
CS 4110 – Programming Languages and Logics
Lecture #2: Introduction to Semantics

What is the meaning of a program? When we write a program, we represent it using sequences of
characters. But these strings are just concrete syntax—they do not tell us what the program actually
means. It is tempting to define meaning by executing programs—either using an interpreter or
a compiler. But interpreters and compilers often have bugs! We could look in a specification
manual. But such manuals typically only offer an informal description of language constructs.

A better way to define meaning is to develop a formal, mathematical definition of the seman-
tics of the language. This approach is unambiguous, concise, and—most importantly—it makes
it possible to develop rigorous proofs about properties of interest. The main drawback is that the
semantics itself can be quite complicated, especially if one attempts to model all of the features of
a full-blown modern programming language.

There are three pedigreed ways of defining the meaning, or semantics, of a language:

• Operational semantics defines meaning in terms of execution on an abstract machine.

• Denotational semantics defines meaning in terms of mathematical objects such as functions.

• Axiomatic semantics defines meaning in terms of logical formulas satisfied during execution.

Each of these approaches has advantages and disadvantages in terms of how mathematically so-
phisticated they are, how easy they are to use in proofs, and how easy it is to use them to imple-
ment an interpreter or compiler. We will discuss these tradeoffs later in this course.

1 Arithmetic Expressions

To understand some of the key concepts of semantics, let us consider a very simple language
of integer arithmetic expressions with variable assignment. A program in this language is an
expression; executing a program means evaluating the expression to an integer. To describe the
syntactic structure of this language we will use variables that range over the following domains:

x, y, z ∈ Var
n,m ∈ Int

e ∈ Exp

Var is the set of program variables (e.g., foo, bar , baz , i , etc.). Int is the set of constant integers
(e.g., 42, 40, 7). Exp is the domain of expressions, which we specify using a BNF (Backus-Naur
Form) grammar:

e ::= x
| n
| e1 + e2
| e1 * e2
| x := e1 ; e2

1

Informally, the expression x := e1 ; e2 means that x is assigned the value of e1 before evaluating e2.
The result of the entire expression is the value described by e2.

This grammar specifies the syntax for the language. An immediate problem here is that the
grammar is ambiguous. Consider the expression 1 + 2 * 3. One can build two abstract syntax trees:

+

1 *

2 3

*

+

1 2

3

There are several ways to deal with this problem. One is to rewrite the grammar for the same
language to make it unambiguous. But that makes the grammar more complex and harder to
understand. Another possibility is to extend the syntax to require parentheses around all addition
and multiplication expressions:

e ::= x
| n
| (e1 + e2)
| (e1 * e2)
| x := e1 ; e2

However, this also leads to unnecessary clutter and complexity. Instead, we separate the “con-
crete syntax” of the language (which specifies how to unambiguously parse a string into program
phrases) from its “abstract syntax” (which describes, possibly ambiguously, the structure of pro-
gram phrases). In this course we will assume that the abstract syntax tree is known. When writing
expressions, we will occasionally use parenthesis to indicate the structure of the abstract syntax
tree, but the parentheses are not part of the language itself. (For details on parsing, grammars,
and ambiguity elimination, see or take CS 4120.)

1.1 Representing Expressions

The syntactic structure of expressions in this language can be compactly expressed in OCaml using
datatypes:

type exp = Var of string
| Int of int
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

This closely matches the BNF grammar above. The abstract syntax tree (AST) of an expression
can be obtained by applying the datatype constructors in each case. For instance, the AST of
expression 2 * (foo + 1) is:

Mul(Int(2), Add(Var("foo"), Int(1)))

In OCaml, parentheses can be dropped when there is one single argument, so the above expression
can be written as:

2

Mul(Int 2, Add(Var "foo", Int 1))

We could express the same structure in a language like Java using a class hierarchy, although it
would be a little more complicated:

abstract class Expr { }
class Var extends Expr { String name; .. }
class Int extends Expr { int val; ... }
class Add extends Expr { Expr exp1, exp2; ... }
class Mul extends Expr { Expr exp1, exp2; ... }
class Assgn extends Expr { String var, Expr exp1, exp2; .. }

2 Operational semantics

We have an intuitive notion of what expressions mean. For example, the 7 + (4 * 2) evaluates to 15,
and i := 6 + 1 ; 2 * 3 * i evaluates to 42. In this section, we will formalize this intuition precisely.

An operational semantics describes how a program executes on an abstract machine. A small-step
operational semantics describes how such an execution proceeds in terms of successive reductions—
here, of an expression—until we reach a value that represents the result of the computation. The
state of the abstract machine is often referred to as a configuration. For our language a configuration
must include two pieces of information:

• a store (also known as environment or state), which maps integer values to variables. Dur-
ing program execution, we will refer to the store to determine the values associated with
variables, and also update the store to reect assignment of new values to variables,

• the expression to evaluate.

We will represent stores as partial functions from Var to Int and configurations as pairs of expres-
sions and stores:

Store ≜ Var ⇀ Int

Config ≜ Store×Exp

We will denote configurations using angle brackets. For instance, ⟨σ, (foo + 2) * (bar + 2)⟩ is a con-
figuration where σ is a store and (foo + 2) * (bar + 2) is an expression that uses two variables, foo
and bar . The small-step operational semantics for our language is a relation →⊆ Config×Config
that describes how one configuration transitions to a new configuration. That is, the relation →
shows us how to evaluate programs one step at a time. We use infix notation for the relation →.
That is, given any two configurations ⟨σ1, e1⟩ and ⟨σ2, e2⟩, if (⟨e1, σ1⟩, ⟨e2, σ2⟩) is in the relation →,
then we write ⟨σ1, e1⟩ → ⟨σ2, e2⟩. For example, we have ⟨σ, (4 + 2) * y⟩ → ⟨σ, 6 * y⟩. That is, we can
evaluate the configuration ⟨σ, (4 + 2) * y⟩ one step to get the configuration ⟨σ, 6 * y⟩.

Using this approach, defining the semantics of the language boils down to to defining the
relation → that describes the transitions between configurations.

One issue here is that the domain of integers is infinite, as is the domain of expressions. There-
fore, there is an infinite number of possible machine configurations, and an infinite number of
possible single-step transitions. We need a finite way of describing an infinite set of possible tran-
sitions. We can compactly describe → using inference rules:

3

n = σ(x)

⟨σ, x ⟩ → ⟨σ, n⟩
VAR

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, e1 + e2⟩ → ⟨σ′, e′1 + e2⟩

LADD
⟨σ, e2⟩ → ⟨σ′, e′2⟩

⟨σ, n + e2⟩ → ⟨σ′, n + e′2⟩
RADD

p = m+ n

⟨σ, n +m⟩ → ⟨σ, p⟩
ADD

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, e1 * e2⟩ → ⟨σ′, e′1 * e2⟩

LMUL
⟨σ, e2⟩ → ⟨σ′, e′2⟩

⟨σ, n * e2⟩ → ⟨σ′, n * e′2⟩
RMUL

p = m× n

⟨σ,m *n⟩ → ⟨σ, p⟩
MUL

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, x := e1 ; e2⟩ → ⟨σ′, x := e′1 ; e2⟩

ASSGN1
σ′ = σ[x 7→ n]

⟨σ, x :=n ; e2⟩ → ⟨σ′, e2⟩
ASSGN

The meaning of an inference rule is that if the facts above the line holds, then the fact below the
line holds. The fact above the line are called premises; the fact below the line is called the conclusion.
The rules without premises are axioms; and the rules with premises are inductive rules. We use the
notation σ[x 7→ n] for the store that maps the variable x to integer n, and maps every other variable
to whatever σ maps it to. More explicitly, if f is the function σ[x 7→ n], then we have

f(y) =

{
n if y = x
σ(y) otherwise

3 Using the Semantics

Now let’s see how we can use these rules. Suppose we want to evaluate the expression (foo + 2) * (bar + 1)
with a store σ where σ(foo) = 4 and σ(bar) = 3. That is, we want to find the transition for the
configuration ⟨σ, (foo + 2) * (bar + 1)⟩. For this, we look for a rule with this form of a configuration
in the conclusion. By inspecting the rules, we find that the only rule that matches the form of
our configuration is LMUL, where e1 = foo + 2 and e2 = bar + 1 but e′1 is not yet known. We can
instantiate LMUL, replacing the metavariables e1 and e2 with appropriate expressions.

⟨σ, foo + 2⟩ → ⟨e′1, σ⟩
⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, e′1 * (bar + 1)⟩

LMUL

Now we need to show that the premise actually holds and find out what e′1 is. We look for a rule
whose conclusion matches ⟨σ, foo + 2⟩ → ⟨e′1, σ⟩. We find that LADD is the only matching rule:

⟨σ, foo⟩ → ⟨σ, e′′1⟩
⟨σ, foo + 2⟩ → ⟨σ, e′′1 + 2⟩

LADD

We repeat this reasoning for ⟨σ, foo⟩ → ⟨σ, e′′1⟩ and find that the only applicable rule is the axiom
VAR:

σ(foo) = 4

⟨σ, foo⟩ → ⟨σ, 4⟩
VAR

4

Since this is an axiom and has no premises, there is nothing left to prove. Hence, e′′1 = 4 and
e′1 = 4 + 2. We can put together the above pieces and build the following proof:

σ(foo) = 4

⟨σ, foo⟩ → ⟨σ, 4⟩
VAR

⟨σ, foo + 2⟩ → ⟨σ, 4 + 2⟩
LADD

⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, (4 + 2) * (bar + 1)⟩
LMUL

This proves that, given our inference rules, the one-step transition

⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, (4 + 2) * (bar + 1)⟩

is derivable. The structure above is called a “proof tree” or “derivation”. It is important to keep in
mind that proof trees must be finite for the conclusion to be valid.

We can use a similar reasoning to find out the next evaluation step:

6 = 4 + 2

⟨σ, 4 + 2⟩ → ⟨σ, 6⟩
ADD

⟨σ, (4 + 2) * (bar + 1)⟩ → ⟨σ, 6 * (bar + 1)⟩
LMUL

And we can continue this process. At the end, we can put together all of these transitions, to get a
view of the entire computation:

⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, (4 + 2) * (bar + 1)⟩
→ ⟨σ, 6 * (bar + 1)⟩
→ ⟨σ, 6 * (3 + 1)⟩
→ ⟨σ, 6 * 4⟩
→ ⟨σ, 24⟩

The result of the computation is a number, 24. The machine configuration that contains the fi-
nal result is the point where the evaluation stops; they are called final configurations. For our
language of expressions, the final configurations are of the form ⟨σ, n⟩.

We write → ∗ for the reflexive and transitive closure of the relation →. That is, if ⟨σ, e⟩ →
∗⟨σ′, e′⟩ using zero or more steps, we can evaluate the configuration ⟨σ, e⟩ to ⟨σ′, e′⟩. Thus, we
have:

⟨σ, (foo + 2) * (bar + 1)⟩ →∗⟨σ, 24⟩

5

CS 4110 – Programming Languages and Logics
Lecture #3: Inductive definitions and proofs

In this lecture, we will use the semantics of our simple language of arithmetic expressions,

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2,

to express useful program properties, and we will prove these properties by induction.

1 Program Properties

There are a number of interesting questions about a language one can ask: Is it deterministic?
Are there non-terminating programs? What sorts of errors can arise during evaluation? Having a
formal semantics allows us to express these properties precisely.

• Determinism: Evaluation is deterministic,

∀e ∈ Exp. ∀σ, σ′, σ′′ ∈ Store. ∀e′, e′′ ∈ Exp.
if ⟨σ, e⟩ → ⟨σ′, e′⟩ and ⟨σ, e⟩ → ⟨σ′′, e′′⟩ then e′ = e′′ and σ′ = σ′′.

• Termination: Evaluation of every expression terminates,

∀e ∈ Exp. ∀σ ∈ Store. ∃σ′ ∈ Store. ∃e′ ∈ Exp. ⟨σ, e⟩ →∗ ⟨σ′, e′⟩ and ⟨σ′, e′⟩ ̸→,

where ⟨σ′, e′⟩ ̸→ is shorthand for ¬ (∃σ′′ ∈ Store. ∃e′′ ∈ Exp. ⟨σ′, e′⟩ → ⟨σ′′, e′′⟩).

It is tempting to want the following soundness property,

• Soundness: Evaluation of every expression yields an integer,

∀e ∈ Exp. ∀σ ∈ Store. ∃σ′ ∈ store. ∃n′ ∈ Int. ⟨σ, e⟩ →∗⟨σ′, n′⟩,

but unfortunately it does not hold in our language! For example, consider the totally-undefined
function σ and the expression i + j. The configuration ⟨σ, i + j⟩ is stuck—it has no possible transitions—
but i + j is not an integer. The problem is that i + j has free variables but σ does not contain mappings
for those variables.

To fix this problem, we can restrict our attention to well-formed configurations ⟨σ, e⟩, where σ is
defined on (at least) the free variables in e. This makes sense as evaluation typically starts with a
closed expression. We can define the set of free variables of an expression as follows:

fvs(x) ≜ {x}
fvs(n) ≜ {}

fvs(e1 + e2) ≜ fvs(e1) ∪ fvs(e2)

fvs(e1 * e2) ≜ fvs(e1) ∪ fvs(e2)

fvs(x := e1 ; e2) ≜ fvs(e1) ∪ (fvs(e2) \ {x})

Now we can formulate two properties that imply a variant of the soundness property above:

1

• Progress: For each expression e and store σ such that the free variables of e are contained in
the domain of σ, either e is an integer or there exists a possible transition for ⟨σ, e⟩,

∀e ∈ Exp. ∀σ ∈ Store.
fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or (∃e′ ∈ Exp. ∃σ′ ∈ Store. ⟨σ, e⟩ → ⟨σ′, e′⟩)

• Preservation: Evaluation preserves containment of free variables in the domain of the store,

∀e, e′ ∈ Exp. ∀σ, σ′ ∈ Store.
fvs(e) ⊆ dom(σ) and ⟨σ, e⟩ → ⟨σ′, e′⟩ =⇒ fvs(e′) ⊆ dom(σ′).

The rest of this lecture shows how can we prove such properties using induction.

2 Inductive sets

Induction is an important concept in programming language theory. An inductively-defined set A is
one that is described using a finite collection of axioms and inductive (inference) rules. Axioms of
the form

a ∈ A

indicate that a is in the set A. Inductive rules

a1 ∈ A . . . an ∈ A

a ∈ A

indicate that if a1, . . . , an are all elements of A, then a is also an element of A.
The set A is the set of all elements that can be inferred to belong to A using a (finite) number

of applications of these rules, starting only from axioms. In other words, for each element a of A,
we must be able to construct a finite proof tree whose final conclusion is a ∈ A.

Example 1. The set described by a grammar is an inductive set. For instance, the set of arithmetic
expressions can be described with two axioms and three inference rules:

x ∈ Exp n ∈ Exp

e1 ∈ Exp e2 ∈ Exp

e1 + e2 ∈ Exp

e1 ∈ Exp e2 ∈ Exp

e1 * e2 ∈ Exp

e1 ∈ Exp e2 ∈ Exp

x := e1 ; e2 ∈ Exp

These axioms and rules describe the same set of expressions as the grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

Example 2. The natural numbers (expressed here in unary notation) can be inductively defined:

0 ∈ N
n ∈ N

succ(n) ∈ N

Example 3. The small-step evaluation relation → is an inductively defined set.

2

Example 4. The multi-step evaluation relation can be inductively defined:

⟨σ, e⟩ →∗⟨σ, e⟩
REFL

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩
⟨σ, e⟩ →∗⟨σ′′, e′′⟩

TRANS

Example 5. The set of free variables of an expression e can be inductively defined:

y ∈ fvs(y)

y ∈ fvs(e1)

y ∈ fvs(e1 + e2)

y ∈ fvs(e2)

y ∈ fvs(e1 + e2)

y ∈ fvs(e1)

y ∈ fvs(e1 * e2)

y ∈ fvs(e2)

y ∈ fvs(e1 * e2)

y ∈ fvs(e1)

y ∈ fvs(x := e1 ; e2)

y ̸= x y ∈ fvs(e2)

y ∈ fvs(x := e1 ; e2)

3 Inductive proofs

We can prove facts about elements of an inductive set using an inductive reasoning that follows
the structure of the set definition.

3.1 Mathematical induction

You have probably seen proofs by induction over the natural numbers, called mathematical in-
duction. In such proofs, we typically want to prove that some property P holds for all natural
numbers, that is, ∀n ∈ N. P (n). A proof by induction works by first proving that P (0) holds, and
then proving for all m ∈ N, if P (m) then P (m + 1). The principle of mathematical induction can
be stated succinctly as

P (0) and (∀m ∈ N. P (m) =⇒ P (m+ 1)) =⇒ ∀n ∈ N. P (n).

The proposition P (0) is the basis of the induction (also called the base case) while P (m) =⇒ P (m+1)
is called induction step (or the inductive case). While proving the induction step, the assumption that
P (m) holds is called the induction hypothesis.

3.2 Structural induction

Given an inductively defined set A, to prove that a property P holds for all elements of A, we need
to show:

1. Base cases: For each axiom

a ∈ A,

P (a) holds.

2. Inductive cases: For each inference rule

a1 ∈ A . . . an ∈ A

a ∈ A ,

if P (a1) and . . . and P (an) then P (a).

3

Note that if the set A is the set of natural numbers from Example 2 above, then the requirements
for proving that P holds for all elements of A is equivalent to mathematical induction.

If A describes a syntactic set, then we refer to induction following the requirements above as
structural induction. If A is an operational semantics relation (such as the small-step operational se-
mantics relation →) then such an induction is called induction on derivations. We will see examples
of structural induction and induction on derivations throughout the course.

3.3 Example: Progress

Let’s consider the progress property defined above, and repeated here:

Progress: For each store σ and expression e such that the free variables of e are contained in the
domain of σ, either e is an integer or there exists a possible transition for ⟨σ, e⟩:

∀e ∈ Exp. ∀σ ∈ Store. fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or (∃e′ ∈ Exp. ∃σ′ ∈ Store. ⟨σ, e⟩ → ⟨σ′, e′⟩)

Let’s rephrase this property in terms of an explicit predicate on expressions:

P (e) ≜ ∀σ ∈ Store. fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or
(
∃e′, σ′. ⟨σ, e⟩ → ⟨σ′, e′⟩

)
The idea is to build a proof that follows the inductive structure given by the grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

This technique is called “structural induction on e.” We analyze each case in the grammar and
show that P (e) holds for that case. Since the grammar productions e1 + e2 and e1 * e2 and x := e1 ; e2
are inductive, they are inductive steps in the proof; the cases for x and n are base cases. The proof
proceeds as follows.

Proof. Let e be an expression. We will prove that

∀σ ∈ Store. fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or
(
∃e′, σ′. ⟨σ, e⟩ → ⟨σ′, e′⟩

)
by structural induction on e. We analyze several cases, one for each case in the grammar for
expressions:

Case e = x: Let σ be an arbitrary store, and assume that fvs(e) ⊆ dom(σ). By the definition of
fvs we have fvs(x) = {x}. By assumption we have {x} ⊆ dom(σ) and so x ∈ dom(σ). Let
n = σ(x). By the VAR axiom we have ⟨σ, x⟩ → ⟨σ, n⟩, which finishes the case.

Case e = n: We immediately have e ∈ Int, which finishes the case.
Case e = e1 + e2: Let σ be an arbitrary store, and assume that fvs(e) ⊆ dom(σ). We will assume

that P (e1) and P (e2) hold and show that P (e) holds. Let’s expand these properties. We have

P (e1) = ∀σ ∈ Store. fvs(e1) ⊆ dom(σ) =⇒ e1 ∈ Int or (∃e′, σ′. ⟨σ, e1⟩ → ⟨σ′, e′⟩)
P (e2) = ∀σ ∈ Store. fvs(e2) ⊆ dom(σ) =⇒ e2 ∈ Int or (∃e′, σ′. ⟨σ, e2⟩ → ⟨σ′, e′⟩)

and want to prove:

P (e1 + e2) = ∀σ ∈ Store. fvs(e1+e2) ⊆ dom(σ) =⇒ e1 + e2 ∈ Int or (∃e′, σ′. ⟨σ, e1 + e2⟩ → ⟨σ′, e′⟩)

We analyze several subcases.

4

Subcase e1 = n1 and e2 = n2: By rule ADD, we immediately have ⟨σ, n1 +n2⟩ → ⟨σ, p⟩, where
p = n1 + n2.

Subcase e1 ̸∈ Int: By assumption and the definition of fvs we have

fvs(e1) ⊆ fvs(e1 + e2) ⊆ dom(σ)

Hence, by the induction hypothesis P (e1) we also have ⟨σ, e1⟩ → ⟨σ′, e′⟩ for some e′ and
σ′. By rule LADD we have ⟨σ, e1 + e2⟩ → ⟨σ′, e′ + e2⟩.

Subcase e1 = n1 and e2 ̸∈ Int: By assumption and the definition of fvs we have

fvs(e2) ⊆ fvs(e1 + e2) ⊆ dom(σ)

Hence, by the induction hypothesis P (e2) we also have ⟨σ, e2⟩ → ⟨σ′, e′⟩ for some e′ and
σ′. By rule RADD we have ⟨σ, e1 + e2⟩ → ⟨σ′, e1 + e′⟩, which finishes the case.

Case e = e1 * e2: . Analogous to the previous case.
Case e = x := e1 ; e2: . Let σ be an arbitrary store, and assume that fvs(e) ⊆ dom(σ). As above, we

assume that P (e1) and P (e2) hold and show that P (e) holds. Let’s expand these properties.
We have

P (e1) = ∀σ. fvs(e1) ⊆ dom(σ) =⇒ e1 ∈ Int or (∃e′, σ′. ⟨σ, e1⟩ → ⟨σ′, e′⟩)
P (e2) = ∀σ. fvs(e2) ⊆ dom(σ) =⇒ e2 ∈ Int or (∃e′, σ′. ⟨σ, e2⟩ → ⟨σ′, e′⟩)

and want to prove:

P (x := e1 ; e2) = x := e1 ; e2 ∈ Int or (∃e′, σ′. ⟨σ, x := e1 ; e2⟩ → ⟨σ′, e′⟩)

We analyze several subcases.

Subcase e1 = n1: By rule ASSGN we have ⟨σ, x :=n1 ; e2⟩ → ⟨σ′, e2⟩ where σ′ = σ[x 7→ n1].
Subcase e1 ̸∈ Int: By assumption and the definition of fvs we have

fvs(e1) ⊆ fvs(x := e1 ; e2) ⊆ dom(σ)

Hence, by induction hypothesis we also have ⟨σ, e1⟩ → ⟨σ′, e′⟩ for some e′ and σ′. By
the rule ASSGN1 we have ⟨σ, x := e1 ; e2⟩ → ⟨σ′, x := e′1 ; e2⟩, which finishes the case and
the inductive proof.

5

CS 4110 – Programming Languages and Logics
Lecture #4: Large-step semantics

1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-
step evaluation relation →⊆ Config×Config (and its reflexive and transitive closure →∗). In this
lecture we will explore an alternative approach—large-step operational semantics—which yields
the final result of evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation ⇓ that captures the evalua-
tion of an expression. The ⇓ relation has the following type:

⇓⊆ (Store×Exp)× (Store× Int).

We write ⟨σ, e⟩ ⇓ ⟨σ′, n⟩ to indicate that ((σ, e), (σ′, n)) ∈⇓. In other words, the expression e with
store σ evaluates in one big step to the final store σ′ and integer n.

We define the relation ⇓ inductively, using inference rules:

⟨σ, n⟩ ⇓ ⟨σ, n⟩
INT

n = σ(x)

⟨σ, x⟩ ⇓ ⟨σ, n⟩
VAR

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 + n2

⟨σ, e1 + e2⟩ ⇓ ⟨σ′′, n⟩
ADD

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 × n2

⟨σ, e1 * e2⟩ ⇓ ⟨σ′′, n⟩
MUL

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′[x 7→ n1], e2⟩ ⇓ ⟨σ′′, n2⟩
⟨σ, x := e1 ; e2⟩ ⇓ ⟨σ′′, n2⟩

ASSGN

To illustrate the use of these rules, consider the following proof tree, which shows that evaluating
⟨σ, foo := 3 ; foo * bar⟩ using a store σ such that σ(bar) = 7 yields σ′ = σ[foo 7→ 3] and 21 as a result:

⟨σ, 3⟩ ⇓ ⟨σ, 3⟩
INT

⟨σ′, foo⟩ ⇓ ⟨σ′, 3⟩
VAR

⟨σ′, bar⟩ ⇓ ⟨σ′, 7⟩
VAR

⟨σ′, foo * bar⟩ ⇓ ⟨σ′, 21⟩
MUL

⟨σ, foo := 3 ; foo * bar⟩ ⇓ ⟨σ′, 21⟩
ASSGN

A closer look to this structure reveals the relation between small step and large-step evaluation:
a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in
small-step evaluation.

1

2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The
next theorem answers this question affirmatively.

Theorem (Equivalence of semantics). For all expressions e, stores σ and σ′, and integers n we have:

⟨σ, e⟩ ⇓ ⟨σ′, n⟩ if and only if ⟨σ, e⟩ →∗⟨σ′, n⟩

To streamline the proof, we will work with the following definition of the multi-step relation:

⟨σ, e⟩ →∗⟨σ, e⟩
REFL

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩
⟨σ, e⟩ →∗⟨σ′′, e′′⟩

TRANS

Proof sketch. We show each direction separately.

=⇒: We want to prove that the following property P holds for all expressions e ∈ Exp:

P (e) ≜ ∀σ, σ′ ∈ Store. ∀n ∈ Int. ⟨σ, e⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e⟩ →∗⟨σ′, n⟩

We proceed by structural induction on e. We have to consider each of the possible axioms
and inference rules for constructing an expression.

Case e = x: Assume that ⟨σ, x⟩ ⇓ ⟨σ′, n⟩. That is, there is some derivation in the large-step
operational semantics whose conclusion is ⟨σ, x⟩ ⇓ ⟨σ, n⟩. There is only one rule whose
conclusion matches the configuration ⟨σ, x⟩: the large-step rule VAR. Thus, we have
n = σ(x) and σ′ = σ. By the small-step rule VAR, we also have ⟨σ, x⟩ → ⟨σ, n⟩. By the
REFL and TRANS rules, we conclude that ⟨σ, x⟩ →∗⟨σ, n⟩, which finishes the case.

Case e = n: Assume that ⟨σ, n⟩ ⇓ ⟨σ′, n′⟩. There is only one rule whose conclusion matches
⟨σ, n⟩: the large-step rule INT. Thus, we have n′ = n and σ′ = σ and so ⟨σ, n⟩ →∗⟨σ, n⟩
by the REFL rule.

Case e = e1 + e2: This is an inductive case. We want to prove that if P (e1) and P (e2) hold,
then P (e) also holds. Let’s write out P (e1), P (e2), and P (e) explicitly.

P (e1) = ∀n, σ, σ′. ⟨σ, e1⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e1⟩ →∗⟨σ′, n⟩
P (e2) = ∀n, σ, σ′. ⟨σ, e2⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e2⟩ →∗⟨σ′, n⟩
P (e) = ∀n, σ, σ′. ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩

Assume that P (e1) and P (e2) hold. Also assume that there exist σ, σ′ and n such that
⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. We need to show that ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩.
We assumed that ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. This means that there is some derivation whose
conclusion is ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. By inspection, we see that only one rule has a conclu-
sion of this form: the ADD rule. Thus, the last rule used in the derivation was ADD and
it must be the case that ⟨σ, e1⟩ ⇓ ⟨σ′′, n1⟩ and ⟨σ′′, e2⟩ ⇓ ⟨σ′, n2⟩ hold for some n1 and n2

with n = n1 + n2.

2

By the induction hypothesis P (e1), as ⟨σ, e1⟩ ⇓ ⟨σ′′, n1⟩, we must have ⟨σ, e1⟩ →∗⟨σ′′, n1⟩.
Likewise, by induction hypothesis P (e2), we have ⟨σ′′, e2⟩ →∗⟨σ′, n2⟩. By Lemma 1 be-
low, we have,

⟨σ, e1 + e2⟩ →∗⟨σ′′, n1 + e2⟩,

and by another application of Lemma 1 we have:

⟨σ′′, n1 + e2⟩ →∗⟨σ′, n1 +n2⟩

Then, using the small-step ADD rule and the multi-step TRANS rule, we have:

n = n1 + n2

⟨σ′, n1 +n2⟩ → ⟨σ′, n⟩
ADD

⟨σ′, n⟩ →∗⟨σ′, n⟩
REFL

⟨σ′, n1 + n2⟩ →∗⟨σ′, n⟩
TRANS

Finally, by two applications of Lemma 2, we obtain ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩, which finishes
the case.

Case e = e1 * e2. Similar to case for e1 + e2 above.
Case e = x := e1; e2. Omitted. Try it as an exercise.

⇐=: We proceed by induction on the derivation of ⟨σ, e⟩ →∗⟨σ′, n⟩ with a case analysis on the last
rule used.

Case REFL: Then e = n and σ′ = σ. We immediately have ⟨σ, n⟩ ⇓ ⟨σ, n⟩ by the large-step
rule INT.

Case TRANS: Then ⟨σ, e⟩ → ⟨σ′′, e′′⟩ and ⟨σ′′, e′′⟩ → ∗⟨σ′, n⟩. In this case, the induction
hypothesis gives ⟨σ′′, e′′⟩ ⇓ ⟨σ′, n⟩. The result follows from Lemma 3 below.

Lemma 1. If ⟨σ, e⟩ →∗⟨σ′, n⟩, then the following hold:

• ⟨σ, e + e2⟩ →∗⟨σ′, n + e2⟩
• ⟨σ, e * e2⟩ →∗⟨σ′, n * e2⟩
• ⟨σ, n1 + e⟩ →∗⟨σ′, n1 +n⟩
• ⟨σ, n1 * e⟩ →∗⟨σ′, n1 *n⟩
• ⟨σ, x := e ; e2⟩ →∗⟨σ′, x :=n ; e2⟩

Proof. Omitted; try it as an exercise.

Lemma 2. If ⟨σ, e⟩ →∗⟨σ′, e′⟩ and ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩, then ⟨σ, e⟩ →∗⟨σ′′, e′′⟩.

Proof. Omitted; try it as an exercise.

Lemma 3. If ⟨σ, e⟩ → ⟨σ′′, e′′⟩ and ⟨σ′′, e′′⟩ ⇓ ⟨σ′, n⟩, then ⟨σ, e⟩ ⇓ ⟨σ′, n⟩.

Proof. Omitted; try it as an exercise.

3

CS 4110 – Programming Languages and Logics
Lecture #5: The IMP Language

1 A simple imperative language

We will now consider a more realistic programming language, one where we can assign values
to variables and execute control constructs such as if and while. The syntax for this imperative
language, called IMP, is as follows:

arithmetic expressions a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

boolean expressions b ∈ Bexp b ::= true | false | a1 < a2

commands c ∈ Com c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c

1.1 Small-step operational semantics

We’ll first give a small-step operational semantics for IMP. The configurations in this language
are of the form ⟨c, σ⟩, ⟨σ, b⟩, and ⟨σ, a⟩, where σ is a store. The final configurations are of the form
⟨σ, skip⟩, ⟨σ, true⟩, ⟨σ, false⟩, and ⟨σ, n⟩. There are three different small-step operational semantics
relations, one each for commands, boolean expressions, and arithmetic expressions.

→Com ⊆ Com× Store×Com× Store

→Bexp ⊆ Bexp× Store×Bexp× Store

→Aexp ⊆ Aexp× Store×Aexp× Store

For brevity, we will overload the symbol → and use it to refer to all of these relations. Which
relation is being used will be clear from context. The evaluation rules for arithmetic and boolean
expressions are similar to the ones we’ve seen before. However, note that since the arithmetic
expressions no longer contain assignment, arithmetic and boolean expressions can not update the
store.

Arithmetic expressions

n = σ(x)

⟨σ, x⟩ → ⟨σ, n⟩

⟨σ, a1⟩ → ⟨σ, a′1⟩
⟨σ, a1 + a2⟩ → ⟨σ, a′1 + a2⟩

⟨σ, a2⟩ → ⟨σ, a′2⟩
⟨σ, n+ a2⟩ → ⟨σ, n+ a′2⟩

p = n+m

⟨σ, n+m⟩ → ⟨σ, p⟩

⟨σ, a1⟩ → ⟨σ, a′1⟩
⟨σ, a1 × a2⟩ → ⟨σ, a′1 × a2⟩

⟨σ, a2⟩ → ⟨σ, a′2⟩
⟨σ, n× a2⟩ → ⟨σ, n× a′2⟩

p = n×m

⟨σ, n×m⟩ → ⟨σ, p⟩

Boolean expressions

1

⟨σ, a1⟩ → ⟨σ, a′1⟩
⟨σ, a1 < a2⟩ → ⟨σ, a′1 < a2⟩

⟨σ, a2⟩ → ⟨σ, a′2⟩
⟨σ, n < a2⟩ → ⟨σ, n < a′2⟩

n < m

⟨σ, n < m⟩ → ⟨σ, true⟩
n ≥ m

⟨σ, n < m⟩ → ⟨σ, false⟩

Commands

⟨σ, e⟩ → ⟨σ, e′⟩
⟨σ, x := e⟩ → ⟨σ, x := e′⟩ ⟨σ, x := n⟩ → ⟨σ[x 7→ n],skip⟩

⟨σ, c1⟩ → ⟨σ′, c′1⟩
⟨σ, c1; c2⟩ → ⟨σ′, c′1; c2⟩ ⟨σ,skip; c2⟩ → ⟨σ, c2⟩

For if commands, we reduce the test until we get true or false and then we execute the appropriate
branch:

⟨σ, b⟩ → ⟨σ, b′⟩
⟨σ, if b then c1 else c2⟩ → ⟨σ, if b′ then c1 else c2⟩

⟨σ, if true then c1 else c2⟩ → ⟨σ, c1⟩ ⟨σ, if false then c1 else c2⟩ → ⟨σ, c2⟩

For while loops, the above strategy doesn’t work (why?). Instead, we use the following rule,
which can be thought of as “unrolling” the loop, one iteration at a time.

⟨σ,while b do c⟩ → ⟨σ, if b then (c;while b do c) else skip⟩

We can now take a concrete program and see how it executes under the above rules. Consider we
execute the program

foo := 3;while foo < 4 do foo := foo+ 5

2

The execution works as follows:

⟨σ, foo := 3;while foo < 4 do foo := foo+ 5⟩
→ ⟨σ′,skip;while foo < 4 do foo := foo+ 5⟩ where σ′ = σ[foo 7→ 3]

→ ⟨σ′,while foo < 4 do foo := foo+ 5⟩
→ ⟨σ′, if foo < 4 then (foo := foo+ 5;W) else skip⟩
→ ⟨σ′, if 3 < 4 then (foo := foo+ 5;W) else skip⟩
→ ⟨σ′, if true then (foo := foo+ 5;W) else skip⟩
→ ⟨σ′, foo := foo+ 5;while foo < 4 do foo := foo+ 5⟩
→ ⟨σ′, foo := 3 + 5;while foo < 4 do foo := foo+ 5⟩
→ ⟨σ′, foo := 8;while foo < 4 do foo := foo+ 5⟩
→ ⟨σ′′,while foo < 4 do foo := foo+ 5⟩ where σ′′ = σ′[foo 7→ 8]

→ ⟨σ′′, if foo < 4 then (foo := foo+ 5;W) else skip⟩
→ ⟨σ′′, if 8 < 4 then (foo := foo+ 5;W) else skip⟩
→ ⟨σ′′, if false then (foo := foo+ 5;W) else skip⟩
→ ⟨σ′′,skip⟩

where W is an abbreviation for the while loop while foo < 4 do foo := foo+ 5.

2 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, boolean expressions, and
commands. The relation for arithmetic expressions relates an arithmetic expression and store to
the integer value that the expression evaluates to. For boolean expressions, the final value is in
Bool = {true, false}. For commands, the final value is a store.

⇓Aexp ⊆ Aexp× Store× Int

⇓Bexp ⊆ Bexp× Store×Bool

⇓Com ⊆ Com× Store× Store

Again, we overload the symbol ⇓ and use it for any of these three relations; which relation is
intended will be clear from context. We also use infix notation, for example writing ⟨σ, c⟩ ⇓ σ′ if
(c, σ, σ′) ∈⇓Com.

Arithmetic expressions.

⟨σ, n⟩ ⇓ n

σ(x) = n

⟨σ, x⟩ ⇓ n

⟨σ, a1⟩ ⇓ n1 ⟨σ, a2⟩ ⇓ n2 n = n1 + n2

⟨σ, a1 + a2⟩ ⇓ n

⟨σ, a1⟩ ⇓ n1 ⟨σ, a2⟩ ⇓ n2 n = n1 × n2

⟨σ, a1 × a2⟩ ⇓ n

3

Boolean expressions.

⟨σ, true⟩ ⇓ true ⟨σ, false⟩ ⇓ false

⟨σ, a1⟩ ⇓ n1 ⟨σ, a2⟩ ⇓ n2 n1 < n2

⟨σ, a1 < a2⟩ ⇓ true
⟨σ, a1⟩ ⇓ n1 ⟨σ, a2⟩ ⇓ n2 n1 ≥ n2

⟨σ, a1 < a2⟩ ⇓ false

Commands.

SKIP
⟨σ,skip⟩ ⇓ σ

ASSGN
⟨σ, e⟩ ⇓ n

⟨σ, x := e⟩ ⇓ σ[x 7→ n]
SEQ

⟨σ, c1⟩ ⇓ σ′ ⟨σ′, c2⟩ ⇓ σ′′

⟨σ, c1; c2⟩ ⇓ σ′′

IF-T
⟨σ, b⟩ ⇓ true ⟨σ, c1⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′ IF-F
⟨σ, b⟩ ⇓ false ⟨σ, c2⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′

WHILE-F
⟨σ, b⟩ ⇓ false

⟨σ,while b do c⟩ ⇓ σ

WHILE-T
⟨σ, b⟩ ⇓ true ⟨σ, c⟩ ⇓ σ′ ⟨σ′,while b do c⟩ ⇓ σ′′

⟨σ,while b do c⟩ ⇓ σ′′

It’s interesting to see that the rule for while loops does not rely on using an if command (as in the
case of small-step semantics). Why does this rule work?

2.1 Command equivalence

The small-step operational semantics suggests that the loop while b do c should be equivalent to
the command if b then (c;while b do c) else skip. Can we show that this indeed the case that the
language is defined using the above large-step evaluation?

First, we need to to be more precise about what “equivalent commands” mean. Our formal
model allows us to define this concept using large-step evaluations as follows. (One can write a
similar definition using →∗ in small-step semantics.)

Definition (Equivalence of commands). Two commands c and c′ are equivalent (written c ∼ c′) if,
for any stores σ and σ′, we have

⟨σ, c⟩ ⇓ σ′ ⇐⇒ ⟨σ, c′⟩ ⇓ σ′.

We can now state and prove the claim that while b do c and if b then (c;while b do c) else skip
are equivalent.

Theorem. For all b ∈ Bexp and c ∈ Com we have

while b do c ∼ if b then (c;while b do c) else skip.

4

Proof. Let W be an abbreviation for while b do c. We want to show that for all stores σ, σ′, we have:

⟨σ,W ⟩ ⇓ σ′ if and only if if b then (c;W) else skip ⇓ σ′

For this, we must show that both directions (=⇒ and ⇐=) hold. We’ll show only direction =⇒;
the other is similar.

Assume that σ and σ′ are stores such that ⟨σ,W ⟩ ⇓ σ′. It means that there is some derivation
that proves for this fact. Inspecting the evaluation rules, we see that there are two possible rules
whose conclusions match this fact: WHILE-F and WHILE-T. We analyze each of them in turn.

• WHILE-F. The derivation must look like the following.

WHILE-F

...1

⟨σ, b⟩ ⇓ false
⟨σ,W ⟩ ⇓ σ

Here, we use
...1 to refer to the derivation of ⟨σ, b⟩ ⇓ false. Note that in this case, σ′ = σ.

We can use
...1 to derive a proof tree showing that the evaluation of if b then (c;W) else skip

yields the same final state σ:

IF-F

...1

⟨σ, b⟩ ⇓ false
SKIP

⟨σ,skip⟩ ⇓ σ

⟨σ, if b then (c;W) else skip⟩ ⇓ σ

• WHILE-T. In this case, the derivation has the following form.

WHILE-T

...2

⟨σ, b⟩ ⇓ true

...3

⟨σ, c⟩ ⇓ σ′′

...4

⟨σ′′,W ⟩ ⇓ σ′

⟨σ,W ⟩ ⇓ σ′

We can use subderivations
...2,

...3, and
...4 to show that the evaluation of if b then (c;W) else skip

yields the same final state σ.

IF-T

...2

⟨σ, b⟩ ⇓ true
SEQ

...3

⟨σ, c⟩ ⇓ σ′′

...4

⟨σ′′,W ⟩ ⇓ σ′

⟨σ, c;W ⟩ ⇓ σ′

⟨σ, if b then (c;W) else skip⟩ ⇓ σ′

Hence, we showed that in each of the two possible cases, the command if b then (c;W) else skip
evaluates to the same final state as the command W .

5

CS 4110 – Programming Languages and Logics
Lecture #6: IMP Properties

1 Equivalence of Semantics

The small-step and large-step semantics are equivalent as captured by the following theorem.

Theorem. For all commands c and stores σ and σ′ we have

⟨σ, c⟩ →∗⟨σ′,skip⟩ if and only if ⟨σ, c⟩ ⇓ σ′.

The proof is left as an exercise...

2 Non-Termination

For a given command c and initial state σ, the execution of the command may terminate with some
final store σ′, or it may diverge and never yield a final state. For example, the command

while true do foo := foo+ 1

always diverges while
while 0 < i do i := i+ 1

diverges if and only if the value of variable i in the initial state is positive.
If ⟨σ, c⟩ is a diverging configuration then there is no state σ such that

⟨σ, c⟩ ⇓ σ′ or ⟨σ, c⟩ →∗⟨σ′,skip⟩.

However, in small-step semantics, diverging computations generate an infinite sequence:

⟨σ, c⟩ → ⟨σ1, c1⟩ → ⟨σ2, c2⟩ → . . .

Hence, small-step semantics allow us to state and prove properties about programs that may di-
verge. Later in the course, we will specify and prove properties that are of interest in potentially
diverging computations.

3 Determinism

The semantics of IMP (both small-step and large-step) are deterministic. For example, each IMP
command c and each initial store σ evaluates to at most one final store.

Theorem. For all commands c and stores σ, σ1, and σ2, if ⟨σ, c⟩ ⇓ σ1 and ⟨σ, c⟩ ⇓ σ2 then σ1 = σ2.

1

To prove this theorem, we need an induction. But structural induction on the command c will
not work. (Why? Which case breaks?) Instead, we need to perform induction on the derivation of
⟨σ, c⟩ ⇓ σ1. We first introduce some useful notation.

Let D be a derivation. We write D ⊩ y if D is a derivation of y, that is, if the conclusion of D is
y. For example, if D is the following derivation

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

⟨σ, i := 6× 7⟩ ⇓ σ[i 7→ 42]

then we have D ⊩ ⟨σ, i := 42⟩ ⇓ σ[i 7→ 42].
Let D and D′ be derivations. We say that D′ is an immediate subderivation of D if D′ is a deriva-

tion of one of the premises used in the final rule in the derivation D. For example, the derivation

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

is an immediate subderivation of

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

⟨σ, i := 6× 7⟩ ⇓ σ[i 7→ 42]

In a proof by induction on derivations, we assume that the property P being proved holds for all
immediate subderivations, and we show that it holds of the conclusion.

Proof. As ⟨σ, c⟩ ⇓ σ1, there is a derivation D1 such that D1 ⊩ ⟨σ, c⟩ ⇓ σ1. Similarly, as ⟨σ, c⟩ ⇓ σ2,
there is a derivation D2 such that D2 ⊩ ⟨σ, c⟩ ⇓ σ2.

We proceed by induction on the derivation D1 ⊩ ⟨σ, c⟩ ⇓ σ1. We assume that the induction
hypothesis holds for immediate subderivations of D1. In this case, the induction hypothesis P is:

P (D) = ∀c ∈ Com. ∀σ, σ′, σ′′ ∈ Store, if D ⊩ ⟨σ, c⟩ ⇓ σ′ and ⟨σ, c⟩ ⇓ σ′′ then σ′ = σ′′.

We analyze the possible cases for the last rule used in D1.

Case SKIP: In this case

D1 =
SKIP

...

⟨σ,skip⟩ ⇓ σ

and we have c = skip and σ1 = σ. Since the rule SKIP is the only rule that has the command
skip in its conclusion, the last rule used in D2 must also be SKIP, and so we have σ2 = σ and
the result holds.

2

Case ASSGN: In this case

D1 =
ASSGN

...

⟨σ, a⟩ ⇓ n

⟨σ, x := a⟩ ⇓ σ[x 7→ n] ,

and we have c = x := a and σ1 = σ[x 7→ n]. The last rule used in D2 must also be ASSGN,
and so we have σ2 = σ[x 7→ n] and the result holds.1

Case SEQ: In this case

D1 =
SEQ

...

⟨σ, c1⟩ ⇓ σ′
1

...

⟨σ′
1, c2⟩ ⇓ σ1

⟨σ, c1; c2⟩ ⇓ σ1 ,

and we have c = c1; c2. The last rule used in D2 must also be SEQ, and so we have

D2 =
SEQ

...

⟨σ, c1⟩ ⇓ σ′
2

...

⟨σ′
2, c2⟩ ⇓ σ2

⟨σ, c1; c2⟩ ⇓ σ2 .

By the inductive hypothesis applied to the derivation

...

⟨σ, c1⟩ ⇓ σ′
1 , we have σ′

1 = σ′
2. By

another application of the inductive hypothesis to

...

⟨σ′
1, c2⟩ ⇓ σ1 , we have σ1 = σ2 and the

result holds.
Case IF-T: Here we have

D1 =
IF-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ1

⟨σ, if b then c1 else c2⟩ ⇓ σ1 ,

and we have c = if b then c1 else c2. The last rule used in D2 must also be IF-T and so we
have

D2 =
IF-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ2

⟨σ, if b then c1 else c2⟩ ⇓ σ2 .

The result holds by the inductive hypothesis applied to the derivation

...

⟨σ, c1⟩ ⇓ σ1 .
Case IF-F: Similar to the case for IF-T.
Case WHILE-F: Straightforward, similar to the case for SKIP.

1Strictly speaking, we also need to argue that the evaluation of a is deterministic. In this proof we will tacitly assume
deterministic evaluation of arithmetic and boolean expressions.

3

Case WHILE-T: Here we have

D1 =
WHILE-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ′
1

...

⟨σ′
1, c⟩ ⇓ σ1

⟨σ,while b do c1⟩ ⇓ σ1 ,

and we have c = while b do c1. The last rule used in D2 must also be WHILE-T, and so we
have

D2 =
WHILE-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ′
2

...

⟨σ′
2, c⟩ ⇓ σ2

⟨σ,while b do c1⟩ ⇓ σ2 .

By the inductive hypothesis applied to the derivation

...

⟨σ, c1⟩ ⇓ σ′
1 , we have σ′

1 = σ′
2. By

another application of the inductive hypothesis, to the derivation

...

⟨σ′
1, c⟩ ⇓ σ1 , we have

σ1 = σ2 and the result holds.
Note that even though c = while b do c1 appears in the derivation of ⟨σ,while b do c1⟩ ⇓ σ1,
we do not run in to problems, as the induction is over the derivation, not over the structure
of the command.

4

CS 4110 – Programming Languages and Logics
Lecture #7: Denotational Semantics

We have now seen two operational models for programming languages: small-step and large-
step. In this lecture, we consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical
function that expresses what the program computes. We can think of an IMP program c as a
function from stores to stores: given an an initial store, the program produces a final store. For
example, the program foo := bar+1 can be thought of as a function that when given an input store
σ, produces a final store σ′ that is identical to σ except that it maps foo to the integer σ(bar) + 1;
that is, σ′ = σ[foo 7→ σ(bar)+ 1]. We will model programs as functions from input stores to output
stores. As opposed to operational models, which tell us how programs execute, the denotational
model shows us what programs compute.

1 A Denotational Semantics for IMP

For each program c, we write C[[c]] for the denotation of c, that is, the mathematical function that c
represents:

C[[c]] : Store ⇀ Store.

Note that C[[c]] is actually a partial function (as opposed to a total function), both because the store
may not be defined on the free variables of the program and because program may not terminate
for certain input stores. The function C[[c]] is not defined for non-terminating programs as they
have no corresponding output stores.

We will write C[[c]]σ for the result of applying the function C[[c]] to the store σ. That is, if f is the
function that C[[c]] denotes, then we write C[[c]]σ to mean the same thing as f(σ).

We must also model expressions as functions, this time from stores to the values they represent.
We will write A[[a]] for the denotation of arithmetic expression a, and B[[b]] for the denotation of
boolean expression b.

A[[a]] : Store ⇀ Int

B[[b]] : Store ⇀ {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
describe (partial) functions using sets of pairs. More precisely, we will represent a partial map
f : A ⇀ B as a set of pairs F = {(a, b) | a ∈ A and b = f(a) ∈ B} such that, for each a ∈ A, there
is at most one pair of the form (a,) in the set. Hence (a, b) ∈ F is the same as b = f(a).

1

We can now define denotations for IMP. We start with the denotations of expressions:

A[[n]] = {(σ, n)}
A[[x]] = {(σ, σ(x))}

A[[a1 + a2]] = {(σ, n) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n = n1 + n2}

B[[true]] = {(σ, true)}
B[[false]] = {(σ, false)}

B[[a1 < a2]] = {(σ, true) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 < n2} ∪
{(σ, false) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 ≥ n2}

The denotations for commands are as follows:

C[[skip]] = {(σ, σ)}
C[[x := a]] = {(σ, σ[x 7→ n]) | (σ, n) ∈ A[[a]]}
C[[c1; c2]] = {(σ, σ′) | ∃σ′′. ((σ, σ′′) ∈ C[[c1]] ∧ (σ′′, σ′) ∈ C[[c2]])}

Note that C[[c1; c2]] = C[[c2]] ◦ C[[c1]], where ◦ is the composition of relations, defined as follows: if
R1 ⊆ A×B and R2 ⊆ B×C then R2 ◦R1 ⊆ A×C is R2 ◦R1 = {(a, c) | ∃b ∈ B. (a, b) ∈ R1∧(b, c) ∈
R2}.) If C[[c1]] and C[[c2]] are total functions, then ◦ is function composition.

C[[if b then c1 else c2]] = {(σ, σ′) | (σ, true) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c1]]} ∪
{(σ, σ′) | (σ, false) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c2]]}

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ C[[while b do c]])}

But now we have a problem: the last “definition” is not really a definition because it expresses
C[[while b do c]] in terms of itself! This is not a definition but a recursive equation. What we want
is the solution to this equation.

2 Fixed points

We gave a recursive equation that the function C[[while b do c]] must satisfy. To understand some
of the issues involved, let’s consider a simpler example. Consider the following equation for a
function f : N → N.

f(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise
(1)

This is not a definition for f , but rather an equation that we want f to satisfy. What function, or
functions, satisfy this equation for f? The only solution to this equation is the function f(x) = x2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions
g : N → N that satisfy the recursive equation g(x) = g(x) + 1), or multiple solutions (e.g., find two
functions g : R → R that satisfy g(x) = 4× g(x2)).

2

We can compute solutions to such equations by building successive approximations. Each
approximation is closer and closer to the solution. To solve the recursive equation for f , we start
with the partial function f0 = ∅ (i.e., f0 is the empty relation; it is a partial function with the empty
set for it’s domain). We compute successive approximations using the recursive equation.

f0 = ∅

f1 =

{
0 if x = 0

f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0

f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0

f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

This sequence of successive approximations fi gradually builds the function f(x) = x2.
We can model this process of successive approximations using a higher-order function F that

takes one approximation fk and returns the next approximation fk+1:

F : (N ⇀ N) → (N ⇀ N)

where

(F (f))(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise

A solution to the recursive equation 1 is a function f such that f = F (f). In general, given a
function F : A → A, we have that a ∈ A is a fixed point of F if F (a) = a. We also write a = fix(F)
to indicate that a is a fixed point of F .

So the solution to the recursive equation 1 is a fixed-point of the higher-order function F . We
can compute this fixed point iteratively, starting with f0 = ∅ and at each iteration computing
fk+1 = F (fk). The fixed point is the limit of this process:

f = fix(F)

= f0 ∪ f1 ∪ f2 ∪ f3 ∪ . . .

= ∅ ∪ F (∅) ∪ F (F (∅)) ∪ F (F (F (∅))) ∪ . . .

=
∪
i≥0

F i(∅)

3

CS 4110 – Programming Languages and Logics
Lecture #8: Denotational Semantics Examples

Last time we defined the denotational semantics of IMP:

A[[n]] = {(σ, n)}
A[[x]] = {(σ, σ(x))}

A[[a1 + a2]] = {(σ, n) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n = n1 + n2}

B[[true]] = {(σ, true)}
B[[false]] = {(σ, false)}

B[[a1 < a2]] = {(σ, true) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 < n2} ∪
{(σ, false) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 ≥ n2}

C[[skip]] = {(σ, σ)}
C[[x := a]] = {(σ, σ[x 7→ n]) | (σ, n) ∈ A[[a]]}
C[[c1; c2]] = {(σ, σ′) | ∃σ′′. ((σ, σ′′) ∈ C[[c1]] ∧ (σ′′, σ′) ∈ C[[c2]])}

C[[if b then c1 else c2]] = {(σ, σ′) | (σ, true) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c1]]} ∪
{(σ, σ′) | (σ, false) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c2]]}

C[[while b do c]] = fix (F)

where F (f) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′, σ′′. (σ, σ′) ∈ C[[c]] ∧ (σ′, σ′′) ∈ f}

In this lecture we’ll prove Kleene’s fixpoint theorem, which shows that the fixed point used to
define the semantics of while commands exists, and work through examples of reasoning using
the denotational semantics.

1 Kleene’s Fixpoint Theorem

Definition (Scott Continuity). A function F from U to U is said to be Scott-continuous if for every
chain X1 ⊆ X2 ⊆ . . . we have F (

∪
iXi) =

∪
i F (Xi).

It is not hard to show that if F is Scott continuous, then it is also monotonic—that is, X ⊆ Y
implies F (X) ⊆ F (Y). The proof of this fact is left as an exercise.

Theorem (Kleene Fixpoint). Let F be a Scott-continuous function. The least fixed point of F is
∪

i F
i(∅).

Proof. Let X =
∪

i F
i(∅).

1

First, we will prove that X is a fixed point of F—that is, F (X) = X . We calculate as follows:

F (X) = F (
∪

i F
i(∅)) By definition of X

=
∪

i F (F i(∅)) By Scott continuity
=

∪
i F

i+1(∅)
= ∅ ∪

∪
i F

i+1(∅)
= F 0(∅) ∪

∪
i F

i+1(∅)
=

∪
i F

i(∅)
= X

Second, we will show that X is the least fixed point of F . Suppose that Y is some other
arbitrary fixed point of F . By induction, we can easily show that F i(∅) ⊆ Y for all i. For the base
case, i is 0 and we trivially have F 0(∅) = ∅ ⊆ Y . For the inductive case, we assume that F i(∅) ⊆ Y
and prove that F i+1(∅) ⊆ Y . By our inductive hypothesis and the fact that F is monotone, we
have that F (F i+1(∅)) ⊆ F (Y). As Y is a fixed point we also have F (Y) = Y and so F i+1(∅) ⊆ Y .
Then, since every element of the chain

F 0∅ ⊆ F 1∅ ⊆ . . .

is a subset of Y immediately we have that their union, X =
∪

i F
i(∅) ⊆ Y . Hence, X is the least

(with respect to ⊆) fixed point of F .

2 Reasoning

One of the key advantages of using denotational semantics compared to operational semantics
is that proofs of equivalence can be carried out directly by simply calculating the denotations of
programs and then arguing that they are identical. This is in contrast to operational techniques,
where one must reason explicitly about low-level transitions and derivations involving ad hoc
abstract machines.

As an example, to show that skip; c and c;skip are equivalent, we can calcuate as follows,

C[[skip; c]] = {(σ, σ′′) | ∃σ′.(σ, σ′) ∈ C[[skip]] ∧ (σ′, σ′′) ∈ C[[c]]}
= {(σ, σ′′) | (σ, σ′′) ∈ C[[c]]}
= {(σ, σ′′) | ∃σ′.(σ, σ′) ∈ C[[c]] ∧ (σ′, σ′′) ∈ C[[skip]]}
= C[[c;skip]]

using standard facts about partial functions, relations, and sets as convenient in the proof itself.
Next, consider the command C[[while false do c]]. By the definition of the denotational seman-

tics, this is equal to fix (F) where

F (f) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
= {(σ, σ′′) | (σ, true) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c]] ∧ (σ′, σ′′) ∈ f}

By the Kleene fixpoint theorem we have that fixF =
∪

i F
i(∅). It is straightforward to show by

induction that since the guard is false, for all i we have F i(∅) = {(σ, σ)}. It follows that fixF =
{(σ, σ)}, which is just C[[skip]].

As an exercise, calcuate C[[while true do skip]] using the same technique.

2

CS 4110 – Programming Languages and Logics
Lecture #9: Axiomatic Semantics

1 Introduction to axiomatic semantics

Now we turn to the third and final main style of semantics, axiomatic semantics. The idea in ax-
iomatic semantics is to define meaning in terms of logical specifications that programs satisfy. This
is in contrast to operational models (which show how programs execute) and denotational models
(which show what programs compute). This approach to reasoning about programs and express-
ing program semantics was originally proposed by Floyd and Hoare and was developed further
by Dijkstra and Gries.

A common way to express program specifications is in terms of pre-conditions and post-
conditions:

{Pre} c {Post}

where c is a program, and Pre and Post are formulas that describe properties of the program
state, usually referred to as assertions. Such a triple is usually referred to as a partial correctness
specification (or sometimes a “Hoare triple”) and has the following meaning:

“If Pre holds before executing c, and c terminates, then Post holds after c.”

In other words, if we start with a store σ in which Pre holds and the execution of c with respect to
σ terminates and yields a store σ′, then Post holds in store σ′.

Pre-conditions and post-conditions can be regarded as interfaces or contracts between the pro-
gram and its clients. They help users to understand what the program is supposed to yield with-
out needing to understand how the program executes. Typically, programmers write them as
comments for procedures and functions as documentation and to make it easier to maintain pro-
grams. Such specifications are especially useful for library functions for which the source code is
often not available to the users. In this case, pre-conditions and post-conditions serve as contracts
between the library developers and users of the library.

However, there is no guarantee that pre-conditions and post-conditions written informally in
comments are correct: the comments describe the intent of the developer, but they do not give a
guarantee of correctness. Axiomatic semantics addresses this problem. It shows how to rigorously
describe partial correctness statements and how to establish correctness using formal reasoning.

Note that partial correctness specifications don’t ensure that the program will terminate—this
is why they are called “partial”. In contrast, total correctness statements ensure that the program
terminates whenever the precondition holds. Such statements are denoted using square brackets:

[Pre] c [Post]

meaning:

“If Pre holds before c then c will terminate and Post will hold after c.”

1

In general a pre-condition specifies what the program expects before execution and the post-
conditions specifies what guarantees the program provides (if the program terminates). Here is a
simple example:

{foo = 0 ∧ bar = i} baz := 0;while foo ̸= bar do (baz := baz− 2; foo := foo+ 1) {baz = −2i}

It says that if the store maps foo to 0 and bar to i before execution, then, if the program terminates,
the final store will map baz to −2i (i.e., −2 times the initial value of bar). Note that i is a logical
variable that doesn’t occur in the program and is only used to express the initial value of bar. Such
variables are sometimes called ghost variables.

This partial correctness statement is valid. That is, it is indeed the case that if we have any
store σ such that σ(foo) = 0, and

C[[baz := 0;while foo ̸= bar do (baz := baz− 2; foo := foo+ 1)]]σ = σ′,

then σ′(baz) = −2σ(bar).
Note that this is a partial correctness statement: if the pre-condition is true before c, and c ter-

minates then the post-condition holds after c. There are some initial stores for which the program
will not terminate.

The following total correctness statement is true.

[foo = 0 ∧ bar = i ∧ i ≥ 0] baz := 0;while foo ̸= bar do (baz := baz− 2; foo := foo+ 1) [baz = −2i]

That is, if we start with a store σ that maps foo to 0 and bar to a non-negative integer, then the
execution of the command will terminate in a final store σ′ with σ′(baz) = −2σ(bar).

The following partial correctness statement is not valid. (Why not?)

{foo = 0 ∧ bar = i} baz := 0;while foo ̸= bar do (baz := baz+ foo; foo := foo+ 1) {baz = i}

In the rest of our discussion of axiomatic semantics we will focus almost exclusively on partial
correctness assertions.

2 Assertions

Now we turn to the following issues:

• What logic do we use for writing assertions? That is, what can we express in pre-conditions
and post-condition?

• What does it mean that an assertion is valid? What does it mean that a partial correctness
statement {Pre} c {Post} is valid?

• How can we prove that a partial correctness statement is valid?

What can we say in pre-conditions and post-conditions? In the examples so far, we have used
program variables, equality, logical variables (e.g., i), and conjunction (∧). What we allow in pre-
conditions and post-conditions directly influences the sorts of program properties we can describe
using partial correctness statements. We will use the set of logical formulas including comparisons

2

between arithmetic expressions, standard logical operators (and, or, implication, negation), as well
as quantifiers (universal and existential). Assertions may also introduce logical variables that are
different than the variables appearing in the program.

i, j ∈ LVar

a ∈ Aexp ::=x | i | n | a1 + a2 | a1 × a2

P,Q ∈ Assn ::= true | false | a1 < a2 | P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2 | ¬P | ∀i. P | ∃i. P

Observe that the domain of boolean expressions Bexp is a subset of the domain of assertions.
Notable additions over the syntax of boolean expression are quantifiers (∀ and ∃). For instance, one
can express the fact that variable x divides variable y using existential quantification: ∃i. x× i = y.

3 Satisfaction and Validity

Now we would like to describe what we mean by “assertion P holds in store σ′’. But to determine
whether P holds or not, we need more than just the store σ (which maps program variables to
their values); we also need to know the values of the logical variables. We describe those values
using an interpretation I ,

I : LVar → Int,

and define the function Ai[[a]], which is like the denotation of expressions extended to logical
variables in the obvious way:

Ai[[n]](σ, I) = n

Ai[[x]](σ, I) = σ(x)

Ai[[i]](σ, I) = I(i)

Ai[[a1 + a2]](σ, I) = Ai[[a1]](σ, I) +Ai[[a2]](σ, I)

Now we can express the satisfiability of assertions as a relation σ ⊨I P read as “P is satisfied in
store σ under interpretation I ,” or “store σ satisfies assertion P under interpretation I .” We will
write σ ̸⊨I P whenever σ ⊨I P doesn’t hold.

σ ⊨I true (always)
σ ⊨I a1 < a2 if Ai[[a1]](σ, I) < Ai[[a2]](σ, I)

σ ⊨I P1 ∧ P2 if σ ⊨I P1 and σ ⊨I P2

σ ⊨I P1 ∨ P2 if σ ⊨I P1 or σ ⊨I P2

σ ⊨I P1 ⇒ P2 if s ̸⊨I P1 or σ ⊨I P2

σ ⊨I ¬P if s ̸⊨I P

σ ⊨I ∀i. P if ∀k ∈ Int. σ ⊨I[i7→k] P

σ ⊨I ∃i. P if ∃k ∈ Int. σ ⊨I[i7→k] P

We can now say that an assertion P is valid (written ⊨ P) if it is valid in any store, under any
interpretation: ∀σ, I. σ ⊨I P .

3

Having defined validity for individual assertions, we now turn to partial correctness state-
ments. We say that a partial correctness statement {P} c {Q} is satisfied in store σ and interpreta-
tion I , written σ ⊨I {P} c {Q}, if:

∀σ′. if σ ⊨I P and C[[c]]σ = σ′ then σ′ ⊨I Q

Note that this definition depends on the execution of c in the initial store σ.
Finally, we can say that a partial correctness triple is valid (written ⊨ {P} c {Q}), if it is valid

in any store and interpretation:
∀σ, I. σ ⊨I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial correctness state-
ment {P} c {Q} is valid.”

4

CS 4110 – Programming Languages and Logics
Lecture #10: Hoare Logic

1 Hoare Logic

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is
valid if it holds for all stores and interpretations: ∀σ, I. σ ⊨I {P} c {Q}. Furthermore, showing that
σ ⊨I {P} c {Q} requires reasoning about the execution of command c (that is, C[[c]]), as indicated
by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, with-
out having to reason about stores, interpretations, and the execution of c. We can use a set of
inference rules and axioms, called Hoare rules, to directly derive valid partial correctness state-
ments. The set of rules forms a proof system known as Hoare logic.

SKIP
{P} skip {P}

ASSIGN
{P [a/x]} x := a {P}

SEQ
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}
IF

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

WHILE
{P ∧ b} c {P}

{P} while b do c {P ∧ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that
holds before and after each iteration, as shown in the premise of the rule. Therefore, it is both a
pre-condition for the loop (because it holds before the first iteration); and also a post-condition for
the loop (because it holds after the last iteration). The fact that P is both a pre- and post-condition
for the while loop is reflected in the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and
weaken post-conditions:

CONSEQUENCE
⊨ (P ⇒ P ′) {P ′} c {Q′} ⊨ (Q′ ⇒ Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness state-
ments {P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⊢ {P} c {Q}, if
we can build a finite proof tree for it.

1

2 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

• valid partial correctness statements ⊨ {P} c {Q}, which hold for all stores and interpreta-
tions, according to the semantics of c, and

• Hoare logic theorems ⊢ {P} c {Q}, that is, partial correctness statements that can be derived
using the axioms and rules of Hoare logic.

The question is how do these sets relate to each other? More precisely, we have to answer two
questions. First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In
other words,

does ⊢ {P} c {Q} imply ⊨ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says
that Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold.
The proof of soundness requires induction on the derivations in ⊢ {P} c {Q} (we omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always
build a Hoare logic proof for each valid assertion? In other words,

does ⊨ {P} c {Q} imply ⊢ {P} c {Q}?

The answer is a qualified yes: if ⊨ {P} c {Q} then there is a proof of {P} c {Q} using the rules
of Hoare logic, provided there are proofs for the validity of assertions that occur in the rule of
consequence ⊨ (P ⇒ P ′) and ⊨ (Q′ ⇒ Q). This result is known as the relative completeness of Hoare
logic and is due to Cook (1974).

3 Example: Factorial

As an example illustrating how we can use Hoare logic to verify the correctness of a program,
consider a program that computes the factorial of a number n:

{x = n ∧ n > 0}

y := 1;
while x > 0 do {

y := y ∗ x;
x := x− 1

}

{y = n!}

Because the derivation for this proof is somewhat large, we will go through the reasoning used to
construct it step by step.

At the top level, the program is a sequence of an assignment and a loop. To use the SEQ rule,
we need to find an assertion that holds after the assignment and before the loop. Examining the
rule for while loops, we see that the assertion before the loop must be an invariant for the loop.

2

Inspecting the loop we see that it builds the factorial up in y starting with n, then multiplying it
by n− 1, then n− 2, etc. At each iteration, x contains the next value multiplied into y, that is:

y = n ∗ (n− 1) ∗ ... ∗ (x+ 1)

If we multiply both sides of this equality by x! and re-write the equality we get x! ∗ y = n!, which
is an invariant for the loop. However, to make the proof go through, we need a slightly stronger
invariant:

I = x! ∗ y = n! ∧ x ≥ 0

Having identified a suitable loop invariant, let us take a step back and review where we are.
We want to prove that our overall partial correctness specification is valid. To do this, we need to
show two facts:

{x = n ∧ n > 0} y := 1 {I} (1)
{I} while x > 0 do {y := y ∗ x; x := x− 1} {y = n!} (2)

After showing that both (1) and (2) hold, we can use the rule SEQ to obtain the desired result.
To show (1), we use the ASSIGN axiom and obtain the following: {I[1/y]} y := 1 {I}. Expand-

ing this out, we obtain:

{x! ∗ 1 = n! ∧ x ≥ 0} y := 1 {x! ∗ y = n! ∧ x ≥ 0}

With the following implication,

x = n ∧ n > 0 =⇒ x! ∗ 1 = n! ∧ x ≥ 0,

(which can be shown by an easy calculation) we obtain (1) using the rule CONSEQUENCE.
Now let us prove (2). To use the WHILE rule, we need to show that I is an invariant for the

loop:

{I ∧ x > 0} y := y ∗ x; x := x− 1 {I} (3)

We will show this by going backwards through the sequence of assignments:

{(x− 1)! ∗ y = n! ∧ (x− 1) ≥ 0} x := x− 1 {I} (4)
{(x− 1)! ∗ y ∗ x = n! ∧ (x− 1) ≥ 0} y := y ∗ x {(x− 1)! ∗ y = n! ∧ (x− 1) ≥ 0} (5)

Then, using the following implication:

I ∧ x > 0 =⇒ (x− 1)! ∗ y ∗ x = n! ∧ (x− 1) ≥ 0

we obtain (3) using CONSEQUENCE, (4), and (5). Thus, I is an invariant for the loop and so by
WHILE we obtain,

{I} while x > 0 do {y := y ∗ x; x := x− 1} {I ∧ x ≤ 0}

To finish the proof, we just have to show

I ∧ x ≤ 0 =⇒ y = n!
i.e., x! ∗ y = n! ∧ x ≥ 0 ∧ x ≤ 0 =⇒ y = n!

which holds as x ≥ 0 and x ≤ 0 implies x = 0 and so x! = 1. The result follows by CONSEQUENCE.

3

CS 4110 – Programming Languages and Logics
Lecture #11: Relative Completeness

1 Relative Completeness

In the last lecture, we discussed the issue of completeness—i.e., whether it is possible to derive
every valid partial correctness specification using the axioms and rules of Hoare logic. Unfortu-
nately, if treated as a pure deductive system, Hoare logic cannot be complete. To see why, consider
the following partial correctness specifications:

{true} skip {P} {true} c {false}

The first is valid if and only if the assertion P is valid while the second is valid if and only if the
command c does not halt.

It turns out that the culprit is the CONSEQUENCE rule,

CONSEQUENCE
⊨ (P ⇒ P ′) {P ′} c {Q′} ⊨ (Q′ ⇒ Q)

{P} c {Q}

which includes two premises about the validity of implications between the assertions involved.
Although we cannot have a complete proof system for first-order formulas, Hoare logic does

enjoy the property stated in the following theorem:

Theorem. ∀P,Q ∈ Assn, c ∈ Com. ⊨ {P} c {Q} implies ⊢ {P} c {Q}.

This result, due to Cook (1974), is known as the relative completeness of Hoare logic. It says that
Hoare logic is no more incomplete than the language of assertions—i.e., if we had an oracle that
could decide the validity of assertions, then we could decide the validity of partial correctness
specifications.

2 Weakest Liberal Preconditions

Cook’s proof of relative completeness depends on the notion of weakest liberal preconditions. Given
a command c and a postcondition Q the weakest liberal precondition is the weakest assertion P
such that {P} c {Q} is a valid triple. Here, “weakest” means that any other valid precondition
implies P . That is, P most accurately describes input states for which c either does not terminate
or ends up in a state satisfying Q.

Formally, an assertion P is a weakest liberal precondition of c and Q if:

∀σ, I. σ ⊨I P ⇐⇒ (C[[c]] σ) undefined ∨ (C[[c]]σ) ⊨I Q

We write wlp(c,Q) for the weakest liberal precondition of command c and postcondition Q. From
left-to-right, the formula above states that wlp(c,Q) is a valid precondition: ⊨ {P} c {Q}. The

1

right-to-left implication says it is the weakest valid precondition: if another assertion R satisfies
⊨ {R} c {Q}, then R implies P . It can be shown that weakest liberal preconditions are unique
modulo equivalence.

We can calculate the weakest liberal precondition of a command as follows:

wlp(skip, P) = P
wlp((x := a, P) = P [a/x]
wlp((c1; c2), P) = wlp(c1,wlp(c2, P))

wlp(if b then c1 else c2, P) = (b =⇒ wlp(c1, P)) ∧ (¬b =⇒ wlp(c2, P))

The definition of wlp(while b do c, P) is slightly more complicated—it encodes the weakest liberal
precondition for each iteration of the loop. To give the intuition, first define the weakest liberal
precondition for a loop that termintes in i steps as follows:

F0(P) = true
Fi+1(P) = (¬b =⇒ P) ∧ (b =⇒ wlp(c, Fi(P)))

We can then express the weakest liberal precondition using an infinitary conjunction:

wlp(while b do c, P) =
∧
i

Fi(P)

See Winskel Chapter 7 for the details of how to encode the weakest liberal precondition for a while
loop as an ordinary assertion.

To check that our definition is correct, we can prove (how?) that it yields a valid partial cor-
rectness specification:

Lemma 1.

∀c ∈ Com, Q ∈ Assn.
⊨ {wlp(c,Q)} c {Q} and ∀R ∈ Assn. ⊨ {R} c {Q} implies (R =⇒ wlp(c,Q))

It is not hard to prove that it also yields a provable specification:

Lemma 2.
∀c ∈ Com, Q ∈ Assn. ⊢ {wlp(c,Q)} c {Q}

Relative completeness follows by a simple argument:

Proof Sketch. Let c be a command and let P and Q be assertions such that the partial correctness
specification {P} c {Q} is valid. By Lemma 1 we have ⊨ P =⇒ wlp(c,Q). By Lemma 2 we have
⊢ {wlp(c,Q)} c {Q}. We conclude ⊢ {P} c {Q} using the CONSEQUENCE rule.

2

CS 4110 – Programming Languages and Logics
Lecture #13: λ-calculus

Lambda calculus (or λ-calculus) was introduced by Alonzo Church and Stephen Cole Kleene
in the 1930s to describe functions in an unambiguous and compact manner. Many real languages
are based on the lambda calculus, including Lisp, Scheme, Haskell, and ML. A key characteristic
of these languages is that functions are values, just like integers and booleans are values: functions
can be used as arguments to functions, and can be returned from functions.

The name “lambda calculus” comes from the use of the Greek letter lambda (λ) in function
definitions. (The letter lambda has no significance.) “Calculus” means a method of calculating by
the symbolic manipulation of expressions.

Intuitively, a function is a rule for determining a value from an argument. Some examples of
functions in mathematics are

f(x) = x3

g(y) = y3 − 2y2 + 5y − 6.

1 Syntax

The pure λ-calculus contains just function definitions (called abstractions), variables, and function
application (i.e., applying a function to an argument). If we add additional data types and opera-
tions (such as integers and addition), we have an applied λ-calculus. In the following text, we will
sometimes assume that we have integers and addition in order to give more intuitive examples.

The syntax of the pure λ-calculus is defined as follows.

e ::= x variable
| λx. e abstraction
| e1 e2 application

An abstraction λx. e is a function: variable x is the argument, and expression e is the body of
the function. Note that the function λx. e doesn’t have a name. Assuming we have integers and
arithmetic operations, the expression λx. x2 is a function that takes an argument x and returns the
square of x.

An application e1 e2 requires that e1 is (or evaluates to) a function, and then applies the func-
tion to the expression e2. For example, (λx. x2) 5 is, intuitively, equal to 25, the result of applying
the squaring function λx. x2 to 5.

Here are some examples of lambda calculus expressions.

λx. x a lambda abstraction called the identity function
λx. (f (g x))) another abstraction
(λx. x) 42 an application
λy. λx. x an abstraction that ignores its argument and returns the identity function

1

Lambda expressions extend as far to the right as possible. For example λx. x λy. y is the same as
λx. x (λy. y), and is not the same as (λx. x) (λy. y). Application is left associative. For example
e1 e2 e3 is the same as (e1 e2) e3. In general, use parentheses to make the parsing of a lambda
expression clear if you are in doubt.

1.1 Variable binding and α-equivalence

An occurrence of a variable in an expression is either bound or free. An occurrence of a variable x
in a term is bound if there is an enclosing λx. e; otherwise, it is free. A closed term is one in which
all identifiers are bound.

Consider the following term:
λx. (x (λy. y a) x) y

Both occurrences of x are bound, the first occurrence of y is bound, the a is free, and the last y is
also free, since it is outside the scope of the λy.

If a program has some variables that are free, then you do not have a complete program as you
do not know what to do with the free variables. Hence, a well formed program in lambda calculus
is a closed term.

The symbol λ is a binding operator, as it binds a variable within some scope (i.e., some part of
the expression): variable x is bound in e in the expression λx. e.

The name of bound variables is not important. Consider the mathematical integrals
∫ 7
0 x2dx

and
∫ 7
0 y2dy. They describe the same integral, even though one uses variable x and the other uses

variable y in their definition. The meaning of these integrals is the same: the bound variable is just
a placeholder. In the same way, we can change the name of bound variables without changing the
meaning of functions. Thus λx. x is the same function as λy. y. Expressions e1 and e2 that differ
only in the name of bound variables are called α-equivalent, sometimes written e1 =α e2.

1.2 Higher-order functions

In lambda calculus, functions are values: functions can take functions as arguments and return
functions as results. In the pure lambda calculus, every value is a function, and every result is a
function!

For example, the following function takes a function f as an argument, and applies it to the
value 42.

λf. f 42

This function takes an argument v and returns a function that applies its own argument (a
function) to v.

λv. λf. (f v)

2 Semantics

2.1 β-equivalence

Application (λx. e1) e2 applies the function λx. e1 to e2. In some ways, we would like to regard
the expression (λx. e1) e2 as equivalent to the expression e1 where every (free) occurrence of x is
replaced with e2. For example, we would like to regard (λx. x2) 5 as equivalent to 52.

2

We write e1{e2/x} to mean expression e1 with all free occurrences of x replaced with e2. There
are several different notations to express this substitution, including [x 7→ e2]e1 (used by Pierce),
[e2/x]e1 (used by Mitchell), and e1[e2/x] (used by Winskel).

Using our notation, we would like expressions (λx. e1) e2 and e1{e2/x} to be equivalent.
We call this equivalence, between (λx. e1) e2 and e1{e2/x}, is called β-equivalence. Rewriting

(λx. e1) e2 into e1{e2/x} is called a β-reduction. Given a lambda calculus expression, we may,
in general, be able to perform β-reductions. This corresponds to executing a lambda calculus
expression.

There may be more than one possible way to β-reduce an expression. Consider, for example,
(λx. x+x) ((λy. y) 5). We could use β-reduction to get either ((λy. y) 5)+((λy. y) 5) or (λx. x+x) 5.
The order in which we perform β-reductions results in different semantics for the lambda calculus.

2.2 Call-by-value

Call-by-value (or CBV) semantics makes sure that functions are only called on values. That is, given
an application (λx. e1) e2, CBV semantics makes sure that e2 is a value before calling the function.

So, what is a value? In the pure lambda calculus, any abstraction is a value. Remember, an
abstraction λx. e is a function; in the pure lambda calculus, the only values are functions. In an
applied lambda calculus with integers and arithmetic operations, values also include integers.
Intuitively, a value is an expression that can not be reduced/executed/simplified any further.

We can give small step operational semantics for call-by-value execution of the lambda calcu-
lus. Here, v can be instantiated with any value (e.g., a function).

e1 → e′1

e1 e2 → e′1 e2

e → e′

v e → v e′
β-REDUCTION

(λx. e) v → e{v/x}

We can see from these rules that, given an application e1 e2, we first evaluate e1 until it is
a value, then we evaluate e2 until it is a value, and then we apply the function to the value—a
β-reduction.

Let’s consider some examples. (These examples use an applied lambda calculus that also in-
cludes reduction rules for arithmetic expressions.)

(λx. λy. y x) (5 + 2) λx. x+ 1 →(λx. λy. y x) 7 λx. x+ 1

→(λy. y 7) λx. x+ 1

→(λx. x+ 1) 7

→7 + 1

→8

(λf. f 7) ((λx. x x) λy. y) →(λf. f 7) ((λy. y) (λy. y))

→(λf. f 7) (λy. y)

→(λy. y) 7

→7

3

2.3 Call-by-name

Call-by-name (or CBN) semantics applies the function as soon as possible. The small step opera-
tional semantics are a little simpler, as they do not need to ensure that the expression to which a
function is applied is a value.

e1 → e′1

e1 e2 → e′1 e2
β-REDUCTION

(λx. e1) e2 → e1{e2/x}

Let’s consider the same examples we used for CBV.

(λx. λy. y x) (5 + 2) λx. x+ 1 →(λy. y (5 + 2)) λx. x+ 1

→(λx. x+ 1) (5 + 2)

→(5 + 2) + 1

→7 + 1

→8

(λf. f 7) ((λx. x x) λy. y) →((λx. x x) λy. y) 7

→((λy. y) (λy. y)) 7

→(λy. y) 7

→7

Note that the answers are the same, but the order of evaluation is different. (Later we will see
languages where the order of evaluation is important, and may result in different answers.)

4

CS 4110 – Programming Languages and Logics
Lecture #14: More λ-calculus

1 Lambda calculus evaluation

There are many different evaluation strategies for the λ-calculus. The most permissive is full β
reduction, which allows any redex—i.e., any expression of the form (λx. e1) e2—to step to e1{e2/x}
at any time. It is defined formally by the following small-step operational semantics rules:

e1 → e′1

e1 e2 → e′1 e2

e2 → e′2

e1 e2 → e1 e
′
2

e1 → e′1

λx. e1 → λx. e′1
β

(λx. e1) e2 → e1{e2/x}

The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application
to reduce after its argument has been reduced to a value (i.e., a λ-abstraction) and does not allow
evaluation under a λ. It is described by the following small-step operational semantics rules (here
we show a left-to-right version of CBV):

e1 → e′1

e1 e2 → e′1 e2

e2 → e′2

v1 e2 → v1 e
′
2

β
(λx. e1) v2 → e1{v2/x}

Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is
not a value but does not allow evaluation under a λ. It is described by the following small-step
operational semantics rules:

e1 → e′1

e1 e2 → e′1 e2
β

(λx. e1) e2 → e1{e2/x}

2 Confluence

It is not hard to see that the full β reduction strategy is non-deterministic. This raises an interesting
question: does the choices made during the evaluation of an expression affect the final result? The
answer turns out to be no: full β reduction is confluent in the following sense:

Theorem (Confluence). If e →∗e1 and e →∗e2 then there exists e′ such that e1 →∗e′ and e2 →∗e′.

Confluence can be depicted graphically as follows:

e

e1 e2

e′

Confluence is often also called the Church-Rosser property.

1

3 Substitution

Each of the evaluation relations for λ-calculus has a β defined in terms of a substitution operation
on expressions. Because the expressions involved in the substitution may share some variable
names (and because we are working up to α-equivalence) the definition of this operation is slightly
subtle and defining it precisely turns out to be tricker than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator.
Here we are substituting e for x in some other expression:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})
(λy.e1){e/x} = λy.e1{e/x} where y ̸= x

Unfortunately this definition produces the wrong results when we substitute an expression with
free variables under a λ. For example,

(λy.x){y/x} = (λy.y)

To fix this problem, we need to revise our definition so that when we substitute under a λ we
do not accidentally bind variables in the expression we are substituting. The following definition
correctly implements capture-avoiding substitution:

y{e/x} =

{
e if y ̸= x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})
(λy.e1){e/x} = λy.(e1{e/x}) where y ̸= x and y ̸∈ fv(e)

Note that in the case for λ-abstractions, we require that the bound variable y be different from the
variable x we are substituting for and that y not appear in the free variables of e, the expression
we are substituting. Because we work up to α-equivalence, we can always pick y to satisfy these
side conditions. For example, to calculate (λz.x z){(w y z)/x} we first rewrite λz.x z to λu.x u and
then apply the substitution, obtaining λu.(w y z) u as the result.

2

CS 4110 – Programming Languages and Logics
Lecture #15: De Bruijn, Combinators, Encodings

1 de Bruijn Notation

One way to avoid the tricky interaction between free and bound names in the substitution operator
is to pick a representation for expressions that doesn’t have any names at all! Intuitively, we can
think of a bound variable is just a pointer to the λ that binds it. For example, in λx.λy.y x, the y
points to the first λ and the x points to the second λ.

So-called de Bruijn notation uses this idea as the representation for λ expressions. Here is the
grammar for λ expressions in de Bruijn notation:

e ::= n | λ.e | e e

Variables are represented by integers n that refer to (the index of) their binder while lambda-
abstractions have the form λ.e. Note that the the variable bound by the abstraction is not named—
i.e., the representation is nameless.

As examples, here are several terms written using standard notation and in de Bruijn notation:

Standard de Bruijn
λx.x λ.0
λz.z λ.0
λx.λy.x λ.λ.1
λx.λy.λs.λz.x s (y s z) λ.λ.λ.λ.3 1 (2 1 0)
(λx.x x) (λx.x x) (λ.0 0) (λ.0 0)
(λx.λx.x) (λy.y) (λ.λ.0) (λ.0)

To represent a λ-expression that contains free variables in de Bruijn notation, we need a way to
map the free variables to integers. We will work with respect to a map Γ from variables to integers
called a context. As an example, if Γ maps x to 0 and y to 1, then the de Bruijn representation
of x y with respect to Γ is 0 1, while the representation of λz. x y z with respect to Γ is λ. 1 2 0.
Note that in this second example, because we have gone under a λ, we have shifted the integers
representing x and y up by one to avoid capturing them.

In general, whenever we work de Bruijn representations of expressions containing free vari-
ables (i.e., when working with respect to a context Γ) we will need to modify the indices of those
variables. For example, when we substitute an expression containing free variables under a λ, we
will need to shift the indices up so that they continue to refer to the same numbers with respect to
Γ after the substitution as they did before. For example, if we substitute 0 1 for the variable bound
by the outermost λ in λ.λ.1 we should get λ.λ.2 3, not λ.λ.0 1. We will use an auxiliary function

1

that shifts the indices of free variables above a cutoff c up by i:

↑ic (n) =

{
n if n < c
n+ i otherwise

↑ic (λ.e) = λ.(↑ic+1 e)
↑ic (e1 e2) = (↑ic e1) (↑ic e2)

The cutoff keeps track of the variables that were bound in the original expression and so should
not be shifted as the shifting operator walks down the structure of an expression. The cutoff is 0
initially.

Using this shifting function, we can define substitution as follows:

n{e/m} =

{
e if n = m
n otherwise

(λ.e1){e/m} = λ.e1{(↑10 e)/m+ 1}))
(e1 e2){e/m} = (e1{e/m}) (e1{e/m})

Note that when we go under a λ we increase the index of the variable we are substituting for and
shift the free variables in the expression e up by one.

The β rule for terms in de Bruijn notation is as follows:

β
(λ.e1) e2 →↑−1

0 (e1{↑10 e2/0})

That is, we substitute occurrences of 0, the index of the variable being bound by the λ, with e2
shifted up by one. Then we shift the result down by one to ensure that any free variables in e1
continue to refer to the same things after we remove the λ.

To illustrate how this works consider the following example, which we wrote as (λu.λv.u x) y
in standard notation. We will work with respect to a context where Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1

→ ↑−1
0 ((λ.1 2){(↑10 1)/0})

= ↑−1
0 ((λ.1 2){2/0})

= ↑−1
0 λ.((1 2){(↑10 2)/(0 + 1)})

= ↑−1
0 λ.((1 2){3/1})

= ↑−1
0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as λv.y x.

2 Combinators

Yet another way to avoid the issues having to do with free and bound variable names in the
λ-calculus is to work with closed expressions or combinators. It turns out that just using two com-
binators, S, K, and application, we can encode the entire λ-calculus.

2

Here are the evaluation rules for S, K, as well as a third combinator I, which will also be useful:

K x y → x
S x y z → x z (y z)
I x → x

Equivalently, here are their definitions as closed λ-expressions:

K = λx.λy. x
S = λx.λy.λz. x z (y z)
I = λx. x

It is not hard to see that I is not needed—it can be encoded as S K K.
To show how these combinators can be used to encode the λ-calculus, we have to define a

translation that takes an arbitrary closed λ-calculus expression and turns it into a combinator term
that behaves the same during evaluation. This translation is called bracket abstraction. It proceeds
in two steps. First, we define a function [x] that takes a combinator term M possibly containing free
variables and builds another term that behaves like λx.M , in the sense that ([x]M)N → M{N/x}
for every term N :

[x] x = I
[x] N = K N where x ̸∈ fv(N)

[x] N1 N2 = S ([x] N1) ([x] N2)

Second, we define a function (e)∗ that maps a λ-calculus expression to a combinator term:

(x)∗ = x
(e1 e2)∗ = (e1)∗ (e2)∗
(λx.e)∗ = [x] (e)∗

As an example, the expression λx.λy. x is translated as follows:

(λx.λy. x)∗
= [x] (λy. x)∗
= [x] ([y] x)
= [x] (K x)
= (S ([x] K) ([x] x))
= S (K K) I

We can check that this behaves the same as our original λ-expression by seeing how it evaluates
when applied to arbitrary expressions e1 and e2.

(λx.λy. x) e1 e2
= (λy. e1) e2
= e1

and
(S (K K) I) e1 e2

= (K K e1) (I e1) e2
= K e1 e2
= e1

3

3 λ-calculus encodings

The pure λ-calculus contains only functions as values. It is not exactly easy to write large or
interesting programs in the pure λ-calculus. We can however encode objects, such as booleans,
and integers.

3.1 Booleans

Let us start by encoding constants and operators for booleans. That is, we want to define functions
TRUE, FALSE, AND, NOT, IF, and other operators that behave as expected. For example:

AND TRUE FALSE = FALSE

NOT FALSE = TRUE

IF TRUE e1 e2 = e1

IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜ λx. λy. x

FALSE ≜ λx. λy. y

Thus, both TRUE and FALSE are functions that take two arguments; TRUE returns the first, and
FALSE returns the second. We want the function IF to behave like

λb. λt. λf. if b = TRUE then t else f.

The definitions for TRUE and FALSE make this very easy.

IF ≜ λb. λt. λf. b t f

Definitions of other operators are also straightforward.

NOT ≜ λb. b FALSE TRUE

AND ≜ λb1. λb2. b1 b2 FALSE

OR ≜ λb1. λb2. b1 TRUE b2

3.2 Church numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

0 ≜ λf. λx. x

1 = λf. λx. f x

2 = λf. λx. f (f x)

SUCC ≜ λn. λf. λx. f (n f x)

In the definition for SUCC, the expression n f x applies f to x n times (assuming that variable n
is the Church encoding of the natural number n). We then apply f to the result, meaning that we
apply f to x n+ 1 times.

4

Given the definition of SUCC, we can easily define addition. Intuitively, the natural number
n1 + n2 is the result of apply the successor function n1 times to n2.

PLUS ≜ λn1. λn2. n1 SUCC n2

5

CS 4110 – Programming Languages and Logics
Lecture #17: Programming in the λ-calculus

1 Nontermination

Consider the expression (λx. x x) (λx. x x), which we will refer to as omega for brevity. Let’s try
evaluating omega.

omega = (λx. x x) (λx. x x)
→ (λx. x x) (λx. x x)
= omega

Evaluating omega never reaches a value! It is an infinite loop!
What happens if we use omega as an actual argument to a function? Consider the following

program.
(λx.(λy.y)) omega

If we use CBV semantics to evaluate the program, we must reduce omega to a value before we
can apply the function. But omega never evaluates to a value, so we can never apply the function.
Thus, under CBV semantics, this program does not terminate. If we use CBN semantics, we can
apply the function immediately, without needing to reduce the actual argument to a value:

(λx.(λy.y)) omega →CBN λy.y

CBV and CBN are common evaluation orders; many functional programming languages use
CBV semantics. Later we will see the call-by-need strategy, which is similar to CBN in that it does
not evaluate actual arguments unless necessary but is more efficient.

2 Recursion

We can write nonterminating functions, as we saw with omega. We can also write recursive func-
tions that terminate. However, we need to develop techniques for expressing recursion.

Let’s consider how we would like to write the factorial function.

FACT ≜ λn. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation, this is just:

FACT ≜ λn. if n = 0 then 1 else n× FACT (n− 1)

Here, as in the definition above, the name FACT is simply meant to be shorthand for the expression
on the right-hand side of the equation. But FACT appears on the right-hand side of the equation
as well! This is not a definition, it’s a recursive equation.

1

2.1 Recursion Removal Trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation above.
First, let’s define a new function FACT′ that looks like FACT, but takes an additional argument f .
We assume that the function f will be instantiated with FACT′ itself.

FACT′ ≜ λf. λn. if n = 0 then 1 else n× (f f (n− 1))

Note that when we call f , we pass it a copy of itself, preserving the assumption that the actual
argument for f will be FACT′. Now we can define the factorial function FACT in terms of FACT′.

FACT ≜ FACT′ FACT′

Let’s try evaluating FACT on an integer.

FACT 3 = (FACT′ FACT′) 3 Definition of FACT
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3 Definition of FACT′

→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3 Application to FACT′

→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1)) Application to n

→ 3× (FACT′ FACT′ (3− 1)) Evaluating if
→ . . .

→ 3× 2× 1× 1

→∗ 6

So we now have a technique for writing a recursive function f : write a function f ′ that explicitly
takes a copy of itself as an argument, and then define f ≜ f ′ f ′.

2.2 Fixed point combinators

There is another way of writing recursive functions: we can express the recursive function as
the fixed point of some other, higher-order function, and then take its fixed point. We saw this
technique earlier in the course when we defined the denotational semantics for while loops.

Let’s consider the factorial function again. The factorial function FACT is a fixed point of the
following function.

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then we have G g = g. So if we had some way of finding a
fixed point of G, we would have a way of defining the factorial function FACT.

There are a number of “fixed point combinators,” and the (infamous) Y combinator is one of
them. Thus, we can define the factorial function FACT to be simply Y G, the fixed point of G. The
Y combinator is defined as

Y ≜ λf. (λx. f (x x)) (λx. f (x x)).

It was discovered by Haskell Curry, and is one of the simplest fixed-point combinators. Note how
similar its defnition is to omega.

We’ll use a slight variant of the Y combinator, Z, which is easier to use under CBV. (What
happens when we evaluate Y G under CBV?). The Z combinator is defined as

Z ≜ λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

2

Let’s see it in action, on our function G. Define FACT to be Z G and calculate as follows:

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) definition of G
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

There are many (indeed infinitely many) fixed-point combinators. Here’s a cute one:

Yk ≜ (L L)

where

L ≜ λabcdefghijklmnopqstuvwxyzr. (r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))

To gain some more intuition for fixed-point combinators, let’s derive a fixed-point combinator
that was originally discovered by Alan Turing. Suppose we have a higher order function f , and
want the fixed point of f . We know that Θ f is a fixed point of f , so we have

Θ f = f (Θ f).

This means, that we can write the following recursive equation:

Θ = λf. f (Θ f).

Now we can use the recursion removal trick we described earlier. Define Θ′ as λt. λf. f (t t f), and
Θ as Θ′ Θ′. Then we have the following equalities:

Θ = Θ′ Θ′

= (λt. λf. f (t t f)) Θ′

→ λf. f (Θ′ Θ′ f)

= λf. f (Θ f)

Let’s try out the Turing combinator on our higher order function G that we used to define FACT.

3

This time we will use CBN evaluation.

FACT = Θ G

= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G

→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G

→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)

= G (Θ G) for brevity
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G) Definition of G
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))

= λn. if n = 0 then 1 else n× (FACT (n− 1))

3 Definitional translation

We have seen how to encode a number of high-level language constructs—booleans, conditionals,
natural numbers, and recursion—in λ-calculus. We now consider definitional translation, where
we define the meaning of language constructs by translation to another language. This is a form
of denotational semantics, but instead of the target being mathematical objects, it is a simpler pro-
gramming language (such as λ-calculus). Note that definitional translation does not necessarily
produce clean or efficient code; rather, it defines the meaning of the source language constructs in
terms of the target language.

For each language construct, we will define an operational semantics directly, and then give an
alternate semantics by translation to a simpler language. We will start by introducing evaluation
contexts, which make it easier to present the new language features succinctly.

3.1 Evaluation contexts

Recall the syntax and CBV operational semantics for the lambda calculus:

e ::= x | λx. e | e1 e2
v ::= λx. e

e1 → e′1

e1 e2 → e′1 e2

e2 → e′2

v1 e2 → v1 e
′
2

β-REDUCTION
(λx. e) v → e{v/x}

Of the operational semantics rules, only the β-reduction rule told us how to “reduce” an expres-
sion; the other two rules tell us the order to evaluate expressions—e.g., evaluate the left hand side
of an application to a value first, then evaluate the right hand side of an application to a value. The
operational semantics of many of the languages we will consider have this feature: there are two
kinds of rules, congruence rules that specify evaluation order, and the computation rules that specify
the “interesting” reductions.

Evaluation contexts are a simple mechanism that separates out these two kinds of rules. An
evaluation context E (sometimes written E[·]) is an expression with a “hole” in it, that is with a
single occurrence of the special symbol [·] (called the “hole”) in place of a subexpression. Evalua-
tion contexts are defined using a BNF grammar that is similar to the grammar used to define the

4

language. The following grammar defines evaluation contexts for the pure CBV λ-calculus.

E ::= [·] | E e | v E

We write E[e] to mean the evaluation context E where the hole has been replaced with the
expression e. The following are examples of evaluation contexts, and evaluation contexts with the
hole filled in by an expression.

E1 = [·] (λx. x) E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·] E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y)) E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))

Using evaluation contexts, we can define the evaluation semantics for the pure CBV λ-calculus
with just two rules, one for evaluation contexts, and one for β-reduction.

e → e′

E[e] → E[e′]
β-REDUCTION

(λx. e) v → e{v/x}

Note that the evaluation contexts for the CBV λ-calculus ensure that we evaluate the left hand
side of an application to a value, and then evaluate the right hand side of an application to a value
before applying β-reduction.

We can specify the operational semantics of CBN λ-calculus using evaluation contexts:

E ::= [·] | E e

e → e′

E[e] → E[e′]
β-REDUCTION

(λx. e1) e2 → e1{e2/x}

We’ll see the benefit of evaluation contexts as we see languages with more syntactic constructs.

3.2 Multi-argument functions and currying

Our syntax for functions only allows function with a single argument: λx. e. We could define a
language that allows functions to have multiple arguments.

e ::= x | λx1, . . . , xn. e | e0 e1 . . . en

Here, a function λx1, . . . , xn. e takes n arguments, with names x1 through xn. In a multi argument
application e0 e1 . . . en, we expect e0 to evaluate to an n-argument function, and e1, . . . , en are the
arguments that we will give the function.

We can define a CBV operational semantics for the multi-argument λ-calculus as follows.

E ::= [·] | v0 . . . vi−1 E ei+1 . . . en

e → e′

E[e] → E[e′]

β-REDUCTION
(λx1, . . . , xn. e0) v1 . . . vn → e0{v1/x1}{v2/x2} . . . {vn/xn}

5

The evaluation contexts ensure that we evaluate a multi-argument application e0 e1 . . . en by
evaluating each expression from left to right down to a value.

Now, the multi-argument λ-calculus isn’t any more expressive that the pure λ-calculus. We
can show this by showing how any multi-argument λ-calculus program can be translated into an
equivalent pure λ-calculus program. We define a translation function T [[·]] that takes an expression
in the multi-argument λ-calculus and returns an equivalent expression in the pure λ-calculus. That
is, if e is a multi-argument lambda calculus expression, T [[e]] is a pure λ-calculus expression.

We define the translation as follows.

T [[x]] = x

T [[λx1, . . . , xn. e]] = λx1. . . . λxn. T [[e]]

T [[e0 e1 e2 . . . en]] = (. . . ((T [[e0]] T [[e1]]) T [[e2]]) . . . T [[en]])

This process of rewriting a function that takes multiple arguments as a chain of functions that
each take a single argument is called currying. Consider a mathematical function that takes two
arguments, the first from domain A and the second from domain B, and returns a result from
domain C. We could describe this function, using mathematical notation for domains of functions,
as being an element of A×B → C. Currying this function produces a function that is an element
of A → (B → C). That is, the curried version of the function takes an argument from domain A,
and returns a function that takes an argument from domain B and produces a result of domain C.

6

CS 4110 – Programming Languages and Logics
Lecture #18: More Definitional Translation and Continuations

In the last lecture we introduced a general framework for defining language features by trans-
lation. This lecture presents several additional example translations (for products, let-expressions,
and laziness, and mutable references); discusses correctness; and introduces continuations.

0.1 Products and let

A product is a pair of expressions (e1, e2). If e1 and e2 are both values, then we regard the product
as also being a value. (That is, we cannot further evaluate a product if both elements are values.)
Given a product, we can access the first or second element using the operators #1 and #2 respec-
tively. That is, #1 (v1, v2) → v1 and #2 (v1, v2) → v2. (Other common notation for projection
includes π1 and π2, and fst and snd.)

The syntax of λ-calculus extended with products and let expressions is defined as follows.

e ::= x | λx. e | e1 e2
| (e1, e2) | #1 e | #2 e

| let x = e1 in e2

v ::= λx. e | (v1, v2)

Note that values in this language are either functions or pairs of values.
We define a small-step CBV operational semantics for the language using evaluation contexts.

E ::= [·] | E e | v E | (E, e) | (v,E) | #1 E | #2 E | let x = E in e2

e → e′

E[e] → E[e′]
β-REDUCTION

(λx. e) v → e{v/x}

#1 (v1, v2) → v1 #2 (v1, v2) → v2

let x = v in e → e{v/x}

Next, we define an equivalent semantics by translation to the pure CBV λ-calculus.

1

T [[x]] = x

T [[λx. e]] = λx. T [[e]]

T [[e1 e2]] = T [[e1]] T [[e2]]

T [[(e1, e2)]] = (λx. λy. λf. f x y) T [[e1]] T [[e2]]

T [[#1 e]] = T [[e]] (λx. λy. x)

T [[#2 e]] = T [[e]] (λx. λy. y)

T [[let x = e1 in e2]] = (λx. T [[e2]]) T [[e1]]

Note that we encode a pair (e1, e2) as a value that takes a function f , and applies f to v1 and v2,
where v1 and v2 are the result of evaluating e1 and e2 respectively. The projection operators pass
a function to the encoding of pairs that selects either the first or second element as appropriate.
Also note that the expression let x = e1 in e2 is equivalent to the application (λx. e2) e1.

1 Laziness

In previous lectures we defined semantics for both the call-by-name λ-calculus and the call-by-
value λ-calculus. It turns out that we can translate a call-by-name program into a call-by-value
program. In CBV, arguments to functions are evaluated before the function is applied; in CBN,
functions are applied as soon as possible. In the translation, we delay the evaluation of arguments
by wrapping them in a function. This is called a thunk: wrapping a computation in a function to
delay its evaluation.

Since arguments to functions are turned into thunks, when we want to use an argument in a
function body, we need to evaluate the thunk. We do so by applying the thunk (which is simply a
function); it doesn’t matter what we apply the thunk to, since the thunk’s argument is never used.

T [[x]] = x (λy. y)

T [[λx. e]] = λx. T [[e]]

T [[e1 e2]] = T [[e1]] (λz. T [[e2]]) z is not a free variable of e2

2 References

We can also introduce constructs for creating, reading, and updating memory locations, also called
references. The resulting language is still a functional language (since functions are first-class val-
ues), but expressions can have side-effects, that is, they can modify state. The syntax of this lan-
guage is defined as follows.

e ::= x | λx. e | e0 e1 | ref e | !e | e1 := e2 | ℓ
v ::= λx. e | ℓ

Expression ref e creates a new memory location (like a malloc), and sets the initial contents
of the location to (the result of) e. The expression ref e itself evaluates to a memory location ℓ.

2

Think of a location as being like a pointer to a memory address. The expression !e assumes that e
evaluates to a memory location, and !e evaluates to the current contents of the memory location.
Expression e1 := e2 assumes that e1 evaluates to a memory location ℓ, and updates the contents of
ℓ with (the result of) e2. Locations ℓ are not intended to be used directly by a programmer: they
are not part of the surface syntax of the language, the syntax that a programmer would write. They
are introduced only by the operational semantics.

We define a small-step CBV operational semantics. We use configurations ⟨σ, e⟩, where e is an
expression, and σ is a map from locations to values.

E ::= [·] | E e | v E | ref E | !E | E := e | v := E

⟨σ, e⟩ → ⟨σ′, e′⟩
⟨σ,E[e]⟩ → ⟨σ′, E[e′]⟩

β-REDUCTION
⟨σ, (λx. e) v⟩ → ⟨σ, e{v/x}⟩

ALLOC
⟨σ, ref v⟩ → ⟨σ[ℓ 7→ v], ℓ⟩

ℓ ̸∈ dom(σ)

DEREF
⟨σ, !ℓ⟩ → ⟨σ, v⟩

σ(ℓ) = v ASSIGN
⟨σ, ℓ := v⟩ → ⟨σ[ℓ 7→ v], v⟩

References do not add any expressive power to the λ-calculus: it is possible to translate λ-
calculus with references to the pure λ-calculus. Intuitively, this is achieved by explicitly represent-
ing the store, and threading the store through the evaluation of the program. The details are left
as an exercise.

3 Adequacy of translation

In each of the previous translations, we defined a semantics for the source language (using eval-
uation contexts and small-step rules) and the target language (by translation). We would like to
be able to show that the translation is correct—that is, that it preserves the meaning of source
programs.

More precisely, we would like an expression e in the source language to evaluate to a value
v if and only if the translation of e evaluates to a value v′ such that v′ is “equivalent to” v. What
exactly it means for v′ to be “equivalent to” v will depend on the translation. Sometimes, it will
mean that v′ is literally the translation of v; other times, it will mean that v′ is merely related to the
translation of v by some equivalence.

One tricky issue is that in general, there can be many ways to define equivalences on functions.
One way is to say that two functions are equivalent if they agree on the result when applied to any
value of a base type (e.g., integers or booleans). The idea is that if two functions disagree when
passed a more complex value (say, a function), then we could write a program that uses these
functions to produce functions that disagree on values of base types.

There are two criteria for a translation to be adequate: soundness and completeness. For clarity,
let’s suppose that Expsrc is the set of source language expressions, and that →src and →trg are
the evaluation relations for the source and target languages respectively. A translation is sound if
every target evaluation represents a source evaluation:

Soundness: ∀e ∈ Expsrc. if T [[e]] →∗
trg v′ then ∃v. e →∗

src v and v′ equivalent to v

3

A translation is complete if every source evaluation has a target evaluation.

Completeness: ∀e ∈ Expsrc. if e →∗
src v then ∃v′. T [[e]] →∗

trg v′ and v′ equivalent to v

4 Continuations

In each of the preceding translations, the control structure of the source language was translated
directly into the corresponding control structure in the target language. For example:

T [[λx. e]] = λx. T [[e]]

T [[e1 e2]] = T [[e1]] T [[e2]]

This style of translation works well when the source language is similar to the target language.
However, when the control structures of the source and target languages differ considerable, it
doesn’t work as well.

Continuations are a programming technique that may be used directly by a programmer, or
used in program transformations by a compiler. Because they make the control flow of the pro-
gram explicit, they can be used to overcome discrepancies between source and target languages in
definitional translation. They can also be used to define the semantics of control-flow constructs
such as exceptions.

Intuitively, a continuation represents “the rest of the program.” Consider the program

if foo < 10 then 32 + 6 else 7 + bar

and consider the evaluation of the expression foo < 10. When we finish evaluating this subexpres-
sion, we will evaluate the if statement, and then evaluate the appropriate branch. The continuation
of the subexpression foo < 10 is the rest of the computation that will occur after we evaluate the
subexpression. We can write this continuation as a function that takes the result of the subexpres-
sion:

(λy. if y then 32 + 6 else 7 + bar) (foo < 10)

The evaluation order and result of this program will be the same as the original expression; the
difference is that we extracted the continuation of the subexpression in to a function.

The nice thing about continuations is that it makes the control explicit, and this is especially
useful in the case of functional programs, where control is not explicit otherwise. In fact, we
can rewrite a program to make continuations more explicit. Let’s consider another program, and
convert it so that continuations are explicit

(λx. x) ((1 + 2) + 3) + 4

We’ll start by defining a continuation for the outermost evaluation context, which takes a value,
and applies the identity function to it.

k0 = λv. (λx. x) v

The evaluation context that is evaluated next-to-last takes a value, adds 4 to it, and then passes the
result to k0.

k1 = λa. k0 (a+ 4)

4

Likewise, for the next evaluation contexts.

k2 = λb. k1 (b+ 3)

k3 = λc. k2 (c+ 2)

The program itself is now equivalent to k3 1. Since let x = e in e′ is just syntactic sugar for (λx. e′) e,
we can actually rewrite the above as

let c = 1 in
let b = c+ 2 in
let a = b+ 3 in
let v = a+ 4 in
(λx. x) v

This is fairly close to some machine instructions of the form:

set c, 1
add b, c, 2
add a, b, 3
add v, a, 4
call id, v

Using continuations, functions can be transformed into “functions that don’t return”—i.e., func-
tions that take, besides the usual arguments, an additional argument representing a continuation.
When the function finishes, it invokes the continuation on its result, instead of returning the result
to its caller. Writing functions in this way is usually referred to as Continuation-Passing Style, or
CPS for short. For instance, the CPS version of factorial looks like the following:

FACTcps = Y λf. λn, k. if n = 0 then k 1 else f (n− 1) (λv. k (n ∗ v))

Note that the last thing that code in FACTcps does is call a function (either k or f), and does not do
anything with the result.

Continuation-passing style is an important concept in the compilation of functional languages
and is used as an intermediate compiler representation (it has been used in compilers for Scheme,
ML, etc). The main advantage is that CPS makes the control flow explicit and makes it easier to
translate functional code to machine code where control is explicit (in the form of sequences of
machine instructions and jumps). For instance, a CPS call can be easily translated into a jump to
the invoked method, since the invoked function does not return the control.

4.1 CPS translation

We can translate λ-calculus programs into continuation-passing style. We define a translation
function CPS[[·]], which takes a CBV λ-calculus expression, and translates the expression to a CBV
λ-calculus expression in continuation-passing style.

Let’s consider a translation from λ-calculus with pairs and integers. The syntax of the source
language is as follows.

e ::= x | λx. e | e1 e2 | n | e1 + e2 | (e1, e2) | #1 e | #2 e

5

The translation CPS[[e]] will produce a function that whose argument is the continuation to which
to pass the result. That is, for all expressions e, the translation is of the form CPS[[e]] = λk. . . . ,
where k is a continuation. We will both assume and guarantee that for any expression e, the
translation CPS[[e]] = λk. . . . will apply k to the result of evaluating e.

For convenience, instead of writing CPS[[e]] = λk. . . . we write CPS[[e]] k =

CPS[[n]] k = k n

CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m))) n is not a free variable of e2

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v, w))) v is not a free variable of e2
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))

CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′) k′ is not a free variable of e
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k)) f is not a free variable of e2

We translate a function λx. e to a function that takes an additional argument k′, which is the con-
tinuation after the function application. That is, k′ is the continuation to which we hand the result
of evaluating the function body. In function application, we see that in addition to the actual
argument, we also give the continuation as the additional argument.

Let’s see an example translation and execution...

CPS[[(λa. a+ 6) 7]] ID = CPS[[(λa. a+ 6)]] (λf. CPS[[7]] (λv. f v ID))

= (λf. CPS[[7]] (λv. f v ID)) (λa, k′. CPS[[a+ 6]]k′)

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a+ 6]]k′)

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a]] (λn. CPS[[6]] (λm. k′ (m+ n))))

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a]] (λn. (λm. k′ (m+ n)) 6))

= (λf. (λv. f v ID) 7) (λa, k′. (λn. (λm. k′ (m+ n)) 6) a)

→ (λv. (λa, k′. (λn. (λm. k′ (m+ n)) 6) a) v ID) 7

→ (λa, k′. (λn. (λm. k′ (m+ n)) 6) a) 7 ID

→ (λn. (λm. ID (m+ n)) 6) 7

→ (λm. ID (m+ 7)) 6

→ ID (6 + 7)

→ ID 13

→ 13

6

CS 4110 – Programming Languages and Logics
Lecture #19: Simply Typed λ-calculus

A type is a collection of computational entities that share some common property. For example,
the type int represents all expressions that evaluate to an integer, and the type int → int represents
all functions from integers to integers. The Pascal subrange type [1..100] represents all integers
between 1 and 100.

Types can be thought of as describing computations succinctly and approximately: types are
a static approximation to the run-time behaviors of terms and programs. Type systems are a
lightweight formal method for reasoning about behavior of a program. Uses of type systems
include: naming and organizing useful concepts; providing information (to the compiler or pro-
grammer) about data manipulated by a program; and ensuring that the run-time behavior of
programs meet certain criteria.

In this lecture, we’ll consider a type system for the lambda calculus that ensures that values
are used correctly; for example, that a program never tries to add an integer to a function. The
resulting language (lambda calculus plus the type system) is called the simply-typed lambda calculus.

1 Simply-typed lambda calculus

The syntax of the simply-typed lambda calculus is similar to that of untyped lambda calculus,
with the exception of abstractions. Since abstractions define functions tht take an argument, in the
simply-typed lambda calculus, we explicitly state what the type of the argument is. That is, in an
abstraction λx :τ. e, the τ is the expected type of the argument.

The syntax of the simply-typed lambda calculus is as follows. It includes integer literals n,
addition e1 + e2, and the unit value (). The unit value is the only value of type unit.

expressions e ::= x | λx :τ. e | e1 e2 | n | e1 + e2 | ()
values v ::= λx :τ. e | n | ()
types τ ::= int | unit | τ1 → τ2

The operational semantics of the simply-typed lambda calculus are the same as the untyped
lambda calculus. For completeness, we present the CBV small step operational semantics here.

E ::= [·] | E e | v E | E + e | v + E
CONTEXT

e → e′

E[e] → E[e′]

β-REDUCTION
(λx :τ. e) v → e{v/x}

ADD
n1 + n2 → n

n = n1 + n2

1.1 The typing relation

The presence of types does not alter the evaluation of an expression at all. So what use are types?

1

We will use types to restrict what expressions we will evaluate. Specifically, the type system
for the simply-typed lambda calculus will ensure that any well-typed program will not get stuck.
A term e is stuck if e is not a value and there is no term e′ such that e → e′. For example, the
expression 42 + λx. x is stuck: it attempts to add an integer and a function; it is not a value, and
there is no operational rule that allows us to reduce this expression. Another stuck expression is
() 47, which attempts to apply the unit value to an integer.

We introduce a relation (or judgment) over typing contexts (or type environments) Γ, expressions
e, and types τ . The judgment

Γ ⊢ e :τ

is read as “e has type τ in context Γ”.
A typing context is a sequence of variables and their types. In the typing judgment Γ ⊢ e : τ ,

we will ensure that if x is a free variable of e, then Γ associates x with a type. We can view a typing
context as a partial function from variables to types. We will write Γ, x : τ or Γ[x 7→ τ] to indicate
the typing context that extends Γ by associating variable x with with type τ . The empty context is
sometimes written ∅, or often just not written at all. For example, we write ⊢ e :τ to mean that the
closed term e has type τ under the empty context.

Given a typing environment Γ and expression e, if there is some τ such that Γ ⊢ e : τ , we say
that e is well-typed under context Γ; if Γ is the empty context, we say e is well-typed.

We define the judgment Γ ⊢ e :τ inductively.

T-INT
Γ ⊢ n : int

T-ADD
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
T-UNIT

Γ ⊢ () :unit

T-VAR
Γ ⊢ x :τ

Γ(x) = τ T-ABS
Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e :τ → τ ′
T-APP

Γ ⊢ e1 :τ → τ ′ Γ ⊢ e2 :τ

Γ ⊢ e1 e2 :τ
′

An integer n always has type int. Expression e1 + e2 has type int if both e1 and e2 have type
int. The unit value () always has type unit.

Variable x has whatever type the context associates with x. Note that Γ must contain an associ-
ation for x in order for the judgment Γ ⊢ x :τ to hold, that is, x ∈ dom(Γ). The abstraction λx :τ. e
has the function type τ → τ ′ if the function body e has type τ ′ under the assumption that x has
type τ . Finally, an application e1 e2 has type τ ′ provided that e1 is a function of type τ → τ ′, and
e2 is an argument of the expected type, i.e., of type τ .

To type check an expression e, we attempt to construct a derivation of the judgment ⊢ e :τ , for
some type τ . For example, consider the program (λx : int. x + 40) 2. The following is a proof that
(λx : int. x+ 40) 2 is well-typed.

T-APP

T-ABS

T-ADD

T-VAR
x : int ⊢ x : int

T-INT
x : int ⊢ 40: int

x : int ⊢ x+ 40: int
⊢ λx : int. x+ 40: int → int

T-INT
⊢ 2: int

⊢ (λx : int. x+ 40) 2: int

2

1.2 Type soundness

We mentioned above that the type system ensures that any well-typed program does not get stuck.
We can state this property formally.

Theorem (Type soundness). If ⊢ e :τ and e →∗ e′ and e′ ̸→ then e′ is a value and ⊢ e′ :τ .

We will prove this theorem using two lemmas: preservation and progress. Intuitively, preserva-
tion says that if an expression e is well-typed, and e can take a step to e′, then e′ is well-typed. That
is, evaluation preserves well-typedness. Progress says that if an expression e is well-typed, then
either e is a value, or there is an e′ such that e can take a step to e′. That is, well-typedness means
that the expression cannot get stuck. Together, these two lemmas suffice to prove type soundness.

1.2.1 Preservation

Lemma (Preservation). If ⊢ e :τ and e → e′ then ⊢ e′ :τ .

Proof. Assume ⊢ e : τ and e → e′. We need to show ⊢ e′ : τ . We will do this by induction on the
derivation of e → e′.

Consider the last rule used in the derivation of e → e′.

• ADD

Here e ≡ n1 + n2, and e′ = n where n = n1 + n2, and τ = int. By the typing rule T-INT, we
have ⊢ e′ : int as required.

• β-REDUCTION

Here, e ≡ (λx :τ ′. e1) v and e′ ≡ e1{v/x}. Since e is well-typed, we have derivations showing
⊢ λx : τ ′. e1 : τ

′ → τ and ⊢ v : τ ′. There is only one typing rule for abstractions, T-ABS, from
which we know x : τ ′ ⊢ e1 : τ . By the substitution lemma (see below), we have ⊢ e1{v/x} : τ
as required.

• CONTEXT

Here, we have some context E such that e = E[e1] and e′ = E[e2] for some e1 and e2 such
that e1 → e2. Since e is well-typed, we can show by induction on the structure of E that
⊢ e1 : τ1 for some τ1. By the inductive hypothesis, we thus have ⊢ e2 : τ1. By the context
lemma (see below) we have ⊢ E[e2] :τ as required.

Additional lemmas we used in the proof above.

Lemma (Substitution). If x :τ ′ ⊢ e :τ and ⊢ v :τ ′ then ⊢ e{v/x} :τ .

Lemma (Context). If ⊢ E[e] :τ and ⊢ e :τ ′ and ⊢ e′ :τ ′ then ⊢ E[e′] :τ .

3

1.2.2 Progress

Lemma (Progress). If ⊢ e :τ then either e is a value or there exists an e′ such that e → e′.

Proof. We proceed by induction on the derivation of ⊢ e :τ .

• T-VAR

This case is impossible, since a variable is not well-typed in the empty environment.

• T-UNIT, T-INT, T-ABS

Trivial, since e must be a value.

• T-ADD

Here e ≡ e1 + e2 and ⊢ ei : int for i ∈ {1, 2}. By the inductive hypothesis, for i ∈ {1, 2}, either
ei is a value or there is an e′i such that ei → e′i.

If e1 is not a value, then by CONTEXT, e1 + e2 → e′1 + e2. If e1 is a value and e2 is not a value,
then by CONTEXT, e1 + e2 → e1 + e′2. If e1 and e2 are values, then, it must be the case that
they are both integer literals, and so, by ADD, we have e1 + e2 → n where n equals e1 plus
e2.

• T-APP

Here e ≡ e1 e2 and ⊢ e1 : τ
′ → τ and ⊢ e2 : τ

′. By the inductive hypothesis, for i ∈ {1, 2},
either ei is a value or there is an e′i such that ei → e′i.

If e1 is not a value, then by CONTEXT, e1 e2 → e′1 e2. If e1 is a value and e2 is not a value,
then by CONTEXT, e1 e2 → e1 e′2. If e1 and e2 are values, then, it must be the case that e1 is
an abstraction λx :τ ′. e′, and so, by β-REDUCTION, we have e1 e2 → e′{e2/x}.

Clearly, not all expressions in the untyped lambda calculus are well-typed. Indeed, type
soundness implies that any lambda calculus program that gets stuck is not well-typed. But are
there programs that do not get stuck that are not well-typed? Unfortunately, the answer is yes.
In particular, because the simply-typed lambda calculus requires us to specify a type for function
arguments, any given function can only take arguments of one type. Consider, for example, the
identity function λx. x. This function may be applied to any argument, and it will not get stuck.
However, we must provide a type for the argument. If we specify λx : int. x, then this function can
only accept integers, and the program (λx : int. x) () is not well-typed, even though it does not get
stuck. Indeed, in the simply-typed lambda calculus, there is a different identity function for each
type.

4

CS 4110 – Programming Languages and Logics
Lectures #21: Normalization

1 Introduction

A limitation of the simply-typed lambda-calculus is that we can no longer write recursive func-
tions. Consider the nonterminating expression Ω = (λx. x x) (λx. x x). What type does it have?
Let’s suppose that the type of λx. x x is τ → τ ′. But λx. x x is applied to itself! So that means that
the type of λx. x x is the argument type τ . So we have that τ must be equal to τ → τ ′. There is no
such type for which this equality holds. (At least, not in this type system...)

This means that every well-typed program in the simply-typed lambda calculus terminates.
Formally:

Theorem (Normalization). If ⊢ e :τ then there exists a value v such that e →∗ v.

The rest of this lecture is devoted to proving this theorem.

2 Notation

For simplicity, we’ll work with the simply-typed lambda calculus over unit,

e ::= x | () | λx : τ. e | e1 e2
v ::= () | λx : τ. e
τ ::= unit | τ1 → τ2

with the standard call-by value semantics:

E ::= [·] | E e | v E

CONTEXT
e → e′

E[e] → E[e′]
β-REDUCTION

(λx. e) v → e{v/x}

3 A First Attempt

As a first attempt toward proving normalization, let us try a proof by structural induction on e. We
will need the following lemmas, all of which are standard. Each of these lemmas can be proved
by straightforward induction on the typing derivation. We leave the proofs as exercises.

Lemma (Inversion).

• If Γ ⊢ x :τ then Γ(x) = τ

• If Γ ⊢ λx : τ1. e :τ then τ = τ1 → τ2 and Γ, x : τ1 ⊢ e :τ2.

1

• If Γ ⊢ e1 e2 :τ then Γ ⊢ e1 :τ
′ → τ and Γ ⊢ e2tyτ

′.

Lemma (Canonical Forms).

• If Γ ⊢ v :unit then v = ()

• If Γ ⊢ v :τ1 → τ2 then v = λx :τ1.e and Γ, x :τ1 ⊢ e :τ2.

Now let us attempt to prove prove the main theorem.

Theorem (Normalization). If ⊢ e :τ then there exists a value v such that e →∗ v.

Proof. By structural induction on e.

Case e = x:
By inversion, we have that the empty typing context maps x to τ , which is a contradiction.
Hence, the case vacuously holds.

Case e = ():
Immediate since e is already a value.

Case e = λx : τ.e:
Immediate since e is already a value.

Case e = e1 e2:
By inversion we have ⊢ e1 : τ

′ → τ and ⊢ e2 : τ
′. Hence, by induction hypothesis there exist

v1 and v2 such that that e1 →∗ v1 and e2 →∗ v2. Moreover, by canonical forms we have that
v1 = λx : τ ′.e′. Hence, v1 v2 → e′{v2/x}.

At this point we would like to apply the induction hypothesis to e′{v2/x} to show that it
also evaluates to a value, but doing this would not be valid—the induction hypothesis only
applies to immediate subexpressions of e! Moreover, we cannot get around this by using
the other induction principles we have seen before, such as induction on the size of the
expression or on the typing derivation—these induction hypotheses do not apply to e′{v2/x}
either!

We need a different proof technique.

4 Logical Relations

To prove normalization, we will employ a technique invented by Tait in 1967 called a logical rela-
tion. The idea in a logical relation proof is to define a predicate on expressions indexed on types
that implies the property we want.

At base types this set will simply contain all expressions satisfying the property. At function
types, we will require that the property be preserved whenever we apply the function to an argu-
ment of appropriate type that also has the property.

More formally, we define the following predicate Rτ (e) inductively on τ . We use e halts as an
abbreviation for exists v such that e →∗ v.

Definition (Logical Relation).

2

• Runit(e) iff ⊢ e :unit and e halts.

• Rτ1→τ2(e) iff ⊢ e :τ1 → τ2 and e halts, and for every e′ such that Rτ1(e
′) we have Rτ2(e e

′).

Normalization then follows from the next few lemmas.
The first states the correspondence between Rτ and halting.

Lemma 1. If Rτ (e) then e halts.

The proof is straightforward as halting is built into each case of the definition of the logical
relation.

The second states that all closed well-typed expressions satisfy the predicate at their type.

Lemma 2. If ⊢ e :τ then Rτ (e)

To prove the first, we will need the following lemma:

Lemma 3. If ⊢ e :τ and e → e′ then Rτ (e) iff Rτ (e
′).

We leave the proof of this lemma as an exercise.
Returning to Lemma 2, we strengthen the induction hypothesis to allow a non-empty typing

context:

Lemma 4. If x1 :τ1 . . . xk :τk ⊢ e :τ , and v1 to vk are values such that ⊢ v1 :τ1 to ⊢ vk :τk and Rτ1(v1) to
Rτk(vk), then Rτ (e{v1/x1} . . . {vk/xk}).

Proof. By structural induction on e.

• Case e = x:
By inversion we have that x = xi and τ = τi. By definition, e{v1/x1} . . . {vk/xk} = vi. We
have Rτi(vi) by assumption.

• Case e = ():
By inversion we have that τ = unit. By definition, e{v1/x1} . . . {vk/xk} = (). We obtain
Runit(()) by the definition of the logical relation as ⊢ () :unit and () halts.

• Case e = λx :τ ′. e′:
By inversion we have τ = τ ′ → τ ′′ and x1 : τ1 . . . xk : τk, x : τ

′ ⊢ e′ : τ ′′. We immediately have
that (λx : τ ′. e′){v1/x1} . . . {vk/xk} halts since it is already a value. Let e′′ be an arbitrary ex-
pression such that Rτ ′(e

′′). By definition of the logical relation we have ⊢ e′′ :τ ′ and e′′ halts.
So there exists a v′′ such that e′′ →∗ v′′. By Lemma 3 we have that Rτ ′(v

′′). By the induction
hypothesis, we have Rτ ′′(e

′{v1/x1} . . . {vk/xk}{v′′/x}). Hence, by the definition of the oper-
ational semantics and the previous lemma again we also have Rτ ′′(e{v1/x1} . . . {vk/xk}) e′′).
Therefore by the definition of the logical relation we have Rτ ′→τ ′′(e{v1/x1} . . . {vk/xk}) as
required.

• Case e = e1 e2:
By inversion we have x1 :τ1 . . . xk :τk ⊢ e1 :τ

′ → τ ′′ and x1 :τ1 . . . xk :τk ⊢ e1 :τ
′ and τ = τ ′′. By

induction hypothesis we have Rτ ′→τ ′′(e1{v1/x1} . . . {vk/xk}) and Rτ ′(e2{v1/x1} . . . {vk/xk}).
By Lemma 1 we have that e1{v1/x1} . . . {vk/xk} halts. By the definition of the logical relation
we have Rτ ′′(e1{v1/x1} . . . {vk/xk} e2{v1/x1} . . . {vk/xk}), which is Rτ ′′((e1 e2){v1/x1} . . . {vk/xk}),
as required.

3

CS 4110 – Programming Languages and Logics
Lectures #22: Advanced Types

1 Overview

In this lecture we will extend the simply-typed λ-calculus with several features we saw earlier in
the course, including products, sums, and references, as well as one new one.

1.1 Products

We have previously seen how to encode products into untyped λ-calculus.

e ::= · · · | (e1, e2) | #1 e | #2 e

v ::= · · · | (v1, v2)

We defined congruence rules that determine the order of evaluation, using the following evalua-
tion contexts.

E ::= · · · | (E, e) | (v,E) | #1 E | #2 E

We also defined two computation rules that determin how the pairing constructor and destructors
interact.

#1 (v1, v2) → v1 #2 (v1, v2) → v2

In simply-typed λ-calculus, the type of a product expression (or a product type) is a pair of types,
written τ1 × τ2. The typing rules for the product constructors and destructors are as follows:

Γ ⊢ e1 :τ1 Γ ⊢ e2 :τ2

Γ ⊢ (e1, e2) :τ1 × τ2

Γ ⊢ e :τ1 × τ2

Γ ⊢ #1 e :τ1

Γ ⊢ e :τ1 × τ2

Γ ⊢ #2 e :τ2

Note the similarities between these rules and the proof rules for conjunction in natural deduction.
We will examine this relationship closely later in the course.

1.2 Sums

The next example, sums, are dual to products. Intuitively, a product holds two values, one of type
τ1, and one of type τ2, while a sum holds a single value that is either of type τ1 or of type τ2. The
type of a sum is written τ1 + τ2. There are two constructors for sums, corresponding to whether
we are constructing a sum with a value of τ1 or a value of τ2.

e ::= · · · | inlτ1+τ2 e | inrτ1+τ2 e | case e1 of e2 | e3
v ::= · · · | inlτ1+τ2 v | inrτ1+τ2 v

1

There are congruence rules that determine the order of evaluation, as defined by the following
evaluation contexts.

E ::= · · · | inlτ1+τ2 E | inrτ1+τ2 E | case E of e2 | e3
There are also two computation rules that that show how the constructors and destructors interact.

case inlτ1+τ2 v of e2 | e3 → e2 v case inrτ1+τ2 v of e2 | e3 → e3 v

The type of a sum expression (or a sum type) is written τ1 + τ2. The typing rules for the sum
constructors and destructor are the following.

Γ ⊢ e :τ1

Γ ⊢ inlτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ2

Γ ⊢ inrτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ1 + τ2 Γ ⊢ e1 :τ1 → τ Γ ⊢ e2 :τ2 → τ

Γ ⊢ case e of e1 | e2 :τ
Let’s see an example of a program that uses sum types.

let f = λa : int + (int → int). case a of (λy. y + 1) | (λg. g 35) in
let h = λx : int. x+ 7 in
f (inrint+(int→int) h)

The function f takes argument a, which is a sum—that is, the actual argument for a will either be
a value of type int or a value of type int → int. We destruct the sum value with a case statement,
which must be prepared to take either of the two kinds of values that the sum may contain. In
this instance, we end up applying f to a value of type int → int (i.e., a value injected into the right
type of the sum), so the entire program ends up evaluating to 42.

1.3 References

Next we consider mutable references. Recall the syntax and semantics for references.

e ::= · · · | ref e | !e | e1 := e2 | ℓ
v ::= · · · | ℓ
E ::= · · · | ref E | !E | E := e | v := E

ALLOC
⟨σ, ref v⟩ → ⟨σ[ℓ 7→ v], ℓ⟩

ℓ ̸∈ dom(σ) DEREF
⟨σ, !ℓ⟩ → ⟨σ, v⟩

σ(ℓ) = v

ASSIGN
⟨σ, ℓ := v⟩ → ⟨σ[ℓ 7→ v], v⟩

To extend the type system, we add a new type, τ ref, to stand for the type of a location that contains
a value of type τ . For example the expression ref 7 has type int ref, since it evaluates to a location
that contains a value of type int. Dereferencing a location of type τ ref results in a value of type τ ,
so !e has type τ if e has type τ ref. And for assignment e1 := e2, if e1 has type τ ref, then e2 must
have type τ .

τ ::= · · · | τ ref

2

Γ ⊢ e :τ

Γ ⊢ ref e :τ ref
Γ ⊢ e :τ ref
Γ ⊢ !e :τ

Γ ⊢ e1 :τ ref Γ ⊢ e2 :τ

Γ ⊢ e1 := e2 :τ

Note that there is no typing rule for location values. What should the type of a location value ℓ be?
Clearly, it should be of type τ ref, where τ is the type of the value contained in location ℓ. But how
do we know what value is contained in location ℓ? We could directly examine the store, but this
would not be inefficient. In addition, examining the store directly may not give us a conclusive
answer! Consider, for example, a store σ and location ℓ where σ(ℓ) = ℓ; what is the type of ℓ?

Instead, we introduce store typings to track the types of values stored in locations. Store typings
are partial functions from locations to types. We use metavariable Σ to range over store typings.
Our typing relation now becomes a relation over 4 entities: typing contexts, store typings, expres-
sions, and types. We write Γ,Σ ⊢ e : τ when expression e has type τ under typing context Γ and
store typing Σ.

Our new typing rules for references are as follows. (Typing rules for other constructs are
modified to take a store typing in the obvious way.)

Γ,Σ ⊢ e :τ

Γ,Σ ⊢ ref e :τ ref
Γ,Σ ⊢ e :τ ref
Γ,Σ ⊢ !e :τ

Γ,Σ ⊢ e1 :τ ref Γ,Σ ⊢ e2 :τ

Γ,Σ ⊢ e1 := e2 :τ Γ,Σ ⊢ ℓ :τ ref
Σ(ℓ) = τ

So, how do we state type soundness? Our type soundness theorem for simply-typed lambda
calculus said that if Γ ⊢ e : τ and e →∗ e′ then e′ is not stuck. But our operational semantics
for references now has a store, and our typing judgment now has a store typing in addition to a
typing context. We need to adapt the definition of type soundness appropriately. to do so, we
define what it means for a store to be well-typed with respect to a typing context.

Definition. Store σ is well-typed with respect to typing context Γ and store typing Σ, written Γ,Σ ⊢
σ , if dom(σ) = dom(Σ) and for all ℓ ∈ dom(σ) we have Γ,Σ ⊢ σ(ℓ) :Σ(ℓ).

We can now state type soundness for our language with references.

Theorem (Type soundness). If ·,Σ ⊢ e :τ and ·,Σ ⊢ σ and ⟨e, σ⟩ →∗ ⟨e′, σ′⟩ then either e′ is a value, or
there exists e′′ and σ′′ such that ⟨e′, σ′⟩ → ⟨e′′, σ′′⟩.

We can prove type soundness for our language using the same strategy as for the simply-typed
lambda calculus: using the preservation and progress lemmas. The progress lemma can be easily
adapted for the semantics and type system for references. Adapting preservation is a little more
involved, since we need to describe how the store typing changes as the store evolves. The rule
ALLOC extends the store σ with a fresh location ℓ, producing store σ′. Since dom(Σ) = dom(σ) ̸=
dom(σ′), it means that we will not have σ′ well-typed with respect to typing store Σ.

Since the store can increase in size during the evaluation of the program, we also need to allow
the store typing to grow as well.

Lemma (Preservation). If Γ,Σ ⊢ e : τ and Γ,Σ ⊢ σ and ⟨e, σ⟩ → ⟨e′, σ′⟩ then there exists some Σ′ ⊇ Σ
such that Γ,Σ′ ⊢ e′ :τ and Γ,Σ′ ⊢ σ′.

We write Σ′ ⊇ Σ to mean that for all ℓ ∈ dom(Σ) we have Σ(ℓ) = Σ′(ℓ). This makes sense if
we think of partial functions as sets of pairs: Σ ≡ {(ℓ, v) | ℓ ∈ dom(Σ) ∧ Σ(ℓ) = v}. Note that the
preservation lemma states simply that there is some store type Σ′ ⊇ Σ, but does not specify what

3

exactly that store typing is. Intuitively, Σ′ will either be Σ, or Σ extended with a newly allocated
location.

Interestingly, references are enough to recover Turing completeness. For example, to imple-
ment a recursive function f we can initialize a reference cell containing a dummy value for f
and then “backpatch” it with the actual definition. For example, here is an implementation of the
familiar factorial function, written using let expressions, conditionals, and natural numbers for
clarity.

let r = ref λx. 0 in
r := λx : int. if x = 0 then 1 else x× !r (x− 1)

This trick is known as “Landin’s knot” after its inventor.

1.4 Fixpoints

Another way to obtain fixpoints in the simply-typed lambda calculus is to simply add a new
primitive fix to the language. The evaluation rules for the new primitive mimic the behavior of the
fixpoint combinators we saw previously.

We extend the syntax with the new primitive operator. Intuitively, fix e is the fixed-point of the
function e. Note that fix v is not a value.

e ::= · · · | fix e

We extend the operational semantics for the new operator. There is a new evaluation context,
and a new axiom.

E ::= · · · | fix E fix λx :τ. e → e{(fix λx :τ. e)/x}

Note that we can define the letrec x :τ = e1 in e2 construct in terms of the fix operator.

letrec x :τ = e1 in e2 ≜ let x = fix λx :τ. e1 in e2

The typing rule for fix is left as an exercise.
Returning to our trusty factorial example, the following program implements the factorial

function using the fix operator.

FACT ≜ fix λf : int → int. λn : int. if n = 0 then 0 else n× (f (n− 1))

Note that we can write non-terminating computations for any type: the expression fix λx :τ. x has
type τ , and does not terminate.

Although the fix operator is normally used to define recursive functions, it can be used to find
fixed points of any type. For example, consider the following expression.

fix λx : (int → int)× (int → int). (λn : int. if n = 0 then true else (#2 x) (n− 1),

λn : int. if n = 0 then false else (#1 x) (n− 1))

This expressiondefines a pair of mutually recursive functions; the first function returns true if and
only if its argument is even; the second function returns true if and only if its argument is odd.

4

1.5 Exceptions

Many programming langauges provide support for throwing and catching exceptions. We can
model an extremely simple form of exceptions by extending the simply-typed λ-calculus with a
single exception representing an error. We first extend the syntax of the language,

e ::= . . .error | try e with e

and then add new evaluation contexts,

E ::= · · · | try E with e

and rules for propagating and catching exceptions:

E[error] → error try error with e → e try v with e → v

The typing rule for exceptions allows them to take any type, while the typing rule for try-with
expressions requires both sub-expressions to have the same type:

Γ ⊢ error :τ
Γ ⊢ e1 :τ Γ ⊢ e2 :τ

Γ ⊢ try e1 with e2 :τ

The first typing rule is extremely flexible, allowing errors to be thrown anywhere in a program.
However, it is not hard to see that it causes the progress lemma to become false: the expression
error is not a value but is stuck. Fortunately, we can prove the following weaker version, which is
still strong enough to prove a useful form of type soundness.

Lemma (Progress). If ⊢ e :τ then e is a value or e is error or there exists e′ such that e → e′.

The preservation theorem remains unchanged.
The actual soundness theorem is as follows:

Theorem 1 (Soundness). If ⊢ e :τ and e →∗ e′ and e′ ̸→ then either e is a value or e is error.

5

CS 4110 – Programming Languages and Logics
Lecture #23: Polymorphism

1 Parametric polymorphism

Polymorphism (Greek for “many forms”) is the ability for code to be used with values of different
types. For example, a polymorphic function is one that can be invoked with arguments of different
types. A polymorphic datatype is one that can contain elements of different types.

There are several different kinds of polymorphism that are commonly used in modern pro-
gramming languages.

• Subtype polymorphism allows a term to have many types using the subsumption rule, which
allows a value of type τ to masquerade as a value of type τ ′ provided that τ is a subtype of
τ ′.

• Ad-hoc polymorphism usually refers to code that appears to be polymorphic to the program-
mer, but the actual implementation is not. For example, languages with overloading allow
the same function name to be used with functions that take different types of parameters.
Although it looks like a polymorphic function to the code that uses it, there are actually
multiple function implementations (none being polymorphic) and the compiler invokes the
appropriate one. Ad-hoc polymorphism is a dispatch mechanism: the type of the arguments
is used to determine (either at compile time or run time) which code to invoke.

• Parametric polymorphism refers to code that is written without knowledge of the actual type
of the arguments; the code is parametric in the type of the parameters. Examples include
polymorphic functions in ML and Java generics.

In this lecture we will consider parametric polymorphism in detail. As a motivating example,
suppose we are working in the simply-typed λ-calculus, and consider a “doubling” function for
integers that takes a function f , and an integer x, applies f to x, and then applies f to the result.

doubleInt ≜ λf : int → int. λx : int. f (f x)

We could also write a double function for booleans. Or for functions over integers. Or for any
other type...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)

doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

In the simply-typed λ-calculus, if we want to apply the doubling operation to different types
of arguments in the same program, we need to write a new function for each type. This violates a
fundamental principle of software engineering:

1

Abstraction Principle: Every major piece of functionality in a program should be imple-
mented in just one place in the code. When similar functionality is provided by distinct pieces
of code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions above, the varying parts are the types. We need a way to abstract out
the type of the doubling operation, and later instantiate it with different concrete types.

1.1 Polymorphic λ-calculus

We can extend the simply-typed λ-calculus with abstraction over types. The resulting system is
known by two names: polymorphic λ-calculus and System F.

A type abstraction is a new expression, written ΛX. e, where Λ is the upper-case form of the
Greek letter lambda, and X is a type variable. A type application, written e1 [τ], instantiaties a type
application at a particular type.

When a type abstraction meets a type application during evaluation, we substitute the free
occurrences of the type variable with the type. Importantly, instantiation does not require the
program to keep run-time type information, or to perform type checks at run-time; it is just used
as a way to statically check type safety in the presence of polymorphism.

1.2 Syntax and operational semantics

The syntax of the polymorphic λ-calculus is given by the following grammar.

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e | ΛX. e

The evaluation rules are the same as for the simply-typed λ-calculus, as well as two new rules
for evaluating type abstractions and applications.

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′]
β-REDUCTION

(λx :τ. e) v → e{v/x}

TYPE-REDUCTION
(ΛX. e) [τ] → e{τ/X}

To illustrate, consider a simple example. In this language, the polymorphic identity function
is written as

ID ≜ ΛX.λx :X.x

We can apply the polymorphic identity function to int, yielding the identity function on integers.

(ΛX.λx :X.x) [int] → λx : int. x

We can apply ID to other types as well:

(ΛX.λx :X.x) [int → int] → λx : int → int. x

2

1.3 Type system

We also need to provide a type for the new type abstraction. The type of ΛX. e is ∀X. τ , where τ
is the type of e, and may contain the type variable X . Intuitively, we use this notation because we
can instantiate the type expression with any type for X : for any type X , expression e can have the
type τ (which may mention X).

Type checking expressions is slightly different than before. Besides the type environment Γ
(which maps variables to types), we also need to keep track of the set of type variables ∆. This is
to ensure that a type variable X is only used in the scope of an enclosing type abstraction ΛX. e.
Thus, typing judgments are now of the form ∆,Γ ⊢ e : τ , where ∆ is a set of type variables, and Γ
is a typing context. We also use an additional judgment ∆ ⊢ τ ok to ensure that type τ uses only
type variables from the set ∆.

∆,Γ ⊢ n : int ∆,Γ ⊢ x :τ
Γ(x) = τ

∆,Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆,Γ ⊢ λx :τ. e :τ → τ ′

∆,Γ ⊢ e1 :τ → τ ′ ∆,Γ ⊢ e2 :τ

∆,Γ ⊢ e1 e2 :τ
′

∆ ∪ {X},Γ ⊢ e :τ

∆,Γ ⊢ ΛX. e :∀X. τ

∆,Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok
∆,Γ ⊢ e [τ] :τ ′{τ/X}

∆ ⊢ X ok
X ∈ ∆

∆ ⊢ int ok
∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 → τ2 ok
∆ ∪ {X} ⊢ τ ok
∆ ⊢ ∀X. τ ok

2 Programming in Polymorphic λ-Calculus

Now we consider a number of examples of programming in the polymorphic λ-calculus.

2.1 Doubling

Let’s consider the doubling operation again. We can write a polymorphic doubling operation as

double ≜ ΛX.λf :X → X.λx :X. f (f x).

The type of this expression is
∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments. For example,

double [int] (λn : int. n+ 1) 7 → (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7

→∗ 9

3

2.2 Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the expression λx. x x. In the
polymorphic λ-calculus, however, we can type this expression if we give it a polymorphic type
and instantiate it appropriately.

⊢ λx :∀X. X → X.x [∀X. X → X] x : (∀X. X → X) → (∀X. X → X)

2.3 Sums and Products

We can encode sums and products in polymorphic λ-calculus without adding any additional
types! The encodings are based on the Church encodings from untyped λ-calculus.

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R

(·, ·) ≜ ΛT1. ΛT2. λv1 : T1, λv2 : T2. ΛR. λp : (T1 → T2 → R). p v1 v 2

π1 ≜ ΛT1. ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)

π2 ≜ ΛT1. ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

unit ≜ ∀R. R → R

() ≜ ΛR. λx : R. x

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R

inl ≜ ΛT1. ΛT2. λv1 : T1. ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr ≜ ΛT1. ΛT2. λv2 : T2. ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case ≜ ΛT1. ΛT2. ΛR. λv : T1 + T2. λb1 : T1 → R. λb2 : T2 → R. v [R] b1 b2

void ≜ ∀R. R

3 Type Erasure

The semantics presented above explicitly passes type. In an implementation, one often wants to
eliminate types for efficiency. The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

The following theorem states that the translation is adequate.

Theorem (Adequacy). For all expressions e and e′, we have e → e′ iff erase(e) → erase(e′).

4 Type Inference

The type reconstruction problem asks whether, for a given untyped λ-calculus expression e′ there
exists a well-typed System F expression e such that erase(e) = e′. It was shown to be undecidable

4

by Wells in 1994. See Chapter 23 of Pierce for further discussion, as well as restrictions for which
type reconstruction is decidable.

5

CS 4110 – Programming Languages and Logics
Lecture #24: Type Inference

1 Polymorphism in OCaml

In languages lik OCaml, programmers don’t have to annotate their programs with ∀X. τ or e [τ].
Both are automatically inferred by the compiler, although the programmer can specify types ex-
plicitly if desired.

For example, we can write

let double f x = f (f x)

and Ocaml will figure out that the type is

(’a → ’a) → ’a → ’a

which is roughly equivalent to

∀A. (A → A) → A → A

We can also write

double (fun x → x+1) 7

and Ocaml will infer that the polymorphic function double is instantiated on the type int.
The polymorphism in ML is not, however, exactly like the polymorphism in System F. ML

restricts what types a type variable may be instantiated with. Specifically, type variables can not
be instantiated with polymorphic types. Also, polymorphic types are not allowed to appear on
the left-hand side of arrows—i.e., a polymorphic type cannot be the type of a function argument.
This form of polymorphism is known as let-polymorphism (due to the special role played by let in
ML), or prenex polymorphism. These restrictions ensure that type inference is decidable.

An example of a term that is typable in System F but not typable in ML is the self-application
expression λx. x x. Try typing

fun x → x x

in the top-level loop of Ocaml, and see what happens...

2 Type Inference

In the simply-typed lambda calculus, we explicitly annotate the type of function arguments: λx :
τ. e. These annotations are used in the typing rule for functions.

Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e :τ → τ ′

1

Suppose that we didn’t want to provide type annotations for function arguments. We would need
to guess a τ to put into the type context.

Can we still type check our program without these type annotations? For the simply typed-
lambda calculus (and many of the extensions we have considered so far), the answer is yes: we
can infer (or reconstruct) the types of a program.

Let’s consider an example to see how this type inference could work.

λa. λb. λc. if a (b+ 1) then b else c

Since the variable b is used in an addition, the type of b must be int. The variable a must be some
kind of function, since it is applied to the expression b + 1. Since a has a function type, the type
of the expression b + 1 (i.e., int) must be a’s argument type. Moreover, the result of the function
application (a (b+1)) is used as the test of a conditional, so it had better be the case that the result
type of a is also bool. So the type of a should be int → bool. Both branches of a conditional should
return values of the same type, so the type of c must be the same as the type of b, namely int.

We can write the expression with the reconstructed types:

λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

2.1 Constraint-based typing

We now present an algorithm that, given a typing context Γ and an expression e, produces a set of
constraints—equations between types (including type variables)—that must be satisfied in order
for e to be well-typed in Γ. We introduce type variables, which are just placeholders for types. We let
metavariables X and Y range over type variables. The language we will consider is the lambda
calculus with integer constants and addition. We assume that all function definitions contain a
type annotation for the argument, but this type may simply be a type variable X .

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

τ ::= int | X | τ1 → τ2

To formally define type inference, we introduce a new typing relation:

Γ ⊢ e :τ | C

Intuitively, if Γ ⊢ e :τ | C, then expression e has type τ provided that every constraint in the set C
is satisfied.

We define the judgment Γ ⊢ e :τ | C with inference rules and axioms. When read from bottom
to top, these inference rules provide a procedure that, given Γ and e, calculates τ and C such that
Γ ⊢ e :τ | C.

CT-VAR
x :τ ∈ Γ

Γ ⊢ x :τ | ∅
CT-INT

Γ ⊢ n : int | ∅

CT-ADD
Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

Γ ⊢ e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}

2

CT-ABS
Γ, x :τ1 ⊢ e :τ2 | C

Γ ⊢ λx :τ1. e :τ1 → τ2 | C

CT-APP
Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2 C ′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}

Γ ⊢ e1 e2 :X | C ′ X fresh

Note that we must be careful with the choice of type variables—in particular, the type variable in
the rule CT-APP must be chosen appropriately.

2.2 Unification

So what does it mean for a set of constraints to be satisfied? To answer this question, we define type
substitutions (or just substitutions, when it’s clear from context). A type substitution is a finite map
from type variables to types. For example, we write [X 7→ int, Y 7→ int → int] for the substitution
that maps type variable X to int, and type variable Y to int → int. Note that the same variable
may occur in both the domain and range of a substitution. In that case, the intention is that the
substitutions are performed simultaneously. For example the substitution [X 7→ int, Y 7→ (int →
X)] maps Y to int → X .

More formally, we define substitution of type variables as follows.

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture, since there are no constructs in
the language that bind type variables. If we had polymorphic types ∀X. τ from the polymorphic
lambda calculus, we would need to be concerned with this.

Given two substitutions σ and σ′, we write σ ◦ σ′ for their composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

2.2.1 Unification

Constraints are of the form τ = τ ′. We say that a substitution σ unifies constraint τ = τ ′ if σ(τ) =
σ(τ ′). We say that substitution σ satisfies (or unifies) set of constraints C if σ unifies every constraint
in C.

For example, the substitution σ = [X 7→ int, Y 7→ (int → int)] unifies the constraint

X → (X → int) = int → Y

since
σ(X → (X → int)) = int → (int → int) = σ(int → Y)

So to solve a set of constraints C, we need to find a substitution that unifies C. More specifically,
suppose that Γ ⊢ e : τ | C; a solution for (Γ, e, τ, C) is a pair σ, τ ′) such that σ satisfies C and
σ(τ) = τ ′. If there are no substitutions that satisfy C, then we know that e is not typeable.

3

2.2.2 Unification algorithm

To calculate solutions to constraint sets, we use the idea, due to Hindley and Milner, of using
unification to check that the set of solutions is non-empty, and to find a “best” solution (from which
all other solutions can be easily generated). The unification algorithm is defined as follows:

unify(∅) = [] (the empty substitution)
unify({τ = τ ′} ∪ C ′) = if τ = τ ′ then

unify(C ′)

else if τ = X and X not a free variable of τ ′ then
unify(C ′{τ ′/X}) ◦ [X 7→ τ ′]

else if τ ′ = X and X not a free variable of τ then
unify(C ′{τ/X}) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then
unify(C ′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

The check that X is not a free variable of the other type ensures that the algorithm doesn’t produce
a cyclic substitution (e.g., X 7→ (X → X)), which doesn’t make sense with the finite types we
currently have.

The unification algorithm always terminates. (How would you go about proving this?) More-
over, it produces a solution if and only if a solution exists. The solution found is the most general
solution, in the sense that if σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such that
σ′ = (σ′′ ◦ σ).

4

CS 4110 – Programming Languages and Logics
Lecture #26: Records and Subtyping

1 Records

We have previously seen binary products, i.e., pairs of values. Binary products can be generalized
in a straightforward way to n-ary products, also called tuples. For example, ⟨3, (), true, 42⟩ is a
4-ary tuple containing an integer, a unit value, a boolean value, and another integer. Its type is
int × unit × bool × int.

Records are a generalization of tuples. We annotate each field of record with a label, drawn from
some set of labels L. For example, {foo = 32, bar = true} is a record value with an integer field
labeled foo and a boolean field labeled bar. The type of the record value is written {foo : int, bar :
bool}. We extend the syntax, operational semantics, and typing rules of the call-by-value lambda
calculus to support records.

l ∈ L
e ::= · · · | {l1 = e1, . . . , ln = en} | e.l
v ::= · · · | {l1 = v1, . . . , ln = vn}
τ ::= · · · | {l1 :τ1, . . . , ln :τn}

We add new evaluation contexts to evaluate the fields of records.

E ::= · · · | {l1 = v1, . . . , li−1 = vi−1, li = E, li+1 = ei+1, . . . , ln = en} | E.l

We also add a rule to access the field of a location.

{l1 = v1, . . . , ln = vn}.li → vi

Finally, we add new typing rules for records. Note that the order of labels is important: the
type of the record value {lat = −40, long = 175} is {lat : int, long : int}, which is different from
{long : int, lat : int}, the type of the record value {long = 175, lat = −40}. In many languages
with records, the order of the labels is not important; indeed, we will consider weakening this
restriction in the next section.

∀i ∈ 1..n. Γ ⊢ ei :τi

Γ ⊢ {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}
Γ ⊢ e :{l1 :τ1, . . . , ln :τn}

Γ ⊢ e.li :τi

1

2 Subtyping

Subtyping is a key feature of object-oriented languages. It was first introduced in the SIMULA
languages by the Norwegian researchers Dahl and Nygaard.

The principle of subtyping is as follows. If τ1 is a subtype of τ2 (written τ1 ≤ τ2, and also
sometimes as τ1 <: τ2), then a program can use a value of type τ1 whenever it would use a value
of type τ2. If τ1 ≤ τ2, then τ1 is sometimes referred to as the subtype, and τ2 as the supertype.

We can express the principle of subtyping in a typing rule, often referred to as the “subsump-
tion typing rule” (since the supertype subsumes the subtype).

SUBSUMPTION
Γ ⊢ e :τ τ ≤ τ ′

Γ ⊢ e :τ ′

This rule says that if e has type τ and τ is a subtype of τ ′, then e also has type τ ′. Recall that
we provided an intuition for a type as a set of computational entities that share some common
property. Type τ is a subtype of type τ ′ is every computational entity in the set for τ can be
regarded as a computational entity in the set for τ ′.

So what types are in a subtype relation? We will define inference rules and axioms for the
subtype relation ≤. The subtype relation is both reflexive and transitive. These properties are
intuitive if we think of subtyping as a subset relation. We add inference rules that express this.

τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

2.1 Subtyping for records

Consider records and record types. A record consists of a set of labeled fields. Its type includes
the types of the fields in the record. Let’s define the type Point to be the record type {x : int, y : int},
that contains two fields x and y, both integers. That is:

Point = {x : int, y : int}.

Lets also define
Point3D = {x : int, y : int, z : int}

as the type of a record with three integer fields x, y and z. Because Point3D contains all of the
fields of Point, and those have the same type as in Point, it makes sense to say that Point3D is a
subtype of Point—i.e., Point3D ≤ Point.

Think about any code that used a value of type Point. This code could access the fields x and
y, and that’s pretty much all it could do with a value of type Point. A value of type Point3D has
these same fields, x and y, and so any piece of code that used a value of type Point could instead
use a value of type Point3D.

We can write a subtyping rule for records that allows the subtype to have more fields than the
supertype. This is sometimes called “width” subtyping for records.

{l1 :τ1, . . . , ln+k :τn+k} ≤ {l1 :τ1, . . . , ln :τn}
k ≥ 0

2

But why not let the corresponding fields be in a subtyping relation? For example, if τ1 ≤ τ2
and τ3 ≤ τ4, then is {foo : τ1, bar : τ3} a subtype of {foo : τ2, bar : τ4}? (Note that this is only
correct because the fields of records are immutable—more on this when we consider subtyping
rules for references.) Also, why not relax the requirement that the order of fields be the same?
The following rule allows both “depth” and “permutation” subtyping for records (along with the
“width” subtyping rule we saw before).

S-RECORD
∀i ∈ 1..n. ∃j ∈ 1..m. l′i = lj ∧ τj ≤ τ ′i

{l1 :τ1, . . . , lm :τm} ≤ {l′1 :τ ′1, . . . , l′n :τ ′n}

2.2 Top

Many languages a type ⊤ (pronounced “top”) that is a supertype of every other type.

S-TOP
τ ≤ ⊤

The ⊤ type can be used to model types such as Java’s Object.

2.3 Subtyping for sums and products

Like records, we can extend the subtyping relation to handle products and sums.

S-PRODUCT
τ1 ≤ τ ′1 τ2 ≤ τ ′2

τ1 × τ2 ≤ τ ′1 × τ ′2
S-SUM

τ1 ≤ τ ′1 τ2 ≤ τ ′2

τ1 + τ2 ≤ τ ′1 + τ ′2

2.4 Subtyping for functions

Consider two function types τ1 → τ2 and τ ′1 → τ ′2. What are the subtyping relations between τ1,,
τ2, τ ′1,, and τ ′2 that should be satisfied in order for τ1 → τ2 ≤ τ ′1 → τ ′2 to hold?

Consider the following expression:

G ≜ λf :τ ′1 → τ ′2. λx :τ
′
1. f x.

This function has type
(τ ′1 → τ ′2) → τ ′1 → τ ′2.

Now suppose we had a function h : τ1 → τ2 such that τ1 → τ2 ≤ τ ′1 → τ ′2. By the subtyping
principle, we should be able to give h as an argument to G, and G should work fine. Suppose
that v is a value of type τ ′1. Then G h v will evaluate to h v, meaning that h will be passed a value
of type τ1. Since h has type τ1 → τ2, it must be the case that τ ′1 ≤ τ1. (What could go wrong if
τ1 ≤ τ ′1?)

Furthermore, the result type of G h v should be of type τ ′2 according to the type of G, but h v
will produce a value of type τ2, as indicated by the type of h. So it must be the case that τ2 ≤ τ ′2.

Putting these two pieces together, we get the typing rule for function types.

S-FUNCTION
τ ′1 ≤ τ1 τ2 ≤ τ ′2

τ1 → τ2 ≤ τ ′1 → τ ′2

3

Note that the subtyping relation between the argument and result types in the premise are
in different directions! The subtype relation for the result type is in the same direction as for
the conclusion (primed version is the supertype, non-primed version is the subtype); it is in the
opposite direction for the argument type. We say that subtyping for the function type is covariant
in the result type, and contravariant in the argument type.

2.5 Subtyping for references

Suppose we have a location l of type τ ref, and a location l′ of type τ ′ ref. What should the
relationship be between τ and τ ′ in order to have τ ref ≤ τ ′ ref?

Let’s consider the following program R, that takes a location x of type τ ′ ref and reads from it.

R ≜ λx :τ ′ ref. !x

The program R has the type τ ′ ref → τ ′. Suppose we gave R the location l as an argument. Then
R l will look up the value stored in l, and return a result of type τ (since l is type τ ref. Since R is
meant to return a result of type τ ′ ref, we thus want to have τ ≤ τ ′.

So this suggests that subtyping for reference types is covariant.
But now consider the following program W , which takes a location x of type τ ′ ref, a value y

of type τ ′, and writes y to the location.

W ≜ λx :τ ′ ref. λy :τ ′. x := y

This program has type τ ′ ref → τ ′ → τ ′. Suppose we have a value v of type τ ′, and consider the
expression W l v. This will evaluate to l := v, and since l has type τ ref, it must be the case that v
has type τ , and so τ ′ ≤ τ . This suggests that subtyping for reference types is contravariant!

In fact, subtyping for reference types must be invariant: reference type τ ref is a subtype of
τ ′ ref if and only if τ = τ ′. Indeed, to be sound, subtyping for any mutable location must be
invariant. Interestingly, in the Java programming language, arrays are mutable locations but have
covariant subtyping!

Suppose that we have two classes Person and Student such that Student extends Person (that is,
Student is a subtype of Person). The following Java code is accepted, since an array of Student is a
subtype of an array of Person, according to Java’s covariant subtyping for arrays.

Person[] arr = new Student[] { new Student(“Alice”) };

This is fine as long as we only read from arr. The following code executes without any problems,
since arr[0] is a Student which is a subtype of Person.

Person p = arr[0];

However, the following code, which attempts to update the array, has some issues.

arr[0] = new Person(“Bob”);

Even though the assignment is well-typed, it attempts to assign an object of type Person into an
array of Students! In Java, this produces an ArrayStoreException, indicating that the assignment to
the array failed.

4

CS 4110 – Programming Languages and Logics
Lecture #27: Existential Types

1 Modules

Simple languages, such as C and FORTRAN, often have a single global namespace. This causes
problems in large programs due to name collisions—i.e., two different programmers (or pieces of
code) using the same name for different purposes—are likely. In addition, it often leads to situ-
ations where multiple components of a program are more tightly coupled, since one component
may use a name defined by the other.

Modular programming addresses these issues. A module is a collection of named entities that are
related to each other in some way. Modules provide separate namespaces: different modules have
different name spaces, and so can freely use names without worrying about name collisions.

Typically, a module can choose what names and entities to export (i.e., which names to allow to
be used outside of the module), and what to keep hidden. The exported entities are declared in an
interface, and the interface typically does not export details of the implementation. This means that
different modules can implement the same interface in different ways. Also, by hiding the details
of module implementation, and preventing access to these details except through the exported
interface, programmers of modules can be confident that code invariants are not broken.

Packages in Java are a form of modules. A package provides a separate namespace (we can
have a class called Foo in package p1 and package p2 without any conflicts). A package can hide
details of its implementation by using private and package-level visibility.

How do we access the names exported by a module? Given a module m that exports an entity
names x, common syntax for accessing x is m.x. Many languages also provide a mechanism to
use all exported names of a module using shorter notation—e.g., “Open m”, or “import m”, or
“using m”.

2 Existential types

In this section, we will extend the simply-typed lambda calculus with existential types (and records).
An existential type is written ∃X. τ , where type variable X may occur in τ . If a value has type
∃X. τ , it means that it is a pair {τ ′, v} of a type τ ′ and a value v, such that v has type τ{τ ′/X} .

We introduce a language construct to create existential values, and a construct to use existential
values. The syntax of the new language is given by the following grammar.

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

| { l1 = e1, . . . , ln = en } | e.l
| pack {τ1, e} as ∃X. τ2 | unpack {X,x} = e1 in e2

v ::= n | λx :τ. e | { l1 = v1, . . . , ln = vn } | pack {τ1, v} as ∃X. τ2

τ ::= int | τ1 → τ2 | { l1 :τ1, . . . , ln :τn } | ∃X. τ

1

Note that in this grammar, we annotate existential values with their existential type. The con-
struct to create an existential value, pack {τ1, e} as ∃X. τ2, is often called packing, and the construct
to use an existential value is called unpacking. Before we present the operational semantics and
typing rules, let’s see an example to get an intuition for packing and unpacking.

Here we create an existential value that implements a counter, without revealing details of its
implementation.

let counterADT =
pack {int, { new = 0, get = λi : int. i, inc = λi : int. i+ 1 } }
as ∃Counter. { new : Counter, get : Counter → int, inc : Counter → Counter }

in . . .

The abstract type name is Counter, and its concrete representation is int. The type of the variable
counterADT is ∃Counter. { new : Counter, get : Counter → int, inc : Counter → Counter }. We
can use the existential value counterADT as follows.

unpack {C, c} = counterADT in
let y = c.new in
c.get (c.inc (c.inc y))

Note that we annotate the pack construct with the existential type. That is, we explicitly state the
type

∃Counter. {new :Counter, get :Counter → int, inc :Counter → Counter}.

Why do we do this? Without this annotation, we would not know which occurrences of the wit-
ness type are intended to be replaced with the type variable, and which are intended to be left as
the witness type.

In the counter example above, the type of expressions λi : int. i and λi : int. i + 1 are both
int → int, but one is the implementation of get, of type Counter → int and the other is the
implementation of inc, of type Counter → Counter.

We now define the operational semantics for existentials. We add two new evaluation contexts,
and one evaluation rule for unpacking an existential value.

E ::= · · · | pack {τ1, E} as ∃X. τ2 | unpack {X,x} = E in e

unpack {X,x} = (pack {τ1, v} as ∃Y. τ2) in e → e{v/x}{τ1/X}

The typing rules ensure that existential values are used correctly.

∆,Γ ⊢ e :τ2{τ1/X} ∆ ⊢ ∃X. τ2 ok

∆,Γ ⊢ pack {τ1, e} as ∃X. τ2 :∃X. τ2

∆,Γ ⊢ e1 :∃X. τ1 ∆ ∪ {X},Γ, x :τ1 ⊢ e2 :τ2 ∆ ⊢ τ2 ok

∆,Γ ⊢ unpack {X,x} = e1 in e2 :τ2

2

Note that in the typing rule for unpack, the side condition ∆ ⊢ τ2 ok ensures that the existentially
quantified type variable X does not appear free in τ2. This rules out programs such as,

letm =
pack {int, {a = 5, f = λx : int.x+ 1}} as ∃X. {a :X, f :X → X}

in
unpack {X,x} = m in x.f x.a

where the type of (f.x x.a) has X free.

3 Church Encoding

It turns out that we can encode existentials in System F! The idea is to use a Church encoding,
where an existential value is a function that takes a type and then calls the continuation

∃X. τ ≜ ∀Y. (∀X. τ → Y) → Y

pack {τ1, e} as ∃X. τ2 ≜ ΛY. λf : (∀X.τ2 → Y). f [τ1] e

unpack {X,x} = e1 in e2 ≜ e1 [τ2] (ΛX.λx : τ1. e2)

where e1 has type ∃X.τ1 and e2 has type τ2

For further details see Pierce, Chapter 24.

3

CS 4110 – Programming Languages and Logics
Lecture #27: Recursive Types

1 Introduction

Many programming languages have the ability to define recursive data types. For example, sup-
pose we want to define binary trees with integer data at the nodes. In Java we can write

class Tree {
Tree leftChild, rightChild;
int data;

}

A binary tree is an object of this class. In OCaml we can write

type tree = Leaf | Node of tree * tree * int

These types are recursive because they are defined in terms of themselves.
In the simply-typed lambda calculus, we do not yet have any mechanism to define recursive

types. We would like the type tree to satisfy

tree = unit + int × tree × tree,

In other words, we would like tree to be a solution of the equation

α = unit + int × α× α

However, no such solution exists among the types we have seen so far.
How might we augment our set of types to include solutions to such recursive type equations?

There are two basic approaches, called the equirecursive and isorecursive approach, respectively.

2 Equirecursive Types

By unwinding the equation above, we can see that

α = unit + int × α× α
= unit + int × (unit + int × α× α)× (unit + int × α× α)
= unit + int × (unit + int × (unit + int × α× α)× (unit + int × α× α))×

(unit + int × (unit + int × α× α)× (unit + int × α× α))
= · · ·

At each level, we have a finite type with the type variable α appearing at some of the leaves, and
we obtain the next level by substituting the right-hand side of the equation for α. This gives a
sequence of deeper and deeper finite trees, where each successive tree is a substitution instance of
the previous tree.

1

If we take the limit of this process, we have an infinite tree. We can think of this as an infinite
labeled graph whose nodes are labeled with the type constructors ×, +, int, and unit. This is very
much like an ordinary type expression, except that it is infinite. There are no more α’s, because we
have substituted for all of them all the way down. This infinite tree is a solution of our equation,
and this is what we take as the type tree.

More generally, over standard type constructors such as →, ×, +, unit, and int, we can form
the set of (finite) types inductively in the usual way. Each such type can be regarded as a finite
labeled tree. For example, the type int → int → int can be viewed as the labeled tree

int

int

int

→

→

@@

@@

��

��

Now let us add some infinite types. These are infinite labeled trees that respect the arities of
the constructors; that is, if the constructor is binary (such as × or →), any node labeled with that
constructor must have exactly two children; and if the constructor is nullary, such at unit, then any
node labeled with that symbol must be a leaf. Within these constraints, the tree may be infinite.

A (finite or infinite) expression with only finitely many subexpressions (up to isomorphism) is
called regular. For example, the infinite type

int

int

int

. . .

→

→

→

@@

@@

@@

��

��

��

is regular, since it has only two subexpressions up to isomorphism, namely itself and int. The
limit of the unwinding of the equation above, which we took to be the type tree, is also regular; it
has exactly five subexpressions up to isomorphism, namely tree, unit, tree× tree× int, tree ∗ tree,
and int.

Regular trees are all we need to provide solutions to finite systems of type equations. Suppose
we have n type equations in n variables:

α1 = τ1

... (1)
αn = τn,

where each τi is a finite type over the type constructors and type variables α1 . . . αn. This system
has a solution σ1 . . . σn in which each σi is a regular tree. Moreover, if no right-hand side is a
variable, then the solution is unique.

2.1 The µ Constructor

We can specify the infinite solutions to systems of type equations using a finite syntax involving
a new type constructor µ, the fixpoint type constructor. If we have an equation α = τ such that the
right-hand side is not α, then there is a unique solution, which is a finite or infinite regular tree.

2

The solution will be infinite if α occurs in τ and will be finite (in fact it will just be τ) if α does not
occur in τ . We denote this unique solution by µα. τ .

Syntactically, µ acts as a binding operator in type expressions as λ does in λ-terms, with the
same notions of scope, free and bound variables, α-conversion, and substitution.

Since µα. τ is a solution to α = τ , we have

µα. τ = τ{µα. τ/α}.

For example, to get a tree type satisfying our original equation, we can define

tree ≜ µα.unit + int × α× α.

The solutions σ1 . . . σn to any finite system of equations can be expressed in terms of µ. For
example, suppose τ1 and τ2 are finite type expressions over the type variables α1, α2 such that
neither τ1 nor τ2 is a variable. The system

α1 = τ1 α2 = τ2

has a unique solution σ1, σ2 specified by

σ1 = µα1. (τ1{µα2. τ2/α2}) σ2 = µα2. (τ2{µα1. τ1/α1}).

Mutually recursive type declarations arise quite often in practice. For example, consider the
following Java class definitions for Node and Edge:

class Node {
Edge[] inEdges, outEdges;

}
class Edge {

Node source, sink;
}

Note that Node refers to Edge and vice versa. So we must take a mutual fixpoint.

2.2 Typing Rules

In the equirecursive view, since µα. τ = τ{µα. τ/α}, the typing rules are simple:

µ-INTRO
Γ ⊢ e : τ{µα. τ/α}

Γ ⊢ e : µα. τ
µ-ELIM

Γ ⊢ e : µα. τ

Γ ⊢ e : τ{µα. τ/α}

Equivalently, we can just allow substitution of equals for equals in type expressions.

3 Isorecursive Types

There is another approach to recursive types, the isorecursive approach. Here we do not have any
infinite types, but rather the expression µα. τ is itself a type. In this approach, µα. τ and τ{µα. τ/α}
are considered distinct (but isomorphic) types.

3

The step of substituting µα. τ for α in τ is called unfolding, and the reverse operation is called
folding. The conversion of elements between these two types is accomplished by explicit fold and
unfold operations.

unfoldµα. τ : µα. τ → τ{µα. τ/α}
foldµα. τ : τ{µα. τ/α} → µα. τ

We will often suppress the subscripts when there is no ambiguity. In this view, the equality symbol
in a recursive equation is not really an equality, but an isomorphism.

3.1 Typing Rules

In the isorecursive view, the typing rules consist of a pair of introduction and elimination rules for
µ-types that explicitly mention fold and unfold:

µ-INTRO
Γ ⊢ e : τ{µα. τ/α}
Γ ⊢ fold e : µα. τ

µ-ELIM
Γ ⊢ e : µα. τ

Γ ⊢ unfold e : τ{µα. τ/α}

3.2 Operational Semantics

With isorecursive types, we also need to augment the operational semantics. We only need one
rule:

unfold (fold e) → e

Intuitively, to access data in a recursive type µα. τ , we need to unfold it first; but the only way that
values of type µα. τ could have been created in the first place is via a fold.

3.3 An Example

Suppose we want to write a program to add a list of numbers. The list type is a recursive type,
which we can define as intlist ≜ µα.unit+ int×α. Now suppose we want to add up the elements
of an intlist. This will be a recursive function, so we would need to take a fixpoint. In the body
of this function, we would like to do a case on the intlist ℓ. But to do a case, we need a sum type,
and ℓ is a µ-type, so we will have to unfold it first. (OCaml does this automatically when it sees a
match.) So the body would be

case unfold ℓ of
(λu : unit. 0)

| (λp : int × intlist. (#1 p) + f (#2 p))

This is just the same code that you would write in OCaml, except we have broken out some of
the things that Ocaml hides for you. In particular, we have explicitly shown the recursion in the
definition of the intlist type and the unfold that is needed to get the exploded view of the type.

4

4 Equirecursive vs. Isorecursive

Programming languages deal with recursive types in different ways. Java and Modula-3 take the
equirecursive approach, in which the folded and unfolded types are considered equal, and the
fold/unfold operations are just the identity functions. Recursive types and their unfoldings are
fully substitutable for each other.

class E {
String x;
E e;
public String toString() {

return e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.x;
}

}
On the other hand, the ML family, CLU, and C use isorecursive types, in which µα. τ and τ{µα. τ/α}
are considered different (but isomorphic) types, and the casting operators fold and unfold are re-
quired to go between them. CLU uses ”up” and ”down” instead of fold and unfold. In OCaml, the
unfold operator is performed automatically and implicitly by the ”match” and ”let” statements
and the pattern-matching mechanism. The type constructors in a recursive datatype definition,
applied to arguments, act as fold operations.

type tree = Leaf | Node of tree * tree * int;;
type tree = Leaf | Node of tree * tree * int
Node (Leaf, Leaf, 4);;
- : tree = Node (Leaf, Leaf, 4)

5 Numbers as a Recursive Type

We started with primitive types unit, boolean, and int. We have already seen that the type
boolean can be represented as unit + unit with values true and false represented by left and right
injections respectively.

Now that we have recursive types, we no longer need to take int as primitive, but we can
define it as a recursive type. A natural number is either 0 or a successor of a natural number. Thus
we can take

nat ≜ µα.unit + α

0 ≜ fold (inlnat ())

1 ≜ fold (inrnat 0)

2 ≜ fold (inrnat 1),

and so on. We can use the recursive type nat to code up all of the usual arithmetic, and all these
operations are well-typed. For example, the successor function would be

(λx : nat. fold (inrnat x)) : nat → nat.

So all we really need as primitive types and type constructors are unit, recursive types, products,
and sums. With these we can build all the other types like natural numbers, integers, lists, trees,
floating point numbers, and so on.

5

6 Self-Application and Ω

Recall the paradoxical combinator Ω defined by

ω ≜ λx. xx Ω ≜ ω ω.

We can now give these terms recursive types, provided we insert some folding and unfolding.
Since x is applied as a function, it must have some kind of function type, say σ → τ . But since it is
applied to itself as an argument, it must also have type σ. This seems to indicate that the type of x
must satisfy the equation σ = σ → τ . The recursive type µα. (α → τ) appears to be in order (here
τ can be anything).

To actually apply x to x, we have to unfold it. The type of unfold x is

unfold x : (µα. (α → τ)) → τ.

This is a function with domain µα. (α → τ), which is the type of x, so we can apply it to x. The
type of the result (unfold x) x is τ . Thus the fully typed ω term is

ω ≜ (λx : µα. (α → τ). (unfold x) x) : (µα. (α → τ)) → τ.

If we now fold this, we get
fold ω : µα. (α → τ).

Therefore, we can apply ω as a function to fold ω, and the result is

ω (fold ω) : τ.

This is the same as the original Ω term, but with explicit folding and unfolding.
We can do this in OCaml:

type u = Fold of (u -> u);;
type u = Fold of (u -> u)
let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>
omega (Fold omega);;
...runs forever until you hit control-c

So we were finally able to introduce nontermination. But the point is that it passed typechecking,
so the program was well-typed.

7 Untyped to Typed λ-Calculus

In fact, with recursive types, we can type everything in the pure untyped lambda calculus. Every
λ-term can be applied as a function to any other λ-term, so every λ-term (with appropriate folds
and unfolds inserted) has type

U ≜ µα. α → α

6

The translation is

[[x]] ≜ x

[[e0 e1]] ≜ (unfold [[e0]]) [[e1]]

[[λx. e]] ≜ fold λx : U. [[e]].

Note that every untyped term maps to a term of type U .

7

CS 4110 – Programming Languages and Logics
Lecture #29: Propositions as Types

1 Propositions as Types

There is a deep connection between type systems and formal logic. This connection, known as
propositions-as-types, was recognized by early 20th century mathematicians and later developed
substantially by Haskell Curry and William Howard. Although it is usually formulated in terms
of simple type systems (or System F) and proof systems like natural deduction, the connection is
actually quite robust and has been extended to many other systems including classical logic. It
continues to bear fruit today: recent work by Abramsky, Pfenning, Wadler, and others has devel-
oped a connection between the session types used in concurrent process calculi and linear logic.

The main intuitions for propositions-as-types comes from thinking of proofs constructively.
For example, the proof rule for introducting a conjunction ϕ ∧ ψ,

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧-INTRO

can be thought of as a function that takes a proof of ϕ and a proof of ψ and builds a proof of ϕ∧ψ.
This is a significant departure from classical logic, which has rules such as excluded middle or
double-negation elimination,

Γ ⊢ ψ ∨ ¬ψ
EXCLUDED MIDDLE

that do not have an obvious constructive interpretation.
Propositions-as-types recongizes that each constructive proof can be turned into a program

that witnesses the proof, as summarized by the following table.

Type Systems Formal Logic
τ Type ϕ Formula
τ Inhabited type ϕ Theorem
e Well-typed expression π Proof

Hence, for every proof in first-order logic, we can obtain a well-typed expression in λ-calculus,
and vice versa.

2 Natural Deduction

To illustrate propositions-as-types formally, we begin by reviewing natural deduction—a proof
system for first-order logic. The syntax of first-order logic formulas is as follows,

ϕ ::= ⊤ | ⊥ | P | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ¬ϕ | ∀x. ϕ

1

where P ranges over propositional variables. We will let negation ¬P be an abbreviation for
P → ⊥.

The proof rules for natural deduction are as follows:

Γ, ϕ ⊢ ϕ
AXIOM

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→-INTRO
Γ ⊢ ϕ→ ψ Γ ⊢ ϕ

Γ ⊢ ψ
→-ELIM

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧-INTRO
Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧-ELIM1
Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧-ELIM2

Γ ⊢ ϕ
Γ ⊢ ϕ ∨ ψ

∨-INTRO1
Γ ⊢ ψ

Γ ⊢ ϕ ∨ ψ
∨-INTRO2

Γ ⊢ ϕ ∨ ψ Γ ⊢ ϕ→ χ Γ ⊢ ψ → χ

Γ ⊢ χ
∨-ELIM

Γ, P ⊢ ϕ
Γ ⊢ ∀P. ϕ

∀-INTRO2
Γ ⊢ ∀P. ϕ

Γ ⊢ ϕ{ψ/P}
∀-ELIM

Note that some rules from classical logic, such as excluded middle,

Γ ⊢ P ∨ ¬P

are not included, nor are they derivable from these rules.

3 System F Type System

It should be obvious that these proof rules bear a close correspondence to the type systems we
have been developing over the class few weeks. Here are the typing rules for System F, annotated
with the same labels:

2

Γ, x : τ ⊢ x : τ
AXIOM

Γ, x : σ ⊢ e : τ
Γ ⊢ λx :σ. e :τ

→-INTRO
Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ

Γ ⊢ e1 e2 : τ
→-ELIM

Γ ⊢ e1 :σ Γ ⊢ e2 :τ
Γ ⊢ (e1, e2) :σ × τ

∧-INTRO
Γ ⊢ e :σ × τ

Γ ⊢ #1 e : σ
∧-ELIM1

Γ ⊢ e :σ × τ

Γ ⊢ #2 e : τ
∧-ELIM2

Γ ⊢ e : σ
Γ ⊢ inlσ+τ e :σ + τ

∨-INTRO1
Γ ⊢ e : τ

Γ ⊢ inrσ+τ e :σ + τ
∨-INTRO2

Γ ⊢ eσ + τ Γ ⊢ e1 :σ → ρ Γ ⊢ e2 :τ → ρ

Γ ⊢ case e of e1 e2 :ρ
∨-ELIM

∆, α; Γ ⊢ e : τ
∆;Γ ⊢ Λα. e : ∀α.τ

∀-INTRO2
Γ ⊢ e :∀α. τ

Γ ⊢ e [σ] :τ{σ/α}
∀-ELIM

We can summarize the relationship between formulas and types using the following table:

Type Systems Formal Logic
→ Function → Implication
× Product ∧ Conjunction
+ Sum ∨ Disjunction
∀ Universal ∀ Quantifier

This relationship has also be extended to many other types.

4 Term Assignment

Given a natural deduction proof, there is a corresponding well-typed System F expression. The
transformation from a proof to an expression is often called term assignment. For example, given
the following proof,

Γ, ϕ→ ψ, ϕ ⊢ ϕ→ ψ
AXIOM

Γ, ϕ→ ψ, ϕ ⊢ ϕ
AXIOM

Γ, ϕ→ ψ, ϕ ⊢ ψ
→-ELIM

Γ, ϕ→ ψ,⊢ ϕ→ ψ
→-INTRO

Γ ⊢ (ϕ→ ψ) → ϕ→ ψ
→-INTRO

3

we can build the following typing derivation:

Γ, x : σ → τ, y : σ ⊢ x : σ → τ
AXIOM

Γ, x : σ → τ, y : σ ⊢ σ
AXIOM

Γ, x : σ → τ, y : σ ⊢ x y :τ
→-ELIM

Γ, x : σ → τ ⊢ λy :σ. x y :σ → τ
→-INTRO

Γ ⊢ λx :σ → τ. λy :σ. x y : (σ → τ) → σ → τ
→-INTRO

Hence, the term
λx :σ → τ. λy :σ. x y

witnesses the proof of
(ϕ→ ψ) → ϕ→ ψ

More generally, to prove a proposition ϕ, it suffices to find a well-typed expression e of type τ
where ϕ and τ are related under propositions as types.

5 Negation and Continuations

The problem of extending propositions-as-types to classical logic was an open question for many
years. It was not at all obvious how to do this, as the usual constructive interpretation of proofs
does not readily extend to rules such as excluded middle. In the late 1980s, Griffin showed that
continuation-passing style corresponds to a way of embedding classical logic into constructive
logic.

Given an expression e of type τ , we can think of the continuation-passing style transformation
as converting the expression into one of type (τ → ⊥) → ⊥. Intuitively, the τ → ⊥ is the type of the
continuation, which “never returns.” Since ¬ϕ is just an abbreviation for ϕ→ ⊥, this corresponds
to the following classical rule:

Γ ⊢ ϕ
Γ ⊢ ¬¬ϕ

This yields a way to prove any formula that is classically valid in constructive logic using the
double-negation embedding.

4

CS 4110 – Programming Languages and Logics
Lecture #30: Featherweight Java

One way to model the features of an object-oriented languages is to encode it using standard
type structure. This leads to so-called object encodings. A different (and arguably simpler) way
is to model these features directly. This lecture considers a core calculus for Java developed by
Igarashi, Pierce, and Wadler called Featherweight Java.

Featherweight Java is small by design. It reduces Java to its essential features including classes,
inheritance, constructors, fields, methods, and casts, and omits everything else. In particular, the
language does not include interfaces, assignment, concurrency, overloading, exceptions, or the
public, private, and protected modifiers. Because the language is so simple, its proof of
type soundness is short. It is also easy to extend—indeed, in the original paper on Featherweight
Java, the authors present an extension with parametric polymorphism (i.e., generics).

1 Featherweight Java

The syntax of Featherweight Java is given by the following grammar.

P ::= CL e programs

CL ::= class C extends C {C f ; K M} classes

K ::= C(C f) {super(f);this.f = f ; } constructors

M ::= C m(C x){return e} methods

e ::= x expressions
| e.f
| e.m(e)
| new C(e)
| (C) e

v ::= new C(v) values

E ::= [·] evaluation contexts
| E.f
| E.m(e)
| v.m(v,E, e)
| new C(v,E, e)
| (C) E

We will use the notation e to denote sequences of the form e1, . . . , ek (and C f for C1 f1, . . . , Ck fk).
By convention, metavariables B, C, and D range over class names, m ranges over method names,
and f and g range over field names. As usual, x ranges over variables. Note that the syntax of
Featherweight Java is a strict subset of Java. This means that every Featherweight Java program
can be executed using a stock Java compiler and virtual machine.

1

At the top level, programs consist of a list of classes and a distinguished “main” expression.
We will use the notation P (C) to denote the definition of the class C in the program. A class has
a name, a superclass, a list of fields (instance variables), a constructor, and a list of methods. A
constructor takes a list of arguments, invokes the super(...) constructor, and then initializes
its fields. A method takes a list of arguments and returns a single expression—a variable, field
projection, method invocation, constructor call, or cast.

Although this language is simple, we can still write many useful programs (in fact, all useful
programs—the language is Turing complete). Here is a simple example that illustrates how we
can represent pairs in Featherweight Java:

class A extends Object {
A() { super(); }

}

class B extends Object {
B() { super(); }

}

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super();
this.fst = fst;
this.snd = snd;

}

Pair swap Object() {
return new Pair(this.snd, this.fst);

}
}

Using the small-step operational semantics described later in this lecture, it will be possible to
evaluate the expression

new Pair(new A(), new B()).swap()

to the following:

new Pair(new B(), new A())

Note that because the language does not include assignment (except in constructors), Feather-
weight Java programs must be written in a functional style, constructing new objects instead of
mutating old ones.

As another example, consider what happens when we evaluate the following expression:

(A) new B()

Because B is not declared to be a subtype of A, the cast fails. In the full Java language, the virtual
machine would raise an exception. In Featherweight Java, we model this instead as a stuck term.

2

2 Subtype Relation

The subtype relation is the reflexive and transitive closure of the binary relation between classes
and superclasses. Formally it is defined using the following axioms and inference rules:

S-REFL
C ≤ C

S-TRANS
C ≤ D D ≤ E

C ≤ E

S-CLASS
P (C) = class C extends D {C f ; K M}

C ≤ D

Note that Featherweight Java subtyping is nominal, just like Java—the objects generated by a class
are a subtype of the objects generated by its superclass.

3 Auxiliary Functions

Before we present the operational semantics for Featherweight Java, let us define a few auxiliary
functions for looking up the methods and fields of classes.

Field Lookup The set of fields defined in a class is simply the list of all fields in the definition of
the class in the program, as well as the fields of its superclass.

F-OBJECT
fields(Object) = []

F-CLASS
P (C) = class C extends D {C f ; K M} fields(D) = D g

fields(C) = D g @ C f

Method Body Lookup Similarly, to lookup the body of a method we either read it off from
the class definition, or take the method body of the superclass. Note that the structure returned
includes both the arguments x and the body of the method e.

MB-CLASS

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ∈ M

mbody(m,C) = (x, e)

MB-SUPER

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ̸∈ M

mbody(m,C) = mbody(m,D)

4 Operational Semantics

The operational semantics for Featherweight Java is defined in the usual way, using small-step
operational semantics rules and evaluation contexts. It uses a call-by-value evaluation strategy.

3

E-CONTEXT
e → e′

E[e] → E[e′]

E-PROJ
fields(C) = C f

new C(v).fi → vi

E-INVK
mbody(m,C) = (x, e)

new C(v).m(u) → [x 7→ u,this 7→ new C(v)]e

E-CAST
C ≤ D

(D) new C(v) → new C(v)

Note that the rule for method invocation steps to the body of the method with the actual argu-
ments substituted for the formal parameters and the object that the method is being invoked on,
new C (v), substituted for this. Also note that in the cast rule, the target type of the cast D must
be a supertype of the object new C(v) being cast—i.e., an upcast simply strips off the cast while
downcasts and casts between unrelated classes get stuck.

5 Type System

The type system for Featherweight Java has three main pieces (and several auxiliary definitions).
The first is the typing relation for expressions, which is a three-place relation Γ ⊢ e : C between a
context Γ that maps variables to their types, an expression e, and a type C.

Method Type Lookup The typing relation for expressions relies on an auxiliary definition that
calculates method types. To calculate the type of a method m in a class C we either look it up from
the class definition, or take the type of the method in its superclass.

MT-CLASS

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ∈ M

mtype(m,C) = B → B

MT-SUPER

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ̸∈ M

mtype(m,C) = mtype(m,D)

Expression Typing With this auxiliary definition in hand, we are ready to define the typing
relation for expressions:

T-VAR
Γ(x) = C

Γ ⊢ x : C

T-FIELD
Γ ⊢ e : C fields(C) = C f

Γ ⊢ e.fi : Ci

4

T-INVK

Γ ⊢ e : C mtype(m,C) = B → B

Γ ⊢ e : A A ≤ B

Γ ⊢ e.m(e) : B

T-NEW
fields(C) = C f Γ ⊢ e : B B ≤ C

Γ ⊢ new C(e) : C

T-UCAST
Γ ⊢ e : D D ≤ C

Γ ⊢ (C) e : C

T-DCAST
Γ ⊢ e : D C ≤ D C ̸= D

Γ ⊢ (C) e : C

T-SCAST

Γ ⊢ e : D C ̸≤ D D ̸≤ C

stupid warning
Γ ⊢ (C) e : C

Note that it includes three typing rules for casts—one for upcasts, another for downcasts, and
another for “stupid” casts between unrelated types. Stupid casts are not allowed by the standard
Java typechecker but are needed to prove preservation.

Method Typing The next definition is a two place relation that checks that a method m is “okay”
in a class C. It uses an auxiliary definition override that checks that a method validly overrides any
methods with the same name defined by its superclass.

OVERRIDE
mtype(m,D) = A → A implies A = B and A = B

override(m,D,B → B)

METHOD-OK

x : B,this : C ⊢ e : A A ≤ B

P (C) = class C extends D {C f ; K M}
override(m,D,B → B)

B m(B x){return e} OK in C

Class Typing The final piece of the type system checks that a class is “okay”.

CLASS-OK

K = C(D g,C f) {super(g);this.f = f ; }
fields(D) = D g M OK in C

class C extends D {C f ; K M} OK

To typecheck a whole program, we check that every class is okay, and that the main expression is
well-typed under the empty context.

5

CS 4110 – Programming Languages and Logics
Lecture #31: Featherweight Java Properties and Object Encodings

In this lecture, we will develop a proof of type soundness for Featherweight Java in the usual way,
as a corollary of progress and preservation. The details of these proofs will be a little different than
the ones we have seen before, however, due to the presence of subtyping and casts. We will then
develop a different way of formalizing object-oriented languages using object encodings.

1 Properties

1.1 Preservation

The proof of preservation relies on several supporting lemmas.

Lemma (Method Typing). If mtype(m,C) = D → D and mbody(m,C) = (x, e) then there exists types
C ′ and D′ such that x : D,this : C ′ ⊢ e : D′ and D′ ≤ D.

Lemma (Substitution). If Γ, x : B ⊢ e : C and Γ ⊢ u : B′ with B′ ≤ B then there exists C ′ such that
Γ ⊢ [x 7→ u]e : C ′ and C ′ ≤ C.

Lemma (Weakening). If Γ ⊢ e : C then Γ, x : B ⊢ e : C.

Lemma (Decomposition). If Γ ⊢ E[e] : C then there exists a type B such that Γ ⊢ e : B

Lemma (Context). If Γ ⊢ E[e] : C and Γ ⊢ e : B and Γ ⊢ e′ : B′ with B′ ≤ B then there exists a type
C ′ such that Γ ⊢ E[e′] : C ′ and C ′ ≤ C.

Lemma (Preservation). If Γ ⊢ e : C and e → e′ then there exists a type C ′ such that Γ ⊢ e′ : C ′ and
C ′ ≤ C.

Proof. By induction on e → e′, with a case analysis of the last rule used in the derivation.

Case E-CONTEXT: e = E[e1] and e1 → e′1 and e′ = E[e′1]

By the decomposition lemma we have that there exists a type B such that Γ ⊢ e1 : B. By the
induction hypothesis applied to e1 we have that there exists a type B′ such that Γ ⊢ e′1 : B′

and B′ ≤ B. Then, by the context lemma we have that there exists a type C ′ such that
Γ ⊢ E[e′1] : C

′ and C ′ ≤ C, as required.

1

Case E-PROJ: e = new C0(v).fi and e′ = vi with fields(C0) = C f

As the typing rules for Featherweight Java are syntax-directed, the last rule used in the
derivation of Γ ⊢ e : C must have been T-FIELD. Therefore we must also have a derivation
Γ ⊢ new C0(v) : D0 with fields(D0) = D g and C = Di. By a similar argument, the last rule
used in this derivation must have been T-NEW and so D0 = C0 and we have derivations
Γ ⊢ v : B with B ≤ D. From D0 = C0 (and as fields is a function) we have C f = D g, and
hence C = Ci. Thus, Γ ⊢ vi : Bi with Bi ≤ Ci, as required.

Case E-INVK: e = (newC0(v)).m(u) and e′ = [x 7→ u,this 7→ newC0(v)]e with mbody(m,C0) =
(x, e)

By similar reasoning as in the previous case, the last two rules in the derivation of Γ ⊢
e : C must have been T-INVK and T-NEW with Γ ⊢ new C0(v) : C0 and Γ ⊢ u : B and
mtype(m,C0) = C → C with B ≤ C. By the method typing lemma, there exist types
C ′
0 and C ′ such that x : C,this : C ′

0 ⊢ e : C ′. By the substitution lemma we have
⊢ [x 7→ u,this 7→ new C0(v)]e : C ′′ with C ′′ ≤ C ′. By weakening we have Γ ⊢ [x 7→
u,this 7→ new C0(v)]e : C

′′. The required result follows as C ′′ ≤ C by S-TRANS.

Case E-CAST: e = (C) (new C0(v)) and e′ = new C0(v) with C0 ≤ C

By similar reasoning as the previous cases, the last two rules in the derivation of Γ ⊢ e : C
must have been T-UCAST and T-NEW with Γ ⊢ new C0(v) : C0. The result is immediate as
C0 ≤ C.

1.2 Progress

The proof of progress also relies on a few supporting lemmas.

Lemma (Canonical Forms). If ⊢ v : C then v = new C(v).

Lemma (Inversion).

1. If ⊢ (new C(v)).fi : Ci then fields(C) = C f and fi ∈ f .

2. If ⊢ (new C(v)).m(u) : C then mbody(m,C) = (x, e) and |u| = |e|.

Lemma (Progress). Let e be an expression such that ⊢ e : C. Then either:

1. e is a value,

2. there exists an expression e′ such that e → e′, or

3. e = E[(B) (new A(v))] with A ̸≤ B.

Proof. By induction on ⊢ e : C, with a case analysis on the last rule used in the derivation.

2

Case T-VAR: e = x with ∅(x) = C

Can’t happen, as ∅(x) is undefined.

Case T-FIELD: e = e0.f with ⊢ e0 : C0 and fields(C0) = C f and C = Ci

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = new C0(v) and by the inversion
lemma f ∈ f . By E-PROJ we have e → vi.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = [·].f .

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = [·].f , which finishes the case.

Case T-INVK: e = e0.m(e) with ⊢ e0 : C0 and mtype(m,C0) = B → C and ⊢ e : A and A ≤ B

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = new C0(v). If e is a list of
values u, then by the inversion lemma we have |u| = |x| where mbody(m,C0) = (x, e′0).
By E-INVK we have e → [x 7→ u,this 7→ new C0(v)]e

′
0. Otherwise, let i be the least

index of an expression in e that is not a value. By the induction hypothesis applied
to ei we have that ei is a value, or there exists e′i such that ei → e′i or there exists Ei

such that ei = Ei[(B) (new A(v))] and A ̸≤ B. In the first subsubcase, then we have a
contradiction to our assumption that i is the index of the least expression in e that is not
a value. Otherwise let E = (new C0(v)).m(e1, . . . , ei−1, Ei, ei+1, . . . |e|). In the second
subcase, we have e = E[ei] → E[e′i] by E-CONTEXT. In the third subcase, we have
e = E[(B) (new A(v))] with A ̸≤ B.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have E[e0] → E[e′0] where E = [·].m(e).

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = [·].m(e), which finishes the case.

Case T-NEW: e = new C(e) and fields(C) = C f and ⊢ e : B and B ≤ C

If e is a list of values u, then e is a value. Otherwise, let i be the least index of an expression
in e that is not a value. By the induction hypothesis applied to ei we have that ei is a value,
or there exists e′i such that ei → e′i or there exists Ei such that ei = Ei[(B) (new A(v))] and
A ̸≤ B. We analyze each of these subcases:

1. If ei is a value then we have a contradiction to our assumption that i is the index of the
least expression in e that is not a value.

3

2. If there exists e′i such that ei → e′i then let E = (new C(e1, . . . , ei−1, Ei, ei+1, . . . , |e|). By
E-CONTEXT we have e = E[ei] → E[e′i].

3. Otherwise, if there exists Ei with ei = Ei[(B) (new A(v))] and A ̸≤ B then let E =
(new C(e1, . . . , ei−1, Ei, ei+1, . . . , |e|). By construction we have e = E[(B) (new A(v))],
which finishes the case.

Case T-UCAST: e = (C) e with ⊢ e0 : D and D ≤ C

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = newD(v). By E-CAST we have
e → new D(v).

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = (C) [·].

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = (C) [·], which finishes the case.

Case T-DCAST: e = (C) e with ⊢ e0 : D and C ≤ D and C ̸= D

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma we have that e = new D(v). Let
E = [·]. We immediately e = E[(C) new C(v)] with D ̸≤ C.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = (C) [·].

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = (C) [·], which finishes the case.

Case T-SCAST: similar to the previous case.

2 Object Encodings

Another way to formalize the semantics of object-oriented languages is to define translations that
map them into λ-calculus. In fact, with records, fixpoints, subtyping, and recursive/existential
types, we have all of the tools needed to do this. We begin by briefly reviewing the main features
of object-oriented languages.

Dynamic dispatch Dynamic dispatch allows the code executed when a message is sent to an
object—e.g., o.m(x)—to be determined by run-time values and not (just) by compile-time infor-
mation such as types. As a result, different objects may respond to the same message in different
ways. For example, consider the following Java program:

4

interface Shape { ... void draw() { ... } }
class Circle extends Shape { ... void draw() { ... } }
class Square extends Shape { ... void draw() { ... } }
...
Shape s = ...; //could be a circle a square, or something else.
s.draw();

Invoking s.draw() could run the code for any of the methods shown in the program (or for any
other class that extends Shape).

In Java, all methods (except for static methods) are dispatched dynamically. In C++, only
virtual members are dispatched dynamically. Note that dynamic dispatch is not the same as over-
loading, which is usually resolved using the static types of the arguments to the function being
called.

Encapsulation Encapsulation allows an object to hide the representations of certain internal data
structures. For example, Java programmers often keep instance variables private and write public
methods for accessing and modifying the data stored in those variables.

class Circle extends Shape {
private Point center;
private int radius;
...
public Point getX() { return center.x }
public Point getY() { return center.y }

}

the coordinates of the center of the circle can only be obtained by invoking the getX and getY
methods. The result is that all interactions with the object must be performed by invoking the
methods exposed in its public interface and not by directly manipulating its instance variables.

Subtyping Another characteristic feature of object-oriented languages is subtyping. Subtyping
fits naturally with object-oriented languages because (ignoring languages such as Java that allow
certain objects to manipulate instance variables directly) the only way to interact with an object is
to invoke a method. As a result, an object that supports the same methods as another object can
be used wherever the second is expected. For example, if we write a method that takes an object
of type Shape above as a parameter, it is safe to pass Circle, Square, or any other subtype of
Shape, because they each support the methods listed in the Shape interface.

Inheritance To avoid writing the same code twice, it is often useful to be able to reuse the defi-
nition of one kind of object to define another kind of object. In class-based languages, inheritance
is often supported through subclassing. For example, in the following Java program,

class A {
public int f(...) { ... g(...) ... }
public bool g(...) { ... }

}

5

class B extends A {
public bool g(...) { ... }

}
...
new B.f(...)

B inherits the f method of its superclass A.
One way to implement inheritance is by duplicating code but this wastes space. Most lan-

guages introduce a level of indirection instead so that the code compiled for the object being
inherited from can be used directly by the object doing the inheriting.

Note that inheritance is different than subtyping: subtyping is a relation on types while inher-
itance is a relation on implementations. These two notions are conflated in some languages like
Java but kept separate in languages like C++ (which allows a “private base class”) as well as in
languages that are not based on classes.

Open recursion Finally, many object-oriented languages allow objects to invoke their own meth-
ods using the special keyword this (or self). Implementing this in the presence of inheritance
requires deferring the binding of this until the object is actually created. We will see an example
of this in the next section.

2.1 Simple Record Encoding

Let us start with a simple example, developing a representation for two-dimensional point objects
using records and references. Records provide both dynamic lookup and subtyping: given a value
v of some record type τ , the expression v.f evaluates to a value that is determined by v not by τ—
i.e., dynamic dispatch! Moreover, because the subtyping relation on record types allows extension,
code that expects an object to have type τ can be used with a value of any subtype of τ .

Here is a simple example showing how we can encode records using objects. For concrete-
ness, we use OCaml syntax rather than λ-calculus. The notation (fun x -⟩ e) denotes a λ-
abstraction.

type pointRep = { x:int ref;
y:int ref }

type point = { movex:int -> unit;
movey:int -> unit }

let pointClass : pointRep -> point =
(fun (r:pointRep) ->
{ movex = (fun d -> r.x := !(r.x) + d);
movey = (fun d -> r.y := !(r.x) + d) })

let newPoint : int -> int -> point =
(fun (x:int) ->
(fun (y:int) ->
pointClass { x=ref x; y = ref y }))

6

The pointRep type defines the representation for the object’s instance variables—a record with
a mutable reference for each field. The pointClass function takes a record with this type and
builds an object—a record with functions movex and movey, which translate the point horizon-
tally and vertically. The constructor newPoint takes two integers, x and y, and uses pointClass
to build an object whose fields are initialized to those coordinates.

2.2 Inheritance

Just as in standard object-oriented languages, we can extend our two-dimensional point with an
extra coordinate by defining a subclass that inherits the methods of its superclass.

type point3D = { movex:int -> unit;
movey:int -> unit;
movez:int -> unit }

let point3DClass : point3DRep -> point3D =
(fun (r:point3DRep) ->
let super = pointClass r in
{ movex = super.movex;
movey = super.movey;
movez = (fun d -> r.z := !(r.x) + d) })

let newPoint3D : int -> int -> int -> point3D =
(fun (x:int) ->
(fun (y:int) ->
(fun (z:int) ->
point3DClass { x=ref x; y = ref y; z = ref z })))

The most interesting part of this program is the point3DClass function. It takes an argument
of type point3DRep and uses pointClass to build a point object super. It fills in the movex
and movey methods for the object being constructed with the corresponding fields from super—
i.e., it inherits those methods from the superclass—and defines the new method movez directly.
Note that we can pass a record of type point3DRep to pointClass because point3DRep is a
subtype of pointRep.

2.3 Self

Adding support for self is a bit trickier because we need self to be bound late. Here is an
example that illustrates one possible implementation technique:

type altPointRep = { x:int ref;
y:int ref }

type altPoint = { movex:int -> unit;
movey:int -> unit;
move: int -> int -> unit }

7

let altPointClass : altPointRep -> altPoint ref -> altPoint =
(fun (r:altPointRep) ->
(fun (self:altPoint ref) ->
{ movex = (fun d -> r.x := !(r.x) + d);
movey = (fun d -> r.y := !(r.y) + d);
move = (fun dx dy -> (!self.movex) dx; (!self.movey) dy) }))

let dummyAltPoint : altPoint =
{ movex = (fun d -> ());
movey = (fun d -> ());
move = (fun dx dy -> ()) }

let newAltPoint : int -> int -> altPoint =
(fun (x:int) ->
(fun (y:int) ->
let r = { x=ref x; y = ref y } in
let cref = ref dummyAltPoint in
cref := altPointClass r cref;
!cref))

For the sake of the example, we have added a method move that takes two integers and translates
the point both horizontally and vertically. The implementation of move invokes the movex and
movey methods from the current object—i.e., self.

To make self work as expected, we use a trick similar to the one we used to implement re-
cursive definitions in our λ-calculus interpreter. Compared to our previous object encodings there
are two key changes. First, the newAltPointClass now takes the self reference as an explicit
parameter. This parameter is filled in with the actual object when it is constructed. Second, the
newAltPoint constructor “ties the recursive knot” by allocating a reference cell for the object—
filled in initially with a dummy value—and then “back-patching” the reference with the actual
object returned by the class.

There is a small problem with this encoding of self: the self parameter to altPointClass
has type altPoint ref and references have an invariant subtyping rule. As a result, the type
system will not allow us to pass a reference to an object generated by a subclass. However, as we
do not assign to self, it would be safe to use a covariant subtyping rule. See Pierce, Chapter 18
for details on how this issue can be resolved.

2.4 Encapsulation

The simple object encoding we have developed in this section already gives us basic encapsula-
tion. After we build an object, the instance variables are totally hidden—we can only manipulate
them using object’s methods. More complicated forms of abstraction and information hiding can
be obtained using existential types. For the details of how records and existential types can be
combined to encode objects: see “Comparing Object Encodings”, by Bruce, Cardelli, and Pierce,
Information and Computation 155(1/2):108–133, 1999.

8

	Lecture #2
	Lecture #3
	Lecture #4
	Lecture #5
	Lecture #6
	Lecture #7
	Lecture #8
	Lecture #9
	Lecture #10
	Lecture #11
	Lecture #13
	Lecture #14
	Lecture #15
	Lecture #17
	Lecture #18
	Lecture #19
	Lectures #21
	Lectures #22
	Lecture #23
	Lecture #24
	Lecture #26
	Lecture #27
	Lecture #28
	Lecture #29
	Lecture #30
	Lecture #31

