
COS	 598D:	 Overcoming	 intractability	 in	 machine	 learning.	 	
Sanjeev	 Arora,	 Princeton	 University.	 	 	 Spring	 2015.	
	
Lecture	 1:	 A	 whirlwind	 survey	 of	 machine	 learning	 and	 ML	 theory.	
	
Various	 meanings	 of	 learning.	 Usual	 assumption:	 data	 consists	 of	 iid	 samples	 from	 some	
distribution.	 (Philosophical	 aside:	 De	 Finetti’s	 theorem,	 exchangeability.)	 	
A	 running	 example	 in	 this	 lecture	 will	 be	 linear	 classifiers.	
	

• Unsupervised	 vs	 Supervised.	 	
	
Unsupervised:	 Unlabeled	 data.	 	 Usually	 need	 some	 kind	 of	 model	 for	 how	 the	 data	
was	 generated	 (the	 “story”)	 and	 then	 recover	 the	 model	 parameters.	 	 Examples:	
k-‐means	 and	 other	 forms	 of	 clustering,	 loglinear	 models,	 bayes	 nets,	 ..	
Often	 NP-‐hard.	
	
Supervised:	 Training	 data	 is	 labeled	 by	 a	 human	 (labels	 could	 be	 binary,	 or	 in	
[1..k]).	 Algorithm	 needs	 to	 predict	 labels	 on	 future	 data.	 Examples:	 Decision	 trees,	
SVMs,	 k-‐NN.	 	
	
Generalization	 bounds:	 connect	 performance	 on	 training	 data	 with	 that	 on	
unseen	 data	 (i.e.	 the	 entire	 distribution).	 	
	
Rough	 idea:	 Suppose	 there	 is	 a	 classifier	 that	 is	 representable	 with	 M	 bits	 and	 has	
error	 at	 most	 \epsilon	 on	 the	 full	 distribution.	 Then	 if	 the	 training	 set	 has	 size	 at	
least	 f(M	 +	 K,	 \epsilon),	 then	 any	 classifier	 describable	 in	 	 K	 bits	 that	 has	 error	 at	
most	 \epsilon	 on	 the	 training	 set	 will	 have	 error	 at	 most	 2\epsilon	 on	 the	 entire	
distribution.	 	 Furthermore,	 if	 any	 classifier	 has	 error	 at	 most	 \epsilon/2	 on	 the	
entire	 distribution,	 it	 has	 error	 at	 most	 \epsilon	 on	 the	 sample.	 (Thus	 the	 method	
is	 complete	 and	 sound:	 if	 there	 exists	 a	 good	 classifier,	 it	 can	 be	 found	 by	
examining	 a	 small	 set	 of	 training	 points,	 and	 conversely	 every	 classifier	 that	 is	
good	 enough	 on	 the	 samples	 is	 also	 good	 enough	 for	 the	 entire	 distribution.)	
	
Proof	 sketch:	 Chernoff	 bounds.	 Only	 2M	 	 classifiers	 that	 can	 be	 represented	 using	
M	 bits.	 If	 any	 M-‐bit	 classifier	 has	 error	 more	 than	 2\epsilon	 fraction	 of	 points	 of	
the	 distribution,	 then	 the	 probability	 it	 has	 error	 only	 \epsilon	 fraction	 of	 training	
set	 is	 <	 2-‐M	 .	 Hence	 whp	 no	 bad	 classifier	 can	 be	 good	 on	 the	 training	 points.	 	
	
There	 is	 a	 more	 general	 theory	 for	 computing	 the	 number	 of	 training	 points	 that	
involves	 VC	 dimension.	 Pls	 see	 online	 sources.	 	
	
The	 classical	 philosophical	 principle	 Occam’s	 razor	 is	 related	 to	 this.	
	
Example	 of	 training:	 Perceptron	 algorithm	 for	 linear	 classifier.	 (Can	 think	 of	 as	 a	
way	 to	 determine	 weights	 of	 features.)	 Completely	 nonbayesian	 description.	

Can	 also	 turn	 into	 convex	 program	 using	 the	 notion	 of	 a	 margin.	
	

• 	 	 Discriminative	 vs	 Generative.	 	
	
Discriminative:	 Only	 know	 P(label|	 data).	 	 (Example	 1:	 label	 =	 linear	 threshold	
corresponds	 to	 SVM.	 Note	 this	 is	 deterministic.	 Example	 2:	 Logistic	 regression.	
Smoothened	 version	 of	 SVM.)	 Examples	 of	 Discriminative	 learners:	 decision	 trees,	
SVMs,	 kernel	 SVMs,	 deep	 nets,	 logistic	 regression	 etc.	 SVMs	 and	 logistic	
regression	 can	 be	 solved	 by	 convex	 optimization.	
	
Generative:	 Know	 an	 expression	 for	 P(label,	 data).	 	 Estimate	 P(label|data)	 by	
Bayes	 rule	 and	 calculating	 P(label,	 data)/P(data).	 	 For	 an	 example	 see	 the	
application	 to	 spam	 classification	 in	 Lecture	 notes	 by	 Cynthia	 Rudin	 on	 Naïve	
Bayes.	 	
	
Also	 see	 the	 chapter	 in	 Mitchell’s	 book,	 which	 shows	 that	 logistic	 regression	
corresponds	 to	 a	 naïve	 bayes	 estimator	 where	 coordinates	 are	 iid	 Gaussian.	 	
	
For	 a	 more	 hands-‐on	 viewpoint	 with	 worked	 out	 examples,	 see	 Chris	 Manning’s	
lecture	 notes.	
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf	

• 	
(Aside:	 Logistic	 regression	 is	 great	 right?	 How	 about	 if	 we	 stack	 up	 logistic	
regression	 units	 in	 a	 circuit?	 We	 get	 deep	 nets.	 Training	 these	 is	 a	 nontrivial	 task	
and	 we	 only	 know	 of	 heuristic	 algorithms.	 We	 don’t	 know	 of	 a	 good	 bayes	
interpretation	 of	 such	 deep	 net	 classifiers.)	
	

• 	
There	 can	 be	 advantages	 to	 each.	 Discriminative	 needs	 fewer	 assumptions.	
Generative	 is	 easier	 to	 adapt	 to	 semisupervised	 settings.	 	
	
See	 	
	
Relevant	 chapter	 on	 generative	 vs	 discriminative	 in	 Tom	 Mitchell’s	 book.	 	
	
On	 discriminative	 vs	 generative:	 A	 comparison	 of	 logistic	 regression	 and	 naïve	
bayes,	 by	 Ng	 and	 Jordan	 in	 NIPS	 2001.	
	
	
Generative	 or	 Discriminative?	 Getting	 the	 best	 of	 both	 worlds	 by	 Bishop	 and	
Lasserre.	 	 Bayesian	 Statistics	 2007.	
	

• Regularization.	 Technique	 used	 to	 avoid	 overfitting.	 For	 this	 it	 is	 better	 to	 use	 a	
less	 complicated	 solution,	 and	 adding	 a	 regularizer	 to	 the	 objective	 can	 help	 with	
this.	 (related	 to	 the	 generalization	 theory;	 a	 rough	 analogy	 is	 to	 restrict	 yourself	

to	 solutions	 that	 can	 be	 described	 with	 fewer	 #	 of	 bits.	 This	 is	 only	 a	 rough	
intuition)	
	

	
We	 will	 focus	 a	 lot	 on	 unsupervised	 learning.	
	
	
	
Max	 Likelihood	 and	 Maximum	 Entropy	 Principle.	
	
	

Given	 a	 choice	 between	 many	 possible	 distributions	 that	 fit	 the	 data,	 pick	 the	 one	
with	 maximum	 entropy.	 	
	
Example:	 We	 are	 given	 a	 die	 that,	 when	 thrown,	 produces	 an	 expected	 value	 4.7.	
What	 is	 the	 chance	 that	 it	 produces	 5?	 Solution:	 Let	 	
pi	 =	 prob	 it	 produces	 i.	 Then	 average	 of	 i	 pi	 	 is	 4.7.	 Compute	 values	 of	 	 pi	 ‘s	 that	
maximize	 entropy	 subject	 to	 this	 average.	 	
	
Example	 2:	 If	 we	 are	 only	 given	 the	 mean	 of	 a	 distribution,	 the	 max	 entropy	
distribution	 consistent	 with	 this	 is	 the	 exponential.	 (If	 the	 variable	 is	 n-‐variate,	
the	 distribution	 is	 loglinear.)	
	
Example	 3:	 If	 we	 are	 only	 given	 the	 mean	 and	 the	 covariances	 of	 a	 distribution	
then	 the	 max	 entropy	 distribution	 consistent	 with	 that	 is	 the	 gaussian.	 	

	
	
Max	 likelihood	 method	
	
Find	 the	 parameter	 vector	 Theta	 that	 maximizes	 the	 likelihood	 of	 seeing	 the	 data.	 	
	
(Aside:	 Amazingly,	 Shannon	 in	 1948	 also	 invented	 NLP	 in	 addition	 to	 information	 theory	
by	 describing	 n-‐gram	 models	 for	 languages	 and	 suggesting	 measuring	 them	 using	 his	
entropy	 measure,	 which	 we	 can	 think	 of	 as	 max	 likelihood.	 	
	 http://cm.bell-‐labs.com/cm/ms/what/shannonday/shannon1948.pdf)	
	
	
Example:	 Max	 log	 likelihood	 expression	 for	 logistic	 regression	 	 from	
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression	
	

	
	
This	 expression	 is	 convex,	 and	 so	 gradient	 descent	 methods	 find	 the	 best	 fit	 very	 fast.	 In	
fact,	 this	 computational	 ease	 is	 the	 reason	 for	 the	 popularity	 of	 logistic	 regression	 -‐-‐-‐this	
popularity	 dates	 back	 to	 pre-‐computer	 days	 when	 people	 were	 using	 slide	 rules	 etc.	
	
Unfortunately,	 when	 you	 compute	 the	 log	 likelihood	 for	 most	 other	 settings,	 the	
expression	 turns	 out	 to	 be	 nonconvex.	 Such	 nonconvex	 optimization	 often	 turns	 out	 to	
be	 NP-‐hard	 (as	 has	 been	 proved	 for	 many	 settings).	
	
Simple	 example:	 mixture	 of	 spherical	 gaussians	 of	 the	 same	 radius.	 Maximising	 the	 log	
likelihood	 is	 tantamount	 to	 k-‐means	 clustering.	 	
	
(From	 Arora-‐Kannan:	 Learning	 Mixtures	 of	 Separated	 Nonspherical	 Gaussians;	
https://www.cs.princeton.edu/~arora/pubs/gaussians.pdf)	
	
Trying	 to	 overcome	 this	 intractability	 is	 a	 major	 goal	 in	 this	 course.	 	

	
	

princeton univ. Spr’15 cos 598D: Overcoming intractability

in machine learning

Lecture 2: Linearized models and SVD

Lecturer: Sanjeev Arora Scribe:

1 Concluding thoughts about last time and segue to today’s
topics

The dominant model for supervised learning from a theory viewpoint is SVM or Kernel
SVM. We discussed SVM’s last time; just a linear classifier.

A kernel is a mapping from datapoint x to a point φ(x) in a higher-dimensional space.
Example: map (x1, x2, . . . , xn) to the n3-dimensional vector (xi1xi2xi3). The coordinates of
φ(x) can be seen as features.

What makes kernel SVMs reasonably practical are the following two facts: (i) the stan-
dard algorithm for fitting SVM’s only needs the ability to compute inner products of pairs
of data points. Thus they also work for kernel SVMs if the kernel is such that 〈φ(x), φ(y)〉
is easy to compute given x, y. This is true for all the popular kernels. Thus in the above
example, there is no need to work with the explicit n3 size representation. (ii) the running
time and the sample complexity of the algorithm is proportional to 1/λ, where λ is the
margin between the 0 examples and the 1 examples. Thus the running time can be small
even if the kernel implicitly is mapping to a very high dimensional space.

The theoretical justification for kernel SVMs is the margin hypothesis: For every clas-
sification task there is a reasonable kernel for it that also has large margin (hence, can be
fitted efficiently)

The lure of kernel SVMs is that they promise to fold in the feature learning with the
classification task. Unfortunately, in practice people need to use more explicit ways of
learning features, which gives a new representation for the data and then one can fit a
classifier on top.

This brings us to today’s topic, which is feature learning. Just as with classfication, this
can be done in a generative and nongenerative setting.

Example 1 In the k-means problem one is given points x1, x2, . . . ,∈ <d and one is trying
to find k points (called means) c1, c2, . . . , ck so as to minimize∑

i

|xi − pi|2,

where pi is the closest mean to xi.
After learning such means, each point has been labeled from 1 to k, corresponding to

which mean it is closest to.
The generative analog of this would be say mixture of k gaussians. Each datapoint

could be labeled with a k-tuple, describing its probability of being generated from each of
the gaussians.

1

2

The nongenerative feature learning problems (such as k-means) are often NP-hard,
whereas the generative version seems potentially easier (being average case). So I am
attracted to the generative setting.

2 Linear Algebra++

The mathematical problems most directly useful to feature learning have to do with ex-
tensions of linear algebra. Recall that your freshman linear algebra class consisted of the
following three main methods. (a) Solving linear equations. Ax = b. (b) Computing
rank, which we can also think of as matrix factorization: Given n ×m matrix M rewrite
it as M = AB where A is n × r, B is r × m and r is as small as possible. (c) Eigen-
values/eigenvectors and singular values/singular vectors. For instance, every symmetric
matrix M can be rewritten as ∑

i

λiuiu
T
i ,

where ui’s are eigenvectors and λi’s are eigenvalues. This is called the spectral decompo-
sition (if the matrix is not symmetric, the analogous expression is called Singular Value
Decomposition).

Linear Algebra++ is my name for the above problems with any subset of the following
extensions: (i) require some coordinates of the solution to be nonnegative. (ii) require a
solution with a specified number or pattern of nonzeroes. (iii) solve in the presence of some
kind of noise.

Example 2 If we have to solve Ax = b subject to x being nonnegative, then that is
tantamount to linear programming, which was only discovered to be solvable in poly time
in 1979.

If we have to solve Ax = b subject to x having only k nonzeroes then this is the sparse
recovery problem that is NP-hard.

If we have to solve M = AB in presence of coordinate-wise noise, we may be looking
for desired A,B such that we minimize∑

ij

|Mij − (AB)ij |2.

This is minimized by truncating the SVD to the first r terms. We will denote the best rank
k approximation to M by Mk.

You never saw most of these extensions in your freshman linear algebra because they are
NP-hard. But they are ubiquitous in ML settings.

3 Linearized models

The notion of features is often in some linearized setting: topic models, sparse coding,
sparse recovery. We will see these in later lectures.

Rest of the lecture covered sparse recovery (Moitra’s lecture notes); SVD (my lecture
notes from COS 521) and use of SVD for clustering (Hopcroft-Kannan book).

COS 598C: Detecting overlapping communities, and

theoretical frameworks for learning deep nets and dictionaries

Lecturer: Sanjeev Arora
Scribe: Max Simchowitz

April 8, 2015

Today we present some ideas for provable learning of deep nets and dictionaries, two
important (and related) models. The common thread is a simple algorithm for detecting
overlapping communities in networks. While community detection is typically thought of
as a way to discover structure in, say, large social networks, here we use as a general
purpose algorithmic tool to understand structure of latent variable models. The algorithm
for learning deep nets and dictionaries starts by identifying correlations among variables,
and represent these pairwise correlations using a graph. Then it uses community-finding to
uncover the underlying connection structure.

1 Detecting Overlapping Communities in Networks

Community detection has been well studied in planted settings where the communities are
disjoint. We discussed the stochastic block model in an earlier lecture. The concrete setting
was that we are given G = (V,E), where the vertices of V are partitioned into two sets S
and Sc, and edges within S and Sc are drawn with probability p, and between S and Sc are
drawn with probability q, such that p− q = Ω(1). Then, as long as min(S, Sc) = Ω(

√
|V |),

we can easily recover S and Sc using an SVD or semi-definite programming [6].
However, when communities overlap, this problem does not seem doable via SVD. To

recap the notation, let G = (V,E) be our graph, and lets assign users to (perhaps more
than one) communities C1, . . . , Cm. In the simplest setting - such as the one that arises in
the dictionary learning problem - (v1, v2) ∈ E if and only if there is a community Cj such
that v1 ∈ Cj and v2 ∈ Cj . In this case, we can identity Cj are subgraphs of G, all of which
are cliques, and G is precisely the union of these cliques. I don’t know of an algorithm to
find the cliques given the graph, if the graph is a union of arbitrary cliques.

Luckily, in the dictionary learning setting, the structure of G is not determined adver-
sarially. Instead, we assume that the vertices v ∈ V are distributed across the communities
fairly evenly, and that each v doesnt belong to too many communities (say, there are no
hubs). We formalize the generative process for G as follows:

Definition 1.1 (Planted Problem Corresponding to Overlaping Communities). Let G =
(V,E), where |V | = N . Suppose that there are m communities C1, . . . , Cm, and each vertex
is assigned to k communities uniformly at random. Finally, if u, v belong to the same

1

1.1 Notation Max Simchowitz

community, then Pr[(u, v) is an edge] = p ≥ 0.9. If they do not have any overlapping
community, then there are no edges.

Remark. If p = 1, then C1, . . . , Cm are cliques, and we are back in the clustering setting for
dictionary learning.

The nice thing about our generative process is that it admits for a local search heuristic,
as described in [2]. First, set T = kN/m, which is roughly the expected size of each
community. Now, if (u, v) are in a community Ci, then the expected number of edges
shared between them is about pT , so by a Chernoff bound, there are at least .9pT vertices
w connected to u and v with high probability.

On the otherhand, suppose (u, v) are not in the same community. Then, while they
are not necessarily joined by an edge, there may be vertices w such that (u,w) are in one
community, say Ci, and (u, v) are in another community, say Cj , giving rise to edges from
both u and v to w.

Now, how many such spurious edges are there? That, is, what is the probability that
edges occur between any two vertices, neglecting shared community structure? Well, there
are

(
N
2

)
ways to pick pairs of vertices, and the number of edges in the graph is no more than

the sum of the number of edges in one community, which concentrates around p
(
T
2

)
using

a standard Chernoff argument. Taking the union over all m communities, we see that the
probability of an edge between two vertices is no more than

p0 := pm

(
T

2

)(
N

2

)−1
(1.1)

Hence, the probability of a spurious edge between w and u and w and v is about p20, and thus
the number of spurious edges between (u,w) concentrats around p20N . Hence, to distinguish
between u and v sharing only spurious edges and sharing non-trivial edges due to common
community memberships, we want to ensure

p20N � pT (1.2)

This amounts to imposing the requirement that

N · T 4m2

N4
� T ⇐⇒ m� (N/T)3/2 ⇐⇒ m� (m/k)3/2 (1.3)

that most of the edges between u and v will be because they are in the same community.
Hence, we can greedily assign vertices to communities by considering the number of common
edges.

1.1 Notation

Given a vector x ∈ Rn, we will denote its i-th entry by x(i). We will denote the inner
product between two vectors x, y ∈ Rn by 〈x, y〉, or xT y interchangably. Given a matrix
A ∈ Rn×m, we denote its i-th column by Ai.

Page 2 of 11

Max Simchowitz

2 Neural Netowrks

Before expounding on the applications of the community finding algorithms described in [2],
we will take a brief detour into the world of neural networks: perhaps one of the most
popular tools in contemporary machine learning. At a very basic expert, neural networks
mimic the structure of physical brains. One abstraction for emulating a brain is to view a
network of biological neurons as large graphs, whose vertices are neurons and whose edges
are synapses (or other forms of connections). The state of such a neural network is described
by the potential with which each neuron is activited (and by other factors like current),
and the synapses determine how much potential is transferred from one neuron-node to the
next.

Motivated by both common implementation practices and theoretical feasibility, we will
consider study artificial neural networks which decompose in L-layers. We can therefore
describe the state of this network at a given time by an L-tuple of vectors x(1), . . . , x(L),
where the entries of the vector x(l) ∈ RNl record the potentials of a corresponding neuron
in the l-th layer. For example x(2)(1) is the potential of the first neuron in layer two. We
refer to x(1) as the top layer and x(L) as the bottom layer.

What makes neural networks fascinating is the way the potential vector x(l) in different
layers relate to one another. In biological neural tissue, electrical potential and chemical
signals are being exchanged continuously. In our setting, we instead imagine that, at discrete

interviews t = 1, . . . , T , nature draws top layer - potential vectors x
(1)
t . Then, the potentials

in each succesive layer x(l) is given by a noisy objection of a deterministic function of the

potentials x(l−1) in layer x
(1)
t .

We model this transfer of potentials as

x(l+1) = h(A(l)x(l)) (2.4)

where h is an (often nonlinear) function which which operates entrywise and identically on

each entry, and A(l) ∈ RN(l)×N(l+1)
is a matrix specifying how the potentials in one layer

feed into the next. Equivalently, we can think of A(l) as the adjacency matrix of a bipartite
graph G(l), whose edges represent the connection between neurals. In what follows, we will
interchange between identifying the vertices of G(l) with the entries of x(l), both of which
semantically correspond to the neurons in the l-th layer.

To lighten up the notation and facillitate exposition, the majority of these notes will
focus on learning networks with only two layers: one encoded by a sparse vector x, hidden
to the observer and drawn from a suitably behaved generative process, and a dense layer
encoded by a dense vector y, which can be observed. We will use G and A to refer to the
connection graph between x and y, and its adjacency matrix, respectively.

3 Dictionary Learning, Neural Nets, and Community Find-
ing

We can imagine that even the two layer problem is rather difficult for arbitrary, nonlinear
h. Thus, it makes sense to start off by considering the simpler case where h is just the
identity; that is Ax = y. This problem is known as Dictionary Learning, and the adjacency
matrix A is called the dictionary.

Page 3 of 11

Max Simchowitz

In the Dictionary Learning problem, we are given samples y1, . . . , yN samples of observed
potentials, and our goal is to reconstruct both A, and the hidden samples x1, . . . , xN so as
to minimize the error

min
A,{xi}

‖Axi − yi‖22 (3.5)

In general, this problem is extremeley over-determined. Indeed, if the x’s have dimension
greater than the y’s, then it is trivial to reconstruct A and xi for which Axi = yi exactly.
In order to make the problem both meaningful and tractable, we need to posit that the xi
have some additional structure. Here, we will assume that the samples x are sparse.

There are two motivations for recovering sparse xi. The first is empirical - biological
neurons tend to show sparse activation patterns. More broadly, sparsity is a rather intuitive
assumption for capturing a sense of “latent simplicity” or “hidden structure” in otherwise
very high dimensional data. The second motivation is that, assuming sparsity, we can
leverage insights from sparse recovery and compressed sensing, under certain conditions on
the dictionary matrix A. Recall that matrices that have low column inner products are
called incoherent:

Definition 3.1. Let A be a matrix with columns Ai, such that ‖Ai‖ = 1. We call A µ/
√
n

incoherent if |ATi Aj | ≤
µ√
n

Now, if we knew A exactly, and A is sufficiently incoherent, then we have the following
result

Theorem 3.1 (Compressed Sensing, Stated Loosely). Let A be a matrix with unit norm
columns, such that |〈Ai, Aj〉| ≤ 1

2k . Suppose given y = Ax where x is k-sparse. Then, x is
the unique k-sparse vector for which y = Ax. Hence, x can be recovered in polynomial time.

The guiding insight is that, for µ/
√
n incoherent dictionaries, ATA ≈ I, since the of

diagonals are bounded above by µ/
√
n. Note that this approximation is not necessarily a

great one in the spectral sense, since ATA− I can have n2−n entries of size Ω(µ/
√
n), and

thus ‖ATA− I‖ might be Ω(µ
√
n).

But looking only at the spectral norm does not take advantage of sparsity : Indeed,
‖ATA − I‖ = max‖z‖:1 z

T (ATA − I)z, and if ATA − I has entries all around µ/
√
n, this

maximimum will be attained for z∗ ≈ 1√
n

(1, . . . , 1). However, if we impose that z∗ is

k-sparse, things are a bit different. Define the seminorm ‖z‖0 :=
∑

i I(zi 6= 0}, and let
B0(k) := {z ∈ Rn : ‖z‖ ≤ 1, ‖z‖0 ≤ k}. It is rather easy to show that

sup
z∈B0(k)

zT (ATA− I)z ≤ kµ/
√
n (3.6)

This restriction to the subset of k=sparse vectors gives rise to the notion of the “Restricted
Isometry Property” in the compressed sensing literature [4]. Indeed, if kµ/

√
n < 1/2,

then A is effictively “invertible” for all 2k sparse vectors z, and if kµ/
√
n = o(1), then

〈Az,Az〉 = ‖z‖2 + zT (ATA − I)z ≈ ‖z‖2 for all k-sparse z. More precisely, we can prove
the following lemma:

Lemma 3.2. Let z1 and z2 be two k-sparse vectors, and let A have unit norm columns,
Then Then 〈Az1, Az2〉 = 〈z1, z2〉 ± 2kµ√

n
‖z1‖‖z2‖.

Page 4 of 11

3.1 Formal Models for Dictionary Learning Max Simchowitz

Proof. By relableing the columns of A and then entries of z1 and z2, we can imagine that
z1 and z2 are both supported on the indices [2k] := {1, . . . , 2k}. Hence,

〈Az1, Az2〉 =
∑
i∈[2k]

‖Ai‖2z1(i)z2(i) +
∑
i∈[2k]

∑
j 6=1∈[2k]

z1(i)z2(j)〈Ai, Aj〉 (3.7)

= 〈z1, z2〉+ E (3.8)

where E :=
∑

i∈[2k]
∑

j∈[2k] z1(i)z2(j)〈Ai, Aj〉.

|E| ≤
∑
i∈2k

∑
j 6=i∈[2k]

|z1(i)||z2(j)| · |〈Ai, Aj〉| (3.9)

≤
∑
i∈2k

∑
j∈[2k]

|z1(i)||z2(j)| · |〈Ai, Aj〉| (3.10)

≤ µ√
n

∑
i∈[2k]

∑
j∈
|z1(i)||z2(j)| ≤

µ√
n
‖w1w

T
2 ‖F (3.11)

where w1 ∈ R2k has w1(i) = |z1(i)| for all i ∈ [2k], and w2 is defined similarly for z2, and
‖ · ‖F denotes the Frobenius norm. Because w1w

T
2 is a 2k× 2k matrix, we have ‖w1w

T
2 ‖F ≤

2k‖w1w
T
2 ‖, where ‖ · ‖ denotes the spectral norm. But ‖w1w

T
2 ‖ = ‖w1‖‖w2‖ = ‖z1‖‖z2‖,

whence

|E| ≤ 2kµ√
n
‖z1‖‖z2‖ (3.12)

3.1 Formal Models for Dictionary Learning

To encourage sparsity, Olshausen and Field [5] designed an alternating gradient descent
algorithm to minimize the following objective:

min
N∑
i=1

|yi −Axi|2 +
N∑
i=1

penaltyK(x) (3.13)

As we remarked about, an unpenalized Dictionary learning is highly underdetermined.
Hense, Olshausen and Field introduced the penalties - for example, l1-regularization - to
encourage sparsity and ensure (or at least promote) model indentifiability [5]. In [3], Arora,
Ge, et al. describe an alternating minimization algorithm based on Olshausen and Field
to learning the objective in Equation 3.13. In these notes, we will restrict our attention
to the “overlapping community methods” to be described shortly. In either case, both
the alternating minimization algorithms in [3] and the overlapping community detection
methods from [2] will make use of roughly the same assumptions, which we formalize as
follows:

1. The dictionary A ∈ Rn×m has unit norm columns, and has µ√
n

-incoherent columns,

that is: |〈Ai, Aj〉| ≤ µ√
n

.

Page 5 of 11

3.1 Formal Models for Dictionary Learning Max Simchowitz

2. We are concerned with the regime m ≥ n, and we require that ‖A‖ = O(
√
m/
√
n).

3. Each x has exactly k nonzero coordinates, drawn uniformly from {1, . . . ,m} (this can
be relaxed somewhat, as in [3])

4. x each coordinate is independent conditioned on its support, and xi|xi 6= 0 is subgaus-
sian with O(1) variance proxy, and there is a constant C - universal across all i ∈ [m]
- such that |xi||xi 6= 0 ≥ C almost surely. For example, we can think of xi|xi 6= 0 as
being drawn uniformly from [1, 10], or from [−10,−1] ∪ [1, 10].

5. We will start off by assumping that xi ≥ 0 almost surely. An adpatation of the
arguments in this paper will also hold for the case where E[xi] = 0

Given samples y1 = Ax1 and y2 = Ax2, it follows from Lemma 3.2 that

〈y1, y2〉 = 〈x1, x2〉 ± ‖x1‖‖x2‖
kµ√
n

(3.14)

By subgaussian concentration, it holds with high probability that ‖x1‖‖x‖ = Õ(k), so as
long as k2µ/

√
n is roughly o(1), then

〈y1, y2〉 = 〈x1, x2〉 ± o(1) (3.15)

If we assume that x1 and x2 are entrywise non-negative, then

〈x1, x2〉 =
∑

i∈Supp(x1)∩Supp(x2)

x1(i)x2(i) (3.16)

≥ C|Supp(x1) ∩ Supp(x2)| (3.17)

≥ CI(Supp(x1) ∩ Supp(x2) 6= ∅) (3.18)

Hence, with high probability, it holds that 〈y1, y2〉 ≥ C/2 if and only iff x1 and x2 have a
nonzero entry in common. We will state this in an informal lemma:

Lemma 3.3. If k2µ/
√
n is roughly o(log n), then with very high probability 〈x1, x2〉 ≥ C/2

if and only x1 and x2 share a nonzero entry.

This observation allows us to transform the problem from an analytic one to a combina-
torial one. Indeed, given N observations y1, . . . , yN , let each observation yi correspond to
a vertex i in a graph G = (V,E). We draw an edge between the vertices i and j if and only
if 〈yi, yj〉 ≥ C/2. By the above discussion, it holds high probability that edges are drawn
between i and j if and only if xi and xj share a common non-zero entry. Taking a union
bound, the following claim holds:

Lemma 3.4. With high probability that G ' G̃, where G̃ is the graph over the vertices
i ∈ [N] with edges connected all indices i, j for which xi and xj have non-disjoint support

We now give a more intuitive way to characterize G̃: Let C1, . . . , Cm be sets defined so
that Cj := {i ∈ [N] : xi(j) 6= 0}. We will call the sets “communities”, in the sense that
all i ∈ Cj share a nonzero entry in common. By the assumption that there are exactly k
nonzero entries of each sample xi selected uniformly at random, each vertex i is assigned

Page 6 of 11

3.2 Reduction of Dictionary Learning to Community Detection Max Simchowitz

to exactly k communities Cj1 , . . . , Cjk . Moreover, it follows directly from the definition of
the sets Cj that xi and xj share a common nonzero if and only if they both lie in the same
community: G̃ is precisely the graph constructed by drawing edges between vertices which
belong to at least one of the same community. Hence, to recover the sparsity patterns of the
xi with high probability, Lemma 3.4 tells us that the graph G, whose edges are constructed
from the inner products of samples yi and yj , is precisely generated by the community
assignments of its vertices.

3.1.1 Mean Zero Case

If the entries of xi are mean zero, then the argument is a little different: indeed,∑
i∈Supp(x1)∩Supp(x2)

x1(i)x2(i) (3.19)

can have absolute value much smaller than C due to cancellations from the entries of x1 and
x2 having cancelling signs. However, with probability Ω(k2/m2), Supp(x1) and Supp(x2)
will overlap at at most one entry, so we can neglect these correlations if we are willing to
accept a small (but not as small as n−ω(1)) probability of missing an edge (which will also
not be independent of the common support of and x2 x1). On the other hand, we can
improve the bound in Lemma 3.2 due to cancellations. Indeed, we have

〈y1, y2〉 − 〈x1, x2〉 =
∑
i 6=j
〈Ai, Aj〉x1(i)x2(j) (3.20)

Using the bound |〈Ai, Aj〉| ≤ µ/
√
n, this term has mean zero and moment roughlyO(

√
kµ/
√
n)

due to cancellations. Hence, 〈y1, y2〉 = 〈x1, x2〉+Õ(
√
kµ/
√
n), so our error drops by roughly

a factor of
√
k.

3.2 Reduction of Dictionary Learning to Community Detection

Given our community detection algorithm, we have given a sktech of how to efficiently
recover the sparsity patterns of the latent samples xi. We show how to use this technique
to recover the dictionary A, folllowing [2]. Note that, once A has been retrieved, we can
use more standard techniques from sparse recovery to (approximately) recover the latent
signal vectors x.

The basic idea is that the j-th column of A, Aj , should roughly resembly the average of
all sampes yi for which the j-th entry is active: that is, yi = Axi where xi(j) ≥ 0. Thus, a
first first attempt at recovering A would be simply to compute the following average:

Aj :=
1

|Cj |
∑

i:yi∈Cj

yi (3.21)

Unfortunately, in the case were the xi have mean zero, we have E[yi] = E[Axi] = AE[xi] =
0, In the case where the xi have do not have mean zero, then we get a lot of spurious
contributions from the nonzero entries of the samples at indices not equal to j: that is,
yi = Ajxi(j) +

∑
j′ 6=j Aj′xi(j

′).

Page 7 of 11

3.2 Reduction of Dictionary Learning to Community Detection Max Simchowitz

A better idea is to instead look at the best rank 1 approximation to E[yyT] : y ∈ Cj .
For simplicity, we will first handle the mean zero case. Note first that, because the problem
is invariant to permutation of the columns of A, it suffices to prove an algorithm which
recovers A1, the column of A which corresponds to community C1. Our strategy will be to
compute the best rank-one approximation to the empirical covariance matrix of all samples
yi which have an active first column, that is yi ∈ C1. Let

M1 :=
1

#y : y ∈ C
∑
y∈C

[yyT] (3.22)

that is, the empirical average of all yyT for y ∈ C. First, lets show that M1 is a good
approximate of A1A

T
1 up to a constant factor:

M1 = E[x(1)2A1A
T
1] + E[

∑
i≥2

x(i)2AiA
T
i]

+ E[
∑
i≥2

x(i)x(j)(A1Ai +AiA1)] + E[
∑
i,j≥2

x(i)x(j)AiAj] + statistical error

≈ Θ(A1A
T
1) +O(

k

m

∑
i≥1

AiA
T
i) + Õ(k2/

√
N)

Here N is the number of samples used, the O(f) notation is means a quantity whose spectral
norm is bounded by Cf for some C > 0, and O(M) (resp Θ(M)) means a quantity which is
less than CM (resp less than CM and greater than cM) according to the cannonical ordering
� of the semidefinte cone . The first term comes from the fact that E[x(1)2|y ∈ C] = Θ(1),
the second term comes from the fact that E[x(i)2|y ∈ C] = O(k/m). Note that the second
error term is systemic - it does not depend on the number of samples used by the algorithm.

The remaining error term Õ(k2/
√
N) is statistical in nature, and comes from the de-

viation of all the terms from their exptation. It is easy to establish the Õ(k2/
√
n) by

conditioning on the very high probability even that all the xi are small, and then using
Chernoff bounds to finish up. The bound can be improved to Õ(k/

√
N), but this improved

bounded affects the sample complexity of the algorithm. On the other hand, the systemic
error of O(km

∑
iAiA

T
i) determines the conditions on k and m under which the best-rank-one

approximation algorithm accurately retrives the underlying dictionary.
First, we will use a standard assumption in the dictionary learning literature that

‖A‖ = O(
√
m/
√
n). Under this condition, it holds that ‖(km

∑
i≥2AiA

T
i)‖ = O(k/n).

We will assume that the number of samples is large enough that the statistical error is also
dominated by O(k/n). Thus, M1 ∝ A1A

T
1 + E, where E has norm O(k/n). N

Now let Â1 be the top eigenvector of M1. We can show that Â1 is a good estimate of A1

by appealing to Wedin’s Theorem, an elementary result from linear algebra, which bounds
the distance of the top eigenvector of a PSD matrix A to that of A+E, where E is a small
perturbation. Because A1 is the top eigenvecotr of A1A

T
1 , Wedin’s Theorem will help us

show that the top eigenvector of M1 should be close to A1 as well:

Theorem 3.5. Let v1 be the top eigenvector of PSD matrix A and let v2 be the top eigen-
vector of A+ E. Let θ be angle between v1 and v2. Then sin θ ≤ 2‖E‖

σ1(A)−σ2(A) .

Page 8 of 11

Max Simchowitz

As a corrolary, we get a clean bounded on the Euclidean distance between the (normalized)
top eigenvectors of A and A+ E

Corollary. Let A be a rank one matrix of norm 1 with top eigenvector v1, let v2 be the top
eigenvector of A+ E. Then as long as ‖E‖ = o(1) ‖v1 − v2‖ ≤

√
1/2, ‖v1 − v2‖ ≤ 2‖E‖

Proof. Because σ1(A1A
T
1) = 1, and σ2(A1A

T
1) = 0, we have that sin θ(v1, v2) ≤ 2‖E‖.

Because vT1 v2 = 1− ‖v1 − v2‖2, we have

sin θ(v1, v2) = sin arccos(vT1 v2) =
√

1− (vT1 v2)
2 =

√
2‖v1 − v2‖2 − ‖v1 − v2‖4(3.23)

=
√

2‖v1 − v2‖
√

1− ‖v1 − v2‖2 (3.24)

Because E = o(1), it follows that sin θ(v1, v2), and hence ‖v1 − v2‖, must be o(1) as well.
Hence, ‖v1 − v2‖ ≤

√
2‖E‖/

√
1− ‖v1 − v2‖2 ≤ 2‖E‖.

From this corrolary, it follows immediately that ‖Â1 − A1‖ ≤ O(k/n). Hence, given
enough (but still polynomially many) samples, we can recover easy the columns of A up to
an error of k/n.

4 Unsupervised learning of Deep Nets

Let’s return from the restricted setting of dictionary learning to the more general setting of
neural nets. Aside from their success, one of the major reasons for the popularity of deep
nets is that the last layer seems to capture “meaningful features”. For example, in vision
problems, the pixel-representations of an object learned by neural nets often represents the
shape of that object very closely. And, in many applications, one can train very effective
clasifiers (using, say, an SVM or Logistic Regression) on the features learning by the last
layer. In fact, if we train a multilayer neural network for a classification task - say, distin-
guishing between cats and dogs - and then retrain the last layer to learn a new task - say,
distinguish between birds and bees - without retraining the parameters of most of the hidden
layers, the retrained network is still remarkably succesful at its new classification task. This
suggest that the representations learned in the deeper layers of the neural network capture
most of the relevant information, or at least enough information to build effective classifiers.

This suggests that deep nets are capturing some inherent structure in the images them-
selves, raising hope that the hidden layers correspond to natural ”features” that could be
learnt from just unlabeled data. (By contrast, the recent successes involve leveraging large
amounts of labeled images.) Unsupervised training of deep nets is a holy grail of this area,
and major researchers in this area have tried to define a generative model corresponding
to deep nets. This quest is very much in the spirit of the discriminative-generative pairs
we discussed in an earlier lecture (eg naive bayes classifier is a generative analog of logistic
regression).

If we move from the descriminative perspective to the generative perspective, we might
wonder - what is the structure that neural nets can extract structure from the data? Let’s
now consider a two layer neural net whose top layer is encoded in a vector x and bottom
layer is encoded in a vector y.

Page 9 of 11

Max Simchowitz

Rather than imagining a linear map A which takes a sparse input x and maps it to a
dense y, we now imagine an encoding function E(·) which encodes a dense y as a sparse x.
In the linear case, we had that y = Ax, so that x ≈ AT y. In the general case, we model
x = E(y) = h(A′y + b), where b is an offset function and h(·) is a nonlinear map which
acts identically and independently on each coordinate, for example, h(·) can be the function
which returns the sign of the entries of its arguments. Again, we can imagine that eancy
entry of x and y are treated as vertices in a bipartite graph, and that A is the adjacency
matrix which captures the edge weights between the entries of x and y.

The hope is that we can now invert the encoding function E(·), and in fact perform the
inversion in the presence of noise. This motivates the following definition:

Definition 4.1 (Denoising Auto-Encoder). Give an adjacency matrix A, an autoencoder
consists of a pair of an encoding function of the form E(y) = h(A′y + b) and a decoding
function D(x) = h(Ax+ b′). The autoencoder is called denoising for a noise model ξ ∼ D
if the the decoding robust to noise in the sense that:

E(D(h) + ξ) = h with high probability (4.25)

and said to be weight tying if A′ = AT . Here D(h) + ξ is shorthand for D corrupted with
the noise vector ξ. This corruption might not necessarily be additive.

The following theorem states that, if the entrywise nonlinear function h(·) is the sign
function, and A is sufficiently sparse, then [1] show that the two layer neural network is in
fact a denoising autoencoder:

Theorem 4.1 (stated loosely). Consider a two layer neural network with sparse bi-partite
graph G with adjancey matrix A with edge weights drawn uniformly in [−1, 1]. Suppose
that the latent sample x are binary with support S. Finally, suppose that y = sign(Ax).
Then there is a b′ for which the pair E(·) and D(·) form an denoising autoencoder, where
E(·) = sign(AT y + b′).

In fact, we can learning the encoding/decoding function with high probability:

Theorem 4.2. Under some regularity assumptions, there is a polynomial time algorithm
to learn the encoding and decoding functions for a two layer neural with sparse edge weights
drawn uniformly in [−1, 1]

Proof. To preserve intuition, we assume that we have an unweighted bipartite graph which
is drawn unifromly from all d-regular bipartite graphs on vertex set given by the entries of
x and y. We assume that thare E(·) and D(·) are chosen with no thresholding function, so
that b = b′ = 0. We also assume that the xi are uniformly drawn, k-sparse binary vectors,
where x = ρn for some small ρ.

Let’s begin by learning the adjacency matrix A, or equivalently, the graph G. What
are the communities? They are subsets of nodes with a common neighbor. So what hap-
pens when two nodes have a common neighbor. If u, v have a common neighbor, then
Pr[u, vare1] ≥ ρ. So Pr[u, v are both 1] ≤ (pd)2. So if ρ � (ρd)2, we can recover the
communities with high probability.

Now lets describe how to recover the entries of samples x. The key intuitition is that,
if an entry of x, say x1 is active, then some number of its neighbors yi will be active as

Page 10 of 11

REFERENCES Max Simchowitz

well. Hence, we can recover x1 by determining if above a certain threshold of its neighboring
indicies y are 1. The guarantees behind these algorithm come from the following observation:
that uniformly drawn sparse bipartite graphs are expanders with high probability. Let’s be
more specific:

Let U denote the vertex set corresponding to the entries of x, and V the vertex set
corresponding to the entries if y. Given u ∈ U , let F (u) denote all of its neighbors in V .
Fiallly for some set S ⊂ U , let UF (u, S) be the set of unique neighbors of u with respect
to S: that is

UF (u, S) := {v ∈ V : v ∈ F (u), v /∈ F (S − {u})} (4.26)

It turns out that, for a randomly generated bipartite graph and sufficiently small set S,
then for every u ∈ U , the total number of u’s neighbors in UF (u, S)is at least 9d/10 of its
total number of neighbors. Hence, if an entry xi is not active, we expect no more than,
say 2d/10 of its neighbors in V to be active. Hence, we can recover the vector x with high
probability by setting

xi = threshold2d/10 (#neighbors of xi active) (4.27)

Perhaps even more surprisingly, [1] show that one can learn the connect graphs G(l) in a
multilayer neural network by learning the bottom-most layers first, and then moving upward
thhrough the graph:

Theorem 4.3 (Generalization to Deep Nets). Given a deep neural network with layers
x(l) and weighted connection graphs G(l) drawn with expected degree d(l), and edge weights
uniformly in [−1, 1], and where the samples in the top layer are binary vectors with uniform
sparse support of size ρn. Then, if ρ is sufficiently small, and the degrees d(l) do not grow
too quickly, then the ground truth graphs G(l) and corresponding samples x can be learned
with high probability. In fact, they can be learned my infering the second to bottom layer
from the bottom layer, and then moving up layerwise through the network.

References

[1] Sanjeev Arora, Rong Ge, Aditya Bhaskara, Tengyu Ma. “Provable Bounds for Learning
Some Deep Representations.” Journal of Machine Learning, volume 32, 2014.

[2] Sanjeev Arora, Rong Ge, Ankur Moitra. “New Algorithms for Learning Incoherent and
Overcomplete Dictionaries” Conference on Learning Theory, 2014.

[3] Arora, Sanjeev, et al. “Simple, Efficient, and Neural Algorithms for Sparse Coding”
arXiv preprint arXiv:1503.00778, 2015

[4] Candes, Emmanuel J. “The restricted isometry property and its implications for com-
pressed sensing.” Comptes Rendus Mathematique 346.9 (2008): 589-592.

[5] Bruno A. Olshausen and David J. Field. “Sparse coding with an overcomplete basis set:
a strategy employed by v1.” Vision Research, 37:3311–3325, 1997a.

[6]

Page 11 of 11

Tensor decomposition + Another method for topic
modeling

Lecturer: Sanjeev Arora
Scribe: Holden Lee

April 13, 2015

Today we talk about tensor decomposition, a general purpose tool for learning latent
variable models. Then we switch gears and talk about a recent improvement of the topic
modeling algorithm we saw in an earlier lecture.

0.1 Tensor decomposition

Tensor decomposition is the analog of spectral decomposition for tensors.
The nice thing about eigenvalues/eigenvectors is that they exist (ok, singular values/vec-

tors in case of nonsymmetric matrices) and you can efficiently compute them. For 𝑀 a
symmetric 𝑛× 𝑛 matrix, we can write

𝑀 =
∑

𝜆𝑖𝑢𝑖𝑢
𝑇
𝑖 .

A 3-D tensor 𝑀 is a 𝑛 × 𝑛 × 𝑛 array. Extending linear algebra to tensors is nontrivial.
Many problems regarding tensors are NP-hard, like rank (which is not straightforward to
define).

Today we are interested in tensors that we are guaranteed have a representation like
𝑀 =

∑
𝜆𝑖𝑢

⊗3
𝑖 , where the 𝑢𝑖 are orthogonal. We don’t know the 𝑢𝑖’s and are trying to

recover them. We can actually recover these similarly to the power method. (Recall that
the power method repeatedly sets 𝑥 ←[𝑀𝑥

‖𝑀𝑥‖2
; it gives the top eigenvector if there is a gap

between the top 2 eigenvalues. The running time is inversely proportional to this gap.)

Definition 0.1: The tensor-vector product (aka flattening by 𝑥) is defined as follows:
𝑀𝑥 is the matrix where

(𝑀𝑥)𝑖𝑗 =
∑
𝑘

𝑀𝑖𝑗𝑘𝑥𝑘.

Now
𝑀𝑥 =

∑
𝜆𝑖(𝑢𝑖 · 𝑥)𝑢⊗2

𝑖 .

This looks like a spectral decomposition: it takes the orthogonal directions 𝑢𝑖 and boosts
them by 𝜆𝑖(𝑢𝑖 · 𝑥). (Under the isomorphism 𝑉 ⊗ 𝑉 ∼= 𝑉 ⊗ 𝑉 *, 𝑢⊗2

𝑖 corresponds to 𝑢𝑖𝑢
𝑇
𝑖 .)

1

COS598D 3/12/15, Tensor decomposition and TSVD

Why does this work? From inspection, the eigenvalues of 𝑀𝑥 are 𝑢𝑖 · 𝑥 since the 𝑢𝑖’s are
orthonormal and spectral decomposition is unique. The 𝑀𝑥’s are approximately Gaussian,
and there is a good chance that 𝑀𝑥 has a top eigenvalue, with a significant gap to the next
eigenvalue.

0.1.1 Method of moments

In topic modeling, etc., what is really going on is that we are using the method of moments.
The general setup is that we sample

𝑥 ∼ 𝐷 := 𝐷(𝐴)

where 𝐴 is the matrix of hidden parameters; given observed 𝑋 we try to recover 𝐴. We can
consider the moments

E𝑋 = 𝑓1(𝐴)

E(𝑋⊗2) = 𝑓2(𝐴)

E(𝑋⊗3) = 𝑓3(𝐴)

...

Then we try to solve this nonlinear system of equations. A lot of machine learning can be
thought of in this way.

Mathematicians and statisticians have studied questions like: What distributions can we
identify from the third moments, or up to the 𝑘th moments?

Recall that in topic modelling, under the separability assumption, a document is sampled
from 𝐴 with 𝑤 ∈ Dir(𝛼). We considered

𝑋𝑋𝑇 = 𝐴E[𝑤𝑤𝑇]︸ ︷︷ ︸
𝑅

𝐴𝑇

and used separable matrix factorization. We were exactly using second moments to recover
the distribution.

See [AGH+14] for more on this framework.
Dictionary learning was not method of moments; we drew edges between 𝑋,𝑋 ′ when

| ⟨𝑋,𝑋 ′⟩ | ≥ 1
2
and used community detection on the resulting graph.

0.1.2 Example: Mixtures of identical spherical gaussians

Consider 𝑘 Gaussians 𝑁(𝜇𝑖, 𝜎
2) in 𝑛 dimensions (𝜇𝑖 ∈ R𝑛) where 𝜎2 is known. Let the

mixing weights 𝑤𝑖 be such that
∑𝑘

𝑖=1𝑤𝑖 = 1. To pick a sample, pick 𝑖 with probability 𝑤𝑖,

2

COS598D 3/12/15, Tensor decomposition and TSVD

and output a sample from 𝑁(𝜇𝑖, 𝜎
2). We have

E[𝑋] =
𝑘∑

𝑖=1

𝑤𝑖𝜇𝑖

E[𝑋⊗2] =
𝑘∑

𝑖=1

𝑤𝑖𝜇
⊗2
𝑖 + 𝜎2𝐼

E[𝑋⊗3] =
𝑘∑

𝑖=1

𝑤𝑖𝜇
⊗3
𝑖

Assume we shift coordinates so that E[𝑋] = 0, and that the 𝜇𝑖 are linearly independent. If
we can do a tensor decomposition of E[𝑋⊗3] then we will obtain the 𝜇𝑖 and weights 𝑤𝑖.
However, we can’t do tensor decomposition yet because the 𝜇𝑖 are in general not orthogonal.
We must first whiten the vectors.

0.1.3 Whitening

The idea of whitening is to change tensors of the form
∑

𝑤𝑖𝜇
⊗3
𝑖 to

∑
𝑤𝑖𝜈

⊗3
𝑖 where the 𝜈𝑖’s

are orthogonal. Letting 𝑈 = (𝜇1, . . . , 𝜇𝑛), we have

𝑃 =
𝑘∑

𝑖=1

𝑤𝑖𝜇
⊗2
𝑖 = 𝑈 diag(𝑤𝑖)𝑈

𝑇 .

(This is not the spectral decomposition, because 𝑈 is not orthogonal.) The spectral decom-
position is, say

𝑃 = 𝑉 𝐷𝑉 𝑇

where 𝑉 is orthogonal. Assume 𝑈, 𝑉 are full rank. We would like to find a matrix 𝐴 such
that the vectors 𝜈𝑖 := 𝐴

√
𝑤𝑖𝜇𝑖 are orthogonal, i.e., 𝐴𝑈 diag(

√
𝑤𝑖) are orthogonal. This is

equivalent to
[𝐴𝑈 diag(

√
𝑤𝑖)][diag(

√
𝑤𝑖)𝑈

𝑇𝐴𝑇] = 1 ⇐⇒ 𝐴𝑃𝐴𝑇 = 1.

Thus, take 𝐴 = 𝑊 𝑇 where 𝑊 = 𝑉 𝐷− 1
2 . Then

𝐴𝑃𝐴𝑇 = 𝐷− 1
2𝑉 (𝑉 𝐷𝑉 𝑇)𝑉 𝑇𝐷− 1

2 = 𝐼

as needed.
In the Gaussian case, if we applied 𝑊 to

∑𝑘
𝑖=1𝑤𝑖𝜇

⊗3
𝑖 , we would get

∑
𝑤𝑖(𝑊

𝑇𝜇𝑖)
⊗3 =

∑ 1
√
𝑤𝑖

𝜈⊗3
𝑖 .

(Of course, we actually get the noisy versions of
∑𝑘

𝑖=1𝑤𝑖𝜇
⊗2
𝑖 ,

∑𝑘
𝑖=1 𝑤𝑖𝜇

⊗3
𝑖 , so if we want to

do proper analysis we’ll have to take error into account.)
(See also [BCMV13] for a somewhat different setting, overcomplete tensor decomposi-

tion.)

3

COS598D 3/12/15, Tensor decomposition and TSVD

0.2 SVD-based approaches for topic models (presentation by An-
drej Risteski)

We explain a paper by Bansal, Bhattacharyya, and Kannan [BBK], which uses SVD plus
some other tricks. They develop and prove a SVD-based algorithm that learns topic models
with 𝐿1 error under certain assumptions including the catch words assumption (a weakening
of the anchor words assumption).

We set up notation. Let 𝑘 be the number of topics and 𝑛 be the number of words. Let 𝐴
be the words×topics matrix, giving the distribution of words for each topic, and 𝑊 be the
topics×documents matrix. Let 𝑀 = 𝐴𝑊 . If 𝑊∙𝑖 is a column of 𝑊 , then ›𝑀∙𝑖 is generated
according to 𝑚 draws on the distribution given by 𝑀∙𝑖. (𝑚 is the number of words in each
document.)

The goal is to recover 𝐴 with 𝐿1 error. Previous works such as Arora et al. recovered
with 𝐿2 error. Note that 𝐿2 error ignores words with small frequency, and empirically, a lot
of words have small frequency. Moreover, columns are distributions so the natural norm is
𝐿1.

0.2.1 Assumptions

We make the following assumptions. See the paper for the precise parameters.

1. (Dominating topic) We assume there is a dominating topic in each document:

(a) for each document 𝑑 there exists a topic 𝑡(𝑑) such that 𝑊𝑡(𝑑),𝑑 > 𝛼. For all other
topics 𝑡′ ̸= 𝑡(𝑑), 𝑊𝑡′,𝑑 ≤ 𝛽, where 𝛽 − 𝛼 is large enough.

(b) (Each topic appears as a dominating topic enough times) For each topic 𝑡 there
are ≥ 𝜀0𝑤0𝑠 documents 𝑑 in which 𝑊𝑡,𝑑 ≥ 1− 𝛿.

2.

Definition 0.2: 𝑤 is a catch word for topic 𝑡 if for all 𝑡′ ̸= 𝑡, 𝐴𝑤𝑡′ ≤ 𝜌𝐴𝑤𝑡, and the
probability of appearing is not too small, 𝐴𝑤𝑡 ≥ 8

𝑚𝛿2𝛼
ln
Ä

20
𝜀𝑤0

ä
.

The catch words for 𝑡 occupy a significant proportion of the words for topic 𝑡

∑
𝑤 is catch word for topic 𝑡

𝐴𝑤𝑡 >
1

2
.

(You can replace 1
2
by 𝑝0, and get dependence on 𝑝0 in later parameters. For simplicity

we don’t do this. There is some absolute lower bound on 𝑝0.).

3. (Almost pure documents) There is a small fraction of almost pure documents. For all
𝑖, ≥ 𝜀0𝑤0𝐷 of the documents are such that 𝑊𝑡𝑑 > 1− 𝛿.

4. (No-local-minima assumption) Let 𝑝𝑗(𝜁, 𝑡) be the probability that 𝑡 is the dominant
topic in the document, word 𝑗 appears 𝜁 time, i.e., with proportion 𝜁

𝑚
. Then

𝑝𝑗(𝜁, 𝑡) > min(𝑝𝑗(𝜁 − 1, 𝑡), 𝑝𝑗(𝜁 + 1, 𝑡)).

4

COS598D 3/12/15, Tensor decomposition and TSVD

The motivation is that there are two possibilities: either the probability of the word
appearing 𝜁 times decays as 𝜁 gets larger (e.g. as a power law), or it’s a catch word,
and it keeps rising until some frequency, and then decays.

5. (Dominant admixture) The proportion of documents where topic 𝑖 is dominant is 𝐷
𝑘
,

where 𝑘 is the total number of documents.

0.2.2 Algorithm

The intuition is that topic models is like soft clustering, soft because each document doesn’t
belong to 1 cluster exclusively.

Intuitively, what is the obstacle? Suppose the frequency of a certain word in cluster 1 is
in [0, 𝜎] and in cluster 2 is [𝜇, 1], with the spread much larger in cluster 2. Then clustering
could split the second cluster into two.

This is solvable with the trick of thresholding before clustering. If 𝜇 is known, threshold
by 𝜇: if a coordinate is > 𝜇, then set it to be 1, and 0 otherwise. If you directly apply SVD,
you can handle less noise than if you threshold first.

Consider the following problem.

Problem 0.3: Given a random 𝑛× 𝑛 matrix 𝐴 where some 𝑚×𝑚 submatrix has P(𝐴𝑖𝑗 ≥
𝜇) ≥ 1

2
, and the other entries are 𝑁(0, 𝜎), find the submatrix (planted clique).

Solution. First consider the naive SVD solution.
The idea is that the spectral norm of the 𝑚 ×𝑚 matrix is significantly larger than the

spectral norm of the rest of the matrix.

1. Let 𝐶 be the subset (clique); let 1𝐶 be the characteristic vector. Then (assuming there
is not a significant negative contribution)

‖𝐴1𝐶‖
‖1𝐶‖

∼
»
𝐾(𝐾 𝜇

2
)2

√
𝐾

= 𝑂(𝐾𝜇)

2. The spectral norm of the random part is
√
𝑛𝜎.

SVD will work whenever 𝐾𝜇≫
√
𝑛𝜎,

𝜇

𝜎
≫
√
𝑛

𝑘
. (1)

Now consider thresholding first:

1. If 𝐴𝑖𝑗 > 𝜇 then set ‹𝐴𝑖𝑗 = 1; if 𝐴𝑖𝑗 < 𝜇 set ‹𝐴𝑖𝑗 = 0. In the planted clique the entries

are 1 with probability 1
2
; away from it entries are 1 with probability ∼ 𝑒−

𝜇2

𝑠𝜎2 .

2. Now we shift back so the mean on the non-clique part is 0. Set
˜̃
𝐴 = ‹𝐴− 𝑒−

𝜇2

2𝜎2 𝐽 , where
𝐽 the all 1’s matrix.

5

COS598D 3/12/15, Tensor decomposition and TSVD

The planted part has spectral norm
(

1√
𝑘

)2
𝑘2 = 𝑘. The random part has spectral norm

-
√
𝑛𝑒−

𝜇2

2𝜎2 .

Thus, after thresholding, we can solve the problem whenever 𝑘 ≫
√
𝑟𝑒−

𝜇2

2𝜎2 , i.e.

𝑒
𝜇2

𝜎2 ≫
√
𝑛

𝑘
.

which is a larger range than in (1).

The algorithm is the following (informally).

1. (Pick thresholds) For all words 𝑗, pick a threshold 𝜁𝑗 as follows. Take 𝜁𝑗 ∈ {0, 1, . . . ,𝑚},

𝜁𝑗 = argmax𝑗

®∣∣∣∣∣®𝑑 : fl𝑀𝑤𝑑 >
𝜁

𝑚

´∣∣∣∣∣ ≥ 𝐷

𝑘
and

∣∣∣∣∣
®
𝑑 : 𝑓𝑗𝑑 =

𝜁

𝑚

´∣∣∣∣∣ ≤ 𝜀
𝐷

𝑘

´
.

Then define the threshold matrix

𝑇𝑤𝑑 :=

√
𝜁𝑤, if fi𝐴𝑤𝑑 >

𝜁𝑤
𝑚

and 𝜁𝑤 is not too small

0, otherwise.

2. Now use the Swiss army knife [KK10].1

(a) Take 𝑇 , do a rank 𝑘-SVD, and produce 𝑇 (𝑘).

(b) Run a 2-approximation for 𝑘-means to get tentative cluster centers.

(c) Run Lloyd’s algorithm on columns 𝑆 of 𝐵, with starting points and centers above.

3. Determine catchwords. (See the paper for details.)

4. Determine the (1− 𝛿)-pure documents and get the topic-word mix.

A key point in the analysis is to show that the thresholding doesn’t break the clusters. We
need to use the non-local-min assumption.

Proposition 0.4 (Lemma A1 in [BBK]): If
∑

𝜁≥𝜁0 𝑝𝑗(𝜁, 𝑖) ≥ 𝜈 and
∑

𝜁≤𝜁0 𝑝𝑗(𝜁, 𝑖) ≥ 𝜈, then
𝑝𝑗(𝜁0, 𝑖) ≥ 𝜈

𝑚
.

Proof. Let 𝑓(𝜁) := 𝑝𝑗(𝜁, 𝑖). One of the following happens.

1. 𝑓(𝜁) ≥ 𝑓(𝜁 − 1) for all 𝑛 ≤ 𝜁𝑖 ≤ 𝜁0

2. 𝑓(𝜁 + 1) ≤ 𝑓(𝜁) for all 𝑚− 1 ≥ 𝜁 ≥ 𝜁0.

1The theorem says that the algorithm works when > (1 − 𝜀) of points satisfy the proximity condition.
𝑀𝑖 in cluster 𝑇𝑟 satisfies the proximity condition if for any 𝑠 ̸= 𝑟, the projection of 𝐴𝑖 onto the 𝜇𝑟-to-𝜇𝑠

line is at least Δ𝑟𝑠 closer to 𝜇𝑟 than 𝜇𝑠. Here Δ𝑟𝑠 = 𝑐𝑘
Ä

1√
𝑛𝑟+

√
𝑛𝑠

ä
‖𝑀 − 𝐶‖ where 𝐶 consists of the cluster

centers.

6

COS598D 3/12/15, Tensor decomposition and TSVD

Let’s assume (1). Then

𝜁0𝑝𝑗(𝜁0, 𝑖) ≥
∑
𝜁≥𝜁0

𝑝𝑗(𝜁, 𝑖) ≥ 𝜈 =⇒ 𝑝𝑗(𝜁0, 𝑖) ≥
𝜈

𝑚
.

The other case is similar.

Lemma 0.5 (Thresholding does not separate dominating topics, Lemma A3 in [BBK]):
With high probability, for a fixed word 𝑤 and topic 𝑡,

min(P(fi𝐴𝑤𝑑 ≤
𝜁𝑤
𝑚

; 𝑑 ∈ 𝑇𝑡),P(fi𝐴𝑤𝑑 >
𝜁𝑤
𝑚

, 𝑑 ∈ 𝑇𝑡) ≤ 𝑂(𝑚𝜀𝑤0).

where 𝑇𝑡 consists of the documents with dominant topic 𝑡.

References

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus
Telgarsky. Tensor decompositions for learning latent variable models. arXiv
preprint arXiv:1210.7559, 15:1–55, 2014.

[BBK] Trapit Bansal, C Bhattacharyya, and Ravindran Kannan. A provable SVD-based
algorithm for learning topics in dominant admixture corpus. pages 1–22.

[BCMV13] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaragha-
van. Smoothed Analysis of Tensor Decompositions. arXiv:1311.3651 [cs, stat],
2013.

[KK10] Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the
k-means algorithm. Proceedings - Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 299–308, 2010.

7

	Lecture1:AwhirlwindsurveyofmachinelearningandMLtheory.
	Lecture 2: Linearized models and SVD
	COS 598C: Detecting overlapping communities, andtheoretical frameworks for learning deep nets and dictionaries
	Tensor decomposition + Another method for topicmodeling

