
Tagging with Hidden Markov Models

Michael Collins

1 Tagging Problems

In many NLP problems, we would like to model pairs of sequences. Part-of-speech
(POS) tagging is perhaps the earliest, and most famous, example of this type of
problem. In POS tagging our goal is to build a model whose input is a sentence,
for example

the dog saw a cat

and whose output is a tag sequence, for example

D N V D N (1)

(here we use D for a determiner, N for noun, and V for verb). The tag sequence is
the same length as the input sentence, and therefore specifies a single tag for each
word in the sentence (in this example D for the, N for dog, V for saw, and so on).

We will use x1 . . . xn to denote the input to the tagging model: we will often
refer to this as a sentence. In the above example we have the length n = 5, and
x1 = the, x2 = dog, x3 = saw, x4 = the, x5 = cat. We will use y1 . . . yn to denote
the output of the tagging model: we will often refer to this as the state sequence or
tag sequence. In the above example we have y1 = D, y2 = N, y3 = V, and so on.

This type of problem, where the task is to map a sentence x1 . . . xn to a tag se-
quence y1 . . . yn, is often referred to as a sequence labeling problem, or a tagging
problem.

We will assume that we have a set of training examples, (x(i), y(i)) for i =
1 . . .m, where each x(i) is a sentence x(i)

1 . . . x
(i)
ni , and each y(i) is a tag sequence

y
(i)
1 . . . y

(i)
ni (we assume that the i’th example is of length ni). Hence x(i)

j is the j’th

word in the i’th training example, and y(i)
j is the tag for that word. Our task is to

learn a function that maps sentences to tag sequences from these training examples.

1

2 Generative Models, and The Noisy Channel Model

Supervised problems in machine learning are defined as follows. We assume train-
ing examples (x(1), y(1)) . . . (x(m), y(m)), where each example consists of an input
x(i) paired with a label y(i). We use X to refer to the set of possible inputs, and Y
to refer to the set of possible labels. Our task is to learn a function f : X → Y that
maps any input x to a label f(x).

Many problems in natural language processing are supervised learning prob-
lems. For example, in tagging problems each x(i) would be a sequence of words
x

(i)
1 . . . x

(i)
ni , and each y(i) would be a sequence of tags y(i)

1 . . . y
(i)
ni (we use ni to

refer to the length of the i’th training example). X would refer to the set of all
sequences x1 . . . xn, and Y would be the set of all tag sequences y1 . . . yn. Our
task would be to learn a function f : X → Y that maps sentences to tag sequences.
In machine translation, each input x would be a sentence in the source language
(e.g., Chinese), and each “label” would be a sentence in the target language (e.g.,
English). In speech recognition each input would be the recording of some ut-
terance (perhaps pre-processed using a Fourier transform, for example), and each
label is an entire sentence. Our task in all of these examples is to learn a function
from inputs x to labels y, using our training examples (x(i), y(i)) for i = 1 . . . n as
evidence.

One way to define the function f(x) is through a conditional model. In this
approach we define a model that defines the conditional probability

p(y|x)

for any x, y pair. The parameters of the model are estimated from the training
examples. Given a new test example x, the output from the model is

f(x) = arg max
y∈Y

p(y|x)

Thus we simply take the most likely label y as the output from the model. If our
model p(y|x) is close to the true conditional distribution of labels given inputs, the
function f(x) will be close to optimal.

An alternative approach, which is often used in machine learning and natural
language processing, is to define a generative model. Rather than directly estimat-
ing the conditional distribution p(y|x), in generative models we instead model the
joint probability

p(x, y)

over (x, y) pairs. The parameters of the model p(x, y) are again estimated from the
training examples (x(i), y(i)) for i = 1 . . . n. In many cases we further decompose

2

the probability p(x, y) as follows:

p(x, y) = p(y)p(x|y) (2)

and then estimate the models for p(y) and p(x|y) separately. These two model
components have the following interpretations:

• p(y) is a prior probability distribution over labels y.

• p(x|y) is the probability of generating the input x, given that the underlying
label is y.

We will see that in many cases it is very convenient to decompose models in this
way; for example, the classical approach to speech recognition is based on this type
of decomposition.

Given a generative model, we can use Bayes rule to derive the conditional
probability p(y|x) for any (x, y) pair:

p(y|x) =
p(y)p(x|y)

p(x)

where
p(x) =

∑
y∈Y

p(x, y) =
∑
y∈Y

p(y)p(x|y)

Thus the joint model is quite versatile, in that we can also derive the probabilities
p(x) and p(y|x).

We use Bayes rule directly in applying the joint model to a new test example.
Given an input x, the output of our model, f(x), can be derived as follows:

f(x) = arg max
y
p(y|x)

= arg max
y

p(y)p(x|y)
p(x)

(3)

= arg max
y
p(y)p(x|y) (4)

Eq. 3 follows by Bayes rule. Eq. 4 follows because the denominator, p(x), does not
depend on y, and hence does not affect the arg max. This is convenient, because it
means that we do not need to calculate p(x), which can be an expensive operation.

Models that decompose a joint probability into into terms p(y) and p(x|y) are
often called noisy-channel models. Intuitively, when we see a test example x, we
assume that has been generated in two steps: first, a label y has been chosen with
probability p(y); second, the example x has been generated from the distribution

3

p(x|y). The model p(x|y) can be interpreted as a “channel” which takes a label y
as its input, and corrupts it to produce x as its output. Our task is to find the most
likely label y, given that we observe x.

In summary:

• Our task is to learn a function from inputs x to labels y = f(x). We assume
training examples (x(i), y(i)) for i = 1 . . . n.

• In the noisy channel approach, we use the training examples to estimate
models p(y) and p(x|y). These models define a joint (generative) model

p(x, y) = p(y)p(x|y)

• Given a new test example x, we predict the label

f(x) = arg max
y∈Y

p(y)p(x|y)

Finding the output f(x) for an input x is often referred to as the decoding
problem.

3 Generative Tagging Models

We now see how generative models can be applied to the tagging problem. We
assume that we have a finite vocabulary V , for example V might be the set of
words seen in English, e.g., V = {the, dog, saw, cat, laughs, . . .}. We use K to
denote the set of possible tags; again, we assume that this set is finite. We then give
the following definition:

Definition 1 (Generative Tagging Models) Assume a finite set of words V , and
a finite set of tags K. Define S to be the set of all sequence/tag-sequence pairs
〈x1 . . . xn, y1 . . . yn〉 such that n ≥ 0, xi ∈ V for i = 1 . . . n and yi ∈ K for
i = 1 . . . n. A generative tagging model is then a function p such that:

1. For any 〈x1 . . . xn, y1 . . . yn〉 ∈ S,

p(x1 . . . xn, y1 . . . yn) ≥ 0

2. In addition, ∑
〈x1...xn,y1...yn〉∈S

p(x1 . . . xn, y1 . . . yn) = 1

4

Hence p(x1 . . . xn, y1 . . . yn) is a probability distribution over pairs of sequences
(i.e., a probability distribution over the set S).

Given a generative tagging model, the function from sentences x1 . . . xn to tag
sequences y1 . . . yn is defined as

f(x1 . . . xn) = arg max
y1...yn

p(x1 . . . xn, y1 . . . yn)

Thus for any input x1 . . . xn, we take the highest probability tag sequence as the
output from the model.

Having introduced generative tagging models, there are three critical questions:

• How we define a generative tagging model p(x1 . . . xn, y1 . . . yn)?

• How do we estimate the parameters of the model from training examples?

• How do we efficiently find

arg max
y1...yn

p(x1 . . . xn, y1 . . . yn)

for any input x1 . . . xn?

The next section describes how trigram hidden Markov models can be used to
answer these three questions.

4 Trigram Hidden Markov Models (Trigram HMMs)

In this section we describe an important type of generative tagging model, a trigram
hidden Markov model, describe how the parameters of the model can be estimated
from training examples, and describe how the most likely sequence of tags can be
found for any sentence.

4.1 Definition of Trigram HMMs

We now give a formal definition of trigram hidden Markov models (trigram HMMs).
The next section shows how this model form is derived, and gives some intuition
behind the model.

Definition 2 (Trigram Hidden Markov Model (Trigram HMM)) A trigram HMM
consists of a finite set V of possible words, and a finite set K of possible tags, to-
gether with the following parameters:

5

• A parameter
q(s|u, v)

for any trigram (u, v, s) such that s ∈ K ∪ {STOP}, and u, v ∈ V ∪ {*}.
The value for q(s|u, v) can be interpreted as the probability of seeing the tag
s immediately after the bigram of tags (u, v).

• A parameter
e(x|s)

for any x ∈ V , s ∈ K. The value for e(x|s) can be interpreted as the
probability of seeing observation x paired with state s.

Define S to be the set of all sequence/tag-sequence pairs 〈x1 . . . xn, y1 . . . yn+1〉
such that n ≥ 0, xi ∈ V for i = 1 . . . n, yi ∈ K for i = 1 . . . n, and yn+1 = STOP.

We then define the probability for any 〈x1 . . . xn, y1 . . . yn+1〉 ∈ S as

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

where we have assumed that y0 = y−1 = *.

As one example, if we have n = 3, x1 . . . x3 equal to the sentence the dog
laughs, and y1 . . . y4 equal to the tag sequence D N V STOP, then

p(x1 . . . xn, y1 . . . yn+1) = q(D|∗, ∗)× q(N|∗, D)× q(V|D, N)× q(STOP|N, V)
×e(the|D)× e(dog|N)× e(laughs|V)

Note that this model form is a noisy-channel model. The quantity

q(D|∗, ∗)× q(N|∗, D)× q(V|D, N)× q(STOP|N, V)

is the prior probability of seeing the tag sequence D N V STOP, where we have
used a second-order Markov model (a trigram model), very similar to the language
models we derived in the previous lecture. The quantity

e(the|D)× e(dog|N)× e(laughs|V)

can be interpreted as the conditional probability p(the dog laughs|D N V STOP):
that is, the conditional probability p(x|y) where x is the sentence the dog laughs,
and y is the tag sequence D N V STOP.

6

4.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see the previous lecture notes).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1∏
i=1

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)
n∏

i=1

P (Xi = xi|Yi = yi) (5)

where we have assumed that y0 = y−1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 5, and in
addition we have assumed that for any i, for any values of yi−2, yi−1, yi,

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1) = q(yi|yi−2, yi−1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

Eq. 5 can be derived as follows. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)
= P (Y1 = y1 . . . Yn+1 = yn+1)P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(6)

7

This step is exact, by the chain rule of probabilities. Thus we have decomposed
the joint probability into two terms: first, the probability of choosing tag sequence
y1 . . . yn+1; second, the probability of choosing the word sequence x1 . . . xn, con-
ditioned on the choice of tag sequence. Note that this is exactly the same type of
decomposition as seen in noisy channel models.

Now consider the probability of seeing the tag sequence y1 . . . yn+1. We make
independence assumptions as follows: we assume that for any sequence y1 . . . yn+1,

P (Y1 = y1 . . . Yn+1 = yn+1) =
n+1∏
i=1

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)

That is, we have assumed that the sequence Y1 . . . Yn+1 is a second-order Markov
sequence, where each state depends only on the previous two states in the sequence.

Next, consider the probability of the word sequence x1 . . . xn, conditioned on
the choice of tag sequence, y1 . . . yn+1. We make the following assumption:

P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

=
n∏

i=1

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1, Y1 = y1 . . . Yn+1 = yn+1)

=
n∏

i=1

P (Xi = xi|Yi = yi) (7)

The first step of this derivation is exact, by the chain rule. The second step involves
an independence assumption, namely that for i = 1 . . . n,

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1, Y1 = y1 . . . Yn+1 = yn+1) = P (Xi = xi|Yi = yi)

Hence we have assumed that the value for the random variable Xi depends only on
the value of Yi. More formally, the value forXi is conditionally independent of the
previous observationsX1 . . . Xi−1, and the other state values Y1 . . . Yi−1, Yi+1 . . . Yn+1,
given the value of Yi.

One useful way of thinking of this model is to consider the following stochastic
process, which generates sequence pairs y1 . . . yn+1, x1 . . . xn:

1. Initialize i = 1 and y0 = y−1 = *.

2. Generate yi from the distribution

q(yi|yi−2, yi−1)

3. If yi = STOP then return y1 . . . yi, x1 . . . xi−1. Otherwise, generate xi from
the distribution

e(xi|yi),

set i = i+ 1, and return to step 2.

8

4.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) =
c(u, v, s)
c(u, v)

and

e(x|s) =
c(s ; x)
c(s)

For example, we would have the estimates

q(N|V, D) =
c(V, D, N)
c(V, D)

and

e(dog|N) =
c(N ; dog)

c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

4.4 Decoding with HMMs: the Viterbi Algorithm

We now turn to the problem of finding the most likely tag sequence for an input
sentence x1 . . . xn. This is the problem of finding

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

9

where the arg max is taken over all sequences y1 . . . yn+1 such that yi ∈ K for
i = 1 . . . n, and yn+1 = STOP. We assume that p again takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi) (8)

Recall that we have assumed in this definition that y0 = y−1 = *, and yn+1 =
STOP.

The naive, brute force method would be to simply enumerate all possible tag
sequences y1 . . . yn+1, score them under the function p, and take the highest scor-
ing sequence. For example, given the input sentence

the dog barks

and assuming that the set of possible tags is K = {D, N, V}, we would consider all
possible tag sequences:

D D D STOP
D D N STOP
D D V STOP
D N D STOP
D N N STOP
D N V STOP
. . .

and so on. There are 33 = 27 possible sequences in this case.
For longer sentences, however, this method will be hopelessly inefficient. For

an input sentence of length n, there are |K|n possible tag sequences. The expo-
nential growth with respect to the length n means that for any reasonable length
sentence, brute-force search will not be tractable.

4.4.1 The Basic Algorithm

Instead, we will see that we can efficiently find the highest probability tag se-
quence, using a dynamic programming algorithm that is often called the Viterbi
algorithm. The input to the algorithm is a sentence x1 . . . xn. Given this sentence,
for any k ∈ {1 . . . n}, for any sequence y1 . . . yk such that yi ∈ K for i = 1 . . . k
we define the function

r(y1 . . . yk) =
k∏

i=1

q(yi|yi−2, yi−1)
k∏

i=1

e(xi|yi) (9)

10

This is simply a truncated version of the definition of p in Eq. 8, where we just
consider the first k terms. In particular, note that

p(x1 . . . xn, y1 . . . yn+1) = r(y1 . . . yn)× q(yn+1|yn−1, yn)
= r(y1 . . . yn)× q(STOP|yn−1, yn) (10)

Next, for any any k ∈ {1 . . . n}, for any u ∈ K, v ∈ K, define S(k, u, v) to
be the set of sequences y1 . . . yk such that yk−1 = u, yk = v, and yi ∈ K for
i = 1 . . . k. Thus S(k, u, v) is the set of all tag sequences of length k, which end
in the tag bigram (u, v). Define

π(k, u, v) = max
〈y1...yk〉∈S(k,u,v)

r(y1 . . . yk) (11)

We now observe that we can calculate the π(k, u, v) values for all (k, u, v)
efficiently, as follows. First, as a base case define

π(0, *, *) = 1

and
π(0, u, v) = 0

if u 6= * or v 6= *. These definitions just reflect the fact that we always assume that
y0 = y−1 = *.

Next, we give the recursive definition.

Proposition 1 For any k ∈ {1 . . . n}, for any u ∈ K and v ∈ K, we can use the
following recursive definition:

π(k, u, v) = max
w∈K

(π(k − 1, w, u)× q(v|w, u)× e(xk|v)) (12)

This definition is recursive because the definition makes use of the π(k − 1, w, v)
values computed for shorter sequences. This definition will be key to our dynamic
programming algorithm.

How can we justify this recurrence? Recall that π(k, u, v) is the highest prob-
ability for any sequence y1 . . . yk ending in the bigram (u, v). Any such sequence
must have yk−2 = w for some state w. The highest probability for any sequence
of length k − 1 ending in the bigram (w, u) is π(k − 1, w, u), hence the highest
probability for any sequence of length k ending in the trigram (w, u, v) must be

π(k − 1, w, u)× q(v|w, u)× e(xi|v)

In Eq. 12 we simply search over all possible values forw, and return the maximum.
Our second claim is the following:

11

Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Initialization: Set π(0, *, *) = 1, and π(0, u, v) = 0 for all (u, v) such that u 6= *
or v 6= *.
Algorithm:

• For k = 1 . . . n,

– For u ∈ K, v ∈ K,

π(k, u, v) = max
w∈K

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Return maxu∈K,v∈K (π(n, u, v)× q(STOP|u, v))

Figure 1: The basic Viterbi Algorithm.

Proposition 2

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1) = max
u∈K,v∈K

(π(n, u, v)× q(STOP|u, v)) (13)

This follows directly from the identity in Eq. 10.
Figure 1 shows an algorithm that puts these ideas together. The algorithm takes

a sentence x1 . . . xn as input, and returns

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

as its output. The algorithm first fills in the π(k, u, v) values in using the recursive
definition. It then uses the identity in Eq. 13 to calculate the highest probability for
any sequence.

The running time for the algorithm is O(n|K|3), hence it is linear in the length
of the sequence, and cubic in the number of tags.

4.4.2 The Viterbi Algorithm with Backpointers

The algorithm we have just described takes a sentence x1 . . . xn as input, and re-
turns

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

as its output. However we’d really like an algorithm that returned the highest prob-
ability sequence, that is, an algorithm that returns

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

12

Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Initialization: Set π(0, *, *) = 1, and π(0, u, v) = 0 for all (u, v) such that u 6= *
or v 6= *.
Algorithm:

• For k = 1 . . . n,

– For u ∈ K, v ∈ K,

π(k, u, v) = max
w∈K

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

bp(k, u, v) = arg max
w∈K

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Set (yn−1, yn) = arg max(u,v) (π(n, u, v)× q(STOP|u, v))

• For k = (n− 2) . . . 1,

yk = bp(k + 2, yk+1, yk+2)

• Return the tag sequence y1 . . . yn

Figure 2: The Viterbi Algorithm with backpointers.

for any input sentence x1 . . . xn.
Figure 2 shows a modified algorithm that achieves this goal. The key step

is to store backpointer values bp(k, u, v) at each step, which record the previous
state w which leads to the highest scoring sequence ending in (u, v) at position k
(the use of backpointers such as these is very common in dynamic programming
methods). At the end of the algorithm, we unravel the backpointers to find the
highest probability sequence, and then return this sequence. The algorithm again
runs in O(n|K|3) time.

5 Summary

We’ve covered a fair amount of material in this note, but the end result is fairly
straightforward: we have derived a complete method for learning a tagger from
a training corpus, and for applying it to new sentences. The main points were as
follows:

• A trigram HMM has parameters q(s|u, v) and e(x|s), and defines the joint

13

probability of any sentence x1 . . . xn paired with a tag sequence y1 . . . yn+1

(where yn+1 = STOP) as

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

• Given a training corpus from which we can derive counts, the maximum-
likelihood estimates for the parameters are

q(s|u, v) =
c(u, v, s)
c(u, v)

and

e(x|s) =
c(s ; x)
c(s)

• Given a new sentence x1 . . . xn, and parameters q and e that we have es-
timated from a training corpus, we can find the highest probability tag se-
quence for x1 . . . xn using the algorithm in figure 2 (the Viterbi algorithm).

14

Convergence Proof for the Perceptron Algorithm

Michael Collins

Figure 1 shows the perceptron learning algorithm, as described in lecture. In
this note we give a convergence proof for the algorithm (also covered in lecture).

The convergence theorem is as follows:

Theorem 1 Assume that there exists some parameter vector θ∗ such that ||θ∗|| =
1, and some γ > 0 such that for all t = 1 . . . n,

yt(xt · θ∗) ≥ γ

Assume in addition that for all t = 1 . . . n, ||xt|| ≤ R.
Then the perceptron algorithm makes at most

R2

γ2

errors. (The definition of an error is as follows: an error occurs whenever we have
y′ 6= yt for some (j, t) pair in the algorithm.)

Note that for any vector x, we use ||x|| to refer to the Euclidean norm of x, i.e.,
||x|| =

√∑
i x

2
i .

Proof: First, define θk to be the parameter vector when the algorithm makes its
k’th error. Note that we have

θ1 = 0

Next, assuming the k’th error is made on example t, we have

θk+1 · θ∗ = (θk + ytxt) · θ∗ (1)

= θk · θ∗ + ytxt · θ∗ (2)

≥ θk · θ∗ + γ (3)

Eq. 1 follows by the definition of the perceptron updates. Eq. 3 follows because by
the assumptions of the theorem, we have

ytxt · θ∗ ≥ γ

1

Definition: sign(z) = 1 if z ≥ 0, −1 otherwise.

Inputs: number of iterations, T ; training examples (xt, yt) for t ∈ {1 . . . n} where
x ∈ Rd is an input, and yt ∈ {−1,+1} is a label.

Initialization: θ = 0 (i.e., all parameters are set to 0)

Algorithm:

• For j = 1 . . . T

– For t = 1 . . . n

1. y′ = sign(xt · θ)
2. If y′ 6= yt Then θ = θ + ytxt, Else leave θ unchanged

Output: parameters θ

Figure 1: The perceptron learning algorithm.

It follows by induction on k (recall that ||θ1|| = 0), that

θk+1 · θ∗ ≥ kγ

In addition, because ||θk+1|| × ||θ∗|| ≥ θk+1 · θ∗, and ||θ∗|| = 1, we have

||θk+1|| ≥ kγ (4)

In the second part of the proof, we will derive an upper bound on ||θk+1||. We
have

||θk+1||2 = ||θk + ytxt||2 (5)

= ||θk||2 + y2t ||xt||2 + 2ytxt · θk (6)

≤ ||θk||2 +R2 (7)

The equality in Eq. 5 follows by the definition of the perceptron updates. Eq. 7
follows because we have: 1) y2t ||xt||2 = ||xt||2 ≤ R2 by the assumptions of the
theorem, and because y2t = 1; 2) ytxt ·θk ≤ 0 because we know that the parameter
vector θk gave an error on the tth example.

It follows by induction on k (recall that ||θ1||2 = 0), that

||θk+1||2 ≤ kR2 (8)

2

Combining the bounds in Eqs. 4 and 8 gives

k2γ2 ≤ ||θk+1||2 ≤ kR2

from which it follows that

k ≤ R2

γ2

3

Log-Linear Models, MEMMs, and CRFs

Michael Collins

1 Notation

Throughout this note I’ll use underline to denote vectors. For example,w ∈ Rd will
be a vector with components w1, w2, . . . wd. We use exp(x) for the exponential
function, i.e., exp(x) = ex.

2 Log-linear models

We have sets X and Y: we will assume that Y is a finite set. Our goal is to build a
model that estimates the conditional probability p(y|x) of a label y ∈ Y given an
input x ∈ X . For example, x might be a word, and y might be a candidate part-
of-speech (noun, verb, preposition etc.) for that word. We have a feature-vector
definition φ : X × Y → Rd. We also assume a parameter vector w ∈ Rd. Given
these definitions, log-linear models take the following form:

p(y|x;w) =
exp

(
w · φ(x, y)

)
∑

y′∈Y exp
(
w · φ(x, y′)

)
This is the conditional probability of y given x, under parameters w.

Some motivation for this expression is as follows. The inner product

w · φ(x, y)

can take any value (positive or negative), and can be interpreted as being a measure
of the plausibility of label y given input x. For a given input x, we can calculate this
inner product for each possible label y ∈ Y . We’d like to transform these quantities
into a well-formed distribution p(y|x). If we exponentiate the inner product,

exp
(
w · φ(x, y)

)

1

we have a strictly positive quantity—i.e., a value that is greater than 0. Finally, by
dividing by the normalization constant∑

y′∈Y
exp

(
w · φ(x, y′)

)
we ensure that

∑
y∈Y p(y|x;w) = 1. Hence we have gone from inner products

w · φ(x, y), which can take either positive or negative values, to a probability dis-
tribution.

An important question is how the parameters w can be estimated from data.
We turn to this question next.

The Log-Likelihood Function. To estimate the parameters, we assume that we
have a set of n labeled examples, {(xi, yi)}ni=1. The log-likelihood function is

L(w) =
n∑

i=1

log p(yi|xi;w)

We can think of L(w) as being a function that for a given w measures how well
w explains the labeled examples. A “good” value for w will give a high value for
p(yi|xi;w) for all i = 1 . . . n, and thus will have a high value for L(w).

The maximum-likelihood estimates are

w∗ = arg max
w∈Rd

n∑
i=1

log p(yi|xi;w)

The maximum-likelihood estimates are thus the parameters that best fit the training
set, under the criterion L(w).1

Finding the maximum-likelihood estimates. So given a training set {(xi, yi)}ni=1,
how do we find the maximum-likelihood parameter estimates w∗? Unfortunately,
an analytical solution does not in general exist. Instead, people generally use
gradient-based methods to optimize L(w). The simplest method, “vanilla” gra-
dient ascent, takes roughly the following form:

1. Set w0 to some initial value, for example set w0
j = 0 for j = 1 . . . d

2. For t = 1 . . . T :
1In some cases this maximum will not be well-defined—intuitively, some parameter values may

diverge to +∞ or −∞—but for now we’ll assume that the maximum exists, and that all parameters
take finite values at the maximum.

2

• For j = 1 . . . d, set

wt
j = wt−1

j + αt ×
∂

∂wj
L(wt−1)

where αt > 0 is some stepsize, and ∂
∂wj

L(wt−1) is the derivative of L
with respect to wj .

3. Return the final parameters wT .

Thus at each iteration we calculate the gradient at the current pointwt−1, and move
some distance in the direction of the gradient.

In practice, more sophisticated optimization methods are used: one common
to choice is to use L-BFGS, a quasi-newton method. We won’t go into the details
of these optimization methods in the course: the good news is that good software
packages are available for methods such as L-BFGS. Implementations of L-BFGS
will generally require us to calculate the value of the objective function L(w), and
the value of the partial derivatives, ∂

∂wj
L(w), at any point w. Fortunately, this will

be easy to do.
So what form do the partial derivatives take? A little bit of calculus gives

∂

∂wj
L(w) =

∑
i

φj(xi, yi)−
∑

i

∑
y

p(y|xi;w)φj(xi, y)

The first sum in the expression,
∑

i φj(xi, yi), is the sum of the j’th feature value
φj(xi, yi) across the labeled examples {(xi, yi)}ni=1. The second sum again in-
volves a sum over the training examples, but for each training example we calcu-
late the expected feature value,

∑
y p(y|xi;w)φj(xi, y). Note that this expectation

is taken with respect to the distribution p(y|xi;w) under the current parameter val-
ues w.

Regularized log-likelihood. In many applications, it has been shown to be highly
beneficial to modify the log-likelihood function to include an additional regular-
ization term. The modified criterion is then

L(w) =
n∑

i=1

log p(yi|xi;w)− λ

2
||w||2

where ||w||2 =
∑

j w
2
j , and λ > 0 is parameter dictating the strength of the regu-

larization term. We will again choose our parameter values to be

w∗ = arg max
w∈Rd

L(w)

3

Note that we now have a trade-off when estimating the parameters: we will try to
make the log p(yi|xi;w) terms as high as possible, but at the same time we’ll try
to keep the norm ||w||2 small (the larger the value of λ, the smaller we will require
the norm to be). The regularization term penalizes large parameter values.

Intuitively, we can think of the ||w||2 term as being a penalty on “complexity”
of the model, where the larger the parameters are, the more complex the model is.
We’d like to find a model that fits the data well, but that also has low complexity.2

In practice, the regularization term has been found to be very useful in building
log-linear models, in particular in cases where the number of parameters, d, is
large. This scenario is very common in natural language processing applications. It
is not uncommon for the number of parameters d to be far larger than the number of
training examples n, and in this case we can often still achieve good generalization
performance, as long as a regularizer is used to penalize large values of ||w||2.
(There are close connections to support vector machines, where linear models are
learned in very high dimensional spaces, with good generalization guarantees hold
as long as the margins on training examples are large. Margins are closely related
to norms of parameter vectors.)

Finding the optimal parameters w∗ = arg maxw L(w) can again be achieved
using gradient-based methods (e.g., LBFGS). The partial derivatives are again easy
to compute, and are slightly modified from before:

∂

∂wj
L(w) =

∑
i

φj(xi, yi)−
∑

i

∑
y

p(y|xi;w)φj(xi, y)− λwj

3 MEMMs

We’ll now return to sequence labeling tasks, and describe maximum-entropy Markov
models (MEMMs), which make direct use of log-linear models. In the previous lec-
ture we introduced HMMs as a model for sequence labeling problems. MEMMs
will be a useful alternative to HMMs.

Our goal will be to model the conditional distribution

p(s1, s2 . . . sm|x1 . . . xm)

where each xj for j = 1 . . .m is the j’th input symbol (for example the j’th word
in a sentence), and each sj for j = 1 . . .m is the j’th state. We’ll use S to denote
the set of possible states; we assume that S is a finite set.

2More formally, from a Bayesian standpoint the regularization term can be viewed as log p(w)
where p(w) is a prior (specifically, p(w) is a Gaussian prior): the parameter estimates w∗ are then
MAP estimates. From a frequentist standpoint there have been a number of important results show-
ing that finding parameters with a low norm leads to better generalization guarantees (i.e., better
guarantees of generalization to new, test examples).

4

For example, in part-of-speech tagging of English, S would be the set of all
possible parts of speech in English (noun, verb, determiner, preposition, etc.).
Given a sequence of words x1 . . . xm, there are km possible part-of-speech se-
quences s1 . . . sm, where k = |S| is the number of possible parts of speech. We’d
like to estimate a distribution over these km possible sequences.

In a first step, MEMMs use the following decomposition:

p(s1, s2 . . . sm|x1 . . . xm) =
m∏

i=1

p(si|s1 . . . si−1, x1 . . . xm) (1)

=
m∏

i=1

p(si|si−1, x1 . . . xm) (2)

The first equality is exact (it follows by the chain rule of conditional probabilities).
The second equality follows from an independence assumption, namely that for all
i,

p(si|s1 . . . si−1, x1 . . . xm) = p(si|si−1, x1 . . . xm)

Hence we are making an assumption here that is similar to the Markov assumption
in HMMs, i.e., that the state in the i’th position depends only on the state in the
(i− 1)’th position.

Having made these independence assumptions, we then model each term using
a log-linear model:

p(si|si−1, x1 . . . xm) =
exp

(
w · φ(x1 . . . xm, i, si−1, si)

)
∑

s′∈S exp
(
w · φ(x1 . . . xm, i, si−1, s′)

)
Here φ(x1 . . . xm, i, s, s

′) is a feature vector where:

• x1 . . . xm is the entire sentence being tagged

• i is the position to be tagged (can take any value from 1 to m)

• s is the previous state value (can take any value in S)

• s′ is the new state value (can take any value in S)

See the lecture slides on log-linear models (from Lecture 1) to see examples of
features used in applications such as part-of-speech tagging.

Once we’ve defined the feature vectors φ, we can train the parameters w of the
model in the usual way for log-linear models. The training examples will consist of

5

sentences x1 . . . xm annotated with state sequences s1 . . . sm. Once we’ve trained
the parameters we will have a model of

p(si|si−1, x1 . . . xm)

and hence a model of
p(s1 . . . sm|x1 . . . xm)

The next question will be how to decode with the model.

Decoding with MEMMs. The decoding problem is as follows. We’re given a
new test sequence x1 . . . xm. Our goal is to compute the most likely state sequence
for this test sequence,

arg max
s1...sm

p(s1 . . . sm|x1 . . . xm)

There are km possible state sequences, so for any reasonably large sentence length
m brute-force search through all the possibilities will not be possible.

Fortunately, we will be able to again make use of the Viterbi algorithm: it
will take a very similar form to the Viterbi algorithm for HMMs. The basic data
structure in the algorithm will be a dynamic programming table π with entries

π[j, s]

for j = 1 . . .m, and s ∈ S. π[j, s] will store the maximum probability for any
state sequence ending in state s at position j. More formally, our algorithm will
compute

π[j, s] = max
s1...sj−1

p(s|sj−1, x1 . . . xm)
j−1∏
k=1

p(sk|sk−1, x1 . . . xm)

for all j = 1 . . .m, and for all s ∈ S.

The algorithm is as follows:

• Initialization: for s ∈ S

π[1, s] = p(s|s0, x1 . . . xm)

where s0 is a special “initial” state.

• For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈S

[
π[j − 1, s′]× p(s|s′, x1 . . . xm)

]

6

Finally, having filled in the π[j, s] values for all j, s, we can calculate

max
s1...sm

p(s1 . . . sm|x1 . . . xm) = max
s
π[m, s]

The algorithm runs in O(mk2) time (i.e., linear in the sequence length m,
and quadratic in the number of states k). As in the Viterbi algorithm for HMMs,
we can compute the highest-scoring sequence using backpointers in the dynamic
programming algorithm (see the HMM slides from lecture 1).

Comparison between MEMMs and HMMs So what is the motivation for using
MEMMs instead of HMMs? Note that the Viterbi decoding algorithms for the two
models are very similar. In MEMMs, the probability associated with each state
transition si−1 to si is

p(si|si−1, x1 . . . xm) =
exp

(
w · φ(x1 . . . xm, i, si−1, si)

)
∑

s′∈S exp
(
w · φ(x1 . . . xm, i, si−1, s′)

)
In HMMs, the probability associated with each transition is

p(si|si−1)p(xi|si)

The key advantage of MEMMs is that the use of feature vectors φ allows much
richer representations than those used in HMMs. For example, the transition proba-
bility can be sensitive to any word in the input sequence x1 . . . xm. In addition, it is
very easy to introduce features that are sensitive to spelling features (e.g., prefixes
or suffixes) of the current word xi, or of the surrounding words. These features are
useful in many NLP applications, and are difficult to incorporate within HMMs in
a clean way.

4 CRFs

We now turn to conditional random fields (CRFs).
One brief note on notation: for convenience, we’ll use x to refer to an input

sequence x1 . . . xm, and s to refer to a sequence of states s1 . . . sm. The set of
all possible states is again S; the set of all possible state sequences is Sm. In
conditional random fields we’ll again build a model of

p(s1 . . . sm|x1 . . . xm) = p(s|x)

A first key idea in CRFs will be to define a feature vector

Φ(x, s) ∈ Rd

7

that maps an entire input sequence x paired with an entire state sequence s to
some d-dimensional feature vector. We’ll soon give a concrete definition for Φ,
but for now just assume that some definition exists. We will often refer to Φ as
being a “global” feature vector (it is global in the sense that it takes the entire state
sequence into account).

We then build a giant log-linear model,

p(s|x;w) =
exp (w · Φ(x, s))∑

s′∈Sm exp (w · Φ(x, s′))

This is “just” another log-linear model, but it is is “giant” in the sense that: 1) the
space of possible values for s, i.e., Sm, is huge. 2) The normalization constant
(denominator in the above expression) involves a sum over the set Sm. At first
glance, these issues might seem to cause severe computational problems, but we’ll
soon see that under appropriate assumptions we can train and decode efficiently
with this type of model.

The next question is how to define Φ(x, s)? Our answer will be

Φ(x, s) =
m∑

j=1

φ(x, j, sj−1, sj)

where φ(x, j, sj−1, sj) are the same as the feature vectors used in MEMMs. Or put
another way, we’re assuming that for k = 1 . . . d, the k’th global feature is

Φk(x, s) =
m∑

j=1

φk(x, j, sj−1, sj)

Thus Φk is calculated by summing the “local” feature vector φk over the m differ-
ent state transitions in s1 . . . sm.

We now turn to two critical practical issues in CRFs: first, decoding, and sec-
ond, parameter estimation.

Decoding with CRFs The decoding problem in CRFs is as follows: for a given
input sequence x = x1, x2, . . . xm, we would like to find the most likely underlying
state sequence under the model, that is,

arg max
s∈Sm

p(s|x;w)

We simplify this expression as follows:

arg max
s∈Sm

p(s|x;w) = arg max
s∈Sm

exp (w · Φ(x, s))∑
s′∈Sm exp (w · Φ(x, s′))

8

= arg max
s∈Sm

exp (w · Φ(x, s))

= arg max
s∈Sm

w · Φ(x, s)

= arg max
s∈Sm

w ·
m∑

j=1

φ(x, j, sj−1, sj)

= arg max
s∈Sm

m∑
j=1

w · φ(x, j, sj−1, sj)

So we have shown that finding the most likely sequence under the model is equiv-
alent to finding the sequence that maximizes

arg max
s∈Sm

m∑
j=1

w · φ(x, j, sj−1, sj)

This problem has a clear intuition. Each transition from state sj−1 to state sj has
an associated score

w · φ(x, j, sj−1, sj)

This score could be positive or negative. Intuitively, this score will be relatively
high if the state transition is plausible, relatively low if this transition is implausible.
The decoding problem is to find an entire sequence of states such that the sum of
transition scores is maximized.

We can again solve this problem using a variant of the Viterbi algorithm, in a
very similar way to the decoding algorithm for HMMs or MEMMs:

• Initialization: for s ∈ S

π[1, s] = w · φ(x, 1, s0, s)

where s0 is a special “initial” state.

• For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈S

[
π[j − 1, s′] + w · φ(x, j, s′, s)

]
We then have

max
s1...sm

m∑
j=1

w · φ(x, j, sj−1, sj) = max
s
π[m, s]

As before, backpointers can be used to allow us to recover the highest scoring state
sequence. The algorithm again runs in O(mk2) time. Hence we have shown that
decoding in CRFs is efficient.

9

Parameter Estimation in CRFs. For parameter estimation, we assume we have
a set of n labeled examples, {(xi, si)}ni=1. Each xi is an input sequence xi

1 . . . x
i
m,

each si is a state sequence si
1 . . . s

i
m. We then proceed in exactly the same way as

for regular log-linear models. The regularized log-likelihood function is

L(w) =
n∑

i=1

log p(si|xi;w)− λ

2
||w||2

Our parameter estimates are then

w∗ = arg max
w∈Rd

n∑
i=1

log p(si|xi;w)− λ

2
||w||2

We’ll again use gradient-based optimization methods to find w∗. As before,
the partial derivatives are

∂

∂wk
L(w) =

∑
i

Φk(xi, si)−
∑

i

∑
s∈Sm

p(s|xi;w)Φk(xi, s)− λwk

The first term is easily computed, because

∑
i

Φk(xi, si) =
∑

i

m∑
j=1

φk(xi, j, si
j−1, s

i
j)

Hence all we have to do is to sum over all training examples i = 1 . . . n, and for
each example sum over all positions j = 1 . . .m.

The second term is more difficult to deal with, because it involves a sum over
Sm, a very large set. However, we will see that this term can be computed effi-
ciently using dynamic programming. The derivation is as follows:

∑
s∈Sm

p(s|xi;w)Φk(xi, s) (3)

=
∑

s∈Sm

p(s|xi;w)
m∑

j=1

φk(xi, j, sj−1, sj) (4)

=
m∑

j=1

∑
s∈Sm

p(s|xi;w)φk(xi, j, sj−1, sj) (5)

=
m∑

j=1

∑
a∈S,b∈S

∑
s∈Sm:

sj−1=a,sj=b

p(s|xi;w)φk(xi, j, sj−1, sj) (6)

10

=
m∑

j=1

∑
a∈S,b∈S

φk(xi, j, a, b)
∑

s∈Sm:

sj−1=a,sj=b

p(s|xi;w) (7)

=
m∑

j=1

∑
a∈S,b∈S

qi
j(a, b)φk(xi, j, a, b) (8)

where
qi
j(a, b) =

∑
s∈Sm:sj−1=a,sj=b

p(s|xi;w)

The important thing to note is that if we can compute the qi
j(a, b) terms efficiently,

we can compute the derivatives efficiently, using the expression in Eq. 8. The
quantity qi

j(a, b) has a fairly intuitive interpretation: it is the probabilty of the i’th
training example xi having state a at position j − 1 and state b at position j, under
the distribution p(s|x;w).

A critical result is that for a given i, all qi
j(a, b) terms can be calculated to-

gether, in O(mk2) time. The algorithm that achieves this is the forward-backward
algorithm. This is another dynamic programming algorithm, and is closely related
to the Viterbi algorithm.

11

Log-Linear Models

Michael Collins

1 Introduction

This note describes log-linear models, which are very widely used in natural lan-
guage processing. A key advantage of log-linear models is their flexibility: as we
will see, they allow a very rich set of features to be used in a model, arguably much
richer representations than the simple estimation techniques we have seen earlier in
the course (e.g., the smoothing methods that we initially introduced for language
modeling, and which were later applied to other models such as HMMs for tag-
ging, and PCFGs for parsing). In this note we will give motivation for log-linear
models, give basic definitions, and describe how parameters can be estimated in
these models. In subsequent classes we will see how these models can be applied
to a number of natural language processing problems.

2 Motivation

As a motivating example, consider again the language modeling problem, where
the task is to derive an estimate of the conditional probability

P (Wi = wi|W1 = w1 . . .Wi−1 = wi−1) = p(wi|w1 . . . wi−1)

for any sequence of words w1 . . . wi, where i can be any positive integer. Here wi
is the i’th word in a document: our task is to model the distribution over the word
wi, conditioned on the previous sequence of words w1 . . . wi−1.

In trigram language models, we assumed that

p(wi|w1 . . . wi−1) = q(wi|wi−2, wi−1)

where q(w|u, v) for any trigram (u, v, w) is a parameter of the model. We studied
a variety of ways of estimating the q parameters; as one example, we studied linear
interpolation, where

q(w|u, v) = λ1qML(w|u, v) + λ2qML(w|v) + λ3qML(w) (1)

1

Here each qML is a maximum-likelihood estimate, and λ1, λ2, λ3 are parameters
dictating the weight assigned to each estimate (recall that we had the constraints
that λ1 + λ2 + λ3 = 1, and λi ≥ 0 for all i).

Trigram language models are quite effective, but they make relatively narrow
use of the context w1 . . . wi−1. Consider, for example, the case where the context
w1 . . . wi−1 is the following sequence of words:

Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to En-
glish”. It is fair to assume that neither sentence (1) nor (2) (nor indeed
any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

Assume in addition that we’d like to estimate the probability of the word model
appearing as word wi, i.e., we’d like to estimate

P (Wi = model|W1 = w1 . . .Wi−1 = wi−1)

In addition to the previous two words in the document (as used in trigram language
models), we could imagine conditioning on all kinds of features of the context,
which might be useful evidence in estimating the probability of seeing model as the
next word. For example, we might consider the probability of model conditioned
on word wi−2, ignoring wi−1 completely:

P (Wi = model|Wi−2 = any)

We might condition on the fact that the previous word is an adjective

P (Wi = model|pos(Wi−1) = adjective)

here pos is a function that maps a word to its part of speech. (For simplicity we
assume that this is a deterministic function, i.e., the mapping from a word to its
underlying part-of-speech is unambiguous.) We might condition on the fact that
the previous word’s suffix is “ical”:

P (Wi = model|suff4(Wi−1) = ical)

(here suff4 is a function that maps a word to its last four characters). We might
condition on the fact that the word model does not appear in the context:

P (Wi = model|Wj 6= model for j ∈ {1 . . . (i− 1)})

2

or we might condition on the fact that the word grammatical does appear in the
context:

P (Wi = model|Wj = grammatical for some j ∈ {1 . . . (i− 1)})

In short, all kinds of information in the context might be useful in estimating the
probability of a particular word (e.g., model) in that context.

A naive way to use this information would be to simply extend the methods
that we saw for trigram language models. Rather than combining three estimates,
based on trigram, bigram, and unigram estimates, we would combine a much larger
set of estimates. We would again estimate λ parameters reflecting the importance
or weight of each estimate. The resulting estimator would take something like the
following form (this is intended as a sketch only):

p(model|w1, . . . wi−1) =

λ1 × qML(model|wi−2 = any, wi−1 = statistical) +

λ2 × qML(model|wi−1 = statistical) +

λ3 × qML(model) +

λ4 × qML(model|wi−2 = any) +

λ5 × qML(model|wi−1 is an adjective) +

λ6 × qML(model|wi−1 ends in “ical”) +

λ7 × qML(model|“model” does not occur somewhere in w1, . . . wi−1) +

λ8 × qML(model|“grammatical” occurs somewhere in w1, . . . wi−1) +

. . .

The problem is that the linear interpolation approach becomes extremely unwieldy
as we add more and more pieces of conditioning information. In practice, it is
very difficult to extend this approach beyond the case where we small number of
estimates that fall into a natural hierarchy (e.g., unigram, bigram, trigram esti-
mates). In contrast, we will see that log-linear models offer a much more satisfac-
tory method for incorporating multiple pieces of contextual information.

3 A Second Example: Part-of-speech Tagging

Our second example concerns part-of-speech tagging. Consider the problem where
the context is a sequence of words w1 . . . wn, together with a sequence of tags,
t1 . . . ti−1 (here i < n), and our task is to model the conditional distribution over
the i’th tag in the sequence. That is, we wish to model the conditional distribution

P (Ti = ti|T1 = t1 . . . Ti−1 = ti−1,W1 = w1 . . .Wn = wn)

3

As an example, we might have the following context:

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base from
which Spain expanded its empire into the rest of the Western Hemi-
sphere .

Here w1 . . . wn is the sentence Hispaniola quickly . . . Hemisphere ., and the previ-
ous sequence of tags is t1 . . . t5 = NNP RB VB DT JJ. We have i = 6, and our
task is to model the distribution

P (T6 = t6 | W1 . . .Wn = Hispaniola quickly . . . Hemisphere .,

T1 . . . T5 = NNP RB VB DT JJ)

i.e., our task is to model the distribution over tags for the 6th word, base, in the
sentence.

In this case there are again many pieces of contextual information that might
be useful in estimating the distribution over values for ti. To be concrete, consider
estimating the probability that the tag for base is V (i.e., T6 = V). We might
consider the probability conditioned on the identity of the i’th word:

P (T6 = V|W6 = base)

and we might also consider the probability conditioned on the previous one or two
tags:

P (T6 = V|T5 = JJ)

P (T6 = V|T4 = DT, T5 = JJ)

We might consider the probability conditioned on the previous word in the sentence

P (T6 = V|W5 = important)

or the probability conditioned on the next word in the sentence

P (T6 = V|W7 = from)

We might also consider the probability based on spelling features of the word w6,
for example the last two letters of w6:

P (T6 = V|suff2(W6) = se)

(here suff2 is a function that maps a word to its last two letters).
In short, we again have a scenario where a whole variety of contextual features

might be useful in modeling the distribution over the random variable of interest
(in this case the identity of the i’th tag). Again, a naive approach based on an
extension of linear interpolation would unfortunately fail badly when faced with
this estimation problem.

4

4 Log-Linear Models

We now describe how log-linear models can be applied to problems of the above
form.

4.1 Basic Definitions

The abstract problem is as follows. We have some set of possible inputs, X , and a
set of possible labels, Y . Our task is to model the conditional probability

p(y|x)

for any pair (x, y) such that x ∈ X and y ∈ Y .
For example, in the language modeling task we have some finite set of possible

words in the language, call this set V . The set Y is simply equal to V . The set
X is the set of possible sequences w1 . . . wi−1 such that i ≥ 1, and wj ∈ V for
j ∈ {1 . . . (i− 1)}.

In the part-of-speech tagging example, we have some set V of possible words,
and a set T of possible tags. The set Y is simply equal to T . The set X is the set
of contexts of the form

〈w1w2 . . . wn, t1t2 . . . ti−1〉

where n ≥ 1 is an integer specifying the length of the input sentence, wj ∈ V for
j ∈ {1 . . . n}, i ∈ {1 . . . (n− 1)}, and tj ∈ T for j ∈ {1 . . . (i− 1)}.

We will assume throughout that Y is a finite set. The set X could be finite,
countably infinite, or even uncountably infinite.

Log-linear models are then defined as follows:

Definition 1 (Log-linear Models) A log-linear model consists of the following
components:

• A set X of possible inputs.

• A set Y of possible labels. The set Y is assumed to be finite.

• A positive integer d specifying the number of features and parameters in the
model.

• A function f : X × Y → Rd that maps any (x, y) pair to a feature-vector
f(x, y).

• A parameter vector v ∈ Rd.

5

For any x ∈ X , y ∈ Y , the model defines a condtional probability

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

Here exp(x) = ex, and v ·f(x, y) =
∑d
k=1 vkfk(x, y) is the inner product between

v and f(x, y). The term p(y|x; v) is intended to be read as “the probability of y
conditioned on x, under parameter values v”.

We now describe the components of the model in more detail, first focusing on
the feature-vector definitions f(x, y), then giving intuition behind the model form

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

5 Features

As described in the previous section, for any pair (x, y), f(x, y) ∈ Rd is a feature
vector representing that pair. Each component fk(x, y) for k = 1 . . . d in this vector
is referred to as a feature. The features allows us to represent different properties
of the input x, in conjunction with the label y. Each feature has an associated
parameter, vk, whose value is estimated using a set of training examples. The
training set consists of a sequence of examples (x(i), y(i)) for i = 1 . . . n, where
each x(i) ∈ X , and each y(i) ∈ Y .

In this section we first give an example of how features can be constructed for
the language modeling problem, as introduced earlier in this note; we then describe
some practical issues in defining features.

5.1 Features for the Language Modeling Example

Consider again the language modeling problem, where the input x is a sequence of
words w1w2 . . . wi−1, and the label y is a word. Figure 1 shows a set of example
features for this problem. Each feature is an indicator function: that is, each feature
is a function that returns either 1 or 0. It is extremely common in NLP applications
to have indicator functions as features. Each feature returns the value of 1 if some
property of the input x conjoined with the label y is true, and 0 otherwise.

The first three features, f1, f2, and f3, are analogous to unigram, bigram, and
trigram features in a regular trigram language model. The first feature returns 1 if
the label y is equal to the word model, and 0 otherwise. The second feature returns
1 if the bigram 〈wi−1 y〉 is equal to 〈statistical model〉, and 0 otherwise. The third
feature returns 1 if the trigram 〈wi−2 wi−1 y〉 is equal to 〈the statistical model〉,

6

f1(x, y) =

{
1 if y = model
0 otherwise

f2(x, y) =

{
1 if y = model and wi−1 = statistical
0 otherwise

f3(x, y) =

{
1 if y = model, wi−2 = any, wi−1 = statistical
0 otherwise

f4(x, y) =

{
1 if y = model, wi−2 = any
0 otherwise

f5(x, y) =

{
1 if y = model, wi−1 is an adjective
0 otherwise

f6(x, y) =

{
1 if y = model, wi−1 ends in “ical”
0 otherwise

f7(x, y) =

{
1 if y = model, “model” is not in w1, . . . wi−1

0 otherwise

f8(x, y) =

{
1 if y = model, “grammatical” is in w1, . . . wi−1

0 otherwise

Figure 1: Example features for the language modeling problem, where the input x
is a sequence of words w1w2 . . . wi−1, and the label y is a word.

7

and 0 otherwise. Recall that each of these features will have a parameter, v1, v2, or
v3; these parameters will play a similar role to the parameters in a regular trigram
language model.

The features f4 . . . f8 in figure 1 consider properties that go beyond unigram,
bigram, and trigram features. The feature f4 considers word wi−2 in conjunction
with the label y, ignoring the word wi−1; this type of feature is often referred to as
a “skip bigram”. Feature f5 considers the part-of-speech of the previous word (as-
sume again that the part-of-speech for the previous word is available, for example
through a deterministic mapping from words to their part-of-speech, or perhaps
through a POS tagger’s output on words w1 . . . wi−1). Feature f6 considers the
suffix of the previous word, and features f7 and f8 consider various other features
of the input x = w1 . . . wi−1.

From this example we can see that it is possible to incorporate a broad set of
contextual information into the language modeling problem, using features which
are indicator functions.

5.2 Feature Templates

We now discuss some practical issues in defining features. In practice, a key idea in
defining features is that of feature templates. We introduce this idea in this section.

Recall that our first three features in the previous example were as follows:

f1(x, y) =

{
1 if y = model
0 otherwise

f2(x, y) =

{
1 if y = model and wi−1 = statistical
0 otherwise

f3(x, y) =

{
1 if y = model, wi−2 = any, wi−1 = statistical
0 otherwise

These features track the unigram 〈model〉, the bigram 〈statistical model〉, and the
trigram 〈the statistical model〉.

Each of these features is specific to a particular unigram, bigram or trigram. In
practice, we would like to define a much larger class of features, which consider
all possible unigrams, bigrams or trigrams seen in the training data. To do this, we
use feature templates to generate large sets of features.

As one example, here is a feature template for trigrams:

Definition 2 (Trigram feature template) For any trigram (u, v, w) seen in train-

8

ing data, create a feature

fN(u,v,w)(x, y) =

{
1 if y = w, wi−2 = u, wi−1 = v
0 otherwise

where N(u, v, w) is a function that maps each trigram in the training data to a
unique integer.

A couple of notes on this definition:

• Note that the template only generates trigram features for those trigrams
seen in training data. There are two reasons for this restriction. First, it is
not feasible to generate a feature for every possible trigram, even those not
seen in training data: this would lead to V 3 features, where V is the number
of words in the vocabulary, which is a very large set of features. Second, for
any trigram (u, v, w) not seen in training data, we do not have evidence to
estimate the associated parameter value, so there is no point including it in
any case.1

• The function N(u, v, w) maps each trigram to a unique integer: that is, it
is a function such that for any trigrams (u, v, w) and (u′, v′, w′) such that
u 6= u′, v 6= v′, or w 6= w′, we have

N(u, v, w) 6= N(u′, v′, w′)

In practice, in implementations of feature templates, the functionN is imple-
mented through a hash function. For example, we could use a hash table to
hash strings such as trigram=the statistical model to integers.
Each distinct string is hashed to a different integer.

Continuing with the example, we can also define bigram and unigram feature
templates:

Definition 3 (Bigram feature template) For any bigram (v, w) seen in training
data, create a feature

fN(v,w)(x, y) =

{
1 if y = w, wi−1 = v
0 otherwise

where N(v, w) maps each bigram to a unique integer.
1This isn’t quite accurate: there may in fact be reasons for including features for trigrams

(u, v, w) where the bigram (u, v) is observed in the training data, but the trigram (u, v, w) is not
observed in the training data. We defer discussion of this until later.

9

Definition 4 (Unigram feature template) For any unigram (w) seen in training
data, create a feature

fN(w)(x, y) =

{
1 if y = w
0 otherwise

where N(w) maps each unigram to a unique integer.

We actually need to be slightly more careful with these definitions, to avoid
overlap between trigram, bigram, and unigram features. Define T , B and U to be
the set of trigrams, bigrams, and unigrams seen in the training data. Define

Nt = {i : ∃(u, v, w) ∈ T such that N(u, v, w) = i}

Nn = {i : ∃(v, w) ∈ T such that N(v, w) = i}

Nu = {i : ∃(w) ∈ T such that N(w) = i}

Then we need to make sure that there is no overlap between these sets—otherwise,
two different n-grams would be mapped to the same feature. More formally, we
need

Nt ∩Nb = Nt ∩Nu = Nb ∩Nu = ∅ (2)

In practice, it is easy to ensure this when implementing log-linear models, using a
single hash table to hash strings such as trigram=the statistical model,
bigram=statistical model, unigram=model, to distinct integers.

We could of course define additional templates. For example, the following is
a template which tracks the length-4 suffix of the previous word, in conjunction
with the label y:

Definition 5 (Length-4 Suffix Template) For any pair (v, w) seen in training data,
where v = suff4(wi−1), and w = y, create a feature

fN(suff4=v,w)(x, y) =

{
1 if y = w and suff4(x) = v
0 otherwise

where N(suff4 = v, w) maps each pair (v, w) to a unique integer, with no over-
lap with the other feature templates used in the model (where overlap is defined
analogously to Eq. 2 above).

10

5.3 Feature Sparsity

A very important property of the features we have defined above is feature sparsity.
The number of features, d, in many NLP applications can be extremely large. For
example, with just the trigram template defined above, we would have one feature
for each trigram seen in training data. It is not untypical to see models with 100s
of thousands or even millions of features.

This raises obvious concerns with efficiency of the resulting models. However,
we describe in this section how feature sparsity can lead to efficient models.

The key observation is the following: for any given pair (x, y), the number of
values for k in {1 . . . d} such that

fk(x, y) = 1

is often very small, and is typically much smaller than the total number of features,
d. Thus all but a very small subset of the features are 0: the feature vector f(x, y)
is a very sparse bit-string, where almost all features fk(x, y) are equal to 0, and
only a few features are equal to 1.

As one example, consider the language modeling example where we use only
the trigram, bigram and unigram templates, as described above. The number of
features in this model is large (it is equal to the number of distinct trigrams, bigrams
and unigrams seen in training data). However, it can be seen immediately that for
any pair (x, y), at most three features are non-zero (in the worst case, the pair (x, y)
contains trigram, bigram and unigram features which are all seen in the training
data, giving three non-zero features in total).

When implementing log-linear models, models with sparse features can be
quite efficient, because there is no need to explicitly represent and manipulate d-
dimensional feature vectors f(x, y). Instead, it is generally much more efficient to
implement a function (typically through hash tables) that for any pair (x, y) com-
putes the indices of the non-zero features: i.e., a function that computes the set

Z(x, y) = {k : fk(x, y) = 1}

This set is small in sparse feature spaces—for example with unigram/bigram/trigram
features alone, it would be of size at most 3. In general, it is straightforward
to implement a function that computes Z(x, y) in O(|Z(x, y)|) time, using hash
functions. Note that |Z(x, y)| � d, so this is much more efficient than explicitly
computing all d features, which would take O(d) time.

As one example of how efficient computation of Z(x, y) can be very helpful,
consider computation of the inner product

v · f(x, y) =
d∑

k=1

vkfk(x, y)

11

This computation is central in log-linear models. A naive method would iterate
over each of the d features in turn, and would take O(d) time. In contrast, if we
make use of the identity

d∑
k=1

vkfk(x, y) =
∑

k∈Z(x,y)
vk

hence looking at only non-zero features, we can compute the inner product in
O(|Z(x, y)|) time.

6 The Model form for Log-Linear Models

We now describe the model form for log-linear models in more detail. Recall that
for any pair (x, y) such that x ∈ X , and y ∈ Y , the conditional probability under
the model is

p(y | x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

The inner products
v · f(x, y)

play a key role in this expression. Again, for illustration consider our languge-
modeling example where the input x = w1 . . . wi−1 is the following sequence of
words:

Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to En-
glish”. It is fair to assume that neither sentence (1) nor (2) (nor indeed
any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

The first step in calculating the probability distribution over the next word in
the document, conditioned on x, is to calculate the inner product v · f(x, y) for
each possible label y (i.e., for each possible word in the vocabulary). We might,
for example, find the following values (we show the values for just a few possible
words—in reality we would compute an inner product for each possible word):

v · f(x,model) = 5.6 v · f(x, the) = −3.2
v · f(x, is) = 1.5 v · f(x, of) = 1.3

v · f(x,models) = 4.5 . . .

12

Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by∑
y′∈Y

exp
(
v · f(x, y′)

)
giving

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

(3)

then it is easy to verify that we have a well-formed distribution: that is,∑
y∈Y

p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

performs a transformation which takes as input a set of values {v ·f(x, y) : y ∈ Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y ∈ Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)− log
∑
y′∈Y

exp
(
v · f(x, y′)

)
= v · f(x, y)− g(x)

where
g(x) = log

∑
y′∈Y

exp
(
v · f(x, y′)

)

13

The first term, v · f(x, y), is linear in the features f(x, y). The second term, g(x),
depends only on x, and does not depend on the label y. Hence the log probability
log p(y|x; v) is a linear function in the features f(x, y), as long as we hold x fixed;
this justifies the term “log-linear”.

7 Parameter Estimation in Log-Linear Models

7.1 The Log-Likelihood Function, and Regularization

We now consider the problem of parameter estimation in log-linear models. We
assume that we have a training set, consisting of examples (x(i), y(i)) for i ∈
{1 . . . n}, where each x(i) ∈ X , and each y(i) ∈ Y .

Given parameter values v, for any example i, we can calculate the log condi-
tional probability

log p(y(i)|x(i); v)

under the model. Intuitively, the higher this value, the better the model fits this
particular example. The log-likelihood considers the sum of log probabilities of
examples in the training data:

L(v) =
n∑
i=1

log p(y(i)|x(i); v) (4)

This is a function of the parameters v. For any parameter vector v, the value of
L(v) can be interpreted of a measure of how well the parameter vector fits the
training examples.

The first estimation method we will consider is maximum-likelihood estima-
tion, where we choose our parameters as

vML = arg max
v∈Rd

L(v)

In the next section we describe how the parameters vML can be found efficiently.
Intuitively, this estimation method finds the parameters which fit the data as well
as possible.

The maximum-likelihood estimates can run into problems, in particular in
cases where the number of features in the model is very large. To illustrate, con-
sider the language-modeling problem again, and assume that we have trigram, bi-
gram and unigram features. Now assume that we have some trigram (u, v, w)
which is seen only once in the training data; to be concrete, assume that the tri-
gram is the statistical model, and assume that this trigram is seen on the 100’th

14

training example alone. More precisely, we assume that

fN(the,statistical,model)(x
(100), y(100)) = 1

In addition, assume that this is the only trigram (u, v, w) in training data with
u = the, and v = statistical. In this case, it can be shown that the maximum-
likelihood parameter estimate for v100 is +∞,2, which gives

p(y(100)|x(100); v) = 1

In fact, we have a very similar situation to the case in maximum-likelihood
estimates for regular trigram models, where we would have

qML(model|the, statistical) = 1

for this trigram. As discussed earlier in the class, this model is clearly under-
smoothed, and it will generalize badly to new test examples. It is unreasonable to
assign

P (Wi = model|Wi−1,Wi−2 = the, statistical) = 1

based on the evidence that the bigram the statistical is seen once, and on that one
instance the bigram is followed by the word model.

A very common solution for log-linear models is to modify the objective func-
tion in Eq. 4 to include a regularization term, which prevents parameter values from
becoming too large (and in particular, prevents parameter values from diverging to
infinity). A common regularization term is the 2-norm of the parameter values, that
is,

||v||2 =
∑
k

v2k

(here ||v|| is simply the length, or Euclidean norm, of a vector v; i.e., ||v|| =√∑
k v

2
k). The modified objective function is

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k (5)

2It is relatively easy to prove that v100 can diverge to ∞. To give a sketch: under the above
assumptions, the feature fN(the,statistical,model)(x, y) is equal to 1 on only a single pair x(i), y

where i ∈ {1 . . . n}, and y ∈ Y , namely the pair (x(100), y(100)). Because of this, as v100 → ∞,
we will have p(y(100)|x(100); v) tending closer and closer to a value of 1, with all other values
p(y(i)|x(i); v) remaining unchanged. Thus we can use this one parameter to maximize the value for
log p(y(100)|x(100); v), independently of the probability of all other examples in the training set.

15

where λ > 0 is a parameter, which is typically chosen by validation on some
held-out dataset. We again choose the parameter values to maximize the objective
function: that is, our optimal parameter values are

v∗ = argmax
v
L′(v)

The key idea behind the modified objective in Eq. 5 is that we now balance two
separate terms. The first term is the log-likelihood on the training data, and can be
interpreted as a measure of how well the parameters v fit the training examples. The
second term is a penalty on large parameter values: it encourages parameter values
to be as close to zero as possible. The parameter λ defines the relative weighting of
the two terms. In practice, the final parameters v∗ will be a compromise between
fitting the data as well as is possible, and keeping their values as small as possible.

In practice, this use of regularization is very effective in smoothing of log-linear
models.

7.2 Finding the Optimal Parameters

First, consider finding the maximum-likelihood parameter estimates: that is, the
problem of finding

vML = arg max
v∈Rd

L(v)

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

The bad news is that in the general case, there is no closed-form solution for the
maximum-likelihood parameters vML. The good news is that finding argmaxv L(v)
is a relatively easy problem, because L(v) can be shown to be a convex function.
This means that simple gradient-ascent-style methods will find the optimal param-
eters vML relatively quickly.

Figure 2 gives a sketch of a gradient-based algorithm for optimization of L(v).
The parameter vector is initialized to the vector of all zeros. At each iteration we
first calculate the gradients δk for k = 1 . . . d. We then move in the direction
of the gradient: more precisely, we set v ← v + β∗ × δ where β∗ is chosen to
give the optimal improvement in the objective function. This is a “hill-climbing”
technique where at each point we compute the steepest direction to move in (i.e.,
the direction of the gradient); we then move the distance in that direction which
gives the greatest value for L(v).

Simple gradient ascent, as shown in figure 2, can be rather slow to converge.
Fortunately there are many standard packages for gradient-based optimization,

16

Initialization: v = 0

Iterate until convergence:

• Calculate δk =
dL(v)
dvk

for k = 1 . . . d

• Calculate β∗ = argmaxβ∈R L(v + βδ) where δ is the vector with
components δk for k = 1 . . . d (this step is performed using some type
of line search)

• Set v ← v + β∗δ

Figure 2: A gradient ascent algorithm for optimization of L(v).

which use more sophisticated algorithms, and which give considerably faster con-
vergence. As one example, a commonly used method for parameter estimation in
log-linear models is LBFGs. LBFGs is again a gradient method, but it makes a
more intelligent choice of search direction at each step. It does however rely on the
computation of L(v) and dL(v)

dvk
for k = 1 at each step—in fact this is the only infor-

mation it requires about the function being optimized. In summary, if we can com-
pute L(v) and dL(v)

dvk
efficiently, then it is simple to use an existing gradient-based

optimization package (e.g., based on LBFGs) to find the maximum-likelihood es-
timates.

Optimization of the regularized objective function,

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k

can be performed in a very similar manner, using gradient-based methods. L′(v)
is also a convex function, so a gradient-based method will find the global optimum
of the parameter estimates.

The one remaining step is to describe how the gradients

dL(v)

dvk

and
dL′(v)

dvk

can be calculated. This is the topic of the next section.

17

7.3 Gradients

We first consider the derivatives
dL(v)

dvk

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

It is relatively easy to show (see the appendix of this note), that for any k ∈
{1 . . . d},

dL(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y) (6)

where as before

p(y|x(i); v) =
exp

(
v · f(x(i), y)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
The expression in Eq. 6 has a quite intuitive form. The first part of the expression,

n∑
i=1

fk(x
(i), y(i))

is simply the number of times that the feature fk is equal to 1 on the training ex-
amples (assuming that fk is an indicator function; i.e., assuming that fk(x(i), y(i))
is either 1 or 0). The second part of the expression,

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)

can be interpreted as the expected number of times the feature is equal to 1, where
the expectation is taken with respect to the distribution

p(y|x(i); v) =
exp

(
v · f(x(i), y)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
specified by the current parameters. The gradient is then the difference of these
terms. It can be seen that the gradient is easily calculated.

The gradients
dL′(v)

dvk

18

where

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k

are derived in a very similar way. We have

d

dvk

(∑
k

v2k

)
= vk

hence

dL′(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)− λvk (7)

Thus the only difference from the gradient in Eq. 6 is the additional term −λvk in
this expression.

A Calculation of the Derivatives

In this appendix we show how to derive the expression for the derivatives, as given
in Eq. 6. Our goal is to find an expression for

dL(v)

dvk

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

First, consider a single term log p(y(i)|x(i); v). Because

p(y(i)|x(i); v) =
exp

(
v · f(x(i), y(i))

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
we have

log p(y(i)|x(i); v) = v · f(x(i), y(i))− log
∑
y′∈Y

exp
(
v · f(x(i), y′)

)
The derivative of the first term in this expression is simple:

d

dvk

(
v · f(x(i), y(i))

)
=

d

dvk

(∑
k

vkfk(x
(i), y(i))

)
= fk(x

(i), y(i)) (8)

19

Now consider the second term. This takes the form

log g(v)

where
g(v) =

∑
y′∈Y

exp
(
v · f(x(i), y′)

)
By the usual rules of differentiation,

d

dvk
log g(v) =

d
dvk

(g(v))

g(v)

In addition, it can be verified that

d

dvk
g(v) =

∑
y′∈Y

fk(x
(i), y′) exp

(
v · f(x(i), y′)

)
hence

d

dvk
log g(v) =

d
dvk

(g(v))

g(v)
(9)

=

∑
y′∈Y fk(x

(i), y′) exp
(
v · f(x(i), y′)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

) (10)

=
∑
y′∈Y

fk(x(i), y′)× exp
(
v · f(x(i), y′)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
 (11)

=
∑
y′∈Y

fk(x
(i), y′)p(y′|x; v) (12)

Combining Eqs 8 and 12 gives

dL(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)

20

The Forward-Backward Algorithm

Michael Collins

1 Introduction

This note describes the forward-backward algorithm. The forward-backward algo-
rithm has very important applications to both hidden Markov models (HMMs) and
conditional random fields (CRFs). It is a dynamic programming algorithm, and is
closely related to the Viterbi algorithm for decoding with HMMs or CRFs.

This note describes the algorithm at a level of abstraction that applies to both
HMMs and CRFs. We will also describe its specific application to these cases.

2 The Forward-Backward Algorithm

The problem set-up is as follows. Assume that we have some sequence length m,
and some set of possible states S. For any state sequence s1 . . . sm where each
si ∈ S, we define the potential for the sequence as

ψ(s1 . . . sm) =
m∏
j=1

ψ(sj−1, sj , j)

Here we define s0 to be *, where * is a special start symbol in the model. Here
ψ(s, s′, j) ≥ 0 for s, s′ ∈ S, j ∈ {1 . . .m} is a potential function, which returns a
value for the state transition s to s′ at position j in the sequence.

The potential functions ψ(sj−1, sj , j) might be defined in various ways. As
one example, consider an HMM applied to an input sentence x1 . . . xm. If we
define

ψ(s′, s, j) = t(s|s′)e(xj |s)

then

ψ(s1 . . . sm) =
m∏
j=1

ψ(sj−1, sj , j)

=
m∏
j=1

t(sj |sj−1)e(xj |sj)

1

= p(x1 . . . xm, s1 . . . sm)

where p(x1 . . . xm, s1 . . . sm) is the probability mass function under the HMM.
As another example, consider a CRF where we have a feature-vector definition

φ(x1 . . . xm, s
′, s, j) ∈ Rd, and a parameter vector w ∈ Rd. Assume again that we

have an input sentence x1 . . . xm. If we define

ψ(s′, s, j) = exp
(
w · φ(x1 . . . xm, s′, s, j)

)
then

ψ(s1 . . . sm) =
m∏
j=1

ψ(sj−1, sj , j)

=
m∏
j=1

exp
(
w · φ(x1 . . . xm, sj−1, sj , j)

)

= exp

 m∑
j=1

w · φ(x1 . . . xm, sj−1, sj , j)

Note in particular, by the model form for CRFs, it follows that

p(s1 . . . sm|x1 . . . xm) =
ψ(s1 . . . sm)∑

s1...sm ψ(s1 . . . sm)

The forward-backward algorithm is shown in figure 1. Given inputs consisting
of a sequence lengthm, a set of possible states S, and potential functions ψ(s′, s, j)
for s, s′ ∈ S, and j ∈ {1 . . .m}, it computes the following quantities:

1. Z =
∑

s1...sm ψ(s1 . . . sm).

2. For all j ∈ {1 . . .m}, a ∈ S,

µ(j, a) =
∑

s1...sm:sj=a

ψ(s1 . . . sm)

3. For all j ∈ {1 . . . (m− 1)}, a, b ∈ S,

µ(j, a, b) =
∑

s1...sm:sj=a,sj+1=b

ψ(s1 . . . sm)

2

Inputs: Length m, set of possible states S , function ψ(s, s′, j). Define * to be a
special initial state.
Initialization (forward terms): For all s ∈ S,

α(1, s) = ψ(*, s, 1)

Recursion (forward terms): For all j ∈ {2 . . .m}, s ∈ S,

α(j, s) =
∑
s′∈S

α(j − 1, s′)× ψ(s′, s, j)

Initialization (backward terms): For all s ∈ S,

β(m, s) = 1

Recursion (backward terms): For all j ∈ {1 . . . (m− 1)}, s ∈ S,

β(j, s) =
∑
s′∈S

β(j + 1, s′)× ψ(s, s′, j + 1)

Calculations:
Z =

∑
s∈S

α(m, s)

For all j ∈ {1 . . .m}, a ∈ S,

µ(j, a) = α(j, a)× β(j, a)

For all j ∈ {1 . . . (m− 1)}, a, b ∈ S,

µ(j, a, b) = α(j, a)× ψ(a, b, j + 1)× β(j + 1, b)

Figure 1: The forward-backward algorithm.

3

3 Application to CRFs

The quantities computed by the forward-backward algorithm play a central role in
CRFs. First, consider the problem of calculating the conditional probability

p(s1 . . . sm|x1 . . . xm) =
exp

(∑m
j=1w · φ(x1 . . . xm, sj−1, sj , j)

)
∑

s1...sm exp{
(∑m

j=1w · φ(x1 . . . xm, sj−1, sj , j)
)

The numerator in the above expression is easy to compute; the denominator is
more challenging, because it requires a sum over an exponential number of state
sequences. However, if we define

ψ(s′, s, j) = exp
(
w · φ(x1 . . . xm, s′, s, j)

)
in the algorithm in figure 1, then as we argued before we have

ψ(s1 . . . sm) = exp

 m∑
j=1

w · φ(x1 . . . xm, sj−1, sj , j)

It follows that the quantity Z calculated by the algorithm is equal to the denomina-
tor in the above expression; that is,

Z =
∑

s1...sm

exp

 m∑
j=1

w · φ(x1 . . . xm, sj−1, sj , j)

Next, recall that the key difficulty in the calculation of the gradient of the log-

likelihood function in CRFs was to calculate the terms

qij(a, b) =
∑

s:sj−1=a,sj=b

p(s|xi;w)

for a given input sequence xi = xi1 . . . x
i
m, for each j ∈ {2 . . .m}, for each a, b ∈

S (see the note on log-linear models). Again, if we define

ψ(s′, s, j) = exp
(
w · φ(xi1 . . . xim, s′, s, j)

)
then it can be verified that

qij(a, b) =
µ(j, a, b)

Z

where µ(j, a, b) and Z are the terms computed by the algorithm in figure 1.

4

Probabilistic Context-Free Grammars (PCFGs)

Michael Collins

1 Context-Free Grammars

1.1 Basic Definition

A context-free grammar (CFG) is a 4-tupleG = (N,Σ, R, S) where:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols.

• R is a finite set of rules of the formX → Y1Y2 . . . Yn, whereX ∈ N , n ≥ 0,
andYi ∈ (N ∪ Σ) for i = 1 . . . n.

• S ∈ N is a distinguished start symbol.

Figure 1 shows a very simple context-free grammar, for a fragment of English.
In this case the set of non-terminalsN specifies some basic syntactic categories:
for exampleS stands for “sentence”,NP for “noun phrase”,VP for “verb phrase”,
and so on. The setΣ contains the set of words in the vocabulary. The start symbol
in this grammar isS: as we will see, this specifies that every parse tree hasS as its
root. Finally, we have context-free rules such as

S → NP VP

or
NN → man

The first rule specifies that anS (sentence) can be composed of anNP followed by
a VP. The second rule specifies that anNN (a singular noun) can be composed of
the wordman.

Note that the set of allowable rules, as defined above, is quite broad: we can
have any ruleX → Y1 . . . Yn as long asX is a member ofN , and eachYi for

1

i = 1 . . . n is a member of eitherN or Σ. We can for example have “unary rules”,
wheren = 1, such as the following:

NN → man

S → VP

We can also have rules that have a mixture of terminal and non-terminal symbols
on the right-hand-side of the rule, for example

VP → John Vt Mary

NP → the NN

We can even have rules wheren = 0, so that there are no symbols on the right-
hand-side of the rule. Examples are

VP → ǫ

NP → ǫ

Here we useǫ to refer to the empty string. Intuitively, these latter rules specify that
a particular non-terminal (e.g.,VP), is allowed to have no words below it in a parse
tree.

1.2 (Left-most) Derivations

Given a context-free grammarG, a left-most derivation is a sequence of strings
s1 . . . sn where

• s1 = S. i.e.,s1 consists of a single element, the start symbol.

• sn ∈ Σ∗, i.e. sn is made up of terminal symbols only (we writeΣ∗ to denote
the set of all possible strings made up of sequences of words taken fromΣ.)

• Eachsi for i = 2 . . . n is derived fromsi−1 by picking the left-most non-
terminalX in si−1 and replacing it by someβ whereX → β is a rule in
R.

As one example, one left-most derivation under the grammar in figure 1 is the
following:

• s1 = S.

• s2 = NP VP. (We have taken the left-most non-terminal ins1, namelyS,
and chosen the ruleS → NP VP, thereby replacingS by NP followed byVP.)

2

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R =

S → NP VP
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP

Vi → sleeps
Vt → saw
NN → man
NN → woman
NN → telescope
NN → dog
DT → the
IN → with
IN → in

Figure 1: A simple context-free grammar. Note that the set ofnon-terminals
N contains a basic set of syntactic categories: S=sentence, VP=verb phrase,
NP=noun phrase, PP=prepositional phrase, DT=determiner,Vi=intransitive verb,
Vt=transitive verb, NN=noun, IN=preposition. The setΣ is the set of possible
words in the language.

• s3 = DT NN VP. (We have used the ruleNP → DT NN to expand the
left-most non-terminal, namelyNP.)

• s4 = the NN VP. (We have used the ruleDT → the.)

• s5 = the man VP. (We have used the ruleNN → man.)

• s6 = the man Vi. (We have used the ruleVP → Vi.)

• s7 = the man sleeps. (We have used the ruleVi → sleeps.)

It is very convenient to represent derivations asparse trees. For example, the above
derivation would be represented as the parse tree shown in figure 2. This parse tree
hasS as its root, reflecting the fact thats1 = S. We see the sequenceNP VP directly
belowS, reflecting the fact that theS was expanded using the ruleS → NP VP; we
see the sequenceDT NN directly below theNP, reflecting the fact that theNP was
expanded using the ruleNP → DT NN; and so on.

A context-free grammarG will in general specify a set of possible left-most
derivations. Each left-most derivation will end in a stringsn ∈ Σ∗: we say thatsn

3

S

NP

DT

the

NN

man

VP

Vi

sleeps

Figure 2: A derivation can be represented as a parse tree.

is theyield of the derivation. The set of possible derivations may be a finite or an
infinite set (in fact the set of derivations for the grammar infigure 1 is infinite).

The following definition is crucial:

• A string s ∈ Σ∗ is said to be in thelanguage defined by the CFG, if there is
at least one derivation whose yield iss.

2 Ambiguity

Note that some stringss may have more than one underlying derivation (i.e., more
than one derivation withs as the yield). In this case we say that the string is
ambiguous under the CFG.

As one example, see figure 3, which gives two parse trees for the string the
man saw the dog with the telescope, both of which are valid under the CFG given
in figure 1. This example is a case of prepositional phrase attachment ambiguity:
the prepositional phrase (PP) with the telescope can modify eitherthe dog, or saw
the dog. In the first parse tree shown in the figure, thePP modifiesthe dog, leading
to anNP the dog with the telescope: this parse tree corresponds to an interpretation
where the dog is holding the telescope. In the second parse tree, thePP modifies
the entireVP saw the dog: this parse tree corresponds to an interpretation where
the man is using the telescope to see the dog.

Ambiguity is an astonishingly severe problem for natural languages. When
researchers first started building reasonably large grammars for languages such as
English, they were surprised to see that sentences often hada very large number
of possible parse trees: it is not uncommon for a moderate-length sentence (say 20
or 30 words in length) to have hundreds, thousands, or even tens of thousands of
possible parses.

As one example, in lecture we argued that the following sentence has a surpris-
ingly large number of parse trees (I’ve found 14 in total):

4

S

NP

DT

the

NN

man

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope
S

NP

DT

the

NN

man

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

Figure 3: Two parse trees (derivations) for the sentencethe man saw the dog with
the telescope, under the CFG in figure 1.

5

She announced a program to promote safety in trucks and vans

Can you find the different parse trees for this example?

3 Probabilistic Context-Free Grammars (PCFGs)

3.1 Basic Definitions

Given a context-free grammarG, we will use the following definitions:

• TG is the set of all possible left-most derivations (parse trees) under the gram-
marG. When the grammarG is clear from context we will often write this
as simplyT .

• For any derivationt ∈ TG, we writeyield(t) to denote the strings ∈ Σ∗ that
is the yield oft (i.e.,yield(t) is the sequence of words int).

• For a given sentences ∈ Σ∗, we writeTG(s) to refer to the set

{t : t ∈ TG, yield(t) = s}

That is,TG(s) is the set of possible parse trees fors.

• We say that a sentences is ambiguous if it has more than one parse tree, i.e.,
|TG(s)| > 1.

• We say that a sentences is grammatical if it has at least one parse tree, i.e.,
|TG(s)| > 0.

The key idea in probabilistic context-free grammars is to extend our definition
to give aprobability distribution over possible derivations. That is, we will find a
way to define a distribution over parse trees,p(t), such that for anyt ∈ TG,

p(t) ≥ 0

and in addition such that
∑

t∈TG

p(t) = 1

At first glance this seems difficult: each parse-treet is a complex structure, and the
setTG will most likely be infinite. However, we will see that there is a very simple
extension to context-free grammars that allows us to define afunctionp(t).

6

Why is this a useful problem? A crucial idea is that once we have a function
p(t), we have a ranking over possible parses for any sentence in order of probabil-
ity. In particular, given a sentences, we can return

arg max
t∈TG(s)

p(t)

as the output from our parser—this is the most likely parse tree fors under the
model. Thus if our distributionp(t) is a good model for the probability of dif-
ferent parse trees in our language, we will have an effectiveway of dealing with
ambiguity.

This leaves us with the following questions:

• How do we define the functionp(t)?

• How do we learn the parameters of our model ofp(t) from training exam-
ples?

• For a given sentences, how do we find the most likely tree, namely

arg max
t∈TG(s)

p(t)?

This last problem will be referred to as thedecoding or parsing problem.

In the following sections we answer these questions throughdefiningproba-
bilistic context-free grammars (PCFGs), a natural generalization of context-free
grammars.

3.2 Definition of PCFGs

Probabilistic context-free grammars (PCFGs) are defined asfollows:

Definition 1 (PCFGs) A PCFG consists of:

1. A context-free grammar G = (N,Σ, S,R).

2. A parameter
q(α → β)

for each rule α → β ∈ R. The parameter q(α → β) can be interpreted as
the conditional probabilty of choosing rule α → β in a left-most derivation,
given that the non-terminal being expanded is α. For any X ∈ N , we have
the constraint

∑

α→β∈R:α=X

q(α → β) = 1

In addition we have q(α → β) ≥ 0 for any α → β ∈ R.

7

Given a parse-tree t ∈ TG containing rules α1 → β1, α2 → β2, . . . , αn → βn,
the probability of t under the PCFG is

p(t) =
n

∏

i=1

q(αi → βi)

Figure 4 shows an example PCFG, which has the same underlyingcontext-free
grammar as that shown in figure 1. The only addition to the original context-
free grammar is a parameterq(α → β) for each ruleα → β ∈ R. Each of these
parameters is constrained to be non-negative, and in addition we have the constraint
that for any non-terminalX ∈ N ,

∑

α→β∈R:α=X

q(α → β) = 1

This simply states that for any non-terminalX, the parameter values for all rules
with that non-terminal on the left-hand-side of the rule must sum to one. We can
verify that this property holds for the PCFG in figure 4. For example, we can verify
that this constraint holds forX = VP, because

∑

α→β∈R:α=VP

q(α → β) = q(VP → Vi) + q(VP → Vt NP) + q(VP → VP PP)

= 0.3 + 0.5 + 0.2

= 1.0

To calculate the probability of any parse treet, we simply multiply together the
q values for the context-free rules that it contains. For example, if our parse treet
is

S

NP

DT

the

NN

dog

VP

Vi

sleeps
then we have

p(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the) × q(NN → dog) ×

q(VP → Vi) × q(Vi → sleeps)

Intuitively, PCFGs make the assumption that parse trees aregenerated stochas-
tically, according to the following process:

8

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R, q =

S → NP VP 1.0
VP → Vi 0.3
VP → Vt NP 0.5
VP → VP PP 0.2
NP → DT NN 0.8
NP → NP PP 0.2
PP → IN NP 1.0

Vi → sleeps 1.0
Vt → saw 1.0
NN → man 0.1
NN → woman 0.1
NN → telescope 0.3
NN → dog 0.5
DT → the 1.0
IN → with 0.6
IN → in 0.4

Figure 4: A simple probabilistic context-free grammar (PCFG). In addition to
the set of rulesR, we show the parameter value for each rule. For example,
q(VP → Vt NP) = 0.5 in this PCFG.

• Defines1 = S, i = 1.

• While si contains at least one non-terminal:

– Find the left-most non-terminal insi, call thisX.

– Choose one of the rules of the formX → β from the distribution
q(X → β).

– Createsi+1 by replacing the left-mostX in si by β.

– Seti = i + 1.

So we have simply added probabilities to each step in left-most derivations. The
probability of an entire tree is the product of probabilities for these individual
choices.

3.3 Deriving a PCFG from a Corpus

Having defined PCFGs, the next question is the following: howdo we derive a
PCFG from a corpus? We will assume a set of training data, which is simply a set

9

of parse treest1, t2, . . . , tm. As before, we will writeyield(ti) to be the yield for
thei’th parse tree in the sentence, i.e.,yield(ti) is thei’th sentence in the corpus.

Each parse treeti is a sequence of context-free rules: we assume that every
parse tree in our corpus has the same symbol,S, at its root. We can then define a
PCFG(N,Σ, S,R, q) as follows:

• N is the set of all non-terminals seen in the treest1 . . . tm.

• Σ is the set of all words seen in the treest1 . . . tm.

• The start symbolS is taken to beS.

• The set of rulesR is taken to be the set of all rulesα → β seen in the trees
t1 . . . tm.

• The maximum-likelihood parameter estimates are

qML(α → β) =
Count(α → β)

Count(α)

where Count(α → β) is the number of times that the ruleα → β is seen in
the treest1 . . . tm, and Count(α) is the number of times the non-terminalα

is seen in the treest1 . . . tm.

For example, if the ruleVP → Vt NP is seen 105 times in our corpus, and the
non-terminalVP is seen 1000 times, then

q(VP → Vt NP) =
105

1000

3.4 Parsing with PCFGs

A crucial question is the following: given a sentences, how do we find the highest
scoring parse tree fors, or more explicitly, how do we find

arg max
t∈T (s)

p(t) ?

This section describes a dynamic programming algorithm,the CKY algorithm, for
this problem.

The CKY algorithm we present applies to a restricted type of PCFG: a PCFG
where which is in Chomsky normal form (CNF). While the restriction to grammars
in CNF might at first seem to be restrictive, it turns out not tobe a strong assump-
tion. It is possible to convert any PCFG into an equivalent grammar in CNF: we
will look at this question more in the homeworks.

In the next sections we first describe the idea of grammars in CNF, then de-
scribe the CKY algorithm.

10

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R, q =

S → NP VP 1.0
VP → Vt NP 0.8
VP → VP PP 0.2
NP → DT NN 0.8
NP → NP PP 0.2
PP → IN NP 1.0

Vi → sleeps 1.0
Vt → saw 1.0
NN → man 0.1
NN → woman 0.1
NN → telescope 0.3
NN → dog 0.5
DT → the 1.0
IN → with 0.6
IN → in 0.4

Figure 5: A simple probabilistic context-free grammar (PCFG) in Chomsky normal
form. Note that each rule in the grammar takes one of two forms: X → Y1 Y2

whereX ∈ N,Y1 ∈ N,Y2 ∈ N ; or X → Y whereX ∈ N , Y ∈ Σ.

3.4.1 Chomsky Normal Form

Definition 2 (Chomsky Normal Form) A context-free grammar G = (N,Σ, R, S)
is in Chomsky form if each rule α → β ∈ R takes one of the two following forms:

• X → Y1Y2 where X ∈ N,Y1 ∈ N,Y2 ∈ N .

• X → Y where X ∈ N , Y ∈ Σ.

Hence each rule in the grammar either consists of a non-terminal X rewriting as
exactly two non-terminal symbols, Y1Y2; or a non-terminal X rewriting as exactly
one terminal symbol Y .

Figure 5 shows an example of a PCFG in Chomsky normal form.

3.4.2 Parsing using the CKY Algorithm

We now describe an algorithm for parsing with a PCFG in CNF. The input to the
algorithm is a PCFGG = (N,Σ, S,R, q) in Chomsky normal form, and a sentence

11

s = x1 . . . xn, wherexi is thei’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentencex1 . . . xn, defineT (i, j,X) for any X ∈ N , for any
(i, j) such that1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminalX is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we defineπ(i, j,X) = 0 if T (i, j,X) is the empty set).

Thusπ(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj, and has non-terminalX as its root. The score for a treet is again taken
to be the product of scores for the rules that it contains (i.e. if the treet contains
rulesα1 → β1, α2 → β2, . . . , αm → βm, thenp(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definitionπ(1, n, S) is the score for the highest probability parse tree
spanning wordsx1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of theπ values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases wherej = i, then the cases wherej = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning wordxi is if the ruleX → xi is in the grammar, in which case the
tree has scoreq(X → xi); otherwise, we setπ(i, i,X) = 0, reflecting the fact that
there are no trees rooted inX spanning wordxi.

12

The recursive definition is as follows: for all(i, j) such that1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in theπ values bottom-up: first theπ(i, i,X) values, using the base
case in the recursion; then the values forπ(i, j,X) such thatj = i + 1; then the
values forπ(i, j,X) such thatj = i + 2; and so on.

Note that the algorithm also storesbackpointer valuesbp(i, j,X) for all values
of (i, j,X). These values record the ruleX → Y Z and the split-points leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation ofπ(3, 8, VP). This will be the highest score for
any tree with rootVP, spanning wordsx3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take themax over two choices: first,
a choice of a ruleVP → Y Z which is in the set of rulesR—note that there are two
such rules,VP → Vt NP andVP → VP PP. Second, a choice ofs ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13

Input: a sentences = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Setj = i + l

∗ For allX ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

Output: Returnπ(1, n, S) = maxt∈T (s) p(t), and backpointersbp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.

14

How do we justify this recursive definition? The key observation is that any
treet rooted inX, spanning wordsxi . . . xj, must consist of the following:

• A choice of some ruleX → Y Z ∈ R, at the top of the tree.

• A choice of some values ∈ {i . . . j − 1}, which we will refer to as the “split
point” of the rule.

• A choice of a tree rooted inY , spanning wordsxi . . . xs, call this treet1

• A choice of a tree rooted inZ, spanning wordsxs+1 . . . xj , call this treet2.

• We then have
p(t) = q(X → Y Z) × p(t1) × p(t2)

I.e., the probability for the treet is the product of three terms: the rule prob-
ability for the rule at the top of the tree, and probabilitiesfor the sub-treest1
andt2.

For example, consider the following tree, rooted inVP, spanning wordsx3 . . . x8

in our previous example:
VP

VP

Vt

saw

NP

DT

the

NN

man

PP

IN

with

NP

DT

the

NN

telescope
In this case we have the ruleVP → VP PP at the top of the tree; the choice of

split-point iss = 5; the tree dominating wordsx3 . . . xs, rooted inVP, is
VP

Vt

saw

NP

DT

the

NN

man
and the tree dominating wordsxs+1 . . . x8, rooted inPP, is

15

PP

IN

with

NP

DT

the

NN

telescope
The second key observation is the following:

• If the highest scoring tree rooted in non-terminal X, and spanning words
xi . . . xj , uses rule X → Y Z and split point s, then its two subtrees must
be: 1) the highest scoring tree rooted in Y that spanns words xi . . . xs; 2)
the highest scoring tree rooted in Z that spans words xs+1 . . . xj .

The proof is by contradiction. If either condition (1) or condition (2) was
not true, we could always find a higher scoring tree rooted inX, spanning words
xi . . . xj, by choosing a higher scoring subtree spanning wordsxi . . . xs orxs+1 . . . xj.

Now let’s look back at our recursive definition:

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

We see that it involves a search over rules possible rulesX → Y Z ∈ R, and
possible split pointss. For each choice of rule and split point, we calculate

q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)

which is the highest scoring tree rooted inX, spanning wordsxi . . . xj , with this
choice of rule and split point. The definition uses the valuesπ(i, s, Y) andπ(s +
1, j, Z), corresponding to the two highest scoring subtrees. We takethemax over
all possible choices of rules and split points.

3.4.4 The Inside Algorithm for Summing over Trees

We now describe a second, very similar algorithm, which sumsthe probabilities
for all parse trees for a given sentence, thereby calculating the probability of the
sentence under the PCFG. The algorithm is calledthe inside algorithm.

The input to the algorithm is again a PCFGG = (N,Σ, S,R, q) in Chom-
sky normal form, and a sentences = x1 . . . xn, wherexi is thei’th word in the
sentence. The output of the algorithm is

p(s) =
∑

t∈TG(s)

p(t)

16

Herep(s) is the probability of the PCFG generating strings.
We define the following:

• As before, for a given sentencex1 . . . xn, defineT (i, j,X) for anyX ∈ N ,
for any (i, j) such that1 ≤ i ≤ j ≤ n, to be the set of all parse trees for
wordsxi . . . xj such that non-terminalX is at the root of the tree.

• Define
π(i, j,X) =

∑

t∈T (i,j,X)

p(t)

(we defineπ(i, j,X) = 0 if T (i, j,X) is the empty set).

Note that we have simply replaced themax in the previous definition ofπ, with
a sum.

In particular, we have

π(1, n, S) =
∑

t∈TG(s)

p(t) = p(s)

Thus by calculatingπ(1, n, S), we have calculated the probabilityp(s).
We use a very similar recursive definition to before. First, the base case is as

follows: for all i = 1 . . . n, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

The recursive definition is as follows: for all(i, j) such that1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) =
∑

X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (2)

Figure 7 shows the algorithm based on these recursive definitions. The algo-
rithm is essentially identical to the CKY algorithm, but with max replaced by a
sum in the recursive definition. Theπ values are again calculated bottom-up.

17

Input: a sentences = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Setj = i + l

∗ For allX ∈ N , calculate

π(i, j,X) =
∑

X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

Output: Returnπ(1, n, S) =
∑

t∈T (s) p(t)

Figure 7: The inside algorithm.

18

The Naive Bayes Model, Maximum-Likelihood
Estimation, and the EM Algorithm

Michael Collins

1 Introduction

This note covers the following topics:

• The Naive Bayes model for classification (with text classification as a spe-
cific example).

• The derivation of maximum-likelihood (ML) estimates for the Naive Bayes
model, in the simple case where the underlying labels are observed in the
training data.

• The EM algorithm for parameter estimation in Naive Bayes models, in the
case where labels are missing from the training examples.

• The EM algorithm in general form, including a derivation of some of its
convergence properties.

We will use the Naive Bayes model throughout this note, as a simple model
where we can derive the EM algorithm. Later in the class we will consider EM
for parameter estimation of more complex models, for example hidden Markov
models and probabilistic context-free grammars.

2 The Naive Bayes Model for Classification

This section describes a model for binary classification, Naive Bayes. Naive Bayes
is a simple but important probabilistic model. It will be used as a running example
in this note. In particular, we will first consider maximum-likelihood estimation in
the case where the data is “fully observed”; we will then consider the expectation
maximization (EM) algorithm for the case where the data is “partially observed”,
in the sense that the labels for examples are missing.

1

The setting is as follows. Assume we have some training set (x(i), y(i)) for
i = 1 . . . n, where each x(i) is a vector, and each y(i) is in {1, 2, . . . , k}. Here k
is an integer specifying the number of classes in the problem. This is a multiclass
classification problem, where the task is to map each input vector x to a label y
that can take any one of k possible values. (For the special case of k = 2 we have
a binary classification problem.)

We will assume throughout that each vector x is in the set {−1,+1}d for some
integer d specifying the number of “features” in the model. In other words, each
component xj for j = 1 . . . d can take one of two possible values.

As one example motivating this setting, consider the problem of classifying
documents into k different categories (for example y = 1 might correspond to
a sports category, y = 2 might correspond to a music category, y = 3 might
correspond to a current affairs category, and so on). The label y(i) represents the
category of the i’th document in the collection. Each component x(i)

j for j = 1 . . . d
might represent the presence or absence of a particular word. For example we
might define x(i)

1 to be +1 if the i’th document contains the word Giants, or −1

otherwise; x(i)
2 to be +1 if the i’th document contains the word Obama, or −1

otherwise; and so on.
The Naive Bayes model is then derived as follows. We assume random vari-

ables Y and X1 . . . Xd corresponding to the label y and the vector components
x1, x2, . . . , xd. Our task will be to model the joint probability

P (Y = y,X1 = x1, X2 = x2, . . . Xd = xd)

for any label y paired with attribute values x1 . . . xd. A key idea in the NB model
is the following assumption:

P (Y = y,X1 = x1, X2 = x2, . . . Xd = xd)

= P (Y = y)
d∏
j=1

P (Xj = xj |Y = y) (1)

This equality is derived using independence assumptions, as follows. First, by the
chain rule, the following identity is exact (any joint distribution over Y,X1 . . . Xd

can be factored in this way):

P (Y = y,X1 = x1, X2 = x2, . . . Xd = xd)

= P (Y = y)× P (X1 = x1, X2 = x2, . . . Xd = xd|Y = y)

Next, we deal with the second term as follows:

P (X1 = x1, X2 = x2, . . . Xd = xd|Y = y)

2

=
d∏
j=1

P (Xj = xj |X1 = x1, X2 = x2, . . . Xj−1 = xj−1, Y = y)

=
d∏
j=1

P (Xj = xj |Y = y)

The first equality is again exact, by the chain rule. The second equality follows by
an independence assumption, namely that for all j = 1 . . . d, the value for the ran-
dom variable Xj is independent of all other attribute values, Xj′ for j′ 6= j, when
conditioned on the identity of the label Y . This is the Naive Bayes assumption. It
is naive, in the sense that it is a relatively strong assumption. It is, however, a very
useful assumption, in that it dramatically reduces the number of parameters in the
model, while still leading to a model that can be quite effective in practice.

Following Eq. 1, the NB model has two types of parameters: q(y) for y ∈
{1 . . . k}, with

P (Y = y) = q(y)

and qj(x|y) for j ∈ {1 . . . d}, x ∈ {−1,+1}, y ∈ {1 . . . k}, with

P (Xj = x|Y = y) = qj(x|y)

We then have

p(y, x1 . . . xd) = q(y)
d∏
j=1

qj(xj |y)

To summarize, we give the following definition:

Definition 1 (Naive Bayes (NB) Model) A NB model consists of an integer k spec-
ifying the number of possible labels, an integer d specifying the number of at-
tributes, and in addition the following parameters:

• A parameter
q(y)

for any y ∈ {1 . . . k}. The parameter q(y) can be interpreted as the proba-
bility of seeing the label y. We have the constraints q(y) ≥ 0 and

∑k
y=1 q(y) =

1.

• A parameter
qj(x|y)

for any j ∈ {1 . . . d}, x ∈ {−1,+1}, y ∈ {1 . . . k}. The value for qj(x|y)
can be interpreted as the probability of attribute j taking value x, con-
ditioned on the underlying label being y. We have the constraints that
qj(x|y) ≥ 0, and for all y, j,

∑
x∈{−1,+1} qj(x|y) = 1.

3

We then define the probability for any y, x1 . . . xd as

p(y, x1 . . . xd) = q(y)
d∏
j=1

qj(xj |y)

The next section describes how the parameters can be estimated from training
examples. Once the parameters have been estimated, given a new test example
x = 〈x1, x2, . . . , xd〉, the output of the NB classifier is

arg max
y∈{1...k}

p(y, x1 . . . xd) = arg max
y∈{1...k}

q(y)
d∏
j=1

qj(xj |y)

3 Maximum-Likelihood estimates for the Naive Bayes Model

We now consider how the parameters q(y) and qj(x|y) can be estimated from data.
In particular, we will describe the maximum-likelihood estimates. We first state the
form of the estimates, and then go into some detail about how the estimates are
derived.

Our training sample consists of examples (x(i), y(i)) for i = 1 . . . n. Recall
that each x(i) is a d-dimensional vector. We write x(i)

j for the value of the j’th

component of x(i); x(i)
j can take values −1 or +1.

Given these definitions, the maximum-likelihood estimates for q(y) for y ∈
{1 . . . k} take the following form:

q(y) =

∑n
i=1[[y(i) = y]]

n
=

count(y)

n
(2)

Here we define [[y(i) = y]] to be 1 if y(i) = y, 0 otherwise. Hence
∑n
i=1[[y(i) =

y]] = count(y) is simply the number of times that the label y is seen in the training
set.

Similarly, the ML estimates for the qj(x|y) parameters (for all y ∈ {1 . . . k},
for all x ∈ {−1,+1}, for all j ∈ {1 . . . d}) take the following form:

qj(x|y) =

∑n
i=1[[y(i) = y and x(i)

j = x]]∑n
i=1[[y(i) = y]]

=
countj(x|y)

count(y)
(3)

where

countj(x|y) =
n∑
i=1

[[y(i) = y and x(i)
j = x]]

This is a very natural estimate: we simply count the number of times label y is
seen in conjunction with xj taking value x; count the number of times the label y
is seen in total; then take the ratio of these two terms.

4

4 Deriving the Maximum-Likelihood Estimates

4.1 Definition of the ML Estimation Problem

We now describe how the ML estimates in Eqs. 2 and 3 are derived. Given the
training set (x(i), y(i)) for i = 1 . . . n, the log-likelihood function is

L(θ) =
n∑
i=1

log p(x(i), y(i))

=
n∑
i=1

log

q(y(i))
d∏
j=1

qj(x
(i)
j |y

(i))

=

n∑
i=1

log q(y(i)) +
n∑
i=1

log

 d∏
j=1

qj(x
(i)
j |y

(i))

=

n∑
i=1

log q(y(i)) +
n∑
i=1

d∑
j=1

log qj(x
(i)
j |y

(i)) (4)

Here for convenience we use θ to refer to a parameter vector consisting of values
for all parameters q(y) and qj(x|y) in the model. The log-likelihood is a function
of the parameter values, and the training examples. The final two equalities follow
from the usual property that log(a× b) = log a+ log b.

As usual, the log-likelihood function L(θ) can be interpreted as a measure of
how well the parameter values fit the training example. In ML estimation we seek
the parameter values that maximize L(θ).

The maximum-likelihood problem is the following:

Definition 2 (ML Estimates for Naive Bayes Models) Assume a training set (x(i), y(i))
for i ∈ {1 . . . n}. The maximum-likelihood estimates are then the parameter val-
ues q(y) for y ∈ {1 . . . k}, qj(x|y) for j ∈ {1 . . . d}, y ∈ {1 . . . k}, x ∈ {−1,+1}
that maximize

L(θ) =
n∑
i=1

log q(y(i)) +
n∑
i=1

d∑
j=1

log qj(x
(i)
j |y

(i))

subject to the following constraints:

1. q(y) ≥ 0 for all y ∈ {1 . . . k}.
∑k
y=1 q(y) = 1.

2. For all y, j, x, qj(x|y) ≥ 0. For all y ∈ {1 . . . k}, for all j ∈ {1 . . . d},∑
x∈{−1,+1}

qj(x|y) = 1

5

A crucial result is then the following:

Theorem 1 The ML estimates for Naive Bayes models (see definition 2) take the
form

q(y) =

∑n
i=1[[y(i) = y]]

n
=

count(y)

n

and

qj(x|y) =

∑n
i=1[[y(i) = y and x(i)

j = x]]∑n
i=1[[y(i) = y]]

=
countj(x|y)

count(y)

I.e., they take the form given in Eqs. 2 and 3.

The remainder of this section proves the result in theorem 1. We first consider a
simple but crucial result, concerning ML estimation for multinomial distributions.
We then see how this result leads directly to a proof of theorem 1.

4.2 Maximum-likelihood Estimation for Multinomial Distributions

Consider the following setting. We have some finite set Y . A distribution over
the set Y is a vector q with components qy for each y ∈ Y , corresponding to the
probability of seeing element y. We define PY to be the set of all distributions over
the set Y: that is,

PY = {q ∈ R|Y| : ∀y ∈ Y, qy ≥ 0;
∑
y∈Y

qy = 1}

In addition, assume that we have some vector cwith components cy for each y ∈ Y .
We will assume that each cy ≥ 0. In many cases cy will correspond to some
“count” taken from data: specifically the number of times that we see element y.
We also assume that there is at least one y ∈ PY such that cy > 0 (i.e., such that
cy is strictly positive).

We then state the following optimization problem:

Definition 3 (ML estimation problem for multinomials) The input to the prob-
lem is a finite set Y , and a weight cy ≥ 0 for each y ∈ Y . The output from the
problem is the distribution q∗ that solves the following maximization problem:

q∗ = arg max
q∈PY

∑
y∈Y

cy log qy

6

Thus the optimal vector q∗ is a distribution (it is a member of the set PY), and
in addition it maximizes the function

∑
y∈Y cy log qy.

We give a theorem that gives a very simple (and intuitive) form for q∗:

Theorem 2 Consider the problem in definition 3. The vector q∗ has components

q∗y =
cy
N

for all y ∈ Y , where N =
∑
y∈Y cy.

Proof: To recap, our goal is to maximize the function∑
y∈Y

cy log qy

subject to the constraints qy ≥ 0 and
∑
y∈Y qy = 1. For simplicity we will assume

throughout that cy > 0 for all y.1

We will introduce a single Lagrange multiplier λ ∈ R corresponding to the
constraint that

∑
y∈Y qy = 1. The Lagrangian is then

g(λ, q) =
∑
y∈Y

cy log qy − λ

∑
y∈Y

qy − 1

By the usual theory of Lagrange multipliers, the solution q∗y to the maximization
problem must satisfy the conditions

d

dqy
g(λ, q) = 0

for all y, and ∑
y∈Y

qy = 1 (5)

Differentiating with respect to qy gives

d

dqy
g(λ, q) =

cy
qy
− λ

Setting this derivative to zero gives

qy =
cy
λ

(6)

1In a full proof it can be shown that for any y such that cy = 0, we must have qy = 0; we
can then consider the problem of maximizing

∑
y∈Y′ cy log qy subject to

∑
y∈Y′ qy = 1, where

Y ′ = {y ∈ Y : cy > 0}.

7

Combining Eqs. 6 and 5 gives

qy =
cy∑
y∈Y cy

The proof of theorem 1 follows directly from this result. See section A for a
full proof.

5 The EM Algorithm for Naive Bayes

Now consider the following setting. We have a training set consisting of vectors
x(i) for i = 1 . . . n. As before, each x(i) is a vector with components x(i)

j for
j ∈ {1 . . . d}, where each component can take either the value −1 or +1. In
other words, our training set does not have any labels. Can we still estimate the
parameters of the model?

As a concrete example, consider a very simple text classification problem where
the vector x representing a document has the following four components (i.e.,
d = 4):

x1 = +1 if the document contains the word Obama, −1 otherwise

x2 = +1 if the document contains the word McCain, −1 otherwise

x3 = +1 if the document contains the word Giants, −1 otherwise

x4 = +1 if the document contains the word Patriots, −1 otherwise

In addition, we assume that our training data consists of the following examples:

x(1) = 〈+1,+1,−1,−1〉
x(2) = 〈−1,−1,+1,+1〉
x(3) = 〈+1,+1,−1,−1〉
x(4) = 〈−1,−1,+1,+1〉
x(5) = 〈−1,−1,+1,+1〉

Intuitively, this data might arise because documents 1 and 3 are about politics (and
thus include words like Obama or McCain, which refer to politicians), and docu-
ments 2, 4 and 5 are about sports (and thus include words like Giants, or Patriots,
which refer to sports teams).

8

For this data, a good setting of the parameters of a NB model might be as
follows (we will soon formalize exactly what it means for the parameter values to
be a “good” fit to the data):

q(1) =
2

5
; q(2) =

3

5
; (7)

q1(+1|1) = 1; q2(+1|1) = 1; q3(+1|1) = 0; q4(+1|1) = 0; (8)

q1(+1|2) = 0; q2(+1|2) = 0; q3(+1|2) = 1; q4(+1|2) = 1 (9)

Thus there are two classes of documents. There is a probability of 2/5 of seeing
class 1, versus a probability of 3/5 of seeing class 2. Given class 1, we have the
vector x = 〈+1,+1,−1,−1〉 with probability 1; conversely, given class 2, we
have the vector x = 〈−1,−1,+1,+1〉 with probability 1.

Remark. Note that an equally good fit to the data would be the parameter values

q(2) =
2

5
; q(1) =

3

5
;

q1(+1|2) = 1; q2(+1|2) = 1; q3(+1|2) = 0; q4(+1|2) = 0;

q1(+1|1) = 0; q2(+1|1) = 0; q3(+1|1) = 1; q4(+1|1) = 1

Here we have just switched the meaning of classes 1 and 2, and permuted all of
the associated probabilities. Cases like this, where symmetries mean that multiple
models give the same fit to the data, are common in the EM setting.

5.1 The Maximum-Likelihood Problem for Naive Bayes with Missing
Labels

We now describe the parameter estimation method for Naive Bayes when the labels
y(i) for i ∈ {1 . . . n} are missing. The first key insight is that for any example x, the
probability of that example under a NB model can be calculated by marginalizing
out the labels:

p(x) =
k∑
y=1

p(x, y) =
k∑
y=1

q(y)
d∏
j=1

qj(xj |y)

Given this observation, we can define a log-likelihood function as follows. The
log-likelihood function is again a measure of how well the parameter values fit the

9

training examples. Given the training set (x(i)) for i = 1 . . . n, the log-likelihood
function (we again use θ to refer to the full set of parameters in the model) is

L(θ) =
n∑
i=1

log p(x(i))

=
n∑
i=1

log
k∑
y=1

q(y)
d∏
j=1

qj(x
(i)
j |y)

In ML estimation we seek the parameter values that maximize L(θ). This leads

to the following problem definition:

Definition 4 (ML Estimates for Naive Bayes Models with Missing Labels) Assume
a training set (x(i)) for i ∈ {1 . . . n}. The maximum-likelihood estimates are then
the parameter values q(y) for y ∈ {1 . . . k}, qj(x|y) for j{1 . . . d}, y ∈ {1 . . . k},
x ∈ {−1,+1} that maximize

L(θ) =
n∑
i=1

log
k∑
y=1

q(y)
d∏
j=1

qj(x
(i)
j |y)

 (10)

subject to the following constraints:

1. q(y) ≥ 0 for all y ∈ {1 . . . k}.
∑k
y=1 q(y) = 1.

2. For all y, j, x, qj(x|y) ≥ 0. For all y ∈ {1 . . . k}, for all j ∈ {1 . . . d},∑
x∈{−1,+1}

qj(x|y) = 1

Given this problem definition, we are left with the following questions:

How are the ML estimates justified? In a formal sense, the following result
holds. Assume that the training examples x(i) for i = 1 . . . n are actually i.i.d.
samples from a distribution specified by a Naive Bayes model. Equivalently, we
assume that the training samples are drawn from a process that first generates an
(x, y) pair, then deletes the value of the label y, leaving us with only the observa-
tions x. Then it can be shown that the ML estimates are consistent, in that as the

10

number of training samples n increases, the parameters will converge to the true
values of the underlying Naive Bayes model.2

From a more practical point of view, in practice the ML estimates will often
uncover useful patterns in the training examples. For example, it can be verified
that the parameter values in Eqs. 7, 8 and 9 do indeed maximize the log-likelihood
function given the documents given in the example.

How are the ML estimates useful? Assuming that we have an algorithm that
calculates the maximum-likelihood estimates, how are these estimates useful? In
practice, there are several scenarios in which the maximum-likelihood estimates
will be useful. The parameter estimates find useful patterns in the data: for ex-
ample, in the context of text classification they can find a useful partition of docu-
ments in naturally occurring classes. In particular, once the parameters have been
estimated, for any document x, for any class y ∈ {1 . . . k}, we can calculate the
conditional probability

p(y|x) =
p(x, y)∑k
y=1 p(x, y)

under the model. This allows us to calculate the probability of document x falling
into cluster y: if we required a hard partition of the documents into k different
classes, we could take the highest probability label,

arg max
y∈{1...k}

p(y|x)

There are many other uses of EM, which we will see later in the course.

Given a training set, how can we calculate the ML estimates? The final ques-
tion concerns calculation of the ML estimates. To recap, the function that we would
like to maximize (see Eq. 10) is

L(θ) =
n∑
i=1

log
k∑
y=1

q(y)
d∏
j=1

qj(x
(i)
j |y)

note the contrast with the regular ML problem (see Eq. 4), where we have labels
y(i), and the function we wish to optimize is

L(θ) =
n∑
i=1

log

q(y(i))
d∏
j=1

qj(x
(i)
j |y

(i))

2Up to symmetries in the model; for example, in the text classification example given earlier with

Obama, McCain, Giants, Patriots, either of the two parameter settings given would be recovered.

11

The two functions are similar, but crucially the new definition of L(θ) has an ad-
ditional sum over y = 1 . . . k, which appears within the log. This sum makes
optimization of L(θ) hard (in contrast to the definition when the labels are ob-
served).

The next section describes the expectation-maximization (EM) algorithm for
calculation of the ML estimates. Because of the difficulty of optimizing the new
definition of L(θ), the algorithm will have relatively weak guarantees, in the sense
that it will only be guaranteed to reach a local optimum of the function L(θ). The
EM algorithm is, however, widely used, and can be very effective in practice.

5.2 The EM Algorithm for Naive Bayes Models

The EM algorithm for Naive Bayes models is shown in figure 1. It is an iterative
algorithm, defining a series of parameter values θ0, θ1, . . . , θT . The initial param-
eter values θ0 are chosen to be random. At each iteration the new parameter values
θt are calculated as a function of the training set, and the previous parameter values
θt−1. A first key step at each iteration is to calculate the values

δ(y|i) = p(y|x(i); θt−1)

for each example i ∈ {1 . . . n}, for each possible label y ∈ {1 . . . k}. The value
for δ(y|i) is the conditional probability for label y on the i’th example, given the
parameter values θt−1. The second step at each iteration is to calculate the new
parameter values, as

qt(y) =
1

n

n∑
i=1

δ(y|i)

and

qtj(x|y) =

∑
i:xij=x δ(y|i)∑

i δ(y|i)
Note that these updates are very similar in form to the ML parameter estimates

in the case of fully observed data. In fact, if we have labeled examples (x(i), y(i))
for i ∈ {1 . . . n}, and define

δ(y|i) = 1 if yi = y, 0 otherwise

then it is easily verified that the estimates would be identical to those given in Eqs. 2
and 3. Thus the new algorithm can be interpreted as a method where we replaced
the definition

δ(y|i) = 1 if yi = y, 0 otherwise

12

used for labeled data with the definition

δ(y|i) = p(y|x(i); θt−1)

for unlabeled data. Thus we have essentially “hallucinated” the δ(y|i) values, based
on the previous parameters, given that we do not have the actual labels y(i).

The next section describes why this method is justified. First, however, we
need the following property of the algorithm:

Theorem 3 The parameter estimates qt(y) and qt(x|y) for t = 1 . . . T are

θt = arg max
θ
Q(θ, θt−1)

under the constraints q(y) ≥ 0,
∑k
y=1 q(y) = 1, qj(x|y) ≥ 0,

∑
x∈{−1,+1} qj(x|y) =

1, where

Q(θ, θt−1) =
n∑
i=1

k∑
y=1

p(y|x(i); θt−1) log p(x(i), y; θ)

=
n∑
i=1

k∑
y=1

p(y|x(i); θt−1) log

q(y)
d∏
j=1

qj(x
(i)
j |y)

6 The EM Algorithm in General Form

In this section we describe a general form of the EM algorithm; the EM algorithm
for Naive Bayes is a special case of this general form. We then discuss convergence
properties of the general form, which in turn give convergence guarantees for the
EM algorithm for Naive Bayes.

6.1 The Algorithm

The general form of the EM algorithm is shown in figure 2. We assume the follow-
ing setting:

• We have sets X and Y , where Y is a finite set (e.g., Y = {1, 2, . . . k} for
some integer k). We have a model p(x, y; θ) that assigns a probability to
each (x, y) such that x ∈ X , y ∈ Y , under parameters θ. Here we use θ to
refer to a vector including all parameters in the model.

13

Inputs: An integer k specifying the number of classes. Training examples (x(i))
for i = 1 . . . n where each x(i) ∈ {−1,+1}d. A parameter T specifying the
number of iterations of the algorithm.

Initialization: Set q0(y) and q0
j (x|y) to some initial values (e.g., random values)

satisfying the constraints

• q0(y) ≥ 0 for all y ∈ {1 . . . k}.
∑k
y=1 q

0(y) = 1.

• For all y, j, x, q0
j (x|y) ≥ 0. For all y ∈ {1 . . . k}, for all j ∈ {1 . . . d},∑

x∈{−1,+1}
q0
j (x|y) = 1

Algorithm:
For t = 1 . . . T

1. For i = 1 . . . n, for y = 1 . . . k, calculate

δ(y|i) = p(y|x(i); θt−1) =
qt−1(y)

∏d
j=1 q

t−1
j (x

(i)
j |y)∑k

y=1 q
t−1(y)

∏d
j=1 q

t−1
j (x

(i)
j |y)

2. Calculate the new parameter values:

qt(y) =
1

n

n∑
i=1

δ(y|i) qtj(x|y) =

∑
i:x

(i)
j =x

δ(y|i)∑
i δ(y|i)

Output: Parameter values qT (y) and qT (x|y).

Figure 1: The EM Algorithm for Naive Bayes Models

14

For example, in Naive Bayes we have X = {−1,+1}d for some integer
d, and Y = {1 . . . k} for some integer k. The parameter vector θ contains
parameters of the form q(y) and qj(x|y). The model is

p(x, y; θ) = q(y)
d∏
j=1

qj(x|y)

• We use Ω to refer to the set of all valid parameter settings in the model.

For example, in Naive Bayes Ω contains all parameter vectors such that
q(y) ≥ 0,

∑
y q(y) = 1, qj(x|y) ≥ 0, and

∑
x qj(x|y) = 1 (i.e., the usual

constraints on parameters in a Naive Bayes model).

• We have a training set consisting of examples x(i) for i = 1 . . . n, where
each x(i) ∈ X .

• The log-likelihood function is then

L(θ) =
n∑
i=1

log p(x(i); θ) =
n∑
i=1

log
∑
y∈Y

p(x(i), y; θ)

• The maximum likelihood estimates are

θ∗ = arg max
θ∈Ω

L(θ)

In general, finding the maximum-likelihood estimates in this setting is in-
tractable (the function L(θ) is a difficult function to optimize, because it contains
many local optima).

The EM algorithm is an iterative algorithm that defines parameter settings
θ0, θ1, . . . , θT (again, see figure 2). The algorithm is driven by the updates

θt = arg max
θ∈Ω

Q(θ, θt−1)

for t = 1 . . . T . The function Q(θ, θt−1) is defined as

Q(θ, θt−1) =
n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ) (11)

where

δ(y|i) = p(y|x(i); θt−1) =
p(x(i), y; θt−1)∑
y∈Y p(x

(i), y; θt−1)

Thus as described before in the EM algorithm for Naive Bayes, the basic idea is
to fill in the δ(y|i) values using the conditional distribution under the previous
parameter values (i.e., δ(y|i) = p(y|x(i); θt−1)).

15

Inputs: Sets X and Y , where Y is a finite set (e.g., Y = {1, 2, . . . k} for some
integer k). A model p(x, y; θ) that assigns a probability to each (x, y) such that
x ∈ X , y ∈ Y , under parameters θ. A set of Ω of possible parameter values in the
model. A training sample x(i) for i ∈ {1 . . . n}, where each x(i) ∈ X . A parameter
T specifying the number of iterations of the algorithm.

Initialization: Set θ0 to some initial value in the set Ω (e.g., a random initial value
under the constraint that θ ∈ Ω).

Algorithm:
For t = 1 . . . T

θt = arg max
θ∈Ω

Q(θ, θt−1)

where

Q(θ, θt−1) =
n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ)

and

δ(y|i) = p(y|x(i); θt−1) =
p(x(i), y; θt−1)∑
y∈Y p(x

(i), y; θt−1)

Output: Parameters θT .

Figure 2: The EM Algorithm in General Form

Remark: Relationship to Maximum-Likelihood Estimation for Fully Observed
Data. For completeness, figure 3 shows the algorithm for maximum-likelihood
estimation in the case of fully observed data: that is, the case where labels y(i) are
also present in the training data. In this case we simply set

θ∗ = arg max
θ∈Ω

n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ) (12)

where δ(y|i) = 1 if y = y(i), 0 otherwise.
Crucially, note the similarity between the optimization problems in Eq. 12 and

Eq. 11. In many cases, if the problem in Eq. 12 is easily solved (e.g., it has a
closed-form solution), then the problem in Eq. 11 is also easily solved.

16

Inputs: Sets X and Y , where Y is a finite set (e.g., Y = {1, 2, . . . k} for some
integer k). A model p(x, y; θ) that assigns a probability to each (x, y) such that
x ∈ X , y ∈ Y , under parameters θ. A set of Ω of possible parameter values in
the model. A training sample (x(i), y(i)) for i ∈ {1 . . . n}, where each x(i) ∈ X ,
y(i) ∈ Y .

Algorithm: Set θ∗ = arg maxθ∈Ω L(θ) where

L(θ) =
n∑
i=1

log p(x(i), y(i); θ) =
n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ)

and
δ(y|i) = 1 if y = y(i), 0 otherwise

Output: Parameters θ∗.

Figure 3: Maximum-Likelihood Estimation with Fully Observed Data

6.2 Guarantees for the Algorithm

We now turn to guarantees for the algorithm in figure 2. The first important theorem
(which we will prove very shortly) is as follows:

Theorem 4 For any θ, θt−1 ∈ Ω, L(θ)−L(θt−1) ≥ Q(θ, θt−1)−Q(θt−1, θt−1).

The quantity L(θ)−L(θt−1) is the amount of progress we make when moving
from parameters θt−1 to θ. The theorem states that this quantity is lower-bounded
by Q(θ, θt−1)−Q(θt−1, θt−1).

Theorem 4 leads directly to the following theorem, which states that the likeli-
hood is non-decreasing at each iteration:

Theorem 5 For t = 1 . . . T , L(θt) ≥ L(θt−1).

Proof: By the definitions in the algorithm, we have

θt = arg max
θ∈Ω

Q(θ, θt−1)

It follows immediately that

Q(θt, θt−1) ≥ Q(θt−1, θt−1)

17

(because otherwise θt would not be the arg max), and hence

Q(θt, θt−1)−Q(θt−1, θt−1) ≥ 0

But by theorem 4 we have

L(θt)− L(θt−1) ≥ Q(θt, θt−1)−Q(θt−1, θt−1)

and hence L(θt)− L(θt−1) ≥ 0.
Theorem 5 states that the log-likelihood is non-decreasing: but this is a rel-

atively weak guarantee; for example, we would have L(θt) − L(θt−1) ≥ 0 for
t = 1 . . . T for the trivial definition θt = θt−1 for t = 1 . . . T . However, under
relatively mild conditions, it can be shown that in the limit as T goes to∞, the EM
algorithm does actually converge to a local optimum of the log-likelihood function
L(θ). The proof of this is beyond the scope of this note; one reference is Wu, 1983,
On the Convergence Properties of the EM Algorithm.

To complete this section, we give a proof of theorem 4. The proof depends on
a basic property of the log function, namely that it is concave:

Remark: Concavity of the log function. The log function is concave. More
explicitly, for any values x1, x2, . . . , xk where each xi > 0, and for any values
α1, α2, . . . , αk where αi ≥ 0 and

∑
i αi = 1,

log

(∑
i

αixi

)
≥
∑
i

αi log xi

The proof is then as follows:

L(θ)− L(θt−1) =
n∑
i=1

log

∑
y p(x

(i), y; θ)∑
y p(x

(i), y; θt−1)

=
n∑
i=1

log
∑
y

(
p(x(i), y; θ)

p(x(i); θt−1)

)

=
n∑
i=1

log
∑
y

(
p(y|x(i); θt−1)× p(x(i), y; θ)

p(y|x(i); θt−1)× p(x(i); θt−1)

)
(13)

=
n∑
i=1

log
∑
y

(
p(y|x(i); θt−1)× p(x(i), y; θ)

p(x(i), y; θt−1)

)

≥
n∑
i=1

∑
y

p(y|x(i); θt−1) log

(
p(x(i), y; θ)

p(x(i), y; θt−1)

)
(14)

18

=
n∑
i=1

∑
y

p(y|x(i); θt−1) log p(x(i), y; θ)−
n∑
i=1

∑
y

p(y|x(i); θt−1) log p(x(i), y; θt−1)

= Q(θ, θt−1)−Q(θt−1, θt−1) (15)

The proof uses some simple algebraic manipulations, together with the prop-
erty that the log function is concave. In Eq. 13 we multiply both numerator and
denominator by p(y|x(i); θt−1). To derive Eq. 14 we use the fact that the log func-
tion is concave: this allows us to pull the p(y|x(i); θt−1) outside the log.

A Proof of Theorem 1

We now prove the result in theorem 1. Our first step is to re-write the log-likelihood
function in a way that makes direct use of “counts” taken from the training data:

L(θ) =
n∑
i=1

log q(yi) +
n∑
i=1

d∑
j=1

log qj(xi,j |yi)

=
∑
y∈Y

count(y) log q(y)

+
d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y) (16)

where as before

count(y) =
n∑
i=1

[[y(i) = y]]

countj(x|y) =
n∑
i=1

[[yi = y and x(i)
j = x]]

Eq. 16 follows intuitively because we are simply counting up the number of
times each parameter of the form q(y) or qj(x|y) appears in the sum

n∑
i=1

log q(yi) +
n∑
i=1

d∑
j=1

log qj(xi,j |yi)

To be more formal, consider the term

n∑
i=1

log q(y(i))

19

We can re-write this as

n∑
i=1

log q(y(i)) =
n∑
i=1

k∑
y=1

[[y(i) = y]] log q(y)

=
k∑
y=1

n∑
i=1

[[y(i) = y]] log q(y)

=
k∑
y=1

log q(y)
n∑
i=1

[[y(i) = y]]

=
k∑
y=1

(log q(y))× count(y)

The identity

n∑
i=1

d∑
j=1

log qj(xi,j |yi) =
d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

can be shown in a similar way.
Now consider again the expression in Eq. 16:

∑
y∈Y

count(y) log q(y) +
d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

Consider first maximization of this function with respect to the q(y) parameters. It
is easy to see that the term

d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

does not depend on the q(y) parameters at all. Hence to pick the optimal q(y)
parameters, we need to simply maximize∑

y∈Y
count(y) log q(y)

subject to the constraints q(y) ≥ 0 and
∑k
y=1 q(y) = 1. But by theorem 2, the

values for q(y) which maximize this expression under these constraints is simply

q(y) =
count(y)∑k
y=1 count(y)

=
count(y)

n

20

By a similar argument, we can maximize each term of the form∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

for a given j ∈ {1 . . . k}, y ∈ {1 . . . k} separately. Applying theorem 2 gives

qj(x|y) =
countj(x|y)∑

x∈{−1,+1} countj(x|y)

21

	Tagging with Hidden Markov Models
	Convergence Proof for the Perceptron Algorithm
	Log-Linear Models, MEMMs, and CRFs
	Log-Linear Models
	The Forward-Backward Algorithm
	Probabilistic Context-Free Grammars (PCFGs)
	The Naive Bayes Model, Maximum-LikelihoodEstimation, and the EM Algorithm

