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1 Contents
These notes summarize the lectures on homotopy type theory (HoTT) given by
Professor Robert Harper on September 9 and 11, 2013, at CMU. They start by
providing a introduction to HoTT, capturing its main ideas and its connection to
other related type theories. Then they present intuitionistic propositional logic (IPL),
giving both an proof-theoretic formulation as well an order-theoretic formulation.

2 Introduction to homotopy type theory
Homotopy type theory (HoTT) is the subject of a very active research community
that gathered at the Institute for Advanced Study (IAS) in 2012 to participate in
the Univalent Foundations Program. The results of the program have been recently
published in the HoTT Book [1].

2.1 HoTT in a nutshell
HoTT is based on Per Martin-Löf’s intuitionistic type theory, which provides a foun-
dation for intuitionistic mathematics and which is an extension of Brouwer’s program.
Brouwer viewed mathematical reasoning as a human activity and mathematics as
a language for communicating mathematical concepts. As a result, Brouwer per-
ceived the ability of executing a step-by-step procedure or algorithm for performing a
construction as a fundamental human faculty.

Adopting Brouwer’s constructive viewpoint, intuitionistic theories view proofs
as the fundamental forms of construction. The notion of proof relevance is thus a
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characteristic feature of an intuitionistic (or constructive1) approach. In the context
of HoTT, proof relevance means that proofs become mathematical objects [3]. To
fully understand this standpoint, it is necessary to draw a distinction between the
notion of a proof and the one of a formal proof [3, 2]. A formal proof is a proof given
in a fixed formal system, such as the axiomatic theory of sets, and arises from the
application of the inductively defined rules in that system. Whereas every formal
proof is also a proof (assuming soundness of the system) the converse is not true.
This fact immediately follows from Gödel’s Incompleteness Theorem, which precisely
states that there exist true propositions (with a proof), but for which there cannot
be given a formal proof, using the rules of the formal system. Unlike conventional
formally defined systems, HoTT does not surmise that all possible proofs can be fully
circumscribed by its rules, but accepts proofs that cannot be formalized in HoTT.
These are exactly the proofs that are considered to be relevant and, being treated as
mathematical objects, they can be formulated internally as objects of the type theory.

Being based on intuitionistic type theory, HoTT facilitates some form of axiomatic
freedom. This means in particular that there exist fewer assumptions that apply
globally. For instance, a typical such assumption that is missing in a intuitionistic
interpretation is the law of the excluded middle. As put forth by Brouwer, an
assumption like the law of the excluded middle does not need to be ruled out
entirely, but can be introduced locally, in a proof, if needed. Whether a particular
local assumption is needed or not is mainly determined by the actual proof (i.e.,
construction). A sparing use of global assumptions results in proofs that are based
on less assumptions and thus in stronger results overall.

Another distinguishing characteristics of HoTT is that it adopts a synthetic, rather
than an analytic reasoning approach. The differentiation goes back to Lawvere and
is best explained by an example. Euclidean geometry, for instance, represents a
synthetic approach to geometry as it treats geometric figures, like triangles, lines, and
circles, as “things” in themselves rather than sets of points. In an analytical approach
based on the Cartesian coordinate system, on the other hand, geometric figures are
treated as sets of points in the plane and thus are based on the real numbers. Whereas
traditional formulations of homotopy theory are analytic, HoTT is synthetic. The
differentiation between a synthetic and an analytic reasoning approach is mainly
relevant with regard to the approach’s amenability to mechanized reasoning. It turns
out that synthetic approaches are easier to mechanize than analytical approaches.
This holds true in particular for HoTT: since proofs of equality in HoTT correspond
to paths in a space, they are cleaner, shorter, and completely mechanizable.

1In this course, intuitionism and constructivism are used interchangeably.
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2.2 HoTT in type theory context
HoTT unites homotopy theory with type theory, by embodying Brouwer’s intuitionism
and drawing from Gentzen’s proof theory (see Section 3). It is based on the observation
that types classify the admissible forms of constructions and thus are programmatically
sufficient to encompass all known mathematical constructions. This section briefly
sketches how HoTT relates to other existing type theories.

2.2.1 Intensional type theory

Intensional type theory (ITT) is a intuitionistic type theory that serves as the core
theory for other type theories. Other type theories are merely extensions of ITT.

2.2.2 Extensional type theory

Extensional type theory (ETT) extends ITT with equality of reflection (ER) and
uniqueness of identity proofs (UIP):

ETT = ITT + ER + UIP

Since types are perceived as sets in ETT, ETT gives rise to a intuitionistic theory of
sets.

2.2.3 Homotopy type theory

HoTT extends ITT with higher inductive types (HIT) and the univalence axiom
(UA):

HoTT = ITT +HIT + UA

Since types are perceived as abstract spaces in HoTT, HoTT gives rise to a intuition-
istic theory of weak infinity groupoids.

3 Intuitionistic propositional logic
What is meant by intuitionistic logic? It is a proof-relevant logic. One might say its
slogan is “logic as if people matter”, alluding to Brouwer’s principle that mathematics
is a social process in which proofs are crucial for communication. Whenever a claim
of truth of a proposition is made, it must be accompanied by a proof.
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As advanced by Per Martin-Löf, a modern presentation of intuitionistic proposi-
tional logic (IPL) distinguishes the notions of judgment and proposition. A judgment
is something that may be known, whereas a proposition is something that sensibly
may be the subject of a judgment. For instance, the statement “Every natural number
larger than 1 is either prime or can be uniquely factored into a product of primes.” is
a proposition because it sensibly may be subject to judgment. That the statement is
in fact true is a judgment. Only with a proof, however, is it evident that the judgment
indeed holds.

Thus, in IPL, the two most basic judgments are A prop and A true:

A prop A is a well-formed proposition
A true Proposition A is intuitionistically true,

i.e., has a proof.

The inference rules for the prop judgment are called formation rules. The inference
rules for the true judgment are divided into classes: introduction rules and elimination
rules.

Following Martin-Löf, the meaning of a proposition A is given by the introduction
rules for the judgment A true. The elimination rules are dual and describe what may
be deduced from a proof of A true.

The principle of internal coherence, also known as Gentzen’s principle of inversion,
is that the introduction and elimination rules for a proposition A fit together properly.
The elimination rules should be strong enough to deduce all information that was
used to introduce A (local completeness), but not so strong as to deduce information
that might not have been used to introduce A (local soundness). In a later lecture,
we will discuss internal coherence more precisely, but we can already give an informal
treatment.

3.1 Negative fragment of IPL
3.1.1 Conjunction

One familiar group of propositions are the conjunctions. If A and B are well-formed
propositions, then so is their conjunction, which we write as A ∧ B. This is the
content of the formation rule for conjunction: it serves as evidence of the judgment
A ∧B prop, provided that there is evidence of the judgments A prop and B prop.

A prop B prop
A ∧B prop ∧F
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We have yet to give meaning to conjunction, however; to do so, we must say
how to introduce the judgment that A ∧ B is true. As the following rule shows, a
verification of A ∧B consists of a proof of A true paired with a proof of B true.

A true B true
A ∧B true ∧I

What may we deduce from the knowledge that A∧B is true? Because every proof
of A∧B true ultimately introduces that judgment from a pair of proofs of A true and
B true, we are justified in deducing A true and B true from any proof of A ∧B true.
This leads to the elimination rules for conjunction.

A ∧B true
A true ∧E1

A ∧B true
B true ∧E2

Internal coherence. As previously mentioned, the principle of internal coherence
says that the introduction and elimination rules fit together properly: the elimination
rules are strong enough, but not too strong.

If we mistakenly omitted the ∧E2 elimination rule, then there would be no way to
extract the proof of B true that was used in introducing A ∧B true—the elimination
rules would be too weak.

On the other hand, if we mistakenly wrote the ∧I introduction rule as

A true
A ∧B true ,

then there would be no proof of B true present to justify deducing B true with the
∧E2 rule—the elimination rules would be too strong.

3.1.2 Truth

Another familiar and simple proposition is truth, which we write as >. Its formation
rule serves as immediate evidence of the judgment > prop, that > is indeed a well-
formed proposition.

> prop >F

Once again, to give meaning to truth we must say how to introduce the judgment
that > is true. > is a trivially true proposition, and so its introduction rule makes
the judgment > true immediately evident.

> true >I
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We should also consider an elimination rule: from a proof of > true, what can we
deduce? Since > is trivially true, any such elimination rule would not increase our
knowledge—we put in no information when we introduced > true, so, by the principle
of conservation of proof, we should get no information out. For this reason, there
is no elimination rule for >, and we can see that its absence is coherent with the
introduction rule.

The nullary conjunction. An observation about > that often proves useful is that
> behaves as a nullary conjunction—a conjunction over the empty set of conjuncts,
rather than over a set of two conjuncts.

This observation is reflected in the inference rules. Just as the introduction rule
for binary conjunction has two premises (one for each of the two conjuncts), the
introduction rule for truth has no premises (one for each of the no conjuncts):

A true B true
A ∧B true ∧I > true >I

Likewise, just as there are two elimination rules for binary conjunction, there are no
elimination rules for truth:

A ∧B true
A true ∧E1

A ∧B true
B true ∧E2 (no >E rule)

3.1.3 Entailment

The last form of proposition in the negative fragment of IPL is implication. However,
to define implication, a different form of judgment is required: entailment (also known
as logical consequence or a hypothetical judgment). Entailment is written as

A1 true, . . . , An true︸ ︷︷ ︸
n≥0

` A true ,

and expresses the idea that the judgment A true follows from A1 true, . . . , An true.
You can think of A1 true, . . . , An true as being assumptions from which the conclusion
A true may be deduced. The metavariable Γ is typically used to stand for such a
context of assumptions.

We should note that, thus far, the inference rules have been presented in a local
form in which the context of assumptions was left implicit. It would also be possible
to make this context explicit. For example, the introduction rule for conjunction in
the two different forms is:

A true B true
A ∧B true ∧I Γ ` A true Γ ` B true

Γ ` A ∧B true ∧I
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In the remainder of these notes, we will write inference rules in local form whenever
possible.

As an entailment, the judgment form satisfies several structural properties: reflex-
ivity, transitivity, weakening, contraction, and permutation.

Reflexivity. If the entailment judgment is to express logical consequence, that is,
that a conclusion follows from some assumptions, then you must accept a principle of
reflexivity,

A true ` A true R
,

that an assumption is enough to conclude the same judgment. If you tried to deny
this principle, the meaning of an assumption would be unclear.

Transitivity. Dual to reflexivity is a transitivity principle that states that a proof
of a conclusion satisfies an assumption of the same judgment.

A true A true ` C true
C true T

Transitivity is a lemma rule. If you prove a lemma (A true), then you are justified in
using it to prove a theorem that explicitly depends (A true ` C true); taken together,
they are viewed as a direct proof of the theorem (C true).

Transitivity can also be thought of as proof inlining. Rather than pairing the
lemma with the theorem that depends upon it, we could inline the lemma’s proof at
every point at which the theorem refers to the lemma. The result is a truly direct
proof of the theorem.

Weakening. Reflexivity and transitivity are undeniable properties of entailment
because they give meaning to assumptions—assumptions are strong enough to prove
conclusions (reflexivity), but are only as strong as the proofs they stand for (tran-
sitivity). But there are also structural properties that can be denied: weakening,
contraction, and permutation. Logics that deny any of these properties are called
substructural logics.

The principle of weakening says that we can add assumptions to a proof without
invalidating that proof:

A true
B true ` A true W

Of course, the new proof is of a weaker statement, but it is nevertheless a valid proof.
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Denying weakening leads, in part, to relevance logic. It is called relevance logic
because the proofs may not contain the unnecessary, irrelevant assumptions that
weakening allows. In this course, we will always have the principle of weakening,
however.

Contraction. The principle of contraction says that we are unconcerned about the
number of copies of an assumption A true; one copy is as good as two:

A true, A true ` C true
A true ` C true C

Denying contraction (along with weakening) leads to linear logic, in which we
wish to reason about the number of copies of an assumption. This is a powerful way
to express consumable resources. In this course, we will always have the principle of
contraction, however.

Permutation. The principle of permutation, or exchange, says that the order of
assumptions does not matter; we can apply any permutation π to the assumptions
and still have a valid proof:

Γ ` C true
π(Γ) ` C true P

(Note that it is difficult to state the permutation principle in local rule form.)
Denying permutation (along with weakening and contraction) leads to ordered,

or noncommutative, logic. It is a powerful way to express ordered structures, like
lists or even formal grammars. In this course, we will always have the principle of
permutation, however.

3.1.4 Implication

With the entailment judgment in hand, we can give rules for implication.
Like conjunction, if A and B are well-formed propositions, then so is their

implication, which we write as A ⊃ B.
A prop B prop
A ⊃ B prop ⊃F

Once again, to give meaning to implication, we must say how to introduce the
judgment A ⊃ B true. To prove A ⊃ B true, we assume A true and prove B true.

A true ` B true
A ⊃ B true ⊃I
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In this way, implication internalizes the entailment judgment as a proposition, while
we nonetheless maintain the distinction between propositions and judgments. (As
an aside for those familiar with category theory, the relationship between entailment
and implication is analogous to the relationship between a mapping and a collection
of mappings internalized as an object in some categories.)

This introduction rule for implication is the key distinction between Gentzen-
style natural deduction calculus and a Hilbert-style axiomatic calculus. In a Hilbert
presentation of IPL, there is no separate notion of entailment, making it difficult
to reason hypothetically. Instead, one must contort proofs to make use of several
seemingly unmotivated axioms about implication.

Thankfully, we will work with natural deduction and be able to reason hypotheti-
cally using the introduction rule. But what does the elimination rule for A ⊃ B look
like? Because every proof of A ⊃ B true ultimately introduces that judgment from a
proof of the entailment A true ` B true, we might like to write the elimination rule as

A ⊃ B true
A true ` B true .

This is a valid principle of reasoning, but it turns out to be useful to instead adopt
an uncurried form as the actual elimination rule:

A ⊃ B true A true
B true ⊃E

.

This rule is sometimes referred to as modus ponens.

Internal coherence. These introduction and elimination rules are coherent. The
elimination rule is strong enough to recover the entailment that any proof of A ⊃ Btrue
ultimately uses in introduction, as the following derivation shows.

A ⊃ B true
A true ` A ⊃ B true W

A true ` A true R
A true ` B true ⊃E

On the other hand, the elimination rule is not too strong because it is just an
uncurrying of the inverted introduction rule.

DeYoung and Balzer 2013/09/09 and 2013/09/11 9



Homotopy Type Theory

3.2 Positive fragment of IPL
3.2.1 Disjunction

As for conjunction and implication, the disjunction, A∨B, of A and B is a well-formed
proposition if both A and B are themselves well-formed propositions.

A prop B prop
A ∨B prop ∨F

A disjunction A ∨B may be introduced in either of two ways: A ∨B is true if A
is true or if B is true.

A true
A ∨B true ∨I1

B true
A ∨B true ∨I2

To devise the elimination rule, consider what may we deduce from the knowledge
that A ∨B is true. For A ∨B to be true, it must have been ultimately introduced
using one of the two introduction rules. Therefore, either A or B is true (or possibly
both). The elimination rule allows us to reason by these two cases: If C true follows
from A true and also follows from B true, then C is true in either case.

A ∨B true A true ` C true B true ` C true
C true ∨E

3.2.2 Falsehood

The unit of disjunction is falsehood, the proposition that is trivially never true, which
we write as ⊥. Its formation rule is immediate evidence that ⊥ is a well-formed
proposition.

⊥ prop ⊥F

Because ⊥ should never be true, it has no introduction rule. The elimination
rule captures ex falso quodlibet: from a proof of ⊥ true, we may deduce that any
proposition C is true because there is ultimately no way to introduce ⊥ true.

⊥ true
C true ⊥E

Once again, the rules cohere. The elimination rule is very strong, but remains
justified due to the absence of any introduction rule for falsehood.
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The nullary disjunction. We previously noted that > behaves as a nullary con-
junction. In the same way, ⊥ behaves as a nullary disjunction. For a binary disjunction,
there are two introduction rules, ∨I1 and ∨I2, one for each of the two disjuncts; for
falsehood, there are no introduction rules:

A true
A ∨B true ∨I1

B true
A ∨B true ∨I2 (no ⊥I rule)

Likewise, for a binary disjunction, there is one elimination rule with a premise for
the disjunction and one premise for each of the disjuncts; for falsehood, there is one
elimination rule with just a premise for falsehood:

A ∨B true A true ` C true B true ` C true
C true ∨E ⊥ true

C true ⊥E

4 Order-theoretic formulation of IPL
It is also possible to give an order-theoretic formulation of IPL because entailment
is a preorder (reflexive and transitive). We want A ≤ B to hold exactly when
A true ` B true. We can therefore devise the order-theoretic formulation with these
soundness and completeness goals in mind.

4.1 Conjunction as meet
The elimination rules for conjunction (along with reflexivity of entailment) ensure
that A ∧ B true ` A true and A ∧ B true ` B true. To ensure completeness of the
order-theoretic formulation, we include the rules

A ∧B ≤ A A ∧B ≤ B ,

which say that A ∧B is a lower bound of A and B.
The introduction rule for conjunction ensures that C true ` A ∧ B true if both

C true ` A true and C true ` B true. Order-theoretically, this is expressed as the rule

C ≤ A C ≤ B
C ≤ A ∧B ,

which says that A ∧ B is as large as any lower bound of A and B. Taken together
these rules show that A ∧B is the greatest lower bound, or meet, of A and B.
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Graphically, these order-theoretic rules can be represented with a commuting
product diagram, where arrows point from smaller to larger elements:

C

A ∧B

A B

4.2 Truth as greatest element
The introduction rule for > ensures that C true ` > true. Order-theoretically, we have

C ≤ > ,

which says that > is the greatest, or final, element.
In the proof-theoretic formulation of IPL, we saw that truth > is the nullary

conjunction. We should expect this analogy to hold in the order-theoretic formulation
of IPL as well, and it does—the greatest element is indeed the greatest lower bound
of the empty set.

4.3 Disjunction as join
The introduction rules for disjunction (along with reflexivity of entailment) ensure
that A true ` A ∨ B true and B true ` A ∨ B true. To ensure completeness of the
order-theoretic formulation, we include the rules

A ≤ A ∨B B ≤ A ∨B ,

which say that A ∨B is an upper bound of A and B.
The elimination rule for disjunction (along with reflexivity of entailment) ensures

that A∨B true ` C true if both Atrue ` C true and B true ` C true. Order-theoretically,
we have the corresponding rule

A ≤ C B ≤ C
A ∨B ≤ C ,

which says that A ∨B is as small as any upper bound of A and B. Taken together
these rules show that A ∨B is the least upper bound, or join, of A and B.
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Graphically, this is captured by a commuting coproduct diagram:

A B

A ∨B

C

4.4 Falsehood as least element
The elimination rule for falsehood (along with reflexivity of entailment) ensures that
⊥ true ` C true. The order-theoretic counterpart is the rule

⊥ ≤ C ,

which says that ⊥ is the least, or initial, element.
Once again, because we saw that falsehood is the nullary disjunction in the

proof-theoretic formulation, we should expect this analogy to carry over to the order-
theoretic formulation. Indeed, the least element is the least upper bound of the empty
set.

4.5 Order-theoretic IPL as lattice
As seen thus far, the order-theoretic formulation of IPL gives rise to a lattice as it
establishes a preorder with finite meets and joins. The definition of a lattice assumed
in this course may deviate from the one typically found in the literature, which
usually considers a lattice to be a partial order with finite meets and joins. In this
course, we deliberately ignore the property of antisymmetry. If we were to impose the
property of antisymmetry on the order defined by entailment, then we would need to
introduce equivalence classes of propositions, which requires associativity. As we will
see later in this course, the axiom of univalence provides an elegant way of dealing
with equivalence of propositions.

4.6 Implication as exponential
The elimination rule for implication (along with reflexivity of entailment) ensures
that A true, A ⊃ B true ` B true. For the order-theoretic formulation to be complete,
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we include the rule
A ∧ (A ⊃ B) ≤ B

The introduction rule for implication ensures that C true ` A ⊃ B true if
A true, C true ` B true. Once again, so that the order-theoretic formulation is
complete, we have

A ∧ C ≤ B
C ≤ A ⊃ B ,

Taken together, these rules show that A ⊃ B is the exponential of A and B.
As we have seen previously, the order-theoretic formulation of IPL gives rise to a

lattice. Now we have just seen that it also supports exponentials. As a result, the
order-theoretic formulation of IPL gives rise to a Heyting algebra. A Heyting algebra
is a lattice with exponentials. As we will see later in this course, the notion of a
Heyting algebra is fundamental in proving completeness of IPL. The proof also relies
on the notion of a complement in a lattice. The complement A of A in a lattice is
such that
1. > ≤ A ∨ A;
2. A ∧ A ≤ ⊥.
It follows that a complement, if present, is a suitable notion of negation, but negation,
defined via the exponential, is not necessarily a complement.
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Clive Newstead and Enoch Cheung
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Foreword
These will undergo substantial revision and expansion in the coming week.

Recall from last time that we can think of the judgement A true as meaning ‘A
has a proof’ and of A false as ‘A has a refutation’, or equivalently ‘¬A has a proof’.
These atomic judgements give rise to hypothetical judgements of the form

A1 true, A2 true, . . . , An true ` A true

The inference rules of intuitionistic propositional logic then give rise to the structure
of a Heyting algebra, called the Lindenbaum algebra.

1 Lindenbaum algebras
Recall that IPL has the structure of a preorder, where we declare A ≤ B if and only
if A true ` B true. Let T be some theory in intuitionistic propositional logic and
define a relation ' on the propositions in T by

A ' B if and only if A ≤ B and B ≤ A

The fact that ' is an equivalence relation follows from the more general fact if
(P,≤) is a preorder and a relation ≡ is defined on P by declaring p ≡ q if and only if
p ≤ q and q ≤ p, then ≡ is an equivalence relation on P .

Definition. The Lindenbaum algebra of T is defined to be the collection of '-
equivalence classes of propositions in T . Write A∗ = [A]'. The ordering on the
Lindenbaum algebra is inherited from ≤.
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Theorem. The judgement Γ ` A true holds if and only if Γ∗ ` A∗ holds in every
Heyting algebra.

Proof. Exercise.

2 Decidability and stability
Definition. A prop is decidable if and only if A ∨ ¬A true.

Decidability is what separates constructuve logic from classical logic: in classical
logic, every proposition is decidable (this is precisely the law of the excluded middle),
but in constructive logic, this is not so.

A sensible first question to ask might be: ‘do decidable propositions exist?’
Fortunately, the answer is affirmative.
• > and ⊥ are decidable propositions;
• We would expect m =N n to be a decidable proposition, where =N denotes equality

on the natural numbers;
• We would not expect x =R y to be a decidable proposition, where =R denotes

equality on the real numbers, because real numbers are not finite objects.

Definition. A prop is stable if and only if (¬¬A) ⊃ A true.

Again, in classical logic, every proposition is stable; in fact, the proposition
(¬¬A) ⊃ A true is often taken as an axiom of treatments of classical propositional
logic! A natural question to ask now is ‘do there exist unstable propositions?’ Consider
the following lemma.

Lemma. ¬¬(A ∨ ¬A) true

Proof. We must show ¬(A ∨ ¬A) ⊃ ⊥ true.
Suppose A true. We then have

A true
A ∨ ¬A true ∨I1 ¬(A ∨ ¬A) true

⊥

So in fact ¬A true. But then once again

¬A true
A ∨ ¬A true ∨I2 ¬(A ∨ ¬A true)

⊥
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Hence
¬(A ∨ ¬A) true ` ⊥
¬(A ∨ ¬A) ⊃ ⊥ true ⊃I

We can think of this lemma as saying that ‘the law of the excluded middle is
not refutable’. Presuming that there exist undecidable propositions, we obtain the
following corollary.

Corollary. In intuitionistic propositional logic, not every proposition is stable.

3 Disjunction property
A theory T has the disjunction property (DP) if T ` A ∨B implies T ` A or T ` B.

Theorem. In IPL, if ∅ ` A ∨B true then ∅ ` A true or ∅ ` B true.

Näıve attempt at proof. The idea is to perform induction on all possible derivations
∇ of ∅ ` A ∨ B true, with the hope that somewhere along the line we’ll find a
derivation of A true or of B true. Our induction hypothesis is that inside ∇ is enough
information to deduce either ∅ ` A true or ∅ ` B true.

Since ∅ ` A ∨ B true cannot be obtained by assumption or from the rules, ∧I,
⊃I or >I, we need only consider ∨I1, ∨I2 and the elimination rules.

If ∅ ` A ∨B true is obtained from ∨I1 then

∇
A true

∅ ` A ∨B true ∨I1

so there is a derivation ∇ of A true and we’re done. Likewise if ∅ ` A ∨ B true is
obtained from ∨I2 then there is a derivation of B true.

If ∅ ` A ∨B true is obtained from ⊃E then the deduction takes the form
∇1

∅ ` C ⊃ (A ∨B) true
∇2

∅ ` C true
∅ ` A ∨B true ⊃E

We (dubiously1) assume that ` C ⊃ (A∨B) true must have been derived in some way
from C true ` (A ∨ B) true. Suppose that this happens and that ∇′1 is a deduction

1In fact, this ‘dubious’ assumption is true in constructive logic.
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of C true ` (A ∨B) true. We can then ‘substitute’ ∇2 for all the occurrences of the
assumption C true appearing in ∇′1 to obtain a smaller derivation ∇3 of ∅ ` A∨B true.
Our induction hypothesis then gives us that inside ∇3 is enough information to deduce
∅ ` A true or ∅ ` B true.

A similar approach works (we hope) for ∧E, ∨E, and ⊥E, thus giving the
result.

4 Admissible properties
The sketch proof of the previous theorem relied on transitivity of `; namely, that the
following rule is true:

Γ, A true ` B true Γ ` A true
Γ ` B true T

This leads us naturally into a discussion of the structural properties of `.

Definition. A deduction rule is admissible (in IPL) if nothing changes when it is
added to the existing rules of IPL.

To be clear about which logical system we use, we may write `IPL to denote
deduction in IPL rather than in some new logical system.

The goal now is to prove that the structural rules for entailment (reflexivity,
transitivity, weakening, contraction, exchange) are admissible.

Theorem. The structural properties of `IPL are admissible.

Proof. R, C, X: Reflexivity, contraction and exchange are all primitive notions, in
that they follow instantly. For instance:

Γ ` A true
Γ ` A ∧ A true ∧I

Γ ` A true ∧E1

so if we were to introduce
Γ ` A true
Γ ` A true R

as a new rule, then nothing would change. (Likewise for contraction and exchange.)

C. Newstead, E. Cheung 2013/09/16, 2013/09/18 4



Homotopy Type Theory

W: For weakening we use the fact that the structural rules are polymorphic in Γ.
We can thus prove that weakening is admissible by induction: if the following rules
are admissible

Γ ` B1 true
Γ, A true ` B1 true and

Γ ` B2 true
Γ, A true ` B2 true

then we obtain
Γ ` B1 ∧B2 true

Γ ` B1 true ∧E1

Γ, A true ` B1 true Ind

Γ ` B1 ∧B2 true
Γ ` B2 true ∧E2

Γ, A true ` B2 true Ind

Γ, A true ` B1 ∧B2 true ∧I

Likewise for the other introduction rules.
T: The admissibility of transitivity is left as an exercise.

5 Proof Terms
We wish to study propositions along with their proof as mathematical objects. In the
type theoretic framework, we can use the notation M : A where A is a proposition
and M is a proof of A. We will see that this corresponds to the category theoretic
notion of a mapping M : A→ B. Another important notion is the identity of proofs,
which will be denoted M ≡ N : A where M,N are equivalent proofs of A. This will
correspond in the category theoretic contex to two maps from A to B being equal
M = N : A→ B.

5.1 Proof Terms as Variables
We can combine the idea of keeping track of proofs with our previous notion of
entailment. If A1, . . . , An entails A, meaning that A1, . . . , An ` A, there will be a
proof M of A that uses the propositions A1, . . . , An. Thus, we will write

x1 : A1, . . . , xn : An `M : A

where each xi : Ai is a proof term. We can think of the proof terms x1, . . . , xn as
hypothesise for the proof, but what we really want is for them to behave as variables.
M then uses the variables x1, . . . , xn to prove A, so M would encapsulate the grammar
a proof that uses variables x1, . . . , xn.

Instead of proving a proposition A from nothing, most of the time A will rely on
other propositions A1, . . . , An.
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5.2 Structural Properties of Entailment with Proof Terms
Now that we have proof terms, we can see how they act as variables by examining
their interaction with the structural properties of entailment. We will also keep track
of other assumptions/context Γ,Γ′ to demonstrate that the structural properties will
hold in the presence of assumptions.

Reflexivity / Variables Rule Reflexivity tells us that A should entail A, so now
that we have a variable x : A that proves A, the variable should be carried through.
We can think of this as the variables rule.

Γ, x : A,Γ′ ` x : A R/V

Transitivity / Substitution Transitivity tells us that if A is true and B follows
from A, then B is true. In terms of proofs, if we have a proof M : A and a proof
N : B which uses a variable x that is supposed to prove A, then we can substitute
the proof M : A into N : B to prove B. Since we are substituting M into x inside N ,
we denote this substitution [M/x]N : B.

Γ, x : A,Γ′ ` N : B Γ `M : A
Γ,Γ′ ` [M/x]N : B T/S

Weakening
Γ `M : A

Γ,Γ′ `M : A W

Contraction If N : B follows from A using two different proofs x : A, y : A for A,
we can just pick one z = x or z = y as the proof of z : A and use it in the instances
of variables x, y in N : B

Γ, x : A, y : A,Γ′ ` N : B
Γ, z : A,Γ′ ` [z, z/x, y]N : B C

Exchange
Γ, x : A, y : B,Γ′ ` N : C
Γ, y : B, x : A,Γ′ ` N : C X
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5.3 Negative Fragment of IPL with Proof Terms
We want to look at what happens to the Negative Fragment of IPL when we consider
proof terms. Here are the important ones:

Truth Introduction Truth is trivially true, so we have

Γ ` 〈 〉 : > >I

Conjunction Introduction We combine the proofs M : A and N : B into 〈M,N〉 :
A ∧B

Γ `M : A Γ ` N : B
Γ ` 〈M,N〉 : A ∧B ∧I

Conjunction Elimination We can recover from a proof M : A ∧ B proofs of A
and B

Γ `M : A ∧B
Γ ` fst(M) : A ∧E1

Γ `M : A ∧B
Γ ` snd(M) : B ∧E2

Implication Introduction If we have a proof M : B that uses x : A as a variable,
then we can consider λx.M as a function that maps x a variable to a proof of B that
uses x, which proves that A ⊃ B

Γ, x : A `M : B
Γ ` λx.M : A ⊃ B

⊃I

Implication Elimination By applying an actual proof N : A to the function
described above, we obtain a proof M(N) : B

Γ `M : A ⊃ B Γ ` N : A
Γ `M(N) : B ⊃E

6 Identity of Proofs

6.1 Definitional Equality
We want to think about when two proofs M : A and M ′ : A are the same. We
will introduce an equivalence relation called definitional equality that respects the
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proof rules, denoted M ≡ M ′ : A. We want definitional equality ≡ to be the least
congruence containing (closed under) the β rules. We will define what this means:

A congruence is an equivalence relation that respects our operators. Being an
equivalence relation that it is reflexive (M ≡ M : A), symmetric (M ≡ N : A
implies that N ≡M : A), and transitive (M ≡ N : A and N ≡M ′ : A implies that
M ≡M ′ : A).

For the equivalence relation to respect our operators basically means that if
M ≡ M ′ : A, then that their image under any operator should be equivalent. In
other words, we should be able to replace M with M ′ everywhere. For example

Γ `M ≡M ′ : A ∧B
Γ ` fst(M) ≡ fst(M ′) : A

There can be many congruences that contains the β rules. Given two congruences
≡ and ≡′, we say ≡ is finer than ≡′ if M ≡′ N : A implies that M ≡ N : A. The
least congruence that contains the proof rules is the finest congruence that contains
the β rules. We will define the β rules in the next section.

We will give a more explicit definition to definitional equality later.

6.2 Gentzen’s Inversion Principle
Gentzen’s Inversion Principle captures the idea that “elim is post-inverse to intro,”
which is the informal notion that the elimination rules should cancel the introduction
rules, modulo definitional equality. The following are the β rules for the negative
fragment of IPL:

Conjunction When we introduce a conjunction, we combine proofs M : A and
N : B to produce a proof 〈M,N〉 : A ∧ B. When we eliminate a conjunction, we
retrieve M : A or N : B. We do not want this process to alter our original M or N

Γ `M : A Γ ` N : B
Γ ` fst(〈M,N〉) ≡M : A β∧1

Γ `M : A Γ ` N : B
Γ ` snd(〈M,N〉) ≡ N : B β∧2

Implication When we introduce an implication, we convert a proof M : B which
uses some variable x : A to a function which uses a variable x to produce a proof of
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B. When we eliminate implication, we apply the proof of A ⊃ B to N : A to produce
a proof of B.

Γ, x : A `M : B Γ ` N : A
Γ ` (λx.M)(N) ≡ [N/x]M : B β⊃

6.3 Gentzen’s Unicity Principle
Gentzen’s Unicity Princples on the other hand captures the idea that “intro is post-
inverse to elim.” Another way to think about it is that there should be only one
way modulo definitional equivalence to prove something, which is the way we have
described. They are the η rules, which are the following

Truth
Γ `M : >

Γ `M ≡ 〈 〉 : > η>

Conjunction
Γ `M : A ∧B

Γ `M ≡ 〈fst(M), snd(M)〉 : A ∧B
η∧

Implication
M : A ⊃ B

Γ `M ≡ λx.Mx : A ⊃ B
η⊃

7 Proposition as Types
There is a correspondence between propositions and types:

Propositions Types
> 1

A ∧B A×B
A ⊃ B function A→ B or BA

⊥ 0
A ∨B A+B

For now, note that meets like > and A ∧ B correspond to products like 1 and
A×B, and joins like ⊥ and A ∨B correspond to coproducts like 0 and A+B. This
correspondence should become more apparent as we go along. We will now introduce
the objects on the right column.
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8 Category Theoretic Approach
In a Heyting Algebra, we have a preorder A ≤ B when A implies B. However, we
now wish to keep track of proofs, so if M is a proof from A to B, we want to think of
it as a map M : A→ B.

Identity There should be an identity map

id : A→ A

Composition We should be able to compose maps

f : A→ B g : B → C

g ◦ f : A→ C

Coherence Conditions The identity map and composition of maps should behave
like functions

idB ◦f = f : A→ B

f ◦ idA = f : A→ B

h ◦ (g ◦ f) = (h ◦ g) ◦ f : A→ D

Now we can think about objects in the category that corresponds to propostions
given in the correspondence.

Terminal Object 1 is the terminal object, also called the final object, which
corresponds to >. For any object A there is a unique map A→ 1. This corresponds
to > being the the greatest object in a Heyting Algebra, meaning that for all A,
A ≤ 1.

Existence:
〈 〉 : A→ 1

Uniqueness:
M : A→ 1

M = 〈 〉 : A→ 1 η>
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Product For any objects A and B there is an object C = A×B that is the product
of A and B, which corresponds to the join A ∧ B. The product A × B has the
following universal property:

D

A×B

A B

M N
〈M,N〉

fst snd

where the diagram commutes.
First, the existence condition means that there are maps

fst : A×B → A

snd : A×B → B

The universal property says that for every object D such that M : D → A and
N : D → B, there exists a unique map 〈M,N〉 : D → A×B such that

M : D → A N : D → B
〈M,N〉 : D → A×B

and the diagram communtes meaning

fst ◦〈M,N〉 = M : D → A (β×1)
snd ◦〈M,N〉 = N : D → B (β×2)

Furthermore, the map 〈M,N〉 : D → A×B is unique in the sense that

P : D → A×B fst ◦P = M : D → A snd ◦P = N : D → B
P = 〈M,N〉 : D → A×B

η×

so in other words 〈fst ◦P, snd ◦P 〉 = P .
Another way to say the above is

〈fst, snd〉 = id
〈M,N〉 ◦ P = 〈M ◦ P,N ◦ P 〉
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Exponentials Given objects A and B, an exponential BA (which corresponds to
A ⊃ B) is an object with the following universal property:

C C × A

BA BA × A B

λ(h) hλ(h)×idA

ap

such that the diagram commutes.
This means that there exists a map ap : BA × A → B (application map) that

corresponds to implication elimination.
The universal property is that for all objects C that have a map h : C × A→ B,

there exists a unique map λ(h) : C → BA such that

ap ◦(λ(h)× idA) = h : C × A→ B

This means that the diagram commutes. Another way to express the induced map is
λ(h)× idA = 〈λ(h) ◦ fst, snd〉.

The map λ(h) : C → BA is unique, meaning that

ap ◦(g × idA) = h : C × A→ B

g = λ(h) : C → BA
η

References
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Week 3 Lecture Notes

Enoch Cheung and Clive Newstead

9/30/2013 and 10/2/2013

1 The β and η Rules

1.1 Gentzen’s Inversion Principles (β rules)

Recall the β rules:

∧1 : fst〈M,N〉 ≡M

∧2 : snd〈M,N〉 ≡ N

⊃1 : (λx.M)(N) ≡ [N/x]M

∨1 : case(inl(M);x.P, y.Q) ≡ [M/x]P

∨2 : case(inr(M);x.P, y.Q) ≡ [M/y]Q

The β rules can be expressed very compactly, and tells us that elimination rules
should “cancel out” introduction rules. The notation used here is inl(x) (inject left)
to mean using the proof x to prove A to prove A ∨ B, and inr(x) (inject right) to
mean using the proof x to prove B to prove A∨B. case(x, y, z) means “if x, then y,
else z.” This also expresses the idea of dynamics of proofs, meaning that proofs can
be viewed as programs.

1.2 Gentzen’s Unicity Principles (η rules)

Recall the η rules we have given so far:

Truth
Γ `M : >

Γ `M ≡ 〈 〉 : > η>

1



1.2 Gentzen’s Unicity Principles (η rules) 1 THE β AND η RULES

Conjunction
Γ `M : A ∧B

Γ `M ≡ 〈fst(M), snd(N)〉 : A ∧B
η∧

Implication
M : A ⊃ B

Γ `M ≡ λx.Mx : A ⊃ B
η⊃

The η rules on the other hand takes a little bit more to write out, and expresses
uniqueness (up to equivalence) of proofs of certain types.

The η conjunction rule can be expressed another way:

Γ `M : A ∧B Γ ` fst(M) ≡ P : A Γ ` snd(M) ≡ Q : B

Γ ` 〈P,Q〉 ≡M : A ∧B
η∧

This time we give equivalent proof terms P,Q to fst(M) and snd(N). This corre-
sponds to the product diagram (where A ∧B corresponds to the product A×B):

C

A×B

A B

(β)

P Q

(β)

〈P,Q〉

fst snd

which says that given any object C with maps P : C → A and Q : C → B, there
exists a unique map 〈P,Q〉 : C → A × B such that the β rules make each cell
commute, meaning P ≡ fst(〈P,Q〉) and Q ≡ snd(〈P,Q〉).

The η rule, on the other hand, gives uniqueness of the 〈P,Q〉 map, expressed as

C

A×B

A B

(β)

P Q

(β)

(η)M 〈P,Q〉

fst snd
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1.3 η rule for Disjunction ∨ 1 THE β AND η RULES

where the η rule maks the center cell commute, meaning that given any map M :
C → A×B such that fst◦M ≡ P and snd◦M ≡ Q, we have M ≡ 〈P,Q〉, expressing
the uniqueness of the 〈P,Q〉 map.

While η rules gives the uniqueness of the product map, one can ask whether the
product object A × B is unique. In a Heyting algebra, we can show that if A ∧′ B
has the same properties (being a greatest lower bound of A and B) as A ∧B, then:

A ∧B ≤ A ∧′ B A ∧B ≥ A ∧′ B

If we think of them as objects, then we have maps F : A × B → A ×′ B and
G : A×B → A×′B such that F ◦G = id and G◦F = id, which gives A×B ∼= A×′B.
With the Univalence axiom, we identify equivalence things as being equal, so we can
say that A×B = A×′ B.

1.3 η rule for Disjunction ∨
We wish to give the η rule for ∨, but if we were to attempt to naively define it as we
did before for M : A∨B, then we might force M to be a proof of A or B, because a
proof of A also proves A∨B, but forcing proofs of A or a proof of B to be identified
with a proof of A ∨B would not make sense.

We will take inspiration from Shannon expansions, specifically the concept of
case analysing to give two different proofs. As a toy example, we consider a proof of
> ∨>

inl(〈 〉) = true

inr(〈 〉) = false

〈 〉 : > ∨>
case(M ;P,Q) = “if M then P else Q” : > ∨>

where we look at the variable M and decide to use P or Q (here P , Q does not have
an input because there is no data for proof of > anyways). The is an example of a
Binary Decision Diagram (BDD), because we are making a decision when examining
the variable M and branching to two cases.

In general, we can imagine a much bigger BDD which has many variables ex-
amined sequentially, and look at the Shannon expansion at some variable M in the
middle. The idea here is that M = true and M = false will lead to two different
subtrees. We write

[M/z]P ≡ if M then [true/z]P else [false/z]P
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1.4 Coproduct 1 THE β AND η RULES

where when we look at the variable M which P uses, there are two cases: the case
where M is true, which gives [true/z]P and the case where M is false which gives
[false/z]P . The point is that [true/z]P and [false/z]P do not have M as a variable,
so M is fixed at a value.

Another notation for this is

Pz ≡ if z then [true/z]P else [false/z]P

To write the η rule for ∨, we will describe what happens when a proof P : C uses
a proof term z : A ∨ B, meaning that the C follows from A ∨ B. Now suppose we
have a proof M : A∨B, and we want to look at what happens when we make P : C
include M : A ∨B by doing the substitution [M/z]P : C.

Γ `M : A ∨B Γ, z : A ∨B ` P : C

Γ ` [M/z]P ≡ case(M ;x.[inl(x)/z]P, y.[inr(y)/z]P ) : C
η∨

This can be thought of as a “generalized Shannon expansion,” where the Shannon
expansion can be recovered as a special case

M ≡ case(M ;x.inl(x); y.inr(y))

1.4 Coproduct

In the category theoretical view, the disjunction A∨B corresponds to the coproduct
A+B, with inl : A→ A+B and inr : B → A+B being the canonical injections.

To give some intuitions about the coproduct, if we were in the category of sets,
we can think of A + B = A t B = ({0} × A) ∪ ({1} × B) as a disjoint union, then
inl, inr would be the canonical embeddings inl : a 7→ (0, a) and inr : b 7→ (1, b). If
A,B are already disjoint, then we can let A + B = A ∪ B and inl, inr would be the
inclusion maps inl : a 7→ a and inr : b 7→ b.

The β rule for ∨ gives the following commutative diagram:

A B

A+B

C

inl

(β)

P

inr

Q

(β)

{P,Q}
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1.5 Definitional equality vs. Propositional equality 1 THE β AND η RULES

Where given any object C with maps P : A → C and Q : B → C, there exists
a unique map {P,Q} : A + B → C that is the copair of maps P,Q, which in our
context corresponds to

{P,Q} ≈ case(−;x.P, y.Q)

The β rule makes the diagram commute, meaning that the composition of maps
P ≡ {P,Q} ◦ inl and Q ≡ {P,Q} ◦ inr. Written another way:

case(inl(−);x.P, y.Q) ≡ [−/x]P

case(inr(−);x.P, y.Q) ≡ [−/x]Q

The η rule expresses uniqueness, which is demonstrated by the following diagram

A B

A+B

C

inl

(β)

P

inr

Q

(β)

(η)M {P,Q}

where given a map M : A+B → C such that M ◦ inl ≡ P and M ◦ inr ≡ Q, the map
is in fact equivalent to M ≡ {P,Q}, so the η rule makes the center cell commute.

Just as we have done for η∧, we can rewrite the η∨ rule by explicitly naming
P : Q→ C and Q : B → C as follows

Γ, z : A+B `M : C
Γ, x : A ` [inl(x)/z]M ≡ P : C
Γ, y : B ` [inr(y)/z]M ≡ Q : C

Γ, z : A+B `M ≡ case(z;x.P, y.Q) : C
η∨

1.5 Definitional equality vs. Propositional equality

Our different treatments of β rules and η rules above suggests that there is something
fundamentally different between equivalence given by β rules and equivalence given
by η rules. Indeed, there is a distinction which we will make more clear later. For
now, note that

β rules Analytical (“self-evident”) Definitional equality
η rules Synthetic (“require proof”) Propositional equality
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2 NATURAL NUMBERS

The β rules can be thought of as self-evident, or analytical, because it just says
that our notation such as fst, snd, 〈−,−〉, inl, inr, case should behave the way we expect
them to. On the other hand, the η rules are not so obvious, and expresses the
equivalence of two things that behaves the same way, so they are synthetic, or requires
proof instead of being self-evident.

The notion of equality produced by β rules is called definitional equality, or
judgemental equality, which is more basic. The notion of equality produced by η
rules is called propositional equality, which has to be expressed by a type (so it is
typical).

2 Natural numbers

We’d like to capture the idea of definition by recursion. We will do so in two ways.
First we will implement the natural numbers syntactically as a type, denoted Nat—
it is a ubiquitous example of an inductively defined type. Then we will implement
the natural numbers in a category theoretic context, as a so-called natural numbers
object (NNO), denoted N.

2.1 Syntactic definition: Nat

The type Nat has two introduction rules:

Γ ` 0 : Nat
Nat-I0,

Γ `M : Nat
Γ ` s(M) : Nat

Nat-Is

and one elimination rule, which can be thought of as a for loop or a recursion:

Γ `M : Nat Γ ` P : A Γ, x : A ` Q : A

Γ ` rec(P, x.Q)(M) : A
Nat-E

We call rec the recursor.
We can think of 0 as being zero and s as being the successor operation, which

takes a natural number n to its successor n+ 1.
The β-rules for Nat are what they ‘should be’:

Γ ` P : A Γ ` Q : A

Γ ` rec(P,Q)(0) ≡ P : A
β-Nat0

Γ ` P : A Γ ` Q : A

Γ ` rec(P,Q)(s(M)) ≡ [rec(P,Q)(M)/x]Q : A
β-Nats
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2.2 Category theoretic definition: NNO 2 NATURAL NUMBERS

The η-rule for the NNO is somewhat ugly:

Γ, z : Nat `M : A Γ, z : Nat ` [s(z)/z]M ≡ [M/x]Q Γ ` [0/z]M ≡ P : A

Γ, z : Nat `M ≡ rec(P,Q)(z) : A
η-Nat

It says that ‘if something behaves like the recursor, then it is the recursor’.
Given n ∈ N, define the numeral n̄ = s(s(· · · s︸ ︷︷ ︸

n times

(0) · · · )). With a slight abuse of

notation, the β then tells us that

rec(P,Q)(n̄) ≡ Q(Q(· · ·Q︸ ︷︷ ︸
n times

(P ) · · · ))

That is, rec(P,Q)(0) ≡ P and rec(P,Q)(n+ 1) ≡ Q(rec(P,Q)(n̄)). This is precisely
a definition by recursion.

A special case of this is when P = 0 and Q is the successor operation. Then

z : Nat ` rec(0, s.s(y))(z) ≡ z : Nat

This is what we’d expect: if you apply the successor operation to 0 n times then
what you obtain is n.

2.2 Category theoretic definition: NNO

Fix a category C and suppose that C has a terminal object 1. A natural numbers
object in C is an object N equipped with arrows 0 : 1 → C and s : C → C satisfying
the following univeral property:

1 N N

A A

0

P

s

∃!r ∃!r

Q

That is, given any morphism P : 1 → A and Q : A → A there exists a unique
morphism r = rec(P,Q) : N→ A such that

rec(P,Q) ◦ 0 = P and rec(P,Q) ◦ s = Q ◦ rec(P,Q)

These two equations correspond precisely with the β rules for Nat.
The η rule corresponds with the uniqueness: if M : N→ A satisfies M ◦s = Q◦M

and M ◦ 0 = P then M = rec(P,Q).
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2.2 Category theoretic definition: NNO 2 NATURAL NUMBERS

Concrete example

In the category of sets, take N to be the set of natural numbers. The terminal object
is any singleton {∗}, and we can define 0 : {∗} → N by 0(∗) = 0 ∈ N and s : N→ N
by s(n) = n+ 1. Then the triple (N, 0, s) defines a natural numbers object: if P ∈ A
and Q : A→ A then we can define rec(P,Q) : N→ A by

rec(P,Q)(0) = P and rec(P,Q)(n+ 1) = Q(rec(P,Q)(n))

It is then clear that the above diagram commutes, and we can prove that rec(P,Q)
is the unique such function by induction on its argument.

NNO as an initial algebra

There is an equivalent definition of a natural numbers object as an initial algebra.
Given an endofunctor (i.e. a functor F from a category C to itself), an F -algebra is

a pair (A,α), where A is an object in the category and α : F (A)→ A is a morphism.
A homomorphism of F -algebras f : (A,α)→ (B, β) is a map f : A→ B making

the following square commute:

F (A) F (B)

A B

F (f)

α β

f

That is, f respects α and β in the only way it can.
An initial F -algebra is an F -algebra (I, ι) such that given any other F -algebra

(A,α) there exists a unique F -algebra homomorphism (I, ι)→ (A,α).
With these definitions in mind, a natural numbers object is precisely an initial

F -algebra, where F is the functor 1 + (−).
To see how this functor acts on morphisms, consider the more general scenario

of having morphisms f : A→ A′ and g : B → B′. Then we have morphisms

inl ◦ f : A→ A′ +B′ and inr ◦ g : B → A′ +B′

Then the universal property of the coproduct gives rise to a map

f + g = {inl ◦ f, inr ◦ g} : A+B → A′ +B′

What this means more concretely is as follows. A natural numbers object is an
object N equipped with a morphism {0, s} : 1+N→ N such that if {P,Q} : 1+A→ A
is another morphism then there is a unique morphism rec(P,Q) : N → A such that
{P,Q} ◦ (1 + rec(P,Q)) = rec(P,Q) ◦ {0, s}.
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3 INTENSIONAL AND EXTENSIONAL EQUALITY

3 Intensional and extensional equality

We can implement addition by

p = λxλy rec(x, z.s(z))(y)

Given numerals m̄ and n̄ it is clear that p m̄ n̄ = m+ n, so this definition does
implement +.

We could have recursed on x instead of y. Indeed, we can define q = λxλy pyx.
Again we can prove that q m̄ n̄ = m+ n, so q is another implementation of

addition.
Despite this fact, we will not in general be able to prove

x : Nat, y : Nat ` pxy ≡ qxy

This seems odd: for every m,n ∈ N (in the ‘real world’) we can prove that p m̄ n̄ =
q m̄ n̄. If we had a principle of induction then we’d be able to deduce that pxy = qxy
generically. However, we have no such principle!

Morally this should not be the case: that is, p and q are not definitionally equal.
This illustrates the distinction between intensional equality (a.k.a. definitional equal-
ity) and extensional equality. This distinction is very important in computer science
and philosophy: it captures the idea of two programmes having the same input–
output behaviour but different algorithms.

Extensional equality. We can think of the extension of a function as being
its graph, i.e. a set of ordered pairs of the form (input, output). Two programmes
may have the same input/output behaviour without being the same programme. In
Frege’s terminology, two types are extensionally equal if they have the same reference.

We cannot expect extensional equality to be computable; for instance, extensional
equality of elements of type (N → N) → (N → N) already has high quantifier
complexity.

Intensional equality. We can think of the intension of a function as being its
description, or an algorithm that computes the function. Thus two functions that
are intensionally equal must be extensionally equal, but the converse is not true.
Intensional equality is synthetic. In Frege’s terminology, two types are intensionally
equal if they have the same sense.

3.1 Equality in type theory

Recall Martin–Löf’s distinction between judgements and propositions. With this in
mind:
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3.1 Equality in type theory3 INTENSIONAL AND EXTENSIONAL EQUALITY

• Intensional equality is an inductively defined judgement;
• Extensional equality is a proposition: it may be subject to judgement.
For example, the following is a proposition:

pxy =Nat qxy

It requires proof. We will attempt to develop a way of saying that, to prove this, it
is sufficient to prove for each m,n ∈ N that p m̄ n̄ = q m̄ n̄.

Under our propositions-as-types correspondence, we conclude that extensional
equality ‘is’ a family of types. For instance,

x : Nat, y : Nat ` x =Nat y type (1)

We’ll write the type x =Nat y as IdNat(x, y) to emphasise that we really want to think
of it as a type and not a proposition.

Instantiating by substitution from 1 gives

Γ `M : Nat Γ ` N : Nat
Γ ` IdNat(M,N) type

But we needn’t stop at Nat; we may replace it by an arbitrary type A (which may
itself—usefully—be an identity type!). For instance, given x : Nat we may obtain a
new type Seq(x), which can be thought of as the sequences of Nats of length x:

Γ ` x : Nat
Γ ` Seq(x) : type

Observe the following fact: given m,n ∈ N, it is true that

Seq(p m̄ n̄) ≡ Seq(q m̄ n̄)

because p m̄ n̄ ≡ q m̄ n̄. However we cannot generalise to

Seq(pxy) ≡ Seq(qyx)

because Seq(pxy) and Seq(qyx) are not definitionally equivalent. But they are related
in some way. Later, we will come to define what we mean by ‘related’ here. A good
guess might be along the lines of ‘isomorphism’, but this will turn out to be far too
strong. What we need is some kind of ‘equivalence’. This equivalence will tie itself
to both the notion of a homotopy and that of a categorical equivalence.
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4 DEPENDENT TYPES: SETUP

4 Dependent types: setup

Dependent types are families of types. Atomic judgements are of the form

contexts / closed types: Γ ctx

Γ ≡ Γ′

open types / families of types: Γ ` A type

Γ ` A ≡ A′

elements of types: Γ `M : A

Γ `M ≡M ′ : A

The symbol ≡ denotes what we will interpret as definitional equality. We denote the
empty context by · when we need to. The introduction rules for contexts are:

· ctx
Γ ctx Γ ` A type

Γ, x : A ctx

Thus we have some notion of dependence; it allows us to make sense of expressions
like x : Nat, y : Seq(x) ` · · · , which was impossible before.

· ≡ · ctx
Γ ≡ Γ′ Γ ` A ≡ A′

Γ, x : A ≡ Γ′, x : A′

The following rule corresponds with reflexivity:

Γ, x : A,∆ ` x : A

The following rules (one for each judgement J) correspond with weakening:

Γ,∆ ` J Γ ` A type
Γ, x : A,∆ ` J

Exercise. What are the corresponding rules for exchange and contraction?
The following rule, called substitution or instantiation, corresponds with transi-

tivity:
Γ, x : A,∆ ` J Γ `M : A

Γ[M/x]∆ ` [M/x]J

The following rules together are called functionality

Γ, x : A,∆ ` N : B Γ `M ≡M ′ : A

Γ[M/x]∆ ` [M/x]N ≡ [M ′/x]N : [M/x]B

11



4 DEPENDENT TYPES: SETUP

Γ, x : A,∆ ` B type Γ `M ≡M ′ : A

Γ[M/x]∆ ` [M/x]B ≡ [M ′/x]B

Finally, the following rules are type equality, which tell us that definitionally equal
types classify the same things:

Γ `M : A Γ ` A ≡ A′

Γ `M : A′
Γ `M ≡M ′ : A Γ ` A ≡ A′

Γ `M ≡M ′ : A

Identity types

Given a type A and elements M : A and N : A we can form an identity type
IdA(M,N). The formation rule for Id is thus:

Γ ` A type Γ `M : A Γ ` N : A

Γ ` IdA(M,N)
Id-F

It will be useful in HoTT to consider the case when A is itself an identity type, i.e.
we have the type

IdIdA(A,B)(α, β)

This extends to any (finite) dimension.
We also have an Id-introduction rule, which tells us that any element M of a type

A is in some way ‘related’ to itself. Formally:

Γ ` A : M
Γ ` reflA(M) : IdA(M,M)

Id-I

Id-elimination will follow next week.
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Week 4 Lecture Notes

Jason Koenig

10/7/2013 and 10/9/2013

1 Dependent Types

1.1 Structural Foundation

Dependent types are families of types. Recall from last week the structural setup,
which differs from IPL in that we need to express dependency between terms and
types in the context and the preceeding terms. Atomic judgements are of the form

contexts / closed types: Γ ctx

Γ ≡ Γ′

open types / families of types: Γ ` A type

Γ ` A ≡ A′

elements of types: Γ `M : A

Γ `M ≡M ′ : A

The symbol ≡ denotes what we will interpret as definitional equality. We denote the
empty context by · when we need to. The introduction rules for contexts are:

· ctx
Γ ctx Γ ` A type

Γ, x : A ctx

Thus we have some notion of dependence; it allows us to make sense of expressions
like x : Nat, y : Seq(x) ` · · · , which was impossible before.

· ≡ · ctx
Γ ≡ Γ′ Γ ` A ≡ A′

Γ, x : A ≡ Γ′, x : A′

The following rule corresponds with reflexivity:

Γ, x : A,∆ ` x : A

1



1.2 Negative Dependent Types 1 DEPENDENT TYPES

The following rules (one for each judgement J) correspond with weakening:

Γ,∆ ` J Γ ` A type
Γ, x : A,∆ ` J

Exercise. What are the corresponding rules for exchange and contraction?
The following rule, called substitution or instantiation, corresponds with transi-

tivity:
Γ, x : A,∆ ` J Γ `M : A

Γ[M/x]∆ ` [M/x]J

The following rules together are called functionality

Γ, x : A,∆ ` N : B Γ `M ≡M ′ : A

Γ[M/x]∆ ` [M/x]N ≡ [M ′/x]N : [M/x]B

Γ, x : A,∆ ` B type Γ `M ≡M ′ : A

Γ[M/x]∆ ` [M/x]B ≡ [M ′/x]B

Finally, the following rules are type equality, which tell us that definitionally equal
types classify the same things:

Γ `M : A Γ ` A ≡ A′

Γ `M : A′
Γ `M ≡M ′ : A Γ ` A ≡ A′

Γ `M ≡M ′ : A′

1.2 Negative Dependent Types

In dependent type theory, the negative types need to be generalized to express de-
pendency. The type > does not change. There are new forms for ∧ and ∨, however:

IPL Type Dependent Type Quantifier
A ∧B A×B → Σx : A.B ∃x : A.B
A ⊃ B BA or A→ B → Πx : A.B ∀x : A.B

Before we present the rules governing these types, it is good to get some intuition
for what they represent. The dependent type Σx : A.B, called the sum, dependent
product, or sigma-type. Here unfortunately terminology becomes muddled, as Σ prop-
erly generalizes the product. The Σ type corresponds to (constructive) existential
quantification, ∃x : A.B.

The type Πx : A.B is called the dependent product (ambiguously with with
above), or pi-type. This generalizes functions from A → B in that the type of the
result of an application can depend on exactly which value the function is applied
to. This corresponds to universal quantification ∀x : A.B.
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1.2 Negative Dependent Types 1 DEPENDENT TYPES

Example: We can form complex types from these connectives and the families we
have seen. For example, we can form the type Πx : Nat.Σy : Nat.IdNat(y, succ(x)).
By the types-propositions correspondence, this is the proposition ∀x : Nat.∃y :
Nat.y =Nat succ(x), i.e. for every natural number, there is a successor. We can
think of the as inhabited by proofs that the proposition is true. We can also think of
elements of this type as terms which take a natural number x, and produce a term
which is a proof that that particular natural has a successor.

Example: A less logical example is the type Πx : Nat.Seq(x). This represents the
type of functions which result in a length n sequence when applied to the value n, as
one might do if “allocating” a sequence. This might be useful when programming, as
the type encodes more information about a value than a non-dependent type could.

One important aspect of the quantifier view of these types is that they generalize
classical logic in that they merge domains of quantification and proposition. In
classical logic, and especially first order logic, these are completely distinct. With
the identification of propositions and types, we can quantify not just over data (such
as Nat), but also over proofs of propositions by letting A be a “proposition”-ish type
like IdNat(x, y).

This identification of dependent types with quantifiers only holds if you take the
quantifiers as constructive. An element of type Σx : A.B consists of a pair 〈x, y〉
such that x is an witness of the existential, and y is a proof that that element means
the condition. A constructive existential requires there actually to be an explicit
element, which the proof must give on its own. This means one cannot use certain
kinds of proofs from classical logic. Some of these proofs roughly show: (∀x.P ) ⊃ ⊥,
so they conclude that ∃x.P , but nowhere in the proof can we actually find such an
x. Similarly, but less counterintuitively, a proof of an universal quantifier is a map
from elements to proofs for those specific elements, i.e. a function. We cannot prove
∀x.P by showing (∃x.P ) ⊃ ⊥.

The idea with constructivity is then that if you have proved (∀x.P ) ⊃ ⊥, then
just let that be the proof. Constructivity amounts to a certain carefulness, where
we avoid the classical convention that ¬∃ ⇐⇒ ∀ and ¬∀ ⇐⇒ ∃. By making this
distinction, we get not only the ability to regard proofs as programs, but also the
rich structure of HoTT, which would otherwise collapse.
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1.2 Negative Dependent Types 1 DEPENDENT TYPES

1.2.1 Pi-types

The formation and introduction rules for pi-types are:

Γ ` A type Γ, x : A ` B type
Γ ` Πx : A.B type

Π-F
Γ, x : A `M : B

Γ ` λx : M : Πx : A.B
Π-I

Note that the introduction form is almost the same except that x is bound when
forming the type B. The introduction rule is exactly the same as in IPL, except
that the type B depends on x like M does. This dependency of B motivates the
elimination rule:

Γ `M : Πx : A.B Γ ` N : A
Γ `MN : [N/x]B

Π-E

which is the same as IPL except for the substitution of N , the actual argument,
into the result type. Thus the result type can vary with the actual argument, which
cannot happen in regular type theory.

We also have the (β) and (η) rules:

(λx.M)N ≡ [N/x]M (β)

(λx.Mx) ≡M (η) (when x not free in M)

1.2.2 Sigma-types

The formation and introduction rules for sigma-types are:

Γ ` A type Γ, x : A ` B type
Γ ` Σx : A.B type

Σ-F
Γ `M : A Γ, x : A ` N : [M/x]B

Γ ` 〈M,N〉 : Σx : A.B
Σ-I

The addition here is that the second component can depend on the first. The elimi-
nation rules are what one expects, with the addition of the dependence of the type
of second component.

Γ `M : Σx : A.B
Γ ` fst(M) : A

Σ-E1
Γ `M : Σx : A.B

Γ ` snd(M) : [fst(M)/x]B
Σ-E2

The (β) and (η) rules are the familiar:

fst(〈M,N〉) ≡M (β1)

snd(〈M,N〉) ≡ N (β2)

〈fst(M), snd(M)〉 ≡M (η)
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1.3 Positive Dependent Types 1 DEPENDENT TYPES

1.3 Positive Dependent Types

With the positive types, the dependency does not affect the form of the types, but
rather their elimination forms. The issue arises because we need a “join point” in the
elimination. For example, C is the join point in the elimination of ∨ in IPL because
it needs to hold in both cases:

Γ, x : A ` N : C Γ, y : B ` P : C Γ `M : A+B

Γ ` case(M,x.N, y.P ) : C
∨-EIPL

In IPL, there is no issue with not making C dependent because types are fixed: there
is nothing that can vary about C in either branch. In dependent type theory, this is
no longer the case.

1.3.1 Sum Types

To motivate why we need dependency in C, we consider the sum (i.e. disjunction).
First we introduce the booleans, a simple case of the (+) type. Let us define the
boolean type 2 as 1 + 1, where 1 is the unit type, and the values tt = inl(〈〉) : 2 and
ff = inr(〈〉) : 2.

Consider the rather trivial proposition (written as a type) Πx : 2.(Id2(x,ff)) +
(Id2(x, tt)). In order to prove this, we need to perform a case analysis on x. In
particular, the proposition we actually prove is different in each case:
1. False case: prove (Id2(ff,ff)) + (Id2(ff, tt)) by left injection of reflexivity
2. True case: prove (Id2(tt,ff)) + (Id2(tt, tt)) by right injection of reflexivity.
We see than if we case analyze on x, then the actual proposition we need to prove
in each case is the goal we are trying to prove, specialized to the particular case we
are in. The following rule codifies this:

Γ, x : A ` N : [inl(x)/z]C Γ, y : B ` P : [inr(y)/z]C Γ `M : A+B Γ, z : A+B ` C type

Γ ` case[z.C](M,x.N, y.P ) : [M/z]C
∨-E

In the case(...) construct, the part [z.C] is called the motive, because it is the
motivation for performing the case analysis in the first place. What is different here
from IPL is that C is parametric in z : A + B. The reason that this is necessary is
that we need to be able to substitute the actual case we are analyzing (either inl or
inr) in each branch into the type, so that our proof can vary. The case analysis proves
C specialized to M , which is the term M flowing into the type C. The parametricity
in z allows this dependency.
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1.3 Positive Dependent Types 1 DEPENDENT TYPES

We can specialize this rule to the booleans, to obtain a new construct if:

Γ ` N : [tt /z]C Γ ` P : [ff /z]C Γ `M : 2 Γ, z : 2 ` C type

Γ ` if[z.C](M,N,P ) : [M/z]C
∨-E

where the terms N and P do not bind any variables because by (η), the variables in
the ∨-E rule are both just the null tuple, and thus don’t actually need to be bound.

This presentation seems justified in the logical interpretation, but in programming
it can lead to some unexpected results. In most programming languages, if(x, 17, tt)
would not be well typed, as the true branch has type Nat and the false branch has
type 2. With the tools of dependent type theory, however, we can give this term a
type. If we posit the existence of conditionals in the type level, which we have not
formalized yet, we can imagine the typing:

if(M, 17, tt) : if(M,Nat, 2)

for some suitable if construct at the type level, and noting that the “2” is a type name,
not s(s(z)). Even though the two branches have different simple types, if(M,Nat, 2)
represents a join point for the two expressions. In normal programming languages,
the join point type is not allowed to depend on any term, let alone the actual branch
that was taken. This example then seems ill-typed, but in fact 17 : if(tt,Nat, 2)
and tt : if(ff,Nat, 2), which are the critical premises in the ∨-E rule. This kind of
construct is important when encoding A+B using sigma types.

Finally, we can take some β and η rules as well, which mirror the non-dependent
case. Here we omit the motive as it plays no role in the rules:

case(inl(M), x.N, y.P ) ≡ [M/x]N β1

case(inr(M), x.N, y.P ) ≡ [M/y]P β2

case(M,x.[inl(x)/z]P, y.[inr(y)/z]P ) ≡ [M/z]P η

1.3.2 Natural Numbers

Like sum types, there is a relatively straightforward generalization of the elimination
rule for naturals in terms of a recursor augmented with a motive:

Γ `M : Nat Γ, z : Nat ` C type Γ ` N : [0/z]C Γ, x : Nat, y : [x/z]C ` P : [s(x)/z]C

Γ ` rec[z.C](M,N, x.y.P ) : [M/z]C
Nat-E

Just as in the sum case, we can interpret the recursor as a proof of C for the specific
natural M , given N which is a proof for zero and P which proves C for the successor
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of some natural. In Gödel’s T, we could show that omitting the variable x : Nat
was possible because in the presence of products we could add it if necessary. In this
formulation, however, the type of y is a proof of C for some natural, so we need to
give that natural a name to form the type.

We also have the (β) and (η) rules as expected:

rec[z.C](0, N, x.y.P ) ≡ N β1

rec[z.C](s(M), N, x.y.P ) ≡ [M, rec[z.C](M,N, x.y.P )/x, y]P β2

[0/w]M ≡ N [s(w)/w]M ≡ [w,M/x, y]P

M ≡ rec[z.C](w,N, x.y.P ) η

1.3.3 Sigma elimination

We can characterize the sigma type elimination without fst and snd using a “degen-
erate form” of pattern matching where we have only one case:

Γ `M : Σx : A.B Γ, z : Σx : A.B ` C type Γ, x : A, y : B ` P : [〈x, y〉 /z]C

Γ ` split[z.C](M,x.y.P ) : [M/z]C
Σ-E

We can take the following beta rule:

split[z.C](〈M1,M2〉 , x.y.P ) ≡ [M1,M2/x, y]P (β)

We leave as an exercise showing that one can implement split from fst and snd.
We can also show the converse, that fst and snd are definable in terms of split.

2 Identity Types

With this background, we can begin to talk meaningfully about the identity type.
We say that the type IdA(M,N) is the identity type of M and N in A, where A type,
M : A, and N : A. We can think of terms of this type as proofs that M and N are
equal as elements of A. Crucially, we need dependence to even form this type. The
formation rule is:

Γ ` A type Γ `M : A Γ ` N : A

Γ ` IdA(M,N) type
Id-F

This type may also be written M =A N . Confusingly, it may also be referred to
as “propositional equality,” to distinguish it from definitional equality. The simplest
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2.1 Identity Types as Equivalence Relations 2 IDENTITY TYPES

element of this type is a proof of reflexivity, which has the introduction rule:

Γ `M : A
Γ ` reflA(M) : IdA(M,M)

Id-I

The elimination rule is:

Γ ` P : IdA(M,N) Γ, x:A, y:A, z:IdA(x, y) ` C type Γ, x:A ` Q : [x, x, reflA(x)/x, y, z]C

Γ ` J[x.y.z.C](P, x.Q) : [M,N,P/x, y, z]C
Id-E

One way to think of the identity type for a particular A is as an inductively
generated family of types, where the induction is taken simultaneously over the two
terms and the proof that they are equal (corresponding to x, y, and z in the rule).
This view leads us to call the elimination rule path induction, where elements of
type Id are “paths.” Then M and N are the endpoints of this path. We call this an
induction because we can prove C for any two endpoints and proof of their equality if
we can prove C generically for some endpoint using Q. We need to consider a generic
x in Q because the whole family IdA is inductively generated at once, so we can’t
fix the endpoints M and N while proving the “inductive step.” Further, because we
only have one introduction rule, we can reason based on the fact that every path is
just reflexivity, so Q can make this assumption.

J also admits a β-like rule:

J[x.y.z.C](reflA(M);x.Q) ≡ [M/x]Q : [M,M, reflA(M)/x, y, z]C (β)

2.1 Identity Types as Equivalence Relations

If Id is supposed to be equality, then we would like it to satisfy the three condi-
tions of an equivalence relation: reflexivity, symmetry, and transitivity. Reflexivity
is already part of the definition, but the other two properties are not part of the
definition. We would like proofs that identity types satisfy these properties. Be-
cause we are working in a proof-relevant system, these proofs can also be viewed
as enriched functional programs. Symmetry states that x = y =⇒ y = x, so a
proof of symmetry is a simply map from IdA(x, y) to IdA(y, x). We can write the
type of such a map formally as Πx, y:A. IdA(x, y)→ IdA(y, x) (which is shorthand for
Πx, y:A.Πp:IdA(x, y). IdA(y, x)). A proof of symmetry is just a program which has
this type:

symA := λx:A.λy:A.λp:IdA(x, y).J[x.y.z.IdA(y, x)](p;x.reflA(x))

The construction of symmetry is a function (using three λ’s) whose body just imme-
diately invokes path induction. The motive just states the overall conclusion, and
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the proof Q is just the only way we have to generate elements of IdA. The reason
this proof is simple is any path is just reflexivity. The relation defined by the iden-
tity type is effectively the diagonal relation which only relates things to themselves,
about which it is easy to prove symmetry.

Transitivity is more involved. Here we have not one, but two equality proofs, but
J will only let us inspect one at a time. Like symmetry, we write transA as a map
from elements and proofs of their equality to another proof of equality:

transA :=λx, y, z:A. λu : IdA(x, y). λv:IdA(y, z).

(J[m.n.u. IdA(n, z)→ IdA(m, z)](u;m.λv.v))(v)

The way to understand this is that we need to inductively define a function, which
will show that if y is equal to z, then x is equal to z. Then we can apply this
function to the proof v, and obtain the desired result. For Q, we see that the motive
degenerates to IdA(m, z)→ IdA(m, z), so we can just write the identity function.

These specific proofs of symmetry and transitivity induce a kind of β-like behavior
for definitional equality. In particular, due to the β rule for J, we see that

symA(M)(M)(reflA(M)) ≡ reflA(M)

Further,
transA(X)(X)(Z)(reflA(X))(Q) ≡ Q

because the induction J is defined on u, and thus when u is a reflexivity the whole
J term reduces to the identity function. This definitional equivalence depends on
the how we proved transA. For example, a different proof might not make the
same equivalences, which can introduce dependencies between a proof and the exact
definition of its lemmas. From a programming perspective, this is anti-modular.

2.2 Simple Functionality

In addition being an equivalence relation, we might hope that maps respect equality.
Suppose we have a map F from A to B (so x:A ` F : B). In the non-dependent
case, B will not depend on x, so we can can ask for some term to satisfy:

x, y:A, u:IdA(x, y) ` : IdB(Fx, Fy)

We introduce the term apFu to be the lifting of F from a map between terms
to a map between paths. ap may also be known as the “functorial action.” We can
define ap using a path induction as:

ap F u := J[x.y..IdB(Fx, Fy)](u;x.reflB(Fx))

9
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2.3 Transportation

If we have a dependent map, then the above is no longer sufficient. In this case,
we have that z:A ` B type and x:A ` F : B as before. Crucially different is that
B may depend on x, so Fx and Fy won’t even necessarily have the same type!
Thus we can’t even form IdB(Fx, Fy). If x :≡ y, then we would know that the two
destination types are the same by substitution, but we only have that x is equal to
y propositionally. We would expect that B[x] and B[y] to be related in some way, as
but we do not go as far as to say the two spaces are the same.

What we will do is say that if two elements x and y have a path p in A between x
and y (i.e. p : IdA(x, y)), then there is a lifting of this path, p∗, to act as a transport
map between [x/z]B and [y/z]B. Here A is the “base space,” and all B taken over
every element of A is known as the “total space.” B for some z is known as a fiber.

We introduce the transport tr, with the following specification:

x, y:A, p:IdA(x, y) ` tr[z.B](p) : [x/z]B → [y/z]B

Informally, this says that a transport, which is specified by a total space (z.B) and
a path p, takes elements from the fiber associated with the start of the path to the
end-of-path fiber. We can define transport to be:

tr[z.B](p) := J[m.n. .[m/z]B → [n/z]B](p;m.λw.w)

Because the motive is [m/z]B → [n/z]B, we can use the identity function inside J as
them motive will become [m/z]B → [m/z]B. Outside, however, because p : IdA(x, y),
this will become [x/z]B → [y/z]B. The intuition here is that because the two
elements x and y are “equal,” we don’t need anything more than a glorified identity
function to transport between the induced fibers.

10



15-819 Homotopy Type Theory Lecture Notes

Nathan Fulton

October 9 and 11, 2013

1 Contents
These notes summarize and extend two lectures from Bob Harper’s Homotopy Type
Theory course. The cumulative hierarchy of type universes, Extensional Type theory,
the ∞-groupoid structure of types and iterated identity types are presented.

2 Motivation and Overview
Recall from previous lectures the definitions of functionality and transport. Function-
ality states that functions preserve identity; that is, domain elements equal in their
type map to equal elements in the codomain. Transportation states the same for
type families. Traditionally, this means that if a =A a′, then B[a] true iff B[a′] true.
In proof-relevant mathematics, this logical equivalence is generalized to a statement
about identity in the family: if a =A a′, then B[a] =B B[a′].

Transportation can be thought of in terms of functional extensionality. Un-
fortunately, extensionality fails in ITT. One way to recover extensionality, which
comports with traditional mathematics, is to reduce all identity to reflexivity. This
approach, called Extensional Type theory (ETT), provides a natural setting for
set-level mathematics.

The HoTT perspective on ETT is that the path structure of types need not be
limited to that of strict sets. The richer path structure of an ∞-groupoid is induced
by the induction principle for identity types. Finding a type-theoretic description of
this behavior (that is, introduction, elimination and computation rules which comport
with Gentzen’s Inversion Principle) is an open problem.

1
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3 The Cumulative Hierarchy of Universes
In previous formulations of ITT, we used the judgement A type when forming types.
In this setting, many types are natural to write down but impossible to form. As a
running example for the section, consider the following: ifM, 17, tt : ifM,Nat,Bool.
Assuming the well-formedness of the type, elimination rules behave as expected:
17 : if tt,Nat,Bool ≡ Nat and tt : if ff,Nat,Bool ≡ Bool.

Forming this type is not possible using the current formation rule for if. Type
universes address this shortcoming by generalizing type formation rules. A recursively
generated cumulative hierarchy of universes (Ui) is introduced. Instead of defining
type formation in terms of a judgement A type, formation rules state the relative
location of relevant types in the hierarchy; that is, judgements that Atype are replaced
with judgements of the form A : Ui.

The definition of type universes includes three new rules1

Γctx
Γ ` Ui : Ui+1

U -intro Γ ` A : Ui

Γ ` A : Ui+1
U -cumul A ≡ B : Ui

A ≡ B : Ui+1
U - ≡

The U -intro rule introduces an unbounded hierarchy of universes, each of which
inhabits the next universe. The second rule states that these universes are cumulative,
and the third ensures that equality is preserved in higher universes. The U - ≡ rule is
a derived rule in the HoTT book presentation.

In addition to these rules, every type formation rule establishes relative positions
of relevant types. For example2:

A : Ui M,N : A
IdAM,N : Ui

UId-F
A : Ui x : A ` B : Ui

Πx:AB : Ui
UΠ-F

Γctx
1 : Ui

U1-F Γctx
0 : U U0-F A : U B : U

A+B : U U + -F

The addition of universes to ITT solves the problem identified by the running
example. As the example suggests, these hierarchies increase the expressiveness of
ITT. This is established by identifying a statement that cannot be proven only in the
presence of universes.

1See A1.1 and A2.3 of the HOTT book for discussion.
2See appendix 2 of [2] for a full formulation
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example: Jan Smith established that without universes, it is not provable that
succ(−) 6= 0 [5]. However, in Martin-Löf’s Type Theory, it is provable that n : Nat,
succ(n) 6≡ 03. In fact, Smith proved that any negation of an equivalence cannot be
proven without universes.

exercise: Show that the operators fst and snd can be defined from split.

3.1 Typical Ambiguity
In the examples above, subscripts on each universe create significant notational
overhead. Therefore, these indices are elided whenever intent is obvious. When
implemented with pen and paper, this is called typical ambiguity. Its mechanization
in Coq is referred to as universe polymorphism.

3.2 Alternatives to the Hierarchy
The introduction of an infinite hierarchy of universes complicates the theory. An
uninitiated reader might wonder whether an infinite, cumulative hierarchy is really
necessary. This section presents three alternatives. The first alternative works,
but has some disadvantages. The other two alternatives have significant problems,
demonstrating that the complexity induced by type universes is essential to a consistent
and sufficiently expressive definition of ITT.

3.2.1 Large Elimination

Intensional Type Theory can be consistently formulated without a hierarchy. The
approach, called Large Elimination, rules the correct types into the theory by hand.
In the case of the running example, the rule would be:

M : Bool A type B type
ifM,A,B type LE-If

Similar rules must be provided for each type formation rule. The universal
approach is preferred because it is less ad hoc —large elimination requires the
addition of new rules for each affected type.

3See page 86 of Programming in Martin-Löf’s Type Theory [1].
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3.2.2 A Single Universe

The running example may be addressed without introducing a recursively defined
hierarchy of universes. One alternative is to replace the U rules above with a single
universe. In this case, the important choice is whether U : U .

If the universe is not self-inclusive, The formulation problem discussed above re-
emerges. For instance, the type ifM,U ,U → U is not formable without a recursively
defined hierarchy. The same observation applies at the top of any finite hierarchy.

3.2.3 The Inconsistent Approach

An insightful reader might observe that this problem can be resolved by patching the
single universe system with a rule which allows the universe to contain itself:

Γ ` U : U U -inconsistent

This system allows the formation of ifM,U ,U → U . However, it also destroys the
consistency of the theory.

Exercise: Reproduce the Burali-Forte Paradox within a system equipped with
U-cumul-inconsistent4.

4 Proof-relevance and Extensionality
Martin-Löf’s Type Theory is significant because it introduces the notion of proof rele-
vance. Intuitively, this expresses the idea that proofs can be treated as mathematical
objects.

4.1 The Theorem of Choice
It is well-known that the Axiom of Choice is independent of the axioms of set theory.
However, choice can be derived in ITT. The derivation provides an excellent example
of proof relevance in action.

The theorem of choice states that if xCy is total, then there must exist a function
(f) which associates each x with a chosen y = f(x). We can state this formally in
ITT.

Theorem of Choice. ` e : Πx:AΣy:BC(x, y)→ Σf :A→B.Πx:AC(x, f(x)).
4This formulation of the paradox is due to Girard 1972, and is referred to as Girard’s Paradox.
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The proof, provided in [4], involves finding a derivation of:

F : Πx:AΣy:BC(x, y) ` λF. < λx.fstF (x), λx.sndF (x) >: Σf :A→B.Πx:AC(x, f(x))

In the proof, F is both an assumption and a mathematical object (namely, a
product). Therefore, the proof may rely upon not only the inhabitation of the type
of F , but also F itself.

Note: In future lectures, banana brackets will be used to recover a more traditional
reading of F by suppressing the ability to use it as a piece of data in the proof. For
now, the significant observation is that proof irrelevance can be recovered within ITT.

4.2 Failure of Extensionality
Marin-Löf demonstrated that the Axiom of Extensionality fails in ITT; in ITT, it is
not the case that if p : IdA(M,N) for closed M,N,A, then M ≡ N : A.

Extensional Type theory (ETT) addresses the failure of extensionality in ITT by
endowing the theory with the principle of equality of reflection. Concretely, ETT
introduces two new rules which reduce identity to equivalence. Therefore, all identity
paths on a type are the reflexive path.

Γ ` p : IdA(M,N)
Γ `M ≡ N : A Eq-Refl

p : IdA(M,N)
Γ ` p ≡ refl(M) : IdA(M,M) UIP

The first rule, equality of reflection, states that proof of an identification is
sufficient to show judgemental equality in the type. The second rule, Uniqueness of
Identity Proofs, states that any path is the reflexive path.

Although extensionality does not hold generally for ITT, uniqueness of identity
proofs may be recovered for a large class of types.

Hedberg’s Theorem. Any set with decidable identities has collapsed identity sets
[3]5.

4.2.1 ETT vs ITT

The essential difference between ETT and ITT is the algebraic structure of types.
ETT reduces all identity paths to reflexivity. As a result, the path structure of types

5There is a Coq proof by Nicolai Kraus online: http://www.cs.nott.ac.uk/˜ngk/hedberg direct.v
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in ETT is homotopically discrete. ITT admits a much richer path structure on types:
two paths p : IdA(A,B) and q : IdA(B,C) may by equal but not trivially equal.

The two other major differences between ETT and ITT are decidability of type
checking and fitness for set-level mathematics.

The UIP rules introduces proof search as a valid mode of operation for the type
checker. Therefore, type checking is not decidable in ETT6. Decidability is not an
important criterion for two reasons. First, the standard mode of operation in a
mechanized ETT (e.g. NuPRL) does not result in proof search. Second, type checking
in ITT quickly becomes intractable.

A more important secondary distinction between ETT and ITT is fitness for
set- level mathematics. Types in ETT have the structure of an h-set; therefore,
set-level mathematics is much nicer in NuPRL than in Coq. Whereas extensionality
and transport come for free in NuPRL, Coq users must induce this structure by
programming in terms of a setoid. However, the convienance of ETT comes at a cost:
the path structure of its types in necessarily limited due to Hedberg’s Theroem.

Just as proof-relevant mathematics subsumes proof-irrelevant mathematics as a
special case, the∞-groupoid structure of types in ITT may be forgotten so that ETT
is recovered as a special case. In fact, this is essentially what happens with Setoid in
Coq.

5 Algebraic Structure of Identity Types
Recall that the induction principle for identity types states that for x, y : A, there
exists an identity type x =A y. Furthermore, proving a property for these elements
and a path p : x =A y consists of proving the property in the reflexive case (that is,
for x, x, reflx).

The full implications of this principle were not understood when it was first
introduced. A realization central to Homotopy Type Theory is that the induction
principle for identity types gives rise to an entire hierarchy of iterated identity types.
That is, due J, we can form the type p =IdA(x,y) q and so on. Homotopy Type Theory is
so-called, in part, because these types form the same structure as iterated homotopies:
that of an ∞−groupoid.

Whereas the universes provide a mechanism for reasoning about size in an iterative
fashion, the iterated identities provide an account of dimension. In the example above,
x and y are start and end points. The first identity corresponds to a path between

6Type checking for ITT is decidable
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the elements. Paths between p, q : IdIdA(x,y) are homotopies, or 2-dimensional paths.
Each iteration corresponds to an increase in dimension7.

Before proceeding with a presentation of the groupoid axioms in terms of ITT, it
is useful to recall the derivable equivalence relation:
(1) idA(M) := reflA(M) : IdA(M,M)
(2) p : IdA(M,N) ` p−1 : IdA(N,M)
(3) p : IdA(M,N), q : idA(N,P ) ` p � q : IdA(M,P )

The second and third are theorems provable by path induction, since composition
and inversion are both defined in terms of J. Therefore, we may read identity types
propositionally as witnesses of an equivalence, and computationally as abstract daata
types upon which we may operate. The two notations for identity types, x =A y and
IdA(x,y), typically elucidate the intended reading. While the former reading comports
with more traditional interpretations of equality, the latter gives rise to the iterated
identity types.
Remark. Despite the correspondence with classical (analytic) homotopy theory, maps
should be thought of synthetically. As a result, path concatenation is not defined in
terms of function composition; hence, the � notation.

5.1 The Groupoid Laws
The groupoid laws may be forumated as coherence theorems, each proven by path
induction using J:

inv-right p � p−1 =IdA(M,M) id(M)
inv-left p−1 � p =IdA(N,N) id(N)
unit-right p � id(N) =IdA(M,N) p
unit-left id(M) � p =IdA(M,N) p
assoc (p � q) � r =IdA(M,P ) p � (q � r)

Before proceeding an explanation of how these are proven, some motivation may
be helpful. Consider the following diagram for the associativity theorem:

A B C D

This diagram illuminates the weak nature of the path structure: associativity
holds only because it holds at yet higher type. Iterated identity types are given
structure by this higher coherence.

7Dimension is also referred to as homotopy level.
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Theorem 1. The groupoid laws hold.

Full proofs are available in chapter 2 of [2]. We outline portions of the argument
here for the sake of later discussion. For the first inverse theorem, perform path
induction on p. It suffices to consider that p = reflx. We have by the definition of
refl−1

x that reflx � refl−1
x = reflx. The other inverse argument follows similarly. The cases

for the unit theorems and associativity are similar. Each follows by path induction
on p, considering the case where p = reflx.

5.2 Maps preserve structure
Given this structure, it is natural to ask whether mappings preserve the groupoid
structure. Recall that ap preserves identities.

Theorem 2. If f : A→ B and p : M =A M ′ then apf (p) : fM =B fM ′.

Mappings preserve not just identity, but the entire groupoid structure. Proving
this requires showing that ap preserves identity, inversion and composition. That is,

Theorem 3. For a function f : A → B and paths p : x =A y, q : y =A z
1) apf (refl(x)) ≡ refl(f(x))
2) apf (p−1) = apf (p)−1

3) apf (p � q) =Ida(x,z) apf (p) � apf (q)

Exercse: Prove that maps preserve functoriality. A formal proof will be included
in a coming revision of these notes.

5.3 Does Homotopy Type Theory have a Computational In-
terpretation?

In the sketch of the groupoid proofs, the general case of p is reduced to the case of reflx.
Currently, this is justified by a categorical model. This is not natural or desirable
because the distinguishing characteristic of type theory is its computational content
characterized by Gentzen’s Inversion Principle. The model-based justification is
insufficient, in part, because it does not provide a way of running HoTT programs. The
constructivity of Homotopy Type Theory is important because Hedberg’s Theorem
collapses the dimensional tower developed in this section. However, determining
whether there is a computational interpretation of Homotopy Type theory is a
principle open problem.

Nathan Fulton 2013/10/14 and 2013/10/16 8
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[4] Per Martin-Löf. Intuitionistic type theory. http://intuitionistic.files.
wordpress.com/2010/07/martin-lof-tt.pdf, 1980.

[5] Jan M. Smith. An interpretation of martin-lof’s type theory in a type-free theory
of propositions. J. Symb. Log., 49(3):730–753, 1984.

Nathan Fulton 2013/10/14 and 2013/10/16 9

http://www.cse.chalmers.se/research/group/logic/book/book.pdf
http://www.cse.chalmers.se/research/group/logic/book/book.pdf
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
http://intuitionistic.files.wordpress.com/2010/07/martin-lof-tt.pdf
http://intuitionistic.files.wordpress.com/2010/07/martin-lof-tt.pdf


15-819 Homotopy Type Theory Lecture Notes

Robert Lewis and Joseph Tassarotti

October 21 and 23, 2013

1 Paths-over-Paths
Recall that last time we explored the higher groupoid structure of types, and showed
that for non-dependent maps, ap preserves this structure. Now, in the case where
we have a dependent function f : Πx : A.B, we would like to similarly state that f
maps equals to equals, so that given a path p : IdA(M,N), there is some map which
takes in p and gives a path between fM and fN . However, because f is dependent,
fM : [M/x]B and fN : [N/x]B. Although these types are related, they are not
equal, so we cannot talk about propositional equality between fM and fN .

In earlier lectures, we defined tr[x.B]p : [M/x]B → [N/x]B, often written as
p∗, which lifts the path p to a mapping between the fibers [M/x]B and [N/x]B.
Since p∗(fM) and fN share the same type, we can meaningfully talk about equality
between them. We can now define a map apdf : Πp : IdA(M,N).Id[N/x]B(p∗(fM), fN)
by

apdfp := J[m.n.z.Id[n/x]B(z∗(fm), fn)](p;m.refl[m/x]B(m))
This has the appropriate type because when the path is simply reflA(M), we have

that (reflA(M))∗ ≡ refl[M/x]B(fM). See figure 1 for a pictorial representation of this.
Now, since p−1

∗ gives a map between the fibers going the other way, we could just
as well have defined an analogous term apd′f : IdA(M,N)→ Id[M/x]B(fM, p−1

∗ (fN)).
Moreover, we have that

app−1
∗

(apdfp) : Id[M/x]B(p−1
∗ (p∗(fM)), p−1

∗ (fN))
≡ Id[M/x]B(fM, p−1

∗ (fN))

app∗(apdfp−1) : Id[N/x]B(p∗(fM)), p∗(p−1
∗ (fN)))

≡ Id[N/x]B(p∗(fM), fN)

which shows that these two theorems imply one another.

1
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p
M N

[M/x]B [N/x]B

f(M) p∗(f(M))
p∗

p−1
∗ (f(M)) f(N)

p−1
∗

apdfpapd′fp−1

Figure 1: Paths-over-paths

The lack of symmetry in the types of apdf and apd′f is somewhat awkward when
developing machine checked proofs. It’s more convenient to define a symmetric
notation, f(M) =x.B

p f(N) :≡ Id[N/x]B(p∗(fM), fN), which we read as “f(M) and
f(N) are correlated by p” . This corresponds to the type of paths over the path p.
Using this notation, we can prove theorems about this type like:

symcorr : Q =x.B
p R → R =x.B

p−1 Q

transcorr : Q =x.B
p R → R =x.B

q S → Q =x.B
p � q S
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2 Equivalence of Types

2.1 Motivation
We start by informally recalling some notions of equivalence that are commonly used
in mathematics:
1. Biconditional propositions: Given two propositions p and q such that p ⊃ q and
q ⊃ p, we might wish to say that p = q, because these two propositions are logically
equivalent. In classical logic, this makes sense, because p and q are both either
equal to true or equal false. To quote Whitehead and Russell [3, p.115]:

When each of two propositions implies the other, we say that the
two are equivalent, which we write “p ≡ q” . . . It is obvious that two
propositions are equivalent when, and only when, both are true or both
are false. . .

We shall give the name of a truth-function to a function f(p) whose
argument is a proposition, and whose truth-value depends only upon
the truth-value of its argument. All the functions of a proposition with
which we shall be specially concerned will be truth-functions, i.e. we
shall have

p ≡ q . ⊃ .f(p) ≡ f(q).

This means that for Whitehead and Russell, if p and q are logically equivalent,
then they are indiscernible. However, in the proof relevant setting of type theory,
this is not the case, because these types classify particular pieces of data. Although
terms of the type f : p→ q and g : q → p give us ways to interconvert proofs of p
and q, a proof of p is not by itself a proof of q. Moreover, it need not even be the
case that f and g are inverses of each other.

2. Isomorphic sets: In set theory, we say that two sets A and B are isomorphic if
there is a bijection between them. That is, there are functions f : A → B and
g : B → A such that g(f(a)) = a and f(g(b)) = b. In many contexts, it is not
relevant for us to distinguish between isomorphic sets. However, in ZF set theory,
just because two sets are isomorphic does not mean they are indiscernible, so we
cannot regard them as equal.
This is a larger symptom of the fact that although ZF set theory lets us encode
the structures of mathematics, it does not support abstraction. Propositions like
0 ∈ 1 are perfectly well-formed, and are even true for most encodings of the
natural numbers as sets. As de Bruijn points out [1], these artifacts of a particular
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encoding contradict the way we conceptually think of mathematics1:
In our mathematical culture we have learned to keep things apart.

If we have a rational number and a set of points in the Euclidean plane,
we cannot even imagine what it means to form the intersection. The
idea that both might have been coded in ZF with a coding so crazy that
the intersection is not empty seems to be ridiculous. . .

A very clear case of thinking in terms of types can be found in
Hilbert’s axiomatization of geometry. He started by saying that he
assumes there are certain things which will be called points and certain
things to be called lines. Nothing is said about the nature of these
things.

Type theory rules out statements like 0 ∈ 1 as ill-formed. As we shall see, this same
facility for abstraction allows us to give a more suitable treatment of equivalence.
Now, we turn to the question of equivalences of types. Applying our näıve intuition

of regarding types as sets, we might say that types are isomorphic precisely when
there is a bijection between them. In ITT, this will work for types corresponding to
first order data, but we encounter problems when considering functions.

More precisely, to show that A→ B is isomorphic to C → D, we need to construct
functions F : (A → B) → (C → D) and G : (C → D) → (A → B) such that for
all f : A → B and g : C → D, G(F (f)) = f and F (G(g)) = g. In a set-theoretic
setting, it would suffice to show that for all x ∈ A, G(F (f))(x) = f(x), and similarly
for F ◦G. However, in ITT we lack function extensionality, this is not enough. We
need to show that G ◦ F maps f precisely back to itself. One might try to resolve
this by quotienting by extensionality or adding in an axiom of extensionality.

However, the problem becomes even more difficult when considering universes.
We would need to show that for each type A in the universe, G(F (A)) = A. Just
as with functions, where we were really interested in showing that G ◦ F mapped a
function to something that was extensionally equivalent, here we want G(F (A)) to
itself be isomorphic to A not equal.

2.2 Homotopy Equivalence
We now introduce the notion the notion of a homotopy. Given two functions f, g :
A → B, a homotopy from f to g is a term with type Πx : A.IdB(fx, gx). We

1A portion of this passage is quoted in [2], which contains an interesting discussion about some
advantages and disadvantages of types and sets.
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introduce the notation f ∼A→B g for the type of homotopies from f to g. If this type
is inhabited, we say that f is “homotopic to” g.

Now, given H : f ∼A→B, we have that for all x : A, fx =B gx. But in fact there
is something more going on: H is dependently functorial in x : A. That is, H respects
paths between inhabitants in A and B. This property is also called naturality; we
can say that H is a sort of polymorphism in x : A. This means that the following
diagram commutes:

f(a) g(a)

f(a′) g(a′)

H(a)

apf (p)

H(a′)

apg(p)

2.3 Basic Properties of Equivalence
For a function f : A→ B, we define an equivalence between A and B, by

isequiv(f) :≡ (Σg : B → A.f ◦ g ∼ idB)× (Σh : B → A.h ◦ f ∼ idA).

The proposition expressing that two types A and B are equivalent, written A ' B
b, is

A ' B :≡ Σf : A→ B.isequiv(f).
Since we are in a proof-relevant setting, the information that A ' B consists of

five things:
• A function f : A→ B
• A function g : B → A
• A proof α : Πy : B.f(g(y)) =B y
• A function h : B → A
• A proof β : Πx : A.h(f(x)) =A x

To prove that A ' B, we need to provide all of these as evidence, and from
evidence that A ' B, we can extract all of these.

We will also be interested in the notion of a quasi-inverse:

qinv(f) :≡ Σg : B → A.(f ◦ g ∼ idB × g ◦ f ∼ idA).

As one might hope, the notions of equivalence and quasi-inverse are very closely
related. One can prove the following properties:
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1. For every f : A→ B, there is a function qinv(f)→ isequiv(f).
2. For every f : A→ B, there is a function isequiv(f)→ qinv(f).

This means that the two notions are logically equivalent: a function is an equiva-
lence if and only if it has a quasi-inverse. In addition, we can show that isequiv(f)
expresses an HPROP: that is, up to higher homotopy, there is only one proof of this
fact. This will become important later.

2.4 Function extensionality
The axiom of function extensionality allows us to show that the (f =A→B g) '
(f ∼A→b g). Even without the axiom, we can define the map

happly : f =A→B g → f ∼A→B g

Now, the axiom says that the above map is an equivalence: if we have a proof
of f ∼A→B g, we may assume that we have a proof of f =A→B g. This is not
necessarily provable without the axiom. For example, in the natural number type,
λx.0 + x ∼N→N λx.x, but since addition was defined inductively on the second
argument, we cannot find a path between them.

2.5 Exercises
The following propositions are left as exercises, with the first one begun for explanatory
purposes:
1. Show that idA : A→ A is an equivalence.

To do this, we need four pieces of information:
(a) g : A→ A. Take this to be idA.
(b) A proof α : Πy : A.idA(g(y)) =A y.
(c) h : A→ A. Again, take this to be idA.
(d) A proof β : Πx : A.h(idA(x)) =A x.

2. If f : A → B is an equivalence, then there is f−1 : B → A (given by the
quasi-inverse of f) that is also an equivalence.

3. If f : A→ B and g : B → C are equivalences, then so is g ◦ f : A→ C.

3 Structure of Paths in Types
We want to examine the paths inside certain types. For the negative types, this will
be relatively simple. For the positive types, it will be much harder. There are many
outstanding open problems within the positive types.
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3.1 Product Types
We start by examining the paths in IdA×B( , ).

There is a function f such that

f : IdA×B(x, y)→ (IdA(π1x, π1y)× IdB(π2x, π2y)).

Specifically,

f :≡ λp.〈apπ1(p), apπ2(p)〉
Roughly speaking, if x =A×B y, then π1x =A π1y and π2x =B π2y.

Proposition. f is an equivalence: IdA×B(x, y) ' IdA(π1x, π1y)× IdB(π2x, π2y).

Proof. As noted in Section 2, it suffices to produce a quasi-inverse for f . We need to
construct three objects:
1. g : (IdA(π1x, π1y)× IdB(π2x, π2y))→ IdA×B(x, y)
2. α : g(f(p)) =IdA×B(x,y) p
3. β : f(g(q)) =IdA(π1x,π1y)×IdB(π2x,π2y) q
We construct these as follows:
1. We define two auxiliary functions

pair :≡ λxλy〈x, y〉 : A→ B → A×B

and
ap2f : Id(x, x′)→ Id(y, y′)→ Id(fxy, fx′y′)

Using these, we can then define

g :≡ λ〈p, q〉.ap2pairpq

.
2. To define α, it suffices (by FUNEXT) to show:
• η : Πp(ap2pair(apπ1(p), apπ2(p)) = p)
• β1 : ΠpΠq(apπ1(ap2pairpq) = p)
• β2 : ΠpΠq(apπ2(ap2pairpq) = q)
By path induction, we need to find R such that

x : A×B ` R : (ap2pair(apπ1(refl(x)), apπ2(refl(x)))) = refl(x)

Then,
η :≡ J [ ](p;x.R).
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By our earlier definition of ap2, we have that

apπ1(refl(x)) ≡ refl(π1(x))
apπ2(refl(x)) ≡ refl(π2(x)), and from these,

ap2pair(refl(π1(x)))(refl(π2(x))) ≡ refl〈π1(x), π2(x)〉
≡ refl(x)

3. The constructions of β1 and β2 are similar and left as exercises.

3.2 Coproduct Types
Similarly, we can look into IdA+B(x, y). Intuitively speaking, we would like to say
that any path in the space A + B is either a path in A or a path in B; we would
never expect to have a path (equation) between an inl(a) and an inl(b).

We would like to prove the following facts:

IdA+B(inl(a), inl(a′)) ' IdA(a, a′)
IdA+B(inr(b), inr(b′)) ' IdB(b, b′)
IdA+B(inl(a), inr(b)) ' 0
IdA+B(inr(a), inl(b)) ' 0

Proving this requires a bit of a trick.
Suppose we wanted to prove the first equivalence alone. The right-to-left direction

is simple. For the left-to-right direction, we need to exhibit

p : IdA+B(inl(a), inl(a′)) ` R : IdA(a, a′).

R must be a path induction on p, of the form R = J [C](p, ) for some motive
C. The conclusion of this path induction will be of the form C(inl(a), inl(a′), p). But
what we need is IdA(a, a′) (note the lack of inl). One might try to define something
like D(u, v) = IdA(outl(u), outl(v)), but this cannot exist, since outl cannot be a total
function.

2 This is a striking example of anti-modularity. One has no reason to expect that this equality
should hold definitionally; it depends essentially on how ap was defined, not just on its type. It
would be nice to avoid this kind of code-on-code dependency, since “the proof should not have to
know about the computation.”
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This approach, then, will not work. Instead, we must take a different approach.
We will find a motive F : (A+B)× (A+B)→ U such that:

F (inl(a), inl(a′)) ≡ IdA(a, a′)
F (inr(a), inr(a′)) ≡ IdB(b, b′)
F (inl(a), inr(b)) ≡ 0
F (inr(a), inl(b)) ≡ 0

Such an F expresses all of the desired properties of the coproduct.
Exercise. Define such an F by “double induction.”

The following lemma expresses the subgoal of our path induction with motive F :
Lemma. x : A+B ` : F (x, x).
Proof. Our proof of this will be a case statement:

case[z.F (z, z)](x;m : A.reflA(m), n : B.reflB(n)) : F (x, x)

Note that reflA(m) : [inl(m)/z]F (z, z), since

IdA+B(m,n) ≡ F (inl(m), inl(m)) ≡ [inl(m)/z]F (z, z).

To complete the proof, we must define something of the type

Πx : A+BΠx′ : A+B(IdA+B(x, y)→ F (x, x′)).

This is our task for next time!
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1 The Path Spaces of Coproducts
Recall from last week that we intend to characterize paths in coproducts by showing∏

x:A+B

∏
x′:A+B

IdA+B(x, x′) ' F (x, x′)

where F : (A+B)→ (A+B)→ U is defined by nested case-analysis so that
F (inl(a), inl(a′)) ≡ IdA(a, a′)
F (inr(a), inr(a′)) ≡ IdB(b, b′)
F (inl(a), inr(b)) ≡ 0
F (inr(a), inl(b)) ≡ 0

To this end we define a function f : ∏x:A+B
∏
x′:A+B IdA+B(x, x′)→ F (x, x′) by

f := λx.λx′.λp. J[F ](p; z. case(z; a.reflA(a); b.reflB(b)))
Next we need to define a function g : ∏x:A+B

∏
x′:A+B F (x, x′) → IdA+B(x, x′) such

that g(x, x′) is a quasi-inverse of f(x, x′). We put
g := λx.λx′. case(x;a. case(x′; a′.λz : F (inl(a), inl(a′)).apinl(z); b′.λz : F (inl(a), inr(b′)).abort(z));

b. case(x′; a′.λz : F (inr(b), inl(a′)).abort(z); b′.λz : F (inr(b), inr(b′)).apinr(z)))

We then have to exhibit terms
α :

∏
x:A+B

∏
x′:A+B

∏
u:F (x,x′)

f(g(u)) =F (x,x′) u

β :
∏

x:A+B

∏
x′:A+B

∏
v:IdA+B(x,x′)

g(f(v)) =IdA+B(x,x′) v

These terms are left as homework exercises.
Exercise. Characterize the path space of the empty type 0.
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2 The Path Spaces of Identity Types
For a given type A, we would like to characterize the types IdA( , ), IdIdA( , )( , ),
IdIdIdA( , )( , )( , ), and so on. While this is possible for certain specific types such as
0,1, A × B,A → B,A + B and Nat, it can be very difficult for other types, even
seemingly simple ones. For example, determining the loop-spaces of n-spheres - i.e.,
path spaces based at a single point, denoted by Ω(Sn) - is a famous open problem in
algebraic topology.

What we can say, however, is that if two types are equivalent then so are their
path spaces:

Lemma. If f : A→ B is an equivalence, then so is apf : IdA(a, a′)→ IdB(f(a), f(a′)).

Proof. Because f is an equivalence, it has a quasi-inverse f−1 : B → A and we have
the following coherences:
• α : ∏a:A f

−1(f(a)) =A a
• β : ∏b:B f(f−1(b) =B b

In order to show that apf is an equivalence, it suffices to give a quasi-inverse
ap−1

f : IdB(f(a), f(a′))→ IdA(a, a′), which we define by

ap−1
f (q) := α(a)−1 · apf−1(q) · α(a′)

We now need to construct coherences

γ :
∏

p:IdA(a,a′)
ap−1

f (apf (p)) =IdA(a,a′) p

δ :
∏

q:IdB(f(a),f(a′))
apf (ap−1

f (q)) =IdB(f(a),f(a′)) q

This will imply that ap−1
f is indeed a quasi-inverse of apf and thus both are equivalences

We leave these as exercises.

Exercise. Define the coherence γ in the above proof by path induction.

Exercise. Define the coherence δ in the above proof as follows:
1. Use the naturality of β to show that

β(f(a))−1 · apf (apf−1(q)) · β(f(a′)) =IdB(f(a),f(a′)) q

2. Use the naturality of α to show that

α(f−1(f(a)))−1·apf−1(apf (apf−1(q)))·α(f−1(f(a′))) =IdA(f−1(f(a)),f−1(f(a′))) apf−1(q)
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3. Use the naturality of α to show that

α(f−1(f(a))) =IdA((f−1(f(f−1(f(a))))),f−1(f(a))) apf−1(apf (α(a)))

and similarly for a′.
4. Use 1), 2), 3) and the naturality of β to obtain the desired conclusion

apf (α(a)−1 · apf−1(q) · α(a′)) =IdB(f(a),f(a′)) q

3 Transport Properties of Identity
The identity type family on a type A can be thought of as a function IdA( , ) : A→
A→ U . Keeping the first argument x : A fixed yields a type family IdA(x, ) : A→ U .
For any path q : y =A y

′, the fibers IdA(x, y) and IdA(x, y′) are related by the transport
function

tr[z.IdA(x, z)](q) : IdA(x, y)→ IdA(x, y′)
Can we give an explicit description of this function? Clearly we can construct a
function of the desired type ”manually” by taking a p : x = Ay and concatenating it
with q to obtain p · q : x =A y

′. Fortunately, it turns out this is precisely characterizes
the behavior of the transport function, up to a propositional equality:

Lemma. For any term x : A, and paths q : y =A y
′, p : x =A y we have

tr[z.IdA(x, z)](q)(p) =IdA(x,y′) p · q

We have a similar characterization of transport in the case when the second
argument is fixed:

Lemma. For any term y : A, and paths q : x =A x
′, p : x =A y we have

tr[z.IdA(z, y)](q)(p) =IdA(x′,y) q
−1 · p

We notice that in the first case, we use the path q as-is whereas in the second
case we first have to invert it. This can be described in category-theoretic terms as
saying that the type family IdA is covariant in the second argument and contravariant
in the first.

Finally, we can consider the case of loops when the base point is allowed to vary:

Lemma. For any paths q : x =A y, p : x =A x we have

tr[z.IdA(z, z)](q)(p) =IdA(y,y) q
−1 · p · q

All these lemmas follow by straightforward path induction.
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4 Justifying the Identity-Elimination Rule
Recall the identity elimination rule:

Γ ` P : IdA(M,N) Γ, x:A, y:A, z:IdA(x, y) ` C type Γ, x:A ` Q : [x, x, reflA(x)/x, y, z]C
Γ ` J[x.y.z.C](P, x.Q) : [M,N,P/x, y, z]C Id-E

In Extensional Type Theory (ETT), this rule is a consequence of the identity
reflection and UIP rules and thus has no special status.

In Intensional Type Theory (ITT), this rule can be understood as an induction
principle: since the only way we can construct a proof of equality P : M =A N is
by reflexivity in the case when M ≡ N , in order to prove C[M,N,P ] it is sufficient
to prove C[x, x, reflA(x)] for an arbitrary x : A. This intuition is justified by the
following very important (and highly nontrivial) theorem:

Theorem 1. In an empty context, two terms are propositionally equal if and only if
they are definitionally equal and any identity proof is necessarily a reflexivity. In other
words, if ` P : IdA(M,N), then `M ≡ N : A and ` P ≡ reflA(M,M) : IdA(M,N).

In HoTT, it is no longer the case that every proof of equality is a reflexivity. For
example, we have the following non-trivial identity proofs:
• funext(H) : f =A→B g, where H : ∏a:A f(a) =B g(a)
• ua(E) : A =U B, where E : ∑f :A→B isequiv(f)
• seq : 0 =I 1, where I is the interval type
• loop : b =S1 b, where S1 is the circle type

This suggests that in HoTT, terms of an identity type should not be thought
of purely as proofs of identity but rather as paths between terms. Since there can
be potentially many distinct paths between two terms, the identity elimination rule
should no longer be thought of as an induction principle.

The presence of nontrivial paths, however, poses a serious problem with the
computational interpretation of HoTT: for example, what should J[ ](funext(H);x.Q),
J[ ](ua(E)), or J[ ](seq) compute to?

Even leaving aside univalence and higher inductive types, the addition of the
function extensionality axiom to ITT poses a problem with computation. In ETT, we
get function extensionality for free from the identity reflection rule. In Observational
Type Theory (OTT), which combines intensional and extensional aspects, we get
function extensionality with some special arrangements. Both ETT and OTT admit
a computational interpretation, albeit by different means.

The computational interpretation of HoTT is currently a principal open problem.
So how do we justify the J-rule as a suitable identity elimination rule? Given
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• C : ∏x:A
∏
y : A, IdAxy → U

• M,N : A and P : M =A N
• x : A ` Q : C[x, x, reflA(x)]
why should there exist a term J[x.y.z.C](P ;x.Q) : C[M,N,P ]?

Plugging M into Q, we obtain a term Q[M ] : C[M,M, reflA(M)]. Similarly,
plugging M into C yields a type family C[M ] : ∏y:A(p : M =A y)→ U , which can be
equivalently understood as the function

λz.C[M,π1(z), π2(z)] :
(∑
y:A

IdA(M, y)
)
→ U

Since functions are supposed to be functorial, constructing a path γ from (M, reflA(M))
to (N,P ) in the type ∑y:A IdA(M, y) would give us a term

apλz.C[M,π1(z),π2(z)](γ) : C[M,M, reflA(M)] =U C[M,N,P ]

We could thus obtain our desired conclusion of the J-rule as

tr[x : U .x](apλz.C[M,π1(z),π2(z)](γ))(Q[M ]) : C[M,N,P ]

In order to construct a path γ : (M, reflA(M)) =∑
y:A IdA(M,y) (N,P ), we need a charac-

terization of path spaces of Σ-types, outlined in the following exercise:

Exercise. Characterize the path space of the type Σx:AB by constructing a term of
type ∏

p,p′:
∑

x:A B(x)

(
Id∑

x:A B(x)(p, p
′) '

∑
q:π1(p)=Aπ1(p′)

π2(p) =x.B
q π2(p′)

)

The above exercise tells us that in order to construct a path from (M, reflA(M))
to (N,P ) in the type ∑y:AM =A y, it is sufficient to construct an element of the type∑
q:M=AN reflA(M) =y.M=Ay

q P . The natural choice for the first component of the pair
is the path P : M =A N itself. It thus remains to show that reflA(M) =y.M=Ay

P P . In
particular, this means showing that

tr[y.M =A y](P )(reflA(M)) =IdA(M,N) P

By the first lemma in Section. 3, we have tr[y.M =A y](P )(reflA(M)) =IdA(M,N)
reflA(M) · P . Since the left-hand evaluates to P , we are done.

Lee and Sojakova 2013/10/28 and 2013/10/30 5



Homotopy Type Theory

5 Introduction to Homotopy Types
One way to see HoTT is that Homotopy Type Theory is Homotopy Type Theory.
That is, HoTT can be thought of as the theory of homotopy types. We have already
encountered several examples of the homotopy type set, also sometimes called an
h-set or a 0-type; however, we have not explicitly labeled them as such. We have the
following definition:

Definition. A type A is called a set (or a 0-type), if for all x, y : A and p, q : x =A y,
we have that p =IdA(x,y) q. In other words, the following type is inhabited:

isSet(A) :≡
∏
x,y:A

∏
p,q:IdA(x,y)

p =IdA(x,y) q

Intuitively, the type A can be viewed as ”discrete up to homotopy”. The familiar
example of the type Nat of natural numbers (unsurisingly) turns out to be a set.
More about this and other Homotopy Types next week!
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15-819 Homotopy Type Theory

Lecture Notes

Evan Cavallo and Chris Martens

November 4 and 6, 2013

1 Contents

These notes cover Robert Harper’s lectures on Homotopy Type Theory from
November 4 and 6, 2013. Discussions include the interval type and classical
homotopy theory, classification of sertain types as sets, proof irrelevance,
and the embedding of classical into constructive logic.

2 The Interval

Definition

Homotopy type theory takes full advantage of the latent ∞-groupoid struc-
ture of ITT’s identity types by adding new paths. One way we add paths is
via the univalence axiom, which introduces new paths between types. We
can also directly postulate the existence of types with higher path structure.
We will eventually develop a general theory of these higher inductive types.
For the moment, we consider a simple example, the interval type.

0I 1I
seg

The interval I is defined inductively with two traditional constructors,
0I and 1I . We think of these as two endpoints of an continuum of points,
analogous to the interval [0, 1] of classical analysis. With these points alone,
the interval is no different from the type 2. In order to complete the defini-
tion, we also define a path seg which connects the two endpoints. We thus
have the following introduction rules:

1
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Γ ` 0I : I
I-I-0

Γ ` 1I : I
I-I-1

Γ ` seg : IdI(0I , 1I)
I-I-seg

In order to find the correct elimination rule for this type, we ask the
same question we asked in defining the coproduct: how do we map out of
this type? For any type A, what is the form of a map f : Πz:I.A? For the
sake of simplicity, let’s first consider how to define a map f : I → A. We
expect the recursor to have the form

Γ `M : A Γ ` N : A ?

Γ, x : I ` recI [ .A](x;M ;N ; ?) : A

with computation rules

recI [ .A](0I ;M ;N ; ?) ≡ M

recI [ .A](1I ;M ;N ; ?) ≡ N

So far, this is just the recursor for 2. To see what additional information we
need, notice that for any map f : I → A we have apf (seg) : IdA(f(0I), f(1I))
– the values f(0I) and f(1I) have to be related in some way. In other
words, we need to specify the way that f acts on the path seg. The full
(nondependent) recursor therefore has the form

Γ `M : A Γ ` N : A Γ ` P : IdA(M,N)

Γ, x : I ` recI [ .A](x;M ;N ;P ) : A

with the computation rules

recI [ .A](0I ;M ;N ;P ) ≡ M

recI [ .A](1I ;M ;N ;P ) ≡ N

aprecI [ .A](1I ;M ;N ;P )(seg) ≡ P

For a dependent function f : Πz:I.A, the values f(0I) and f(1I) may have
different types. Here, we have apdf (seg) : 0I =z.A

seg 1I , so the dependent
eliminator has the form

Γ `M : A Γ ` N : A Γ ` P : 0I =z.A
seg 1I

Γ, x : I ` recI [z.A](x;M ;N ;P ) : A[x/z]
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with the computation rules

recI [z.A](0I ;M ;N ;P ) ≡ M

recI [z.A](1I ;M ;N ;P ) ≡ N

apdrecI [z.A](1I ;M ;N ;P )(seg) ≡ P

One question we should ask ourselves is whether this last computation
rule should be definitional. Postulating a definitional equality involving
an internally-defined function, apd, is highly unnatural. On the other hand,
adding new propositional ruins the computational interpretation of the the-
ory. At this point, we have no satisfactory answer to this question. We will
use definitional equality; the HoTT book uses propositional equality. The
formal developments in Coq and Agda both use propositional equality, but
this is largely an artifact of technical restrictions: it is impossible to add
axioms for definitional equalities in these languages.

Describing Paths With the Interval

In classical homotopy theory, paths in a space A are defined as continuous
mappings f : I → A where I is the interval [0, 1]. f(0) is the left endpoint of
the path, f(1) the right endpoint, and the function gives a way of traveling
continuously from one endpoint to the other. In homotopy type theory,
paths are a primitive notion, but we can show that the classical definition
is equivalent. For any type A, the path space Σx:A.Σy:A.IdA(x, y) is equal
to I → A, as shown by the following equivalence:

f : (Σx:A.Σy:A.IdA(x, y))→ (I → A)

f 〈x, 〈y, p〉〉 :≡ λz.recI [ .A](z;x; y; p)

g : (I → A)→ (Σx:A.Σy:A.IdA(x, y))

g h :≡ 〈h(0I), 〈h(1I), aph(seg)〉〉

α : Πs:(Σx:A.Σy:A.IdA(x, y)). g(f(s)) = s

α s :≡ reflΣx:A.Σy:A.IdA(x,y)(s)

β : Πh:(I → A). f(g(h)) = h

β h :≡ funext(λx:I.rec[z.f(g(h))(x) = h(x)](x; reflA(h(0I)); reflA(h(1I));

reflIdA(h(0I),h(1I))(aph(seg))))
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Intuitively, the interval has the shape of a single path, so the image of a
function f : I → A is a path in A.

Funext from the Interval

Interestingly, we can prove function extensionality in ITT if we assume the
presence of the interval type. Let f, g : A→ B be two functions and assume
h : Πx:A.IdB(f(x), g(x)); we want to show IdA→B(f, g). To do this, we’ll
define a function k : I → (A → B). In order to do that, we’ll first want
another function k̃ : A→ (I → B). This function is defined for every x : A
by induction on I:

k̃(x)(0I) :≡ f(x)

k̃(x)(1I) :≡ g(x)

apk̃(x)(seg) :≡ h(x)

The function k is then defined by k(t)(x) :≡ k̃(x)(t). Observe that k(0I) ≡ f
and k(1I) ≡ g. Hence, apk(seg) : IdA→B(f, g).

3 ITT is a theory of sets

Without univalence or higher inductive types, we have no way to construct-
ing paths other than reflexivity. For this reason, we would expect that the
types of ITT are homotopically discrete – they have no higher path structure.
Recall the definition of isSet:

isSet(A) :≡
∏
x,y:A

∏
p,q:IdA(x,y)

p =IdA(x,y) q

We will be able to show that most of the basic types in ITT are sets, and
that most of the type constructors preserve the property of being a set.
Depending on how we define the universe U , it may or may not be possible
to prove U is a set. To prove Π preserves sethood, we will need function
extensionality, which is not present in pure ITT. However, it is certianly
consistent with pure ITT that all types are sets. In HoTT, on the other
hand, we will be able to find types which are provably not sets.

Basic constructs

• 1: By a homework exercise, we know that Id1(x, y) ' 1, so for any x, y : 1
we have a map f : Id1(x, y) → 1 which is an equivalence. Let x, y : 1
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and p, q : Id1(x, y) be given. We know that f(p) =1 〈〉 and f(q) =1 〈〉,
so f(p) =1 f(q). Then f−1(f(p)) =Id1(x,y) f

−1(f(q)) by apf−1 , and the
properties of inverses give us that p =Id1(x,y) q.
• 0: Given x, y : 0 and p, q : Id0(x, y), we can simply abort with x to prove

that p =Id0(x,y) q.
• Π: We assume function extensionality. To prove that Πx:A.Bx is a set,

we only need to know that Bx is a set for every x:A. Assume this is
true, and let f, g : Πx:A.B. We want to show any two p, q : IdΠx:A.B(f, g)
are equal. By function extensionality, the type IdΠx:A.B(f, g) is equivalent
to Πx:A.IdBx(f(x), g(x)), so it suffices to prove any homotopies h, k :
Πx:A.IdBx(f(x), g(x)) are equal. Applying function extensionality again,
it is enough to show h(x) =IdBx (f(x),g(x)) k(x) for every x:A. This follows
from our assumption that Bx is a set.
• Σ: Analogously with the product type A×B, it is possible to show that

IdΣx:A.Bx(a, b) ' Σp : (fst a = fst b). (snd a =x.Bx
p snd b). Thus, a path

in Σx:A.Bx is decomposable into a path in A and a path in Bx for some
x; if A and Bx are sets, all such paths will be equal, so we can show that
all paths in Σx:A.Bx are equal.
• +: To prove that A + B is a set, we need to assume A and B are sets.

Given x, y : A+B, we want to show that any two elements of IdA+B(x, y)
are equal. We can do this by a case analysis on x and y. If x ≡ inl(a) and
y ≡ inl(a′), then IdA+B(x, y) ' IdA(a, a′), so our theorem follows from the
fact that A is a set. The case that x ≡ inr(b) and y ≡ inr(b′) is symmetric.
If x ≡ inl(a) and y ≡ inr(b) (or in the reverse case), then the space of
paths from x and y is empty, so of course any two paths are equal.
• Nat: We will later discuss Hedberg’s theorem, which shows that any type

with decidable equality is a set. We leave it as an exercise for the reader
to show that Nat has decidable equality.

The universe

We did not go into much detail with demonstrating that the universe is a
set, but the gist of it is that we can show it by giving “codes,” or abstract
syntax trees, for every type in the universe such that they map onto the
natural numbers. For example, for base types like Nat we just give a termi-
nal code ˙Nat and for the complex types we can concatenate (the inductive
codification of) their codes. Then we give an interpretation function to say
the appropriate thing, like T ( ˙Nat) = Nat and T (a→̇b) = T (ȧ)→ T ((̇b).
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Identity types

We can show that IdA(x, y) is a set if A is a set.
Assumption: A is a set, i.e. there is a term H s.t.

H : Πx, y:A.Πp, q:IdA(x, y).IdIdA(x,y)(p, q)

For the sake of making deeply-nested subscripts on identity types more
readable, let’s introduce a few definitions:

idA(x, y) := IdA(x, y)

ididA(x, y, r, s) := IdidA(x,y)(r, s)

idididA(x, y, r, s, α, β) := IdididA(x,y,r,s)(α, β)

We need to show that for any x, y, IdA(x, y) is a set, i.e. construct a
proof term of type

Πr, s: idA(x, y).Πα, β: ididA(x, y, r, s). idididA(α, β)

Assume:

u, v : A

r, s : idA(u, v)

α, β : ididA(u, v, r, s)

Need to construct a term of type idididA(u, v, r, s, α, β).
First, specialize H to H ′(q) : H(u, v, r, q).
We exploit the functoriality of H ′ to get

apdH′ : Πq, q′:IdA(u, v).Πγ:Id−(q, q′).Id−(γ∗(H
′(q)), H ′(q′))

apdH′(r, s, α) : Id−(α∗(H
′(r)), H ′(s))

apdH′(r, s, β) : Id−(β∗(H
′(r)), H ′(s))

By symmetry and transitivity of identity, we can form a term of type

Id−(α∗(H
′(r)), β∗(H

′(r)))

and so we can get transport in the identity

Id−(H ′(r) · α,H ′(r) · β)
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Because the groupid structure tells us we get a cancellation property (?),
this means α = β.

It is left as an exercise to the reader to construct this term in formal
notation.

4 ITT + UA is not a set theory

In other words, in homotopy type theory, not all types are sets. In particular,
U is a proper groupoid. There are nontrivial paths between the elements of
U .

As an example, we can demonstrate two distinct paths between the
booleans 2, one which is based on the identity mapping id taking tt to
tt and ff to ff. The other is based on not, taking tt to ff and ff to tt.

not and id are two functions from 2 to 2, and we can show them equivalent
(exercise). Denote with ua the half of UA that takes us from equivalences
to paths. Then ua(id) and ua(not) are two paths from 2 to 2.

We can now refute that these paths are identifiable, i.e. realize

Πx:2.Id2(ua(id)(x), ua(not)(x))→ 0

refl2(tt) : tt =2 tt by identity introduction, and by the assumed identity
between id and not, we can transport to get a proof that tt =2 ff. This
can be refuted via the path characterization of sum types seen in a previous
lecture, yielding 0.

5 n-types

To foreshadow what’s to come: we will eventually consider isSet(A) a special
case of the more general is-n -type(A), specifically

isSet(A) becomes is- 0 -type(A)
isGpd(A) becomes is- 1 -type(A)
is2Gpd(A) becomes is- 2 -type(A)

...
...

The types A for which is-n -type(A) holds will be called the n-types.
Roughly, it means that “up a level” we have a set (the identities between
identities between ... (n times) become identified).

But before we start climbing the ladder upward, let’s go the opposite
direction and consider (in some sense) n = −1,−2, i.e. what happens if we
take away structure in the sense of differentiation of identity proofs.
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6 Proof Irrelevance

So far, we have taken to heart the idea of proof relevance and seen that it
can be useful for the evidence for a proposition to matter, i.e. to treat the
proposition as a type and terms inhabiting that type as useful, meaningful
data. For example, the natural numbers form a type Nat, and different
“proofs” of Nat are different numbers—so of course we care to differentiate
them.

Now we will consider the special case of proof irrelevance: we can identify
certain propositions for which we do not distinguishing its proofs, i.e. we
can consider any M,N : A for this type A to be equivalent. We will call
this property isProp (corresponding to is-−1 -type in the table above), and
formally we define isProp(A) to be the type

Πx, y:A.IdA(x, y)

Another word used to describe A with this property is “subsingleton.”
It is a type with at most one element, up to higher homotopy (i.e. if there
are multiple elements then there are paths between them).

A motivation for considering this type arises in the domain of depen-
dently typed programming, wherein we want to consider types (propositions)
to be specificatons for code. For example, consider specifying a function that
takes a (possibly infinite) sequence and returns the first index of the sequence
that contains the element 0. A type giving this specification might look like

Πs:Nat→ Nat. Σi : Nat.s(i) =Nat 0

...except that if we want the function to be total, we need some extra
information about the input stream, saying that it actually contains a 0
element:

Πs:(Σt:Nat→ Nat.Σi:Nat.t(i) =Nat 0). Σi : Nat.(π1s)(i) =Nat 0

But it turns out that we are now asking for too much information from
our input. The above specification has a constant-time algorithm: the input
contains a proof, i.e. a witness that it has a 0 element, which is exactly
what we are supposed to return. The function is

λs.〈π1(π2s), π2(π2s)〉
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This is not the function we wanted to specify: we had in mind something
like an inductive traversal of the sequence, stopping when we find the 0
element and returning a tracked index.

The question for resolving this puzzle is “How do we suppress information
in a type?”. We would like to still require the input to have a 0 element
without making that information available in computation; that is, we are
interested in only the propositional content of the spec.

One way of suppressing information in a type is Brouwer’s idea of using
double negation, i.e. to put a ¬¬ in front of s’s type.

(Digression: if the stream is infinite, it’s not actually clear that we would
be able to decide whether it contains a 0; we might be worried that by
doubly-negating, we no longer have access to that information. Markov’s
Principle, from the Russian school of constructivism, states that if a Turing
machine can’t fail to halt, it must halt; i.e. it takes a form of DNE specialized
to Turing machines. Alternatively, we can take the NuPRL route and specify
a bound k for the sequence such that we know we will find a 0 if there is
one.)

Double negation “kills computational content” in the way that we want,
and we can formally state that as the following fact:

isProp(¬¬A) for any A.
¬¬A is defined as (A→ 0)→ 0
NTS a term inhabiting

Πx, y:(¬¬A).Id¬¬A(x, y)

In lecture it was stated that this is a simple proof using abort−. If we
have function extensionality available it seems straightforward that in fact
any negated type A→ 0 is a prop:

f, g:¬C, x:C ` abortC(f x) : Id0(f x, g x)

With function extensionality we can turn this into

f, g:¬C ` funext(λx.abortC(f x)) : Id¬C(f, g)

6.1 Gödel’s Double Negation Translation

Brouwer’s insight about double negation led to Gödel’s discovery of a trans-
lation embedding classical logic into constructive logic. The idea is to define
‖−‖ such that if A is provable classically, ‖A‖ is provable constructively. We
can give this translation as:

Martens and Cavallo 2013/11/04 and 2013/11/06 9



Homotopy Type Theory

‖1‖ = 1

‖A ∧B‖ = ‖A‖ ∧ ‖B‖
‖0‖ = 0

‖A ∨B‖ = ¬¬(‖A‖ ∨ ‖B‖)

For implication we have two choices. We can either “just squash” the
type, which would be sufficient for information erasure:

‖A ⊃ B‖ = ‖A‖ ⊃ ‖B‖

...or we can properly embed classical logic with the translation

‖A ⊃ B‖ = ‖A‖ ⊃ ¬¬‖B‖

We need the latter definition to recover completeness wrt classical logic,
since, remembering that classical logic can be formulated as “constructive
logic plus DNE (a double negation elimination rule available in general),”
we have

‖¬¬A ⊃ A‖ = ¬¬A ⊃ A

with the “just squash” principle, but

‖¬¬A ⊃ A‖ = ¬¬A ⊃ ¬¬A

with the classical embedding, which is provable constructively (it is just
an instance of the identity).

With the interpretation of ¬A as a continuation accepting a term of type
A, this translation coincides with the “continuation-passing transform” for
compilers.

7 Hedberg’s Theorem

Finally, we will touch briefly on Hedberg’s Theorem. Hedberg’s Theorem is
another way to prove something is a set: it states that a type with decidable
equality is a set. In other words, If

Πx, y:A.IdA(x, y) ∨ ¬IdA(x, y)
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then isSet(A).
Proof sketch: decidable equality implies stable equality, i.e. ¬¬IdA(x, y) ⊃

Ida(x, y), and stable equality implies sethood.
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1 Contents

These notes cover Robert Harper’s lectures on Homotopy Type Theory from
November 11 and 13, 2013. Discussions include Hedberg’s theorem, con-
tractibility, propositional truncation, and the “axiom” of choice.

2 Refresher: Sets and Propositions

Recall from previous lectures the definitions of sets and propositions within
HoTT. A type is called a set if there is only “one way” for any two of its
elements to be equal:

isSet(A) :≡
∏
x,y:A

∏
p,q:x=Ay

(p =x=Ay q)

Relatedly, a type is called a proposition if it is a “subsingleton”: that is,
it has at most one inhabitant.

isProp(A) :≡
∏
x,y:A

(x =A y)

We can define isSet in terms of isProp: a type is a set if equality for that
type is propositional.

isSet(A) ≡
∏
x,y:A

isProp(x =A y)

What it means for a type to be a set is that there are no nontrivial rela-
tionships between elements of the type. The higher homotopy structure we

1
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have seen in previous weeks does not exist in a set, as the only paths between
elements are trivial, which trivializes the higher structure. In this sense, sets
(and propositions) “reclaim” some properties of classical mathematics.

Proposition 1. For any type A, we have isProp(¬A), where ¬A :≡ A→ 0.

Proof. We want to find

:
∏

x,y:¬A
(x =¬A y).

Since ¬A is a function type, via funext it suffices to find

:
∏
u:A

(x(u) =0 y(u)).

We have λu. abortx(u)=0y(u)(x(u)) of this type.

From this, we can derive the (perhaps surprising) result that ¬¬(¬A)→
¬A, even though we do not necessarily have ¬¬A→ A.

3 Hedberg’s Theorem

These considerations lead us to the following important theorem.

Definition 1. A type A has decidable equality if one can prove of any two
inhabitants of A that they are either equal or unequal.∏

x,y:A

(IdA(x, y) ∨ ¬IdA(x, y)).

A type A has stable equality if double-negation elimination holds in its
identity type: ∏

x,y:A

(¬¬IdA(x, y)→ IdA(x, y))

Theorem 1. A type with decidable equality is a set.

Proof. The proof of Hedberg’s theorem goes in two parts:
1. Decidable equality implies stable equality. In fact, we can prove in general

that for any type A, (A+¬A)→ ¬¬A→ A. This part is simple and left
as an exercise.

2. Stable equality implies sethood. This is the heart of Hedberg’s theorem.
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We prove 2. Suppose h :
∏
x, y : A.(¬¬x =A y)→ (x =A y) is evidence

that equality in A is stable. To show isSet(A), is suffices to show that
x : A, p : x =A x ` p =x=Ax reflA(x), since we can reduce the identity of
p, q : x =A y to showing that p � q−1 = reflA(x).

Fix x : A. We then have h(x) :
∏
y : A.(¬¬x =A y)→ (x =A y).

Using dependent function application apd (defined previously), we see
that

apdh(x)(p) : p∗(h(x)(x)) =(¬¬x=Ax)→(x=Ax) h(x)(x)

By lemma 2.9.6 of [1], it follows that for that for any r : ¬¬(x =A x),

p∗(h(x)(x))(r) =x=Ax h(x)(x)(p∗r).

Next, from a proven property of transport in identity types, we have
that

p∗(h(x)(x))(r) =x=Ax h(x)(x)(r) · p

and because negated types are propositions (from above),

h(x)(x)(p∗r) =x=Ax h(x)(x)(r)

so we have by transitivity

h(x)(x)(r) · p =x=Ax h(x)(x)(r)

and cancellation gives us p =x=Ax reflA(x) as desired.

For an example of the power of Hedberg’s theorem, note that it implies
isSet(Nat). Using double induction, one can show∏

x,y:Nat

(x =Nat y) ∨ ¬(x =Nat y).

This is left as an exercise.

4 More Results on Propositions and Sets

Theorem 2. Every proposition is a set:

If
∏
x,y:A

x =A y then
∏
x,y:A

∏
p,q:x=Ay

p =x=Ay q
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Proof. Suppose f :
∏
x, y : A.x =A y. Given two inhabitants of A, f returns

a path between them.
Fix x0 : A and let g :≡ f(x0) :

∏
y : A.x0 =A y. For p : y =A y

′, we have

apdg(p) : p∗(g(y)) =x0=Ay′ g(y′)

and by property of transport within identity type,

p∗(g(y)) =x0=Ay′ g(y) · p.

By transitivity, we thus have

g(y) · p =x0=Ay′ g(y′)

p =x0=Ay′ g(y)−1 · g(y)

For q : y =A y
′, these same calculations give us

q =x0=Ay′ g(y)−1 · g(y).

Thus, p =x0=Ay′ q as desired.

Theorem 3. isProp(isProp(A)) – that is, there is only one proof that A has
only one inhabitant.

Proof. Let f, g : isProp(A) be given. To show f =isProp(A) g, it suffices
to show (by funext) x, y : A ` : fxy =x=Ay gxy. This follows since
isProp(A)→ isSet(A).

We can similarly prove isProp(isSet(A)). For f : A→ B, with the proper
notion of isEquiv(f), we will soon be able to prove isProp(isEquiv(f)). If we
take equivalence to mean having a quasi-inverse, though, this is not the case.

5 Contractibility

In preparation for what follows, we define the notion of contractibility:

isContr(A) :
∑
x:A

∏
y:A

x =A y

That is, a type is contractible if there is some inhabitant which all other
inhabitants are equal to. This is equivalent to saying that A is a prop, and
it is inhabited. Alternatively, a A type is contractibile if it is equivalent to
1.
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x

Figure 1: A contractible type. There is some element x, and paths between
x and all other elements

Notice that for any type A, given a:A, we have that isContr(Σx:Aa = x).
In particular, (a, reflA(a))) is an inhabitant of this type which all other
elements are equal to.

The notions of contraction and truncation are related to the (n)-type
hierarchy: specifically, contractions sit at the bottom of the hierarchy. For
historical reasons, we begin with (-2) types, and define inductively:

is-(−2)-type(A) :≡ isContr(A)

is-(n+ 1)-type(A) :≡
∏
x,y:A

is-n-type(x =A y)

Now, we have that:

isProp(A)↔
∏
x,y:A

isContr(x =A y).

which implies that
isProp(A)↔ is-(−1)-type(A).
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We can further prove the following:

isSet(A)↔ is-0-type(A)

isGpd(A)↔ is-1-type(A)

is-2-Gpd(A)↔ is-2-type(A)

...

As well as ∏
A:U

(is-n-type(A)→ is-(n+ 1)-type(A)) .

However, it is not the case that every type is an n-type for some n:
consider U .

6 Propositional Truncation (Squashing)

The notion of “squashing” introduced last week was perhaps too heavy-
handed: it was used toward a number of goals, among them to recover
classical logic within constructive logic. We now introduce the more general
idea of abstract truncation, which for now will be taken as a primitive idea of
HoTT. Truncation serves to reduce types to sets, without all the byproducts
of the double negation translation.

Let ‖A‖−1 be read as the (-1)-truncation of A. When the context is
clear, we omit the subscript. When the type ‖A‖ is inhabited, we say A is
“merely inhabited”, to emphasize that this is a proof-irrelevant setting. We
have the following ‖ · ‖-introduction rules:

Γ `M : A

Γ ` |M | : ‖A‖ Γ, x : ‖A‖, y : ‖A‖ ` squash(x, y) : Id‖A‖(x, y)

As we would expect, isProp(‖A‖) because of the rule for squash(·, ·). The
corresponding elimination rule s:

Γ `M : ‖A‖ Γ, x : A ` N : B Γ ` P : isProp(B)

elim[B](M ;x.N ;P ) : B
‖ · ‖E

We require a proof of isProp(B) to ensure that the behavior of N does
not depend on the representative x : A. There are other ways to ensure
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this property: for instance, we could instead require u, v : A ` [u/x]N =B

[v/x]N . Note that isProp(B) implies that this is the case.
The β rule works as one might expect:

elim(|M |;x.N ;P ) ≡ [M/x]N

One would similarly like some β like rule to hold for the 1-cell, squash.
For example, something of the form

ap(λz.elim(z;x.N ;P ))(squash(|M |, |M ′|)) ≡ P ([M/x]N)([M ′/x]N)

which corresponds to the idea that P is a proof that N is equal under sub-
stitutions of different terms of type A, because B is a proposition. However,
just as in the case of seg, we do not have this.

7 Revisiting the Axiom of Choice

Previously, we explored how the axiom of choice is provable in ITT. That
is, there is a term AC∞ such that

AC∞:
∏
A:U

∏
B:A→U

∏
C:Πx:A.B→U

∏
x:A

∑
y:B(x)

C(x, y)

→
 ∑

f :Πx:A.B

∏
x:A

C(x, f(x))


In fact, we can strengthen this and say that the two types are equivalent.

Recall that this type is inhabited because the witness that the relation C is
total provides precisely the choice we should make, because the specification
is proof relevant. The situation is similar to the example that motivated our
introduction of propositional truncation, where we wanted to write a total
function that returned the index of the first occurrence of 0 in an infinite
sequence. The proof that the infinite sequence actually contained a 0 also
immediately told us where the 0 was.

Now that we have developed the notion of propositional truncation, we
can state a version of the axiom of choice that is closer in meaning to its
typical statement:

∏
A:U

∏
B:A→U

∏
C:Πx:A.B→U

isSet(A)→

(∏
x:A

isSet(B(x))

)
→

∏
x:A

∏
y:B(x)

isProp(C(x, y))


→

∏
x:A

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
y:Bx

C(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣
→

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

f :Πx:A.B

∏
x:A

C(x, f(x))

∣∣∣∣∣∣
∣∣∣∣∣∣


Lewis and Tassarotti 2013/11/11 and 2013/11/13 7



Homotopy Type Theory

This restated form is not provable. What has happened is now that we
say that there merely exists some y for each x such that C(x, y). The axiom
says that given such weaker evidence, there merely exists such a function f
where for each x, C(x, f(x)). We might call an axiom of such a type AC−1,
to emphasize that it involves the −1-truncation.

Now, the truncations of equivalent types are equivalent. Since the non-
truncated form of the axiom of choice, AC∞, gives us the equivalence∏

x:A

∑
y:B(x)

C(x, y)

 '
 ∑

f :Πx:A.B

∏
x:A

C(x, f(x))


so that the type of AC−1 is equivalent to

∏
A:U

∏
B:A→U

∏
C:Πx:A.B→U

isSet(A)→

(∏
x:A

isSet(B(x))

)
→

∏
x:A

∏
y:B(x)

isProp(C(x, y))


→

∏
x:A

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
y:Bx

C(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣
→

∣∣∣∣∣∣
∣∣∣∣∣∣
∏
x:A

∑
Y :B(x)

C(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣


Now, for all Y : A→ U , we have that Πx:AY (x) ' Πx:A(Σa:Y (x)1), so we
can simplify the above type to:

∏
A:U

∏
Y :A→U

(
isSet(A)→

(∏
x:A

isSet(Y (x))

)
→

((∏
x:A

||Y (x)||

)
→

∣∣∣∣∣
∣∣∣∣∣∏
x:A

Y (x)

∣∣∣∣∣
∣∣∣∣∣
))

In this form, we see that the axiom is saying that a product of a family
of merely inhabited sets is merely inhabited, which is well-known to be
equivalent to the axiom of choice in classical mathematics. It is crucial here
that isSet(A), since if A is not a set, there is a counter example (see lemma
3.8.5 in [1])

8 Equivalence and Propositions

A few weeks ago, we defined what it meant for a map f : A → B to be an
equivalence between A and B, written isequiv(f). The definition we gave
was:

isequiv(f) :≡ (Σg : B → A.f ◦ g ∼ idB)× (Σh : B → A.h ◦ f ∼ idA).
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We also gave the related notion of a quasi-inverse, written qinv(f), which
was defined as:

qinv(f) :≡ Σg : B → A.(f ◦ g ∼ idB × g ◦ f ∼ idA).

In some ways, the definition of qinv may at first appear to be a more
natural definition than isequiv, since it states that there is some function
g which is a left and right inverse of f . This is the definition of an iso-
morphism in category theory, for example. Of course, we explained that
isequiv(f) → qinv(f) and qinv(f) → isequiv(f), and this enabled us to use
whatever definition was more convenient over the past few weeks.

Why did we choose the above definition for isequiv instead of using the
definition we gave for qinv? The issue is that we would like there to be
only one proof that a given function f is an equivalence. That is, we want
isProp(isequiv(f)) to hold for all f . This is the case for the definition we
gave, but it is not true that isProp(qinv(f)) for every f . We can show this
by establishing two lemmas:

Proposition 2. If f : A→ B and e : qinv(f) then qinv(f) ' Πx:A.(x = x)

Proposition 3. There exists some type X such that Πx:X(x = x) is not a
proposition.

See the discussion in section 4.1 in [1] for proofs of these lemmas. This
makes qinv unsuitable as a definition for isequiv. Nevertheless, we would still
like a definition of isequiv to be interprovable with qinv, while also being a
proposition. There are three candidates which satisfy these properties, all
of which are equivalent:

1. biequiv(f) :≡ (Σg : B → A.f ◦ g ∼ idB)× (Σh : B → A.h ◦ f ∼ idA).
We say that f is bi-invertible, which means that f has a left inverse and
a right inverse. This is the definition we have been using.

2. isContr(f) :≡ Πy:B. isContr(fibf (y)) where fibf (y) = Σx:A.f(x) = y.
This says that f is contractible if given any y in the codomain, the set
of all things that f maps to y (the fiber), is contractible. That is, for
every point in the codomain, there is an element x in the domain such
that f(x) = y, and if f(x′) = y then x = x′. But that precisely means
that f is a bijection up to homotopy.

3. ishae(f) :≡ Σg:B → A.Σα:(f ◦ g ∼ id).Σβ:(g ◦ f ∼ id).
Πx: A.f(βx) = α(fx):

We read this as saying that f is a half-adjoint equivalence. We did not
talk about this definition in class, but a discussion can be found in section
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4.2 of [1]. Roughly, we can motivate this by noticing that it is similar to
the definition of qinv (where the homotopies α and β were unnamed) with
an additional coherence condition relating how these homotopies interact
with f .

References

[1] Institute for Advanced Study. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. The Univalent Foundations Program, 2013.
http://homotopytypetheory.org/book/.
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Evan Cavallo and Stefan Muller
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1 Reconsider Nat in simple types

As a warmup to discussing inductive types, we first review several equivalent presentations
of the simple type Nat seen earlier in the course. The introduction forms for Nat are 0 and
succ(M) for any M : Nat. The elimination form is the recursor rec.

1.1 Traditional Form

Γ ` 0 : Nat
NatIz1

Γ `M : Nat
Γ ` succ(M) : Nat

NatIs1

Γ `M : Nat Γ `M0 : A Γ, x : A `M1 : A

Γ ` rec[A](M ;M0;x.M1) : A
NatE1

We include the motive A in the recursor to motivate the dependently-typed presentation
to come although it is not necessary in the simply-typed setting. The dynamic behavior of
rec is defined by the following β rules.

rec[A](0;M0;x.M1) ≡M0

rec[A](succ(M);M0;x.M1) ≡ [rec[A](M ;M0;x.M1)/x]M1

The recursor on 0 returns the base case M0. On succ(M), it substitutes the recursive
result on M for x in M1. The η rule states that any object that “behaves like” the recursor
is definitionally equal to the recursor on the appropriate arguments.

[0/y]N ≡M0 Γ, z : Nat ` [succ(z)/y]N ≡ [[z/y]N/x]M1 : A

Γ, y : Nat ` N ≡ rec[A](y;M0;x.M1)
η

1
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1.2 As elements of the exponential

The introduction forms of Nat may be treated as exponentials in the absence of a context.

· ` 0 : 1→ Nat (NatIz3)

· ` succ : Nat→ Nat (NatIs3)

Note that the type 1→ Nat is equivalent to the type Nat. There are two ways to present
the elimination form in this format. The first moves the Nat on which the recursion is done
to the argument position, implying that rec has exponential type.

· `M0 : A x : A `M1 : A

z : Nat ` rec[A](M0;x.M1)(z) : A
NatE3a

This can be presented in a more direct way by omitting the argument.

· `M0 : A x : A `M1 : A

· ` rec[A](M0;x.M1) : Nat→ A
NatE3b

We can derive rules NatIz1, NatIs1 and NatE1. For example,

Γ,M : Nat `M : Nat Γ,M : Nat ` succ : Nat→ Nat
NatIs3

Γ,M : Nat ` succ(M) : Nat

2 Nat-algebras

We now motivate the idea of Nat-algebras, which are maps of the form 1 + A→ A. From
the name, one would expect there to be a Nat-algebra where A is Nat. Indeed, there is.

z : 1 + Nat ` case(z; .0;x.succ(x)) : Nat

We can write case(z; .0;x.succ(x)) above as { .0;x.succ(x)}(z) or, somewhat abusively,
{0, succ}(z). This gives

· ` {0, succ} : 1 + Nat→ Nat

as desired. More generally, we can write any Nat-algebra as α = {α0, α1} where α0 :
1→ Nat (or, equivalently, α0 : Nat) and α1 : Nat→ Nat. We call α0 the basis or pseudo-zero
and α1 the inductive step or pseudo-successor.

In fact, {0, succ} holds a special position among Nat-algebras. The Nat-algebras form
a category and {0, succ} is the initial object in this category. Recall that this means it
has a unique morphism to any other object in the category. This requires us to define
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morphisms between Nat-algebras, which we will call Nat-homomorphisms. Given two Nat-
algebras, α : 1 +A→ A and β : 1 +B → B, h : A→ B is a Nat-homomorphism if it makes
the following diagram commute.

1 +A 1 +B

A B

α

1+h

β

h

The map 1 + h : 1 +A→ 1 +B is defined in the natural way:

1 + h :≡ { .inl 〈〉; a.inr h(a)}

To show that Nat is an initial algebra, we must show that for every Nat-algebra α :
1 + A→ A, there exists a unique Nat-homomorphism ! : Nat→ A such that the following
diagram commutes (note that the order of quantifications expressed in the previous sentence
is not inherently clear in the diagram, and must be considered to get a full understanding
of the diagram.)

1 + Nat 1 +A

Nat A

{0,succ}

1+!

α

!

Let’s consider the requirements on ! for the diagram to commute.

!0 = α0

!succ(x) = α1(!x)

where the left sides correspond to following the path ! ◦ {0, succ} and the right sides
correspond to following α ◦ 1+!. Note that these two equations match the β rules for rec,
so we can define ! :≡ rec[A](α0;α1) or simply ! :≡ rec[A](α). As we see above, the β rules
for rec imply commutation of the diagram. Uniqueness of ! follows from the η rule for rec.

It’s worth noting that commuting diagrams hide exactly the type of equality that is
being discussed, which is quite important in HoTT. For Nat, for example, uniqueness of !
holds “on the nose,” while, in general, uniqueness may be only up to higher homotopy.

3 F -algebras

The above discussion can be generalized to any functor F . A functor is a mapping between
categories C and D. Functors act on objects in a category and the morphisms between
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them, i.e. for all objects X ∈ C, F (X) ∈ D, and for all morphisms f : X → Y between
objects X and Y in C, F (f) : F (X)→ F (Y ). Functors respect identity and composition:
1. For every object X ∈ C, F (idX) = idF (X)

2. For all morphisms f : X → Y and g : Y → Z, F (g ◦ f) = F (g) ◦ F (f)
[1]

For example, FNat(C) :≡ 1 + C is a functor. We check that FNat preserves identities
and composition. Let X be an object of C.

FNat(idX) = 1 + idX = {〈〉, idX}

which is indeed an identity on 1 + X. Let f : X → Y, g : Y → Z be morphisms between
objects of C.

FNat(g ◦ f) = 1 + g ◦ f = {〈〉, g ◦ f} = {〈〉, g} ◦ {〈〉, f} = (1 + g) ◦ (1 + f) = F (g) ◦ F (f)

For any functor F , an F -algebra is a mapping F (X) → X. Thus, a Nat-algebra is an
FNat-algebra. F -algebras form categories as Nat-algebras do. For a functor F , objects A
and B, two F -algebras α : F (A)→ A and β : F (B)→ B, and a morphism h : A→ B, the
following diagram commutes.

F (A) F (B)

A B

α

F (h)

β

h

An initial F -algebra is an F -algebra i : F (I) → I such that for all other F -algebras
α : F (A) → A, there exists a unique map ! : I → A such that the following diagram
commutes.

F (I) F (A)

I A

i

F (!)

α

!

There also exists the notion of an F -coalgebra, which, dual to the above, is a map
α : A → F (A). A final F -coalgebra is a mapping j : J → F (J) such that for all other
F -coalgebras α : A → F (A), there exists a unique map ! : A → J making the following
diagram commute.

A J

F (A) F (J)

α

!

j

!
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Lemma 1 (Lambek). If i : F (I) → I is an initial F -algebra, then i is an isomorphism.
That is, F (I) ≡ I.

Proof. To show that i is an isomorphism, we must exhibit an inverse i−1 : I → F (I) such
that i ◦ i−1 = idI and i−1 ◦ i = idF (I). Consider the F -algebra F (i) : F (F (I)) → F (I).
We now treat i as homomorphism between the F -algebras F (i) and i making this diagram
commute.

F (F (I)) F (I)

F (I) I

F (i)

F (i)

i

i

Since i is an initial F -algebra, however, we also have a unique mapping ! : I → F (I)
making the top half of this diagram commute.

F (I) I

F (F (I)) F (I)

F (I) I

F (!)

i

!

F (i)

F (i)

i

i

There is also a unique mapping from I to I, which must be the identity. This indicates
that the mapping i◦! along the right side of the diagram must be equal to idI :

i◦! = idI

We also have
! ◦ i = F (i) ◦ F (!) = F (i◦!) = F (idI) = idF (I)

where the first equality follows from the commutativity of the upper half of the diagram,
the second and fourth follow from the properties of functors and the third follows from the
result above.

This shows that for any functor F , the initial F -algebra I is a fixed point of F . A
dual result can be proven showing that, if J is the final F -coalgebra of a functor F , then
F (J) ≡ J .
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4 Internalizing Nat-Algebras

Inside type theory, we can define the notion of Nat-algebra as

NatAlg :≡ ΣA:U . ((1 +A)→ A)

We can define the type of Nat-homomorphisms between two Nat-algebras (A,α) and (B, β)
as

NatHom(α, β) :≡ Σh:A→ B. (β ◦ (1 + h) = h ◦ α)

The fact that ν :≡ (Nat, {0, succ}) is initial in the category of Nat-algebras is expressed
by the fact that NatHom(ν, α) is contractible for all α: this means that there exists a
Nat-homomorphism from ν to α which is unique up to higher homotopy.

5 W-types

We’d like to be able to take a functor F and define the initial F -algebra within HoTT (if
one exists). For the class of polynomial functors, we can do this using Brouwer ordinals,
also called W-types.

W-types are inspired by the mathematical concept of well-founded induction. In classi-
cal mathematics, a partially ordered set 〈A,<〉 is said to be well-founded if every subset of
A has a <-minimal element (equivalently, there are no infinite descending chains). Well-
founded sets are useful because they admit an induction principle:

Proposition (Well-Founded Induction):
Let 〈A,<〉 be a well-founded set and P (x) be a proposition. If for any a ∈ A we
can prove P (a) by assuming P (b) for all b < a, then P (a) holds for all a ∈ A.

The set of natural numbers 〈N, <〉 together with its usual ordering is an example of a
well-founded set, and the induction principle is the familiar mathematical induction.

Classically, the proof that induction holds goes by contradiction, so this definition is
unsatisfactory for a constructive theory. We will instead characterize well-founded sets as
those for which we have a (constructive) induction principle.

To better understand what we mean by this, we will define W-types. To form a W-type,
we require a type A and a type family B over A:

Γ ` A : U Γ, x:A ` B : U
Γ `Wx:A.B : U WF

A is the type of node sorts. Each node sort represents a different way of forming an element
of Wx:A.B. For example, in the case of the natural numbers, the node sorts are 0 and
succ. We can think of each element of the natural numbers as a tree built from these two
sorts of nodes. For example, the numbers 0 through 2 can be represented as
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0 succ succ

0 succ

0

Another natural example is the type of binary trees. This type can be defined by two node
sorts node and leaf, with the elements taking the form of trees such as this:

node

leaf leaf

In order to fully specify these two types, we need to have some notion of a node’s arity.
This is given by the type family B. For each node sort a : A, B(a) describes the branching
factor of a, the index type to specify the predecessors of a node of sort a. For example, the
branching factor of the sort 0 or leaf would be 0, the branching factor of succ would be 1,
and the branching factor of node would be 1+1. Thus we can write Nat as Wx:2. if(x; 0; 1),
where tt represents 0 and ff represents succ.

Now that we have the purposes of A and B in hand, we can see how to define the
introduction rule for Wx:A.B.

a : A x:B(a) ` w : Wx:A.B

Γ ` sup[a](x.w) : Wx:A.B
WI

In other words, in order to construct a node of sort a, we must give an element Wx:A.B
for each predecessor as specified by the branching factor B(a). Note that when B(a) is 0
we can construct a new node without any predecessor information. For example, we can
construct elements of the naturals as follows:

0 :≡ sup[tt](x.abortWx:2. if(x;0;1)(x))

1 :≡ sup[ff]( .0)

2 :≡ sup[ff]( .1)

The recursor for Wx:A.B follows the idea of well-founded recursion: in order to define
the result of a function f on an element w : Wx:A.B, we can assume we’ve already computed
f for all of w’s predecessors.

Γ ` C : U Γ, a : A, r : B(a)→ C `M : C

Γ, z : Wx:A.B ` wrec[C](a, r.M)(z) : C
WR
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In the hypothesis, we assume that we are dealing with a node of type a and that we have the
value r(b) for each b : B(a) indexing a predecessor. We use this information to construct
the value M of the recursor at the current node. The recursor comes with the compuation
rule

wrec[C](a, r.M)(sup[a](w)) ≡ [a, λz.wrec[C](a, r.M)(w(z))/a, r]M

which, as expected, gives the value of wrec[C](a, r.M) on sup[a](w) in terms of the value
on each predecessor w(z) for z : B(a).

The dependent eliminator has a similar form, expressing the idea of well-founded in-
duction.

Γ, z : Wx:A.B ` P : U Γ, a:A, p : B(a)→Wx:A.B, h :
∏
b:B(a) P (p(b)) `M : P (sup[a](p))

Γ, z : Wx:A.B ` wind[x.P ](a, p, h.M) : P (z)
WE

Here, in order to formulate the hypothesis, we need to assume the additional data p :
B(a) → Wx:A.B which gives us the predecessors of the element we are considering. The
computation rule takes the form

wind[x.P ](a, p, h.M)(sup[a](w)) = [a,w, λz.wind[x.P ](a, p, h.M)(w(z))/a, p, h]M

In general, we can only assert that this computation rule holds propositionally.
Each W-type determines a functor, in particular a polynomial functor. This is a functor

of the form F (X) = Σa:A.(B(a) → X) for some type A and type family B. We can see
that the W-type Wx:A.B defines an F -algebra where F (X) :≡ Σa:A.(B(a)→ X): we have
λ(a,w). sup[a](w) : F (X)→ X. The map λ(a,w). sup[a](w) is in fact an equivalence, and
Wx:A.B is a homotopy-initial F -algebra.

In the case of our W-type definition of Nat, observe that the functor determined by
Wx:2. if(x; 0; 1) is F (X) = Σb:2.(if(b; 0; 1) → X). One can check that Σb:2.(if(b; 0; 1) →
X) ' 1 +X. Thus, this type satisfies the equation F (X) = 1 +X, our original definition
of a Nat-algebra.
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1 Higher Inductive Types

Recall last week we discussed (lower) inductive types and their definitions. This week,
we move on to discussing higher inductive types. Intuitively, a higher inductive type (i.e.
HIT) can be seen as a type with inductive definitions along with equational laws.

A higher order type then is a generalization of a free algebraic structure, which would
have generators and equational laws that should be fulfilled. For example, a group given
by a set of generators and relations (e.g. commutativity).

This gives a full higher-dimensional structure which allows us to impose relations in
multiple dimensions. In a proof-relevant environment, this means we get generators and
more generators. Or in other words, because of proof-relevance, equational laws can be
seen as generators at a higher dimension.

For example, at the 0-type level, the generators are elements or points. These are called
the 0-cells. Identities between 0-cells would be 1-cells, identities between 1-cells would be
2-cells, and so on. This allows for a type to be defined over multiple dimensions by the use
of n-cells.

2 The Interval Type I

Recall that the interval type I is defined by two points, 0I and 1I , along with an identity
seg. That is, I is defined by the 0-cells

0I : I

1I : I

and the 1-cell
seg : 0I =I 1I

1
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The recursor is defined as

Γ `M : I Γ ` a : A Γ ` b : A Γ ` β : a =A b

Γ ` rec[A](a; b;β)(M) : A
Irec

where the β0-rules that should hold (i.e. β-rules for 0-cells) are

rec[A](a; b;β)(0I) ≡ a
rec[A](a; b;β)(1I) ≡ b

and the β1-rule is
(aprec[A](a;b;β)(seg) =a=Ab β) true

That is to say, that the propositional equality above is inhabited.
From here, we can define the induction principle, which is similar to the recursor:

Γ, z : I ` A(z) : U Γ `M : I Γ ` a0 : A(0I) Γ ` a1 : A(1I) Γ ` p : a0 =z.A
seg a1

Γ ` ind[z.A](a0; a1; p)(M) : A(M)
I ind

Recall that a0 =z.A
seg a1 is defined as tr[z.A](seg)(a0) =A(1I) a1. This is because a0 and a1

no longer necessarily have the same type, so we need to use ”path over” to express the
desired equational law.

The β0-rules for induction are

ind[z.A](a0; a1; p)(0I) ≡ a0
ind[z.A](a0; a1; p)(1I) ≡ a1

and the β1-rule is
(dapind[z.A](a0;a1;p)(seg) =a0=z.A

seg a1
p) true

There is also a unicity rule, or η-rule, that states ”if a function behaves like the recursor
of I, then it must be the recursor.” There is a similar rule for the induction principle of I.

Exercise. Define the η-rules for Irec and I ind.

3 The Circle Type S1

Another example of a higher inductive type is the circle type S1. The S1 type is defined
by the 0-cell (point)

base : S1

and the 1-cell (path)
loop : base =S1 base
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The recursor is defined as

Γ `M : S1 Γ ` a0 : A Γ ` l : a0 =A a0
Γ ` rec[A](a0; l)(M) : A

S1rec

with the β0-rule is
rec[A](a0; l)(base) ≡ a0

and the β1-rule is
(aprec[A](a0;l)(loop) =a0=Aa0 l) true

The induction principle is defined as

Γ, z : S1 ` P (z) : U Γ `M : S1 Γ ` b : P (base) Γ ` l : b =z.P
loop b

Γ ` ind[z.P ](b; l)(M) : P (M)
S1ind

with β0-rule
ind[z.P ](b; l)(base) ≡ b

and β1-rule
(dapind[z.P ](b;l)(loop) =b=z.P

loopb
l) true

Be careful with the type of l, because it is easy to write a type that “typechecks” but is
not correct. l should express that taking b around the loop path over P returns to b.

Exercise. Define the η-rules for S1rec and S1ind.

4 Total Space of Loops as a Function from S1

Recall that we previously characterized the total space of paths,∫
IdA :≡

∑
x,y:A

x =A y

as being equivalent to the function type from I to A, i.e.

(I → A) '
∫

IdA

We can similarly characterize the total space of loops∫
ΩA :≡

∑
x:A

x =A x

as being equivalent to the function type from S1 to A. i.e.

(S1 → A) '
∫

ΩA
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Proof. Define f : (S1 → A)→
∫

ΩA as

f = λg.〈g(base), apg(loop)〉

Exercise. Show that f has a quasi-inverse.

5 Suspensions

Another example of a higher inductive type is the suspension type, which subsumes the
interval and circle types (up to homotopy). For a type A : U , the suspension of A, denoted
by susp(A) : U , is the higher inductive type given by two 0-cell constructors

N : susp(A)

S : susp(A)

which will be referred to as the north and south poles, respectively, and a family of 1-cell
constructors

mer : A→ (N =susp(A) S)

which can be understood as a collection of meridians, i.e., paths from the north to the
south pole.

Based on the above data, we can deduce the appropriate recursion schema: given any
other type B : U which ”looks like the suspension of A”, there should be a function, called
the recursor, from susp(A) to B, which preserves all the constructors. Expressing this
formally, we have the following recursion rule

Γ ` B : U Γ `M : susp(A) Γ ` bN : B Γ ` bS : B
Γ, x : A ` m(x) : bN =B bS

Γ ` rec[B](bN ; bS ;x.m(x))(M) : B
(susp(A)rec)

Furthermore, the recursor behaves according to the following computation rules:

rec[B](bN ; bS ;x.m(x))(N) ≡ bN : B

rec[B](bN ; bS ;x.m(x))(S) ≡ bS : B

aprec[B](bN ;bS ;x.m(x))(−)(mer(a)) =bS=BbN m(a)

The first two computation rules can be considered as β-rules for the 0-cells and the last
one a β-rule for the 1-cells. Since we do not care about the specific witness term for the
propositional equality in the conclusion of the last rule, we simply omit the witness.

We have an analogous induction schema, where instead of simple types B : U we
consider dependent types E : susp(A) → U . The induction rule states that in order to
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construct a dependent function mapping z : susp(A) to an element of E(z), it suffices to
give elements eN : E(N) and eS : E(S) such that for each x : A, eN and eS are associated
over the path mer(x). Formally, this means we have the following induction rule:

Γ, z : susp(A) ` E(z) : U
Γ `M : susp(A) Γ ` eN : E(N) Γ ` eS : E(S)

Γ `, x : A ` m(x) : eN =
z.E(z)
mer(x) eS

Γ ` ind[z.E(z)](eN ; eS ;x.m(x))(M) : E(M)

Likewise, we have the following computation rules:

ind[z.E(z)](eN ; eS ;x.m(x))(N) ≡ eN : E(N)

ind[z.E(z)](eN ; eS ;x.m(x))(S) ≡ eS : E(S)

dapind[z.E(z)](eN ;eS ;x.m(x))(−)(mer(a)) =
eN=

z.E(z)
mer(x)

eS
m(a)

where the conclusion of the last rule refers to the application of a dependent function to a
path, denoted by dap. We can state and prove a useful uniqueness principle, also known
as the η-rule, asserting that ”if a function behaves like the inductor, then it must be the
inductor”. We leave the exact statement of this principle and its proof as an exercise.

Why are we interested in suspensions in the first place? Interestingly, many familiar
(and also not so familiar) inductive types can be characterized as suspensions. For example:

Exercise. Show that the type susp(0) is equivalent to the type 2.

Exercise. Show that the type susp(1) is equivalent to the interval type I.

What is susp(2)? Since the type 2 contains only two elements (up to homotopy), we
can picture susp(2) as a type generated by the two points N and S with two distinct paths
between them, called w and e:

N

S

w e

This of course looks very much like a circle - and indeed it is!

Exercise. Show that the type susp(2) is equivalent to the circle type S1.

Now we can ask the question, what is susp(susp(2))? The type susp(susp(2)) will of
course have to contain the two points N and S. A function from susp(2) to the path space
N = S can then be thought of as a quadruple (w, e, γ, δ), where w,e are two distinct paths
from N to S and γ, δ are two distinct paths from w to e. The type susp(susp(2)) generated
by all this data can then be visualized as in Fig. 1:

This looks very much like a sphere - hence we can simply make the definition S2 :≡
susp(S1). We can iterate this and set Sn+1 :≡ susp(Sn).

Sojakova and Lee 2013/11/25 5



Homotopy Type Theory

Figure 1: S2
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1 Contents

2 Recap

Recall from last week the construction of the suspension of a type. Note that
we are using different notation from the book, namely Susp(A) as opposed
to

∑
A. The suspension Susp(A) of A contains two 0-cells:

N : Susp(A)

S : Susp(A)

and paths merid(a) between N and S, where a : A.

merid : Πx : A.N =Susp(A) S

x : Susp(A) ` B(X) : U

We also defined recursion and induction on Susp(A):

n : B s : B x : A ` m(x) : n =B s

z : Susp(A) ` rec[B](n; s;x.m) : B

z : Susp(A) ` B(z) : U n : B(N) s : B(S) x : A ` m(x) : n =z.B
merid(x) s

z : Susp(A) ` ind[B](n; s;x.m) : B(z)
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3 EQUIVALENCE OF SUSP(2) AND S1

3 Equivalence of Susp(2) and S1

Proposition 1.
Susp(2) ' S1

Proof.
f : Susp(2)→ S1

defined by
N 7→ base

S 7→ base

On the higher order part of the suspension, we define what the behavior of
the one-cells should be, e.g. how ap would act.

merid(tt) 7→ loop

merid(ff) 7→ refl(base)

To show equivalence, we now define a quasinverse of f

g : Susp(2)→ S1

where we send base is arbitrary but must be consistent

base 7→ N

loop 7→ merid(tt) ·merid(ff)−1

Now need to prove these are inverses

α : Πx : Susp(2).g(f(x)) = x

By induction

(x = N) refl(N) : N = N
(x = S) merid(ff) : N = S

merid(y) ? : refl(N) =
z.f(g(z)=z
merid(y) merid(ff)

We can case out on this,

apg(apf (merid(tt))−1 · refl(N) ·merid(tt)) = merid(ff)

apg(apf (merid(ff))−1 · refl(N) ·merid(ff)) = merid(ff)

2
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stepping evaluation,

apg(loop)−1 ·merid(tt) = merid(ff)

(merid(tt)·merid(ff)−1)−1·merid(ff) = merid(ff)−1−1·merid(tt)−1·merid(tt) = merid(ff)

Our other proof of inversion

β : Πx : S1.f(g(x)) = x

proceeds by induction on S1

(x = base) refl(base) : f(g(base)) = base
(x = loop) apf (apg(loop))−1 · refl(base) = refl(base)

4 Pointed Type

A pointed type is one with an example inhabitant. If A is a pointed type,
then, in our notation, we have a0 : A.

For example, Ω(A, a0) = (a0 =A a0), “the loop space”, is pointed by
refl(a0). Susp(A) pointed by N (or S) is another example of a pointed type.

Pointed maps, also known as strict maps, are maps between two pointed
types which map the well-known point of one to the well known point of the
other, as in

(X,x0) ( (Y, y0) := Σf : X → Y.f(x0) = y0

We set out to prove

Proposition 2.
Susp(A) ( B ' (A( ΩB)

Proof. Given f : Susp(A) ( B, define g : A( ΩB as

g(a) = p−1
0 · apf (merid(a) ·merid(a0)−1) · p0

where f0 is the raw map, and p0 is a proof of distinguished point preservation,
e.g. p0 : f0(N) = b0, and f = 〈f0, p0〉

q = refl(b0)

On the other side, given g : A( ΩB, define f : Susp(A) ( B

3
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f0(N) = b0

f0(S) = b0

We again define the behavior of the one-cell in the HIT

apf (merid(a)) = g0(a)

where g0 is the raw map, and q0 is a proof of distinguished point preser-
vation, e.g. q0 : g0(N) = b0 and f = 〈g0, q0〉

5 Pushouts

We temporarily return to conventional set math to define a pushout, which is
dual to a pullback, which is an equationally constrained subset of a product.
On the other hand, a pushout is essentially a disjoint union of two sets with
some of the elements “glued” together. Specifically, assume we have sets A,
B and C with maps f and g from C to A and B respectively. The pushout
A tC B is the disjoint union of A and B with the images f(C) and g(C)
merged by merging f(c) and g(c) together for all c ∈ C. In the notation of
type theory, we denote the disjoint union of A and B as A+B and use the
maps inl : A→ A+B and inr : B → A+B. We can then define the pushout
as

A tC B = (A+B)/R

whereR is the least equivalence relation containing ∀c ∈ C.R(inl(f(c)), inr(g(c)))
A tC B is the “least such” object in the sense that it has a unique map

to any other object D with the same properties:

C B

A A tC B

D

g

f f ′
f ′′

g′

g′′

!

where f’ and g’ are identified by f and g.

4



5.1 Pushouts of A
f←− C g−→ B 5 PUSHOUTS

5.1 Pushouts of A
f←− C

g−→ B

Moving back to HoTT, we can define pushouts as a higher inductive type,
whose elements are those of the disjoint sum A+B, generated by mapping
A and B to the pushout A tC B by inl and inr, respectively

inl : A→ A tC B

inr : B → A tC B

and whose 1-cells connect inl(f(c)) and inr(g(c)) for every element c of
C.

glue : Πc : C.IdAtCB(inl(f(c)), inr(g(c)))

As usual, we can define a recursor rec[D](· · · ) : A tC B → D (the map
implied by the diagram above.) Note that for every element u of C, the
recursor requires that there exist a path witnessing the equality of [f(u)/x]l
and [g(u)/y]r, representing the action of the recursor on glue and ensuring
that the images of elements “glued together” in the pushout are also glued
together in D.

x : A ` l : D y : B ` r : D u : C ` q : [f(u)/x]l =D [g(u)/y]r

z : A tC B ` rec[D](x.l; y.r;u.q)(z) : D

We have the usual β rules.

rec(x.l; y.r;u.q)(inl(a)) ≡ [a/x]l

rec(x.l; y.r;u.q)(inr(b)) ≡ [b/y]r

aprec(x.l;y.r;u.q)(glue(c)) = [c/u]q

The idea of gluing together elements of a higher inductive type with a
path for each element of a given type seems very reminiscent of suspensions.
In fact, suspensions can be defined as pushouts A tC B with the types A
and B and the maps f and g trivial:

Susp(A) = 1 tA 1
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A

1 1

Susp(A)

!

!

inl

inr

This immediately implies the following:

Corollary 1. The pushout of two sets needn’t be a set.

This is true since S1 = Susp(2), but S1 is known not to be a set.

6 Quotients as HITs

The set definition of pushouts is in terms of a quotient, so we might consider
defining quotients of sets by props uing HITs.

Consider the type-theoretic representation of A/R, a type A quotiented
by the relation R. We define this type to have the normal properties of the
quotient. We must be able to project an element of A into A/R, e.g. by
computing its representative

q : A→ A/R

If we have two elements a and b of A that are related by R, that is, R(a, b),
then we must have a proof of equality

wd : Πa, b : A.R(a, b)→ q(a) = q(b)

The above are the expected properties. However, we also wish for A/R to
be a set. This requires that all proofs of equality in A/R must themselves be
equal. We truncate A/R to a set by adding the required proofs of equality
for all paths p, q between elements x and y.

trunc : Πx, y : A/R.Πp, q : x =A/R y.p = q

Saying there is a function from A/R to some type B is the same as saying
there is a function from A to B that respects R by mapping related elements
to elements that are (propositionally) equal in B.
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6.1 Example: Z 7 TRUNCATIONS AS HITS

Proposition 3.

(A/R)→ B '
∑

f :A→B

Πa,b:A.R(a, b)→ f(a) =B f(b)

A proof appears in the textbook.

6.1 Example: Z

We can represent integers as pairs of natural numbers (a, b) (representing
the integer a− b). Since (infinitely) many pairs correspond to each integer,
we quotient out by an appropriate relation.

Z = (N× N)/R

where R((a1, b1), (a2, b2)) iff a1 + b2 = a2 + b1. This representation will be
important in the proof that π1(S1) ' Z in Section 8.

7 Truncations as HITs

We have previously seen the propositional truncation ||A||, which truncates
the type A to a proposition by forcing proofs of equality for all values.
We now redefine the propositional truncation as a higher inductive type.
Since we will generalize this to truncations for all h-levels n, we now write
propositional truncation as ||A||−1.

The higher inductive type ||A||−1 has a simple constructor

| − |−1 : A→ ||A||−1

To add the 1-cells, squash produces a proof of equality for any two values of
A.

squash : Πa,b:||A||−1
.a =||A||−1

b

The induction principle is as follows:

z : ||A||−1 ` P (z) : U x : A ` p : P (|x|−1)

x, y : ||A||−1, u : P (x), v : P (y) ` q : u =z.P
squash(x,y) v

z : ||A||−1 ` ind[z.P ](x.p;x, y, u, v.q)(z) : P (z)

We can now use the same methodology to define set truncation as a
HIT:

| − |0 : A→ ||A||0
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As in the definition of quotients, the set truncation provides proofs of equal-
ity for all paths.

x, y : ||A||0, p, q : x =||A||0 y ` squash(x, y, p, q) : p =x=y q

And we state an induction principle:

z : ||A||0 ` P : U x : A ` g : P (|A|0)

x, y : ||A||0, z : P (x), w : P (y), p, q : x = y, r : z =z.P
p w, s : z =z.P

q w ` ip : p =z.P
squash(x,y,p,q) q

z : ||A||0 ` ind[z.P ](x.g;x, y, z, w, p, q, r, s.ip)(z) : P (z)

Proposition 4. If A is a set, it is equivalent to its own set truncation, i.e.

isSet(A)→ ||A||0 ' A

8 Fundamental group of S1

Recall S1 is a HIT defined by

base : S1

loop : base =S1 base

Recall Ω(A, a0) := (a0 =A a0)
The fundamental group ofA at a0, π1(A, a0), is defined to be ||Ω(A, a0)||0.

Theorem 1. We want to show that

π1(S1) ' Z

Proof. Show Ω(S1, base) ' Z (this suffices by Proposition 4.)
We define a map

loop(−) : Z→ Ω(S1)

as follows:
loop(0) = refl(base)

loop(−n) = loop(−n+1) · loop−1

loop(+n) = loop(n−1) · loop

This could be, for example, defined by the Z recursor

winding : Ω(S1)→ Z

8



8 FUNDAMENTAL GROUP OF S1

We take that succ : Z ' Z, and pred = succ−1, defined by shifting all the
numbers up/down by one

So, we have
ua(succ) : Z =U Z

By the recursion principle (not induction)

code : S1 → U

code(base) = Z

code(loop) = ua(succ)

apcode : Ω(S1)→ (Z = Z)

winding(p) = tr[x.x](apcode(p))(0)

Proposition 5.
Πn:Z .winding(loop(n)) =Z n

Proof. Straightforward by induction

Proposition 6.
Πl:Ω(S1)loopwinding(l) =Ω(S1) l

We can’t proceed by path induction on l, as the path is not free

encode : Πx:S1(base = x)→ code(x)

decode : Πx:S1code(x)→ base = x

encode(x, p) :≡ tr[code](p)(o)

decode(x) :≡ recS1 [z.code(z)→ base = z](λz.refl(base), λn.loop(n))(x)

To complete the proof, you will need a path induction and a circle in-
duction.
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