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1. Lecture notes on bipartite matching

Matching problems are among the fundamental problems in combinatorial optimization.
In this set of notes, we focus on the case when the underlying graph is bipartite.

We start by introducing some basic graph terminology. A graph G = (V,E) consists of
a set V of vertices and a set E of pairs of vertices called edges. For an edge e = (u, v), we
say that the endpoints of e are u and v; we also say that e is incident to u and v. A graph
G = (V,E) is bipartite if the vertex set V can be partitioned into two sets A and B (the
bipartition) such that no edge in E has both endpoints in the same set of the bipartition. A
matching M ⊆ E is a collection of edges such that every vertex of V is incident to at most
one edge of M . If a vertex v has no edge of M incident to it then v is said to be exposed
(or unmatched). A matching is perfect if no vertex is exposed; in other words, a matching is
perfect if its cardinality is equal to |A| = |B|.
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Figure 1.1: Example. The edges (1, 6), (2, 7) and (3, 8) form a matching. Vertices 4, 5, 9
and 10 are exposed.

We are interested in the following two problems:

Maximum cardinality matching problem: Find a matching M of maximum size.

Minimum weight perfect matching problem: Given a cost cij for all (i, j) ∈ E, find
a perfect matching of minimum cost where the cost of a matching M is given by c(M) =∑

(i,j)∈M cij. This problem is also called the assignment problem.

Similar problems (but more complicated) can be defined on non-bipartite graphs.
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1.1 Maximum cardinality matching problem

Before describing an algorithm for solving the maximum cardinality matching problem, one
would like to be able to prove optimality of a matching (without reference to any algorithm).
For this purpose, one would like to find upper bounds on the size of any matching and hope
that the smallest of these upper bounds be equal to the size of the largest matching. This is
a duality concept that will be ubiquitous in this subject. In this case, the dual problem will
itself be a combinatorial optimization problem.

A vertex cover is a set C of vertices such that all edges e of E are incident to at least
one vertex of C. In other words, there is no edge completely contained in V − C (we use
both − and \ to denote the difference of two sets). Clearly, the size of any matching is at
most the size of any vertex cover. This follows from the fact that, given any matching M ,
a vertex cover C must contain at least one of the endpoints of each edge in M . We have
just proved weak duality: The maximum size of a matching is at most the minimum size of
a vertex cover. As we’ll prove later in these notes, equality in fact holds:

Theorem 1.1 (König 1931) For any bipartite graph, the maximum size of a matching is
equal to the minimum size of a vertex cover.

We shall prove this minmax relationship algorithmically, by describing an efficient al-
gorithm which simultaneously gives a maximum matching and a minimum vertex cover.
König’s theorem gives a good characterization of the problem, namely a simple proof of opti-
mality. In the example above, one can prove that the matching (1, 9), (2, 6), (3, 8) and (5, 7)
is of maximum size since there exists a vertex cover of size 4. Just take the set {1, 2, 5, 8}.

The natural approach to solving this cardinality matching problem is to try a greedy
algorithm: Start with any matching (e.g. an empty matching) and repeatedly add disjoint
edges until no more edges can be added. This approach, however, is not guaranteed to give a
maximum matching (convince yourself). We will now present an algorithm that does work,
and is based on the concepts of alternating paths and augmenting paths. A path is simply a
collection of edges (v0, v1), (v1, v2), . . . , (vk−1, vk) where the vi’s are distinct vertices. A path
can simply be represented as v0-v1-. . .-vk.

Definition 1.1 An alternating path with respect to M is a path that alternates between
edges in M and edges in E −M .

Definition 1.2 An augmenting path with respect to M is an alternating path in which
the first and last vertices are exposed.

In the above example, the paths 4-8-3, 6-1-7-2 or 5-7-2-6-1-9 are alternating, but only
the last one is augmenting. Notice that an augmenting path with respect to M which
contains k edges of M must also contain exactly k + 1 edges not in M . Also, the two
endpoints of an augmenting path must be on different sides of the bipartition. The most
interesting property of an augmenting path P with respect to a matching M is that if we set
M ′ = M 4 P ≡ (M − P ) ∪ (P −M), then we get a matching M ′ and, moreover, the size of



1. Lecture notes on bipartite matching February 4th, 2015 3

M ′ is one unit larger than the size of M . That is, we can form a larger matching M ′ from
M by taking the edges of P not in M and adding them to M ′ while removing from M ′ the
edges in M that are also in the path P . We say that we have augmented M along P .

The usefulness of augmenting paths is given in the following theorem.

Theorem 1.2 A matching M is maximum if and only if there are no augmenting paths with
respect to M .

Proof: (By contradiction)
(⇒) Let P be some augmenting path with respect to M . Set M ′ = M 4 P . Then M ′ is

a matching with cardinality greater than M . This contradicts the maximality of M .
(⇐) If M is not maximum, let M∗ be a maximum matching (so that |M∗| > |M |). Let

Q = M 4M∗. Then:

• Q has more edges from M∗ than from M (since |M∗| > |M | implies that |M∗ −M | >
|M −M∗|).

• Each vertex is incident to at most one edge in M ∩Q and one edge M∗ ∩Q.

• Thus Q is composed of cycles and paths that alternate between edges from M and M∗.

• Therefore there must be some path with more edges from M∗ in it than from M (all
cycles will be of even length and have the same number of edges from M∗ and M).
This path is an augmenting path with respect to M .

Hence there must exist an augmenting path P with respect to M , which is a contradiction.
4

This theorem motivates the following algorithm. Start with any matching M , say the
empty matching. Repeatedly locate an augmenting path P with respect to M , augment M
along P and replace M by the resulting matching. Stop when no more augmenting path
exists. By the above theorem, we are guaranteed to have found an optimum matching. The
algorithm terminates in µ augmentations, where µ is the size of the maximum matching.
Clearly, µ ≤ n

2
where n = |V |.

In the example, one would thus augment M along an augmenting path, say 5-7-2-6-1-9,
obtain the matching (1, 9), (2, 6), (3, 8) and (5, 7), and then realize that no more augmenting
paths can be found.

The question now is how to decide the existence of an augmenting path and how to find
one, if one exists. These tasks can be done as follows. Direct edges in G according to M as
follows : An edge goes from A to B if it does not belong to the matching M and from B to
A if it does. Call this directed graph D.

Claim 1.3 There exists an augmenting path in G with respect to M iff there exists a directed
path in D between an exposed vertex in A and an exposed vertex in B.

Exercise 1-1. Prove claim 1.3.
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This gives an O(m) algorithm (where m = |E|) for finding an augmenting path in G.
Let A∗ and B∗ be the set of exposed vertices w.r.t. M in A and B respectively. We can
simply attach a vertex s to all the vertices in A∗ and do a depth-first-search from s till we
hit a vertex in B∗ and then trace back our path.

Thus the overall complexity of finding a maximum cardinality matching is O(nm). This
can be improved to O(

√
nm) by augmenting along several augmenting paths simultaneously.

If there is no augmenting path with respect to M , then we can also use our search
procedure for an augmenting path in order to construct an optimum vertex cover. Consider
the set L (for Labelling) of vertices which can be reached by a directed path from an exposed
vertex in A.

Claim 1.4 When the algorithm terminates, C∗ = (A − L) ∪ (B ∩ L) is a vertex cover.
Moreover, |C∗| = |M∗| where M∗ is the matching returned by the algorithm.

This claim immediately proves König’s theorem.
Proof: We first show that C∗ is a vertex cover. Assume not. Then there must exist
an edge e = (a, b) ∈ E with a ∈ A ∩ L and b ∈ (B − L). The edge e cannot belong to
the matching. If it did, then b should be in L for otherwise a would not be in L. Hence,
e must be in E −M and is therefore directed from A to B. This therefore implies that b
can be reached from an exposed vertex in A (namely go to a and then take the edge (a, b)),
contradicting the fact that b /∈ L.

To show the second part of the proof, we show that |C∗| ≤ |M∗|, since the reverse
inequality is true for any matching and any vertex cover. The proof follows from the following
observations.

1. No vertex in A− L is exposed by definition of L,

2. No vertex in B ∩ L is exposed since this would imply the existence of an augmenting
path and, thus, the algorithm would not have terminated,

3. There is no edge of the matching between a vertex a ∈ (A−L) and a vertex b ∈ (B∩L).
Otherwise, a would be in L.

These remarks imply that every vertex in C∗ is matched and moreover the corresponding
edges of the matching are distinct. Hence, |C∗| ≤ |M∗|. 4

Although the concepts of maximum matchings and minimum vertex covers can be defined
also for general (i.e. non-bipartite) graphs, we should remark that König’s theorem does not
generalize to all graphs. Indeed, although it is true that the size of a maximum matching
is always at most the minimum size of a vertex cover, equality does not necessarily hold.
Consider indeed the cycle C3 on 3 vertices (the smallest non-bipartite graph). The maximum
matching has size 1, but the minimum vertex cover has size 2. We will derive a minmax
relation involving maximum matchings for general graphs, but it will be more complicated
than König’s theorem.
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Exercises

Exercise 1-2. An edge cover of a graph G = (V,E) is a subset of R of E such that every
vertex of V is incident to at least one edge in R. Let G be a bipartite graph with no isolated
vertex. Show that the cardinality of the minimum edge cover R∗ of G is equal to |V | minus
the cardinality of the maximum matching M∗ of G. Give an efficient algorithm for finding
the minimum edge cover of G. Is this true also for non-bipartite graphs?

Exercise 1-3. Show that in any graph G = (V,E) (not necessarily bipartite), the size of
any maximal matching M (i.e. a matching M in which one cannot add an edge while keeping
it a matching) is at least half the size of a maximum matching M∗.

Exercise 1-4. Consider the problem of perfectly tiling a subset of a checkerboard (i.e. a
collection of unit squares, see example below) with dominoes (a domino being 2 adjacent
squares).

1.Show that this problem can be formulated as the problem of deciding whether a bipartite
graph has a perfect matching.

2.Can the following figure be tiled by dominoes? Give a tiling or a short proof that no
tiling exists.

Exercise 1-5. Consider a bipartite graph G = (V,E) with bipartition (A,B): V = A∪B.
Assume that, for some vertex sets A1 ⊆ A and B1 ⊆ B, there exists a matching MA covering
all vertices in A1 and a matching MB covering all vertices in B1. Prove that there always
exists a matching covering all vertices in A1 ∪B1.

Exercise 1-6. Consider the following 2-person game on a (not necessarily bipartite) graph
G = (V,E). Players 1 and 2 alternate and each selects a (yet unchosen) edge e of the graph
so that e together with the previously selected edges form a simple path. The first player
unable to select such an edge loses. Show that if G has a perfect matching then player 1 has
a winning strategy.
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1.1.1 Hall’s Theorem

Hall’s theorem gives a necessary and sufficient condition for a bipartite graph to have a
matching which saturates (or matches) all vertices of A (i.e. a matching of size |A|).

Theorem 1.5 (Hall 1935) Given a bipartite graph G = (V,E) with bipartition A,B (V =
A ∪ B), G has a matching of size |A| if and only if for every S ⊆ A we have |N(S)| ≥ |S|,
where N(S) = {b ∈ B : ∃a ∈ S with (a, b) ∈ E}.

Clearly, the condition given in Hall’s theorem is necessary; its sufficiency can be derived
from König’s theorem.

Exercise 1-7. Deduce Hall’s theorem from König’s theorem.

Exercise 1-8. Consider a bipartite graph G = (V,E) with bipartition (A,B). For X ⊆ A,
define def(X) = |X| − |N(X)| where N(X) = {b ∈ B : ∃a ∈ X with (a, b) ∈ E}. Let

defmax = max
X⊆A

def(X).

Since def(∅) = 0, we have defmax ≥ 0.

1.Generalize Hall’s theorem by showing that the maximum size of a matching in a bipar-
tite graph G equals |A| − defmax.

2.For any 2 subsets X, Y ⊆ A, show that

def(X ∪ Y ) + def(X ∩ Y ) ≥ def(X) + def(Y ).

1.2 Minimum weight perfect matching

By assigning infinite costs to the edges not present, one can assume that the bipartite graph
is complete. The minimum cost (weight) perfect matching problem is often described by the
following story: There are n jobs to be processed on n machines or computers and one would
like to process exactly one job per machine such that the total cost of processing the jobs is
minimized. Formally, we are given costs cij ∈ R ∪ {∞} for every i ∈ A, j ∈ B and the goal
is to find a perfect matching M minimizing

∑
(i,j)∈M cij.

In these notes, we present an algorithm for this problem which is based upon linear
programming, and we will take this opportunity to illustrate several important concepts
in linear programming. These concepts will be formalized and generalized in a subsequent
chapter.

The first algorithm given for the assignment problem was given by Kuhn [1955], but he
showed only finiteness of the algorithm. A refined version was given by Jim Munkres [1957],
and showed a polynomial running time. An algorithm is polynomial-time if its running time
(the number of basic operations to run it) is upper bounded by a polynomial in the size of
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the input (i.e. the number of bits needed to represent the input). Munkres’ analysis even
shows that the algorithm is strongly polynomial, and this means that the running time is
polynomial in the number of numbers involved (i.e. does not depend on the size of the costs
cij). In this algorithm, the number of operations is upper bounded by O(n3) where n = |V |.

The algorithm is often called the Hungarian method, as it relies on ideas developed by
Hungarians, and especially König and Egerváry. In 2006, it was discovered that the method
had actually been discovered in the 19th century by Jacobi and this was posthumously pub-
lished in 1890 in Latin, see http://www.lix.polytechnique.fr/∼ollivier/JACOBI/jacobiEngl.htm.

We start by giving a formulation of the problem as an integer program, i.e. an optimiza-
tion problem in which the variables are restricted to integer values and the constraints and
the objective function are linear as a function of these variables. We first need to associate
a point to every matching. For this purpose, given a matching M , let its incidence vector
be x where xij = 1 if (i, j) ∈ M and 0 otherwise. One can formulate the minimum weight
perfect matching problem as follows:

Min
∑
i,j

cijxij

subject to:∑
j

xij = 1 i ∈ A∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B
xij integer i ∈ A, j ∈ B.

This is not a linear program, but a so-called integer program. Notice that any solution to
this integer program corresponds to a matching and therefore this is a valid formulation of
the minimum weight perfect matching problem in bipartite graphs.

Consider now the linear program (P ) obtained by dropping the integrality constraints:

Min
∑
i,j

cijxij

subject to:

(P )
∑
j

xij = 1 i ∈ A∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B.

This is the linear programming relaxation of the above integer program. In a linear pro-
gram, the variables can take fractional values and therefore there are many feasible solutions
to the set of constraints above which do not correspond to matchings. But we only care

http://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm
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about the optimum solutions. The set of feasible solutions to the constraints in (P ) forms a
bounded polyhedron or polytope, and when we optimize a linear constraint over a polytope,
the optimum will be attained at one of the “corners” or extreme points of the polytope. An
extreme point x of a set Q is an element x ∈ Q which cannot be written as λy + (1 − λ)z
with 0 < λ < 1, y, z ∈ Q with y 6= z. (This will be formalized and discussed in greater depth
in the chapter on polyhedral combinatorics.)

In general, even if all the coefficients of the constraint matrix in a linear program are either
0 or 1, the extreme points of a linear program are not guaranteed to have all coordinates
integral (this is of no surprise since the general integer programming problem is NP-hard,
while linear programming is polynomially solvable). As a result, in general, there is no
guarantee that the value ZIP of an integer program is equal to the value ZLP of its LP
relaxation. However, since the integer program is more constrained than the relaxation, we
always have that ZIP ≥ ZLP , implying that ZLP is a lower bound on ZIP for a minimization
problem. Moreover, if an optimum solution to a linear programming relaxation is integral
(in our case, that would imply it is the incidence vector of a perfect matching) then it must
also be an optimum solution to the integer program.

Exercise 1-9. Prove this last claim.

Exercise 1-10. Give an example of an integer program where ZIP 6= ZLP .

However, in the case of the perfect matching problem, the constraint matrix has a very
special form and one can show the following very important result.

Theorem 1.6 Any extreme point of (P ) is a 0-1 vector and, hence, is the incidence vector
of a perfect matching.

Because of the above theorem, the polytope

P = {x :
∑
j

xij = 1 i ∈ A∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B}

is called the bipartite perfect matching polytope.
To demonstrate the beauty of matchings, we shall give two completely different proofs of

this result, one purely algorithmic here and one purely algebraic in the chapter on polyhedral
theory. The algebraic proof is related to the notion of totally unimodularity.

To prove it algorithmically, we describe an algorithm for solving the minimum weight
perfect matching problem. The algorithm is “primal-dual”. To explain what this means, we
need to introduce the notion of duality of linear programs, and let’s do it in the specific case
of our bipartite matching problem. Suppose we have values ui for i ∈ A and vj for j ∈ B
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such that ui + vj ≤ cij for all i ∈ A and j ∈ B. Then for any perfect matching M , we have
that ∑

(i,j)∈M

cij ≥
∑
i∈A

ui +
∑
j∈B

vj. (1)

Thus,
∑

i∈A ui +
∑

j∈B vj is a lower bound on the cost of the minimum cost perfect matching
(for bipartite graphs). To get the best lower bound, we would like to maximize this quantity,
and therefore we obtain another linear program

Max
∑
i∈A

ui +
∑
j∈B

vj

subject to:

(D) ui + vj ≤ cij i ∈ A, j ∈ B.

The constraints can be interpreted as wij ≥ 0 where wij = cij − ui − vj. This is a linear
program, call it (D). So far, we have shown that this linear program (D) provides a lower
bound on the cost of any perfect matching, but we can even prove that it provides a lower
bound on the value of any solution to the linear program (P ). Indeed consider any x ∈ P .
We have ∑

i∈A

∑
j∈B

cijxij ≥
∑
i∈A

∑
j∈B

(ui + vj)xij

=

(∑
i∈A

ui
∑
j∈B

xij

)
+

(∑
j∈B

vj
∑
i∈A

xij

)
=

∑
i∈A

ui +
∑
j∈B

vj,

because of the constraints that x satisfy. (D) is the dual linear program in the sense of linear
programming duality.

In summary, so far, we know that min
perfect matchings M

∑
(i,j)∈M

cij

 ≥
min

x∈P

∑
(i,j)

cijxij

 ≥ [ max
(u,v)∈D

∑
i∈A

ui +
∑
j∈B

vj

]
.

If, for any instance, we could always find a feasible solution u, v to (D) and a perfect matching
M such that we have equality in (1) (i.e. the cost of the perfect matching is equal to the
value of the dual solution) then we would know that we have equality throughout, that the
matching found is optimum, and that furthermore, the incidence vector of the matching M
is optimum for the linear program (P ). Given a solution u, v to the dual, a perfect matching
M would satisfy equality if it contains only edges (i, j) such that wij = cij − ui − vj = 0.
This is what is referred to as complementary slackness. However, for a given u, v, we may
not be able to find a perfect matching among the edges with wij = 0.
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The algorithm performs a series of iterations to obtain an appropriate u and v. It always
maintains a dual feasible solution and tries to find an “almost” primal feasible solution x
satisfying complementary slackness. The fact that complementary slackness is imposed is
crucial in any primal-dual algorithm. In fact, the most important (and elegant) algorithms
in combinatorial optimization are primal-dual. This is one of the most important tool for
designing efficient algorithms for combinatorial optimization problems (for problems which,
of course, admit such efficient solutions).

More precisely, the algorithm works as follows. It first starts with any dual feasible
solution, say ui = 0 for all i and vj = mini cij for all j. In a given iteration, the algorithm
has a dual feasible solution (u, v) or say (u, v, w). Imposing complementary slackness means
that we are interested in matchings which are subgraphs of E = {(i, j) : wij = 0}. If E has
a perfect matching then the incidence vector of that matching is a feasible solution in (P )
and satisfies complementary slackness with the current dual solution and, hence, must be
optimal. To check whether E has a perfect matching, one can use the cardinality matching
algorithm developed earlier in these notes. If the maximum matching output is not perfect
then the algorithm will use information from the optimum vertex cover C∗ to update the
dual solution in such a way that the value of the dual solution increases (we are maximizing
in the dual).

In particular, if L is as in the previous section then there is no edge of E between A ∩ L
and B − L. In other words, for every i ∈ (A ∩ L) and every j ∈ (B − L), we have wij > 0.
Let

δ = min
i∈(A∩L),j∈(B−L)

wij.

By the above argument, δ > 0. The dual solution is updated as follows:

ui =

{
ui i ∈ A− L
ui + δ i ∈ A ∩ L

and

vj =

{
vj i ∈ B − L
vj − δ j ∈ B ∩ L

One easily check that this dual solution is feasible, in the sense that the corresponding vector
w satisfies wij ≥ 0 for all i and j. What is the value of the new dual solution? The difference
between the values of the new dual solution and the old dual solution is equal to:

δ(|A ∩ L| − |B ∩ L|) = δ(|A ∩ L|+ |A− L| − |A− L| − |B ∩ L|) = δ(
n

2
− |C∗|),

where A has size n/2 and C∗ is the optimum vertex cover for the bipartite graph with edge
set E. But by assumption |C∗| < n

2
, implying that the value of the dual solution strictly

increases.
One repeats this procedure until the algorithm terminates. At that point, we have

an incidence vector of a perfect matching and also a dual feasible solution which satisfy
complementary slackness. They must therefore be optimal and this proves the existence of
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an integral optimum solution to (P ). Since, by carefully choosing the cost function, one can
make any extreme point be the unique optimum solution to the linear program (this will
be formally proved in the polyhedral chapter), this shows that any extreme point is integral
and hence this proves Theorem 1.6.

Of course, as some of the readers might have noticed, the proof is not complete yet since
one needs to prove that the algorithm indeed terminates. This can be proved by noticing
that at least one more vertex of B must be reachable from an exposed vertex of A (and no
vertex of B becomes unreachable), since an edge e = (i, j) with i ∈ (A ∩ L) and j ∈ B − L
now has wij = 0 by our choice of δ. This also gives an estimate of the number of iterations.
In at most n/2 iterations, all vertices of B are reachable or the matching found has increased
by at least one unit. Therefore, after O(n2) iterations, the matching found is perfect. The
overall running time of the algorithm is thus O(n4) since it takes O(n2) to compute the set L
in each iteration. By looking more closely at how vertices get labelled between two increases
of the size of the matching, one can reduce the running time analysis to O(n3).

Exercise 1-11. Check that the running time of the algorithm is indeed O(n3).

Example: Consider the instance given by the following cost matrix defined on a bipartite
graph with 5 vertices on each side of the bipartition:

0 2 7 2 3
1 3 9 3 3
1 3 3 1 2
4 0 1 0 2
0 0 3 0 0

Assume that uT = (2, 3, 0,−2, 0) and vT = (−2, 0, 3, 0, 0). The set E of edges with
wij = 0 corresponds exactly to the set of edges in Figure 1.1. The maximum cardinality
matching algorithm finds the matching (1, 9), (2, 6), (3, 8) and (5, 7), and the set of labelled
vertices is {3, 4, 8}. We compute δ as

δ = min
i∈{3,4},j∈{6,7,9,10}

wij = 1

corresponding to the edge (3, 9). The new vectors u and v are uT = (2, 3, 1,−1, 0) and
vT = (−2, 0, 2, 0, 0). The value of the dual solution has increased from 4 units to 5. The
corresponding set E now has a perfect matching, namely (1, 6), (2, 7), (3, 9), (4, 8) and (5, 10)
of cost 5. Both the matching and the dual solution are optimal.

Exercises

Exercise 1-12. Consider a bipartite graph G = (V,E) in which every vertex has degree
k (a so-called k-regular bipartite graph). Prove that such a graph always has a perfect
matching in two different ways:
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1.by using König’s theorem,

2.by using the linear programming formulation we have derived in this section.

(Optional: Is this result also true for non-bipartite graphs?)

Exercise 1-13. Using the previous exercise 12, show that the edges of a k-regular bipartite
graph G can be partitioned into k matchings (i.e. the number of colors needed to color the
edges of a k-regular bipartite graph such that no two edges with a common endpoint have
the same color — the edge chromatic number — is precisely k).

(Optional: Is this result also true also for non-bipartite graphs?)

Exercise 1-14. Given a graph G = (V,E), its edge coloring number is the smallest number
of colors needed to color the edges in E so that any two edges having a common endpoint
have a different color.

1.Show that the edge coloring number of a bipartite graph G is always equal to its maxi-
mum degree ∆ (i.e. the maximum over all vertices v of the number of edges incident to
v). (Use the previous problem.)

2.Give an example of a non-bipartite graph for which the edge coloring number is (strictly)
greater than ∆.

Exercise 1-15. We have shown that there always exists a solution x to the linear program
(P) with all components integral. Reprove this result in the following way.

Take a (possibly non-integral) optimum solution x∗. If there are many optimum solutions,
take one with as few non-integral values x∗ij as possible. Show that, if x∗ is not integral,
there exists a cycle C with all edges e = (i, j) ∈ C having a non-integral value x∗ij. Now
show how to derive another optimum solution with fewer non-integral values, leading to a
contradiction.

Exercise 1-16. In this exercise, you will do a little experiment with the (minimum cost)
assignment problem. Take a complete bipartite graph with n vertices on each side of the
bipartition, and let us assume that all cij (for i, j ∈ {1, · · · , n}) are all independent uniform
random variables between 0 and 1. Take 5 different values for n (the largest being a few
hundreds) and for each compute the minimum cost assignment value for 5 instances. Any
guess on how this value increases as n goes to infinity. Does it seem to converge? To what
value? Surprised? (Yes, you should be, and it is normal that you do not understand why.)

To solve the assignment problem, you can use MATLAB (it is available on athena). To
access MATLAB on athena, you need to type:

>> add matlab

>> matlab
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If you have never used MATLAB before, you can find some tutorial on the 18.06 webpage.
There is a MATLAB m-file at http://www-math.mit.edu/∼goemans/bghungar.m which im-
plements the Hungarian method (just put it in the directory from which you run MATLAB).
If C is an n× n matrix, then

>> a=bghungar(C)

gives a vector a such that (1, a(1)), (2, a(2)), · · · is the maximizing matching. So to get the
value of the minimum assignment, you can just do:

>> a=bghungar(-C);

>> v=sum(diag(C(1:n,a(1:n))))

Exercise 1-17. For the assignment problem, the greedy algorithm (which repeatedly finds
the minimum cost edge disjoint from all the previously selected edges) can lead to a solution
whose cost divided by the optimum cost can be arbitrarily large (even for graphs with 2
vertices on each side of the bipartition).

Suppose now that the cost comes from a metric, even just a line metric. More precisely,
suppose that the bipartition is A ∪B with |A| = |B| = n and the ith vertex of A (resp. the
jth vertex of B) is associated with ai ∈ R (resp. bj ∈ B). Suppose that the cost between
these vertices is given by cij = |ai − bj|.
Consider the greedy algorithm: select the closest pair of vertices, one from A and from B,
match them together, delete them, and repeat until all vertices are matched. For these line
metric instances, is the cost of the greedy solution always upper bounded by a constant
(independent of n) times the optimum cost of the assignment? If so, prove it; if not, give a
family of examples (parametrized by n) such that the corresponding ratio becomes arbitrarily
large.

http://web.mit.edu/18.06/www/
http://www-math.mit.edu/~goemans/bghungar.m
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2. Lecture notes on non-bipartite matching

Given a graph G = (V,E), we are interested in finding and charaterizing the size of a
maximum matching. Since we do not assume that the graph is bipartite, we know that the
maximum size of a matching does not necessarily equal the minimum size of a vertex cover,
as it is the case for bipartite graphs (König’s theorem). Indeed, for a triangle, any matching
consists of at most one edge, while we need two vertices to cover all edges.

To get an upper bound on the size of any matching M , consider any set U of vertices.
If we delete the vertices in U (and all edges adjacent to it), we delete at most |U | edges of
the matching M . Moreover, in the remaining graph G \U , we can trivially upper bound the

size of the remaining matching by
∑k

i=1b
|Ki|
2
c, where Ki, i = 1, · · · , k, are the vertex sets of

the connected components of G \ U . Therefore, we get that

|M | ≤ |U |+
k∑

i=1

⌊
|Ki|

2

⌋
. (1)

If we let o(G \ U) denote the number of odd components of G \ U , we can rewrite (1) as:

|M | ≤ |U |+ |V | − |U |
2

− o(G \ U)

2
,

or

|M | ≤ 1

2
(|V |+ |U | − o(G \ U)) . (2)

We will show that we can always find a matching M and a set U for which we have equal-
ity; this gives us the following minmax relation, called the Tutte-Berge min-max formula:

Theorem 2.1 (Tutte-Berge Formula) For any graph G = (V,E), we have

max
M
|M | = min

U⊆V

1

2
(|V |+ |U | − o(G \ U)) ,

where o(G \ U) is the number of connected components of odd size of G \ U .

Example: In the graph of Figure 2.1, a matching of size 8 can be easily found (find it), and
its optimality can be seen from the Tutte-Berge formula. Indeed, for the set U = {2, 15, 16},
we have o(G \ U) = 5 and 1

2
(|V |+ |U | − o(G \ U)) = 1

2
(18 + 3− 5) = 8.

To prove Theorem 2.1, we will first show an algorithm to find a maximum matching.
This algorithm is due to Edmonds [1965], and is a pure gem. As in the case of bipartite
matchings (see lecture notes on bipartite matchings), we will be using augmenting paths.
Indeed, Theorem 1.2 of the bipartite matching notes still hold in the non-bipartite setting; a
matching M is maximum if and only if there is no augmenting path with respect to it. The
difficulty here is to find the augmenting path or decide that no such path exists. We could
try to start from the set X of exposed (unmatched) vertices for M , and whenever we are
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Figure 2.1: Top: graph. Bottom: the removal of vertices 2, 15 and 16 gives 5 odd connected
components.
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wu z

Figure 2.2: An augmenting path. Thick edges are in the matching. The path is found by
starting from the exposed vertex u and following the dotted lines until a vertex (here z)
adjacent to an exposed vertex is found.

at a vertex u and see an edge (u, v) /∈ M followed by an edge (v, w) in M , we could put a
directed edge from u to w and move to w. If we get to a vertex that’s adjacent to an exposed
vertex (i.e. in X), it seems we have found an augmenting path, see Figure 2.2.

This is not necessarily the case, as the vertices of this ’path’ may not be distinct. We
have found a so-called flower, see Figure 2.3. This flower does not contain an augmenting
path. More formally, a flower consists of an even alternating path P from an exposed vertex
u to a vertex v, called the stem, and an odd cycle containing v in which the edges alternate
between in and out of the matching except for the two edges incident to v; this odd cycle is
called a blossom.

The algorithm will either find an augmenting path or a flower or show that no such items
exist; in this latter case, the matching is maximum and the algorithm stops. If it finds an
augmenting path then the matching is augmented and the algorithm continues with this new
matching. If a flower is found, we create a new graph G/B in which we shrink B into a
single vertex b; any edge (u, v) in G with u /∈ B and v ∈ B is replaced by an edge (u, b) in
G/B, all edges within B disappear and all edges within V \B are kept. Notice that we have
also a matching M/B in this new graph (obtained by simply deleting all edges of M within

B), and that the sizes of M and M/B differ by exactly |B|−1
2

(as we deleted so many edges
of the matching within B). We use the following crucial theorem.

Theorem 2.2 Let B be a blossom with respect to M . Then M is a maximum size matching
in G if and only if M/B is a maximum size matching in G/B.

To prove the theorem, we can assume that the flower with blossom B has an empty stem
P . If it is not the case, we can consider the matching M 4 P = (M \ P ) ∪ (P \M) for
which we have a flower with blossom P and empty stem. Proving the theorem for M 4 P
also proves it for M as (M4P )/B = (M/B)4P and taking symmetric differences with an
even alternating paths does not change the cardinality of a matching.
Proof: (=⇒) Suppose N is a matching in G/B larger than M/B. Pulling N back to a
set of edges in G, it is incident to at most one vertex of B. Expand this to a matching N+

in G by adjoining 1
2
(|B| − 1) edges to match every other vertex in B. Then |N+| exceeds

|M | by the same amount that |N | exceeds |M/B|.
(⇐=) By contradiction. If M is not of maximum size in G then it has an augmenting

path P between exposed vertices u and v. As B has only one exposed vertex, we can assume
that u /∈ B. Let w be the first vertex of P which belongs to B, and let Q be the part of P
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u

stem

u v

blossom

Figure 2.3: A flower. The thick edges are those of the matching. Top: Our dotted path
starting at an exposed vertex u and ending at a neighbor of an exposed vertex does not
correspond to an augmenting path.
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from u to w. Notice that, after shrinking B, Q remains an augmenting path for M/B (since
b is exposed in G/B). This means that M/B is not maximum either, and we have reached
a contradiction. 4

Observe that the proof is algorithmic: If we have a bigger matching in G/B than M/B
then we also can find a bigger matching in G than M . Also remark that Theorem 2.2 does
not say that if we find a maximum matching M∗ in G/B then simply adding |B|−1

2
edges

from within B to M∗ to get M̂ will lead to a maximum matching in G. Indeed, this is not
true.

Exercise 2-1. Give an example of a graph G, a matching M and a blossom B for M such
that a maximum matching M∗ in G/B does not lead to a maximum matching in G. Explain
why this does not contradict Theorem 2.2.

Even

Odd

Even

Odd

Even
x

Figure 2.4: An alternating tree. The squiggly edges are the matching edges.

To find either an alternating path or a flower, we proceed as follows. We label all exposed
vertices to be Even, and keep all the other vertices unlabelled at this point. As we proceed,
we will be labelling more vertices to be Even as well as labelling some vertices to be Odd.
We maintain also an alternating forest — a graph in which each connected component is a
tree made up of edges alternating between being in and out of the matching. We process
the Even vertices one at a time, say we are currently processing u, and consider the edges
adjacent to u. There are several possibilities:

1. If there is an edge (u, v) with v unlabelled, we label v as Odd. As v cannot be exposed
(as otherwise it would have been already Even), we label its “mate” w (i.e. (v, w)
is an edge of the matching) as Even. (w was not previously labelled as we always
simultaneously label the two endpoints of a matched edge.) We have extended the
alternating tree we are building (see Figure 2.4).
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2. If there is an edge (u, v) with v labelled Even and v belongs to another alternating
tree than u does, we have found an augmenting path (just traverse the 2 alternating
trees from u and v up to their roots) and augment the matching along it, and start
again from this new, larger matching. The two subpaths from u and from v to their
roots span disjoint sets of vertices, and therefore their union together with (u, v) indeed
form a valid augmenting path.

3. If there is an edge (u, v) with v labelled Even and v belongs to the same alternating
tree as u does, then the two subpaths from u and v to their common (exposed) root x
together with (u, v) form a flower. We shrink the blossom B into a vertex b. Observe
that we can keep our labelling unchanged, provided we let the new vertex b be labelled
Even. We recursively find a maximum matching in this graph G/B (and this may
result in further shrinkings) and when the algorithm terminates, we use Theorem 2.2
to expand it to a larger matching in the original graph. This larger matching is not
necessarily optimal (see the remark after Theorem 2.2) and we repeat the process to
find either an augmenting path or a flower with respect to the current matching.

Correctness. Now suppose that none of these possibilities apply any more for any of the
Even vertices. Then we claim that we have found a maximum matching M ′ in the current
graph G′ = (V ′, E ′) (which was obtained from our original graph G by performing several
shrinkings of blossoms B1, B2, · · · , Bk in succession). To show this, consider U = Odd and
consider the upper bound (2) for G′. As there are no edges between Even vertices (otherwise
2. or 3. above would apply) and no edges between an Even vertex and an unlabelled vertex
(otherwise 1. would apply), we have that each Even vertex is an (odd-sized) connected
component by itself in G′ \Odd. Thus o(G′ \Odd) = |Even|. Also, we have that |M ′| =
|Odd|+ 1

2
(|V ′|− |Odd|− |Even|), the second term coming from the fact that all unlabelled

vertices are matched. Thus,

1

2
(|V ′|+ |Odd| − o(G′ \Odd)) =

1

2
(|V ′|+ |Odd| − |Even|) = |M ′|,

and this shows that our matching M ′ is maximum for G′. Applying repeatedly Theorem 2.2,
we get that the algorithm constructs a maximum matching in G.

Running Time. The algorithm will perform at most n augmentations (of the matching)
where n = |V |. Between two augmentations, it will shrink a blossom at most n/2 times, as
each shrinking reduces the number of vertices by at least 2. The time it takes to construct
the alternating tree is at most O(m) where m = |E|, and so the total time is O(n2m).

Correctness of Tutte-Berge Formula. We can now prove Theorem 2.1. As we have
argued the Tutte-Berge formula holds for the graph obtained at the end of the algorithm.
Assume we have performed k blossom shrinkings, and let Gi = (Vi, Ei) be the graph obtained
after shrinking blossoms B1, · · · , Bi, and let Mi be the corresponding matching; the index
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i = 0 corresponds to the original graph. For the final graph Gk = (Vk, Ek), we have seen
that the Tutte-Berge formula holds since

|Mk| =
1

2
(|Vk|+ |U | − o(Gk \ U)) ,

where U = Odd, and that each Even vertex corresponds to an odd connected component
of Gk \ U . Now, let’s see what happens when we unshrink blossoms, one at a time, and
let’s proceed by backward induction. Suppose we unshrink blossom Bi to go from graph Gi

to Gi−1. First notice that |Vi−1| = |Vi| + |Bi| − 1 and |Mi−1| = |Mi| + 1
2
(|Bi| − 1). Also,

as we unshrink blossom Bi, we add an even number of vertices (namely |Bi| − 1) to one of
the connected components of Gi \U , and therefore we do not change the number of odd (or
even) connected components. Thus, o(Gi \ U) = o(Gi−1 \ U). Thus, as we replace i with
i− 1, both the right-hand-side and left-hand-side of

|Mi| =
1

2
(|Vi|+ |U | − o(Gi \ U))

increase by precisely 1
2
(|Bi| − 1). Thus, by backward induction, we can show that for every

j = 0, · · · , k, we have

|Mj| =
1

2
(|Vj|+ |U | − o(Gj \ U)) ,

and the Tutte-Berge formula holds for the original graph (for j = 0). This proves Theorem
2.1.

The Tutte-Berge formula implies that a graph has a perfect matching if and only if for
every set U the number of odd connected components of G\U is at most |U |. This is known
as Tutte’s matching theorem.

Theorem 2.3 (Tutte’s matching theorem) G has a perfect matching if and only if, for
all U ⊆ V , we have o(G \ U) ≤ |U |.

Exercises

Exercise 2-2. Let G = (V,E) be any graph. Given a set S ⊆ V , suppose that there exists
a matching M covering S (i.e. S is a subset of the matched vertices in M). Prove that there
exists a maximum matching M∗ covering S as well.

Exercise 2-3. Let U be any minimizer in the Tutte-Berge formula. Let K1, · · · , Kk be
the connected components of G \ U . Show that, for any maximum matching M , we must
have that

1.M contains exactly b |Ki|
2
c edges from G[Ki] (the subgraph of G induced by the vertices

in Ki), i.e. G[Ki] is perfectly matched for the even components Ki and near-perfectly
matched for the odd components.

2.Each vertex u ∈ U is matched to a vertex v in an odd component Ki of G \ U .
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3.the only unmatched vertices must be in odd components Ki of G \ U .

Exercise 2-4. Could there be several minimizers U in the Tutte-Berge formula? Either
give an example with several sets U achieving the minimum, or prove that the set U is
unique.

Exercise 2-5. Given a graph G = (V,E), an inessential vertex is a vertex v such that
there exists a maximum matching of G not covering v. Let B be the set of all inessential
vertices in G (e.g., if G has a perfect matching then B = ∅). Let C denote the set of
vertices not in B but adjacent to at least one vertex in B (thus, if B = ∅ then C = ∅). Let
D = V \ (B ∪ C). The triple {B,C,D} is called the Edmonds-Gallai partition of G. Show
that U = C is a minimizer in the Tutte-Berge formula. (In particular, this means that in
the Tutte-Berge formula we can assume that U is such that the union of the odd connected
components of G \ U is precisely the set of inessential vertices.)

Exercise 2-6. Show that any 3-regular 2-edge-connected graph G = (V,E) (not neces-
sarily bipartite) has a perfect matching. (A 2-edge-connected graph has at least 2 edges in
every cutset; a cutset being the edges between S and V \ S for some vertex set S.)

Exercise 2-7. A graph G = (V,E) is said to be factor-critical if, for all v ∈ V , we have
that G \ {v} contains a perfect matching. In parts (a) and (b) below, G is a factor-critical
graph.

1.Let U be any minimizer in the Tutte-Berge formula for G. Prove that U = ∅. (Hint:
see Exercise 2-3.)

2.Deduce that when Edmonds algorithm terminates the final graph (obtained from G by
shrinking flowers) must be a single vertex.

3.Given a graph H = (V,E), an ear is a path v0− v1− v2− · · · − vk whose endpoints (v0
and vk) are in V and whose internal vertices (vi for 1 ≤ i ≤ k − 1) are not in V . We
allow that v0 be equal to vk, in which case the path would reduce to a cycle. Adding
the ear to H creates a new graph on V ∪ {v1, · · · , vk−1}. The trivial case when k = 1
(a ’trivial’ ear) simply means adding an edge to H. An ear is called odd if k is odd, and
even otherwise; for example, a trivial ear is odd.

(a)Let G be a graph that can be constructed by starting from an odd cycle and
repeatedly adding odd ears. Prove that G is factor-critical.

(b)Prove the converse that any factor-critical graph can be built by starting from an
odd cycle and repeatedly adding odd ears.



Massachusetts Institute of Technology 18.433: Combinatorial Optimization
Michel X. Goemans March 1, 2015

3. Linear Programming and Polyhedral Combinatorics

Summary of what was seen in the introductory lectures on linear programming and
polyhedral combinatorics.

Definition 3.1 A halfspace in Rn is a set of the form {x ∈ Rn : aTx ≤ b} for some vector
a ∈ Rn and b ∈ R.

Definition 3.2 A polyhedron is the intersection of finitely many halfspaces: P = {x ∈ Rn :
Ax ≤ b}.

Definition 3.3 A polytope is a bounded polyhedron.

Definition 3.4 If P is a polyhedron in Rn, the projection Pk ⊆ Rn−1 of P is defined as
{y = (x1, x2, · · · , xk−1, xk+1, · · · , xn) : x ∈ P for some xk ∈ R}.

This is a special case of a projection onto a linear space (here, we consider only coordinate
projection). By repeatedly projecting, we can eliminate any subset of coordinates.

We claim that Pk is also a polyhedron and this can be proved by giving an explicit
description of Pk in terms of linear inequalities. For this purpose, one uses Fourier-Motzkin
elimination. Let P = {x : Ax ≤ b} and let

• S+ = {i : aik > 0},

• S− = {i : aik < 0},

• S0 = {i : aik = 0}.

Clearly, any element in Pk must satisfy the inequality aTi x ≤ bi for all i ∈ S0 (these inequal-
ities do not involve xk). Similarly, we can take a linear combination of an inequality in S+

and one in S− to eliminate the coefficient of xk. This shows that the inequalities:

aik

(∑
j

aljxj

)
− alk

(∑
j

aijxj

)
≤ aikbl − alkbi (1)

for i ∈ S+ and l ∈ S− are satisfied by all elements of Pk. Conversely, for any vector
(x1, x2, · · · , xk−1, xk+1, · · · , xn) satisfying (1) for all i ∈ S+ and l ∈ S− and also

aTi x ≤ bi for all i ∈ S0 (2)

we can find a value of xk such that the resulting x belongs to P (by looking at the bounds on
xk that each constraint imposes, and showing that the largest lower bound is smaller than
the smallest upper bound). This shows that Pk is described by (1) and (2), and therefore is
a polyhedron.
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Definition 3.5 Given points a(1), a(2), · · · , a(k) ∈ Rn,

• a linear combination is
∑

i λia
(i) where λi ∈ R for all i,

• an affine combination is
∑

i λia
(i) where λi ∈ R and

∑
i λi = 1,

• a conical combination is
∑

i λia
(i) where λi ≥ 0 for all i,

• a convex combination is
∑

i λia
(i) where λi ≥ 0 for all i and

∑
i λi = 1.

The set of all linear combinations of elements of S is called the linear hull of S and
denoted by lin(S). Similarly, by replacing linear by affine, conical or convex, we define the
affine hull, aff(S), the conic hull, cone(S) and the convex hull, conv(S). We can give an
equivalent definition of a polytope.

Definition 3.6 A polytope is the convex hull of a finite set of points.

The fact that Definition 3.6 implies Definition 3.3 can be seen as follows. Take P be
the convex hull of a finite set {a(k)}k∈[m] of points. To show that P can be described as
the intersection of a finite number of hyperplanes, we can apply Fourier-Motzkin elimination
repeatedly on

x−
∑
k

λka
(k) = 0

∑
k

λk = 1

λk ≥ 0

to eliminate all variables λk and keep only the variables x. Furthermore, P is bounded since
for any x ∈ P , we have

||x|| = ||
∑
k

λka
(k)|| ≤

∑
k

λk||a(k)|| ≤ max
k
||a(k)||.

The converse will be proved later in these notes.

3.1 Solvability of System of Inequalities

In linear algebra, we saw that, for A ∈ Rm×n, b ∈ Rm, Ax = b has no solution x ∈ Rn if
and only if there exists a y ∈ Rm with ATy = 0 and bTy 6= 0 (in 18.06 notation/terminology,
this is equivalent to saying that the column space C(A) is orthogonal to the left null space
N(AT )).

One can state a similar Theorem of the Alternatives for systems of linear inequalities.

Theorem 3.1 (Theorem of the Alternatives) Ax ≤ b has no solution x ∈ Rn if and
only if there exists y ∈ Rm such that y ≥ 0, ATy = 0 and bTy < 0.
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One can easily show that both systems indeed cannot have a solution since otherwise
0 > bTy = yT b ≥ yTAx = 0Tx = 0. For the other direction, one takes the insolvable system
Ax ≤ b and use Fourier-Motzkin elimination repeatedly to eliminate all variables and thus
obtain an inequality of the form 0Tx ≤ c where c < 0. In the process one has derived a vector
y with the desired properties (as Fourier-Motzkin only performs nonnegative combinations
of linear inequalities).

Another version of the above theorem is Farkas’ lemma:

Lemma 3.2 Ax = b, x ≥ 0 has no solution if and only if there exists y with ATy ≥ 0 and
bTy < 0.

Exercise 3-1. Prove Farkas’ lemma from the Theorem of the Alternatives.

3.2 Linear Programming Basics

A linear program (LP) is the problem of minimizing or maximizing a linear function over a
polyhedron:

Max cTx

subject to:

(P ) Ax ≤ b,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and the variables x are in Rn. Any x satisfying Ax ≤ b
is said to be feasible. If no x satisfies Ax ≤ b, we say that the linear program is infeasible,
and its optimum value is −∞ (as we are maximizing over an empty set). If the objective
function value of the linear program can be made arbitrarily large, we say that the linear
program is unbounded and its optimum value is +∞; otherwise it is bounded. If it is neither
infeasible, nor unbounded, then its optimum value is finite.

Other equivalent forms involve equalities as well, or nonnegative constraints x ≥ 0.
One version that is often considered when discussing algorithms for linear programming
(especially the simplex algorithm) is min{cTx : Ax = b, x ≥ 0}.

Another linear program, dual to (P ), plays a crucial role:

Min bTy

subject to:

(D) ATy = c

y ≥ 0.

(D) is the dual and (P ) is the primal. The terminology for the dual is similar. If (D)
has no feasible solution, it is said to be infeasible and its optimum value is +∞ (as we are
minimizing over an empty set). If (D) is unbounded (i.e. its value can be made arbitrarily
negative) then its optimum value is −∞.
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The primal and dual spaces should not be confused. If A is m×n then we have n primal
variables and m dual variables.

Weak duality is clear: For any feasible solutions x and y to (P ) and (D), we have that
cTx ≤ bTy. Indeed, cTx = yTAx ≤ bTy. The dual was precisely built to get an upper bound
on the value of any primal solution. For example, to get the inequality yTAx ≤ bTy, we need
that y ≥ 0 since we know that Ax ≤ b. In particular, weak duality implies that if the primal
is unbounded then the dual must be infeasible.

Strong duality is the most important result in linear programming; it says that we can
prove the optimality of a primal solution x by exhibiting an optimum dual solution y.

Theorem 3.3 (Strong Duality) Assume that (P ) and (D) are feasible, and let z∗ be the
optimum value of the primal and w∗ the optimum value of the dual. Then z∗ = w∗.

One proof of strong duality is obtained by writing a big system of inequalities in x and y
which says that (i) x is primal feasible, (ii) y is dual feasible and (iii) cTx ≥ bTy. Then use
the Theorem of the Alternatives to show that the infeasibility of this system of inequalities
would contradict the feasibility of either (P ) or (D).
Proof: Let x∗ be a feasible solution to the primal, and y∗ be a feasible solution to the
dual. The proof is by contradiction. Because of weak duality, this means that there are no
solution x ∈ Rn and y ∈ Rm such that

Ax ≤ b
ATy = c
−Iy ≤ 0

−cTx +bTy ≤ 0

By a variant of the Theorem of the Alternatives or Farkas’ lemma (for the case when we
have a combination of inequalities and equalities), we derive that there must exist s ∈ Rm,
t ∈ Rn, u ∈ Rm, v ∈ R such that:

s ≥ 0

u ≥ 0

v ≥ 0

AT s− vc = 0

At− u+ vb = 0

bT s+ cT t < 0.

We distinguish two cases.

Case 1: v = 0. Then s satisfies s ≥ 0 and AT s = 0. This means that, for any α ≥ 0,
y∗ + αs is feasible for the dual. Similarly, At = u ≥ 0 and therefore, for any α ≥ 0, we have
that x∗ − αt is primal feasible. By weak duality, this means that, for any α ≥ 0, we have

cT (x∗ − αt) ≤ bT (y∗ + αs)
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or
cTx∗ − bTy∗ ≤ α(bT s+ cT t).

The right-hand-side tend to −∞ as α tends to ∞, and this is a contradiction as the left-
hand-side is fixed.

Case 2: v > 0. By dividing throughout by v (and renaming all the variables), we get that
there exists s ≥ 0, u ≥ 0 with

AT s = c

At− u = −b
bT s+ cT t < 0.

This means that s is dual feasible and −t is primal feasible, and therefore by weak duality
cT (−t) ≤ bT s contradicting bT s+ cT t < 0. 4

Exercise 3-2. Show that the dual of the dual is the primal.

Exercise 3-3. Show that we only need either the primal or the dual to be feasible for
strong duality to hold. More precisely, if the primal is feasible but the dual is infeasible,
prove that the primal will be unbounded, implying that z∗ = w∗ = +∞.

Looking at cTx = yTAx ≤ bTy, we observe that to get equality between cTx and bTy, we
need complementary slackness:

Theorem 3.4 (Complementary Slackness) If x is feasible in (P ) and y is feasible in
(D) then x is optimum in (P ) and y is optimum in (D) if and only if for all i either yi = 0
or
∑

j aijxj = bi (or both).

Linear programs can be solved using the simplex method; this is not going to be explained
in these notes. No variant of the simplex method is known to provably run in polynomial
time, but there are other polynomial-time algorithms for linear programming, namely the
ellipsoid algorithm and the class of interior-point algorithms.

3.3 Faces of Polyhedra

Definition 3.7 {a(i) ∈ Rn : i ∈ K} are linearly independent if
∑

i λia
(i) = 0 implies that

λi = 0 for all i ∈ K.

Definition 3.8 {a(i) ∈ Rn : i ∈ K} are affinely independent if
∑

i λia
(i) = 0 and

∑
i λi = 0

together imply that λi = 0 for all i ∈ K.
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Observe that {a(i) ∈ Rn : i ∈ K} are affinely independent if and only if{[
a(i)

1

]
∈ Rn+1 : i ∈ K

}
are linearly independent.

Definition 3.9 The dimension, dim(P ), of a polyhedron P is the maximum number of
affinely independent points in P minus 1.

(This is the same notion as the dimension of the affine hull aff(S).) The dimension can
be -1 (if P is empty), 0 (when P consists of a single point), 1 (when P is a line segment),
and up to n when P affinely spans Rn. In the latter case, we say that P is full-dimensional.
The dimension of a cube in R3 is 3, and so is the dimension of R3 itself (which is a trivial
polyhedron).

Definition 3.10 αTx ≤ β is a valid inequality for P if αTx ≤ β for all x ∈ P .

Observe that for an inequality to be valid for conv(S) we only need to make sure that
it is satisfied by all elements of S, as this will imply that the inequality is also satisfied by
points in conv(S) \S. This observation will be important when dealing with convex hulls of
combinatorial objects such as matchings or spanning trees.

Definition 3.11 A face of a polyhedron P is {x ∈ P : αTx = β} where αTx ≤ β is some
valid inequality of P .

By definition, all faces are polyhedra. The empty face (of dimension -1) is trivial, and so
is the entire polyhedron P (which corresponds to the valid inequality 0Tx ≤ 0). Non-trivial
are those whose dimension is between 0 and dim(P ) − 1. Faces of dimension 0 are called
extreme points or vertices, faces of dimension 1 are called edges, and faces of dimension
dim(P )− 1 are called facets. Sometimes, one uses ridges for faces of dimension dim(P )− 2.

Exercise 3-4. List all 28 faces of the cube P = {x ∈ R3 : 0 ≤ xi ≤ 1 for i = 1, 2, 3}.

Although there are infinitely many valid inequalities, there are only finitely many faces.

Theorem 3.5 Let A ∈ Rm×n. Then any non-empty face of P = {x ∈ Rn : Ax ≤ b}
corresponds to the set of solutions to∑

j

aijxj = bi for all i ∈ I

∑
j

aijxj ≤ bi for all i /∈ I,

for some set I ⊆ {1, · · · ,m}. Therefore, the number of non-empty faces of P is at most 2m.
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Proof: Consider any valid inequality αTx ≤ β. Suppose the corresponding face F is
non-empty. Thus F are all optimum solutions to

Max αTx

subject to:

(P ) Ax ≤ b.

Choose an optimum solution y∗ to the dual LP. By complementary slackness, the face F is
defined by those elements x of P such that aTi x = bi for i ∈ I = {i : y∗i > 0}. Thus F is
defined by ∑

j

aijxj = bi for all i ∈ I

∑
j

aijxj ≤ bi for all i /∈ I.

As there are 2m possibilities for I, there are at most 2m non-empty faces. 4
The number of faces given in Theorem 3.5 is tight for polyhedra (see exercise below), but

can be considerably improved for polytopes in the so-called upper bound theorem (which is
not given in these notes).

Exercise 3-5. Let P = {x ∈ Rn : xi ≥ 0 for i = 1, · · · , n}. Show that P has 2n + 1 faces.
How many faces of dimension k does P have?

For extreme points (faces of dimension 0), the characterization is even stronger (we do
not need the inequalities):

Theorem 3.6 Let x∗ be an extreme point for P = {x : Ax ≤ b}. Then there exists I such
that x∗ is the unique solution to∑

j

aijxj = bi for all i ∈ I.

Proof: Given an extreme point x∗, define I = {i :
∑

j aijx
∗
j = bi}. This means that for

i /∈ I, we have
∑

j aijx
∗
j < bi.

From Theorem 3.5, we know that x∗ is uniquely defined by∑
j

aijxj = bi for all i ∈ I (3)

∑
j

aijxj ≤ bi for all i /∈ I. (4)

Now suppose there exists another solution x̂ when we consider only the equalities for i ∈ I.
Then because of

∑
j aijx

∗
j < bi, we get that (1 − ε)x∗ + εx̂ also satisfies (3) and (4) for ε

sufficiently small. A contradiction (as the face was supposed to contain a single point). 4
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If P is given as {x : Ax = b, x ≥ 0} (as is often the case), the theorem still applies (as
we still have a system of inequalities). In this case, the theorem says that every extreme
point x∗ can be obtained by setting some of the variables to 0, and solving for the unique
solution to the resulting system of equalities. Without loss of generality, we can remove from
Ax = b equalities that are redundant; this means that we can assume that A has full row
rank (rank(A) = m for A ∈ Rm×n). Letting N denote the indices of the non-basic variables
that we set of 0 and B denote the remaining indices (of the so-called basic variables), we
can partition x∗ into x∗B and x∗N (corresponding to these two sets of variables) and rewrite
Ax = b as ABxB +ANxN = b, where AB and AN are the restrictions of A to the indices in B
and N respectively. The theorem says that x∗ is the unique solution to ABxB + ANxN = 0
and xN = 0, which means x∗N = 0 and ABx

∗
B = b. This latter system must have a unique

solution, which means that AB must have full column rank (rank(AB) = |B|). As A itself
has rank m, we have that |B| ≤ m and we can augment B to include indices of N such that
the resulting B satisfies (i) |B| = m and (ii) AB is a m×m invertible matrix (and thus there
is still a unique solution to ABxB = b). In linear programming terminology, a basic feasible
solution or bfs of {x : Ax = b, x ≥ 0} is obtained by choosing a set |B| = m of indices with
AB invertible and letting xB = A−1B b and xN = 0 where N are the indices not in B. We have
thus shown that all extreme points are bfs, and vice versa. Observe that two different bases
B may lead to the same extreme point, as there might be many ways of extending AB into
a m×m invertible matrix in the discussion above.

One consequence we could derive from Theorem 3.5 is:

Corollary 3.7 The maximal (inclusion-wise) non-trivial faces of a non-empty polyhedron
P are the facets.

For the vertices, one needs one additional condition:

Corollary 3.8 If rank(A) = n (full column rank) then the minimal (inclusion-wise) non-
trivial faces of a non-empty polyhedron P = {x ∈ Rn : Ax ≤ b} are the vertices.

Exercise 3-7 shows that the rank condition is necessary.
This means that, if a linear program max{cTx : x ∈ P} with P = {x : Ax ≤ b} is

feasible, bounded and rank(A) = n, then there exists an optimal solution which is a vertex
of P (indeed, the set of all optimal solutions defines a face — the optimal face — and if this
face is not itself a vertex of P , it must contain vertices of P ).

We now prove Corollary 3.8.
Proof: Let F be a minimal (inclusion-wise) non-trivial face of P . This means that we
have a set I such that

F = {x : aTi x = bi ∀i ∈ I
aTj x ≤ bj ∀j /∈ I}

and adding any element to I makes this set empty. Consider two cases. Either F = {x ∈
Rn : aTi x = bi for i ∈ I} or not. In the first case, it means that for every j /∈ I we have
aj ∈ lin({ai : i ∈ I}) (otherwise there would be a solution x to aTi x = bi for all i ∈ I and
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aTj x = bj + 1 and hence not in F ) and therefore since rank(A) = n we have that the system
aTi x = bi for all i ∈ I has a unique solution and thus F is a vertex.

On the other hand, if F 6= {x ∈ Rn : aTi x = bi for i ∈ I} then let j /∈ I such that there
exists x̃ with

aTi x̃ = bi i ∈ I
aTj x̃ > bj.

Since F is not trivial, there exists x̂ ∈ F . In particular, x̂ satisfies

aTi x̂ = bi i ∈ I
aTj x̂ ≤ bj.

Consider a convex combination x′ = λx̃ + (1 − λ)x̂. Consider the largest λ such that x′

is in P . This is well-defined as λ = 0 gives a point in P while it is not for λ = 1. The
corresponding x′ satisfies aTi x

′ = bi for i ∈ I ∪ {k} for some k (possibly j), contradicting the
maximality of I. 4

We now go back to the equivalence between Definitions 3.3 and 3.6 and claim that we
can show that Definition 3.3 implies Definition 3.6.

Theorem 3.9 If P = {x : Ax ≤ b} is bounded then P = conv(X) where X is the set of
extreme points of P .

This is a nice exercise using the Theorem of the Alternatives.
Proof: Since X ⊆ P , we have conv(X) ⊆ P . Assume, by contradiction, that we do not
have equality. Then there must exist x̃ ∈ P \ conv(X). The fact that x̃ /∈ conv(X) means
that there is no solution to: 

∑
v∈X λvv = x̃∑
v∈X λv = 1

λv ≥ 0 v ∈ X.

By the Theorem of the alternatives, this implies that ∃c ∈ Rn, t ∈ R:{
t+
∑n

j=1 cjvj ≥ 0 ∀v ∈ X
t+
∑n

j=1 cjx̃j < 0.

Since P is bounded, min{cTx : x ∈ P} is finite (say equal to z∗), and the face induced by
cTx ≥ z∗ is non-empty but does not contain any vertex (as all vertices are dominated by x̃
by the above inequalities). This is a contradiction with Corollary 3.8. Observe, indeed, that
Corollary 3.8 applies. If rank(A) < n there woule exists y 6= 0 with Ay = 0 and this would
contradict the boundedness of P (as we could go infinitely in the direction of y). 4

When describing a polyhedron P in terms of linear inequalities, the only inequalities that
are needed are the ones that define facets of P . This is stated in the next few theorems. We
say that an inequality in the system Ax ≤ b is redundant if the corresponding polyhedron is
unchanged by removing the inequality. For P = {x : Ax ≤ b}, we let I= denote the indices
i such that aTi x = bi for all x ∈ P , and I< the remaining ones (i.e. those for which there
exists x ∈ P with aTi x < bi).

This theorem shows that facets are sufficient:
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Theorem 3.10 If the face associated with aTi x ≤ bi for i ∈ I< is not a facet then the
inequality is redundant.

And this one shows that facets are necessary:

Theorem 3.11 If F is a facet of P then there must exists i ∈ I< such that the face induced
by aTi x ≤ bi is precisely F .

In a minimal description of P , we must have a set of linearly independent equalities
together with precisely one inequality for each facet of P .

Exercises

Exercise 3-6. Prove Corollary 3.7.

Exercise 3-7. Show that if rank(A) < n then P = {x ∈ Rn : Ax ≤ b} has no vertices.

Exercise 3-8. Suppose P = {x ∈ Rn : Ax ≤ b, Cx ≤ d}. Show that the set of vertices of
Q = {x ∈ Rn : Ax ≤ b, Cx = d} is a subset of the set of vertices of P .

(In particular, this means that if the vertices of P all belong to {0, 1}n, then so do the
vertices of Q.)

Exercise 3-9. Given two extreme points a and b of a polyhedron P , we say that they
are adjacent if the line segment between them forms an edge (i.e. a face of dimension 1) of
the polyhedron P . This can be rephrased by saying that a and b are adjacent on P if and
only if there exists a cost function c such that a and b are the only two extreme points of P
minimizing cTx over P .

Consider the polyhedron (polytope) P defined as the convex hull of all perfect matchings
in a (not necessarily bipartite) graph G. Give a necessary and sufficient condition for two
matchings M1 and M2 to be adjacent on this polyhedron (hint: think about M1 4M2 =
(M1 \M2) ∪ (M2 \M1)) and prove that your condition is necessary and sufficient.)

Exercise 3-10. Show that two vertices u and v of a polyhedron P are adjacent if and
only there is a unique way to express their midpoint (1

2
(u + v)) as a convex combination of

vertices of P .

3.4 Polyhedral Combinatorics

In one sentence, polyhedral combinatorics deals with the study of polyhedra or polytopes as-
sociated with discrete sets arising from combinatorial optimization problems (such as match-
ings for example). If we have a discrete set X (say the incidence vectors of matchings in a
graph, or the set of incidence vectors of spanning trees of a graph, or the set of incidence vec-
tors of stable sets1 in a graph), we can consider conv(X) and attempt to describe it in terms

1A set S of vertices in a graph G = (V,E) is stable if there are no edges between any two vertices of S.
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of linear inequalities. This is useful in order to apply the machinery of linear programming.
However, in some (most) cases, it is actually hard to describe the set of all inequalities defin-
ing conv(X); this occurs whenever optimizing over X is hard and this statement can be made
precise in the setting of computational complexity. For matchings, or spanning trees, and
several other structures (for which the corresponding optimization problem is polynomially
solvable), we will be able to describe their convex hull in terms of linear inequalities.

Given a set X and a proposed system of inequalities P = {x : Ax ≤ b}, it is usually easy
to check whether conv(X) ⊆ P . Indeed, for this, we only need to check that every member
of X satisfies every inequality in the description of P . The reverse inclusion is more difficult.
Here are 3 general techniques to prove that P ⊆ conv(X) (if it is true!) (once we know that
conv(X) ⊆ P ).

1. Algorithmically. This involves linear programming duality. This is what we did
in the notes about the assignment problem (minimum weight matchings in bipartite
graphs). In general, consider any cost function c and consider the combinatorial opti-
mization problem of maximizing cTx over x ∈ X. We know that:

max{cTx : x ∈ X} = max{cTx : x ∈ conv(X)}
≤ max{cTx : Ax ≤ b}
= min{bTy : ATy = c, y ≥ 0},

the last equality coming from strong duality. If we can exhibit a solution x ∈ X (say the
incidence vector of a perfect matching in the assignment problem) and a dual feasible
solution y (values ui, vj in the assignment problem) such that cTx = bTy we will have
shown that we have equality throughout, and if this is true for any cost function c, this
implies that P = conv(X).

This is usually the most involved approach but also the one that works most often.

2. Focusing on extreme points. Show first that P = {x : Ax ≤ b} is bounded (thus a
polytope) and then study its extreme points. If we can show that every extreme point
of P is in X then we would be done since P = conv(ext(P )) ⊆ conv(X), where ext(P )
denotes the extreme points of P (see Theorem 3.9). The assumption that P is bounded
is needed to show that indeed P = conv(ext(P )) (not true if P is unbounded).

In the case of the convex hull of bipartite matchings, this can be done easily and this
leads to the notion of totally unimodular Matrices (TU), see the next section.

3. Focusing on the facets of conv(X). This leads usually to the shortest and cleanest
proofs. Suppose that our proposed P is of the form {x ∈ Rn : Ax ≤ b, Cx = d}. We
have already argued that conv(X) ⊆ P and we want to show that P ⊆ conv(X).

First we need to show that we are not missing any equality. This can be done for exam-
ple by showing that dim(conv(X)) = dim(P ). We already know that dim(conv(X)) ≤
dim(P ) (as conv(X) ⊆ P ), and so we need to argue that dim(conv(X)) ≥ dim(P ).
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This means showing that if there are n− d linearly independent rows in C we can find
d+ 1 affinely independent points in X.

Then we need to show that we are not missing a valid inequality that induces a facet
of conv(X). Consider any valid inequality αTx ≤ β for conv(X) with α 6= 0. We can
assume that α is any vector in Rn \ {0} and that β = max{αTx : x ∈ conv(X)}. The
face of conv(X) this inequality defines is F = conv({x ∈ X : αTx = β}). Assume that
this is a non-trivial face; this will happen precisely when α is not in the row space of
C. We need to make sure that if F is a facet then we have in our description of P an
inequality representing it. What we will show is that if F is non-trivial then we can
find an inequality aTi x ≤ bi in our description of P such that (i) F ⊆ {x : aTi x = bi}
and (ii) aTi x ≤ bi defines a non-trivial face of P (this second condition is not needed if
P is full-dimensional), or simply that every optimum solution to max{αTx : x ∈ X}
satisfies aTi x = bi, and that this inequality is not satisfied by all points in P . This
means that if F was a facet, by maximality, we have a representative of F in our
description.

This is a very simple and powerful technique, and this is best illustrated on an example.

Example. Let X = {(σ(1), σ(2), · · · , σ(n)) : σ is a permutation of {1, 2, · · · , n}}.
We claim that

conv(X) = {x ∈ Rn :
∑n

i=1 xi =
(
n+1
2

)∑
i∈S xi ≥

(|S|+1
2

)
S ⊂ {1, · · · , n}}.

This is known as the permutahedron.

Here conv(X) is not full-dimensional; we only need to show that we are not missing
any facets and any equality in the description of conv(P ). For the equalities, this can
be seen easily as it is easy to exhibit n affinely independent permutations in X. For
the facets, suppose that αTx ≤ β defines a non-trivial facet F of conv(X). Consider
maximizing αTx over all permutations x. Let S = arg min{αi}; by our assumption
that F is non-trivial we have that S 6= {1, 2, · · · , n} (otherwise, we would have the
equality

∑n
i=1 xi =

(
n+1
2

)
). Moreover, it is easy to see (by an exchange argument)

that any permutation σ whose incidence vector x maximizes αTx will need to satisfy
σ(i) ∈ {1, 2, · · · , |S|} for i ∈ S, in other words, it will satisfy the inequality

∑
i∈S xi ≥(|S|+1

2

)
at equality (and this is a non-trivial face as there exist permutations that do

not satisfy it at equality). Hence, F is contained in a non-trivial face corresponding to
an inequality in our description, and hence our description contains inequalities for all
facets. This is what we needed to prove. That’s it!

Exercises

Exercise 3-11. Consider the set X = {(σ(1), σ(2), · · · , σ(n)) : σ is a permutation of
{1, 2 · · · , n}}. Show that dim(conv(X)) = n− 1. (To show that dim(conv(X)) ≥ n− 1, ex-
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hibit n affinely independent permutations σ (and prove that they are affinely independent).)

Exercise 3-12. A stable set S (sometimes, it is called also an independent set) in a graph
G = (V,E) is a set of vertices such that there are no edges between any two vertices in S.
If we let P denote the convex hull of all (incidence vectors of) stable sets of G = (V,E), it
is clear that xi + xj ≤ 1 for any edge (i, j) ∈ E is a valid inequality for P .

1.Give a graph G for which P is not equal to

{x ∈ R|V | : xi + xj ≤ 1 for all (i, j) ∈ E
xi ≥ 0 for all i ∈ V }

2.Show that if the graph G is bipartite then P equals

{x ∈ R|V | : xi + xj ≤ 1 for all (i, j) ∈ E
xi ≥ 0 for all i ∈ V }.

Exercise 3-13. Let ek ∈ Rn (k = 0, . . . , n − 1) be a vector with the first k entries being
1, and the following n− k entries being −1. Let S = {e0, e1, . . . , en−1,−e0,−e1, . . . ,−en−1},
i.e. S consists of all vectors consisting of +1 followed by −1 or vice versa. In this problem
set, you will study conv(S).

1.Consider any vector a ∈ {−1, 0, 1}n such that (i)
∑n

i=1 ai = 1 and (ii) for all j =

1, . . . , n−1, we have 0 ≤
∑j

i=1 ai ≤ 1. (For example, for n = 5, the vector (1, 0,−1, 1, 0)
satisfies these conditions.) Show that

∑n
i=1 aixi ≤ 1 and

∑n
i=1 aixi ≥ −1 are valid

inequalities for conv(S).

2.How many such inequalities are there?

3.Show that any such inequality defines a facet of conv(S).

(This can be done in several ways. Here is one approach, but you are welcome to
use any other one as well. First show that either ek or −ek satisfies this inequality at
equality, for any k. Then show that the resulting set of vectors on the hyperplane are
affinely independent (or uniquely identifies it).)

4.Show that the above inequalities define the entire convex hull of S.

(Again this can be done in several ways. One possibility is to consider the 3rd technique
described above.)

3.5 Total unimodularity

Definition 3.12 A matrix A is totally unimodular (TU) if every square submatrix of A has
determinant −1, 0 or +1.
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The importance of total unimodularity stems from the following theorem. This theorem
gives a subclass of integer programs which are easily solved. A polyhedron P is said to be
integral if all its vertices or extreme points are integral (belong to Zn).

Theorem 3.12 Let A be a totally unimodular matrix. Then, for any integral right-hand-side
b, the polyhedron

P = {x : Ax ≤ b, x ≥ 0}

is integral.

Before we prove this result, two remarks can be made. First, the proof below will in
fact show that the same result holds for the polyhedrons {x : Ax ≥ b, x ≥ 0} or {x : Ax =
b, x ≥ 0}. In the latter case, though, a slightly weaker condition than totally unimodularity
is sufficient to prove the result. Secondly, in the above theorem, one can prove the converse
as well: If P = {x : Ax ≤ b, x ≥ 0} is integral for all integral b then A must be totally
unimodular (this is not true though, if we consider for example {x : Ax = b, x ≥ 0}).
Proof: Adding slacks, we get the polyhedron Q = {(x, s) : Ax + Is = b, x ≥ 0, s ≥ 0}.
One can easily show (see exercise below) that P is integral iff Q is integral.

Consider now any bfs of Q. The basis B consists of some columns of A as well as some
columns of the identity matrix I. Since the columns of I have only one nonzero entry per
column, namely a one, we can expand the determinant of AB along these entries and derive
that, in absolute values, the determinant of AB is equal to the determinant of some square
submatrix of A. By definition of totally unimodularity, this implies that the determinant of
AB must belong to {−1, 0, 1}. By definition of a basis, it cannot be equal to 0. Hence, it
must be equal to ±1.

We now prove that the bfs must be integral. The non-basic variables, by definition, must
have value zero. The vector of basic variables, on the other hand, is equal to A−1B b. From
linear algebra, A−1B can be expressed as

1

detAB

Aadj
B

where Aadj
B is the adjoint (or adjugate) matrix of AB and consists of subdeterminants of AB.

Hence, both b and Aadj
B are integral which implies that A−1B b is integral since | detAB| = 1.

This proves the integrality of the bfs. 4

Exercise 3-14. Let P = {x : Ax ≤ b, x ≥ 0} and let Q = {(x, s) : Ax+ Is = b, x ≥ 0, s ≥
0}. Show that x is an extreme point of P iff (x, b−Ax) is an extreme point of Q. Conclude
that whenever A and b have only integral entries, P is integral iff Q is integral.

In the case of the bipartite matching problem, the constraint matrix A has a very special
structure and we show below that it is totally unimodular. This together with Theorem
3.12 proves Theorem 1.6 from the notes on the bipartite matching problem. First, let us
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restate the setting. Suppose that the bipartition of our bipartite graph is (U, V ) (to avoid
any confusion with the matrix A or the basis B). Consider

P = {x :
∑
j

xij = 1 i ∈ U∑
i

xij = 1 j ∈ V

xij ≥ 0 i ∈ U, j ∈ V }
= {x : Ax = b, x ≥ 0}.

Theorem 3.13 The matrix A is totally unimodular.

The way we defined the matrix A corresponds to a complete bipartite graph. If we were
to consider any bipartite graph then we would simply consider a submatrix of A, which is
also totally unimodular by definition.
Proof: Consider any square submatrix T of A. We consider three cases. First, if T has a
column or a row with all entries equal to zero then the determinant is zero. Secondly, if there
exists a column or a row of T with only one +1 then by expanding the determinant along
that +1, we can consider a smaller sized matrix T . The last case is when T has at least two
nonzero entries per column (and per row). Given the special structure of A, there must in
fact be exactly two nonzero entries per column. By adding up the rows of T corresponding
to the vertices of U and adding up the rows of T corresponding to the vertices of V , one
therefore obtains the same vector which proves that the rows of T are linearly dependent,
implying that its determinant is zero. This proves the total unimodularity of A. 4

We conclude with a technical remark. One should first remove one of the rows of A
before applying Theorem 3.12 since, as such, it does not have full row rank and this fact
was implicitly used in the definition of a bfs. However, deleting a row of A still preserves its
totally unimodularity.

Exercise 3-15. If A is totally unimodular then AT is totally unimodular.

Exercise 3-16. Use total unimodularity to prove König’s theorem.

The following theorem gives a necessary and sufficient condition for a matrix to be totally
unimodular.

Theorem 3.14 Let A be a m × n matrix with entries in {−1, 0, 1}. Then A is TU if and
only if for all subsets R ⊆ {1, 2, · · · , n} of rows, there exists a partition of R into R1 and R2

such that for all j ∈ {1, 2, · · · ,m}:∑
i∈R1

aij −
∑
i∈R2

aij ∈ {0, 1,−1}.
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We will prove only the if direction (but that is the most important as this allows to prove
that a matrix is totally unimodular).
Proof: Assume that, for every R, the desired partition exists. We need to prove that the
determinant of any k × k submatrix of A is in {−1, 0, 1}, and this must be true for any k.
Let us prove it by induction on k. It is trivially true for k = 1. Assume it is true for k − 1
and we will prove it for k.

Let B be a k× k submatrix of A, and we can assume that B is invertible (otherwise the
determinant is 0 and there is nothing to prove). The inverse B−1 can be written as 1

det(B)
B∗,

where all entries of B∗ correspond to (k − 1)× (k − 1) submatrices of A. By our inductive
hypothesis, all entries of B∗ are in {−1, 0, 1}. Let b∗1 be the first row of B and e1 be the
k-dimensional row vector [1 0 0 · · · 0], thus b∗1 = e1B

∗. By the relationship between B and
B∗, we have that

b∗1B = e1B
∗B = det(B)e1B

−1B = det(B)e1. (5)

Let R = {i : b∗1i ∈ {−1, 1}}. By assumption, we know that there exists a partition of R
into R1 and R2 such that for all j:∑

i∈R1

bij −
∑
i∈R2

bij ∈ {−1, 0, 1}. (6)

From (5), we have that ∑
i∈R

b∗1ibij =

{
det(B) j = 1
0 j 6= 1

(7)

Since
∑

i∈R1
bij −

∑
i∈R2

bij and
∑

i∈R b
∗
1ibij differ by a multiple of 2 for each j (since b∗1i ∈

{−1, 1}), this implies that ∑
i∈R1

bij −
∑
i∈R2

bij = 0 j 6= 1. (8)

For j = 1, we cannot get 0 since otherwise B would be singular (we would get exactly the 0
vector by adding and subtracting rows of B). Thus,∑

i∈R1

bi1 −
∑
i∈R2

bi1 ∈ {−1, 1}.

If we define y ∈ Rk by

yi =


1 i ∈ R1

−1 i ∈ R2

0 otherwise

we get that yB = ±e1. Thus

y = ±e1B−1 = ± 1

detB
e1B

∗ = ± 1

detB
b∗1,

which implies that detB must be either 1 or -1. 4
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Exercise 3-17. Suppose we have n activities to choose from. Activity i starts at time ti
and ends at time ui (or more precisely just before ui); if chosen, activity i gives us a profit of
pi units. Our goal is to choose a subset of the activities which do not overlap (nevertheless,
we can choose an activity that ends at t and one that starts at the same time t) and such
that the total profit (i.e. sum of profits) of the selected activities is maximum.

1.Defining xi as a variable that represents whether activity i is selected (xi = 1) or not
(xi = 0), write an integer program of the form max{pTx : Ax ≤ b, x ∈ {0, 1}n} that
would solve this problem.

2.Show that the matrix A is totally unimodular, implying that one can solve this problem
by solving the linear program max{pTx : Ax ≤ b, 0 ≤ xi ≤ 1 for every i}.

Exercise 3-18. Given a bipartite graph G and given an integer k, let Sk be the set of
all incidence vectors of matchings with at most k edges. We are interested in finding a
description of Pk = conv(Sk) as a system of linear inequalities. More precisely, you’ll show
that conv(Sk) is given by:

Pk = {x :
∑

j xij ≤ 1 ∀i ∈ A∑
i xij ≤ 1 ∀j ∈ B∑
i

∑
j xij ≤ k

xij ≥ 0 i ∈ A, j ∈ B}.

Without the last constraint, we have shown that the resulting matrix is totally unimodular.

1.With the additional constraint, is the resulting matrix totally unimodular? Either prove
it or disprove it.

2.Show that Pk indeed equals conv(Sk).

3.Suppose now that instead of a cardinality constraint on all the edges, our edges are
partitioned into E1 and E2 and we only impose that our matching has at most k edges
from E1 (and as many as we’d like from E2). Is it still true that the convex hull of all
such matchings is given by simply replacing

∑
i

∑
j xij ≤ k by∑

i

∑
j:(i,j)∈E1

xij ≤ k?
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4. Lecture notes on flows and cuts

4.1 Maximum Flows

Network flows deals with modelling the flow of a commodity (water, electricity, packets,
gas, cars, trains, money, or any abstract object) in a network. The links in the network are
capacitated and the commodity does not vanish in the network except at specified locations
where we can either inject or extract some amount of commodity. The main question is how
much can be sent in this network.

Here is a more formal definition of the maximum flow problem. We have a digraph
(directed graph) G = (V,E) and two special vertices s and t; s is called the source and t
the sink. We have an upper capacity function u : E → R and also a lower capacity function
l : E → R (sometimes chosen to be 0 everywhere). A flow x will be an assignment of values
to the arcs (directed edges) so that:

1. for every e ∈ E: l(e) ≤ xe ≤ u(e),

2. for every v ∈ V \ {s, t}: ∑
e∈δ+(u)

xe −
∑

e∈δ−(u)

xe = 0. (1)

The notation δ+(u) represents the set of arcs leaving u, while δ−(u) represents the set of arcs
entering u.

Equations (1) are called flow conservation constraints. Given a flow x, its flow value |x|
is the net flow out of s:

|x| :=
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe. (2)

One important observation is that |x| is also equal to the net flow into t, or minus the net
flow out of t. Indeed, summing (1) over u ∈ V \ {s, t} together with (2), we get:

|x| =
∑

v∈V \{t}

 ∑
e∈δ+(u)

xe −
∑

e∈δ−(u)

xe


=

∑
e∈δ−(t)

xe −
∑

e∈δ+(t)

xe

by looking at the contribution of every arc in the first summation.
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The maximum flow problem is the problem of finding a flow x of maximum value |x|.
This is a linear program:

Max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

subject to: ∑
e∈δ+(u)

xe −
∑

e∈δ−(u)

xe = 0 u ∈ V \ {s, t}

l(e) ≤ xe ≤ u(e) e ∈ E.

We could therefore use algorithms for linear programming to find the maximum flow and
duality to derive optimality properties, but we will show that more combinatorial algorithms
can be developed and duality translates into statements about cuts.

In matrix form, the linear program can be written as:

max{cTx : Nx = 0,
Ix ≤ u,
−Ix ≤ −l}

where N is the (vertex-arc incidence1) matrix with rows indexed by u ∈ V \ {s, t} and
columns indexed by arcs e = (i, j) ∈ E; the entry Nue is:

Nue =


1 u = i
−1 u = j
0 u /∈ {i, j}.

The constraints of the linear program are thus: Ax Q b where

A =


N
−−−
I

−−−
−I

 ,

and some of the constraints are equalities and some are inequalities.

Lemma 4.1 A is total unimodular.

Proof: We could use Theorem 3.14 from the polyhedral chapter, but proving it directly is
as easy. Consider any square submatrix of A, and we would like to compute its determinant
up to its sign. If there is a row with a single +1 or a single −1 in it (in particular, a row
coming from either the identity submatrix I or −I), we can expand the determinant and

1More precisely, part of it as we are not considering vertices s and t
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compute the determinant (up to its sign) of a smaller submatrix of A. Repeating this, we
now have a square submatrix of N . If there is a column with a single +1 or a single −1
then we can expand the determinant along this column and get a smaller submatrix. We
are thus left either with an empty submatrix in which case the determinant of the original
matrix was +1 or −1, or with a square submatrix of N with precisely one +1 and one −1
in every column. The rows of this submatrix are linearly dependent since their sum is the 0
vector. Thus the determinant is 0. This proves total unimodularity. 4

As a corollary, this means that if the right-hand-side (i.e. the upper and lower capacities)
are integer-valued then there always exists a maximum flow which takes only integer values.

Corollary 4.2 If l : E → Z and u : E → Z then there exists a maximum flow x such that
xe ∈ Z for all e ∈ E.

4.1.1 Special cases

Arc-disjoint paths. If l(e) = 0 for all e ∈ E and u(e) = 1 for all e ∈ E, any integer
flow x will only take values in {0, 1}. We claim that for an integer flow x, there exist |x|
arc-dsjoint (i.e. not having any arcs in common) paths from s to t. Indeed, such paths can
be obtained by flow decomposition. As long as |x| > 0, take an arc out of s with xe = 1.
Now follow this arc and whenever we reach a vertex u 6= t, by flow conservation we know
that there exists an arc leaving u that we haven’t traversed yet (this is true even if we reach
s again). This process stops when we reach t and we have therefore identified one path from
s to t. Removing this path gives us a new flow x′ (indeed flow conservation at vertices 6= s, t
is maintained) with |x′| = |x| − 1. Repeating this process gives us |x| paths from s to t
and, by construction, they are arc-disjoint. The paths we get might not be simple2; one can
however make them simple by removing the part of the walk between repeated occurences
of the same vertex. Summarizing, if l(e) = 0 for all e ∈ E and u(e) = 1 for all e ∈ E,
then from a maximum flow of value k, we can extract k arc-disjoint (simple) paths from
s to t. Conversely, if the digraph contains k arc-disjoint paths from s to t, it is easy to
construct a flow of value k. This means that the maximum flow value from s to t represents
the maximum number of arc-disjoint paths between s and t.

Bipartite matchings. One can formulate the maximum matching problem in a bipartite
graph as a maximum flow problem. Indeed, consider a bipartite graph G = (V,E) with
bipartition V = A ∪ B. Consider now a directed graph D with vertex set V ∪ {s, t}. In D,
there is an arc from s to every vertex of A with l(e) = 0 and u(e) = 1. There is also an arc
from every vertex in B to t with capacities l(e) = 0 and u(e) = 1. Every edge (a, b) ∈ E is
oriented from a ∈ A to b ∈ B and gets a lower capacity of 0 and an upper capacity equal
to +∞ (or just 1). One can easily see that from any matching of size k one can construct
a flow of value k; similarly to any integer valued flow of value k corresponds a matching of
size k. Since the capacities are in Z, by Corollary 4.2, this means that a maximum flow in

2A simple path is one in which no vertex is repeated.
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D has the same value as the maximum size of any matching in G. Observe that the upper
capacities for the arcs between A and B do not matter, provided they are ≥ 1.

Orientations. Consider the problem of orienting the edges of an undirected graph G =
(V,E) so that the indegree of any vertex v in the resulting digraph is at most k(v). This can
be formulated as a maximum flow problem in which we have (i) a vertex for every vertex of
G, (ii) a vertex for every edge of G and (iii) 2 additional vertices s and t. Details are left as
an exercise.

Exercise 4-1. Suppose you are given anm×nmatrixA ∈ Rm×n with row sums r1, · · · , rm ∈
Z and column sums c1, · · · , cn ∈ Z. Some of the entries might not be integral but the row
sums and column sums are. Show that there exists a rounded matrix A′ with the following
properties:

•row sums and column sums of A and A′ are identical,

•a′ij = daije or a′ij = baijc (i.e. a′ij is aij either rounded up or down.).

By the way, this rounding is useful to the census bureau as they do not want to publish
statistics that would give too much information on specific individuals. They want to be
able to modify the entries without modifying row and column sums.

4.2 Cuts

In this section, we derive an important duality result for the maximum flow problem, and
as usual, this takes the form of a minmax relation.

In a digraph G = (V,A), we define a cutset or more simply a cut as the set of arcs
δ+(S) = {(u, v) ∈ A : u ∈ S, v ∈ V \ S}. Observe that our earlier notation δ+(v) for v ∈ V
rather than δ+({v}) is a slight abuse of notation. Similarly, we define δ−(S) as δ+(V \ S),
i.e. the arcs entering the vertex set S. We will typically identify a cutset δ+(S) with the
corresponding vertex set S. We say that a cut δ+(S) is an s − t cut (where s and t are
vertices) if s ∈ S and t /∈ S.

For an undirected graph G = (V,E), δ+(S) and δ−(S) are identical and will be denoted
by δ(S) = {(u, v) ∈ E : |{u, v} ∩ S| = 1}. Observe that now δ(S) = δ(V \ S).

For a maximum flow instance on a digraph G = (V,E) and upper and lower capacity
functions u and l, we define the capacity C(S) of the cut induced by S as

C(S) =
∑

e∈δ+(S)

u(e)−
∑

e∈δ−(S)

l(e) = u(δ+(S))− l(δ−(S)).

By definition of a flow x, we have that

C(S) ≥
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe.
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We have shown earlier that the net flow out of s is equal to the net flow into t. Similarly,
we can show that for any S with s ∈ S and t /∈ S (i.e. the cut induced is an s− t cut), we
have that the flow value |x| equals:

|x| =
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe.

This is shown by summing (1) over u ∈ S \ {s} together with (2). Thus, we get that for any
S with s ∈ S and t /∈ S and any s− t flow x, we have:

|x| ≤ C(S).

Therefore, maximizing over the s− t flows and minimizing over the s− t cuts, we get

max |x| ≤ min
S:s∈S,t/∈S

C(S).

This is weak duality, but in fact, one always has equality as stated in the following theorem.
Of course, we need the assumption that the maximum flow problem is feasible. For example
if there is an edge with l(e) > u(e) then no flow exists (we will show later that a necessary
and sufficient condition for the existence of a flow is that (i) l(e) ≤ u(e) for every e ∈ E and
(ii) for any S ⊂ V with |S ∩ {s, t}| 6= 1, we have u(δ+(S)) ≥ l(δ−(S))).

Theorem 4.3 (max s− t flow-min s− t cut) For any maximum flow problem for which
a feasible flow exists, we have that that the maximum s−t flow value is equal to the minimum
capacity of any s− t cut:

max
flow x

|x| = min
S:s∈S,t/∈S

C(S).

One way to prove this theorem is by using strong duality of linear programming and show
that from any optimum dual solution one can derive an s− t cut of that capacity. Another
way, and this is the way we pursue, is to develop an algorithm to find a maximum flow and
show that when it terminates we have also a cut whose capacity is equal to the flow we have
constructed, therefore proving optimality of the flow and equality in the minmax relation.

Here is an algorithm for finding a maximum flow. Let us assume that we are given a
feasible flow x (if u(e) ≥ 0 and l(e) ≤ 0 for all e, we could start with x = 0). Given a flow
x, we define a residual graph Gx on the same vertex set V . In Gx, we have an arc (i, j) if
(i) (i, j) ∈ E and xij < u((i, j)) or if (ii) (j, i) ∈ E and xji > l((j, i)). In case (i), we say
that (i, j) is a forward arc and in case (ii) it is a backward arc. If both (i) and (ii) happen,
we introduce two arcs (i, j), one forward and one backward; to be precise, Gx is thus a
multigraph. Consider now any directed path P from s to t in the residual graph; such a path
is called an augmenting path. Let P+ denote the forward arcs in P , and P− the backward
arcs. We can modify the flow x in the following way:

x′e =


xe + ε e ∈ P+

xe − ε e ∈ P−
xe e /∈ P
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This is known as pushing ε units of flow along P , or simply augmenting along P . Oberve
that flow conservation at any vertex u still holds when pushing flow along a path. This is
trivial if u is not on the path, and if u is on the path, the contributions of the two arcs
indicent to u on P cancel each other. To make sure the resulting x′ is feasible (satisfies the
capacity constraints), we choose

ε = min

(
min
e∈P+

(u(e)− xe), min
e∈P−

xe − l(e)
)
.

By construction of the residual graph we have that ε > 0. Thus, pushing ε units of flow
along an augmenting path provides a new flow x′ whose value |x′| satisfy |x′| = |x|+ ε. Thus
the flow x was not maximum.

Conversely, assume that the residual graph Gx does not contain any directed path from
s to t. Let S = {u ∈ V : there exists a directed path in Gx from s to u}. By definition,
s ∈ S and t /∈ S (otherwise there would be an augmenting path). Also, by definition, there
is no arc in Gx from S to V \ S. This means that, for e ∈ E, if e ∈ δ+(S) then xe = u(e)
and if e ∈ δ−(S) then xe = l(e). This implies that

C(S) =
∑

e∈δ+(S)

u(e)−
∑

e∈δ−(S)

l(e) = u(δ+(S))− l(δ−(S)) =
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe = |x|.

This shows that the flow x is maximum and there exists an s − t cut of the same capacity
as |x|.

This almost proves Theorem 4.3. Indeed, as long as there exists an augmenting path, we
can push flow along it, update the residual graph and continue. Whenever this algorithm
stops, if it stops, we have a maximum flow and a corresponding minimum cut. But maybe
this algorithm never stops; this can actually happen if the capacities might be irrational and
the “wrong” augmenting paths are chosen at every iteration. To complete the proof of the
max flow min cut theorem, we can simply use the linear programming formulation of the
maximum flow problem and this shows that a maximum flow exists (in a linear program,
the max is a real maximum (as it is achieved by a vertex) and not just a supremum which
may not be attained). Starting from that flow x and constructing its residual graph Gx, we
get that there exists a corresponding minimum s− t cut of the same value.

4.2.1 Interpretation of max flow min cut

The max s − t flow min s − t cut theorem together with integrality of the maximum flow
allows to derive several combinatorial min-max relations.

Bipartite matchings. Consider for example the maximum bipartite matching problem
and its formulation as a maximum flow problem given in section 4.1.1. We said that for
the arcs between A and B we had flexibility on how we choose u(e); here, let us assume
we have set them to be equal to +∞ (or any sufficiently large integer). Consider any set
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S ⊆ ({s} ∪ A ∪ B) with s ∈ S (and t /∈ S). For C(S) to be finite there cannot be any edge
(i, j) ∈ E between i ∈ A∩S and j ∈ B \S. In other words, N(A∩S) ⊆ B ∩S, i.e. if we set
C = (A \ S) ∪ (B ∩ S) we have that C is a vertex cover. What is the capacity C(S) of the
corresponding cut? It is precisely C(S) = |A \ S|+ |B ∩ S|, the first term corresponding to
the arcs from s to A\S and the second term correspodning to the arcs between B∩S and t.
The max s− t flow min s− t cut theorem therefore implies that there exists a vertex cover C
whose cardinality equals the size of the maximum matching. We have thus rederived König’s
theorem. We could also derive Hall’s theorem about the existence of a perfect matching.

Arc-disjoint paths. For the problem of teh maximum number of arc-disjoint paths be-
tween s and t, the max s − t flow min s − t cut theorem can be interpreted as Menger’s
theorem:

Theorem 4.4 In a directed graph G = (V,A), there are k arc-disjoint paths between s and
t if and only if for all S ⊆ V \ {t} with s ∈ S, we have |δ+(S)| ≥ k.

Exercise 4-2. At some point during baseball season, each of n teams of the American
League has already played several games. Suppose team i has won wi games so far, and
gij = gji is the number of games that teams i and j have yet to play. No game ends in a tie,
so each game gives one point to either team and 0 to the other. You would like to decide if
your favorite team, say team n, can still win. In other words, you would like to determine
whether there exists an outcome to the games to be played (remember, with no ties) such
that team n has at least as many victories as all the other teams (we allow team n to be
tied for first place with other teams).

Show that this problem can be solved as a maximum flow problem. Give a necessary and
sufficient condition on the gij’s so that team n can still win.

Exercise 4-3. Consider the following orientation problem. We are given an undirected
graph G = (V,E) and integer values p(v) for every vertex v ∈ V . we would like to know
if we can orient the edges of G such that the directed graph we obtain has at most p(v)
arcs incoming to v (the “indegree requirements”). In other words, for each edge {u, v}, we
have to decide whether to orient it as (u, v) or as (v, u), and we would like at most p(v) arcs
oriented towards v.

1.Show that the problem can be formulated as a maximum flow problem. That is, show
how to create a maximum flow problem such that, from its solution, you can decide
whether or not the graph can be oriented and if so, it also gives the orientation.

2.Consider the case that the graph cannot be oriented and meet the indegree requirements.
Prove from the max-flow min-cut theorem that there must exist a set S ⊆ V such that
|E(S)| >

∑
v∈S p(v), where as usual E(S) denotes the set of edges with both endpoints

within S.
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4.3 Efficiency of Maximum Flow Algorithm

The proof of the max s − t flow min s − t cut theorem suggests a simple augmenting path
algorithm for finding the maximum flow. Start from any feasible flow and keep pushing flow
along an augmenting in the residual graph until no such augmenting path exists. The main
question we address now is how many iterations does this algorithm need before terminating.

As mentioned earlier, if the capacities are irrational, this algorithm may never terminate.
In the case of integral capacities, if we start from an integral flow, it is easy to see that
we always maintain an integral flow and we will always be pushing an integral amount of
flow. Therefore, the number of iterations is bounded by the maximum difference between the
values of two flows, which is at most

∑
e∈δ(s)(u(e)− l(e)). This is finite, but not polynomial

in the size of the input (which depends only logarithmically on the capacities u and l).

Shortest augmenting path variant. Edmonds and Karp proposed a variant of the aug-
menting path algorithm which is guaranteed to terminate in a polynomial number of itera-
tions depending only on n = |V | and m = |E|. No assumptions on the capacities are made,
and the algorithm is even correct and terminates for irrational capacities.

The idea of Edmonds and Karp is to always find in the residual graph a shortest aug-
menting path, i.e. one with the fewer number of arcs. Given a flow x, consider the residual
graph Gx. For any vertex v, let d(v) denote the distance (number of arcs) from s to v in Gx.
The shortest augmenting path algorithm is to select a path v0− v1− · · · − vk in the residual
graph where v0 = s, vk = t and d(vi) = i.

The analysis of the algorithm proceeds as follows. Let P be a shotest augmenting path
from s to t in Gx and let x′ be the resulting flow after pushing as much flow as possible
along P . Let d′ be the distance labels corresponding to Gx′ . Observe that only reverse
arcs (i, j) along P (thus satisfying d(i) = d(j) + 1) may get introduced in Gx′ . Therefore,
after augmentation, we have that d(j)− d(i) ≤ 1 for every arc (i, j) ∈ Ex′ . Summing these
inqualities along the edges of any path P ′ in Gx′ from s to j ∈ V , we get that d(j) ≤ d′(j)
for any j ∈ V . In particular, we have that d(t) ≤ d′(t). As distance labels can never become
greater than n−1, we have that the distance to t can only increase at most n−1 times. But
d′(t) can also be equal to d(t). In this case though, the fact that an arc of P is saturated
means that there is one fewer arc (i, j) with d(j) = d(i) + 1 in Gx′ than in Gx. Thus
after at most m such iterations, we must have a strict increase in the distance label of t.
Summarizing, this means that the number of augmentations is at most m(n− 1). The time
it takes to build the residual graph and to find an augmenting path in it is at most O(m)
time. This means that the total running time of the shortest augmenting path algorithm is
at most O(m2n). This can be further improved but this is not the focus of these notes.

4.4 Minimum cuts

From now on, we assume that we have only upper capacities u and no lower capacities l
(l(e) = 0 for all e). The minimum s− t cut problem that we have solved so far corresponds
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to:
min

S:s∈S,t/∈S
u(δ+(S)).

If our graph G = (V,E) is undirected and we would like to find the minimum s− t cut,
i.e.

min
S:s∈S,t/∈S

u(δ(S)),

we can simply replace every edge e by two opposite arcs of the same capacity and reduce the
problem to finding a minimum s − t cut in a directed graph. As we have just shown, this
can be done by a maximum flow computation.

Now, consider the problem of finding the global minimum cut in a graph. Let us first
consider the directed case. Finding the global mincut (or just the mincut) means finding S
minimizing:

min
S:∅6=S 6=V

u(δ+(S)).

This problem can be reduced to 2(n − 1) maximum flow computations (where n = |V |) in
the following way. First we can arbitrarily choose a vertex s ∈ V and s will either be in S
or in V \ S. Thus, for any t ∈ V \ {s}, we solve two maximum flow problems, one giving us
the minimum s − t cut, the other giving us the minimum t − s cut. Taking the minimum
over all such cuts, we get the global mincut in a directed graph.

To find the minimum cut problem in an undirected graph, we do not even need to solve
two maximum flow problems for each t ∈ V \ {s}, only one of them is enough. Thus the
global minimum cut problem in an undirected graph can be solved by computing n − 1
maximum flow problems. The fastest maximum flow algorithms currently take slightly more
than O(mn) time (for example, Goldberg and Tarjan’s algorithm [1] take O(mn log(n2/m))
time). Since we need to use it n− 1 times, we can find a mincut in O(mn2 log(n2/m)) time.
However, these n− 1 maxflow problem are related, and Hao and Orlin [2] have shown that
it is possible to solve all of them in O(mn log(n2/m)) by modifying Goldberg and Tarjan’s
algorithm. Thus the minimum cut problem can be solved within this time bound.

We will now derive an algorithm for the mincut problem which is not based on network
flows, and which has a running time slightly better than Hao and Orlin’s. The algorithm is
due to Stoer and Wagner [6], and is a simplification of an earlier result of Nagamochi and
Ibaraki [5]. We should also point out that there is a randomized algorithm due to Karger
and Stein [4] whose running time is O(n2 log3 n), and a subsequent one due to Karger [3]
that runs in O(m log3 n).

We first need a definition. Define, for any two sets A,B ⊆ V of vertices,

u(A : B) :=
∑

i∈A,j∈B

u((i, j)).

The algorithm is described below. In words, the algorithm starts with any vertex, and
build an ordering of the vertices by always adding to the selected vertices the vertex whose
total cost to the previous vertices is maximized; this is called the maximum adjacency order-
ing. The cut induced by the last vertex in this maximum adjacency ordering is considered,
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as well as the cuts obtained by recursively applying the procedure to the graph obtained by
shrinking the last two vertices. (If there are edges from a vertex v to these last two vertices
then we substitute those two edges with only one edge having capacity equal to the sum of
the capacities of the two edges.) The claim is that the best cut among the cuts considered
is the overall mincut. The formal description is given below.

mincut(G)
. Let v1 be any vertex of G
. n = |V (G)|
. S = {v1}
. for i = 2 to n

. let vi the vertex of V \ S s.t.

. c(S : {v}) is maximized (over all v ∈ V \ S)

. S := S ∪ {vi}
. endfor
. if n = 2 then return the cut δ({vn})
. else

. Let G′ be obtained from G by shrinking vn−1 and
vn

. Let C be the cut returned by mincut(G′)

. Among C and δ({vn}) return the smaller cut (in
terms of cost)

. endif

The analysis is based on the following crucial claim.

Claim 4.5 {vn} (or {v1, v2, ..., vn−1}) induces a min (vn−1, vn)-cut in G. (Notice that we do
not know in advance vn−1 and vn.)

From this, the correctness of the algorithm follows easily. Indeed, the mincut is either a
(vn−1, vn)-cut or not. If it is, we are fine thanks to the above claim. If it is not, we can assume
by induction on the size of the vertex set that it will be returned by the call mincut(G′).
Proof: Let v1, v2, ..., vi, ..., vj, ..., vn−1, vn be the sequence of vertices chosen by the algo-
rithm and let us denote by Ai the sequence v1, v2, ..., vi−1. We are interested in the cuts that
separate vn−1 and vn. Let C be any set such that vn−1 ∈ C and vn 6∈ C. Then we want to
prove that the cut induced by C satisfies

u(δ(C)) ≥ u(δ(An)).

Let us define vertex vi to be critical with respect to C if either vi or vi−1 belongs to C
but not both. We claim that if vi is critical then

u(Ai : {vi}) ≤ u(Ci : Ai ∪ {vi} \ Ci)

where Ci = (Ai ∪ {vi}) ∩ C.
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Notice that this implies that u(δ(C)) ≥ u(δ(An)) because vn is critical. Now let us prove
the claim by induction on the sequence of critical vertices.

Let vi be the first critical vertex. Then

u(Ai : {vi}) = u(Ci : Ai ∪ {vi} \ Ci)

Thus the base of the induction is true.
For the inductive step, let the assertion be true for critical vertex vi and let vj be the

next (after vi) critical vertex. Then

u(Aj : {vj}) = u(Ai : {vj}) + u(Aj \ Ai : {vj})
≤ u(Ai : {vi}) + u(Aj \ Ai : {vj})
≤ u(Ci : Ai ∪ {vi} \ Ci) + u(Aj \ Ai : {vj})
≤ u(Cj : Aj ∪ {vj} \ Cj),

the first inequality following from the definition of vi, the second inequality from the inductive
hypothesis, and the last from the fact that vj is the next critical vertex. The proof is
concluded observing that An induces the cut {v1, v2, · · · , vn−1} : {vn}. 4

The running time depends on the particular implementation. Using Fibonacci heaps we
can implement each iteration in O(m+ n log n) time and this yields a total running time of
O(mn+ n2 log n).

Exercise 4-4. Let G be an undirected graph in which the degree of every vertex is at least
k. Show that there exist two vertices s and t with at least k edge-disjoint paths between
them.

4.5 Minimum T -odd cut problem

Given a graph G = (V,E) with nonnegative edge capacities given by u and an even set T of
vertices, the minimum T -odd cut problem is to find S minimizing:

min
S⊂V :|S∩T | odd

u(δ(S)).

We’ll say that S is T -odd if |S ∩ T | is odd. Observe that if S is T -odd, so is V \ S and vice
versa.

We give a polynomial-time algorithm for this problem. We won’t present the most
efficient one, but one of the easiest ones. Let ALG(G, T ) denote this algorithm. The first
step of ALG(G, T ) is to find a minimum cut having at least one vertex of T on each side:

min
S⊂V :∅6=S∩T 6=T

u(δ(S)).

This can be done by doing |T | − 1 minimum s− t cut computations, by fixing one vertex s
in T and then trying all vertices t ∈ T \ {s}, and then returning the smallest cut S obtained
in this way.
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Now, two things can happen. Either S is a T -odd cut in which case it must be minimum
and we are done, or S is T -even (i.e. T ∩S has even cardinality). If S is T -even, we show in
the lemma below that we can assume that the minimum T -even cut A is either a subset of
S or a subset of V \ S. Thus we can find by recursively solving 2 smaller minimum T -odd
cut problems, one in the graph G1 = G/S obtained by shrinking S into a single vertex and
letting T1 = T \ S and the other in the graph G2 = G/(V \ S) obtained by shrinking V \ S
and letting T2 = T \ (V \S) = T ∩S. Thus the algorithm makes two calls, ALG(G1, T1) and
ALG(G2, T2) and returns the smallest (in terms of capacity) T -odd cut returned.

At first glance, it is not obvious that this algorithm is polynomial as every call may
generate two recursive calls. However, letting R(k) denote an upper bound on the running
time of ALG(G, T ) for instances with |T | = k (and say |V | ≤ n), we can see that

1. R(2) = A, where A is the time needed for a minimum s− t cut computation,

2. R(k) ≤ maxk1≥2,k2≥2,k=k1+k2 ((k − 1)A+R(k1) +R(k2)) .

By induction, we can see that R(k) ≤ k2A, as this is true for k = 2 and the inductive step
is also satisfied:

R(k) ≤ max
k1≥2,k2≥2,k=k1+k2

(
(k − 1)A+ k21A+ k22A

)
≤ (k − 1)A+ 4A+ (k − 2)2A

= (k2 − 3k + 7)A

≤ k2A,

for k ≥ 4. Thus, this algorithm is polynomial.
We are left with stating and proving the following lemma.

Lemma 4.6 If S is a minimum cut among those having at least one vertex of T on each
side, and |S∩T | is even then there exists a minimum T -odd cut A with A ⊆ S or A ⊆ V \S.

Proof: Let B be any minimum T -odd cut. Partition T into T1, T2, T3 and T4 as follows:
T1 = T \ (B∪S), T2 = (T ∩S)\B, T3 = T ∩B∩S, and T4 = (T ∩B)\S. Since by definition
of B and S we have that T1 ∪ T2 6= ∅, T2 ∪ T3 6= ∅, T3 ∪ T4 6= ∅ and T4 ∪ T1 6= ∅, we must
have that either T1 and T3 are non-empty, or T2 and T4 are non-empty. Possibly replacing
B by V \B, we can assume that T1 and T3 are non-empty.

By submodularity of the cut function, we know that∑
e∈δ(S)

u(e) +
∑
e∈δ(B)

u(e) ≥
∑

e∈δ(S∪B)

u(e) +
∑

e∈δ(S∩B)

u(e). (3)

Since T1 6= ∅ and T3 6= ∅, both S ∪ B and S ∩ B separate vertices of T . Furthermore,
one of them has to be T -even and the other T -odd, as |(S ∩ B) ∩ T | + |(S ∪ B) ∩ T | =
|T2| + 2|T3| + |T4| = |S ∩ T | + |B ∩ T | is odd. Thus, one of S ∪ B and S ∩ B has to have a
cutvalue no greater than the one of B while the other has a cut value no greater than the
one of S. This means that either S ∩B or S ∪B is a minimum T -odd cut. 4
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Massachusetts Institute of Technology 18.433: Combinatorial Optimization
Michel X. Goemans April 8, 2015

5. Matroid optimization

5.1 Definition of a Matroid

Matroids are combinatorial structures that generalize the notion of linear independence in
matrices. There are many equivalent definitions of matroids, we will use one that focus on
its independent sets. A matroid M is defined on a finite ground set E (or E(M) if we want
to emphasize the matroid M) and a collection of subsets of E are said to be independent.
The family of independent sets is denoted by I or I(M), and we typically refer to a matroid
M by listing its ground set and its family of independent sets: M = (E, I). For M to be a
matroid, I must satisfy two main axioms:

(I1) if X ⊆ Y and Y ∈ I then X ∈ I,

(I2) if X ∈ I and Y ∈ I and |Y | > |X| then ∃e ∈ Y \X : X ∪ {e} ∈ I.

In words, the second axiom says that ifX is independent and there exists a larger independent
set Y then X can be extended to a larger independent by adding an element of Y \X. Axiom
(I2) implies that every maximal (inclusion-wise) independent set is maximum; in other words,
all maximal independent sets have the same cardinality. A maximal independent set is called
a base of the matroid.

Examples.

• One trivial example of a matroid M = (E, I) is a uniform matroid in which

I = {X ⊆ E : |X| ≤ k},

for a given k. It is usually denoted as Uk,n where |E| = n. A base is any set of
cardinality k (unless k > |E| in which case the only base is |E|).
A free matroid is one in which all sets are independent; it is Un,n.

• Another is a partition matroid in whichE is partitioned into (disjoint) sets E1, E2, · · · , El

and
I = {X ⊆ E : |X ∩ Ei| ≤ ki for all i = 1, · · · , l},

for some given parameters k1, · · · , kl. As an exercise, let us check that (I2) is satisfied.
If X, Y ∈ I and |Y | > |X|, there must exist i such that |Y ∩ Ei| > |X ∩ Ei| and this
means that adding any element e in Ei ∩ (Y \X) to X will maintain independence.

Observe that M would not be a matroid if the sets Ei were not disjoint. For example,
if E1 = {1, 2} and E2 = {2, 3} with k1 = 1 and k2 = 1 then both Y = {1, 3} and
X = {2} have at most one element of each Ei, but one can’t find an element of Y to
add to X.
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• Linear matroids (or representable matroids) are defined from a matrix A, and this is
where the term matroid comes from. Let E denote the index set of the columns of
A. For a subset X of E, let AX denote the submatrix of A consisting only of those
columns indexed by X. Now, define

I = {X ⊆ E : rank(AX) = |X|},

i.e. a set X is independent if the corresponding columns are linearly independent. A
base B corresponds to a linearly independent set of columns of cardinality rank(A).

Observe that (I1) is trivially satisfied, as if columns are linearly independent, so is a
subset of them. (I2) is less trivial, but corresponds to a fundamental linear algebra
property. If AX has full column rank, its columns span a space of dimension |X|, and
similarly for Y , and therefore if |Y | > |X|, there must exist a column of AY that is not
in the span of the columns of AX ; adding this column to AX increases the rank by 1.

A linear matroid can be defined over any field F (not just the reals); we say that the
matroid is representable over F. If the field is F2 (field of 2 elements with operations
(mod 2)) then the matroid is said to be binary. If the field is F3 then the matroid is
said to be ternary.

For example, the binary matroid corresponding to the matrix

A =

 1 1 0
1 0 1
0 1 1


corresponds to U2,3 since the sum of the 3 columns is the 0 vector when taking com-
ponents modulo 2. If A is viewed over the reals or over F3 then the matroid is the free
matroid on 3 elements.

Not every matroid is linear. Among those that are linear, some can be represented over
some fields F but not all. For example, there are binary matroids which are not ternary
and vice versa (for example, U2,4 is ternary but not binary). Matroids which can be
represented over any field are called regular. One can show that regular matroids
are precisely those linear matroids that can be represented over the reals by a totally
unimodular marix. (Because of this connection, a deep result of Seymour provides a
polynomial-time algorithm for deciding whether a matrix is TU.)

• Here is an example of something that is not a matroid. Take a graph G = (V,E), and
let I = {F ⊆ E : F is a matching}. This is not a matroid since (I2) is not necessarily
satisfied ((I1) is satisfied1, however). Consider, for example, a graph on 4 vertices and
let X = {(2, 3)} and Y = {(1, 2), (3, 4)}. Both X and Y are matchings, but one cannot
add an edge of Y to X and still have a matching.

1When (I1) alone is satisfied, (E, I) is called an independence system.
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• There is, however, another matroid associated with matchings in a (general, not nec-
essarily bipartite) graph G = (V,E), but this time the ground set of M corresponds to
V . In the matching matroid, I = {S ⊆ V : S is covered by some matching M}. In
this definition, the matching does not need to cover precisely S; other vertices can be
covered as well.

• A very important class of matroids in combinatorial optimization is the class of graphic
matroids (also called cycle matroids). Given a graph G = (V,E), we define independent
sets to be those subsets of edges which are forests, i.e. do not contain any cycles. This
is called the graphic matroid M = (E, I), or M(G).

(I1) is clearly satisfied. To check (I2), first notice that if F is a forest then the number
of connected components of the graph (V, F ) is given by κ(V, F ) = |V |−|F |. Therefore,
if X and Y are 2 forests and |Y | > |X| then κ(V, Y ) < κ(V,X) and therefore there
must exist an edge of Y \X which connects two different connected components of X;
adding this edge to X results in a larger forest. This shows (I2).

If the graph G is connected, any base will correspond to a spanning tree T of the graph.
If the original graph is disconnected then a base corresponds to taking a spanning tree
in each connected component of G.

A graphic matroid is a linear matroid. We first show that the field F can be chosen to
be the reals. Consider the matrix A with a row for each vertex i ∈ V and a column for
each edge e = (i, j) ∈ E. In the column corresponding to (i, j), all entries are 0, except
for a 1 in i or j (arbitrarily) and a −1 in the other. To show equivalence between the
original matroid M and this newly constructed linear matroid M ′, we need to show
that any independent set for M is independent in M ′ and vice versa. This is left as an
exercise.

In fact, a graphic matroid is regular; it can be represented over any field F. In fact the
above matrix A can be shown to be TU. To obtain a representation for a field F, one
simply needs to take the representation given above for R and simply view/replace all
−1 by the additive inverse of 1.

5.1.1 Circuits

A minimal (inclusionwise) dependent set in a matroid is called a circuit. In a graphic matroid
M(G), a circuit will be the usual notion of a cycle in the graph G; to be dependent in the
graphic matroid, one needs to contain a cycle and the minimal sets of edges containing a
cycle are the cycles themselves. In a partition matroid, a circuit will be a set C ⊆ Ei for
some i with |C ∩ Ei| = ki + 1.

By definition of a circuit C, we have that if we remove any element of a circuit then we
get an independent set. A crucial property of circuit is given by the following property,
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Theorem 5.1 (Unique Circuit Property) Let M = (E, I) be a matroid. Let S ∈ I and
e such that2 S + e /∈ I. Then there exists a unique circuit C ⊆ S + e.

The uniqueness is very important. Indeed, if we consider any f ∈ C where C is this
unique circuit then we have that C+e−f ∈ I. Indeed, if C+e−f was dependent, it would
contain a circuit C ′ which is distinct from C since f /∈ C ′, a contradiction.

As a special case of the theorem, consider a graphic matroid. If we add an edge to a
forest and the resulting graph has a cycle then it has a unique cycle.
Proof:

Suppose S+e contains more than one circuit, say C1 and C2 with C1 6= C2. By minimality
of C1 and C2, we have that there exists f ∈ C1 \ C2. Since C1 − f ∈ I (by minimality of
the circuit C1), we can extend it to a maximal independent set X of S + e. Since S is
also independent, we must have that |X| = |S| and since e ∈ C1 − f , we must have that
X = S + e− f ∈ I. But this means that C2 ⊆ S + e− f = X which is a contradiction since
C2 is dependent. 4

Exercise 5-1. Show that any partition matroid is also a linear matroid over F = R. (No
need to give a precise matrix A representing it; just argue its existence.)

Exercise 5-2. Prove that a matching matroid is indeed a matroid.

Exercise 5-3. Show that U2,4 is representable over F3.

Exercise 5-4. Consider the linear matroid (over the reals) defined by the 3× 5 matrix:

A =

 1 2 1 0 1
1 2 0 1 −1
1 2 0 1 −1

 .

The ground set E = {1, 2, 3, 4, 5} has cardinality 5, corresponds to the columns of A, and
the independent sets are the set of columns which are linearly independent (over the reals).

1.Give all bases of this matroid.

2.Give all circuits of this matroid.

3.Choose a base B and an element e not in B, and verify the unique circuit property for
B + e.

Exercise 5-5. Given a family A1, A2, · · · , An of sets (they are not necessarily disjoint), a
transversal is a set T such that T = {a1, a2, · · · , an}, the ai’s are distinct, and ai ∈ Ai for all
i. A partial transversal is a transversal for Ai1 , Ai2 , · · · , Aik for some subfamily of the Ai’s.

Show that the family of all partial transversals forms a matroid (on the ground set E = ∪Ai).
(Hint: Think of bipartite matchings.)

2For a set S and an element e, we often write S + e for S ∪ {e} and S − e for S \ {e}.
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Exercise 5-6. Let M = (E, I) be a matroid. Let k ∈ N and define

Ik = {X ∈ I : |X| ≤ k}.

Show that Mk = (E, Ik) is also a matroid. This is known as a truncated matroid.

Exercise 5-7. A family F of sets is said to be laminar if, for any two sets A,B ∈ F , we
have that either (i) A ⊆ B, or (ii) B ⊆ A or (iii) A∩B = ∅. Suppose that we have a laminar
family F of subsets of E and an integer k(A) for every set A ∈ F . Show that (E, I) defines
a matroid (a laminar matroid) where:

I = {X ⊆ E : |X ∩ A| ≤ k(A) for all A ∈ F}.

5.2 Matroid Optimization

Given a matroid M = (E, I) and a cost function c : E → R, we are interested in finding
an independent set S of M of maximum total cost c(S) =

∑
e∈S c(e). This is a fundamental

problem.
If all c(e) ≥ 0, the problem is equivalent to finding a maximum cost base in the matroid.

If c(e) < 0 for some element e then, because of (I1), e will not be contained in any optimum
solution, and thus we could eliminate such an element from the ground set. In the special case
of a graphic matroid M(G) defined on a connected graph G, the problem is thus equivalent
to the maximum spanning tree problem which can be solved by a simple greedy algorithm.
This is actually the case for any matroid and this is the topic of this section.

The greedy algorithm we describe actually returns, for every k, a set Sk which maximizes
c(S) over all independent sets of size k. The overall optimum can thus simply be obtained
by outputting the best of these. The greedy algorithm is the following:

. Sort the elements (and renumber them) such that c(e1) ≥ c(e2) ≥ · · · ≥ c(e|E|)

. S0 = ∅, k=0

. For j = 1 to |E|
. if Sk + ej ∈ I then

. k ← k + 1

. Sk ← Sk−1 + ej

. sk ← ej
. Output S1, S2, · · · , Sk

Theorem 5.2 For any matroid M = (E, I), the greedy algorithm above finds, for every k,
an independent set Sk of maximum cost among all independent sets of size k.

Proof: Suppose not. Let Sk = {s1, s2, · · · , sk} with c(s1) ≥ c(s2) ≥ · · · ≥ c(sk), and
suppose Tk has greater cost (c(Tk) > c(Sk)) where Tk = {t1, t2, · · · , tk} with c(t1) ≥ c(t2) ≥
· · · ≥ c(tk). Let p be the first index such that c(tp) > c(sp). Let A = {t1, t2, · · · , tp} and
B = {s1, s2, · · · , sp−1}. Since |A| > |B|, there exists ti /∈ B such that B + ti ∈ I. Since
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c(ti) ≥ c(tp) > c(sp), ti should have been selected when it was considered. To be more
precise and detailed, when ti was considered, the greedy algorithm checked whether ti could
be added to the current set at the time, say S. But since S ⊆ B, adding ti to S should have
resulted in an independent set (by (I1)) since its addition to B results in an independent set.
This gives the contradiction and completes the proof. 4

Observe that, as long as c(sk) ≥ 0, we have that c(Sk) ≥ c(Sk−1). Therefore, to find a
maximum cost set over all independent sets, we can simply replace the loop

. For j = 1 to |E|
by

. For j = 1 to q
where q is such that c(eq) ≥ 0 > c(eq+1), and output the last Sk.

For the maximum cost spanning tree problem, the greedy algorithm reduces to Kruskal’s
algorithm which considers the edges in non-increasing cost and add an edge to the previously
selected edges if it does not form a cycle.

One can show that the greedy algorithm actually characterizes matroids. If M is an
independence system, i.e. it satisfies (I1), then M is a matroid if and only if the greedy
algorithm finds a maximum cost set of size k for every k and every cost function.

Exercise 5-8. We are given n jobs that each take one unit of processing time. All jobs
are available at time 0, and job j has a profit of cj and a deadline dj. The profit for job
j will only be earned if the job completes by time dj. The problem is to find an ordering
of the jobs that maximizes the total profit. First, prove that if a subset of the jobs can be
completed on time, then they can also be completed on time if they are scheduled in the
order of their deadlines. Now, let E(M) = {1, 2, · · · , n} and let I(M) = {J ⊆ E(M) : J
can be completed on time }. Prove that M is a matroid and describe how to find an optimal
ordering for the jobs.

5.3 Rank Function of a Matroid

Similarly to the notion of rank for matrices, one can define a rank function for any matroid.
The rank function of M , denoted by either r(·) or rM(·), is defined by:

rM : 2E → N : rM(X) = max{|Y | : Y ⊆ X, Y ∈ I}.

Here are a few specific rank functions:

• For a linear matroid, the rank of X is precisely the rank in the linear algebra sense of
the matrix AX corresponding to the columns of A in X.

• For a partition matroid M = (E, I) where

I = {X ⊆ E : |X ∩ Ei| ≤ ki for i = 1, · · · , l}
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(the Ei’s forming a partition of E) its rank function is given by:

r(X) =
l∑

i=1

min(|Ei ∩X|, ki).

• For a graphic matroid M(G) defined on graph G = (V,E), the rank function is equal
to:

rM(G)(F ) = n− κ(V, F ),

where n = |V | and κ(V, F ) denotes the number of connected components (including
isolated vertices) of the graph with edges F .

The rank function of any matroid M = (E, I) has the following properties:

(R1) 0 ≤ r(X) ≤ |X| and is integer valued for all X ⊆ E

(R2) X ⊆ Y ⇒ r(X) ≤ r(Y ),

(R3) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ).

The last property is called submodularity and is a key concept in combinatorial optimization.
It is clear that, as defined, any rank function satisfies (R1) and (R2). Showing that the rank
function satisfies submodularity needs a proof.

Lemma 5.3 The rank function of any matroid is submodular.

Proof: Consider any two setsX, Y ⊆ E. Let J be a maximal independent subset ofX∩Y ;
thus, |J | = r(X∩Y ). By (I2), J can be extended to a maximal (thus maximum) independent
subset of X, call it JX . We have that J ⊆ JX ⊆ X and |JX | = r(X). Furthermore, by
maximality of J within X ∩ Y , we know

JX \ Y = JX \ J. (1)

Now extend JX to a maximal independent set JXY of X ∪ Y . Thus, |JXY | = r(X ∪ Y ).
In order to be able to prove that

r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y )

or equivalently
|JX |+ r(Y ) ≥ |J |+ |JXY |,

we need to show that r(Y ) ≥ |J |+ |JXY | − |JX |. Observe that JXY ∩ Y is independent (by
(I1)) and a subset of Y , and thus r(Y ) ≥ |JXY ∩ Y |. Observe now that

JXY ∩ Y = JXY \ (JX \ Y ) = JXY \ (JX \ J),

the first equality following from the fact that JX is a maximal independent subset of X and
the second equality by (1). Therefore,

r(Y ) ≥ |JXY ∩ Y | = |JXY \ (JX \ J)| = |JXY | − |JX |+ |J |,

proving the lemma. 4
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5.3.1 Span

The following definition is also motivated by the linear algebra setting.

Definition 5.1 Given a matroid M = (E, I) and given S ⊆ E, let

span(S) = {e ∈ E : r(S ∪ {e}) = r(S)}.

The span of a set is also called the closure. Observe that S ⊆ span(S). We claim that r(S) =
r(span(S)); in other words, if adding an element to S does not increase the rank, adding
many such elements also does not increase the rank. Indeed, take a maximal independent
subset of S, say J . If r(span(S)) > |J | then there exists e ∈ span(S)\J such that J + e ∈ I.
Thus r(S + e) ≥ r(J + e) = |J |+ 1 > |J | = r(S) contradicting the fact that e ∈ span(S).

Definition 5.2 A set S is said to be closed if S = span(S).

Exercise 5-9. Given a matroid M with rank function r and given an integer k ∈ N, what
is the rank function of the truncated matroid Mk (see Exercise 5-6 for a definition).

Exercise 5-10. What is the rank function of a laminar matroid, see exercise 5-7?

5.4 Matroid Polytope

Let
X = {χ(S) ∈ {0, 1}|E| : S ∈ I}

denote the incidence (or characteristic) vectors of all independent sets of a matroid M =
(E, I), and let the matroid polytope be defined as conv(X). In this section, we provide a
complete characterization of conv(X) in terms of linear inequalities. In addition, we illustrate
the different techniques proposed in the polyhedral chapter for proving a complete description
of a polytope.

Theorem 5.4 Let
P = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E

xe ≥ 0 ∀e ∈ E}

where x(S) :=
∑

e∈S xe. Then conv(X) = P .

It is clear that conv(X) ⊆ P since X ⊆ P . The harder part is to show that P ⊆ conv(X).
In the next three subsections, we provide three different proofs based on the three techniques
to prove complete polyhedral descriptions.
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5.4.1 Algorithmic Proof

Here we provide an algorithmic proof based on the greedy algorithm. From conv(X) ⊆ P ,
we know that

max{cTx : x ∈ X} = max{cTx : x ∈ conv(X)} ≤ max{cTx : x(S) ≤ r(S) S ⊆ E
xe ≥ 0 e ∈ E}.

Using LP duality, we get that this last expression equals:

min{
∑

S r(S)yS :
∑

S:e∈S yS ≥ c(e) ∀e ∈ E
yS ≥ 0 S ⊆ E}.

Our goal now is, for any cost function c, to get an independent set S and a dual feasible
solution y such that cTχ(S) =

∑
S r(S)yS which proves that conv(X) = P .

Consider any cost function c. We know that the maximum cost independent set can be
obtained by the greedy algorithm. More precisely, it is the last set Sk returned by the greedy
algorithm when we consider only those elements up to eq where c(eq) ≥ 0 ≥ c(eq+1). We
need now to exhibit a dual solution of the same value as Sk. There are exponentially many
variables in the dual, but this is not a problem. In fact, we will set most of them to 0.

For any index j ≤ k, we have Sj = {s1, s2, · · · , sj}, and we define Uj to be all elements in
our ordering up to and excluding sj+1, i.e. Uj = {e1, e2, · · · , el} where el+1 = sj+1. In other
words, Uj is all the elements in the ordering just before sj+1. One important property of Uj

is that
r(Uj) = r(Sj) = j.

Indeed, by independence r(Sj) = |Sj| = j, and by (R2), r(Uj) ≥ r(Sj). If r(Uj) > r(Sj),
there would be an element say ep ∈ Uj \Sj such that Sj∪{ep} ∈ I. But the greedy algorithm
would have selected that element (by (I1)) contradicting the fact that ep ∈ Uj \ Sj.

Set the non-zero entries of yS in the following way. For j = 1, · · · , k, let

yUj
= c(sj)− c(sj+1),

where it is understood that c(sk+1) = 0. By the ordering of the c(·), we have that yS ≥ 0 for
all S. In addition, for any e ∈ E, we have that∑

S:e∈S

yS =
k∑

j=t

yUj
= c(st) ≥ c(e),

where t is the least index such that e ∈ Ut (implying that e does not come before st in the
ordering). This shows that y is a feasible solution to the dual. Moreover, its dual value is:∑
S

r(S)yS =
k∑

j=1

r(Uj)yUj
=

k∑
j=1

j(c(sj)−c(sj+1)) =
k∑

j=1

(j−(j−1))c(sj) =
k∑

j=1

c(sj) = c(Sk).

This shows that the dual solution has the same value as the independent set output by the
greedy algorithm, and this is true for all cost functions. This completes the algorithmic
proof.



5. Matroid optimization April 8, 2015 10

5.4.2 Vertex Proof

Here we will focus on any vertex x of

P = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E
xe ≥ 0 ∀e ∈ E}

and show that x is an integral vector. Since x({e}) ≤ r({e}) ≤ 1, we get that x ∈ {0, 1}|E|
and thus it is the incidence vector of an independent set.

Given any x ∈ P , consider the tight sets S, i.e. those sets for which x(S) = r(S). The
next lemma shows that these tight sets are closed under taking intersections or unions. This
lemma is really central, and follows from submodularity.

Lemma 5.5 Let x ∈ P . Let

F = {S ⊆ E : x(S) = r(S)}.

Then
S ∈ F , T ∈ F ⇒ S ∩ T ∈ F , S ∪ T ∈ F .

Observe that the lemma applies even if S and T are disjoint. In that case, it says that ∅ ∈ F
(which is always the case as x(∅) = 0 = r(∅)) and S ∪ T ∈ F .
Proof: The fact that S, T ∈ F means that:

r(S) + r(T ) = x(S) + x(T ). (2)

Since x(S) =
∑

e∈S xe, we have that

x(S) + x(T ) = x(S ∩ T ) + x(S ∪ T ), (3)

i.e. that the function x(·) is modular (both x and −x are submodular). Since x ∈ P , we know
that x(S ∩ T ) ≤ r(S ∩ T ) (this is true even if S ∩ T = ∅) and similarly x(S ∪ T ) ≤ r(S ∪ T );
this implies that

x(S ∩ T ) + x(S ∪ T ) ≤ r(S∩) + r(S ∪ T ). (4)

By submodularity, we have that

r(S ∩ T ) + r(S ∪ T ) ≤ r(S) + r(T ). (5)

Combining (2)–(5), we get

r(S) + r(T ) = x(S) + x(T ) = x(S ∩ T ) + x(S ∪ T ) ≤ r(S ∩ T ) + r(S ∪ T ) ≤ r(S) + r(T ),

and therefore we have equality throughout. This implies that x(S ∩ T ) = r(S ∩ T ) and
x(S ∪ T ) = r(S ∪ T ), i.e. S ∩ T and S ∪ T in F . 4

To prove that any vertex or extreme point of P is integral, we first characterize any face
of P . A chain C is a family of sets such that for all S, T ∈ C we have that either S ⊆ T or
T ⊆ S (or both if S = T ).
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Theorem 5.6 Consider any face F of P . Then there exists a chain C and a subset J ⊆ E
such that:

F = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E
x(C) = r(C) ∀C ∈ C
xe ≥ 0 ∀e ∈ E \ J
xe = 0 ∀e ∈ J.}

Proof: By Theorem 3.5 of the polyhedral notes, we know that any face is characterized
by setting some of the inequalities of P by equalities. In particular, F can be expressed as

F = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E
x(C) = r(C) ∀C ∈ F
xe ≥ 0 ∀e ∈ E \ J
xe = 0 ∀e ∈ J.}

where J = {e : xe = 0 for all x ∈ F} and F = {S : x(S) = r(S) for all x ∈ F}. To prove the
theorem, we need to argue that the system of equations:

x(C) = r(C) ∀C ∈ F

can be replaced by an equivalent (sub)system in which F is replaced by a chain C. To be
equivalent, we need that

span(F) = span(C)
where by span(L) we mean

span(L) := span{χ(C) : C ∈ L}.

Let C be a maximal subchain of F , i.e. C ⊆ F , C is a chain and for all S ∈ F \ C, there
exists C ∈ C such that S 6⊆ C and C 6⊆ S. We claim that span(C) = span(F).

Suppose not, i.e. H 6= span(F) where H := span(C). This means that there exists
S ∈ F \ C such that χ(S) /∈ H but S cannot be added to C without destroying the chain
structure. In other words, for any such S, the set of ’chain violations’

V (S) := {C ∈ C : C 6⊆ S and S 6⊆ C}

is non-empty. Among all such sets S, choose one for which |V (S)| is as small as possible
(|V (S)| cannot be 0 since we are assuming that V (S) 6= ∅ for all possible S). Now fix some
set C ∈ V (S). By Lemma 5.5, we know that both C ∩ S ∈ F and C ∪ S ∈ F . Observe that
there is a linear dependence between χ(C), χ(S), χ(C ∪ T ), χ(C ∩ T ):

χ(C) + χ(S) = χ(C ∪ S) + χ(C ∩ S).

This means that, since χ(C) ∈ H and χ(S) /∈ H, we must have that either χ(C ∪ S) /∈ H
or χ(C ∩ S) /∈ H (otherwise χ(S) would be in H). Say that χ(B) /∈ H where B is either
C ∪ S or C ∩ S. This is a contradiction since |V (B)| < |V (S)|, contradicting our choice of
S. Indeed, one can see that V (B) ⊂ V (S) and C ∈ V (S) \ V (B). 4

As a corollary, we can also obtain a similar property for an extreme point, starting from
Theorem 3.6.
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Corollary 5.7 Let x be any extreme point of P . Then there exists a chain C and a subset
J ⊆ E such that x is the unique solution to:

x(C) = r(C) ∀C ∈ C
xe = 0 ∀e ∈ J.

From this corollary, the integrality of every extreme point follows easily. Indeed, if the
chain given in the corollary consists of C1 ⊂ C2 ⊂ Cp the the system reduces to

x(Ci \ Ci−1) = r(Ci)− r(Ci−1) i = 1, · · · , p
xe = 0 ∀e ∈ J,

where C0 = ∅. For this to have a unique solution, we’d better have |Ci \ Ci−1 \ J | ≤ 1 for
all i and the values for the resulting xe’s will be integral. Since 0 ≤ xe ≤ r({e}) ≤ 1, we
have that x is a 0 − 1 vector and thus x = χ(S) for some set S. As |S| ≤ r(S) ≤ |S|, we
have |S| = r(S) and thus S ∈ I and therefore x is the incidence vector of an independent
set. This completes the proof.

5.4.3 Facet Proof

Our last proof of Theorem 5.4 focuses on the facets of conv(X).
First we need to argue that we are missing any equalities. Let’s focus on the (interesting)

case in which any singleton set is independent: {e} ∈ I for every e ∈ E. In that case
dim(conv(X)) = |E| since we can exhibit |E| + 1 affinely independent points in X: the
0 vector and all unit vectors χ({e}) for e ∈ E. Thus we do not need any equalities. See
exercise 5-11 if we are not assuming that every singleton set is independent.

Now consider any facet F of conv(X). This facet is induced by a valid inequality αTx ≤ β
where β = max{

∑
e∈I αe : I ∈ I}. Let

O = {I ∈ I :
∑
e∈I

αe = β},

i.e. O is the set of all independent sets whose incidence vectors belong to the face. We’ll
show that there exists an inequality in our description of P which is satisfied at equality by
the incidence vectors of all sets I ∈ O.

We consider two cases. If there exists e ∈ M such that αe < 0 then I ∈ O implies that
e /∈ I, implying that our face F is included in the face induced by xe ≥ 0 (which is in our
description of P ).

For the other case, we assume that for all e ∈ E, we have αe ≥ 0. We can further assume
that αmax := maxe∈E αe > 0 since otherwise F is trivial. Now, define S as

S = {e ∈ E : αe = αmax}.

Claim 5.8 For any I ∈ O, we have |I ∩ S| = r(S).
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This means that the face F is contained in the face induced by the inequality x(S) ≤ r(S)
and therefore we have in our description of P one inequality inducing each facet of conv(X).
Thus we have a complete description of conv(X).

To prove the claim, suppose that |I ∩ S| < r(S). Thus I ∩ S can be extended to an
independent set X ∈ I where X ⊆ S and |X| > |I ∩ S|. Let e ∈ X \ (I ∩ S); observe
that e ∈ S by our choice of X. Since αe > 0 we have that I + e /∈ I, thus there is a
circuit C ⊆ I + e. By the unique circuit property (see Theorem 5.1), for any f ∈ C we have
I + e− f ∈ I. But C \ S 6= ∅ since (I ∩ S) + e ∈ I, and thus we can choose f ∈ C \ S. The
cost of I + e− f satisfies:

c(I + e− f) = c(I) + c(e)− c(f) > c(I),

contradicting the definition of O.

5.5 Facets?

Now that we have a description of the matroid polytope in terms of linear inequalities, one
may wonder which of these (exponentially many) inequalities define facets of conv(X).

For simplicity, let’s assume that r({e}) = 1 for all e ∈ E (e belongs to some independent
set). Then, every nonnegativity constraint defines a facet of P = conv(X). Indeed, the 0
vector and all unit vectors except χ({e}) constitute |E| affinely independent points satisfying
xe = 0. This mean that the corresponding face has dimension at least |E| − 1 and since the
dimension of P itself is |E|, the face is a facet.

We now consider the constraint x(S) ≤ r(S) for some set S ⊆ E. If S is not closed (see
Definition 5.2) then x(S) ≤ r(S) definitely does not define a facet of P = conv(X) since it
is implied by the constraints x(span(S)) ≤ r(S) and xe ≥ 0 for e ∈ span(S) \ S.

Another situation in which x(S) ≤ r(S) does not define a facet is if S can be expressed
as the disjoint union of U 6= ∅ and S \ U 6= ∅ and r(U) + r(S \ U) = r(S). In this case, the
inequality for S is implied by those for U and for S \ U .

Definition 5.3 S is said to be inseparable if there is no U with ∅ 6= U ⊂ S such that
r(S) = r(U) + r(S \ U).

From what we have just argued, a necessary condition for x(S) ≤ r(S) to define a facet
of P = conv(X) is that S is closed and inseparable. This can be shown to be sufficient as
well, although the proof is omitted.

As an example, consider a partition matroid with M = (E, I) where

I = {X ⊆ E : |X ∩ Ei| ≤ ki for all i = 1, · · · , l},

for disjoint Ei’s. Assume that ki ≥ 1 for all i. The rank function for this matroid is:

r(S) =
l∑

i=1

min(ki, |S ∩ Ei|).
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For a set S to be inseparable, there must exist (i) i ∈ {1, · · · , l} with S ⊆ Ei, and (ii) |S∩Ei|
is either ≤ 1 or > ki for every i. Furthermore, for S ⊆ Ei to be closed, we must have that if
|S ∩Ei| ≥ ki then S ∩Ei = Ei. Thus the only sets we need for the description of a partition
matroid polytope are (i) sets S = Ei for i with |Ei| > ki and (ii) singleton sets {e} for e ∈ E.
The partition matroid polytope is thus given by:

P = {x ∈ R|E| : x(Ei) ≤ ki i ∈ {1, · · · , l} : |Ei| > ki
0 ≤ xe ≤ 1 e ∈ E}.

As another example, take M to be the graphic matroid M(G). For a set of edges F ⊆ E
to be inseparable, we need that the subgraph (V, F ) either is a single edge or has only one
non-trivial (i.e. with more than 1 vertex) 2-connected component3 (this is a maximal set of
vertices such that for any two vertices in it, there exists two (internally) vertex-disjoint paths
between them). Indeed, if we partition F into the edge sets F1, · · · , Fc of the (c non-trivial) 2-
connected components and single edges (for those edges not in any 2-connected components),
we have that r(F ) =

∑c
i=1 r(Fi) and thus c must be 1 for F to be inseparable. Given a set

F of edges, its span (with respect to the graphic matroid) consists of all the edges with both
endpoints within any connected component of F ; these are the edges whose addition does
not increase the size of the largest forest. Thus, for F to be inseparable and closed, either it
must be a single edge or there exists a vertex set S ⊆ V such that F = E(S) (E(S) denotes
all the edges with both endpoints in S) and (S,E(S)) is 2-connected. Thus (the minimal
description of) the forest polytope (convex hull of all forests in a graph G = (V,E)) is given
by:

P = {x ∈ R|E| : x(E(S)) ≤ |S| − 1 S ⊆ V,E(S) 2-connected or |S| = 2

0 ≤ xe ≤ 1 e ∈ E}.

(As usual, x(E(S)) denotes
∑

e∈E(S) xe.) We could also include all vertex sets S; this would
of course also give the spanning tree polytope, albeit not the minimal description. Observe
that this polyhedral description still has a very large number of inequalities, wven if we
include only the facet-defining inequalities.

From this, we can also easily derive the spanning tree polytope of a graph, namely the
convex hull of incidence vectors of all spanning trees in a graph. Indeed, this is a face of
the forest polytope obtained by replacing the inequality for S = V (x(E) ≤ |V | − 1) by an
equality:

P = {x ∈ R|E| : x(E) = |V | − 1
x(E(S)) ≤ |S| − 1 S ⊂ V,E(S) 2-connected or |S| = 2

0 ≤ xe ≤ 1 e ∈ E}.
3For example, if the graph consists of 3 cycles that are vertex-disjoint except for one common (to all

three) vertex v then each of these cycles would form a 2-connected component. In general, there is a forest
structure on the set of 2-connected components.
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Exercise 5-11. Let M = (E, I) be a matroid and let S = {e ∈ E : {e} ∈ I}. Show that
dim(conv(X)) = |S| (where X is the set of incidence vectors of independent sets) and show
that the description for P has the required number of linearly independent equalities.

Exercise 5-12. Let M = (E, I) be a matroid and let P be the corresponding matroid
polytope, i.e. the convex hull of characteristic vectors of independent sets. Show that two
independent sets I1 and I2 are adjacent on P if and only if either (i) I1 ⊆ I2 and |I1|+1 = |I2|,
or (ii) I2 ⊆ I1 and |I2|+ 1 = |I1|, or (iii) |I1 \ I2| = |I2 \ I1| = 1 and I1 ∪ I2 /∈ I.
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6. Lecture notes on matroid intersection

One nice feature about matroids is that a simple greedy algorithm allows to optimize
over its independent sets or over its bases. At the same time, this shows the limitation of
the use of matroids: for many combinatorial optimization problems, the greedy algorithm
does not provide an optimum solution. Yet, as we will show in this chapter, the expressive
power of matroids become much greater once we consider the intersection of the family of
independent sets of two matroids.

Consider two matroids M1 = (E, I1) and M2 = (E, I2) on the same ground set E, and
consider the family of indepedent sets common to both matroids, I1 ∩ I2. This is what is
commonly referred to as the intersection of two matroids.

In this chapter, after giving some examples of matroid intersection, we show that that
finding a largest common independent set to 2 matroids can be done efficiently, and provide a
min-max relation for the maximum value. We also consider the weighted setting (generalizing
the assignment problem), although we will not give an algorithm in the general case (although
one exists); we only restrict to a special case, namely the arborescence problem. We shall
hint an algorithm for the general case by characterizing the matroid intersection polytope
and thereby giving a min-max relation for it (an NP∩co-NP characterization). Finally, we
discuss also matroid union; a powerful way to construct matroids from other matroids in
which matroid intersection plays a central role. (The term ’matroid union’ is misleading
as it is not what we could expect after having defined matroid intersection... it does not
correspond to I1 ∪ I2.)

6.1 Examples

6.1.1 Bipartite matchings

Matchings in a bipartite graph G = (V,E) with bipartition (A,B) do not form the indepen-
dent sets of a matroid. However, they can be viewed as the common independent sets to
two matroids; this is the canonical example of matroid intersection.

Let MA be a partition matroid with ground set E where the partition of E is given by
E =

⋃
{δ(v) : v ∈ A} where δ(v) denotes the edges incident to v. Notice that this is a

partition since all edges have precisely one endpoint in A. We also define kv = 1 for every
v ∈ A. Thus, the family of independent sets of MA is given by

IA = {F : |F ∩ δ(v)| ≤ 1 for all v ∈ A}.

In other words, a set of edges is independent for MA if it has at most one edge incident to
every vertex of A (and any number of edges incident to every vertex of b). We can similarly
define MB = (E, IB) by

IB = {F : |F ∩ δ(v)| ≤ 1 for all v ∈ B}.
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Now observe that any F ∈ IA∩IB corresponds to a matching in G, and vice versa. And the
largest common independent set to IA and IB corresponds to a maximum matching in G.

6.1.2 Arborescences

Given a digraph D = (V,A) and a special root vertex r ∈ V , an r-arborescence (or just
arborescence) is a spanning tree (when viewed as an undirected graph) directed away from
r. Thus, in a r-arborescence, every vertex is reachable from the root r. As an r-arborescence
has no arc incoming to the root, we assume that D has no such arc.

r-arborescences can be viewed as sets simultaneously independent in two matroids. Let
G denote the undirected counterpart of D obtained by disregarding the directions of the arcs.
Note that if we have both arcs a1 = (u, v) and a2 = (v, u) in D then we get two undirected
edges also labelled a1 and a2 between u and v in G. Define M1 = (A, I1) = M(G) the graphic
matroid corresponding to G, and M2 = (A, I2) the partition matroid in which independent
sets are those with at most one arc incoming to every vertex v 6= r. In other words, we let

I2 = {F : |F ∩ δ−(v)| ≤ 1 for all v ∈ V \ {r}}

where δ−(v) denotes the set {(u, v) ∈ A} of arcs incoming to v. Thus, any r-arborescence is
independent in both matroids M1 and M2. Conversely, any set T independent in both M1

and M2 and of cardinality |V |−1 (so that it is a base in both matroids) is an r-arborescence.
Indeed, such a T being a spanning tree in G has a unique path between r and any vertex
v; this path must be directed from the root r since otherwise we would have either an arc
incoming to r or two arcs incoming to the same vertex.

In the minimum cost arborescence problem, we are also given a cost function c : A →
R and we are interested in finding the minimum cost r-arborescence. This is a directed
counterpart to the minimum spanning tree problem but, here, the greedy algorithm does not
solve the problem.

6.1.3 Orientations

Given an undirected graph G = (V,E), we consider orientations of all its edges into directed
arcs; namely, each (undirected) edge1 {u, v} is either replaced by an arc2 (u, v) from u to v,
or by an arc (v, u) from v to u. Our goal is, given k : V → N, to decide whether there exists
an orientation such that, for every vertex v ∈ V , the indegree of vertex v (the number of
arcs entering v) is at most k(v). Clearly, this is not always possible, and this problem can
be solved using matroid intersection (or network flows as well).

To attack this problem through matroid intersection, consider the directed graph D =
(V,A) in which every edge e = {u, v} of E is replaced by two arcs (u, v) and (v, u). With the

1Usually, we use (u, v) to denote an (undirected) edge. In this section, however, we use the notation
{u, v} rather than (u, v) to emphasize that edges are undirected.

2We use arcs in the case of directed graphs, and edges for undirected graphs.
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arc set A as ground set, we define two partition matroids, M1 and M2. To be independent
in M1, one can take at most one of {(u, v), (v, u)} for every (u, v) ∈ E, i.e.

I1 = {F ⊆ A : |F ∩ {(u, v), (v, u)}| ≤ 1 for all (u, v) ∈ E}.

To be independent in M2, one can take at most k(v) arcs among δ−(v) for every v:

I2 = {F ⊆ A : |F ∩ δ−(v)| ≤ k(v) for all v ∈ V }.

Observe that this indeed defines a partition matroid since the sets δ−(v) over all v partition
A.

Therefore, there exists an orientation satisfying the required indegree restrictions if there
exists a common independent set to M1 and M2 of cardinality precisely |E| (in which case
we select either (u, v) or (v, u) but not both).

6.1.4 Colorful Spanning Trees

Suppose we have an undirected graph G = (V,E) and every edge has a color. This is
represented by a partition of E into E1 ∪ · · · ∪Ek where each Ei represents a set of edges of
the same color i. The problem of deciding whether this graph has a spanning tree in which
all edges have a different color can be tackled through matroid intersection. Such a spanning
tree is called colorful.

Colorful spanning trees are bases of the graphic matroid M1 = M(G) which are also in-
dependent in the partition matroid M2 = (E, I2) defined by I2 = {F : |F ∩Ei| ≤ 1 for all i}.

6.1.5 Union of Two Forests

In Section 6.5, we show that one can decide whether a graph G has two edge-disjoint spanning
trees by matroid intersection.

6.2 Largest Common Independent Set

As usual, one issue is to find a common independent set of largest cardinality, another is to
prove that indeed it is optimal. This is done through a min-max relation.

Given two matroids M1 = (E, I1) and M2 = (E, I2) with rank functions r1 and r2
respectively, consider any set S ∈ I1 ∩ I2 and any U ⊆ E. Observe that

|S| = |S ∩ U |+ |S ∩ (E \ U)| ≤ r1(U) + r2(E \ U),

since both S ∩ U and S ∩ (E \ U) are independent in M1 and in M2 (by property (I1));
in particular (and this seems weaker), S ∩ U is independent for M1 while S ∩ (E \ U) is
independent for M2. Now, we can take the maximum over S and the minimum over U and
derive:

max
S∈I1∩I2

|S| ≤ min
U⊆E

[r1(U) + r2(E \ U)] .

Somewhat surprisingly, we will show that we always have equality:
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Theorem 6.1 (Matroid Intersection) For any two matroids M1 = (E, I1) and M2 =
(E, I2) with rank functions r1 and r2 respectively, we have:

max
S∈I1∩I2

|S| = min
U⊆E

[r1(U) + r2(E \ U)] . (1)

Before describing an algorithm for matroid intersection that proves this theorem, we
consider what the min-max result says for some special cases. First, observe that we can
always restrict our attention to sets U which are closed for matroid M1. Indeed, if that was
not the case, we could replace U by V = spanM1

(U) and we would have that r1(V ) = r1(U)
while r2(E \ V ) ≤ r2(E \ U). This shows that there always exists a set U attaining the
minimum which is closed for M1. Similarly, we could assume that E \ U is closed for M2

(but both assumptions cannot be made simultaneously).
When specializing the matroid intersection theorem to the graph orientation problem

discussed earlier in this chapter, we can derive the following.

Theorem 6.2 G = (V,E) has an orientation such that the indegree of vertex v is at most
k(v) for every v ∈ V if and only if for all P ⊆ V we have3:

|E(P )| ≤
∑
v∈P

k(v).

Similarly, for colorful spanning trees, we obtain:

Theorem 6.3 Given a graph G = (V,E) with edges of Ei colored i for i = 1, · · · , k, there
exists a colorful spanning tree if and only if deleting the edges of any c colors (for any c ∈ N)
produces at most c+ 1 connected components.

We now prove Theorem 6.1 by exhibiting an algorithm for finding a maximum cardinality
independent set common to two matroids and a corresponding set U for which we have
equality in (1). For the algorithm, we will start with S = ∅ and at each step either augment
S or produce a U that gives equality. Our algorithm will rely heavily on a structure called
the exchange graph. We first focus on just one matroid.

Definition 6.1 Given a matroid M = (E, I) and an independent set S ∈ I, the exchange
graph GM(S) (or just G(S)) is the bipartite graph with bipartition S and E \ S with an edge
between y ∈ S and x ∈ E \ S if S − y + x ∈ I.

Lemma 6.4 Let S and T be two independent sets in M with |S| = |T |. Then there exists a
perfect matching between S \ T and T \ S in GM(S).

The proof is omitted. The converse to Lemma 6.4 does not hold. We next prove a
proposition that is a partial converse to the above lemma.

3E(P ) denotes the set of edges with both endoints in P .
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Proposition 6.5 Let S ∈ I with exchange graph GM(S). Let T be a set with |T | = |S| and
such that GM(S) has a unique perfect matching between S \ T and T \ S. Then T ∈ I.

Proof: Let N be the unique matching. Orient edges in N from T \ S = {x1, · · · , xt} to
S \ T = {y1, · · · , yt}, and orient the rest from S \ T to T \ S. If we contract the edges of
N , observe that the resulting directed graph has no directed cycle since, otherwise, we could
find an alternating cycle prior to contraction, and this would contradict the uniqueness of
the matching. Hence the vertices of GM(S) can be numbered (by a topological ordering)
so that (i) the endpoints of the matching are numbered consecutively and (ii) all edges are
directed from smaller-numbered vertices to larger-numbered vertices. So, number S \ T and
T \ S such that N = {(y1, x1), (y2, x2), . . . , (yt, xt)} and such that (yi, xj) is never an edge
for i < j.

Now suppose for the sake of contradiction that T 6∈ I. Then T has a circuit C. Take
the smallest i such that xi ∈ C (there must exist at least one element of C in T \ S since
C ⊆ T and S is independent). By construction, (yi, x) is not an edge for x ∈ C − xi.
This implies that x ∈ span(S − yi) for all x ∈ C − xi. Hence C − xi ⊆ span(S − yi), so
span(C − xi) ⊆ span(span(S − yi)) = span(S − yi). C is a cycle, so xi ∈ span(C − xi),
and thus xi ∈ span(S − yi). This is a contradiction, since (yi, xi) ∈ GM(S) by assumption.
Therefore T must be in I, which proves the proposition. 4

We are now ready to describe the algorithm for proving the minmax formula. First, we
define a new type of exchange graph for the case when we are dealing with two matroids.

Definition 6.2 For S ∈ I1 ∩ I2, the exchange graph DM1,M2(S) is the directed bipartite
graph with bipartition S and E \ S such that (y, x) is an arc if S − y + x ∈ I1 and (x, y) is
an arc if S − y + x ∈ I2.

Also define X1 := {x 6∈ S | S+x ∈ I1}, the set of sources, and X2 := {x 6∈ S | S+x ∈ I2},
the set of sinks. Then the algorithm is to find a path (we call it an augmenting path) from
X1 to X2 that does not contain any shortcuts (arcs that point from an earlier vertex on
the path to a non-adjacent later vertex on the path). This for example can be obtained by
selecting a shortest path from X1 to X2. Then replace S with S4P , where P is the set of
vertices on the path. As a special case, if X1 ∩ X2 6= ∅, then we end up with a path that
consists of a singleton vertex and we can just add that element to S. If there is no such
path, then set U := {z ∈ S | z can reach some vertex in X2 in DM1,M2(S)}. Alternatively,
we could define E \ U as the set of vertices which can be reached from a vertex in X1; this
may give a different set.

To prove that this algorithm is correct, we need to show that

1. When we stop, the sets S and U do indeed give equality in the minmax formula (1).

2. At each stage in the algorithm, S4P ∈ I1 ∩ I2.

Proof of 1: First note that X2 ⊆ U and that X1 ∩ U = ∅ (as otherwise we could
keep running the algorithm to increase the size of S). We claim that r1(U) = |S ∩ U | and
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r2(S \U) = |S ∩ (E \U)|. Together, these would imply that |S| = r1(U) + r2(E \U), which
is what we need.

Suppose first that |S ∩ U | 6= r1(U). Since S ∩ U ⊆ U and S ∩ U is independent, this
would imply that |S ∩ U | < r1(U). Then there would have to exist some x ∈ U \ S such
that (S ∩ U) + x ∈ I1. As S ∈ I1, we can repeatedly add elements of S to (S ∩ U) + x and
thereby obtain a set of the form S + x− y for some y ∈ S \U with S + x− y ∈ I1. But then
(y, x) is an arc in DM1,M2(S), so y ∈ U (since x ∈ U). This is a contradiction, so we must
have |S ∩ U | = r1(U).

Now suppose that |S∩ (E \U)| 6= r2(E \U). Then as before we must have |S∩ (E \U)| <
r2(S \U). Thus there exists x ∈ (E \U)\S such that (S∩ (E \U))+x ∈ I2. So, by the same
logic as before, we can find y ∈ S \ (E \U) such that S−y+x ∈ I2. But S \ (E \U) = S∩U ,
so we have y ∈ S ∩ U such that S − y + x ∈ I2. But then (x, y) is an arc in DM1,M2(S), so
x ∈ U (since y ∈ U). This is a contradiction, so we must have |S ∩ (E \U)| = r2(E \U). 4
Proof of 2: Recall that we need to show that S4P ∈ I1 ∩ I2 whenever P is a path
from X1 to X2 with no shortcuts. We first show that S4P ∈ I1. We start by definining a
new matroid M ′

1 from M1 as M ′
1 := (E ∪ {t}, {J | J \ {t} ∈ I1}. In other words, we simply

add a new element {t} that is independent from all the other elements of the matroid. Then
we know that S ∪ {t} is independent in M ′

1 and M ′
2 (where we define M ′

2 analogously to
M ′

1). On the other hand, if we view DM ′1(S ∪ {t}) as a subgraph of DM ′1,M ′2(S ∪ {t}), then
there exists a perfect matching in DM ′1(S ∪ {t}) between (S ∩ P ) ∪ {t} and P \ S (given by
the arcs in P that are also arcs in DM ′1(S ∪ {t}), together with the arc between {t} and the
first vertex in P ). Furthermore, this matching is unique since P has no shortcuts, so by the
proposition we know that (S ∪ {t})4P is independent in M ′

1, hence S4P is independent in
M1.

The proof that S4P ∈ I2 is identical, except that this time the matching consists of the
arcs in P that are also arcs in DM ′2(S ∪ {t}), together with the arc between {t} and the last
vertex in P (rather than the first). 4

So, we have proved that our algorithm is correct, and as a consequence have established
the minmax formula.

Exercise 6-1. Deduce König’s theorem about the maximum size of a matching in a bi-
partite graph from the min-max relation for the maximum independent set common to two
matroids.

6.3 Matroid Intersection Polytope

In this section, we characterize the matroid intersection polytope in terms of linear inequal-
ities, that is the convex hull of characteristic vectors of independent sets common to two
matroids. Let M1 = (E, I1) and M2 = (E, I2) be two matroids, and let

X = {χ(S) ∈ {0, 1}|E| : S ∈ I1 ∩ I2}.
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The main result is that conv(X) is precisely given by the intersection of the matroid polytopes
for M1 and M2.

Theorem 6.6 Let
P = {x ∈ R|E| : x(S) ≤ r1(S) ∀S ⊆ E

x(S) ≤ r2(S) ∀S ⊆ E
xe ≥ 0 ∀e ∈ E}

.

Then conv(X) = P .

Our proof will be vertex-based. We will show that any extreme point of P is integral,
and it can then be easily seen that it corresponds to a common independent set. The proof
will rely on total unimodularity in a subtle way. Even though the overall matrix defining P
is not totally unimodular, we will show that, for every extreme point x∗, x∗ can be seen as
the solution of a system of equations whose underlying matrix is totally unimodular. This
is a powerful approach that can apply to many settings.
Proof: Let x∗ be an extreme point of P . We know that x∗ is uniquely characterized once
we know the inequalities that are tight in the description of P . Let

Fi = {S ⊆ E : x∗(S) = ri(S)},

for i = 1, 2. Let E0 = {e ∈ E : x∗e = 0}. We know that x∗ is the unique solution to

x(S) = r1(S) S ∈ F1

x(S) = r2(S) S ∈ F2

xe = 0 e ∈ E0.

Consider the matroid polytope Pi for matroid Mi for i = 1, 2, and define the face Fi of Pi
(for i = 1, 2) to be

Fi = {x ∈ Pi : x(S) = r1(S) ∀S ∈ Fi
xe = 0 ∀e ∈ E0}

.

Observe that F1 ∩F2 = {x∗}. Also, by Theorem 4.6 of the chapter on matroid optimization,
we have that Fi can be alternatively defined by a chain Ci. Thus, x∗ is the unique solution
to

x(S) = r1(S) S ∈ C1
x(S) = r2(S) S ∈ C2
xe = 0 e ∈ E0.

After eliminating all variables in E0, this system can be written as Ax = b, where the rows
of A are the characteristic vectors of C1 ∪ C2.

Such a matrix A is totally unimodular and this can be shown by using Theorem 3.14.
Consider any subset of rows; this corresponds to restricting our attention to chains C ′1 and C ′2.
Consider first C ′1. If we assign the largest set to R1 and then keep alternating the assignment
between R2 and R1 as we consider smaller and smaller sets, we obtain that∑

i∈C′1∩R1

aij −
∑

i∈C′1∩R2

aij ∈ {0, 1},
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for all j. If for C ′2 we start with the largest set being in R2, we get∑
i∈C′2∩R1

aij −
∑

i∈C′2∩R2

aij ∈ {0,−1},

for all j. Combining both, we get that indeed for every j, we get a value in {0, 1,−1} showing
that the matrix is totally unimodular. As a result, x∗ is integral, and therefore corresponds
to the characteristic vector of a common independent set. 4

6.4 Arborescence Problem

The minimum cost r-arborescence is the problem of, given a directed graph D = (V,A),
a root vertex r ∈ V and a cost ca for every arc a ∈ A, finding an r-arborescence in D of
minimum total cost. This can thus be viewed as a weighted matroid intersection problem
and we could use the full machinery of matroid intersection algorithms and results. However,
here, we are going to develop a simpler algorithm using notions similar to the Hungarian
method for the assignment problem. We will assume that the costs are nonnegative.

As an integer program, the problem can be formulated as follows. Letting xa be 1 for
the arcs of an r-arborescence, we have the formulation:

OPT = min
∑
a∈A

caxa

subject to: ∑
a∈δ−(S)

xa ≥ 1 ∀S ⊆ V \ {r}

∑
a∈δ−(v)

xa = 1 ∀v ∈ V \ {r}

xa ∈ {0, 1} a ∈ A.

In this formulation δ−(S) represents the set of arcs {(u, v) ∈ A : u /∈ S, v ∈ S}. One
can check that any feasible solution to the above corresponds to the incidence vector of
an r-arborescence. Notice that this optimization problem has an exponential number of
constraints. We are going to show that we can relax both the integrality restrictions to
xa ≥ 0 and also remove the equality constraints

∑
a∈δ−(v) xa = 1 and still there will be an

r-arboresence that will be optimum for this relaxed (now linear) program. The relaxed linear
program (still with an exponential number of constraints) is:
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LP = min
∑
a∈A

caxa

subject to:

(P )
∑

a∈δ−(S)

xa ≥ 1 ∀S ⊆ V \ {r}

xa ≥ 0 a ∈ A.

The dual of this linear program is:

LP = max
∑

S⊆V \{r}

yS

subject to:

(D)
∑

S:a∈δ−(S)

yS ≤ ca

yS ≥ 0 S ⊆ V \ {r}.

The algorithm will be constructing an arborescence T (and the corresponding incidence
vector x with xa = 1 whenever a ∈ T and 0 otherwise) and a feasible dual solution y which
satisfy complementary slackness, and this will show that T corresponds to an optimum
solution of (P ), and hence is an optimum arborescence. Complementary slackness says:

1. yS > 0 =⇒ |T ∩ δ−(S)| = 1, and

2. a ∈ T =⇒
∑

S:a∈δ−(S) yS = ca.

The algorithm will proceed in 2 phases. In the first phase, it will construct a dual feasible
solution y and a set F of arcs which has a directed path from the root to every vertex. This
may not be an r-arborescence as there might be too many arcs. The arcs in F will satisfy
condition 2 above (but not condition 1). In the second phase, the algorithm will remove
unnecessary arcs, and will get an r-arborescence satisfying condition 1.

Phase 1 is initialized with F = ∅ and yS = 0 for all S. While F does not contain a directed
path to every vertex in V , the algorithm selects a set S such that (i) inside S, F is strongly
connected (i.e. every vertex can reach every vertex) and (ii) F ∩δ−(S) = ∅. This set S exists
since we can contract all strongly connected components and in the resulting acyclic digraph,
there must be a vertex (which may be coming from the shrinking of a strongly connected
component) with no incoming arc (otherwise tracing back from that vertex we would either
get to the root or discover a new directed cycle (which we could shrink)). Now we increase
yS as much as possible until a new inequality, say for arc ak,

∑
S:ak∈δ−(S) yS ≤ cak becomes

an equality. In so doing, the solution y remains dual feasible and still satisfies condition 2.
We can now add ak to F without violating complementary slackness condition 2, and then
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we increment k (which at the start we initialized at k = 1). And we continue by selecting
another set S, and so on, until every vertex is reachable from r in F . We have now such a
set F = {a1, a2, · · · , ak} and a dual feasible solution y satisfying condition 2.

In step 2, we eliminate as many arcs as possible, but we consider them in reverse order
they were added to F . Thus, we let i go from k to 1, and if F \ {ai} still contains a directed
path from r to every vertex, we remove ai from F , and continue. We then output the
resulting set T of arcs.

The first claim is that T is an arborescence. Indeed, we claim it has exactly |V | − 1 arcs
with precisely one arc incoming to every vertex v ∈ V \ {r}. Indeed, if not, there would be
two arcs ai and aj incoming to some vertex v; say that i < j. In the reverse delete step, we
should have removed aj; indeed any vertex reachable from r through aj could be reached
through ai as well (unless ai is unnecessary in which case we could get rid of ai later on).

The second (and final) claim is that the complementary slackness condition 1 is also
satisfied. Indeed, assume not, and assume that we have a set S with yS > 0 and |T∩δ−(S)| >
1. S was chosen at some point by the algorithm and at that time we added ak ∈ δ−(S) to
F . As there were no other arcs in δ−(S) prior to adding ak to F , it means that all other arcs
in T ∩ δ−(S) must be of the form aj with j > k. In addition, when S was chosen, F was
already strongly connected within S; this means that from any vertex inside S, one can go
to any other vertex inside S using arcs ai with i < k. We claim that when aj was considered
for removal, it should have been removed. Indeed, assume that aj is needed to go to vertex
v, and that along the path P to v the last vertex in S is w ∈ S. Then we could go to v
by using ak which leads somewhere in S then take arcs ai with i < k (none of which have
been removed yet as i < k < j) to w ∈ S and then continue along path P . So aj was not
really necessary and should have been removed. This shows that complementary slackness
condition 1 is also satisfied and hence the arborescence built is optimal.

6.5 Matroid Union

From any matroid M = (E, I), one can construct a dual matroid M∗ = (E, I∗).

Theorem 6.7 Let I∗ = {X ⊆ E : E \X contains a base of M}. Then M∗ = (E, I∗) is a
matroid with rank function

rM∗(X) = |X|+ rM(E \X)− rM(E).

There are several ways to show this. One is to first show that indeed the size of the
largest subset of X in I∗ has cardinality |X|+ rM(E \X)− rM(E) and then show that rM∗
satisfies the three conditions that a rank function of a matroid needs to satisfy (the third
one, submodularity, follows from the submodularity of the rank function for M).

One can use Theorem 6.7 and matroid intersection to get a good characterization of when
a graph G = (V,E) has two edge-disjoint spanning trees. Indeed, letting M be the graphic
matroid of the graph G, we get that G has two edge-disjoint spanning trees if and only if

max
S∈I∩I∗

|S| = |V | − 1.
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For the graphic matroid, we know that rM(F ) = n− κ(F ) where n = |V | and κ(F ) denotes
the number of connected components of (V, F ). But by the matroid intersection theorem,
we can write:

max
S∈I∩I∗

|S| = min
E1⊆E

[rM(E1) + rM∗(E \ E1)]

= min
E1⊆E

[(n− κ(E1)) + (|E \ E1|+ κ(E)− κ(E1))]

= min
E1⊆E

[n+ 1 + |E \ E1| − 2κ(E1)] ,

where we replaced κ(E) by 1 since otherwise G would even have one spanning tree. Re-
arranging terms, we get that G has two edge-dsjoint spanning trees if and only if for all
E1 ⊆ E, we have that E \ E1 ≥ 2(κ(E1) − 1). If this inequality is violated for some E1,
we can add to E1 any edge that does not decrease κ(E1). In other words, if the connected
components of E1 are V1, V2, · · · , Vp then we can assume that E1 = E \δ(V1, V2, · · ·Vp) where
δ(V1, · · · , Vp) = {(u, v) ∈ E : u ∈ Vi, v ∈ Vj and i 6= j}. Thus we have shown:

Theorem 6.8 G has two edge-disjoint spanning trees if and only if for all partitions V1,
V2, · · ·Vp of V , we have

|δ(V1, · · · , Vp)| ≥ 2(p− 1).

Theorem 6.8 can be generalized to an arbitrary number of edge-disjoint spanning trees.
This result is not proved here.

Theorem 6.9 G has k edge-disjoint spanning trees if and only if for all partitions V1,
V2, · · ·Vp of V , we have

|δ(V1, · · · , Vp)| ≥ k(p− 1).

From two matroids M1 = (E, I1) and M2 = (E, I2), we can also define its union by
M1 ∪M2 = (E, I) where I = {S1 ∪S2 : S1 ∈ I1, S2 ∈ I2}. Notice that we do not impose the
two matroids to be identical as we just did for edge-disjoint spanning trees.

We can show that:

Theorem 6.10 (Matroid Union) M1 ∪M2 is a matroid. Furthermore its rank function
is given by

rM1∪M2(S) = min
F⊆S
{|S \ F |+ rM1(F ) + rM2(F )} .

Proof: To show that it is a matroid, assume that X, Y ∈ I with |X| < |Y |. Let
X = X1 ∪ X2 and Y = Y1 ∪ Y2 where X1, Y1 ∈ I1 and X2, Y2 ∈ I2. We can furthermore
assume that the Xi’s are disjoint and so are the Yi’s. Finally we assume that among all
choices for X1, X2, Y1 and Y2, we choose the one maximizing |X1 ∩ Y1| + |X2 ∩ Y2|. Since
|Y | > |X|, we can assume that |Y1| > |X1|. Thus, there exists e ∈ (Y1 \ X1) such that
X1 ∪ {e} is independent for M1. The maximality implies that e /∈ X2 (otherwise consider
X1 ∪ {e} and X2 \ {e}). But this implies that X ∪ {e} ∈ I as desired.
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We now show the expression for the rank function. The fact that it is ≤ is obvious as an
independent set S ∈ I has size |S \ F | + |S ∩ F | ≤ |S \ F | + rM1(F ) + rM2(F ) and this is
true for any F .

For the converse, let us prove it for the entire ground set S = E. Once we prove that

rM1∪M2(E) = min
F⊆S
{|E \ F |+ rM1(F ) + rM2(F )} ,

the corresponding statement for any set S will follow by just restricting our matroids to S.
Let X be a base of M1 ∪ M2. The fact that X ∈ I means that X = X1 ∪ X2 with

X1 ∈ I1 and X2 ∈ I2. We can furthermore assume that X1 and X2 are disjoint and that
rM2(X2) = rM2(E) (otherwise add elements to X2 and possibly remove them from X1).
Thus we can assume that |X| = |X1| + rM2(E). We have that X1 ∈ I1 and also that X1 is
independent for the dual of M2 (as the complement of X1 contains a base of M2). In other
words, X1 ∈ I1 ∩I∗2 . The proof is completed by using the matroid intersection theorem and
Theorem 6.7:

rM1∪M2(E) = |X| = max
X1∈I1∩I∗2

(|X1|+ rM2(E))

= min
E1⊆E

(
rM1(E1) + rM∗2 (E \ E1) + rM2(E)

)
= min

E1⊆E
(rM1(E1) + |E \ E1|+ rM2(E1)− rM2(E) + rM2(E))

= min
E1⊆E

(|E \ E1|+ rM1(E1) + rM2(E1)) ,

as desired. 4
Since Theorem 6.10 says that M1 ∪M2 is a matroid, we know that its rank function is

submodular. This is, however, not obvious from the formula given in the theorem.

6.5.1 Spanning Tree Game

The spanning tree game is a 2-player game. Each player in turn selects an edge. Player 1
starts by deleting an edge, and then player 2 fixes an edge (which has not been deleted yet);
an edge fixed cannot be deleted later on by the other player. Player 2 wins if he succeeds in
constructing a spanning tree of the graph; otherwise, player 1 wins. The question is which
graphs admit a winning strategy for player 1 (no matter what the other player does), and
which admit a winning strategy for player 2.

Theorem 6.11 For the spanning tree game on a graph G = (V,E), player 1 has a winning
strategy if and only if G does not have two edge-disjoint spanning trees. Otherwise, player 2
has a winning strategy.

If G does not have 2 edge-disjoint spanning trees then, by Theorem 6.8, we know that
there exists a partition V1, · · · , Vp of V with |δ(V1, · · · , Vp)| ≤ 2(p − 1) − 1. The winning
strategy for player 1 is then to always delete an edge from δ(V1, · · · , Vp). As player 1 plays
before player 2, the edges in δ(V1, · · · , Vp) will be exhausted before player 2 can fix p− 1 of
them, and therefore player 2 loses. The converse is the subject of exercise 6-4.
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Exercise 6-2. Derive from theorem 6.10 that the union of k matroids M1, M2, · · · ,Mk is
a matroid with rank function

rM1∪M2∪···∪Mk
(S) = min

F⊆S
{|S \ F |+ rM1(F ) + rM2(F ) + · · ·+ rMk

(F )} .

Exercise 6-3. Derive Theorem 6.9 from Exercise 6-2.

Exercise 6-4. Assume that G has 2 edge-disjoint spanning trees. Give a winning strategy
for player 2 in the spanning tree game.

Exercise 6-5. Find two edge-disjoint spanning trees in the following graph with 16 vertices
and 30 edges or prove that no such trees exist.

16

1 2 3 4

5
6 7

8

9
10 11

12

13 14 15
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7. Lecture notes on the ellipsoid algorithm

The simplex algorithm was the first algorithm proposed for linear programming, and
although the algorithm is quite fast in practice, no variant of it is known to be polynomial
time. The Ellipsoid algorithm is the first polynomial-time algorithm discovered for linear
programming. The Ellipsoid algorithm was proposed by the Russian mathematician Shor
in 1977 for general convex optimization problems, and applied to linear programming by
Khachyan in 1979. Contrary to the simplex algorithm, the ellipsoid algorithm is not very
fast in practice; however, its theoretical polynomiality has important consequences for com-
binatorial optimization problems as we will see. Another polynomial-time algorithm, or
family of algorithms to be more precise, for linear programming is the class of interior-point
algorithms that started with Karmarkar’s algorithm in 1984; interior-point algorithms are
also quite practical but they do not have the same important implications to combinatorial
optimization as the ellipsoid algorithm does.

The problem being considered by the ellipsoid algorithm is:

Given a bounded convex set P ∈ Rn find x ∈ P .

We will see that we can reduce linear programming to finding an x in P = {x ∈ Rn :
Cx ≤ d}.

The ellipsoid algorithm works as follows. We start with a big ellipsoid E that is guar-
anteed to contain P . We then check if the center of the ellipsoid is in P . If it is, we are
done, we found a point in P . Otherwise, we find an inequality cTx ≤ di which is satisfied
by all points in P (for example, it is explicitly given in the description of P ) which is not
satisfied by our center. One iteration of the ellipsoid algorithm is illustrated in Figure 7.1.
The ellipsoid algorithm is the following.

• Let E0 be an ellipsoid containing P

• while center ak of Ek is not in P do:

– Let cTx ≤ cTak be such that {x : cTx ≤ cTak} ⊇ P

– Let Ek+1 be the minimum volume ellipsoid containing Ek ∩ {x : cTx ≤ cTak}
– k ← k + 1

The ellipsoid algorithm has the important property that the ellipsoids contructed shrink
in volume as the algorithm proceeds; this is stated precisely in the next lemma. This means
that if the set P has positive volume, we will eventually find a point in P . We will need to
deal with the case when P has no volume (i.e. P has just a single point), and also discuss
when we can stop and be guaranteed that either we have a point in P or we know that P is
empty.

Lemma 7.1 V ol(Ek+1)

V ol(Ek)
< e−

1
2(n+1) .
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E1

E0
a0

a1
P

Figure 7.1: One iteration of the ellipsoid algorithm.

Lemma 7.1 V ol(Ek+1)

V ol(Ek)
< e−

1
2(n+1) .

Before we can state the algorithm more precisely, we need to define ellipsoids.

Definition 7.1 Given a center a, and a positive definite matrix A, the ellipsoid E(a, A) is
defined as {x ∈ Rn : (x− a)TA−1(x− a) ≤ 1}.

One important fact about a positive definite matrix A is that there exists B such that
A = BTB, and hence A−1 = B−1(B−1)T . Ellipsoids are in fact just affine transformations
of unit spheres. To see this, consider the (bijective) affine transformation T : x → y =
(B−1)T (x− a). It maps E(a, A)→ {y : yTy ≤ 1} = E(0, I).

We first consider the simple case in which the ellipsoid Ek is the unit sphere and the
inequality we generate is x1 ≥ 0. We claim that the ellipsoid containing Ek ∩ {x : x1 ≥ 0} is

Ek+1 =

{
x :

(
n + 1

n

)2(
x− 1

n + 1

)2

+
n2 − 1

n2

n∑

i=2

x2
i ≤ 1

}
.

Figure 7.1: One iteration of the ellipsoid algorithm.

Before we can state the algorithm more precisely, we need to define ellipsoids.

Definition 7.1 Given a center a, and a positive definite matrix A, the ellipsoid E(a,A) is
defined as {x ∈ Rn : (x− a)TA−1(x− a) ≤ 1}.

One important fact about a positive definite matrix A is that there exists B such that
A = BTB, and hence A−1 = B−1(B−1)T . Ellipsoids are in fact just affine transformations
of unit spheres. To see this, consider the (bijective) affine transformation T : x → y =
(B−1)T (x− a). It maps E(a,A)→ {y : yTy ≤ 1} = E(0, I).

We first consider the simple case in which the ellipsoid Ek is the unit sphere and the
inequality we generate is x1 ≥ 0. We claim that the ellipsoid containing Ek ∩ {x : x1 ≥ 0} is

Ek+1 =

{
x :

(
n+ 1

n

)2(
x− 1

n+ 1

)2

+
n2 − 1

n2

n∑

i=2

x2
i ≤ 1

}
.
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Indeed, if we consider an x ∈ Ek ∩ {x : x1 ≥ 0}, we see that

(
n+ 1

n

)2(
x− 1

n+ 1

)2

+
n2 − 1

n2

n∑

i=2

x2
i

=
n2 + 2n+ 1

n2
x2

1 −
(
n+ 1

n

)2
2x1

n+ 1
+

1

n2
+
n2 − 1

n2

n∑

i=2

x2
i

=
2n+ 2

n2
x2

1 −
2n+ 2

n2
x1 +

1

n2
+
n2 − 1

n2

n∑

i=1

x2
i

=
2n+ 2

n2
x1(x1 − 1) +

1

n2
+
n2 − 1

n2

n∑

i=1

x2
i

≤ 1

n2
+
n2 − 1

n2
≤ 1.

In this specific case, we can prove easily lemma 7.1.
Proof: The volume of an ellipsoid is proportional to the product of its side lengths.
Hence the ratio between the unit ellipsoid Ek and Ek+1 is

V ol(Ek+1)

V olEk
=

( n
n+1

)( n2

n2−1
)
n−1
2

1

=

(
n

n+ 1

)(
n2

n2 − 1

)n−1
2

< e−
1

n+1 e
n−1

(n2−1)2 = e−
1

n+1 e
1

2(n+1) = e−
1

2(n+1) ,

where we have used the fact that 1 + x ≤ ex for all x, with strict inequality if x 6= 0. 4
Now consider the slightly more general case in which the ellipsoid is also the unit sphere

but we have an arbitrary constraint dTx ≤ 0. We want to find an ellipsoid that contains
E(0, I) ∩ {x : dTx ≤ 0} (we let ‖d‖ = 1; this can be done by scaling both sides), it is easy
to verify that we can take Ek+1 = E(− 1

n+1
d, F ), where F = n2

n2−1
(I − 2

n+1
ddT ), and the ratio

of the volumes is ≤ exp
(
− 1

2(n+1)

)
.

Now we deal with the case where Ek is not the unit sphere. We take advantage of the
fact that linear transformations preserve ratios of volumes.

Ek
T→ E(0, 1)

↓
Ek+1

T−1

← E ′
(1)

Let ak be the center of Ek, and cTx ≤ cTak be the halfspace through ak that contains P .
Therefore, the half-ellipsoid that we are trying to contain is E(ak, A) ∩ {x : cTx ≤ cTak}.
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Let’s see what happens to this half-ellipsoid after the transformation T defined by y =
T (x) = (B−1)T (x− a). This transformation transforms Ek = E(ak, A) to E(0, I). Also,

{x : cTx ≤ cTak} T→ {y : cT (ak +BTy) ≤ cTak} = {y : cTBTy ≤ 0} = {y : dTx ≤ 0}, (2)

where d is given by the following equation:

d =
Bc√

cTBTBc
=

Bc√
cTAc

. (3)

Let b = BTd = Ac√
cTAc

. This implies:

Ek+1 = E

(
ak −

1

n+ 1
b,

n2

n2 − 1
BT

(
I − 2

n+ 1
ddT
)
B

)
(4)

= E

(
ak −

1

n+ 1
b,

n2

n2 − 1

(
A− 2

n+ 1
bbT
))

. (5)

To summarize, here is the Ellipsoid Algorithm:

1. Start with k = 0, E0 = E(a0, A0) ⊇ P , P = {x : Cx ≤ d}.

2. While ak 6∈ P do:

• Let cTx ≤ d be an inequality that is valid for all x ∈ P but cTak > d.

• Let b = Akc√
cTAkc

.

• Let ak+1 = ak − 1
n+1

b.

• Let Ak+1 = n2

n2−1
(Ak − 2

n+1
bbT ).

Claim 7.2 V ol(Ek+1)

V ol(Ek)
< exp

(
− 1

2(n+1)

)
.

After k iterations, V ol(Ek) ≤ V ol(E0) exp
(
− k

2(n+1)

)
. If P is nonempty then the Ellipsoid

Algorithm should find x ∈ P in at most 2(n+ 1) ln V ol(E0)
V ol(P )

steps.

In general, for a full-dimensional polyhedron described as P = {x : Cx ≤ d}, one can

show that V ol(E0)
V ol(P )

is polynomial in the encoding length for C and d. We will not show this
in general, but we will focus on the most important situation in combinatorial optimization
when we are given a set S ⊆ {0, 1}n (not explicitly, but for example as the incidence vectors
of all matchings in a graph) and we would like to optimize over P = conv(S). We will
make the assumption that P is full-dimensional; otherwise, one can eliminate one or several
variables and obtain a smaller full-dimensional problem.
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From feasibility to Optimization First, let us show how to reduce such an optimization
problem to the problem of finding a feasible point in a polytope. Let cTx with c ∈ Rn be
our objective function we would like to minimize over P . Assume without loss of generality
that c ∈ Zn. Instead of optimizing, we can check the non-emptiness of

P ′ = P ∩ {x : cTx ≤ d+
1

2
}

for d ∈ Z and our optimum value corresponds to the smallest such d. As S ⊆ {0, 1}n, d must
range in [−ncmax, ncmax] where cmax = maxi ci. To find d, we can use binary search (and
check the non-emptiness of P ′ with the ellipsoid algorithm). This will take O(log(ncmax)) =
O(log n+ log cmax) steps, which is polynomial.

Starting Ellipsoid. Now, we need to consider using the ellipsoid to find a feasible point
in P ′ or decide that P ′ is empty. As starting ellipsoid, we can use the ball centered at
the vector (1

2
, 1

2
, · · · , 1

2
) and of radius 1

2

√
n (which goes through all {0, 1}n vectors). This

ball has volume V ol(E0) = 1
2n

(
√
n)nV ol(Bn), where Bn is the unit ball. We have that

V ol(Bn) = πn/2

Γ(n
2

+1)
, which for the purpose here we can even use the (very weak) upper bound

of πn/2 (or even 2n). This shows that log(V ol(E0)) = O(n log n).

Termination Criterion. We will now argue that if P ′ is non-empty, its volume is not
too small. Assume that P ′ is non-empty, say v0 ∈ P ′ ∩ {0, 1}n. Our assumption that P
is full-dimensional implies that there exists v1, v2, · · · , vn ∈ P ∩ {0, 1}n = S such that the
“simplex” v0, v1, · · · , vn is full-dimensional. The vi’s may not be in P ′. Instead, define wi
for i = 1, · · · , n by:

wi =

{
vi if cTvi ≤ d+ 1

2

v0 + α(vi − v0) otherwise

where α = 1
2ncmax

. This implies that wi ∈ P ′ as

cTwi = cTv0 + αcT (vi − v0) ≤ d+
1

2ncmax
ncmax = d+

1

2
.

We have that P ′ contains C = conv({v0, w1, w2, · · · , wn}) and V ol(C) is 1
n!

times the volume
of the parallelipiped spanned by wi − v0 = βi(vi − v0) (with βi ∈ {α, 1}) for i = 1, · · · , n.
This paralleliped has volume equal to the product of the βi (which is at least αn) times the
volume of a parallelipiped with integer vertices, which is at least 1. Thus,

V ol(P ′) ≥ V ol(C) =
1

n!

(
1

2ncmax

)n
.

Taking logs, we see that the number of iterations of the ellipsoid algorithm before either
discovering that P ′ is empty or a feasible point is at most

log(V ol(E0))− log(V ol(P ′)) = O(n log n+ n log cmax).

This is polynomial.
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Separation Oracle. To run the ellipsoid algorithm, we need to be able to decide, given
x ∈ Rn, whether x ∈ P ′ or find a violated inequality. The beauty here is that we do not
necessarily need a complete and explicit description of P in terms of linear inequalities. We
will see examples in which we can even apply this to exponential-sized descriptions. What
we need is a separation oracle for P : Given x∗ ∈ Rn, either decide that x∗ ∈ P or find
an inequality aTx ≤ b valid for P such that aTx∗ > b. If this separation oracle runs in
polynomial-time, we have succeeded in finding the optimum value d when optimizing cTx
over P (or S).

Finding an optimum solution. There is one more issue. This algorithm gives us a point
x∗ in P of value at most d+ 1

2
where d is the optimum value. However, we are interested in

finding a point x ∈ P ∩ {0, 1}n = S of value exactly d. This can be done by starting from
x∗ and finding any extreme point x of P such that cTx ≤ cTx∗. Details are omitted.

In summary, we obtain the following important theorem shown by Grötschel, Lovász and
Schrijver, 1979.

Theorem 7.3 Let S = {0, 1}n and P = conv(S). Assume that P is full-dimensional and we
are given a separation oracle for P . Then, given c ∈ Zn, one can find min{cTx : x ∈ S} by
the ellipsoid algorithm by using a polynomial number of operations and calls to the separation
oracle.

To be more precise, the number of iterations of the ellipsoid algorithm for the above
application is O(n2 log2 n + n2 log2 cmax), each iteration requiring a call to the separation
oracle and a polynomial number of operations (rank-1 updates of the matrix A, etc.).

Here are two brief descriptions of combinatorial optimization problems that can be solved
with this approach.

Minimum Cost Arborescence Problem. We have seen a combinatorial algorithm to
solve the minimum cost arborescence problem, and it relied on solving by a primal-dual
method the linear program:

LP = min
∑

a∈A
caxa

subject to:

(P )
∑

a∈δ−(S)

xa ≥ 1 ∀S ⊆ V \ {r}

xa ≥ 0 a ∈ A.

Instead, we could use the ellipsoid algorithm to directly solve this linear program in polynomial-
time. Indeed, even though this linear program has an exponential number of constraints (in
the size of the graph), a separation oracle for it can be easily defined. Indeed consider x∗. If
x∗a < 0 for some a ∈ A, just return the inequality xa ≥ 0. Otherwise, for every t ∈ V \ {r},
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consider the minimum r − t cut problem in which the capacity on arc a is given by x∗a. As
we have seen, this can be solved by maximum flow computations. If for some t ∈ V \ {r},
the minimum r− t cut has value less than 1 then we have found a violated inequality by x∗.
Otherwise, we have that x∗ ∈ P . Our separation oracle can thus be implemented by doing
|V | − 1 maximum flow computations, and hence is polynomial. We are done.

Maximum Weight Matching Problem. For the maximum weight matching problem
in a general graph G = (V,E), Edmonds has shown that the convex hull of all matchings is
given by: ∑

e∈E(S)

xe ≤
|S| − 1

2
S ⊂ V, |S| odd

∑

e∈δ(v)

xe ≤ 1 v ∈ V

xe ≥ 0 e ∈ E.

(6)

Given x∗, we can easily check if x∗ is nonnegative and if the n constraints
∑

e∈δ(v) xe ≤ 1 are
satisfied. There is an exponential number of remaining constraints, but we will show now
that they can be checked by doing a sequence of minimum cut computations.

Assume x ≥ 0 satisfies
∑

e∈δ(v) xe ≤ 1 for every v ∈ V , and we would like to decide if

∑

e∈E(S)

xe ≤
|S| − 1

2

for all S ⊂ V , |S| odd, and if not produce such a violated set S. We can assume without
loss of generality that |V | is even (otherwise, simply add a vertex). Let

sv = 1−
∑

e∈δ(v)

xe,

for all v ∈ V . Observe that
∑

e∈E(S) xe ≤ |S|−1
2

is equivalent to

∑

v∈S
sv +

∑

e∈δ(S)

xe ≥ 1.

Define a new graph H, whose vertex set is V ∪ {u} (where u is a new vertex) and whose
edge set is E ∪ {(u, v) : v ∈ V }. In this new graph, let the capacity ue of an edge be xe if
e ∈ E or sv for e = (u, v). Observe that in this graph,

∑

v∈S
sv +

∑

e∈δ(S)

xe ≥ 1

if and only if ∑

e∈δH(S)

ue ≥ 1,



7. Lecture notes on the ellipsoid algorithm 8

where δH(S) are the edges of H with one endpoint in S. Thus, to solve our separation
problem, it is enough to be able to find the minimum cut in H among all the cuts defined
by sets S with S ⊆ V , |S| odd. This is a special case of the minimum T -odd cut problem
seen previously. If the minimum T -odd cut problem returns a minimum cut of value greater
or equal to 1, we know that all inequalities are satisfied; otherwise, a minimum T -odd cut
provides a violated inequality.
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