk” term is nonnegative. Since any real
number z satisfies

(z − 1)2 ≥ 0, or z2 ≥ 2z − 1, (10.148)

we have (setting z = 〈ϕ(~x)|E|ϕ(~x)〉)

〈ϕ(~x)|E|ϕ(~x)〉2 ≥ 2〈ϕ(~x)|E|ϕ(~x)〉 − 1, (10.149)

and hence

F̄ ≥
∑
~x

p(~x)(2〈ϕ(~x)|E|ϕ(~x)〉 − 1)

= 2 tr(ρ⊗nE)− 1 ≥ 2(1− ε)− 1 = 1− 2ε. (10.150)

Since ε and δ can be as small as we please, we have shown that it is possible to compress
the message to n(H + o(1)) qubits, while achieving an average fidelity that becomes
arbitrarily good as n gets large.

Is further compression possible? Let us suppose that Bob will decode the message
ρcomp(~x) that he receives by appending qubits and applying a unitary transformation
U−1, obtaining

ρ′(~x) = U−1(ρcomp(~x)⊗ |0〉〈0|)U (10.151)

(“unitary decoding”), and suppose that ρcomp(~x) has been compressed to n(H − δ′)
qubits. Then, no matter how the input messages have been encoded, the decoded mes-
sages are all contained in a subspace Λ′ of Bob’s Hilbert space with dim(Λ′) = 2n(H−δ′).
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If the input message is |ϕ(~x)〉, then the density operator reconstructed by Bob can be
diagonalized as

ρ′(~x) =
∑
a~x

|a~x〉λa~x
〈a~x|, (10.152)

where the |a~x〉’s are mutually orthogonal states in Λ′. The fidelity of the reconstructed
message is

F (~x) = 〈ϕ(~x)|ρ′(~x)|ϕ(~x)〉

=
∑
a~x

λa~x
〈ϕ(~x)|a~x〉〈a~x|ϕ(~x)〉

≤
∑
a~x

〈ϕ(~x)|a~x〉〈a~x|ϕ(~x)〉 ≤ 〈ϕ(~x)|E′|ϕ(~x)〉, (10.153)

where E′ denotes the orthogonal projection onto the subspace Λ′. The average fidelity
therefore obeys

F̄ =
∑
~x

p(~x)F (~x) ≤
∑
~x

p(~x)〈ϕ(~x)|E′|ϕ(~x)〉 = tr(ρ⊗nE′). (10.154)

But, according to the Ky Fan dominance principle discussed in §10.2.2, since E′ projects
onto a space of dimension 2n(H−δ′), tr(ρ⊗nE′) can be no larger than the sum of the
2n(H−δ′) largest eigenvalues of ρ⊗n. The δ-typical eigenvalues of ρ⊗n are no smaller than
2−n(H−δ), so the sum of the 2n(H−δ′) largest eigenvalues can be bounded above:

tr(ρ⊗nE′) ≤ 2n(H−δ′)2−n(H−δ) + ε = 2−n(δ′−δ) + ε, (10.155)

where the + ε accounts for the contribution from the atypical eigenvalues. Since we
may choose ε and δ as small as we please for sufficiently large n, we conclude that the
average fidelity F̄ gets small as n→∞ if we compress to H(ρ)−Ω(1) qubits per letter.
We find, then, that H(ρ) qubits per letter is the optimal compression of the quantum
information that can be achieved if we are to obtain good fidelity as n goes to infinity.
This is Schumacher’s quantum source coding theorem.

The above argument applies to any conceivable encoding scheme, but only to a re-
stricted class of decoding schemes, unitary decodings. The extension of the argument to
general decoding schemes is sketched in §10.6.3. The conclusion is the same. The point
is that n(H − δ) qubits are too few to faithfully encode the typical subspace.

There is another useful way to think about Schumacher’s quantum compression pro-
tocol. Suppose that Alice’s density operator ρ⊗nA has a purification |ψ〉RA which Alice
shares with Robert. Alice wants to convey her share of |ψ〉RA to Bob with high fidelity,
sending as few qubits to Bob as possible. To accomplish this task, Alice can use the same
procedure as described above, attempting to compress the state of A by projecting onto
its typical subspace Λ. Alice’s projection succeeds with probability

P (E) = 〈ψ|I ⊗E|ψ〉 = tr
(
ρ⊗nE

)
≥ 1− ε, (10.156)

where E projects onto Λ, and when successful prepares the state

(I ⊗E) |ψ〉√
P (E)

. (10.157)

Therefore, after Bob decompresses, the state he shares with Robert has fidelity Fe with
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|ψ〉 satisfying

Fe ≥ 〈ψ|I ⊗E|ψ〉〈ψ|I ⊗E|ψ〉 =
(
tr
(
ρ⊗nE

))2 ≥ (1− ε)2 ≥ 1− 2ε. (10.158)

We conclude that Alice can transfer her share of the pure state |ψ〉RA to Bob by sending
nH(ρ) + o(n) qubits, achieving arbitrarily good entanglement fidelity Fe as n→∞.

To summarize, there is a close analogy between Shannon’s classical source coding
theorem and Schumacher’s quantum source coding theorem. In the classical case, nearly
all long messages are typical sequences, so we can code only these and still have a small
probability of error. In the quantum case, nearly all long messages have nearly perfect
overlap with the typical subspace, so we can code only the typical subspace and still
achieve good fidelity.

Alternatively, Alice could send classical information to Bob, the string x1x2 · · ·xn, and
Bob could follow these classical instructions to reconstruct Alice’s state |ϕ(x1)〉 ⊗ . . .⊗
|ϕ(xn)〉. By this means, they could achieve high-fidelity compression to H(X) + o(1)
bits — or qubits — per letter, where X is the classical ensemble {x, p(x)}. But if
{|ϕ(x)〉, p(x)} is an ensemble of nonorthogonal pure states, this classically achievable
amount of compression is not optimal; some of the classical information about the
preparation of the state is redundant, because the nonorthogonal states cannot be per-
fectly distinguished. Schumacher coding goes further, achieving optimal compression to
H(ρ) + o(1) qubits per letter. Quantum compression packages the message more effi-
ciently than classical compression, but at a price — Bob receives the quantum state
Alice intended to send, but Bob doesn’t know what he has. In contrast to the classical
case, Bob can’t fully decipher Alice’s quantum message accurately. An attempt to read
the message will unavoidably disturb it.

10.4 Entanglement Concentration and Dilution

Any bipartite pure state that is not a product state is entangled. But how entangled?
Can we compare two states and say that one is more entangled than the other?

For example, consider the two bipartite states

|φ+〉 =
1√
2
(|00〉+ |11〉),

|ψ〉 =
1√
2
|00〉+

1
2
|11〉+

1
2
|22〉. (10.159)

|φ+〉 is a maximally entangled state of two qubits, while |ψ〉 is a partially entangled state
of two qutrits. Which is more entangled?

It is not immediately clear that the question has a meaningful answer. Why should it
be possible to find an unambiguous way of ordering all bipartite pure states according
to their degree of entanglement? Can we compare a pair of qutrits with a pair of qubits
any more than we can compare apples and oranges?

A crucial feature of entanglement is that it cannot be created by local operations
and classical communication (LOCC). In particular, if Alice and Bob share a bipartite
pure state, its Schmidt number does not increase if Alice or Bob performs a unitary
transformation on her/his share of the state, nor if Alice or Bob measures her/his share,
even if Alice and Bob exchange classical messages about their actions and measurement
outcomes. Therefore, any quantitative measure of entanglement should have the property
that LOCC cannot increase it, and it should also vanish for an unentangled product
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state. An obvious candidate is the Schmidt number, but on reflection it does not seem
very satisfactory. Consider

|ψε〉 =
√

1− 2|ε|2 |00〉+ ε|11〉+ ε|22〉, (10.160)

which has Schmidt number 3 for any |ε| > 0. Do we really want to say that |ψε〉 is
“more entangled” than |φ+〉? Entanglement, after all, can be regarded as a resource —
we might plan to use it for teleportation, for example — and it seems clear that |ψε〉
(for |ε| � 1) is a less valuable resource than |φ+〉.

It turns out, though, that there is a natural and useful way to quantify the entangle-
ment of any bipartite pure state. To compare two states, we use LOCC to convert both
states to a common currency that can be compared directly. The common currency is
maximal entanglement, and the amount of shared entanglement can be expressed in units
of Bell pairs (maximally entangled two-qubit states), also called ebits of entanglement.

To quantify the entanglement of a particular bipartite pure state, |ψ〉AB, imagine
preparing n identical copies of that state. Alice and Bob share a large supply of maxi-
mally entangled Bell pairs. Using LOCC, they are to convert k Bell pairs (|φ+〉AB)⊗k)
to n high-fidelity copies of the desired state (|ψ〉AB)⊗n). What is the minimum number
kmin of Bell pairs with which they can perform this task?

To obtain a precise answer, we consider the asymptotic setting, requiring arbitrarily
high-fidelity conversion in the limit of large n. We say that a rate R of conversion from
|φ+〉 to |ψ〉 is asymptotically achievable if for any ε, δ > 0, there is an LOCC protocol
with

k

n
≤ R+ δ, (10.161)

which prepares the target state |ψ+〉⊗n with fidelity F ≥ 1− ε. We define the entangle-
ment cost EC of |ψ〉 as the infimum of achievable conversion rates:

EC(|ψ〉) := inf {achievable rate for creating |ψ〉 from Bell pairs} . (10.162)

Asymptotically, we can create many copies of |ψ〉 by consuming EC Bell pairs per copy.
Now imagine that n copies of |ψ〉AB are already shared by Alice and Bob. Using

LOCC, Alice and Bob are to convert (|ψ〉AB)⊗n back to the standard currency: k′ Bell
pairs |φ+〉⊗k′AB . What is the maximum number k′max of Bell pairs they can extract from
|ψ〉⊗nAB? In this case we say that a rate R′ of conversion from |ψ〉 to |φ+〉 is asymptotically
achievable if for any ε, δ > 0, there is an LOCC protocol with

k′

n
≥ R′ − δ, (10.163)

which prepares the target state |φ+〉⊗k′ with fidelity F ≥ 1− ε. We define the distillable
entanglement ED of |ψ〉 as the supremum of achievable conversion rates:

ED(|ψ〉) := sup {achievable rate for distilling Bell pairs from |ψ〉} . (10.164)

Asymptotically, we can convert many copies of |ψ〉 to Bell pairs, obtaining ED Bell pairs
per copy of |ψ〉 consumed.

Since it is an in inviolable principle that LOCC cannot create entanglement, it is
certain that

ED(|ψ〉) ≤ EC(|ψ〉); (10.165)

otherwise Alice and Bob could increase their number of shared Bell pairs by converting
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them to copies of |ψ〉 and then back to Bell pairs. In fact the entanglement cost and
distillable entanglement are equal for bipartite pure states. (The story is more compli-
cated for bipartite mixed states; see §10.5.) Therefore, for pure states at least we may
drop the subscript, using E(|ψ〉) to denote the entanglement of |ψ〉. We don’t need to
distinguish between entanglement cost and distillable entanglement because conversion
of entanglement from one form to another is an asymptotically reversible process. E
quantifies both what we have to pay in Bell pairs to create |ψ〉, and value of |ψ〉 in Bell
pairs for performing tasks like quantum teleportation which consume entanglement.

But what is the value of E(|ψ〉AB)? Perhaps you can guess — it is

E(|ψ〉AB) = H(ρA) = H(ρB), (10.166)

the Von Neumann entropy of Alice’s density operator ρA (or equivalently Bob’s density
operator ρB). This is clearly the right answer in the case where |ψ〉AB is a product of k
Bell pairs. In that case ρA (or ρB) is 1

2I for each qubit in Alice’s possession

ρA =
(

1
2
I

)⊗k
, (10.167)

and

H(ρA) = k H

(
1
2
I

)
= k. (10.168)

How do we see that E = H(ρA) is the right answer for any bipartite pure state?
Though it is perfectly fine to use Bell pairs as the common currency for comparing

bipartite entangled states, in the asymptotic setting it is simpler and more natural to
allow fractions of a Bell pair, which is what we’ll do here. That is, we’ll consider a
maximally entangled state of two d-dimensional systems to be log2 d Bell pairs, even if
d is not a power of two. So our goal will be to show that Alice and Bob can use LOCC
to convert shared maximal entanglement of systems with dimension d = 2n(H(ρA)+δ)

into n copies of |ψ〉, for any positive δ and with arbitrarily good fidelity as n→∞, and
conversely that Alice and Bob can use LOCC to convert n copies of |ψ〉 into a shared
maximally entangled state of d-dimensional systems with arbitrarily good fidelity, where
d = 2n(H(ρA)−δ). This suffices to demonstrate that EC(|ψ〉) = ED(|ψ〉) = H(ρA).

First let’s see that if Alice and Bob share k = n(H(ρA) + δ) Bell pairs, then they
can prepare |ψ〉⊗nAB with high fidelity using LOCC. They perform this task, called entan-
glement dilution, by combining quantum teleportation with Schumacher compression.
To get started, Alice locally creates n copies of |ψ〉AC , where A and C are systems she
controls in her laboratory. Next she wishes to teleport the Cn share of these copies to
Bob, but to minimize the consumption of Bell pairs, she should compress Cn before
teleporting it.

If A and C are d-dimensional, then the bipartite state |ψ〉AC can be expressed in
terms of its Schmidt basis as

|ψ〉AC =
√
p0 |00〉+

√
p1 |11〉+ . . .+

√
pd−1 |d−1, d−1〉, (10.169)
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and n copies of the state can be expressed as

|ψ〉⊗nAC =
d−1∑

x1,...,xn=0

√
p(x1) . . . p(xn) |x1x2 . . . xn〉An ⊗ |x1x2 . . . xn〉Cn

=
∑
~x

√
p(~x) |~x〉An ⊗ |~x〉Cn , (10.170)

where
∑

~x p(~x) = 1. If Alice attempts to project onto the δ-typical subspace of Cn, she
succeeds with high probability

P =
∑

δ−typical ~x

p(~x) ≥ 1− ε (10.171)

and when successful prepares the post-measurement state

|Ψ〉AnCn = P−1/2
∑

δ−typical ~x

√
p(~x) |~x〉An ⊗ |~x〉Cn , (10.172)

such that

〈Ψ|ψ⊗n〉 = P−1/2
∑

δ−typical ~x

p(~x) =
√
P ≥

√
1− ε. (10.173)

Since the typical subspace has dimension at most 2n(H(ρ)+δ), Alice can teleport the
Cn half of |Ψ〉 to Bob with perfect fidelity using no more than n(H(ρ) + δ) Bell pairs
shared by Alice and Bob. The teleportation uses LOCC: Alice’s entangled measurement,
classical communication from Alice to Bob to convey the measurement outcome, and
Bob’s unitary transformation conditioned on the outcome. Finally, after the teleporta-
tion, Bob decompresses, so that Alice and Bob share a state which has high fidelity with
|ψ〉⊗nAB. This protocol demonstrates that the entanglement cost EC of |ψ〉 is not more
than H(ρA).

Now consider the distillable entanglement ED. Suppose Alice and Bob share the state
|ψ〉⊗nAB. Since |ψ〉AB is, in general, a partially entangled state, the entanglement that Alice
and Bob share is in a diluted form. They wish to concentrate their shared entanglement,
squeezing it down to the smallest possible Hilbert space; that is, they want to convert
it to maximally-entangled pairs. We will show that Alice and Bob can “distill” at least

k′ = n(H(ρA)− δ) (10.174)

Bell pairs from |ψ〉⊗nAB, with high likelihood of success.
To illustrate the concentration of entanglement, imagine that Alice and Bob have n

copies of the two-qubit state |ψ〉, which is

|ψ(p)〉 =
√

1− p |00〉+
√
p |11〉, (10.175)

where 0 ≤ p ≤ 1, when expressed in its Schmidt basis. That is, Alice and Bob share the
state

|ψ(p)〉⊗n = (
√

1− p |00〉+
√
p |11〉)⊗n. (10.176)

When we expand this state in the {|0〉, |1〉} basis, we find 2n terms, in each of which
Alice and Bob hold exactly the same binary string of length n.
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Now suppose Alice (or Bob) performs a local measurement on her (his) n qubits,
measuring the total spin along the z-axis

σ
(total)
3 =

n∑
i=1

σ
(i)
3 . (10.177)

Equivalently, the measurement determines the Hamming weight of Alice’s n qubits, the
number of |1〉’s in Alice’s n-bit string; that is, the number of spins pointing up.

In the expansion of |ψ(p)〉⊗n there are
(
n
m

)
terms in which Alice’s string has Ham-

ming weight m, each occurring with the same amplitude: (1− p)(n−m)/2 pm/2. Hence the
probability that Alice’s measurement finds Hamming weight m is

p(m) =
(
n

m

)
(1− p)n−mpm. (10.178)

Furthermore, because Alice is careful not to acquire any additional information besides
the Hamming weight when she conducts the measurement, by measuring the Hamming
weight m she prepares a uniform superposition of all

(
n
m

)
strings with m up spins.

Because Alice and Bob have perfectly correlated strings, if Bob were to measure the
Hamming weight of his qubits he would find the same outcome as Alice. Alternatively,
Alice could report her outcome to Bob in a classical message, saving Bob the trouble of
doing the measurement himself. Thus, Alice and Bob share a maximally entangled state

D∑
i=1

|i〉A ⊗ |i〉B, (10.179)

where the sum runs over the D =
(
n
m

)
strings with Hamming weight m.

For n large the binomial distribution {p(m)} approaches a sharply peaked function
of m with mean µ = np and variance σ2 = np(1 − p). Hence the probability of a large
deviation from the mean,

|m− np| = Ω(n), (10.180)

is p = exp (−Ω(n)). Using Stirling’s approximation, it then follows that

2n(H(p)−o(1)) ≤ D ≤ 2n(H(p)+o(1)). (10.181)

with probability approaching one as n→∞, where H(p) = −p log2 p−(1−p) log2(1−p)
is the entropy function. Thus with high probability Alice and Bob share a maximally
entangled state of Hilbert spaces HA and HB with dim(HA) = dim(HB) = D and
log2D ≥ n(H(p) − δ). In this sense Alice and Bob can distill H(p) − δ Bell pairs per
copy of |ψ〉AB.

Though the number m of up spins that Alice (or Bob) finds in her (his) measurement
is typically close to np, it can fluctuate about this value. Sometimes Alice and Bob will
be lucky, and then will manage to distill more than H(p) Bell pairs per copy of |ψ(p)〉AB.
But the probability of doing substantially better becomes negligible as n→∞.

The same idea applies to bipartite pure states in larger Hilbert spaces. If A and B are
d-dimensional systems, then |ψ〉AB has the Schmidt decomposition

|ψ(X)〉AB =
d−1∑
i=0

√
p(x) |x〉A ⊗ |x〉B, (10.182)



10.5 Quantifying Mixed-State Entanglement 35

where X is the classical ensemble {x, p(x)}, and H(ρA) = H(ρB) = H(X). The Schmidt
decomposition of n copies of ψ〉 is

d−1∑
x1,x2,...,xn=0

√
p(x1)p(x2) . . . p(xn) |x1x2 . . . xn〉An ⊗ |x1x2 . . . xn〉Bn . (10.183)

Now Alice (or Bob) can measure the total number of |0〉’s, the total number of |1〉’s, etc.
in her (his) possession. If she finds m0|0〉’s, m1|1〉’s, etc., then her measurement prepares
a maximally entangled state with Schmidt number

D(m0,m1, . . . ,md−1) =
n!

m0!m1! . . .md−1!
(10.184)

and this outcome occurs with probability

p(m) = D(m0,m1, . . . ,md−1)p(0)m0p(1)m1 . . . p(d−1)md−1 . (10.185)

For n large, Alice will typically find mx ≈ np(x), and again the probability of a large
deviation is small, so that, from Stirling’s approximation

2n(H(X)−o(1)) ≤ D ≤ 2n(H(X)+o(1)) (10.186)

with high probability. Thus, asymptotically for n → ∞, n(H(ρA) − o(1)) high-fidelity
Bell pairs can be distilled from n copies of |ψ〉, establishing that ED(|ψ〉) ≥ H(ρA), and
therefore ED(|ψ〉) = EC(|ψ〉) = E(|ψ〉).

This entanglement concentration protocol uses local operations but does not require
any classical communication. When Alice and Bob do the same measurement they al-
ways get the same outcome, so there is no need for them to communicate. Classical
communication really is necessary, though, to perform entanglement dilution. The pro-
tocol we described here, based on teleportation, requires two bits of classical one-way
communication per Bell pair consumed; in a more clever protocol this can be reduced
to O(

√
n) bits, but no further. Since the classical communication cost is sublinear in n,

the number of bits of classical communication needed per copy of |ψ〉 becomes negligible
in the limit n→∞.

10.5 Quantifying Mixed-State Entanglement

10.5.1 Asymptotic irreversibility under LOCC

The entanglement cost EC and the distillable entanglement ED are natural and oper-
ationally meaningful ways to quantify entanglement. It’s quite satisfying to find that,
because entanglement dilution and concentration are asymptotically reversible for pure
states, these two measures of pure-state bipartite entanglement agree, and provide an-
other operational role for the Von Neumann entropy of a marginal quantum state.

We can define EC and ED for bipartite mixed states just as we did for pure states, but
the story is more complicated — when we prepare many copies of a mixed state shared by
Alice and Bob, the dilution of Bell pairs is not in general reversible, even asymptotically,
and the distillable entanglement can be strictly less than the entanglement cost, though
it can never be larger. There are even bipartite mixed states with nonzero entanglement
cost and zero distillable entanglement, a phenomenon called bound entanglement. This
irreversibility is not shocking; any bipartite operation which maps many copies of the
pure state |φ+〉AB to many copies of the mixed state ρAB necessarily discards some
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information to the environment, and we don’t normally expect a process that forgets
information to be reversible.

This separation between EC and ED raises the question, what is the preferred way to
quantify the amount of entanglement when two parties share a mixed quantum state?
The answer is, it depends. Many different measures of bipartite mixed-state entangle-
ment have been proposed, each with its own distinctive advantages and disadvantages.
Even though they do not always agree, both EC and ED are certainly valid measures.
A further distinction can be made between the rate ED1 at which entanglement can
be distilled with one-way communication between the parties, and the rate ED with
two-way communication. There are bipartite mixed states for which ED > ED1, and
even states for which ED is nonzero while ED1 is zero. In contrast to the pure-state
case, we don’t have nice formulas for the values of the various entanglement measures,
though there are useful upper and lower bounds. We will derive a lower bound on ED1

in §10.8.2 (the hashing inequality).
There are certain properties that any reasonable measure of bipartite quantum en-

tanglement should have. The most important is that it must not increase under local
operations and classical communication, because quantum entanglement cannot be cre-
ated by LOCC alone. A function on bipartite states that is nonincreasing under LOCC
is called an entanglement monotone. Note that an entanglement monotone will also be
invariant under local unitary operations UAB = UA ⊗ UB, for if UAB can reduce the
entanglement for any state, its inverse can increase entanglement.

A second important property is that a bipartite entanglement measure must vanish
for separable states. Recall from Chapter 4 that a bipartite mixed state is separable if
it can be expressed as a convex combination of product states,

ρAB =
∑
x

p(x) |α(x)〉〈α(x)|A ⊗ |β(x)〉〈β(x)|B. (10.187)

A separable state is not entangled, as it can be created using LOCC. Via classical com-
munication, Alice and Bob can establish a shared source of randomness, the distribution
X = {x, p(x)}. Then they may jointly sample from X; if the outcome is x, Alice prepares
|α(x)〉 while Bob prepares |β(x)〉.

A third desirable property for a bipartite entanglement measure is that it should
agree with E = EC = ED for bipartite pure states. Both the entanglement cost and the
distillable entanglement respect all three of these properties.

We remark in passing that, despite the irreversibility of entanglement dilution under
LOCC, there is a mathematically viable way to formulate a reversible theory of bipartite
entanglement which applies even to mixed states. In this formulation, we allow Alice
and Bob to perform arbitrary bipartite operations that are incapable of creating entan-
glement; these include LOCC as well as additional operations which cannot be realized
using LOCC. In this framework, dilution and concentration of entanglement become
asymptotically reversible even for mixed states, and a unique measure of entanglement
can be formulated characterizing the optimal rate of conversion between copies of ρAB
and Bell pairs using these non-entangling operations.

Irreversible bipartite entanglement theory under LOCC, and also the reversible theory
under non-entangling bipartite operations, are both examples of resource theories. In the
resource theory framework, one or more parties are able to perform some restricted class
of operations, and they are capable of preparing a certain restricted class of states using
these operations. In addition, the parties may also have access to resource states, which
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are outside the class they can prepare on their own. Using their restricted operations,
they can transform resource states from one form to another, or consume resource states
to perform operations beyond what they could achieve with their restricted operations
alone. The name “resource state” conveys that such states are valuable because they
may be consumed to do useful things.

In a two-party setting, where LOCC is allowed or more general non-entangling oper-
ations are allowed, bipartite entangled states may be regarded as a valuable resource.
Resource theory also applies if the allowed operations are required to obey certain sym-
metries; then states breaking this symmetry become a resource. In thermodynamics,
states deviating from thermal equilibrium are a resource. Entanglement theory, as a par-
ticularly well developed resource theory, provides guidance and tools which are broadly
applicable to many different interesting situations.

10.5.2 Squashed entanglement

As an example of an alternative bipartite entanglement measure, consider the squashed
entanglement Esq, defined by

Esq(ρAB) = inf
{

1
2
I(A;B|C) : ρAB = trC (ρABC)

}
(10.188)

The squashed entanglement of ρAB is the greatest lower bound on the quantum condi-
tional mutual information of all possible extensions of ρAB to a tripartite state ρABC ; it
can be shown to be an entanglement monotone. The locution “squashed” conveys that
choosing an optimal conditioning system C squashes out the non-quantum correlations
between A and B.

For pure states the extension is superfluous, so that

Esq(|ψ〉AB) =
1
2
I(A;B) = H(A) = H(B) = E(|ψ〉AB). (10.189)

For a separable state, we may choose the extension

ρABC =
∑
x

p(x) |α(x)〉〈α(x)|A ⊗ |β(x)〉〈β(x)|B ⊗ |x〉〈x|C . (10.190)

where {|x〉C} is an orthonormal set; the state ρABC has the block-diagonal form
eq.(10.82) and hence I(A;B|C) = 0. Conversely, if ρAB has any extension ρABC with
I(A;B|C) = 0, then ρABC has the form eq.(10.82) and therefore ρAB is separable.
Esq is difficult to compute, because the infimum is to be evaluated over all possible

extensions, where the system C may have arbitrarily high dimension. This property
also raises the logical possibility that there are nonseparable states for which the infi-
mum vanishes; conceivably, though a nonseparable ρAB can have no finite-dimensional
extension for which I(A;B|C) = 0, perhaps I(A;B|C) can approach zero as the di-
mension of C increases. Fortunately, though this is not easy to show, it turns out that
Esq is strictly positive for any nonseparable state. In this sense, then, it is a faithful
entanglement measure, strictly positive if and only if the state is nonseparable.

One desirable property of Esq, not shared by EC and ED, is its additivity on tensor
products (Exercise 10.6),

Esq(ρAB ⊗ ρA′B′) = Esq(ρAB) + Esq(ρA′B′). (10.191)

Though, unlike EC and ED, squashed entanglement does not have an obvious operational
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meaning, any additive entanglement monotone which matches E for bipartite pure states
is bounded above and below by EC and ED respectively,

EC ≥ Esq ≥ ED. (10.192)

10.5.3 Entanglement monogamy

Classical correlations are polyamorous; they can be shared among many parties. If Alice
and Bob read the same newspaper, then they have information in common and become
correlated. Nothing prevents Claire from reading the same newspaper; then Claire is just
as strongly correlated with Alice and with Bob as Alice and Bob are with one another.
Furthermore, David, Edith, and all their friends can read the newspaper and join the
party as well.

Quantum correlations are not like that; they are harder to share. If Bob’s state is
pure, then the tripartite quantum state is a product ρB ⊗ ρAC , and Bob is completely
uncorrelated with Alice and Claire. If Bob’s state is mixed, then he can be entangled
with other parties. But if Bob is fully entangled with Alice (shares a pure state with
Alice), then the state is a product ρAB ⊗ρC ; Bob has used up all his ability to entangle
by sharing with Alice, and Bob cannot be correlated with Claire at all. Conversely, if
Bob shares a pure state with Claire, the state is ρA⊗ρBC , and Bob is uncorrelated with
Alice. Thus we say that quantum entanglement is monogamous.

Entanglement measures obey monogamy inequalities which reflect this tradeoff be-
tween Bob’s entanglement with Alice and with Claire in a three-party state. Squashed
entanglement, in particular, obeys a monogamy relation following easily from its defini-
tion, which was our primary motivation for introducing this quantity; we have

Esq(A;B) + Esq(A;C) ≤ Esq(A;BC). (10.193)

In particular, in the case of a pure tripartite state, Esq = H(A) is the (pure-state)
entanglement shared between A and BC. The inequality is saturated if Alice’s system
is divided into subsystems A1 and A2 such that the tripartite pure state is

|ψ〉ABC = |ψ1〉A1B ⊗ |ψ2〉A2C . (10.194)

In general, combining eq.(10.192) with eq.(10.193) yields

ED(A;B) + ED(A;C) ≤ EC(A;BC); (10.195)

loosely speaking, the entanglement cost EC(A;BC) imposes a ceiling on Alice’s ability
to entangle with Bob and Claire individually, requiring her to trade in some distillable
entanglement with Bob to increase her distillable entanglement with Claire.

To prove the monogamy relation eq.(10.193), we note that mutual information obeys
a chain rule which is really just a restatement of the definition of conditional mutual
information:

I(A;BC) = I(A;C) + I(A;B|C). (10.196)

A similar equation follows directly from the definition if we condition on a fourth system
D,

I(A;BC|D) = I(A;C|D) + I(A;B|CD). (10.197)
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Now, Esq(A;BC) is the infimum of I(A;BC|D) over all possible extensions of ρABC to
ρABCD. But since ρABCD is also an extension of ρAB and ρAC , we have

I(A;BC|D) ≥ Esq(A;C) + Esq(A;B) (10.198)

for any such extension. Taking the infimum over all ρABCD yields eq.(10.193).
A further aspect of monogamy arises when we consider extending a quantum state to

more parties. We say that the bipartite state ρAB of systems A and B is k-extendable
if there is a (k+1)-part state ρAB1...Bk

whose marginal state on ABj matches ρAB for
each j = 1, 2, . . . k, and such that ρAB1...Bk

is invariant under permutations of the k
systems B1, B2 . . . Bk. Separable states are k-extendable for every k, and entangled pure
states are not even 2-extendable. Every entangled mixed state fails to be k-extendable
for some finite k, and we may regard the maximal value kmax for which such a symmetric
extension exists as a rough measure of how entangled the state is — bipartite entangled
states with larger and larger kmax are closer and closer to being separable.

10.6 Accessible Information

10.6.1 How much can we learn from a measurement?

Consider a game played by Alice and Bob. Alice prepares a quantum state drawn from
the ensemble E = {ρ(x), p(x)} and sends the state to Bob. Bob knows this ensemble, but
not the particular state that Alice chose to send. After receiving the state, Bob performs
a POVM with elements {E(y)} ≡ E, hoping to find out as much as he can about what
Alice sent. The conditional probability that Bob obtains outcome y if Alice sent ρ(x)
is p(y|x) = tr (E(y)ρ(x)), and the joint distribution governing Alice’s preparation and
Bob’s measurement is p(x, y) = p(y|x)p(x).

Before he measures, Bob’s ignorance about Alice’s state is quantified by H(X), the
number of “bits per letter” needed to specify x; after he measures his ignorance is
reduced to H(X|Y ) = H(XY )−H(Y ). The improvement in Bob’s knowledge achieved
by the measurement is Bob’s information gain, the mutual information

I(X;Y ) = H(X)−H(X|Y ). (10.199)

Bob’s best strategy (his optimal measurement) maximizes this information gain. The
best information gain Bob can achieve,

Acc(E) = max
E

I(X;Y ), (10.200)

is a property of the ensemble E called the accessible information of E .
If the states {ρ(x)} are mutually orthogonal they are perfectly distinguishable. Bob

can identify Alice’s state with certainty by choosing E(x) to be the projector onto the
support of ρ(x); Then p(y|x) = δx,y = p(x|y), hence H(X|Y ) = 〈− log p(x|y)〉 = 0 and
Acc(E) = H(X). Bob’s task is more challenging if Alice’s states are not orthogonal.
Then no measurement will identify the state perfectly, so H(X|Y ) is necessarily positive
and Acc(E) < H(X).

Though there is no simple general formula for the accessible information of an ensem-
ble, we can derive a useful upper bound, called the Holevo bound. For the special case
of an ensemble of pure states E = {|ϕ(x)〉, p(x)}, the Holevo bound becomes

Acc(E) ≤ H(ρ), where ρ =
∑
x

p(x)|ϕ(x)〉〈ϕ(x)|, (10.201)
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and a sharper statement is possible for an ensemble of mixed states, as we will see.
Since the entropy for a quantum system with dimension d can be no larger than log d,
the Holevo bound asserts that Alice, by sending n qubits to Bob (d = 2n) can convey
no more than n bits of information. This is true even if Bob performs a sophisticated
collective measurement on all the qubits at once, rather than measuring them one at a
time.

Therefore, if Alice wants to convey classical information to Bob by sending qubits, she
can do no better than treating the qubits as though they were classical, sending each
qubit in one of the two orthogonal states {|0〉, |1〉} to transmit one bit. This statement is
not so obvious. Alice might try to stuff more classical information into a single qubit by
sending a state chosen from a large alphabet of pure single-qubit signal states, distributed
uniformly on the Bloch sphere. But the enlarged alphabet is to no avail, because as the
number of possible signals increases the signals also become less distinguishable, and
Bob is not able to extract the extra information Alice hoped to deposit in the qubit.

If we can send information more efficiently by using an alphabet of mutually orthog-
onal states, why should we be interested in the accessible information for an ensemble
of non-orthogonal states? There are many possible reasons. Perhaps Alice finds it eas-
ier to send signals, like coherent states, which are imperfectly distinguishable rather
than mutually orthogonal. Or perhaps Alice sends signals to Bob through a noisy chan-
nel, so that signals which are orthogonal when they enter the channel are imperfectly
distinguishable by the time they reach Bob.

The accessible information game also arises when an experimental physicist tries to
measure an unknown classical force using a quantum system as a probe. For example, to
measure the z-component of a magnetic field, we may prepare a spin-1

2 particle pointing
in the x-direction; the spin precesses for time t in the unknown field, producing an
ensemble of possible final states (which will be an ensemble of mixed states if the initial
preparation is imperfect, or if decoherence occurs during the experiment). The more
information we can gain about the final state of the spin, the more accurately we can
determine the value of the magnetic field.

10.6.2 Holevo bound

Recall that quantum mutual information obeys monotonicity — if a quantum channel
maps B to B′, then I(A;B) ≥ I(A;B′). We derive the Holevo bound by applying
monotonicity of mutual information to the accessible information game. We will suppose
that Alice records her chosen state in a classical register X and Bob likewise records
his measurement outcome in another register Y , so that Bob’s information gain is the
mutual information I(X;Y ) of the two registers. After Alice’s preparation of her system
A, the joint state of XA is

ρXA =
∑
x

p(x)|x〉〈x| ⊗ ρ(x). (10.202)

Bob’s measurement is a quantum channel mapping A to AY according to

ρ(x) 7→
∑
y

M(y)ρ(x)M(y)† ⊗ |y〉〈y|, (10.203)
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where M(y)†M(y) = E(y), yielding the state for XAY

ρ′XAY =
∑
x

p(x)|x〉〈x| ⊗M(y)ρ(x)M(y)† ⊗ |y〉〈y|. (10.204)

Now we have

I(X;Y )ρ′ ≤ I(X;AY )ρ′ ≤ I(X;A)ρ, (10.205)

where the subscript indicates the state in which the mutual information is evaluated;
the first inequality uses strong subadditivity in the state ρ′, and the second uses mono-
tonicity under the channel mapping ρ to ρ′.

The quantity I(X;A) is an intrinsic property of the ensemble E ; it is denoted χ(E)
and called the Holevo chi of the ensemble. We have shown that however Bob chooses
his measurement his information gain is bounded above by the Holevo chi; therefore,

Acc(E) ≤ χ(E) := I(X;A)ρ. (10.206)

This is the Holevo bound.
Now let’s calculate I(X;A)ρ explicitly. We note that

H(XA) = −tr

(∑
x

p(x)|x〉〈x| ⊗ ρ(x) log

(∑
x′

p(x′)|x′〉〈x′| ⊗ ρ(x′)

))
= −

∑
x

tr p(x)ρ(x) (log p(x) + log ρ(x))

= H(X) +
∑
x

p(x)H(ρ(x)), (10.207)

and therefore

H(A|X) = H(XA)−H(X) =
∑
x

p(x)H(ρ(x)). (10.208)

Using I(X;A) = H(A)−H(A|X), we then find

χ(E) = I(X;A) = H(ρA)−
∑
x

p(x)H(ρA(x)) ≡ H(A)E − 〈H(A)〉E (10.209)

For an ensemble of pure states, χ is just the entropy of the density operator arising from
the ensemble, but for an ensemble E of mixed states it is a strictly smaller quantity – the
difference between the entropy H(ρE) of the convex sum of signal states and the convex
sum 〈H〉E of the signal state entropies; this difference is always nonnegative because of
the concavity of the entropy function (or because mutual information is nonnegative).

10.6.3 Monotonicity of Holevo χ

Since Holevo χ is the mutual information I(X;A) of the classical register X and the
quantum system A, the monotonicity of mutual information also implies the monotonic-
ity of χ. If N : A→ A′ is a quantum channel, then I(X;A′) ≤ I(X;A) and therefore

χ(E ′) ≤ χ(E), (10.210)

where

E = {ρ(x)), p(x)} and E ′ = {ρ′(x) = N (ρ(x)), p(x)}. (10.211)
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A channel cannot increase the Holevo χ of an ensemble.
Its monotonicity provides a further indication that χ(E) is a useful measure of the

information encoded in an ensemble of quantum states; the decoherence described by
a quantum channel can reduce this quantity, but never increases it. In contrast, the
Von Neumann entropy may either increase or decrease under the action of a channel.
Mapping pure states to mixed states can increase H, but a channel might instead map
the mixed states in an ensemble to a fixed pure state |0〉〈0|, decreasing H and improving
the purity of each signal state, but without improving the distinguishability of the states.

We discussed the asymptotic limit H(ρ) on quantum compression per letter in §10.3.2.
There we considered unitary decoding; invoking the monotonicity of Holevo χ clarifies
why more general decoders cannot do better. Suppose we compress and decompress the
ensemble E⊗n using an encoder Ne and a decoder Nd, where both maps are quantum
channels:

E⊗n Ne−→ Ẽ(n) Nd−→ Ẽ ′(n) ≈ E⊗n (10.212)

The Holevo χ of the input pure-state product ensemble is additive, χ(E⊗n) = H(ρ⊗n) =
nH(ρ), and χ of a d-dimensional system is no larger than log2 d; therefore if the ensemble
Ẽ(n) is compressed to q qubits per letter, then because of the monotonicity of χ the
decompressed ensemble Ẽ ′(n) has Holevo chi per letter 1

nχ(Ẽ ′(n)) ≤ q. If the decompressed
output ensemble has high fidelity with the input ensemble, its χ per letter should nearly
match the χ per letter of the input ensemble, hence

q ≥ 1
n
χ(Ẽ ′(n)) ≥ H(ρ)− δ (10.213)

for any positive δ and sufficiently large n. We conclude that high-fidelity compression
to fewer than H(ρ) qubits per letter is impossible asymptotically, even when the com-
pression and decompression maps are arbitrary channels.

10.6.4 Improved distinguishability through coding: an example

To better acquaint ourselves with the concept of accessible information, let’s consider a
single-qubit example. Alice prepares one of the three possible pure states

|ϕ1〉 = | ↑n̂1〉 =
(

1
0

)
,

|ϕ2〉 = | ↑n̂2〉 =

(
−1

2√
3

2

)
,

|ϕ3〉 = | ↑n̂3〉 =

(
−1

2

−
√

3
2

)
; (10.214)

a spin-1
2 object points in one of three directions that are symmetrically distributed in

the xz-plane. Each state has a priori probability 1
3 . Evidently, Alice’s signal states are

nonorthogonal:

〈ϕ1|ϕ2〉 = 〈ϕ1|ϕ3〉 = 〈ϕ2|ϕ3〉 = −1
2
. (10.215)

Bob’s task is to find out as much as he can about what Alice prepared by making a



10.6 Accessible Information 43

suitable measurement. The density matrix of Alice’s ensemble is

ρ =
1
3
(|ϕ1〉〈ϕ1|+ |ϕ2〉〈ϕ3|+ |ϕ3〉〈ϕ3|) =

1
2
I, (10.216)

which has H(ρ) = 1. Therefore, the Holevo bound tells us that the mutual information
of Alice’s preparation and Bob’s measurement outcome cannot exceed 1 bit.

In fact, though, the accessible information is considerably less than the one bit allowed
by the Holevo bound. In this case, Alice’s ensemble has enough symmetry that it is not
hard to guess the optimal measurement. Bob may choose a POVM with three outcomes,
where

Ea =
2
3
(I − |ϕa〉〈ϕa|), a = 1, 2, 3; (10.217)

we see that

p(a|b) = 〈ϕb|Ea|ϕb〉 =
{

0 a = b,
1
2 a 6= b.

(10.218)

The measurement outcome a excludes the possibility that Alice prepared a, but leaves
equal a posteriori probabilities

(
p = 1

2

)
for the other two states. Bob’s information gain

is

I = H(X)−H(X|Y ) = log2 3− 1 = .58496. (10.219)

To show that this measurement is really optimal, we may appeal to a variation on a
theorem of Davies, which assures us that an optimal POVM can be chosen with three
Ea’s that share the same three-fold symmetry as the three states in the input ensemble.
This result restricts the possible POVM’s enough so that we can check that eq. (10.217)
is optimal with an explicit calculation. Hence we have found that the ensemble E =
{|ϕa〉, pa = 1

3} has accessible information.

Acc(E) = log2

(
3
2

)
= .58496... (10.220)

The Holevo bound is not saturated.
Now suppose that Alice has enough cash so that she can afford to send two qubits to

Bob, where again each qubit is drawn from the ensemble E . The obvious thing for Alice
to do is prepare one of the nine states

|ϕa〉 ⊗ |ϕb〉, a, b = 1, 2, 3, (10.221)

each with pab = 1/9. Then Bob’s best strategy is to perform the POVM eq. (10.217)
on each of the two qubits, achieving a mutual information of .58496 bits per qubit, as
before.

But, determined to do better, Alice and Bob decide on a different strategy. Alice will
prepare one of three two-qubit states

|Φa〉 = |ϕa〉 ⊗ |ϕa〉, a = 1, 2, 3, (10.222)

each occurring with a priori probability pa = 1/3. Considered one-qubit at a time,
Alice’s choice is governed by the ensemble E , but now her two qubits have (classical)
correlations – both are prepared the same way.

The three |Φa〉’s are linearly independent, and so span a three-dimensional subspace



44 Quantum Shannon Theory

of the four-dimensional two-qubit Hilbert space. In Exercise 10.4, you will show that the
density operator

ρ =
1
3

(
3∑

a=1

|Φa〉〈Φa|

)
, (10.223)

has the nonzero eigenvalues 1/2, 1/4, 1/4, so that

H(ρ) = −1
2

log2

1
2
− 2

(
1
4

log2

1
4

)
=

3
2
. (10.224)

The Holevo bound requires that the accessible information per qubit is no more than
3/4 bit, which is at least consistent with the possibility that we can exceed the .58496
bits per qubit attained by the nine-state method.

Naively, it may seem that Alice won’t be able to convey as much classical information
to Bob, if she chooses to send one of only three possible states instead of nine. But on
further reflection, this conclusion is not obvious. True, Alice has fewer signals to choose
from, but the signals are more distinguishable; we have

〈Φa|Φb〉 =
1
4
, a 6= b, (10.225)

instead of eq. (10.215). It is up to Bob to exploit this improved distinguishability in his
choice of measurement. In particular, Bob will find it advantageous to perform collective
measurements on the two qubits instead of measuring them one at a time.

It is no longer obvious what Bob’s optimal measurement will be. But Bob can invoke
a general procedure that, while not guaranteed optimal, is usually at least pretty good.
We’ll call the POVM constructed by this procedure a “pretty good measurement” (or
PGM).

Consider some collection of vectors |Φ̃a〉 that are not assumed to be orthogonal or
normalized. We want to devise a POVM that can distinguish these vectors reasonably
well. Let us first construct

G =
∑
a

|Φ̃a〉〈Φ̃a|; (10.226)

This is a positive operator on the space spanned by the |Φ̃a〉’s. Therefore, on that
subspace, G has an inverse, G−1 and that inverse has a positive square root G−1/2.
Now we define

Ea = G−1/2|Φ̃a〉〈Φ̃a|G−1/2, (10.227)

and we see that ∑
a

Ea = G−1/2

(∑
a

|Φ̃a〉〈Φ̃a|

)
G−1/2

= G−1/2GG−1/2 = I, (10.228)

on the span of the |Φ̃a〉’s. If necessary, we can augment these Ea’s with one more positive
operator, the projection E0 onto the orthogonal complement of the span of the |Φ̃a〉’s,
and so construct a POVM. This POVM is the PGM associated with the vectors |Φ̃a〉.

In the special case where the |Φ̃a〉’s are orthogonal,

|Φ̃a〉 =
√
λa|φa〉, (10.229)
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(where the |Φa〉’s are orthonormal), we have

Ea =
∑
a,b,c

(|φb〉λ
−1/2
b 〈φb|)(|φa〉λa〈φa|)(|φc〉λ−1/2

c 〈φc|)

= |φa〉〈φa|; (10.230)

this is the orthogonal measurement that perfectly distinguishes the |Φa〉’s and so clearly
is optimal. If the |Φ̃a〉’s are linearly independent but not orthogonal, then the PGM
is again an orthogonal measurement (because n one-dimensional operators in an n-
dimensional space can constitute a POVM only if mutually orthogonal — see Exercise
3.11), but in that case the measurement may not be optimal.

In Exercise 10.4, you’ll construct the PGM for the vectors |Φa〉 in eq. (10.222), and
you’ll show that

p(a|a) = 〈Φa|Ea|Φa〉 =
1
3

(
1 +

1√
2

)2

= .971405

p(b|a) = 〈Φa|Eb|Φa〉 =
1
6

(
1− 1√

2

)2

= .0142977, (10.231)

(for b 6= a). It follows that the conditional entropy of the input is

H(X|Y ) = .215893, (10.232)

and since H(X) = log2 3 = 1.58496, the information gain is

I(X;Y ) = H(X)−H(X|Y ) = 1.36907, (10.233)

a mutual information of .684535 bits per qubit. Thus, the improved distinguishability
of Alice’s signals has indeed paid off – we have exceeded the .58496 bits that can be
extracted from a single qubit. We still didn’t saturate the Holevo bound (I ≤ 1.5 in this
case), but we came a lot closer than before.

This example, first described by Peres and Wootters, teaches some useful lessons.
First, Alice is able to convey more information to Bob by “pruning” her set of codewords.
She is better off choosing among fewer signals that are more distinguishable than more
signals that are less distinguishable. An alphabet of three letters encodes more than an
alphabet of nine letters.

Second, Bob is able to read more of the information if he performs a collective measure-
ment instead of measuring each qubit separately. His optimal orthogonal measurement
projects Alice’s signal onto a basis of entangled states.

10.6.5 Classical capacity of a quantum channel

This example illustrates how coding and collective measurement can enhance accessible
information, but while using the code narrowed the gap between the accessible infor-
mation and the Holevo chi of the ensemble, it did not close the gap completely. As is
often the case in information theory, we can characterize the accessible information more
precisely by considering an asymptotic i.i.d. setting. To be specific, we’ll consider the
task of sending classical information reliably through a noisy quantum channel NA→B.

An ensemble of input signal states E = {ρ(x), p(x)} prepared by Alice is mapped by
the channel to an ensemble of output signals E ′ = {N (ρ(x)), p(x)}. If Bob measures the
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output his information gain

Acc(E ′) ≤ I(X;B) = χ(E ′). (10.234)

is bounded above by the Holevo chi of the output ensemble E ′. To convey as much infor-
mation through the channel as possible, Alice and Bob may choose the input ensemble
E that maximizes the Holevo chi of the output ensemble E ′. The maximum value

χ(N ) := max
E

χ(E ′) = max
E

I(X;B), (10.235)

of χ(E ′) is a property of the channel, which we will call the Holevo chi of N .
As we’ve seen, Bob’s actual optimal information gain in this single-shot setting may

fall short of χ(E ′) in general. But instead of using the channel just once, suppose that
Alice and Bob use the channel n� 1 times, where Alice sends signal states chosen from
a code, and Bob performs an optimal measurement to decode the signals he receives.
Then an information gain of χ(N ) bits per letter really can be achieved asymptotically
as n→∞.

Let’s denote Alice’s ensemble of encoded n-letter signal states by Ẽ(n), denote the
ensemble of classical labels carried by the signals by X̃n, and denote Bob’s ensemble of
measurement outcomes by Ỹ n. Let’s say that the code has rate R if Alice may choose
from among 2nR possible signals to send. If classical information can be sent through
the channel with rate R−o(1) such that Bob can decode the signal with negligible error
probability as n→∞, then we say the rate R is achievable. The classical capacity C(N )
of the quantum channel NA→B is the supremum of all achievable rates.

Just as in our discussion of the capacity of a classical channel in §10.1.4, the conditional
entropy per letter 1

nH(X̃n|Ỹ n)) approaches zero as n → ∞ if the error probability is
asymptotically negligible; therefore

R ≤ 1
n

(
I(X̃n; Ỹ n) + o(1)

)
≤ 1
n

(
max
E(n)

I(Xn;Bn) + o(1)
)

=
1
n

(
χ(N⊗n) + o(1)

)
, (10.236)

where we obtain the first inequality as in eq.(10.47) and the second inequality by invoking
the Holevo bound, optimized over all possible n-letter input ensembles. We therefore
infer that

C(N ) ≤ lim
n→∞

1
n
χ
(
N⊗n) ; (10.237)

the classical capacity is bounded above by the asymptotic Holevo χ per letter of the
product channel N⊗n.

In fact this upper bound is actually an achievable rate, and hence equal to the classical
capacity C(N ). However, this formula for the classical capacity is not very useful as it
stands, because it requires that we optimize the Holevo χ over message ensembles of
arbitrary length; we say that the formula for capacity is regularized if, as in this case,
it involves taking a limit in which the number of channel tends to infinity. It would be
far preferable to reduce our expression for C(N ) to a single-letter formula involving just
one use of the channel. In the case of a classical channel, the reduction of the regularized
expression to a single-letter formula was possible, because the conditional entropy for n
uses of the channel is additive as in eq.(10.44).
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For quantum channels the situation is more complicated, as channels are known to
exist such that the Holevo χ is strictly superadditive:

χ (N1 ⊗N2) > χ (N1) + χ (N2) . (10.238)

Therefore, at least for some channels, we are stuck with the not-very-useful regularized
formula for the classical capacity. But we can obtain a single-letter formula for the
optimal achievable communication rate if we put a restriction on the code used by Alice
and Bob. In general, Alice is entitled to choose input codewords which are entangled
across the many uses of the channel, and when such entangled codes are permitted
the computation of the classical channel capacity may be difficult. But suppose we
demand that all of Alice’s codewords are product states. With that proviso the Holevo
chi becomes subadditive, and we may express the optimal rate as

C1 (N ) = χ(N ). (10.239)

C1(N ) is called the product-state capacity of the channel.
Let’s verify the subadditivity of χ for product-state codes. The product channel N⊗n

maps product states to product states; hence if Alice’s input signals are product states
then so are Bob’s output signals, and we can express Bob’s n-letter ensemble as

E(n) = {ρ(x1)⊗ ρ(x2)⊗ · · · ⊗ ρ(xn), p(x1x2 . . . xn)}, (10.240)

which has Holevo χ

χ(E(n)) = I(Xn;Bn) = H(Bn)−H(Bn|Xn). (10.241)

While the Von Neumann entropy is subadditive,

H(Bn) =
n∑
i=1

H(Bi); (10.242)

the (negated) conditional entropy

−H(Bn|Xn) = −
∑
~x

p(~x) H (ρ(~x)) (10.243)

(see eq.(10.209)) is not subadditive in general. But for the product-state ensemble
eq.(10.240), since the entropy of a product is additive, we have

H(Bn|Xn) =
∑

x1,x2,...,xn

p(x1x2, . . . xn)

(
n∑
i=1

H (ρ(xi))

)

=
n∑
i=1

pi(xi)H(ρ(xi)) =
n∑
i=1

H(Bi|Xi) (10.244)

where xi = {xi, pi(xi)} is the marginal probability distribution for the ith letter.
Eq.(10.244) is a quantum analog of eq.(10.44), which holds for product-state ensembles
but not in general for entangled ensembles. Combining eq.(10.241), (10.242), (10.244),
we have

I(Xn;Bn) ≤
n∑
i=1

(H(Bi)−H(Bi|Xi)) =
∑
i

I(Xi;Bi) ≤ nχ(N ). (10.245)

Therefore the Holevo χ of a channel is subadditive when restricted to product-state
codewords, as we wanted to show.
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We won’t give a careful argument here that C1(N ) is an asymptotically achievable rate
using product-state codewords; we’ll just give a rough sketch of the idea. We demonstrate
achievability with a random coding argument similar to Shannon’s. Alice fixes an input
ensemble E = {ρ(x), p(x)}, and samples from the product ensemble E⊗n to generate a
codeword; that is, the codeword

ρ(~x) = ρ(x1)⊗ ρ(x2)⊗ · · · ⊗ ρ(xn) (10.246)

is selected with probability p(~x) = p(x1)p(x2) . . . p(xn). (In fact Alice should choose each
ρ(~x) to be pure to optimize the communication rate.) This codeword is sent via n uses
of the channel N , and Bob receives the product state

N⊗n (ρ(~x)) = N (ρ(x1))⊗N (ρ(x2))⊗ · · · ⊗ N (ρ(xn)). (10.247)

Averaged over codewords, the joint state of Alice’s classical registerXn and Bob’s system
Bn is

ρXnBn =
∑
~x

p(~x) |~x〉〈~x| ⊗ N⊗n(ρ(~x)). (10.248)

To decode, Bob performs a POVM designed to distinguish the codewords effectively;
a variant of the pretty good measurement described in §10.6.4 does the job well enough.
The state Bob receives is mostly supported on a typical subspace with dimension
2n(H(B)+o(1)), and for each typical codeword that Alice sends, what Bob receives is
mostly supported on a much smaller typical subspace with dimension 2n(H(B|X)+o(1)).
The key point is that ratio of these spaces is exponential in the mutual information of
X and B:

2n(H(B|X)+o(1))

2n(H(B)−o(1)) = 2−n(I(X;B)−o(1)) (10.249)

Each of Bob’s POVM elements has support on the typical subspace arising from a
particular one of Alice’s codewords. The probability that any codeword is mapped purely
by accident to the decoding subspace of a different codeword is suppressed by the ratio
eq.(10.249). Therefore, the probability of a decoding error remains small even when
there are 2nR codewords to distinguish, for R = I(X;B)− o(1).

We complete the argument with standard Shannonisms. Since the probability of de-
coding error is small when we average over codes, it must also be small, averaged over
codewords, for a particular sequence of codes. Then by pruning half of the codewords,
reducing the rate by a negligible amount, we can ensure that the decoding errors are
improbable for every codeword in the code. Therefore I(X;B) is an achievable rate for
classical communication. Optimizing over all product-state input ensembles, we obtain
eq.(10.239).

To turn this into an honest argument, we would need to specify Bob’s decoding mea-
surement more explicitly and do a careful error analysis. This gets a bit technical, so
we’ll skip the details. Somewhat surprisingly, though, it turns out to be easier to prove
capacity theorems when quantum channels are used for other tasks besides sending
classical information. We’ll turn to that in §10.7.

10.6.6 Entanglement-breaking channels

Though Holevo chi is superadditive for some quantum channels, there are classes of
channels for which chi is additive, and for any such channel N the classical capacity
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is C = χ(N ) without any need for regularization. For example, consider entanglement-
breaking channels. We say that NA→B is entanglement breaking if for any input state
ρRA, I ⊗ N (ρRA) is a separable state on RA — the action of N on A always breaks
its entanglement with R. We claim that if N1 is entanglement breaking, and N2 is an
arbitrary channel, then

χ (N1 ⊗N2) ≤ χ(N1) + χ(N2). (10.250)

To bound the chi of the product channel, consider an input ensemble

ρXA1A2
=
∑
x

p(x) |x〉〈x| ⊗ ρ(x)A1A2 . (10.251)

Because N1 is entanglement breaking, ρ(x)A1A2 is mapped by the product channel to a
separable state:

N1 ⊗N2 : ρ(x)A1A2 7→
∑
y

p(y|x) σ(x, y)B1 ⊗ τ (x, y)B2 . (10.252)

Now χ(N1 ⊗N2) is the maximum of I(X;B1B2)ρ′ , evaluated in the state

ρ′XB1B2
=
∑
x,y

p(x)p(y|x)|x〉〈x| ⊗ σ(x, y)B1 ⊗ τ (x, y)B2 (10.253)

which may be regarded as the marginal state (after tracing out Y ) of

ρ̃′XY B1B2
=
∑
x,y

p(x, y)|x, y〉〈x, y| ⊗ σ(x, y)B1 ⊗ τ̃ (x, y)B2 (10.254)

Because ρ̃′ becomes a product state when conditioned on (x, y), it satisfies

H(B1B2|XY ) = H(B1|XY ) +H(B2|XY ), (10.255)

and from the subadditivity and strong subadditivity of entropy we have

I(X;B1B2) ≤ I(XY ;B1B2) = H(B1B2)−H(B1B2|XY )

≤ H(B1) +H(B2)−H(B1|XY )−H(B2|XY )

= I(XY ;B1) + I(XY ;B2). (10.256)

The right-hand side is bounded above by χ(N1) +χ(N2), and maximizing the left-hand
side yields eq.(10.250).

An example of an entanglement-breaking channel is a classical-quantum channel, also
called a c-q channel, which acts according to

NA→B : ρA 7→
∑
x

〈x|ρA|x〉σ(x)B, (10.257)

where {|x〉} is an orthonormal basis. In effect, the channel performs a complete orthog-
onal measurement on the input state and then prepares an output state conditioned on
the measurement outcome. The measurement breaks the entanglement between system
A and any other system with which it was initially entangled. Therefore, c-q channels
are entanglement breaking and have additive Holevo chi.
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10.7 Quantum Channel Capacities and Decoupling

10.7.1 Coherent information and the quantum channel capacity

As we have already emphasized, it’s marvelous that the capacity for a classical channel
can be expressed in terms of the optimal correlation between input and output for a
single use of the channel,

C := max
X

I(X;Y ). (10.258)

Another pleasing feature of this formula is its robustness. For example, the capacity
does not increase if we allow the sender and receiver to share randomness, or if we
allow feedback from receiver to sender. But for quantum channels the story is more
complicated. We’ve seen already that no simple single-letter formula is known for the
classical capacity of a quantum channel, if we allow entanglement among the channel
inputs, and we’ll soon see that the same is true for the quantum capacity. In addition, it
turns out that entanglement shared between sender and receiver can boost the classical
and quantum capacities of some channels, and so can “backward” communication from
receiver to sender. There are a variety of different notions of capacity for quantum
channels, all reasonably natural, and all with different achievable rates.

While Shannon’s theory of classical communication over noisy classical channels is
pristine and elegant, the same cannot be said for the theory of communication over noisy
quantum channels, at least not in its current state. It’s still a work in progress. Perhaps
some day another genius like Shannon will construct a beautiful theory of quantum
capacities. For now, at least there are a lot of interesting things we can say about
achievable rates. Furthermore, the tools that have been developed to address questions
about quantum capacities have other applications beyond communication theory.

The most direct analog of the classical capacity of a classical channel is the quantum
capacity of a quantum channel, unassisted by shared entanglement or feedback. The
quantum channel NA→B is a TPCP map from HA to HB, and Alice is to use the
channel n times to convey a quantum state to Bob with high fidelity. She prepares her
state |ψ〉 in a code subspace

H(n) ⊆ H⊗nA (10.259)

and sends it to Bob, who applies a decoding map, attempting to recover |ψ〉. The rate
R of the code is the number of encoded qubits sent per channel use,

R = log2 dim
(
H(n)

)
, (10.260)

We say that the rate R is achievable if there is a sequence of codes with increasing n
such that for any ε, δ > 0 and for sufficiently large n the rate is at least R− δ and Bob’s
recovered state ρ has fidelity F = 〈ψ|ρ|ψ〉 ≥ 1−ε. The quantum channel capacity Q(N )
is the supremum of all achievable rates.

There is a regularized formula for Q(N ). To understand the formula we first need
to recall that any channel NA→B has an isometric Stinespring dilation UA→BE where
E is the channel’s “environment.” Furthermore, any input density operator ρA has a
purification; if we introduce a reference system R, for any ρA there is a pure state ψRA
such that ρA = trR (|ψ〉〈ψ|). (I will sometimes use ψ rather than the Dirac ket |ψ〉
to denote a pure state vector, when the context makes the meaning clear and the ket
notation seems unnecessarily cumbersome.) Applying the channel’s dilation to ψRA, we
obtain an output pure state φRBE , which we represent graphically as:
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R

A U B

E

- -

-

We then define the one-shot quantum capacity of the channel N by

Q1(N ) := max
A

(−H(R|B)φRBE
) . (10.261)

Here the maximum is taken over all possible input density operators {ρA}, and H(R|B)
is the quantum conditional entropy

H(R|B) = H(RB)−H(B) = H(E)−H(B), (10.262)

where in the last equality we used H(RB) = H(E) in a pure state of RBE. The quantity
−H(R|B) has such a pivotal role in quantum communication theory that it deserves to
have its own special name. We call it the coherent information from R to B and denote
it

Ic(R〉B)φ = −H(R|B)φ = H(B)φ −H(E)φ. (10.263)

This quantity does not depend on how the purification φ of the density operator ρA is
chosen; any one purification can be obtained from any other by a unitary transformation
acting on R alone, which does not alter H(B) or H(E). Indeed, since the expression
H(B)−H(E) only depends on the marginal state of BE, for the purpose of computing
this quantity we could just as well consider the input to the channel to be the mixed
state ρA obtained from ψRA by tracing out the reference system R.

For a classical channel, H(R|B) is always nonnegative and the coherent information
is never positive. In the quantum setting, Ic(R〉B) is positive if the reference system R

is more strongly correlated with the channel output B than with the environment E.
Indeed, an alternative way to express the coherent information is

Ic(R〉B) =
1
2

(I(R;B)− I(R;E)) = H(B)−H(E), (10.264)

where we note that (because φRBE is pure)

I(R;B) = H(R) +H(B)−H(RB) = H(R) +H(B)−H(E),

I(R;E) = H(R) +H(E)−H(RE) = H(R) +H(E)−H(B). (10.265)

Now we can state the regularized formula for the quantum channel capacity — it is
the optimal asymptotic coherent information per letter

Q(NA→B) = lim
n→∞

max
An

1
n
Ic(Rn〉Bn)φRnBnEn , (10.266)

where the input density operator ρAn is allowed to be entangled across the n channel
uses. If coherent information were subadditive, we could reduce this expression to a
single-letter quantity, the one-shot capacity Q1(N ). But, unfortunately, for some chan-
nels the coherent information can be superadditive, in which case the regularized formula
is not very informative. At least we can say that Q1(N ) is an achievable rate, and there-
fore a lower bound on the capacity.
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10.7.2 The decoupling principle

Before we address achievability, let’s understand why eq.(10.266) is an upper bound on
the capacity. First we note that the monotonicity of mutual information implies a corre-
sponding monotonicity property for the coherent information. Suppose that the channel
NA→B

1 is followed by a channel NB→C
2 . Because mutual information is monotonic we

have

I(R;A) ≥ I(R;B) ≥ I(R;C), (10.267)

which can also be expressed as

H(R)−H(R|A) ≥ H(R)−H(R|B) ≥ H(R)−H(R|C), (10.268)

and hence

Ic(R〉A) ≥ Ic(R〉B) ≥ Ic(R〉C). (10.269)

A quantum channel cannot increase the coherent information, which has been called the
quantum data-processing inequality.

Suppose now that ρA is a quantum code state, and that the two channels acting in
succession are a noisy channel NA→B and the decoding map DB→B̂ applied by Bob to
the channel output in order to recover the channel input. Consider the action of the
dilation UA→BE of N followed by the dilation V B→B̂B′

of D on the input purification
ψRA, under the assumption that Bob is able to recover perfectly:

ψRA
U−→ φRBE

V−→ ψ̃RB̂B′E = ψRB̂ ⊗ χB′E . (10.270)

If the decoding is perfect, then after decoding Bob holds in system B̂ the purification
of the state of R, so that

H(R) = Ic(R〉A)ψ = Ic(R〉B̂)ψ̃. (10.271)

Since the initial and final states have the same coherent information, the quantum data
processing inequality implies that the same must be true for the intermediate state
φRBE :

H(R) = Ic(R〉B) = H(B)−H(E)

=⇒ H(B) = H(RE) = H(R) +H(E). (10.272)

Thus the state of RE is a product state. We have found that if Bob is able to recover
perfectly from the action of the channel dilation UA→BE on the pure state ψRA, then,
in the resulting channel output pure state φRBE , the marginal state ρRE must be the
product ρR ⊗ ρE .

Conversely, suppose that ψRA is an entangled pure state, and Alice wishes to transfer
the purification of R to Bob by sending it through the noisy channel UA→BE . And
suppose that in the resulting tripartite pure state φRBE , the marginal state of RE
factorizes as ρRE = ρR⊗ρE . Then B decomposes into subsystems B = B̂1B2 such that

φRBE = ψ̃RB1 ⊗ χB2E . (10.273)

Now Bob can construct an isometric decoder V B1→B̂, which extracts the purification of
R into Bob’s preferred subsystem B̂. Since all purifications of R differ by an isometry on
Bob’s side, Bob can choose his decoding map to output the state ψRB̂; then the input
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state of RA is successfully transmitted to RB̂ as desired. Furthermore, we may choose
the initial state to be a maximally entangled state ΦRA of the reference system with the
code space of a quantum code; if the marginal state of RE factorizes in the resulting
output pure state φRBE , then by the relative state method of Chapter 3 we conclude
that any state in the code space can be sent through the channel and decoded with
perfect fidelity by Bob.

We have found that purified quantum information transmitted through the noisy
channel is exactly correctable if and only if the reference system is completely uncor-
related with the channel’s environment, or as we sometimes say, decoupled from the
environment. This is the decoupling principle, a powerful notion underlying many of the
key results in the theory of quantum channels.

So far we have shown that exact correctability corresponds to exact decoupling. But we
can likewise see that approximate correctability corresponds to approximate decoupling.
Suppose for example that the state of RE is close to a product state in the L1 norm:

‖ρRE − ρR ⊗ ρE‖1 ≤ ε. (10.274)

As we learned in Chapter 2, if two density operators are close together in this norm, that
means they also have fidelity close to one and hence purifications with a large overlap.
Any purification of the product state ρR ⊗ ρE has the form

φ̃RBE = ψ̃RB1 ⊗ χB2E , (10.275)

and since all purifications of ρRE can be transformed to one another by an isometry
acting on the purifying system B, there is a way to choose the decomposition B = B1B2

such that

F (ρRE ,ρR ⊗ ρE) =
∥∥∥〈φRBE |φ̃RBE〉∥∥∥2

≥ 1− ‖ρRE − ρR ⊗ ρE‖1 ≥ 1− ε. (10.276)

Furthermore, because fidelity is monotonic, both under tracing out E and under the
action of Bob’s decoding map, and because Bob can decode φ̃RBE perfectly, we conclude
that

F
(
DB→B̂ (ρRB) , ψRB̂

)
≥ 1− ε (10.277)

if Bob chooses the proper decoding map D. Thus approximate decoupling in the L1 norm
implies high-fidelity correctability. It is convenient to note that the argument still works
the same way if ρRE is ε-close in the L1 norm to ρ̃R ⊗ ρ̃E , where ρ̃R is not necessarily
trE (ρRE) and ρ̃E is not necessarily trR (ρRE). We’ll use this form of the argument in
what follows.

On the other hand, if (approximate) decoupling fails, the fidelity of Bob’s decoded
state will be seriously compromised. Suppose that in the state φRBE we have

H(R) +H(E)−H(RE) = ε > 0. (10.278)

Then the coherent information of φ is

Ic(R〉B)φ = H(B)φ −H(E)φ = H(RE)φ −H(E)φ = H(R)φ − ε. (10.279)

By the quantum data processing inequality, we know that the coherent information of
Bob’s decoded state ψ̃RB̂ is no larger; hence

Ic(R〉B̂)ψ̃ = H(R)ψ −H(RB̂)ψ̃ ≤ H(R)ψ − ε, (10.280)
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and therefore

H(RB̂)ψ̃ ≥ ε (10.281)

The deviation from perfect decoupling means that the decoded state of RB̂ has some
residual entanglement with the environment E, and is therefore impure.

Now we have the tools to derive an upper bound on the quantum channel capacity
Q(N ). For n channel uses, let ψ(n) be a maximally entangled state of a reference system
H(n)
R ⊆ H⊗nR with a code space H(n)

A ⊆ H⊗nA , where dim H(n)
A = 2nR, so that

Ic(Rn〉An)ψ(n) = H(Rn)ψ(n) = nR. (10.282)

Now An is transmitted to Bn through
(
UA→BE

)⊗n, yielding the pure state φ(n) of
RnBnEn. If Bob can decode with high fidelity, then his decoded state must have coherent
information H(Rn)ψ(n)−o(n), and the quantum data processing inequality then implies
that

Ic(Rn〉Bn)φ(n) = H(Rn)ψ(n) − o(n) = nR− o(n) (10.283)

and hence

R =
1
n
Ic(Rn〉Bn)φ(n) + o(1). (10.284)

Taking the limit n → ∞ we see that the expression for Q(N ) in eq.(10.266) is an
upper bound on the quantum channel capacity. In Exercise 10.10, you will sharpen the
statement eq.(10.283), showing that

H(Rn)− Ic(Rn〉Bn) ≤ 2H2(ε) + 4εnR. (10.285)

To show thatQ(N ) is an achievable rate, rather than just an upper bound, we will need
to formulate a quantum version of Shannon’s random coding argument. Our strategy
(see §10.9.3) will be to demonstrate the existence of codes that achieve approximate
decoupling of En from Rn.

10.7.3 Degradable channels

Though coherent information can be superadditive in some cases, there are classes of
channels for which the coherent information is additive, and therefore the quantum chan-
nel capacity matches the single-shot capacity, for which there is a single-letter formula.
One such class is the class of degradable channels.

To understand what a degradable channel is, we first need the concept of a comple-
mentary channel. Any channel NA→B has a Stinespring dilation UA→BE , from which
we obtain NA→B by tracing out the environment E. Alternatively we obtain the channel
NA→E
c complementary to NA→B by tracing out B instead. Since we have the freedom

to compose UA→BE with an isometry V E→E without changing NA→B, the complemen-
tary channel is defined only up to an isometry acting on E. This lack of uniqueness
need not trouble us, because the properties of interest for the complementary channel
are invariant under such isometries.

We say that the channel NA→B is degradable if we can obtain its complementary
channel by composing NA→B with a channel mapping B to E:

NA→E
c = T B→E ◦ NA→B. (10.286)
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In this sense, when Alice sends a state through the channel, Bob, who holds system B,
receives a less noisy copy than Eve, who holds system E.

Now suppose that UA1→B1E1
1 and UA2→B2E2

2 are dilations of the degradable channels
N1 and N2. Alice introduces a reference system R and prepares an input pure state
ψRA1A2 , then sends the state to Bob via N1 ⊗ N2, preparing the output pure state
φRB1B2E1E2 . We would like to evaluate the coherent information Ic(R〉B1B2)φ in this
state.

The key point is that because both channels are degradable, there is a product channel
T1 ⊗ T2 mapping B1B2 to E1E2, and the monotonicity of mutual information therefore
implies

I(B1;B2) ≥ I(E1;E2). (10.287)

Therefore, the coherent information satisfies

Ic(R〉B1B2) = H(B1B2)−H(E1E2)

= H(B1) +H(B2)− I(B1;B2)−H(E1)−H(E2) + I(E1;E2)

≤ H(B1)−H(E1) +H(B2)−H(E2). (10.288)

These quantities are all evaluated in the state φRB1B2E1E2 . But notice that for the
evaluation ofH(B1)−H(E1), the isometry UA2→B2E2

2 is irrelevant. This quantity is really
the same as the coherent information Ic(RA2〉B1), where now we regard A2 as part of the
reference system for the input to channel N1. Similarly H(B2)−H(E2) = Ic(RA1〉B2),
and therefore,

Ic(R〉B1B2) ≤ Ic(RA2〉B1) + Ic(RA1〉B2) ≤ Q1(N1) +Q1(N2), (10.289)

where in the last inequality we use the definition of the one-shot capacity as coher-
ent information maximized over all inputs. Since Q1(N1 ⊗ N2) is likewise defined by
maximizing the coherent information Ic(R〉B1B2), we find that

Q1(N1 ⊗N2) ≤ Q1(N1) +Q1(N2) (10.290)

if N1 and N2 are degradable.
The regularized formula for the capacity of N is

Q(N ) = lim
n→∞

1
n
Q1(N⊗n) ≤ Q1(N ), (10.291)

where the last inequality follows from eq.(10.290) assuming that N is degradable. We’ll
see that Q1(N ) is actually an achievable rate, and therefore a single-letter formula for
the quantum capacity of a degradable channel.

As a concrete example of a degradable channel, consider the generalized dephasing
channel with dilation

UA→BE : |x〉A 7→ |x〉B ⊗ |αx〉E , (10.292)

where {|x〉A}, {|x〉B} are orthonormal bases for HA, HB respectively, and the states
{|αx〉E} of the environment are not necessarily orthogonal. The corresponding channel
is

NA→B : ρ 7→
∑
x,x′

|x〉〈x|ρ|x′〉〈αx′ |αx〉〈x′|, (10.293)
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which has the complementary channel

NA→E
c : ρ 7→

∑
x

|αx〉〈x|ρ|x〉〈αx|. (10.294)

In the special case where the states {|αx〉E = |x〉E} are orthonormal, we obtain the
completely dephasing channel

∆A→B : ρ 7→
∑
x

|x〉〈x|ρ|x〉〈x|, (10.295)

whose complement ∆A→E has the same form as ∆A→B. We can easily check that

NA→E
c = NC→E

c ◦∆B→C ◦ NA→B; (10.296)

therefore Nc ◦∆ degrades N to Nc. Thus N is degradable and Q(N ) = Q1(N ).
Further examples of degradable channels are discussed in Exercise 10.12.

10.8 Quantum Protocols

Using the decoupling principle in an i.i.d. setting, we can prove achievable rates for
two fundamental quantum protocols. These are fondly known as the father and mother
protocols, so named because each spawns a brood of interesting corollaries. We will
formulate these protocols and discuss some of their “children” in this section, postponing
the proofs until §10.9.

10.8.1 Father: Entanglement-assisted quantum communication

The father protocol is a scheme for entanglement-assisted quantum communication.
Through many uses of a noisy quantum channel NA→B, this protocol sends quantum
information with high fidelity from Alice to Bob, while also consuming some previously
prepared quantum entanglement shared by Alice and Bob. The task performed by the
protocol is summarized by the father resource inequality〈

NA→B : ρA
〉

+
1
2
I(R;E)[qq] ≥ 1

2
I(R;B)[q → q], (10.297)

where the resources on the left-hand side can be used to achieve the result on the right-
hand side, in an asymptotic i.i.d. setting. That is, for any positive ε, the quantum channel
N may be used n times to transmit n

2 I(R;B)−o(n) qubits with fidelity F ≥ 1−ε, while
consuming n

2 I(R;E) + o(n) ebits of entanglement shared between sender and receiver.
These entropic quantities are evaluated in a tripartite pure state φRBE , obtained by
applying the Stinespring dilation UA→BE of NA→B to the purification ψRA of the input
density operator ρA. Eq.(10.297) means that for any input density operator ρA, there
exists a coding procedure that achieves the quantum communication at the specified
rate by consuming entanglement at the specified rate.

To remember the father resource inequality, it helps to keep in mind that I(R;B)
quantifies something good, the correlation with the reference system which survives
transmission through the channel, while I(R;E) quantifies something bad, the corre-
lation between the reference system R and the channel’s environment E, which causes
the transmitted information to decohere. The larger the good quantity I(R;B), the
higher the rate of quantum communication. The larger the bad quantity I(R;E), the
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more entanglement we need to consume to overcome the noise in the channel. To re-
member the factor of 1

2 in front of I(R;B), consider the case of a noiseless quantum
channel, where ψRA is maximally entangled; in that case there is no environment,

φRB =
1√
d

d−1∑
i=0

|i〉R ⊗ |i〉B, (10.298)

and 1
2I(R;B) = H(R) = H(B) = log2 d is just the number of qubits in A. To remember

the factor of 1
2 in front of I(R;E), consider the case of a noiseless classical channel,

where the quantum information completely decoheres in a preferred basis; in that case

φRBE =
1√
d

d−1∑
i=0

|i〉R ⊗ |i〉B ⊗ |i〉E , (10.299)

and I(R;B) = I(R;E) = H(R) = H(B) = log2 d. Then the father inequality merely
says that we can teleport n

2 qubits by consuming n
2 ebits and sending n classical bits.

Before proving the father resource inequality, we will first discuss a few of its inter-
esting consequences.

Entanglement-assisted classical communication.

Suppose Alice wants to send classical information to Bob, rather than quantum in-
formation. Then we can use superdense coding to turn the quantum communication
achieved by the father protocol into classical communication, at the cost of consuming
some additional entanglement. By invoking the superdense coding resource inequality

SD : [q → q] + [qq] ≥ 2[c→ c] (10.300)
n
2 I(R;B) times, and combining with the father resource inequality, we obtain I(R;B)
bits of classical communication per use of the channel while consuming a number of
ebits

1
2
I(R;E) +

1
2
I(R;B) = H(R) (10.301)

per channel use. Thus we obtain an achievable rate for entanglement-assisted classical
communication through the noisy quantum channel:〈

NA→B : ρA
〉

+H(R)[qq] ≥ I(R;B)[c→ c]. (10.302)

We may define the entanglement-assisted classical capacity CE(N ) as the supremum over
achievable rates of classical communication per channel use, assuming that an unlimited
amount of entanglement is available at no cost. Then the resource inequality eq.(10.302)
implies

CE(N ) ≥ max
A

I(R;B). (10.303)

In this case there is a matching upper bound, so CE(N ) is really an equality, and hence
a single-letter formula for the entanglement-assisted classical capacity. Furthermore,
eq.(10.302) tells us a rate of entanglement consumption which suffices to achieve the
capacity. If we disregard the cost of entanglement, the father protocol shows that a rate
can be achieved for entanglement-assisted quantum communication which is half the
entanglement-assisted classical capacity CE(N ) of the noisy channel N . That’s clearly
true, since by consuming entanglement we can use teleportation to convert n bits of
classical communication into n/2 qubits of quantum communication.
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Quantum channel capacity.

It may be that Alice wants to send quantum information to Bob, but Alice and Bob are
not so fortunate as to have pre-existing entanglement at their disposal. They can still
make use of the father protocol, if we are willing to loan them some entanglement, which
they are later required to repay. In this case we say that the entanglement catalyzes the
quantum communication. Entanglement is needed to activate the process to begin with,
but at the conclusion of the process no net entanglement has been consumed.

In this catalytic setting, Alice and Bob borrow 1
2I(R;E) ebits of entanglement per

use of the channel to get started, execute the father protocol, and then sacrifice some of
the quantum communication they have generated to replace the borrowed entanglement
via the resource inequality

[q → q] ≥ [qq]. (10.304)

After repaying their debt, Alice and Bob retain a number of qubits of quantum commu-
nication per channel use

1
2
I(R;B)− 1

2
I(R;E) = H(B)−H(E) = Ic(R〉B), (10.305)

the channel’s coherent information from R to B. We therefore obtain the achievable rate
for quantum communication〈

NA→B : ρA
〉
≥ Ic(R〉B)[q → q], (10.306)

albeit in the catalyzed setting. It can actually be shown that this same rate is achievable
without invoking catalysis (see §10.9.4). As already discussed in §10.7.1, though, because
of the superadditivity of coherent information this resource inequality does not yield a
general single-letter formula for the quantum channel capacity Q(N ).

10.8.2 Mother: Quantum state transfer

In the mother protocol, Alice, Bob, and Eve initially share a tripartite pure state φABE ;
thus Alice and Bob together hold the purification of Eve’s system E. Alice wants to
send her share of this purification to Bob, using as few qubits of noiseless quantum
communication as possible. Therefore, Alice divides her system A into two subsystems
A1 and A2, where A1 is as small as possible and A2 is uncorrelated with E. She keeps
A2 and sends A1 to Bob. After receiving A1, Bob divides A1B into two subsystems B1

and B2, where B1 purifies E and B2 purifies A2. Thus, at the conclusion of the protocol,
Bob holds the purification of E in B1, and in addition Alice and Bob share a bipartite
pure state in A2B2. The protocol is portrayed in the following diagram:
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In the i.i.d. version of the mother protocol, the initial state is φ⊗nABE , and the task
achieved by the protocol is summarized by the mother resource inequality

〈φABE〉+
1
2
I(A;E)[q → q] ≥ 1

2
I(A;B)[qq] + 〈φ′

B̃E
〉, (10.307)
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where the resources on the left-hand side can be used to achieve the result on the right-
hand side, in an asymptotic i.i.d. setting, and the entropic quantities are evaluated in the
state φABE . That is, if A(n)

1 denotes the state Alice sends and A(n)
2 denotes the state she

keeps, then for any positive ε, the state of A(n)
2 En is ε-close in the L1 norm to a product

state, where log
∣∣∣A(n)

1

∣∣∣ = n
2 I(A;E) + o(n), while A

(n)
2 B

(n)
2 contains n

2 I(A;B) − o(n)
shared ebits of entanglement. Eq.(10.307) means that for any input pure state φABE
there is a way to choose the subsystem A

(n)
2 of the specified dimension such that A(n)

2

and En are nearly uncorrelated and the specified amount of entanglement is harvested
in A(n)

2 B
(n)
2 .

The mother protocol is in a sense dual to the father protocol. While the father pro-
tocol consumes entanglement to achieve quantum communication, the mother protocol
consumes quantum communication and harvests entanglement. For the mother, I(A;B)
quantifies the correlation between Alice and Bob at the beginning of the protocol (some-
thing good), and I(A;E) quantifies the noise in the initial shared entanglement (some-
thing bad). The mother protocol can also be viewed as a quantum generalization of the
Slepian-Wolf distributed compression protocol discussed in §10.1.3. The mother proto-
col merges Alice’s and Bob’s shares of the purification of E by sending Alice’s share to
Bob, much as distributed source coding merges the classical correlations shared by Alice
and Bob by sending Alice’s classical information to Bob. For this reason the mother
protocol has been called the fully quantum Slepian-Wolf protocol; the modifier “fully”
will be clarified in §10.8.2, when we discuss a variant on quantum state transfer in which
classical communication is assumed to be freely available.

We may also view the mother protocol as a generalization of the entanglement con-
centration protocol discussed in §10.4, extending that discussion in three ways:

1. The initial entangled state shared by Alice and Bob may be mixed rather than pure.
2. The communication from Alice to Bob is quantum rather than classical.
3. The amount of communication that suffices to execute the protocol is quantified by

the resource inequality.

Also note that if the state of AE is pure (uncorrelated with B), then the mother protocol
reduces to Schumacher compression. In that case 1

2I(A;E) = H(A), and the mother
resource inequality states that the purification of An can be transferred to Bob with
high fidelity using nH(A) + o(n) qubits of quantum communication.

Before proving the mother resource inequality, we will first discuss a few of its inter-
esting consequences.

Hashing inequality.

Suppose Alice and Bob wish to distill entanglement from many copies of the state φABE ,
using only local operations and classical communication (LOCC). In the catalytic set-
ting, they can borrow some quantum communication, use the mother protocol to distill
some shared entanglement, and then use classical communication and their harvested
entanglement to repay their debt via quantum teleportation. Using the teleportation
resource inequality

TP : [qq] + 2[c→ c] ≥ [q → q] (10.308)
n
2 I(A;E) times, and combining with the mother resource inequality, we obtain

〈φABE〉+ I(A;E)[c→ c] ≥ Ic(A〉B)[qq] + 〈φ′
B̃E
〉, (10.309)
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since the net amount of distilled entanglement is 1
2I(A;B) per copy of φ achieved by

the mother minus the 1
2I(A;E) per copy consumed by teleportation, and

1
2
I(A;B)− 1

2
I(A;E) = H(B)−H(E) = Ic(A〉B). (10.310)

Eq.(10.309) is the hashing inequality, which quantifies an achievable rate for distilling
ebits of entanglement shared by Alice and Bob from many copies of a mixed state ρAB,
using one-way classical communication, assuming that Ic(A〉B) = −H(A|B) is positive.
Furthermore, the hashing inequality tells us how much classical communication suffices
for this purpose.

In the case where the state ρAB is pure, Ic(A〉B) = H(A) − H(AB) = H(A) and
there is no environment E; thus we recover our earlier conclusion about concentration
of pure-state bipartite entanglement — that H(A) Bell pairs can be extracted per copy,
with a negligible classical communication cost.

State merging.

Suppose Alice and Bob share the purification of Eve’s state, and Alice wants to transfer
her share of the purification to Bob, where now unlimited classical communication from
Alice to Bob is available at no cost. In contrast to the mother protocol, Alice wants to
achieve the transfer with as little one-way quantum communication as possible, even if
she needs to send more bits in order to send fewer qubits.

In the catalytic setting, Alice and Bob can borrow some quantum communication,
perform the mother protocol, then use teleportation and the entanglement extracted by
the mother protocol to repay some of the borrowed quantum communication. Combining
teleportation of n

2 I(A;B) qubits with the mother resource inequality, we obtain

〈φABE〉+H(A|B)[q → q] + I(A;B)[c→ c] ≥ 〈φ′
B̃E
〉, (10.311)

using

1
2
I(A;E)− 1

2
I(A;B) = H(E)−H(B) = H(AB)−H(B) = H(A|B). (10.312)

Eq.(10.311) is the state-merging inequality, expressing how much quantum and classical
communication suffices to achieve the state transfer in an i.i.d. setting, assuming that
H(A|B) is nonnegative.

Like the mother protocol, this state merging protocol can be viewed as a (partially)
quantum version of the Slepian-Wolf protocol for merging classical correlations. In the
classical setting,H(X|Y ) quantifies Bob’s remaining ignorance about Alice’s information
X when Bob knows only Y ; correspondingly, Alice can reveal X to Bob by sending
H(X|Y ) bits per letter of X. Similarly, state merging provides an operational meaning
to the quantum conditional information H(A|B), as the number of qubits per copy of φ
that Alice sends to Bob to convey her share of the purification of E, assuming classical
communication is free. In this sense we may regard H(A|B) as a measure of Bob’s
remaining “ignorance” about the shared purification of E when he holds only B.

Classically,H(X|Y ) is nonnegative, and zero if and only if Bob is already certain about
XY , but quantumly H(A|B) can be negative. How can Bob have “negative uncertainty”
about the quantum state of AB? If H(A|B) < 0, or equivalently if I(A;E) < I(A;B),
then the mother protocol yields more quantum entanglement than the amount of quan-
tum communication it consumes. Therefore, when H(A|B) is negative (i.e. Ic(A〉B) is
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positive), the mother resource inequality implies the Hashing inequality, asserting that
classical communication from Alice to Bob not only achieves state transfer, but also
distills −H(A|B) ebits of entanglement per copy of φ. These distilled ebits can be de-
posited in the entanglement bank, to be withdrawn as needed in future rounds of state
merging, thus reducing the quantum communication cost of those future rounds. Bob’s
“negative uncertainty” today reduces the quantum communication cost of tasks to be
performed tomorrow.

10.8.3 Operational meaning of strong subadditivity

The observation that H(A|B) is the quantum communication cost of state merging
allows us to formulate a simple operational proof of the strong subadditivity of Von
Neumann entropy, expressed in the form

H(A|BC) ≤ H(A|B), or −H(A|B) ≤ −H(A|BC). (10.313)

When H(A|B) is positive, eq.(10.313) is the obvious statement that it is no harder to
merge Alice’s system with Bob’s if Bob holds C as well as B. When H(A|B) is negative,
eq.(10.313) is the obvious statement that Alice and Bob can distill no less entanglement
using one-way classical communication if Bob holds C as well as B.

To complete this argument, we need to know that H(A|B) is not only achievable
but also that it is the optimal quantum communication cost of state merging, and that
−H(A|B) ebits is the optimal yield of hashing. The optimality follows from the principle
that, for a bipartite pure state, k qubits of quantum communication cannot increase the
shared entanglement of AB by more than k ebits.

If H(A|B) is negative, consider cutting the system ABE into the two parts AE and
B, as in the following figure:
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In the hashing protocol, applied to n copies of φABE , the entanglement across this cut
at the beginning of the protocol is nH(B). By the end of the protocol En has decoupled
from A

(n)
2 and has entanglement nH(E) with B(n)

1 , ignoring o(n) corrections. If k ebits
shared by Alice and Bob are distilled, the final entanglement across the AE-B cut is

nH(E) + k ≤ nH(B) =⇒ k

n
≤ H(B)−H(E) = −H(A|B). (10.314)

This inequality holds because LOCC cannot increase the entanglement across the cut,
and implies that no more than −H(A|B) ebits of entanglement per copy of φABE can
be distilled in the hashing protocol, asymptotically.

On the other hand, if H(A|B) is positive, at the conclusion of state merging B(n)
1 is

entangled with En, and the entanglement across the AE-B cut is at least nH(E). To
achieve this increase in entanglement, the number of qubits sent from Alice to Bob must
be at least

k ≥ nH(E)− nH(B) =⇒ k

n
≥ H(E)−H(B) = H(A|B) (10.315)
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This inequality holds because the entanglement across the cut cannot increase by more
than the quantum communication across the cut, and implies that at least H(A|B)
qubits must be sent per copy of φABE to achieve state merging.

To summarize, we have proven strong subadditivity, not by the traditional route of
sophisticated matrix analysis, but via a less direct method. This proof is built on two
cornerstones of quantum information theory — the decoupling principle and the theory
of typical subspaces — which are essential ingredients in the proof of the mother resource
inequality.

10.8.4 Negative conditional entropy in thermodynamics

As a further application of the decoupling mother resource inequality, we now revisit
Landauer’s Principle, developing another perspective on the implications of negative
quantum conditional entropy. Recall that erasure of a bit is a process which maps the
bit to 0 irrespective of its initial value. This process is irreversible — knowing only the
final state 0 after erasure, we cannot determine whether the initial state before erasure
was 0 or 1. Irreversibility implies that erasure incurs an unavoidable thermodynamic
cost. According to Landauer’s Principle, erasing a bit at temperature T requires work
no less than W = kT ln 2.

A specific erasure procedure is analyzed in Exercise 10.16. Suppose a two-level quan-
tum system has energy eigenstates |0〉, |1〉 with corresponding eigenvalues E0 and E1,
where E = E1 − E0 ≥ 0. Initially the qubit is in an unknown mixture of these two
states, and the energy splitting is E = 0. We erase the bit in three steps. In the first
step, we bring the bit into contact with a heat bath at temperature T > 0, and wait for
the bit to come to thermal equilibrium with the bath. In this step the bit “forgets” its
initial value, but the bit is not yet erased because it has not been reset. In the second
step, with the bit still in contact with the bath, we turn on a control field which slowly
increases E1 to a value much larger than kT while maintaining thermal equilibrium all
the while, thus resetting the bit to |0〉. In the third step, we isolate the bit from the
bath and turn off the control field, so the two states of the bit become degenerate again.
As shown in Exercise 10.16, work W = kT ln 2 is required to execute step 2, with the
energy dissipated as heat flowing from bit to bath.

We can also run the last two steps backward, increasing E1 while the bit is isolated
from the bath, then decreasing E1 with the bit in contact with the bath. This procedure
maps the state |0〉 to the maximally mixed state of the bit, extracting work W = kT ln 2
from the bath in the process.

Erasure is irreversible because the agent performing the erasure does not know the in-
formation being erased. (If a copy of the information were stored in her memory, survival
of that copy would mean that the erasure had not succeeded). From an information-
theoretic perspective, the reduction in the thermodynamic entropy of the erased bit,
and hence the work required to perform the erasure, arises because erasure reduces the
agent’s ignorance about the state of the bit, ignorance which is quantified by the Shan-
non entropy. But to be more precise, it is the conditional entropy of the system, given
the state of the agent’s memory, which captures the agent’s ignorance before erasure
and therefore also the thermodynamic cost of erasing. Thus the minimal work needed
to erase system A should be expressed as

W (A|O) = H(A|O)kT ln 2, (10.316)
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where O is the memory of the observer who performs the erasure, and H(A|O) quantifies
that observer’s ignorance about the state of A.

But what if A and O are quantum systems? We know that if A and O are entangled,
then the conditional entropy H(A|O) can be negative. Does that mean we can erase A
while extracting work rather than doing work?

Yes, we can! Suppose for example that A and O are qubits and their initial state is
maximally entangled. By controlling the contact between AO and the heat bath, the
observer can extract work W = 2kT log 2 while transforming AO to a maximally mixed
state, using the same work extraction protocol as described above. Then she can do work
W = kT log 2 to return A to the state |0〉. The net effect is to erase A while extracting
work W = kT log 2, satisfying the equality eq.(10.316).

To appreciate why this trick works, we should consider the joint state of AO rather
than the state of A alone. Although the marginal state of A is mixed at the beginning
of the protocol and pure at the end, the state of AO is pure at the beginning and mixed
at the end. Positive work is extracted by sacrificing the purity of AO.

To generalize this idea, let’s consider n� 1 copies of the state ρAO of system A and
memory O. Our goal is to map the n copies of A to the erased state |000 . . . 0〉 while
using or extracting the optimal amount of work. In fact, the optimal work per copy is
given by eq.(10.316) in the n→∞ limit.

To achieve this asymptotic work per copy, the observer first projects An onto its
typical subspace, succeeding with probability 1 − o(1). A unitary transformation then
rotates the typical subspace to a subsystem Ā containing n(H(A) + o(1)) qubits, while
erasing the complementary qubits as in eq.(10.144). Now it only remains to erase Ā.

The mother resource inequality ensures that we may decompose Ā into subsystems
A1A2 such that A2 contains n

2 (I(A;O)− o(1)) qubits and is nearly maximally entangled
with a subsystem of On. What is important for the erasure protocol is that we may
identify a subsystem of ĀOn containing n (I(A;O)− o(1)) qubits which is only distance
o(1) away from a pure state. By controlling the contact between this subsystem and the
heat bath, we may extract work W = n(I(A;O)− o(1))kT log 2 while transforming the
subsystem to a maximally mixed state. We then proceed to erase Ā, expending work
kT log |Ā| = n(H(A)+ o(1))kT log 2. The net work cost of the erasure, per copy of ρAO,
is therefore

W = (H(A)− I(A;O) + o(1)) kT log 2 = (H(A|O) + o(1)) kT log 2, (10.317)

and the erasure succeeds with probability 1− o(1). A notable feature of the protocol is
that only the subsystem of On which is entangled with A2 is affected. Any correlation
of the memory O with other systems remains intact, and can be exploited in the future
to reduce the cost of erasure of those other systems.

As does the state merging protocol, this erasure protocol provides an operational
interpretation of strong subadditivity. For positiveH(A|O),H(A|O) ≥ H(A|OO′) means
that it is no harder to erase A if the observer has access to both O and O′ than if she
has access to O alone. For negative H(A|O), −H(A|OO′) ≥ −H(A|O) means that we
can extract at least as much work from AOO′ as from its subsystem AO.

To carry out this protocol and extract the optimal amount of work while erasing A,
we need to know which subsystem of On provides the purification of A2. The decou-
pling argument ensures that this subsystem exists, but does not provide a constructive
method for finding it, and therefore no concrete protocol for erasing at optimal cost.
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This quandary is characteristic of Shannon theory; for example, Shannon’s noisy channel
coding theorem ensures the existence of a code that achieves the channel capacity, but
does not provide any explicit code construction.

10.9 The Decoupling Inequality

Achievable rates for quantum protocols are derived by using random codes, much as in
classical Shannon theory. But this similarity between classical and quantum Shannon
theory is superficial — at a deeper conceptual level, quantum protocols differ substan-
tially from classical ones. Indeed, the decoupling principle underlies many of the key
findings of quantum Shannon theory, providing a unifying theme that ties together
many different results. In particular, the mother and father resource inequalities, and
hence all their descendants enumerated above, follow from an inequality that specifies
a sufficient condition for decoupling.

This decoupling inequality addresses the following question: Suppose that Alice and
Eve share a quantum state σAE , where A is an n-qubit system. This state may be
mixed, but in general A and E are correlated; that is, I(A;E) > 0. Now Alice starts
discarding qubits one at a time, where each qubit is a randomly selected two-dimensional
subsystem of what Alice holds. Each time Alice discards a qubit, her correlation with
E grows weaker. How many qubits should she discard so that the subsystem she retains
has a negligible correlation with Eve’s system E?

To make the question precise, we need to formalize what it means to discard a random
qubit. More generally, suppose that A has dimension |A|, and Alice decomposes A into
subsystems A1 and A2, then discards A1 and retains A2. We would like to consider many
possible ways of choosing the discarded system with specified dimension |A1|. Equiv-
alently, we may consider a fixed decomposition A = A1A2, where we apply a unitary
transformation U to A before discarding A1. Then discarding a random subsystem with
dimension |A1| is the same thing as applying a random unitary U before discarding the
fixed subsystem A1:

σAE
@

@ E

A

�
�

U
A1

A2

To analyze the consequences of discarding a random subsystem, then, we will need
to be able to compute the expectation value of a function f(U) when we average U

uniformly over the group of unitary |A|×|A| matrices. We denote this expectation value
as EU [f(U)]; to perform computations we will only need to know that EU is suitably
normalized, and is invariant under left or right multiplication by any constant unitary
matrix V :

EU [I] = 1, EU [f(U)] = EU [f(V U)] = EU [f(UV )] . (10.318)

These conditions uniquely define EU [f(U)], which is sometimes described as the integral
over the unitary group using the invariant measure or Haar measure on the group.

If we apply the unitary transformation U to A, and then discard A1, the marginal
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state of A2E is

σA2E(U) := trA1

(
(UA ⊗ IE) σAE

(
U †
A ⊗ IE

))
. (10.319)

The decoupling inequality expresses how close (in the L1 norm) σA2E is to a product
state when we average over U :(

EU

[
‖σA2E(U)− σmax

A2
⊗ σE‖1

])2 ≤ |A2| · |E|
|A1|

tr
(
σ2
AE

)
, (10.320)

where

σmax
A2

:=
1
|A2|

I (10.321)

denotes the maximally mixed state on A2, and σE is the marginal state trAσAE .
This inequality has interesting consequences even in the case where there is no system

E at all and σA is pure, where it becomes(
EU

[
‖σA2(U)− σmax

A2
‖1
])2 ≤ |A2|

|A1|
tr
(
σ2
A

)
=
|A2|
|A1|

. (10.322)

Eq.(10.322) implies that, for a randomly chosen pure state of the bipartite system
A = A1A2, where |A2|/|A1| � 1, the density operator on A2 is very nearly maxi-
mally mixed with high probability. One can likewise show that the expectation value
of the entanglement entropy of A1A2 is very close to the maximal value: E [H(A2)] ≥
log2 |A2| − |A2|/ (2|A1| ln 2). Thus, if for example A2 is 50 qubits and A1 is 100 qubits,
the typical entropy deviates from maximal by only about 2−50 ≈ 10−15.

10.9.1 Proof of the decoupling inequality

To prove the decoupling inequality, we will first bound the distance between σA2E and
a product state in the L2 norm, and then use the Cauchy-Schwarz inequality to obtain
a bound on the L1 distance. Eq.(10.320) follows from

EU

[
‖σA2E(U)− σmax

A2
⊗ σE‖22

]
≤ 1
|A1|

tr
(
σ2
AE

)
, (10.323)

combined with

(E [f ])2 ≤ E [f ]2 and ‖M‖21 ≤ d‖M‖22 (10.324)

(for nonnegative f), which implies

(E [‖ · ‖1])2 ≤ E
[
‖ · ‖21

]
≤ |A2| · |E| · E

[
‖ · ‖22

]
. (10.325)

We also note that

‖σA2E − σmax
A2

⊗ σE‖22 = tr
(
σA2E − σmax

A2
⊗ σE

)2
= tr

(
σ2
A2E

)
− 1
|A2|

tr
(
σ2
E

)
, (10.326)

because

tr
(
σmax
A2

)2 =
1
|A2|

; (10.327)
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therefore, to prove eq.(10.323) it suffices to show

EU

[
tr
(
σ2
A2E(U)

)]
≤ 1
|A2|

tr
(
σ2
E

)
+

1
|A1|

tr
(
σ2
AE

)
. (10.328)

We can facilitate the computation of EU

[
tr
(
σ2
A2E

(U)
)]

using a clever trick. For any
bipartite system BC, imagine introducing a second copy B′C ′ of the system. Then
(Exercise 10.17)

trC
(
σ2
C

)
= trBCB′C′ (IBB′ ⊗ SCC′) (σBC ⊗ σB′C′) , (10.329)

where SCC′ denotes the swap operator, which acts as

SCC′ : |i〉C ⊗ |j〉C′ 7→ |j〉C ⊗ |i〉C′ . (10.330)

In particular, then,

trA2E

(
σ2
A2E(U)

)
= trAEA′E′

(
IA1A′1

⊗ SA2A′2
⊗ SEE′

)
(σAE(U)⊗ σA′E′(U))

= trAEA′E′ (MAA′(U)⊗ SEE′) (σAE ⊗ σA′E′) , (10.331)

where

MAA′(U) =
(
U †
A ⊗U †

A′

)(
IA1A′1

⊗ SA2A′2

)
(UA ⊗UA′) . (10.332)

The expectation value of MAA′(U) is evaluated in Exercise 10.17; there we find

EU [MAA′(U)] = cIIAA′ + cSSAA′ (10.333)

where

cI =
1
|A2|

(
1− 1/|A1|
1− 1/|A|

)
≤ 1
|A2|

,

cS =
1
|A1|

(
1− 1/|A2|
1− 1/|A|

)
≤ 1
|A1|

. (10.334)

Plugging into eq.(10.331), we then obtain

EU

[
trA2E

(
σ2
A2E(U)

)]
≤ trAEA′E′

((
1
|A2|

IAA′ +
1
|A1|

SAA′

)
⊗ SEE′

)
(σAE ⊗ σA′E′)

=
1
|A2|

tr
(
σ2
E

)
+

1
|A1|

(
σ2
AE

)
, (10.335)

thus proving eq.(10.328) as desired.

10.9.2 Proof of the mother inequality

The mother inequality eq.(10.307) follows from the decoupling inequality eq.(10.320) in
an i.i.d. setting. Suppose Alice, Bob, and Eve share the pure state φ⊗nABE . Then there
are jointly typical subspaces of An, Bn, and En, which we denote by Ā, B̄, Ē, such that∣∣Ā∣∣ = 2nH(A)+o(n),

∣∣B̄∣∣ = 2nH(B)+o(n),
∣∣Ē∣∣ = 2nH(E)+o(n). (10.336)

Furthermore, the normalized pure state φ′
ĀB̄Ē

obtained by projecting φ⊗nABE onto Ā ⊗
B̄ ⊗ Ē deviates from φ⊗nABE by distance o(1) in the L1 norm.
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In order to transfer the purification of En to Bob, Alice first projects An onto its
typical subspace, succeeding with probability 1 − o(1), and compresses the result. She
then divides her compressed system Ā into two parts Ā1Ā2, and applies a random unitary
to Ā before sending Ā1 to Bob. Quantum state transfer is achieved if Ā2 decouples from
Ē.

Because φ′
ĀB̄Ē

is close to φ⊗nABE , we can analyze whether the protocol is successful
by supposing the initial state is φ′

ĀB̄Ē
rather than φ⊗nABE . According to the decoupling

inequality(
EU

[
‖σĀ2Ē(U)− σmax

Ā2
⊗ σĒ‖1

])2
≤ |Ā| · |Ē|

|Ā1|2
tr
(
σ2
ĀĒ

)
=

1
|Ā1|2

2n(H(A)+H(E)+o(1)) tr
(
σ2
ĀĒ

)
=

1
|Ā1|2

2n(H(A)+H(E)−H(B)+o(1)); (10.337)

here we have used properties of typical subspaces in the second line, as well as the
property that σĀĒ and σB̄ have the same nonzero eigenvalues, because φ′

ĀB̄Ē
is pure.

Eq.(10.337) bounds the L1 distance of σĀ2Ē(U) from a product state when averaged
over all unitaries, and therefore suffices to ensure the existence of at least one unitary
transformation U such that the L1 distance is bounded above by the right-hand side.
Therefore, by choosing this U , Alice can decouple Ā2 from En to o(1) accuracy in the
L1 norm by sending to Bob

log2 |Ā1| =
n

2
(H(A) +H(E)−H(B) + o(1)) =

n

2
(I(A;E) + o(1)) (10.338)

qubits, randomly chosen from the (compressed) typical subspace of An. Alice retains
nH(A)− n

2 I(A;E)− o(n) qubits of her compressed system, which are nearly maximally
mixed and uncorrelated with En; hence at the end of the protocol she shares with Bob
this many qubit pairs, which have high fidelity with a maximally entangled state. Since
φABE is pure, and therefore H(A) = 1

2 (I(A;E)− I(A;B)), we conclude that Alice and
Bob distill n

2 I(A;B) − o(n) ebits of entanglement, thus proving the mother resource
inequality.

We can check that this conclusion is plausible using a crude counting argument.
Disregarding the o(n) corrections in the exponent, the state φ⊗nABE is nearly maximally
mixed on a typical subspace of AnEn with dimension 2nH(AE), i.e. the marginal state
on ĀĒ can be realized as a nearly uniform ensemble of this many mutually orthogonal
states. If Ā1 is randomly chosen and sufficiently small, we expect that, for each state in
this ensemble, Ā1 is nearly maximally entangled with a subsystem of the much larger
system Ā2Ē, and that the marginal states on Ā2Ē arising from different states in the ĀĒ
ensemble have a small overlap. Therefore, we anticipate that tracing out Ā1 yields a state
on Ā2Ē which is nearly maximally mixed on a subspace with dimension |Ā1|2nH(AE).
Approximate decoupling occurs when this state attains full rank on Ā2Ē, since in that
case it is close to maximally mixed on Ā2Ē and therefore close to a product state on its
support. The state transfer succeeds, therefore, provided

|Ā1|2nH(AE) ≈ |Ā2| · |Ē| =
|Ā| · |Ē|
|Ā1|

≈ 2n(H(A)+H(E))

|Ā1|
=⇒ |Ā1|2 ≈ 2nI(A;E), (10.339)

as in eq.(10.338).
Our derivation of the mother resource inequality, based on random coding, does not
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exhibit any concrete protocol that achieves the claimed rate, nor does it guarantee the
existence of any protocol in which the required quantum processing can be executed ef-
ficiently. Concerning the latter point, it is notable that our derivation of the decoupling
inequality applies not just to the expectation value averaged uniformly over the unitary
group, but also to any average over unitary transformations which satisfies eq.(10.333).
In fact, this identity is satisfied by a uniform average over the Clifford group, which
means that there is some Clifford transformation on Ā which achieves the rates speci-
fied in the mother resource inequality. Any Clifford transformation on n qubits can be
reached by a circuit with O(n2) gates. Since it is also known that Schumacher com-
pression can be achieved by a polynomial-time quantum computation, Alice’s encoding
operation can be carried out efficiently.

In fact, after compressing, Alice encodes the quantum information she sends to Bob
using a stabilizer code (with Clifford encoder U), and Bob’s task, after receiving Ā1 is
to correct the erasure of Ā2. Bob can replace each erased qubit by the standard state |0〉
, and then measure the code’s check operators. With high probability, there is a unique
Pauli operator acting on the erased qubits that restores Bob’s state to the code space,
and the recovery operation can be efficiently computed using linear algebra. Hence,
Bob’s part of the mother protocol, like Alice’s, can be executed efficiently.

10.9.3 Proof of the father inequality

One-shot version.

In the one-shot version of the father protocol, Alice and Bob share a pair of maximally
entangled systems A1B1, and in addition Alice holds input state ρA2

of system A2 which
she wants to convey to Bob. Alice encodes ρA2

by applying a unitary transformation V

to A = A1A2, then sends A to Bob via the noisy quantum channel NA→B2 . Bob applies
a decoding map DB1B2→Ã2 jointly to the channel output and his half of the entangled
state he shares with Alice, hoping to recover Alice’s input state with high fidelity:

A1

B1

A2

@
@

�
�

V A N B2

D Ã2

We would like to know how much shared entanglement suffices for Alice and Bob to
succeed.

This question can be answered using the decoupling inequality. First we introduce
a reference system R′ which is maximally entangled with A2; then Bob succeeds if
his decoder can extract the purification of R′. Because the systems R′B1 and A1A1

are maximally entangled, the encoding unitary V acting on A1A2 can be replaced by
its transpose V T acting on R′B1. We may also replace N by its Stinespring dilation
UA1A2→B2E , so that the extended output state φ of R′B1B2E is pure:



10.9 The Decoupling Inequality 69
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Finally we invoke the decoupling principle — if R′ and E decouple, then R′ is purified by
a subsystem of B1B2, which means that Bob can recover ρA2

with a suitable decoding
map.

If we consider V , and hence also V T , to be a random unitary, then we may describe
the situation this way: We have a tripartite pure state φRB2E , where R = R′B1, and we
would like to know whether the marginal state of R′E is close to a product state when
the random subsystem B1 is discarded from R. This is exactly the question addressed
by the decoupling inequality, which in this case may be expressed as(

EV

[
‖σR′E(V )− σmax

R′ ⊗ σE‖1
])2 ≤ |R| · |E|

|B1|2
tr
(
σ2
RE

)
, (10.340)

Eq.(10.340) asserts that the L1 distance from a product state is bounded above when
averaged uniformly over all unitary V ’s; therefore there must be some particular encod-
ing unitary V that satisfies the same bound. We conclude that near-perfect decoupling
of R′E, and therefore high-fidelity decoding of B2, is achievable provided that

|A1| = |B1| � |R′| · |E| tr
(
σ2
RE

)
= |A2| · |E| tr

(
σ2
B2

)
, (10.341)

where to obtain the second equality we use the purity of φRB2E and recall that the
reference system R′ is maximally entangled with A2.

i.i.d. version.

In the i.i.d. version of the father protocol, Alice and Bob achieve high fidelity
entanglement-assisted quantum communication through n uses of the quantum chan-
nel NA→B. The code they use for this purpose can be described in the following way:
Consider an input density operator ρA of system A, which is purified by a reference
system R. Sending the purified input state ψRA through UA→BE , the isometric dilation
of NA→B, generates the tripartite pure state φRBE . Evidently applying

(
UA→BE

)⊗n to
ψ⊗nRA produces φ⊗nRBE .

But now suppose that before transmitting the state to Bob, Alice projects An onto
its typical subspace Ā, succeeding with probability 1− o(1) in preparing a state of ĀR̄
that is nearly maximally entangled, where R̄ is the typical subspace of Rn. Imagine
dividing R̄ into a randomly chosen subsystem B1 and its complementary subsystem R′;
then there is a corresponding decomposition of A = A1A2 such that A1 is very nearly
maximally entangled with B1 and A2 is very nearly maximally entangled with R′.

If we interpret B1 as Bob’s half of an entangled state of A1B1 shared with Alice,
this becomes the setting where the one-shot father protocol applies, if we ignore the
small deviation from maximal entanglement in A1B1 and R′A2. As for our analysis of
the i.i.d. mother protocol, we apply the one-shot father inequality not to φ⊗nRBE , but
rather to the nearby state φ′

R̄B̄Ē
, where B̄ and Ē are the typical subspaces of Bn and

En respectively. Applying eq.(10.340), and using properties of typical subspaces, we can



70 Quantum Shannon Theory

bound the square of the L1 deviation of R′E from a product state, averaged over the
choice of B1, by

|R̄| · |Ē|
|B1|2

tr
(
σ2
B̄

)
=

2n(H(R)+H(E)−H(B)+o(1))

|B1|2
=

2n(I(R;E)+o(1))

|B1|2
; (10.342)

hence the bound also applies for some particular way of choosing B1. This choice defines
the code used by Alice and Bob in a protocol which consumes

log2 |B1| =
n

2
I(R;E) + o(n) (10.343)

ebits of entanglement, and conveys from Alice to Bob

nH(B)− n

2
I(R;E)− o(n) =

n

2
I(R;B)− o(n) (10.344)

high-fidelity qubits. This proves the father resource inequality.

10.9.4 Quantum channel capacity revisited

In §10.8.1 we showed that the coherent information is an achievable rate for quantum
communication over a noisy quantum channel. That derivation, a corollary of the father
resource inequality, applied to a catalytic setting, in which shared entanglement between
sender and receiver can be borrowed and later repaid. It is useful to see that the same
rate is achievable without catalysis, a result we can derive from an alternative version
of the decoupling inequality.

This version applies to the setting depicted here:
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A density operator ρA for system A, with purification ψRA, is transmitted through a
channel NA→B which has the isometric dilation UA→BE . The reference system R has
a decomposition into subsystems R1R2. We apply a random unitary transformation V

to R, then project R1 onto a fixed vector |0〉R1 , and renormalize the resulting state. In
effect, then we are projecting R onto a subspace with dimension |R2|, which purifies
a corresponding code subspace of A. This procedure prepares a normalized pure state
φR2BE , and a corresponding normalized marginal state σR2E of R2E.

If R2 decouples from E, then R2 is purified by a subsystem of B, which means that the
code subspace of A can be recovered by a decoder applied to B. A sufficient condition
for approximate decoupling can be derived from the inequality(

EV

[
‖σR2E(V )− σmax

R2
⊗ σE‖1

])2 ≤ |R2| · |E| tr
(
σ2
RE

)
. (10.345)

Eq.(10.345) resembles eq.(10.320) and can be derived by a similar method. Note that the
right-hand side of eq.(10.345) is enhanced by a factor of |R1| relative to the right-hand
side of eq.(10.320). This factor arises because after projecting R1 onto the fixed state
|0〉 we need to renormalize the state by multiplying by |R1|, while on the other hand the
projection suppresses the expected distance squared from a product state by a factor
|R1|.

In the i.i.d. setting where the noisy channel is used n times, we consider φ⊗nRBE , and



10.9 The Decoupling Inequality 71

project onto the jointly typical subspaces R̄, B̄, Ē of Rn, Bn, En respectively, succeeding
with high probability. We choose a code by projecting R̄ onto a random subspace with
dimension |R2|. Then, the right-hand side of eq.(10.345) becomes

|R2| · 2n(H(E)−H(B)+o(1)), (10.346)

and since the inequality holds when we average uniformly over V , it surely holds for
some particular V . That unitary defines a code which achieves decoupling and has the
rate

1
n

log2 |R2| = H(E)−H(B)− o(1) = Ic(R〉B)− o(1). (10.347)

Hence the coherent information is an achievable rate for high-fidelity quantum commu-
nication over the noisy channel.

10.9.5 Black holes as mirrors

As our final application of the decoupling inequality, we consider a highly idealized
model of black hole dynamics. Suppose that Alice holds a k-qubit system A which she
wants to conceal from Bob. To be safe, she discards her qubits by tossing them into a
large black hole, where she knows Bob will not dare to follow. The black hole B is an
(n−k)-qubit system, which grows to n qubits after merging with A, where n is much
larger than k.

Black holes are not really completely black — they emit Hawking radiation. But qubits
leak out of an evaporating black hole very slowly, at a rate per unit time which scales
like n−1/2. Correspondingly, it takes time Θ(n3/2) for the black hole to radiate away a
significant fraction of its qubits. Because the black hole Hilbert space is so enormous,
this is a very long time, about 1067 years for a solar mass black hole, for which n ≈ 1078.
Though Alice’s qubits might not remain secret forever, she is content knowing that they
will be safe from Bob for 1067 years.

But in her haste, Alice fails to notice that her black hole is very, very old. It has been
evaporating for so long that it has already radiated away more than half of its qubits.
Let’s assume that the joint state of the black hole and its emitted radiation is pure, and
furthermore that the radiation is a Haar-random subsystem of the full system.

Because the black hole B is so old, |B| is much smaller than the dimension of the
radiation subsystem; therefore, as in eq.(10.322), we expect the state of B to be very
nearly maximally mixed with high probability. We denote by RB the subsystem of the
emitted radiation which purifies B; thus the state of BRB is very nearly maximally
entangled. We assume that RB has been collected by Bob and is under his control.

To keep track of what happens to Alice’s k qubits, we suppose that her k-qubit system
A is maximally entangled with a reference system RA. After A enters the black hole,
Bob waits for a while, until the k′-qubit system A′ is emitted in the black hole’s Hawking
radiation. After retrieving A′, Bob hopes to recover the purification of RA by applying
a suitable decoding map to A′RB. Can he succeed?

We’ve learned that Bob can succeed with high fidelity if the remaining black hole
system B′ decouples from Alice’s reference system RA. Let’s suppose that the qubits
emitted in the Hawking radiation are chosen randomly; that is, A′ is a Haar-random
k′-qubit subsystem of the n-qubit system AB, as depicted here:
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The double lines indicate the very large systems B and B′, and single lines the smaller
systems A and A′. Because the radiated qubits are random, we can determine whether
RAB

′ decouples using the decoupling inequality, which for this case becomes

EU

[
‖σB′RA

(U)− σmax
B′ ⊗ σRA

‖1
]
≤

√
|ABRA|
|A′|2

tr
(
σ2
ABRA

)
. (10.348)

Because the state of ARA is pure, and B is maximally entangled with RB, we have
tr
(
σ2
ABRA

)
= 1/|B|, and therefore the Haar-averaged L1 distance of σB′RA

from a
product state is bounded above by√

|ARA|
|A′|2

=
|A|
|A′|

. (10.349)

Thus, if Bob waits for only k′ = k + c qubits of Hawking radiation to be emitted after
Alice tosses in her k qubits, Bob can decode her qubits with excellent fidelity F ≥ 1−2−c.

Alice made a serious mistake. Rather than waiting for Ω(n) qubits to emerge from
the black hole, Bob can already decode Alice’s secret quite well when he has collected
just a few more than k qubits. And Bob is an excellent physicist, who knows enough
about black hole dynamics to infer the encoding unitary transformation U , information
he uses to find the right decoding map.

We could describe the conclusion, more prosaically, by saying that the random uni-
tary U applied to AB encodes a good quantum error-correcting code, which achieves
high-fidelity entanglement-assisted transmission of quantum information though an era-
sure channel with a high erasure probability. Of the n input qubits, only k′ randomly
selected qubits are received by Bob; the rest remain inside the black hole and hence are
inaccessible. The input qubits, then, are erased with probability p = (n − k′)/n, while
nearly error-free qubits are recovered from the input qubits at a rate

R =
k

n
= 1− p− k′ − k

n
; (10.350)

in the limit n→∞ with c = k′ − k fixed, this rate approaches 1− p, the entanglement-
assisted quantum capacity of the erasure channel.

So far, we’ve assumed that the emitted system A′ is a randomly selected subsystem
of AB. That won’t be true for a real black hole. However, it is believed that the internal
dynamics of actually black holes mixes quantum information quite rapidly (the fast
scrambling conjecture). For a black hole with temperature T , it takes time of order
~/kT for each qubit to be emitted in the Hawking radiation, and a time longer by only
a factor of log n for the dynamics to mix the black hole degrees of freedom sufficiently
for our decoupling estimate to hold with reasonable accuracy. For a solar mass black
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hole, Alice’s qubits are revealed just a few milliseconds after she deposits them, much
faster than the 1067 years she had hoped for! Because Bob holds the system RB which
purifies B, and because he knows the right decoding map to apply to A′RB, the black
hole behaves like an information mirror — Alice’s qubits bounce right back!

If Alice is more careful, she will dump her qubits into a young black hole instead. If
we assume that the initial black hole B is in a pure state, then σABRA

is also pure, and
the Haar-averaged L1 distance of σB′RA

from a product state is bounded above by√
|ABRA|
|A′|2

=
2n+k

22k′
=

1
2c

(10.351)

after

k′ =
1
2
(n+ k + c) (10.352)

qubits are emitted. In this case, Bob needs to wait a long time, until more than half
of the qubits in AB are radiated away. Once Bob has acquired k + c more qubits than
the number still residing in the black hole, he is empowered to decode Alice’s k qubits
with fidelity F ≥ 1 − 2−c. In fact, there is nothing special about Alice’s subsystem A;
by adjusting his decoding map appropriately, Bob can decode any k qubits he chooses
from among the n qubits in the initial black hole AB.

There is far more to learn about quantum information processing by black holes, an
active topic of current research (as of this writing in 2016), but we will not delve further
into this fascinating topic here. We can be confident, though, that the tools and concepts
of quantum information theory discussed in this book will be helpful for addressing the
many unresolved mysteries of quantum gravity.

10.10 Summary

Shannon entropy and classical data compression. The Shannon entropy of an
ensemble X = {x, p(x)} is H(X) ≡ 〈− log p(x)〉; it quantifies the compressibility of
classical information. A message n letters long, where each letter is drawn independently
from X, can be compressed to H(X) bits per letter (and no further), yet can still be
decoded with arbitrarily good accuracy as n→∞.

Conditional entropy and information merging. The conditional entropy
H(X|Y ) = H(XY )−H(Y ) quantifies how much the information source X can be com-
pressed when Y is known. If n letters are drawn from XY , where Alice holds X and Bob
holds Y , Alice can convey X to Bob by sending H(X|Y ) bits per letter, asymptotically
as n→∞.

Mutual information and classical channel capacity. The mutual information
I(X;Y ) = H(X) + H(Y ) − H(XY ) quantifies how information sources X and Y are
correlated; when we learn the value of y we acquire (on the average) I(X;Y ) bits of
information about x, and vice versa. The capacity of a memoryless noisy classical com-
munication channel is C = maxX I(X;Y ). This is the highest number of bits per letter
that can be transmitted through n uses of the channel, using the best possible code,
with negligible error probability as n→∞.

Von Neumann entropy and quantum data compression. The Von Neumann
entropy of a density operator ρ is

H(ρ) = −trρ log ρ; (10.353)
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it quantifies the compressibility of an ensemble of pure quantum states. A mes-
sage n letters long, where each letter is drawn independently from the ensemble
{|ϕ(x)〉, p(x)}, can be compressed to H(ρ) qubits per letter (and no further) where
ρ =

∑
X p(x)|ϕ(x)〉〈ϕ(x)|, yet can still be decoded with arbitrarily good fidelity as

n→∞.
Entanglement concentration and dilution. The entanglement E of a bipartite

pure state |ψ〉AB is E = H(ρA) where ρA = trB(|ψ〉〈ψ|). With local operations and
classical communication, we can prepare n copies of |ψ〉AB from nE Bell pairs (but not
from fewer), and we can distill nE Bell pairs (but not more) from n copies of |ψ〉AB,
asymptotically as n→∞.

Accessible information. The Holevo chi of an ensemble E = {ρ(x), p(x)} of quan-
tum states is

χ(E) = H

(∑
x

p(x)ρ(x)

)
−
∑
x

p(x)H(ρ(x)). (10.354)

The accessible information of an ensemble E of quantum states is the maximal number
of bits of information that can be acquired about the preparation of the state (on the
average) with the best possible measurement. The accessible information cannot exceed
the Holevo chi of the ensemble. The product-state capacity of a quantum channel N is

C1(N ) = max
E

χ(N (E)). (10.355)

This is the highest number of classical bits per letter that can be transmitted through
n uses of the quantum channel, with negligible error probability as n → ∞, assuming
that each codeword is a product state.

Decoupling and quantum communication. In a tripartite pure state φRBE , we
say that systems R and E decouple if the marginal density operator of RE is a product
state, in which case R is purified by a subsystem of B. A quantum state transmitted
through a noisy quantum channel NA→B (with isometric dilation UA→BE) can be accu-
rately decoded if a reference system R which purifies channel’s input A nearly decouples
from the channel’s environment E.

Father and mother protocols. The father and mother resource inequalities specify
achievable rates for entanglement-assisted quantum communication and quantum state
transfer, respectively. Both follow from the decoupling inequality, which establishes a
sufficient condition for approximate decoupling in a tripartite mixed state. By com-
bining the father and mother protocols with superdense coding and teleportation, we
can derive achievable rates for other protocols, including entanglement-assisted classical
communication, quantum communication, entanglement distillation, and quantum state
merging.

Homage to Ben Schumacher:

Ben.
He rocks.
I remember
When
He showed me how to fit
A qubit
In a small box.

I wonder how it feels
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To be compressed.
And then to pass
A fidelity test.

Or does it feel
At all, and if it does
Would I squeal
Or be just as I was?

If not undone
I’d become as I’d begun
And write a memorandum
On being random.
Had it felt like a belt
Of rum?

And might it be predicted
That I’d become addicted,
Longing for my session
Of compression?

I’d crawl
To Ben again.
And call,
Put down your pen!
Don’t stall!
Make me small!
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vised protocols for entanglement concentration and dilution. Measures of mixed-state
entanglement are reviewed in [16]. The reversible theory of mixed-state entanglement
was formulated by Brandão and Plenio [17]. Squashed entanglement was introduced by
Christandl and Winter [18], and its monogamy discussed by Koashi and Winter [19].
Brandão, Christandl, and Yard [20] showed that squashed entanglement is positive for
any nonseparable bipartite state. Doherty, Parrilo, and Spedalieri [21] showed that every
nonseparable bipartite state fails to be k-extendable for some finite k.

The Holevo bound was derived in [22]. Peres-Wootters coding was discussed in [23].
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is an achievable rate for quantum communication was conjectured by Lloyd [32] and by
Schumacher [30], then proven by Shor [33] and by Devetak [34]. Devetak and Winter
[35] showed it is also an achievable rate for entanglement distillation. The quantum Fano
inequality was derived by Schumacher [30].

Approximate decoupling was analyzed by Schumacher and Westmoreland [36], and
used to prove capacity theorems by Devetak [34], by Horodecki et al. [37], by Hayden
et al. [38], and by Abeyesinghe et al. [39]. The entropy of Haar-random subsystems had
been discussed earlier, by Lubkin [40], Lloyd and Pagels [41], and Page [42]. Devetak,
Harrow, and Winter [43, 44] introduced the mother and father protocols and their de-
scendants. Devatak and Shor [45] introduced degradable quantum channels and proved
that coherent information is additive for these channels. Bennett et al. [46, 47] found
the single-letter formula for entanglement-assisted classical capacity. Superadditivity of
coherent information was discovered by Shor and Smolin [48] and by DiVincenzo et
al. [49]. Smith and Yard [50] found extreme examples of superadditivity, in which two
zero-capacity channels have nonzero capacity when used jointly. The achievable rate for
state merging was derived by Horodecki et al. [37], and used by them to prove strong
subadditivity of Von Neumann entropy.

Decoupling was applied to Landuaer’s principle by Renner et al. [51], and to black
holes by Hayden and Preskill [52]. The fast scrambling conjecture was proposed by
Sekino and Susskind [53].

Exercises

10.1 Positivity of quantum relative entropy

a) Show that lnx ≤ x− 1 for all positive real x, with equality iff x = 1.
b) The (classical) relative entropy of a probability distribution {p(x)} relative to

{q(x)} is defined as

D(p ‖ q) ≡
∑
x

p(x) (log p(x)− log q(x)) . (10.356)

Show that

D(p ‖ q) ≥ 0 , (10.357)

with equality iff the probability distributions are identical. Hint: Apply the
inequality from (a) to ln (q(x)/p(x)).

c) The quantum relative entropy of the density operator ρ with respect to σ is
defined as

D(ρ ‖ σ) = tr ρ (log ρ− log σ) . (10.358)

Let {pi} denote the eigenvalues of ρ and {qa} denote the eigenvalues of σ.
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Show that

D(ρ ‖ σ) =
∑
i

pi

(
log pi −

∑
a

Dia log qa

)
, (10.359)

where Dia is a doubly stochastic matrix. Express Dia in terms of the eigen-
states of ρ and σ. (A matrix is doubly stochastic if its entries are nonneg-
ative real numbers, where each row and each column sums to one.)

d) Show that if Dia is doubly stochastic, then (for each i)

log

(∑
a

Diaqa

)
≥
∑
a

Dia log qa , (10.360)

with equality only if Dia = 1 for some a.
e) Show that

D(ρ ‖ σ) ≥ D(p ‖ r) , (10.361)

where ri =
∑

aDiaqa.
f) Show that D(ρ ‖ σ) ≥ 0, with equality iff ρ = σ.

10.2 Properties of Von Neumann entropy

a) Use nonnegativity of quantum relative entropy to prove the subadditivity of Von
Neumann entropy

H(ρAB) ≤ H(ρA) +H(ρB), (10.362)

with equality iff ρAB = ρA ⊗ ρB. Hint: Consider the relative entropy of
ρAB and ρA ⊗ ρB.

b) Use subadditivity to prove the concavity of the Von Neumann entropy:

H(
∑
x

pxρx) ≥
∑
x

pxH(ρx) . (10.363)

Hint: Consider

ρAB =
∑
x

px (ρx)A ⊗ (|x〉〈x|)B , (10.364)

where the states {|x〉B} are mutually orthogonal.
c) Use the condition

H(ρAB) = H(ρA) +H(ρB) iff ρAB = ρA ⊗ ρB (10.365)

to show that, if all px’s are nonzero,

H

(∑
x

pxρx

)
=
∑
x

pxH(ρx) (10.366)

iff all the ρx’s are identical.

10.3 Monotonicity of quantum relative entropy
Quantum relative entropy has a property called monotonicity:

D(ρA‖σA) ≤ D(ρAB‖σAB); (10.367)

The relative entropy of two density operators on a system AB cannot be less than
the induced relative entropy on the subsystem A.
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a) Use monotonicity of quantum relative entropy to prove the strong subadditivity
property of Von Neumann entropy. Hint: On a tripartite system ABC,
consider the relative entropy of ρABC and ρA ⊗ ρBC .

b) Use monotonicity of quantum relative entropy to show that the action of a
quantum channel N cannot increase relative entropy:

D(N (ρ)‖N (σ) ≤ D(ρ‖σ), (10.368)

Hint: Recall that any quantum channel has an isometric dilation.

10.4 The Peres–Wootters POVM.
Consider the Peres–Wootters information source described in §10.6.4 of the lec-

ture notes. It prepares one of the three states

|Φa〉 = |ϕa〉 ⊗ |ϕa〉, a = 1, 2, 3, (10.369)

each occurring with a priori probability 1
3 , where the |ϕa〉’s are defined in

eq.(10.214).

a) Express the density matrix

ρ =
1
3

(∑
a

|Φa〉〈Φa|

)
, (10.370)

in terms of the Bell basis of maximally entangled states {|φ±〉, |ψ±〉}, and
compute H(ρ).

b) For the three vectors |Φa〉, a = 1, 2, 3, construct the “pretty good measurement”
defined in eq.(10.227). (Again, expand the |Φa〉’s in the Bell basis.) In this
case, the PGM is an orthogonal measurement. Express the elements of the
PGM basis in terms of the Bell basis.

c) Compute the mutual information of the PGM outcome and the preparation.

10.5 Separability and majorization
The hallmark of entanglement is that in an entangled state the whole is less

random than its parts. But in a separable state the correlations are essentially
classical and so are expected to adhere to the classical principle that the parts
are less disordered than the whole. The objective of this problem is to make this
expectation precise by showing that if the bipartite (mixed) state ρAB is separable,
then

λ(ρAB) ≺ λ(ρA) , λ(ρAB) ≺ λ(ρB) . (10.371)

Here λ(ρ) denotes the vector of eigenvalues of ρ, and ≺ denotes majorization.
A separable state can be realized as an ensemble of pure product states, so that

if ρAB is separable, it may be expressed as

ρAB =
∑
a

pa |ψa〉〈ψa| ⊗ |ϕa〉〈ϕa| . (10.372)

We can also diagonalize ρAB, expressing it as

ρAB =
∑
j

rj |ej〉〈ej | , (10.373)
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where {|ej〉} denotes an orthonormal basis for AB; then by the HJW theorem,
there is a unitary matrix V such that

√
rj |ej〉 =

∑
a

Vja
√
pa|ψa〉 ⊗ |ϕa〉 . (10.374)

Also note that ρA can be diagonalized, so that

ρA =
∑
a

pa|ψa〉〈ψa| =
∑
µ

sµ|fµ〉〈fµ| ; (10.375)

here {|fµ〉} denotes an orthonormal basis for A, and by the HJW theorem, there
is a unitary matrix U such that

√
pa|ψa〉 =

∑
µ

Uaµ
√
sµ|fµ〉 . (10.376)

Now show that there is a doubly stochastic matrix D such that

rj =
∑
µ

Djµsµ . (10.377)

That is, you must check that the entries of Djµ are real and nonnegative, and
that

∑
j Djµ = 1 =

∑
µDjµ. Thus we conclude that λ(ρAB) ≺ λ(ρA). Just by

interchanging A and B, the same argument also shows that λ(ρAB) ≺ λ(ρB).
Remark: Note that it follows from the Schur concavity of Shannon entropy that,

if ρAB is separable, then the von Neumann entropy has the properties H(AB) ≥
H(A) and H(AB) ≥ H(B). Thus, for separable states, conditional entropy is non-
negative: H(A|B) = H(AB) −H(B) ≥ 0 and H(B|A) = H(AB) −H(A) ≥ 0. In
contrast, if H(A|B) is negative, then according to the hashing inequality the state
of AB has positive distillable entanglement −H(A|B), and therefore is surely not
separable.

10.6 Additivity of squashed entanglement
Suppose that Alice holds systems A, A′ and Bob holds systems B, B′. How is the

entanglement of AA′ with BB′ related to the entanglement of A with B and A′ with
B′? In this problem we will show that the squashed entanglement is superadditive,

Esq(ρABA′B′) ≥ Esq(ρAB) + Esq(ρA′B′) (10.378)

and is strictly additive for a tensor product,

Esq(ρAB ⊗ ρA′B′) = Esq(ρAB) + Esq(ρA′B′). (10.379)

a) Use the chain rule for mutual information eq.(10.196) and eq.(10.197) and the
nonnegativity of quantum conditional mutual information to show that

I(AA′;BB′|C) ≥ I(A;B|C) + I(A′;B′|AC), (10.380)

and show that eq.(10.378) follows.
b) Show that for any extension ρABC ⊗ ρA′B′C′ of the product state ρAB ⊗ ρA′B′ ,

we have

I(AA′;BB′|CC ′) ≤ I(A;B|C) + I(A′;B′|C ′). (10.381)

Conclude that

Esq(ρAB ⊗ ρA′B′) ≤ Esq(ρAB) + Esq(ρA′B′), (10.382)
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which, when combined with eq.(10.378), implies eq.(10.379).

10.7 The first law of Von Neumann entropy
Writing the density operator in terms of its modular Hamiltonian K as in §10.2.6,

ρ =
e−K

tr (e−K)
, (10.383)

consider how the entropy S(ρ) = −tr (ρ lnρ) changes when the density operator is
perturbed slightly:

ρ → ρ′ = ρ + δρ. (10.384)

Since ρ and ρ′ are both normalized density operators, we have tr (δρ) = 0. Show
that

S(ρ′)− S(ρ) = tr
(
ρ′K

)
− tr (ρK) +O

(
(δρ)2

)
; (10.385)

that is,

δS = δ〈K〉 (10.386)

to first order in the small change in ρ. This statement generalizes the first law
of thermodynamics; for the case of a thermal density operator with K = T−1H

(where H is the Hamiltonian and T is the temperature), it becomes the more
familiar statement

δE = δ〈H〉 = TδS. (10.387)

10.8 Information gain for a quantum state drawn from the uniform ensemble
Suppose Alice prepares a quantum state drawn from the ensemble {ρ(x), p(x)}

and Bob performs a measurement {E(y)} yielding outcome y with probability
p(y|x) = tr (E(y)ρ(x)). As noted in §10.6.1, Bob’s information gain about Alice’s
preparation is the mutual information I(X;Y ) = H(X) −H(X|Y ). If x is a con-
tinuous variable, while y is discrete, it is more convenient to use the symmetry of
mutual information to write I(X;Y ) = H(Y )−H(Y |X), where

H(Y |X) =
∑
y

∫
dx · p(x) · p(y|x) · log p(y|x); (10.388)

here p(x) is a probability density (that is, p(x)dx is the probability for x to lie in
the interval [x, x+ dx]).

For example, suppose that Alice prepares an arbitrary pure state |ϕ〉 chosen
from the uniform ensemble in a d-dimensional Hilbert space, and Bob performs an
orthogonal measurement projecting onto the basis {|ey〉}, hoping to learn something
about what Alice prepared. Then Bob obtains outcome y with probability

p(y|θ) = |〈ey|ϕ〉|2 ≡ cos2 θ (10.389)

where θ is the angle between |ϕ〉 and |ey〉. Because Alice’s ensemble is uniform,
Bob’s outcomes are also uniformly distributed; hence H(Y ) = log d. Furthermore,
the measurement outcome y reveals only information about θ; Bob learns nothing
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else about |ϕ〉. Therefore, eq.(10.388) implies that the information gain may be
expressed as

I(X;Y ) = log d− d

∫
dθ · p(θ) · cos2 θ · log cos2 θ. (10.390)

Here p(θ)dθ is the probability density for the vector |ϕ〉 to point in a direction
making angle θ with the axis |ey〉, where 0 ≤ θ ≤ π/2.

a) Show that

p(θ) · dθ = −(d− 1)
[
1− cos2 θ

]d−2 · d cos2 θ. (10.391)

Hint: Choose a basis in which the fixed axis |ey〉 is

|ey〉 = (1,~0) (10.392)

and write

|ϕ〉 = (eiφ cos θ, ψ⊥), (10.393)

where θ ∈ [0, π/2], and |ψ⊥〉 denotes a complex (d−1)-component vector
with length sin θ. Now note that the phase φ resides on a circle of radius cos θ
(and hence circumference 2π cos θ), while |ψ⊥〉 lies on a sphere of radius sin θ
(thus the volume of the sphere, up to a multiplicative numerical constant,
is sin2d−3 θ).

b) Now evaluate the integral eq. (10.390) to show that the information gain from
the measurement, in nats, is

I(X;Y ) = ln d−
(

1
2

+
1
3

+ · · ·+ 1
d

)
. (10.394)

(Information is expressed in nats if logarithms are natural logarithms; I
in nats is related to I in bits by Ibits = Inats/ ln 2.) Hint: To evaluate the
integral ∫ 1

0
dx(1− x)px lnx , (10.395)

observe that

x lnx =
d

ds
xs
∣∣∣
s=1

, (10.396)

and then calculate
∫ 1
0 dx(1− x)pxs by integrating by parts repeatedly.

c) Show that in the limit of large d, the information gain, in bits, approaches

Id=∞ =
1− γ

ln 2
= .60995 . . . , (10.397)

where γ = .57721 . . . is Euler’s constant.

Our computed value of H(Y |X) may be interpreted in another way: Suppose
we fix an orthogonal measurement, choose a typical state, and perform the mea-
surement repeatedly on that chosen state. Then the measurement outcomes will
not be uniformly distributed. Instead the entropy of the outcomes will fall short of
maximal by .60995 bits, in the limit of large Hilbert space dimension.
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10.9 Fano’s inequality
Suppose X = {x, p(x)} is a probability distribution for a letter x drawn from

an alphabet of d possible letters, and that XY is the joint distribution for x and
another random variable y which is correlated with x. Upon receiving y we estimate
the value of x by evaluating a function x̂(y). We may anticipate that if our estimate
is usually correct, then the conditional entropy H(X|Y ) must be small. In this
problem we will confirm that expectation.

Let e ∈ {0, 1} denote a binary random variable which takes the value e = 0
if x = x̂(y) and takes the value e = 1 if x 6= x̂(y), and let XY E denote the
joint distribution for x, y, e. The error probability Pe is the probability that e = 1,
averaged over this distribution. Our goal is to derive an upper bound on H(X|Y )
depending on Pe.

a) Show that

H(X|Y ) = H(X|Y E) +H(E|Y )−H(E|XY ). (10.398)

Note that H(E|XY ) = 0 because e is determined when x and y are know, and
that H(E|Y ) ≤ H(E) because mutual information is nonnegative. Therefore,

H(X|Y ) ≤ H(X|Y E) +H(E). (10.399)

b) Noting that

H(X|Y E) = p(e = 0)H(X|Y, e = 0) + p(e = 1)H(X|Y, e = 1), (10.400)

and that H(X|Y, e = 0) = 0 (because x = x̂(y) is determined by y when
there is no error), show that

H(X|Y E) ≤ Pe log2(d− 1). (10.401)

c) Finally, show that

H(X|Y ) ≤ H2(Pe) + Pe log2(d− 1), (10.402)

which is Fano’s inequality.
d) Use Fano’s inequality to derive eq.(10.50), hence completing the proof that

the classical channel capacity C is an upper bound on achievable rates for
communication over a noisy channel with negligible error probability.

10.10 A quantum version of Fano’s inequality

a) In a d-dimensional system, suppose a density operator ρ approximates the pure
state |ψ〉 with fidelity

F = 〈ψ|ρ|ψ〉 = 1− ε. (10.403)

Show that

H(ρ) ≤ H2(ε) + ε log2(d− 1). (10.404)

Hint: Recall that if a complete orthogonal measurement performed on the
state ρ has distribution of outcomes X, then H(ρ) ≤ H(X), where H(X)
is the Shannon entropy of X.
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b) As in §10.7.2, suppose that the noisy channel NA→B acts on the pure state ψRA,
and is followed by the decoding map DB→C . Show that

H(R)ρ − Ic(R 〉B)ρ ≤ 2H(RC)σ, (10.405)

where

ρRB = N (ψRA), σRC = D ◦ N (ψRA). (10.406)

Therefore, if the decoder’s output (the state of RC) is almost pure, then the
coherent information of the channel N comes close to matching its input
entropy. Hint: Use the data processing inequality Ic(R 〉C)σ ≤ Ic(R 〉B)ρ

and the subadditivity of von Neumann entropy. It is convenient to consider
the joint pure state of the reference system, the output, and environments
of the dilations of N and D.

c) Suppose that the decoding map recovers the channel input with high fidelity,

F (D ◦ N (ψRA), ψRC) = 1− ε. (10.407)

Show that

H(R)ρ − Ic(R 〉B)ρ ≤ 2H2(ε) + 2ε log2(d
2 − 1), (10.408)

assuming that R and C are d-dimensional. This is a quantum version of
Fano’s inequality, which we may use to derive an upper bound on the quan-
tum channel capacity of N .

10.11 Mother protocol for the GHZ state
The mother resource inequality expresses an asymptotic resource conversion that

can be achieved if Alice, Bob, and Eve share n copies of the pure state φABE : by
sending n

2 I(A;E) qubits to Bob, Alice can destroy the correlations of her state with
Eve’s state, so that Bob alone holds the purification of Eve’s state, and furthermore
Alice and Bob share n

2 I(A;B) ebits of entanglement at the end of the protocol; here
I(A;E) and I(A;B) denote quantum mutual informations evaluated in the state
φABE .

Normally, the resource conversion can be realized with arbitrarily good fidelity
only in the limit n → ∞. But in this problem we will see that the conversion can
be perfect if Alice, Bob and Eve share only n = 2 copies of the three-qubit GHZ
state

|φ〉ABE =
1√
2

(|000〉+ |111〉) . (10.409)

The protocol achieving this perfect conversion uses the notion of coherent classical
communication defined in Chapter 4.

a) Show that in the GHZ state |φ〉ABE , I(A;E) = I(A;B) = 1. Thus, for this
state, the mother inequality becomes

2〈φABE〉+ [q → q]AB ≥ [qq]AB + 2〈φ′
B̃E
〉 . (10.410)

b) Suppose that in the GHZ state Alice measures the Pauli operator X, gets the
outcome +1 and broadcasts her outcome to Bob and Eve. What state do
Bob and Eve then share? What if Alice gets the outcome −1 instead?
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c) Suppose that Alice, Bob, and Eve share just one copy of the GHZ state φABE .
Find a protocol such that, after one unit of coherent classical communication
from Alice to Bob, the shared state becomes |φ+〉AB⊗|φ+〉BE , where |φ+〉 =
(|00〉+ |11〉) /

√
2 is a maximally entangled Bell pair.

d) Now suppose that Alice, Bob, and Eve start out with two copies of the GHZ
state, and suppose that Alice and Bob can borrow an ebit of entanglement,
which will be repaid later, to catalyze the resource conversion. Use coher-
ent superdense coding to construct a protocol that achieves the (catalytic)
conversion eq. (10.410) perfectly.

10.12 Degradability of amplitude damping and erasure
The qubit amplitude damping channel NA→B

a.d. (p) discussed in §3.4.3 has the
dilation UA→BE such that

U :|0〉A 7→ |0〉B ⊗ |0〉E ,

|1〉A 7→
√

1− p |1〉B ⊗ |0〉E +
√
p |0〉B ⊗ |1〉E ;

a qubit in its “ground state” |0〉A is unaffected by the channel, while a qubit in
the “excited state” |1〉A decays to the ground state with probability p, and the
decay process excites the environment. Note that U is invariant under interchange
of systems B and E accompanied by transformation p↔ (1−p). Thus the channel
complementary to NA→B

a.d. (p) is NA→E
a.d. (1− p).

a) Show that NA→B
a.d. (p) is degradable for p ≤ 1/2. Therefore, the quantum capac-

ity of the amplitude damping channel is its optimized one-shot coherent
information. Hint: It suffices to show that

NA→E
a.d. (1− p) = NB→E

a.d. (q) ◦ NA→B
a.d. (p), (10.411)

where 0 ≤ q ≤ 1.

The erasure channel NA→B
erase (p) has the dilation UA→BE such that

U : |ψ〉A 7→
√

1− p |ψ〉B ⊗ |e〉E +
√
p |e〉B ⊗ |ψ〉E ; (10.412)

Alice’s system passes either to Bob (with probability 1−p) or to Eve (with probabil-
ity p), while the other party receives the “erasure symbol” |e〉, which is orthogonal
to Alice’s Hilbert space. Because U is invariant under interchange of systems B
and E accompanied by transformation p↔ (1− p), the channel complementary to
NA→B

erase (p) is NA→E
erase (1− p).

b) Show that NA→B
erase (p) is degradable for p ≤ 1/2. Therefore, the quantum capac-

ity of the amplitude damping channel is its optimized one-shot coherent
information. Hint: It suffices to show that

NA→E
erase (1− p) = NB→E

erase (q) ◦ NA→B
erase (p), (10.413)

where 0 ≤ q ≤ 1.
c) Show that for p ≤ 1/2 the quantum capacity of the erasure channel is

Q(NA→B
erase (p)) = (1− 2p) log2 d, (10.414)

where A is d-dimensional, and that the capacity vanishes for 1/2 ≤ p ≤ 1.
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10.13 Quantum Singleton bound
As noted in chapter 7, an [[n, k, d]] quantum error-correcting code (k protected

qudits in a block of n qudits, with code distance d) must obey the constraint

n− k ≥ 2(d− 1), (10.415)

the quantum Singleton bound. This bound is actually a corollary of a stronger
statement which you will prove in this exercise.

Suppose that in the pure state φRA the reference system R is maximally entan-
gled with a code subspace of A, and that E1 and E2 are two disjoint correctable
subsystems of system A (erasure of either E1 or E2 can be corrected). You are to
show that

log |A| − log |R| ≥ log |E1|+ log |E2|. (10.416)

Let Ec denote the subsystem of A complementary to E1E2, so that A = EcE1E2.

a) Recalling the error correction conditions ρRE1
= ρR⊗ρE1

and ρRE2
= ρR⊗ρE2

,
show that φREcE1E2 has the property

H(R) = H(Ec)− 1
2
I(Ec;E1)−

1
2
I(Ec;E2). (10.417)

b) Show that eq.(10.417) implies eq.(10.416).

10.14 Capacities of the depolarizing channel
Consider the depolarizing channel Ndepol.(p), which acts on a pure state |ψ〉 of a

single qubit according to

Ndepol.(p) : |ψ〉〈ψ| 7→
(

1− 4
3
p

)
|ψ〉〈ψ|+ 4

3
p · 1

2
I. (10.418)

For this channel, compute the product-state classical capacity C1(p), the
entanglement-assisted classical capacity CE(p), and the one-shot quantum capacity
Q1(p). Plot the results as a function of p. For what value of p does Q1 hit zero?

The depolarizing channel is not degradable, and in fact the quantum capacity
Q(p) is larger than Q1(p) when the channel is sufficiently noisy. The function Q(p)
is still unknown.

10.15 Noisy superdense coding and teleportation.

a) By converting the entanglement achieved by the mother protocol into classical
communication, prove the noisy superdense coding resource inequality:

Noisy SD : 〈φABE〉+H(A)[q → q] ≥ I(A;B)[c→ c]. (10.419)

Verify that this matches the standard noiseless superdense coding resource
inequality when φ is a maximally entangled state of AB.

b) By converting the entanglement achieved by the mother protocol into quantum
communication, prove the noisy teleportation resource inequality:

Noisy TP : 〈φABE〉+ I(A;B)[c→ c] ≥ Ic(A〉B)[q → q]. (10.420)

Verify that this matches the standard noiseless teleportation resource in-
equality when φ is a maximally entangled state of AB.
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10.16 The cost of erasure
Erasure of a bit is a process in which the state of the bit is reset to 0. Erasure

is irreversible — knowing only the final state 0 after erasure, we cannot determine
whether the initial state before erasure was 0 or 1. This irreversibility implies
that erasure incurs an unavoidable thermodynamic cost. According to Landauer’s
Principle, erasing a bit at temperature T requires work W ≥ kT log 2. In this
problem you will verify that a particular procedure for achieving erasure adheres
to Landauer’s Principle.

Suppose that the two states of the bit both have zero energy. We erase the bit
in two steps. In the first step, we bring the bit into contact with a reservoir at
temperature T > 0, and wait for the bit to come to thermal equilibrium with the
reservoir. In this step the bit “forgets” its initial value, but the bit is not yet erased
because it has not been reset.

We reset the bit in the second step, by slowly turning on a control field λ which
splits the degeneracy of the two states. For λ ≥ 0, the state 0 has energy E0 = 0
and the state 1 has energy E1 = λ. After the bit thermalizes in step one, the value
of λ increases gradually from the initial value λ = 0 to the final value λ = ∞; the
increase in λ is slow enough that the qubit remains in thermal equilibrium with
the reservoir at all times. As λ increases, the probability P (0) that the qubit is in
the state 0 approaches unity — i.e., the bit is reset to the state 0, which has zero
energy.

(a) For λ 6= 0, find the probability P (0) that the qubit is in the state 0 and the
probability P (1) that the qubit is in the state 1.

(b) How much work is required to increase the control field from λ to λ+ dλ?
(c) How much work is expended as λ increases slowly from λ = 0 to λ = ∞? (You

will have to evaluate an integral, which can be done analytically.)

10.17 Proof of the decoupling inequality
In this problem we complete the derivation of the decoupling inequality sketched

in §10.9.1.

a) Verify eq.(10.329).

To derive the expression for EU [MAA′(U)] in eq.(10.333), we first note that the
invariance property eq.(10.318) implies that EU [MAA′(U)] commutes with V ⊗V

for any unitary V . Therefore, by Schur’s lemma, EU [MAA′(U)] is a weighted sum
of projections onto irreducible representations of the unitary group. The tensor
product of two fundamental representations of U(d) contains two irreducible rep-
resentations — the symmetric and antisymmetric tensor representations. Therefore
we may write

EU [MAA′(U)] = csym Π(sym)
AA′ + canti Π(anti)

AA′ ; (10.421)

here Π(sym)
AA′ is the orthogonal projector onto the subspace of AA′ symmetric un-

der the interchange of A and A′, Π(anti)
AA′ is the projector onto the antisymmetric

subspace, and csym, canti are suitable constants. Note that

Π(sym)
AA′ =

1
2

(IAA′ + SAA′) ,

Π(anti)
AA′ =

1
2

(IAA′ − SAA′) , (10.422)
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where SAA′ is the swap operator, and that the symmetric and antisymmetric sub-
spaces have dimension 1

2 |A| (|A|+ 1) and dimension 1
2 |A| (|A| − 1) respectively.

Even if you are not familiar with group representation theory, you might re-
gard eq.(10.421) as obvious. We may write MAA′(U) as a sum of two terms, one
symmetric and the other antisymmetric under the interchange of A and A′. The
expectation of the symmetric part must be symmetric, and the expectation value
of the antisymmetric part must be antisymmetric. Furthermore, averaging over the
unitary group ensures that no symmetric state is preferred over any other.

b) To evaluate the constant csym, multiply both sides of eq.(10.421) by Π(sym)
AA′ and

take the trace of both sides, thus finding

csym =
|A1|+ |A2|
|A|+ 1

. (10.423)

c) To evaluate the constant canti, multiply both sides of eq.(10.421)) by Π(anti)
AA′ and

take the trace of both sides, thus finding

canti =
|A1| − |A2|
|A| − 1

. (10.424)

d) Using

cI =
1
2

(csym + canti) , cS =
1
2

(csym − canti) (10.425)

prove eq.(10.334).
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