
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 1: Monday, Jan 23

Safe computing

If this class were about shooting rather than computing, we’d probably start
by talking about where the safety is. Otherwise, someone would shoot them-
self in the foot. The same is true of basic error analysis: even if it’s not
the most glamorous part of scientific computing, it comes at the start of the
course in order to keep students safe from themselves. For this, a rough-and-
ready discussion of sensitivity analysis, simplified models of rounding, and
exceptional behavior is probably sufficient. We’ll go a bit beyond that, but
you can think of most of the material in the first week in this light: basic
safety training for computing with real numbers.

Some basics

Suppose x̂ is an approximation for x. The absolute error in the approximation
is x̂− x; the relative error is (x̂− x)/x. Both are important, but we will use
relative error more frequently for this class.

Most measurements taken from the real world have error. Computations
with approximate inputs generally produce approximate outputs, even when
the computations are done exactly. Thus, we need to understand the propa-
gation of errors through a computation. For example, suppose that we have
two inputs x̂ and ŷ that approximate true values x and y. If ex and δx = ex/x
are the absolute and relative errors for x (and similarly for y), we can write

x̂ = x+ ex = x(1 + δx)

ŷ = y + ey = y(1 + δy).

When we add or subtract x̂ and ŷ, we add and subtract the absolute errors:

x̂+ ŷ = (x+ y) + (ex + ey)

x̂− ŷ = (x− y) + (ex − ey).

Note, however, that the relative error in the approximation of x− y is (ex −
ey)/(x− y); and if x and y are close, this relative error may be much larger
than δx or δy. This effect is called cancellation, and it is a frequent culprit in
computations gone awry.
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From the perspective of relative error, multiplication and division are
more benign than addition and subtraction. The relative error of a product
is (approximately) the sum of the relative errors of the inputs:

x̂ŷ = xy(1 + δx)(1 + δy)

= xy(1 + δx + δy + δxδy)

≈ xy(1 + δx + δy).

If δx and δy are small, then δxδy is absolutely miniscule, and so we typically
drop it when performing an error analysis1 Similiarly, using the fact that

(1 + δ)−1 = 1− δ +O(δ2),

the relative error in a quotient is approximately the difference of the relative
errors of the inputs:

x̂

ŷ
=
x

y

(
1 + δx
1 + δy

)
≈ x

y
(1 + δx)(1− δy)

≈ x

y
(1 + δx − δy).

More generally, suppose f is some differentiable function of x, and we
approximate z = f(x) by ẑ = f(x̂). We estimate the absolute error in the
approximation by Taylor expansion:

ẑ − z = f(x̂)− f(x) ≈ f ′(x)(x̂− x).

The magnitude |f ′(x)| tells us the relationship between the size of absolute
errors in the input and the output. Frequently, though, we care about how
relative errors are magnified by the computation:

ẑ − z
z
≈
(
xf ′(x)

z

)
x̂− x
x

.

The size of the quantity xf ′(x)/f(x) that tells us how relative errors on
input affect the relative errors of the output is sometimes called the condi-
tion number for the problem. Problems with large condition numbers (“ill-
conditioned” problems) are delicate: a little error in the input can destroy
the accuracy of the output.

1This is a first-order error analysis or linearized error analysis, since we drop any terms
that involve products of small errors.
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A simple example

What’s the average velocity of the earth as it travels around the sun?
Yes, you can ask Google this question, and it will helpfully tell you that

the answer is about 29.783 km/s. But if you have a few facts at your finger-
tips, you can get a good estimate on your own:

• The earth is t ≈ 500 light-seconds from the sun.

• The speed of light is c ≈ 3× 108 m/s.

• A year is about y ≈ π × 107 seconds.

So the earth follows a roughly circular orbit with radius of about r = ct ≈
1.5× 1011 meters, traveling 2πr meters in a year. So our velocity is about

2πct

y
≈ 2π × 1.5× 1011 m

π × 107 s
= 30 km/s.

How wrong is the estimate v̂ = 30 km/s? The absolute error compared
to the truth (v = 29.783 km/s a la Wiki answers) is about 217 m/s. Unfor-
tunately, it’s hard to tell without context whether this is a good or a bad
error. Compared to the speed of the earth going around the sun, it’s pretty
small; compared to my walking speed, it’s pretty big. It’s more satisfying to
know the relative error is

v̂ − v
v
≈ 0.0073,

or less than one percent. Informally, we might say that the answer has about
two correct digits.

What is the source of this slightly-less-than-a-percent error? Crudely
speaking, there are two sources:

1. We assumed the earth’s orbit is circular, but it’s actually slightly ellipti-
cal. This modeling error entered before we did any actual calculations.

2. We approximated all the parameters in our calculation: the speed of
light, the distance to the sun in light-seconds, and the length of a year.
More accurate values are:

t = 499.0 s

c = 299792458 m/s

y = 31556925.2 s
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If we plug these values into our earlier formula, we get a velocity of
29.786 km/s. This is approximated by 30 km/s with a relative error of
0.0072.

We’ll put aside for the moment the ellipticity of the earth’s orbit (and
the veracity of Wiki Answers) and focus on the error inherited from the
parameters. Denoting our earlier estimates by t̂, ĉ, and ŷ, we have the
relative errors

δt ≡ (t̂− t)/t = 20× 10−4

δc ≡ (ĉ− c)/c = 7× 10−4

δy ≡ (ŷ − t)/y = −45× 10−4

According to our error propagation formulas, we should have

2πĉt̂

ŷ
≈
(

2πct

y

)
(1 + δc + δt − δy).

In fact, this looks about right:

20× 10−4 + 7× 10−4 + 45× 10−4 = 72× 10−4.

An example of error amplification

Our previous example was benign; let us now consider a more sinister exam-
ple. Consider the integrals

En =

∫ 1

0

xnex−1 dx

It’s easy to find E0 = 1− 1/e; and for n > 0, integration by parts2 gives us

En = xnex−1
∣∣1
0
− n

∫ 1

0

xn−1ex−1 dx = 1− nEn−1.

We can use the following MATLAB program to computeEn for n = 1, . . . , nmax:

2If you do not remember integration by parts, you should go to your calculus text and
refresh your memory.
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Figure 1: Computed values Ên compared to a supposed upper bound.

%
% Compute the integral of xˆn exp(x−1) from 0 to 1
% for n = 1, 2, ..., nmax
%
function E = lec01int(nmax)

En = 1−1/e;
for n = 1:nmax

En = 1−n∗En;
E(n) = En;

end

The computed values of Ên according to our MATLAB program are
shown in Figure 1. A moment’s contemplation tells us that something is
amiss with these problems. Note that 1/e ≤ ex−1 ≤ 1 for 0 ≤ x ≤ 1, so that

1

e(n+ 1)
≤ En ≤

1

n+ 1

As shown in the figure, our computed values violate these bounds. What has
gone wrong?
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The integral is perfectly behaved; the problem lies in the algorithm. The
initial value E0 can only be represented approximately on the computer; let
us write the stored value as Ê0. Even if this were the only error, we would
find the error in later calculations grows terribly rapidly:

Ê0 = E0 + ε

Ê1 = 1− Ê0 = E1 − ε
Ê2 = 1− 2Ê1 = E2 + 2ε

Ê3 = 1− 3Ê2 = E3 − 3 · 2ε
...

Ên = En + (−1)nn!ε.

This is an example of an unstable algorithm.

Sources of error

We understand the world through simplified models. These models are, from
the outset, approximations to reality. To quote the statistician George Box:

All models are wrong. Some models are useful.

While modeling errors are important, we can rarely judge their quality with-
out the context of a specific application. In this class, we will generally take
the model as a given, and analyze errors from the input and the computation.

In addition to error intrinsic in our models, we frequently have error in
input parameters derived from measurements. In ill-conditioned problems,
small relative errors in the inputs can severely compromise the accuracy of
outputs. For example, if the input to a problem is known to within a millionth
of a percent and the condition number for the problem is 107, the result might
only have one correct digit. This is a difficulty with the problem, not with
the method used to solve the problem. Ideally, a well-designed numerical
routine might warn us when we ask it to solve an ill-conditioned problem,
but asking for an accurate result may be asking too much. Instead, we will
seek stable algorithms that don’t amplify the error undeservedly. That is, if
the condition number for a problem is κ, a stable algorithm should amplify
the input error by at most Cκ, where C is some modest constant that does
not depend on the details of the input.



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

In order to produce stable algorithms, we must control the sources of
error from within the computation itself. In the order we encounter them,
these include:

Roundoff error: IEEE floating point arithmetic is essentially binary sci-
entific notation. The number 1/3 cannot be represented exactly as a
finite decimal. It can’t be represented exactly in a finite number of
binary digits, either. We can, however, approximate 1/3 to a very high
degree of accuracy.

Termination of iterations: Nonlinear equations, optimization problems,
and even linear systems are frequently solved by iterations that produce
successively better approximations to a true answer. At some point,
we decide that we have an answer that is good enough, and stop.

Truncation error: We frequently approximate derivatives by finite differ-
ences and integrals by sums. The error in these approximations is
frequently called truncation error.

Stochastic error: Monte Carlo methods use randomness to compute ap-
proximations. The variance due to randomness typically dominates
the error in these methods.
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Week 1: Wednesday, Jan 25

Binary floating point encodings

Binary floating point arithmetic is essentially scientific notation. Where in
decimal scientific notation we write

1

3
= 3.333 . . .× 10−1,

in floating point, we write

(1)2
(11)2

= (1.010101 . . .)2 × 2−2.

Because computers are finite, however, we can only keep a finite number of
bits after the binary point.

In general, a normal floating point number has the form

(−1)s × (1.b1b2 . . . bp)2 × 2E,

where s ∈ {0, 1} is the sign bit, E is the exponent, and (1.b2 . . . bp)2 is the
significand. In the 64-bit double precision format, p = 52 bits are used to
store the significand, 11 bits are used for the exponent, and one bit is used
for the sign. The valid exponent range for normal floating point numbers is
−1023 < E < 1024; this leaves two exponent encodings left over for special
purpose. One of these special exponents is used to encode subnormal numbers
of the form

(−1)s × (0.b1b2 . . . bp)2 × 2−1022;

the other special exponent is used to encode ±∞ and NaN (Not a Number).
For a general real number x, we will write

fl(x) = correctly rounded floating point representation of x.

By default, “correctly rounded” means that we find the closest floating point
number to x, breaking any ties by rounding to the number with a zero in
the last bit1. If x exceeds the largest normal floating point number, then
fl(x) =∞.

1There are other rounding modes beside the default, but we will not discuss them in
this class
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Basic floating point arithmetic

For basic operations (addition, subtraction, multiplication, division, and
square root), the floating point standard specifies that the computer should
produce the true result, correctly rounded. So the MATLAB statement

% Compute the sum of x and y (assuming they are exact)
z = x + y;

actually computes the quantity ẑ = fl(x+y). If ẑ is a normal double-precision
floating point number, it will agree with the true z to 52 bits after the binary
point. That is, the relative error will be smaller in magnitude than the
machine epsilon εmach = 2−53 ≈ 1.1× 10−16:

ẑ = z(1 + δ), |δ| < εmach.

More generally, basic operations that produce normalized numbers are cor-
rect to within a relative error of εmach. The floating point standard also rec-
ommends that common transcendental functions, such as exponential and
trig functions, should be correctly rounded, though compliant implementa-
tions that do not comply with this recommendation may produce results with
a relative error just slightly larger than εmach.

The fact that normal floating point results have a relative error less than
εmach gives us a useful model for reasoning about floating point error. We
will refer to this as the “1 + δ” model. For example, suppose x is an exactly-
represented input to the MATLAB statement

z = 1−x∗x;

We can reason about the error in the computed ẑ as follows:

t1 = fl(x2) = x2(1 + δ1)

t2 = 1− t1 = (1− x2)
(

1 +
δ1x

2

1− x2

)
ẑ = fl(1− t1) = z

(
1 +

δ1x
2

1− x2

)
(1 + δ2)

≈ z

(
1 +

δ1x
2

1− x2
+ δ2

)
,

where |δ1|, |δ2| ≤ εmach. As before, we throw away the (tiny) term involving
δ1δ2. Note that if z is close to zero (i.e. if there is cancellation in the sub-
traction), then the model shows the result may have a large relative error.
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Exceptions

We say there is an exception when the floating point result is not an ordinary
value that represents the exact result. The most common exception is inexact
(i.e. some rounding was needed). Other exceptions occur when we fail to
produce a normalized floating point number. These exceptions are:

Underflow: An expression is too small to be represented as a normalized
floating point value. The default behavior is to return a subnormal.

Overflow: An expression is too large to be represented as a floating point
number. The default behavior is to return inf.

Invalid: An expression evaluates to Not-a-Number (such as 0/0)

Divide by zero: An expression evaluates “exactly” to an infinite value (such
as 1/0 or log(0)).

When exceptions other than inexact occur, the usual “1 + δ” model used for
most rounding error analysis is not valid.

Limits of the “1 + δ” model

Apart from the fact that it fails when there are exceptions other than inex-
act, the “1 + δ” model of floating point does not reflect the fact that some
computations involve no rounding error. For example:

• If x and y are floating point numbers within a factor of two of each
other, fl(x− y) is computed without rounding error.

• Barring overflow or underflow to zero, fl(2x) = 2x and fl(x/2) = x/2.

• Integers between ±(253 − 1) are represented exactly.

These properties of floating point allow us to do some clever things, such as
using ordinary double precision arithmetic to simulate arithmetic with about
twice the number of digits. You should be aware that these tricks exist, even
if you never need to implement them – otherwise, I may find myself cursing
a compiler you wrote for rearranging the computations in a floating point
code that I wrote!
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Finding and fixing floating point problems

Floating point arithmetic is not the same as real arithmetic. Even simple
properties like associativity or distributivity of addition and multiplication
only hold approximately. Thus, some computations that look fine in exact
arithmetic can produce bad answers in floating point. What follows is a (very
incomplete) list of some of the ways in which programmers can go awry with
careless floating point programming.

Cancellation

If x̂ = x(1 + δ1) and ŷ = y(1 + δ2) are floating point approximations to x and
y that are very close, then fl(x̂ − ŷ) may be a poor approximation to x − y
due to cancellation. In some ways, the subtraction is blameless in this tail:
if x and y are close, then fl(x̂ − ŷ) = x̂ − ŷ, and the subtraction causes no
additional rounding error. Rather, the problem is with the approximation
error already present in x̂ and ŷ.

The standard example of loss of accuracy revealed through cancellation
is in the computation of the smaller root of a quadratic using the quadratic
formula, e.g.

x = 1−
√

1− z

for z small. Fortunately, some algebraic manipulation gives an equivalent
formula that does not suffer cancellation:

x =
(
1−
√

1− z
)(1 +

√
1− z

1 +
√

1− z

)
=

z

1 +
√

1− z
.

Sensitive subproblems

We often solve problems by breaking them into simpler subproblems. Un-
fortunately, it is easy to produce badly-conditioned subproblems as steps to
solving a well-conditioned problem. As a simple (if contrived) example, try
running the following MATLAB code:

x = 2;
for k = 1:60, x = sqrt(x); end
for k = 1:60, x = xˆ2; end
disp(x);
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In exact arithmetic, this should produce 2, but what does it produce in
floating point? In fact, the first loop produces a correctly rounded result, but
the second loop represents the function x2

60
, which has a condition number

far greater than 1016 — and so all accuracy is lost.

Unstable recurrences

We gave an example of this problem in the last lecture notes when we looked
at the recurrence

E0 = 1− 1/e

En = 1− nEn−1, n ≥ 1.

No single step of this recurrence causes the error to explode, but each step
amplifies the error somewhat, resulting in an exponential growth in error.

Undetected underflow

In Bayesian statistics, one sometimes computes ratios of long products. These
products may underflow individually, even when the final ratio is not far from
one. In the best case, the products will grow so tiny that they underflow to
zero, and the user may notice an infinity or NaN in the final result. In the
worst case, the underflowed results will produce nonzero subnormal numbers
with unexpectedly poor relative accuracy, and the final result will be wildly
inaccurate with no warning except for the (often ignored) underflow flag.

Bad branches

A NaN result is often a blessing in disguise: if you see an unexpected NaN,
at least you know something has gone wrong! But all comparisons involving
NaN are false, and so when a floating point result is used to compute a branch
condition and an unexpected NaN appears, the result can wreak havoc. As
an example, try out the following code in MATLAB.

x = 0/0;
if x < 0 then disp(’x is negative’ );
elseif x >= 0 then disp(’x is non−negative’);
else disp(’Uh... ’ );
end
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Problems to ponder

1. In double precision, is fl(0.2) larger, smaller, or equal to 0.2?

2. How do we accurately evaluate
√

1 + x−
√

1− x when x� 1?

3. How do we accurately evaluate ln
√
x+ 1− ln

√
x when x� 1?

4. How do we accurately evaluate (1− cos(x))/ sin(x) when x� 1?

5. How would we compute cos(x)− 1 accurately when x� 1?

6. The Lamb-Oseen vortex is a solution to the 2D Navier-Stokes equation
that plays a key role in some methods for computational fluid dynamics.
It has the form

vθ(r, t) =
Γ

2πr

(
1− exp

(
−r2

4νt

))
How would one evaluate v(r, t) to high relative accuracy for all values
of r and t (barring overflow or underflow)?

7. For x > 1, the equation x = cosh(y) can be solved as

y = − ln
(
x−
√
x2 − 1

)
.

What happens when x = 108? Can we fix it?

8. The difference equation

xk+1 = 2.25xk − 0.5xk−1

with starting values

x1 =
1

3
, x2 =

1

12

has solution

xk =
41−k

3
.

Is this what you actually see if you compute? What goes wrong?

9. Considering the following two MATLAB fragments:
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% Version 1
f = (exp(x)−1)/x;

% Version 2
y = exp(x);
f = (1−y)/log(y);

In exact arithmetic, the two fragments are equivalent. In floating point,
the first formulation is inaccurate for x � 1, while the second formu-
lation remains accurate. Why?

10. Running the recurrence En = 1− nEn−1 forward is an unstable way to
compute

∫ 1

0
xnex−1 dx. However, we can get good results by running

the recurrence backward from the estimate En ≈ 1/(N + 1) starting at
large enough N . Explain why. How large must N be to compute E20

to near machine precision?

11. How might you accurately compute this function for |x| < 1?

f(x) =
∞∑
j=0

(
cos(xj)− 1

)
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Week 2: Monday, Jan 30

Overview

After this week (and the associated problems), you should come away with
some understanding of

• Algorithms for equation solving, particularly bisection, Newton, secant,
and fixed point iterations.

• Analysis of error recurrences in order fo find rates of convergence for
algorithms; you should also understand a little about analyzing the
sensitivity of the root-finding problem itself.

• Application of standard root-finding procedures to real problems. This
frequently means some sketches and analysis done in advance in order
to figure out appropriate rescalings and changes of variables, handle
singularities, and find good initial guesses (for Newton) or bracketing
intervals (for bisection).

A little long division

Let’s begin with a question: Suppose I have a machine with hardware support
for addition, subtraction, multiplication, and scaling by integer powers of two
(positive or negative). How can I implement reciprocation? That is, if d > 1
is an integer, how can I compute 1/d without using division?

This is a linear problem, but as we will see, it presents many of the same
issues as nonlinear problems.

Method 1: From long division to bisection

Maybe the most obvious algorithm to compute 1/d is binary long division
(the binary version of the decimal long division that we learned in grade
school). To compute a bit in the kth place after the binary point (corre-
sponding to the value 2−k), we see whether 2−kd is greater than the current
remainder; if it is, then we set the bit to one and update the remainder. This
algorithm is shown in Figure 1.
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function x = lec11division(d, n)
% Approximate x = 1/d by n steps of binary long division.

r = 1; % Current remainder
x = 0; % Current reciprocal estimate
bit = 0.5; % Value of a one in the current place

for k = 1:n
if r > d∗bit

x = x + bit ;
r = r − d∗bit;

end
bit = bit/2;

end

Figure 1: Approximate 1/d by n steps of binary long division.

function x = lec11bisect(d, n)
% Approximate x = 1/d by n steps of bisection
% At each step f(x) = dx−1 is negative at the lower
% bound, positive at the upper bound.

hi = 1; % Current upper bound
lo = 0; % Current lower bound

for k = 1:n
x = (hi+lo)/2;
fx = d∗x−1;
if fx > 0

hi = x;
else

lo = x;
end

end
x = (hi+lo)/2;

Figure 2: Approximate 1/d by n steps of bisection.
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At step k of long division, we have an approximation x̂, x̂ ≤ 1/d < x̂+2−k,
and a remainder r = 1 − dx̂. Based on the remainder, we either get a
zero bit (and discover x̂ ≤ 1/d < x̂ + 2−(k+1)), or we get a one bit (i.e.
x̂+2−(k+1) ≤ 1/d < x̂+2−k). That is, the long division algorithm is implicitly
computing interals that contain 1/d, and each step cuts the interval size
by a factor of two. This is characteristic of bisection, which finds a zero
of any continuous function f(x) by starting with a bracketing interval and
repeatedly cutting those intervals in half. We show the bisection algorithm
in Figure 2.

Method 2: Almost Newton

You might recall Newton’s method from a calculus class. If we want to es-
timate a zero near xk, we take the first-order Taylor expansion near xk and
set that equal to zero:

f(xk+1) ≈ f(xk) + f ′(xk)(xk+1 − xk) = 0.

With a little algebra, we have

xk+1 = xk − f ′(xk)−1f(xk).

Note that if x∗ is the actual root we seek, then Taylor’s formula with remain-
der yields

0 = f(x∗) = f(xk) + f ′(xk)(x∗ − xk) +
1

2
f ′′(ξ)(x∗ − xk)2.

Now subtract the Taylor expansions for f(xk+1) and f(x∗) to get

f ′(xk)(xk+1 − x∗) +
1

2
f ′′(ξ)(xk − x∗)2 = 0.

This gives us an iteration for the error ek = xk − x∗:

ek+1 = −1

2

f ′′(ξ)

f ′(xk)
e2k.

Assuming that we can bound f ′′(ξ)/f(xk) by some modest constant C, this
implies that a small error at ek leads to a really small error |ek+1| ≤ C|ek|2
at the next step. This behavior, where the error is squared at each step, is
quadratic convergence.
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If we apply Newton iteration to f(x) = dx− 1, we get

xk+1 = xk −
dxk − 1

d
=

1

d
.

That is, the iteration converges in one step. But remember that we wanted to
avoid division by d! This is actually not uncommon: often it is inconvenient
to work with f ′(xk), and so we instead cook up some approximation. In this
case, let’s suppose we have some d̂ that is an integer power of two close to d.
Then we can write a modified Newton iteration

xk+1 = xk −
dxk − 1

d̂
=

(
1− d

d̂

)
xk +

1

d̂
.

Note that 1/d is a fixed point of this iteration:

1

d
=

(
1− d

d̂

)
1

d
+

1

d̂
.

If we subtract the fixed point equation from the iteration equation, we have
an iteration for the error ek = xk − 1/d:

ek+1 =

(
1− d

d̂

)
ek.

So if |d− d̂|/|d| < 1, the errors will eventually go to zero. For example, if we
choose d̂ to be the next integer power of two larger than d, then |d− d̂|/|d̂| <
1/2, and we get at least one additional binary digit of accuracy at each step.

When we plot the error in long division, bisection, or our modified Newton
iteration on a semi-logarithmic scale, the decay in the error looks (roughly)
like a straight line. That is, we have linear convergence. But we can do
better!

Method 3: Actually Newton

We may have given up on Newton iteration too easily. In many problems,
there are multiple ways to write the same nonlinear equation. For example,
we can write the reciprocal of d as x such that f(x) = dx− 1 = 0, or we can
write it as x such that g(x) = x−1 − d = 0. If we apply Newton iteration to
g, we have

xk+1 = xk −
g(xk)

g′(xk)
= xk + x2k(x−1k − d) = xk(2− dxk).
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As before, note that 1/d is a fixed point of this iteration:

1

d
=

1

d

(
2− d1

d

)
.

Given that 1/d is a fixed point, we have some hope that this iteration will
converge — but when, and how quickly? To answer these questions, we need
to analyze a recurrence for the error.

We can get a recurrence for error by subtracting the true answer 1/d from
both sides of the iteration equation and doing some algebra:

ek+1 = xk+1 − d−1

= xk(2− dxk)− d−1

= −d(x2k − 2d−1xk + d−2)

= −d(xk − d−1)2

= −de2k

In terms of the relative error δk = ek/d
−1 = dek, we have

δk+1 = −δ2k.

If |δ0| < 1, then this iteration converges — and once convergence really sets
in, it is ferocious, roughly doubling the number of correct digits at each
step. Of course, if |δ0| > 1, then the iteration diverges with equal ferocity.
Fortunately, we can get a good initial guess in the same way we got a good
guess for the modified Newton iteration: choose the first guess to be a nearby
integer power of two.

On some machines, this sort of Newton iteration (intelligently started) is
actually the preferred method for division.

The big picture

Let’s summarize what we have learned from this example (and generalize
slightly to the case of solving f(x) = 0 for more interesting f):

• Bisection is a general, robust strategy. We just need that f is contin-
uous, and that there is some interval [a, b] so that f(a) and f(b) have
different signs. On the other hand, it is not always easy to get a brack-
eting interval; and once we do, bisection only halves that interval at
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each step, so it may take many steps to reach an acceptable answer.
Also, bisection is an intrinsically one-dimensional construction.

• Newton iteration is a standard workhorse based on finding zeros of suc-
cessive linear approximations to f . When it converges, it converges fe-
rociously quickly. But Newton iteration requires that we have a deriva-
tive (which is sometimes inconvient), and we may require a good initial
guess.

• A modified Newton iteration sometimes works well if computing a deriva-
tive is a pain. There are many ways we can modify Newton method for
our convenience; for example, we might choose to approximate f ′(xk)
by some fixed value, or we might use a secant approximation.

• It is often convenient to work with fixed point iterations of the form

xk+1 = g(xk),

where the number we seek is a fixed point of g (x∗ = g(x∗)). Newton-
like methods are an example of fixed point iteration, but there are
others. Whenever we have a fixed point iteration, we can try to write
an iteration for the error:

ek+1 = xk+1 − x∗ = g(xk)− g(x∗) = g(x∗ + ek)− g(x∗).

How easy it is to analyze this error recurrence depends somewhat on
the properties of g. If g has two derivatives, we can write

ek+1 = g′(x∗)ek +
1

2
g′′(ξk)e2k ≈ g′(x∗)ek.

If g′(x∗) = 0, the iteration converges superlinearly. If 0 < |g′(x∗)| < 1,
the iteration converges linearly, and |g′(x∗)| is the rate constant. If
|g′(x∗)| > 1, the iteration diverges.
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Week 2: Wednesday, Feb 1

Use a routine, or roll your own?

The Matlab function fzero is a fast, reliable black-box root-finding algo-
rithm based on a combination of bisection (for safety) and interpolation-based
methods (for speed). If you provide an initial interval containing exactly one
zero, and if the root you seek is not too sensitive, fzero will find the root you
seek to high accuracy (the default relative error tolerance is about 2εmach). I
use the function often, and recommend it to you.

That said, there are a few reasons to write your own root-finding algo-
rithms, at least some of the time:

1. Not all the world is Matlab, and you may sometimes find that you
have to write these things yourself.

2. Black box approaches are far less useful for problems involving multiple
variables. Consequently, it’s worth learning to write Newton-like meth-
ods in one variable so that you can learn their properties well enough
to work with similar algorithms in more than one variable.

3. Actually walking through the internals of a root-finding algorithm can
be a terrific way to gain insight into how to formulate your problems
so that a standard root finder can solve them.

Sensitivity and error

Suppose we want to find x∗ such that f(x∗) = 0. On the computer, we
actually have f̂(x̂∗) = 0. We’ll assume that we’re using a nice, robust code
like fzero, so we have a very accurate zero of f̂ . But this still leaves the
question: how well do x̂∗ and x∗ approximate each other? In other words,
we want to know the sensitivity of the root-finding problem.

If x̂∗ ≈ x∗, then
f(x̂∗) ≈ f ′(x∗)(x̂∗ − x∗).

Using the fact that f̂(x̂∗) = 0, we have that if |f̂ − f | < δ for arguments near
x∗, then

|f ′(x∗)(x̂∗ − x∗)| . δ.
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This in turn gives us

|x̂∗ − x∗| .
δ

f ′(x∗)
.

Thus, if f ′(x∗) is close to zero, small rounding errors in the evaluation of f
may lead to large errors in the computed root.

It’s worth noting that if f ′(x∗) = 0 (i.e. if x∗ is a multiple root), that
doesn’t mean that x∗ is completely untrustworthy. It just means that we
need to take more terms in a Taylor series in order to understand the local
behavior. In the case f ′(x∗) = 0, we have

f(x̂∗) ≈
1

2
f ′′(x∗)(x̂∗ − x̂∗),

and so we have

|x̂∗ − x̂∗| ≤

√
2δ

f ′′(x∗)
.

So if the second derivative is well behaved and δ is on the order of around
10−16, for example, our computed x̂ might be accurate to within an absolute
error of around 10−8.

Understanding the sensitivity of root finding is not only important so that
we can be appropriately grim when someone asks for impossible accuracy.
It’s also important because it helps us choose problem formulations for which
it is (relatively) easy to get good accuracy.

Choice of functions and variables

Root-finding problems are hard or easy depending on how they are posed.
Often, the initial problem formulation is not the most convenient. For ex-
ample, consider the problem of finding the positive root of

f(x) = (x+ 1)(x− 1)8 − 10−8.

This function is terrifyingly uninformative for values close to 1. Newton’s
iteration is based on the assumption that a local, linear approximation pro-
vides a good estimate of the behavior of a function. In this problem, a linear
approximation is terrible. Fortunately, the function

g(x) = (x+ 1)1/8(x− 1)− 10−1
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has the same root, which is very nicely behaved.
There are a few standard tricks to make root-finding problems easier:

• Scale the function. If f(x) has a zero at x∗, so does f(x)g(x); and
sometimes we can analytically choose a scaling function to make the
root finding problem easier.

• Otherwise transform the function. For example, in computational
statistics, one frequently would like to maximize a likelihood function

L(θ) =
n∏

j=1

f(xj; θ)

where f(x; theta) is a probability density that depends on some param-
eter θ. One way to do this would be find zeros of L′(θ), but this often
leads to scaling problems (potential underflow) and other numerical dis-
comforts. The standard trick is to instead maximize the log-likelihood
function

`(θ) =
n∑

j=1

log f(xj; θ),

often using a root finder for `′(θ). This tends to be a much more
convenient form, both for analysis and for computation.

• Change variables. A good rule of thumb is to pick variables that
are naturally dimensionless1 For difficult problems, these dimension-
less variables are often very small or very large, and that fact can be
used to simplify the process of coming up with good initial guesses for
Newton iteration.

Starting points

All root-finding software requires either an initial guess at the solution or an
initial interval that contains the solution. This sometimes calls for a little
cleverness, but there are a few standard tricks:

1Those of you who are interested in applied mathematics more generally should look
up the Buckingham Pi Theorem — it’s a tremendously useful thing to know about.
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• If you know where the problem comes from, you may be able to get
a good estimate (or bounds) by “application reasoning.” This is often
the case in physical problems, for example: you can guess the order
of magnitude of an answer because it corresponds to some physical
quantity that you know about.

• Crude estimates are often fine for getting upper and lower bounds. For
example, we know that for all x > 0,

log(x) ≤ x− 1

and for all x ≥ 1, log(x) > 0. So if I wanted to x+log(x) = c for c > 1,
I know that c should fall between x and 2x− 1, and that gives me an
initial interval. Alternatively, if I know that g(z) = 0 has a solution
close to 0, I might try Taylor expanding g about zero – including higher
order terms if needed – in order to get an initial guess for z.

• Sometimes, it’s easier to find local minima and maxima than to find
zeros. Between any pair of local minima and maxima, functions are
either monotonically increasing or monotonically decreasing, so there is
either exactly one root in between (in which case there is a sign change
between the local min and max) or there are zero roots between (in
which case there is no sign change). This can be a terrific way to start
bisection.

Problems to ponder

1. Analyze the convergence of the fixed point iteration

xk+1 = c− log(xk).

What is the equation for the fixed point? Under what conditions will
the iteration converge with a good initial guess, and at what rate will
the convergence occur?

2. Repeat the previous exercise for the iteration xk+1 = 10− exp(xk).

3. Analyze the convergence of Newton’s iteration on the equation x2 = 0,
where x0 = 0.1. How many iterations will it take to get to a number
less than 10−16?
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4. Analyze the convergence of the fixed point iteration xk+1 = xk−sin(xk)
for xk near zero. Starting from x = 0.1, how many iterations will it
take to get to a number less than 10−16?

5. Consider the cubic equation

x3 − 2x+ c = 0.

Describe a general purpose strategy for finding all the real roots of this
equation for a given c.

6. Suppose we have some small number of samples X1, . . . , Xm drawn
from a Cauchy distribution with parameter θ (for which the pdf is)

f(x, θ) =
1

π

1

1 + (x− θ)2
.

The maximum likelihood estimate for θ is the function that maximizes

L(θ) =
m∏
j=1

f(Xj, θ).

Usually, one instead maximizes l(θ) = logL(θ) — why would this make
sense numerically? Derive a MATLAB function to find the maximum
likelihood estimate for θ by finding an appropriate solution to the equa-
tion l′(θ) = 0.

7. The Darcy friction coefficient f for turbulent flow in a pipe is defined
in terms of the Colebrook-White equation for large Reynolds number
Re (greater than 4000 or so):

1√
f

= −2 log10

(
ε/Dh

3.7
+

2.51

Re
√
f

)
Here ε is the height of the surface roughness and Dh is the diameter
of the pipe. For a 10 cm pipe with 0.1 mm surface roughness, find f
for Reynolds numbers of 104, 105, and 106. Ideally, you should use a
Newton iteration with a good initial guess.
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8. A cable with density of 0.52 lb/ft is suspended between towers of equal
height that are 500 ft apart. If the wire sags by 50 ft in between, find
the maximum tension T in the wire. The relevant equations are

c+ 50 = c cosh

(
500

2c

)
T = 0.52(c+ 50)

Ideally, you should use a Newton iteration with a good initial guess.
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Week 3: Monday, Feb 6

Subtle singularity

A square matrix A ∈ Rn×n is called invertible or nonsingular if there is an
A−1 such that AA−1 = I. Otherwise, A is called singular. There are several
common ways to characterize nonsingularity: A is nonsingular if it has an
inverse, if det(A) 6= 0, if rank(A) = n, or if null(A) = {0}. What would
happen if we tried to test these conditions numerically?

1. A has an inverse. How do we compute it? Is it sensitive to roundoff?

2. det(A) 6= 0. How do we compute determinants? The usual Laplace
expansion (also called the cofactor expansion) is very expensive for
large n! Also, consider what happens for A = I/16 when n = 100.

3. rank(A) = n. How do we compute the rank? We might look for a basis
for the range space; how do we get that? Is this computation sensitive
to roundoff?

4. null(A) = {0}. How do we compute the null space of a matrix? Is the
computation sensitive to roundoff?

Even if A is singular, almost every matrix Â close to A will be nonsingular.
Since we usually perturb problems just by storing them in floating point, it
may be too much to ask whether an interesting matrix is exactly singular, or
to ask for the true rank. It turns out to be much more practical to ask whether
A is close to singular and whether there is an almost null space. It also turns
out that some constructions that look straightforward to compute, such as
explicit inverses and determinants, are poorly-behaved in floating point, and
so are rarely used in computational practice1.

1At least, they are rarely used by people who took a class like this one and paid some
attention. They are often used in codes written by people who have never taken such a
class; and when codes like that break, people sometimes knock on my door. I sometimes
grumble about this, but I suppose I should consider it job security.
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Matrices and vectors in Matlab

Vectors and matrices are basic objects in numerical linear algebra2. They are
also basic objects in Matlab. For example, we can write a column vector3

x ∈ R3 as

x = [1; 2; 3];

and a matrix A ∈ R4×3 as

A = [1, 5, 9;
2, 6, 10;
3, 7, 11;
4, 8, 12];

Internally, Matlab uses column major layout — all the entries of the first
column of a matrix are listed first in memory, then all the entries of the
second column, and so on. This is actually visible at the user level in some
contexts. For example, when I enter A as above, the Matlab expression
A(6) evaluates to 6; and if I write

fprintf( ’%d\n’, A);

the output is the numbers 1 through 12, one per line.
I can multiply matrices and vectors with compatible dimensions using the

ordinary multiplication operator:

y = A∗x; % Computes y = [38; 44; 50; 56]

The tic operator in Matlab computes the (conjugate) transpose of a matrix
or a vector. For example:

b = [1; 2]; % b is a column vector
bt = b’; % bt = [1, 2] is a row vector

C = [1, 2; 3, 4];
Ct = C’; % Ct = [1, 3; 2, 4]; Ct(i, j) is C(j, i)

If x and y are two vectors, we can define their inner product (also called the
scalar product or dot product) and outer product in terms of ordinary matrix
multiplication and transposition:

2I suppose abstract linear maps are more basic than matrices — but you have to have
matrices to compute.

3In this class, the word “vector” with no qualifiers will usually mean “column vector.”
If I want to refer to a row vector, I will write “row vector.”
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x = [1; 2];
y = [3; 4];
dotxy = x’∗y; % Inner product is 1∗3 + 2∗4 = 11
outer = x∗y’; % Outer product is [3, 6;, 4, 8]

If I want to apply the inverse of a square matrix C, I can use the backslash
(solve) operator

C = [1, 2; 3, 4];
b = [1; 2];
z = C\b; % Computes z = [0; 0.5]. Better than z = inv(C)∗b.

Most expressions that involve a matrix inverse can be rewritten in terms of
the backslash operator, and backslash is almost always preferable to the inv

command.
I can take slices of matrices using MATLAB’s colon syntax. For example,

if I write

I = eye(6);
e3 = I (:,3);

then e3 denotes e3, the vector which is all zeros except for the third entry.

The costs of computations

Our first goal in any scientific computing task is to get a sufficiently accurate
answer. Our second goal is to get it fast enough4. Of course, there is a tradeoff
between the computer time and our time; and often, we can optimize both
by making wise high-level decisions about the type of algorithm we should
use, and then calling an appropriate library routine. At the same time, we
need to keep track of enough details so that we don’t spend days on end
twiddling our thumbs and waiting for a computation that should have taken
a few seconds. It is easy to goof and write slow Matlab code. Fortunately,
Matlab has a profiler that can help us find where our code is spending all its
time; for details, type help profile at the command line. Unfortunately,
it doesn’t always help us to know where we are spending a lot of time if we
don’t know why.

4If you really like thining about how to make things run fast enough, you might enjoy
CS 5220: Applications of Parallel Computers. I’ll be teaching it in the fall.
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The work to multiply an m × n matrix by an n × p matrix is O(mnp).
If A ∈ Rn×n and B ∈ Rn×p are general (dense) Matlab matrices, then the
work to compute A−1B using the backslash operator is O(n3+n2p)5. Because
matrix multiplication is associative, (AB)C and A(BC) are mathematically
equivalent; but they can have very different performance depending on the
matrix sizes. For example, if x, y, z ∈ Rn are three vectors (n× 1 matrices),
then evaluating (xyT )z takes O(n2) arithmetic and storage (O(n2) arithmetic
and storage for the outer product and O(n2) arithmetic to multiply by z).
But the equivalent expression x(yT z) takes only O(n) arithmetic and storage:
O(n) arithmetic and one element of storage to compute the inner product,
followed by O(n) arithmetic and storage to multiply x by a scalar.

Because equivalent mathematical expressions can have very different per-
formance characteristics, it is useful to remember some basic algebraic prop-
erties of simple matrix operations:

(AB)C = A(BC)

(AB)T = BTAT

(AB)−1 = B−1A−1

A−T ≡ (A−1)T = (AT )−1

It is also helpful to remember that some matrix operations can be written
more efficiently without forming an explicit matrix. For example, the follow-
ing codes are equivalent:

% Inefficient (O(nˆ2))
y = diag(s)∗x; % Multiply x by a diagonal scaling matrix
z = (c∗eye(n))∗x; % Multiply x by c∗I

% Efficient
y = s.∗x; % .∗ is componentwise multiplication
z = c∗x; % Can omit multiplication by an identity

In addition to poor choices of parentheses, we can get terrible performance
in Matlab if we ignore silent costs. But we can also get surprisingly good

5The backslash operator is actually very sophisticated, and it will take advantage of any
structure it can find in your matrix. If the matrix A is triangular, Matlab will compute
A−1B in O(n2p) time; if A is represented using Matlab’s sparse matrix features, the cost
can be even lower.
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performance if we play to Matlab’s strength in vector operations6. For
example:

% Inefficient (O(nˆ2) data transfer operations)
results = [];
for k = 1:n

results (k) = foo(k); % Allocates a length k+1 array, copies old data in
end

% More efficient (no silent memory costs)
results = zeros(1,n); % Pre−allocate storage
for k = 1:n

results (k) = foo(k);
end

% Most efficient if foo is vectorized
results = foo(1:n);

People sometimes think Matlab must be slow compared to a language
like Java or C. But for matrix computations, well-written Matlab is often
faster than all but very carefully tuned code in a compiled language. That
is because Matlab uses very fast libraries for linear algebra operations like
matrix multiplication and linear solves. Most of our codes in this class will
be fast to the extent that we can take advantage of these libraries.

6Recent versions of Matlab pre-compile scripts into byte code, and the compiler has
an optimizer. Consequently, recent versions of Matlab have better loop performance
than older versions, particularly when the loops have simple structures that the optimizer
can figure out.
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Week 3: Wednesday, Feb 8

Spaces and bases

I have two favorite vector spaces1: Rn and the space Pd of polynomials of
degree at most d. For Rn, we have a canonical basis:

Rn = span{e1, e2, . . . , en},

where ek is the kth column of the identity matrix. This basis is frequently
convenient both for analysis and for computation. For Pd, an obvious-
seeming choice of basis is the power basis:

Pd = span{1, x, x2, . . . , xd}.

But this obvious-looking choice turns out to often be terrible for computation.
Why? The short version is that powers of x aren’t all that strongly linearly
dependent, but we need to develop some more concepts before that short
description will make much sense.

The range space of a matrix or a linear map A is just the set of vectors y
that can be written in the form y = Ax. If A is full (column) rank, then the
columns of A are linearly independent, and they form a basis for the range
space. Otherwise, A is rank-deficient, and there is a non-trivial null space
consisting of vectors x such that Ax = 0.

Rank deficiency is a delicate property2. For example, consider the matrix

A =

[
1 1
1 1

]
.

This matrix is rank deficient, but the matrix

Â =

[
1 + δ 1

1 1

]
.

is not rank deficient for any δ 6= 0. Technically, the columns of Â form a
basis for R2, but we should be disturbed by the fact that Â is so close to a
singular matrix. We will return to this point in some detail next week.

1This is a fib, but not by too much.
2Technically, we should probably say that rank deficiency is non-generic rather than

“delicate.”
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Norm!

In order to talk sensibly about a matrix being “close to” singular or a basis
being “close to” linear dependence, we need the right language.

First, we need the concept of a norm, which is a measure of the length
of a vector. A norm is a function from a vector space into the real numbers
with three properties

1. Positive definiteness: ‖x‖ > 0 when x 6= 0 and ‖0‖ = 0.

2. Homogeneity: ‖αx‖ = |α|‖x‖.

3. Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

One of the most popular norms is the Euclidean norm (or 2-norm):

‖x‖2 =

√√√√ n∑
i=1

|xi|2 =
√
xTx.

We will also use the 1-norm and the ∞-norm (a.k.a. the max norm or the
Manhattan norm):

‖x‖1 =
∑
i

|xi|.

‖x‖∞ = max
i
|xi|

Second, we need a way to relate the norm of an input to the norm of
an output. We do this with matrix norms. Matrices of a given size form
a vector space, so in one way a matrix norm is just another type of vector
norm. However, the most useful matrix norms are consistent with vector
norms on their domain and range spaces, i.e. for all vectors x in the domain,

‖Ax‖ ≤ ‖A‖‖x‖.

Given norms for vector spaces, a commonly-used consistent norm is the in-
duced norm (operator norm):

‖A‖ ≡ max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.
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The matrix 1-norm and the matrix ∞-norm (the norms induced by the
vector 1-norm and vector ∞-norm) are:

‖A‖1 = max
j

(∑
i

|aij|

)
(max abs column sum)

‖A‖∞ = max
j

(∑
i

|aij|

)
(max abs row sum)

If we think of a vector as a special case of an n-by-1 matrix, the vector 1-norm
matches the matrix 1-norm, and likewise with the ∞-norm. This is how I
remember which one is the max row sum and which is the max column sum!

The matrix 2-norm is very useful, but it is actually much harder to com-
pute than the 1-norm or the ∞-norm. There is a related matrix norm, the
Frobenius norm, which is much easier to compute:

‖A‖F =

√∑
i,j

|a2ij|.

The Frobenius norm is consistent, but it is not an operator norm3

Matlab allows us to compute all the vector and matrix norms describe
above with the norm command. For example, norm(A, ’fro’) computes
the Frobenius norm of a matrix A, while norm(x,1) computes the 1-norm
of a vector x. The default norm, which we get if we just write norm(A) or
norm(x), is the Euclidean vector norm (a.k.a. the 2-norm) and the corre-
sponding operator norm.

The ideas of vector norms and operator norms make sense on spaces other
than Rn, too. For example, one choice of norms for Pd is

‖p‖L2([−1,1]) =

√∫ 1

−1
p(x)2 dx.

You will note that this looks an awful lot like the standard Euclidean norm;
we also have analogues of the 1-norm and the ∞-norm in this case. The
norms for spaces of functions (like Pd) are actually a more interesting topic
than the norms of Rn, but an extended discussion is (lamentably) beyond
the scope of what I can reasonably fit into this course.

3The first half of this sentence is basically Cauchy-Schwarz; the second half of the
sentence can be seen by looking at ‖I‖F . If you don’t understand this footnote, no worries.
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Inner products

Norms are the tools we need to measure lengths and distances. Inner products
are the tools we need to measure angles. In general, an inner product satisfies
three axioms:

• Positive definiteness: 〈u, u〉 ≥ 0, with equality iff u = 0.

• Symmetry: 〈u, v〉 = 〈v, u〉

• Linearity: 〈αu, v〉 = α〈u, v〉 and 〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉.

For every inner product, we have an associated norm: ‖u‖ =
√
〈u, u〉. An

important identity relating the inner product to the norm is the Cauchy-
Schwartz inequality:

〈u, v〉 ≤ ‖u‖‖v‖.
Equality holds only if u and v are parallel. Vectors u and v are orthogonal if
〈u, v〉 = 0. In general, the angle α between nonzero vectors u and v is defined
by the relation

cos(α) =
〈u, v〉
‖u‖‖v‖

.

If x and y are in Rn, the standard inner product is:

〈x, y〉 = xTy =
n∑

i=1

xiyi.

We say vectors u1, u2, . . . , uk are orthonormal if they mutually orthogonal
and have unit Euclidean length, i.e.

〈ui, uj〉 = δij =

{
1, i = j

0, otherwise.

Somewhat oddly, though, we define an orthogonal matrix to be a square
matrix whose columns are orthonormal (i.e. a matrix Q such that QTQ = I).
When we say a matrix is orthogonal, we usually really mean “orthogonal with
respect to the standard inner product on Rn”; if the matrix is orthogonal with
respect to some other inner product, we say so explicitly.

One very useful property of orthogonal matrices is that they preserve
Euclidean length. That is, if Q is orthogonal, then

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2.



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

From time to time, I may talk about “unitary operations”; if I do, I generally
mean linear maps that have this property of preserving Euclidean length4

Of course, other spaces can also have useful inner products. For example,
a standard choice of inner products for Pd is

〈p, q〉L2([−1,1]) =

∫ 1

−1
p(x)q(x) dx.

The power basis {1, x, x2, . . . , xd} is decidedly not orthonormal with respect
to this inner product. On the other hand the Legendre polynomials, which
play a critical role in the theory of Gaussian integration, do form an orthog-
onal basis for Pd with respect to this inner product.

Symmetric matrices and quadratic forms

The multi-dimensional version of Taylor’s theorem says that we can write
any sufficiently nice function from Rn → R as

f(x0 + z) = f(x0) +
∑
i

∂f

∂xi
zi +

1

2

∑
i,j

∂2f

∂xi∂xj
zizj +O(‖z‖3).

We sometimes write this more concisely as

f(x0 + z) = f(x0) +∇f(x0)
T z +

1

2
zTHf (x0)z +O(‖z‖3),

where the Hessian matrix Hf (x0) has entries which are second partials of f
at x0. Still assuming that f is nice, we have that

(Hf (x0))ij =
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
= (Hf (x0))ji ;

that is, the Hessian matrix is symmetric.
A quadratic form on Rn is function of the form

φ(x) = xTAx.

4I’ll expect you to know what an orthogonal matrix is going forward, but if I ever say
“unitary operation” and you forget what I mean, just ask me.
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We typically assume A is symmetric, since only the symmetric part of the
matrix matters.5 Quadratic forms show up frequently throughout applied
mathematics, partly because second-order Taylor expansions show up fre-
quently. Symmetric matrices also show up more-or-less constantly; and when
they do, there is often a quadratic form lurking behind the scenes.

A symmetric matrix A is positive definite if the corresponding quadratic
form φ(x) = xTAx is positive definite — that is, φ(x) ≥ 0 for all x, with
equality only at x = 0. You’ve likely seen the notion of positive definiteness
before in multivariable calculus: if a function f has a critical point at x0
and Hf (x0) is positive definite, then x0 is a local minimum. You’ve also seen
the notion of positive definiteness earlier in these notes, since the quadratic
form associated with an inner product (‖u‖2 = 〈u, u〉) must be positive def-
inite. Matrices that are symmetric and positive definite occur so frequently
in numerical linear algebra that we often just call them SPD matrices6.

Quadratic forms are characterized by the fact that they are quadratic;
that is, φ(αx) = α2φ(x). It is sometimes convenient to get rid of the effects
of scaling vectors, and so we define the Rayleigh quotient:

ρA(x) =
xTAx

xTx
.

It is interesting to differentiate ρA(x) to try to find critical points:

d

dt
ρA(x+ tw) =

wTAx+ xTAw

xTx
− (xTAx)(wTx+ xTw)

(xTx)2

=
2wT

xTAx
(Ax− ρA(x)x) .

At a critical point, where all the directional derivatives are zero, we have

Ax = ρA(x)x,

i.e. x is an eigenvector and ρA(x) is an eigenvalue. This connection between
eigenvalues of symmetric matrices and ratios of quadratic forms is immensely
powerful. For example, we can use it to characterize the operator two-norm

‖A‖22 = max
x 6=0

‖Ax‖2

‖x‖2
= max

x 6=0

xTATAx

xTx
= λmax(A

TA)

5The symmetric part of a general matrix A is (A + AT )/2.
6Abbreviations are our way of stalling RSI. Why do you think CS has so many TLAs?
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The other eigenvalues of ATA (the squared singular values) are also some-
times handy, and we’ll talk about them later.

We can also look at the eigenvalues of a symmetric matrix A to determine
whether the corresponding quadratic form is positive definite (all eigenvalues
of A positive), negative definite (all eigenvalues of A negative), or indefinite.

Problems to ponder

1. We said earlier that

‖A‖ ≡ max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

Why is the equality true?

2. What are the range and null space of d
dx

viewed as a linear operator
acting on Pd? In terms of the power basis, how might you write d

dx
as

a matrix?

3. Using the inner product 〈·, ·〉L2([−1,1]), what is the angle between the
monomials xj and xk?

4. The Cauchy-Schwartz inequality says

〈u, v〉 ≤ ‖u‖‖v‖.

The easiest way I know to prove Cauchy-Schwartz is to write

φ(t) = 〈u+ tv, u+ tv〉 ≥ 0,

then use the properties of inner products to write φ(t) as a quadratic
function in t with coefficients given in terms of ‖u‖2, ‖v‖2, and 〈u, v〉.
Do this expansion, and write the discriminant of the resulting quadratic.
This discriminant must be non-positive in order for φ(t) to be non-
negative for all values of t; using this fact, show that Cauchy-Schwartz
must hold.

5. Given matrices X, Y ∈ Rm×n, we define the Frobenius inner product to
be

〈X, Y 〉 = tr(XTY ),

where tr(A) is the sum of the diagonal elements of A. Argue that this is
an inner product, and that the associated norm is the Frobenius norm.
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6. Show that when we have a norm induced by an inner product,

(‖u+ v‖2 − ‖u− v‖2)/4 = 〈u, v〉

7. Show that the operation p(x) 7→ p(−x) is unitary for Pd with the inner
product L2([−1, 1]).

8. Show that if A is an SPD matrix, then

〈x, y〉A = xTAy

is a valid inner product (sometimes called an energy inner product).

9. Assuming A is symmetric, define

ψ(x) =

(
1

2
xTAx− xT b

)
.

Give an expression for the directional derivatives

d

dt
ψ(x+ tu).

What equation must be satisfied at a critical point (i.e. a point where
all the directional derivatives are zero)?
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Week 4: Monday, Feb 13

Gaussian elimination in matrix terms

To solve the linear system4 4 2
4 5 3
2 3 3

x1

x2

x3

 =

2
3
5

 ,

by Gaussian elimination, we start by subtracting multiples of the first row
from the remaining rows in order to introduce zeros in the first column, thus
eliminating variable x1 from consideration in the last two questions. We then
repeat this procedure, so that we end up with a list of equations where the
first equation involves x1, x2, and x3, the second equation involves x2 and
x3, and the third equation involves only x3.

We can summarize the transformations to the equations in terms of ma-
trix operations. First, we subtract one times the first row from the second
row and 0.5 times the first row from the third row:

M1A =

 1 0 0
−1 1 0
−0.5 0 1

4 4 2
4 5 3
2 3 3

 =

4 4 2
0 1 1
0 1 2

 .

Then we subtract the new second row from the new third row:

M2M1A =

1 0 0
0 1 0
0 −1 1

4 4 2
0 1 1
0 1 2

 =

4 4 2
0 1 1
0 0 1


If we write the original system as Ax = b, what we have just shown is that
M2M1A = U , where M1 and M2 are simple unit lower triangular matrices
(sometimes called elementary transformations or Gauss transformations) and
U is upper triangular. The equation M2M1Ax = M2M1b thus looks like4 4 2

0 1 1
0 0 1

x1

x2

x3

 =

2
1
3

 ,
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and we can compute x by back-substitution:

x3 = 3 =⇒ x3 = 3 from the third row

x2 + x3 = 1 =⇒ x2 = −2 from the second row

4x1 + 4x2 + 2x3 = 2 =⇒ x1 = 1 from the first row.

In matrix terms, we can rewrite M2M1A = U as

A = LU

where

L = M−1
1 M−1

2 =

 1 0 0
1 1 0

0.5 0 1

1 0 0
0 1 0
0 1 1

 =

 1 0 0
1 1 0

0.5 1 1

 .

Notice that the subdiagonal elements of L are just the multipliers that we
encountered during Gaussian elimination. This matrix factorization is what
numerical analysts would usually call “Gaussian elimination”. Once we have
L and U , computing A−1b boils down to computing L−1b (forward substitu-
tion) followed by U−1(L−1b) (back substitution).

Using LU factorization

When you write x = A\b for a general dense matrix A in Matlab, two things
happen:

1. Matlab computes the factorization PA = LU . Here, P is a permu-
tation matrix – this row pivoting just corresponds to re-ordering the
equations during Gaussian elimination in order to improve numerical
stability. This phase costs O(n3) time.

2. Matlab then permutes the entries of b and solves the triangular sys-
tems Lc = b and Uc = x by forward and backward substitution, re-
spectively. This phase costs O(n2) time.

You can separate these two phases into two Matlab calls:

[L,U,P] = lu(A); % This is O(nˆ3)
x = U\(L\(P∗b)); % This is O(nˆ2)
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In the second line, Matlab is smart enough to recognize that L and U
are triangular matrices, so that linear systems with them can be solved by
forward and back substitution. Thus, most of the work takes place in the
first line (the factorization). If you want to solve multiple linear systems
involving the matrix A, it is very helpful to use the lu function so that you
don’t have to do the work of factoring A more than once.

Sparse matrices

A matrix A is sparse if most of the coefficients aij are zero. Sparse matrices
occur frequently in practice, and they will play an important role in the first
class project. Matlab provides a compact storage support for sparse ma-
trices, and also includes fast matrix multiplication and Gaussian elimination
routines for use with sparse matrices. We can create a sparse matrix in Mat-
lab using the sparse command. There are several variants of sparse, but
perhaps the simplest takes the positions and values of the nonzero elements
in parallel vector arguments. For example, the commands

i = [1, 2, 3, 4, 1];
j = [1, 2, 3, 4, 4];
a = [5, 7, 9, 11, 13];
A = sparse(i,j,a);

produce the sparse matrix

A =


5 0 0 13
0 7 0 0
0 0 9 0
0 0 0 11

 .

Internally, Matlab stores sparse matrices in a format that tracks only the
positions and values of the nonzero entries. This compressed sparse column
format is much like a packed version of the adjacency list representation used
to store sparse graphs. If A is sparse, then the storage for A and the time
to compute a matrix-vector product with A are both proportional to the
number of nonzeros in A (sometimes written nnz(A)).

Like the multiplication operator, the lu command and the backslash op-
erator in Matlab are overloaded to handle sparse matrix inputs. However,
the complexity of solving a linear system involving a sparse matrix is much
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more difficult to characterize than the complexity of sparse matrix-vector
multiplication. Depending on the order in which variables are eliminated
and the topology of the graph associated with the matrix A, Gaussian elimi-
nation may produce matrices L and U which have many more nonzeros than
the matrix A. These extra nonzeros are called fill. In order to minimize
fill during factorization of sparse matrices, we would typically reorder the
variables, just as we reorder the equations in order to improve numerical sta-
bility. That is, in the sparse case we usually write PAQ = LU where P is a
row permutation chosen by partial pivoting and Q is a column permutation
chosen to reduce fill. In general, choosing the Q that minimizes the fill is an
NP-hard problem, but we have good heuristics.

If A is a Matlab matrix stored in the sparse format, then, we can solve
linear systems with A either by writing x = A\b or

[L,U,P,Q] = lu(A);
x = Q∗(U\(L\(P∗b)));

As in the dense case, factoring the matrix A with lu is usually much more
expensive than the triangular solves with L and U .

Opinions and projects

The first project for the class involves some social network analysis. We have
a model of opinion formation, and we would like to quantify the sensitivity of
the mean opinion to the model parameters. At the heart of the project are
a number of manipulations using Matlab sparse matrices. In particular,
we have a matrix A that characterizes how people in the network weight the
opinions of their peers and their own intrinsic beliefs in order to form their
expressed opinions. In matrix terms, we have

Ax = s

where A reflects the connectivity among individuals, x is a vector of expressed
opinions, and s represents intrinsic beliefs. We show a small example in
Figure 1.

For the purposes of the project, we will assume that the structure of A
is such that sparse factorization routines work well. For a general social
network, though, it may not be feasible to factor A. In this case, we would
typically turn to iterative methods to solve the linear system Ax = s. We
will speak of such methods in more detail later in the course.
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Alice

David

Bob

Carol
A =


aAA −wAB −wAC 0
−wBA aBB −wBC 0
−wCA −wCB aCC 0

0 0 −wDC aDD



aAA = wAB + wAC + 1

aBB = wBA + wBC + 1

aCC = wCA + wCB + 1

aDD = wDC + 1

Figure 1: Small example of opinion formation in a social network. If Al-
ice, Bob, Carol, and David have “intrinsic” opinions sA, sB, sC , sD, then we
compute the “espressed” opinions xA, xB, xC , xD according to Ax = s.
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Week 4: Wednesday, Feb 15

A summary

From Monday, you should have learned:

1. Gaussian elimination can be seen as the computation of a matrix fac-
torization PA = LU , where L is a unit lower triangular matrix L whose
entries are the multipliers used in the elimination process; U is an up-
per triangular matrix; and P is a permutation matrix corresponding to
row re-ordering during partial pivoting.

2. Solving a linear system by Gaussian elimination consists of two steps:
factoring the matrix (which costs O(n3)) and solving triangular systems
with forward and backward substitution (which costs O(n2)).

3. Most of the entries in a sparse matrix are zero. We can represent a
sparse matrix compactly by only storing the location and values of the
nonzero entries. Gaussian elimination on sparse matrices sometimes
yields sparse factors, but the order of elimination matters. The Mat-
lab call

[L,U,P,Q] = lu(A);

factors a sparse matrix A as PAQ = LU , where P , L, and U are as
before, and the permutation matrix Q is automatically computed in
order to try to keep L and U sparse.

Today, we’ll look at

1. Condition numbers and some basic error analysis for linear systems.

2. Cholesky factorization for symmetric, positive definite matrices.

3. How Cholesky factorization actually gets implemented.

Partial pivoting

I only said a little last time about the role of the permutation matrix P in
the factorization. The reason that P is there is to help control the size of
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the elements in L. For example, consider what happens when we factor the
following matrix without pivoting:

A =

[
ε 1
1 1

]
=

[
1 0
ε−1 1

] [
ε 1
0 1− ε−1

]
.

If we round u22 to −ε−1, then we have[
1 0
ε−1 1

] [
ε 1
0 −ε−1

]
=

[
ε 1
1 0

]
6= A;

that is, a rounding error in the (huge) u22 entry causes a complete loss of
information about the a22 component.

In this example, the l21 and u22 terms are both huge. Why does this
matter? When L and U have huge entries and A does not, computing the
product LU must inevitably involve huge cancellation effects, and we have
already seen the danger of cancellation in previous lectures. The partial
pivoting strategy usually used with Gaussian elimination permutes the rows
of A so that the multipliers at each step (the coefficients of L) are at most
one in magnitude. Even with this control on the elements of L, it is still
possible that there might be “pivot growth”: that is, elements of U might
grow much larger than those in A. But while it is possible to construct test
problems for which pivot growth is exponential, in practice such cases almost
never happen.

Alas, even when GEPP works well, it can produce answers with large
relative errors. In some sense, though, the fault lies not in our algorithms, but
in our problems. In order to make this statement precise, we need to return
to a theme from the first week of classes, and discuss condition numbers.

Warm-up: Error in matrix multiplication

Suppose ŷ = (A+E)x is an approximation to y = Ax. What is the error in
using ŷ to approximate y? We can write an equation for the absolute error:

ŷ − y = Ex,

and using norms, we have

‖ŷ − y‖ ≤ ‖E‖‖x‖.
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This is all well and good, but we would really like an expression involving
relative errors. To get such an expression, it’s helpful to play around with
norms a little more. Assuming A is invertible, we have

‖x‖ = ‖A−1y‖ ≤ ‖A−1‖‖y‖,

so that
‖ŷ − y‖
‖y‖

≤ ‖A‖‖A−1‖‖E‖
‖A‖

.

That is, the quantity
κ(A) = ‖A‖‖A−1‖

serves as a condition number that relates the size of relative error in the
computed result ŷ to the size of relative error in the matrix A. Note that
this condition number is a function of the problem formulation, and does not
depend on the way that we implement matrix multiplication.

It is a straightforward (if tedious) exercise in rounding error analysis to
show that if we compute y = Ax in the usual way in floating point arith-
metic, the computed result ŷ will actually satisfy ŷ = (A + E)x, where
|Eij| . nεmach|Aij|. That is, ŷ is the exact result for a slightly perturbed
problem. The perturbation E is called a backward error. For the matrix
norms we have discussed, this element-wise inequality implies the norm in-
equality ‖E‖/‖A‖ ≤ nε. Thus, the relative error in matrix multiplication is
bounded by

‖ŷ − y‖
‖y‖

≤ κ(A) · nε.

Since the numerical computation always has a small backward error, we say
the algorithm is backward stable (or sometimes just stable). If the problem is
additionally well-conditioned (so that κ(A) is small), then the forward relative
error ‖ŷ − y‖/‖y‖ will be small. But if the condition number is large, the
forward error may still be big.

From multiplication to linear solves

Now suppose that instead of computing y = Ax, we want to solve Ax = b.
How sensitive is this problem to changes in A? We know already how to
differentiate A−1 with respect to changes in A; using this knowledge, we can



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

write a first-order sensitivity formula relating small changes δA in the system
matrix to small changes δx in the solution:

δx ≈ −A−1(δA)A−1b = −A−1(δA)x.

Taking norms gives
‖δx‖ . ‖A−1‖‖δA‖‖x‖,

which we can rearrange to get

‖δx‖
‖x‖

. κ(A)
‖δA‖
‖A‖

.

That is, the condition number κ(A) = ‖A‖‖A−1‖ once again relates relative
error in the matrix to relative error in the result. Another very useful result
is that

‖x̂− x‖
‖x‖

. κ(A)
‖r‖
‖b‖

,

where r = b−Ax̂ is the residual error, or the extent to which the approximate
solution x̂ fails to satisfy the equations.

Gaussian elimination with partial pivoting is almost always backward
stable in practice. There are some artificial examples where “pivot growth”
breaks backward stability, but this never seems to occur in practice; and if it
does occur, one can cheaply evaluate the relative residual in order to evaluate
the solution. What this means in practice is that solving linear systems with
Gaussian elimination with partial pivoting almost always results in a small
relative residual (on the order of some modestly growing function in n times
εmach, for example). However, a small relative residual only translates to a
small relative error if the condition number is also not too big!

Cholesky factorization

For matrices that are symmetric and positive definite, the Cholesky factor-
ization

A = LLT

is an attractive alternative to Gaussian elimination. Here, the Cholesky factor
L is a lower triangular matrix; by convention, the diagonal of L is chosen to be
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positive. Sometimes, the Cholesky factorization is written in the equivalent
form

A = RTR

where R is upper triangular; this is the convention used by default in MAT-
LAB. One way to see this factorization is as a generalization of the posive
square root of a positive real number1

The Cholesky factorization is useful for solving linear systems, among
other things. Cholesky factors also show up in statistical applications, such
as sampling a multivariate normal with given covariance; and the existence
of a (nonsingular) Cholesky factor is equivalent to A being positive defi-
nite, so Cholesky factorization is sometimes also used to check for positive
definiteness. Even if we’re only interested in linear systems, the Cholesky fac-
torization has a very attractive feature compared to Gaussian elimination:
it can be stably computed without pivoting. Because pivoting is sort of a
pain, I’m going to leave the discussion of the algorithmic details of Gaussian
elimination to the book, but I will walk through some ideas behind Cholesky
factorization.

Let’s start with the Cholesky factorization of a 2-by-2 matrix:[
a11 a12
a12 a22

]
=

[
l11 0
l21 l22

] [
l11 l21
0 l22

]
.

We can write this matrix equation as three scalar equations, which we can
easily use to solve for the Cholesky factor

a11 = l211 l11 =
√
a11

a12 = l21l11 l21 = a12/l11

a22 = l222 + l221 l22 =
√
a22 − l221.

This picture actually generalizes. Now suppose we write down a block
matrix formula: [

a11 aT21
a21 A22

]
=

[
l11 0
l21 L22

] [
l11 lT21
0 L22

]
.

1It’s worth noting that the matrix square root of an SPD matrix A is actually a sym-
metric positive definite matrix B such that A = B2. So while the Cholesky factor is a
generalization of square roots to matrices, it is not the generalization that gets called “the
matrix square root.”
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Here, we’re thinking of a11 and l11 as scalars, a21 and l21 as column vectors,
and A22 and L22 as matrices. Working out the multiplication, we again have
three equations:

a11 = l211 l11 =
√
a11

a21 = l21l11 l21 = a21l
−1
11

A22 = L22L
T
22 + l21l

T
21 L22L

T
22 = A22 − l21lT21.

We can compute the first column of the Cholesky factor by the first two of
these equations, and the remaining equation tells us how to express the rest
of L as the Cholesky factor for a smaller matrix. Here’s the idea in Matlab:

function L = lec08chol(A)

n = length(A);
L = zeros(n);

for j = 1:n

% Compute column j of L
L(j, j) = sqrt(A(j,j));
L(j+1:n,j) = A(j+1:n,j)/L(j,j );

% Update the trailing submatrix (a ”Schur complement”)
A(j+1:n,j+1:n) = A(j+1:n,j+1:n)−L(j+1:n,j)∗L(j+1:n,j)’;

end

Actually, Matlab uses an even more sophisticated algorithm based on a
block factorization [

A11 A12

A12 A22

]
=

[
L11 0
L21 L22

] [
L11 L21

0 L22

]
.

The L11 part of the factor is the Cholesky factorization of A11, which is com-
puted by a small Cholesky factorization routine; the block L21 = A21L

−1
11 is

computed by triangular solves; and then L22 is computed by a block factor-
ization of the Schur complement A22 − L21L

T
21. This organization turns out

to be very useful for writing cache-efficient code that is able to do a lot of
work on a small part of the matrix before moving on to other parts of the
computation.
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Problems to ponder

1. Suppose you were given P , L, and U such that PA = LU . How would
you solve ATx = b?

2. Suppose A = LU . How could you compute det(A) efficiently using the
L and U factors2?

3. Show that the product of two unit lower triangular matrices is again
unit lower triangular.

4. I claimed that if A has a nonsingular Cholesky factor, then A is SPD.
Why is that so?

5. Suppose

A =

[
ε 1
1 1

]
What is the one-norm condition number κ1(A) = ‖A‖1‖A−1‖1?

6. I claimed in class that

‖x̂− x‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

.

Using the formula r = Ax̂ − b = A(x̂ − x) and properties of norms,
argue why this must be true.

7. What is the Cholesky factor of A?

A =

4 4 2
4 20 34
2 34 74


What is the determinant?

2When I taught multivariable calculus, I actually started off with this method for
computing determinants. It has a nice interpretation if you think about an elementary
operation in Gaussian elimination as a shear transformation, which preserves volumes.
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8. Write an O(n) code to compute the Cholesky factor of an SPD tridiago-
nal matrix given the diagonal entries a1, . . . , an and off-diagonal entries
b1, b2, . . . , bn−1:

A =


a1 b1
b1 a2 b2

b2 a3 b3
. . . . . . . . .

bn−1 an


9. Harder. In order to test whether or not a matrix A is singular, one

sometimes uses a bordered linear system. If A ∈ Rn×n, we choose
b, c ∈ Rn and d ∈ R at random and try to solve the equation[

A b
cT d

] [
x
y

]
=

[
0
1

]
.

If the extended matrix is singular, then A almost certainly has a null
space of at least dimension two; otherwise, with high probability, y = 0
iff A is singular. Why does this make sense?
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Week 5: Wednesday, Feb 22

Least squares: the big idea

Least squares problems are a special sort of minimization. Suppose A ∈ Rm×n

and m > n. In general, we will not be able to exactly solve overdetermined
equations Ax = b; the best we can do is to minimize the residual r = b−Ax.
In least squares problems, we minimize the two-norm of the residual1:

Find x̂ to minimize ‖r‖22 = 〈r, r〉.

This is not the only way to approximate the solution to an overdetermined
system, but it is attractive for several reasons:

1. It’s really mathematically attractive. ‖x‖2 is a smooth function of x,
and the solution to the least squares problem is a linear function of b
(x = A†b where A† is the Moore-Penrose pseudoinverse of A)

2. There’s a nice picture that goes with it – the least squares solution is
the projection of b onto the span of A, and the residual at the least
squares solution is orthogonal to the span of A.

3. It’s a mathematically reasonable choice in statistical settings when the
data vector b is contaminated by Gaussian noise.

Normal equations

One way to solve the least squares problem is to attack it directly. We know
‖r‖2 = ‖b − Ax‖2; and from a given x, the directional derivative in any
direction δx is

∇x‖r‖2 · δx = 2〈Aδx, b− Ax〉 = 2δxT (AT b− ATAx).

The minimum occurs when all posible directional derivatives are zero, which
gives us the normal equations2

ATAx = AT b.
1 Minimizing the two-norm is equivalent to miminizing the squared two-norm.
2They are called the normal equations because they specify that the residual must be

normal (orthogonal) to every vector in the span of A.
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Rearranging, we have

x = (ATA)−1AT b = A†b;

the matrix A† = (ATA)−1AT is the Moore-Penrose pseudoinverse of A (some-
times just called the pseudoinverse).

If the columns of A are not too close to linearly dependent, we would
usually just form the normal equations and solve them by using Cholesky
factorization to write

ATA = RTR,

where R is an upper triangular matrix.

QR factorization

Another approach is to write a QR factorization:

A = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1

where Q ∈ Rm×m is orthogonal (QTQ = I) and R is upper triangular. The
columns of Q1 ∈ Rm×n form an orthonormal basis for the range space of A,
and the columns of Q2 span the orthogonal complement. The factorization
A = Q1R1 is sometimes called the “economy” QR factorization.

Multiplication by an orthogonal matrix does not change lengths, so

‖r‖2 = ‖QT r‖2 =

∥∥∥∥[R1

0

]
x−QT b

∥∥∥∥2 = ‖R1x−QT
1 b‖2 + ‖QT

2 b‖2.

The second part of this expression (‖QT
2 b‖2) is error that we cannot reduce;

but R1x − QT
1 b can be made exactly equal to zero. That is, the solution to

the least squares problem is

x = R−11 QT
1 b.

In Matlab, we can compute the QR factorization using the qr routine:

[Q, R ] = qr(A); % Full QR
[Q1,R1] = qr(A,0); % Economy QR

We also use QR implicitly if we solve a least-squares system using the ever-
useful backslash operator:

x = A\b; % Minimize norm(Ax−b) via a QR factorization
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Sensitivity and conditioning

At a high level, there are two pieces to solving a least squares problem:

1. Project b onto the span of A.

2. Solve a linear system so that Ax equals the projected b.

Correspondingly, there are two ways we can get into trouble in solving least
squares problem: either b may be nearly orthogonal to the span of A, or the
linear system might be ill-conditioned.

Let’s consider the issue of b nearly orthogonal to A first. Suppose we have
the trivial problem

A =

[
1
0

]
, b =

[
ε
1

]
.

The solution to this problem is x = ε; but the solution for

A =

[
1
0

]
, b̂ =

[
−ε
1

]
.

is x̂ = −ε. Note that ‖b̂ − b‖/‖b‖ ≈ 2ε is small, but |x̂ − x|/|x| = 2 is
huge. That is because the projection of b onto the span of A (i.e. the
first component of b) is much smaller than b itself; so an error in b that is
small relative to the overall size may not be small relative to the size of the
projection onto the columns of A.

Of course, the case when b is nearly orthogonal to A often corresponds to
a rather silly regression, like trying to fit a straight line to data distributed
uniformly around a circle, or trying to find a meaningful signal when the
signal to noise ratio is tiny. This is something to be aware of and to watch
out for, but it isn’t exactly subtle: if ‖r‖/‖b‖ is close to one, we have a
numerical problem, but we also probably don’t have a very good model. A
more subtle issue problem occurs when some columns of A are nearly linearly
dependent (i.e. A is ill-conditioned).

The condition number of A for least squares is

κ(A) = ‖A‖‖A†‖ = κ(R1) =
√
κ(ATA).

We generally recommend solving least squares via QR factorization because
κ(R1) = κ(A), while forming the normal equations squares the condition
number. If κ(A) is large, that means:
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1. Small relative changes to A can cause large changes to the span of A
(i.e. there are some vectors in the span of Â that form a large angle
with all the vectors in the span of A).

2. The linear system to find x in terms of the projection onto A will be
ill-conditioned.

If θ is the angle between b and the range of A3, then the sensitivity to
perturbations in b is

‖∆x‖
‖x‖

≤ κ(A)

cos(θ)

‖δb‖
‖b‖

,

while the sensitivity to perturbations in A is

‖∆x‖
‖x‖

≤
(
κ(A)2 tan(θ) + κ(A)

) ‖E‖
‖A‖

.

Even if the residual is moderate, the sensitivity of the least squares problem
to perturbations in A (either due to roundoff or due to measurement error)
can quickly be dominated by κ(A)2 tan(θ) if κ(A) is at all large.

In regression problems, the columns of A correspond to explanatory fac-
tors. For example, we might try to use height, weight, and age to explain the
probability of some disease. In this setting, ill-conditioning happens when
the explanatory factors are correlated — for example, perhaps weight might
be well predicted by height and age in our sample population. This hap-
pens reasonably often. When there is some correlation, we get moderate ill
conditioning, and might want to use QR factorization. When there is a lot
of correlation and the columns of A are truly linearly dependent (or close
enough for numerical work), we have a rank-deficient problem. We will talk
about rank-deficient problems next lecture.

Problems to Ponder

1. If x minimizes ‖b− Ax‖2, argue that r ⊥ Ax.

2. Show that if x is minimizes ‖Ax− b‖, then ‖Ax‖2 + ‖r‖2 = ‖b‖2.

3. Suppose that A ∈ Rm×n, m > n, and that A has full column rank.
Then ATA is symmetric and positive definite. Why?

3Note that b, Ax, and r are three sides of a right triangle, so sin(θ) = ‖r‖/‖b‖.
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4. Suppose ATA = LLT , where L is a lower triangular Cholesky factor.
Show that the columns of AL−T are orthonormal.

5. Show that minimizing ‖Ax−b‖ is equivalent to solving the linear system[
I A
AT 0

] [
r
x

]
=

[
b
0

]
.

Can you think of an advantage of writing the least square problem in
this way?

6. Find an orthonormal basis for P2 with the L2([−1, 1]) inner product.

7. How would you find the quadratic p(x) to minimize∫ 1

−1
(p(x)− f(x))2 dx?

8. Suppose A = Rm×n, m > n is full rank, and that b ∈ Rn. The linear
system ATx = b is underdetermined. How would you find the solution
that minimizes ‖x‖?

9. Maybe only if you’ve had some stats: Suppose the entries of z ∈ Rn

are independent standard normal random variables. Show that for any
orthogonal matrixQ, the entries ofQT z are again independent standard
normal random variables.
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Week 5: Monday, Feb 27

Least squares reminder

Last week, we started to discuss least squares solutions to overdetermined
linear systems:

minimize ‖Ax− b‖22
where A ∈ Rm×n, x ∈ Rn, b ∈ Rm with m > n. We described two different
possible methods for computing the solutions to this equation:

• Solve the normal equations

ATAx = AT b,

which we derived by finding the critical point for the function φ(x) =
‖Ax− b‖2.

• Compute the QR decomposition

A =
[
Q1 Q2

] [R11

0

]
= Q1R11,

where Q =
[
Q1 Q2

]
is an orthogonal matrix and R11 is upper trian-

gular. Use the fact that multiplication by orthogonal matrices does not
change Euclidean lengths to say

‖Ax− b‖2 = ‖QT (Ax− b)‖2

=

∥∥∥∥[R11

0

]
x−

[
QT

1 b
QT

2 b

]∥∥∥∥2
= ‖R11x−QT

1 b‖2 + ‖QT
2 b‖2.

The second term in the last expression is independent of b; the first
term is nonnegative, and can be set to zero by solving the triangular
linear system R11x = QT

1 b

So far, our discussion has mostly depended on the algebra of least squares
problems. But in order to make sense of the sensitivity analysis of least
squares, we should also talk about the geometry of these problems.
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b R(A)r

Ax

Figure 1: Schematic of the geometry of a least squares problem. The residual
vector r = Ax− b is orthogonal to any vector in the range of A.

Least squares: a geometric view

The normal equations are often written as

ATAx = AT b,

but we could equivalently write

r = Ax− b
AT r = 0.

That is, the normal equations say that at the least squares solution, the
residual r = Ax − b is orthogonal to all of the columns of A, and hence to
any vector in the range of A.

By the same token, we can use the QR decomposition to write

r = Q2Q
T
2 b,

Ax = Q1Q
T
1 b.

That is, the QR decomposition lets us write b as a sum of two orthogonal
components, Ax and r. Note that the Pythagorean theorem therefore says

‖Ax‖2 + ‖r‖2 = ‖b‖2.

Figure 1 illustrates the geometric relations between b, r, A, and x. It’s
worth spending some time to stare at and comprehend this picture.
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Sensitivity and conditioning

At a high level, there are two pieces to solving a least squares problem:

1. Project b onto the span of A.

2. Solve a linear system so that Ax equals the projected b.

Correspondingly, there are two ways we can get into trouble in solving least
squares problem: either b may be nearly orthogonal to the span of A, or the
linear system might be ill-conditioned.

Let’s consider the issue of b nearly orthogonal to A first. Suppose we have
the trivial problem

A =

[
1
0

]
, b =

[
ε
1

]
.

The solution to this problem is x = ε; but the solution for

A =

[
1
0

]
, b̂ =

[
−ε
1

]
.

is x̂ = −ε. Note that ‖b̂ − b‖/‖b‖ ≈ 2ε is small, but |x̂ − x|/|x| = 2 is
huge. That is because the projection of b onto the span of A (i.e. the
first component of b) is much smaller than b itself; so an error in b that is
small relative to the overall size may not be small relative to the size of the
projection onto the columns of A.

Of course, the case when b is nearly orthogonal to A often corresponds to
a rather silly regression, like trying to fit a straight line to data distributed
uniformly around a circle, or trying to find a meaningful signal when the
signal to noise ratio is tiny. This is something to be aware of and to watch
out for, but it isn’t exactly subtle: if ‖r‖/‖b‖ is close to one, we have a
numerical problem, but we also probably don’t have a very good model. A
more subtle issue problem occurs when some columns of A are nearly linearly
dependent (i.e. A is ill-conditioned).

The condition number of A for least squares is

κ(A) = ‖A‖‖A†‖ = κ(R1) =
√
κ(ATA).

We generally recommend solving least squares via QR factorization because
κ(R1) = κ(A), while forming the normal equations squares the condition
number. If κ(A) is large, that means:
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1. Small relative changes to A can cause large changes to the span of A
(i.e. there are some vectors in the span of Â that form a large angle
with all the vectors in the span of A).

2. The linear system to find x in terms of the projection onto A will be
ill-conditioned.

If θ is the angle between b and the range of A1, then the sensitivity to
perturbations in b is

‖∆x‖
‖x‖

≤ κ(A)

cos(θ)

‖δb‖
‖b‖

,

while the sensitivity to perturbations in A is

‖∆x‖
‖x‖

≤
(
κ(A)2 tan(θ) + κ(A)

) ‖E‖
‖A‖

.

Even if the residual is moderate, the sensitivity of the least squares problem
to perturbations in A (either due to roundoff or due to measurement error)
can quickly be dominated by κ(A)2 tan(θ) if κ(A) is at all large.

Ill-conditioned problems

In regression problems, the columns of A correspond to explanatory factors.
For example, we might try to use height, weight, and age to explain the
probability of some disease. In this setting, ill-conditioning happens when
the explanatory factors are correlated — for example, perhaps weight might
be well predicted by height and age in our sample population. This hap-
pens reasonably often. When there is some correlation, we get moderate ill
conditioning, and might want to use QR factorization. When there is a lot
of correlation and the columns of A are truly linearly dependent (or close
enough for numerical work), or when there A is contaminated by enough
noise that a moderate correlation seems dangerous, then we may declare
that we have a rank-deficient problem.

What should we do when the columns of A are close to linearly depen-
dent (relative to the size of roundoff or of measurement noise)? The answer
depends somewhat on our objective for the fit, and whether we care about
x on its own merits (because the columns of A are meaningful) or we just
about Ax:

1Note that b, Ax, and r are three sides of a right triangle, so sin(θ) = ‖r‖/‖b‖.
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1. We may want to balance the quality of the fit with the size of the
solution or some similar penalty term that helps keep things unique.
This is the regularization approach.

2. We may want to choose a strongly linearly independent set of columns
of A and leave the remaining columns out of our fitting. That is, we
want to fit to a subset of the available factors. This can be done using
the leading columns of a pivoted version of the QR factorization AP =
QR. This is sometimes called parameter subset selection. Matlab’s
backslash operator does this when A is numerically singular.

3. We may want to choose the “most important” directions in the span
of A, and use them for our fitting. This is the idea behind principal
components analysis.

We will focus on the “most important directions” version of this idea,
since that will lead us into our next topic: the singular value decomposition.
Still, it is important to realize that in some cases, it is more appropriate to
add a regularization term or to reduce the number of fitting parameters.

Singular value decomposition

The singular value decomposition (SVD) is important for solving least squares
problems and for a variety of other approximation tasks in linear algebra. For
A ∈ Rm×n2, we write

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is
diagonal. The diagonal matrix Σ has non-negative diagonal entries

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

The σi are called the singular values of A. We sometimes also write

A =
[
U1 U2

] [Σ1

0

] [
V1 V2

]T
= U1Σ1V

T
1

where U1 ∈ Rm×n, Σ1 ∈ Rn×n, V1 ∈ Rn×n. We call this the economy SVD.

2We will assume for the moment that m ≥ n. Everything about the SVD still makes
sense when m < n, though.
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We can interpret the SVD geometrically using the same picture we drew
when talking about the operator two norm. The matrix A maps the unit ball
to an ellipse. The axes of the ellipse are σ1u1, σ2u2, etc, where the σi give the
lengths and the ui give the directions (remember that the ui are normalized).
The columns of V are the vectors in the original space that map onto these
axes; that is, Avi = σiui.

We can use the geometry to define the SVD as follows. First, we look for
the major axis of the ellipse formed by applying A to the unit ball:

σ2
1 = max

‖v‖=1
‖Av‖2 = max

‖v‖=1
vT (ATA)v.

Some of you may recognize this as an eigenvalue problem in disguise: σ2
1 is

the largest eigenvalue of ATA, and v1 is the corresponding eigenvector. We
can then compute u1 by the relation σ1u1 = Av1. To get σ2, we restrict our
attention to the spaces orthogonal to what we have already seen:

σ2
2 = max

‖v‖=1,v⊥v1,Av⊥u1

‖Av‖2.

We can keep going to get the other singular values and vectors.

Norms, conditioning, and near singularity

Given an economy SVD A = UΣV T , we can give satisfyingly brief descrip-
tions (in the two norm) of many of the concepts we’ve discussed so far in
class. The two-norm of A is given by the largest singular value: ‖A‖2 = σ1.
The pseudoinverse of A, assuming A is full rank, is

(ATA)−1A = UΣ−1V T ,

which means that ‖A†‖2 = 1/σn. The condition number for least squares (or
for solving the linear system when m = n) is therefore

κ(A) = σ1/σn.

Another useful fact about the SVD is that it gives us a precise charac-
terization of what it means to be “almost” singular. Suppose A = UΣV T

and E is some perturbation. Using invariance of the matrix two norm under
orthogonal transformations (the problem du jour), we have

‖A+ E‖2 = ‖U(Σ + Ẽ)V T‖ = ‖Σ + Ẽ‖,
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where ‖Ẽ‖ = ‖UTEV ‖ = ‖E‖. For the diagonal case, we can actually
characterize the smallest perturbation Ẽ that makes Σ+ Ẽ singular. It turns
out that this smallest perturbation is Ẽ = −σneneTn (i.e. something that
zeros out the last singular value of Σ). Therefore, we can characterize the
smallest singular value as the distance to singularity:

σn = min{‖E‖2 : A+ E is singular}.

The condition number therefore is a relative distance to singularity, which is
why I keep saying ill-conditioned problems are “close to singular.”

The SVD and rank-deficient least squares

If we substitute A = UΣV T in the least squares residual norm formula, we
can “factor out” U just as we pulled out the Q factor in QR decomposition:

‖Ax− b‖ = ‖UΣV Tx− b‖ = ‖Σx̃− b̃‖, where x̃ = V Tx and b̃ = UT b.

Note that ‖x̃‖ = ‖x‖ and ‖b̃‖ = ‖b‖.
If A has rank r, then singular values σr+1, . . . , σn are all zero. In this case,

there are many different solutions that minimize the residual — changing the
values of x̃r+1 through x̃n does not change the residual at all. One standard
way to pick a unique solution is to choose the minimal norm solution to the
problem, which corresponds to setting x̃r+1 = . . . = x̃n = 0. In this case, the
Moore-Penrose pseudoinverse is defined as

A† = V+Σ−1+ UT
+

where Σ+ = diag(σ1, σ2, . . . , σr) and U+ and V+ consist of the first r left and
right singular vectors.

If A has entries that are not zero but small, it often makes sense to use
a truncated SVD. That is, instead of setting x̃i = 0 just when σi = 0, we
set x̃i = 0 whenever σ is small enough. This corresponds, if you like, to
perturbing A a little bit before solving in order to get an approximate least
squares solution that does not have a terribly large norm.

Why, by the way, might we want to avoid large components? A few
reasons come to mind. One issue is that we might be solving linear least
squares problems as a step in the solution of some nonlinear problem, and
a large solution corresponds to a large step — which means that the local,



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

linear model might not be such a good idea. As another example, suppose
we are looking at a model of patient reactions to three drugs, A and B. Drug
A has a small effect and a horrible side effect. Drug B just cancels out the
horrible side effect. Drug C has a more moderate effect on the problem of
interest, and a different, small side effect. A poorly-considered regression
might suggest that the best strategy would be to prescribe A and B together
in giant doses, but common sense suggests that we should concentrate on
drug C. Of course, neither of these examples requires that we use a truncated
SVD — it might be fine to use another regularization strategy, or use subset
selection.
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Week 5: Wednesday, Feb 29

Of cabbages and kings

The past three weeks have covered quite a bit of ground. We’ve looked at
linear systems and least squares problems, and we’ve discussed Gaussian
elimination, QR decompositions, and singular value decompositions. Rather
than doing an overly hurried introduction to iterative methods for solving
linear systems, I’d like to go back and show the surprisingly versatile role
that the SVD can play in thinking about all of these problems.

Geometry of the SVD

How should we understand the singular value decomposition? We’ve already
described the basic algebraic picture:

A = UΣV T ,

where U and V are orthonormal matrices and Σ is diagonal. But what about
the geometric picture?

Let’s start by going back to something we glossed over earlier in the
semester: the characterization of the matrix 2-norm. By definition, we have

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

This is equivalent to

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x6=0

xTATAx

xTx
.

The quotient φ(x) = (xTATAx)/(xTx) is differentiable, and the critical
points satisfy

0 = ∇φ(x) =
2

xTx

(
ATAx− φ(x)x

)
That is, the critical points of φ – including the value of x that maximizes φ
– are eigenvectors of A. The corresponding eigenvalues are values of φ(x).
Hence, the largest eigenvalue of ATA is σ2

1 = ‖A‖22. The corresponding
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Figure 1: Graphical depiction of an SVD of A ∈ R2×2. The matrix A maps
the unit circle (left) to an oval (right); the vectors v1 (solid, left) and v2
(dashed, left) are mapped to the major axis σ1u1 (solid, right) and the minor
axis σ2u2 (dashed, right) for the oval.

eigenvector v1 is the right singular vector corresponding to the eigenvalue σ2
1;

and Av1 = σ1u1 gives the first singular value.
What does this really say? It says that v1 is the vector that is stretched

the most by multiplication by A, and σ1 is the amount of stretching. More
generally, we can completely characterize A by an orthonormal basis of right
singular vectors that are each transformed in the same special way: they
get scaled, then rotated or reflected in a way that preserves lengths. Viewed
differently, the matrix A maps vectors on the unit sphere into an ovoid shape,
and the singular values are the lengths of the axes. In Figure 1, we show this
for a particular example, the matrix

A =

[
0.8 −1.1
0.5 −3.0

]
.

Conditioning and the distance to singularity

We have already seen that the condition number for linear equation solving
is

κ(A) = ‖A‖‖A−1‖
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When the norm in question is the operator two norm, we have that ‖A‖ = σ1
and ‖A−1‖ = σ−1n , so

κ(A) =
σ1
σn

That is, κ(A) is the ratio between the largest and the smallest amounts by
which a vector can be stretched through multiplication by A.

There is another way to interpret this, too. If A = UΣV T is a square
matrix, then the smallest E (in the two-norm) such that A − E is exactly
singular is A− σnunvTn . Thus,

κ(A)−1 =
‖E‖
‖A‖

is the relative distance to singularity for the matrix A. So a matrix is ill-
conditioned exactly when a relatively small perturbation would make it ex-
actly singular.

For least squares problems, we still write

κ(A) =
σ1
σn
,

and we can still interpret κ(A) as the ratio of the largest to the smallest
amount that multiplication by A can stretch a vector. We can also still
interpret κ(A) in terms of the distance to singularity – or, at least, the
distance to rank deficiency. Of course, the actual sensitivity of least squares
problems to perturbation depends on the angle between the right hand side
vector b and the range ofA, but the basic intuition that big condition numbers
means problems can be very near singular – very nearly ill-posed – tells us
the types of situations that can lead us into trouble.

Orthogonal Procrustes

The SVD can provide surprising insights in settings other than standard least
squares and linear systems problems. Let’s consider one interesting one that
comes up when doing things like trying to align 3D models with each other.

Suppose we are given two sets of coordinates form points in n-dimensional
space, arranged into rows of A ∈ Rm×n and B ∈ Rm×n. Let’s also suppose
the matrices are (approximately) related by a rigid motion that leaves the
origin fixed. How can we recover the transformation? That is, we want an
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orthogonal matrix W that minimizes ‖AW −B‖2F . This is sometimes called
an orthogonal Procrustes problem, named in honor of the legendary Greek
king Procrustes, who had a bed on which he would either stretch guests or
cut off their legs in order to make them fit perfectly.

We can write ‖AW −B‖2F as

‖AW −B‖2F = (‖A‖2F + ‖B‖2F )− tr(W TATB),

so minimizing the squared residual is equivalent to maximizing tr(W TATB).
Note that if ATB = UΣV T , then

tr(W TATB) = tr(W TUΣV T ) = tr(VWUTΣ) = tr(ZΣ),

where Z = VWUT is orthogonal. Now, note that

tr(ZΣ) = tr(ΣZ) =
∑
i

σizii

is maximal over all orthogonal matrices when zii = 1 for each i. Therefore,
the trace is maximized when Z = I, corresponding to W = UV T .

Problems to Ponder

1. Suppose A ∈ Rn×n is invertible and A = UΣV T is given. How could
we use this decomposition to solve Ax = b in O(n2) additional work?

2. What are the singular values of A−1 in terms of the singular values of
A?

3. Suppose A = QR. Show κ2(A) = κ2(R).

4. Suppose that ATA = RTR, where R is an upper triangular Cholesky
factor. Show that AR−1 is a matrix with orthonormal columns.

5. Show that if V and W are orthogonal matrices with appropriate di-
mensions, then ‖V AW‖F = ‖A‖F .

6. Show that if X, Y ∈ Rm×n and tr(XTY ) = 0 then ‖X‖2F + ‖Y ‖2F =
‖X + Y ‖2F .

7. Why do the diagonal entries of an orthogonal matrix have to lie be-
tween −1 and 1? Why must an orthogonal matrix with all ones on the
diagonal be an identity matrix?
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Week 6: Monday, Mar 5

Iterative and Direct Methods

So far, we have discussed direct methods for solving linear systems and least
squares problems. These methods have several advantages:

• They are general purpose. It helps to recognize some basic structural
properties (sparsity, symmetry, etc), and you need to understand con-
ditioning. Otherwise, you can often trust that MATLAB’s backslash
operation is doing something reasonable.

• They are robust. More specifically, direct methods are generally back-
ward stable.

• There are good, fast standard libraries.

The main challenges of direct methods involve scaling. Forming and factoring
a large matrix can be expensive.

Iterative methods for solving linear systems have a lot of knobs to twiddle,
and they often have to be tailored for specific types of systems in order to
converge well. But when they are tailored, and when the parameters are set
right, they can be very efficient.

A Model Problem

There is a standard model problem for introducing iterative methods for
linear systems: a discretized Poisson equation. In lecture, I talked about the
two-dimensional case (which is the same case that is in the book); but in
order to present the ideas in a simple way, let me write in these notes about
the 1D case.

In order to set up this model problem, we need the following approxima-
tion: if u(x) is twice differentiable, then

u′′(x) =
u(x− h)− 2u(x) + u(x + h)

h2
+ O(h2).
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We can use this finite difference approximation to solve differential equations.
For example, suppose we want to approximate the solution to

−u′′(x) = f(x) for 0 ≤ x ≤ 1

u(0) = u(1) = 0.

The standard approach would be to sample the interval [0, 1] with a mesh of
points ih for i = 0, 1, 2, . . . , N + 1 (so h = 1/(N + 1)), and let ui ≈ u(ih) and
gi = h2f(ih). Then

−ui−1 + 2ui − ui+1 = −gi for i = 1, 2, . . . , N

u0 = uN+1 = 0.

Listing the equations in order, we have

Tu = −g,

where T is a tridiagonal matrix with 2 on the main diagonal and -1 on the
first sub and superdiagonals. For example, for N = 5, we have T ∈ R5×5

given by

T =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 .

Relax!

Suppose we wanted to solve a system like Tu = −g using an iterative method.
That is, we are willing to put aside the machinery we’ve built for directly
solving the system through a factorization, and instead we will construct a
sequence of guesses u(k) that will converge to the true solution as k → ∞.
How should we do this?

The key point here is that we don’t necessarily care that u(k+1) should
be the true answer – it should just be more right than u(k). So it is natural
to try to relax the problem so that we can “fix up” the solution by a little
bit at each step. For example, if we believe that u(k) is a good guess, then
we might try to fix up u(k+1) by making sure that the variable at each point
in the new steps satisfies the balance equation at that same point (assuming



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

that the neighbor data comes from the old step). That is, for each i we would
compute a new approximate solution value using

−u(k)
i−1 + 2u

(k+1)
i − u

(k)
i+1 = −gi.

This is Jacobi iteration.
Suppose we programmed Jacobi iteration sweeping from i = 1 up to

i = N1:

% Perform a single Jacobi iteration , computing unew from u
unew(1) = ( u(2)−g(1) )/2;
for i = 2:N−1

unew(i) = ( u(i−1)+u(i+1)−g(i) )/2;
end
unew(N) = ( u(N−1)−g(1) )/2;

Notice that at the time we have computed u
(k+1)
i in this code, we have also

computed u
(k+1)
i−1 . Wouldn’t it be better to update u

(k+1)
i using this new value,

instead of the old one? This natural idea is sometimes called Gauss-Seidel
iteration:

−u(k+1)
i−1 + 2u

(k+1)
i − u

(k)
i+1 = −gi.

When we program a Gauss-Seidel iteration, we can get away with just a
single vector for the approximate solution that is overwritten during each
sweep:

% Perform a Gauss−Seidel sweep, overwriting u with updated guesses
u(1) = ( u(2)−g(1) )/2;
for i = 2:N−1

u(i) = ( u(i−1)+u(i+1)−g(i) )/2;
end
unew(N) = ( u(N−1)−g(1) )/2;

Unfortunately, as we have presented them so far, it seems like it would
be a mess to analyze the convergence of either Jacobi or Gauss-Seidel. In
order to stay sane during such convergence analysis, we would like a clean
notation, and it is to this topic we now turn.

1I have assumed the MATLAB vector u only holds the active variables u1, . . . , uN . If
I kept a little extra space for the boundary values u0 = uN+1 = 0, I could get rid of the
special-case updates for u1 and uN .
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The Matrix Splitting Perspective

Consider the following general approach to constructing fixed-point iterations
to solve Ax = b:

1. Split A into two pieces: A = M − N . The matrix M should ideally
“look like” A, but it should be easy to solve linear systems involving
M (where it might not be so easy with A).

2. Iterate on
Mx(k+1) = Nx(k) + b,

or, equivalently,

(1) x(k+1) = x(k) −M−1(Ax(k) − b).

The fixed point for the iteration (1) is clearly x∗ = A−1b. Furthermore,
both Jacobi and Gauss-Seidel iteration can be written in terms of a matrix
splitting: for Jacobi, we take M to be the diagonal part of A, and for Gauss-
Seidel, we take M to be the lower triangular part.

Remember now that we have a general strategy for analyzing the conver-
gence of fixed point iterations, which is to subtract the fixed point equation
from the iteration equation in order to get an equation for error propogation.
In this case,

e(k+1) = e(k) −M−1Ae(k) = (I −M−1A)e(k).

Now, notice that for any consistent choice of norms,

‖e(k+1)‖ = ‖(I −M−1A)e(k)‖ ≤ ‖(I −M−1A)‖‖e(k)‖,

so that if ‖I−M−1A‖ < 1, the iteration converges. The converse is not quite
true, and in order to make a precise statement about convergence we need to
reason about the spectral radius of I−M−1A. But this norm-based bound is
good enough for our present purposes, and we will leave the spectral analysis
to another time.
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Week 6: Wednesday, Mar 7

From Stationary Methods to Krylov Subspaces

Last time, we discussed stationary methods for the iterative solution of linear
systems of equations, which can generally be written in the form

x(k+1) = x(k) −M−1(Ax(k) − b).

Stationary methods are simple, and they make good building blocks for more
sophisticated methods, but for most purposes they have been superceded by
faster-converging Krylov subspace methods. The book describes one of these,
the conjugate gradient method (CG), in a little detail. In these notes, we
will describe the same iteration, but from a slightly different perspective.

When all you have is a hammer...

Suppose that we want to solve Ax = b, but the only information we have
about A is a subroutine that can apply A to a vector. What should we do?
If the only operation at hand is matrix mutiplication, and the only vector
staring us in the face is b, a natural approach would be to take b and start
multiplying by A to get b, Ab, A2b, etc. Taking linear combinations of these
vectors gives us a Krylov subspace:

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}.

Given the examples that we’ve seen so far, you might reasonably wonder
why we’re assuming that we can do so little with A. In fact, there are many
cases where working with the entries of A is a pain, but evaluating a matrix-
vector product can be done efficiently. One set of examples comes from image
and signal processing, where many linear operations can be applied efficiently
using Fourier transforms. Another example, which we may encounter again
after the break when we talk about Newton methods for solving systems of
linear equations, is approximate multiplication by a Jacobian matrix using
finite differences. Since this example reinforces some calculus concepts that
have occurred repeatedly, let’s go through it in a little detail.
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Suppose f : Rn → Rn has two continuous derivatives. At a point x, the
Jacobian matrix J(x) is a matrix of partial derivatives of f :

Jij =
∂fi
∂xj

(x).

The Jacobian matrix can be used to calculate directional derivatives using
the chain rule; if u is some direction, then

∂f

∂u
(x) =

d

dt

∣∣∣∣
t=0

f(x+ tu) = J(x)u.

In a calculus course, you might learn that multiplying the Jacobian matrix
by a direction vector is a way to compute a directional derivative. Here,
we take the opposite approach: to approximate the product of a Jacobian
matrix and a vector, we approximate a directional derivative:

J(x)u =
d

dt

∣∣∣∣
t=0

f(x+ tu) ≈ f(x+ hu)− f(x)

h
.

If f is a “black box” function that is hard to differentiate analytically, this
numerical approach to computing matrix-vector products with the Jacobian
is sometimes incredibly useful.

From Linear Systems to Optimization

There are two basic ingredients to Krylov subspace methods:

1. Build a sequence of Krylov subspaces.

2. Find approximate solutions in those subspaces.

The conjugate gradient method (CG) pulls out approximate solutions to
Ax = b when A is a symmetric positive definite matrix by turning the prob-
lem of linear system solving into an equivalent optimization problem. That
is, the functional

φ(x) =
1

2
xTAx− xT b,

has a single critical point at

0 = ∇φ(x) = Ax− b.
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By the second derivative test, this critical point is a global minimum for φ.
The conjugate gradient method finds an approximate solution x(k) ∈ Kk(A, b)
by minimizing φ(x) over the Krylov subspace. In exact arithmetic, this is
guaranteed to converge to the true solution in at most n steps, but in practice
we usually get very good approximations in far fewer than n steps.

The what of the CG algorithm, then, is straightforward: at step k, the
method produces an approximate solution x(k) that minimizes φ(x) over the
kth Krylov subspace. The how of the algorithm involves a lot of beautiful
mathematical connections and a little bit of magic. I will not discuss the
implementation of CG further, except to point to the very popular article
by Jonathan Shewchuck on “The Conjugate Gradient Method without the
Agonizing Pain,” which provides a gentle introduction to the particulars1.

Preconditioning

For the fastest convergence, Krylov subspace methods like conjugate gradi-
ents should be used with a preconditioner. That is, instead of solving Ax = b,
we solve

M−1Ax = M−1b,

where applying M−1 should approximate A−1 in some very loose sense2 be
reasonably inexpensive. Thinking back to the last lecture, we recall that
M−1A also showed up when we were analyzing the stationary iteration

y(k+1) = y(k) −M−1(Ay(k) − b)

Note that if we start this iteration at y(0) = 0, then

y(k) ∈ Kk(M−1A,M−1b).

1I personally prefer the terser — more painful? — treatment in standard numerical
linear algebra texts like those of Demmel or Golub and Van Loan, or even just the “tem-
plate” given in the book Templates for the Solution of Linear Systems (which is freely
available online). Then again, I grew up to be a numerical analyst. Your mileage may
vary.

2Really, M−1 should be chosen so that the eigenvalues of M−1A are clustered, though
this characterization tends to be more useful for analysis than for preconditioner design.
I tried to walk through this in lecture, and realized about 3/4 of the way through my
explanation that I’d lost everybody by pulling in too much about eigenvalues too quickly.
Sorry about that. Don’t worry, it won’t be on any exams.
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That is, the first k steps of a stationary iteration with the splitting ma-
trix M form a basis for a preconditioned Krylov subspace Kk(M−1A,M−1b).
Since Krylov subspace methods try to find the best possible solution within
a subspace (where the definition of “best” varies from method to method),
using M as a preconditioner for a Krylov subspace method typically yields
better approximations than using M as the basis for a stationary method.
However, the M matrices used in classical stationary methods such as the
Jacobi, Gauss-Seidel, and SOR iterations are frequently used as default pre-
conditioners. It is often possible to construct much better preconditioners for
specific classes of matrices using a combination of hard analysis and physical
intuition, but this is beyond the scope of what we will cover in this class.
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Problems to ponder

1. A is strictly diagonally dominant if for each i,

aii >
∑
j 6=i

|aij|.

Show that Jacobi iteration necessarily converges for strictly diagonally
dominant matrices.

2. If A is a sparse rectangular matrix, MATLAB provides a so-called “Q-
less” QR decomposition in which R is a sparse matrix and Q = AR−1

is never formed explicitly. Suppose the computed factor R̂ is contami-
nated by a small amount of noise. Describe a stationary method that
nonetheless uses this computed factor to compute argminx ‖Ax − b‖2
accurately in a few steps3.

3. Show that if φ(x) = 1
2
xTAx− xT b and A is symmetric, then ∇φ(x) =

Ax− b.

4. Given a guess xold, consider the update xnew = xold + tei. For what
value of t is φ(xnew) minimized? For the one-dimensional Poisson model
problem, show that updating the ith component of x according to this
rule is equivalent to step i in a Gauss-Seidel sweep4

5. Suppose x∗ = argminx∈U φ(x). Show that Ax∗ − b is orthogonal to
every vector in U .

6. Show that 〈x∗ − A−1b, x∗〉A = 0 (use the previous question).

7. Show that minimizing φ(x∗) over all vectors in U also minimizes ‖x∗−
A−1b‖2A over all vectors in U .

3If you are following along offline, type help qr in MATLAB — the online documen-
tation describes exactly the iterative refinement strategy I have in mind.

4This is true for matrices other than the model problem, too; in general, Gauss-Seidel
for a symmetric positive definite system will monotonically reduce the value of φ.
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Week 7: Monday, Mar 12

Newton and Company

Suppose f : Rn → Rn is twice differentiable. Then

f(x+ δx) = f(x) + f ′(x)δx+O(‖δx‖2),

where f ′(x) denotes the Jacobian matrix at x. The idea of Newton iteration
in this multi-dimensional setting is the same as the idea in one dimension: in
order to get xk+1, set the linear approximation to f about xk to zero. That
is, we set

f(xk) + f ′(xk)(xk+1 − xk) = 0,

which we can rearrange to

xk+1 = xk − f ′(xk)−1f(xk).

The basic form of Newton iteration remains the same in the multi-dimensional
case, and so do the basic convergence properties. As usual, we obtain a re-
currence for the error by subtracting the fixed point equation from the fixed
point equation:

f(xk) + f ′(xk)(xk+1 − xk) = 0

f(xk) + f ′(xk)(x∗ − xk) = O(‖x∗ − xk‖2)
f ′(xk)ek+1 = O(‖ek‖2)

As long as f ′(x∗) is nonsingular (i.e. x∗ is a regular root) and the second
derivatives of f are continuous near x∗, this iteration is quadratically con-
vergent to regular roots (where f ′ is nonsingular) from close enough starting
points. But the iteration may well diverge if the starting point is not good
enough. What changes in the multi-dimensional case is the cost of a Newton
step. If the dimension n is large, the cost of forming and factoring the Jaco-
bian matrix may start to dominate the other costs in the iteration. For this
reason, one frequently uses modified Newton iterations in which solutions
with f ′(xk)−1 are approximated in some way.

There are several ways to approximate f ′(xk)−1, and these provide differ-
ent tradeoffs between the reduction in error per step and the cost per step.
The simplest flavor of modified Newton iteration might be

xk+1 = xk − Ĵ−1f(xk),
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where Ĵ is an approximation to the Jacobian (e.g. computed and factored
at x0, and then frozen for successive iterations). When does this converge?
Remember our basic analysis method for fixed point iterations: take the
iteration equation and subtract the fixed point equation in order to get an
iteration for the error. Here, that gives us

ek+1 =
(
I − Ĵ−1f ′(x∗)

)
ek +O(‖ek‖2),

and taking norms gives

‖ek+1‖ ≤
∥∥∥I − Ĵ−1f ′(x∗)∥∥∥ ‖ek‖+O(‖ek‖2),

so convergence is assured (for x0 close to x∗) when ‖I − Ĵ−1f ′(x)‖ < 1.

Dealing with Newton

Newton iteration and closely-related variants are a workhorse in nonlinear
equation solving. Unfortunately, as we have seen, Newton’s method is only
locally convergent. A good part of the art of nonlinear equation solving
is in dealing with this local convergence property. In one dimension, we
can combine Newton’s method (or secant method, or other iterations) with
bisection in order to get something that is simultaneously robust and efficient;
Charlie talked about this last Wednesday. But bisection is a one-dimensional
construction. In higher dimensions, what can we do?

As it turns out, there are several possible strategies:

1. Get a good guess: If you have some method of getting a good initial
guess, Newton iteration is terrific. Getting a good guess is application-
specific.

2. Modify the problem: There are usually many equivalent ways to write
an equation f(x) = 0. Some of those ways of writing things may lead
to better convergence. For example, if f(x) has a zero close to the
origin and approaches some constant value far away from the origin,
we might want to look at an equation like f(x)(‖x‖2 + 1) = 0. If f(x)
has a pole that causes problems, we might want to multiply through by
a function that removes that pole. In general, it pays to have a good
understanding of the properties of the functions you are solving, and to
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try to minimize the effects of properties that confuse Newton iteration.
Alas, this is also application-specific.

3. Choose a specialized iteration: Newton iteration is our workhorse, but
it isn’t the only horse around. Other iterations may have better con-
vergence properties, or they may be cheap enough that you are willing
to let them run for many more iterations than you would want to take
with Newton. This is application-specific; but for lots of applications,
you can find something reasonable in a textbook or paper.

4. Use a line search: What goes wrong with Newton iteration? The New-
ton direction should always take us in a direction that reduces ‖f(x)‖,
but the problem is that we might overshoot. We can fix this problem
by taking steps of the form

xk+1 = xk − αkf
′(xk)−1f(xk),

where αk is chosen so that ‖f(xk+1)‖ < ‖f(xk)‖. Refinements of this
strategy lead to iterations that converge to some root from almost
everywhere, but even the basic strategy can work rather well. Ideally,
αk → 1 eventually, so that we can get the quadratic convergence of
Newton once we’ve gotten sufficiently close to a root.

5. Use a trust region1: The reason that Newton can overshoot the mark
is because we keep using a linear approximation to f about xk far
beyond where the linear approximation is accurate. In a trust region
method, we define a sphere of radius ρ around xk where we think linear
approximation is reasonable. If the Newton step falls inside the sphere,
we take it; otherwise, we find a point on the surface of the sphere to
minimize ‖f(xk) + f ′(xk)(xk+1 − xk)‖2.

6. Use a continuation strategy: Sometimes there is a natural way of grad-
ually transitioning from an easy problem to a hard problem, and we
can use this in a solver strategy. Suppose f(x; s) is a family of func-
tions parameterized by s, where solving f(x; 1) = 0 is hard and solving
f(x; 0) = 0 is easy. Then one approach to solving f(x; 1) = 0 is:

1I will not ask you about trust regions on any homework or exam! But it is a sufficiently
widely-used technique that you might want to at least recognize the term.
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xguess = 0; % Initial guess for the easy problem
for s = 0:ds:1
% Solve f(x; s) = 0 using the solution to f(x; s−h) = 0 as
% an initial guess
xguess = basic solver(f , s , xguess);

end
x = xguess;

There are many, many variants on this theme.
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Week 7: Wednesday, Mar 14

Line search revisited

In the last lecture, we briefly discussed the idea of a line search to improve
the convergence of Newton iterations. That is, instead of always using the
Newton update

xk+1 = xk − f ′(xk)−1f(xk),

we allow ourselves to use a scaled version of the step

xk+1 = xk − αkf
′(xk)−1f(xk),

where αk is chosen to ensure that the iteration actually makes progress. Here,
“progress” is typically measured in terms of the residual norm ‖f(xk+1)‖. At
the bare minimum, we want to make sure that the residual goes down at
each step, but we can prove a bit more with a slightly stricter criterion:

‖f(xk+1)‖ < (1− σαk)‖f(xk)‖

where σ is chosen to be some small value (say 10−4). In practice, this looks
something like this:

% Get Newton step
[ f ,J] = eval f(x);
d = J\f;

% Line search
alpha = 1;
for k = 1:maxstep

% Try step
xnew = x−alpha∗d;
fnew = eval f(xnew);

% Accept if satisfactoy
if norm(fnew) < (1−sigma∗alpha)∗norm(f)

x = xnew;
f = fnew;



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

break;
end

% Otherwise, cut alpha in half and try again
alpha = alpha/2;

end

This line search strategy essentially relies on the fact that we can charac-
terize a solution of f(x) = 0 in terms of a minimization of ‖f(x)‖. Of course,
this relationship goes the other way, too: for a differentiable objective func-
tion, we can write a nonlinear system of equations that define necessary
condtions for a minimum.

Iterations for optimization

Suppose g : Rn → R is twice continuously differentiable near x0. Then you
might remember that Taylor’s theorem gives

g(x+ z) = g(x) + g′(x)z +
1

2
zTHg(x)z +O(‖z‖3),

where Hg is the Hessian matrix

[Hg(x)]ij =
∂2g(x)

xixj
.

A necessary conditions for x∗ to be a local minimum or maximum of g is
that g′(x) = 0. This suggests one way of trying to find a local minimum of
g is simply Newton iteration (with a line search):

xk+1 = xk − αkHg(x
k)−1∇g(xk).

Unfortunately, even if Newton iteration converges to a critical point (a
point where the gradient of g is zero), there is nothing to guarantee that this
will be a minimum rather than a maximum. In order to make sure that we
converge to a minimum, we would like to make sure not that ‖∇g‖ decreases
at each step, but that g decreases at each step! There are two ensuring this
decrease:
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1. We need the Newton direction (or some other search direction) to at
least be a descent direction. That is, we want

xk+1 = xk + αkd
k

where ∇g(xk) · dk < 0.

2. Once we have a descent direction, we want to make sure that the steps
we take are short enough that we actually decrease g by some sufficient
amount. The condition we use might look something like

g(xk+1) ≤ g(xk) + αkσ∇g(xk) · dk

Under what conditions can we guarantee that the Newton direction is
actually a descent direction? If the Newton direction is

dk = −Hg(x
k)−1∇g(xk),

then the descent condition looks like

∇g(xk)Tdk = −∇g(xk)THg(x
k)−1∇g(xk),

which is a quadratic form in Hg(x
k)−1. So a sufficient condition for the

Newton iteration to be a descent direction is that Hg(x
k) is positive definite

(and therefore that Hg(x
k)−1 is positive definite). This suggests the following

modification to the Newton approach to minimizing g:

• If the Hessian matrix Hg(x
k) is positive definite, search in the Newton

direction
dk = −Hg(x

k)−1∇g(xk).

• If the Hessian is not positive definite at xk, use a modified Newton
direction

dk = −Ĥ−1∇g(xk).

where Ĥ is some positive definite matrix. Convergence tends to be
fastest when Ĥ approximates the Hessian in some way (subject to the
constraint of being positive definite), but one can also be lazy and just
choose Ĥ = I (i.e. follow the direction of steepest descent).

Note that while it is possible to choose to a local minimum by choosing the
steepest descent direction −∇g(xk) at every step, this approach can yield
painfully slow convergence.
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Problems to Ponder

1. Write a (guarded) Newton iteration to find the intersection of three
spheres in three dimensional space, i.e. find x∗ such that

‖x∗ − xa‖ = ra

‖x∗ − xb‖ = rb

‖x∗ − xc‖ = rc

Assume for the moment that there are exactly two solutions. If you
find one, how might you easily find the other?

2. Consider the steepest descent iteration

xk+1 = xk − αk∇φ(xk)

applied to

φ(x) =
1

2

[
x1
xt

]T [
1 0
0 106

] [
x1
xt

]
,

and suppose that αk is chosen by exact line search: that is αk is chosen

to reduce φ(xk+1) as much as possible. Starting from
[
1 1

]T
, what are

the iterates produced by this iteration? What can you say about the
rate of convergence?

3. What is ∇xφ(x) for φ(x) = ‖f(x)‖2? Argue based on your computa-
tion that the Newton direction is a descent direction for this objective
function.

4. Write the critical point equations for minimizing ‖f(x)− b‖2.

5. The Gauss-Newton iteration for minimizing ‖f(x)− b‖2 is

pk =
(
J(xk)TJ(xk)

)−1
J(xk)T (f(xk)− b)

xk+1 = xk − αkpk

where J(xk) is the Jacobian of f . Argue that pk is always a descent
direction.
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Week 9: Monday, Mar 26

Function approximation

A common task in scientific computing is to approximate a function. The
approximated function might be available only through tabulated data, or it
may be the output of some other numerical procedure, or it may be the solu-
tion to a differential equation. The approximating function is usually chosen
because it is relatively simpler to evaluate and analyze. Depending on the
context, we might want an approximation that is accurate for a narrow range
of arguments (like a Taylor series), or we might want guaranteed global accu-
racy over a wide range of arguments. We might want an approximation that
preserves properties like monotonicity or positivity (e.g. when approximat-
ing a probability density). We might want to exactly match measurements
at specified points, or we might want an approximation that “smooths out”
noisy data. We might care a great deal about the cost of forming the approx-
imating function if it is only used a few times, or we might care more about
the cost of evaluating the approximation after it has been formed. There are
a huge number of possible tradeoffs, and it is worth keeping these types of
questions in mind in practice.

Though function approximation is a huge subject, we will mostly focus on
approximation by polynomials and piecewise polynomials. In particular, we
will concentrate on interpolation, or finding (piecewise) polynomial approxi-
mating functions that exactly match a given function at specified points.

Polynomial interpolation

This is the basic polynomial interpolation problem: given data {(xi, yi)}di=0

where all the ti are distinct, find a degree d polynomial p(x) such that p(xi) =
yi for each i. Such a polynomial always exists and is unique.

The Vandermonde approach

Maybe the most obvious way to approach to this problem is to write

p(x) =
d∑

j=0

cjx
j,



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

where the unknown xj are determined by the interpolation conditions

p(xi) =
d∑

j=0

cjx
j
i = yj.

In matrix form, we can write the interpolation conditions as

Ac = y

where aij = xj
i (and we’re now thinking of the index j as going from zero

to d). The matrix A is a Vandermonde matrix. The Vandermonde matrix is
nonsingular, and we can solve Vandermonde systems using ordinary Gaussian
elimination in O(d3) time.

This is usually a bad way to compute things numerically. The problem is
that the condition numbers of Vandermonde systems grow exponentially with
the system size, yielding terribly ill-conditioned problems even for relatively
small problems.

The Lagrange approach

The problem with the Vandermonde matrix is not in the basic setup, but in
how we chose to represent the space of degree d polynomials. In general, we
can write

p(x) =
d∑

j=0

cjqj(x)

where {qj(x)} is some other basis for the space of polynomials of degree at
most d. The power basis {xj} just happens to be a poor choice from the
perspective of conditioning.

One alternative to the power basis is a basis of Lagrange polynomials:

Li(x) =

∏
j 6=i(x− xi)∏
j 6=i(xj − xi)

.

The polynomial Li is characterized by the property

Li(xj) =

{
1, j = i

0, otherwise.
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Therefore, if we write the interpolating polynomial in the form

p(x) =
d∑

j=0

cjLj(x),

the interpolation conditions yield the linear system

Ic = y,

i.e. we simply have

p(x) =
d∑

j=0

yjLj(x),

It is trivial to find the coefficients in a representation of an interpolant via
Lagrange polynomials. But what if we want to evaluate the Lagrange form
of the interpolant at some point? The most obvious algorithm costs O(d2)
per evaluation, which is more expensive than the O(d) cost of evaluating a
polynomial in the usual monomial basis using Horner’s rule.

Horner’s rule

There are typically two tasks in applications of polynomial interpolation.
The first task is getting some representation of the polynomial; the second
task is to actually evaluate the polynomial. In the case of the power ba-
sis {xj}dj=0, we would usually evaluate the polynomial in O(d) time using
Horner’s method. You have likely seen this method before, but it is perhaps
worth going through it one more time.

Horner’s scheme can be written in terms of a recurrence, writing p(x) as
p0(x) where

pj(x) = cj + xpj+1(x)

and pd(x) = cd. For example, if we had three data points, we would write

p2(x) = c2

p1(x) = c1 + xp2(x) = c1 + xc2

p0(x) = c0 + xp1(x) = c0 + xc1 + x2c2.

Usually, we would just write a loop:
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function px = peval(c,x)
px = c(end)∗x;
for j = length(c)−1:−1:1

px = c(j) + x.∗px;
end

But even if we would usually write the loop with no particular thought to
the recurrence, it is worth remembering how to write the recurrence.

The idea of Horner’s rule extends to other bases. For example, suppose
we now write a quadratic as

p(x) = c0q0(x) + c1q1(x) + c2q2(x).

An alternate way to write this is

p(x) = q0(c0 + q1/q0(c1 + c2q2/q1));

more generally, we could write p(x) = q0(x)p0(x) where pd(x) = cd and

pj(x) = cj + pj+1(x)qj+1(x)/qj(x).

In the case of the monomial basis, this is just Horner’s rule, but the recurrence
holds more generally.

The Newton approach

The Vandermonde approach to interpolation requires that we solve an ill-
conditioned linear system (at a cost of O(d3)) to find the interpolating poly-
nomial. It then costs O(d) per point to evaluate the polynomial. The La-
grange approach gives us a trivial linear system for the coefficients, but it
then costs O(d2) per point to evaluate the resulting representation. Newton’s
form of the interpolant will give us a better balance: O(d2) time to find the
coefficients, O(d) time to evaluate the function.

Newton’s interpolation scheme uses the polynomial basis

q0(x) = 1

qj(x) =

j∏
k=1

(x− xk), j > 0.
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If we write

p(x) =
d∑

j=0

cjqj(x),

the interpolating conditions have the form

Uc = y,

where U is an upper triangular matrix with entries

uij = qj(xi) =
d∏

k=j

(ti − tj)

for i = 0, . . . d and j = 0, . . . , d. Because U is upper triangular, we can
compute the coefficients cj in O(d2) time; and we can use the relationship
qj(x) = (x−xj)qj−1(x) as the basis for a Horner-like scheme to evaluate p(x)
in O(d) time (this is part of a problem on HW 5).

In practice, we typically do not form the matrix U in order to compute
x. Instead, we express the components of x in terms of divided differences.
That is, we write

cj = y[x1, . . . , xj+1]

where the coefficients y[xi, . . . , xj] are defined recursively by the relationship

y[xi] = yi,

y[xi, xi+1, . . . , xj] =
y[xi, xi+1, . . . , xj−1]− y[xi+1, . . . , xj]

xi − xj

.

Evaluating the xj coefficients by divided differences turns out to be numeri-
cally preferable to forming U and solving by back-substitution.



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 9: Wednesday, Mar 28

Summary of last time

We spent most of the last lecture discussing three forms of polynomial inter-
polation. In each case, we were given function values {yi}di=0 at points {xi}di−1,
and we wanted to construct a degree d polynomial such that p(xi) = yi. We
do this in general by writing

p(x) =
d∑

j=0

cjφj(x),

where the functions φj(x) form a basis for the space of polynomials of de-
gree at most d. Then we use the interpolation conditions to determine the
coefficients cj via a linear system

Ac = y,

where Aij = φj(xi). In the last lecture, we considered three choices of basis
functions φj(x):

1. Power basis:
φj(x) = xj.

2. Lagrange basis:

φj(x) =

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

.

3. Newton basis:
φj(x) =

∏
i<j

(x− xi).

The power basis yields an ill-conditioned system matrix (the Vandermonde
matrix). The Lagrange basis leads to a trivial linear system, but it takes O(d)
time to evaluate each Lagrange polynomial and so O(d2) time to evluate the
interpolant. The Newton basis is a nice compromise: the coefficients can
be computed in O(d2) time as the solution to an upper triangular system
or through a divided difference recurrence, and the polynomial itself can be
evaluated in O(d) time using an algorithm like Horner’s rule.
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Divided differences and derivatives

The coefficients in the Newton form of the interpolant are divided differences.
For a given function f known at sample points {xi}ni=1, we can evaluate
divided differences recursively:

f [xi] = f(xi),

f [xi, xi+1, . . . , xj] =
f [xi, xi+1, . . . , xj−1]− f [xi+1, . . . , xj]

xi − xj
.

This recurrence is numerically preferable to finding the coefficients of the
Newton interpolant by back substitution.

You might recognize the first divided difference f [x1, x2] as a derivative
approximation. In fact, if f is a differentiable function, then the mean value
theorem tells us that f [x1, x2] = f ′(ξ) for some ξ between x1 and x2. Thus
if f is a continuously differentiable function, it makes sense to define

f [xi, xi] ≡ f ′(xi).

This gives us a natural way to solve Hermite interpolation problems in which
we specify both function values and derivatives at specified points.

More generally, it turns out that if f ∈ Cm−1, then

f [x1, x2, . . . , xm] =
f (m−1)(ξ)

(m− 1)!
, some ξ ∈ (min{xi},max{xi})

Therefore, in the limiting case as we let all the xj approach some common
point x0, the Newton form of the interpolant degenerates into a Taylor ap-
proximation.

Error in polynomial approximation

The relation between divided differences and derivatives is incredibly useful in
reasoning about how well polynomial interpolants approximate an underlying
function. Suppose we approximate f ∈ Cn by a polynomial p of degree
n − 1 that interpolates f at points {xi}ni=1. At any point x, we can write
f(x) = p∗(x), where p∗(x) is the degree n polynomial interpolating f at
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{xi}ni=1 ∪ {x}. This may seem somewhat silly, but it gives us the error
representation

f(x)− p(x) = p∗(x)− p(x)

= f [x1, . . . , xn, x]
n∏

i=1

(x− xi)

=
f (n)(θ)

n!

n∏
i=1

(x− xi).

If x lies within h of all the values xi and |f (n)| ≤Mn on the interval bounded
by the points in question, then we have

|f(x)− p(x)| ≤ Mnh
n

n!
.

This bound suggests that high-order polynomial interpolation of a smooth
function over a bounded interval can provide very accurate approximations
to the function values, with two catches. First, the hn term may not be
small (especially in extrapolation, where x lies outside the convex hull of the
data points). Second, Mn may grow quickly as a function of n. Note that
these two effects are not independent; for example, we can scale the nodal
coordinates to make h smaller, but then Mn gets commensurately bigger.
The standard example of these effects, due to Runge, is the function

φ(t) =
1

1 + 25t2
.

Polynomial approximations to φ(t) by interpolation on a uniform mesh on
[−1, 1] oscillate wildly toward the end points of the interval, and it is not
true in this case that ever higher-degree interpolating polynomials provide
ever-better function approximations. This is a general problem, known as
the Runge phenomena, and there are two standard fixes. The first fix is to
use something other than polynomials (piecewise polynomial functions are
particularly popular). We will talk about this option next week. The second
approach involves optimizing the location of the sample points, a topic which
we will turn to now.
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Chebyshev interpolation

Suppose we want a polynomial interpolant that accurately represents some
function on a bounded interval. Earlier, we showed that

f(x)− p(x) =
f (n)(θ)

n!

n∏
i=1

(x− xi).

If |f (n)(x)| ≤M on the interval [a, b], then

|f(x)− p(x)| ≤ M

n!

n∏
i=1

(x− xi).

So one natural approach to trying to build accurate interpolants is to try to
minimize some norm that measures the size of

ψ(x) =
n∏

i=1

(x− xi)

over the interval [a, b]. If we care about the values pointwise, it makes sense
to try to choose the interpolation points to minimize

‖ψ‖L∞([a,b]) = max
x∈[a,b]

|ψ(x)|.

This leads to the choice of Chebyshev points on [−1, 1]

ξi = cos

(
2i− 1

2n
π

)
, i = 1, . . . , n.

For more general intervals, we can simply apply an affine mapping to get the
interpolation points

xi = a+
b− a

2
(ξi + 1).

If we choose the Chebyshev points as interpolation nodes, then

‖ψ‖L∞([a,b]) = 21−n

and so we have the error bound

|f(x)− p(x)| ≤ M

2n−1n!

for x ∈ [a, b].
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Problems to ponder

1. Suppose p(x) = a0 + a1x + a2x
2 + a3x

3. Write a linear system for the
coefficients aj such that p(0) = p0, p

′(0) = q0, p(1) = p1, p
′(1) = q1.

2. For the points x1 = −1, x2 = 0, x3 = 1 and the values of y1 = 0, y2 =
1, y3 = 1, write the interpolating polynomial in power form, Lagrange
form, and Newton form.

3. In lecture, I described Horner’s rule for evaluating a polynomial

p(x) =
d∑

j=0

cjx
j

in terms of the recurrence

pd+1(x) = 0

pj(x) = xpj+1(x) + cj.

What is the equivalent recurrence for evaluating the Newton form of
the interpolant?

4. Describe how to find coefficients ci such that

g(x) = c1 + c2x+ c3 sin(x) + c4 cos(x)

interpolates f(x) at distinct points x1, x2, x3, x4.

5. In class, we wrote the Lagrange interpolant as

p(x) =
∑
j=1n

yiLi(x)

where Li(x) =
∏

k 6=i(x − xk). The book describes computation of the
Lagrange interpolant via the barycentric formula

p(x) =

∑
j=1n wjyj/(x− xj)∑
j=1n wj/(x− xj)

where w−1j =
∏

i 6=j(xj − xi). Why are these formulas equivalent, and
what is the advantage of barycentric interpolation?
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Week 10: Monday, Apr 2

Hermite interpolation

For standard polynomial interpolation problems, we seek to satisfy conditions
of the form

p(xj) = yj,

where yj is frequently a sampled function value f(xj). If all we know is
function values, this is a reasonable approach. But sometimes we have more
information. Hermite interpolation constructs an interpolant based not only
on equations for the function values, but also for the derivatives.

For example, consider the important special case of finding a cubic poly-
nomial that satisfies proscribed conditions on the values and derivatives at
the endpoints of the interval [−1, 1]. That is, we require

p(1) = f(1) p(−1) = f(−1)

p′(1) = f ′(1) p′(−1) = f ′(−1).

As with polynomial interpolation based just on function values, we can ex-
press the cubic that satisfies these conditions with respect to several different
bases: monomial, Lagrange, or Newton.

For the monomial basis, we have

p(x) = c0 + c1x+ c2x
2 + c3x

3,

which yields the linear system
1 1 1 1
1 −1 1 −1
0 1 2 3
0 1 −2 3



c0
c1
c2
c3

 =


f(1)
f(−1)
f ′(1)
f ′(−1)

 .
For the Newton basis, we have expressions like

p(x) = f [−1]+f [−1,−1](x+1)+f [1,−1,−1](x+1)2+f [1, 1,−1,−1](x+1)2(x−1),
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where the divided differences for f are

f [1] = f(1)

f [−1] = f(−1)

f [1, 1] = f ′(1)

f [−1,−1] = f ′(−1)

f [1,−1] = (f(1)− f(−1)) /2

f [1,−1,−1] = (f [1,−1]− f [−1,−1]) /2

f [1, 1,−1] = (f [1, 1]− f [1,−1]) /2

f [1, 1,−1,−1] = (f [1, 1,−1]− f [1,−1,−1]) /2.

We leave the Lagrange basis as a problem to ponder (or look up).

Piecewise polynomial approximations

Polynomials are convenient for interpolation for a few reasons: we know
how to manipulate them symbolically, we can evaluate them quickly, and
there is a theorem of analysis (the Weierstrass approximation theorem) that
says that any continuous function on some interval [a, b] can be uniformly
approximated by polynomials. In practice, though, high-degree polynomial
interpolation does not always provide fantastic function approximation. An
alternative approach that retains the advantages of working with polynomials
is to work with piecewise polynomial functions.

Piecewise linear interpolation

Perhaps the simplest example is piecewise linear interpolation; if function
values f(xj) are given at points x1 < x2 < x3 < . . . < xn, then we write the

approximating function f̂(x) as

f̂(x) =
f(xj)(x− xj) + f(xj+1)(xj+1 − x)

xj+1 − xj
, x ∈ [xj, xj+1].

Alternately, we can write

f̂(x) =
n∑

j=1

φj(x)f(xj)
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where φj(x) is a “hat function”:

φj(x) =


(x− xj+1)/(xj − xj+1), x ∈ [xj, xj+1],

(x− xj−1)/(xj − xj−1), x ∈ [xj−1, xj],

0 otherwise.

This last you may recognize as similar in spirit to using a basis of Lagrange
polynomials for polynomial interpolation.

Using piecewise linear interpolation to approximate a function f yields
O(h2) error (where h is the distance between interpolation points), assum-
ing f has two continuous derivatives. This level of accuracy is adequate for
many purposes. Beyond the basic error behavior, though, piecewise linear
interpolation has several virtues when structural properties are important.
For example, the maximum and minimum values of a piecewise linear inter-
polant are equal to the maximum and minimum values of the data. And if
f is positive or monotone (like a probability density or cumulative density
function), then any piecewise linear interpolant inherits these properties.

Piecewise cubic interpolation

If f is reasonably smooth and the data points are widely spaced, it may make
sense to use higher-order polynomials. For example, we might decide to use
a cubic spline f̂(x) characterized by the properties:

• Interpolation: f̂(xi) = f(xi)

• Twice differentiability: f̂ ′ and f̂ ′′ are continuous at {x2, . . . , xn−1}

The interpolation and differentiability constraints give us 4n− 2 constraints
on the 4n-dimensional space of piecewise polynomial functions that are de-
fined by general cubics on each interval [xj, xj+1]. In order to uniquely de-
termine the spline, we need some additional constraint; common choices are

• Specified values of f ′ at x1 and xn (clamped conditions)

• A natural spline: f ′′(x1) = f ′′(xn) = 0

• Not-a-knot conditions: f ′′′ is continuous at x2 and xn−1

• Periodicity: f ′(x1) = f ′(xn), f ′′(x1) = f ′′(xn)
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For the clamped conditions and not-a-knot conditions, one has the error
bound

‖p− f‖∞ ≤ c‖f ′′′‖∞h4

where ‖ · ‖∞ is the L∞ norm (max norm) on some interval of interest and h
is the maximum space between interpolation nodes.

In addition to spline conditions, one can choose piecewise cubic polyno-
mials that satisfy Hermite interpolation conditions (sometimes referred to by
the acronym PCHIP or Piecewise Cubic Hermite Interpolating Polynomials).
That is, the function values and derivatives are specified at each nodal point.
If we don’t actually have derivative values prescribed at the nodal points,
then we can assign these values to satisfy additional constraints. We gain
this flexibility at the cost of some differentiability; piecewise cubic Hermite
interpolants are in general not twice continuously differentiable.

As in the case of polynomial interpolation, there are several different bases
for the space of piecewise cubic functions. Any choice of locally supported
basis functions (basis functions that are only nonzero on only a fixed number
of intervals [xj, xj+1]) leads to a banded linear system which can be solved
in O(n) time to find either cubic splines or piecewise Hermite cubic inter-
polants. One common choice of basis is the B-spline basis, which you can
find described in the book.



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 11: Monday, Apr 9

Maximizing an interpolating quadratic

Suppose that a function f is evaluated on a reasonably fine, uniform mesh
{xi}ni=0 with spacing h = xi+1−xi. How can we find any local maxima inside
the mesh interval (x0, xn)?

A natural first approximation is to simply find local maxima in the dis-
crete sequence {f(xi)}ni=0. I would usually do that by looking for a place
where differences between adjacent points change from positive to negative
(the discrete analog of looking for a critical point where the derivative changes
from positive to negative):

% [idx] = find local max( fi )
%
% Based on samples fi of a function on a uniform mesh over
% an interval, find the indices of mesh points where there
% are discrete local maxima.

function [idx] = find local max(fi )

d fi = fi (2:end)−fi(1:end−1);
idx = find( d fi :end−1) > 0 & d fi(2:end) <= 0 );
idx = idx+1;

Unfortunately, unless we use a rather fine mesh, this method is unlikely to
give us more than a couple digits of accuracy. A simple method of improving
the accuracy of the result is to fit a polynomial interpolant to the data
near the discrete local maximum, and use a maximum of the interpolating
polynomial as an estimate for the local maximum of f . The simplest variant
of this is to fit a quadratic; let’s look in a little detail at how this works.

Suppose xj is an interior mesh point where f has a discrete local max-
imum. We would like to find a corrected estimate of the local maximum,
x∗ = xj + z, by maximizing a quadratic interpolant through xj−1, xj, and
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xj+1. In terms of the correction z, the interpolation conditions are

p(0) = f(xj + 0) = f(xj)

p(h) = f(xj + h) = f(xj+1)

p(−h) = f(xj − h) = f(xj−1)

In a homework exercise, we saw how to differentiate a polynomial interpolant
written in the Newton basis. For variety, let’s now write things in terms of
the Lagrange polynomials for {0, h,−h}:

p(z) =
p(0)

h2
(h2 − z2) +

p(h)

2h2
z(z + h) +

p(−h)

2h2
z(z − h)

= p(0) +

(
p(h)− p(−h)

2h

)
z +

1

2

(
p(h)− 2p(0) + p(−h)

h2

)
z2.

Note that this last expression is just p(z) expressed in Taylor series form:

p(z) = p(0) + p′(0)z +
1

2
p′′(0)z2.

where

p′(0) = p[h,−h] =
p(h)− p(−h)

2h
,

p′′(0) = 2p[h, 0,−h] =
p(h)− 2p(0) + p(−h)

h2
.

Therefore, the maximum z∗ for p satisfies

z∗ = − p′(0)

p′′(0)
, p(z∗) = p(0)− p′(0)2

2p′′(0)
.

It’s worth comparing this maximization to what we would do if we took
xj as an initial guess at the maximum and did one step of Newton iteration
to improve our guess:

xnew = xj −
f ′(xj)

f ′′(xj)

The correction z∗ looks just like what we would compute in one Newton step,
but with the approximations f ′(xj) ≈ p′(0) and f ′′(xj) ≈ p′′(0)!
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Two ways to numerical differentiation

One way to approximate derivatives is by interpolation. If we can use inter-
polation to estimate function values, why not use it to estimate derivatives
as well? The basic procedure here is:

• Interpolate f at some nodes x0, . . . , xn.

• Differentiate the interpolating polynomial in order to approximate deriva-
tives of f . Usually, one is interested in the derivative at one of the node
points.

In general, if the interpolation points x0, . . . , xn all lie within an interval of
length h, and if f has enough continuous derivatives in that interval, we have

p(k)(xj) = O(hn+1−k).

The error analysis is relatively straightforward, and is in the book; but I did
not drag you through the algebra in class, and do not intend to do so here.

This, therefore, is one way of thinking about numerical differentiation.
Another way to get to the same end is to manipulate Taylor series. For
example, in the previous section we derived the centered difference approxi-
mations by differentiating a quadratic interpolant:

f ′(x) ≈ f(x + h)− f(x− h)

2h
, f ′′(x) ≈ f(x + h)− 2f(0) + f(x− h)

h2
.

We could have also said “we have f(x), f(x + h), and f(x− h); what linear
combination of these values best approximates f ′(x) (or f ′′(x))?” That is,
we somehow want to choose coefficients a+, a0, a− so that we get a good
approximation of f ′(x) of the form

f ′(x) ≈ f̂ ′(x) ≡ a0f(x) + a+f(x + h) + a−f(x− h).

Note that we can Taylor expand the terms in f̂ ′(x) about x to get

f̂ ′(x) = (a0 + a+ + a−)f(x)

+ h(a+ − a−)f ′(x)

+
h2

2
(a+ + a−)f ′′(x)

+
h3

6
(a+ − a−)f ′′′(x)

+ O(h4)
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We can adjust the three coefficients to match the first three terms in this
series with the the (trivial) Taylor series for f ′(x) by solving the linear system

(a0 + a+ + a−) = 0

h(a+ − a−) = 1

h2

2
(a+ + a−) = 0.

This gives us

a0 = 0, a± = ± 1

2h
or

f̂ ′(x) =
f(x + h)− f(x− h)

2h
= f ′(x) + O(h2)

Let’s walk through the same exercise for computing the second derivative.
We want a formula of the form

f̂ ′′(x) = b0f(x) + b+f(x + h) + b−f(x− h),

and Taylor expanding each term in the right hand side about zero gives

f̂ ′(x) = (b0 + b+ + b−)f(x)

+ h(b+ − b−)f ′(x)

+
h2

2
(b+ + b−)f ′′(x)

+
h3

6
(b+ − b−)f ′′′(x)

+ O(h4)

Setting the first three terms in this series to match f ′′(x), we get the equations

(b0 + b+ + b−) = 0

h(b+ − b−) = 0

h2

2
(b+ + b−) = 1,

which has the solution

b0 = − 2

h2
, b± =

1

h2
.
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Notice that because b+ − b−, we also automatically get that

h3

6
(b+ − b−)f ′′(x) = 0,

and so
f̂ ′′(x)− f ′′(x) = O(h2),

which is one better order of accuracy than we might have expected from
looking too uncautiously at the bound based on the derivation via polynomial
interpolation.
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Week 11: Wednesday, Apr 11

Truncation versus rounding

Last week, we discussed two different ways to derive the centered difference
approximation to the first derivative

f ′(x) ≈ f [x+ h, x− h] =
f(x+ h)− f(x− h)

2h
.

Using Taylor series, we were also able to write down an estimate of the
truncation error:

f [x+ h, x− h]− f ′(x) =
h2

6
f ′′′(x) +O(h4).

As h grows smaller and smaller, f [x+ h, x− h] becomes a better and better
approximation to f ′(x) — at least, it does in exact arithmetic. If we plot the
truncation error |h2/6f ′′′(x)| against h on a log-log scale, we expect to see
a nice straight line with slope 2. But Figure 1 shows that something rather
different happens in floating point. Try it for yourself!

The problem, of course, is cancellation. As h goes to zero, f(x + h) and
f(x − h) get close together; and for h small enough, the computed value of
f(x+ h)− f(x− h) starts to be dominated by rounding error. If the values
of f(x+ h) and f(x− h) are computed in floating point as f(x+ h)(1 + δ1)
and f(x− h)(1 + δ2), then the computed finite difference is approximately

f̂ [h,−h] = f [h,−h] +
δ1f(x+ h)− δ2f(x− h)

2h
,

and if we manage to get the values of f(x+h) and f(x−h) correctly rounded,
we have∣∣∣∣δ1f(x+ h)− δ2f(x− h)

2h

∣∣∣∣ ≤ εmach

h

(
max

x−h≤ξ≤x+h
|f(ξ)|

)
≈ εmach

h
f(x).

The total error in approximating f ′(x) by f [x + h, x − h] in floating point
therefore consists of two pieces: truncation error proportional to h2, and
rounding error proportional to εmach/h. The total error is minimized when
these two effects are approximately equal, at

h ≈
(

6f(x)

f ′′′(x)
εmach

)1/3

,
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i.e. when h is close to ε
1/3
mach. From the plot in Figure 1, we can see that

this is right — the minimum observed error occurs for h pretty close to ε
1/3
mach

(around 10−5).
Of course, the analysis in the previous paragraph assumed the happy

circumstance that we could get our hands on the correctly rounded values of
f(x+h) and f(x−h). In general, we might have a little more error inherited
from the evaluation of f itself, which would just make the optimal h (and
the corresponding optimal accuracy) that much larger.

Richardson extrapolation

Let’s put aside our concerns about rounding error for a moment, and just
look at the truncation error in the centered difference approximation of f ′(x).
We have an estimate of the form

f [x+ h, x− h]− f ′(x) =
h2

6
f ′′′(x) +O(h4).

Usually we don’t get to write down such a sharp estimate for the error.
There is a good reason for this: if we have a very sharp error estimate, we
can use the estimate to reduce the error! The general trick is this: if we have
gh(x) ≈ g(x) with an error expansion of the form

gh(x) = g(x) + Chp +O(hp+1),

then we can write

agh(x) + bg2h(x) = (a+ b)g(x) + C(a+ 2pb)hp +O(hp+1).

Now find coefficients a and b so that

a+ b = 1

a+ 2pb = 0;

the solution to this system is

a =
2p

2p − 1
, b = − 1

2p − 1
.

Therefore, we have

2pgh(x)− g2h(x)

2p − 1
= g(x) +O(hp+1);
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10010−210−410−610−810−1010−1210−1410−16
10−34

10−26

10−18

10−10

10−2

h

Error
Error estimate

Figure 1: Actual error and estimated truncation error for a centered differ-
ence approximation to d

dx
sin(x) at x = 1. For small h values, the error is

dominated by roundoff rather than by truncation error.

%
% Compute actual error and estimated truncation error
% for a centered difference approximation to sin’(x)
% at x = 1.
%
h = 2.ˆ−(1:50);
fd = ( sin(1+h)−sin(1−h) )./h/2;
err = fd−cos(1);
errest = −h.ˆ2/6 ∗ cos(1);

%
% Plot the actual error and estimated truncation error
% versus h on a log−log scale .
%
loglog(h, abs(err), h, abs(errest ));
legend(’Error’, ’Error estimate’ );
xlabel(’h’ );

Figure 2: Code to produce Figure 1.
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10010−210−410−610−810−1010−1210−1410−16
10−15

10−12

10−9

10−6

10−3

h

Error for centered difference
Error in extrapolated formula

Figure 3: Actual error and estimated truncation error for a centered differ-
ence approximation to d

dx
sin(x) at x = 1. For small h values, the error is

dominated by roundoff rather than by truncation error.

that is, we have cancelled off the leading term in the error.
In the case of the centered difference formula, only even powers of h

appear in the series expansion of the error; so we actually have that

4f [x+ h, x− h]− f [x+ 2h, x− 2h]

3
= f ′(0) +O(h4).

An advantage of the higher order of accuracy is that we can get very small
truncation errors even when h is not very small, and so we tend to be able
to reach a better optimal error before cancellation effects start to dominate;
see Figure 3.
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Problems to ponder

1. Suppose that f(x) is smooth and has a single local maximum between
[h,−h], and let ph(x) denote the quadratic interpolant through 0, h,
and −h. Argue that if the second derivative of f is bounded away from
zero near 0, then the actual maximizing point x∗ for f satisfies

x∗ = −p
′
h(0)

p′′h(0)
+O(h2).

2. Suppose we know f(x), f(x+h), and f(x+ 2h). Both by interpolation
and by manipulation of Taylor series, find a formula to estimate f ′(x)
of the form c0f(x) + c1f(x+h) + c2f(x+ 2h). Using Taylor expansions
about x, also estimate the truncation error.

3. Consider the one-sided finite difference approximation

f ′(x) ≈ f [x+ h, x] =
f(x+ h)− f(x)

h
.

(a) Show using Taylor series that

f [0, h]− f ′(0) =
1

2
f ′′(0)h+O(h2).

(b) Apply Richardson extrapolation to this approximation.

4. Verify that the extrapolated centered difference approximation to f ′(x)
is the same as the approximation derived by differentiating the quartic
that passes through f at {x− 2h, x− h, x, x+ h, x+ 2h}.

5. Richardson extrapolation is just one example of an acceleration tech-
nique that can turn a slowly-convergent sequence of estimates into
something that converges more quickly. We can use the same idea
in other cases. For example, suppose we believe a one-dimensional
iteration xk+1 = g(xk) converges linearly to a fixed point x∗. Then

(a) Suppose the rate constant C = g′(x∗) is known. Using

ek+1 = Cek +O(e2k),

show that
xk+1 − Cxk

1− C
= x∗ +O(e2k)
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(b) Show that the rate constant g′(x∗) can be estimated by

Ck ≡
xk+2 − xk+1

xk+1 − xk
→ g′(x∗)

(c) If you are bored and feel like doing algebra, show that

yk ≡
xk+1 − Ckxk

1− Ck
=

xkxk+2 − x2k+1

xk+2 − 2xk+1 + xk
,

and using the techniques developed in the first two parts, that
yk − x∗ = O((xk − x∗)2).

The transformation from the sequence xk into the (more rapidly conver-
gent) sequence yk is sometimes known as Aitken’s delta-squared process.
The process can sometimes be applied repeatedly. You may find it en-
tertaining to try running this transformation repeatedly on the partial
sums of the alternating harmonic series

Sn =
n∑
j=1

(−1)j+1

j
,

which converges very slowly to ln(2). Without any transformation, S20

has an error of greater than 10−2; one step of transformation reduces
that to nearly 10−5; and with three steps, one is below 10−7.
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Week 12: Monday, Apr 16

Panel integration

Suppose we want to compute the integral∫ b

a

f(x) dx

In estimating a derivative, it makes sense to use a locally accurate approxima-
tion to the function around the point where the derivative is to be evaluated.
But if f is at all interesting on the interval [a, b], it probably does not make
sense to approximate the integral of f by integrating a quadratic interpolant.
On the other hand, f may be approximated quite well by a quadratic inter-
polant on small subintervals, so it may make sense to define a mesh of points

a = a0 < a1 < a2 < . . . < an = b

and to then compute ∫ b

a

f(x) dx =
n−1∑
i=0

∫ ai+1

ai

f(x) dx,

where the integrals on each panel [ai, ai+1] involves a local polynomial ap-
proximation. Let us now turn to a method to compute these panel integrals.

Simpson’s rule

Now, suppose we do exactly the same manipulations we used to find the
centered difference approximation, but aim at coming up with an integration
rule. That is, given f(−h), f(0), and f(h), how can we estimate

∫ h

−h f(x) dx?
Again, we can derive the same answer by either interpolation or by the
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method of undetermined coefficients. Let’s use interpolation first:∫ h

−h
f(x) dx ≈

∫ h

−h
p(x) dx

=

∫ h

−h
[f(−h)L−h(x) + f(0)L0(x) + f(h)Lh(x)] dx

=w−f(−h) + w0f(0) + w+f(h),

w− =

∫ h

−h
L−h(x) dx = h/3

w0 =

∫ h

−h
L0(x) dx = 4h/3

w+ =

∫ h

−h
Lh(x) dx = h/3.

What about the method of undetermined coefficients? Let’s start by
integrating a Taylor expansion of f about 0:∫ h

−h
f(x) dx = 2

[
f(0)h+ f ′′(0)h3/6 + f (4)(0)h5/120 +O(h7)

]
We want to match terms in this Taylor expansion to the terms in the Taylor
expansion of a linear combination of f(−h), f(0), and f(h):

I(h) =c−f(−h) + c0f(0) + c+f(h)

=(c− + c0 + c+)f(0) + (c+ − c−)f ′(0)h+ (c+ + c−)f ′′(0)h2/2

+ (c+ − c−)f (3)(0)h3/6 + (c+ + c−)f (4)(0)h4/24 +O(h5)

If we match the constant, linear, and quadratic terms between the two ex-
pansions, we have

c− + c0 + c+ = 2h

c+ − c− = 0

c+ + c− = 2h/3

Solving gives us c+ = c− = h/3 and c0 = 4h/3, and∫ h

−h
f(x) dx− I(h) = O(h5).



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

A brief digression on changing variables

How do I get from a rule on the domain [−h, h] to a rule on the domain
[ai, ai+1]? Define h = (ai+1 − ai)/2 and ai+1/2 = (ai+1 + ai)/2. Then we can
define x = ai+1/2 + z, and since dx/dz = 1, the change of variables formula
gives ∫ ai+1

ai

f(x) dx =

∫ h

−h
f(ai+1/2 + z) dz.

For example, Simpson’s rule on the interval [ai, ai+1] is∫ ai+1

ai

f(x) dx =
b− a

6

[
f(ai) + 4f(ai+1/2) + f(ai+1)

]
.

Newton-Cotes rules

Simpson’s rule is a member of the family of Newton-Cotes rules based on
interpolation over a uniform mesh. The first three Newton-Cotes rules are

1. Midpoint:
∫ h

−h f(x) dx ≈ 2hf(0)

2. Trapezoidal:
∫ h

−h f(x) dx ≈ h [f(−h) + f(h)]

3. Simpson’s:
∫ h

−h f(x) dx ≈ h/3 [f(−h) + 4f(0) + f(h)]

The midpoint and trapezoidal rules have order O(h3) per panel, and Simp-
son’s rule has O(h5) per panel. If the panel sizes are fixed, we generally have
O(1/h) panels to cover the domain [a, b], so the absolute error in approximat-
ing an integral by composite midpoint or trapezoidal integration is O(h2),
and the error for composite Simpson’s rule is O(h4).

In general, n-point Newton-Cotes rules exactly integrate polynomials of
degree n − 1 if n is even, degree n if n is odd (the degree of polynomial we
integrate exactly is called the degree of the quadrature rule). Newton-Cotes
rules with more than three or four points are uncommon in practice; for
n ≥ 11, the Newton-Cotes rules always have at least one negative weight,
and cancellation causes problems in finite precision. Instead, Newton-Cotes
rules are usually used in panel integration schemes, often with adaptive panel
sizes based on local error estimates.
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Error estimates

We have already seen one approach to writing a formula for the error in
a quadrature rule: Taylor expand everything in sight, and get a formula
involving high-order derivatives of f . Unfortunately, we may not always have
easy access to bounds on the derivatives of f . In practice, we would therefore
usually estimate the error by comparing the results of two integration rules
with different errors over a panel.

For example, on [−h, h], let us write the integral, the midpoint rule, and
the trapezoidal rule as

I[f ] =

∫ h

−h
f(x) dx = 2hf(0) + f ′′(0)h3/3 +O(h5)

QM [f ] = 2hf(0)

QT [f ] = h [f(−h) + f(h)] = 2hf(0) + f ′′(0)h3 +O(h5).

The error in the midpoint rule and the trapezoidal rule are thus

QM [f ]− I[f ] = −f ′′(0)h3/3 +O(h5)

QT [f ]− I[f ] = 2f ′′(0)h3/3 +O(h5).

The error in the trapezoidal rule is thus about twice the size of the error in
the midpoint rule. Moreover, we can estimate QM [f ]− I[f ] even if we don’t
have direct access to the integral I[f ]:

QM [f ]− I[f ] = (QM [f ]−QT [f ])/3 +O(h5).

Note that this suggests we could get a more accurate formula by correcting
QM [f ] with our estimate of the error:

I[f ] = QM [f ]− (QM [f ]−QT [f ])/3 +O(h5).

But note that

QM [f ]− (QM [f ]−QT [f ])/3 =
h

3
[f(−h) + 4f(0) + f(h)] ,

which is just Simpson’s rule.
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Degree of an integration rule

Suppose we write

Ih[f ] =

∫ h

0

f(x) dx

Qh[f ] = h

n∑
j=1

wjf(hxj)

We have in mind that the quadrature rule Qh[f ] is supposed to approximate
Ih[f ]. What we want to show now is that we can analyze the quality of that
approximation just based on whether or not Qh[xm] = Ih[xm] for small values
of m.

Suppose Qh[f ] has degree d; that means that Qh[f ] integrates polynomials
of degree ≤ d exactly. Using Taylor’s theorem with remainder, we can write

f(x) = p(x) +
f (d+1)(ξ)

(d+ 1)!
xd+1,

where p is a degree d polynomial (the degree d Taylor approximation). Sup-
pose |f (d+1)| < M ; then we have

|Ih[f − p]| ≤ Md

(d+ 2)!
hd+2 = O(hd+2)

and

|Qh[f − p]| ≤
n∑

j=1

|wj|
Md

(d+ 1)!
hd+2 = O(hd+2).

Therefore

|Ih[f ]−Qh[f ]| = |Ih[f − p]−Qh[p− f ]|
≤ |Ih[f − p]|+ |Qh[f − p]| = O(hd+2).

This tells us that the local truncation error (the error per panel) of a degree
d integration rule is O(hd+2); in a composite rule where there are O(h−1)
panels, we have a total error of O(hd+1).
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Week 12: Wednesday, Apr 18

Adaptive error control

Last time, we discussed Simpson’s rule for quadrature:

I[f ] =

∫ b

a

f(x) dx ≈ b− a
6

(f(a) + 4f(c) + f(b)) , c ≡ a+ b

2

Simpson’s rule has a local error of O(h5) where h is the size of one panel1, and
the composite rule has an error of O(h4). Let S(a, b) denote the Simpson’s
rule estimate for the panel from a to b. Then we know that

I[f ] = S(a, b) + Ch5 +O(h7)

I[f ] = S(a, c) + S(c, b) + 2C(h/2)5 +O(h7),

Combining these estimates, we have that the error in the two-panel rule is
approximately

E(a, b) =
S(a, c) + S(c, b)− S(a, b)

15
.

One way to take advantage of this error estimate is by using extrapolation
to increase the degree of our method. If we wanted, we could keep continually
uniformly subdivide the mesh on which we have sampled the function in order
to get ever higher-degree quadrature rules; this is sometimes called Romberg
integration. Another way to use the error estimate, though, is to adaptively
refine our mesh. That is, we keep a running tally of the estimated error
on each panel, and any panel that seems to contribute too much error gets
subdivided. There are multiple ways in which to decide the order in which
one should process the panels that need to be subdivided. The most elegant
version might be a priority queue (subdivide the panel with the highest error
estimate first), but there are also simpler recursive variants that try to keep
subdividing until a leaf panel of size h has estimated error of at most ηh.
MATLAB’s quad uses an adaptive Simpson’s rule, but I’m not sure which
refinement strategy it uses.

Note that while in principle E(a, b) is an error estimate for S(a, c)+S(c, b),
in practice we use this as an error estimate for the purposes of things like

1For this lecture, h is the size of a panel, and not 2h.



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

adaptive refinement... but we also return the extrapolated estimate S(a, c)+
S(c, b) +E(a, b), even though E(a, b) is not technically an error estimate for
the extrapolated rule. We like to try to have our cake and eat it to.

Raising the degree

An interpolatory quadrature rule through n points has degree n − 1, and
so yields (total) error that decreases at least like O(hn), assuming that the
function in question is sufficiently smooth. In some cases, though, we know
that we get lucky and do even better. For example, the midpoint rule (n = 1)
has degree 2, and Simpson’s rule (n = 3) has degree 4. Why is this the true?

For convenience, let us consider a quadrature rule on [−1, 1]. A quadra-
ture rule with n points has degree n+s for s ≥ 0, that means it computes any
polynomial of degree up to n+ s exactly. In particular, if x1, . . . , xn are the
nodes, we can define the degree n polynomial q(x) = (x−x1) . . . (x−xn), and
our rule should be able to integrate q(x)xj exactly for 0 ≤ j ≤ s. But notice
that q(x)xj is exactly zero at each of the quadrature nodes, so the quadrature
rule returns exactly zero at each of these points. Therefore, the quadrature
rule can have degree n+ s for s ≥ 0 only if it satisfies the conditions∫ 1

−1
q(x)xj dx = 0, 0 ≤ j ≤ s.

This says that with respect to the standard inner product for functions on
[−1, 1], the polynomial q should be orthogonal to xj for 0 ≤ j ≤ s. Note that

we must have s < n, since otherwise we would have that
∫ 1

−1 q(x)2 dx was
zero.

As it happens, the Legendre polynomials Pk(x) satisfy the property that
P0(x), . . . , Pd(x) forms an orthogonal basis (with respect to the standard
inner product on [−1, 1]) for the degree d polynomials. The first few Legendre
polynomials are

P0(x) = 1

P1(x) = x

P2(x) = (3x2 − 1)/2,

and we can compute higher-order Legendre polynomials by a recurrence:

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x).
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Interpolatory quadrature rules based on interpolation through the zeros of
Legendre polynomials are Gauss-Legendre quadrature rules. The midpoint
rule is the lowest-order such rule; the second rule is∫ 1

−1
f(x) dx ≈ f(−

√
1/3) + f(

√
1/3).

In general, n-point Gauss-Legendre quadrature rules have degree 2n− 1; the
two-point Gauss-Legendre rule has degree 3, for example.

There are a few variants on the Gaussian integration theme. One involves
constraining the nodes for computational convenience. For example, if we
insist that the interval endpoints must be quadrature nodes, we arrive at
the Gauss-Lobatto rules (degree 2n − 3). The Gauss-Kronrod rules involve
a pair consisting of an n-point Gauss quadrature rule together with a 2n+ 1
point rule that re-uses the Gauss quadrature nodes; these rules are popular
for adaptive quadrature, since the Gauss rule and the Kronrod rule can be
compared in order to get an error estimate.

High order vs adaptivity

The default MATLAB quad routine does not use Gauss-Kronrod quadra-
ture rules (though quadgk does). Instead, it uses an adaptive Simpson’s
rule. There’s a good reason for this: high order convergence is only achieved
for functions with lots of derivatives. If a function has a discontinuity, it
will be hard to get better than O(h) global error; if there is a discontin-
uous derivative, it is hard to beat O(h2) error; and so on. Methods based
on Gauss quadrature or Chebyshev interpolation (the Clenshaw-Curtis meth-
ods) converge ferociously quickly for smooth integrands. But simple adaptive
methods based on Simpson’s rule often converge fast enough for most pur-
poses, while remaining remarkably robust to nonexistent – or just very large
– higher order derivatives.

Special behaviors

Consider the integral

I(z) =

∫ z

−z

cos(x)√
|x|

dx
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How could we compute I(π/2) numerically?
First, note that the function is even, so we can compute

I(z) = 2

∫ z

0

x−1/2 cos(x) dx.

This function is now awkward because the integrand diverges at x = 0. We
can deal with this in a few different ways:

1. Subtracting off the singularity: Write

I(z) = 2

[∫ z

0

x−1/2 dx+

∫ z

0

x−1/2 (cos(x)− 1) dx

]
.

The first term can be handled analytically:∫ z

0

x−1/2 dx = 2
√
z.

The second term has a removable singularity at the origin (O(x3/2) as
x→ 0), and we can treat the integrand as zero at that point.

2. Integration by parts: If we integrate by parts, we have∫ z

0

x−1/2 cos(x) dx = 2
√
z cos(z) +

∫ z

0

2
√
x sin(x) dx

3. Change of variables: If we let t2 = x, then we can use the change of
variables formula to recast the integral with as

I(z) = 2

∫ z2

0

t−1 cos(t2)(2t dt) = 4

∫ z2

0

cos(t2)dt

As it happens, we could at this point declare victory, since this integral
is closely related to the Fresnel integral

C(x) =

∫ x

0

cos(πt2/2) dt,

and there are libraries that will compute Fresnel integrals for you.
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4. Special quadrature rules: The Gauss-Jacobi family of quadrature
rules approximates integrals of the form∫ 1

−1
f(x)(1− x)α(1 + x)β dx

If we set α = 0, and β = −1/2, then this gives us a rule for computing
something with an inverse-square-root singularity at x = −1. If we
apply the change of variables

y =
z

2
(1 + x),

we have ∫ 1

−1
f(y(x))(1 + x)−1/2 dx =

(
2

z

)1/2 ∫ z

0

y−1/2f(y) dy,

so we have a quadrature rule that deals with integrals with this sort of
singularity. Let f(y) = cos(y) and we’re all set.

These are most ot the tricks I know for dealing with integrals with singular-
ities or unbounded domains. Fortunately, these tricks tend to work well for
a variety of problems.

Problems to ponder

1. How would you write an n-panel composite Simpson rule in MATLAB
without any repeated function evaluations at the same point.

2. Show that running extrapolation on the trapezoidal rule results in
Simpson’s rule.

3. How might you numerically compute∫ ∞
0

ln(x) exp(−x) dx

to a relative error tolerance of around 10−6, ideally without too many
function evaluations?
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4. Consider the integral
∫ z
0
x−1/2 cos(x) dx from our “subtracting the sin-

gularity” example. How many derivatives does the integrand have at
zero? How does this compare to the original integral?

5. Adaptive quadrature methods can be tricked! How would you find a
polynomial such that one-panel or two-panel Simpson quadrature on
[−1, 1] both return zero, even though the true integal is positive?

6. Suppose f(x) is convex, i.e. f ′′(x) ≥ 0 everywhere. Show that in this
case, the composite midpoint rule underestimates the true integral.

7. Describe a strategy for devising Simpson-like rules for integrals of the
form ∫ b

a

xαf(x) dx

where α > −1 is given and f(x) is assumed to be smooth. Your rule
should sample the function at a, b, and at some point in between – how
would you choose the location of that point to get the highest possible
order of accuracy?

Note: it’s fine to express the coefficients in this rule in terms of integrals
that you know how to work out symbolically, even if you don’t want to
run through the algebra.
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Week 13: Monday, Apr 23

Ordinary differential equations

Consider ordinary differential equations of the form

(1) y′ = f(t, y)

together with the initial condition y(0) = y0. These are equivalent to integral
equations of the form

(2) y(t) = y0 +

∫ t

0

f(s, y(s)) ds.

Only the simplest sorts of differential equations can be solved in closed form,
so our goal for the immediate future is to try to solve these ODEs numerically.

For the most part, we will focus on equations of the form (1), even though
many equations of interest are not posed in this form. We do this, in part,
because we can always convert higher-order differential to first-order form by
adding variables. For example,

my′′ + by′ + ky = f(t)

becomes [
y
v

]′
=

[
v

f(t)− b
m
v − k

m
y

]
.

Thus, while there are methods that work directly with higher-order differ-
ential equations (and these are sometimes preferable), we can always solve
high-order equations by first converting them to first-order form by introduc-
ing auxiliary variables. We can also always convert equations of the form

y′ = f(t, y)

into autonomous systems of the form

u′ = g(u)

by defining an auxiliary equation for the evolution of time:

u =

[
y
t

]
, g(u) =

[
f(t, y)

1

]
.
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Basic methods

Maybe the simplest numerical method for solving ordinary differential equa-
tions is Euler’s method. Euler’s method can be written in terms of finite
difference approximation of the derivative, Hermite interpolation, Taylor se-
ries, numerical quadrature using the left-hand rule, or the method of unde-
termined coefficients. For the moment, we will start with a derivation by
Taylor series. If y(t) is known and y′ = f(t, y), then

y(t+ h) = y(t) + hf(t, y(t)) +O(h2)

Now, drop the O(h2) term to get a recurrence for yk ≈ y(tk):

yk+1 = yk + hkf(tk, yk)

where tk+1 = tk + hk.
We can derive another method based on first-order Taylor expansion

about the point t+ h rather than t:

y(t) = y(t+ h)− hf(t+ h, y(t+ h)) +O(h2).

If we drop the O(h2) term, we get the approximation y(tk) = yk where

yk+1 = yk + hf(tk+1, yk+1).

This is the backward Euler method, sometimes also called implicit Euler.
Notice that in the backward Euler step, the unknown yk+1 appears on both
sides of the equations, and in general we will need a nonlinear equation solver
to take a step.

Another basic method is the trapezoidal rule. Let’s think about this one
by quadrature. If we apply the trapezoidal rule to (2), we have

y(t+ h) = y(t) +

∫ t+h

t

f(s, y(s)) ds

= y(t) +
h

2
(f(t, y(t)) + f(t+ h, y(t+ h))) +O(h3)

If we drop the O(h3) term, we have

yk+1 = yk +
h

2
(f(tk, yk) + f(tk+1, yk+1)) .

Like the backward Euler rule, the trapezoidal rule is implicit: in order to
compute yk+1, we have to solve a nonlinear equation.
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Figure 1: Regions of absolute stability for Euler (left) and backward Euler
(right). For values of hλ in the colored region, the numerical method produces
decaying solutions to the test problem y′ = λy.

Stability regions

Consider what happens when we apply Euler and backward Euler to a simple
linear test problem

y′ = λy

with a fixed step size h. Note that the solutions y(t) = y0 exp(λt) decay to
zero whenever Re(λ) < 0. This is a qualitative property we might like our
numerical methods to reproduce. Euler’s method yields

yk+1 = (1 + hλ)yk,

which gives decaying solutions only when |1 + hλ| < 1. The set of values
hλ where Euler produces a decaying solution is called the region of absolute
stability for the method. This region is shown in Figure 1.

Backward Euler produces the iterates

yk+1 = (1− hλ)−1yk

Therefore, the discrete solutions decay whenever |(1 − hλ)−1| < 1 — or,
equivalently, whenever |1 − hλ| > 1. Thus, the region of absolute stability
includes the entire left half plane Re(λ) < 0 (see Figure 1), and so backward
Euler produces a decaying solution when Re(λ) < 0, no matter how large or
small h is. This property is known as A-stability.
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Euler and trapezoidal rules

So far, we have introduced three methods for solving ordinary differential
equations: forward Euler, backward Euler, and the trapezoidal rule:

yn+1 = yn + hf(tn, yn) Euler

yn+1 = yn + hf(tn+1, yn+1) Backward Euler

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) Trapezoidal

Each of these methods is consistent with the ordinary differential equation

y′ = f(t, y).

That is, if we plug solutions to the exact equation into the numerical method,
we get a small local error. For example, for forward Euler we have consistency
of order 1,

Nhyh(tn+1) ≡
y(tn+1)− y(tn)

hn
− f(tn, y(tn)) = O(hn),

and for the trapezoidal rule we have second-order consistency

Nhyh(tn+1) ≡
y(tn+1)− y(tn)

hn
− f(tn, y(tn)) = O(h2n).

Consistency + 0-stability = convergence

Each of the numerical methods we have described can be written in the form

Nhy
h = 0,

where yh denotes the numerical solution and Nh is a (nonlinear) difference
operator. If the method is consistent of order p, then the true solution gives
a small residual error as h goes to zero:

Nhy = O(hp).

As we have seen in the past, however, small residual error is not the same
as small forward error. In order to establish convergence, therefore, we need



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

one more property. Formally, a method is zero-stable if there are constants h0
and K so for any mesh functions xh and zh on an interval [0, T ] with h ≤ h0,

‖dh‖∞ ≡ ‖xh − zh‖∞ ≤ K
{
|x0 − z0|+

∥∥Nhx
h(tj)−Nhz

h(tj)
∥∥
∞

}
.

Zero stability essentially says that the difference operators Nh can’t become
ever more singular as h→ 0: they are invertible, and the inverse is bounded
by K. If a method is consistent and zero stable, then the error at step n is

|y(tn)− yh(tn)| = |en| ≤ K max
j
|dj| = O(hp).

The proof is simply a substitution of y and yh into the definition of zero
stability. The only tricky part, in general, is to show that the method is zero
stable. Let’s at least do this for forward Euler, to see how it’s done — but
you certainly won’t be required to describe the details of this calculation on
an exam!

We assume without loss of generality that the system is autonomous
(y′ = f(y)). We also assume that f is Lipschitz continuous; that is, there is
some L so that for any x and z,

|f(x)− f(z)| ≤ L|x− y|.

It turns out that Lipschitz continuity of f plays an important rule not only in
the numerical analysis of ODEs, but in the theory of existence and uniqueness
of ODEs as well: if f is not Lipschitz, then there might not be a unique
solution to the ODE. The standard example of this is u′ = 2 sign(u)

√
|u|,

which has solutions u = ±t2 that both satisfy the ODE with initial condition
u(0) = 0.

We can rearrange our description of Nh to get

xn+1 = xn + hf(xn) + hNh[x](tn)

zn+1 = zn + hf(zn) + hNh[z](tn).

Subtract the two equations and take absolute values to get

|xn+1 − zn+1| ≤ |xn − zn|+ h|f(xn)− f(zn)|+ h|Nh[x](tn)−Nh[z](tn)|

Define dn = |xn − zn| and θ = maxj |Nh[x](tj) − Nh[z](tj)|. Note that by
Lipschitz continuity, |f(xn)− f(zn)| < Ldn; therefore,

dn+1 ≤ (1 + hL)dn + hθ.
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Let’s look at the first few steps of this recurrence inequality:

d1 ≤ (1 + hL)d0 + hθ

d2 ≤ (1 + hL)2d0 + [(1 + hL) + 1]hθ

d3 ≤ (1 + hL)3d0 +
[
(1 + hL)2 + (1 + hL) + 1

]
hθ

In general, we have

dn ≤ (1 + hL)nd0 +

[
n−1∑
j=0

(1 + hL)j

]
hθ

≤ (1 + hL)nd0 +

[
(1 + hL)n − 1

(1 + hL)− 1

]
hθ

≤ (1 + hL)nd0 + L−1 [(1 + hL)n − 1] θ

Now note that

(1 + hL)n ≤ exp(Lnh) = exp(L(tn − t0)) ≤ exp(LT ),

where T is the length of the time interval we consider. Therefore,

dn ≤ exp(LT )d0 +
exp(LT )− 1

L
max

j
|Nh[x](tj)−Nh[z](tj)|.

While you need not remember the entire argument, there are a few points
that you should take away from this exercise:

1. The basic analysis technique is the same one we used when talking
about iterative methods for solving nonlinear equations: take two equa-
tions of the same form, subtract them, and write a recurrence for the
size of the difference.

2. The Lipschitz continuity of f plays an important role. In particular,
if LT is large, exp(LT ) may be very inconvenient, enough so that we
have to take very small time steps to get good error results according
to our theory.

As it turns out, in practice we will usually give up on global accuracy
bounds via analyzing Lipschitz constant. Instead, we will use the same sort of
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local error estimates that we described when talking about quadrature: look
at the difference between two methods that are solving the same equation
with different accuracy, and use the difference of the numerical methods as a
proxy for the error. We will discuss this strategy — and more sophisticated
Runge-Kutta and multistep methods — next lecture.
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Week 13: Wednesday, Apr 25

The Runge-Kutta concept

Runge-Kutta methods evaluate f(t, y) multiple times in order to get higher
order accuracy. For example, the classical Runge-Kutta scheme is

K0 = f(tn, yn)

K1 = f

(
tn +

h

2
, yn +

h

2
K0

)
K2 = f

(
tn +

h

2
, yn +

h

2
K1

)
K3 = f (tn + h, yn + hK2)

yn+1 = yn +
h

6
(K0 + 2K1 + 2K2 +K3) .

Note that if f is a function of time alone, this is simply Simpson’s rule. This
is no accident.

Runge-Kutta methods are frequently used in pairs where a high-order
method and a lower-order method can be computed with the same evalua-
tions. Perhaps the most popular such methods are the Fehlberg 4(5) and
Dormand-Prince 4(5) pairs — the Matlab code ode45 uses the Dormand-
Prince pair. The difference between the two methods is then used as an
estimate of the local error in the lower-order method. If a local error esti-
mate seems too large, it is natural to try again with a shorter step based on
an asymptotic expansion of the error. This method of step control works well
on many problems in practice, but it is not foolproof (as we will see in HW
7). For example, in some settings the adaptive error control may suggest a
time step which is fine for local error, but terrible for stability.

Adaptive time stepping routines generally use tolerances for both absolute
and relative errors. A time step is accepted if

|ei| < max (rtoli|yi|, atoli)

where rtoli and atoli are the tolerances for the ith component of the solution
vector. The error tolerances have default values (10−3 relative and 10−6

absolute), but in practice it may be a good idea to set the tolerances yourself.
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In principle, comparing two methods gives us an error estimate only for
the lower-order method. However, one often takes a step with the higher-
order method (at least for non-stiff problems). This cheat works well in
practice, but we use the dignified-sound name of local extrapolation to dodge
awkward questions about its mathematical legitimacy.

There are a bewildering variety of Runge-Kutta methods. Some are ex-
plicit, others are implicit. Some preserve interesting structural properties.
Some are based on equally-spaced interpolation points, others evaluate on
Gauss-Legendre points. In some, the stages can be computed one at a time;
in others, the stages all depend on each other. But these methods are beyond
the scope of the current discussion.

Matlab’s ode45

For most non-stiff problems, ode45 is a good first choice of integrators. The
basic calling sequence is

[tout, yout] = ode45(f, tspan, y0);

The function f(t,y) returns a column vector. On output, tout is a column
vector of evaluation times and yout is a matrix of solution values (one per
row). Usually, tspan has two entries: tspan = [t0 tmax]. However, we can
also specify points where we want solution values. In general, the underlying
ODE solver does not put time steps at each of these points; instead it fills in
the values using polynomial interpolation (this is called dense output).

The ode45 function takes an optional output called opt that contains a
structure produced by odeset. Using odeset, we can set error tolerances,
put bounds on the step size, indicate to the solver that certain components
must be non-negative, look for special events, or request diagnostic output.

The multistep concept

The Runge-Kutta methods proceed from time tn to time tn+1, then stop
looking at tn. An alternative is to use not only the behavior at tn, but also
the behavior at previous times tn−1, tn−2, etc. Methods that do this are
multistep methods. Most such methods are based on linear interpolation.

For non-stiff problems, the Adams family are the most popular multi-step
methods. The k-step explicit Adams methods (or Adams-Bashforth meth-
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ods) interpolate f(tj, yj) at points tn−k, . . . , tn with a degree k polynomial
p(t). Then in order to estimate

y(tn+1) = y(tn) +

∫ tn+1

tn

f(s, y(s)) ds,

one computes

yn+1 = yn +

∫ tn+1

tn

p(s) ds.

The implicit Adams methods (or Adams-Moulton methods) also interpo-
late through the unknown point. Though they are not A-stable, Adams-
Moulton methods have larger stability regions and smaller error constants
than Adams-Bashforth methods. Often, the two are used together to form
a predictor-corrector pair: predict with Adams-Bashforth, then correct to
Adams-Moulton. Because these methods are typically used for non-stiff prob-
lems, fixed point iteration often provides an adequate corrector.

With multistep methods, we can adapt not only the time step, but also
the order. Very high-order methods may be appropriate when the solution is
smooth and we want to either minimize the number of time steps or to meet
very strict accuracy requirements. The Matlab routine ode113 implements
a variable-order Adams-Bashforth-Moulton predictor-corrector solver.

The Adams methods interpolate the function values f ; the backward dif-
ferentiation formulas (BDF) instead interpolate y. The next step yn+1 is
chosen so that the polynomial interpolating (tn−k, yn−k) through (tn+1, yn+1)
has derivative at tn+1 equal to f(tn+1, yn+1). Matlab’s solver ode15s uses
a variable-order numerical differentiation formula (a close relative of BDF).
The ode15s code would be a typical first choice for stiff problems.

Example: the van der Pol equation

The van der Pol oscillator is a model nonlinear differential equation that
shows up rather quickly in most discussions of the topic. The differential
equation is:

x′′ − µ(1− x2)x′ + x = 0.

When µ = 0, this is a simple harmonic oscillator, and solutions have the form

x(t) = x(0) cos(t) + x′(0) sin(t)
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When µ is nonzero, the picture gets slightly more complicated. You may or
may not remember from a physics, calculus, or ODE class that the ODE

x′′ + bx′ + x = 0

has decaying oscillating solutions for b > 0 and exponentially growing so-
lutions for b < 0. The coefficient b is interpreted as damping (with b < 0
corresponding to “anti-damping” behavior where solutions gain energy over
time). In the case of the van der Pol equation, b is replaced by a nonlinear
term which is negative when |x| < 1 and positive when |x| > 1. So the
effective behavior, seen in practice, is that there is a balance between growth
behavior for small x and decay behavior for larger x. The result is that
the solution bounces back and forth between slow motions for x > 1 and
x < −1 with fast transitions in between, and the speed of those transitions
is governed by the magnitude of µ.

Now let’s write code to actually solve the system. The ODE solvers
in Matlab require that we express our problem as a first-order system in
standard form, which we do by introducing the auxiliary variable y = x′:[

x
y

]′
=

[
y

µ(1− x2)y − x

]
= fvdp(x, y, µ).

This is a demo system in the Matlab documentation, so Matlab already
has a function vanderpoldemo(x,y,mu) to evaluate the right hand side fvdp
of this system. Based on the advice given in lecture, we should choose ode45

if the problem is non-stiff (µ modest) and ode15s if the problem is stiff (µ
large). Our script, runvdp will compute the solution using both methods
and compare both the results and the timings. For µ = 1, we find that
both solvers perform adequately; for µ = 100, ode45 takes 5 seconds and
26368 steps while ode15s takes 0.45 seconds and 761 steps. For µ = 200,
ode45 takes 20 seconds and over 104868 steps, while ode 15s takes 0.50
seconds. and just over 1010 steps. Both solvers return results that are nearly
indistinguishable visually (see Figure 1).
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Figure 1: Van der Pol solutions for µ = 100, via ode45 (red) and ode15s

(blue). The left plot shows x vs t; right shows x(t) vs y(t) = x′(t).

Problems to ponder

1. Describe how to use ode45 and plot to display the solution to an initial
value problem

mx′′ + bx′ + kx =

{
1, 0 ≤ t ≤ 1

0, 1 ≤ t ≤ tfinal

where x(0) = x′(0) = 0.

2. For implicit methods like backward Euler or the trapezoidal rule, we
need to solve a nonlinear equation at each update. For backward Euler,
for example, we have

yn+1 − hf(yn+1)− yn = 0.

What is Newton’s iteration for computing yn+1 given yn?

3. For a non-stiff problem where f ′ is not too large, note that we could
also use fixed point iteration:

ynew
n+1 = yn + hf(yold

n+1).

Assuming f is Lipschitz with constant L, show this fixed point iteration
converges when Lh < 1.
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% runvdp(mu)
% Demonstrate relative performance of ode45 and ode15s for
% the van der Pol oscillator as a function of mu.
%
function runvdp(mu)

tau = (3−2∗log(2))∗mu + 4.676∗muˆ(−1/3); % Estimated period
tspan = [0, 3∗tau]; % Go about 3 cycles
y0 = [2; 0]; % Initial conditions
opt = odeset(’Stats’ , ’on’ ); % Print diagnostics
ode = @(t,y) vanderpoldemo(t,y,mu); % MATLAB already has f vdp

fprintf( ’\n−−− ODE45 solve −−−\n’);
tic ; [tn,yn] = ode45(ode, tspan, y0, opt); toc

fprintf( ’\n−−− ODE15s solve −−−\n’);
tic ; [ ts ,ys] = ode15s(ode, tspan, y0, opt); toc

figure(1);
plot(tn,yn (:,1), ’ r−’, ts ,ys (:,1), ’b−’);
xlabel(’t’ );
ylabel(’x’ );
title (sprintf(’Van der Pol time history, mu = %f’, mu));

figure(2);
plot(yn (:,1), yn (:,2), ’ r−’, ys (:,1), ys (:,2), ’b−’);
xlabel(’x’ );
ylabel(’y’ );
title (sprintf(’Van der Pol phase plane, mu = %f’, mu));

Figure 2: Script to compare ode45 and ode15s for the van der Pol oscillator.
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4. Suppose we have used a time-stepping algorithm to compute yk ≈ y(tk).
To get from step k to k + 1, consider using either one or two steps of
forward Euler:

yk+1 = yk + hf(yk)

zk+1/2 = yk +
h

2
f(yk)

zk+1 = zk+1/2 +
h

2
f(zk+1)

Write the first term in a Taylor expansion for the local error yk+1 −
u(tk+1), where u is the solution to the initial value problem

u′(t) = f(u(t)), u(tk) = yk

How could you combine zk+1 and yk+1 to estimate this local error?

5. Consider the test equation
y′ = λy.

Suppose we approximate the solution at time tk = kh using forward
Euler. Show that if ŷk is the kth step of the forward Euler method,
then ŷk = z(tk) where z(t) is the solution to the modified differential
equation

z′ = λ̂z.

How is λ̂ related to λ? Repeat the exercise for backward Euler.

6. Based on the description in these notes, derive the backward differen-
tiation formula based on interpolation of y at points tn and tn+1.
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Week 14: Monday, Apr 30

Introduction

So far, our discussion of ODE solvers has been rather abstract. We’ve talked
some about how to evaluate ODE solvers, how ODE solvers choose time steps
in order to control error, and the different classes of ODE solvers that are
available in Matlab. We have not, however, tackled any concrete example
problems other than trivial linear test problems. In part, this is because I
have a hard time writing solutions and drawing believable pictures at the
board for anything but trivial test problems. So today, let’s try a Matlab-
oriented lecture.

1 A ballistics problem

The next problem is a classic of both scientific computing and certain classes
of computer games: ballistics calculations. We will solve this problem via a
shooting method: that is, we will base our solution method on initial value
problem solvers, and we try to choose initial conditions in order to satisfy
the problem constraints.

1.1 Model without air drag

Let’s start with a simple model, one that many of you have probably seen
in an introductory physics class. A projectile is fired from a launcher with
fixed speed; as a function of the launch angle, where will it hit the ground?
In the simplest version of this model, the only force acting on the ball after
launch is gravity, so Newton’s law tells us

ma = −mgey

where ey is a unit vector in the vertical direction, m is the particle mass, and
a = x′′ = (x′′, y′′) is the acceleration vector. If our launcher is positioned at
the origin, then the initial conditions for a launch with speed s at angle θ are

x(0) = 0, x′(0) = s cos(θ) = v0,x,

y(0) = 0, y′(0) = s sin(θ) = v0,y.
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Subject to these initial conditions, we can compute the solution analytically:

x(t) = v0,xt

y(t) = v0,yt− gt2/2.

The trajectory returns to the ground at time tfinal = 2v0,y/g and at position

xfinal = x(tfinal) =
2

g
v0,yv0,x =

s2

g
sin(2θ).

Therefore, we can reach a target at distances d ≤ s2/g with launch angles θ
that satisfy sin(2θ) = gd/s2. In general, if we can hit the target at all there
will be two trajectories that work. One will have angle between 0 and π/4,
while the other has an angle between π/4 and π/2.

1.2 Model with air drag

In practice, projectiles are affected not only by gravity, but also by air resis-
tance. For a reasonable range of projectiles, and assuming that the projectile
does not go so high that changes in atmospheric pressure are an issue, the
drag force due to air resistance acts in the direction opposite the velocity,
with a magnitude proportional to the square of the velocity. That is,

ma = −mgey −mc‖v‖v.

If we also consider a constant horizontal wind velocity wex, we arrive at

ma = −mgey −mc‖v − wex‖(v − wex).

The coefficient c is a complicated function of the size, shape, and mass of
the projectile, along with the temperature and pressure of the air. For the
moment, we will suppose it is simply given.

The differential equation without air drag was simple enough for us to
analyze by hand. This model is harder, so we turn to numerical methods. To
use Matlab’s ODE solvers, we need to put the model into first-order form:[

x
v

]′
=

[
v

−gey − c‖v − wex‖(v − wex)

]
= fballistics(x,v, g, c, w).

We code this model in a Matlab script fball (Figure 1).
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When setting up an ODE model, there are usually ample opportunities
to make nonphysical assumptions or errors in mathematics or programming.
For this reason, it is good practice to sanity-check our computations. In our
case, there are two natural checks:

1. If the coefficient c is zero, this problem simplifies to the model we dis-
cussed in the last section. Our numerical ODE solver should therefore
recover the same solution we found in our hand analysis.

2. If the coefficient c is positive, then air drag slows down the projectile,
so it should not go as far as it would go in the case of c = 0.

We check both of these behaviors with the script testball1 (Figure 3).
A visual comparison of trajectories computed with and without air drag is
showin in Figure 2.

1.3 Computing points of impact

Now that we have a code that we believe gives plausible trajectories, we
need to figure out where those trajectories hit the ground as a function of
the launch angle. In order to do this, we want not to stop the simulation at
a specific time, but when a specific event occurs: namely, when the vertical
component of the projectile position tries to go from positive to negative.
Matlab provides event detection as part of the ODE suite: we define an
interesting event in terms of a zero crossing of some test function of the state
vector (position and velocity), and we do something special when at points
when the test function goes from positive to negative or vice versa. In our
case, we are interested in when the y position component of the solution
goes from positive to negative values, and we would like to terminate the
computation when that occurs. Then we want to extract the final x position.
This computation is done in ftarget using a test function hitground to
detect the impact event (Figure 4).

1.4 Computing targeting solutions

At this point, we are interested in the function ftarget(θ) that computes the
impact distance as a function of the launch angle. For the case when c = 0,
we know that this function is proportional to sin(2θ). The case c > 0 is a
little more complicated, but even in this case, ftarget(θ) is very smooth. We
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% yp = fball(t ,y,opt)
% Compute the right hand side of an ODE for projectile motion
% in the presence of wind and air drag. The opt structure should
% describe a scaled air drag coefficient (c), the gravitational field (g),
% and the horizontal wind speed (w).
%
function yp = fball(t,y,opt)

g = opt.g; % Gravitational field
c = opt.c; % Scaled drag coefficient
w = opt.w; % Horizontal wind speed

% Unpack position and velocity
x = y(1:2);
v = y(3:4);

% Velocity relative to wind
vv = v;
vv(1) = vv(1)−w;

% Compute acceleration
a = −c∗norm(vv)∗vv;
a(2) = a(2)−g;

% Return
yp = [v; a ];

Figure 1: Right-hand side for ballistics model.



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

0 5 10 15 20 25 30 35 40
−2

0

2

4

6

8

10

12

14

16

 

 

No drag

Drag

Figure 2: Trajectories with and without drag.
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% −− Sanity check trajectories computed with and without drag −−

theta = pi/3;
v0 = s∗[cos(theta); sin(theta )];

% Compute the reference trajectory (absent air resistance )
% x(y) = s∗cos(theta)∗t
% y(t) = −g∗tˆ2/2 + s∗sin(theta)∗t
% up to time tfinal = 2∗s∗sin(theta)/g
%
tfinal = 2∗v0(2)/g;
tref = linspace(0,tfinal )’;
xref = v0(1)∗tref;
yref = (v0(2)−g/2∗tref).∗tref;

% Compute the same reference trajectory with ode45
y0 = [0; 0; v0];
refopt = opt;
refopt .c = 0;
[tout,yout] = ode45(@(t,y) fball(t,y,refopt ), tref , y0);

% Compute a similar trajectory with air drag on (no wind)
dopt = opt;
dopt.w = 0;
[toutd,youtd] = ode45(@(t,y) fball(t,y,dopt), tref , y0);

% Do a comparison between analytical and numerical solutions (no drag)
fprintf( ’Max x error: %g\n’, norm( xref−yout(:,1), inf));
fprintf( ’Max y error: %g\n’, norm( yref−yout(:,2), inf));

% Visually compare solutions for drag and no drag
plot(xref, yref , ’ r : ’ , youtd (:,1), youtd (:,2), ’b−’);
legend(’No drag’, ’Drag’);

Figure 3: Test script to check ballistics ODE.
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% xfinal = ftarget(thetas , opt)
% Compute impact points as a function of angles for the ballistics
% ODE with parameters given in opt. In addition to the basic ODE
% parameters, opt.s should be set to the launch speed.
%
function xfinal = ftarget(thetas, opt)

xfinal = 0∗thetas;
for j = 1:length(thetas)

theta = thetas(j );
v0 = (opt.s)∗[cos(theta); sin(theta )];
y0 = [0; 0; v0];
tfinal = 2∗v0(2)/opt.g;
odeopt = odeset(’Events’, @hitground);
[tout,yout] = ode45(@(t,y) fball(t,y,opt), [0 tfinal ], y0, odeopt);
xfinal (j) = yout(end,1);

end

function [value,isterminal , direction ] = hitground(t,y)

value = y(2); % Check for zero crossings of y position
isterminal = 1; % Terminate on a zero crossing
direction = −1; % We only care about crossing y > 0 to y < 0

Figure 4: Compute point of impact as a function of θ.
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could compute ftarget and derivatives at arbitrary points based on the ODE 1,
but the evaluation costs a little bit; if we included a few more complicating
factors in our evaluations, we might reasonably be reluctant to do too many
trajectory computations with ftarget. So let’s use the tools that we build
previously, and fit a polynomial approximation ftarget at a Chebyshev grid
on [0, π/2].

The function ftarget(θ) in general is a unimodal function: it increases on
[0, θmax] and then decreases on [θmax, π/2]. If we want to hit a target at
distance d, then, there are two things that can happen:

1. If d > ftarget(θmax) then we cannot hit the target at any angle.

2. If d < ftarget(θmax), then there are generally two solutions to the equa-
tion ftarget(θ) − d = 0: one on the interval [0, θmax] and the other on
the interval [θmax, π/2].

We can find the two solutions, if they exist, using Matlab’s fzero function
(Figure 5). In each step, we work with a polynomial approximation to ftarget

rather than working with ftarget directly.

1.5 An example trajectory

As an example, let’s consider a concrete example with a high drag coefficient
(c = 0.05 m−1) and some wind (w = −2.5 m/s). We want to hit a target at
distance d = 10 m. The trajectories computed for the two solution angles are
shown in Figure 6; the residual error ftarget(θ) is on the order of 10−7 for this
problem, which is almost certainly smaller than errors due to uncertainty in
the model parameters.

2 Particle in a box

In the previous example, we solved a two-point boundary value problem by
shooting (the two points being the point of launch and of impact). In this

1The derivative of the trajectory with respect to the launch angle θ can be computed in
terms of an extended ODE system, a so-called variational equation. Using this variational
equation, we could compute derivatives of the impact location as a function of θ. But
using a polynomial interpolant will turn out to be a simpler way of approximating the
function and its derivatives.
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% thetas = find angle(d, opt)
% Find angles to hit a target at distance d in the ballistics problem.
% If the target is unreachable, give an error message.

function [thetas] = find angle(d, opt)

% Fit a Chebyshev polynomial to the targeting behavior
[D,z] = cheb(20);
thetac = (z+1)∗pi/4;
impactsc = 0∗thetac;
for k = 1:length(thetac)−1

impactsc(k) = ftarget(thetac(k), opt);
end

% Find the farthest−traveling trajectory
zcrit = chebopt(impactsc);
topt = chebeval(thetac, zcrit );
xopt = chebeval(impactsc, zcrit );

% If we fall below that point , quit
if d > xopt, error(’Target out of range’); end
g = @(z) chebeval(impactsc, z)−d;
zs = [ fzero(g, [−1, zcrit ]); fzero(g, [ zcrit ,1]) ];
thetas = chebeval(thetac, zs );

Figure 5: Find targeting angles for a given distance.
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Figure 6: Sample targeting solutions with wind and a high drag coefficient.
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example, we will use a finite difference method. The problem we want to
solve is a classic example model in quantum mechanics: the particle in a
box.

The basic equation of quantum mechanics is Schrödinger’s equation; for
problems with one space variable, this is

Hψ =

(
− ~

2m

d2

dx2
+ V (x)

)
ψ = Eψ.

This is an eigenvalue problem: we want to find E such that the equation
has a nontrivial solution, and there are only a discrete set of such E. For
the duration of this discussion, let us assume ~/2m = 1. Now, suppose we
have a potential energy V (x) which is zero on [0, 1] and ∞ elsewhere. The
squared wave function ψ represents the probability that a particle at energy
E is at any given position, and particles can’t make it past the infinite energy
barriers at 0 and 1, so we actually have a two-point boundary value problem:

d2ψ

dx2
= Eψ, x ∈ (0, 1)

ψ(0) = 0

ψ(1) = 0.

A little thought shows the appropriate solutions are ψk = sin(kπx) and
Ek = (kπ)2. Let’s suppose we did not know that and look at a way to
compute the solution numerically.

The standard second-order accurate approximation of a second derivative
at a point x is

ψ′′(x) ≈ ψ(x− h)− ψ(x) + ψ(x+ h)

h2
.

Now suppose we have a regular mesh of points x0 = 0 to xN+1 = 1, with
xj = jh, h = 1/(N + 1). Then we can compute

−ψ′′(xi) ≈
−ψ(xi−1) + 2ψ(xi)− ψ(xi+1)

h2

Therefore, we can compute an approximation ui ≈ ψ(xi) by approximating
the differential equation at the interior points x1, . . . , xN :

h−2 [−ui−1 + 2ui − ui+1]− Eui = 0.
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At the end points, we use the boundary conditions u0 = uN+1 = 0, which
gives us the end conditions

h−2 [2u1 − u2]− Eu1 = 0.

h−2 [−uN−1 + 2uN ]− EuN = 0.

Putting everything together, we can write the discrete problem concisely as

(h−2T − E)u = 0.

where T is the standard tridiagonal stencil

T =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


Therefore, the eigenvalues and eigenvectors for the continuous problem can
be approximated by eigenvalues and eigenvectors for a discrete problem. The
function particlebox (Figure 7) computes the first four eigenvalues / energy
levels using this approximation using a finite difference mesh with N interior
points. Because we know the exact solutions in this problem, it is easy for
us to assess the convergence of our code as a function of h; we do this with
the script particleboxcvg (Figure 8). Using particleboxcvg, we can see
that the smallest eigenvalue of the discrete problem estimates the continuous
eigenvalue to accuracy O(h2).
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% E = particlebox(N)
% Compute the first four energy levels for the ” particle in a box”
% model using a finite−difference discretization for dˆ2/dxˆ2
% with N interior mesh points.

function E = particlebox(N)

% Points go 0 to N+1; 0 and N+1 satisfy BCs
h = 1/(N+1);
T = −diag(ones(N−1,1),−1) + 2∗eye(N) − diag(ones(N−1,1),1);

% Estimate eigenvalues and eigenvectors
[V,D] = eig(T/hˆ2);
E = diag(D);

% Compute the first four energy levels
E = E(1:4);

Figure 7: Finite difference computation of the first four energy levels for a
particle in a box.
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% Do a simple convergence study
N = 10;
h = []; E = [];
for j = 1:5

h(j) = 1/(N+1);
E(:, j) = particlebox(N);
N = N∗2;

end
loglog(h, piˆ2−E(1,:));

% Rate of convergence
est order = log( (piˆ2−E(1,end−1))/(piˆ2−E(1,end)) )/log(2);
fprintf( ’Estimated order of convergence: %f\n’, est order);

Figure 8: Convergence analysis of a finite difference computation of the first
four energy levels for a particle in a box.
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Week 14: Wednesday, May 2

Summary

Error analysis and floating point

You should know about relative vs absolute error, forward error, backward
error, residual, and condition numbers. You should remember the 1+δ model
for rounding, and be able to apply it in simple situations. You should know
what underflow, overflow, and cancellation are.

Example questions:

1. What are the forward error and residual error for approximating the
larger root of f(x) = x2− 2 by x̂ = 1.5? What is the condition number
for this problem?

2. Which is more suitable for computation near x = 0: cos(x) − 1, or
sin(x)/(1 + cos(x))? Why?

3. Suppose I wanted to sum up numbers z1, . . . , zn. A standard approach
would be to write a loop to compute successive partial sums.

s = 0;
for j = 1:N

s = s + z(j);
end

This loop really runs the recurrence sj = sj−1 + zj starting at s0 = 0.
If I do this in floating point, how could I keep a running error estimate
on the partial sums?

Linear algebra, linear systems, and least squares

You should know how to manipulate matrices and vectors in Matlab, and
have some notion of the relative costs of equivalent matrix expressions. You
should know about the 1-norm, 2-norm, and infinity norm; about induced
operator norms; and about the Frobenius norm. You should remember that
the 2-norm (and the operator 2-norm and Frobenius norm) are invariant
under orthogonal transformations, and that this can be used to simplify least
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squares problems. You should know the condition number for solving linear
systems, and you should remember the factors that go into the sensitivity
analysis for solving least squares problems (it’s fine if you don’t remember
the exact formulas for the condition number in the latter case). You should
know how to solve linear systems and least squares problems using Matlab’s
backslash operator. You should know something about the normal equations,
and about the relation between the solution, right hand side, and residual
in a least squares problem. You should know the factorizations PA = LU ,
A = QR, and A = UΣV T . You should know what sparsity means.

Example questions:

1. Use norm bounds to show that the iteration xj+1 = Axj + f converges
if ‖A‖ < 1, and bound the magnitude of the limiting value.

2. Given PA = LU , write an O(n2) code fragment to compute A−T b.

3. Describe a method to approximately minimize the sum of squared com-
ponentwise relative errors dj = (Ax− b)j/bj.

Iterations, equation solving, and optimization

You should know about bisection, the Newton idea and its variants, and
the concept of fixed point iteration. You should understand what is meant
by rates of convergence (linear, superlinear, quadratic, etc). You should
be able to reason about the error in iterations by subtracting a fixed point
equation from the iteration equation; you should also be able to do Taylor
series manipulations needed to understand these methods. For optimization,
you should know what a descent direction is, and what it means to do a line
search. You should know how to reason about stationary iterations for linear
systems in terms of splittings. You should know that CG corresponds to
minimization over a Krylov subspace, though you do not need to know any
further details of the algorithm.

Example questions:

1. Suppose f(x∗) = 0 and we know f ′(x∗). Argue that the fixed point
iteration

xk+1 = xk −
f(xk)

f ′(x∗)

converges quadratically to x∗ when started close enough.
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2. Suppose |f ′(x)| ≤ α < 1 for any x. Show that if x∗ = f(x∗) is a fixed
point, then the iteration xk+1 = f(xk) converges at least linearly to x∗.

3. If we know f is continuously differentiable and f ′(a)f ′(b) < 1, and
we have a routine to compute f ′, describe how to find a minimum or
maximum on (a, b).

4. Show that if ‖I − A‖ < 1, the iteration

xk+1 = xk + (b− Axk)

converges to A−1b.

Interpolation, differentiation, and integration

You should know three different approaches to polynomial interpolation: the
Vandermonde approach (writing the polynomial in a power basis); the La-
grange approach; and the Newton approach. You should know how Newton
divided differences relate to derivatives, and how this relation can be used
to provide error bounds on how well a polynomial interpolant approximates
a function (assuming bounds on derivatives of various orders). You should
know the basic ideas of piecewise polynomial interpolation, though I did not
emphasize this in class and will not emphasize it on the final.

You should know how to derive rules for numerical differentiation and
integration by either artfully canceling out terms in Taylor expansions (the
method of undetermined coefficients) or by differentiating and integrating an
interpolating function. You should understand what is meant by the order
of a quadrature rule. You should understand the basic ideas of Gaussian
quadrature, and why their order of accuracy (2n− 1) is the greatest possible
for any quadrature rule that involves function evaluations at n given points.
You should also understand the ideas of Richardson extrapolation and of
error estimates based on comparing different rules for differentiation and
quadrature.

Example questions:

1. Write the interpolant through f(0) = 1, f(1) = 2, and f(2) = 1 in
terms of the power basis, the Lagrange basis, and the Newton basis.

2. Suppose an and a2n are two approximations to
∫ 1

−1 f(x) dx computed
by the composite midpoint rule with n intervals and 2n intervals, re-
spectively. Write an estimate of the error in a2n based on comparing
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the two methods. Your estimate should be asymptotically exact as
n→∞.

3. Given a quadrature rule

Ih[f ] =
n∑

j=1

wjf(xj) ≈
∫ b

a

f(x) dx,

give an example of a polynomial for which the quadrature rule cannot
compute the true integral.

ODE solvers

You should know how to convert ODEs to standard first-order form for use
with Matlab’s ODE solvers. You should be able to write something that
makes use of Matlab’s ODE solvers (given a reminder of the basic calling
sequence). You should know the formulas for forward and backward Euler,
and the implicit trapezoidal rule. You should know the basic ideas of consis-
tency and zero stability of ODE solvers, if not many details; and you should
understand the basic idea of using pairs of methods for local error control
(and how such local error control can still fail to yield good solutions in some
cases). You should be able to reason about whether methods applied to the
test problem y′ = λy converge to zero for different values of hλ, and you
should understand what is meant by the region of absolute stability for a
method.

Example questions:

1. Describe how to solve the IVP mu′′ + bu′ + ku = g(t), u(0) = u0,
u′(0) = v0 using the Matlab solver ode45. Remember that ode45 has
the calling sequence

[tout,yout] = ode45(f,tspan,y0);

where f is a function that takes arguments t, y.

2. Consider the ODE [
x
y

]′
=

[
y
−x

]
with initial conditions x(0) = 1 and y(0) = 0. The true solution to this
problem is x(t) = cos(t), y(t) = sin(t), and so r(t)2 ≡ x(t)2 + y(t)2 is
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equal to 1. Show that if we discretize the problem using forward Euler
with fixed step size h, then r2n ≡ x2n + y2n = (1 + h2)n.
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