
Chapter 1

Language Modeling
(Course notes for NLP by Michael Collins, Columbia University)

1.1 Introduction

In this chapter we will consider the the problem of constructing a language model
from a set of example sentences in a language. Language models were originally
developed for the problem of speech recognition; they still play a central role in
modern speech recognition systems. They are also widely used in other NLP ap-
plications. The parameter estimation techniques that were originally developed for
language modeling, as described in this chapter, are useful in many other contexts,
such as the tagging and parsing problems considered in later chapters of this book.

Our task is as follows. Assume that we have a corpus, which is a set of sen-
tences in some language. For example, we might have several years of text from
the New York Times, or we might have a very large amount of text from the web.
Given this corpus, we’d like to estimate the parameters of a language model.

A language model is defined as follows. First, we will define V to be the set
of all words in the language. For example, when building a language model for
English we might have

V = {the, dog, laughs, saw, barks, cat, . . .}

In practice V can be quite large: it might contain several thousands, or tens of
thousands, of words. We assume that V is a finite set. A sentence in the language
is a sequence of words

x1x2 . . . xn

where the integer n is such that n ≥ 1, we have xi ∈ V for i ∈ {1 . . . (n − 1)},
and we assume that xn is a special symbol, STOP (we assume that STOP is not a
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member of V). We’ll soon see why it is convenient to assume that each sentence
ends in the STOP symbol. Example sentences could be

the dog barks STOP

the cat laughs STOP

the cat saw the dog STOP

the STOP

cat the dog the STOP

cat cat cat STOP

STOP

. . .

We will define V† to be the set of all sentences with the vocabulary V: this is
an infinite set, because sentences can be of any length.

We then give the following definition:

Definition 1 (Language Model) A language model consists of a finite set V , and
a function p(x1, x2, . . . xn) such that:

1. For any 〈x1 . . . xn〉 ∈ V†, p(x1, x2, . . . xn) ≥ 0

2. In addition, ∑
〈x1...xn〉∈V†

p(x1, x2, . . . xn) = 1

Hence p(x1, x2, . . . xn) is a probability distribution over the sentences in V†.

As one example of a (very bad) method for learning a language model from a
training corpus, consider the following. Define c(x1 . . . xn) to be the number of
times that the sentence x1 . . . xn is seen in our training corpus, and N to be the
total number of sentences in the training corpus. We could then define

p(x1 . . . xn) =
c(x1 . . . xn)

N

This is, however, a very poor model: in particular it will assign probability 0 to any
sentence not seen in the training corpus. Thus it fails to generalize to sentences
that have not been seen in the training data. The key technical contribution of this
chapter will be to introduce methods that do generalize to sentences that are not
seen in our training data.

At first glance the language modeling problem seems like a rather strange task,
so why are we considering it? There are a couple of reasons:
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1. Language models are very useful in a broad range of applications, the most
obvious perhaps being speech recognition and machine translation. In many
applications it is very useful to have a good “prior” distribution p(x1 . . . xn)
over which sentences are or aren’t probable in a language. For example, in
speech recognition the language model is combined with an acoustic model
that models the pronunciation of different words: one way to think about it
is that the acoustic model generates a large number of candidate sentences,
together with probabilities; the language model is then used to reorder these
possibilities based on how likely they are to be a sentence in the language.

2. The techniques we describe for defining the function p, and for estimating
the parameters of the resulting model from training examples, will be useful
in several other contexts during the course: for example in hidden Markov
models, which we will see next, and in models for natural language parsing.

1.2 Markov Models

We now turn to a critical question: given a training corpus, how do we learn the
function p? In this section we describe Markov models, a central idea from proba-
bility theory; in the next section we describe trigram language models, an impor-
tant class of language models that build directly on ideas from Markov models.

1.2.1 Markov Models for Fixed-length Sequences

Consider a sequence of random variables, X1, X2, . . . , Xn. Each random variable
can take any value in a finite set V . For now we will assume that the length of
the sequence, n, is some fixed number (e.g., n = 100). In the next section we’ll
describe how to generalize the approach to cases where n is also a random variable,
allowing different sequences to have different lengths.

Our goal is as follows: we would like to model the probability of any sequence
x1 . . . xn, where n ≥ 1 and xi ∈ V for i = 1 . . . n, that is, to model the joint
probability

P (X1 = x1, X2 = x2, . . . , Xn = xn)

There are |V|n possible sequences of the form x1 . . . xn: so clearly, it is not feasible
for reasonable values of |V| and n to simply list all |V|n probabilities. We would
like to build a much more compact model.

In a first-order Markov process, we make the following assumption, which
considerably simplifies the model:

P (X1 = x1, X2 = x2, . . . Xn = xn)
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= P (X1 = x1)
n∏
i=2

P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1) (1.1)

= P (X1 = x1)
n∏
i=2

P (Xi = xi|Xi−1 = xi−1) (1.2)

The first step, in Eq. 1.1, is exact: by the chain rule of probabilities, any distribution
P (X1 = x1 . . . Xn = xn) can be written in this form. So we have made no
assumptions in this step of the derivation. However, the second step, in Eq. 1.2, is
not necessarily exact: we have made the assumption that for any i ∈ {2 . . . n}, for
any x1 . . . xi,

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1) = P (Xi = xi|Xi−1 = xi−1)

This is a (first-order) Markov assumption. We have assumed that the identity of the
i’th word in the sequence depends only on the identity of the previous word, xi−1.
More formally, we have assumed that the value of Xi is conditionally independent
of X1 . . . Xi−2, given the value for Xi−1.

In a second-order Markov process, which will form the basis of trigram lan-
guage models, we make a slightly weaker assumption, namely that each word de-
pends on the previous two words in the sequence:

P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1)

= P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

It follows that the probability of an entire sequence is written as

P (X1 = x1, X2 = x2, . . . Xn = xn)

=
n∏
i=1

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1) (1.3)

For convenience, we will assume that x0 = x−1 = * in this definition, where * is
a special “start” symbol in the sentence.

1.2.2 Markov Sequences for Variable-length Sentences

In the previous section, we assumed that the length of the sequence, n, was fixed.
In many applications, however, the length n can itself vary. Thus n is itself a
random variable. There are various ways of modeling this variability in length: in
this section we describe the most common approach for language modeling.

The approach is simple: we will assume that the n’th word in the sequence,
Xn, is always equal to a special symbol, the STOP symbol. This symbol can only



1.3. TRIGRAM LANGUAGE MODELS 5

appear at the end of a sequence. We use exactly the same assumptions as before:
for example under a second-order Markov assumption, we have

P (X1 = x1, X2 = x2, . . . Xn = xn) =
n∏
i=1

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

(1.4)

for any n ≥ 1, and for any x1 . . . xn such that xn = STOP, and xi ∈ V for
i = 1 . . . (n− 1).

We have assumed a second-order Markov process where at each step we gen-
erate a symbol xi from the distribution

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

where xi can be a member of V , or alternatively can be the STOP symbol. If we
generate the STOP symbol, we finish the sequence. Otherwise, we generate the
next symbol in the sequence.

A little more formally, the process that generates sentences would be as fol-
lows:

1. Initialize i = 1, and x0 = x−1 = *

2. Generate xi from the distribution

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

3. If xi = STOP then return the sequence x1 . . . xi. Otherwise, set i = i + 1
and return to step 2.

Thus we now have a model that generates sequences that vary in length.

1.3 Trigram Language Models

There are various ways of defining language models, but we’ll focus on a particu-
larly important example, the trigram language model, in this chapter. This will be
a direct application of Markov models, as described in the previous section, to the
language modeling problem. In this section we give the basic definition of a tri-
gram model, discuss maximum-likelihood parameter estimates for trigram models,
and finally discuss strengths of weaknesses of trigram models.



6CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

1.3.1 Basic Definitions

As in Markov models, we model each sentence as a sequence of n random vari-
ables, X1, X2, . . . Xn. The length, n, is itself a random variable (it can vary across
different sentences). We always have Xn = STOP. Under a second-order Markov
model, the probability of any sentence x1 . . . xn is then

P (X1 = x1, X2 = x2, . . . Xn = xn) =
n∏
i=1

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

where we assume as before that x0 = x−1 = *.
We will assume that for any i, for any xi−2, xi−1, xi,

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1) = q(xi|xi−2, xi−1)

where q(w|u, v) for any (u, v, w) is a parameter of the model. We will soon see
how to derive estimates of the q(w|u, v) parameters from our training corpus. Our
model then takes the form

p(x1 . . . xn) =
n∏
i=1

q(xi|xi−2, xi−1)

for any sequence x1 . . . xn.
This leads us to the following definition:

Definition 2 (Trigram Language Model) A trigram language model consists of
a finite set V , and a parameter

q(w|u, v)

for each trigram u, v, w such that w ∈ V ∪ {STOP}, and u, v ∈ V ∪ {*}. The
value for q(w|u, v) can be interpreted as the probability of seeing the word w
immediately after the bigram (u, v). For any sentence x1 . . . xn where xi ∈ V
for i = 1 . . . (n − 1), and xn = STOP, the probability of the sentence under the
trigram language model is

p(x1 . . . xn) =
n∏
i=1

q(xi|xi−2, xi−1)

where we define x0 = x−1 = *.

For example, for the sentence

the dog barks STOP
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we would have

p(the dog barks STOP) = q(the|*, *)×q(dog|*, the)×q(barks|the, dog)×q(STOP|dog, barks)

Note that in this expression we have one term for each word in the sentence (the,
dog, barks, and STOP). Each word depends only on the previous two words: this
is the trigram assumption.

The parameters satisfy the constraints that for any trigram u, v, w,

q(w|u, v) ≥ 0

and for any bigram u, v, ∑
w∈V∪{STOP}

q(w|u, v) = 1

Thus q(w|u, v) defines a distribution over possible words w, conditioned on the
bigram context u, v.

The key problem we are left with is to estimate the parameters of the model,
namely

q(w|u, v)

where w can be any member of V∪{STOP}, and u, v ∈ V∪{*}. There are around
|V|3 parameters in the model. This is likely to be a very large number. For example
with |V| = 10, 000 (this is a realistic number, most likely quite small by modern
standards), we have |V|3 ≈ 1012.

1.3.2 Maximum-Likelihood Estimates

We first start with the most generic solution to the estimation problem, the maximum-
likelihood estimates. We will see that these estimates are flawed in a critical way,
but we will then show how related estimates can be derived that work very well in
practice.

First, some notation. Define c(u, v, w) to be the number of times that the tri-
gram (u, v, w) is seen in the training corpus: for example, c(the, dog, barks) is
the number of times that the sequence of three words the dog barks is seen in the
training corpus. Similarly, define c(u, v) to be the number of times that the bigram
(u, v) is seen in the corpus. For any w, u, v, we then define

q(w|u, v) =
c(u, v, w)

c(u, v)
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As an example, our estimate for q(barks|the, dog) would be

q(barks|the, dog) =
c(the, dog, barks)

c(the, dog)

This estimate is very natural: the numerator is the number of times the entire tri-
gram the dog barks is seen, and the denominator is the number of times the bigram
the dog is seen. We simply take the ratio of these two terms.

Unfortunately, this way of estimating parameters runs into a very serious issue.
Recall that we have a very large number of parameters in our model (e.g., with
a vocabulary size of 10, 000, we have around 1012 parameters). Because of this,
many of our counts will be zero. This leads to two problems:

• Many of the above estimates will be q(w|u, v) = 0, due to the count in
the numerator being 0. This will lead to many trigram probabilities being
systematically underestimated: it seems unreasonable to assign probability 0
to any trigram not seen in training data, given that the number of parameters
of the model is typically very large in comparison to the number of words in
the training corpus.

• In cases where the denominator c(u, v) is equal to zero, the estimate is not
well defined.

We will shortly see how to come up with modified estimates that fix these problems.
First, however, we discuss how language models are evaluated, and then discuss
strengths and weaknesses of trigram language models.

1.3.3 Evaluating Language Models: Perplexity

So how do we measure the quality of a language model? A very common method
is to evaluate the perplexity of the model on some held-out data.

The method is as follows. Assume that we have some test data sentences
x(1), x(2), . . . , x(m). Each test sentence x(i) for i ∈ {1 . . .m} is a sequence of
words x(i)

1 , . . . , x
(i)
ni , where ni is the length of the i’th sentence. As before we

assume that every sentence ends in the STOP symbol.
It is critical that the test sentences are “held out”, in the sense that they are

not part of the corpus used to estimate the language model. In this sense, they are
examples of new, unseen sentences.

For any test sentence x(i), we can measure its probability p(x(i)) under the
language model. A natural measure of the quality of the language model would be
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the probability it assigns to the entire set of test sentences, that is

m∏
i=1

p(x(i))

The intuition is as follows: the higher this quantity is, the better the language model
is at modeling unseen sentences.

The perplexity on the test corpus is derived as a direct transformation of this
quantity. Define M to be the total number of words in the test corpus. More
precisely, under the definition that ni is the length of the i’th test sentence,

M =
m∑
i=1

ni

Then the average log probability under the model is defined as

1

M
log2

m∏
i=1

p(x(i)) =
1

M

m∑
i=1

log2 p(x
(i))

This is just the log probability of the entire test corpus, divided by the total number
of words in the test corpus. Here we use log2(z) for any z > 0 to refer to the
log with respect to base 2 of z. Again, the higher this quantity is, the better the
language model.

The perplexity is then defined as

2−l

where

l =
1

M

m∑
i=1

log2 p(x
(i))

Thus we take the negative of the average log probability, and raise two to that
power. (Again, we’re assuming in this section that log2 is log base two). The
perplexity is a positive number. The smaller the value of perplexity, the better the
language model is at modeling unseen data.

Some intuition behind perplexity is as follows. Say we have a vocabulary V ,
where |V ∪ {STOP}| = N , and the model predicts

q(w|u, v) =
1

N

for all u, v, w. Thus this is the dumb model that simply predicts the uniform dis-
tribution over the vocabulary together with the STOP symbol. In this case, it can
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be shown that the perplexity is equal to N . So under a uniform probability model,
the perplexity is equal to the vocabulary size. Perplexity can be thought of as the
effective vocabulary size under the model: if, for example, the perplexity of the
model is 120 (even though the vocabulary size is say 10, 000), then this is roughly
equivalent to having an effective vocabulary size of 120.

To give some more motivation, it is relatively easy to show that the perplexity
is equal to

1

t

where

t = M

√√√√ m∏
i=1

p(x(i))

Here we use M
√
z to refer to the M ’th root of z: so t is the value such that tM =∏m

i=1 p(x
(i)). Given that

m∏
i=1

p(x(i)) =
m∏
i=1

ni∏
j=1

q(x
(i)
j |x

(i)
j−2, x

(i)
j−1)

andM =
∑
i ni, the value for t is the geometric mean of the terms q(x(i)

j |x
(i)
j−2, x

(i)
j−1)

appearing in
∏m
i=1 p(x

(i)). For example if the perplexity is equal to 100, then
t = 0.01, indicating that the geometric mean is 0.01.

One additional useful fact about perplexity is the following. If for any trigram
u, v, w seen in test data, we have the estimate

q(w|u, v) = 0

then the perplexity will be∞. To see this, note that in this case the probability of
the test corpus under the model will be 0, and the average log probability will be
−∞. Thus if we take perplexity seriously as our measure of a language model,
then we should avoid giving 0 estimates at all costs.

Finally, some intuition about “typical” values for perplexity. Goodman (“A
bit of progress in language modeling”, figure 2) evaluates unigram, bigram and
trigram language models on English data, with a vocabulary size of 50, 000. In a
bigram model we have parameters of the form q(w|v), and

p(x1 . . . xn) =
n∏
i=1

q(xi|xi−1)
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Thus each word depends only on the previous word in the sentence. In a unigram
model we have parameters q(w), and

p(x1 . . . xn) =
n∏
i=1

q(xi)

Thus each word is chosen completely independently of other words in the sentence.
Goodman reports perplexity figures of around 74 for a trigram model, 137 for a bi-
gram model, and 955 for a unigram model. The perplexity for a model that simply
assigns probability 1/50, 000 to each word in the vocabulary would be 50, 000.
So the trigram model clearly gives a big improvement over bigram and unigram
models, and a huge improvement over assigning a probability of 1/50, 000 to each
word in the vocabulary.

1.3.4 Strengths and Weaknesses of Trigram Language Models

The trigram assumption is arguably quite strong, and linguistically naive (see the
lecture slides for discussion). However, it leads to models that are very useful in
practice.

1.4 Smoothed Estimation of Trigram Models

As discussed previously, a trigram language model has a very large number of
parameters. The maximum-likelihood parameter estimates, which take the form

q(w|u, v) =
c(u, v, w)

c(u, v)

will run into serious issues with sparse data. Even with a large set of training
sentences, many of the counts c(u, v, w) or c(u, v) will be low, or will be equal to
zero.

In this section we describe smoothed estimation methods, which alleviate many
of the problems found with sparse data. The key idea will be to rely on lower-order
statistical estimates—in particular, estimates based on bigram or unigram counts—
to “smooth” the estimates based on trigrams. We discuss two smoothing methods
that are very commonly used in practice: first, linear interpolation; second, dis-
counting methods.
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1.4.1 Linear Interpolation

A linearly interpolated trigram model is derived as follows. We define the trigram,
bigram, and unigram maximum-likelihood estimates as

qML(w|u, v) =
c(u, v, w)

c(u, v)

qML(w|v) =
c(v, w)

c(v)

qML(w) =
c(w)

c()

where we have extended our notation: c(w) is the number of times word w is seen
in the training corpus, and c() is the total number of words seen in the training
corpus.

The trigram, bigram, and unigram estimates have different strengths and weak-
nesses. The unigram estimate will never have the problem of its numerator or
denominator being equal to 0: thus the estimate will always be well-defined, and
will always be greater than 0 (providing that each word is seen at least once in the
training corpus, which is a reasonable assumption). However, the unigram estimate
completely ignores the context (previous two words), and hence discards very valu-
able information. In contrast, the trigram estimate does make use of context, but
has the problem of many of its counts being 0. The bigram estimate falls between
these two extremes.

The idea in linear interpolation is to use all three estimates, by defining the
trigram estimate as follows:

q(w|u, v) = λ1 × qML(w|u, v) + λ2 × qML(w|v) + λ3 × qML(w)

Here λ1, λ2 and λ3 are three additional parameters of the model, which satisfy

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0

and
λ1 + λ2 + λ3 = 1

Thus we take a weighted average of the three estimates.
There are various ways of estimating the λ values. A common one is as fol-

lows. Say we have some additional held-out data, which is separate from both
our training and test corpora. We will call this data the development data. Define
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c′(u, v, w) to be the number of times that the trigram (u, v, w) is seen in the devel-
opment data. It is easy to show that the log-likelihood of the development data, as
a function of the parameters λ1, λ2, λ3, is

L(λ1, λ2, λ3) =
∑
u,v,w

c′(u, v, w) log q(w|u, v)

=
∑
u,v,w

c′(u, v, w) log (λ1 × qML(w|u, v) + λ2 × qML(w|v) + λ3 × qML(w))

We would like to choose our λ values to make L(λ1, λ2, λ3) as high as possible.
Thus the λ values are taken to be

arg max
λ1,λ2,λ3

L(λ1, λ2, λ3)

such that
λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0

and
λ1 + λ2 + λ3 = 1

Finding the optimal values for λ1, λ2, λ3 is fairly straightforward (see section ??
for one algorithm that is often used for this purpose).

As described, our method has three smoothing parameters, λ1, λ2, and λ3. The
three parameters can be interpreted as an indication of the confidence, or weight,
placed on each of the trigram, bigram, and unigram estimates. For example, if λ1

is close to 1, this implies that we put a significant weight on the trigram estimate
qML(w|u, v); conversely, if λ1 is close to zero we have placed a low weighting on
the trigram estimate.

In practice, it is important to add an additional degree of freedom, by allowing
the values for λ1, λ2 and λ3 to vary depending on the bigram (u, v) that is being
conditioned on. In particular, the method can be extended to allow λ1 to be larger
when c(u, v) is larger—the intuition being that a larger value of c(u, v) should
translate to us having more confidence in the trigram estimate.

At the very least, the method is used to ensure that λ1 = 0 when c(u, v) = 0,
because in this case the trigram estimate

qML(w|u, v) =
c(u, v, w)

c(u, v)

is undefined. Similarly, if both c(u, v) and c(v) are equal to zero, we need λ1 =
λ2 = 0, as both the trigram and bigram ML estimates are undefined.
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One extension to the method, often referred to as bucketing, is described in
section 1.5.1. Another, much simpler method, is to define

λ1 =
c(u, v)

c(u, v) + γ

λ2 = (1− λ1)× c(v)

c(v) + γ

λ3 = 1− λ1 − λ2

where γ > 0 is the only parameter of the method. It can be verified that λ1 ≥
0, λ2 ≥ 0, and λ3 ≥ 0, and also that λ1 + λ2 + λ3 = 1.

Under this definition, it can be seen that λ1 increases as c(u, v) increases,
and similarly that λ2 increases as c(v) increases. In addition we have λ1 = 0
if c(u, v) = 0, and λ2 = 0 if c(v) = 0. The value for γ can again be chosen by
maximizing log-likelihood of a set of development data.

This method is relatively crude, and is not likely to be optimal. It is, however,
very simple, and in practice it can work well in some applications.

1.4.2 Discounting Methods

We now describe an alternative estimation method, which is again commonly used
in practice. Consider first a method for estimating a bigram language model, that
is, our goal is to define

q(w|v)

for any w ∈ V ∪ {STOP}, v ∈ V ∪ {∗}.
The first step will be to define discounted counts. For any bigram c(v, w) such

that c(v, w) > 0, we define the discounted count as

c∗(v, w) = c(v, w)− β

where β is a value between 0 and 1 (a typical value might be β = 0.5). Thus we
simply subtract a constant value, β, from the count. This reflects the intuition that
if we take counts from the training corpus, we will systematically over-estimate the
probability of bigrams seen in the corpus (and under-estimate bigrams not seen in
the corpus).

For any bigram (v, w) such that c(v, w) > 0, we can then define

q(w|v) =
c∗(v, w)

c(v)

Thus we use the discounted count on the numerator, and the regular count on the
denominator of this expression.
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x c(x) c∗(x) c∗(x)

c(the)

the 48

the, dog 15 14.5 14.5/48
the, woman 11 10.5 10.5/48
the, man 10 9.5 9.5/48
the, park 5 4.5 4.5/48
the, job 2 1.5 1.5/48
the, telescope 1 0.5 0.5/48
the, manual 1 0.5 0.5/48
the, afternoon 1 0.5 0.5/48
the, country 1 0.5 0.5/48
the, street 1 0.5 0.5/48

Figure 1.1: An example illustrating discounting methods. We show a made-up
example, where the unigram the is seen 48 times, and we list all bigrams (u, v)
such that u = the, and c(u, v) > 0 (the counts for these bigrams sum to 48). In
addition we show the discounted count c∗(x) = c(x) − β, where β = 0.5, and
finally we show the estimate c∗(x)/c(the) based on the discounted count.
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For any context v, this definition leads to some missing probability mass, de-
fined as

α(v) = 1−
∑

w:c(v,w)>0

c∗(v, w)

c(v)

As an example, consider the counts shown in the example in figure 1.1. In
this case we show all bigrams (u, v) where u = the, and c(u, v) > 0. We use a
discounting value of β = 0.5. In this case we have

∑
w:c(v,w)>0

c∗(v, w)

c(v)
=

14.5

48
+

10.5

48
+

9.5

48
+

4.5

48
+

1.5

48
+ 5× 0.5

48
=

43

48

and the missing mass is

α(the) = 1− 43

48
=

5

48

The intuition behind discounted methods is to divide this “missing mass” be-
tween the words w such that c(v, w) = 0.

More specifically, the complete definition of the estimate is as follows. For any
v, define the sets

A(v) = {w : c(v, w) > 0}

and
B(v) = {w : c(v, w) = 0}

For the data in figure 1.1, for example, we would have

A(the) = {dog, woman, man, park, job, telescope, manual, afternoon, country, street}

and B(the) would be the set of remaining words in the vocabulary.
Then the estimate is defined as

qD(w|v) =


c∗(v,w)
c(v) If w ∈ A(v)

α(v)× qML(w)∑
w∈B(v) qML(w)

If w ∈ B(v)

Thus if c(v, w) > 0 we return the estimate c∗(v, w)/c(v); otherwise we divide the
remaining probability mass α(v) in proportion to the unigram estimates qML(w).

The method can be generalized to trigram language models in a natural, recur-
sive way: for any bigram (u, v) define

A(u, v) = {w : c(u, v, w) > 0}

and
B(u, v) = {w : c(u, v, w) = 0}
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Define c∗(u, v, w) to be the discounted count for the trigram (u, v, w): that is,

c∗(u, v, w) = c(u, v, w)− β

where β is again the discounting value. Then the trigram model is

qD(w|u, v) =


c∗(u,v,w)
c(u,v) If w ∈ A(u, v)

α(u, v)× qD(w|v)∑
w∈B(u,v) qD(w|v)

If w ∈ B(u, v)

where

α(u, v) = 1−
∑

w∈A(u,v)

c∗(u, v, w)

c(u, v)

is again the “missing” probability mass. Note that we have divided the missing
probability mass in proportion to the bigram estimates qD(w|v), which were de-
fined previously.

The only parameter of this approach is the discounting value, β. As in linearly
interpolated models, the usual way to choose the value for this parameter is by
optimization of likelihood of a development corpus, which is again a separate set
of data from the training and test corpora. Define c′(u, v, w) to be the number of
times that the trigram u, v, w is seen in this development corpus. The log-likelihood
of the development data is∑

u,v,w

c′(u, v, w) log qD(w|u, v)

where qD(w|u, v) is defined as above. The parameter estimates qD(w|u, v) will
vary as the value for β varies. Typically we will test a set of possible values for
β—for example, we might test all values in the set {0.1, 0.2, 0.3, . . . , 0.9}—where
for each value of β we calculate the log-likelihood of the development data. We
then choose the value for β that maximizes this log-likelihood.

1.5 Advanced Topics

1.5.1 Linear Interpolation with Bucketing

In linearly interpolated models the parameter estimates are defined as

q(w|u, v) = q(w|u, v) = λ1 × qML(w|u, v) + λ2 × qML(w|v) + λ3 × qML(w)

where λ1, λ2 and λ3 are smoothing parameters in the approach.



18CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

In practice, it is important to allow the smoothing parameters to vary depending
on the bigram (u, v) that is being conditioned on—in particular, the higher the
count c(u, v), the higher the weight should be for λ1 (and similarly, the higher
the count c(v), the higher the weight should be for λ2). The classical method for
achieving this is through an extension that is often referred to as “bucketing”.

The first step in this method is to define a function Π that maps bigrams (u, v)
to values Π(u, v) ∈ {1, 2, . . . ,K} where K is some integer specifying the number
of buckets. Thus the function Π defines a partition of bigrams into K different
subsets. The function is defined by hand, and typically depends on the counts seen
in the training data. One such definition, with K = 3, would be

Π(u, v) = 1 if c(u, v) > 0

Π(u, v) = 2 if c(u, v) = 0 and c(v) > 0

Π(u, v) = 3 otherwise

This is a very simple definition that simply tests whether the counts c(u, v) and
c(v) are equal to 0.

Another slightly more complicated definition, which is more sensitive to fre-
quency of the bigram (u, v), would be

Π(u, v) = 1 if 100 ≤ c(u, v)

Π(u, v) = 2 if 50 ≤ c(u, v) < 100

Π(u, v) = 3 if 20 ≤ c(u, v) < 50

Π(u, v) = 4 if 10 ≤ c(u, v) < 20

Π(u, v) = 5 if 5 ≤ c(u, v) < 10

Π(u, v) = 6 if 2 ≤ c(u, v) < 5

Π(u, v) = 7 if c(u, v) = 1

Π(u, v) = 8 if c(u, v) = 0 and c(v) > 0

Π(u, v) = 9 otherwise

Given a definition of the function Π(u, v), we then introduce smoothing pa-
rameters λ(k)

1 , λ
(k)
2 , λ

(k)
3 for all k ∈ {1 . . .K}. Thus each bucket has its own set of

smoothing parameters. We have the constraints that for all k ∈ {1 . . .K}

λ
(k)
1 ≥ 0, λ

(k)
2 ≥ 0, λ

(k)
3 ≥ 0

and
λ

(k)
1 + λ

(k)
2 + λ

(k)
3 = 1
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The linearly interpolated estimate will be

q(w|u, v) = q(w|u, v) = λ
(k)
1 ×qML(w|u, v)+λ

(k)
2 ×qML(w|v)+λ

(k)
3 ×qML(w)

where
k = Π(u, v)

Thus we have crucially introduced a dependence of the smoothing parameters on
the value for Π(u, v). Thus each bucket of bigrams gets its own set of smoothing
parameters; the values for the smoothing parameters can vary depending on the
value of Π(u, v) (which is usually directly related to the counts c(u, v) and c(v)).

The smoothing parameters are again estimated using a development data set.
If we again define c′(u, v, w) to be the number of times the trigram u, v, w appears
in the development data, the log-likelihood of the development data is∑

u,v,w

c′(u, v, w) log q(w|u, v)

=
∑
u,v,w

c′(u, v, w) log
(
λ

(Π(u,v))
1 × qML(w|u, v) + λ

(Π(u,v))
2 × qML(w|v) + λ

(Π(u,v))
3 × qML(w)

)

=
K∑
k=1

∑
u,v,w:

Π(u,v)=k

c′(u, v, w) log
(
λ

(k)
1 × qML(w|u, v) + λ

(k)
2 × qML(w|v) + λ

(k)
3 × qML(w)

)

The λ(k)
1 , λ

(k)
2 , λ

(k)
3 values are chosen to maximize this function.



Chapter 2

Tagging Problems, and Hidden
Markov Models
(Course notes for NLP by Michael Collins, Columbia University)

2.1 Introduction

In many NLP problems, we would like to model pairs of sequences. Part-of-speech
(POS) tagging is perhaps the earliest, and most famous, example of this type of
problem. In POS tagging our goal is to build a model whose input is a sentence,
for example

the dog saw a cat

and whose output is a tag sequence, for example

D N V D N (2.1)

(here we use D for a determiner, N for noun, and V for verb). The tag sequence is
the same length as the input sentence, and therefore specifies a single tag for each
word in the sentence (in this example D for the, N for dog, V for saw, and so on).

We will use x1 . . . xn to denote the input to the tagging model: we will often
refer to this as a sentence. In the above example we have the length n = 5, and
x1 = the, x2 = dog, x3 = saw, x4 = the, x5 = cat. We will use y1 . . . yn to denote
the output of the tagging model: we will often refer to this as the state sequence or
tag sequence. In the above example we have y1 = D, y2 = N, y3 = V, and so on.

This type of problem, where the task is to map a sentence x1 . . . xn to a tag se-
quence y1 . . . yn, is often referred to as a sequence labeling problem, or a tagging
problem.

1
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INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT:
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V fore-
casts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mu-
lally/N announced/V first/ADJ quarter/N results/N ./.

KEY:

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
. . .

Figure 2.1: A part-of-speech (POS) tagging example. The input to the model is a
sentence. The output is a tagged sentence, where each word is tagged with its part
of speech: for example N is a noun, V is a verb, P is a preposition, and so on.

We will assume that we have a set of training examples, (x(i), y(i)) for i =

1 . . .m, where each x(i) is a sentence x(i)1 . . . x
(i)
ni , and each y(i) is a tag sequence

y
(i)
1 . . . y

(i)
ni (we assume that the i’th example is of length ni). Hence x(i)j is the j’th

word in the i’th training example, and y(i)j is the tag for that word. Our task is to
learn a function that maps sentences to tag sequences from these training examples.

2.2 Two Example Tagging Problems: POS Tagging, and
Named-Entity Recognition

We first discuss two important examples of tagging problems in NLP, part-of-
speech (POS) tagging, and named-entity recognition.

Figure 2.1 gives an example illustrating the part-of-speech problem. The input
to the problem is a sentence. The output is a tagged sentence, where each word
in the sentence is annotated with its part of speech. Our goal will be to construct
a model that recovers POS tags for sentences with high accuracy. POS tagging is
one of the most basic problems in NLP, and is useful in many natural language
applications.
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We will assume that we have a set of training examples for the problem: that
is, we have a set of sentences paired with their correct POS tag sequences. As one
example, the Penn WSJ treebank corpus contains around 1 million words (around
40,000 sentences) annotated with their POS tags. Similar resources are available
in many other languages and genres.

One of the main challenges in POS tagging is ambiguity. Many words in En-
glish can take several possible parts of speech—a similar observation is true for
many other languages. The example sentence in figure 2.1 has several ambiguous
words. For example, the first word in the sentence, profits, is a noun in this context,
but can also be a verb (e.g., in the company profits from its endeavors). The word
topping is a verb in this particular sentence, but can also be a noun (e.g., the top-
ping on the cake). The words forecasts and results are both nouns in the sentence,
but can also be verbs in other contexts. If we look further, we see that quarter is a
noun in this sentence, but it also has a much less frequent usage, as a verb. We can
see from this sentence that there is a surprising amount of ambiguity at the POS
level.

A second challenge is the presence of words that are rare, in particular words
that are not seen in our training examples. Even with say a million words of training
data, there will be many words in new sentences which have not been seen in
training. As one example, words such as Mulally or topping are potentially quite
rare, and may not have been seen in our training examples. It will be important
to develop methods that deal effectively with words which have not been seen in
training data.

In recovering POS tags, it is useful to think of two different sources of informa-
tion. First, individual words have statistical preferences for their part of speech: for
example, quarter can be a noun or a verb, but is more likely to be a noun. Second,
the context has an important effect on the part of speech for a word. In particular,
some sequences of POS tags are much more likely than others. If we consider POS
trigrams, the sequence D N V will be frequent in English (e.g., in the/D dog/N
saw/V . . .), whereas the sequence D V N is much less likely.

Sometimes these two sources of evidence are in conflict: for example, in the
sentence

The trash can is hard to find

the part of speech for can is a noun—however, can can also be a modal verb, and in
fact it is much more frequently seen as a modal verb in English.1 In this sentence
the context has overridden the tendency for can to be a verb as opposed to a noun.

1There are over 30 uses of the word “can” in this chapter, and if we exclude the example given
above, in every case “can” is used as a modal verb.
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INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on
[Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter
results.

Figure 2.2: A Named-Entity Recognition Example. The input to the problem is a
sentence. The output is a sentence annotated with named-entities corresponding to
companies, location, and people.

Later in this chapter we will describe models for the tagging problem that take
into account both sources of information—local and contextual—when making
tagging decisions.

A second important example tagging problem is named entity recognition. Fig-
ure 2.2 gives an example. For this problem the input is again a sentence. The output
is the sentence with entity-boundaries marked. In this example we assume there
are three possible entity types: PERSON, LOCATION, and COMPANY. The output
in this example identifies Boeing Co. as a company, Wall Street as a location, and
Alan Mulally as a person. Recognising entities such as people, locations and or-
ganizations has many applications, and named-entity recognition has been widely
studied in NLP research.

At first glance the named-entity problem does not resemble a tagging problem—
in figure 2.2 the output does not consist of a tagging decision for each word in the
sentence. However, it is straightforward to map named-entity recognition to a tag-
ging problem. The basic method is illustrated in figure 2.3. Each word in the
sentence is either tagged as not being part of an entity (the tag NA) is used for this
purpose, as being the start of a particular entity type (e.g., the tag SC) corresponds
to words that are the first word in a company, or as being the continuation of a par-
ticular entity type (e.g., the tag CC corresponds to words that are part of a company
name, but are not the first word).

Once this mapping has been performed on training examples, we can train a
tagging model on these training examples. Given a new test sentence we can then
recover the sequence of tags from the model, and it is straightforward to identify
the entities identified by the model.

2.3 Generative Models, and The Noisy Channel Model

In this chapter we will treat tagging problems as a supervised learning problem.
In this section we describe one important class of model for supervised learning:
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INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA top-
ping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA
Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

KEY:

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

Figure 2.3: Named-Entity Recognition as a Tagging Problem. There are three
entity types: PERSON, LOCATION, and COMPANY. For each entity type we intro-
duce a tag for the start of that entity type, and for the continuation of that entity
type. The tag NA is used for words which are not part of an entity. We can then
represent the named-entity output in figure 2.2 as a sequence of tagging decisions
using this tag set.
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the class of generative models. We will then go on to describe a particular type of
generative model, hidden Markov models, applied to the tagging problem.

The set-up in supervised learning problems is as follows. We assume training
examples (x(1), y(1)) . . . (x(m), y(m)), where each example consists of an input x(i)

paired with a label y(i). We use X to refer to the set of possible inputs, and Y to
refer to the set of possible labels. Our task is to learn a function f : X → Y that
maps any input x to a label f(x).

Many problems in natural language processing are supervised learning prob-
lems. For example, in tagging problems each x(i) would be a sequence of words
x
(i)
1 . . . x

(i)
ni , and each y(i) would be a sequence of tags y(i)1 . . . y

(i)
ni (we use ni to

refer to the length of the i’th training example). X would refer to the set of all
sequences x1 . . . xn, and Y would be the set of all tag sequences y1 . . . yn. Our
task would be to learn a function f : X → Y that maps sentences to tag se-
quences. In machine translation, each input x would be a sentence in the source
language (e.g., Chinese), and each “label” would be a sentence in the target lan-
guage (e.g., English). In speech recognition each input would be the recording of
some utterance—perhaps pre-processed using a Fourier transform, for example—
and each label is an entire sentence. Our task in all of these examples is to learn
a function from inputs x to labels y, using our training examples (x(i), y(i)) for
i = 1 . . . n as evidence.

One way to define the function f(x) is through a conditional model. In this
approach we define a model that defines the conditional probability

p(y|x)

for any x, y pair. The parameters of the model are estimated from the training
examples. Given a new test example x, the output from the model is

f(x) = argmax
y∈Y

p(y|x)

Thus we simply take the most likely label y as the output from the model. If our
model p(y|x) is close to the true conditional distribution of labels given inputs, the
function f(x) will be close to optimal.

An alternative approach, which is often used in machine learning and natural
language processing, is to define a generative model. Rather than directly estimat-
ing the conditional distribution p(y|x), in generative models we instead model the
joint probability

p(x, y)

over (x, y) pairs. The parameters of the model p(x, y) are again estimated from the
training examples (x(i), y(i)) for i = 1 . . . n. In many cases we further decompose
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the probability p(x, y) as follows:

p(x, y) = p(y)p(x|y) (2.2)

and then estimate the models for p(y) and p(x|y) separately. These two model
components have the following interpretations:

• p(y) is a prior probability distribution over labels y.

• p(x|y) is the probability of generating the input x, given that the underlying
label is y.

We will see that in many cases it is very convenient to decompose models in this
way; for example, the classical approach to speech recognition is based on this type
of decomposition.

Given a generative model, we can use Bayes rule to derive the conditional
probability p(y|x) for any (x, y) pair:

p(y|x) = p(y)p(x|y)
p(x)

where
p(x) =

∑
y∈Y

p(x, y) =
∑
y∈Y

p(y)p(x|y)

Thus the joint model is quite versatile, in that we can also derive the probabilities
p(x) and p(y|x).

We use Bayes rule directly in applying the joint model to a new test example.
Given an input x, the output of our model, f(x), can be derived as follows:

f(x) = argmax
y
p(y|x)

= argmax
y

p(y)p(x|y)
p(x)

(2.3)

= argmax
y
p(y)p(x|y) (2.4)

Eq. 2.3 follows by Bayes rule. Eq. 2.4 follows because the denominator, p(x),
does not depend on y, and hence does not affect the argmax. This is convenient,
because it means that we do not need to calculate p(x), which can be an expensive
operation.

Models that decompose a joint probability into into terms p(y) and p(x|y) are
often called noisy-channel models. Intuitively, when we see a test example x, we
assume that has been generated in two steps: first, a label y has been chosen with
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probability p(y); second, the example x has been generated from the distribution
p(x|y). The model p(x|y) can be interpreted as a “channel” which takes a label y
as its input, and corrupts it to produce x as its output. Our task is to find the most
likely label y, given that we observe x.

In summary:

• Our task is to learn a function from inputs x to labels y = f(x). We assume
training examples (x(i), y(i)) for i = 1 . . . n.

• In the noisy channel approach, we use the training examples to estimate
models p(y) and p(x|y). These models define a joint (generative) model

p(x, y) = p(y)p(x|y)

• Given a new test example x, we predict the label

f(x) = argmax
y∈Y

p(y)p(x|y)

Finding the output f(x) for an input x is often referred to as the decoding
problem.

2.4 Generative Tagging Models

We now see how generative models can be applied to the tagging problem. We
assume that we have a finite vocabulary V , for example V might be the set of
words seen in English, e.g., V = {the, dog, saw, cat, laughs, . . .}. We use K to
denote the set of possible tags; again, we assume that this set is finite. We then give
the following definition:

Definition 1 (Generative Tagging Models) Assume a finite set of words V , and
a finite set of tags K. Define S to be the set of all sequence/tag-sequence pairs
〈x1 . . . xn, y1 . . . yn〉 such that n ≥ 0, xi ∈ V for i = 1 . . . n, and yi ∈ K for
i = 1 . . . n. A generative tagging model is then a function p such that:

1. For any 〈x1 . . . xn, y1 . . . yn〉 ∈ S,

p(x1 . . . xn, y1 . . . yn) ≥ 0

2. In addition, ∑
〈x1...xn,y1...yn〉∈S

p(x1 . . . xn, y1 . . . yn) = 1
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Hence p(x1 . . . xn, y1 . . . yn) is a probability distribution over pairs of sequences
(i.e., a probability distribution over the set S).

Given a generative tagging model, the function from sentences x1 . . . xn to tag
sequences y1 . . . yn is defined as

f(x1 . . . xn) = arg max
y1...yn

p(x1 . . . xn, y1 . . . yn)

where the argmax is taken over all sequences y1 . . . yn such that yi ∈ K for
i ∈ {1 . . . n}. Thus for any input x1 . . . xn, we take the highest probability tag
sequence as the output from the model.

Having introduced generative tagging models, there are three critical questions:

• How we define a generative tagging model p(x1 . . . xn, y1 . . . yn)?

• How do we estimate the parameters of the model from training examples?

• How do we efficiently find

arg max
y1...yn

p(x1 . . . xn, y1 . . . yn)

for any input x1 . . . xn?

The next section describes how trigram hidden Markov models can be used to
answer these three questions.

2.5 Trigram Hidden Markov Models (Trigram HMMs)

In this section we describe an important type of generative tagging model, a trigram
hidden Markov model, describe how the parameters of the model can be estimated
from training examples, and describe how the most likely sequence of tags can be
found for any sentence.

2.5.1 Definition of Trigram HMMs

We now give a formal definition of trigram hidden Markov models (trigram HMMs).
The next section shows how this model form is derived, and gives some intuition
behind the model.

Definition 2 (Trigram Hidden Markov Model (Trigram HMM)) A trigram HMM
consists of a finite set V of possible words, and a finite set K of possible tags, to-
gether with the following parameters:
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• A parameter
q(s|u, v)

for any trigram (u, v, s) such that s ∈ K ∪ {STOP}, and u, v ∈ K ∪ {*}.
The value for q(s|u, v) can be interpreted as the probability of seeing the tag
s immediately after the bigram of tags (u, v).

• A parameter
e(x|s)

for any x ∈ V , s ∈ K. The value for e(x|s) can be interpreted as the
probability of seeing observation x paired with state s.

Define S to be the set of all sequence/tag-sequence pairs 〈x1 . . . xn, y1 . . . yn+1〉
such that n ≥ 0, xi ∈ V for i = 1 . . . n, yi ∈ K for i = 1 . . . n, and yn+1 = STOP.

We then define the probability for any 〈x1 . . . xn, y1 . . . yn+1〉 ∈ S as

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

where we have assumed that y0 = y−1 = *.

As one example, if we have n = 3, x1 . . . x3 equal to the sentence the dog
laughs, and y1 . . . y4 equal to the tag sequence D N V STOP, then

p(x1 . . . xn, y1 . . . yn+1) = q(D|∗, ∗)× q(N|∗, D)× q(V|D, N)× q(STOP|N, V)
×e(the|D)× e(dog|N)× e(laughs|V)

Note that this model form is a noisy-channel model. The quantity

q(D|∗, ∗)× q(N|∗, D)× q(V|D, N)× q(STOP|N, V)

is the prior probability of seeing the tag sequence D N V STOP, where we have
used a second-order Markov model (a trigram model), very similar to the language
models we derived in the previous lecture. The quantity

e(the|D)× e(dog|N)× e(laughs|V)

can be interpreted as the conditional probability p(the dog laughs|D N V STOP):
that is, the conditional probability p(x|y) where x is the sentence the dog laughs,
and y is the tag sequence D N V STOP.
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2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1∏
i=1

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)
n∏

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y−1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi−2, yi−1, yi,

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1) = q(yi|yi−2, yi−1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)× P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)
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This step is exact, by the chain rule of probabilities. Thus we have decomposed
the joint probability into two terms: first, the probability of choosing tag sequence
y1 . . . yn+1; second, the probability of choosing the word sequence x1 . . . xn, con-
ditioned on the choice of tag sequence. Note that this is exactly the same type of
decomposition as seen in noisy channel models.

Now consider the probability of seeing the tag sequence y1 . . . yn+1. We make
independence assumptions as follows: we assume that for any sequence y1 . . . yn+1,

P (Y1 = y1 . . . Yn+1 = yn+1) =
n+1∏
i=1

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)

That is, we have assumed that the sequence Y1 . . . Yn+1 is a second-order Markov
sequence, where each state depends only on the previous two states in the sequence.

Next, consider the probability of the word sequence x1 . . . xn, conditioned on
the choice of tag sequence, y1 . . . yn+1. We make the following assumption:

P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

=
n∏

i=1

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1, Y1 = y1 . . . Yn+1 = yn+1)

=
n∏

i=1

P (Xi = xi|Yi = yi) (2.7)

The first step of this derivation is exact, by the chain rule. The second step involves
an independence assumption, namely that for i = 1 . . . n,

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1, Y1 = y1 . . . Yn+1 = yn+1) = P (Xi = xi|Yi = yi)

Hence we have assumed that the value for the random variable Xi depends only on
the value of Yi. More formally, the value forXi is conditionally independent of the
previous observationsX1 . . . Xi−1, and the other state values Y1 . . . Yi−1, Yi+1 . . . Yn+1,
given the value of Yi.

One useful way of thinking of this model is to consider the following stochastic
process, which generates sequence pairs y1 . . . yn+1, x1 . . . xn:

1. Initialize i = 1 and y0 = y−1 = *.

2. Generate yi from the distribution

q(yi|yi−2, yi−1)

3. If yi = STOP then return y1 . . . yi, x1 . . . xi−1. Otherwise, generate xi from
the distribution

e(xi|yi),
set i = i+ 1, and return to step 2.
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2.5.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) = c(u, v, s)

c(u, v)

and

e(x|s) = c(s; x)

c(s)

For example, we would have the estimates

q(N|V, D) = c(V, D, N)

c(V, D)

and

e(dog|N) = c(N ; dog)
c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

In some cases it is useful to smooth our estimates of q(s|u, v), using the tech-
niques described in chapter ?? of this book, for example defining

q(s|u, v) = λ1 × qML(s|u, v) + λ2 × qML(s|v) + λ3 × qML(s)

where the qML terms are maximum-likelihood estimates derived from counts in the
corpus, and λ1, λ2, λ3 are smoothing parameters satisfying λ1 ≥ 0, λ2 ≥ 0, λ3 ≥
0, and λ1 + λ2 + λ3 = 1.

One problem with these estimates is that the value for e(x|s) will be unreliable
if the word x is infrequent: worse still, we have e(x|s) = 0 if the word x is not
seen in the training data. A solution to this problem is described in section 2.7.1.



14CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

2.5.4 Decoding with HMMs: the Viterbi Algorithm

We now turn to the problem of finding the most likely tag sequence for an input
sentence x1 . . . xn. This is the problem of finding

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the argmax is taken over all sequences y1 . . . yn+1 such that yi ∈ K for
i = 1 . . . n, and yn+1 = STOP. We assume that p again takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi) (2.8)

Recall that we have assumed in this definition that y0 = y−1 = *, and yn+1 =
STOP.

The naive, brute force method would be to simply enumerate all possible tag
sequences y1 . . . yn+1, score them under the function p, and take the highest scor-
ing sequence. For example, given the input sentence

the dog barks

and assuming that the set of possible tags is K = {D, N, V}, we would consider all
possible tag sequences:

D D D STOP
D D N STOP
D D V STOP
D N D STOP
D N N STOP
D N V STOP
. . .

and so on. There are 33 = 27 possible sequences in this case.
For longer sentences, however, this method will be hopelessly inefficient. For

an input sentence of length n, there are |K|n possible tag sequences. The expo-
nential growth with respect to the length n means that for any reasonable length
sentence, brute-force search will not be tractable.

The Basic Algorithm

Instead, we will see that we can efficiently find the highest probability tag se-
quence, using a dynamic programming algorithm that is often called the Viterbi
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algorithm. The input to the algorithm is a sentence x1 . . . xn. Given this sentence,
for any k ∈ {1 . . . n}, for any sequence y−1, y0, y1, . . . , yk such that yi ∈ K for
i = 1 . . . k, and y−1 = y0 = *, we define the function

r(y−1, y0, y1, . . . , yk) =
k∏

i=1

q(yi|yi−2, yi−1)
k∏

i=1

e(xi|yi) (2.9)

This is simply a truncated version of the definition of p in Eq. 2.8, where we just
consider the first k terms. In particular, note that

p(x1 . . . xn, y1 . . . yn+1) = r(*, *, y1, . . . , yn)× q(yn+1|yn−1, yn)
= r(*, *, y1, . . . , yn)× q(STOP|yn−1, yn)

(2.10)

It will be convenient to useKk for k ∈ {−1 . . . n} to denote the set of allowable
tags at position k in the sequence: more precisely, define

K−1 = Ko = {*}

and
Kk = K for k ∈ {1 . . . n}

Next, for any k ∈ {1 . . . n}, for any u ∈ Kk−1, v ∈ Kk, define S(k, u, v) to be
the set of sequences y−1, y0, y1, . . . , yk such that yk−1 = u, yk = v, and yi ∈ Ki

for i ∈ {−1 . . . k}. Thus S(k, u, v) is the set of all tag sequences of length k,
which end in the tag bigram (u, v). Define

π(k, u, v) = max
〈y−1,y0,y1,...,yk〉∈S(k,u,v)

r(y−1, y0, y1, . . . , yk) (2.11)

Thus π(k, u, v) is the maximum probability for any sequence of length k, ending
in the tag bigram (u, v).

We now observe that we can calculate the π(k, u, v) values for all (k, u, v)
efficiently, as follows. First, as a base case define

π(0, *, *) = 1

Next, we give the recursive definition.

Proposition 1 For any k ∈ {1 . . . n}, for any u ∈ Kk−1 and v ∈ Kk, we can use
the following recursive definition:

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v)) (2.12)
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This definition is recursive because the definition makes use of the π(k − 1, w, u)
values computed for shorter sequences. This definition will be key to our dynamic
programming algorithm.

How can we justify this recurrence? Recall that π(k, u, v) is the highest proba-
bility for any sequence y−1 . . . yk ending in the bigram (u, v). Any such sequence
must have yk−2 = w for some state w. The highest probability for any sequence
of length k − 1 ending in the bigram (w, u) is π(k − 1, w, u), hence the highest
probability for any sequence of length k ending in the trigram (w, u, v) must be

π(k − 1, w, u)× q(v|w, u)× e(xk|v)

In Eq. 2.12 we simply search over all possible values for w, and return the maxi-
mum.

Our second claim is the following:

Proposition 2

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1) = max
u∈Kn−1,v∈Kn

(π(n, u, v)× q(STOP|u, v))
(2.13)

This follows directly from the identity in Eq. 2.10.
Figure 2.4 shows an algorithm that puts these ideas together. The algorithm

takes a sentence x1 . . . xn as input, and returns

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

as its output. The algorithm first fills in the π(k, u, v) values in using the recursive
definition. It then uses the identity in Eq. 2.13 to calculate the highest probability
for any sequence.

The running time for the algorithm is O(n|K|3), hence it is linear in the length
of the sequence, and cubic in the number of tags.

The Viterbi Algorithm with Backpointers

The algorithm we have just described takes a sentence x1 . . . xn as input, and re-
turns

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

as its output. However we’d really like an algorithm that returned the highest prob-
ability sequence, that is, an algorithm that returns

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)
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Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Return maxu∈Kn−1,v∈Kn (π(n, u, v)× q(STOP|u, v))

Figure 2.4: The basic Viterbi Algorithm.

for any input sentence x1 . . . xn.
Figure 2.5 shows a modified algorithm that achieves this goal. The key step

is to store backpointer values bp(k, u, v) at each step, which record the previous
state w which leads to the highest scoring sequence ending in (u, v) at position k
(the use of backpointers such as these is very common in dynamic programming
methods). At the end of the algorithm, we unravel the backpointers to find the
highest probability sequence, and then return this sequence. The algorithm again
runs in O(n|K|3) time.

2.6 Summary

We’ve covered a number of important points in this chapter, but the end result is
fairly straightforward: we have derived a complete method for learning a tagger
from a training corpus, and for applying it to new sentences. The main points were
as follows:

• A trigram HMM has parameters q(s|u, v) and e(x|s), and defines the joint
probability of any sentence x1 . . . xn paired with a tag sequence y1 . . . yn+1

(where yn+1 = STOP) as

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)
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Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

bp(k, u, v) = arg max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Set (yn−1, yn) = argmaxu∈Kn−1,v∈Kn (π(n, u, v)× q(STOP|u, v))

• For k = (n− 2) . . . 1,

yk = bp(k + 2, yk+1, yk+2)

• Return the tag sequence y1 . . . yn

Figure 2.5: The Viterbi Algorithm with backpointers.
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• Given a training corpus from which we can derive counts, the maximum-
likelihood estimates for the parameters are

q(s|u, v) = c(u, v, s)

c(u, v)

and

e(x|s) = c(s; x)

c(s)

• Given a new sentence x1 . . . xn, and parameters q and e that we have es-
timated from a training corpus, we can find the highest probability tag se-
quence for x1 . . . xn using the algorithm in figure 2.5 (the Viterbi algorithm).

2.7 Advanced Material

2.7.1 Dealing with Unknown Words

Recall that our parameter estimates for the emission probabilities in the HMM are

e(x|s) = c(s; x)

c(s)

where c(s; x) is the number of times state s is paired with word x in the training
data, and c(s) is the number of times state s is seen in training data.

A major issue with these estimates is that for any word x that is not seen in
training data, e(x|s) will be equal to 0 for all states s. Because of this, for any test
sentence x1 . . . xn that contains some word that is never seen in training data, it is
easily verified that

p(x1 . . . xn, y1 . . . yn+1) = 0

for all tag sequences y1 . . . yn+1. Thus the model will completely fail on the test
sentence. In particular, the argmax in

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1) = 0

will not be useful: every tag sequence will have the same, maximum score, of 0.
This is an acute problem, because however large our training data, there will

inevitably be words in test sentences that are never seen in training data. The
vocabulary size for English, for example, is very large; and new words are always
being encountered in test data. Take for example the sentence used in figures 2.2
and 2.3:
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Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

In this sentence it is quite likely that the word Mulally has not been seen in training
data. Similarly, topping is a relatively infrequent word in English, and may not
have been seen in training.

In this section we describe a simple but quite effective solution to this problem.
The key idea is to map low frequency words in training data, and in addition words
seen in test data but never seen in training, to a relatively small set of pseudo-words.
For example, we might map the word Mulally to the pseudo-word initCap, the
word 1990 to the pseudo-word fourDigitNum, and so on. Here the pseudo-
word initCap is used for any word whose first letter is a capital, and whose
remaining letters are lower case. The pseudo-word fourDigitNum is used for
any four digit number.

Figure 2.6 shows an example set of pseudo-words, taken from [?], who applied
an HMM tagger to the problem of named entity recognition. This set of pseudo-
words was chosen by hand, and was clearly chosen to preserve some useful infor-
mation about the spelling features of different words: for example capitalization
features of words, and a sub-division into different number types (one of the entity
classes identified in this work was dates, so it is useful to distinguish different types
of numbers, as numbers are often relevant to dates).

Once a mapping from words to pseudo-words is defined we procede as follows.
Define f(x) to be the function that maps a word x to its pseudo-word f(x). We
define some count cut-off γ: a typical value for γ might be γ = 5. For any word
seen in training data less than γ times, we simply replace the word x by its pseudo-
word f(x). This mapping is applied to words in both training and test examples:
so words which are never seen in training data, but which are seen in test data, are
also mapped to their pseudo-word. Once this mapping has been performed, we can
estimate the parameters of the HMM in exactly the same way as before, with some
of our words in training data now being pseudo-words. Similarly, we can apply the
Viterbi algorithm for decoding with the model, with some of the words in our input
sentences being pseudo-words.

Mapping low-frequency words to pseudo-words has the effect of “closing the
vocabulary”: with this mapping, every word in test data will be seen at least once
in training data (assuming that each pseudo-word is seen at least once in training,
which is generally the case). Thus we will never have the problem that e(x|s) = 0
for some word x in test data. In addition, with a careful choice for the set of
pseudo-words, important information about the spelling of different words will be
preserved. See figure 2.7 for an example sentence before and after the mapping is
applied.
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Word class Example Intuition

twoDigitNum 90 Two digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount,percentage
othernum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of sentence no useful capitalization informa-

tion
initCap Sally Capitalized word
lowercase can Uncapitalized word
other , Punctuation marks, all other

words

Figure 2.6: The mapping to pseudo words used by [?] Bikel et. al (1999).

A drawback of the approach is that some care is needed in defining the map-
ping to pseudo-words: and this mapping may vary depending on the task being
considered (for example different mappings might be used for named-entity recog-
nition versus POS tagging). In a later chapter we will see what is arguably a cleaner
solution to the problem of low frequency and unknown words, building on ideas
from log-linear models.
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Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA fore-
casts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mu-
lally/CP announced/NA first/NA quarter/NA results/NA ./NA

⇓

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA re-
sults/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

Figure 2.7: An example of how the pseudo-word mapping shown in figure 2.6 is
applied to a sentence. Here we are assuming that Profits, Boeing, topping, Wall,
and Mullaly are all seen infrequently enough to be replaced by their pseudo word.
We show the sentence before and after the mapping.



Probabilistic Context-Free Grammars (PCFGs)

Michael Collins

1 Context-Free Grammars

1.1 Basic Definition

A context-free grammar (CFG) is a 4-tupleG = (N,Σ, R, S) where:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols.

• R is a finite set of rules of the formX → Y1Y2 . . . Yn, whereX ∈ N , n ≥ 0,
andYi ∈ (N ∪ Σ) for i = 1 . . . n.

• S ∈ N is a distinguished start symbol.

Figure 1 shows a very simple context-free grammar, for a fragment of English.
In this case the set of non-terminalsN specifies some basic syntactic categories:
for exampleS stands for “sentence”,NP for “noun phrase”,VP for “verb phrase”,
and so on. The setΣ contains the set of words in the vocabulary. The start symbol
in this grammar isS: as we will see, this specifies that every parse tree hasS as its
root. Finally, we have context-free rules such as

S → NP VP

or
NN → man

The first rule specifies that anS (sentence) can be composed of anNP followed by
a VP. The second rule specifies that anNN (a singular noun) can be composed of
the wordman.

Note that the set of allowable rules, as defined above, is quite broad: we can
have any ruleX → Y1 . . . Yn as long asX is a member ofN , and eachYi for

1



i = 1 . . . n is a member of eitherN or Σ. We can for example have “unary rules”,
wheren = 1, such as the following:

NN → man

S → VP

We can also have rules that have a mixture of terminal and non-terminal symbols
on the right-hand-side of the rule, for example

VP → John Vt Mary

NP → the NN

We can even have rules wheren = 0, so that there are no symbols on the right-
hand-side of the rule. Examples are

VP → ǫ

NP → ǫ

Here we useǫ to refer to the empty string. Intuitively, these latter rules specify that
a particular non-terminal (e.g.,VP), is allowed to have no words below it in a parse
tree.

1.2 (Left-most) Derivations

Given a context-free grammarG, a left-most derivation is a sequence of strings
s1 . . . sn where

• s1 = S. i.e.,s1 consists of a single element, the start symbol.

• sn ∈ Σ∗, i.e. sn is made up of terminal symbols only (we writeΣ∗ to denote
the set of all possible strings made up of sequences of words taken fromΣ.)

• Eachsi for i = 2 . . . n is derived fromsi−1 by picking the left-most non-
terminalX in si−1 and replacing it by someβ whereX → β is a rule in
R.

As one example, one left-most derivation under the grammar in figure 1 is the
following:

• s1 = S.

• s2 = NP VP. (We have taken the left-most non-terminal ins1, namelyS,
and chosen the ruleS → NP VP, thereby replacingS by NP followed byVP.)
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N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R =

S → NP VP
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP

Vi → sleeps
Vt → saw
NN → man
NN → woman
NN → telescope
NN → dog
DT → the
IN → with
IN → in

Figure 1: A simple context-free grammar. Note that the set ofnon-terminals
N contains a basic set of syntactic categories: S=sentence, VP=verb phrase,
NP=noun phrase, PP=prepositional phrase, DT=determiner,Vi=intransitive verb,
Vt=transitive verb, NN=noun, IN=preposition. The setΣ is the set of possible
words in the language.

• s3 = DT NN VP. (We have used the ruleNP → DT NN to expand the
left-most non-terminal, namelyNP.)

• s4 = the NN VP. (We have used the ruleDT → the.)

• s5 = the man VP. (We have used the ruleNN → man.)

• s6 = the man Vi. (We have used the ruleVP → Vi.)

• s7 = the man sleeps. (We have used the ruleVi → sleeps.)

It is very convenient to represent derivations asparse trees. For example, the above
derivation would be represented as the parse tree shown in figure 2. This parse tree
hasS as its root, reflecting the fact thats1 = S. We see the sequenceNP VP directly
belowS, reflecting the fact that theS was expanded using the ruleS → NP VP; we
see the sequenceDT NN directly below theNP, reflecting the fact that theNP was
expanded using the ruleNP → DT NN; and so on.

A context-free grammarG will in general specify a set of possible left-most
derivations. Each left-most derivation will end in a stringsn ∈ Σ∗: we say thatsn
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S

NP

DT

the

NN

man

VP

Vi

sleeps

Figure 2: A derivation can be represented as a parse tree.

is theyield of the derivation. The set of possible derivations may be a finite or an
infinite set (in fact the set of derivations for the grammar infigure 1 is infinite).

The following definition is crucial:

• A string s ∈ Σ∗ is said to be in thelanguage defined by the CFG, if there is
at least one derivation whose yield iss.

2 Ambiguity

Note that some stringss may have more than one underlying derivation (i.e., more
than one derivation withs as the yield). In this case we say that the string is
ambiguous under the CFG.

As one example, see figure 3, which gives two parse trees for the string the
man saw the dog with the telescope, both of which are valid under the CFG given
in figure 1. This example is a case of prepositional phrase attachment ambiguity:
the prepositional phrase (PP) with the telescope can modify eitherthe dog, or saw
the dog. In the first parse tree shown in the figure, thePP modifiesthe dog, leading
to anNP the dog with the telescope: this parse tree corresponds to an interpretation
where the dog is holding the telescope. In the second parse tree, thePP modifies
the entireVP saw the dog: this parse tree corresponds to an interpretation where
the man is using the telescope to see the dog.

Ambiguity is an astonishingly severe problem for natural languages. When
researchers first started building reasonably large grammars for languages such as
English, they were surprised to see that sentences often hada very large number
of possible parse trees: it is not uncommon for a moderate-length sentence (say 20
or 30 words in length) to have hundreds, thousands, or even tens of thousands of
possible parses.

As one example, in lecture we argued that the following sentence has a surpris-
ingly large number of parse trees (I’ve found 14 in total):
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S

NP

DT

the

NN

man

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope
S

NP

DT

the

NN

man

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

Figure 3: Two parse trees (derivations) for the sentencethe man saw the dog with
the telescope, under the CFG in figure 1.
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She announced a program to promote safety in trucks and vans

Can you find the different parse trees for this example?

3 Probabilistic Context-Free Grammars (PCFGs)

3.1 Basic Definitions

Given a context-free grammarG, we will use the following definitions:

• TG is the set of all possible left-most derivations (parse trees) under the gram-
marG. When the grammarG is clear from context we will often write this
as simplyT .

• For any derivationt ∈ TG, we writeyield(t) to denote the strings ∈ Σ∗ that
is the yield oft (i.e.,yield(t) is the sequence of words int).

• For a given sentences ∈ Σ∗, we writeTG(s) to refer to the set

{t : t ∈ TG, yield(t) = s}

That is,TG(s) is the set of possible parse trees fors.

• We say that a sentences is ambiguous if it has more than one parse tree, i.e.,
|TG(s)| > 1.

• We say that a sentences is grammatical if it has at least one parse tree, i.e.,
|TG(s)| > 0.

The key idea in probabilistic context-free grammars is to extend our definition
to give aprobability distribution over possible derivations. That is, we will find a
way to define a distribution over parse trees,p(t), such that for anyt ∈ TG,

p(t) ≥ 0

and in addition such that
∑

t∈TG

p(t) = 1

At first glance this seems difficult: each parse-treet is a complex structure, and the
setTG will most likely be infinite. However, we will see that there is a very simple
extension to context-free grammars that allows us to define afunctionp(t).
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Why is this a useful problem? A crucial idea is that once we have a function
p(t), we have a ranking over possible parses for any sentence in order of probabil-
ity. In particular, given a sentences, we can return

arg max
t∈TG(s)

p(t)

as the output from our parser—this is the most likely parse tree fors under the
model. Thus if our distributionp(t) is a good model for the probability of dif-
ferent parse trees in our language, we will have an effectiveway of dealing with
ambiguity.

This leaves us with the following questions:

• How do we define the functionp(t)?

• How do we learn the parameters of our model ofp(t) from training exam-
ples?

• For a given sentences, how do we find the most likely tree, namely

arg max
t∈TG(s)

p(t)?

This last problem will be referred to as thedecoding or parsing problem.

In the following sections we answer these questions throughdefiningproba-
bilistic context-free grammars (PCFGs), a natural generalization of context-free
grammars.

3.2 Definition of PCFGs

Probabilistic context-free grammars (PCFGs) are defined asfollows:

Definition 1 (PCFGs) A PCFG consists of:

1. A context-free grammar G = (N,Σ, S,R).

2. A parameter
q(α → β)

for each rule α → β ∈ R. The parameter q(α → β) can be interpreted as
the conditional probabilty of choosing rule α → β in a left-most derivation,
given that the non-terminal being expanded is α. For any X ∈ N , we have
the constraint

∑

α→β∈R:α=X

q(α → β) = 1

In addition we have q(α → β) ≥ 0 for any α → β ∈ R.
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Given a parse-tree t ∈ TG containing rules α1 → β1, α2 → β2, . . . , αn → βn,
the probability of t under the PCFG is

p(t) =
n

∏

i=1

q(αi → βi)

Figure 4 shows an example PCFG, which has the same underlyingcontext-free
grammar as that shown in figure 1. The only addition to the original context-
free grammar is a parameterq(α → β) for each ruleα → β ∈ R. Each of these
parameters is constrained to be non-negative, and in addition we have the constraint
that for any non-terminalX ∈ N ,

∑

α→β∈R:α=X

q(α → β) = 1

This simply states that for any non-terminalX, the parameter values for all rules
with that non-terminal on the left-hand-side of the rule must sum to one. We can
verify that this property holds for the PCFG in figure 4. For example, we can verify
that this constraint holds forX = VP, because

∑

α→β∈R:α=VP

q(α → β) = q(VP → Vi) + q(VP → Vt NP) + q(VP → VP PP)

= 0.3 + 0.5 + 0.2

= 1.0

To calculate the probability of any parse treet, we simply multiply together the
q values for the context-free rules that it contains. For example, if our parse treet
is

S

NP

DT

the

NN

dog

VP

Vi

sleeps
then we have

p(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the) × q(NN → dog) ×

q(VP → Vi) × q(Vi → sleeps)

Intuitively, PCFGs make the assumption that parse trees aregenerated stochas-
tically, according to the following process:
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N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R, q =

S → NP VP 1.0
VP → Vi 0.3
VP → Vt NP 0.5
VP → VP PP 0.2
NP → DT NN 0.8
NP → NP PP 0.2
PP → IN NP 1.0

Vi → sleeps 1.0
Vt → saw 1.0
NN → man 0.1
NN → woman 0.1
NN → telescope 0.3
NN → dog 0.5
DT → the 1.0
IN → with 0.6
IN → in 0.4

Figure 4: A simple probabilistic context-free grammar (PCFG). In addition to
the set of rulesR, we show the parameter value for each rule. For example,
q(VP → Vt NP) = 0.5 in this PCFG.

• Defines1 = S, i = 1.

• While si contains at least one non-terminal:

– Find the left-most non-terminal insi, call thisX.

– Choose one of the rules of the formX → β from the distribution
q(X → β).

– Createsi+1 by replacing the left-mostX in si by β.

– Seti = i + 1.

So we have simply added probabilities to each step in left-most derivations. The
probability of an entire tree is the product of probabilities for these individual
choices.

3.3 Deriving a PCFG from a Corpus

Having defined PCFGs, the next question is the following: howdo we derive a
PCFG from a corpus? We will assume a set of training data, which is simply a set
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of parse treest1, t2, . . . , tm. As before, we will writeyield(ti) to be the yield for
thei’th parse tree in the sentence, i.e.,yield(ti) is thei’th sentence in the corpus.

Each parse treeti is a sequence of context-free rules: we assume that every
parse tree in our corpus has the same symbol,S, at its root. We can then define a
PCFG(N,Σ, S,R, q) as follows:

• N is the set of all non-terminals seen in the treest1 . . . tm.

• Σ is the set of all words seen in the treest1 . . . tm.

• The start symbolS is taken to beS.

• The set of rulesR is taken to be the set of all rulesα → β seen in the trees
t1 . . . tm.

• The maximum-likelihood parameter estimates are

qML(α → β) =
Count(α → β)

Count(α)

where Count(α → β) is the number of times that the ruleα → β is seen in
the treest1 . . . tm, and Count(α) is the number of times the non-terminalα

is seen in the treest1 . . . tm.

For example, if the ruleVP → Vt NP is seen 105 times in our corpus, and the
non-terminalVP is seen 1000 times, then

q(VP → Vt NP) =
105

1000

3.4 Parsing with PCFGs

A crucial question is the following: given a sentences, how do we find the highest
scoring parse tree fors, or more explicitly, how do we find

arg max
t∈T (s)

p(t) ?

This section describes a dynamic programming algorithm,the CKY algorithm, for
this problem.

The CKY algorithm we present applies to a restricted type of PCFG: a PCFG
where which is in Chomsky normal form (CNF). While the restriction to grammars
in CNF might at first seem to be restrictive, it turns out not tobe a strong assump-
tion. It is possible to convert any PCFG into an equivalent grammar in CNF: we
will look at this question more in the homeworks.

In the next sections we first describe the idea of grammars in CNF, then de-
scribe the CKY algorithm.
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N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R, q =

S → NP VP 1.0
VP → Vt NP 0.8
VP → VP PP 0.2
NP → DT NN 0.8
NP → NP PP 0.2
PP → IN NP 1.0

Vi → sleeps 1.0
Vt → saw 1.0
NN → man 0.1
NN → woman 0.1
NN → telescope 0.3
NN → dog 0.5
DT → the 1.0
IN → with 0.6
IN → in 0.4

Figure 5: A simple probabilistic context-free grammar (PCFG) in Chomsky normal
form. Note that each rule in the grammar takes one of two forms: X → Y1 Y2

whereX ∈ N,Y1 ∈ N,Y2 ∈ N ; or X → Y whereX ∈ N , Y ∈ Σ.

3.4.1 Chomsky Normal Form

Definition 2 (Chomsky Normal Form) A context-free grammar G = (N,Σ, R, S)
is in Chomsky form if each rule α → β ∈ R takes one of the two following forms:

• X → Y1Y2 where X ∈ N,Y1 ∈ N,Y2 ∈ N .

• X → Y where X ∈ N , Y ∈ Σ.

Hence each rule in the grammar either consists of a non-terminal X rewriting as
exactly two non-terminal symbols, Y1Y2; or a non-terminal X rewriting as exactly
one terminal symbol Y .

Figure 5 shows an example of a PCFG in Chomsky normal form.

3.4.2 Parsing using the CKY Algorithm

We now describe an algorithm for parsing with a PCFG in CNF. The input to the
algorithm is a PCFGG = (N,Σ, S,R, q) in Chomsky normal form, and a sentence
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s = x1 . . . xn, wherexi is thei’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentencex1 . . . xn, defineT (i, j,X) for any X ∈ N , for any
(i, j) such that1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminalX is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we defineπ(i, j,X) = 0 if T (i, j,X) is the empty set).

Thusπ(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj, and has non-terminalX as its root. The score for a treet is again taken
to be the product of scores for the rules that it contains (i.e. if the treet contains
rulesα1 → β1, α2 → β2, . . . , αm → βm, thenp(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definitionπ(1, n, S) is the score for the highest probability parse tree
spanning wordsx1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of theπ values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases wherej = i, then the cases wherej = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning wordxi is if the ruleX → xi is in the grammar, in which case the
tree has scoreq(X → xi); otherwise, we setπ(i, i,X) = 0, reflecting the fact that
there are no trees rooted inX spanning wordxi.
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The recursive definition is as follows: for all(i, j) such that1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in theπ values bottom-up: first theπ(i, i,X) values, using the base
case in the recursion; then the values forπ(i, j,X) such thatj = i + 1; then the
values forπ(i, j,X) such thatj = i + 2; and so on.

Note that the algorithm also storesbackpointer valuesbp(i, j,X) for all values
of (i, j,X). These values record the ruleX → Y Z and the split-points leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation ofπ(3, 8, VP). This will be the highest score for
any tree with rootVP, spanning wordsx3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take themax over two choices: first,
a choice of a ruleVP → Y Z which is in the set of rulesR—note that there are two
such rules,VP → Vt NP andVP → VP PP. Second, a choice ofs ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13



Input: a sentences = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Setj = i + l

∗ For allX ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

Output: Returnπ(1, n, S) = maxt∈T (s) p(t), and backpointersbp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.
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How do we justify this recursive definition? The key observation is that any
treet rooted inX, spanning wordsxi . . . xj, must consist of the following:

• A choice of some ruleX → Y Z ∈ R, at the top of the tree.

• A choice of some values ∈ {i . . . j − 1}, which we will refer to as the “split
point” of the rule.

• A choice of a tree rooted inY , spanning wordsxi . . . xs, call this treet1

• A choice of a tree rooted inZ, spanning wordsxs+1 . . . xj , call this treet2.

• We then have
p(t) = q(X → Y Z) × p(t1) × p(t2)

I.e., the probability for the treet is the product of three terms: the rule prob-
ability for the rule at the top of the tree, and probabilitiesfor the sub-treest1
andt2.

For example, consider the following tree, rooted inVP, spanning wordsx3 . . . x8

in our previous example:
VP

VP

Vt

saw

NP

DT

the

NN

man

PP

IN

with

NP

DT

the

NN

telescope
In this case we have the ruleVP → VP PP at the top of the tree; the choice of

split-point iss = 5; the tree dominating wordsx3 . . . xs, rooted inVP, is
VP

Vt

saw

NP

DT

the

NN

man
and the tree dominating wordsxs+1 . . . x8, rooted inPP, is
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PP

IN

with

NP

DT

the

NN

telescope
The second key observation is the following:

• If the highest scoring tree rooted in non-terminal X, and spanning words
xi . . . xj , uses rule X → Y Z and split point s, then its two subtrees must
be: 1) the highest scoring tree rooted in Y that spanns words xi . . . xs; 2)
the highest scoring tree rooted in Z that spans words xs+1 . . . xj .

The proof is by contradiction. If either condition (1) or condition (2) was
not true, we could always find a higher scoring tree rooted inX, spanning words
xi . . . xj, by choosing a higher scoring subtree spanning wordsxi . . . xs orxs+1 . . . xj.

Now let’s look back at our recursive definition:

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

We see that it involves a search over rules possible rulesX → Y Z ∈ R, and
possible split pointss. For each choice of rule and split point, we calculate

q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z)

which is the highest scoring tree rooted inX, spanning wordsxi . . . xj , with this
choice of rule and split point. The definition uses the valuesπ(i, s, Y ) andπ(s +
1, j, Z), corresponding to the two highest scoring subtrees. We takethemax over
all possible choices of rules and split points.

3.4.4 The Inside Algorithm for Summing over Trees

We now describe a second, very similar algorithm, which sumsthe probabilities
for all parse trees for a given sentence, thereby calculating the probability of the
sentence under the PCFG. The algorithm is calledthe inside algorithm.

The input to the algorithm is again a PCFGG = (N,Σ, S,R, q) in Chom-
sky normal form, and a sentences = x1 . . . xn, wherexi is thei’th word in the
sentence. The output of the algorithm is

p(s) =
∑

t∈TG(s)

p(t)
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Herep(s) is the probability of the PCFG generating strings.
We define the following:

• As before, for a given sentencex1 . . . xn, defineT (i, j,X) for anyX ∈ N ,
for any (i, j) such that1 ≤ i ≤ j ≤ n, to be the set of all parse trees for
wordsxi . . . xj such that non-terminalX is at the root of the tree.

• Define
π(i, j,X) =

∑

t∈T (i,j,X)

p(t)

(we defineπ(i, j,X) = 0 if T (i, j,X) is the empty set).

Note that we have simply replaced themax in the previous definition ofπ, with
a sum.

In particular, we have

π(1, n, S) =
∑

t∈TG(s)

p(t) = p(s)

Thus by calculatingπ(1, n, S), we have calculated the probabilityp(s).
We use a very similar recursive definition to before. First, the base case is as

follows: for all i = 1 . . . n, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

The recursive definition is as follows: for all(i, j) such that1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) =
∑

X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z)) (2)

Figure 7 shows the algorithm based on these recursive definitions. The algo-
rithm is essentially identical to the CKY algorithm, but with max replaced by a
sum in the recursive definition. Theπ values are again calculated bottom-up.
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Input: a sentences = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Setj = i + l

∗ For allX ∈ N , calculate

π(i, j,X) =
∑

X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

Output: Returnπ(1, n, S) =
∑

t∈T (s) p(t)

Figure 7: The inside algorithm.
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Lexicalized Probabilistic Context-Free Grammars

Michael Collins

1 Introduction

In the previous lecture notes we introduced probabilistic context-free grammars
(PCFGs) as a model for statistical parsing. We introduced the basic PCFG for-
malism; described how the parameters of a PCFG can be estimated from a set of
training examples (a “treebank”); and derived a dynamic programming algorithm
for parsing with a PCFG.

Unfortunately, the basic PCFGs we have described turn out tobe a rather poor
model for statistical parsing. This note introduceslexicalized PCFGs, which build
directly on ideas from regular PCFGs, but give much higher parsing accuracy. The
remainder of this note is structured as follows:

• In section 2 we describe some weaknesses of basic PCFGs, in particular
focusing on their lack of sensitity to lexical information.

• In section 3 we describe the first step in deriving lexicalized PCFGs: the
process of adding lexical items to non-terminals in treebank parses.

• In section 4 we give a formal definition of lexicalized PCFGs.

• In section 5 we describe how the parameters of lexicalized PCFGs can be
estimated from a treebank.

• In section 6 we describe a dynamic-programming algorithm for parsing with
lexicalized PCFGs.

2 Weaknesses of PCFGs as Parsing Models

We focus on two crucial weaknesses of PCFGs: 1) lack of sensitivity to lexical
information; and 2), lack of sensitivity to structural preferences. Problem (1) is the
underlying motivation for a move to lexicalized PCFGs. In a later lecture we will
describe extensions to lexical PCFGs that address problem (2).
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2.1 Lack of Sensitivity to Lexical Information

First, consider the following parse tree:
S

NP

NNP

IBM

VP

VB

bought

NP

NNP

Lotus
Under the PCFG model, this tree will have probability

q(S→ NP VP)× q(VP → V NP)× q(NP→ NNP)× q(NP→ NNP)

×q(NNP→ IBM)× q(Vt → bought)× q(NNP→ Lotus)

Recall that for any ruleα → β, q(α → β) is an associated parameter, which can
be interpreted as the conditional probability of seeingβ on the right-hand-side of
the rule, given thatα is on the left-hand-side of the rule.

If we consider the lexical items in this parse tree (i.e.,IBM, bought, andLotus),
we can see that the PCFG makes a very strong independence assumption. Intu-
itively the identity of each lexical item depends only on thepart-of-speech (POS)
above that lexical item: for example, the choice of the wordIBM depends on its tag
NNP, but does not depend directly on other information in the tree. More formally,
the choice of each word in the string is conditionally independent of the entire tree,
once we have conditioned on the POS directly above the word. This is clearly a
very strong assumption, and it leads to many problems in parsing. We will see that
lexicalized PCFGs address this weakness of PCFGs in a very direct way.

Let’s now look at how PCFGs behave under a particular type of ambiguity,
prepositional-phrase (PP) attachment ambiguity. Figure 1shows two parse trees
for the same sentence that includes a PP attachment ambiguity. Figure 2 lists the set
of context-free rules for the two parse trees. A critical observation is the following:
the two parse trees have identical rules, with the exceptionof VP -> VP PP
in tree (a), andNP -> NP PP in tree (b). It follows that the probabilistic parser,
when choosing between the two parse trees, will pick tree (a)if

q(VP→ VP PP) > q(NP→ NP PP)

and will pick tree (b) if

q(NP→ NP PP) > q(VP→ VP PP)
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(a) S

NP

NNS

workers

VP

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

(b) S

NP

NNS

workers

VP

VBD

dumped

NP

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

Figure 1: Two valid parses for a sentence that includes a prepositional-phrase at-
tachment ambiguity.
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(a)

Rules
S→ NP VP
NP→ NNS
VP → VP PP
VP→ VBD NP
NP→ NNS
PP→ IN NP
NP→ DT NN
NNS→ workers
VBD → dumped
NNS→ sacks
IN → into
DT → a
NN → bin

(b)

Rules
S→ NP VP
NP→ NNS
NP → NP PP
VP → VBD NP
NP→ NNS
PP→ IN NP
NP→ DT NN
NNS→ workers
VBD → dumped
NNS→ sacks
IN → into
DT → a
NN → bin

Figure 2: The set of rules for parse trees (a) and (b) in figure 1.

Notice that this decision isentirely independent of any lexical information (the
words) in the two input sentences. For this particular case of ambiguity (NP vs VP
attachment of a PP, with just one possible NP and one possibleVP attachment) the
parser will always attach PPs to VP ifq(VP→ VP PP) > q(NP→ NP PP), and
conversely will always attach PPs to NP ifq(NP→ NP PP) > q(VP→ VP PP).

The lack of sensitivity to lexical information in this particular situation, prepositional-
phrase attachment ambiguity, is known to be highly non-optimal. The lexical items
involved can give very strong evidence about whether to attach to the noun or the
verb. If we look at the preposition,into, alone, we find that PPs withinto as the
preposition are almost nine times more likely to attach to a VP rather than an NP
(this statistic is taken from the Penn treebank data). As another example, PPs with
the prepositionof are about 100 times more likely to attach to an NP rather than a
VP. But PCFGs ignore the preposition entirely in making the attachment decision.

As another example, consider the two parse trees shown in figure 3, which is an
example of coordination ambiguity. In this case it can be verified that the two parse
trees have identical sets of context-free rules (the only difference is in the order in
which these rules are applied). Hence a PCFG will assign identical probabilities to
these two parse trees, again completely ignoring lexical information.

In summary, the PCFGs we have described essentially generate lexical items as
an afterthought, conditioned only on the POS directly abovethem in the tree. This
is a very strong independence assumption, which leads to non-optimal decisions
being made by the parser in many important cases of ambiguity.
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(a) NP

NP

NP

NNS

dogs

PP

IN

in

NP

NNS

houses

CC

and

NP

NNS

cats

(b) NP

NP

NNS

dogs

PP

IN

in

NP

NP

NNS

houses

CC

and

NP

NNS

cats

Figure 3: Two valid parses for a noun-phrase that includes aninstance of coordi-
nation ambiguity.
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(a) NP

NP

NN

president

PP

IN

of

NP

NP

DT

a

NN

company

PP

IN

in

NP

NN

Africa

(b) NP

NP

NP

NN

president

PP

IN

of

NP

DT

a

NN

company

PP

IN

in

NP

NN

Africa

Figure 4: Two possible parses forpresident of a company in Africa.

2.2 Lack of Sensitivity to Structural Preferences

A second weakness of PCFGs is their lack of sensitivity to structural preferences.
We illustrate this weakness through a couple of examples.

First, consider the two potential parses forpresident of a company in Africa,
shown in figure 4. This noun-phrase again involves a case of prepositional-phrase
attachment ambiguity: the PPin Africa can either attach topresidentor a company.
It can be verified once again that these two parse trees contain exactly the same set
of context-free rules, and will therefore get identical probabilities under a PCFG.

Lexical information may of course help again, in this case. However another
useful source of information may be basic statistics about structural preferences
(preferences that ignore lexical items). The first parse tree involves a structure of
the following form, where the final PP (in Africa in the example) attaches to the
most recent NP (a company):
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NP

NP

NN

PP

IN NP

NP

NN

PP

IN NP

NN

(1)

This attachment for the final PP is often referred to as aclose attachment, because
the PP has attached to the closest possible preceding NP. Thesecond parse structure
has the form

NP

NP

NP

NN

PP

IN NP

NN

PP

IN NP

NN

(2)

where the final PP has attached to the further NP (presidentin the example).
We can again look at statistics from the treebank for the frequency of structure 1

versus 2: structure 1 is roughly twice as frequent as structure 2. So there is a fairly
significant bias towards close attachment. Again, we stressthat the PCFG assigns
identical probabilities to these two trees, because they include the same set of rules:
hence the PCFG fails to capture the bias towards close-attachment in this case.

There are many other examples where close attachment is a useful cue in dis-
ambiguating structures. The preferences can be even stronger when a choice is
being made between attachment to two different verbs. For example, consider the
sentence

John was believed to have been shot by Bill

Here the PPby Bill can modify either the verbshot(Bill was doing the shooting)
or believe(Bill is doing the believing). However statistics from the treebank show
that when a PP can attach to two potential verbs, it is about 20times more likely
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to attach to the most recent verb. Again, the basic PCFG will often give equal
probability to the two structures in question, because theycontain the same set of
rules.

3 Lexicalization of a Treebank

We now describe how lexicalized PCFGs address the first fundamental weakness of
PCFGs: their lack of sensitivity to lexical information. The first key step, described
in this section, is tolexicalizethe underlying treebank.

Figure 5 shows a parse tree before and after lexicalization.The lexicalization
step has replaced non-terminals such asS or NP with new non-terminals that in-
clude lexical items, for exampleS(questioned) or NP(lawyer).

The remainder of this section describes exactly how trees are lexicalized. First
though, we give the underlying motivation for this step. Thebasic idea will be to
replace rules such as

S→ NP VP

in the basic PCFG, with rules such as

S(questioned)→ NP(lawyer) VP(questioned)

in the lexicalized PCFG. The symbols S(questioned), NP(lawyer) and VP(questioned)
are new non-terminals in the grammar. Each non-terminal nowincludes a lexical
item; the resulting model has far more sensitivity to lexical information.

In one sense, nothing has changed from a formal standpoint: we will sim-
ply move from a PCFG with a relatively small number of non-terminals (S, NP,
etc.) to a PCFG with a much larger set of non-terminals (S(questioned),
NP(lawyer) etc.) This will, however, lead to a radical increase in the num-
ber of rules and non-terminals in the grammar: for this reason we will have to take
some care in estimating the parameters of the underlying PCFG. We describe how
this is done in the next section.

First, however, we describe how the lexicalization processis carried out. The
key idea will be to identify for each context-free rule of theform

X → Y1 Y2 . . . Yn

an indexh ∈ {1 . . . n} that specifies theheadof the rule. The head of a context-
free rule intuitively corresponds to the “center” or the most important child of the
rule.1 For example, for the rule

S→ NP VP
1The idea of heads has a long history in linguistics, which is beyond the scope of this note.
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(a) S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

(b)

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Figure 5: (a) A conventional parse tree as found for example in the Penn treebank.
(b) A lexicalized parse tree for the same sentence. Note thateach non-terminal in
the tree now includes a single lexical item. For clarity we mark the head of each
rule with an overline: for example for the ruleNP → DT NN the childNN is the
head, and hence theNN symbol is marked asNN.
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the head would beh = 2 (corresponding to theVP). For the rule

NP→ NP PP PP PP

the head would beh = 1 (corresponding to theNP). For the rule

PP→ IN NP

the head would beh = 1 (corresponding to theIN), and so on.
Once the head of each context-free rule has been identified, lexical information

can be propagated bottom-up through parse trees in the treebank. For example, if
we consider the sub-tree

NP

DT

the

NN

lawyer
and assuming that the head of the rule

NP→ DT NN

is h = 2 (theNN), the lexicalized sub-tree is
NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer
Parts of speech such asDT or NN receive the lexical item below them as their

head word. Non-terminals higher in the tree receive the lexical item from their
head child: for example, theNP in this example receives the lexical itemlawyer,
because this is the lexical item associated with theNN which is the head child of
theNP. For clarity, we mark the head of each rule in a lexicalized parse tree with
an overline (in this case we haveNN). See figure 5 for an example of a complete
lexicalized tree.

As another example consider theVP in the parse tree in figure 5. Before lex-
icalizing theVP, the parse structure is as follows (we have filled in lexical items
lower in the tree, using the steps described before):
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VP

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness
We then identifyVt as the head of the rule VP→ Vt NP, and lexicalize the tree as
follows:

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness
In summary, once the head of each context-free rule has been identified, lexical

items can be propagated bottom-up through parse trees, to give lexicalized trees
such as the one shown in figure 5(b).

The remaining question is how to identify heads. Ideally, the head of each
rule would be annotated in the treebank in question: in practice however, these
annotations are often not present. Instead, researchers have generally used a simple
set of rules to automatically identify the head of each context-free rule.

As one example, figure 6 gives an example set of rules that identifies the head
of rules whose left-hand-side isNP. Figure 7 shows a set of rules used forVPs.
In both cases we see that the rules look for particular children (e.g.,NN for theNP
case,Vi for theVP case). The rules are fairly heuristic, but rely on some linguistic
guidance on what the head of a rule should be: in spite of theirsimplicity they
work quite well in practice.

4 Lexicalized PCFGs

The basic idea in lexicalized PCFGs will be to replace rules such as

S→ NP VP

with lexicalized rules such as

S(examined)→ NP(lawyer) VP(examined)
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If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

ElseChoose the rightmost child

Figure 6: Example of a set of rules that identifies the head of any rule whose left-
hand-side is an NP.

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains a VP: Choose the leftmost VP

ElseChoose the leftmost child

Figure 7: Example of a set of rules that identifies the head of any rule whose left-
hand-side is a VP.
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Thus we have replaced simple non-terminals such asS or NP with lexicalized non-
terminals such asS(examined) or NP(lawyer).

From a formal standpoint, nothing has changed: we can treat the new, lexi-
calized grammar exactly as we would a regular PCFG. We have just expanded the
number of non-terminals in the grammar from a fairly small number (say 20, or
50) to a much larger number (because each non-terminal now has a lexical item,
we could easily have thousands or tens of thousands of non-terminals).

Each rule in the lexicalized PCFG will have an associated parameter, for ex-
ample the above rule would have the parameter

q(S(examined)→ NP(lawyer) VP(examined))

There are a very large number of parameters in the model, and we will have to
take some care in estimating them: the next section describes parameter estimation
methods.

We will next give a formal definition of lexicalized PCFGs, inChomsky normal
form. First, though, we need to take care of one detail. Each rule in the lexicalized
PCFG has a non-terminal with a head word on the left hand side of the rule: for
example the rule

S(examined)→ NP(lawyer) VP(examined)

hasS(examined) on the left hand side. In addition, the rule has two children.
One of the two children must have the same lexical item as the left hand side:
in this exampleVP(examined) is the child with this property. To be explicit
about which child shares the lexical item with the left hand side, we will add an
annotation to the rule, using→1 to specify that the left child shares the lexical item
with the parent, and→2 to specify that the right child shares the lexical item with
the parent. So the above rule would now be written as

S(examined)→2 NP(lawyer) VP(examined)

The extra notation might seem unneccessary in this case, because it is clear
that the second child is the head of the rule—it is the only child to have the same
lexical item,examined, as the left hand side of the rule. However this information
will be important for rules where both children have the samelexical item: take for
example the rules

PP(in)→1 PP(in) PP(in)

and
PP(in)→2 PP(in) PP(in)
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where we need to be careful about specifying which of the two children is the head
of the rule.

We now give the following definition:

Definition 1 (Lexicalized PCFGs in Chomsky Normal Form) A lexicalized PCFG
in Chomsky normal form is a 6-tupleG = (N,Σ, R, S, q, γ) where:

• N is a finite set of non-terminals in the grammar.

• Σ is a finite set of lexical items in the grammar.

• R is a set of rules. Each rule takes one of the following three forms:

1. X(h) →1 Y1(h) Y2(m) whereX,Y1, Y2 ∈ N , h,m ∈ Σ.

2. X(h) →2 Y1(m) Y2(h) whereX,Y1, Y2 ∈ N , h,m ∈ Σ.

3. X(h) → h whereX ∈ N , h ∈ Σ.

• For each ruler ∈ R there is an associated parameter

q(r)

The parameters satisfyq(r) ≥ 0, and for anyX ∈ N,h ∈ Σ,
∑

r∈R:LHS(r)=X(h)

q(r) = 1

where we useLHS(r) to refer to the left hand side of any ruler.

• For eachX ∈ N , h ∈ Σ, there is a parameterγ(X,h). We haveγ(X,h) ≥
0, and

∑

X∈N,h∈Σ γ(X,h) = 1.

Given a left-most derivationr1, r2, . . . rN under the grammar, where eachri is a
member ofR, the probability of the derivation is

γ(LHS(r1))×
N
∏

i=1

q(ri)

As an example, consider the parse tree in figure 5, repeated here:
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S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness
In this case the parse tree consists of the following sequence of rules:

S(questioned)→2 NP(lawyer) VP(questioned)
NP(lawyer)→2 DT(the) NN(lawyer)
DT(the)→ the
NN(lawyer)→ lawyer
VP(questioned)→1 Vt(questioned) NP(witness)
NP(witness)→2 DT(the) NN(witness)
DT(the)→ the
NN(witness)→ witness

The probability of the tree is calculated as

γ(S, questioned)
×q(S(questioned)→2 NP(lawyer) VP(questioned))
×q(NP(lawyer)→2 DT(the) NN(lawyer))
×q(DT(the)→ the)
×q(NN(lawyer)→ lawyer)
×q(VP(questioned)→1 Vt(questioned) NP(witness))
×q(NP(witness)→2 DT(the) NN(witness))
×q(DT(the)→ the)
×q(NN(witness)→ witness)

Thus the model looks very similar to regular PCFGs, where theprobability of a
tree is calculated as a product of terms, one for each rule in the tree. One difference
is that we have theγ(S, questioned) term for the root of the tree: this term can
be interpreted as the probability of choosing the nonterminal S(questioned) at the
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root of the tree. (Recall that in regular PCFGs we specified that a particular non-
terminal, for exampleS, always appeared at the root of the tree.)

5 Parameter Estimation in Lexicalized PCFGs

We now describe a method for parameter estimation within lexicalized PCFGs.
The number of rules (and therefore parameters) in the model is very large. How-
ever with appropriate smoothing—using techniques described earlier in the class,
for language modeling—we can derive estimates that are robust and effective in
practice.

First, for a given rule of the form

X(h) →1 Y1(h) Y2(m)

or
X(h) →2 Y1(m) Y2(h)

define the following variables:X is the non-terminal on the left-hand side of the
rule;H is the head-word of that non-terminal;R is the rule used, either of the form
X →1 Y1 Y2 orX →2 Y1 Y2; M is the modifier word.

For example, for the rule

S(examined)→2 NP(lawyer) VP(examined)

we have

X = S

H = examined

R = S→2 NP VP

M = lawyer

With these definitions, the parameter for the rule has the following interpreta-
tion:

q(S(examined)→2 NP(lawyer) VP(examined))

= P (R = S→2 NP VP,M = lawyer|X = S,H = examined)

The first step in deriving an estimate ofq(S(examined)→2 NP(lawyer) VP(examined))
will be to use the chain rule to decompose the above expression into two terms:

P (R = S→2 NP VP,M = lawyer|X = S,H = examined)

= P (R = S→2 NP VP|X = S,H = examined) (3)

×P (M = lawyer|R = S→2 NP VP,X = S,H = examined) (4)
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This step is exact, by the chain rule of probabilities.
We will now derive separate smoothed estimates of the quantities in Eqs. 3

and 4. First, for Eq. 3 define the following maximum-likelihood estimates:

qML(S→2 NP VP|S, examined) =
count(R = S→2 NP VP,X = S,H = examined)

count(X = S,H = examined)

qML(S→2 NP VP|S) =
count(R = S→2 NP VP,X = S)

count(X = S)

Here the count(. . .) expressions are counts derived directly from the training sam-
ples (the lexicalized trees in the treebank). Our estimate of

P (R = S→2 NP VP|X = S,H = examined)

is then defined as

λ1 × qML(S→2 NP VP|S, examined) + (1− λ1)× qML(S→2 NP VP|S)

whereλ1 dictates the relative weights of the two estimates (we have0 ≤ λ1 ≤ 1).
The value forλ1 can be estimated using the methods described in the notes on
language modeling for this class.

Next, consider our estimate of the expression in Eq. 4. We candefine the
following two maximum-likelihood estimates:

qML(lawyer|S→2 NP VP, examined) =
count(M = lawyer, R = S→2 NP VP,H = examined)

count(R = S→2 NP VP,H = examined)

qML(lawyer|S→2 NP VP) =
count(M = lawyer, R = S→2 NP VP)

count(R = S→2 NP VP)

The estimate of

P (M = lawyer|R = S→2 NP VP,X = S,H = examined)

is then

λ2 × qML(lawyer|S→2 NP VP, examined) + (1− λ2)× qML(lawyer|S→2 NP VP)

where0 ≤ λ2 ≤ 1 is a parameter specifying the relative weights of the two terms.
Putting these estimates together, our final estimate of the rule parameter is as

follows:

q(S(examined)→2 NP(lawyer) VP(examined))

= (λ1 × qML(S→2 NP VP|S, examined) + (1− λ1)× qML(S→2 NP VP|S))

×(λ2 × qML(lawyer|S→2 NP VP, examined) + (1− λ2)× qML(lawyer|S→2 NP VP))
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It can be seen that this estimate combines very lexically-specific information, for
example the estimates

qML(S→2 NP VP|S, examined)

qML(lawyer|S→2 NP VP, examined)

with estimates that rely less on lexical information, for example

qML(S→2 NP VP|S)

qML(lawyer|S→2 NP VP)

The end result is a model that is sensitive to lexical information, but which is never-
theless robust, because we have used smoothed estimates of the very large number
of parameters in the model.

6 Parsing with Lexicalized PCFGs

The parsing algorithm for lexicalized PCFGs is very similarto the parsing algo-
rithm for regular PCFGs, as described in the previous lecture notes. Recall that
for a regular PCFG the dynamic programming algorithm for parsing makes use of
a dynamic programming tableπ(i, j,X). Each entryπ(i, j,X) stores the high-
est probability for any parse tree rooted in non-terminalX, spanning wordsi . . . j
inclusive in the input sentence. Theπ values can be completed using a recursive
definition, as follows. Assume that the input sentence to thealgorithm isx1 . . . xn.
The base case of the recursion is fori = 1 . . . n, for all X ∈ N ,

π(i, i,X) = q(X → xi)

where we defineq(X → xi) = 0 if the ruleX → xi is not in the grammar.
The recursive definition is as follows: for any non-terminalX, for anyi, j such

that1 ≤ i < j ≤ n,

π(i, j,X) = max
X→Y Z,s∈{i...(j−1)}

q(X → Y Z)× π(i, s, Y )× π(s+ 1, j, Z)

Thus we have amax over all rulesX → Y Z, and all split-pointss ∈ {i . . . (j −
1)}. This recursion is justified because any parse tree rooted inX, spanning words
i . . . j, must be composed of the following choices:

• A rule X → Y Z at the root of the tree.

• A split point s ∈ {i . . . (j − 1)}.
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• A sub-tree rooted inY , spanning words{i . . . s}.

• A sub-tree rooted inZ, spanning words{(s + 1) . . . j}.

Now consider the case of lexicalized PCFGs. A key differenceis that each
non-terminal in the grammar includes a lexical item. A key observation is that
for a given input sentencex1 . . . xn, parse trees for that sentence can only include
non-terminals with lexical items that are one ofx1 . . . xn.

Following this observation, we will define a dynamic programming table with
entriesπ(i, j, h,X) for 1 ≤ i ≤ j ≤ n, h ∈ {i . . . j}, X ∈ N , whereN is the set
of unlexicalized non-terminals in the grammar. We give the following definition:

Definition 2 (Dynamic programming table for lexicalized PCFGs.) π(i, j, h,X)
is the highest probability for any parse tree with non-terminal X and lexical item
h at its root, spanning wordsi . . . j in the input.

As an example, consider the following sentence from earlierin this note:

workers dumped the sacks into a bin

In this case we haven = 7 (there are seven words in the sentence). As one example
entry,

π(2, 7, 2, V P )

will be the highest probability for any subtree rooted inV P (dumped), spanning
words2 . . . 7 in the sentence.

The π values can again be completed using a recursive definition. The base
case is as follows:

π(i, i, i,X) = q(X(xi) → xi)

where we defineq(X(xi) → xi) = 0 if the rule q(X(xi) → xi) is not in the
lexicalized PCFG. Note that this is very similar to the base case for regular PCFGs.
As one example, we would set

π(1, 1, 1,NNS) = q(NNS(workers)→ workers)

for the above example sentence.
We now consider the recursive definition. As an example, consider completing

the value ofπ(2, 7, 2, V P ) for our example sentence. Consider the following sub-
tree that spans words2 . . . 7, has lexical itemx2 = dumped and label VP at its
root:
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VP(dumped)

VP(dumped)

VBD(dumped)

dumped

NP(sacks)

DT(the)

the

NNS(sacks)

sacks

PP(into)

IN(into)

into

NP(bin)

DT(a)

a

NN(bin)

bin

We can see that this subtree has the following sub-parts:

• A choice of split-points ∈ {1 . . . 6}. In this case we chooses = 4 (the split
between the two subtrees under the rule VP(dumped)→1 VBD(dumped) PP(into)
is afterx4 = sacks).

• A choice of modifier wordm. In this case we choosem = 5, corresponding
to x5 = into, becausex5 is the head word of the second child of the rule
VP(dumped)→1 VBD(dumped) PP(into).

• A choice of rule at the root of the tree: in this case the rule isVP(dumped)→1 VBD(dumped) PP(into).

More generally, to find the value for anyπ(i, j, h,X), we need to search over
all possible choices fors, m, and all rules of the formX(xh) →1 Y1(xh) Y2(xm)
or X(xh) →2 Y1(xm) Y2(xh). Figure 8 shows pseudo-code for this step. Note
that some care is needed when enumerating the possible values fors andm. If s is
in the rangeh . . . (j − 1) then the head wordh must come from the left sub-tree; it
follows thatm must come from the right sub-tree, and hence must be in the range
(s + 1) . . . j. Conversely, ifs is in the rangei . . . (h − 1) thenm must be in the
left sub-tree, i.e., in the rangei . . . s. The pseudo-code in figure 8 treats these two
cases separately.

Figure 9 gives the full algorithm for parsing with lexicalized PCFGs. The
algorithm first completes the base case of the recursive definition for theπ values.
It then fills in the rest of theπ values, starting with the case wherej = i+ 1, then
the casej = i+ 2, and so on. Finally, the step

(X∗, h∗) = arg max
X∈N,h∈{1...n}

γ(X,h) × π(1, n, h,X)

finds the pairX∗(h∗) which is at the root of the most probable tree for the input sen-
tence: note that theγ term is taken into account at this step. The highest probability
tree can then be recovered by following backpointers starting atbp(1, n, h∗,X∗).
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1. π(i, j, h,X) = 0

2. Fors = h . . . (j − 1), for m = (s+1) . . . j, for X(xh) →1 Y (xh)Z(xm) ∈
R,

(a) p = q(X(xh) →1 Y (xh)Z(xm))× π(i, s, h, Y )× π(s+ 1, j,m,Z)

(b) If p > π(i, j, h,X),
π(i, j, h,X) = p

bp(i, j, h,X) = 〈s,m, Y, Z〉

3. Fors = i . . . (h− 1), for m = i . . . s, for X(xh) →2 Y (xm)Z(xh) ∈ R,

(a) p = q(X(xh) →2 Y (xm)Z(xh))× π(i, s,m, Y )× π(s+ 1, j, h, Z)

(b) If p > π(i, j, h,X),
π(i, j, h,X) = p

bp(i, j, h,X) = 〈s,m, Y, Z〉

Figure 8: The method for calculating an entryπ(i, j, h,X) in the dynamic pro-
gramming table. The pseudo-code searches over all split-points s, over all mod-
ifier positionsm, and over all rules of the formX(xh) →1 Y (xh) Z(xm) or
X(xh) →2 Y (xm) Z(xh). The algorithm stores backpointer valuesbp(i, j, h,X).
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Input: a sentences = x1 . . . xn, a lexicalized PCFGG = (N,Σ, S,R, q, γ).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i, i,X) =

{

q(X(xi) → xi) if X(xi) → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n− l)

∗ Setj = i+ l

∗ For allX ∈ N , h ∈ {i . . . j}, calculateπ(i, j, h,X) using the algorithm in
figure 8.

Output:
(X∗, h∗) = arg max

S∈N,h∈{1...n}
γ(X,h) × π(1, n, h,X)

Use backpointers starting atbp(1, n, h∗,X∗) to obtain the highest probability tree.

Figure 9: The CKY parsing algorithm for lexicalized PCFGs.
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Statistical Machine Translation:
IBM Models 1 and 2

Michael Collins

1 Introduction

The next few lectures of the course will be focused on machine translation, and in
particular on statistical machine translation (SMT) systems. In this note we will
focus on the IBM translation models, which go back to the late 1980s/early 1990s.
These models were seminal, and form the basis for many SMT models now used
today.

Following convention, we’ll assume throughout this note that the task is to
translate from French (the “source” language) into English (the “target” language).
In general we will use f to refer to a sentence in French: f is a sequence of words
f1, f2 . . . fm where m is the length of the sentence, and fj for j ∈ {1 . . .m} is the
j’th word in the sentence. We will use e to refer to an English sentence: e is equal
to e1, e2 . . . el where l is the length of the English sentence.

In SMT systems, we assume that we have a source of example translations,
(f (k), e(k)) for k = 1 . . . n, where f (k) is the k’th French sentence in the training
examples, e(k) is the k’th English sentence, and e(k) is a translation of f (k). Each
f (k) is equal to f (k)1 . . . f

(k)
mk where mk is the length of the k’th French sentence.

Each e(k) is equal to e(k)1 . . . e
(k)
lk

where lk is the length of the k’th English sentence.
We will estimate the parameters of our model from these training examples.

So where do we get the training examples from? It turns out that quite large
corpora of translation examples are available for many language pairs. The original
IBM work, which was in fact focused on translation from French to English, made
use of the Canadian parliamentary proceedings (the Hansards): the corpus they
used consisted of several million translated sentences. The Europarl data consists
of proceedings from the European parliament, and consists of translations between
several European languages. Other substantial corpora exist for Arabic-English,
Chinese-English, and so on.
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2 The Noisy-Channel Approach

A few lectures ago we introduced generative models, and in particular the noisy-
channel approach. The IBM models are an instance of a noisy-channel model, and
as such they have two components:

1. A language model that assigns a probability p(e) for any sentence e =
e1 . . . el in English. We will, for example, use a trigram language model for
this part of the model. The parameters of the language model can potentially
be estimated from very large quantities of English data.

2. A translation model that assigns a conditional probability p(f |e) to any
French/English pair of sentences. The parameters of this model will be esti-
mated from the translation examples. The model involves two choices, both
of which are conditioned on the English sentence e1 . . . el: first, a choice
of the length, m, of the French sentence; second, a choice of the m words
f1 . . . fm.

Given these two components of the model, following the usual method in the
noisy-channel approach, the output of the translation model on a new French sen-
tence f is:

e∗ = argmax
e∈E

p(e)× p(f |e)

where E is the set of all sentences in English. Thus the score for a potential trans-
lation e is the product of two scores: first, the language-model score p(e), which
gives a prior distribution over which sentences are likely in English; second, the
translation-model score p(f |e), which indicates how likely we are to see the French
sentence f as a translation of e.

Note that, as is usual in noisy-channel models, the model p(f |e) appears to
be “backwards”: even though we are building a model for translation from French
into English, we have a model of p(f |e). The noisy-channel approach has used
Bayes rule:

p(e|f) = p(e)p(f |e)∑
e p(e)p(f |e)

hence

argmax
e∈E

p(e|f) = argmax
e∈E

p(e)p(f |e)∑
e p(e)p(f |e)

= argmax
e∈E

p(e)p(f |e)
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A major benefit of the noisy-channel approach is that it allows us to use a language
model p(e). This can be very useful in improving the fluency or grammaticality of
the translation model’s output.

The remainder of this note will be focused on the following questions:

• How can we define the translation model p(f |e)?

• How can we estimate the parameters of the translation model from the train-
ing examples (f (k), e(k)) for k = 1 . . . n?

We will describe the IBM models—specifically, IBM models 1 and 2—for this
problem. The IBM models were an early approach to SMT, and are now not widely
used for translation: improved models (which we will cover in the next lecture)
have been derived in recent work. However, they will be very useful to us, for the
following reasons:

1. The models make direct use of the idea of alignments, and as a consequence
allow us to recover alignments between French and English words in the
training data. The resulting alignment models are of central importance in
modern SMT systems.

2. The parameters of the IBM models will be estimated using the expectation
maximization (EM) algorithm. The EM algorithm is widely used in statisti-
cal models for NLP and other problem domains. We will study it extensively
later in the course: we use the IBM models, described here, as our first ex-
ample of the algorithm.

3 The IBM Models

3.1 Alignments

We now turn to the problem of modeling the conditional probability p(f |e) for any
French sentence f = f1 . . . fm paired with an English sentence e = e1 . . . el.

Recall that p(f |e) involves two choices: first, a choice of the length m of the
French sentence; second, a choice of the words f1 . . . fm. We will assume that
there is some distribution p(m|l) that models the conditional distribution of French
sentence length conditioned on the English sentence length. From now on, we take
the length m to be fixed, and our focus will be on modeling the distribution

p(f1 . . . fm|e1 . . . el,m)

i.e., the conditional probability of the words f1 . . . fm, conditioned on the English
string e1 . . . el, and the French length m.
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It is very difficult to model p(f1 . . . fm|e1 . . . el,m) directly. A central idea in
the IBM models was to introduce additional alignment variables to the problem.
We will have alignment variables a1 . . . am—that is, one alignment variable for
each French word in the sentence—where each alignment variable can take any
value in {0, 1, . . . , l}. The alignment variables will specify an alignment for each
French word to some word in the English sentence.

Rather than attempting to define p(f1 . . . fm|e1 . . . el,m) directly, we will in-
stead define a conditional distribution

p(f1 . . . fm, al . . . am|e1 . . . el,m)

over French sequences f1 . . . fm together with alignment variables a1 . . . am. Hav-
ing defined this model, we can then calculate p(f1 . . . fm|e1 . . . el,m) by summing
over the alignment variables (“marginalizing out” the alignment variables):

p(f1 . . . fm|e1 . . . el) =
l∑

a1=0

l∑
a2=0

l∑
a3=0

. . .
l∑

am=0

p(f1 . . . fm, a1 . . . am|e1 . . . el)

We now describe the alignment variables in detail. Each alignment variable aj
specifies that the French word fj is aligned to the English word eaj : we will see
soon that intuitively, in the probabilistic model, word fj will be generated from
English word eaj . We define e0 to be a special NULL word; so aj = 0 specifies
that word fj is generated from the NULL word. We will see the role that the NULL
symbol plays when we describe the probabilistic model.

As one example, consider a case where l = 6, m = 7, and

e = And the programme has been implemented

f = Le programme a ete mis en application

In this case the length of the French sentence, m, is equal to 7; hence we have
alignment variables a1, a2, . . . a7. As one alignment (which is quite plausible), we
could have

a1, a2, . . . , a7 = 〈2, 3, 4, 5, 6, 6, 6〉

specifying the following alignment:
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Le ⇒ the
Programme ⇒ program
a ⇒ has
ete ⇒ been
mis ⇒ implemented
en ⇒ implemented
application ⇒ implemented

Note that each French word is aligned to exactly one English word. The alignment
is many-to-one: more than one French word can be aligned to a single English
word (e.g., mis, en, and application are all aligned to implemented). Some English
words may be aligned to zero French words: for example the word And is not
aligned to any French word in this example.

Note also that the model is asymmetric, in that there is no constraint that each
English word is aligned to exactly one French word: each English word can be
aligned to any number (zero or more) French words. We will return to this point
later.

As another example alignment, we could have

a1, a2, . . . a7 = 〈1, 1, 1, 1, 1, 1, 1〉

specifying the following alignment:

Le ⇒ And
Programme ⇒ And
a ⇒ And
ete ⇒ And
mis ⇒ And
en ⇒ And
application ⇒ And

This is clearly not a good alignment for this example.

3.2 Alignment Models: IBM Model 2

We now describe a model for the conditional probability

p(f1 . . . fm, a1 . . . am|e1 . . . el,m)

The model we describe is usually referred to as IBM model 2: we will use IBM-M2
as shorthand for this model. Later we will describe how IBM model 1 is a special
case of IBM model 2. The definition is as follows:
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Definition 1 (IBM Model 2) An IBM-M2 model consists of a finite set E of En-
glish words, a set F of French words, and integers M and L specifying the max-
imum length of French and English sentences respectively. The parameters of the
model are as follows:

• t(f |e) for any f ∈ F , e ∈ E ∪ {NULL}. The parameter t(f |e) can be
interpreted as the conditional probability of generating French word f from
English word e.

• q(j|i, l,m) for any l ∈ {1 . . . L}, m ∈ {1 . . .M}, i ∈ {1 . . .m}, j ∈
{0 . . . l}. The parameter q(j|i, l,m) can be interpreted as the probability of
alignment variable ai taking the value j, conditioned on the lengths l and m
of the English and French sentences.

Given these definitions, for any English sentence e1 . . . el where each ej ∈ E ,
for each length m, we define the conditional distribution over French sentences
f1 . . . fm and alignments a1 . . . am as

p(f1 . . . fm, a1 . . . am|e1 . . . el,m) =
m∏
i=1

q(ai|i, l,m)t(fi|eai)

Here we define e0 to be the NULL word.

To illustrate this definition, consider the previous example where l = 6,m = 7,

e = And the programme has been implemented

f = Le programme a ete mis en application

and the alignment variables are

a1, a2, . . . a7 = 〈2, 3, 4, 5, 6, 6, 6〉

specifying the following alignment:

Le ⇒ the
Programme ⇒ program
a ⇒ has
ete ⇒ been
mis ⇒ implemented
en ⇒ implemented
application ⇒ implemented
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In this case we have

p(f1 . . . fm, a1 . . . am|e1 . . . el,m)

= q(2|1, 6, 7)× t(Le|the)

×q(3|2, 6, 7)× t(Programme|program)

×q(4|3, 6, 7)× t(a|has)

×q(5|4, 6, 7)× t(ete|been)

×q(6|5, 6, 7)× t(mis|implemented)

×q(6|6, 6, 7)× t(en|implemented)

×q(6|7, 6, 7)× t(application|implemented)

Thus each French word has two associated terms: first, a choice of alignment
variable, specifying which English word the word is aligned to; and second, a
choice of the French word itself, based on the English word that was chosen in step
1. For example, for f5 = mis we first choose a5 = 6, with probability q(6|5, 6, 7),
and then choose the word mis, based on the English word e6 = implemented, with
probability t(mis|implemented).

Note that the alignment parameters, q(j|i, l,m) specify a different distribu-
tion 〈q(0|i, l,m), q(1|i, l,m), . . . , q(l|i, l,m)〉 for each possible value of the tuple
i, l,m, where i is the position in the French sentence, l is the length of the English
sentence, and m is the length of the French sentence. This will allow us, for exam-
ple, to capture the tendency for words close to the beginning of the French sentence
to be translations of words close to the beginning of the English sentence.

The model is certainly rather simple and naive. However, it captures some
important aspects of the data.

3.3 Independence Assumptions in IBM Model 2

We now consider the independence assumptions underlying IBM Model 2. Take
L to be a random variable corresponding to the length of the English sentence;
E1 . . . El to be a sequence of random variables corresponding to the words in the
English sentence; M to be a random variable corresponding to the length of the
French sentence; and F1 . . . Fm and A1 . . . Am to be sequences of French words,
and alignment variables. Our goal is to build a model of

P (F1 = f1 . . . Fm = fm, A1 = a1 . . . Am = am|E1 = e1 . . . El = el, L = l,M = m)

As a first step, we can use the chain rule of probabilities to decompose this into
two terms:

P (F1 = f1 . . . Fm = fm, A1 = a1 . . . Am = am|E1 = e1 . . . El = el, L = l,M = m)
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= P (A1 = a1 . . . Am = am|E1 = e1 . . . El = el, L = l,M = m)

×P (F1 = f1 . . . Fm = fm|A1 = a1 . . . Am = am, E1 = e1 . . . El = el, L = l,M = m)

We’ll now consider these two terms separately.
First, we make the following independence assumptions:

P (A1 = a1 . . . Am = am|E1 = e1 . . . El = el, L = l,M = m)

=
m∏
i=1

P (Ai = ai|A1 = a1 . . . Ai−1 = ai−1, E1 = e1 . . . El = el, L = l,M = m)

=
m∏
i=1

P (Ai = ai|L = l,M = m)

The first equality is exact, by the chain rule of probabilities. The second equality
corresponds to a very strong independence assumption: namely, that the distribu-
tion of the random variableAi depends only on the values for the random variables
L and M (it is independent of the English words E1 . . . El, and of the other align-
ment variables). Finally, we make the assumption that

P (Ai = ai|L = l,M = m) = q(ai|i, l,m)

where each q(ai|i, l,m) is a parameter of our model.
Next, we make the following assumption:

P (F1 = f1 . . . Fm = fm|A1 = a1 . . . Am = am, E1 = e1 . . . El = el, L = l,M = m)

=
m∏
i=1

P (Fi = fi|F1 = f1 . . . Fi−1 = fi−1, A1 = a1 . . . Am = am, E1 = e1 . . . El = el, L = l,M = m)

=
m∏
i=1

P (Fi = fi|Eai = eai)

The first step is again exact, by the chain rule. In the second step, we assume that
the value for Fi depends only on Eai : i.e., on the identity of the English word to
which Fi is aligned. Finally, we make the assumption that for all i,

P (Fi = fi|Eai = eai) = t(fi|eai)

where each t(fi|eai) is a parameter of our model.

4 Applying IBM Model 2

The next section describes a parameter estimation algorithm for IBM Model 2.
Before getting to this, we first consider an important question: what is IBM Model
2 useful for?
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The original motivation was the full machine translation problem. Once we
have estimated parameters q(j|i, l,m) and t(f |e) from data, we have a distribution

p(f, a|e)

for any French sentence f , alignment sequence a, and English sentence e; from
this we can derive a distribution

p(f |e) =
∑
a

p(f, a|e)

Finally, assuming we have a language model p(e), we can define the translation of
any French sentence f to be

argmax
e
p(e)p(f |e) (1)

where the argmax is taken over all possible English sentences. The problem of
finding the argmax in Eq. 1 is often referred to as the decoding problem. Solving
the decoding problem is a computationally very hard problem, but various approx-
imate methods have been derived.

In reality, however, IBM Model 2 is not a particularly good translation model.
In later lectures we’ll see alternative, state-of-the-art, models that are far more
effective.

The IBM models are, however, still crucial in modern translation systems, for
two reasons:

1. The lexical probabilities t(f |e) are directly used in various translation sys-
tems.

2. Most importantly, the alignments derived using IBM models are of direct use
in building modern translation systems.

Let’s consider the second point in more detail. Assume that we have estimated
our parameters t(f |e) and q(j|i, l,m) from a training corpus (using the parameter
estimation algorithm described in the next section). Given any training example
consisting of an English sentence e paired with a French sentence f , we can then
find the most probable alignment under the model:

arg max
a1...am

p(a1 . . . am|f1 . . . fm, e1 . . . el,m) (2)

Because the model takes such as simple form, finding the solution to Eq. 2 is
straightforward. In fact, a simple derivation shows that we simply define

ai = arg max
j∈{0...l}

(q(j|i, l,m)× t(fi|ej))
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for i = 1 . . .m. So for each French word i, we simply align it to the English posi-
tion j which maximizes the product of two terms: first, the alignment probability
q(j|i, l,m); and second, the translation probability t(fi|ej).

5 Parameter Estimation

This section describes methods for estimating the t(f |e) parameters and q(j|i, l,m)
parameters from translation data. We consider two scenarios: first, estimation with
fully observed data; and second, estimation with partially observed data. The first
scenario is unrealistic, but will be a useful warm-up before we get to the second,
more realistic case.

5.1 Parameter Estimation with Fully Observed Data

We now turn to the following problem: how do we estimate the parameters t(f |e)
and q(j|i, l,m) of the model? We will assume that we have a training corpus
{f (k), e(k)}nk=1 of translations. Note however, that a crucial piece of information is
missing in this data: we do not know the underlying alignment for each training ex-
ample. In this sense we will refer to the data being only partially observed, because
some information—i.e., the alignment for each sentence—is missing. Because of
this, we will often refer to the alignment variables as being hidden variables. In
spite of the presence of hidden variables, we will see that we can in fact estimate
the parameters of the model.

Note that we could presumably employ humans to annotate data with under-
lying alignments (in a similar way to employing humans to annotate underlying
parse trees, to form a treebank resource). However, we wish to avoid this because
manual annotation of alignments would be an expensive task, taking a great deal
of time for reasonable size translation corpora—moreover, each time we collect a
new corpus, we would have to annotate it in this way.

In this section, as a warm-up for the case of partially-observed data, we will
consider the case of fully-observed data, where each training example does in fact
consist of a triple (f (k), e(k), a(k)) where f (k) = f

(k)
1 . . . f

(k)
mk is a French sentence,

e(k) = e
(k)
1 . . . e

(k)
lk

is an English sentence, and a(k) = a
(k)
1 . . . a

(k)
mk is a sequence of

alignment variables. Solving this case will be be useful in developing the algorithm
for partially-observed data.

The estimates for fully-observed data are simple to derive. Define c(e, f) to
be the number of times word e is aligned to word f in the training data, and c(e)
to be the number of times that e is aligned to any French word. In addition, de-
fine c(j|i, l,m) to be the number of times we see an English sentence of length
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l, and a French sentence of length m, where word i in French is aligned to word
j in English. Finally, define c(i, l,m) to be the number of times we see an En-
glish sentence of length l together with a French sentence of length m. Then the
maximum-likelihood estimates are

tML(f |e) =
c(e, f)

c(e)

qML(j|i, l,m) =
c(j|i, l,m)

c(i, l,m)

Thus to estimate parameters we simply compile counts from the training corpus,
then take ratios of these counts.

Figure 1 shows an algorithm for parameter estimation with fully observed data.
The algorithm for partially-observed data will be a direct modification of this algo-
rithm. The algorithm considers all possible French/English word pairs in the cor-
pus, which could be aligned: i.e., all possible (k, i, j) tuples where k ∈ {1 . . . n},
i ∈ {1 . . .mk}, and j ∈ {0 . . . lk}. For each such pair of words, we have a(k)i = j
if the two words are aligned. In this case we increment the relevant c(e, f), c(e),
c(j|i, l,m) and c(i, l,m) counts. If a(k)i 6= j then the two words are not aligned,
and no counts are incremented.

5.2 Parameter Estimation with Partially Observed Data

We now consider the case of partially-observed data, where the alignment variables
a(k) are not observed in the training corpus. The algorithm for this case is shown in
figure 2. There are two important differences for this algorithm from the algorithm
in figure 1:

• The algorithm is iterative. We begin with some initial value for the t and
q parameters: for example, we might initialize them to random values. At
each iteration we first compile some “counts” c(e), c(e, f), c(j|i, l,m) and
c(i, l,m) based on the data together with our current estimates of the param-
eters. We then re-estimate the parameters using these counts, and iterate.

• The counts are calculated using a similar definition to that in figure 1, but
with one crucial difference: rather than defining

δ(k, i, j) = 1 if a(k)i = j, 0 otherwise

we use the definition

δ(k, i, j) =
q(j|i, lk,mk)t(f

(k)
i |e

(k)
j )∑lk

j=0 q(j|i, lk,mk)t(f
(k)
i |e

(k)
j )
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Input: A training corpus (f (k), e(k), a(k)) for k = 1 . . . n, where f (k) =

f
(k)
1 . . . f

(k)
mk , e(k) = e

(k)
1 . . . e

(k)
lk

, a(k) = a
(k)
1 . . . a

(k)
mk .

Algorithm:

• Set all counts c(. . .) = 0

• For k = 1 . . . n

– For i = 1 . . .mk

∗ For j = 0 . . . lk

c(e
(k)
j , f

(k)
i ) ← c(e

(k)
j , f

(k)
i ) + δ(k, i, j)

c(e
(k)
j ) ← c(e

(k)
j ) + δ(k, i, j)

c(j|i, lk,mk) ← c(j|i, lk,mk) + δ(k, i, j)

c(i, lk,mk) ← c(i, lk,mk) + δ(k, i, j)

where δ(k, i, j) = 1 if a(k)i = j, 0 otherwise.

Output:

tML(f |e) =
c(e, f)

c(e)
qML(j|i, l,m) =

c(j|i, l,m)

c(i, l,m)

Figure 1: The parameter estimation algorithm for IBM model 2, for the case of
fully-observed data.
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Input: A training corpus (f (k), e(k)) for k = 1 . . . n, where f (k) = f
(k)
1 . . . f

(k)
mk ,

e(k) = e
(k)
1 . . . e

(k)
lk

. An integer S specifying the number of iterations of training.
Initialization: Initialize t(f |e) and q(j|i, l,m) parameters (e.g., to random values).

Algorithm:

• For s = 1 . . . S

– Set all counts c(. . .) = 0

– For k = 1 . . . n

∗ For i = 1 . . .mk

· For j = 0 . . . lk

c(e
(k)
j , f

(k)
i ) ← c(e

(k)
j , f

(k)
i ) + δ(k, i, j)

c(e
(k)
j ) ← c(e

(k)
j ) + δ(k, i, j)

c(j|i, lk,mk) ← c(j|i, lk,mk) + δ(k, i, j)

c(i, lk,mk) ← c(i, lk,mk) + δ(k, i, j)

where

δ(k, i, j) =
q(j|i, lk,mk)t(f

(k)
i |e

(k)
j )∑lk

j=0 q(j|i, lk,mk)t(f
(k)
i |e

(k)
j )

– Set

t(f |e) = c(e, f)

c(e)
q(j|i, l,m) =

c(j|i, l,m)

c(i, l,m)

Output: parameters t(f |e) and q(j|i, l,m)

Figure 2: The parameter estimation algorithm for IBM model 2, for the case of
partially-observed data.
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where the q and t values are our current parameter estimates.

Let’s consider this last definition in more detail. We can in fact show the fol-
lowing identity:

P (Ai = j|e1 . . . el, f1 . . . fm,m) =
q(j|i, l,m)t(fi|ej)∑lk
j=0 q(j|i, l,m)t(fi|ej)

where P (Ai = j|e1 . . . el, f1 . . . fm,m) is the conditional probability of the align-
ment variable ai taking the value j, under the current model parameters. Thus we
have effectively filled in the alignment variables probabilistically, using our current
parameter estimates. This in contrast to the fully observed case, where we could
simply define δ(k, i, j) = 1 if a(k)i = j, and 0 otherwise.

As an example, consider our previous example where l = 6, m = 7, and

e(k) = And the programme has been implemented

f (k) = Le programme a ete mis en application

The value for δ(k, 5, 6) for this example would be the current model’s estimate
of the probability of word f5 being aligned to word e6 in the data. It would be
calculated as

δ(k, 5, 6) =
q(6|5, 6, 7)× t(mis|implemented)∑6

j=0 q(j|5, 6, 7)× t(mis|ej)

Thus the numerator takes into account the translation parameter t(mis|implemented)
together with the alignment parameter q(6|5, 6, 7); the denominator involves a sum
over terms, where we consider each English word in turn.

The algorithm in figure 2 is an instance of the expectation-maximization (EM)
algorithm. The EM algorithm is very widely used for parameter estimation in the
case of partially-observed data. The counts c(e), c(e, f) and so on are referred to as
expected counts, because they are effectively expected counts under the distribution

p(a1 . . . am|f1 . . . fm, e1 . . . el,m)

defined by the model. In the first step of each iteration we calculate the expected
counts under the model. In the second step we use these expected counts to re-
estimate the t and q parmeters. We iterate this two-step procedure until the param-
eters converge (this often happens in just a few iterations).
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6 More on the EM Algorithm: Maximum-likelihood Esti-
mation

Soon we’ll trace an example run of the EM algorithm, on some simple data. But
first, we’ll consider the following question: how can we justify the algorithm?
What are its formal guarantees, and what function is it optimizing?

In this section we’ll describe how the EM algorithm is attempting to find the
maximum-likelihood estimates for the data. For this we’ll need to introduce some
notation, and in particular, we’ll need to carefully specify what exactly is meant by
maximum-likelihood estimates for IBM model 2.

First, consider the parameters of the model. There are two types of parameters:
the translation parameters t(f |e), and the alignment parameters q(j|i, l,m). We
will use t to refer to the vector of translation parameters,

t = {t(f |e) : f ∈ F, e ∈ E ∪ {NULL}}

and q to refer to the vector of alignment parameters,

q = {q(j|i, l,m) : l ∈ {1 . . . L},m ∈ {1 . . .M}, j ∈ {0 . . . l}, i ∈ {1 . . .m}}

We will use T to refer to the parameter space for the translation parameters—that
is, the set of valid settings for the translation parameters, defined as follows:

T = {t : ∀e, f, t(f |e) ≥ 0; ∀e ∈ E ∪ {NULL},
∑
f∈F

t(f |e) = 1}

and we will use Q to refer to the parameter space for the alignment parameters,

Q = {q : ∀j, i, l,m, q(j|i, l,m) ≥ 0; ∀i, l,m,
l∑

j=0

q(j|i, l,m) = 1}

Next, consider the probability distribution under the model. This depends on
the parameter settings t and q. We will introduce notation that makes this depen-
dence explicit. We write

p(f, a|e,m; t, q) =
m∏
i=1

q(ai|i, l,m)t(fi|eai)

as the conditional probability of a French sentence f1 . . . fm, with alignment vari-
ables a1 . . . am, conditioned on an English sentence e1 . . . el, and the French sen-
tence length m. The function p(f, a|e,m; t, q) varies as the parameter vectors t
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and q vary, and we make this dependence explicit by including t and q after the “;”
in this expression.

As we described before, we also have the following distribution:

p(f |e,m; t, q) =
∑

a∈A(l,m)

p(f, a|e,m; t, q)

where A(l,m) is the set of all possible settings for the alignment variables, given
that the English sentence has length l, and the French sentence has length m:

A(l,m) = {(a1 . . . am) : aj ∈ {0 . . . l} for j = 1 . . .m}

So p(f |e,m; t, q) is the conditional probability of French sentence f , conditioned
on e and m, under parameter settings t and q.

Now consider the parameter estimation problem. We have the following set-up:

• The input to the parameter estimation algorithm is a set of training examples,
(f (k), e(k)), for k = 1 . . . n.

• The output of the parameter estimation algorithm is a pair of parameter vec-
tors t ∈ T , q ∈ Q.

So how should we choose the parameters t and q? We first consider a single
training example, (f (k), e(k)), for some k ∈ {1 . . . n}. For any parameter settings
t and q, we can consider the probability

p(f (k)|e(k),mk; t, q)

under the model. As we vary the parameters t and q, this probability will vary.
Intuitively, a good model would make this probability as high as possible.

Now consider the entire set of training examples. For any parameter settings t
and q, we can evaluate the probability of the entire training sample, as follows:

n∏
k=1

p(f (k)|e(k),mk; t, q)

Again, this probability varies as the paramters t and q vary; intuitively, we would
like to choose parameter settings t and q which make this probability as high as
possible. This leads to the following definition:

Definition 2 (Maximum-likelihood (ML) estimates for IBM model 2) The ML es-
timates for IBM model 2 are

(tML, qML) = arg max
t∈T ,q∈Q

L(t, q)
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where

L(t, q) = log

(
n∏

k=1

p(f (k)|e(k),mk; t, q)

)

=
n∑

k=1

log p(f (k)|e(k),mk; t, q)

=
n∑

k=1

log
∑

a∈A(lk,mk)

p(f (k), a|e(k),mk; t, q)

We will refer to the function L(t, q) as the log-likelihood function.

Under this definition, the ML estimates are defined as maximizing the function

log

(
n∏

k=1

p(f (k)|e(k),mk; t, q)

)

It is important to realise that this is equivalent to maximizing

n∏
k=1

p(f (k)|e(k),mk; t, q)

because log is a monotonically increasing function, hence maximizing a function
log f(t, q) is equivalent to maximizing f(t, q). The log is often used because it
makes some mathematical derivations more convenient.

We now consider the functionL(t, q) which is being optimized. This is actually
a difficult function to deal with: for one thing, there is no analytical solution to the
optimization problem

(t, q) = arg max
t∈T ,q∈Q

L(t, q) (3)

By an “analytical” solution, we mean a simple, closed-form solution. As one exam-
ple of an analytical solution, in language modeling, we found that the maximum-
likelihood estimates of trigram parameters were

qML(w|u, v) =
count(u, v, w)

count(u, v)

Unfortunately there is no similar simple expression for parameter settings that max-
imize the expression in Eq. 3.

A second difficulty is that L(t, q) is not a convex function. Figure 3 shows ex-
amples of convex and non-convex functions for the simple case of a function f(x)
where x is a scalar value (as opposed to a vector). A convex function has a single
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Figure 3: Examples of convex and non-convex functions in a single dimension. On
the left, f(x) is convex. On the right, g(x) is non-convex.

global optimum, and intuitively, a simple hill-climbing algorithm will climb to this
point. In contrast, the second function in figure 3 has multiple “local” optima, and
intuitively a hill-climbing procedure may get stuck in a local optimum which is not
the global optimum.

The formal definitions of convex and non-convex functions are beyond the
scope of this note. However, in brief, there are many results showing that con-
vex functions are “easy” to optimize (i.e., we can design efficient algorithms that
find the argmax), whereas non-convex functions are generally much harder to deal
with (i.e., we can often show that finding the argmax is computationally hard, for
example it is often NP-hard). In many cases, the best we can hope for is that the
optimization method finds a local optimum of a non-convex function.

In fact, this is precisely the case for the EM algorithm for model 2. It has the
following guarantees:

Theorem 1 (Convergence of the EM algorithm for IBM model 2) We use t(s) and
q(s) to refer to the parameter estimates after s iterations of the EM algorithm, and
t(0) and q(0) to refer to the initial parameter estimates. Then for any s ≥ 1, we
have

L(t(s), q(s)) ≥ L(t(s−1), q(s−1)) (4)

Furthermore, under mild conditions, in the limit as s → ∞, the parameter esti-
mates (t(s), q(s)) converge to a local optimum of the log-likelihood function.

Later in the class we will consider the EM algorithm in much more detail:
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we will show that it can be applied to a quite broad range of models in NLP, and
we will describe it’s theoretical properties in more detail. For now though, this
convergence theorem is the most important property of the algorithm.

Eq. 4 states that the log-likelihood is strictly non-decreasing: at each iteration
of the EM algorithm, it cannot decrease. However this does not rule out rather
uninteresting cases, such as

L(t(s), q(s)) = L(t(s−1), q(s−1))

for all s. The second condition states that the method does in fact converge to a
local optimum of the log-likelihood function.

One important consequence of this result is the following: the EM algorithm
for IBM model 2 may converge to different parameter estimates, depending on the
initial parameter values t(0) and q(0). This is because the algorithm may converge
to a different local optimum, depending on its starting point. In practice, this means
that some care is often required in initialization (i.e., choice of the initial parameter
values).

7 Initialization using IBM Model 1

As described in the previous section, the EM algorithm for IBM model 2 may
be sensitive to initialization: depending on the inital values, it may converge to
different local optima of the log-likelihood function.

Because of this, in practice the choice of a good heuristic for parameter ini-
tialization is important. A very common method is to use IBM Model 1 for this
purpose. We describe IBM Model 1, and the initialization method based on IBM
Model 1, in this section.

Recall that in IBM model 2, we had parameters

q(j|i, l,m)

which are interpreted as the conditional probability of French word fi being aligned
to English word ej , given the French length m and the English length l. In IBM
Model 1, we simply assume that for all i, j, l,m,

q(j|i, l,m) =
1

l + 1

Thus there is a uniform probability distribution over all l + 1 possible English
words (recall that the English sentence is e1 . . . el, and there is also the possibility
that j = 0, indicating that the French word is aligned to e0 = NULL.). This leads to
the following definition:
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Definition 3 (IBM Model 1) An IBM-M1 model consists of a finite set E of En-
glish words, a set F of French words, and integers M and L specifying the max-
imum length of French and English sentences respectively. The parameters of the
model are as follows:

• t(f |e) for any f ∈ F , e ∈ E ∪ {NULL}. The parameter t(f |e) can be
interpreted as the conditional probability of generating French word f from
English word e.

Given these definitions, for any English sentence e1 . . . el where each ej ∈ E ,
for each length m, we define the conditional distribution over French sentences
f1 . . . fm and alignments a1 . . . am as

p(f1 . . . fm, a1 . . . am|e1 . . . el,m) =
m∏
i=1

1

(l + 1)
×t(fi|eai) =

1

(l + 1)m

m∏
i=1

t(fi|eai)

Here we define e0 to be the NULL word.

The parameters of IBM Model 1 can be estimated using the EM algorithm,
which is very similar to the algorithm for IBM Model 2. The algorithm is shown
in figure 4. The only change from the algorithm for IBM Model 2 comes from
replacing

δ(k, i, j) =
q(j|i, lk,mk)t(f

(k)
i |e

(k)
j )∑lk

j=0 q(j|i, lk,mk)t(f
(k)
i |e

(k)
j )

with

δ(k, i, j) =

1
(l(k)+1)

t(f
(k)
i |e

(k)
j )∑lk

j=0
1

(l(k)+1)
t(f

(k)
i |e

(k)
j )

=
t(f

(k)
i |e

(k)
j )∑lk

j=0 t(f
(k)
i |e

(k)
j )

reflecting the fact that in Model 1 we have

q(j|i, lk,mk) =
1

(l(k) + 1)

A key property of IBM Model 1 is the following:

Proposition 1 Under mild conditions, the EM algorithm in figure 4 converges to
the global optimum of the log-likelihood function under IBM Model 1.

Thus for IBM Model 1, we have a guarantee of convergence to the global
optimum of the log-likelihood function. Because of this, the EM algorithm will
converge to the same value, regardless of initialization. This suggests the following
procedure for training the parameters of IBM Model 2:
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Input: A training corpus (f (k), e(k)) for k = 1 . . . n, where f (k) = f
(k)
1 . . . f

(k)
mk ,

e(k) = e
(k)
1 . . . e

(k)
lk

. An integer S specifying the number of iterations of training.
Initialization: Initialize t(f |e) parameters (e.g., to random values).

Algorithm:

• For s = 1 . . . S

– Set all counts c(. . .) = 0

– For k = 1 . . . n

∗ For i = 1 . . .mk

· For j = 0 . . . lk

c(e
(k)
j , f

(k)
i ) ← c(e

(k)
j , f

(k)
i ) + δ(k, i, j)

c(e
(k)
j ) ← c(e

(k)
j ) + δ(k, i, j)

c(j|i, lk,mk) ← c(j|i, lk,mk) + δ(k, i, j)

c(i, lk,mk) ← c(i, lk,mk) + δ(k, i, j)

where

δ(k, i, j) =
t(f

(k)
i |e

(k)
j )∑lk

j=0 t(f
(k)
i |e

(k)
j )

– Set

t(f |e) = c(e, f)

c(e)

Output: parameters t(f |e)

Figure 4: The parameter estimation algorithm for IBM model 1, for the case of
partially-observed data.
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1. Estimate the t parameters using the EM algorithm for IBM Model 1, using
the algorithm in figure 4.

2. Estimate parameters of IBM Model 2 using the algorithm in figure 2. To
initialize this model, use: 1) the t(f |e) parameters estimated under IBM
Model 1, in step 1; 2) random values for the q(j|i, l,m) parameters.

Intuitively, if IBM Model 1 leads to reasonable estimates for the t parameters,
this method should generally perform better for IBM Model 2. This is often the
case in practice.

See the lecture slides for an example of parameter estimation for IBM Model
2, using this heuristic.
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Phrase-Based Translation Models

Michael Collins

April 10, 2013

1 Introduction

In previous lectures we’ve seen IBM translation models 1 and 2. In this note we will describe phrase-
based translation models. Phrase-based translation models give much improved translations over the
IBM models, and give state-of-the-art translations for many pairs of languages.

Crucially, phrase-based translation models allow lexical entries with more than one word on either
the source-language or target-language side: for example, we might have a lexical entry

(le chien, the dog)

specifying that the string le chien in French can be translated as the dog in English. The option
of having multi-word expressions on either the source or target-language side is a significant depar-
ture from IBM models 1 and 2, which are essentially word-to-word translation models (i.e., they
assume that each French word is generated from a single English word). Multi-word expressions
are extremely useful in translation; this is the main reason for the improvements that phrase-based
translation models give.

More formally, a phrase-based lexicon is defined as follows:

Definition 1 (Phrase-based lexicon) A phrase-based lexicon L is a set of lexical entries, where
each lexical entry is a tuple (f, e, g) where:

• f is a sequence of one or more foreign words.

• e is a sequence of one or more English words.

• g is a “score” for the lexical entry. The score could be any value in the reals.

Note that there is no restriction that the number of foreign words and English words in a lexical
entry should be equal. For example, the following entries would be allowed:

(au, to the, 0.5)

(au banque, to the bank, 0.01)

1



(allez au banque, go to the bank,−2.5)

(similar cases, where there are fewer English words than French words, would also be allowed). This
flexibility in the definition of lexical entries is important, because in many cases it is very useful to
have a lexical entry where the number of foreign and English words are not equal.

We’ll soon describe how a phrasal lexicon L can be used in translation. First, however, we describe
how a phrasal lexicon can be learned from a set of example translations.

2 Learning Phrasal Lexicons from Translation Examples

As before, we’ll assume that our training data consists of English sentences e(k) = e
(k)
1 . . . e

(k)
lk

paired

with French sentences f (k) = f
(k)
1 . . . f

(k)
mk , for k = 1 . . . n. Here the integer lk is the length of the

k’th English sentence, and e
(k)
j is the j’th word in the k’th English sentence. The integer mk is the

length of the k’th French sentence, and f
(k)
i is the i’th word in the k’th French sentence.

In addition to the sentences themselves, we will also assume that we have an alignment matrix for
each training example. The alignment matrix A(k) for the k’th example has lk ×mk entries, where

A
(k)
i,j = 1 if French word i is aligned to English word j, 0 otherwise

Note that this representation is more general than the alignments considered for IBM models 1 and
2. In those models, we had alignment variables ai for i ∈ {1 . . .mk}, specifying which English word
the i’th French word is aligned to. By definition, in IBM models 1 and 2 each French word could

only be aligned to a single English word. With an alignment matrix A
(k)
i,j , the alignments can be

many-to-many; for example, a given French word could be aligned to more than one English word

(i.e., for a given i, we could have A
(k)
i,j = 1 for more than one value of j).

We’ll remain agnostic as to how the alignment matrices A(k) are derived. In practice, a common
method is something like the following (see the lecture slides, and the slides from Philipp Koehn’s
tutorial, for more details). First, we train IBM model 2, using the EM algorithm described in the
previous lecture. Second, we use various heuristics to extract alignment matrices from the IBM
model’s output on each training example. To be specific, a very simple method would be as follows
(the method is too naive to be used in practice, but will suffice as an example):

• Use the training examples e(k), f (k) for k = 1 . . . n to train IBM model 2 using the EM algorithm
described in the previous lecture. For any English string e, French string f , and French length
m, this model gives a conditional probability p(f, a|e,m).

• For each training example, define

a(k) = arg max
a

p(f (k), a|e(k),mk)

i.e., a(k) is the most likely alignment under the model, for the k’th example (see the notes on
IBM models 1 and 2 for how to compute this).
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• Define
A

(k)
i,j = 1 if a

(k)
i = j, 0 otherwise

Assuming that we have derived an alignment matrix for each training example, we can now describe
the method for extracting a phrase-based lexicon from a set of translation examples. Figure 1 shows
a simple algorithm for this purpose. The input to the algorithm is a set of translation examples, with
an alignment matrix for each training example. The algorithm iterates over all training examples
(k = 1 . . . n), and over all potential phrase pairs, where a phrase pair is a pair (s, t), (s′, t′) where
(s, t) is a sub-sequence within the source language sentence, and (s′, t′) is a sub-sequence within the
target language sentence. For example, consider the case where the training example consists of the
following sentences:

f (k) = wir müssen auch diese kritik ernst nehmen

e(k) = we must also take these criticisms seriously

then (s, t) = (1, 2), (s′, t′) = (2, 5) would correspond to the potential lexical entry

wir müssen, must also take these

For each possible (s, t), (s′, t′) pair, we test if it is consistent with the alignment matrix A(k): the
function consistent(A(k), (s, t), (s′, t′)) returns true if the potential lexical entry ((s, t), (s′, t′)) is
consistent with the alignment matrix for the training example. See figure 2 for the definition of
the consistent function. Intuitively, the function checks whether any alignments from English or
foreign words in the proposed lexical entry are to words that are “outside” the proposed entry. If
any alignments are to outside words, then the proposed entry is not consistent. In addition, the
function checks that there is at least one word in the English phrase aligned to some word in the
foreign phrase.

For those phrases that are consistent, we add the lexical entry (f, e) to the lexicon, where f = fs . . . ft,
and e = es′ . . . et′ . We also increment the counts c(e, f) and c(e), corresponding to the number of
times that the lexical entry (f, e) is seen in the data, and the number of times the English string e
is seen paired with any foreign phrase f . Finally, having extracted all lexical entries for the corpus,
we define the score for any phrase (f, e) as

log
c(e, f)

c(e)

This can be interpreted as an estimate of the log-conditional probability of foreign phrase f , given
English phrase e.

It is worth noting that these probabilities are in some sense heuristic—it is not clear what proba-
bilistic model is underlying the overall model. They will, however, be very useful when translating
with the model.

3 Translation with Phrase-Based Models

The previous described how a phrase-based lexicon can be derived from a set of training examples.
In this section we describe how the phrase-based lexicon can be used to define a set of translations for
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Inputs: e(k), f (k), A(k) for k = 1 . . . n

Initialization: L = ∅
Algorithm:

• For k = 1 . . . n

– For s = 1 . . .mk, for t = s . . .mk

∗ For s′ = 1 . . . lk, for t′ = s′ . . . lk

· If consistent(A(k), (s, t), (s′, t′)) = True

(1) Define f = f
(k)
s . . . f

(k)
t , define e = e

(k)
s′ . . . e

(k)
t′

(2) Set L = L ∪ {(f, e)}
(3) c(e, f) = c(e, f) + 1
(4) c(e) = c(e) + 1

• For each (f, e) ∈ L create a lexical entry (f, e, g) where

g = log
c(e, f)

c(e)

Figure 1: An algorithm for deriving a phrasal lexicon from a set of training examples with alignments.
The function consistent(A(k), (s, t), (s′, t′)) is defined in figure 2.

Definition of consistent(A, (s, t), (s′, t′)):
(Recall that A is an alignment matrix with Ai,j = 1 if French word i is aligned
to English word j. (s, t) represents the sequence of French words fs . . . ft. (s′, t′)
represents the sequence of English words es′ . . . fs′ .)
For a given matrix A, define

A(i) = {j : Ai,j = 1}

Similarly, define
A′(j) = {i : Ai,j = 1}

Thus A(i) is the set of English words that French word i is aligned to; A′(j) is the
set of French words that English word j is aligned to.
Then consistent(A, (s, t), (s′, t′)) is true if and only if the following conditions are
met:

1. For each i ∈ {s . . . t}, A(i) ⊆ {s′ . . . t′}

2. For each j ∈ {s′ . . . t′}, A′(j) ⊆ {s . . . t}

3. There is at least one (i, j) pair such that i ∈ {s . . . t}, j ∈ {s′ . . . t′}, and
Ai,j = 1

Figure 2: The definition of the consistent function.
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a given input sentence; how each such translation receives a score under the model; and finally, how
we can search for the highest scoring translation for an input sentence, thereby giving a translation
algorithm.

3.1 Phrases, and Derivations

The input to a phrase-based translation model is a source-language sentence with n words, x =
x1 . . . xn. The output is a sentence in the target language. The examples in this section will use
German as the source language, and English as the target language. We will use the German sentence

wir müssen auch diese kritik ernst nehmen

as a running example.

A key component of a phrase-based translation model is a phrase-based lexicon, which pairs se-
quences of words in the source language with sequences of words in the target language, as described
in the previous sections of this note. For example, lexical entries that are relevent to the German
sentence shown above include

(wir müssen, we must)
(wir müssen auch, we must also)
(ernst, seriously)

and so on. Each phrase entry has an associated score, which can take any positive or negative value.
As described before, a very simple way to estimate scores for phrases would be to define

g(f, e) = log
c(e, f)

c(e)
(1)

where f is a foreign sequence of words, e is an English sequence of words, and c(e, f) and c(e) are
counts taken from some corpus. For example, we would have

g(wir müssen, we must) = log
c(we must, wir müssen)

c(we must)

The score for a phrase is then the log of the conditional probability of the foreign string, given the
english string.

We introduce the following notation. For a particular input (source-language) sentence x1 . . . xn, a
phrase is a tuple (s, t, e), signifying that the subsequence xs . . . xt in the source language sentence
can be translated as the target-language string e, using an entry from the phrase-based lexicon. For
example, the phrase (1, 2,we must) would specify that the sub-string x1 . . . x2 can be translated as
we must. Each phrase p = (s, t, e) receives a score g(p) ∈ R under the model. For a given phrase p,
we will use s(p), t(p) and e(p) to refer to its three components. We will use P to refer to the set of
all possible phrases for the input sentence x.

Note that for a given input sentence x1 . . . xn, it is simple to compute the set of possible phrases, P.
We simply consider each substring of x1 . . . xn, and include all entries in the phrasal lexicon which
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have this substring as their English string. We may end up with more than one phrasal entry for a
particular source-language sub-string.

A derivation y is then a finite sequence of phrases, p1, p2, . . . pL, where each pj for j ∈ {1 . . . L} is
a member of P. The length L can be any positive integer value. For any derivation y we use e(y)
to refer to the underlying translation defined by y, which is derived by concatenating the strings
e(p1), e(p2), . . . e(pL). For example, if

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously) (2)

then

e(y) = we must also take this criticism seriously

3.2 The Set of Valid Derivations

We will use Y(x) to denote the set of valid derivations for an input sentence x = x1x2 . . . xn. The set
Y(x) is the set of finite length sequences of phrases p1p2 . . . pL which satisfy the following conditions:

• Each pk for k ∈ {1 . . . L} is a member of the set of phrases P for x1 . . . xn. (Recall that each
pk is a triple (s, t, e).)

• Each word is translated exactly once. More formally, if for a derivation y = p1 . . . pL we define

y(i) =

L∑
k=1

[[s(pk) ≤ i ≤ t(pk)]] (3)

to be the number of times word i is translated (we define [[π]] to be 1 if π is true, 0 otherwise),
then we must have

y(i) = 1

for i = 1 . . . n.

• For all k ∈ {1 . . . L− 1},
|t(pk) + 1− s(pk+1)| ≤ d

where d ≥ 0 is a parameter of the model. In addition, we must have

|1− s(p1)| ≤ d

The first two conditions should be clear. The last condition, which depends on the parameter d,
deserves more explanation.

The parameter d is a limit on how far consecutive phrases can be from each other, and is often
referred to as a distortion limit. To illustrate this, consider our previous example derivation:

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

In this case y = p1p2p3p4 (i.e., the number of phrases, L, is equal to 4). For the sake of argument,
assume that the distortion parameter d, is equal to 4.
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We will now address the following question: does this derivation satisfy the condition

|t(pk) + 1− s(pk+1)| ≤ d (4)

for k = 1 . . . 3? Consider first the case k = 1. In this case we have t(p1) = 3, and s(p2) = 7. Hence

|t(p1) + 1− s(p2)| = |3 + 1− 7| = 3

and the constraint in Eq. 4 is satisfied for k = 1. It can be seen that the value of |t(p1) + 1− s(p2)|
is a measure of how far the phrases p1 and p2 are from each other in the sentence. The distortion
limit specifies that consecutive phrases must be relatively close to each other.

Now consider the constraint for k = 2. In this case we have

|t(p2) + 1− s(p3)| = |7 + 1− 4| = 4

so the constraint is satisfied (recall that we have assume that d = 4). For k = 3 we have

|t(p3) + 1− s(p4)| = |5 + 1− 6| = 0

Finally, we need to check the constraint

|1− s(p1)| ≤ d

For this example, s(p1) = 1, and the constraint is satisfied. This final constraint ensures that the
first phrase in the sequence, p1, is not too far from the start of the sentence.

As an example of a derivation that is invalid, because it does not satisfy the distortion constraints,
consider

y = (1, 2, we must), (7, 7, take), (3, 3, also), (4, 5, this criticism), (6, 6, seriously)

In this case it can be verified that

|t(p2) + 1− s(p3)| = |7 + 1− 3| = 5

which is greater than the distortion limit, d, which is equal to 4.

The motivation for the distortion limit is two-fold:

1. It reduces the search space in the model, making translation with the model more efficient.

2. Empirically, it is often shown to improve translation performance. For many language pairs,
it is preferable to disallow consecutive phrases which are a long distance from each other, as
this will lead to poor translations.

However, it should be noted that the distortion limit is really a rather crude method for modeling
word order differences between languages. Later in the class we will see systems that attempt to
improve upon this method.
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3.3 Scoring Derivations

The next question is the following: how do we score derivations? That is, how do we define the func-
tion f(y) which assigns a score to each possible derivation for a sentence? The optimal translation
under the model for a source-language sentence x will be

arg max
y∈Y(x)

f(y)

In phrase-based systems, the score for any derivation y is calculated as follows:

f(y) = h(e(y)) +

L∑
k=1

g(pk) +

L−1∑
k=1

η × |t(pk) + 1− s(pk+1)| (5)

The components of this score are as follows:

• As defined before, e(y) is the target-language string for derivation y. h(e(y)) is the log-
probability for the string e(y) under a trigram language model. Hence if e(y) = e1e2 . . . em,
then

h(e(y)) = log

m∏
i=1

q(ei|ei−2, ei−1) =

m∑
i=1

log q(ei|ei−2, ei−1)

where q(ei|ei−2, ei−1) is the probability of word ei following the bigram ei−2, ei−1 under a
trigram language model.

• As defined before, g(pk) is the score for the phrase pk (see for example Eq. 1 for one possible
way of defining g(p)).

• η is a “distortion parameter” of the model. It can in general be any positive or negative value,
although in practice it is almost always negative. Each term of the form

η × |t(pk) + 1− s(pk+1)|

then corresponds to a penalty (assuming that η is negative) on how far phrases pk and pk+1

are from each other. Thus in addition to having hard constraints on the distance between
consecutive phrases, we also have a soft constraint (i.e., a penalty that increases linearly with
this distance).

Given these definitions, the optimal translation in the model for a source-language sentence x =
x1 . . . xn is

arg max
y∈Y(x)

f(y)

3.4 Summary: Putting it all Together

Definition 2 (Phrase-based translation models) A phrase-based translation model is a tuple
(L, h, d, η), where:
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• L is a phrase-based lexicon. Each member of L is a tuple (f, e, g) where f is a sequence of one
or more foreign-language words, e is a sequence of one or more English words, and g ∈ R is a
score for the pair (f, e).

• h is a trigram language model: that is, for any English string e1 . . . em,

h(e1 . . . em) =

m∑
i=1

log q(ei|ei−2, ei−1)

where q are the parameters of the model, and we assume that e−1 = e0 = *, where * is a special
start symbol in the language model.

• d is a non-negative integer, specifying the distortion limit under the model.

• η ∈ R is the distortion penalty in the model.

For an input sentence x1 . . . xn, define Y(x) to be the set of valid derivations under the model
(L, h, d, η). The decoding problem is to find

arg max
y∈Y(x)

f(y)

where, assuming y = p1p2 . . . pL,

f(y) = h(e(y)) +

L∑
k=1

g(pk) +

L−1∑
k=1

η × |t(pk) + 1− s(pk+1)|

4 Decoding with Phrase-based Models

We now describe a decoding algorithm for phrase-based models: that is, an algorithm that attempts
to find

arg max
y∈Y(x)

f(y) (6)

where, assuming y = p1p2 . . . pL,

f(y) = h(e(y)) +

L∑
k=1

g(pk) +

L−1∑
k=1

η × |t(pk) + 1− s(pk+1)|

The problem in Eq. 6 is in fact NP-hard for this definition of f(y); hence the algorithm we describe
is an approximate method, which is not guaranteed to find the optimal solution.

A first critical data structure in the algorithm is a state. A state is a tuple

(e1, e2, b, r, α)

where e1, e2 are English words, b is a bit-string of length n (recall that n is the length of the source-
language sentence), r is an integer specifying the end-point of the last phrase in the state, and α is
the score for the state.

9



Any sequence of phrases can be mapped to a corresponding state. For example, the sequence

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism)

would be mapped to the state
(this, criticism, 1111101, 5, α)

The state records the last two words in the translation underlying this sequence of phrases, namely
this and criticism. The bit-string records which words have been translated: the i’th bit in the
bit-string is equal to 1 if the i’th word has been translated, 0 otherwise. In this case, only the 6’th
bit is 0, as only the 6’th word has not been translated. The value r = 5 indicates that the final
phrase in the sequence, (4, 5, this criticism) ends at position 5. Finally, α will be the score of the
partial translation, calculated as

α = h(e(y)) +

L∑
k=1

g(pk) +

L−1∑
k=1

η × |t(pk) + 1− s(pk+1)|

where L = 3, we have
e(y) = we must also take this criticism

and
p1 = (1, 3, we must also), p2 = (7, 7, take), p3 = (4, 5, this criticism)

Note that the state only records the last two words in a derivation: as will see shortly, this is because
a trigram language model is only sensitive to the last two words in the sequence, so the state only
needs to record these last two words.

We define the initial state as
q0 = (∗, ∗, 0n, 0, 0)

where 0n is bit-string of length n, with n zeroes. We have used * to refer to the special “start”
symbol in the language model. The initial state has no words translated (all bits set to 0); the value
for r is 0; and the score α is 0.

Next we define a function ph(q) that maps a state q to the set of phrases which can be appended to
q. For a phrase p to be a member of ph(q), where q = (e1, e2, b, r, α), the following conditions must
be satisfied:

• p must not overlap with the bit-string b. I.e., we must have bi = 0 for i ∈ {s(p) . . . t(p)}.

• The distortion limit must not be violated. More specifically, we must have

|r + 1− s(p)| ≤ d

where d is the distortion limit.

In addition, for any state q, for any phrase p ∈ ph(q), we define

next(q, p)

to be the state formed by combining state q with phrase p. Formally, if q = (e1, e2, b, r, α), and
p = (s, t, ε1 . . . εM ), then next(q, p) is the state q′ = (e′1, e

′
2, b
′, r′, α′) defined as follows:
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• First, for convenience, define ε−1 = e1, and ε0 = e2.

• Define e′1 = εM−1, e′2 = εM .

• Define b′i = 1 for i ∈ {s . . . t}. Define b′i = bi for i /∈ {s . . . t}

• Define r′ = t

• Define

α′ = α+ g(p) +

M∑
i=1

log q(εi|εi−2, εi−1) + η × |r + 1− s|

Hence e′1 and e′2 are updated to record the last two words in the translation formed by appending
phrase p to state q; b′ is an updated bit-string, which is modified to record the fact that words s . . . t
are now translated; r′ is simply set to t, i.e., the end point of the phrase p; and α′ is calculated by
adding the phrase score g(p), the language model scores for the words ε1 . . . εM , and the distortion
term η × |r + 1− s|.

The final function we need for the decoding algorithm is a very simple function, that tests for equality
of two states. This is the function

eq(q, q′)

which returns true or false. Assuming q = (e1, e2, b, r, α), and q′ = (e′1, e
′
2, b
′, r′, α′), eq(q, q′) is true

if and only if e1 = e′1, e2 = e′2, b = b′ and r = r′.

Having defined the functions ph, next, and eq, we are now ready to give the full decoding algorithm.
Figure 3 gives the basic decoding algorithm. The algorithm manipulates sets Qi for i = 0 . . . n. Each
set Qi contains a set of states corresponding to translations of length i (the length for a state q is
simply the number of bits in the bit-string for q whose value is 1—that is, the number of foreign
words that are translated in the state). Initially, we set Q0 to contain a single state, the initial
state q0. We set all other sets Qi for i = 1 . . . n to be the empty set. We then iterate: for each
i ∈ {1, 2, . . . n}, we consider each q ∈ beam(Qi) (beam(Qi) is a subset of Qi, containing only the
highest scoring elements of Qi: we will give a formal definition shortly). For each q ∈ beam(Qi) we
first calculate the set ph(q); then for each p ∈ ph(q) we calculate the next state q′ = next(q, p). We
add this new state to the set Qj where j is the length of state q′. Note that we always have j > i,
so we are always adding elements to states that are further advanced than the set Qi that we are
currently considering.

Figure 4 gives a definition of the function Add(Q, q′, q, p). The function first checks whether there is
an existing state q′′ in Q such that eq(q′′, q′) is true. If this is the case, then q′ replaces q′′ if its score
is higher than q′′; otherwise q′ is not added to Q. Hence only one of the states q′′ and q′ remains in
Q. If there is no such state q′′, then q′ is simply added to Q.

Note that the Add function records backpointers bp(q′) for any state q′ added to a set Q. These
backpointers will allow us to recover the final translation for the highest scoring state. In fact, the
final step of the algorithm it to: 1) find the highest scoring state q in the set Qn; 2) from this state
recover the highest scoring translation, by tracing the backpointers for the states.

Finally, we need to define the function beam(Q); this definition is given in Figure 5. This function
first computes α∗, the highest score for any state in Q; it then discards any state with a score that
is less than α∗ − β, where β > 0 is the beam-width of the decoding algorithm.
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• Inputs: sentence x1 . . . xn. Phrase-based model (L, h, d, η). The phrase-based model defines
the functions ph(q) and next(q, p).

• Initialization: set Q0 = {q0}, Qi = ∅ for i = 1 . . . n.

• For i = 0 . . . n− 1

– For each state q ∈ beam(Qi), for each phrase p ∈ ph(q):

(1) q′ = next(q, p)

(2) Add(Qj , q
′, q, p) where j = len(q′)

• Return: highest scoring state in Qn. Backpointers can be used to find the underlying sequence
of phrases (and the translation).

Figure 3: The basic decoding algorithm. len(q′) is the number bits equal to 1 in the bit-string for q′

(i.e., the number of foreign words translated in the state q′).

Add(Q, q′, q, p)

• If there is some q′′ ∈ Q such that eq(q′′, q′) = True:

– If α(q′) > α(q′′)

∗ Q = {q′} ∪Q \ {q′′}
∗ set bp(q′) = (q, p)

– Else return

• Else

– Q = Q ∪ {q′}
– set bp(q′) = (q, p)

Figure 4: The Add(Q, q′, q, p) function.

Definition of beam(Q): define
α∗ = arg max

q∈Q
α(q)

i.e., α∗ is the highest score for any state in Q.
Define β ≥ 0 to be the beam-width parameter
Then

beam(Q) = {q ∈ Q : α(q) ≥ α∗ − β}

Figure 5: Definition of the beam function in the algorithm in figure 3.
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Log-Linear Models

Michael Collins

1 Introduction

This note describes log-linear models, which are very widely used in natural lan-
guage processing. A key advantage of log-linear models is their flexibility: as we
will see, they allow a very rich set of features to be used in a model, arguably much
richer representations than the simple estimation techniques we have seen earlier in
the course (e.g., the smoothing methods that we initially introduced for language
modeling, and which were later applied to other models such as HMMs for tag-
ging, and PCFGs for parsing). In this note we will give motivation for log-linear
models, give basic definitions, and describe how parameters can be estimated in
these models. In subsequent classes we will see how these models can be applied
to a number of natural language processing problems.

2 Motivation

As a motivating example, consider again the language modeling problem, where
the task is to derive an estimate of the conditional probability

P (Wi = wi|W1 = w1 . . .Wi−1 = wi−1) = p(wi|w1 . . . wi−1)

for any sequence of words w1 . . . wi, where i can be any positive integer. Here wi
is the i’th word in a document: our task is to model the distribution over the word
wi, conditioned on the previous sequence of words w1 . . . wi−1.

In trigram language models, we assumed that

p(wi|w1 . . . wi−1) = q(wi|wi−2, wi−1)

where q(w|u, v) for any trigram (u, v, w) is a parameter of the model. We studied
a variety of ways of estimating the q parameters; as one example, we studied linear
interpolation, where

q(w|u, v) = λ1qML(w|u, v) + λ2qML(w|v) + λ3qML(w) (1)
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Here each qML is a maximum-likelihood estimate, and λ1, λ2, λ3 are parameters
dictating the weight assigned to each estimate (recall that we had the constraints
that λ1 + λ2 + λ3 = 1, and λi ≥ 0 for all i).

Trigram language models are quite effective, but they make relatively narrow
use of the context w1 . . . wi−1. Consider, for example, the case where the context
w1 . . . wi−1 is the following sequence of words:

Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to En-
glish”. It is fair to assume that neither sentence (1) nor (2) (nor indeed
any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

Assume in addition that we’d like to estimate the probability of the word model
appearing as word wi, i.e., we’d like to estimate

P (Wi = model|W1 = w1 . . .Wi−1 = wi−1)

In addition to the previous two words in the document (as used in trigram language
models), we could imagine conditioning on all kinds of features of the context,
which might be useful evidence in estimating the probability of seeing model as the
next word. For example, we might consider the probability of model conditioned
on word wi−2, ignoring wi−1 completely:

P (Wi = model|Wi−2 = any)

We might condition on the fact that the previous word is an adjective

P (Wi = model|pos(Wi−1) = adjective)

here pos is a function that maps a word to its part of speech. (For simplicity we
assume that this is a deterministic function, i.e., the mapping from a word to its
underlying part-of-speech is unambiguous.) We might condition on the fact that
the previous word’s suffix is “ical”:

P (Wi = model|suff4(Wi−1) = ical)

(here suff4 is a function that maps a word to its last four characters). We might
condition on the fact that the word model does not appear in the context:

P (Wi = model|Wj 6= model for j ∈ {1 . . . (i− 1)})
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or we might condition on the fact that the word grammatical does appear in the
context:

P (Wi = model|Wj = grammatical for some j ∈ {1 . . . (i− 1)})

In short, all kinds of information in the context might be useful in estimating the
probability of a particular word (e.g., model) in that context.

A naive way to use this information would be to simply extend the methods
that we saw for trigram language models. Rather than combining three estimates,
based on trigram, bigram, and unigram estimates, we would combine a much larger
set of estimates. We would again estimate λ parameters reflecting the importance
or weight of each estimate. The resulting estimator would take something like the
following form (this is intended as a sketch only):

p(model|w1, . . . wi−1) =

λ1 × qML(model|wi−2 = any, wi−1 = statistical) +

λ2 × qML(model|wi−1 = statistical) +

λ3 × qML(model) +

λ4 × qML(model|wi−2 = any) +

λ5 × qML(model|wi−1 is an adjective) +

λ6 × qML(model|wi−1 ends in “ical”) +

λ7 × qML(model|“model” does not occur somewhere in w1, . . . wi−1) +

λ8 × qML(model|“grammatical” occurs somewhere in w1, . . . wi−1) +

. . .

The problem is that the linear interpolation approach becomes extremely unwieldy
as we add more and more pieces of conditioning information. In practice, it is
very difficult to extend this approach beyond the case where we small number of
estimates that fall into a natural hierarchy (e.g., unigram, bigram, trigram esti-
mates). In contrast, we will see that log-linear models offer a much more satisfac-
tory method for incorporating multiple pieces of contextual information.

3 A Second Example: Part-of-speech Tagging

Our second example concerns part-of-speech tagging. Consider the problem where
the context is a sequence of words w1 . . . wn, together with a sequence of tags,
t1 . . . ti−1 (here i < n), and our task is to model the conditional distribution over
the i’th tag in the sequence. That is, we wish to model the conditional distribution

P (Ti = ti|T1 = t1 . . . Ti−1 = ti−1,W1 = w1 . . .Wn = wn)
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As an example, we might have the following context:

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base from
which Spain expanded its empire into the rest of the Western Hemi-
sphere .

Here w1 . . . wn is the sentence Hispaniola quickly . . . Hemisphere ., and the previ-
ous sequence of tags is t1 . . . t5 = NNP RB VB DT JJ. We have i = 6, and our
task is to model the distribution

P (T6 = t6 | W1 . . .Wn = Hispaniola quickly . . . Hemisphere .,

T1 . . . T5 = NNP RB VB DT JJ)

i.e., our task is to model the distribution over tags for the 6th word, base, in the
sentence.

In this case there are again many pieces of contextual information that might
be useful in estimating the distribution over values for ti. To be concrete, consider
estimating the probability that the tag for base is V (i.e., T6 = V). We might
consider the probability conditioned on the identity of the i’th word:

P (T6 = V|W6 = base)

and we might also consider the probability conditioned on the previous one or two
tags:

P (T6 = V|T5 = JJ)

P (T6 = V|T4 = DT, T5 = JJ)

We might consider the probability conditioned on the previous word in the sentence

P (T6 = V|W5 = important)

or the probability conditioned on the next word in the sentence

P (T6 = V|W7 = from)

We might also consider the probability based on spelling features of the word w6,
for example the last two letters of w6:

P (T6 = V|suff2(W6) = se)

(here suff2 is a function that maps a word to its last two letters).
In short, we again have a scenario where a whole variety of contextual features

might be useful in modeling the distribution over the random variable of interest
(in this case the identity of the i’th tag). Again, a naive approach based on an
extension of linear interpolation would unfortunately fail badly when faced with
this estimation problem.
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4 Log-Linear Models

We now describe how log-linear models can be applied to problems of the above
form.

4.1 Basic Definitions

The abstract problem is as follows. We have some set of possible inputs, X , and a
set of possible labels, Y . Our task is to model the conditional probability

p(y|x)

for any pair (x, y) such that x ∈ X and y ∈ Y .
For example, in the language modeling task we have some finite set of possible

words in the language, call this set V . The set Y is simply equal to V . The set
X is the set of possible sequences w1 . . . wi−1 such that i ≥ 1, and wj ∈ V for
j ∈ {1 . . . (i− 1)}.

In the part-of-speech tagging example, we have some set V of possible words,
and a set T of possible tags. The set Y is simply equal to T . The set X is the set
of contexts of the form

〈w1w2 . . . wn, t1t2 . . . ti−1〉

where n ≥ 1 is an integer specifying the length of the input sentence, wj ∈ V for
j ∈ {1 . . . n}, i ∈ {1 . . . (n− 1)}, and tj ∈ T for j ∈ {1 . . . (i− 1)}.

We will assume throughout that Y is a finite set. The set X could be finite,
countably infinite, or even uncountably infinite.

Log-linear models are then defined as follows:

Definition 1 (Log-linear Models) A log-linear model consists of the following
components:

• A set X of possible inputs.

• A set Y of possible labels. The set Y is assumed to be finite.

• A positive integer d specifying the number of features and parameters in the
model.

• A function f : X × Y → Rd that maps any (x, y) pair to a feature-vector
f(x, y).

• A parameter vector v ∈ Rd.
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For any x ∈ X , y ∈ Y , the model defines a condtional probability

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

Here exp(x) = ex, and v ·f(x, y) =
∑d
k=1 vkfk(x, y) is the inner product between

v and f(x, y). The term p(y|x; v) is intended to be read as “the probability of y
conditioned on x, under parameter values v”.

We now describe the components of the model in more detail, first focusing on
the feature-vector definitions f(x, y), then giving intuition behind the model form

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

5 Features

As described in the previous section, for any pair (x, y), f(x, y) ∈ Rd is a feature
vector representing that pair. Each component fk(x, y) for k = 1 . . . d in this vector
is referred to as a feature. The features allows us to represent different properties
of the input x, in conjunction with the label y. Each feature has an associated
parameter, vk, whose value is estimated using a set of training examples. The
training set consists of a sequence of examples (x(i), y(i)) for i = 1 . . . n, where
each x(i) ∈ X , and each y(i) ∈ Y .

In this section we first give an example of how features can be constructed for
the language modeling problem, as introduced earlier in this note; we then describe
some practical issues in defining features.

5.1 Features for the Language Modeling Example

Consider again the language modeling problem, where the input x is a sequence of
words w1w2 . . . wi−1, and the label y is a word. Figure 1 shows a set of example
features for this problem. Each feature is an indicator function: that is, each feature
is a function that returns either 1 or 0. It is extremely common in NLP applications
to have indicator functions as features. Each feature returns the value of 1 if some
property of the input x conjoined with the label y is true, and 0 otherwise.

The first three features, f1, f2, and f3, are analogous to unigram, bigram, and
trigram features in a regular trigram language model. The first feature returns 1 if
the label y is equal to the word model, and 0 otherwise. The second feature returns
1 if the bigram 〈wi−1 y〉 is equal to 〈statistical model〉, and 0 otherwise. The third
feature returns 1 if the trigram 〈wi−2 wi−1 y〉 is equal to 〈any statistical model〉,
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f1(x, y) =

{
1 if y = model
0 otherwise

f2(x, y) =

{
1 if y = model and wi−1 = statistical
0 otherwise

f3(x, y) =

{
1 if y = model, wi−2 = any, wi−1 = statistical
0 otherwise

f4(x, y) =

{
1 if y = model, wi−2 = any
0 otherwise

f5(x, y) =

{
1 if y = model, wi−1 is an adjective
0 otherwise

f6(x, y) =

{
1 if y = model, wi−1 ends in “ical”
0 otherwise

f7(x, y) =

{
1 if y = model, “model” is not in w1, . . . wi−1

0 otherwise

f8(x, y) =

{
1 if y = model, “grammatical” is in w1, . . . wi−1

0 otherwise

Figure 1: Example features for the language modeling problem, where the input x
is a sequence of words w1w2 . . . wi−1, and the label y is a word.
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and 0 otherwise. Recall that each of these features will have a parameter, v1, v2, or
v3; these parameters will play a similar role to the parameters in a regular trigram
language model.

The features f4 . . . f8 in figure 1 consider properties that go beyond unigram,
bigram, and trigram features. The feature f4 considers word wi−2 in conjunction
with the label y, ignoring the word wi−1; this type of feature is often referred to as
a “skip bigram”. Feature f5 considers the part-of-speech of the previous word (as-
sume again that the part-of-speech for the previous word is available, for example
through a deterministic mapping from words to their part-of-speech, or perhaps
through a POS tagger’s output on words w1 . . . wi−1). Feature f6 considers the
suffix of the previous word, and features f7 and f8 consider various other features
of the input x = w1 . . . wi−1.

From this example we can see that it is possible to incorporate a broad set of
contextual information into the language modeling problem, using features which
are indicator functions.

5.2 Feature Templates

We now discuss some practical issues in defining features. In practice, a key idea in
defining features is that of feature templates. We introduce this idea in this section.

Recall that our first three features in the previous example were as follows:

f1(x, y) =

{
1 if y = model
0 otherwise

f2(x, y) =

{
1 if y = model and wi−1 = statistical
0 otherwise

f3(x, y) =

{
1 if y = model, wi−2 = any, wi−1 = statistical
0 otherwise

These features track the unigram 〈model〉, the bigram 〈statistical model〉, and the
trigram 〈any statistical model〉.

Each of these features is specific to a particular unigram, bigram or trigram. In
practice, we would like to define a much larger class of features, which consider
all possible unigrams, bigrams or trigrams seen in the training data. To do this, we
use feature templates to generate large sets of features.

As one example, here is a feature template for trigrams:

Definition 2 (Trigram feature template) For any trigram (u, v, w) seen in train-
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ing data, create a feature

fN(u,v,w)(x, y) =

{
1 if y = w, wi−2 = u, wi−1 = v
0 otherwise

where N(u, v, w) is a function that maps each trigram in the training data to a
unique integer.

A couple of notes on this definition:

• Note that the template only generates trigram features for those trigrams
seen in training data. There are two reasons for this restriction. First, it is
not feasible to generate a feature for every possible trigram, even those not
seen in training data: this would lead to V 3 features, where V is the number
of words in the vocabulary, which is a very large set of features. Second, for
any trigram (u, v, w) not seen in training data, we do not have evidence to
estimate the associated parameter value, so there is no point including it in
any case.1

• The function N(u, v, w) maps each trigram to a unique integer: that is, it
is a function such that for any trigrams (u, v, w) and (u′, v′, w′) such that
u 6= u′, v 6= v′, or w 6= w′, we have

N(u, v, w) 6= N(u′, v′, w′)

In practice, in implementations of feature templates, the functionN is imple-
mented through a hash function. For example, we could use a hash table to
hash strings such as trigram=any statistical model to integers.
Each distinct string is hashed to a different integer.

Continuing with the example, we can also define bigram and unigram feature
templates:

Definition 3 (Bigram feature template) For any bigram (v, w) seen in training
data, create a feature

fN(v,w)(x, y) =

{
1 if y = w, wi−1 = v
0 otherwise

where N(v, w) maps each bigram to a unique integer.
1This isn’t quite accurate: there may in fact be reasons for including features for trigrams

(u, v, w) where the bigram (u, v) is observed in the training data, but the trigram (u, v, w) is not
observed in the training data. We defer discussion of this until later.
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Definition 4 (Unigram feature template) For any unigram (w) seen in training
data, create a feature

fN(w)(x, y) =

{
1 if y = w
0 otherwise

where N(w) maps each unigram to a unique integer.

We actually need to be slightly more careful with these definitions, to avoid
overlap between trigram, bigram, and unigram features. Define T , B and U to be
the set of trigrams, bigrams, and unigrams seen in the training data. Define

Nt = {i : ∃(u, v, w) ∈ T such that N(u, v, w) = i}

Nb = {i : ∃(v, w) ∈ B such that N(v, w) = i}

Nu = {i : ∃(w) ∈ U such that N(w) = i}

Then we need to make sure that there is no overlap between these sets—otherwise,
two different n-grams would be mapped to the same feature. More formally, we
need

Nt ∩Nb = Nt ∩Nu = Nb ∩Nu = ∅ (2)

In practice, it is easy to ensure this when implementing log-linear models, using a
single hash table to hash strings such as trigram=any statistical model,
bigram=statistical model, unigram=model, to distinct integers.

We could of course define additional templates. For example, the following is
a template which tracks the length-4 suffix of the previous word, in conjunction
with the label y:

Definition 5 (Length-4 Suffix Template) For any pair (v, w) seen in training data,
where v = suff4(wi−1), and w = y, create a feature

fN(suff4=v,w)(x, y) =

{
1 if y = w and suff4(x) = v
0 otherwise

where N(suff4 = v, w) maps each pair (v, w) to a unique integer, with no over-
lap with the other feature templates used in the model (where overlap is defined
analogously to Eq. 2 above).
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5.3 Feature Sparsity

A very important property of the features we have defined above is feature sparsity.
The number of features, d, in many NLP applications can be extremely large. For
example, with just the trigram template defined above, we would have one feature
for each trigram seen in training data. It is not untypical to see models with 100s
of thousands or even millions of features.

This raises obvious concerns with efficiency of the resulting models. However,
we describe in this section how feature sparsity can lead to efficient models.

The key observation is the following: for any given pair (x, y), the number of
values for k in {1 . . . d} such that

fk(x, y) = 1

is often very small, and is typically much smaller than the total number of features,
d. Thus all but a very small subset of the features are 0: the feature vector f(x, y)
is a very sparse bit-string, where almost all features fk(x, y) are equal to 0, and
only a few features are equal to 1.

As one example, consider the language modeling example where we use only
the trigram, bigram and unigram templates, as described above. The number of
features in this model is large (it is equal to the number of distinct trigrams, bigrams
and unigrams seen in training data). However, it can be seen immediately that for
any pair (x, y), at most three features are non-zero (in the worst case, the pair (x, y)
contains trigram, bigram and unigram features which are all seen in the training
data, giving three non-zero features in total).

When implementing log-linear models, models with sparse features can be
quite efficient, because there is no need to explicitly represent and manipulate d-
dimensional feature vectors f(x, y). Instead, it is generally much more efficient to
implement a function (typically through hash tables) that for any pair (x, y) com-
putes the indices of the non-zero features: i.e., a function that computes the set

Z(x, y) = {k : fk(x, y) = 1}

This set is small in sparse feature spaces—for example with unigram/bigram/trigram
features alone, it would be of size at most 3. In general, it is straightforward
to implement a function that computes Z(x, y) in O(|Z(x, y)|) time, using hash
functions. Note that |Z(x, y)| � d, so this is much more efficient than explicitly
computing all d features, which would take O(d) time.

As one example of how efficient computation of Z(x, y) can be very helpful,
consider computation of the inner product

v · f(x, y) =
d∑

k=1

vkfk(x, y)
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This computation is central in log-linear models. A naive method would iterate
over each of the d features in turn, and would take O(d) time. In contrast, if we
make use of the identity

d∑
k=1

vkfk(x, y) =
∑

k∈Z(x,y)
vk

hence looking at only non-zero features, we can compute the inner product in
O(|Z(x, y)|) time.

6 The Model form for Log-Linear Models

We now describe the model form for log-linear models in more detail. Recall that
for any pair (x, y) such that x ∈ X , and y ∈ Y , the conditional probability under
the model is

p(y | x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

The inner products
v · f(x, y)

play a key role in this expression. Again, for illustration consider our languge-
modeling example where the input x = w1 . . . wi−1 is the following sequence of
words:

Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to En-
glish”. It is fair to assume that neither sentence (1) nor (2) (nor indeed
any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

The first step in calculating the probability distribution over the next word in
the document, conditioned on x, is to calculate the inner product v · f(x, y) for
each possible label y (i.e., for each possible word in the vocabulary). We might,
for example, find the following values (we show the values for just a few possible
words—in reality we would compute an inner product for each possible word):

v · f(x,model) = 5.6 v · f(x, the) = −3.2
v · f(x, is) = 1.5 v · f(x, of) = 1.3

v · f(x,models) = 4.5 . . .
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Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by∑
y′∈Y

exp
(
v · f(x, y′)

)
giving

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

(3)

then it is easy to verify that we have a well-formed distribution: that is,∑
y∈Y

p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

performs a transformation which takes as input a set of values {v ·f(x, y) : y ∈ Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y ∈ Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)− log
∑
y′∈Y

exp
(
v · f(x, y′)

)
= v · f(x, y)− g(x)

where
g(x) = log

∑
y′∈Y

exp
(
v · f(x, y′)

)
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The first term, v · f(x, y), is linear in the features f(x, y). The second term, g(x),
depends only on x, and does not depend on the label y. Hence the log probability
log p(y|x; v) is a linear function in the features f(x, y), as long as we hold x fixed;
this justifies the term “log-linear”.

7 Parameter Estimation in Log-Linear Models

7.1 The Log-Likelihood Function, and Regularization

We now consider the problem of parameter estimation in log-linear models. We
assume that we have a training set, consisting of examples (x(i), y(i)) for i ∈
{1 . . . n}, where each x(i) ∈ X , and each y(i) ∈ Y .

Given parameter values v, for any example i, we can calculate the log condi-
tional probability

log p(y(i)|x(i); v)

under the model. Intuitively, the higher this value, the better the model fits this
particular example. The log-likelihood considers the sum of log probabilities of
examples in the training data:

L(v) =
n∑
i=1

log p(y(i)|x(i); v) (4)

This is a function of the parameters v. For any parameter vector v, the value of
L(v) can be interpreted of a measure of how well the parameter vector fits the
training examples.

The first estimation method we will consider is maximum-likelihood estima-
tion, where we choose our parameters as

vML = arg max
v∈Rd

L(v)

In the next section we describe how the parameters vML can be found efficiently.
Intuitively, this estimation method finds the parameters which fit the data as well
as possible.

The maximum-likelihood estimates can run into problems, in particular in
cases where the number of features in the model is very large. To illustrate, con-
sider the language-modeling problem again, and assume that we have trigram, bi-
gram and unigram features. Now assume that we have some trigram (u, v, w)
which is seen only once in the training data; to be concrete, assume that the tri-
gram is any statistical model, and assume that this trigram is seen on the 100’th
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training example alone. More precisely, we assume that

fN(any,statistical,model)(x
(100), y(100)) = 1

In addition, assume that this is the only trigram (u, v, w) in training data with
u = any, and v = statistical. In this case, it can be shown that the maximum-
likelihood parameter estimate for v100 is +∞,2, which gives

p(y(100)|x(100); v) = 1

In fact, we have a very similar situation to the case in maximum-likelihood
estimates for regular trigram models, where we would have

qML(model|any, statistical) = 1

for this trigram. As discussed earlier in the class, this model is clearly under-
smoothed, and it will generalize badly to new test examples. It is unreasonable to
assign

P (Wi = model|Wi−1,Wi−2 = any, statistical) = 1

based on the evidence that the bigram any statistical is seen once, and on that one
instance the bigram is followed by the word model.

A very common solution for log-linear models is to modify the objective func-
tion in Eq. 4 to include a regularization term, which prevents parameter values from
becoming too large (and in particular, prevents parameter values from diverging to
infinity). A common regularization term is the 2-norm of the parameter values, that
is,

||v||2 =
∑
k

v2k

(here ||v|| is simply the length, or Euclidean norm, of a vector v; i.e., ||v|| =√∑
k v

2
k). The modified objective function is

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k (5)

2It is relatively easy to prove that v100 can diverge to ∞. To give a sketch: under the above
assumptions, the feature fN(any,statistical,model)(x, y) is equal to 1 on only a single pair x(i), y

where i ∈ {1 . . . n}, and y ∈ Y , namely the pair (x(100), y(100)). Because of this, as v100 → ∞,
we will have p(y(100)|x(100); v) tending closer and closer to a value of 1, with all other values
p(y(i)|x(i); v) remaining unchanged. Thus we can use this one parameter to maximize the value for
log p(y(100)|x(100); v), independently of the probability of all other examples in the training set.
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where λ > 0 is a parameter, which is typically chosen by validation on some
held-out dataset. We again choose the parameter values to maximize the objective
function: that is, our optimal parameter values are

v∗ = argmax
v
L′(v)

The key idea behind the modified objective in Eq. 5 is that we now balance two
separate terms. The first term is the log-likelihood on the training data, and can be
interpreted as a measure of how well the parameters v fit the training examples. The
second term is a penalty on large parameter values: it encourages parameter values
to be as close to zero as possible. The parameter λ defines the relative weighting of
the two terms. In practice, the final parameters v∗ will be a compromise between
fitting the data as well as is possible, and keeping their values as small as possible.

In practice, this use of regularization is very effective in smoothing of log-linear
models.

7.2 Finding the Optimal Parameters

First, consider finding the maximum-likelihood parameter estimates: that is, the
problem of finding

vML = arg max
v∈Rd

L(v)

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

The bad news is that in the general case, there is no closed-form solution for the
maximum-likelihood parameters vML. The good news is that finding argmaxv L(v)
is a relatively easy problem, because L(v) can be shown to be a convex function.
This means that simple gradient-ascent-style methods will find the optimal param-
eters vML relatively quickly.

Figure 2 gives a sketch of a gradient-based algorithm for optimization of L(v).
The parameter vector is initialized to the vector of all zeros. At each iteration we
first calculate the gradients δk for k = 1 . . . d. We then move in the direction
of the gradient: more precisely, we set v ← v + β∗ × δ where β∗ is chosen to
give the optimal improvement in the objective function. This is a “hill-climbing”
technique where at each point we compute the steepest direction to move in (i.e.,
the direction of the gradient); we then move the distance in that direction which
gives the greatest value for L(v).

Simple gradient ascent, as shown in figure 2, can be rather slow to converge.
Fortunately there are many standard packages for gradient-based optimization,
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Initialization: v = 0

Iterate until convergence:

• Calculate δk =
dL(v)
dvk

for k = 1 . . . d

• Calculate β∗ = argmaxβ∈R L(v + βδ) where δ is the vector with
components δk for k = 1 . . . d (this step is performed using some type
of line search)

• Set v ← v + β∗δ

Figure 2: A gradient ascent algorithm for optimization of L(v).

which use more sophisticated algorithms, and which give considerably faster con-
vergence. As one example, a commonly used method for parameter estimation in
log-linear models is LBFGs. LBFGs is again a gradient method, but it makes a
more intelligent choice of search direction at each step. It does however rely on the
computation of L(v) and dL(v)

dvk
for k = 1 at each step—in fact this is the only infor-

mation it requires about the function being optimized. In summary, if we can com-
pute L(v) and dL(v)

dvk
efficiently, then it is simple to use an existing gradient-based

optimization package (e.g., based on LBFGs) to find the maximum-likelihood es-
timates.

Optimization of the regularized objective function,

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k

can be performed in a very similar manner, using gradient-based methods. L′(v)
is also a convex function, so a gradient-based method will find the global optimum
of the parameter estimates.

The one remaining step is to describe how the gradients

dL(v)

dvk

and
dL′(v)

dvk

can be calculated. This is the topic of the next section.
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7.3 Gradients

We first consider the derivatives
dL(v)

dvk

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

It is relatively easy to show (see the appendix of this note), that for any k ∈
{1 . . . d},

dL(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y) (6)

where as before

p(y|x(i); v) =
exp

(
v · f(x(i), y)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
The expression in Eq. 6 has a quite intuitive form. The first part of the expression,

n∑
i=1

fk(x
(i), y(i))

is simply the number of times that the feature fk is equal to 1 on the training ex-
amples (assuming that fk is an indicator function; i.e., assuming that fk(x(i), y(i))
is either 1 or 0). The second part of the expression,

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)

can be interpreted as the expected number of times the feature is equal to 1, where
the expectation is taken with respect to the distribution

p(y|x(i); v) =
exp

(
v · f(x(i), y)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
specified by the current parameters. The gradient is then the difference of these
terms. It can be seen that the gradient is easily calculated.

The gradients
dL′(v)

dvk
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where

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k

are derived in a very similar way. We have

d

dvk

(∑
k

v2k

)
= 2vk

hence

dL′(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)− λvk (7)

Thus the only difference from the gradient in Eq. 6 is the additional term −λvk in
this expression.

A Calculation of the Derivatives

In this appendix we show how to derive the expression for the derivatives, as given
in Eq. 6. Our goal is to find an expression for

dL(v)

dvk

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

First, consider a single term log p(y(i)|x(i); v). Because

p(y(i)|x(i); v) =
exp

(
v · f(x(i), y(i))

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
we have

log p(y(i)|x(i); v) = v · f(x(i), y(i))− log
∑
y′∈Y

exp
(
v · f(x(i), y′)

)
The derivative of the first term in this expression is simple:

d

dvk

(
v · f(x(i), y(i))

)
=

d

dvk

(∑
k

vkfk(x
(i), y(i))

)
= fk(x

(i), y(i)) (8)
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Now consider the second term. This takes the form

log g(v)

where
g(v) =

∑
y′∈Y

exp
(
v · f(x(i), y′)

)
By the usual rules of differentiation,

d

dvk
log g(v) =

d
dvk

(g(v))

g(v)

In addition, it can be verified that

d

dvk
g(v) =

∑
y′∈Y

fk(x
(i), y′) exp

(
v · f(x(i), y′)

)
hence

d

dvk
log g(v) =

d
dvk

(g(v))

g(v)
(9)

=

∑
y′∈Y fk(x

(i), y′) exp
(
v · f(x(i), y′)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

) (10)

=
∑
y′∈Y

fk(x(i), y′)× exp
(
v · f(x(i), y′)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
 (11)

=
∑
y′∈Y

fk(x
(i), y′)p(y′|x; v) (12)

Combining Eqs 8 and 12 gives

dL(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)
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Chapter 8

MEMMs (Log-Linear Tagging
Models)

8.1 Introduction

In this chapter we return to the problem of tagging. We previously described hidden
Markov models (HMMs) for tagging problems. This chapter describes a powerful
alternative to HMMs, log-linear tagging models, which build directly on ideas
from log-linear models. A key advantage of log-linear tagging models is that they
allow highly flexible representations, allowing features to be easily integrated in
the model.

Log-linear tagging models are sometimes referred to as “maximum entropy
Markov models (MEMMs)”.1 We will use the terms “MEMM” and “log-linear
tagging model” interchangeably in this chapter. The name MEMM was first intro-
duced by McCallum et al. (2000).

Log-linear tagging models are conditional tagging models. Recall that a gen-
erative tagging model defines a joint distribution p(x1 . . . xn, y1 . . . yn) over sen-
tences x1 . . . xn paired with tag sequences y1 . . . yn. In contrast, a conditional
tagging model defines a conditional distribution

p(y1 . . . yn|x1 . . . xn)

corresponding to the probability of the tag sequence y1 . . . yn conditioned on the
input sentence x1 . . . xn. We give the following definition:

1This name is used because 1) log-linear models are also referred to as maximum entropy models,
as it can be shown in the unregularized case that the maximum likelihood estimates maximize an
entropic measure subject to certain linear constraints; 2) as we will see shortly, MEMMs make a
Markov assumption that is closely related to the Markov assumption used in HMMs.

1
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Definition 1 (Conditional Tagging Models) A conditional tagging model consists
of:

• A set of words V (this set may be finite, countably infinite, or even uncount-
ably infinite).

• A finite set of tags K.

• A function p(y1 . . . yn|x1 . . . xn) such that:

1. For any 〈x1 . . . xn, y1 . . . yn〉 ∈ S,

p(y1 . . . yn|x1 . . . xn) ≥ 0

where S is the set of all sequence/tag-sequence pairs 〈x1 . . . xn, y1 . . . yn〉
such that n ≥ 1, xi ∈ V for i = 1 . . . n, and yi ∈ K for i = 1 . . . n.

2. For any x1 . . . xn such that n ≥ 1 and xi ∈ V for i = 1 . . . n,∑
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn) = 1

where Y(n) is the set of all tag sequences y1 . . . yn such that yi ∈ K
for i = 1 . . . n.

Given a conditional tagging model, the function from sentences x1 . . . xn to tag
sequences y1 . . . yn is defined as

f(x1 . . . xn) = arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

Thus for any input x1 . . . xn, we take the highest probability tag sequence as the
output from the model.

We are left with the following three questions:

• How we define a conditional tagging model p(y1 . . . yn|x1 . . . xn)?

• How do we estimate the parameters of the model from training examples?

• How do we efficiently find

arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

for any input x1 . . . xn?
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The remainder of this chapter describes how MEMMs give a solution to these
questions. In brief, a log-linear model is used to define a conditional tagging model.
The parameters of the model can be estimated using standard methods for param-
eter estimation in log-linear models. MEMMs make a Markov independence as-
sumption that is closely related to the Markov independence assumption in HMMs,
and that allows the argmax above to be computed efficiently using dynamic pro-
gramming.

8.2 Trigram MEMMs

This section describes the model form for MEMMs. We focus on trigram MEMMs,
which make a second order Markov assumption, where each tag depends on the
previous two tags. The generalization to other Markov orders, for example first-
order (bigram) or third-order (four-gram) MEMMs, is straightforward.

Our task is to model the conditional distribution

P (Y1 = y1 . . . Yn = yn|X1 = x1 . . . Xn = xn)

for any input sequence x1 . . . xn paired with a tag sequence y1 . . . yn.
We first use the following decomposition:

P (Y1 = y1 . . . Yn = yn|X1 = x1 . . . Xn = xn)

=
n∏
i=1

P (Yi = yi|X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yi−1 = yi−1)

=
n∏
i=1

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

The first equality is exact, by the chain rule of probabilities. The second equal-
ity makes use of a trigram independence assumption, namely that for any i ∈
{1 . . . n},

P (Yi = yi|X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yi−1 = yi−1)

= P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

Here we assume that y−1 = y0 = *, where * is a special symbol in the model
denoting the start of a sequence.

Thus we assume that the random variable Yi is independent of the values for
Y1 . . . Yi−3, once we condition on the entire input sequenceX1 . . . Xn, and the pre-
vious two tags Yi−2 and Yi−1. This is a trigram independence assumption, where
each tag depends only on the previous two tags. We will see that this independence
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assumption allows us to use dynamic programming to efficiently find the highest
probability tag sequence for any input sentence x1 . . . xn.

Note that there is some resemblance to the independence assumption made in
trigram HMMs, namely that

P (Yi = yi|Y1 = y1 . . . Yi−1 = yi−1)

= P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)

The key difference is that we now condition on the entire input sequence x1 . . . xn,
in addition to the previous two tags yi−2 and yi−1.

The final step is to use a log-linear model to estimate the probability

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

For any pair of sequences x1 . . . xn and y1 . . . yn, we define the i’th “history” hi to
be the four-tuple

hi = 〈yi−2, yi−1, x1 . . . xn, i〉

Thus hi captures the conditioning information for tag yi in the sequence, in addi-
tion to the position i in the sequence. We assume that we have a feature-vector
representation f(hi, y) ∈ Rd for any history hi paired with any tag y ∈ K. The
feature vector could potentially take into account any information in the history hi
and the tag y. As one example, we might have features

f1(hi, y) =

{
1 if xi = the and y = DT
0 otherwise

f2(hi, y) =

{
1 if yi−1 = V and y = DT
0 otherwise

Section 8.3 describes a much more complete set of example features.
Finally, we assume a parameter vector θ ∈ Rd, and that

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

=
exp (θ · f(hi, yi))∑
y∈K exp (θ · f(hi, y))

Putting this all together gives the following:

Definition 2 (Trigram MEMMs) A trigram MEMM consists of:
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• A set of words V (this set may be finite, countably infinite, or even uncount-
ably infinite).

• A finite set of tags K.

• Given V and K, define H to be the set of all possible histories. The set
H contains all four-tuples of the form 〈y−2, y−1, x1 . . . xn, i〉, where y−2 ∈
K ∪ {*}, y−1 ∈ K ∪ {*}, n ≥ 1, xi ∈ V for i = 1 . . . n, i ∈ {1 . . . n}. Here
* is a special “start” symbol.

• An integer d specifying the number of features in the model.

• A function f : H×K → Rd specifying the features in the model.

• A parameter vector θ ∈ Rd.

Given these components we define the conditional tagging model

p(y1 . . . yn|x1 . . . xn) =
n∏
i=1

p(yi|hi; θ)

where hi = 〈yi−2, yi−1, x1 . . . xn, i〉, and

p(yi|hi; θ) =
exp (θ · f(hi, yi))∑
y∈K exp (θ · f(hi, y))

At this point there are a number of questions. How do we define the feature
vectors f(hi, y)? How do we learn the parameters θ from training data? How do
we find the highest probability tag sequence

arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

for an input sequence x1 . . . xn? The following sections answer these questions.

8.3 Features in Trigram MEMMs

Recall that the feature vector definition in a trigram MEMM is a function f(h, y) ∈
Rd where h = 〈y−2, y−1, x1 . . . xn, i〉 is a history, y ∈ K is a tag, and d is an
integer specifying the number of features in the model. Each feature fj(h, y) for
j ∈ {1 . . . d} can potentially be sensitive to any information in the history h in
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conjunction with the tag y. This will lead to a great deal of flexibility in the model.
This is the primary advantage of trigram MEMMs over trigram HMMs for tagging:
a much richer set of features can be employed for the tagging task.

In this section we give an example of how features can be defined for the
part-of-speech (POS) tagging problem. The features we describe are taken from
Ratnaparkhi (1996); Ratnaparkhi’s experiments show that they give competitive
performance on the POS tagging problem for English. Throughout this section we
assume that the history h is a four-tuple 〈y−2, y−1, x1 . . . xn, i〉. The features are
as follows:

Word/tag features One example word/tag feature is the following:

f100(h, y) =

{
1 if xi is base and y = VB
0 otherwise

This feature is sensitive to the word being tagged, xi, and the proposed tag for that
word, y. In practice we would introduce features of this form for a very large set of
word/tag pairs, in addition to the pair base/VB. For example, we could introduce
features of this form for all word/tag pairs seen in training data.

This class of feature allows the model to capture the tendency for particular
words to take particular parts of speech. In this sense it plays an analogous role to
the emission parameters e(x|y) in a trigram HMM. For example, given the defini-
tion of f100 given above, a large positive value for θ100 will indicate that base is
very likely to be tagged as a VB; conversely a highly negative value will indicate
that this particular word/tag pairing is unlikely.

Prefix and Suffix features An example of a suffix feature is as follows:

f101(h, y) =

{
1 if xi ends in ing and y = VBG
0 otherwise

This feature is sensitive to the suffix of the word being tagged, xi, and the proposed
tag y. In practice we would introduce a large number of features of this form. For
example, in Ratnaparkhi’s POS tagger, all suffixes seen in training data up to four
letters in length were introduced as features (in combination with all possible tags).

An example of a prefix feature is as follows:

f102(h, y) =

{
1 if xi starts with pre and y = NN
0 otherwise
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Again, a large number of prefix features would be used. Ratnaparkhi’s POS tagger
employs features for all prefixes up to length four seen in training data.

Prefix and suffix features are very useful for POS tagging and other tasks in
English and many other languages. For example, the suffix ing is frequently seen
with the tag VBG in the Penn treebank, which is the tag used for gerunds; there are
many other examples.

Crucially, it is very straightforward to introduce prefix and suffix features to the
model. This is in contrast with trigram HMMs for tagging, where we used the idea
of mapping low-frequency words to “pseudo-words” capturing spelling features.
The integration of spelling features—for example prefix and suffix features—in
log-linear models is much less ad-hoc than the method we described for HMMs.
Spelling features are in practice very useful when tagging words in test data that
are infrequent or not seen at all in training data.

Trigram, Bigram and Unigram Tag features An example of a trigram tag fea-
ture is as follows:

f103(h, y) =

{
1 if 〈y−2, y−1, y〉 = 〈DT, JJ, VB〉
0 otherwise

This feature, in combination with the associated parameter θ103, plays an analogous
role to the q(VB|DT, JJ) parameter in a trigram HMM, allowing the model to learn
whether the tag trigram 〈DT, JJ, VB〉 is likely or unlikely. Features of this form are
introduced for a large number of tag trigrams, for example all tag trigrams seen in
training data.

The following two features are examples of bigram and unigram tag features:

f104(h, y) =

{
1 if 〈y−1, y〉 = 〈JJ, VB〉
0 otherwise

f105(h, y) =

{
1 if 〈y〉 = 〈VB〉
0 otherwise

The first feature allows the model to learn whether the tag bigram JJ VB is likely
or unlikely; the second feature allows the model to learn whether the tag VB is
likely or unlikely. Again, a large number of bigram and unigram tag features are
typically introduced in the model.

Bigram and unigram features may at first glance seem redundant, given the ob-
vious overlap with trigram features. For example, it might seem that features f104
and f105 are subsumed by feature f103. Specifically, given parameters θ103, θ104
and θ105 we can redefine θ103 to be equal to θ103+θ104+θ105, and θ104 = θ105 = 0,
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giving exactly the same distribution p(y|x; θ) for the two parameter settings.2 Thus
features f104 and f105 can apparently be eliminated. However, when used in con-
junction with regularized approaches to parameter estimation, the bigram and un-
igram features play an important role that is analogous to the use of “backed-off”
estimates qML(VB|JJ) and qML(VB) in the smoothed estimation techniques seen
previously in the class. Roughly speaking, with regularization, if the trigram in
feature f103 is infrequent, then the value for θ103 will not grow too large in magni-
tude, and the parameter values θ104 and θ105, which are estimated based on more
examples, will play a more important role.

Other Contextual Features Ratnaparkhi also used features which consider the
word before or after xi, in conjunction with the proposed tag. Example features
are as follows:

f106(h, y) =

{
1 if previous word xi−1 = the and y = VB
0 otherwise

f107(h, y) =

{
1 if next word xi+1 = the and y = VB
0 otherwise

Again, many such features would be introduced. These features add additional
context to the model, introducing dependencies between xi−1 or xi+1 and the pro-
posed tag. Note again that it is not at all obvious how to introduce contextual
features of this form to trigram HMMs.

Other Features We have described the main features in Ratnaparkhi’s model.
Additional features that he includes are: 1) spelling features which consider whether
the word xi being tagged contains a number, contains a hyphen, or contains an
upper-case letter; 2) contextual features that consider the word at xi−2 and xi+2 in
conjunction with the current tag y.

8.4 Parameter Estimation in Trigram MEMMs

Parameter estimation in trigram MEMMs can be performed using the parameter
estimation methods for log-linear models described in the previous chapter. The
training data is a set of m examples (x(k), y(k)) for k = 1 . . .m, where each x(k) is
a sequence of words x(k)1 . . . x

(k)
nk , and each y(k) is a sequence of tags y(k)1 . . . y

(k)
nk .

2To be precise, this argument is correct in the case where for every unigram and bigram feature
there is at least one trigram feature that subsumes it. The reassignment of parameter values would be
applied to all trigrams.
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Here nk is the length of the k’th sentence or tag sequence. For any k ∈ {1 . . .m},
i ∈ {1 . . . nk}, define the history h(k)i to be equal to 〈y(k)i−2, y

(k)
i−1, x

(k)
1 . . . x

(k)
nk , i〉.

We assume that we have a feature vector definition f(h, y) ∈ Rd for some integer
d, and hence that

p(y
(k)
i |h

(k)
i ; θ) =

exp
(
θ · f(h(k)i , yi)

)
∑
y∈K exp

(
θ · f(h(k)i , y)

)
The regularized log-likelihood function is then

L(θ) =
m∑
k=1

nk∑
i=1

log p(y
(k)
i |h

(k)
i ; θ)− λ

2

d∑
j=1

θ2j

The first term is the log-likelihood of the data under parameters θ. The second
term is a regularization term, which penalizes large parameter values. The positive
parameter λ dictates the relative weight of the two terms. An optimization method
is used to find the parameters θ∗ that maximize this function:

θ∗ = arg max
θ∈Rd

L(θ)

In summary, the estimation method is a direct application of the method de-
scribed in the previous chapter, for parameter estimation in log-linear models.

8.5 Decoding with MEMMs: Another Application of the
Viterbi Algorithm

We now turn to the problem of finding the most likely tag sequence for an input
sequence x1 . . . xn under a trigram MEMM; that is, the problem of finding

arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

where

p(y1 . . . yn|x1 . . . xn) =
n∏
i=1

p(yi|hi; θ)

and hi = 〈yi−2, yi−1, x1 . . . xn, i〉.
First, note the similarity to the decoding problem for a trigram HMM tagger,

which is to find

arg max
y1...yn∈Y(n)

q(STOP|yn−1, yn)×
n∏
i=1

q(yi|yi−2, yi−1)e(xi|yi)
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Putting aside the q(STOP|yn−1, yn) term, we have essentially replaced

n∏
i=1

q(yi|yi−2, yi−1)× e(xi|yi)

by
n∏
i=1

p(yi|hi; θ)

The similarity of the two decoding problems leads to the decoding algorithm
for trigram MEMMs being very similar to the decoding algorithm for trigram
HMMs. We again use dynamic programming. The algorithm is shown in fig-
ure 8.1. The base case of the dynamic program is identical to the base case for
trigram HMMs, namely

π(*, *, 0) = 1

The recursive case is

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× p(v|h; θ))

where h = 〈w, u, x1 . . . xn, k〉. (We again define K−1 = K0 = *, and Kk = K for
k = 1 . . . n.)

Recall that the recursive case for a trigram HMM tagger is

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

Hence we have simply replaced q(v|w, u)× e(xk|v) by p(v|h; θ).
The justification for the algorithm is very similar to the justification of the

Viterbi algorithm for trigram HMMs. In particular, it can be shown that for all
k ∈ {0 . . . n}, u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
y−1...yk∈S(k,u,v)

k∏
i=1

p(yi|hi; θ)

where S(k, u, v) is the set of all sequences y−1y0 . . . yk such that yi ∈ Ki for
i = −1 . . . k, and yk−1 = u, yk = v.

8.6 Summary

To summarize, the main ideas behind trigram MEMMs are the following:
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Input: A sentence x1 . . . xn. A set of possible tags K. A model (for example a
log-linear model) that defines a probability

p(y|h; θ)

for any h, y pair where h is a history of the form 〈y−2, y−1, x1 . . . xn, i〉, and y ∈ K.
Definitions: Define K−1 = K0 = {*}, and Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× p(v|h; θ))

bp(k, u, v) = arg max
w∈Kk−2

(π(k − 1, w, u)× p(v|h; θ))

where h = 〈w, u, x1 . . . xn, k〉.

• Set (yn−1, yn) = argmaxu∈Kn−1,v∈Kn π(n, u, v)

• For k = (n− 2) . . . 1,

yk = bp(k + 2, yk+1, yk+2)

• Return the tag sequence y1 . . . yn

Figure 8.1: The Viterbi Algorithm with backpointers.
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1. We derive the model by first making the independence assumption

P (Yi = yi|X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

= P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

and then assuming that

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

= p(yi|hi; θ)

=
exp{θ · f(hi, yi)}∑
y exp{θ · f(hi, y)}

where hi = 〈yi−2, yi−1, x1 . . . xn, i〉, f(h, y) ∈ Rd is a feature vector, and
θ ∈ Rd is a parameter vector.

2. The parameters θ can be estimated using standard methods for parameter
estimation in log-linear models, for example by optimizing a regularized
log-likelihood function.

3. The decoding problem is to find

arg max
y1...yn∈Y(n)

n∏
i=1

p(yi|hi; θ)

This problem can be solved by dynamic programming, using a variant of the
Viterbi algorithm. The algorithm is closely related to the Viterbi algorithm
for trigram HMMs.

4. The feature vector f(h, y) can be sensitive to a wide range of information
in the history h in conjunction with the tag y. This is the primary advantage
of MEMMs over HMMs for tagging: it is much more straightforward and
direct to introduce features into the model.
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