
CS 229r: Algorithms for Big Data Fall 2015

Lecture 1 — September 3, 2015

Prof. Jelani Nelson Scribes: Zhengyu Wang

1 Course Information

• Professor: Jelani Nelson

• TF: Jaros law B lasiok

2 Topic Overview

1. Sketching/Streaming

• “Sketch” C(X) with respect to some function f is a compression of data X. It allows
us computing f(X) (with approximation) given access only to C(X).

• Sometimes f has 2 arguments. For data X and Y , we want to compute f(X,Y) given
C(X), C(Y).

• Motivation: maybe you have some input data and I have some input data, and we want
to compute some similarity measure of these two databases across the data items. One
way is that I can just send you the database, and you can compute locally the similarity
measure, and vise versa. But image these are really big data sets, and I don’t want to
send the entire data across the wire, rather what I will do is to compute the sketch of my
data, and then send the sketch to you, which is something very small after compression.
Now the sketch C(X) is much smaller than X, and given the sketch you can compute
the function.

• Trivial example: image you have a batch of numbers, and I also have a batch of numbers.
We want to compute their sum. The sketch I can do is just locally sum all my input
data, and send you the sum.

• Streaming: we want to maintain a sketch C(X) on the fly as x is updated. In previous
example, if numbers come on the fly, I can keep a running sum, which is a streaming
algorithm. The streaming setting appears in a lot of places, for example, your router can
monitor online traffic. You can sketch the number of traffic to find the traffic pattern.

2. Dimensionality Reduction

• Input data is high-dimensional. Dimensionality reduction transforms high-dimensional
data into lower-dimensional version, such that for the computational problem you are
considering, once you solve the problem on the lower-dimensional transformed data, you
can get approximate solution on original data. Since the data is in low dimension, your
algorithm can run faster.

• Application: speed up clustering, nearest neighbor, etc.

1

3. Large-scale Machine Learning

• For example, regression problems: we collect data points {(zi, bi)|i = 1, . . . , n} such that
bi = f(zi) + noise. We want to recover f̃ “close” to f .

• Linear regression: f(z) = 〈x, z〉, where x is the parameter that we want to recover. If
the noise is Gaussian, the popular (and optimal to some sense) estimator we use is Least
Squares

xLS = arg min ‖Zx− b‖22 = (ZTZ)−1Zb, (1)

where b = (b1, . . . , bn)T and Z = (z1, . . . , zn)T . If Z is big, matrix multiplication can
be very expensive. In this course, we will study techniques that allow us to solve least
squares much faster than just computing the closed form (ZTZ)−1Zb.

• Other regression problems: PCA (Principal Component Analysis), matrix completion.
For example, matrix completion for Netflix problem: you are given a big product-
customer matrix of customer ratings of certain products. The matrix is very sparse
because not every user is going to rate everything. Based on limited information, you
want to guess the rest of the matrix to do product suggestions.

4. Compressed Sensing

• Motivation: compress / cheaply acquire high dimensional signal (using linear measure-
ment)

• For example, images are very high dimensional vectors. If the dimension of an image is
thousands by thousands, it means that the image has millions of pixels. If we write the
image in standard basis as pixels, it is likely that the pixels are not sparse (by sparse
we mean almost zero), because just image that if we take a photo in a dark room, most
of the pixels have some intensity. But there are some basis called wavelet basis, pictures
are usually very sparse on that basis. Once something is sparse, you can compress it.

• JPEG (image compression).

• MRI (faster acquisition of the signal means less time in machine).

5. External Memory Model

• Motivation: measure disk I/O’s instead of number of instructions (because random seeks
are very expensive).

• Model: we have infinite disk divided into blocks of size b bits, and memory of size M
divided into pages of size b bits. If the data we want to read or the location we want
to write is in the memory, we can just simply do it for free; if the location we want to
access is not in the memory, we cost 1 unit time to load the block from the disk into the
memory, and vise versa. We want to minimize the time we go to the disk.

• B trees are designed for this model.

6. Other Models (if time permitting)

• For example, map reduce.

2

3 Approximate Counting Problem

In the following, we discuss the problem appearing in the first streaming paper [1].

Problem. There are a batch of events happen. We want to count the number of events while
minimizing the space we use.

Note that we have a trivial solution - maintaining a counter - which takes log n bits where n is
the number of events. On the other hand, by Pigeonhole Principle, we cannot beat log n bits if we
want to count exactly.

For approximate counting problem, we want to output ñ such that

P(|ñ− n| > εn) < δ, (2)

where let’s say ε = 1/3 and δ = 1%.

First of all, we can say that if we want to design a deterministic algorithm for approximate counting
problem, we cannot beat against log log n bits, because similar to previous lower bound argument,
there are log n different bands (of different powers of 2), and it takes log log n bits to distinguish
them. Therefore, we maybe hope for O(log log n) bits algorithm. Actually, the following Morris
Algorithm can give us the desired bound:

1. Initialize X ← 0.

2. For each event, increment X with probability 1
2X

.

3. Output ñ = 2X − 1.

Intuitively, we have X ≈ lg n where lg x = log2(2+x). Before giving rigorous analysis (in Section 5)
for the algorithm, we first give a probability review.

4 Probability Review

We are mainly discussing discrete random variables. Let random variable X takes values in S.
Expectation of X is defined to be EX =

∑
j∈S j · P(X = j).

Lemma 1 (Linearity of expectation).

E(X + Y) = EX + EY (3)

Lemma 2 (Markov).

Xis a non-negative random variable⇒ ∀λ > 0,P(X > λ) <
EX
λ

(4)

Lemma 3 (Chebyshev).

∀λ > 0,P(|X − EX| > λ) <
E(X − EX)2

λ2
(5)

3

Proof. P(|X − EX| > λ) = P((X − EX)2 > λ2). It follows by Markov.

Moreover, Chebyshev can be generalized to be:

∀p > 0,∀λ > 0,P(|X − EX| > λ) <
E(X − EX)p

λp
. (6)

Lemma 4 (Chernoff). X1, . . . , Xn are independent random variables, where Xi ∈ [0, 1]. Let X =∑
iXi, λ > 0,

P(|X − EX| > λ · EX) ≤ 2 · e−λ2·EX/3. (7)

Proof. Since it’s quite standard, and the proof detail can be found in both previous scribe1 (Lec-
ture 1 in Fall 2013) and wiki2, we only include a proof sketch here. We can prove that both
P(X − EX > λ · EX) and P(X − EX < −λ · EX) are smaller than e−λ

2·EX/3, and then apply
union bound to prove the lemma.

The proof for P(X−EX < −λ·EX) < e−λ
2·EX/3 is symmetric to P(X−EX > λ·EX) < e−λ

2·EX/3.
So we can focus on how to prove P(X −EX > λ ·EX) < e−λ

2·EX/3. Since P(X −EX > λEX) =

P(et(X−EX) > etEX) < E et(X−E t)

et EX for any t > 0, we can optimize t to get the desired bound.

Lemma 5 (Bernstein). X1, . . . , Xn are independent random variables, where |Xi| ≤ K. Let X =∑
iXi and σ

2 =
∑

i E(Xi − EXi)
2. For ∀t > 0,

P(|X − EX| > t) . e−ct
2/σ2

+ e−ct/K , (8)

where . means ≤ up to a constant, and c is a constant.

Proof. First, we define p (p ≥ 1) norm for random variable Z to be ‖Z‖p = (E |Z|p)1/p. In the
proof, we will also use Jensen Inequality: f is convex ⇒ f(EZ) ≤ E f(Z).

To prove Bernstein, it’s equivalent to show (equivalence left to pset)

∀p ≥ 1, ‖
∑
i

Xi − E
∑
i

Xi‖p .
√
p · σ + p ·K. (9)

Let Yi be identically distributed as Xi, with {Xi|i = 1, . . . , n}, {Yi|i = 1, . . . , n} independent.

We have

1http://people.seas.harvard.edu/~minilek/cs229r/fall13/lec/lec1.pdf
2https://en.wikipedia.org/wiki/Chernoff_bound

4

‖
∑
i

Xi − E
∑
i

Xi‖p = ‖E
Y

(
∑
i

Xi −
∑
i

Yi)‖p (10)

≤ ‖
∑
i

(Xi − Yi)‖p (Jensen Inequality) (11)

= ‖
∑
i

αi(Xi − Yi)‖p (Add uniform random signs αi = ±1) (12)

≤ ‖
∑
i

αiXi‖p + ‖
∑
i

αiYi‖p (Triangle Inequality) (13)

= 2‖
∑
i

αiXi‖p (14)

= 2 ·
√
π

2
· ‖E

g

∑
i

αi|gi|Xi‖p (Let g be vector of iid Gaussians) (15)

. ‖
∑
i

αi|gi|Xi‖p (Jensen Inequality) (16)

= ‖
∑
i

giXi‖p (17)

Note that
∑

i αi|gi|Xi is Gaussian with variance
∑

iX
2
i . The pth moment of Gaussian Z ∼ N(0, 1):

EZp =

{
0, p is odd.

p!
(p/2)!2p/2

≤ √pp, p is even.
(18)

Therefore,

‖
∑
i

giXi‖p ≤
√
p · ‖(

∑
i

X2
i)1/2‖p (19)

=
√
p · ‖

∑
i

X2
i ‖

1/2
p/2 (20)

≤ √p · ‖
∑
i

X2
i ‖1/2p (‖Z‖p ≤ ‖Z‖q for p < q) (21)

=
√
p[‖

∑
i

Xi
2 − E

∑
i

X2
i + E

∑
i

X2
i ‖

1
2
p] (22)

≤ √p[‖E
∑
i

X2
i ‖1/2p + ‖

∑
i

X2
i − E

∑
i

X2
i ‖1/2p] (23)

= σ
√
p+
√
p · ‖

∑
i

X2
i − E

∑
i

X2
i ‖1/2p (24)

. σ
√
p+
√
p · ‖

∑
i

giX
2
i ‖1/2p (Apply the same trick (10)-(17)) (25)

Note that
∑

i giX
2
i is Gaussian with variance

∑
iX

4
i ≤ K2 ·

∑
X2
i , and

∑
i giXi is Gaussian with

variance
∑

iX
2
i ,

5

‖
∑
i

giX
2
i ‖p ≤ K · ‖

∑
i

giXi‖p. (26)

Let Q = ‖
∑

i giXi‖1/2p , we have

Q2 − Cσ√p− C√p
√
KQ ≤ 0, (27)

where C is a constant.

Because it’s a quadratic form, Q is upper bounded by the larger root of

Q2 − Cσ√p− C√p
√
KQ = 0. (28)

By calculation, Q2 ≤ C√p
√
KQ+ Cσ

√
p .
√
p · σ + p ·K.

5 Analysis

Let Xn denote X after n events in Morris Algorithm.

Claim 6.

E 2Xn = n+ 1. (29)

Proof. We prove by induction on n.

1. Base case. It’s obviously true for n = 0.

2. Induction step.

E 2Xn+1 =

∞∑
j=0

P(Xn = j) · E(2Xn+1 |Xn = j)

=

∞∑
j=0

P(Xn = j) · (2j(1− 1

2j
) +

1

2j
· 2j+1)

=
∞∑
j=0

P(Xn = j)2j +
∑
j

P(Xn = j)

= E 2Xn + 1

= (n+ 1) + 1

(30)

6

By Chebyshev,

P(|ñ− n| > εn) <
1

ε2n2
· E(ñ− n)2 =

1

ε2n2
E(2X − 1− n)2. (31)

Furthermore, we can prove the following claim by induction.

Claim 7.

E(22Xn) =
3

2
n2 +

3

2
n+ 1. (32)

Therefore,

P(|ñ− n| > εn) <
1

ε2n2
· n

2

2
=

1

2ε2
. (33)

5.1 Morris+

We instantiate s independent copies of Morris and average their outputs. Then the right hand side
of (33) becomes 1

2sε2
< 1

3 for s > 3
2ε2

= Θ(1
ε2

). (or < δ for s > 1
2ε2δ

)

5.2 Morris++

Run t instantiations of Morris+ with failure probability 1
3 . So s = Θ(1

ε2
). Output median estimate

from the s Morris+’s. It works for t = Θ(lg 1
δ), because if the median fails, then more than 1/2 of

Morris+ fails.

Let

Yi =

{
1, if ith Morris+ fails.

0, otherwise.
(34)

By Chernoff bound,

P(
∑
i

Yi >
t

2
) ≤ P(|

∑
i

Yi − E
∑
i

Yi| >
t

6
) ≤ e−ct < δ (35)

References

[1] Robert Morris. Counting Large Numbers of Events in Small Registers. Commun. ACM, 21(10):
840-842, 1978.

7

CS 229r: Algorithms for Big Data Fall 2015

Lecture 2 — Sept. 8, 2015

Prof. Jelani Nelson Scribe: Jeffrey Ling

1 Probability Recap

Chebyshev: P (|X − EX| > λ) < V ar[X]
λ2

Chernoff: For X1, . . . , Xn independent in [0, 1], ∀0 < ε < 1, and µ = E
∑

iXi,

P (|
∑
i

Xi − µ| > εµ) < 2e−ε
2µ/3

2 Today

• Distinct elements

• Norm estimation (if there’s time)

3 Distinct elements (F0)

Problem: Given a stream of integers i1, . . . , im ∈ [n] where [n] := {1, 2, . . . , n}, we want to output
the number of distinct elements seen.

3.1 Straightforward algorithms

1. Keep a bit array of length n. Flip bit if a number is seen.

2. Store the whole stream. Takes m lg n bits.

We can solve with O(min(n,m lg n)) bits.

3.2 Randomized approximation

We can settle for outputting t̃ s.t. P (|t − t̃| > εt) < δ. The original solution was by Flajolet and
Martin [2].

1

3.3 Idealized algorithm

1. Pick random function h : [n]→ [0, 1] (idealized, since we can’t actually nicely store this)

2. Maintain counter X = mini∈stream h(i)

3. Output 1/X − 1

Intuition. X is a random variable that’s the minimum of t i.i.d Unif(0, 1) r.v.s.

Claim 1. EX = 1
t+1 .

Proof.

EX =

∫ ∞
0

P (X > λ)dλ

=

∫ ∞
0

P (∀i ∈ str, h(i) > λ)dλ

=

∫ ∞
0

t∏
r=1

P (h(ir) > λ)dλ

=

∫ 1

0
(1− λ)tdλ

=
1

t+ 1

Claim 2. EX2 = 2
(t+1)(t+2)

Proof.

EX2 =

∫ 1

0
P (X2 > λ)dλ

=

∫ 1

0
P (X >

√
λ)dλ

=

∫ 1

0
(1−

√
λ)tdλ u = 1−

√
λ

= 2

∫ 1

0
ut(1− u)du

=
2

(t+ 1)(t+ 2)

This gives V ar[X] = EX2 − (EX)2 = t
(t+1)2(t+2)

, and furthermore V ar[X] < 1
(t+1)2

= (EX)2.

2

4 FM+

We average together multiple estimates from the idealized algorithm FM.

1. Instantiate q = 1/ε2η FMs independently

2. Let Xi come from FMi.

3. Output 1/Z − 1, where Z = 1
q

∑
iXi.

We have that E(Z) = 1
t+1 , and V ar(Z) = 1

q
t

(t+1)2(t+2)
< 1

q(t+1)2
.

Claim 3. P (|Z − 1
t+1 | >

ε
t+1) < η

Proof. Chebyshev.

P (|Z − 1

t+ 1
| > ε

t+ 1
) <

(t+ 1)2

ε2
1

q(t+ 1)2
= η

Claim 4. P (|(1
Z − 1)− t| > O(ε)t) < η

Proof. By the previous claim, with probability 1− η we have

1

(1± ε) 1
t+1

− 1 = (1±O(ε))(t+ 1)− 1 = (1±O(ε))t±O(ε)

5 FM++

We take the median of multiple estimates from FM+.

1. Instantiate s = d36 ln(2/δ)e independent copies of FM+ with η = 1/3.

2. Output the median t̂ of {1/Zj − 1}sj=1 where Zj is from the jth copy of FM+.

Claim 5. P (|t̂− t| > εt) < δ

Proof. Let

Yj =

{
1 if |(1/Zj − 1)− t| > εt

0 else

We have EYj = P (Yj = 1) < 1/3 from the choice of η. The probability we seek to bound is
equivalent to the probability that the median fails, i.e. at least half of the FM+ estimates have
Yj = 1. In other words,

s∑
j=1

Yj > s/2

3

We then get that

P (
∑

Yj > s/2) = P (
∑

Yj − s/3 > s/6) (1)

Make the simplifying assumption that EYj = 1/3 (this turns out to be stronger than EYj < 1/3.
Then equation 1 becomes

P (
∑

Yj − E
∑

Yj >
1

2
E
∑

Yj)

using Chernoff,

< e−
(12)2s/3

3 < δ

as desired.

The final space required, ignoring h, is O(lg(1/δ)
ε2

) for O(lg(1/δ)) copies of FM+ that require O(1/ε2)
space each.

6 k-wise independent functions

Definition 6. A family H of functions mapping [a] to [b] is k-wise independent if ∀j1, . . . , jk ∈ [b]
and ∀ distinct i1, . . . , ik ∈ [a],

Ph∈H(h(i1) = j1 ∧ . . . ∧ h(ik) = jk) = 1/bk

Example. The set H of all functions [a] → [b] is k-wise independent for every k. |H| = ba so h
is representable in a lg b bits.

Example. Let a = b = q for q = pr a prime power, then Hpoly, the set of degree ≤ k − 1
polynomials with coefficients in Fq, the finite field of order q. |Hpoly| = qk so h is representable in
k lg p bits.

Claim 7. Hpoly is k-wise independent.

Proof. Interpolation.

7 Non-idealized FM

First, we get an O(1)-approximation in O(lg n) bits, i.e. our estimate t̃ satisfies t/C ≤ t̃ ≤ Ct for
some constant C.

1. Pick h from 2-wise family [n]→ [n], for n a power of 2 (round up if necessary)

2. Maintain X = maxi∈str lsb(h(i)) where lsb is the least significant bit of a number

3. Output 2X

4

For fixed j, let Zj be the number of i in stream with lsb(h(i)) = j. Let Z>j be the number of i
with lsb(h(i)) > j.

Let

Yi =

{
1 lsb(h(i)) = j

0 else

Then Zj =
∑

i∈str Yi. We can compute EZj = t/2j+1 and similarly

EZ>j = t(
1

2j+2
+

1

2j+3
+ . . .) < t/2j+1

and also
V ar[Zj] = V ar[

∑
Yi] = E(

∑
Yi)

2 − (E
∑

Yi)
2 =

∑
i1,i2

E(Yi1Yi2)

Since h is from a 2-wise family, Yi are pairwise independent, so E(Yi1Yi2) = E(Yi1)E(Yi2). We can
then show

V ar[Zj] < t/2j+1

Now for j∗ = dlg t− 5e, we have
16 ≤ EZj∗ ≤ 32

P (Zj∗ = 0) ≤ P (|Zj∗ − EZj∗ | ≥ 16) < 1/5

by Chebyshev.

For j = dlg t+ 5e
EZ>j ≤ 1/16

P (Z>j ≥ 1) < 1/16

by Markov.

This means with good probability the max lsb will be above j∗ but below j, in a constant range.
This gives us a 32-approximation, i.e. constant approximation.

8 Refine to 1 + ε

Trivial solution. Algorithm TS stores first C/ε2 distinct elements. This is correct if t ≤ C/ε2.

Algorithm.

1. Instantiate TS0, . . . , TSlgn

2. Pick g : [n]→ [n] from 2-wise family

3. Feed i to TSlsb(g(i))

4. Output 2j+1 out where t/2j+1 ≈ 1/ε2.

5

Let Bj be the number of distinct elements hashed by g to TSj . Then EBj = t/2j+1 = Qj . By
Chebyshev Bj = Qj ±O(

√
Qj) with good probability. This equals (1±O(ε))Qj if Qj ≥ 1/ε2.

Final space: C
ε2

(lg n)2 = O(1
ε2

lg2 n) bits.

It is known that space O(1/ε2 + log n) is achievable [4], and furthermore this is optimal [1, 5] (also
see [3]).

References

[1] Noga Alon, Yossi Matias, Mario Szegedy The Space Complexity of Approximating the Fre-
quency Moments. J. Comput. Syst. Sci. 58(1): 137–147, 1999.

[2] Philippe Flajolet, G. Nigel Martin Probabilistic counting algorithms for data base applications.
J. Comput. Syst. Sci., 31(2):182–209, 1985.

[3] T. S. Jayram, Ravi Kumar, D. Sivakumar: The One-Way Communication Complexity of
Hamming Distance. Theory of Computing 4(1): 129–135, 2008.

[4] Daniel M. Kane, Jelani Nelson, David P. Woodruff An optimal algorithm for the distinct
elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pages 41–52, 2010.

[5] David P. Woodruff. Optimal space lower bounds for all frequency moments. In SODA, pages
167–175, 2004.

6

CS 229r: Algorithms for Big Data Fall 2015

Lecture 03, September 11th

Prof. Jelani Nelson Scribe: Vasileios Nakos

1 Overview

In the last lecture we looked at distinct elements, k-wise independence, geometric subsampling of
streams.

In this lecture we will see lower bounds on exact and approximate deterministic algorithms on data
streams, as well as the AMS sketch and Indyk’s algorithm for the Fp moments, when 0 ≤ p ≤ 2.

2 Main Section

2.1 Space lower bounds for streaming algorithms

We begin by an impossibility result. We consider the distinct elements problems, where you want
to find the number of distinct elements in a stream, where queries and additions are permitted.
We will denote by s the space of the algorithm, n the size of the universe from which the elements
come from, and m the length of the stream. We have the following result [1].

Theorem 1. There is no deterministic exact algorithm for computing number of distinct elements
in O(minn,m) space.

Proof. We are going to make an information-theoretic argument. Using a streaming algorithm
with space s for the current problem we are going to show how to encode {0, 1}n using only s bits.
In other words, we are going to construct an injective mapping from {0, 1}n to {0, 1}s. So, this
implies that s must be at least n and we are done. We look for procedures Dec,Enc such that
∀xDec(Enc(x)) = x and Enc(x) is a function from {0, 1}n to {0, 1}s.
For the encoding procedure, given a string x, create a stream containing and append i at the end
of the stream if xi = 1. Then Enc(x) is the memory content of the algorithm on that stream.
For the decoding procedure, we are going to look at each i and append it at the end of the stream(
feed it to the streaming algorithm) and query then the number of distinct elements. If the number
of distinct elements increases this implies that xi = 0, otherwise it implies that xi = 1. So we can
recover x completely and this finishes the proof.

We move on by showing that even approximate algorithms are hopeless for this problem.

Theorem 2. Any deterministic F0 algorithm that provides 1.1 approximation requires Ω(n) space

Proof. Suppose we had a colection C satisfying:

1

• |C| ≥ 2cn, for some constant c < 1.

• ∀S ∈ C, |S| = n
100

• ∀S 6= T ∈ C, |S ∩ T | ≤ n
2000 ≤

1
20 |S|

We leave the proof of existence of such a set later and we are moving to our lower bound. We are
going to use the algorithm to encode vectors xS∀S ∈ C, where xS is the indicator vector of set S.
The lower bound follows as before since we must have s ≥ cn The encoding procedure is going to
be the same as before.
For the decoding procedure, we are going to iterate over all sets and test for each set S if it corre-
sponds to our initial encoded set(remember we are just doing an information-theoretic argument
and we do not care about the running running- we only care that this map is an injection). For
that, we keep at each time the memory contents of M of the streaming algorithm after having
inserted our initial string. Then for each S, we initialize our algorithm with memory contents M
and then feed element i if i ∈ S. It is easy to see that if S equals the initial encoded set, the number
of distinct elements does not increase by much, whereas if it is not it almost doubles. Taking also
into account the approximation guarantee of the algorithm we see for example that if S is not our
initial set then the number of distinct elements grows by 3

2(we can tune the parametersif needed).

We now only need to prove the existence of such a family of sets C. We are going to argue via
probabilistic method. We partition n into n

100 intervals of length 100 each in the obvious way.
To form a set S we pick one number from each interval uniformly at random. Obviously, such
a set has size exactly n

100 . For two sets S, T chosen uniformly at random as before let Ui be the
random variable that equals 1 if they have the same number chosen from interval i. Obviously

P [Ui = 1] = 1
100 . So the expected size of the intersection is just E

∑ n
100
i=1 = n

100 ·
1

100 . The probability

that this interesction is bigger than five times its mean is smaller than e−c
′n for some constant c′,

by a standard Chernoff bound. We can then apply a union bound over all possible intersections
and get the desired result.

2.2 Linear Sketches and upper bounds

2.2.1 What is a Linear Sketch?

We introduce the turnstile model in streaming algorithms. In this model we have a vector x ∈ Rn
that starts as the all zero vector and then a sequence of updates comes. Each update is of the form
(i,∆), where ∆ ∈ R and i ∈ {1, .., n}. This corresponds to the operation xi ← xi + ∆.
Given a function f , we want to compute or approximate f(x).For example in the problem of distinct
elements ∆ is always 1 and f(x) = |i : xi 6= 0.
The common/only technique for designing turnstile algorithms is linear sketching. The idea is
to maintain in memory y = Πx, where Π ∈ Rm×n, a matrix that is short and fat. We care that
m < n, usually much smaller. We can see that y is m-dimensional so we can store it efficiently but
what about Π? If we need to store the whole Π in memory this will not lead to a better algorithm
in terms of space. So, there are two common ways in constructing and storing Π. The one is that
Π is deterministic and so we can easily compute Πij without keeping the whole matrix in memory.

2

The other way is that Π is defined by k-wise independent hash functions for some small k, so we
can afford storing the hash functions and computing Πij .

Let’s see now how updates happen when we have a linear sketch. Let Πi be the i-th column of the
matrix Π. Then Πx =

∑n
i=1 Πixi. So by storing y = Πx when the update (i,∆) comes we have

that the new y equals Π(x + ∆ei) = Πx + ∆Πi. Observe that the first summand is the old y and
the second summand is just some multiple of the i-th column of Π. This means that if I can tell
which is the i-th column of Π in small space I can also perform updates in small space.

2.2.2 Moment Estimation for p = 2

This problem was investigated by Alon,Matis, Szegedy at StoC 96 [1]. Let Fp = ‖x‖pp =
∑p

i=1 |xi|p.
We want to estimate the space needed to solve the moment estimation problem as p changes. There
is a transition point in complexity of Fp.

• 0 ≤ p ≤ 2, poly(lognε) space is achievable for (1 + ε) approximation with 2
3 success probability

[1, 3].

• For p > 2 then we need exactly Θ(n
1− 2

p poly(lognε)) bits of space for (1 + ε) space with 2
3

success probability [2, 4].

We not look at the case p = 2 which is the AMS sketch. Let σi ∈ {−1, 1}n be random signs coming
from a 4-wise independent family. We need O(logn) bits to represent such a family. Then set
yi =

∑n
j=1 σijxj . This means that our matrix Π we were referring before has rows the vectors σi.

Observe that we can get columns because we just need to evaluate hash functions. Our algorithm
is going to output 1

m‖y‖
2
2 as estimator of ‖x‖22.

It holds that Ey2i = E(
∑n

j=1 σijxj)
2 = ‖x‖22 + E

∑
j 6=j′ σijσij′xjxj′ . Moreover we need to es-

timate the variance and apply Chebyshev’s inequality. Observe that Ey4i = E(
∑

j σijxj)
4 =

E
∑

j1,j2,j3,j4∈[n]4 σij1σij2σij3σij4xij1xij2xij3xij4 =
∑n

j=1 x
4
j + (1/2)

(
4
2

)∑
j 6=j′ x

2
jx

2
j′ , because when we

take the expectation if a term in a summand appears odd number of times its expectation is going
to be zero and cancel the whole summand, so we are left only with the summands in which all terms
appear an even number of times. Calculating the variance and walking through the calculations
we get the desired result.

Facts: We can also use gaussians instead of random signs. The analysis would be similar, but
we would have to discretize the gaussians in order to avoid the need of infinite precision. We can
also have only one hash function σ : [m] × [n] → {−1, 1}, as long as it is 4-wise independent.
The difference now is that we need to compute expectation and variance of the whole estimator
1
m

∑m
i=1 y

2
i instead of each term individually.

3

2.2.3 Moment Estimation for p ≤ 2

We are going to describe an idealized algorithm with infinite precision, given by Indyk [3]. Call a
distribution D over R p− stable if for z1, .., zn iid from this distribution and for all x ∈ Rn we have
that

∑n
i=1 zixi is a random variable with distribution ‖x‖pD. An example of such a distribution

are the gaussians for p = 2 and for p = 1 the Cauchy distribution, which has probability density
function pdf(x) = 1

π(x+1)2
.

Note: Observe that by the Central Limit Theorem an average of d samples from a distribution
approaches a gaussian as d goes to infinity. But, if we pick a p-stable distribution for p < 2, such as
Cauchy distribution, why does this not violate the Central Limit Theorem? Actually, for CLT to
hold we also need bounded moments of the distribution. But for example second moment of Cauchy
is unbounded so the theorem does not apply. Intuitively, one can think that p-stable distributions
cannot exist for p > 2 because they violate Central Limit Theorem. Indeed, this is the case as was
proved by Lévy in the 20’s [5]. In fact, he proved that p-stable distributions exist if and only if
0 ≤ p ≤ 2.

We get back to Indyk’s algorithm. In fact the algorithm is very simple. Let the i-th row of Π be
zi, as before, where zi comes from a p-stable distribution. Then consider yi =

∑n
j=1 zijxj . When

a query comes, output the median of all the yi. We can assume that without loss of generality a
p-stable distribution has median equal to 1, which in fact means that for z from this distribution
P(−1 ≤ z ≤ 1) ≤ 1

2 .

2.3 Next time

In the next lecture we are going to analyze Indyk’s algorithm.

References

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Fre-
quency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar. An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci. 68(4):702–732, 2004.

[3] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM 53(3):307–323, 2006.

[4] Piotr Indyk, David P. Woodruff. Optimal approximations of the frequency moments of data
streams. STOC, pages 202–208, 2005.

[5] Paul Lévy. Calcul des probabilités. Gauthier-Villars, Paris, 1925.

4

CS 229r: Algorithms for Big Data Fall 2015

Lecture 4 — September 15, 2015

Prof. Jelani Nelson Scribe: Hyunghoon Cho

1 Recap

Recall the following definition of p-stable distributions.

Definition 1. Dp is a p-stable distribution on R if, for any n independent samples z1, . . . , zn from
Dp, the following holds: ∀x ∈ Rn,

∑n
i=1 xizi ∼ ||x||pDp.

In other words, any linear combination of a set of samples from a p-stable distribution must itself
be a sample from the same distribution, scaled by the p-norm of the weight vector.

Theorem 1. A p-stable distribution exists iff 0 < p ≤ 2.

We know that the standard Gaussian distribution is 2-stable and the standard Cauchy distribution
is 1-stable. Although in most cases a simple closed-form expression for p-stable distributions is not
known, there is an efficient way to generate samples for any p ∈ (0, 2]. If we let θ ∈ [−π

2 ,
π
2] and

r ∈ [0, 1] be uniformly random samples, then

sin(pθ)

cos1/p(θ)

(
cos(θ(1− p))

ln(1/r)

) 1−p
p

is a sample from a p-stable distribution [CMS76].

2 Indyk’s Algorithm

2.1 Overview

Let Π = {πij} be an m×n matrix where every element πij is sampled from a p-stable distribution,
Dp. Given x ∈ Rn, Indyk’s algorithm [Indyk06] estimates the p-norm of x as

||x||p ≈ mediani=1,...,m|yi|,

where y = Πx. Recall from last lecture that in a turnstile streaming model, each element in
the stream reflects an update to an entry in x. While a naive algorithm would maintain x in
memory and calculate ||x||p at the end, thus requiring Θ(n) space, Indyk’s algorithm stores y and
Π. Combined with a space-efficient way to produce Π (described later in the lecture) we achieve
better space complexity.

1

2.2 Analysis

For simplicity of analysis, we will assume Π is generated with Dp such that if Z ∼ Dp then
median(|Z|) = 1. In other words, we assume the probability mass of Dp assigned to interval [−1, 1]
is 1/2. In addition, let I[a,b](x) be an indicator function defined as

I[a,b](x) =

{
1 x ∈ [a, b],

0 otherwise.

Let Zi be the i-th row of Π. We have

yi =

n∑
j=1

Zijxj ∼ ||x||pDp, (1)

which follows from the definition of p-stable distributions and noting that Zij ’s are sampled from
Dp. This implies

E

[
I[−1,1]

(
yi
||x||p

)]
=

1

2
, (2)

since yi/||x||p ∼ Dp.

Moreover, it can be shown that

E

[
I[−1−ε,1+ε]

(
yi
||x||p

)]
=

1

2
+ Θ(ε), (3)

E

[
I[−1+ε,1−ε]

(
yi
||x||p

)]
=

1

2
−Θ(ε). (4)

Next, consider the following quantities:

C1 =
1

m

m∑
i

I[−1−ε,1+ε]

(
yi
||x||p

)
, (5)

C2 =
1

m

m∑
i

I[−1+ε,1−ε]

(
yi
||x||p

)
. (6)

C1 represents the fraction of yi’s that satisfy |yi| ≤ (1 + ε)||x||p, and similarly, C2 represents the
fraction of yi’s that satisfy |yi| ≤ (1 − ε)||x||p. By linearity of expectation, we have E[C1] =
1/2 + Θ(ε) and E[C2] = 1/2−Θ(ε). Therefore, in expectation, the median of |yi| lies in

[(1− ε)||x||p, (1 + ε)||x||p]

as desired.

Now we analyze the variance of C1 and C2. We have

Var (C1) =
1

m2
×m× (variance of the indicator variable). (7)

Since variance of any indicator variable is at most 1, Var(C1) ≤ 1
m . Similarly, Var(C2) ≤ 1

m . With
an appropriate choice of m now we can ensure that the median of |yi| is in the desired ε-range of
||x||p with high probability.

2

2.3 Derandomizing Π

We have shown that Indyk’s algorithm work, but independently generating and storing all mn
elements of Π is expensive. Can we get by with a smaller degree of randomness? To invoke the
definition of p-stable distributions for Equation 1, we need the entries in each row to be independent
from one another. And the rows need to be pairwise independent for our calculation of variance to
hold. As a side note, generating pairwise independent Gaussian or Cauchy random variables can be
achieved by discretizing the space and treating them as discrete random variables. One can make
a claim that, with fine enough discretization, the algorithm still succeeds with high probability.

Now suppose wi =
∑n

j=1Qijxj where Qij ’s are k-wise independent p-stable distribution samples.
What we want is an argument of the form

E

[
I[a,b]

(
wi
||x||p

)]
≈ε E

[
I[a,b]

(
yi
||x||p

)]
. (8)

If we can make such claim, then we can use k-wise independent samples in each row in lieu of
fully independent samples to invoke the same arguments in the analysis above. This has been
shown for k = Ω(1/εp) [KNW10], but we are not going to cover this in class. With this technique,
we can specify Π using only O(k lg n) bits; across rows, we only need to use 2-wise independent
hash function that maps a row index to a O(k lg n) bit seed for the k-wise independent hash
function. Indyk’s approach to derandomizing Π, while the results are not as strong, employs a
useful technique, so we will cover that here instead.

2.3.1 Branching Programs

A branching program can be described with a grid of nodes representing different states of the
program—we can think of it as a DFA. The program starts at an initial node which is not part of
the grid. At each step, the program reads S bits of input, reflecting the fact that space is bounded
by S, and makes a decision about which node in the subsequent column of the grid to jump to.
After R steps (number of columns in the grid), the final node visited by the program represents
the outcome. The entire input, which can be represented as a length-RS bit string, induces a
distribution over the final states. Our goal is to generate the input string using fewer (� RS)
random bits such that the original distribution over final states is well preserved. The following
theorem addresses this goal.

Theorem 2. ([Nisan92]) There exists h : {0, 1}t → {0, 1}RS for t = O(S lgR) such that∣∣∣Px∼U({0,1}RS) {f(B(x)) = 1} − Py∼U({0,1}t) {f(B(h(y))) = 1}
∣∣∣ ≤ 1

2S
. (9)

for any branching program B and any function f : {0, 1}S → {0, 1}.

In other words, such function h can simulate the input to the branching program with only t random
bits such that it is almost impossible to discriminate the outcome of the simulated program from
that of the original program.

3

2.3.2 Nisan’s Pseudorandom Generator (PRG)

What does such a function look like? We start by taking a random sample x from {0, 1}S . Then
we place x at the root and repeat the following procedure to create a complete binary tree. At
each node, create two children and copy the string over to the left child. For the right child, use
a random 2-wise independent hash function hj : [2S] → [2S] chosen for the corresponding level of
the tree and record the result of the hash. Once we reach R levels, output the concatenation of all
leaves, which is a length-RS bit string. To illustrate, the first few levels of our tree would look like:

x

x

x h2(x)

h1(x)

h1(x) h2(h1(x))

Since each hash function requires S random bits and there are lgR levels in the tree, this function
uses O(S lgR) bits total. We will not discuss why this function satisfies the condition in Theorem 2.

2.3.3 Back to Indyk’s Algorithm

Now we will use Nisan’s PRG to derandomize Π in Indyk’s algorithm. Consider the following
program:

1. Initialize c1 ← 0, c2 ← 0

2. For i = 1, . . . ,m:

(a) Initialize y ← 0

(b) For j = 1, . . . , n:

i. Update y ← y + πijxj

(c) If y ≤ (1 + ε)||x||p, then increment c1

(d) If y ≤ (1− ε)||x||p, then increment c2

Note that this program only uses O(lg n) bits and is a branching program that mimics the proof
of correctness for Indyk’s algorithm. More specifically, Indyk’s algorithm succeeded iff at the end
of this program c1 >

m
2 and c2 <

m
2 . The only source of randomness in this program are the

πij ’s. We will use Nisan’s PRG to produce these random numbers. We invoke Theorem 2 with the
above program as B and an indicator function checking whether the algorithm succeeded or not
as f . Note that the space bound is S = O(lg n) and the number of steps taken by the program is
R = O(mn), or O(n2) since m ≤ n. This means we can “fool” the proof of correctness of Indyk’s
algorithm only using O(lg2 n) random bits to generate Π.

4

3 The p > 2 Case

Indyk’s algorithm uses p-stable distributions which only exist for p ∈ (0, 2]. What do we do when
p > 2?

Theorem 3. n1−2/ppoly(lgnε) space is necessary and sufficient.

A nearly optimal lower bound was given by [BarYossef04] and first achieved by [IW05]. In this
lecture we will discuss the algorithm of [Andoni12], which is based on [AKO11] and [JST11]. We
will focus on ε = Θ(1). Refining this result may be included in the next homework.

In this algorithm, we let Π = PD. P is a m× n matrix, where each column has a single non-zero

element that is either 1 or −1. D is a n× n diagonal matrix with dii = u
−1/p
i , where ui ∼ Exp(1).

In other words,

P{ui > t} =

{
1 t ≤ 0,

e−t t > 0.

Similar to the 0 < p ≤ 2 case, we will keep y = Πx, but here we estimate ||x||p with

||x||p ≈ ||y||∞ = max
i
|yi|. (10)

Theorem 4. P
{
1
4 ||x||p ≤ ||y||∞ ≤ 4||x||p

}
≥ 11

20 for m = Θ(n1−2/p lg n).

Let z = Dx, which means y = Pz. To prove Theorem 4, we will first show that ||z||∞ provides a
good estimate and then show that applying P to z preserves this. The latter step is deferred to
next class due to time constraints.

Claim 1. P
{
1
2 ||x||p ≤ ||z||∞ ≤ 2||x||p

}
≥ 3

4

Proof. Let q = min
{

u1
|x1|p , . . . ,

un
|xn|p

}
. We have

P{q > t} = P {∀i, ui > t|xi|p} (11)

=

n∏
i=1

e−t|xi|
p

(12)

= e−t||x||
p
p , (13)

which implies q ∼ Exp(1)
|x||pp

. Thus,

P

{
1

2
||x||p ≤ ||z||∞ ≤ 2||x||p

}
= P

{
1

2p
||x||−pp ≤ q ≤ 2p||x||−pp

}
(14)

= e−
1
2p − e−2p (15)

≥ 3

4
, (16)

for p > 2.

5

References

[CMS76] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random
variables. Journal of the american statistical association, 71.354 (1976): 340-344.

[KNW10] Daniel Kane, Jelani Nelson, David Woodruff. On the exact space complexity of sketching
and streaming small norms. Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms (SODA), 2010.

[BarYossef04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar An information
statistics approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68 (2004): 702-732.

[Andoni12] Alexandr Andoni. High frequency moments via max-stability. Manuscript, 2012. http:
//web.mit.edu/andoni/www/papers/fkStable.pdf

[AKO11] Alexandr Andoni, Robert Krauthgamer, Krzysztof Onak. Streaming Algorithms via
Precision Sampling. FOCS, pgs. 363–372, 2011.

[JST11] Hossein Jowhari, Mert Saglam, Gábor Tardos. Tight bounds for Lp samplers, finding
duplicates in streams, and related problems. PODS, pgs. 49–58, 2011.

[Indyk06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM 53(3): 307–323, 2006.

[IW05] Piotr Indyk, David P. Woodruff. Optimal approximations of the frequency moments of
data streams. STOC, pgs. 202–208, 2005.

[Nisan92] Noam Nisan. Pseudorandom Generators for Space-Bounded Computation. Combinator-
ica, 12(4):449-461, 1992.

6

CS 229r: Algorithms for Big Data Fall 2015

Lecture 5 — September 17, 2015

Prof. Jelani Nelson Scribe: Yakir Reshef

1 Recap and overview

Last time we discussed the problem of norm estimation for p-norms with p > 2. We had described
an algorithm by [Andoni12] that, given x ∈ Rn updated under a turnstile model, approximates
‖x‖p with constant multiplicative error. The algorithm generates two random matrices P ∈ Rm×n
(with m� n) and D ∈ Rn×n. P is sampled so that each of its columns contains all zeros except for

one entry, which contains a random sign. D is a diagonal matrix whose i-th diagonal entry is u
−1/p
i

where the ui are i.i.d. exponential random variables. The algorithm then maintains y = PDx, and
its output is ‖y‖∞ = maxi |yi|.

In this lecture we will complete the proof of correctness of this algorithm and then move on from
p-norm estimation to other problems related to linear sketching.

2 Completing the proof of correctness

From last time we have the following claim.

Claim 1. Let Z = DX. Then

P

(
1

2
‖x‖p ≤ ‖Z‖∞ ≤ 2‖x‖p

)
≥ 3/4

This claim establishes that if we could maintain Z instead of y then we would have a good solution
to our problem. Remember though that we can’t store Z in memory because it’s n-dimensional
and n� m. That’s why we need to analyze PZ ∈ Rm.

2.1 Overview of analysis of y = PZ

The idea behind our analysis of y = PZ is as follows: each entry in y is a sort of counter. And the
matrix P takes each entry in Z, hashes it to a perfectly random counter, and adds that entry of
Z times a random sign to that counter. Since n > m and there are only m counters, there will be
collisions, and these will cause different Zi to potentially cancel each other out or add together in
a way that one might expect to cause problems. We’ll get around this by showing that there are
very few large Zi’s, so few relative to m that with high probability none of them will collide with
each other.

We still need to worry, because small Zi’s and big Zi’s might collide with each other. But remember
that when we add the small Zi’s, we multiply them with a random sign. So the expectation of the
aggregate contributions of the small Zi’s to each bucket is 0. We’ll bound their variance as well,

1

which will show that if they collide with big Zi’s then with high probability this won’t substantially
change the relevant counter. All of this together will show that the maximal counter value (i.e.,
‖y‖∞) is close to the maximal Zi – and therefore to ‖x‖p – with high probability

2.2 Analysis of y = PZ

We make the following definitions.

• Let T = ‖x‖p.

• Define the ”heavy indices” as H = {j : |Zj | ≥ T/(v lg(n))}. Think of c as big. We’ll set it
later.

• Define the ”light indices” as L = [n]\H.

2.2.1 Analyzing the heavy indices

We begin by showing that there will not be many heavy indices.

Claim 2. For any ` > 0, we have

E

(∣∣∣∣{i ∈ [n] : |Zi| >
T

`

}∣∣∣∣) < `p

Before we prove this claim, let’s reflect: if ` = v lg(n) then we get polylog(n) heavy indices, which
is miniscule compared to the m = O(n1−2/p ln(n)) counters. Birthday paradox-type reasoning
will then translate this bound into the idea that with high probability there will not be collisions
between big Zj .

Proof. Let

Qi =

{
1 |zi| > T/`

0 else

so that the number of indices with |Zi| > T/` equals
∑
Qi. We then have

E

(∑
i

Qi

)
=
∑
i

E(Qi)

=
∑
i

P
(
|xi/u1/pi | > T/`

)
=
∑
i

P (ui < |xi|p`p/T p)

=
∑
i

(1− e−|xi|p`p/Tp) (ui exponentially distributed)

≤
∑
i

`p|xi|p/T p (1 + x ≤ ex for x ∈ R)

= `p
∑

i |xi|p = ‖x‖pp = T p

which completes the proof.

2

2.2.2 Recalling Bernstein’s inequality

To analyze the light indices, we’ll need to recall Bernstein’s inequality.

Theorem 1 (Bernstein’s inequality). Suppose R1, . . . , Rn are independent, and for all i, |Ri| ≤ K,
and var(

∑
iRi) = σ2. Then for all t > 0

P

(∣∣∣∣∣∑
i

Ri − E

(∑
i

Ri

)∣∣∣∣∣ > t

)
. e−ct

2/σ2
+ e−ct/K

2.2.3 Analyzing the light indices

We now establish that the light indices together will not distort any of the heavy indices by too
much. Before we write down our specific claim, let’s parametrize P as follows. We have a function
h : [n] → [m] as well as a function σ : [n] → {−1, 1} that were both chosen at random. (One can
show that these can be chosen to be k-wise independent hash functions, but we won’t do so in this
lecture.) We then write

Pij =

{
σ(j) if h(j) = i

0 else.

So essentially, h tells us which element of the column to make non-zero, and σ tells us which sign
to use for column j.

We can now write our claim about the light indices.

Claim 3. It holds with constant probability that for all j ∈ [m],∣∣∣∣∣∣
∑

j∈L:h(j)=i

σ(j)Zj

∣∣∣∣∣∣ < T/10.

Let us see how this claim completes our argument. It means that

• If yi didn’t get any heavy indices then the magnitude of yi is much less than T , so it won’t
interfere with our estimate.

• If yi got assigned the maximal Zj , then by our previous claim that is the only heavy index
assigned to yi. In that case, this claim means that all the light indices assigned to yi won’t
change it by more than T/10, and since Zj is within a factor of 2 of T , yi will still be within
a constant multiplicative factor of T .

• If yi got assigned some other heavy index, then the corresponding Zj is by definition is less
than 2T since it’s less than the maximal Zj . In that case, this claim again tells us that yi
will be at most 2.1T .

To put this more formally:

yi =
∑

j:h(j)=i

σ(j)Zj

=
∑

j∈L:h(j)=i

σ(j)Zj + σ(jheavy)Zjheavy

3

where the second term is added only if yi got some heavy index, in which case we can assume it
received at most one. The triangle inequality then implies that

|yi| ∈ Zjheavy ±

∣∣∣∣∣∣
∑

j∈L:h(j)=i

σ(j)Zj

∣∣∣∣∣∣
= Zjheavy ± T/10

Applying this to the bucket that got the maximal zi then gives that that bucket of y should contain
at least 0.4T . And applying this to all other buckets gives that they should contain at most 2.1T .

Let us now prove the claim.

Proof of Claim 3. Fix i ∈ [m]. We use Bernstein on the sum in question. For j ∈ L, define

δj =

{
1 if h(j) = i

0 else.

Then the sum we seek to bound equals ∑
j∈L

δjσ(j)Zj

We will call the j-th term of the summand Rj and then use Bernstein’s inequality. The brunt of
the proof will be computing the relevant quantities to see what the inequality gives us. First, the
easy ones:

1. We have E(
∑
Rj) = 0, since the σ(j) represent random signs.

2. We also have K = T/(v lg(n)) since |δj | ≤ 1, |σ(j)| ≤ 1, and we only iterate over light indices
so |Zj | ≤ T/(v lg(n)).

It remains only to compute σ2 = var(
∑

j Rj). If we condition on Z, then a problem from problem
set 1 implies that

var

∑
j

Rj |Z

 ≤ ‖Z‖22
m

This isn’t enough of course: we need to get something that takes the randomness of Z into account.
However, instead of computing the unconditional variance of our sum, we will prove that σ2 is small
with high probability over the choice of Z. We’ll do this by computing the unconditional expectation
of σ2 and then using Markov. We write

E
(
‖Z‖22

)
=
∑
j

x2jE

(
1

u
2/p
j

)

4

and

E

(
1

u
2/p
j

)
=

∫ ∞
0

e−x(x−2/p)dx

=

∫ 1

0
e−x(x−2/p)dx+

∫ ∞
1

e−x · (x−2/p)dx

=

∫ 1

0
x−2/pdx+

∫ ∞
1

e−xdx. (trivial bounds on e−x and x−2/p)

The second integral trivially converges, and the former one converges because p > 2. This gives
that

E(‖Z‖2) = O(‖x‖22)

which gives that with high probability we will have σ2 ≤ O(‖x‖22)/m.

To use Bernstein’s inequality, we’ll want to relate this bound on σ2, which is currently stated in
terms of ‖x‖2, to a bound in terms of ‖x‖p. We will do this using a standard argument based on
Hölder’s inequality, which we re-state without proof below.

Theorem 2 (Hölder’s inequality). Let f, g ∈ Rn. Then∑
i

figi ≤ ‖f‖a‖g‖b

for any 1 ≤ a, b ≤ ∞ satisfying 1/a+ 1/b = 1.

Setting fi = x2i , gi = 1, a = p/2, b = 1/(1− a) then gives

‖xi‖2 =
∑
i

figi

≤

(∑
i

(x2i)
p/2

)2/p(∑
i

11/(1−2/p)

)1−2/p

(Hölder)

≤ ‖x‖2p · n1−2/p

Using the fact that we chose m to Θ(n1−2/p lg(n)), we can then obtain the following bound on σ2

with high probability.

σ2 ≤ O
(
‖x‖22
m

)
≤ O

(
T 2n1−2/p

m

)
(Hölder trick)

≤ O

(
T 2n1−2/p

n1−2/p lg n

)
(choice of m)

≤ O
(

T 2

lg(n)

)

5

We now need to apply Bernstein’s inequality and show that it gives us the desired result. Initially,
the inequality gives us the following guarantee.

P
(∣∣∣∑Ri

∣∣∣ > T/10
)
. e−cT

2/100·O(lg(n)/T 2) + e−cT/10·(v lg(n)/T)

≤ e−C lg(n) (for some new constant C)

= nC

So the probability that the noise at most T/10 can be made poly n. But there are at most n
buckets, which means that a union bound gives us that with at least constant probability all of the
light index contributions are are at most T/10.

3 Wrap-up

Thus far we presented algorithms for p-norm estimation for p ≤ 2, p = 2, and p > 2 separately.
(Of course, the p ≤ 2 can be used for p = 2 as well.) We noticed that at p = 2 there seems to be a
critical point above which we appeared to need a different algorithm. Later in the course we’ll see
that there are space lower-bounds that say that once p > 2 we really do need as much space as the
algorithm we presented for p > 2 required.

We conclude our current treatment of norm estimation and approximate counting by briefly noting
some motivating applications for these problems. For example, distinct elements is used in SQL to
efficiently count distinct entries in some column of a data table. It’s also used in network anomaly
detection to, say, track the rate at which a worm is spreading: you run distinct elements on a
router to count how many distinct entities are sending packets with the worm signature through
your router. Another example is: how many distinct people visited a website? For more general
moment estimation, there are other motivating examples as well. Imagine xi is the number of
packets sent to IP address i. Estimating ‖x‖∞ would give an approximation to the highest load
experienced by any server. Of course, as we just mentioned, ‖x‖∞ is difficult to approximate in
small space, so in practice people settle for the closest possible norm to the ∞-norm, which is the
2-norm. And they do in fact use the 2-norm algorithm developed in the problem set for this task.

4 Some setup for next time

Next time we’ll talk about two new, related problems that sites like Google trends solve. They are
called the heavy hitters problem and the point query problem.

In Point Query, we’re given some x ∈ Rn updated in a turnstile model, with n large. (You might
imagine, for instance, that x has a coordinate for each string your search engine could see and xi
is the number of times you’ve seen string i.) We seek a function query(i) that, for i ∈ [n], returns
a value in xi ± ε · ‖x‖1.

In Heavy Hitters, we have the same x but we seek to compute a set L ⊂ [n] such that

1. |xi| ≥ ε‖x‖1 ⇒ i ∈ L

2. |xi| < ε
2‖x‖1 ⇒ i /∈ L

6

As an observation: if we can solve Point Query with bounded space then we can solve Heavy
Hitters with bounded space as well (though not necessarily efficient run-time). To do this, we just
run Point Query with ε/10 on each i ∈ [n] and output the set of indices i for which we had large
estimates of xi.

4.1 Deterministic solution to Point Query

Let us begin a more detailed discussion of Point Query. We begin by defining an incoherent matrix.

Definition 1. Π ∈ Rm×n is ε-incoherent if

1. For all i, ‖Πi‖2 = 1

2. For all i 6= j, |〈Πi,Πj〉| ≤ ε.

We also define a related object: a code.

Definition 2. An (ε, t, q,N)-code is a set C = {C1, . . . , CN} ⊆ [q]t such that for all i 6= j,
∆(Ci, Cj) ≥ (1− ε)t, where ∆ indicates Hamming distance.

The key property of a code can be summarized verbally: any two distinct words in the code agree
in at most εt entries.

There is a relationship between incoherent matrices and codes.

Claim 4. Existence of an (ε, t, q, n)-code implies existence of an ε-incoherent Π with m = qt.

Proof. We construct Π from C. We have a column of Π for each Ci ∈ C, and we break each column
vector into t blocks, each of size q. Then, the j-th block contains binary string of length q whose
a-th bit is 1 if the j-th element of Ci is a and 0 otherwise. Scaling the whole matrix by 1/

√
t gives

the desired result.

We’ll start next time by showing the following two claims.

Claim 5 (to be shown next time). Given an ε-incoherent matrix, we can create a linear sketch to
solve Point Query.

Claim 6 (shown next time). A random code with q = O(1/ε) and t = O(1ε logN) is an (ε, t, q,N)-
code.

References

[Andoni12] Alexandr Andoni. High frequency moments via max-stability. Manuscript, 2012. http:
//web.mit.edu/andoni/www/papers/fkStable.pdf

7

CS 229r: Algorithms for Big Data Fall 2015

Lecture 6 — September 22, 2015

Prof. Jelani Nelson Scribe: Brabeeba Wang

1 Overview

In the last lecture we

1. l1 point query: query(i) = xi ± ε‖x‖1

2. l1 heavy hitters: query() return L ∈ [n] such that
(1) |xi| > ε‖x‖1 → i ∈ L
(2) |xi| < ε‖x‖1/2→ i /∈ L

In this lecture we are going to cover few algorithms on point query and heavy hitters

Definition 1. Π ∈ Rm×n is ε-coherent if

1. For any i, ‖Πi‖2 = 1

2. for any i 6= j, |〈Πi,Πj〉| < ε

Claim 2. Π ∈ Rm×n is ε-coherent → m dimensional sketch for l1 point query [2]

Proof. 1. sketch is y = Πx

2. estimate xi as (ΠY y)i = (ΠY Πx)i

3. (ΠY Πx)i = eTi ΠTΠx =< Π,
∑

j Πjxj >= xi +
∑

j 6=i zj〈Πi,Πj〉 ≤ xi +
∑
ε|xj |

Given Πx, recover x′ = ΠtΠx such that ‖x− x′‖∞ ≤ ε‖x‖1 is called l∞/l1 guarantee

2 Incoherent Π (Construction)

Using (ε, t, q, n) code, we get Π ∈ Rm×n, m = qt ε-incoherent. We have q = 2/ε, t = Θ(log n/ε)
random such code works why?

Proof. Two deterministic codes are following.

1. Look at two codewords C,D. We have E(# indices where C,D agree) = t/q. By Chernoff,
we have the probability of ≤ 2t/q = εt w.p ≥ 1− e−Ω(t/q)

1

2. Real-Soloman codes
q = t = Θ(ε−1 lg n/ lg lg n + lg(1/ε)) → m = Θ(ε−2(log n/ log log n + lg(1/ε))2). Better than

1 when ε << 2−c lgn1/2

Fact 3. m ≥ 1/ε2 · lg n/ lg(1/ε) for any ε-incoherent Π

3 Randomized Point Query

Definition 4. CountMin (CM) sketch [1]

1. Hashing h1, ...hL : [n]→ [t] (will come from 2-wise family)

2. counters Ca,b for a ∈ [L], b ∈ [t]

3. Ca,b =
∑

i∈[n],ha(i)=b xi

4. for ε-point query with failure probability δ, set t = 2/ε, L = lg(1/δ).
And let query(i) output mini≤r≤LCr,hr(i) (assuming ”strict turnstile”, for any i, xi ≥ 0).

Claim 5. query(i) = xi ± ε‖x‖1 w.p ≥ 1− δ. m = O(ε−1 lg(1/δ))

Proof. CM sketch

1. Fix i, let Zj = 1 if hr(j) = hr(i), Zj = 0 otherwise. Cr,hr(i) = xi +
∑

j 6=i xjZj error E.

2. We have E(E) =
∑

j 6=i |xj |EZj =
∑

j 6=i |xj |/t ≤ ε/2 · ‖x‖1

3. P(E > ε‖x‖1) < 1/2

4. P(minr Cr,hr(i) > xi + ε‖x‖1) < 1/2L = δ

Theorem 6. There is an α-Heavy Hitter (strict turnstile) w.p 1− η

Proof. Naively, we can do point query repeatedly with ε = α/4, δ = η/n → m = O(1/α log(n/η))
with query time O(n · log(n/η)).

But we have a quicker way, consider a perfect binary tree using our n vector elements as the
leaves.

2

{1, 2, ...n}

{1, 2, ...n/2}

...

1 2 . . .

...

{n/2 + 1, ...n}

...
...

. . . n− 1 n

There are lg n levels and the weight of each node is the sum of elements. Now for each levels
consider a CountMin algorithm.

Now our algorithm is:

• Run CountMin from the roots downward with error ε = α/4 and δ = ηα/4 log n

• Move down the tree starting from the root. For each node, run CountMin for each of its two
children. If a child is a heavy hitter, i.e. CountMin returns ≥ 3α/4‖x‖1, continue moving
down that branch of the tree.

• Add to L any leaf of the tree that you point query and that has CM(i) ≥ 3α/4‖x‖1.

Correctness:

• Notice that l1 norm will be the same at every level since the weight of the parents node is
exactly the sum of children nodes.

• Also notice that node u contains heavy hitter amongst leaves in its subtree → u is hit at its
level.

• Notice that there is at most 2/α nodes at any given level which are α/2-heavy hitter at that
level.

• This implies that if all point queries correct, we only touch at most (2/α) lg n vertices during
BFS

• For each CMj , we have ε = α/4, δ = ηα/4 log n → space(CMj) = O(1/α · log(log n/αη)) →
totalSpace = O(1/α · log n · log(log n/αη))

We know heavy hitter is l∞/l1 guarantee. We will see later something called compressed sensing
that gets l1/l1. To be precise ‖x − x′‖1 ≤ (1 + ε)‖xtail(k)‖1. The question is can you get to l1/l1
for HH. CM sketch can give this with ‖x′‖0 ≤ k

Definition 7. xtail(k) is x but with the heaviest k coordinates in magnitude zero’d out.

3

Claim 8. If CM has t ≥ Θ(k/ε), L = Θ(lg(1/δ)) then w.p. 1− δ, x′i = xi ± ε/k‖xtail(k)‖1

Given x′ from CM output (x′i = query(i)). Let T ⊂ [n] correspond to largest k entries of x′ in
magnitude. Now consider y = x′T .

Claim 9. ‖x− y‖1 ≤ (1 + 3ε)‖xtail(k)‖1

Proof. Let S denote head(x) ⊂ [n] and T denote head(x′) ⊂ [n]. We have

‖x− y‖1 = ‖x‖1 − ‖xT ‖1 + ‖xT − yT ‖1
≤ ‖x‖1 + ‖xT − yT + yT ‖1 + ‖xT − yT ‖1
≤ ‖x‖1 − ‖yT ‖1 + 2‖xT − yT ‖1
≤ ‖x‖ − ‖yS‖+ 2‖xT − yT ‖1
≤ ‖x‖ − ‖xS‖+ ‖xS − yS‖1 + 2‖xT − yT ‖1
≤ ‖xtail(k)‖1 + 3ε‖xtail(k)‖1

References

[1] Graham Cormode, S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75 , 2005.

[2] Jelani Nelson, Huy L. Nguyen, David P. Woodruff. On Deterministic Sketching and Streaming
for Sparse Recovery and Norm Estimation. Linear Algebra and its Applications, Special Issue
on Sparse Approximate Solution of Linear Systems, 441: 152–167, January 15, 2014.

4

CS 229r: Algorithms for Big Data Fall 2015

Lecture 7 — September 24, 2015

Prof. Jelani Nelson Scribe: David Mende

1 Recap

In the last lecture we looked at `1 point query and heavy hitters. For point query we have:

query(i) = xi ± ε ‖x‖1 .

What about other norms?

1.1 Count Sketch

See [1] for more information. We are given σ1, . . . , σL where σj : [n]→ {−1, 1}. We have

Cr,hr(i) = σr(i)xi +

 ∑
hr(j)=hr(i)

j 6=i

σr(j)xj

︸ ︷︷ ︸

β

.

For the error term β, we have that

E[β2] ≤ 1

t
‖x‖22 =⇒ |β| ≤

√
3√
t
‖x‖2

with probability ≥ 2

3
.

We want to find x̃ such that
‖x− x̃‖22 ≤ (1 + ε)

∥∥xtail(k)∥∥22 .
Gilbert et al. [2] showed that

M .
k

ε
lg
(n
k

)
.

We can recover x̃ in time (k/ε) logO(1) n and process updates in lgO(1) n.

1.2 New topics

• `0-sampling

• Graph algorithms

– Connectivity

– k-connectivity

1

2 `p-sampling

See [3] for more information. We have that:

• x is an updated turnstile,

• Want to draw i ∈ [n] with probability i = j being
|xj |p

‖xj‖pp
.

• The norm “‖x‖00”= |supp(x)| = |{i : xi 6= 0}|.

• The norm ‖x‖pp =
∑n

i=1 |xi|
p.

2.1 `0-sampling

See [4] for more information.

P(i = j) =

{
0, if j /∈ supp(x),

1
supp(x) ± δ, if j ∈ supp(x).

Ingredients of Algorithm

(a) Show if y is 1-sparse, we can recover y with probability 1 using O(lg 1
δ) rows. (This algorithm

is deterministic).

(b) Also, if |supp(y)| 6= 1, output “Fail” with probability ≥ 1− δ using O(lg 1
δ) rows.

(c) Geometric sampling.

Analysis

(a) A =
n∑
i=1

yi, B =
n∑
i=1

i · yi,

‖y‖0 = 1 =⇒ supp(y) =

{
B

A

}
, yi = A.

(b) Detect |supp(y)| = 0 (i.e., y = 0) by AMS sketch (y = 0 ⇐⇒ ‖y‖2 = 0).

(c) Detect |supp(y)| > 1.

(1) Let y′ be returned from (a). Test whether Π(y′ − y) = 0.

(2) h : [n]→ ?
if |supp(y)| > 2 (contains i1, i2, . . .).

2

Combine (a) and (b) using geometric sampling to get `0-sample. Create lg n virtual streams with
vectors y(0), . . . , y(lgn). For

h : [n]→ {0, . . . , lg n}, P(h(i) = j) =
1

2j+1
.

Include index i in y(h(i)). y(j) = x{i:h(i)=j}. We have that 1 ≤ | supp(x)| ≤ n and

E
[∣∣∣supp(y(j))

∣∣∣] =
|supp(x)|

2j+1
, 0 ≤ j ≤ lg n.

This implies that

∃ j∗ such that 1 ≤ E
[∣∣∣supp(y(j))

∣∣∣] ≤ 2,

Now we want to show that for this j∗,

P
(∣∣∣supp(y(j

∗))
∣∣∣ = 1

)
is large (i.e. Ω(1)). Let T = |supp(x)|. So T/2 ≤ 2j

∗+1 ≤ T . Suppose T items are each kept

independently with probability 2−(j
∗−1) ≈ 1

T
. What is the probability that exactly one item is

kept? We have that

P(exactly one survives) =
T∑
i=1

P (item i survives and no one else dies)

=

(
T∑
i=1

1

T

)
·
(

1− 1

T

)T−1
=

(
1− 1

T

)T−1
≈ 1

e

(
1

1− 1
T

)
≈ 1

e

= Θ(1).

Final Space We have lg n · lg2 1

δ
counters. After Nisan, we need lg2 n · lg2 1

δ
counters. It is

known that we can achieve O(lg n · lg 1
δ) words [5]. Instead of using 1-sparse y, Jowhari et al. used

s-sparse y where s = Θ(lg 1
δ). You can recover y with probability 1 using 2s rows (for example,

using Prony’s method).

3 Graphs

Let G = (V,E), where we see edges e ∈ E in stream. Let |V | = n and |E| = m.

3

3.1 Connectivity

Define

query(i, j) =

{
1, if i, j in same connected component,

0, else.

Insertion Only

Straightforward: O(m) space by storing all edges.

Straightforward−−: O(n) space. Store a spanning forest.

Claim 1. Any deterministic algorithm needs Ω(n) space.

Proof. Suppose we have x ∈ {0, 1}n−1. As before, we will perform an encoding argument. We
create a graph with n vertices 0, 1, . . . , n − 1. The only edges that exist are as follows: for each i
such that xi = 1, we create an edge from vertex 0 to vertex i. The encoding of x is then the space
contents of the connectivity streaming algorithm run on the edges of this graph. Then in decoding,
by querying connectivity between 0 and i for each i, we can determine whether xi is 1 or 0. Thus
the space of the algorithm must be at least n − 1, the minimum encoding length for compressing
{0, 1}n−1.

As an exercise, try to extend the Ω(n) lower bound above to randomized algorithms with constant
failure probability (try using an approach similar to that for problem set 1, problem 3(b)).

For many interesting graph problems, it turns out that Ω(n) space is required. This motivated the
“Semi-streaming” model for graphs [6], where the goal is to achieve want O(n lgc n) space.

Question: Can we solve connectivity in turnstile model?

3.1.1 Graph Sketching

Now we will investigate the case of the turnstile model, where edges can be inserted and deleted
in a stream. For example, users (vertices) on Facebook can friend each other (i.e. create an edge
between them) then later one can defriend the other (delete the edge). We will show a sketching
approach to handle turnstile streaming for graphs due to [7].

First, consider the following non-streaming algorithm.

Algorithm: ConnComp(G = (V,E)).

• S ← {{v1}, {v2}, . . . , {vn}}

• For i = 1 to lg n:

– For each s ∈ S (in parallel)

4

∗ Pick an edge e = (s, w) for some w ∈ S.

∗ contract(e)

• Return S.

Turnstile streaming implementation:

• Each v ∈ V will store f(v) ∈ R(n2).

(f(v))(a,b) =

0, if v /∈ {a, b} or (a, b) /∈ E,
+1, if v = min(a, b),

−1, if v = max(a, b).

• For s ∈ S, f(s) =
∑
v∈S

f(v).

• supp(f(s)) is the set of edges with one endpoint in s and the other outside s.

• Use lg n different `0-sampler sketches A1(f(v)), . . . , Algn(f(v)).

For each iteration i through the main loop in ConnComp, for each s ∈ Swe use the `0-sampler
Ai(f(·)) to sample an edge es leaving s. Then, for each edge e obtained, we contract e between
some supernodes s, t in the ConnComp algorithm. We perform this contraction by adding the
sketches Aj(f(s)) and Aj(f(t)) for all j > i.

References

[1] Moses Charikar, Kevin C. Chen, Martin Farach-Colton. Finding Frequent Items in Data
Streams. ICALP 2002: 693–703.

[2] Anna C. Gilbert, Yi Li, Ely Porat, Martin J. Strauss. Approximate Sparse Recovery: Opti-
mizing Time and Measurements. SIAM J. Comput., 41(2): 436–453 (2012).

[3] Morteza Monemizadeh, David P. Woodruff. 1-Pass Relative-Error Lp-Sampling with Applica-
tions. SODA 2010: 1143–1160.

[4] Graham Cormode, Donatella Firmani. A unifying framework for `0 sampling algorithms.
Distributed and Parallel Databases 32(3): 315–335 (2014).

[5] Hossein Jowhari, Mert Saglam, Gábor Tardos. Tight bounds for Lp samplers, finding duplicates
in streams, and related problems. PODS 2011: 49–58.

[6] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci, 348(2–3): 207–216 (2005).

[7] Kook Jin Ahn, Sudipto Guha, Andrew McGregor. Analyzing graph structure via linear mea-
surements. SODA 2012: 459–467.

5

CS 229r: Algorithms for Big Data Fall 2015

Lecture 8 — September 29, 2015

Prof. Jelani Nelson Scribe: Johnny Ho

1 Overview

In this lecture we introduce the longest increasing subsequence (LIS) and distance to monotonicity
(DTM) problems along with various recent bounds and algorithms. We discuss and prove one
particular randomized approximate algorithm for DTM.

2 Distance to Monotonicity

We introduce the idea of dynamic programming (DP) on streams. In particular, the longest in-
creasing subsequence (LIS) problem is: Given an input sequence x1, x2, ...xn ∈ [m], find the longest
possible increasing subsequence xi1 ≤ xi2 ≤ xi3 ≤ ...xik .

The distance to monotonicity (DTM) problem is similar, except removing the minimal number of
elements to obtain such an increasing subsequence. Then clearly DTM = n− |LIS|.

2.1 Distinction

These two problems are actually distinct in terms of approximation. If we have some estimate L̃IS

of the LIS, then we can imagine estimating D̃TM = n− L̃IS = n− (1± ε)LIS = DTM ± εLIS.
This is, however, not a multiplicative error but rather an additive error in terms of n.

2.2 Recent results

In 2007, Gopalan, Jayram, Krauthgamer, Kumar [3] demonstrated a deterministic approximate
algorithm for LIS in O(

√
n/ε) space. In 2008, Ergun, Jowhari [1] and in 2007, Gal, Gopalon [3],

both demonstrate that this is a lower bound in terms of space required. It is open whether a
poly-log algorithm exists for approximating the LIS problem.

The DTM problem has such an algorithm, published by Saks, Seshadhri in 2013 [5], usingO(1/ε log(n/ε) log(n))
words of space. Subsequently, Naumovitz, Saks in 2015 [4] published lower bounds of Ω(1/ε log2 n/ log log n)
and Ω(1/ε log2 n) for randomized and determinstic algorithms, respectively. They also showed a
deterministic algorithm using space bounded by O(1/ε2 log5 n).

1

3 Algorithm

We will present and prove Saks, Sehadri in this lecture, targeting a success probability of 1− δ and
the above space bound.

3.1 Presentation

Imagine w(i) as the weights of the items i.e. the cost of removal, with w(i) = 1 normally.

We construct a DP table s(i) = DTM(x0, ..., xi) such that we are forced to include (not remove)
item i. As in dynamic programming, this will be iteratively constructed for each i based on previous
i. Note that this index starts at zero because we will add sentinels at indices 0 and n+ 1.

Another auxillary DP table will be W (t) =
∑t

i=1w(i), i.e. the prefix sums of our weights.

We will also keep a set R.

Steps:

1. Give each item weight w(i) = 1

2. Prepend/postpend sentinels −∞/+∞ with weight ∞

3. Initialize R = {0}, W (0) = 0, s(0) = 0

4. For t = 1 to n+1:

a. W (t) = W (t− 1) + w(t)

b. s(t) = mini∈R, xi≤xt s(i) +W (t− 1)−W (i)

c. R = R ∪ {t}

5. Return s(n+ 1)

This is deterministic so far, and uses linear space. For the probabilistic algorithm, replace the
symbol r instead of s, and also add another step:

d. For each item i ∈ R, remove i with probability 1− p(i, t).

Note that if indices are being removed from R, then step b. will be taking the minimum of a subset
of the indices, generating an overestimate of the true answer.

Denote Rt as R at after t-th iteration. Define a function q for the probability of being kept at t:

q(i, t) = P(i ∈ Rt) = min

{
1,

1 + ε

ε
ln

(
4t3

δ

)
w(i)

W (i, t)

}
The intuition here is that the probability of remembering is inversely proportional to distance, since
the algorithm will only fail if we forget the most recent members of the DP table.

Then if we define p in step d. as:

p(i, t) =

{
q(i, t)/q(i, t− 1) if i < t

1 if i = t
,

2

then q(i, t) = P(i ∈ Rt) will be as desired, since the probability of being kept at t is the product of
the probabilities of being kept so far.

3.2 Proof

We now wish to prove:

(A) With probability 1− δ/2, r(n+ 1) ≤ (1 + e)s(n+ 1), since it can only be an overestimate.

(B) With probability 1− δ/2, ∀t, |Rt| is small i.e. poly-log in size.

If Rt ever exceeds a certain size, the program can just terminate, throwing an error value.

3.2.1 Proving (A)

Fix C ⊆ [n] to be a particular optimal LIS.

Define i ∈ [n] to be unsafe at time t if (C ∩ [i, t]) ∩ Rt = ∅. This is to say that we have removed
everything in between [i, t] from R. Further, let U t = {i, i unsafe at time t}, and U =

⋃n+1
t=1 U

t be
the union of all such unsafe sets. This is the set of all elements that have ever been unsafe.

Safeness is not a monotonic property over i, i.e. i may be safe, then get removed from R, making
it unsafe, but then another element of the LIS might be inserted back into R, making it safe again.
However, given a fixed t, it is true that safeness is monotonic as i is decreasing, i.e. they can only
be unsafe and then safe.

Lemma 1. r(n+ 1) ≤W (C ∪ U)

Proof. Here C is the complement of C. Define C≤t = C ∩ [t]

By induction on t ∈ C, we will show that r(t) ≤ W (C≤t−1 ∪
⋃t−1
k=1 U

k). As the base case, clearly
r(0) = 0.

The inductive step has two cases:

• C≤t−1 \ U t−1 = ∅
We forgot everything in C≤t−1, so W (Ct−1 ∪ U t−1) = W (1, t − 1), and r(t) ≤ W (1, t − 1)
clearly.

• C≤t−1 \ U t−1 6= ∅
Let W apply to intervals and sets as the sum of the interval/sets. Pick the largest safe
j ∈ C≤t−1 \U t−1. Then we have that r(t) ≤ r(j) +W (j + 1, t− 1) ≤W (C≤j−1 ∪

⋃j−1
k=1 U

k) +

W (j + 1, t− 1) = W (C≤t−1 ∪
⋃t−1
k=1 U

k).

Equality holds because everything in the second term of the sum must be either unsafe at
time t or not in the LIS C at all.

3

Define interval I ⊆ [n] dangerous if |I ∩ C| ≤ ε
1+ε |I|. Define any i ∈ C dangerous if i is the left

endpoint of some dangerous interval.

We greedily form a dangerous collection I1, I2, ... as follows: First, let D be the set of dangerous
i ∈ C. Take the leftmost element of D and extend to the right as far as possible, and then repeat,
taking leftmost elements not already included. Note that the elements not in these intervals should
be inside C. Let B = ∪jIj be the union of these intervals.

We claim:

a. C ⊆ D ⊆ B

b. W (B) ≤ (1 + ε)W (C)

c. P(U ⊆ B) ≥ 1− δ/2

To prove (A) from these claims, note that r(n + 1) ≤ W (C ∪ U), and that ≤ W (C ∪ B) with
probability 1 − δ/2, and this has weight equal to W (B) since C ⊆ B. W (B) ≤ (1 + ε)W (C) =
(1 + ε)s(n+ 1) and thus r(n+ 1) ≤ (1 + ε)s(n+ 1), as desired.

Proof. Proof of claims:
a. First, C ⊆ D since i ∈ C =⇒ [i, t] dangerous =⇒ i ∈ D. Then D ⊆ B by construction.

b.

∀j, W (Ij ∩ C) ≤ ε

1 + ε
W (Ij) =⇒ ∀j, W (Ij ∩ C) ≥ 1

1 + ε
W (Ij)

Then, W (B ∩ C) ≥ 1/(1 + e)W (B), and since C ⊆ B, (1 + e)W (C) ≥W (B) as desired.

c.

Lemma 2.

∀t ∈ [n], ∀i ∈ B ∩ t, P(i ∈ U t) ≤ δ

4t3
,

If this lemma were true, then by union bound,

P(U ⊆ B) = 1− P(B ∩ U 6= ∅)
= 1− P(∃t, ∃i, i ∈ U t)

≥ 1−
∑
t

∑
i∈B∩[t]

P (i ∈ U t)

≥ 1− δ/4
∑
t

1/t2 ≥ 1− δ/2,

as desired for Lemma 1.

Proof. Proving Lemma 2: We know that i is not dangerous, and that [i, t] is not dangerous, so thus
W (C ∩ [i, t]) ≥ ε

1+εW (i, t). By definition i ∈ U t iff everything in C ∩ [i, t] has been forgotten at
time t. Thus, substituting the first expression into q:

P(i ∈ U t) =
∏

j∈C∩[i,t]

(1− q(j, t)) ≤
∏

j∈C∩[i,t]

(
1− ln

(
4t3

δ

)
w(j)

W (C ∩ [j, t])

)

4

Substituting 1− x ≤ e−x, we obtain the bound

P(i ∈ U t) ≤
∏

j∈C∩[i,t]

e
− ln(4t3

δ
)

w(j)
W (C∩[j,t]) = e

− ln(4t3

δ
)

(∑
j∈C∩[i,t]

w(j)
W (C∩[j,t])

)
=

δ

4t3

3.2.2 Proving (B)

This is not as complicated. The space used during the algorithm is proportional to maxt∈[n]|Rt|.
Fixing t, we need to show that the probability that |Rt| is large can be bounded by δ

4t2
, so by union

bound P(∃t s.t. |Rt| large) < δ
2 . Let Zti be the indicator random variable for the event that i ∈ Rt,

which is 1 with probability q(i, t). Thus

|Rt| =
∑
i≤t

Zti ,

which implies
E |Rt| = µt = Θ(ε−1 log(t/δ) log t)

by our choice of q(i, t). This is because the sum of w(i)/W (i, t) for 1 ≤ i ≤ t in our definition of
q(i, t) is a Harmonic series

∑t
k=1 1/k, and is thus Θ(log t) (recall w(i) = 1 except for the sentinels,

and thus W (i, t) = t− i+ 1).

Using Chernoff bounds, we have

P(|Rt| > 2µt) < e−Ω(µt) <
δ

4t2
.

Thus

P(∃t : |Rt| > 2µt) <
δ

4
·
n∑
t=1

1

t2
<
δ

2

as desired.

References

[1] Funda Ergün, Hossein Jowhari. On distance to monotonicity and longest increasing subse-
quence of a data stream. SODA, 730-736, 2008.

[2] Anna Gál, Parikshit Gopalan. Lower Bounds on Streaming Algorithms for Approximating the
Length of the Longest Increasing Subsequence. SIAM J. Comput., 39(8):3463-3479, 2010.

[3] Parikshit Gopalan, T.S. Jayram, Robert Krauthgamer, Ravi Kumar. Estimating the sortedness
of a data stream. SODA, 318-327, 2007.

[4] Timothy Naumovitz, Michael Saks. A polylogarithmic space deterministic streaming algorithm
for approximating distance to monotonicity. SODA, 1252-1262, 2015.

[5] Michael Saks, C. Seshadri. Space efficient streaming algorithms for the distance to monotonic-
ity and asymmetric edit distance. SODA, 1698-1709, 2013.

5

CS 229r: Algorithms for Big Data Fall 2015

Lecture Lecture 9 — October 1, 2015

Prof. Jelani Nelson Scribe: Rachit Singh

1 Overview

In the last lecture we covered the distance to monotonicity (DTM) and longest increasing subse-
quence (LIS) problems.

In this lecture we will talk about how to prove space lower bounds for a variety of problems using
communication complexity.

2 Space lower bounds

We’re going to see some sophisticated techniques to prove space lower bounds. These are all proved
via something called communication complexity. The problems we’re going to look at today
are F0 (distinct elements) - specifically any algorithm that solves F0 within a factor of ε must use
Ω(1/ε2 + log n) bits. We’re also going to discuss median, or randomized exact median, which
requires Ω(n) space. Finally, we’ll talk about Fp or ‖x‖p, which requires Ω(n1−2/p) space for a
2-approximation.

2.1 2 player communication complexity

Suppose we have Alice and Bob, and a function f : X×Y → {0, 1}. Alice gets x ∈ X, and Bob gets
y ∈ Y . They want to compute f(x, y). Suppose that Alice starts the conversation. Suppose she
sends a message m1 to Bob. Then Bob replies with m2, and so on. After k iterations, someone can
say that f(x, y) is determined. The goal for us is to minimize the total amount of communcation,
or

∑k
i=1 |mi|, where the absolute value here refers to the length of the binary string.

A communicaton protocol is a way of conversing agreed upon ahead of time, where Alice and
Bob both know f . There’s obvious the two obvious protocols, where Alice sends logX bits to send
x, or where Bob sends y via log Y bits to Alice. The goal is to either beat these trivial protocols
or prove that none exists.

There’s a natural connection between communicaton complexity and space lower bounds as follows:
a communication complexity lower bound can yield a streaming lower bound. We’ll restrict our
attention to 1-way protocols, where Alice just sends messages to Bob. Suppose that we had a lower
bound for a communication problem - Alice has x ∈ X, and Bob has y ∈ Y and we know that

the lower bound (LB) on the optimal communcation complexity is
−→
D(f). The D here refers to the

fact that the communication protocol is deterministic. If there’s a streaming problem, then Alice
can run her streaming algorithm on x, the first half of the stream, and send the memory contents

1

across to Bob, who can then load it and pass y, the second half of the stream, and calculate f(x, y),

the final answer. So the minimal amount of space necessary is
−→
D(f).

2.2 F0

Exact and deterministic F0 requires Ω(n) space (we saw this in class via the compression argument,
but we want to rephrase in the communication complexity argument). We’ll use a reduction - if
comm. complexity is hard, then the F0 problem must also be hard, because otherwise we could
use the above argument. We use the equality problem (EQ), which is where f(x, y) = x == y.
We claim D(EQ) = ω(n). This is pretty simple to prove in the one-way protocol, by using the
pigeonhole principle, as before.

We’re going to reduce EQ to F0. Suppose that there exists a streaming algorithm A for F0 that
uses S bits of space. Alice is going to run A on her stream x, and then send the memory contents
to Bob. Bob then queries F0, and then for each i ∈ y, he can append and query as before, and solve
the equality problem. However, this solves EQ, which requires Ω(n) space, so S must be Ω(n).
This is just a rephrasing of the earlier argument in terms of communication complexity.

Now, a few definitions:

• D(f) is the optimal cost of a deterministic protocol

• Rpub
δ (f) is the optimal cost of the random protocol with failure probability δ such that there

is a shared random string (written in the sky or something).

• Rpri
δ (f) is the same as above, but each of Alice/Bob have private random strings.

• Dµ,s(f) is the optimal cost of a deterministic protocol with failure probability δ where (x, y) ∼
µ.

Claim 1. D(f) ≥ Rpri
δ (f) ≥ Rpub

δ (f) ≥ Dµ,s(f)

Proof. The first inequality is clear, since we can just simulate the problem. The second inequality
follows from the following scheme: Alice just uses the odd bits, and Bob just uses the even bits
in the sky. The final inequality follows from an indexing argument: suppose that P is a public
random protocol with a random string s, ∀(x, y)P(Pscorrect) ≥ 1− δ. Then there exists an s∗ such
that the probability of Ps succeeding is large. Note that s∗ depends on µ.

If we want to do a lower bound on deterministic algorithms, we want to lower bound D(f). If we
want to do the lower bound of a randomized algorithm, we want to lower bound Rpri

δ (f). We need
Alice to communicate the random bits over to Bob so that he can continue running the algorithm,
and we need to include these bits in the cost since we store the bits in memory. So, to lower bound
randomized algorithms, we lower bound Dµ,s(f).

If you want to learn more, you can read a book called Communication Complexity by Kushilevitz
and Nisan [Kus06]. Fun fact: you can solve EQ using public randomness with constant number
of bits. If you want to solve it using private randomness for EQ, you need log n bits. Alice picks

2

a random prime, and she sends x mod p and sends across x mod p and the prime. Neumann’s
theorem says that you can reverse the middle inequality in the above at a cost of logn (i.e. the
LHS is smaller than log n times the RHS).

We’re going to show that INDEX, the problem of finding the jth element of a streamed vector, is
hard. Then, we’ll show that this reduces to GAPHAM, or Gap Hamming which’ll reduce to F0.
Also, INDEX reduces to MEDIAN. Finally, DISJt reduces (with t = (2n)1/p) to Fp, p > 2.

2.3 Index

INDEX is a two-player problem. Alice gets x ∈ {0, 1}n, and Bob gets j ∈ [n], and INDEX(x, j) =
xj .

Claim 2. Rpub→
δ (INDEX) ≥ (1−H2(δ))n, where H2(δ) = δ log(δ)+(1−δ) log(1−δ), the entropy

function. If δ ≈ 1/3.

In fact, it’s true that the distributional complexity has the same lower bound. The reason this is
hard is because it’s one way - Alice doesn’t know which bit to send to Bob.

2.4 Information Theory crash course

Mostly definitions, but you can check out Essentials of Information Theory by Cover and Thomas
for more details.

Definitions: if we have a random variable X, then

• H(X) =
∑

x px log(px) (entropy)

• H(X,Y) =
∑

(x,y) px,y log px,y (joint entropy)

• H(X|Y) = Ey(H(X|Y = y)) (conditional entropy)

• I(X,Y) = H(X)−H(X|Y) (mutual information) (note that this is a symmetric quantity)

The entropy is the amount of information or bits we need to send to communicate x ∈ X in
expectation. This can be achieved via Huffman coding (in the limit). The mutual information is
how much of X we get by communicating Y .

Here are some basic lemmas involving these equalities

Lemma 3.

• Chain rule: H(X,Y) = H(X) +H(Y |X)

• Chain rule for mutual information: I(X,Y |Z) = I(X,Z) + I(Y,Z|X)

• Subadditivity: H(X,Y) ≤ H(X) +H(Y)

• Chain rule + subadditivity: H(X|Y) ≤ H(X).

3

• Basic H(X) ≤ log | supp(X)|.

• H(f(X)) ≤ H(X) ∀f (no free lunch)

Theorem 4. Fano’s Inequality

Formally, if there exist two random variables X,Y and a predictor g such that P(g(Y) 6= X) ≤ δ),
then H(X|Y) ≤ H2(δ) + δ · log2(| supp(X)| − 1).

Note that if X is a binary random variable then the second term vanishes. Intuitively, if all you
have is Y , and based on Y you make a guess of X. Then if you’re able to guess well, then they
must be correlated in some way. Note that for small δ, H2(δ) ≈ δ. Now we’ll go back to INDEX,
and our earlier claim.

2.5 INDEX revisited

Let Π be the transcript of the optimal communication protocol. It’s a one-way protocol here, so
it’s just what Alice said. So, we know that Rpub

δ (INDEX) ≥ H(Π) ≥ I(Π, input) = I(Π, input)

We know that for all x and for all j, Ps(Bob is correct) ≥ 1 − δ, which implies that for all j,
PX∼Unif Ps(Bob is correct) ≥ 1− δ, which them implies that by Fano,

H(Xj |Π) ≥ H2(δ)

Note that Π is a random variable because of the random string in the sky, and also because it is
dependent on X.

Note that we have

|Π| ≥ I(X; Π)

=
n∑
i=1

I(Xi; Π|X1, . . . Xi−1) (chain rule n times)

=
∑
i

H(Xi|X<i)−H(Xi|Π, X<i)

≥
∑
i

1−H2(δ) = n(1−H2(δ))

Now that we have INDEX, let’s use it to prove another lower bound, namely MEDIAN. We want a
randomized, exact median of x1, . . . xn with probability 1− δ. We’ll use a reduction (see [GM09]).

Claim: INDEX on {0, 1}n reduces to MEDIAN with m = 2n + 2, with string length 2n − 1. To
solve INDEX, Alice inserts 2 + x1, 4 + x2, 6 + x3 . . . into the stream, and Bob inserts n − j copies
of 0, and another j − 1 copies of 2n+ 2.

Suppose that n = 3 and x = 1012. Then Alice will choose 3, 4, 7 out of 2, 3, 4, 5, 6, 7. Bob cares
about a particular index, suppose the first index. Bob is going to make this stream length 5, such
that the median of the stream is exactly the index he wants. Basically, we can insert 0 or 2n + 2
exactly where we want, moving around the j index to be the middle, which then we can then
output.

4

2.6 INDEX → GAPHAM → F0

GAPHAM (Gap Hamming): Alice gets x ∈ {0, 1}n and Bob gets y ∈ {0, 1}n. They’re promised
that the Hamming distance ∆(x, y) > n/2 + c

√
n or ∆(x, y) < n/2− c

√
n for some constant c, and

we need to decide which.

The reduction INDEX → GAPHAM was shown by [JKS08], implying an Ω(n) lower bound for

GAPHAM. The lower bound Rpub→
1/3 (GAPHAM) = Ω(n) was also shown earlier, without this

reduction, by [IW03, Woo04]. It was later shown that even if you allow yourself an arbitrary
number of rounds, you still need Ω(n) communication [CR12].

An F0 algorithm that fails with probability 1/3 and gives a (1 + ε) approximation requires Ω(1/ε2)
space (assume that 1/ε2 < n).

Proof: Reduce from GAPHAM. Alice and Bob get t bit vectors, where t = Θ(1/ε2). Note that
c
√
t ≤ εt/3. Now, note that 2F0 = | supp(x)| + | supp(y)| + ∆(x, y). Alice sends the streaming

memory and | supp(x)| which is S + log t bits (where S is the space complexity of the streaming
algorithm for F0 approximation). Bob knows 2(1 ± ε)F0 = 2F0 ± εt/2. Then he can estimate
∆̃ = 2F0±εt/2−‖ supp(x)|+| supp(y)| = ∆±εt/2 and can decide GAPHAM. Thus S+log t = Ω(t),
implying S = Ω(t).

References

[CR12] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication
complexity of Gap-Hamming-Distance. SIAM J. Comput., 41(5):1299–1317, 2012.

[GM09] Sudipto Guha and Andrew McGregor. Stream order and order statistics: Quantile esti-
mation in random-order streams. SIAM J. Comput., 38(5):2044–2059, 2009.

[IW03] Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
In Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS), pages
283–288, 2003.

[JKS08] TS Jayram, Ravi Kumar, and D Sivakumar. The one-way communication complexity of
hamming distance. Theory of Computing, 4(1):129–135, 2008.

[Kus06] Eyal Kushilevitz. Communication complexity. Cambridge University Press, Cambridge,
2006.

[Woo04] David P. Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
167–175, 2004.

5

CS 229r: Algorithms for Big Data Fall 2015

Lecture 10 — October 6, 2015

Prof. Jelani Nelson Scribe: Morris Yau

1 Overview

In the last lecture we talked about communication complexity. We found that deterministic exact
F0 required Ω(n) space. We also proved the inequality D(f) ≥ Rpriδ (f) ≥ Rpubδ (f) ≥ Dµ,s(f) that
we use to provide lower bounds on randomized and approximate algorithms. Our main tool was
reductions from INDEX which has a communication complexity of roughly Ω(n).

In this lecture we use INDEX to give a lower bound on the space usage of randomized exact F0.
We then present a lower bound for randomized approximate F0, something that we have thus far
been unable to do. We then provide a lower bound on Fp via the disjointness problem. Then we
move on to dimensionality reduction, distortion, and distributional Johnson-Lindenstrauss and the
fact that it implies Johnson-Lindenstrauss.

2 Randomized Exact Bound F0

We prove that randomized exact F0 requires Ω(n) space with failure probability 1
3 .

Proof. We perform the following reduction from INDEX. Let Alice receive x ∈ {0, 1}n and Bob
receive j ∈ [n]. It is then Bob’s job to find the j’th index of x. They proceed in the following
manner. Alice runs our F0 algorithm on x and sends both the memory contents of the algorithm
and the support of x to Bob. Bob then appends j to the stream and queries F0 from the the
memory contents of the algorithm. If F0 increases, Bob outputs 0, else he outputs 1. We conclude
that for S equal to the space usage of the algorithm

S + log n ≥ c ∗ n =⇒ S = Ω(n)

Where log n factor comes from sending the support of x.

3 Randomized Approximate Bound F0

To prove randomized approximate F0 has space lower bound Ω(log n) we first state this theo-
rem that can be found in Kushilevitz and Nisan. Roughly speaking, it lower bounds the private
communication bound by the log of the deterministic communication bound.

Theorem 1. ∀f : {0, 1}nx{0, 1}n → {0, 1}, where f is a communication problem, than

Rpri1
3

≥ Ω(log(D(f)))

1

Proof. If we view f as a two player game between Alice and Bob on a binary tree of height s and total
leaves 2s, than Alice and Bob could deterministically simulate the private randomized procedure
on this tree. For instance, for any path from root to leaf, Alice can compute the probability she
would stay on the path given that Bob does as well. She can then send these probabilities to Bob
for every single leaf. Bob can then compute the probabilities he stays on the same paths and can
output the final result accordingly.

Now we prove that randomized approximate F0 has space lower bound Ω(logn)

Proof. Let C be a subset of {0, 1}n such that ∀c ∈ C the support of c is n
100 . Also ∀c 6= c′ ∈ C,

we have |c ∩ c′| ≤ n
2000 . Finally |C| ≥ 2Ω(n). We have constructed this set in previous lectures.

In essence, it is a collection of subsets that are largely disjoint but very numerous. We know
deterministic equality, EQ, on C requires Ω(n) communication. Then using Kushilevitz Nisan we
have

=⇒ Rpri1
3

(EQC) ≥ Ω(log n)

Now we notice there is a natural reduction from EQC to randomized approximate F0. Namely,
Alice runs F0 on her set c and sends the memory contents to Bob. Bob then runs c′ on the memory
contents and determines whether the output for F0 has roughly doubled. If it has, then c 6= c′, if
not, than c = c′.

4 Disjointness Problem

We now move on to the t-player disjointness problem, useful for proving lower bounds for the Fp.
We have t-players p1, p2, .., pt. We assign an n bit string xi ∈ {0, 1}n to player pi. We are then
promised that either of the following conditions hold.

1. ∀i 6= j we have xi ∩ xj 6= ∅

2. ∃k ∈ [n] such that ∀i 6= j we have xi ∩ xj = {k}

The problem is then to find k with the least communication possible where communication occurs
from player 1 passing on to player 2 and so on and so forth until player player t gives the final result.

Jelani mentions this theorem but does not prove it because it takes too much time. The proof
also uses an information theoretic approach, known as information complexity [4]. The idea is the
following chain of inequalities, where Π is the optimal δ-error communication protocol for some
function f : Rpubδ (f) = |Π| ≥ H(Π(X)) ≥ I(X; Π(X)), where X is the set of inputs given to the t
players, and Π(X) is the transcript of the communication protocol (or the “communication log”)
when the input is X (note that it is a random variable since Π uses randomness). Then we define
the information complexity ICµ,δ(f) as the minimum value I(X,Π(X)) achievable by any δ-error

protocol Π when X is drawn from distribution µ. Then we have that Rpubδ (f) ≥ ICµ,δ(f) for all
µ. A variant of this approach was used by [2] to obtain lower bounds for t-player disjointness,
with improvements in [3]. The sharp bound was shown in [5], with a later work showing how the
arguments in [2] could be strengthened to also get the sharp bound [6].

2

Theorem 2. Rpub1
3

(DISJt) = Ω(nt)

Remark: Although we do not prove the theorem we know that it implies some player sends Ω(n
t2

)
bits which is what we’ll need to prove the following claim.

Claim 3. For p > 2 the randomized 1.1 approximation to Fp requires Ω(n
1− 2

p) bits of space.

Proof. Set t = d(2n)
1
p e for the disjoint players problem. Each player creates a virtual stream

containing j if and only if j ∈ xi. We then compute Fp on these virtual streams. If all xi are
disjoint then Fp ≤ n. Otherwise, Fp ≥ tp ≥ 2n because some element k must appear at least t
times. Then since our Fp algorithm is a 1.1 approximation, we can discern between the two cases.
This implies the space usage of our algorithm, S satisfies

S ≥ n

t2
= Ω(n

1− 2
p)

as desired.

5 Dimensionality Reduction

Dimensionality reduction is useful for solving problems involving high dimensional vectors as input.
Typically we are asked to preserve certain structures such as norms and angles. Some of the
problems include

1. nearest neighbor search

2. large scale regression problems

3. minimum enclosing ball

4. numerical linear algebra on large matrices

5. various clustering applications

Our goals run in the same vein as streaming. That is to say fast runtime, low storage, and low
communication. Certain geometric properties that we would like to preserve upon lowering the
dimension of the input data include

1. distances

2. angles

3. volumes of subsets of inputs

4. optimal solution to geometric optimization problem

First and foremost, we would like to preserve distances, and to do so we must first define distortion.

3

5.1 Distortion

Definition 4. Suppose we have two metric spaces, (X, dX), and (Y, dY), and a function f : X → Y .
Then f has distortion Df if ∀x, x′ ∈ X, C1 · dX(x, x′) ≤ dY (f(x), f(x′)) ≤ C2 · dX(x, x′), where
C2
C1

= Df .

We will focus on spaces in which dX(x, x′) = ‖x− x′‖X (ie. normed spaces).

5.2 Limitations of Dimensionality Reduction

If ‖ · ‖X is the l1 norm, then Df ≤ C =⇒ in worst case, target dimension is nΩ(1
C2). That is, there

exists a set of n points X, such that for all functions f : (X, l1) → (X ′, lm1), with distortion ≤ C,

then m must be at least nΩ(1
C2)[10].

More recently in 2010, we have the following theorem by Johnson and Naor [12]

Theorem 5. Suppose (X, || · ||x) is a complete normed vector space or ”Banach Space” such that
for any N point subset of X, we can map to O(log n) dimension subspace of X with O(1) distortion,

then every n-dimensional linear subspace of X embeds into l2 with distortion ≤ 22O(log∗ n)

5.3 Johnson Lindenstrauss

Theorem 6. The Johnson-Lindenstrauss (JL) lemma [11] states that for all ε ∈ (0, 1
2), ∀x1, ..., xn ∈

l2, there exists Π ∈ Rm×n, m = O(1
ε2

log(n)) such that for all i, j , (1−ε)‖xi−xj‖2 ≤ ‖Πxi−Πxj‖2 ≤
(1 + ε)‖xi − xj‖2

f : (x, l2)→ (x, lm2), f(x) = Πx

5.4 Distributional Johnson Lindenstrauss

Theorem 7. for all 0 < ε, δ < 1
2 , there exists a distribution Dε,δ on matrices Π ∈ Rm×n, m =

O(1
ε2

log(1
δ)) such that for all x ∈ Rn, and Π drawn from the distribution Dε,δ,

P(‖Πx‖2 /∈ [(1− ε)‖x‖2, (1 + ε)‖x‖2] < δ

Now we prove that the distributional Johnson Lindenstrauss proves Johnson Lindenstrauss.

Claim 8. DJL =⇒ JL

Proof. Set δ < 1

(N2)
and look at T =

xi−xj
‖xi−xj‖2 for i < j. Also note that |T | =

(
N
2

)
. Then

P (Π doesn’t have distortion (1 + ε) on X) = P (∃z ∈ T such that
∣∣|Πz||22 − 1

∣∣ ≥ ε)
and so by union bound this probability is ≤ |T | ∗ δ < 1

Bibliography.

4

References

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Fre-
quency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar. An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci., 68(4): 702–732, 2004.

[3] Amit Chakrabarti, Subhash Khot, Xiaodong Sun. Near-Optimal Lower Bounds on the Multi-
Party Communication Complexity of Set Disjointness. IEEE Conference on Computational
Complexity, pgs. 107–17, 2003.

[4] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, Andrew Chi-Chih Yao. Informational Com-
plexity and the Direct Sum Problem for Simultaneous Message Complexity. FOCS, pgs. 270–
278, 2001.

[5] Andre Gronemeier. Asymptotically Optimal Lower Bounds on the NIH-Multi-Party Informa-
tion Complexity of the AND-Function and Disjointness. STACS, pgs. 505–516, 2009.

[6] T. S. Jayram. Hellinger Strikes Back: A Note on the Multi-party Information Complexity of
AND. APPROX-RANDOM, pgs. 562–573, 2009.

[7] T. S. Jayram, Ravi Kumar, D. Sivakumar. The One-Way Communication Complexity of
Hamming Distance. Theory of Computing, 4(1): 129–135, 2008.

[8] Eyal Kushilevitz, Noam Nisan Communication Complexity Cambridge University Press, 1997

[9] David P. Woodruff. Optimal space lower bounds for all frequency moments. SODA, pgs.
167–175, 2004.

[10] B. Brinkman and M. Charikar, On the impossibility of dimension reduction in l1, J. ACM,
vol. 52, no. 5, pp. 766–788, 2005.

[11] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[12] William B. Johnson and Assaf Naor, The Johnson-Lindenstrauss Lemma Almost Characterizes
Hilbert Space, But Not Quite. Discrete and Computational Geometry, vol. 43, no. 3, pp.
542–553, 2010.

[13] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms
in independent random variables. Ann. Math. Statist., 42(3):1079–1083, 1971.

[14] Gilles Pisier. Probabilistic methods in the geometry of Banach spaces. Probability and Analysis.
Lecture Notes in Mathematics. Vol. 1206, 167–241, 1986.

5

CS 229r: Algorithms for Big Data Fall 2015

Lecture 10 — October 8, 2015

Prof. Jelani Nelson

Today we will prove the distributional JL lemma from last lecture. First we collect some notation
and basic lemmas we will use.

Throughout, for a random variable X, ‖X‖p denotes (E |X|p)1/p. It is known that ‖ · ‖p is a norm
for any p ≥ 1 (Minkowski’s inequality). It is also known ‖X‖p ≤ ‖X‖q whenever p ≤ q. Henceforth,
whenever we discuss ‖ · ‖p, we will assume p ≥ 1.

We often use Jensen’s inequality below, especially for F (x) = |x|p (p ≥ 1).

Lemma 1 (Jensen’s inequality). For F convex, F (EX) ≤ EF (X).

Lemma 2. For 1 ≤ p < q <∞, ‖X‖p ≤ ‖X‖q.

Proof. Define f(x) = |x|q/p. Then f is convex. Thus by Jensen’s inequality,

(E |X|p)q/p ≤ E |X|q.

Now raise both sides of the inequality to the 1/p.

Definition 3. The gaussian distribution N (0, σ2) has density function f(x) = (2πσ2)−1/2e−x
2/(2σ2).

Fact 4. If g ∼ N (0, σ2) then E gp for integer p is 0 for p odd and is σp(p−1) ·(p−3) · · · 1 < (σ
√
p)p

for p even.

Lemma 5 (Khintchine inequality). For any p ≥ 1, x ∈ Rn, and (σi) independent Rademachers,

‖
∑
i

σixi‖p .
√
p · ‖x‖2

Proof. Without loss of generality we can assume p is an even integer. (If not, let q be the smallest
even integer larger than p then it suffices to have ‖

∑
i σixi‖q .

√
p‖x‖2 since ‖ · ‖p ≤ ‖ · ‖q by

Lemma 2.) Consider (gi) independent gaussians of mean zero and variance 1. Expand E(
∑

i σixi)
p

into a sum of monomials.

E(
∑
i

σixi)
p =

min{p,n}∑
t=1

∑
i1<i2<...<it

∑
d1,...,dt≥1
d1+...+dt=p

(
p

d1, . . . , dt

) t∏
j=1

x
dj
ij

E
σ

t∏
j=1

σ
dj
ij

=

min{p,n}∑
t=1

∑
i1<i2<...<it

∑
d1,...,dt≥1
d1+...+dt=p

(
p

d1, . . . , dt

) t∏
j=1

x
dj
ij

 t∏
j=1

E
σij
σ
dj
ij

Any monomial with odd exponents (i.e. odd dj) vanishes, as in the gaussian case. Meanwhile,

monomials with all dj being even have
∏t
j=1 x

dj
ij

nonnegative and
∏t
j=1 Eσij σ

dj
ij

= 1. Meanwhile if

1

the σij are replaced by gaussians gij , then
∏t
j=1 Eσij g

dj
ij
≥ 1. Thus the Rademacher pth moment

is term-by-term dominated by the gaussian case and thus ‖
∑

i σixi‖p ≤ ‖
∑

i gixi‖p. But
∑

i gixi
is a gaussian with mean zero and variance ‖x‖22, and we apply Fact 4.

The point of the above argument was to show that the Rademacher case is bounded by the gaussian
case, after which point we concluded. Another way to show this is as follows. Now we will not
require p to be an even integer.

‖
∑
i

σixi‖p =

√
π

2
· ‖E

g

∑
i

σi|gi|xi‖p (since E |g| =
√

2/π)

≤
√
π

2
· ‖
∑
i

σi|gi|xi‖p (Jensen)

=

√
π

2
· ‖
∑
i

gixi‖p (σi|gi| is distributed as gi)

We now prove a decoupling inequality which will be useful for our proof of Hanson-Wright, which
we will use to prove distributional JL. We use ‖ · ‖Lp(X) to denote (EX | · |p)1/p when we want to
make it clear which random variable we are taking the expectation over.

Lemma 6 (Decoupling [dlPnG99]). Let x1, . . . , xn be independent and mean zero, and x′1, . . . , x
′
n

identically distributed as the xi and independent of them. Then for any (ai,j) and for all p ≥ 1

‖
∑
i 6=j

ai,jxixj‖p ≤ 4‖
∑
i,j

ai,jxix
′
j‖p

Proof. Let η1, . . . , ηn be independent Bernoulli random variables each of expectation 1/2. Then

‖
∑
i 6=j

ai,jxixj‖Lp(x) = 4 · ‖E
η

∑
i 6=j

ai,jxixj |ηi||1− ηj |‖Lp(x)

≤ 4 · ‖
∑
i 6=j

ai,jxixjηi(1− ηj)‖Lp(x,η) (Jensen) (1)

Hence there must be some fixed vector η′ ∈ {0, 1}n which achieves

‖
∑
i 6=j

ai,jxixjηi(1− ηj)‖Lp(x,η) ≤ ‖
∑
i∈S

∑
j /∈S

ai,jxixj‖Lp(η)

where S = {i : η′i = 1}. Let xS denote the |S|-dimensional vector corresponding to the xi for i ∈ S.
Then

‖
∑
i∈S

∑
j /∈S

ai,jxixj‖Lp(x) = ‖
∑
i∈S

∑
j /∈S

ai,jxix
′
j‖Lp(xS ,x

′
S̄

)

= ‖ E
xS

E
x′
S̄

∑
i,j

ai,jxix
′
j‖Lp(xS ,x

′
S̄

) (Exi = Ex′j = 0)

≤ ‖
∑
i,j

ai,jxix
′
j‖Lp(x,x′) (Jensen)

2

The following proof of the Hanson-Wright was shared to me by Sjoerd Dirksen (personal commu-
nication). See also a recent proof in [RV13].

Recall that by problem set 1, problem 1, the statement of the Hanson-Wright inequality below is
equivalent to the statement that there exists a constant C > 0 such that for all λ > 0

P
σ

(
|σTAσ − EσTAσ| > λ

)
. e−Cλ

2/‖A‖2F + e−Cλ/‖A‖. (2)

Theorem 7 (Hanson-Wright inequality [HW71]). For σ1, . . . , σn independent Rademachers and
A ∈ Rn×n real and symmetric, for all p ≥ 1

‖σTAσ − EσTAσ‖p .
√
p · ‖A‖F + p · ‖A‖.

Proof. Without loss of generality we assume in this proof that p ≥ 2 (so that p/2 ≥ 1). Then

‖σTAσ − EσTAσ‖p . ‖σTAσ′‖p (decoupling) (3)

.
√
p · ‖‖Ax‖2‖p (Khintchine) (4)

=
√
p · ‖‖Ax‖22‖

1/2
p/2 (5)

≤ √p · ‖‖Ax‖22‖1/2p

≤ √p · (‖A‖2F + ‖‖Ax‖22 − E ‖Ax‖22‖p)1/2 (triangle inequality)

≤ √p · ‖A‖F +
√
p · ‖‖Ax‖22 − E ‖Ax‖22‖1/2p

.
√
p · ‖A‖F +

√
p · ‖xTATAx′‖1/2p (decoupling)

.
√
p · ‖A‖F + p3/4 · ‖‖ATAx‖2‖1/2p (Khintchine)

.
√
p · ‖A‖F + p3/4 · ‖A‖1/2 · ‖‖Ax‖2‖1/2p (6)

Writing E = ‖‖Ax‖2‖1/2p and comparing (4) and (6), we see that for some constant C > 0,

E2 − Cp1/4‖A‖1/2E − C‖A‖F ≤ 0.

Thus E must be smaller than the larger root of the above quadratic equation, implying our desired
upper bound on E2.

Remark 1. The “square root trick” in the proof of the Hanson-Wright inequality above is quite
handy and can be used to prove several moment inequalities (for example, you will see how to prove
the Bernstein inequality with it in tomorrow’s lecture). As far as I am aware, the trick was first
used in a work of Rudelson [Rud99].

Remark 2. We could have upper bounded Eq. (5) by

√
p · ‖A‖F +

√
p · ‖‖Ax‖22 − E ‖Ax‖22‖

1/2
p/2

by the triangle inequality. Now notice we have bounded the pth central moment of a symmetric
quadratic form (3) by the p/2th moment also of a symmetric quadratic form. Writing p = 2k, this
observation leads to a proof by induction on k, which was the approach used in [DKN10].

3

Distributional Johnson-Lindenstrauss (DJL) lemma Now we finally prove the Distribu-
tional JL Lemma (DJL) stated in last lecture (which implies the JL lemma itself).

Lemma 8. DJL Lemma For any integer n > 1 and ε, δ ∈ (0, 1/2), there exists a distribution Dε,δ
over Rm×n for m . ε−2 log(1/δ)) such that for any x ∈ Rn of unit Euclidean norm,

P
Π∼Dε,δ

(|‖Πx‖22 − 1| > ε) < δ

Proof. Write Πi,j = σi,j/
√
m, where the σi,j are independent Rademachers. Also overload σ to

mean these Rademachers arranged as a vector of length mn, by concatenating rows of Π. Note

Πx = Axσ, implying ‖Πx‖22 = ‖Axσ‖22

where

Ax =
1√
m
·

−xT− 0 · · · 0

0 −xT− · · · 0
...

...
...

0 0 · · · −xT−

 . (7)

Thus
P(|‖Πx‖22 − 1| > ε) = P(|‖Axσ‖22 − E ‖Axσ‖22| > ε),

where we see that the right-hand side is readily handled by the Hanson-Wright inequality with
A = ATxAx (using (2)). Observe A is a block-diagonal matrix with each block equaling (1/m)xxT ,
and thus ‖A‖ = ‖x‖22/m = 1/m. We also have ‖A‖2F = 1/m. Thus Hanson-Wright yields

P(|‖Πx‖22 − 1| > ε) . e−Cε
2m + e−Cεm,

which for ε < 1 is at most δ for m & ε−2 log(1/δ).

References

[DKN10] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools
degree-2 threshold functions. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 11–20, 2010.

[dlPnG99] Victor de la Peña and Evarist Giné. Decoupling: From dependence to independence.
Probability and its Applications. Springer-Verlag, New York, 1999.

[HW71] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic
forms in independent random variables. Ann. Math. Statist., 42:1079–1083, 1971.

[Rud99] Mark Rudelson. Random vectors in the isotropic position. J. Functional Analysis,
164(1):60–72, 1999.

[RV13] Mark Rudelson and Roman Vershynin. Hanson-Wright inequality and sub-gaussian
concentration. Electronic Communications in Probability, 18:1–9, 2013.

4

CS 229r: Algorithms for Big Data Fall 2015

Lecture October 13th

Prof. Jelani Nelson Scribe: Vasileios Nakos

1 Overview

In the last lecture we looked at (ε, δ)-DJL: There exists a distribution Dε,δ over Rm×n with
m = O(ε−2 log(1/δ)) such that ∀x, ‖x‖ = 1 we have that PΠ∼Dε,δ [|‖Πx‖22 − 1| < max{ε, ε2}] <
δ. Moreover, we have seen metric JL which tells us that for all X ⊂ ln2 there exist a matrix
Π ∈ Rm×n with m = Θ(ε−2 log |X|) such that for all x ∈ T we have that |‖Πx‖22 − 1| < ε, where
T = { x−y

‖x−y‖ , x, y ∈ X}.

2 Today

Today we are going to look at three main things:

• Johnson-Lindenstrauss lower bound

• Beyond worst-case analysis and more specifically what is called Gordon’s Theorem

• Bounding supremum of gaussian processes.

3 Main Section

3.1 Lower bounds on Dimensionality Reduction

3.1.1 Lower bounds on Distributional Johnson Lindenstrauss Lemma

The first lower bound was proved by Jayram and Woodruff [1] and then by Kane,Meka,Nelson [2].
The lower bound tells that any (ε, δ)-DJL for ε, δ ∈ (0, 1/2) must have m = Ω(min{n, ε−2 log(1

δ)}).
The second proof builds on the following idea: Since for all x we have the probabilistic guarantee
PΠ∼Dε,δ [|‖Πx‖22−1| < max{ε, ε2}] < δ, then it is true also for any distribution over x. We are going
to pick x according to the uniform distribution over the sphere. Then this implies that there exists
a matrix Π such that Px[|‖Πx‖22 − 1| < ε] < δ. It is shown that this cannot happen for any fixed
matrix Π ∈ Rm×n unless m satisfies the lower bound.

3.1.2 Johnson-Lindenstrauss lower bound for the linear mapping case

If we insist on linear maps, then a lower bound of Kasper and Nelson [3] tells us that m must
be at least Ω(min{n, ε−2 log |X|}). The hard set is shown to exist via the probabilistic method,

1

and is constructed by taking the union of {0, e1, . . . , en} in Rn together with plus sufficiently many
random vectors. We just need to take a fine finite net that approximates all possible linear maps
that work for the simplex (i.e. {e1, . . . , en}) and then argue that for each linear map in the net
then with some good probability there exists a point from the random ones such that its length is
not preserved by the map. So, approximating well enough the set of linear maps and adjusting the
parameteres then we can take a union bound over all matrices in the net.

3.1.3 Johnson-Lindenstrauss lower bound for the general case

This lower bound has been found by Alon [4]. It tells that m must be at least Ω(min{n, ε−2 logn

log(1
ε
)

to preserve distances between the set of points X = {0, e1, . . . , en}. The hard set is the simplex
X = {0, e1, .., en}. Let f be the mapping. Translate the embedding so that f(0) = 0 (i.e. translate
the embedding so that each point x ∈ X is actually mapped to f(x) − f(0); this does not affect
any distances). Now write f(ei) = vi. Then we have that ‖vi‖ = 1 ± ε since f preserves the
distance from ei to 0. We also have for i 6= j that ‖vi − vj‖ =

√
2(1 ± ε). This implies since

‖vi − vj‖ = ‖vi‖2 + ‖vj‖2 − 2 〈vi, vj〉 we get that 〈vi, vj〉 = O(ε). Setting wi = vi
‖vi‖ we have that

‖wi‖ = 1 and 〈wi, wj〉 = O(ε). Let Π be the matrix that has wi as columns. Then observe that
A = ΠTΠ is a matrix with 1 on the diagonal and elements with absolute value at most ε everywhere.
We have that rank(A) = rank(ΠTΠ) = rank(Π) ≤ m. We are going to use the following lemma
which solves the problem for ε = 1√

n
and then bootstrap it to work for all values of ε.

Lemma 1. Any real symmetric matrix that is 1√
n

-near to the identity matrix, i.e. its diagonals are

1 and off-diagonals are in [−1/
√
n, 1/

√
n], must have rank(A) ≥ Ω(n).

Proof. Let λ1, ..λr be the non-zero eigenvalues of A, where r = rank(A). By Cauchy-Schwarz,

we have r ≥ (
∑r
i=1 λi)

2∑r
i=1 λ

2
i

. By standard linear algebra the numerator is the trace of A squared

and the denominator is just the Frobenius norm of A squared. We have that tr(A) = n and
‖A‖2F ≤ n + n(n − 1)ε2. Plugging everything into the inequality along with the fact that ε = 1√

n

we get the desired result.

Theorem 2. Any real symmetric matrix that is ε-near to the identity matrix must have rank(A) ≤
min{n, ε−2 logn

log 1
ε

}.

Proof. Define the matrix A(k) such that (A(k))ij = akij . We will build our proof on the following

claim: It holds that rank(A(k) ≤
(
r+k−1
k

)
where r = rank(A). Assumign that the claim is true we

pick k to be the closest integet to log nε−1

√
n. Thus εk ≤ 1√

n
, so we have that Ω(n) ≤ r(A(k)) ≤(

r+k−1
k

)
. Using the fact that

(
n
k

)
≤ (enk−1)k and walking thought the calculations we can get the

desired result.
What remains is to prove the claim. Let t1, ..tr be the row-space of A. This means that ∀i∃β ∈
mathbbRr such that ai =

∑r
q=1 βqtq. Then observe that (A(k))ij = akij = (

∑r
q=1 βeq(tq)j)

k =∑
q1,...,qk

Πk
z=1βqzΠ

k
z=1tqz . It is easy to see that each vector of this form is a linear combination of

2

vectors of the form (Πy
z=1(tqz)

d1z
1 ,Π

y
z=1(tqz)

d2z
2 , ..). where

∑
diz = k. This is a standard combinatorics

problem of putting r balls into bins k bins with repetition, so the answer is
(
r+k−1
k

)
.

3.2 Beyond Worst Case Analysis

Given a subset T of the unit sphere- for example {T = x−y
‖x−y‖ , x, y ∈ X}- ideally we would like that

∀x ∈ T, |‖Πx‖2 − 1| < ε. We want that PΠ(supx∈T |‖Πx‖2 − 1| > ε) < δ.

We are moving with Gordon’s Theorem [10] which was several times [5] [7] [9]. First of all we are
going to define the gaussian mean widht of the set.

Definition 3. The Gaussian mean width of a set T is defined as g(T) = Egsupx∈T 〈g, x〉.

Back to Gordon’s Theorem. Suppose that Πij = ±1√
m

for random signs, with m ≥ Ω(ε−2(g2(T) +

log 1
δ). Then we have that PΠ(supx∈T |‖Πx‖2 − 1| > ε) < δ. Actually, we just need a distribution

that decays as fast as a gaussian, has variance one and zero mean.

Let us give a simple example of the gaussian mean width. For example, if T is the simplex then
we have that g(T) = ‖g‖∞ which is roughly equal to log n by standard computations on gaussians.
Actually, what Gordon’s theorem tells us is that if the vectors of T have a nice geometry then
one can improve upon Johnson-Lindenstrauss: the more well-clustered the vectors are, the lower
dimension you can achieve.

We continue with the following claim: ∀T which is a subset of the unit sphere, g(T) ≤ O(
√

logN),
where N = |T |.

Proof. Define Zi = | 〈gi, xi〉 |, where T = {x1, .., xN}. Then

g(T) ≤ Egmax{Z1, ..ZN} =

∫ ∞
0

Pg(max{Z1, .., ZN} > u)du =

=

∫ 2
√

logn

0
Pg(max{Z1, .., ZN} > u)du+

∫ 2
√

logn

0
Pg(max{Z1, .., ZN} > u)du ≤

≤ 2
√

log n+

∫ ∞
2
√

logn
Pg(∃Zi ≥ u)du ≤ 2

√
log n+

∫ ∞
2
√

logn

∑
i

Pg(Zi ≥ u)du ≤

2
√

logN +

∫ ∞
2
√

logn
Ne−u

2/2 ≤ 2
√

log n+O(1)

3

3.2.1 How to bound g(T)

• g(T) ≤
√

log |T |, as we just showed. In fact if every vector in T has norm at most α, then
one gets g(T) . α

√
log |T |.

• Let T ′ ⊂ T be such that ∀x ∈ T , ∃x′ ∈ T ′ such that ‖x − x′‖ ≤ ε. That is, T ′ is an ε-net
of T . This implies that 〈g, x〉 = 〈g, x′〉 + 〈g, x− x′〉 ≤ ‖g‖2ε, which implies that g(T) ≤
g(T ′) + εE‖g‖22 ≤ g(T ′) + e(E‖g‖22)

1
2 ≤ g(T ′) + ε

√
n ≤ O(

√
log |T ′|) + ε

√
n. Thus if T is

covered well by a small net, one can get a better bound.

• Let T⊂T1 ⊂ T2 ⊂ ... ⊂ T , such that Tr is a (2−r)-net of T (we are assuming every vector in
T has at most unit norm). Then x = x(0) + (x(1) − x(0)) + (x(2) − x(1)) + Then we have

E supx∈T 〈g, x〉 ≤ E sup
x∈T

〈
g, x(0)

〉
+
∞∑
r=1

E sup
x∈T

〈
g, x(r) − x(r−1)

〉
. log1/2 |T0|+

∞∑
r=1

(sup
x∈T
‖x(r) − x(r−1)‖) · log1/2(|Tr| · |Tr−1|)

. log1/2 |T0|+
∞∑
r=1

1

2r
· log1/2 |Tr|.

The llast inequality holds since by the triangle inequality, ‖x(r) − x(r−1)‖ ≤ ‖x(r) − x‖ +
‖x(r−1)−x‖ ≤ 3/2r−1. Furthermore, |Tr−1| ≤ |Tr|, so log(|Tr|·|Tr−1|) ≤ log(|Tr|2) = 2 log |Tr|.

Thus g(T) ≤
∑∞

r=0 2−r log
1
2 |Tr| =

∑∞
r=0 2−rN(T2, ‖‖̇2, 2−r), where N(T, d, ε) is the size of

the best ε-net of T under metric d. Bounding this sum by an integral, we have that g(T) is

at most a constant factor times
∫∞

0 log
1
2 N(T, ‖ · ‖2, u)du. This inequality is called Dudley’s

inequality.

• Write S0 ⊂ S1 ⊂ ... ⊂ T , such that |S0| = 1 and ‖Ss| ≤ 22s . One can show that the Dudley
bound is in fact

inf
{Ss}∞s=0

∞∑
s=0

2s/2 sup
x∈T

d‖·‖2(x, Ss).

Write

γ2(T) = inf
{Ss}∞s=0

sup
x∈T

∞∑
s=0

2s/2d‖·‖2(x, Ss).

It was shown by Fernique [8] that g(T) . γ2(T) for all T . Talagrand later showed that in [11]
the lower bound is also true, and hence g(T) = Θ(γ2(T)); this is known as the “majorizing
measures” theorem, which we will not prove in this class.

3.2.2 Johnson Lindenstrauss implies Gordon’s Theorem

What we already saw is that Gordon’s theorem implies the Johnson Lindenstrauss lemma. In fact
this summer by Oymak, Recht and Soltanolkotabi [6] it was proved that with right parameteres
the Distributional Johnson Lindenstrauss lemma implies Gordon’s theorem. Basically take a DJL
ε′ = ε

γ22(T)
then for m ≥ ε−2(γ2

2(T) log 1
δ)(where we hide constants in the inequalities) we take

4

the guarantee for Gordon’s Theorem. Actually, their proof works by preserving the sets Ss (plus
differences and sums of vectors in these sets) at different scales. The result is not exactly optimal
because it is known m = O(ε−2(γ2

2(T) + log(1/δ))) suffices (see for example [9, 7]), but it provides
a nice reduction from Gordon’s theorem to DJL.

References

[1] T. S. Jayram, David P. Woodruff. Optimal Bounds for Johnson-Lindenstrauss Transforms
and Streaming Problems with Subconstant Error. ACM Transactions on Algorithms 9(3), 26,
2013.

[2] Daniel M. Kane, Raghu Meka, Jelani Nelson. Almost optimal explicit Johnson-Lindenstrauss
transformations. In Proceedings of the 15th International Workshop on Randomization and
Computation (RANDOM), pages 628–639, 2011.

[3] Kasper Green Larsen and Jelani Nelson. The Johnson-Lindenstrauss lemma is optimal for
linear dimensionality reduction. CoRR abs/1411.2404, 2014.

[4] Noga Alon. Problems and results in extremal combinatorics–I. Discrete Mathematics 273(1-3),
pages 31–53, 2003.

[5] Bo’az Klartag, Shahar Mendelson. Empirical processes and random projections. J. Functional
Analysis, 225(1), pages 229–245, 2005.

[6] Samet Oymak, Benjamin Recht, Mahdi Soltanolkotabi. Isometric sketching of any set via the
Restricted Isometry Property. CoRR abs/1506.03521, 2015.

[7] Sjoerd Dirksen. Tail bounds via generic chaining. Electron. J. Probab., 20(53):1–29, 2015.

[8] Xavier Fernique. Regularité des trajectoires des fonctions aléatoires gaussiennes. Ecole dEté
de Probabilités de Saint-Flour IV, Lecture Notes in Math., vol. 480, pages 1–96, 1975.

[9] Shahar Mendelson, Alain Pajor, Nicole Tomczak-Jaegermann. Reconstruction and subgaussian
operators in asymptotic geometric analysis. Geometric and Functional Analysis, vol. 1, pages
1248–1282, 2007.

[10] Yehoram Gordon. On Milman’s inequality and random subspaces which escape through a
mesh in Rn. Geometric Aspects of Functional Analysis, vol. 1317, pages 84–106, 1986–87.

[11] Michel Talagrand. Majorizing measures: the generic chaining. Ann. Probab., 24(3), pages
1049–1103, 1996.

5

CS 229r: Algorithms for Big Data Fall 2015

Lecture 13 — October 15, 2015

Prof. Jelani Nelson Scribe: Yakir Reshef

1 Recap and overview

Last time we started by talking about lower bounds for JL that were worst-case. That is, we stated
a lower bound on the reduced dimension m such that for any Π mapping to Rm there would exist
a ”bad” set T of x’s whose distances would not be preserved by Π. But this left open the question
of how well we could do on some particular set T . This was where Gordon’s theorem came in. It
said

Theorem 1 (Gordon). Suppose T ⊂ Sn−1. If Π ∈ Rm×n has Πij = gij/
√
m, where the gij are iid

standard normals, and m & g2(T)+1
ε2

, then

PΠ (∃x ∈ T : |‖Πx‖ − 1| > ε) <
1

10
.

where g(T) = Eg supx∈T 〈g, x〉 is the mean width of T , with the expectation taken over a gaussian
with mean zero and identity covariance.

Recall that we also mentioned the following result last time concerning g(T), with one direction of
the inequality showed by Fernique and the other by Talagrand:

Theorem 2. Let T ⊂ Rn bounded, and let T0 ⊂ T1 ⊂ · · ·T be such that |T0| = 1 and |Tr| ≤ 22r .
Define

γ2(T, d) := inf
{Tr}∞r=0

sup
x∈T

∞∑
r=0

2r/2d(x, Tr).

Then γ2(T, `2) ' g(T).

Henceforth, when we say γ2(T) without specifying a metric, `2 is implied.

Gordon’s theorem implies DJL, because in general g(T) is at most
√

log |T | in it can be much
smaller for some T . Today we’ll show that the converse is also true, i.e., that DJL implies Gordon’s
theorem.

2 Today: DJL ⇒ Gordon’s theorem

2.1 Statement of result

The main result is summarized in the following theorem.

1

Theorem 3 ([1]). Define L = dlog ne, ε̃ = ε/(cγ2(T)), ε̃r = max{2r/2ε̃, 2r/2ε̃2}, δr = δ
C2r82r

. Let

T ⊂ Sn−1. Then if D satisfies (εr, δr)-DJL for r = 0, . . . , L, then

PΠ∼D

(∑
x∈T

∣∣‖Πx‖22 − 1
∣∣ > ε

)
< δ

To see why this implies Gordon’s theorem, we consider the random sign matrix, e.g., Πij =
σij√
m

.

We know that this matrix satisfies (ε̃, δ̃)-DJL for m & log(1/δ̃)
ε̃2

, which equals 2r log(1/δ̃)

(2r/2ε̃)2
≥ log(1/δr)

ε2r
for all r. The theorem therefore applies and so we see that we get an (ε, δ) guarantee with m &

log(1/δ)/ε̃2 h γ22(T)
ε2

log(1/δ). And since γ2(T) ' g(T), this is approximately g2(T) log(1/δ)
ε2

, which

gives Gordon’s theorem. As mentioned last time, different proofs yield that g2(T)+log(1/δ)
ε2

actually
suffices.

2.2 Proof of result

To prove the above theorem, the lemma below suffices.

Lemma 1. For a given set T , let Tr be the sequence that achieves the infimum in the definition
of γ2. To achieve supx∈T

∣∣‖Πx‖22 − 1
∣∣ < ε, it suffices that for all r = 0, . . . , L, the following hold

simultaneously for all r ∈ [L].

• For all v ∈ Tr−1 ∪ Tr ∪ (Tr−1 − Tr),

‖Πv‖ ≤ (1 + 2r/2ε̃)‖v‖ (1)

• For all v ∈ Tr−1 ∪ Tr ∪ (Tr−1 − Tr),

|‖Πv‖2 − ‖v‖2| ≤ max{2r/2ε̃, 2rε̃2} · ‖v‖2 (2)

• For all u ∈ Tr−1 and v ∈ Tr − {u},

| 〈Πu,Πv〉 − 〈u, v〉 | ≤ max{2r/2ε̃, 2rε̃2} · ‖u‖ · ‖v‖ (3)

• We also have
‖Π‖ ≤ 1 + (1/4)2L/2ε̃ (4)

We note that it is not too bad to show that the first three conditions hold with high probability since
they are all JL-type conditions. The third one is a bit less obvious since it’s about dot products
instead of norms. But notice that ‖u + v‖2 − ‖u − v‖2 = 4〈u, v〉. So if ‖u‖ = ‖v‖ = 1, then Π
preserving u+ v and u− v means that 〈Πu,Πv〉 = 1

4(‖Πu+ Πv‖2 − ‖Πu+ Πv‖2) = 〈u, v〉 ±O(ε).
If u and v don’t have unit norm you can scale them to achieve the above condition. So the third
condition also follows from the DJL assumption. (We neglect the fourth condition above for now,
since it’s based on a standard argument which is based on a constant-sized net of Sn−1 that we’ll
see later in the course.)

We now argue that the lemma suffices to prove our theorem.

2

Claim 1. Lemma 1 implies Theorem 3.

Proof. Define L̃ = dlog(1/ε̃2)e ≤ L (Note that if L̃ > L then we’re not interested because then
we’re not reducing dimensionality!) Fix x ∈ T . We will show∣∣‖Πx‖2 − ‖x‖2∣∣ < ε

Define er(T) = d(x, Tr), and define

γ̃2(T) =
L∑
r=1

2r/2 · er(T).

Clearly γ̃2(T) ≤ γ2(T).

Also define
zr = argminy∈Tr‖x− y‖2

|‖Πx‖2 − ‖x‖2| ≤ |‖ΠzL̃‖
2 − ‖zL̃‖

2|+ |‖Πx‖2 − ‖ΠzL̃‖
2|+ |‖x‖2 − ‖zL̃‖

2|
≤ |‖Πz0‖2 − ‖z0‖2|︸ ︷︷ ︸

α

+ |‖Πx‖2 − ‖ΠzL̃‖
2|︸ ︷︷ ︸

β

+ |‖x‖2 − ‖zL̃‖
2|︸ ︷︷ ︸

Γ

+
L̃∑
r=1

(|‖Πzr‖2 − ‖zr‖2| − |‖Πzr−1‖2 − ‖zr−1‖2|)︸ ︷︷ ︸
∆

(5)

In class we bounded α and Γ, as the bound on α is simple and the bound on Γ sufficiently captures
the proof idea. However, in these notes we bound all of α, β,Γ,∆.

Bounding α: We have α ≤ max{ε̃, ε̃2} ≤ ε̃ by Eq. (2).

Bounding β: We have

|‖Πx‖2 − ‖ΠzL̃‖
2| = |‖Πx‖ − ‖ΠzL̃‖| · |‖Πx‖+ ‖ΠzL̃‖|
≤ |‖Πx‖ − ‖ΠzL̃‖| ·

(
|‖Πx‖ − ‖ΠzL̃‖|+ 2 · ‖ΠzL̃‖

)
= |‖Πx‖ − ‖ΠzL̃‖|

2 + 2|‖Πx‖ − ‖ΠzL̃‖| · ‖ΠzL̃‖ (6)

We thus need to bound |‖Πx‖ − ‖ΠzL̃‖| and ‖ΠzL̃‖. By Eq. (1) we have ‖ΠzL̃‖ ≤ (1 + 2L̃/2ε̃) ≤ 2.

Next, we have

|‖Πx‖ − ‖ΠzL̃‖| = |‖Πx‖ − ‖ΠzL‖+ ‖ΠzL‖ − ‖ΠzL̃‖|
≤ ‖Π(x− zL)‖+ ‖Π(zL − zL̃)‖

≤ ‖Π‖ · ‖x− zL‖+ ‖
L∑

r=L̃+1

Π(zr − zr−1)‖

3

≤ ‖Π‖ · eL(T) +

L∑
r=L̃+1

‖Π(zr − zr−1)‖ (7)

By Eq. (4), ‖Π‖ ≤ 1
42L/2ε̃ + 1. Also by Eq. (1), ‖Π(zr − zr−1)‖ ≤ (1 + 2r/2ε̃)‖zr − zr−1‖. Thus,

using 2r/2ε̃ ≥ 1 for r > L̃,

(7) ≤ (
1

4
2L/2ε̃+ 1)eL(T) +

L∑
r=L̃+1

(1 + 2r/2ε̃)‖zr − zr−1‖

≤ (
1

4
2L/2ε̃+ 1)eL(T) +

L∑
r=L̃+1

(1 + 2r/2ε̃)‖zr − zr−1‖

≤ 5

4
2L/2ε̃eL(T) +

L∑
r=L̃+1

2r/2+1ε̃‖zr − zr−1‖

≤ 5

4
2L/2ε̃eL(T) + 4

√
2ε̃

L∑
r=L̃+1

2(r−1)/2 · er−1(T)

≤ 4
√

2ε̃
L∑
r=L̃

2r/2 · er(T)

≤ 4
√

2ε̃ · γ̃2(T) (8)

Thus in summary,
β ≤ (6) ≤ 32ε̃2γ̃2

2(T) + 16
√

2ε̃γ̃2(T)

Bounding Γ: Note 2r/2ε̃ ≥ 1/
√

2 for r ≥ L̃. Thus

|‖x‖ − ‖zL̃‖| ≤ eL̃(T)

≤
√

2 · 2L̃/2ε̃eL̃(T)

≤
√

2ε̃ · γ̃2(T).

Thus

Γ = |‖x‖2 − ‖zL̃‖
2|

= |‖x‖ − ‖zL̃‖| · |‖x‖+ ‖zL̃‖|
≤ |‖x‖ − ‖zL̃‖|

2 + 2|‖x‖ − ‖zL̃‖| · ‖zL̃‖|
≤ 2ε̃2 · γ̃2

2(T) + 2
√

2ε̃ · γ̃2(T)

Bounding ∆: By the triangle inequality, for any r ≥ 1

|‖Πzr‖2 − ‖zr‖2| = |‖Π(zr − zr−1) + Πzr−1‖2 − ‖(zr − zr−1) + zr−1‖2|
= |‖Π(zr − zr−1)‖2 + ‖Πzr−1‖2 + 2 〈Π(zr − zr−1),Πzr−1〉 (9)

− ‖zr − zr−1‖2 − ‖zr−1‖2 − 2 〈zr − zr−1, zr−1〉 |

4

≤ |‖Π(zr − zr−1)‖2 − ‖zr − zr−1‖2|+ |‖Πzr−1‖2 − ‖zr−1‖2|
+ 2| 〈Π(zr − zr−1),Πzr−1〉 − 〈zr − zr−1, zr−1〉 |. (10)

By Eq. (2) we have

|‖Π(zr − zr−1)‖2 − ‖zr − zr−1‖2| ≤ max{2r/2ε̃, 2rε̃2} · 2e2
r−1(T) ≤ 2r/2+2ε̃e2

r−1(T),

with the second inequality holding since 2r/2ε̃ ≤ 1 for ≤ L̃.

By Eq. (3) we also have

| 〈Π(zr − zr−1),Πzr−1〉 − 〈zr − zr−1, zr−1〉 | ≤ 2r/2+1ε̃er−1.

Therefore

|‖Πzr‖2 − ‖zr‖2| − |‖Πzr−1‖2 − ‖zr−1‖2| ≤ ε̃(2er−1(T) + 4e2
r−1(T))2r/2

Noting er(T) ≤ 1 for all r,

∆ ≤ 10ε̃

 L̃∑
r=1

2r/2er−1(T)

= 10

√
2ε̃

L̃−1∑
r=0

2r/2er(T)

≤ 10

√
2ε̃γ̃2(T).

Finishing up: We have thus established

|‖Πx‖2 − ‖x‖2| ≤ ε̃+ 32ε̃2γ̃2
2(T) + 16

√
2ε̃γ̃2(T) + 8ε̃2γ̃2

2(T) + 2
√

2ε̃γ̃2(T) + 10
√

2ε̃γ̃2(T)

= ε̃+ 28
√

2ε̃γ̃2(T) + 40ε̃2γ̃2
2 ,

which is at most ε for ε̃ ≤ ε/(84
√

2γ̃2(T)).

3 Doing JL fast

Typically we have some high-dimensional computational geometry problem, and we use JL to speed
up our algorithm in two steps: (1) apply a JL map Π to reduce the problem to low dimension m,
then (2) solve the lower-dimensional problem. As m is made smaller, typically (2) becomes faster.
However, ideally we would also like step (1) to be as fast as possible. So far the dimensionality
reduction has been a dense matrix-vector multiplication. So we can ask: can we do better in terms
of runtime?

There are two possible ways of doing this: one is to make Π sparse. We saw in pset 1 that this
sometimes works: we replaced the AMS sketch with a matrix each of whose columns has exactly 1
non-zero entry. The other way is to make Π structured, i.e., it’s still dense but has some structure
that allows us to multiply faster. We’ll start talking today about sparse JL.

5

3.1 Sparse JL

One natural way to speed up JL is to make Π sparse. If Π has s non-zero entries per column, then
Πx can be multiplied in time O(s · ‖x‖0), where ‖x‖0 = |{i : xi 6= 0}|. The goal is then to make
s,m as small as possible.

First some history: [2] showed that you can set

Πij =

+/
√
m/3 w.p. 1

6

−
√
m/3 w.p. 1

6

0 w.p. 2
3

and that this gives DJL, even including constant factors. But it provides a factor-3 speedup since
in expectation only one third of the entries in Π are non-zero. On the other hand, [5] proved that
if Π has independent entries then you can’t speed things up by more than a constant factor.

The first people to exhibit a Π without independent entries and therefore to break this lower bound
were [3], who got m = O(1

ε2
log(1/δ)), s = Õ(1

ε log3(1/δ)) nonzeros per column of Π. So depending
on the parameters this could either be an improvement or not.

Today we’ll see [4], which showed that you can take m = O(1
ε2

log(1/δ)) and s = O(1
ε log(1/δ)), a

strict improvement. You do this by choosing exactly s entries in each column of Π to have non-
zero entries and then choosing the signs of those entries at random and normalizing appropriately.
Alternatively, you can break each column of Π up into s blocks of size m/s, and choose exactly 1
non-zero entry in each block. The resulting matrix is exactly the count sketch matrix.

The analysis uses Hanson-Wright. Previously, for dense Π, we observed that Πx = Axσ where Ax
was an m×mn matrix whose i-th row had xT /

√
m in the i-th block of size n and zeros elsewhere.

Then we said ‖Πx‖2 = σTATxAxσ, which was a quadratic form, which allowed us to appeal to HW.
We’ll do something similar here.

First some notation: we’ll write Πij =
σijδij√

s
where δij ∈ {0, 1} is a random variable indicating

whether the corresponding entry of Π was chosen to be non-zero. (So the δij are not independent.)
For every r ∈ [m], define x(r) by (x(r))i = δrixi. The claim is now that Πx = Axσ where Ax is an
m×mn matrix whose i-th row contains x(r)T /

√
s in the i-th block of size n and zeros elsewhere.

This allows us to again use the HW trick: specifically, we observe that ATxAx is a block-diagonal
matrix as before. And since we’re bounding the difference between σTATxAxσ and its expectation,
it is equivalent to bound σTBxσ where Bx is ATxAx with its diagonals zeroed out.

Now condition on Bx and recall that HW says that for all p ≥ 1, ‖σTBxσ‖p ≤ p‖Bx‖+
√
p‖Bx‖F .

Then, taking p-norms with respect to the δij and using the triangle inequality, we obtain the bound

‖σTBxσ‖p ≤ p‖‖Bx‖‖p +
√
p‖‖Bx‖F ‖p

If we can bound the right-hand-side, we’ll obtain required DJL result by application of Markov’s
inequality, since σTBxσ is positive. Therefore, it suffices to bound the p-norms with respect to the
δij of the operator and Frobenius norms of Bx.

We start with the operator norm: since Bx is block-diagonal and its i-th block is x(r)x(r)T −Λ(r)
where Λ(r) is the diagonal of x(r)x(r)T , we have ‖Bx‖ = 1

s max1≤r≤m ‖x(r)x(r)T −Λ(r)‖. But the
operator norm of the difference of positive-definite matrices is at most the max of either operator
norm. Since both matrices have operator norm at most 1, this gives us tht ‖Bx‖ ≤ 1/s always.

6

So it remains only to bound the Frobenius norm. This is where we’ll pick up next time.

References

[1] Samet Oymak, Benjamin Recht, Mahdi Soltanolkotabi. Isometric sketching of any set via the
Restricted Isometry Property. CoRR abs/1506.03521, 2015.

[2] Dimitris Achlioptas. Database-friendly random projections. J. Comput. Syst. Sci. 66(4): 671–
687, 2003.

[3] Anirban Dasgupta, Ravi Kumar, Tamás Sarlós. A sparse Johnson: Lindenstrauss transform.
STOC, pages 341–350, 2010.

[4] Daniel M. Kane, Jelani Nelson. Sparser Johnson-Lindenstrauss Transforms. Journal of the
ACM, 61(1): 4:1–4:23, 2014.

[5] Jiŕı Matousek. On variants of the Johnson-Lindenstrauss lemma. Random Struct. Algorithms,
33(2): 142–156, 2008.

7

CS 229r: Algorithms for Big Data Fall 2015

Lecture 14 — October 20, 2015

Prof. Jelani Nelson Scribe: Rachit Singh

1 Overview

In the last lecture we discussed how distributional JL implies Gordon’s theorem, and began our
discussion of sparse JL. We wrote ‖Πx‖2 = σTATxAxσ and bounded the expression using Hanson-
Wright in terms of the Frobenius norm.

In this lecture we’ll bound that Frobenius norm and then discuss applications to fast nearest
neighbors.

2 Sparse JL from last time

Note that we defined Bx = ATxAx as the center of the product from before, but with the diagonals
zeroed out. Bx is a block-diagonal matrix with m blocks Bx,1, . . . , Bx,r with

(Bx,r)i,j =

{
0, i = j

δr,iδr,jxixj , i 6= j.

2.1 Frobenius norm

We can write the Frobenius norm as

‖Bx‖2F =
1

s2

m∑
r=1

∑
i 6=j

δriδrjx
2
ix

2
j

=
1

s2

∑
x2
ix

2
j (

m∑
r=1

δriδrj)

where we define the expression in the parentheses to be Qij .

Claim 1.
‖Qij‖p . p

Let’s assume the claim and show that the Frobenius norm is correct.

1

‖‖Bx‖F ‖p = (E[‖Bx‖F]p)1/p

= (((E[‖Bx‖F]2)p/2)2/p)1/2

= ‖ ‖Bx‖2F ‖
1/2
p/2

≤ ‖‖Bx‖2F ‖1/2p

= (‖ 1

s2

∑
i 6=j

x2
ix

2
jQij‖p)1/2

≤ 1

s
‖
∑
i 6=j

x2
ix

2
jQij‖1/2p

.
√
p

s
(
∑
i 6=j

x2
ix

2
j)

1/2

≤
√
p

s

' ε√
ln 1/δ

' 1√
m

Now, we can do the following:

‖‖Πx‖22 − 1‖p = ‖σTBxσ‖p ≤
√
p

m
+
p

s

(Markov) =⇒ P(| ‖Πx‖2 − 1 | > ε) ≤ ‖‖Πx‖
2
2 − 1‖pp
εp

≤ 2p ·

max(
√

p
m ,

p
s)

ε

p

< δ

Now we can prove the claim

Proof. Let’s just fix column i. It has s nonzero elements somewhere. There’s another column j,
and the question is how many of the nonzero locations of i match with nonzero elements of j.
Let’s have Yt be an indicator random variable for column j having a nonzero element in the tth
nonzero row of i (note: this is not the tth row of all the elements). Then Qij =

∑s
t=1 Yt. If we had

independence across the entries, this would just be a Chernoff bound. But we don’t, so it isn’t.

However, the moments are dominated by the independent case.

E[
∑
t

Yt]
p =

min(p,s)∑
s=1

∑
d1,d2,...,dl

∑
dj=p

∑
i1<i2<...<il

E[

s∏
q=1

Yiq]

Remember that the expected value of any Yt is s/n. The product at the end is just (s/n)l in the

2

independent case. In our case, it’s a conditional product:

E

 l∏
q=1

Yl

 = P(Yi1 = 1) · P(Yi2 = 1|Yi1 = 1) . . .

=
s

m
· s− 1

m− 1
. . .

s− l + 1

m− l + 1

≤ (s/m)l

So the sum is actually dominated by the independent case, which can be handled via Bernstein’s
inequality.

Note the runtime to apply the sparse JL map is O(s× supp(x))

3 Fast JL Transform (FJLT)

Now we’ll use a different approach that’ll give O(n lg n) time, which is better in cases where x is
dense. This is due to Ailon & Chazelle ’09 [AC09]. It is called, as the section title suggests, the
FJLT.

Here’s their definition of Π:

Π =
1√
m
· PHD

where P is an m×n sampling matrix (note that differs slightly from the paper to make the analysis
easier). H is

√
n times an orthogonal n × n matrix, i.e. HTH = n · I. Also max |Hij | = O(1),

and computing Hx should be fast for any x. D is an n × n diagonal matrix with random signs
α1, . . . , αn along the diagonal.

Today we’ll let P = Sη be an n× n diagonal matrix where the ith diagonal entry ηi equals 1 with
probability m/n and 0 otherwise, and the ηi are independent across i. Note that an example of H
could be the unnormalized discrete Fourier transform. Another possibility forH is the unnormalized
Hadamard matrix where Hi,j = (−1)〈i,j〉. Here n is a power of 2 and we are interpreting i, j as

elements of Flog2 n
2 . Both of these matrices allow Hx to be computed in time O(n log n). In general,

n×n matrices F which are orthogonal with maxi,j |Fi,j | = O(1/
√
n) are called bounded orthonormal

systems.

Motivation: what if we just sampled coordinates from x? That would be Px; let y = (1/
√
m)Px.

Then

E y2
i =
‖x‖22
m

=
1

m
=⇒ E ‖y‖2 = 1

Note that the expected value is good, but the variance is pretty bad: what if all the mass of x is at
a single index? We can take intuition from the Heisenberg uncertainty principle, which says that
both x and Hx cannot have their mass concentrated on few coordinates.

In [AC09] the following is shown via the Khintchine inequality:

3

Claim 2.

∀x, ‖x‖2 = 1,P
α

(
‖HDx‖∞ > c ·

√
lg(n/δ)

n

)
< δ/2

If we condition on α so that the event of the above claim holds, then Bernstein implies that for

m ≥ log(1/δ) log(n/δ)

ε2
,

we will have ‖(1/
√
m)PHDx‖22 = (1 ± ε)‖x‖22 with probability 1 − δ/2. Thus by a union bound,

the overall failure probability is δ.

If we actually want to have O(ε−2 log(1/δ)) rows, one way to achieve this is to set use the matrix
Π′ · (1/

√
m)PHD, where Π′ is for example a dense random sign matrix with m′ = O(ε−2 log(1/δ))

rows.

The total time to apply Π′ ·Π is then O(n log n+m′ ·m).

A slightly different analysis can improve the log(n/δ) dependence in m to actually be log(m/δ) as
follows.

Theorem 3. Let x ∈ Rn be an arbitrary unit norm vector, and suppose 0 < ε, δ < 1/2. Also let
Π = SηHD as described above with a number of rows equal to m & ε−2 log(1/δ) log(1/(εδ)). Then

P
Π

(|‖Πx‖22 − 1| > ε) < δ.

Proof. We use the moment method. Let η′ be an independent copy of η, and let σ ∈ {−1, 1}n be
uniformly random. Write z = HDx so that ‖Πx‖22 =

∑
i ηiz

2
i . Then

‖ 1

m

n∑
i=1

ηiz
2
i − 1‖p = ‖‖ 1

m

∑
i

ηiz
2
i − 1‖Lp(η)‖Lp(α) (1)

= ‖‖ 1

m

∑
i

ηiz
2
i −

1

m
E
η′

∑
i

η′iz
2
i ‖Lp(η)‖Lp(α)

≤ ‖‖ 1

m

∑
i

z2
i (ηi − η′i)‖Lp(η,η′)‖Lp(α) (Jensen)

= ‖‖ 1

m

∑
i

σiz
2
i (ηi − η′i)‖Lp(η,η′)‖Lp(α) (equal in distribution)

≤ 2

m
· ‖‖

∑
i

σiηiz
2
i ‖Lp(η)‖Lp(α) (triangle inequality)

≤ 2

m
· ‖
∑
i

σiηiz
2
i ‖p

.
√
p

m
· ‖(
∑
i

ηiz
4
i)1/2‖p (Khintchine)

≤
√
p

m
· ‖(max

i
ηi|zi|) · (

∑
i

ηiz
2
i)1/2‖p

≤
√
p

m
· ‖max

i
ηiz

2
i ‖1/2p · ‖

∑
i

ηiz
2
i ‖1/2p (Cauchy-Schwarz)

4

≤
√
p

m
· ‖max

i
ηiz

2
i ‖1/2p · (‖ 1

m

∑
i

ηiz
2
i − 1‖1/2p + 1) (triangle inequality) (2)

We will now bound ‖maxi ηiz
2
i ‖

1/2
p . Define q = max{p, logm} and note ‖ · ‖p ≤ ‖ · ‖q. Then

‖max
i
ηiz

2
i ‖q =

(
E
α,η

max
i
ηiz

2q
i

)1/q

≤

(
E
α,η

∑
i

ηiz
2q
i

)1/q

=

(∑
i

E
α,η
ηiz

2q
i

)1/q

≤
(
n ·max

i
E
α,η
ηiz

2q
i

)1/q

=

(
n ·max

i
(E
η
ηi) · (E

α
z2q
i)

)1/q

(α, η independent)

=

(
m ·max

i
E
α
z2q
i

)1/q

≤ 2 ·max
i
‖z2
i ‖q (m1/q ≤ 2 by choice of q)

= 2 ·max
i
‖zi‖22q

. q (Khintchine) (3)

Eq. (3) uses that H is an unnormalized bounded orthonormal system.

Defining E = ‖ 1
m

∑
i ηiz

2
i −1‖1/2p and combining (1), (2), (3), we find that for some constant C > 0

E2 − C
√
pq

m
E − C

√
pq

m
≤ 0,

implying E2 . max{
√
pq/m, pq/m}. By the Markov inequality

P(|‖Πx‖22 − 1| > ε) ≤ ε−p · E2p,

and thus to achieve the theorem statement it suffices to set p = log(1/δ) then choose m &
ε−2 log(1/δ) log(m/δ).

Remark 4. Note that the FJLT as analyzed above provides suboptimal m. If one desired optimal
m, one can instead use the embedding matrix Π′Π,where Π is the FJLT and Π′ is, say, a dense
matrix with Rademacher entries having the optimal m′ = O(ε−2 log(1/δ)) rows. The downside is
that the runtime to apply our embedding worsens by an additive m ·m′. [AC09] slightly improved
this additive term (by an ε2 multiplicative factor) by replacing the matrix S with a random sparse
matrix P .

Remark 5. The usual analysis for the FJLT, such as the approach in [AC09], would achieve a
bound on m of O(ε−2 log(1/δ) log(n/δ)). Such analyses operate by, using the notation of the proof

5

of Theorem 3, first conditioning on ‖z‖∞ .
√

log(n/δ) (which happens with probability at least
1− δ/2 by the Khintchine inequality), then finishing the proof using Bernstein’s inequality. In our
proof above, we improved this dependence on n to a dependence on the smaller quantity m by
avoiding any such conditioning.

3.1 Application: High-dimensional approximate nearest neighbors search (ANN)

Let’s assume that we’re working with L2 distances in Rd. Let’s define the exact nearest neighbors
problem as follows: we’re given n points P = {p1, p2 . . . pn}, pi ∈ Rd. We need to create a data
structure such that a query on point q ∈ Rd returns a point p ∈ P such that the distance ‖p−q‖2 is
minimized. An example application might be image retrieval (similar images). In the approximate
case, we want to return a point p such that ‖p − q‖2 ≤ c · min

p′∈P
‖p′ − q‖2. Note that the simple

solution is to store all the points in a list and just check them all on query, but that requires nd
time to calculate.

3.1.1 Voronoi diagrams

One way to solve this problem is to construct the Voronoi diagram for the points in the space,
which is the division of the space into areas Ai such that all points x ∈ Ai are closest to pi. Then
on a query we do planar point location to find the correct Voronoi cell for a point. However, when
d 6= 2, the curse of dimensionality strikes. In d dimensions, the Voronoi diagram requires nθ(d)

space to store. Note that this is a lower bound!

3.1.2 Approximate Nearest Neighbor (ANN)

This reduces to the problem c-NN ([HPIM12]).

(c, r)-NN : If there exists p ∈ P such that ‖p− q‖ ≤ r, then return p′ ∈ P such that ‖p′ − q‖ ≤ cr.
If there doesn’t exist such a p, then FAIL.

The easiest reduction is just binary search on r, but the above reference avoids some problems.

Space Time Ref.

dn+ nO(1/ε2) (d+ logn
ε)O(1) [KOR98][IM98]

dn+ n1+ρ(c) nρ(c)

ρ(c) = Ref.

1/c [GIM+99]
1
c2

+ o(1) [AI06]

(7/8)c2 + o(1/c3) [AINR14]
1

(2c2−1)
+ o(1) [AR15]

O(dn) 2.06
c [MNP07]

Today we just show the following result:

1. ANN with nO(log(1/ε)/ε2) space.

6

2. First, dn+ n ·O(c/εd) space

3. Pretend r = 1. Impose uniform ε/
√
d grid on Rd

4. for each pi ∈ P , let Bi = Bl2(pi, 1)

5. let B′i = set of the grid cells that Bi intersects

6. Store B′ = ∪B′i in a hash table (key = grid cell ID, value = i).

7. # of grid cell intersected ≤ V ol(Bld2 (1 + ε)/V ol(grid cell))

8. The volumn of the ball is Rd2O(d)/dd/2

9. so we have # of grid cell intersected ≤ (c/ε)d

Now note d can be reduced to O(ε−2 log n) using the JL lemma, giving the desired space bound.

References

[AC09] Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approx-
imate nearest neighbors. SIAM Journal on Computing, 39(1):302–322, 2009.

[AI06] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 459–468. IEEE, 2006.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1018–1028. SIAM, 2014.

[AR15] Alexandr Andoni and Ilya P. Razenshteyn. Optimal data-dependent hashing for approx-
imate near neighbors. In STOC, pages 793–801, 2015.

[GIM+99] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimen-
sions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[HPIM12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor:
Towards removing the curse of dimensionality. Theory of computing, 8(1):321–350, 2012.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613. ACM, 1998.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 614–623, 1998.

[MNP07] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality sensitive
hashing. SIAM Journal on Discrete Mathematics, 21(4):930–935, 2007.

7

CS 229r: Algorithms for Big Data Fall 2015

Lecture 15 — October 22, 2015

Prof. Jelani Nelson Scribe: Brabeeba Wang

1 Overview

We are going to focus on large sclae linear algebra and today it is on approximation matrix multi-
plication

1. A ∈ Rn×d, B ∈ Rd×p

2. Want to compute ATB

Straight forward algorithm have O(ndp) for loop. Alternatively, we can break out AT , B into several
d × d blocks and multiply it block by block. So we can use fast square matrix multiplication in
O(dω).

1. ω < log2 7 (Strassen)

2. ω < 2.376 (Coppersmith, Winograd)

3. ω < 2.374 (Stothevs)

4. ω < 2.3728642 (Vassilevke-Williams)

5. ω < 2.3728639 (Le Gell)

We can also reduce to rectangular matrix multiplication like we can multiply r × rα by rα × r in
rα+o(1) where α > 0.30298 (Le Gall). But today we are going to settle for computing C ∈ Rd×p
such that ‖ATB − C‖X small. For example ‖‖X = ‖‖F .
Two approaches:

1. Sampling (Drineas, Kannan, Mahoney SIJC’06)[1]

2. JL (Sarlos FOCS’06)[2]

2 Sampling

1. ATB =
∑n

k=1 akb
T
k

2. C = (ΠA)T (ΠB),Π ∈ Rm×n

3. Π is a sampling matrix with rows Π1, · · · ,Πm

4. Πt are independent across t

1

5. Πt = ei/
√
mpi with probability pi proportional to ‖ai‖2 · ‖bi‖2

6. C =
∑m

t=1 1/maktb
T
kt
/pkt

7. Define Zt = 1/maktb
T
kt
/pkt

Claim 1. EC = ATB

Proof. It is trivial by linear expectation since EZt = AtB/m

Claim 2. If m > 1/ε2δ, then

P(‖ATB − (ΠA)T (ΠB)‖F > ε‖A‖F ‖B‖F) < δ (1)

Proof. By Markov,

P(‖ATB − (ΠA)T (ΠB)‖F > ε‖A‖F ‖B‖F) < E(‖ATB − C‖2F)/ε2‖A‖2F ‖B‖2F (2)

1. WLOG, ‖A‖F = ‖B‖F = 1

2. ATB − C =
∑m

t=1(Zt − E(Zt))

3. E(ATB − C) =
∑

i,j E(
∑m

t=1(Zt − EZt)ij)2 =
∑

i,j V ar[
∑m

t=1(Zt)ij] =
∑

i,j

∑
V ar[(Zt)ij] =

m
∑

i,j V ar[Zij]

4. Zij = 1/m
∑n

k=1 ρk/pk · akibkj where ρα = 1 if tth row of Π sampled row k.

5. V ar[Zij] ≤ E(Zij)
2 = 1/m2 ·

∑n
k=1 E(ρk)/p

2
k · a2

ki
b2kj

6. E‖ATB−C‖2F ≤ 1/m·
∑n

k=1 1/pk(
∑

i,j a
2
ki
b2kj) = 1/m·

∑n
k=1 1/pk‖ak‖22‖bk‖22 = 1/m(

∑n
k=1 ‖ak‖22‖bk‖22)2 ≤

1/m(
∑n

k=1 ‖ak‖22)(
∑n

k=1 ‖bk‖22).

7. This gives us P(‖ATB − (ΠA)T (ΠB)‖F > ε‖A‖F ‖B‖F) < 1/ε2m < δ

We want to improve the runtime to log(1/δ). Following is the trick (Clarkson, Woodruff STOC’09)[3].

1. set r = Θ(log(1/δ))

2. Compute C1, · · · , Cr as before each with failure probability 1/10

3. Know by Chernoff > 2/3 of the Ci give low error (ε/4‖A‖F ‖B‖F)

4. Check which one is good:

for i = 1 to r:
if ‖ATB − Ci‖F ≤ ε/4‖A‖F ‖B‖F :

return Ci

2

5. Trick:
for i = 1 to r:

ctr ← 0
for j = 1 to r:

if ‖Ci − Cj‖F < ε/2‖A‖F ‖B‖F :
ctr ← ctr + 1

if ctr > r/2
return Ci

Analysis:

1. # of good i is > 2r/3

2. if i is good, then for good j we have ‖Ci−Cj‖F ≤ ‖ATB−Ci‖F +‖ATB−Cj‖F ≤ ε/4+ε/4 ≤
ε/2‖A‖F ‖B‖F

3 JL Approach

Definition 3. Π ∈ Rm×n and D is a distribution over Π satisfies the (ε, δ, p)−JL moment property
if for any x ∈ Sn−1 we have EΠ∼D|‖Πx‖22 − 1|p < εpδ

Example 4. 1. Πij = ±1/
√
m. This induces (ε, δ, 2)− JL moment property with m ≥ 1/ε2δ

and (ε, δ, log(1/δ))− JL moment property with m ≥ log(1/δ)/ε2

2. Based on the pset 1 problem 4, we have (ε, δ, 2)− JL moment property with m ≥ 1/ε2δ

Claim 5. Suppose Π comes from (ε, δ, p)− JL moment property for some p ≥ 2. Then for any
A,B with n rows, we have

PΠ∼D(‖ATB − (ΠA)T (ΠB)‖F > ε‖A‖F ‖B‖F) < δ (3)

Proof. 1. By Markov, PΠ∼D(‖ATB−(ΠA)T (ΠB)‖F > ε‖A‖F ‖B‖F) < E‖ATB−(ΠA)T (ΠB)‖pF /εp‖A‖
p
F ‖B‖

p
F .

2. So we want to bound ‖‖ATB − (ΠA)T (ΠB)‖2F ‖
1/2
p/2

3. ‖ATB − (ΠA)T (ΠB)‖2F =
∑

i,j ‖ai‖22‖bj‖22X2
i,j

4. Xi,j = 〈Πai/‖ai‖2,Πbj‖bj‖2〉 − 〈ai/‖ai‖2, bj‖bj‖2〉

5. ‖‖ATB − (ΠA)T (ΠB)‖2F ‖p/2 ≤
∑

i,j ‖ai‖22‖bj‖22‖X2
ij‖p/2 ≤ maxi,j ‖ai‖22‖bj‖22‖X2

ij‖p/2

6. Fix i, j we have Xi,j = 〈Πx,Πy〉 − 〈x, y〉 where ‖x‖2 = ‖y‖2 = 1

7. ‖X2
ij‖p/2 = ‖X2

ij‖p

8. Xij = 1/2[(‖Π(x− y)‖22) + (‖Πx‖22 − 1) + (‖Πy‖22 − 1)]

9. ‖Xij‖p ≤ 1/2[‖x− y‖22‖
‖Π(x−y)‖2
‖x−y‖2 − 1‖p] + ‖‖Πx‖22− 1‖p + ‖‖Πy‖22− 1‖p ≤ 1/2εδ1/p[‖x− y‖22 +

1 + 1] ≤ 3εδ1/p

3

10. And this gives us PΠ∼D(‖ATB−(ΠA)T (ΠB)‖F > ε‖A‖F ‖B‖F) ≤ ‖A‖2F ‖B‖2F 9ε2δ2/p/(3ε‖A‖F ‖B‖F)p =
δ

4 Next class

We are going to get some results on operator bound. ‖(ΠA)T (ΠB)−ATB‖ < ε‖A‖‖B‖

1. WLOG ‖A‖ = ‖B‖ = 1

2. WLOG A = B because consider m as the justaposition of AT and B. We can easily see that
‖m‖ = 1 And this gives us ‖mx

y‖
2
2 = ‖Ax‖2 + ‖By‖2 ≤ ‖x‖2 + ‖y‖2

And we will get something stronger. From now on A = B and we want for any x, ‖ΠAx‖22 =
(1±ε)‖Ax‖22. This is stronger because ‖(ΠA)T (ΠA)−ATA‖ = sup‖x‖=1 |‖ΠAx‖22−‖Ax‖22| < ε‖Ax‖22

References

[1] Petros Drineas, Ravi Kannan, Michael Mahoney. Fast Monte Carlo Algorithms for Matrices
I: Approximating Matrix Multiplication. SIAM J. Comput 36(1):132157, 2006.

[2] Tamas Sarlos. Improved Approximation Algorithms for Large Matrices via Random Projec-
tions. FOCS 2006.

[3] Kenneth Clarkson, David Woodruff. Numerical Linear Algebra in the Streaming Model. STOC,
205–214, 2009.

4

CS 229r: Algorithms for Big Data Fall 2015

Lecture 16 — Tuesday, Oct 27 2015

Prof. Jelani Nelson Scribe: Jefferson Lee

1 Overview

Last class, we looked at methods for approximate matrix multiplication, one based on sampling
and another based on JL. The problem was to find a C such that for two matrices A ∈ Rn×d and
B ∈ Rn×p:

‖ATB − C‖ ≤ ε‖A‖‖B‖

Where the norms here were Frobenius norms. Then, by analyzing the matrix M that is the
horizontal concatenation of A and B, we showed that it is sufficient to be able to find a C such
that:

‖ATA− C‖ ≤ ε‖A‖2

Today, we’ll look at operating norms rather than Frobenius norms, and achieve an even stronger
bound. In particular, we will be looking at subspace embeddings, and how to use them to get fast
algorithms for least squares regression.

2 Subspace embeddings

Definition 1. Given E ⊂ Rn a linear subspace, Π ∈ Rm×n is an ε-subspace embedding for E if

∀z ∈ E : (1− ε)‖z‖22 ≤ ‖Πz‖22 ≤ (1 + ε)‖z‖22

For us, we can frame these subspace embeddings in a similar light to the approximate matrix
multiplication methods:

• E = colspace(A) =⇒ ∀x ∈ Rd : (1− ε)||Ax||22 ≤ ||ΠAx||22 ≤ (1 + ε)||Ax||22

• C = DTD = (ΠA)T (ΠA). The previous statement =⇒ ∀x ∈ Rd : |xT [ATA−(ΠA)T (ΠA)]x| ≤
ε||Ax||22. Note that this is a stronger bound than our last - it preserves x.

Note that any linear subspace is the column space of some matrix. From now on, we will represent
them as these matrices.

Claim 2. For any A of rank d, there exists a 0-subspace embedding Π ∈ Rd×n with m = d, but no
ε-subspace embedding Π ∈ Rm×n with ε < 1 if m < d.

1

Proof. Now, assume there is an ε-subspace embedding Π ∈ Rm×n for m < d. Then, the map
Π : E → Rm has a nontrivial kernel. In particular there is some x 6= 0 such that Πx = 0. But
‖Πx‖2 ≥ (1− ε)‖x‖2 > 0, which is a contradiction. For the m ≤ d case, first rotate the subspace E
to become span(e1, . . . , ed) (via multiplication by an orthogonal matrix), and then project to the
first d coordinates.

How can we find the orthogonal matrix used in the proof efficiently?

Theorem 3 (Singular value decomposition). Every A ∈ Rn×d of rank r has a “singular value
decomposition”

A = UΣV T

where U ∈ Rn×r has orthonormal columns, r = rank(A), Σ ∈ Rr×r is diagonal with strictly positive
entries σi (referred to as the singular values) on the diagonal, and V ∈ Rd×r has orthonormal
columns so UTU = I and V TV = I

Note that once we have UΣV T , we can set Π = UT (U does not have an influence on the norm).
There are algorithms to compute U,Σ, V T in O(nd2) time, or the following:

Theorem 4 (Demmel, Dumitru, Holtz [1]). In the setting of the previous theorem, we can approx-
imate SVD well in time Õ(ndω−1) where ω is the constant in the exponent of the complexity of
matrix multiplication. Here the tilde hides logarithmic factors in n.

This is still relatively slow. Before considering find subspace embeddings more quickly, let us first
consider a potential application.

3 Least squares regression

3.1 Definition and motivation

Definition 5. Suppose we’re given A ∈ Rn×d, b ∈ Rn where n � d. We want to solve Ax = b;
however, since the system is over-constrained, an exact solution does not exist in general. In the
least squares regression problem, we instead want to solve the equation in a specific approximate
sense: we want to compute

xLS = argminx∈Rd‖Ax− b‖22

The choice of the function to be optimized is not arbitrary. For example, assume that we have
some system, and one of its parameters is a linear function of d other parameters. How can we
find the coefficients of that linear function? In reality, we experimentally observe a linear function
+ some random error. Under certain assumptions - errors have mean 0, same variance, and are
independent, then least squares regression is provably the best estimator out of a certain class of
estimators (see the Gauss-Markov theorem).

2

3.2 How do we solve least squares in general?

What’s the best x to choose? Notice that {Ax : x ∈ Rd} is the column span of A. Part of b lives
in this column space, and part of it lives orthogonally. Then, the xLS we need is the projection of
b on that column span. Let A = UΣV T be the SVD of A. Then the projection of b satisfies

ProjCol(A)b = UUT b

hence we can set xLS = V Σ−1UT b = (ATA)−1AT b (Assuming A has full column rank - otherwise
we need to use the pseudo-inverse). Then we have AxLS = UΣV TV Σ−1UT b = UUT b. Thus, we
can solve LSR in O(nd2) time.

3.3 Using subspace embeddings

Claim 6. If ||Dx||2 = (1 + ε)||A′x||2 for all x A′ = [A|b] then if x̃LS = argminx′=[x|−1]||Dx||22,
then:

||Ax− b||22 ≤
1 + ε

1− ε
||AxLS − b||22

We’re going to replace A with ΠA. Then we just need the SV D of ΠA, which only takes us O(md2)
time. If m is like d then this is faster. However, we still need to find Π and apply it. If you find it
using SVD, what’s the point? - we already spent a lot of time calculating Π itself.

Claim 7. (Restatement of last claim) If Π is ε-s.e. for span(cols(A, b)) then if x̃LS = argmin||ΠAx−
Πb||22, then:

||Ax̃LS − b||22 ≤
1 + ε

1− ε
||AxLS − b||22

Proof. ||ΠAx̃LS −Πb||22 ≤ ||ΠAx̃LS −Πb||22 ≤ (1 + ε)||AxLS − b22||. Similarly for the left side of the
inequality.

The total time to find x̃LS includes the time to find Π, the time to compute ΠA,Πb, and O(md2)
(the time to find the SVD for ΠA). But still, how do we find these Π quickly?

4 Getting Subspace Embeddings

As with approximate matrix multiplication, there are two possible methods we will examine: sam-
pling, and a JL method.

4.1 The Sampling Approach - Leverage Scores

Let Π ∈ Rn×n be a diagonal matrix with diagonal elements ηi. ηi is 1. if we sample the ith row i
of A (whichcanbewrittenasaTi), 0 otherwise. E[ηi] = pi.

3

ATA =

n∑
k=1

aka
T
k

(ΠA)T (ΠA) =

n∑
k=1

ηk
pk
aka

T
k

E(ΠA)T (ΠA) =
n∑
k=1

E[ηk]

pk
aka

T
k = ATA

In the last class, when we used the sampling approach for approximate matrix multiplication, we
chose proportional to the l2 norm for each row. We need to decide what pk should be here. Note
that the number of rows you get is non-deterministic. You could set that number, but this approach
is easier to numerically analyze. // Before analyzing, some intuition for the probabilities pk:

• I don’t want any pk’s to be 0 - then we just miss a row.

• Define Ri = supx∈Rd
|aTi x|2
||Ax||22

. If we don’t set pk ≥ Rk, it doesn’t make sense. Why?

• Look at the event that we did sample row i. Then

(ΠA)T (ΠA) =
1

pi
aia

T
i +

n∑
k 6=i

ηk
pk
aka

T
k

• Pick the x which achieves the sup in the definition of Ri. Then xT (ΠA)T (ΠA)x =
|aTi x|2
pi

+∑
(non-negative terms) ≥ |a

T
i x|2
pi

= ||Ax||22
Ri
pi

• If pi < Ri/2, the previous expression evaluates to 2||Ax||22 - therefore, we are guaranteed to
mess up because there is some x which makes our error too big. Therefore, we need some
pi > Ri/2.

Definition 8. Given A, the ith leverage score li is li = aTi (ATA)−1ai, (once again if A has full
column rank, otherwise use the pseudo-inverse instead).

Claim 9. li = Ri

Proof. Note that both Ri and li are both basis independent i.e. if M is square/invertible, then:

• li(A) = li(AM) and Ri(A) = Ri(AM)

• Ri(AM) = supx
|aTi Mx|2
‖AMx‖22

= supy
|aiyt|
‖Ay‖22

= Ri(A)

Choose M s.t. Ã = AM has orthonormal columns: M = V Σ−1 (from SVD). Then, wlog A = Ã =
AM and:

• Ri = supx
|aTi x|2
‖x‖22

4

• Which x achieves the sup in Ri? The vector ‖ai‖ itself. Thus Ri = ‖ai‖22

• li = aTi (ATA)−1ai = ‖ai‖22.

How do we calculate the leverage scores? Notice that AM = U . We sample according to the
||ui||22, where U is the matrix of orthonormal columns forming the basis of A. We need the SVD
again to actually calculate these probabilities then. But it’s actually okay if we sample based on
the approximation of the leverage scores. This will be a pset problem - it can be done using JL
approach seen next (there are other algorithms as well, such as iterative row sampling).

How do we know it actually works? If we sample according to ||ui||22 then:

E[(number of rows sampled)] =
∑
i

(pi) =
∑
i

||ui||22 = ||U ||2F = d

Theorem 10 (Drineas, Mahoney, Muthukrishnan [2]). If we choose pi ≥ min{1, lg (d/δ)||ui||22
ε2

},
then P(Π is not ε− s.e. for A) < δ.

• Note ||ui||22 = ||UUT ei||22 = ||ProjAei||22 ≤ ||ei||22 = 1. Thus none of the leverage scores can be
bigger than 1, and they sum up to d. The minimum with 1 is needed to the multiplicative
factor times the legepave score.

• We can analyze this using Matrix Chernoff (or non-commutative khintchine)

Let’s look at the analysis by non-commutative khintchine.

Definition 11. : The Schatten-p norm of A for 1 ≤ p ≤ ∞ is ||A||Sp = lp-norm of singular
values of A.

If A has rank ≤ d, note that ||A||Sp = Θ(||A||) = ||A||S∞ for p ≥ lg d (by Holder’s inequality).

Theorem 12 (Lust-Piquard and Pisier [3]).

E(||
∑
i

σiAi||pSp
)1/p) ≤ √p max{||

∑
i

ATi Ai||
1/2
Sp/2

, ||
∑
i

AiA
T
i ||

1/2
Sp/2
||}

The total samples we’ll need is at most dlg (d/δ)
ε2

. Note:

• Wanting ||ΠAx||22 = ||Ax||22(1± ε) for all x is the same as wanting ||ΠUΣV T y||22(1± ε) for all
y. Call ΣV T y = x.

• thus we want ∀x, ||ΠU ||22 = (1± ε)||Ux||22 = (1± ε)||x||22

• therefore, want sup||x||2=1x
T [(ΠU)T (ΠU)− I]x < ε, i.e. ||(ΠU)T (ΠU)− I|| < ε

5

4.2 The Oblivious Subspace Embedding Approach

Notice that the columns of U form an orthonormal basis for E.

• We want ∀x ∈ E, ||Πx||22 = (1 + ε)||x||22 i.e. supx∈E∩Sn−1 |||Πx||22 − 1| < ε. This should look
familiar, from Gordon’s theorem.

• Gordon: If Πi,j = ±1/
√
m then suffices to have m > g2(T) + 1/ε2.

g(E ∩ Sn−1) = E
g∈Rn

sup||x||2=1〈g, Ux〉

= E
g∈Rn

sup||x|2=1〈UT g, x〉

= E
g′∈Rd

sup||x|2=1〈g′, x〉

= ||g′||2
≤ E(||g′||22)1/2 =

∑
i

(E(g′i)
2)1/2 =

√
d

Thus, if we take a random Gaussian matrix, by Gordon’s theorem, it will preserve the subspace as
long as it has at least d

ε2
rows.

• We want our Π to have few rows. We should be able to find Π quickly. Multiplication with
A should be fast.

• Trouble: ΠA takes time O(mnd) using for loops, which takes time > nd2.

• want to use ”fast Π” - fast JL or sparse JL.

Possible: (Sarlós [4])

Definition 13. : An (ε, δ, d) oblivious subspace embedding is a distribution D over Rm×n s.t.
∀U ∈ Rn×d, UTU = I: PΠ∼D(||(ΠU)T (ΠU)− I|| > ε) < δ

Note that this distribution doesn’t depend on A or U . The Gaussian matrix provides an oblivious
subspace embedding, but Sarlós showed that other, faster methods, like a fast JL matrix, work as
well.

References

[1] James Demmel, Ioana Dumitriu, Olga Holtz, Robert Kleinberg. Fast Matrix Multiplication is
Stable. Numerische Mathematik, 106 (2) (2007), 199-224

[2] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan. Sampling algorithms for l2 regression
and applications. SODA 2006: 1127–1136

6

[3] Franoise Lust-Piquard and Gilles Pisier. Non commutative Khintchine and Paley inequalities.
Arkiv fr Matematik, 1991, Volume 29, Issue 1, pp 241-260

[4] Tamas Sarlós. Improved approximation algorithms for large matrices via random projections.
FOCS 2006, 143–152

7

CS 229r: Algorithms for Big Data Fall 2015

Lecture 17 — 10/28

Prof. Jelani Nelson Scribe: Morris Yau

1 Overview

In the last lecture we defined subspace embeddings a subspace embedding is a linear transformation
that has the Johnson-Lindenstrauss property for all vectors in the subspace:

Definition 1. Given W ⊂ Rn a linear subspace and ε ∈ (0, 1), an ε-subspace embedding is a
matrix Π ∈ Rm×n for some m such that

∀x ∈W : (1− ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2

And an oblivious subspace embedding

Definition 2. An (ε, δ, d) oblivious subspace embedding is a distribution D over Rmxn such that
∀U ∈ Rmxn, UTU = I

PΠ∼D(‖(ΠU)T (ΠU)‖ > ε) < δ

In this lecture we go over ways of getting oblivious subspace embeddings and then go over appli-
cations to linear regression. Finally, time permitting, we will go over low rank approximations.

2 General Themes

Today:

• ways of getting OSE’s

• More regression

• Low rank approximation

We can already get OSE’s with Gordon’s theorem. The following are five ways of getting OSE’s

• net argument

• noncommutative kintchine with matrix chernoff

• moment method

• approximate matrix multiplication with Frobenius error

• chaining

1

2.1 Net Argument

Concerning the net argument which we’ll see the details in the pset. For any d-dimensional subspace
E ∈ Rn there exists a set T ⊂ E ∩ Sn−1 of size O(1)d such that if Π preserves every x ∈ T up to
1 +O(ε) then Π preserves all of E up to 1 + ε

So what does this mean, if we have distributional JL than that automatically implies we have an
oblivious subspace embedding. We would set the failure probability in JL to be 1

O(1)d
which by

union bound gives us a failure probability of OSE of δ.

2.2 Noncommutative Khintchine

For Noncommutative Khintchine let ‖M‖p = (E ‖M‖pSp)
1
p with σ1, ..., σn are {1,−1} independent

bernoulli. Than

‖
∑
i

σiAi‖p ≤
√
pmax

{
‖(
∑
i

AiA
T
i)

1
2 ‖p, ‖(

∑
ATi Ai)

1
2 ‖p
}

To take the square root of a matrix just produce the singular value decomposition UΣV T and take
the square root of each of the singular values.

Now continuing we want
P (‖(ΠU)T (ΠU)− I‖ > ε) < δ

. We know the above expression is

P (‖(ΠU)T (ΠU)− I‖ > ε) <
1

εp
E‖(ΠU)T (ΠU)− I‖p ≤ Cp

εp
E‖(ΠU)T (ΠU)− I‖pSp

We want to bound ‖(ΠU)T (ΠU)− I‖p and we know

(ΠU)T (ΠU) =
∑
i

ziz
T
i

where zi is the i’th row of ΠU This all implies

‖(ΠU)T (ΠU)− I‖p = ‖
∑
i

ziz
T
i − E

∑
yiy

T
i ‖p

where yi ∼ zi. Now we do the usual trick with proving bernstein. By convexity we interchange the
expectation with the norm and obtain

≤ ‖
∑
i

(ziz
T
i − yiyTi)‖p

which is just the usual symmetrization trick assuming row of Π are independent. Then we simplify

≤ 2‖
∑
i

σiziz
T
i ‖Lp(σ,z) ≤

√
p‖(
∑
i

‖zi‖22zizTi)
1
2 ‖p

This approach of using matrix concentration inequalities has beene used by

2

The following was observed by Cohen, noncommutative khintchine can be applied to sparse JL

m ≥
dpolylog(1

δ)

ε2
, s ≥

polylog(dδ)

ε2

but Cohen is able to obtain m ≥ d log(d
δ

)

ε2
, s ≥ log(d

δ
)

ε for s containing dependent entries as opposed

to independent entries. There is a conjecture that the multiplies in d log(dδ) is actually an addition.
This will have significance in compressed sensing.

2.3 Moment Chernoff

Consider the following combinatorial argument

P (‖(ΠU)T (ΠU)− I‖ > ε) <
1

εp
E‖(ΠU)T (ΠU)− I‖p ≤ 1

εp
Etr((ΠU)T (ΠU)− I)

We know that the trace of an exponentiated matrix is

E(tr(Bp)) =
∑

i1,i2,..ip+1

p∏
t=1

Bitit+1

The rest is just combinatorics.

2.4 AMMF

For the main result of this section see [6] The basic observation by Nguyen is that

‖(ΠU)T (ΠU)− I‖ < ‖(ΠU)T (ΠU)− I‖F

so what we want is
PΠ(‖(ΠU)T (ΠU)− I‖ > ε) < δ

We know that UTU = I so this is exactly the form of matrix multiplication discussed two lectures
before. So rewriting we obtain

PΠ(‖(ΠU)T (ΠU)− UTU‖ > ε′‖U‖2F) < δ

Where the Frobenius norm of U is d because it’s composed of d orthonormal vectors. So we may
set ε = ε

d and we need O(1
ε′2δ) = O(d

ε2δ
) rows.

2.5 Chaining

The basic idea in chaining is to do a more clever net argument than previously discussed. See for
example Section 3.2.1 of the Lecture 12 notes on methods of bounding the gaussian width g(T).
Chaining is the method by which, rather than using one single net for T , one uses a sequence of nets
(as in Dudley’s inequality, or the generic chaining methodology to obtain the γ2 bound discussed
there).

3

See [3] by Clarkson and Woodruff for an example of analyzing the SJLT using a chaining approach.

They showed it suffices to have m ≥ d2 logO(1)(d
ε
)

ε2
, s = 1. As we saw above, in later works it

was shown that the logarthmic factors are not needed (e.g. by using the moment method, or the
AMMF approach). It would be an interesting exercise though to determine whether the [3] chaining
approach is capable of obtaining the correct answer without the extra logarithmic factors.

Note: s = 1 means we can compute ΠA in time equal to the number of nonzero entries of A .

3 Other ways to use subspace embeddings

3.1 Iterative algorithms

This idea is due to Tygert and Rokhlin [7] and Avron et al. [2]. The idea is to use gradient descent.
The performance of the latter depends on the condition number of the matrix:

Definition 3. For a matrix A, the condition number of A is the ratio of its largest and smallest
singular values.

Let Π be a 1/4 subspace embedding for the column span of A. Then let ΠA = UΣV T (SVD of
ΠA). Let R = V Σ−1. Then by orthonormality of U

∀x : ‖x‖ = ‖ΠARx‖ = (1± 1/4)‖ARx‖

which means AR = Ã has a good condition number. Then our algorithm is the following

1. Pick x(0) such that

‖Ãx(0) − b‖ ≤ 1.1‖Ãx∗ − b‖

(which we can get using the previously stated reduction to subspace embeddings with ε being
constant).

2. Iteratively let x(i+1) = x(i) + ÃT (b− Ãx(i)) until some x(n) is obtained.

We will give an analysis following that in [3] (though analysis of gradient descent can be found in
many standard textbooks). Observe that

Ã(x(i+1) − x∗) = Ã(x(i) + ÃT (b− Ãx(i))− x∗) = (Ã− ÃÃT Ã)(x(i) − x∗),

where the last equality follows by expanding the RHS. Indeed, all terms vanish except for ÃÃT b vs
ÃÃT Ãx∗, which are equal because x∗ is the optimal vector, which means that x∗ is the projection
of b onto the column span of Ã.

4

Now let AR = U ′Σ′V ′T in SVD, then

‖Ã(x(i+1)−x∗)‖ = ‖(Ã− ÃÃT Ã)(x(i) − x∗)‖
= ‖U ′(Σ′ − Σ′3)V ′T (x(i) − x∗)‖
= ‖(I − Σ′2)U ′Σ′V ′T (x(i) − x∗)‖
≤ ‖I − Σ′2‖ · ‖U ′Σ′V ′T (x(i) − x∗)‖
= ‖I − Σ′2‖ · ‖Ã(x(i) − x∗‖

≤ 1

2
· ‖Ã(x(i) − x∗)‖

by the fact that Ã has a good condition number. So, O(log 1/ε) iterations suffice to bring down
the error to ε. In every iteration, we have to multiply by AR; multiplying by A can be done in
time proportional to the number of nonzero entries of A, ‖A‖0, and multiplication by R in time
proportional to d2. So the dominant term in the time complexity is ‖A‖0 log(1/ε), plus the time to
find the SVD.

3.2 Sarlos’ Approach

This approach is due to Sarlós [8]. First, a bunch of notation: let

x∗ = argmin‖Ax− b‖
x̃∗ = argmin‖ΠAx−Πb‖.
A = UΣV T in SVD

Ax∗ = Uα for α ∈ Rd

Ax∗ − b = −w
Ax̃∗ −Ax∗ = Uβ

Then, OPT = ‖w‖ = ‖Ax∗ − b‖. We have

‖Ax̃∗ − b‖2 = ‖Ax̃∗ −Ax∗ +Ax∗ − b‖2

= ‖Ax̃∗ −Ax∗‖2 + ‖Ax∗ − b‖2 (they are orthogonal)

= ‖Ax̃∗ −Ax∗‖2 +OPT 2 = OPT 2 + ‖β‖2

We want ‖β‖2 ≤ 2εOPT 2. Since ΠA,ΠU have same column span,

ΠU(α+ β) = ΠAx̃∗ = ProjΠA(Πb) = ProjΠU (Πb)

= ProjΠU (Π(Uα+ w)) = ΠUα+ ProjΠU (Πw)

so ΠUβ = ProjΠU (Πw), so (ΠU)T (ΠU)β = (ΠU)TΠw. Now, let Π be a (1 − 1/ 4
√

2)-subspace
embedding – then ΠU has smallest singular value at least 1/ 4

√
2. Therefore

‖β‖2/2 ≤ ‖(ΠU)T (ΠU)β‖2 = ‖(ΠU)TΠw‖2

Now suppose Π also approximately preserves matrix multiplication. Notice that w is orthogonal to
the columns of A, so UTw = 0. Then, by the general approximate matrix multiplication property,

P
Π

(
‖(ΠU)TΠw − UTw‖22 > ε′2‖U‖2F ‖w‖22

)
< δ

5

We have ‖U‖F =
√
d, so set error parameter ε′ =

√
ε/d to get

P
(
‖(ΠU)TΠw‖2 > ε‖w‖2

)
< δ

so ‖β‖2 ≤ 2ε‖w‖2 = 2εOPT 2, as we wanted.

So in conclusion, we don’t need Π to be an ε-subspace embedding. Rather, it suffices to simply be
a c-subspace embedding for some fixed constant c = 1 − 1/

√
2, while also providing approximate

matrix multiplication with error
√
ε/d. Thus for example using the Thorup-Zhang sketch, using

this reduction we only need m = O(d2 + d/ε) and still s = 1, as opposed to the first reduction in
these lecture notes which needed m = Ω(d2/ε2).

References

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Fre-
quency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] Haim Avron and Petar Maymounkov and Sivan Toledo. Blendenpik: Supercharging LAPACK’s
least-squares solver SIAM Journal on Scientific Computing, 32(3) 1217–1236, 2010.

[3] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input
sparsity time Proceedings of the 45th Annual ACM Symposium on the Theory of Computing
(STOC), 81–90, 2013.

[4] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Numer. Math.,
108(1):59-91, 2007.

[5] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression Proceedings of the 45th Annual
ACM Symposium on the Theory of Computing (STOC), 91–100, 2013.

[6] Jelani Nelson and Huy L. Nguy˜̂en. OSNAP: Faster numerical linear algebra algorithms via
sparser subspace embeddings. Proceedings of the 54th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2013.

[7] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear
least-squares regression. Proceedings of the National Academy of Sciences, 105 (36) 13212–
13217, 2008.

[8] Tamas Sarlós. Improved approximation algorithms for large matrices via random projections.
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 143–152, 2006.

[9] Mikkel Thorup, Yin Zhang. Tabulation-Based 5-Independent Hashing with Applications to
Linear Probing and Second Moment Estimation. SIAM J. Comput. 41(2): 293–331, 2012.

6

CS 229r: Algorithms for Big Data Fall 2015

Lecture 18 — Nov 3rd, 2015

Prof. Jelani Nelson Scribe: Jefferson Lee

1 Overview

• Low-rank approximation,

• Compression Sensing

2 Last Time

We looked at three different regression methods. The first was based on ε-subspace embeddings.
The second was an iterative approach, building a well-conditioned matrix good for stochastic gra-
dient descent. The third was formulated as follows:

For the least square problem minx ‖Sx−b‖2, which has optimal solution x∗ = S+b, and approximate
solution x̃∗ = argminx‖ΠSx − Πx‖2, we let x∗ = Uα, w = Sx∗ − b, Uβ = Sx̃∗ − Sx∗ where
S = UΣV T . We proved that (ΠU)T (ΠU)β = (ΠU)TΠw last time.

These results from regression will appear in our work for low-rank approximation.

3 Low-rank approximation

The basic idea is a huge matrix A ∈ Rn×d with n, d both very large - say, n users rating d movies.
We might believe that the users are linear combinations of a few (k) basic types. We want to
discover this low-rank structure. More formally:

Given a matrix A ∈ Rn×d, we want to compute Ak := argminrank(B)≤k‖A−B‖X .

Some now argue that we should look for a non-negative matrix factorization; nevertheless, this
version is still used.

Theorem 1 (Eckart-Young). Let A = UΣV T be a singular-value decomposition of A where
rank(A) = r and Σ is diagonal with entries σ1 ≥ σ2 ≥ . . . ≥ σr > 0, then under ‖ · ‖X = ‖ · ‖F ,
Ak = UkΣkV

T
k is the minimizer where Uk and Vk are the first k columns of U and V and

Σk = diag(σ1, . . . , σk).

Our output is then Uk,Σk, Vk. We can calculate Ak in O(nd2) time, by calculating the SVD of A.
We would like to do better. First, a few definitions:

Definition 2. ProjAB is the projection of the columns of B onto the colspace(A).

Definition 3. Let A = UΣV T be a singular decomposition. A+ = V Σ−1UT is called Moore-
Penrose pseudoinverse of A.

1

3.1 Algorithm

Today we are going to use a sketch which is used both in subspace embedding and approximate
matrix multiplication to compute Ãk with rank at most k such that ‖A−Ãk‖F ≤ (1+ε)‖A−Ak‖F ,
following Sarlós’ approach [8]. The first works which got some decent error (like ε‖A‖F) was due
to Papadimitriou [7] and Frieze, Kanna and Vempala [5].

Theorem 4. Define Ãk = ProjAΠT ,k(A). As long as Π ∈ Rm×n is an 1/2 subspace embedding
for a certain k-dimensional subspace Vk and satisfies approximate matrix multiplication with error√
ε/k, then

‖A− Ãk‖F ≤ (1 +O(ε))‖A−Ak‖F ,

where ProjV,k(A) is the best rank k approximation to ProjV (A), i.e., projecting the columns of A
to V .

Before we prove this theorem, let us first convince ourselves that this algorithm is fast, and that
we can compute ProjAΠT ,k(A) quickly. To satisfy the conditions in the above theorem, we know

that Π ∈ Rm×d can be chosen with m = O(k/ε) e.g. using a random sign matrix (or slightly
larger m using a faster subspace embedding). We need to multiply AΠT . We can use a fast
subspace embedding to compute AΠT quickly, then we can compute the SVD of AΠT = U ′Σ′V ′T

in O(nm2) time. Let [·]k denote the best rank-k approximation under Frobenius norm. We then
want to compute [U ′U ′TA]k = U ′[U ′TA]k. Computing U ′TA takes O(mnd) time, then computing
the SVD of U ′TA takes O(dm2) time. Note that this is already better than the O(nd2) time
to compute the SVD of A, but we can do better if we approximate. In particular, by using
the right combination of subspace embeddings, for constant ε the scheme described here can be
made to take O(nnz(A)) + Õ(ndk) time (where Õ hides log n factors). We will shoot instead for
O(nnz(A)) + Õ(nk2).

Consider that:

• We want to compute Ãk = argminX:rank(X)≤k ‖U ′X−A‖2F . If X+ is the argmin without the
rank constraint, then the argmin with the rank constraint is [U ′X+]k = U ′[X+]k, where [·]k
denotes the best rank-k approximation under Frobenius error.

• Rather than find X+, we use approximate regression to find an approximately optimal X̃.
That is, we compute X̃ = argminX ‖Π′U ′X − Π′A‖2F where Π′ is an α-subspace embedding
for the column space of U ′ (note U ′ has rank m). Then our final output is U ′[X̃]k.

Why does the above work? (Thanks to Michael Cohen for describing the following simple argu-
ment.) First note (

1 + α

1− α

)
· ‖U ′X+ −A‖2F ≥ ‖U ′X̃ −A‖2F

= ‖(U ′X+ −A) + U ′(X̃ −X+)‖2F
= ‖U ′X+ −A‖2F + ‖U ′(X̃ −X+)‖2F
= ‖U ′X+ −A‖2F + ‖X̃ −X+‖2F

2

and thus ‖X̃−X+‖2F ≤ O(α) · ‖U ′X+−A‖2F . The second equality above holds since the matrix U ′

preserves Frobenius norms, and the first equality since U ′X+−A has a column space orthogonal to
the column space of U ′. Next, suppose f, f̃ are two functions mapping the same domain to R such
that |f(x) − f̃(x)| ≤ η for all x in the domain. Then clearly f(argminx f̃(x)) ≤ minx f(x) + 2η.
Now, let the domain be the set of all rank-k matrices, and let f(Z) = ‖U ′X+ − Z‖F and f̃(Z) =
‖U ′X̃ − Z‖F . Then η = ‖U ′X+ − U ′X̃‖F = ‖X+ − X̃‖F . Thus

‖U ′[X̃]k −A‖2F = ‖U ′[X̃]k − U ′X+‖F + ‖(I − U ′U ′T)A‖2F
≤ (‖U ′[X+]k − U ′X+‖F + 2 · ‖X+ − X̃‖F)2 + ‖(I − U ′U ′T)A‖2F
≤ (‖U ′[X+]k − U ′X+‖F +O(

√
α) · ‖U ′X+ −A‖F)2 + ‖(I − U ′U ′T)A‖2F

= (‖U ′[X+]k − U ′X+‖F +O(
√
α) · ‖U ′X+ −A‖F)2 + ‖U ′X+ −A‖2F

= ‖U ′[X+]k − U ′X+‖2F +O(
√
α) · ‖U ′[X+]k − U ′X+‖F · ‖U ′X+ −A‖F

+O(α) · ‖U ′X+ −A‖2F + ‖U ′X+ −A‖2F
= ‖U ′[X+]k −A‖2F +O(

√
α) · ‖U ′[X+]k − U ′X+‖F · ‖U ′X+ −A‖F

+O(α) · ‖U ′X+ −A‖2F (1)

≤ (1 +O(α)) · ‖U ′[X+]k −A‖2F +O(
√
α) · ‖U ′[X+]k − U ′X+‖F · ‖U ′X+ −A‖F

(2)

≤ (1 +O(α)) · ‖U ′[X+]k −A‖2F +O(
√
α) · ‖U ′[X+]k −A‖2F (3)

= (1 +O(
√
α)) · ‖U ′[X+]k −A‖2F

where (1) used that ‖U ′[X+]k − U ′X+ + U ′X+ − A‖2F = ‖U ′[X+]k − A‖2F + ‖U ′[X+]k − U ′X+‖2F
since U ′X+ −A has columns orthogonal to the column space of U ′. Also, (2) used that

‖U ′X+ −A‖F ≤ ‖U ′[X+]k −A‖F ,

since U ′X+ is the best Frobenius approximation to A in the column space of U ′. Finally, (3) again
used

‖U ′X+ −A‖F ≤ ‖U ′[X+]k −A‖F ,

and also used the triangle inequality

‖U ′[X+]k − U ′X+‖F ≤ ‖U ′[X+]k −A‖F + ‖U ′X+ −A‖F ≤ 2 · ‖U ′[X+]k −A‖F .

Thus we have established the following theorem, which follows from the above calculations and
Theorem 4.

Theorem 5. Let Π1 ∈ Rm1×n be a 1/2 subspace embedding for a certain k-dimensional subspace Vk,
and suppose Π1 also satisfies approximate matrix multiplication with error

√
ε/k. Let Π2 ∈ Rm2×n

be an α-subspace embedding for the column space of U ′, where AΠT
1 = U ′Σ′V ′T is the SVD (and

hence U ′ has rank at most m1). Let Ã′k = U ′[X̃]k where

X̃ = argmin
X

‖Π2U
′X −Π2A‖2F .

Then Ã′k has rank k and

‖A− Ã′k‖F ≤ (1 +O(ε) +O(
√
α))‖A−Ak‖F .

In particular, the error is (1 +O(ε))‖A−Ak‖F for α = ε.

3

In the remaining part of these lecture notes, we show that ProjAΠT ,k(A) actually is a good rank-k
approximation to A (i.e. we prove Theorem 4). In the following proof, we will denote the first k
columns of U and V as Uk and Vk and the remaining columns by Uk̄ and Vk̄.

Proof. Let Y be the column span of ProjAΠT (Ak) and the orthogonal projection operator onto Y
as P . Then,

‖A− ProjAΠT ,k(A)‖2F ≤ ‖A− PA‖2F = ‖Ak − PAk‖2F + ‖Ak̄ − PAk̄‖2F

Then we can bound the second term in that sum:

‖Ak̄‖ = ‖(I − P)Ak̄‖2F ≤ ‖Ak̄‖1F

Now we just need to show that ‖Ak − PAk‖2F ≤ ε‖Ak̄‖2F :

‖A− PA‖2F = ‖Ak − (AΠT)(AΠT)+Ak)‖2F ≤ ‖Ak − (AΠT)(AΠT)+Ak‖2F

= ‖AT
k −AT

k (ΠAT)+(ΠAT)‖2F

=
n∑

i=1

‖AT
k

(i) −AT
k (ΠAT)+(ΠAT)(i)‖22

Here superscript (i) means the ith column. Now we have a bunch of different approximate regression
problems which have the following form:

min
x
‖ΠAT

k x−Π(AT)(i)‖2,

which has optimal value x̃∗ = (ΠAT
k)+(ΠAT)(i). Consider the problem minx ‖ΠAT

k x− (AT)(i)‖2 as
original regression problem. In this case optimal x∗ gives AT

k x
∗ = ProjAT

k
((AT)(i)) = (AT

k)(i). Now
we can use the analysis on the approximate least square from last week.

In our problem, we have a bunch of wi, βi, αi with S = AT
k = VkΣkU

T
k and bi = (AT)(i). Here,

‖wi‖2 = ‖Sx∗ − b‖2 = ‖(AT
k)(i) − (AT)(i)‖2. Hence

∑
i ‖wi‖2 = ‖A − Ak‖2F . On the other hand,∑

i ‖βi‖2 = ‖AT
k − AT

k (ΠAT
k)+(ΠAT)‖2F . Since (ΠVk)T (ΠVk)βi = (ΠVk)TΠwi, if all singlar values

of ΠVk are at least 1/21/4, we have∑
i ‖βi‖2

2
≤
∑
i

‖(ΠVk)T (ΠVk)βi‖2 =
∑
i

‖(ΠVk)TΠwi‖2 = ‖(ΠVk)TΠW‖TF

where W has wi as ith column. What does it look like? (ΠVk)TΠW exactly look like approximate
matrix multiplication of Vk and W . Since columns of W and Vk are orthogonal, we have V T

k W = 0,
hence if Π is a sketch for approximate matrix multiplication of error ε′ =

√
ε/k, then

P
Π

(‖(ΠVk)T (ΠW)‖2F > ε‖W‖2F) < δ

since ‖Vk‖2F = k. Clearly ‖W‖2F =
∑

i ‖wi‖2 = ‖A−Ak‖2F , we get the desired result.

4

3.2 Further results

What we just talked about gives a good low-rank approximation but every column of Ãk is a linear
combination of potentially all columns of A. In applications (e.g. information retrieval), we want a
few number of columns be spanning our low dimensional subspace. There has been work on finding
fewer columns of A (call them C) such that ‖A− (CC+A)k‖2F is small, but we will not talk about
it deeply.

• Boutsidis et al. [1] showed that we can take C with ≈ 2k/ε columns and error ≤ ε‖A−Ak‖F .

• Guruswami and Sinop got C with ≤ k
ε + k − 1 columns such that ‖A − CC+A‖F ≤ (1 +

ε)‖A−Ak‖F .

3.3 K-Means as a Low-Rank Approximation Problem

The k-means problem, which was stated on the problem set, involved a set of points (x1, ..., xn) ∈ Rd.
Let A be the matrix with the ith row equal to xTi . Given a partition P(P1, ..., Pk) of points into
k clusters, then the best centroids are averages of the clusters. Define the matrix Xp ∈ Rn×k such
that:

(Xp)i,j =

1√
|Pj |

ifi ∈ Pj

0 otherwise

Note that XT
p Xp = I. It can e shown that the ith row of XpX

T
p A is the centroid of the cluster that

Xi belongs to. Thus, solving k-means is equivalent to finding some P∗ = argmin‖A−XpX
T
p A‖ - this

is a constrained rank-k approximation problem. Cohen et. al[3] show that Π can have m = O(k/ε2)
for a (1 + ε) approximation, or a m = O(lg k/ε2) for a (9 + ε) approximation (the second bound
is specifically for the k-means problem). It is an open problem whether this second bon can get a
better approximation.

4 Compressed Sensing

4.1 Basic Idea

Consider x ∈ Rn. If x is a k sparse vector, we could represent it in a far more compressed manner.
Thus, we define a measure of how ”compressible” a vector is as a measure of how close it is to being
k sparse.

Definition 6. Let xhead(k) be the k elements of largest magnitude in x. Let xtail(k) be the rest of x.

Therefore, we call x compressible if ‖xtail(k)‖ is small.

The goal here is to approximately recover x from few linear measurements. Consider we have a
matrix Πx such that each the ith row is equal to 〈αi, x〉 for some α1, ..., αm ∈ Rn. We want to
recover a x̃ from ΠX such that ‖x− x̃‖p ≤ Cε,p,q‖xtail(k)‖q, where Cε,p,q is some constant dependent
on ε, p and q. Depending on the problem formulation, I may or may not get to choose this matrix
Π.

5

4.2 Approximate Sparsity

There are many practical applications in which approximately sparse vectors appear. Pixelated
images, for example, are usually approximately sparse in some basis U . For example, consider an
n by n image x ∈ Rn2

. then x = Uy for some basis U , and y is approximately sparse. Thus we can
get measurements from ΠUy.

Images are typically sparse in the wavelet basis. We will describe how to transform to the Haar
wavelet basis here. Assume that n is a power of two. Then:

1. Break the image x into squares of size four pixels.

2. Initialize a new image, with four regions R1, R2, R3, R4.

3. Each block of four pixels, b, in x has a corresponding single pixel in each of R1b, R2b, R3b, and
R4b based on its location. For each block of four b:

• Let the b have pixel values p1, p2, p3, and p4.

• R1b ← 1
4(p1 + p2 + p3 + p4)

• R2b ← 1
4(p1 − p2 + p3 − p4)

• R3b ← 1
4(p1 − p2 − p3 + p4)

• R4b ← 1
4(p1 − p2 + p3 − p4)

4. Recurse on R1, R2, R3, and R4.

The general idea is this: usually, pixels are relatively constant in certain regions. Thus, the values
in all regions except for the first are usually relatively small. If you view images after this transform,
the upper left hand regions will often be closer to white, while the rest will be relatively sparse.

Theorem 7 (Candès, Romberg, Tao [2], Donoho [4]). There exists a Π ∈ Rm×n with m =
O(klg(n/k)) and a poly-time algorithm Alg s.t. if x̃ = Alg(Πx) then ‖x− x̃‖2 ≤ O(k−1/2)‖xtail(k)‖1

If x is actually k-spares, 2k measurements are necessary and sufficient. We will see this by examining
Prony’s method in one of our problem sets, and investigate compressed sensing further next class.

References

[1] Christos Boutsidis, Petros Drineas, Malik Magdon-Ismail. Near Optimal Column-based Matrix
Reconstruction. FOCS, 305-314, 2011.

[2] Emmanuel J. Candès, Justin K. Romberg, Terence Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489-509, 2006.

[3] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, Madalina Persu. Dimen-
sionality Reduction for k-Means Clustering and Low Rank Approximation. STOC, 163-172,
2015.

6

[4] David L. Donoho. Compressed sensing, IEEE Transactions on Information Theory, 52(4):1289-
1306, 2006.

[5] Alan M. Frieze, Ravi Kannan, Santosh Vempala. Fast Monte-carlo Algorithms for Finding
Low-rank Approximations. J. ACM, 51(6):1025-1041, 2004.

[6] Venkatesan Guruswami, Ali Kemal Sinop. Optimal Column-based Low-rank Matrix Recon-
struction. SODA, 1207-1214, 2012.

[7] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, Santosh Vempala. Latent
Semantic Indexing: A Probabilistic Analysis. J. Comput. Syst. Sci., 61(2):217-235, 2000.

[8] Tamás Sarlós. Improved Approximation Algorithms for Large Matrices via Random Projec-
tions. FOCS, 143-152, 2006.

7

CS 229r: Algorithms for Big Data Fall 2015

Lecture 19 — Nov 5

Prof. Jelani Nelson Scribe: Abdul Wasay

1 Overview

In the last lecture, we started discussing the problem of compressed sensing where we are given a
sparse signal and we want to reconstruct is using as little measurements as possible. We looked
into how sparsity manifests itself in images which are approximately sparse in Haar wavelet basis.

In this lecture we will look at

• Recap a bit about compressive sensing.

• RIP and connection to incoherence

• Basis pursuit

• Krahmer-Ward theorem

2 Review from Last time

2.1 Compressed Sensing

In compressed sensing, we are given a “compressible” signal x ∈ Rn, and our goal is use few linear
measurements of x to approximately recover x. Here, a linear measurement of x is its dot product
with another vector in Rn. We can arrange m such linear measurements to form the rows of a
matrix Π ∈ Rm×n, so the goal now becomes to approximately recover x from Πx using m� n.

Note that if m < n, then any Π has a non-trivial kernel, so we have no hope of exactly recovering
every x ∈ Rn. This motivates our relaxed objective of only recovering compressible signals.

So what exactly do we mean by compressible? A compressible signal is one which is (approximately)
sparse in some basis – but not necessarily the standard basis. Here an approximately sparse signal
is a sum of a sparse vector with a low-weight vector.

2.2 Algorithmic Goals

The compressed sensing algorithms we discuss will achieve the following. If x is actually sparse,
we will recover x exactly in polynomial time. And if x is only approximately sparse, then we will
recover x approximately, again in poly-time.

More formally, we seek to meet “`p/`q guarantees”: Given Πx, we will recover x̃ such that

‖x− x̃‖p ≤ Ck,p,q min
‖y‖0≤k

‖y − x‖q,

1

where the `0-norm of a vector is the count of its non-zero coordinates. Observe that the minimizer
y in the statement above picks out the largest (in absolute value) k coordinates of x and zeroes out
the rest of them. Also, note that the right-hand side is zero when x is actually k-sparse.

3 Main Result

Theorem 1. There is a polynomial-time algorithm which, given Πx for Π ∈ Rm×n and x ∈ Rn,
can recover x̃ such that

‖x− x̃‖2 ≤ O
(

1√
k

)
‖xtail(k)‖1

where xtail(k) is x with its top k coordinates zeroed out.

3.1 Exact recovery in the sparse case

As a first step toward proving the theorem, let’s examine what we need to recover x exactly when we
actually have ‖x‖0 ≤ k. Information- theoretically, it’s necessary and sufficient to have Πx 6= Πx′

whenever x 6= x′ are both k-sparse. This is equivalent to requiring any 2k-sparse vector to lie
outside ker Π, i.e., requiring each restriction ΠS of Π to the columns in a set S to have full column
rank for every S ⊆ [n] with |S| ≤ 2k.

How can we use this characterization to recover x given y = Πx when Π has this property? One
way is to find the minimizer z in

min
z∈Rn

‖z‖0

s.t. Πz = y.

Unfortunately, this optimization problem is NP-hard to solve in general [GJ79, Problem MP5]. In
what follows, we will show that with an additional constraint on Π, we can approximately solve
this optimization problem using linear programming.

4 RIP Matrices

Definition 2. A matrix Π ∈ Rm×n satisfies the (ε, k)- restricted isometry property (RIP) if for all
k-sparse vectors x:

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22.

Equivalently, whenever |S| ≤ k, we have

‖ΠT
SΠS − Ik‖2 ≤ ε.

2

5 Calculating RIP matrices

RIP matrices are obtainable from the following methods:

• Use JL to preserve each of the k-dimensional subspace. This can be done by applying JL to
the requisite

(
n
k

)
eO(k) vectors yields, by Stirling’s approximation,

m .
1

ε2
k log

(n
k

)
.

• Use incoherent matrices. The good thing about incoherent matrices is that they are explicit
from codes as we have looked in problem set 1.

• From first principles. A matrix Π might not satisfy JL, but might still preserve the norms
of k-sparse vectors. For example, we can take Π to sample m rows from a Fourier matrix.
Recall that for the FJLT, we needed to subsequently multiply by a diagonal sign matrix, but
there is no need to do so in the particular case of sparse vectors.

We will focus on the second method.

Recall 3. A matrix Π is α−coherent if:

• ‖Πi‖2 = 1 for all i, and

• |〈Πi,Πj〉| ≤ α for all i 6= j.

Claim 4. Incoherent matrices can be used to explicitly construct RIP.

We will use the Gershgorin Circle Theorem to prove the above claim.

Lemma 5. Given a matrix A, all its eigenvalues, lie within a complex disk of radius
∑

j 6=i |aij |.

Proof. Let x be an eigenvector of A with corresponding eigenvalue λ. Let i be an index such that
|xi| = ‖x‖∞. Then (Ax)i = λxi so

λxi =
n∑
j=1

aijxj ⇒ |(λ− aii)xi| =

∣∣∣∣∣∣
∑
j 6=i

aijxj

∣∣∣∣∣∣
⇒ |λ− aii| ≤

∑
j 6=i

∣∣∣∣aijxjxi

∣∣∣∣ ≤∑
j 6=i
|aij |

by our choice of i.

Theorem 6. If Π is (εk) incoherent, it implies that it is (ε, k)-RIP.

Proof. Suppose we have an α−incoherent matrix where α = ε
k . Let us analyze A=(ΠIs)

T (ΠIs) for
some |s| ≤ k. Notice that A is a symmetric matrix and it has real eigenvalues. Also, aii = 1 and
aij = α = ε

k . Therefore, the eigenvalues of A lie in the interval of radius:

3

∑
j 6=i
|〈Πi

S ,Π
j
S〉| ≤ α(k − 1)

We set α = ε
k and get an (ε, k)-RIP matrix.

6 Basis Pursuit OR RIP to Recovery

Theorem 7. If Π is (ε2k, 2k)-RIP with ε2k ≤
√

2− 1, and x̃ = x+ h is the solution to the “basis
pursuit” linear program

min
z∈Rn

‖z‖1

s.t. Πz = Πx,

then

‖h‖2 ≤ O
(

1√
k

)
‖xtail(k)‖1.

Remark: A linear program (LP) is an optimization problem in which one seeks to optimize a
linear objective function subject to linear constraints. The above problem is indeed a linear program
with polynomially many variables and constraints, since it is equivalent to

min
y∈Rn

∑
i

yi

s.t. Πz = Πx,

zi ≤ yi ∀i,
−zi ≤ yi ∀i.

It is known (e.g. via Khachiyan’s analysis of the ellipsoid method) that LPs can be solved in
polynomial time.

We will now present a proof along the lines of [Candes08].

Proof. First, we define some notation.

For a vector x ∈ Rn and a set S ⊆ [n], let xS be the vector with all of its coordinates outside of S
zeroed out. We will use T ci to indicate the complement of Ti

• Let T0 ⊆ [n] be the indices of the largest (i absolute value) k coordinates of x.

• Let T1 be the indices of the largest k coordinates of hT c
0

= htail(k).

• Let T2 be the indices of the second largest k coordinates of hT c
0
.

• ...and so forth, for T3, . . .

4

By the triangle inequality, we can write

‖h‖2 = ‖hT0∪T1 + h(T0∪T1)c‖2
≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)c‖2.

Our strategy for bounding h will be to show:

1.

‖h(T0∪T1)c‖2 ≤ ‖hT0∪T1‖2 +O

(
1√
k

)
‖xtail(k)‖1.

2.

‖hT0∪T1‖2 ≤ O
(

1√
k

)
‖xtail(k)‖1)

Both parts rely on the following lemma.

Lemma 8. ∑
j≥2

‖hTj‖2 ≤
2√
k
‖xT c

0
‖1 + ‖hT0∪T1‖2.

Proof. We first get an upper bound on the left-hand side by applying a technique known as the
“shelling trick.” ∑

j≥2

‖hTj‖2 ≤
√
k
∑
j≥2

‖hTj‖∞

≤ 1√
k

∑
j≥2

‖hTj−1‖1

≤ 1√
k
‖hT c

0
‖1. (1)

The first inequality holds because each hTj is k-sparse, and the second holds because the size of
every term in hTj is bounded from above by the size of every term in hTj−1 .

Now since x̃ = x+ h is the minimizer of the LP, we must have

‖x‖1 ≥ ‖x+ h‖1
= ‖(x+ h)T0‖1 + ‖(x+ h)T c

0
‖1

≥ ‖xT0‖1 − ‖hT0‖1 + ‖hT c
0
‖1 − ‖xT c

0
‖1

by two applications of the reverse triangle inequality. Rearranging, we obtain

‖hT c
0
‖1 ≤ ‖x‖1 − ‖xT0‖1 + ‖hT0‖1 + ‖xT c

0
‖1

= 2‖xT c
0
‖1 + ‖hT0‖1

≤ 2‖xT c
0
‖1 +

√
k‖hT0‖2 by Cauchy- Schwarz

≤ 2‖xT c
0
‖1 +

√
k‖hT0∪T1‖2

5

Combining this upper bound with Inequality (1) yields the claim.

Returning to the main proof, let us first upper bound the size of h(T0∪T1)c . We get:

‖h(T0∪T1)c‖2 =

∥∥∥∥∥∥
∑
j≥2

hTj

∥∥∥∥∥∥
2

≤
∑
j≥2

‖hTj‖2

≤ ‖hT0∪T1‖2 +
2√
k
‖xT c

0
‖1 by the claim

= ‖hT0∪T1‖2 +
2√
k
‖xtail(k)‖1.

Now to bound the size of hT0∪T1 , we need another lemma.

Lemma 9. If x, x′ are supported on disjoint sets T, T ′ respectively, where |T | = k and |T ′| = k′,
then

|〈Πx,Πx′〉| ≤ εk+k′‖x‖2‖x′‖2,

where Π is (εk+k′ , k + k′)-RIP.

Proof. We can assume WLOG that x, x′ are unit vectors. Write

‖Πx+ Πx′‖22 = ‖Πx‖22 + ‖Πx′‖22 + 2〈Πx,Πx′〉, and

‖Πx−Πx′‖22 = ‖Πx‖22 + ‖Πx′‖22 − 2〈Πx,Πx′〉.

Taking the difference gives

|〈Πx,Πx′〉| = 1

4

∣∣‖Π(x+ x′)‖22 − ‖Π(x− x′)‖22
∣∣

≤ 1

4
((1 + εk+k′)‖x+ x′‖22 − (1− εk+k′)‖x− x′‖22)

=
1

4
((1 + εk+k′)2− (1− εk+k′)2)

= εk+k′

since x± x′ are (k + k′)-sparse, and x, x′ are disjointly supported. This proves the lemma.

To bound the size of hT0∪T1 , first observe that

ΠhT0∪T1 = Πh−
∑
j≥2

ΠhTj = −
∑
j≥2

ΠhTj

6

since h ∈ ker Π. Therefore,

‖ΠhT0∪T1‖22 = −
∑
j≥2

〈ΠhT0∪T1 ,ΠhTj 〉 ≤
∑
j≥2

(|〈ΠhT0 ,ΠhTj 〉|+ |〈ΠhT1 ,ΠhTj 〉|).

By Lemma 9, each summand is at most

ε2k(‖hT0‖2 + ‖hT1‖2)‖hTj‖2 ≤ ε2k

√
2‖hT0∪T1‖2‖hTj‖2.

Thus

(1− ε2k)‖hT0∪T1‖22 ≤ ‖ΠhT0∪T1‖22
≤ ε2k

√
2‖hT0∪T1‖2

∑
j≥2

‖hTj‖2

≤ ε2k

√
2‖hT0∪T1‖2

(
2√
k
‖xT c

0
‖1 + ‖hT0∪T1‖2

)

by Claim 8. Cancelling a factor of ‖hT0∪T1‖2 from both sides and rearranging gives

‖hT0∪T1‖2 ≤
ε2k2
√

2

(1− ε2k − ε2k

√
2)
√
k
‖xT c

0
‖1 = O

(
1√
k

)
‖xtail(k)‖1.

Putting everything together:

‖h‖2 ≤ ‖h(T0∪T1)c‖2 + ‖hT0∪T1‖2

≤ 2‖hT0∪T1‖2 +
2√
k
‖xtail(k)‖1

≤ O
(

1√
k

)
‖xtail(k)‖1.

7 Krahmer and Ward

Theorem 10. Let Π ∈ Rm×n be a matrix satisfying the (ε, 2k)-RIP. Let σ ∈ {+1,−1}n be uniformly
random and Dσ the diagonal matrix with σ on the diagonal. Then ΠDσ satisfies the (O(ε), 2−Ω(k))-
distributional JL property.

This theorem states that given a matrix satisfying the RIP property, we can construct a distribution
on matrices satisfying the JL property.

References

[BDFKK11] Jean Bourgain, Stephen Dilworth, Kevin Ford, Sergei Konyagin, and Denka
Kutzarova. Breaking the k2 Barrier for Explicit RIP Matrices. In STOC, pages 637–644,
2011.

7

[Candes08] Emmanuel Candès. The restricted isometry property and its implications for com-
pressed sensing. C. R. Acad. Sci. Paris, Ser. I 346:589–592, 2008.

[CRT04] Emmanuel Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory, 52(2):489–509, 2006.

[Don04] David Donoho. Compressed Sensing. IEEE Trans. Inf. Theory, 52(4):1289–1306, 2006.

[GJ79] Michael R. Garey, David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco, CA: Freeman, 1979.

8

CS 229r: Algorithms for Big Data Fall 2015

Lecture 20 — November 10, 2015

Prof. Jelani Nelson Scribe: Yakir Reshef

1 Recap and overview

Last time we stated a converse to the fact that JL implies RIP, i.e., that RIP implies JL. This is the
Krahmer-Ward theorem [2]. Specifically, it says that if Π satisfies (ε, 2k)-RIP and Dσ has random
signs on the diagonal then ΠDσ satisfies (cε, 2−c

′k)-DJL.

We started the proof by showing that for any vector x, ‖ΠDσx‖22 = ‖ΠDxσ‖2, which equals σTXσ
where X = DxΠTΠDx. That is where we left off. Today we’ll use Hanson-Wright to obtain the
final result.

2 Continuing

Without loss of generality |x1| ≥ · · · |xn|. Let x(i) denote the vector with the k coordinates from
i-th block of size k. Finally, let Π(i) denote the k columns of Π corresponding to the i-th block of
size k.

We’ll now partition the n-by-n matrix X into several pieces. First, break X into k-by-k blocks. Let
A be the matrix containing just the diagonal blocks. Let B be the matrix containing just the k− 1
right-most blocks in the top row of blocks. Let BT denote the transpose of B. And let C denote
the rest, i.e., X − (A+B +BT). Putting all this notation together, we can say, for example, that
A(i),(i) = Dx(i)Π

T
(i)Π(i)Dx(i).

Our proof strategy will be to show that w.p. 1− 2c
′k the following hold.

1. σTAσ ∈ 1± ε

2. |σTBσ| ≤ O(ε)

3. σTBTσ| ≤ O(ε)

4. |σTCσ| ≤ O(ε)

1

We begin with σTAσ.

σTAσ =

n/k∑
i=1

σ(i)Dx(i)Π
T
(i)Π(i)Dx(i)σ(i)

=
∑
i

xT(i)Dσ(i)Π
T
(i)Π(i)Dσ(i)x(i) (swapping x and σ as before)

=
∑
i

‖Π(i)Dσ(i)x(i)‖2

= (1± ε)
∑
i

‖Dσ(i)x(i)‖22 (RIP)

= (1± ε)
∑
i

‖x(i)‖2 (Triangle inequality)

= (1± ε)‖x‖22
= (1± ε)

Now for B. Let x(−1) = (x(2), . . . , x(n/k)).

B = Dx(1)Π
T
(1)Π(−1)Dx(−1)

⇒ σTBσ = σ(1)Dx(1)Π
T
(1)Π(−1)Dx(−1)σ(−1)

Let v = σ(1)Dx(1)Π
T
(1)Π(−1)Dx(−1). We will prove the bound on σTBσ by first bounding v as follows.

Claim 1. ‖v‖2 = O(ε/
√
k).

Proof. ‖v‖2 = sup‖y‖=1〈v, y〉. And

〈v, y〉 = σ(1)Dx(1)Π
T
(1)Π(−i)Π(−1)Dx(−1)y(−1)

=
∑
j>1

σ(1)Dx(1)Π
T
(1)Π(j)Dx(j)y(j)

=
∑
j>1

x(1)Dσ(1)Π
T
(1)Π(j)Dx(j)y(j)

≤
∑
j>1

‖x(1)‖2 · ‖Dσ(1)‖ · ‖ΠT
(1)Π(j)‖‖Dx(j)‖‖y(j)‖2

Now we know trivially that ‖x(1)‖2 ≤ 1 and that the operator norm of Dσ equals 1. Also, by RIP
we know that Π(1)Π(j) ≤ O(ε) since j 6= 1. Finally, ‖Dx(j)‖ is just ‖x‖∞. Putting this together, we

2

get

〈v, y〉 ≤
∑
j>1

O(ε)‖x(j)‖∞‖y(j)‖2

≤
∑
j>1

O(ε)

(‖x(j−1)‖1
k

)
‖y(j)‖2 (shelling)

≤
∑
j>1

O(ε)

(‖x(j−1)‖2√
k

)
‖y(j)‖2 (Cauchy-Schwarz)

≤ O(ε)√
k

∑
j>1

‖x(j−1)‖2 · ‖y(j)‖2

≤ O(ε)√
k

∑
j>1

(
‖x(j−1)‖22 + ‖y(j)‖22

)
(AM-GM)

≤ O(ε)√
k

Going back to our proof about σTBσ, we then see that

P (|σTBσ| > cε) = Pσ(−1)
(|vTσ| > cε)

. e−c
′ε2/‖v‖22 (Khintchine)

= 2−Ω(k)

So now the only thing left is to address C. We do this using Hanson-Wright, noting that C has no
non-zero diagonal entries which means that E(σTCσ) = 0. So H-W gives us that

P (|σTCσ| > λ) . e−c
′λ2/‖C‖2F + e−c

′λ/‖C‖

setting λ = cε yields the result, provided we bound the norms. We do so below.

‖C‖2F =
∑
i,j

‖Dx(i)Π
T
(i)Π(j)Dx(j)‖2F

≤
∑
i 6=j

(
‖Dx(i)‖ · ‖ΠT

(i)Π(j)‖ · ‖Dx(j)‖F
)2

(‖AB‖F ≤ ‖A‖ · ‖B‖F)

≤ O(ε2)
∑
i 6=j
‖x(i)‖2∞ · ‖x(j)‖22 (RIP since i 6= j, and D matrices are diagonal)

≤ O(ε2)

k

∑
i 6=j
‖x(i−1)‖22 · ‖x(j)‖22 (shelling + norm inequalities)

≤ O(ε2)

k

(∑
i

‖x(i)‖22

)2

(monomials a superset of the terms in previous line)

≤ O(ε2)

k

3

‖C‖ = sup
‖y‖2=1

|yTCy|

=

∣∣∣∣∣∣
∑
i 6=j

y(i)Dx(i)Π
T
(i)Π(j)Dx(j)y(j)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i 6=j
‖y(i)‖2 · ‖Dx(i)‖ · ‖ΠT

(i)Π(j)‖ · ‖Dx(j)‖ · ‖y(j)‖2

∣∣∣∣∣∣
≤ O(ε)

k

∑
i 6=j
‖y(i)‖2 · ‖x(i−1)‖2 · ‖x(j−1)‖2 · ‖y(j)‖2 (shelling twice)

≤ O(ε)

k

(∑
i>1

‖y(i)‖2 · ‖x(i−1)‖2

)2

≤ O(ε)

k

(∑
i

1

2
(‖y(i)‖22 + ‖x(i−1)‖22

)2

(AM-GM)

= O
(ε
k

)
Plugging these bounds into H-W completes the proof of Krahmer-Ward.

Before we leave the topic, we observe that K-W can be used to prove ”Gordon-like” theorems,
because we can construct a matrix SH that is RIP across many different scales simultaneously.
K-W then gives us that SHDσ is DJL, and the fact that DJL implies ”Gordon-like” theorems can
then be used to obtain the result.

3 Sparse reconstruction faster than basis pursuit?

We showed that basis pursuit can give `2/`1 sparse signal recovery. But basis pursuit can be slow
if, e.g. we’re looking at an image with 1M pixels. It turns out there are faster ways to do it. The
algorithms are mostly iterative. Today we’ll look at iterative hard thresholding, due to [1].

Let’s first write down the algorithm. The algorithm takes as input (y,Π, T) where y is the encoded
signal, T is an iteration count, and y = Πx + e where e denotes an error term. Let Hk(z), the
”hard-thresholding operator”, restrict z to its largest k entries in magnitude. The algorithm is:

1. x[1] ← 0.

2. For i = 1 to T :

(a) x[i] ← Hk(x
[i] + ΠT (y −Πx[i]))

3. return x[T+1].

We observe that this algorithm makes sense if we pretend that e = 0 and that ΠTΠ = I. Because
then ΠT (y −Πx[i]) = x− x[i].

4

Theorem 1. If Π satisfies (ε, 3k)-RIP for ε < 1/(4
√

2), then

‖x[T] − x‖2 . 2−T ‖Hk(x)‖2 + ‖x−Hk(x)‖2 +O

(
1√
k

)
· ‖x−Hk(x)‖1 + ‖e‖2

Proof. Let xk denote Hk(x). We will assume that x = xk; the rest we put into the noise. As formal
justification, we write y = Πx + e as y = Π(xk + x − xk) + e = Πxk + ẽ for ẽ = e + Π(x − xk).
Now note ‖ẽ‖2 ≤ ‖e‖2 + ‖Π(x − xk)‖2. Then define S1 as the coordinates of the largest k entries
(in magnitude) of x, S2 the next k largest, etc. Then

‖Π(x− xk)‖2 = ‖Π
∑
j>1

xSj‖2

≤
∑
j>1

‖ΠxSj‖2

≤
√

1 + ε ·

‖xS2‖2 +
∑
j>2

‖xSj‖2

 (by RIP)

≤
√

1 + ε ·

‖xS2‖2 +
∑
j>2

‖xSj‖∞ ·
√
k

≤
√

1 + ε ·

‖xS2‖2 +
∑
j>2

‖xSj−1‖1 ·
1√
k

 (shelling)

≤
√

1 + ε ·
(
‖x− xk‖2 +

1√
k
‖x− xk‖1

)
Hence, going forward we can assume x = xk.

Define r[t] = xk − x[t], and define a[t+1] = x[t] + ΠT (y − x[t]). This implies that x[t+1] = Hk(a
[t+1]).

We define Γ∗k = support(xk) ⊂ [n], and Γ[t] = support(x[t]), and B[t] = Γ∗k ∪ Γ[t].

What we want is

‖x− x[t+1]‖2 = ‖xk
B[t+1] − x

[t+1]

B[t+1]‖2

≤ ‖xB[t+1] − aB[t+1]‖2 + ‖aB[t+1] − x[t+1]

B[t+1]‖2
≤ 2‖xB[t+1] − aB[t+1]‖2 (definitions)

= 2‖xB[t+1] − x[t]

B[t+1] − (ΠT (y −Πx[t]))B[t+1]‖2

= 2‖r[t]

B[t+1] − (ΠTΠr[t])B[t+1] −ΠB[t+1]e‖2

= 2‖r[t]

B[t+1] −ΠT
B[t+1]Πr

B[t+1] −ΠT
B[t]−B[t+1]Πr

B[t]−B[t+1] −ΠB[t+1]e‖2
(r = rB[t+1] + rB[t]−B[t+1])

≤ 2‖I −ΠT
B[t+1]ΠB[t+1]‖ · ‖r[t]

B[t+1]‖2 + 2‖ΠT
B[t+1]ΠB[t]−B[t+1]‖ · ‖r[t]

B[t]−B[t+1]‖2 + ‖ΠB[t+1]‖ · ‖e‖2

≤ 2ε‖r[t]

B[t+1]‖2 + 2ε‖r[t]

B[t]−B[t+1]‖2 + 2
√

1 + ε‖e‖2

= 2ε(‖r[t]

B[t+1]‖2 + ‖r[t]

B[t]−B[t+1]‖2) + 2
√

1 + ε‖e‖2

5

Now we recall that when x and y have disjoint support, we have in general that ‖x‖2 + ‖y‖2 ≤√
2‖x+ y‖2. This means that our bound is at most

2
√

2ε‖r[t]‖2 + 2
√

1 + ε‖e‖2 ≤
1

2
‖r[t]‖2 + 3‖e‖2

and so by choosing our constants correctly we can make the induction on t go through.

References

[1] Thomas Blumensath, Mike E. Davies A simple, efficient and near optimal algorithm for
compressed sensing. ICASSP, 2009.

[2] Felix Krahmer, Rachel Ward. New and improved Johnson-Lindenstrauss embeddings via the
Restricted Isometry Property. SIAM J. Math. Anal., 43(3):1269–1281, 2011.

6

CS 229r: Algorithms for Big Data Fall 2015

Lecture 21 — November 12, 2015

Prof. Jelani Nelson Scribe: Zezhou Liu

1 Overview

Previously, we looked at basis pursuit and iterative hard thresholding (IHT) for `2/`1 sparse signal
recovery. Recall that from before the `2/`1 guarantee: time per iteration depends on matrix-vector
multiplication time by Π,ΠT in the IHT algorithm. To make this fact, the only way we know is
to use a fast such Π, such as sampling rows from the Fourier matrix. However, for those Π we do
not know how to get RIP with only O(k log(n/k)) sampled rows (the best known proof currently
requires an extra factor of log2 k in the number of measurements).

Today, we take a look at `1/`1 sparse signal recovery using expanders. Our goal is to get a good
recovery guarantee using O(k log(n/k)) measurements with fast time per iteration in an iterative
algorithm; for this though we will relax from achieving the `2/`1 guarantee to achieving the weaker
`1/`1 guarantee (as you will show on the current problem set, `1/`1 is indeed a weaker guarantee).
Specifically, we aim for the guarantee of finding x̃ such that

‖x− x̃‖ ≤ C · ‖xtail(k)‖1 (1)

2 RIP1 matrices for signal recovery

Definition 1. A matrix Π satisfies the (ε, k)-RIP1 property if for all k-sparse vectors x

(1− ε)‖x‖1 ≤ ‖Πx‖1 ≤ ‖x‖1

Definition 2. Let G = (U, V,E) be a left d-regular bipartite graph (every node on left is adjacent
to d nodes on the right) with left vertices U , right vertices V and edges E. The graph G is a
(k, ε)-expander if for all S ⊆ U where |S| ≤ k:

|Γ(S)| ≥ (1− ε)d|S|.

Here, Γ(S) denotes the neighborhood of S. Intuitively, this means that no matter what S you
choose (as long as it is relatively small |S| ≤ k), you won’t have too many collisions amongst the
neighbors of vertices in S.

Claim 3. There exist d-regular (k, ε)-expanders satisfying

• n = |U |

• m . |V | = O
(
k
ε2

log
(
n
k

))
1

• d ≤ O
(

1
ε2

log
(
n
k

))
This claim can be proven by picking G at random with the specified n, d,m, then showing that G
satisfies the expansion condition with high probability (by union bounding over all S ⊂ [n] of size
at most k). Thus, this approach is not constructive, although it does provide a simple Monte Carlo
randomized algorithm to get a good expander with high probability.

In fact [4] shows that you can construct d-regular (k, ε)-expanders deterministically with:

• n = |U |

• m = |V | = O
(
d2k1+α

)
• d = O

(
1
ε log(k) log(n)

)1+ 1
ε

where α is an arbitrarily small constant.

Given a d-regular (k, ε)-expander G, we can construct the following Π = ΠG:

Π = ΠG =
1

d
AG

where AG ∈ Rm×n is the bipartite adjacency matrix for the expander G and each column of AG
contains exactly d non-zero (1) entries and the rest zeros. Then, ΠG ∈ R|V |×|U | has exactly d non-
zero entries (equal to 1/d) in each column. The average number of non-zero entries per row will
be nd/m; and indeed, if Π is picked as a random graph as above then each row will have O(nd/m)
non-zeroes with high probability. Thus Π is both row-sparse and column-sparse.

Theorem 4 ([1, Theorem 1]). If G is a d-regular (k, ε)-expander, then ΠG is (2ε, k)-RIP1.

Definition 5. The matrix Π satisfies the “C-restricted nullspace property of order k” if for all
η ∈ Ker(Π) and for all S ⊆ [n] where |S| = k

‖η‖1 ≤ C‖ηS̄‖1.

It is known that if Π satisfies (C, 2k)-RNP, then for small enough C, if x̃ is the solution form basis
pursuit, then

‖x− x̃‖1 ≤ O(1) · ‖xtail(k)‖1
For example see the proof in [5].

Note the above is not nice for a few reasons. First, it is an abstraction violation! We would like to
say RIP1 alone suffices for basis pursuit to give a good result, but unfortunately one can come up
with a counter-example showing that’s not true. For example, Michael Cohen provided the counter
example where Π is n × (n − 1) with ith column e1 for i = 1, . . . , n − 1, and the last column is
(n − 1)−1(1, . . . , 1). This Π is RIP1 with good constant even for k ∈ Θ(n), but it does not have
the restricted nullspace property (consider how it acts on the vector (1, 1, . . . , 1,−(n − 1)) in its
kernel).

Second, it is slow: we are trying to avoid solving basis pursuit (we could already solve basis pursuit
with subgaussian RIP matrices with O(k log(n/k)) rows that provide us with the stronger `2/`1
guarantee!). Thus, we will switch to iterative recovery algorithms.

2

3 Iterative Recovery Algorithms

There are a number of iterative recovery algorithms. Here, we include a couple of them as well as
their results.

• Expander Matching Pursuit (EMP) [IR08] does not use the RIP1 but relies directly on Π
coming from an expander; it gets C = 1+ε for `1/`1 recovery using an (O(k), O(ε))-expander.
This is the best known iterative `1/`1-sparse recovery algoithm in terms of theoretically proven
bounds.

• Sparse Matching Pursuit (SMP) [1] also does not use the RIP1 abstraction but relies on
expanders; it gets C = O(1) using an (O(k), O(1))-expander. SMP performs better than
EMP in practice, despite the theoretical results proven being not as good.

• Sequential Sparse Matching Pursuit (SSMP) [2] was originally analyzed with a reliance on
expanders; it gets C = O(1) using an (O(k), O(1))-expander. Price [6] later showed how to
analyze the same algorithm relying only on Π being (O(1), O(k))-RIP1, thus not relying on
expanders explicitly.

In the remainder we describe SSMP and the analysis of [6].

4 Sequential Sparse Matching Pursuit (SSMP)

Here is the pseudocode for SSMP recovery given b = Πx+ e, where Π an RIP1 matrix. The vector
e ∈ Rm is the error vector.

1. Initialize x[0] ← 0

2. for j = 1 to T :

(a) x[j,0] ← x[j−1]

(b) for a = 1 to (c− 1)k:

i. (i, z) = argmin(i,z)(‖b−Π(xj + z · ei)‖1)

ii. x[j,a] ← x[j,a−1] + z · ei
(c) x[j] ← H(x[j,(c−1)k])

3. return x[T]

Note finding the (i, z) minimizing the above expression can actually be done quickly using a balanced
binary search tree. Suppose Π is d-sparse in each column and r-sparse in each row. We create a
max priority queue Q in which there are n keys 1, . . . , n, where key i has value equal to how much
‖b−Π(xj +z ·ei)‖1 is decreased when z is chosen optimally. Then to find (i, z) which is the argmin
above, we remove the key in the tree with the smallest value then make the corresponding update
by adding z · ei to our current iterate. Note that doing this affects the search tree values for every
other j ∈ [n] such that the jth column of Π and the ith column of Π both have a non-zero entry

3

in the same row for at least one row. Thus the total number of j whose values are affected is at
most dr. Finding the new optimal z and calculating the new value for each takes O(d) time for
each one. When using an expander to construct Π, r is O(nd/m). Thus we may have to adjust
keys for O(nd2/m) other elements in the priority queue, taking O((nd2/m)(d + log n)) time total
per iteration of the inner loop. There are O(k) iterations through the inner loop, and thus each
outer loop takes time O((nd2k/m)(d+ log n)). For an optimal (k, ε)-expander we have m = Θ(kd)
and d = O(log n), so the total time per outer loop is O(nd log n) = O(n log(n/k) log n).

Now for the error analysis. Without loss of generality, x is k-sparse. If not and x = xk + (x− xk)
(where xk is the best k-sparse approximation to x), then we can rewrite Πx+e = Πxk + (e+ Π(x−
xk)). Now define ẽ = (e+ Π(x− xk)). Then

‖ẽ‖1 ≤ ‖e‖1 + ‖Π(x− xk)‖1 ≤ ‖e‖1 + ‖x− xk‖1 (2)

Although x−xk is not k-sparse, note that ‖Πz‖1 ≤ ‖z‖1 for any vector z, since we can just break up
z into a sum of sparse vectors (by partitioning coordinates) then applying the triangle inequality.

Henceforth we assume x is k-sparse, and our goal is to show:

‖x− x[T+1]‖1 ≤ C · [2−T · ‖x− x[0]‖1 + ‖e‖1] (3)

Note when x isn’t actually k-sparse, the 2−T ‖x − x[0]‖ term is actually 2−T ‖Hk(x)|, where Hk is
the hard thresholding operator from last lecture. With the exception of the 2−T · ‖Hk(x)‖1 term
(which should decrease exponentially with increasing iterations T), this is our `1/`1-error. This
means at any particular iteration j + 1, we have the following subgoal:

‖x− x[j+1]‖1 ≤ 1/2 · ‖x− x[j]‖1 + c′ · ‖e‖1 (4)

If we can show this, then (3) follows by induction on j (and making C big enough as a function of
c′ to make the inductive step go through).

5 SSMP Proof

First, let’s allow some notation y[j] = x−x[j] and y[j,a] = x−x[j,a]. We will show this proof in four
steps.

5.1 Step 1.

We show each iteration of the inner loop decreases error by (1− 1
2k+a

)1/2. This is to say, as long as

the error is at least c′′‖e‖1 for some c′′,

‖Πx[j+1,a] − b‖1 ≤ (1− 1

2k+a
)1/2 · ‖Πx[j+1,a] − b‖1 (5)

4

Note the interesting case is indeed when the error is still at least c′′‖e‖1 (since iterating beyond
that point just always keeps us at error O(‖e‖1). Let’s assume the above is true for the rest of the
proof.

5.2 Step 2.

Given Step 1 of the proof, we show that since we run the inner loop (c− 1)k times, then at the end
of the loop when a = (c− 1)k, we have:

‖Πx[j+1,(c−1)k] − b‖1 ≤ [

t−1∏
a=0

(1− 1

2k+a
)1/2 · ‖Πx[j] − b‖1

Then (1− 1
2k+a

) = 2k+a−1
2k+a , which implies that when c = 127 we get something like t = (c− 1)k =

126k, which makes this coefficient at most 1
8 . As a result, we get:

‖Πx[j+1,(c−1)k] − b‖1 ≤
1

8
‖Πx[j] − b‖1 (6)

5.3 Step 3.

Recall that b = Πx+ e, we can substitute it back in, and then use triangle inequality to show

‖Πx[j+1,t] − b‖1 = ‖Π(x[j+1,t] − x)− e‖1 (7)

≥ ‖Π(x[j+1,t] − x)‖1 − ‖e‖1 (8)

≥ (1− ε) · ‖x[j+1,t] − x‖1 − ‖e‖1 (9)

Re-arranging the equation and then applying some arithmetic and using ε < 1/2 gives us:

‖x[j+1,t] − x‖1 ≤
1

1− ε
· (‖Πx[j+1,t] − b‖1 + ‖e‖1)

≤ 2‖Πx[j+1,t] − b‖1 + 2‖e‖1

≤ 1

4
‖Πx[j] − b‖1 + 2‖e‖1

≤ 1

4
‖Π(x[j] − x)‖1 +

9

4
‖e‖1

≤ 1

4
‖x[j] − x‖1 +

9

4
‖e‖1

5.4 Step 4.

Here, we show that the previous result implies ‖x[j+1]− x‖1 ≤ 1/2 · ‖x[j]− x]|1 + 9
2‖e‖1. Notice the

first step is by adding an identity, the second is by triangle inequality, and the last is by using the

5

results form step 3.

‖x[j+1] − x‖ = ‖x[j+1] − (x[j+1,t] + x[j+1,t])− x‖1
≤ ‖x[j+1] − x[j+1,t]‖+ ‖x[j+1,t] − x‖1
≤ 2‖x− x[j+1,t]‖1 (10)

≤ 1/2 · ‖x[j] − x]|1 +
9

2
‖e‖1

where (10) follows since x[j+1] is the best k-sparse approximation to x[j+1,t], whereas x is some
other k-sparse vector.

6 Lemmas

Now it just suffices to establish Step 1. It relies on a few lemmas, which are proven in [6].

Lemma 6. Suppose you have a bunch of vectors r1, ..., rs ∈ Rm and z = µ +
∑s

i=1 ri where
‖µ‖1 ≤ c · ‖z‖1 then if

(1− δ)
∑
‖ri‖1 ≤ ‖

∑
ri‖1 ≤

∑
‖ri‖1

then there exists i such that

‖z − ri‖1 ≤ (1− 1

s
(1− 2δ − 5c))‖z‖1

Intuitively the condition on the ri implies that there is not much cancellation when they are summed
up, so not much `1 mass is lost by summing. In the case when there is no cancellation at all, then
obviously (if µ were zero, say) any non-zero ri could be subtracted from the sum to decrease ‖z‖1.
The above lemma captures this intuition even when there can be a small amount of cancellation,
and a small norm µ is added as well (think of c as being a very small constant).

Now we have the next lemma, which can be proven by the previous one.

Lemma 7. If Π is (s, 1/10)-RIP1 and s > 1, then if y is s-sparse, ‖w‖1 ≤ 1/30‖y‖1 then there
exists a 1-sparse z such that ‖Π(y − z) + w‖1 ≤ (1− 1

s)1/2‖Piy + w‖1.

This is to say that at every step choose the best 1-sparse to add to decrease the error.

Now, step 1 follows by noting that xj,a is (k + a)-sparse, so xj,a − x is 2k + a ≤ (c + 1)k sparse.
Thus there is one-sparse update (by the above lemma) which decreases the error (and note SSMP
finds the best one-sparse update in each iteration of the inner loop, so it does at least as well).

References

[IR08] Piotr Indyk and Milan Ružić. Near-optimal sparse recovery in the l1 norm. In Foundations
of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 199–207.
IEEE, 2008.

6

[1] Radu Berinde, Anna Gilbert, Piotr Indyk, Howard Karloff, and Martin Strauss. Combining
geometry and combinatorics: a unified approach to sparse signal recovery. Allerton, 2008.

[2] Radu Berinde, Piotr Indyk. Sequential sparse matching pursuit. Allerton, 2009.

[3] Thomas Blumensath, Mike E. Davies. Iterative hard thresholding for compressed sensing.
Appl. Comput. Harmon. Anal., 27:265–274, 2009.

[4] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes. In IEEE Conference on Computational
Complexity, pages 96–108. IEEE Computer Society, 2007.

[5] Piotr Indyk, Ronitt Rubinfeld. Sublinear algorithms. http://stellar.mit.edu/S/course/

6/sp13/6.893/courseMaterial/topics/topic2/lectureNotes/riplp/riplp.pdf

[6] Eric Price. Improved analysis of Sequential Sparse Matching Pursuit. Unpublished manuscript,
2010.

7

CS 229r: Algorithms for Big Data Fall 2013

Lecture 22 — November 5, 2013

Prof. Jelani Nelson Scribe: Abdul Wasay

1 Introduction to the Matrix Completion Problem

(Notes heavily borrow from Fall 2013 notes by Kristan Temme and Yun William Yu)

This is sometimes called the Netflix problem. A motivation for the matrix completion problem
comes from user ratings of some products which are put into a matrix M . The entries Mij of the
matrix correspond to the j’th user’s rating of product i. We assume that there exists an ideal
matrix that encodes the ratings of all the products by all the users. However, it is not possible to
ask every user his opinion about every product. We are only given some ratings of some users and
we want to recover the actual ideal matrix M from this limited data. So matrix completion is the
following problem:

Problem: Suppose you are given some matrix M ∈ Rn1×n2 . Moreover, you also are given some
entries (Mij)ij∈Ω with |Ω| � n1n2.

Goal: We want to recover the missing elements in M .

This problem is impossible if we don’t make any additional assumptions on the matrix M since the
missing Mij could in principle be arbitrary. We will discuss a recovery scheme that relies on the
following three assumptions.

1. M is (approximately) low rank.

2. Both the columns space and the row space are “incoherent”. We say a space is incoherent,
when the projection of any vector onto this space has a small `2 norm.

3. If M = UΣV T then all the entries of UV T are bounded.

4. The subset Ω is chosen uniformly at random.

Note 1. There is work on adversarial recovery where the values are not randomly chosen but
carefully picked to trick us by an adversary.

Under these assumptions we show that there exists an algorithm that needs a number of entries in
M bounded by |Ω| ≤ (n1 + n2) r poly (log(n1n2)) · µ. Here µ captures to what extent properties 2
and 3 above hold. One would naturally consider the following recovery method for the matrix M :

minimize rank(X)

subject to: Xij = Mij ∀i, j ∈ Ω.

1

Unfortunately this optimization problem is NP -hard. We will therefore consider the following
alternative optimization problem in trace norm, or nuclear norm.

minimize ‖X‖∗
subject to: Xij = Mij ∀i, j ∈ Ω,

where the nuclear norm of X defined as the sum of the singular values of X, i.e. ‖X‖∗ =
∑

i σi(X).
This problem is an SDP (semi- definite program), and can be solved in time polynomial in n1n2.

2 Work on Matrix Completion

Let’s now go through the history of prior work on this problem. Recall the setup and model:

• Matrix completion setup:

– Want to recover M ∈ Rn1×n2 , under the assumption that rank(M) = r, where r is small.

– Only some small subset of the entries (Mij)ij∈Ω are revealed, where Ω ⊂ [n1]× [n2], |Ω| =
m� n1, n2

• Model:

– m times we sample i, j uniformly at random + insert into Ω (so Ω is a multiset).

– Note that the same results hold if we choosem entries without replacement, but it’s easier
to analyze this way. In fact, if you can show that if recovery works with replacement,
then that implies that recovery works without replacement, which makes sense because
you’d only be seeing more information about M .

• We recover M by Nuclear Norm Minimization (NNM):

– Solve the program min ‖X‖∗ s.t. ∀i, j ∈ Ω, Xij = Mij

• [Recht, Fazel, Parrilo ’10] [RFP10] was first to give some rigorous guarantees for NNM.

• [Candés, Recht, ’09] [CR09] was the first paper to show provable guarantees for NNM applied
to matrix completion.

• There were some quantitative improvements (in the parameters) in two papers: [Candés, Tao
’09] [CT10] and [Keshavan, Montanari, Oh ’09] [KMO10]

• Today we’re going to cover an analysis given in [Recht, 2011] [Rec11], which has a couple of
advantages.

– First, it has the laxest of all the conditions.

– Second, it’s also the simplest of all the analyses in the papers.

– Thus, it’s really better in every way there is.

2

The approach of [Rec11] was inspired by work in quantum tomography [GLF+10]. A more general
theorem than the one proven in class today was later proven by Gross [Gross].

It is worth noting that there have been other important works on matrix completion which we will
not get to in the course. In particular, one particular paradigm is Alternating Minimization (AM).

The basic idea behind AM is as follows. It is an iterative algorithm. We try to find an approximate
rank-k factorization M ≈ X ·Y , where X has k columns and Y has k rows. We start off with initial
X0, Y0. Then we do as follows:

1. initialize X0, Y0 (somehow)

2. for ` = 1, . . . , T :

(a) X` ← argminX ‖RΩ(M −XY`−1)‖2F
(b) Y` ← argminY ‖RΩ(M −X`Y)‖2F

3. return XT , YT

Rigorous analyses of modifications of the above AM template have been carried out in [1, 2]. The
work [3] has also shown some performance guarantees when the revealed entries are adversarial
except for random (though in this case, many more entries have to be revealed).

3 Theorem Statement

We’re almost ready to formally state the main theorem, but need a couple of definitions first.

Definition 2. Let M = UΣV ∗ be the singular value decomposition. (Note that U ∈ Rn1×r and
V ∈ Rn2×r.)

Definition 3. Define the incoherence of the subspace U as µ(U) = n1
r · maxi ‖PUei‖2, where PU

is projection onto U . Similarly, the incoherence of V is µ(V) = n2
r · maxi ‖PV ei‖2, where PV is

projection onto V .

Definition 4. µ0
def
= max{µ(U), µ(V)}.

Definition 5. µ1
def
= ‖UV ∗‖∞

√
n1n2/r, where ‖UV ‖∞ is the largest magnitude of an entry of UV .

Theorem 6. If m & max{µ2
1, µ0} ·n2r log2(n2) then with high probability M is the unique solution

to the semi-definite program min ‖X‖∗ s.t. ∀i, j ∈ Ω, Xij = Mij.

Note that 1 ≤ µ0 ≤ n2
r . The way µ0 can be n2

r is if a standard basis vector appears in a column of
V , and the way µ0 can get all the way down to 1 is like the best case scenario where all the entries
of V are like 1√

n2
and all the entries of U are like 1√

n1
, so for example if you took a Fourier matrix

and cut off some of its columns. Thus, the condition on m is a good bound if the matrix has low
incoherence.

One might wonder about the necessity of all the funny terms in the condition on m. Unfortunately,
[Candes, Tao, ’09] [CT10] showed m & µ0n2r log(n2) is needed (that is, there is a family of examples

3

M that need this). If you want to have any decent chance of recovering M over the random choice
of Ω using this SDP, then you need to sample at least that many entries. The condition isn’t
completely tight because of the square in the log factor and the dependence on µ2

1. However,
Cauchy-Schwarz implies µ2

1 ≤ µ2
0r.

Just like in compressed sensing, there are also some iterative algorithms to recover M , but we’re
not going to analyze them in class. For example, the SparSA algorithm given in [Wright, Nowak,
Figueiredo ’09] [WNF09] (thanks for Ben Recht for pointing this out to me). That algorithm
roughly looks as follows when one wants to minimize ‖AX −M‖2F + µ‖X‖∗:

Pick X0, and a stepsize t and iterate (a)-(d) some number of times:

(a) Z = Xk − t ·AT (AXk −M)

(b) [U,diag(s), V] = svd(Z)

(c) r = max(s− µt, 0)

(d) Xk+1 = Udiag(r)V T

As an aside, trace-norm minimization is actually tolerant to noise, but I’m not going to cover that.

4 Analysis

The way that the analysis is going to go is we’re going to condition on lots of good events all
happening, and if those good events happen, then the minimization works. The way I’m going to
structure the proof is I’ll first state what all those events are, then I’ll show why those events make
the minimization work, and finally I’ll bound the probability of those events not happening.

4.1 Background and more notation

Before I do that, I want to say some things about the trace norm.

Definition 7. 〈A,B〉 def
= Tr(A∗B) =

∑
i,j AijBij

Claim 8. The dual of the trace norm is the operator norm:

‖A‖∗ = sup
B s.t.
‖B‖≤1

〈A,B〉

This makes sense because the dual of `1 for vectors is `∞ and this sort of looks like that because
the trace norm and operator norm are respectively like the `1 and `∞ norm of the singular value
vector. More rigorously, we can prove it by proving inequality in both directions. One direction is
not so hard, but the other requires the following lemma.

Lemma 9.

‖A‖∗︸ ︷︷ ︸
(1)

= min
X,Y s.t.
A=XY ∗

‖X‖F · ‖Y ‖F︸ ︷︷ ︸
(2)

= min
X,Y s.t.
A=XY ∗

1

2

(
‖X‖2F + ‖Y ‖2F

)
︸ ︷︷ ︸

(3)

4

Proof of lemma.

(2) ≤ (3):
AM-GM inequality: xy ≤ 1

2(x2 + y2).

(3) ≤ (1):

We basically just need to exhibit an X and Y which are give something that is at most the
‖A‖∗. Set X = Y ∗ = A1/2. In general, given f : R+ 7→ R+ , then f(A) = Uf(Σ)V ∗. i.e. write
the SVD of A and apply f to each diagonal entry of Σ. You can easily check that A1/2A1/2 = A
and that the square of the Frobenius norm of A1/2 is exactly the trace norm.

(1) ≤ (2):

Let X,Y be some matrices such that A = XY ∗. Then

‖A‖∗ = ‖XY ∗‖∗

≤ sup
{ai} orthonormal basis
{bi} orthonormal basis

∑
i

〈XY ∗ai, bi〉
This can be seen to be true by letting

ai=vi and bi=ui
(from the SVD), when we get equality.

= sup
···

∑
i

〈Y ∗ai, X∗bi〉

≤ sup
···

∑
i

‖Y ∗ai‖ · ‖X∗bi‖

≤ sup
···

(
∑
i

‖Y ∗ai‖2)1/2(
∑
i

‖X∗bi‖2)1/2 (by Cauchy-Schwarz) (1)

= ‖X‖F · ‖Y ‖F
because {ai},{bi} are orthonormal bases

and the Frobenius norm is rotationally invariant

Proof of claim.

Part 1:
‖A‖∗ ≤ sup

‖B‖=1
〈A,B〉 .

We show this by writing A = UΣV ∗. Then take B =
∑

i uiv
∗
i . That will give you something on

the right that is at least the trace norm.

Part 2:
‖A‖∗ ≥ 〈A,B〉 ∀B s.t. ‖B‖ = 1.

We show this using the lemma.

• Write A = XY ∗ s.t. ‖A‖∗ = ‖X‖F · ‖Y ‖F (lemma guarantees that there exists such an X
and Y).

• Write B =
∑

i σiaibi, ∀i, σi ≤ 1.

Then using a similar argument to (1),

5

〈A,B〉 =

〈
XY ∗,

∑
i

σiaibi

〉
=
∑
i

σi 〈Y ∗ai, X∗bi〉

≤
∑
i

| 〈Y ∗ai, X∗bi〉 |

≤ ‖X‖F ‖Y ‖F = ‖A‖∗

which concludes the proof of the claim.

Recall that the set of matrices that are n1 × n2 is itself a vector space. I’m going to decompose
that vector space into T and the orthogonal complement of T by defining the following projection
operators.

• PT⊥(Z)
def
= (I − PU)Z(I − PV)

• PT (Z)
def
= Z − PT⊥(Z)

So basically, the matrices that are in the vector space T⊥ are the matrices that can be written
as the sum of rank 1 matrices aib

∗
i where the ai’s are orthogonal to all the u’s and the bi’s are

orthogonal to all the v’s. Also define RΩ(Z) as only keeping entries in Ω, multiplied by multiplicity
in Ω. If you think of the operator RΩ : Rn1n2 7→ Rn1n2 as a matrix, it is a diagonal matrix with the
multiplicity of entries in Ω on the diagonal.

4.2 Good events

We will condition on all these events happening in the analysis. It will turn out that with high
probability—probability 1 − 1

poly(n2) , and you can make the 1
poly(n2) factor decay as much as you

want by increasing the constant in from of m—all these events will occur:

1.
∥∥n1n2

m PTRΩPT − PT
∥∥ .

√
µ0r(n1+n2) log(n2)

m � 1
2

This is simple to understand from the perspective of leverage score sampling for approx-
imate matrix multiplication (AMM) with spectral norm error (as in pset 4, problem 2).
Specifically, recall that AMM we have matrices A,B with the same number n of rows and
want for some Π with m rows that ‖(ΠA)T (ΠA)−ATB‖ ≤ ε‖A‖ · ‖B‖. Now, note here that
PT = PTPT , since PT is a projection matrix. Thus the above is just an AMM condition for

A = B = PT , and Π = R
1/2
Ω . Now, typically for row sampling we had Π be a diagonal matrix

with Πi,i = ηi/
√
pi, where ηi is an indicator random variable for the event that we sampled

row i, and pi = E ηi. In class we discussed that we should set pi to be roughly proportional
to the leverage score of row i. The total number of samples is thus on the order of the
sum of leverage scores. More specifically, according to pset 4 problem 2, the total number
of rows samples will be on the order of O(q log(q/δ)/ε2) to suceed with probability 1 − δ,
where q is the sum of the leverage scores (or equivalently, the maximum rank of A,B). In our

6

case, the rank of PT is the sum of leverage scores of PT , which is
∑

a,b ‖PT eae∗b‖2F , which is∑
a,b(‖PUea‖22+‖PV eb‖22−‖PUea‖22 ·‖PV eb‖22). Here PU is orthogonal projection onto U , where

M = UΣV ∗. One can verify that this sum is n1r+n2r− r2 = r(n1 +n2− r) = O((n1 +n2)r).
Thus q log(q/δ) is O(r(n1 +n2) log(n2/δ)) = O(rn2 log(n2/δ)) (note what m is above!). Now,
unfortunately RΩ samples uniformly and not according to leverage scores! This is where µ0

comes in. We need to make sure we oversample enough so that each row’s expected number
of occurrences in our sampling is at least its leverage score (show via a modification of your
pset 4 pset 2 solution that this suffices). To make this oversampling good enough, we need
to oversample by a factor related to the maximum leverage score, hence the µ0 in m.

2. ‖RΩ‖ . log(n2)

This one is actually really easy (also the shortest): it’s just balls and bins. We’ve already said
RΩ is a diagonal matrix, so the operator norm is just the largest diagonal entry. Imagine we
have m balls, and we’re throwing them independently at random into n1n2 bins, namely the
diagonal entries, and this is just how loaded is the maximum bin. In particular, m < n1n2, or
else we wouldn’t be doing matrix completion since we’d have the whole matrix. In general,
when you throw t balls into t bins, the maximum load by the Chernoff bound is at most log t.
In fact, it’s at most log t/ log log t, but who cares, since that would save us an extra log log
somewhere. Actually, I’m not even sure it would save us that since there are other log’s that
come into play.

3. ∃Y in range(RΩ) s.t.

(5a) ‖PT (Y)− UV ∗‖F ≤
√

r
2n2

(5b) ‖PT⊥(Y)‖ < 1
2

We will not justify this one in class; see the paper for the argument for the existence of
such a Y .

4.3 Recovery conditioned on good events

Now that we’ve stated all these things, let’s show that they imply trace norm minimization actually
works. We want to make sure

argmin X s.t.
RΩ(X)=RΩ(M)

‖X‖∗

is unique and equal to M .

Let Z ∈ Ker(RΩ), (Z 6= 0); we want to show ‖M + Z‖∗ > ‖M‖∗.

First we want to argue that ‖PT (Z)‖F cannot be big.

Lemma 10. ‖PT (Z)‖F <
√

n2
2r · ‖PT⊥(Z)‖F

Proof.
0 = ‖RΩ(Z)‖F ≥ ‖RΩ(PT (Z))‖F − ‖RΩ(PT⊥(Z))‖F

7

Also

‖RΩ(PT (Z))‖2F = 〈RΩPTZ,RΩPTZ〉
≥ 〈PTZ,RΩPTZ〉
= 〈Z,PTRΩPTZ〉
= 〈PTZ,PTRΩPTPTZ〉

=

〈
PTZ,

m

n1n2
PTPTZ

〉
+

〈
PTZ, (PTRΩPT −

m

n1n2
)PTZ

〉
≥ m

n1n2
‖PTZ‖2F −

∥∥∥∥PTRΩPT −
m

n1n2

∥∥∥∥ · ‖PTZ‖2F
≥ m

n1n2
· ‖PTZ‖2F

Also have

‖RΩ(PT⊥(Z))‖2F ≤ ‖RΩ‖2 · ‖PT⊥(Z)‖2F
. log2(n2) · ‖PT⊥(Z)‖2F

Summarize: combining all the inequalities together, and then making use of our choice of m,

‖PT (Z)‖F <

√
n1n2 log2(n2)

m
· ‖PT⊥(Z)‖F

<

√
n2

2r
· ‖PT⊥(Z)‖F

Pick U⊥, V⊥ s.t. 〈U⊥V ∗⊥, PT⊥(Z)〉 = ‖PT (Z)‖∗ and s.t. [U,U⊥], [V, V⊥] orthogonal matrices. We
know from claim 8 that the trace norm is exactly the sup over all B matrices of the inner product.
But the B matrix that achieves the sup has all singular values equal to 1, so B = U⊥V

∗
⊥, because

PT⊥(Z) is in the orthogonal space so B should also be in the orthogonal space.

Now we have a long chain of inequalities to show that the trace of any M + Z is greater than the
trace of M :

8

‖M + Z‖∗ ≥ 〈UV
∗ + U⊥V

∗
⊥,M + Z〉 by claim 8

= ‖M‖∗ + 〈UV ∗ + U⊥V
∗
⊥, Z〉 since M ⊥ U⊥V ∗⊥

= ‖M‖∗ + 〈UV ∗ + U⊥V
∗
⊥ − Y, Z〉

since Z∈ker(RΩ)
and Y ∈range(RΩ)

= ‖M‖∗ + 〈UV ∗ − PT (Y), PT (Z)〉+ 〈U⊥V ∗⊥ − PT⊥(Y), PT⊥(Z)〉 decomposition into T & T⊥

≥ ‖M‖∗ − ‖UV
∗ − PT (Y)‖F · ‖PT (Z)‖F 〈x,y〉≤‖x‖2‖y‖2

+ ‖PT⊥(Z)‖∗ by our choice of UV ∗

− ‖PT⊥(Y)‖ · ‖PT⊥(Z)‖∗ norm inequality

≥ ‖M‖∗ −
√

r

2n2
· ‖PT (Z)‖F +

1

2
· ‖PT⊥(Z)‖∗

> ‖M‖∗ −
1

2
·
∥∥∥P⊥T (Z)

∥∥∥
F

+
1

2
· ‖PT⊥(Z)‖∗ by Lemma 10

≥ ‖M‖∗ since ‖·‖∗≥‖·‖F

Hence, when all of the good conditions hold, minimizing the trace norm recovers M .

5 Concluding remarks

Why would you think of trace minimization as solving matrix completion? Analogously, why would
you use `1 minimization for compressed sensing? In some way, these two questions are very similar
in that rank is like the support size of the singular value vector, and trace norm is the `1 norm
of the singular value vector, so the two are very analogous. `1 minimization seems like a natural
choice, since it is the closest convex function to support size from all the `p norms (and being
convex allows us to solve the program in polynomial time).

References

[CR09] Emmanuel J Candès and Benjamin Recht, Exact matrix completion via convex optimiza-
tion, Foundations of Computational mathematics 9 (2009), no. 6, 717–772.

[CT10] Emmanuel J Candès and Terence Tao, The power of convex relaxation: Near-optimal
matrix completion, Information Theory, IEEE Transactions on 56 (2010), no. 5, 2053–
2080.

[Gross] David Gross, Recovering low-rank matrices from few coefficients in any basis, Information
Theory, IEEE Transactions on (2011), no. 57, :1548-1566.

[GLF+10] David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker, and Jens Eisert.
Quantum state tomography via compressed sensing, Physical Review Letters (2010),
105(15):150401.

[1] Moritz Hardt. Understanding Alternating Minimization for Matrix Completion. FOCS,
pages 651–660, 2014.

9

[2] Moritz Hardt, Mary Wootters. Fast matrix completion without the condition number.
COLT, pages 638–678, 2014.

[KMO10] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh, Matrix completion
from noisy entries, The Journal of Machine Learning Research 99 (2010), 2057–2078.

[Rec11] Benjamin Recht, A simpler approach to matrix completion, The Journal of Machine
Learning Research 12 (2011), 3413–3430.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo, Guaranteed minimum-rank solu-
tions of linear matrix equations via nuclear norm minimization, SIAM review 52 (2010),
no. 3, 471–501.

[3] Tselil Schramm, Benjamin Weitz. Low-Rank Matrix Completion with Adversarial Missing
Entries. CoRR abs/1506.03137, 2015.

[WNF09] Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo, Sparse reconstruction
by separable approximation, Signal Processing, IEEE Transactions on 57 (2009), no. 7,
2479–2493.

10

CS 229r: Algorithms for Big Data Fall 2015

Lecture 22 — November 19, 2015

Prof. Jelani Nelson Scribe: Johnny Ho

1 Overview

Today we’re starting a completely new topic, which is the external memory model, also known as
the disk access model. One of the earliest works on this was by Aggrawal and Vitter [1].

We’ve talked about streaming, which is where we cannot store all of the data. Here we imagine
instead that our data cannot fit inside RAM, but we can store it in some other disk space. We
assume that disk is infinite, but memory is finite.

In the RAM, we assume that memory of size M is divided into pages of size B, i.e. there are M/B
pages. The unit here is arbitrary, each item takes up constant size. Similarly, there are infinite
pages of size B on disk. When we do memory I/O, we imagine that the cost is free, but when we
do disk I/O, we imagine that we can fetch a page, which has a unit cost.

This makes practical sense since memory is orders of magnitude faster than hard drive space, and
is often far smaller. Hard drives are usually much faster when reading sequentially, which is why
we use the idea of pages.

In terms of exact numbers, hard drives support somewhere around 140MB/sec of sequential reads/writes,
but only 120I/O’s/sec when doing reads/writes on random 4KB chunks. This is because the disk
must physically spin to the read/write location. RAM supports somewhere around 5-10GB/sec of
reads/writes, with much less penalty for random access. SSDs/Flash is somewhere in the middle,
but with the issue that each index can only be written to a limited number of times.

In the future, we’ll work with the idea of algorithms that work even without knowing the exact
values of M and B, which are known as cache-oblivious algorithms.

2 Algorithms

2.1 Reading N Items (Streaming)

It takes exactly dN/Be = O(N/B + 1) cost to read N items. Same for any streaming algorithm,
since we ignore in-memory operations.

In general, we assume that we can choose the layout of the items on disk, in whatever manner is
most convenient.

1

2.2 Matrix Multiplication

Given two N × N matrices X and Y , we want their product. We divide X and Y into blocks of
size
√
M/2 and

√
M/2, so that each block fits in memory. We then store each block contiguously

in row/column order form in disk. If the input is not already in this form, we can rearrange it into
this form, which has some complexity depending on the original input format, but again, we choose
the original layout, so we can ignore this.

Examine each such block in the output matrix X · Y . The resulting block is the sum of products
of several pairs of blocks, going across matrix X and down matrix Y . Then there are (N√

M
)2

output blocks that need to be produced. Each output block requires multiplying O(N√
M

) pairs of

blocks, where each chunk can be read with O(M/B) I/O’s. The total number of I/O’s required is

O(N√
M

3 ·M/B) = O(N3

B
√
M

). This can be improved with better matrix multiplication.

2.3 Linked Lists

Dynamic vs. Static Data Structures. A data structure problem is one where you can do
updates and queries to some data. A static data structure is one where the input data stays
unchanged over time, i.e. no updates.

Linked lists are dynamic and must support insert(x, p), where p is a pointer to an entry you want to
insert after. There is similarly remove(p), which requires removing the item pointed to by p. There
is also traverse(p, k), where the k elements after p must be touched, i.e. print out their values.

Clearly the standard linked list solves these three operations optimally. The updates are O(1), and
traverse takes O(k) time.

One idea is to block up nodes into chunks of size B. If this were static, this would satisfy travesrse
easily since this is essentially an array. However, how do we update these over insertions and
deletions? While updating/deleting, we can maintain the invariant that all groups must have size
at least B/2, except possibly the very last group.

When deleting, we can usually just delete the element from the one group. If this pushes its size
less than B/2, we can merge with an adjacent group. If this pushes the adjacent group’s size above
B, so we can then split evenly into size between B/2 and 3B/4 elements. This will take two disk
operations. All of the rearrangement logic here is free because it can be done in memory.

When inserting, we insert into the block. Again, if this pushes the group’s size above B, we can
split evenly into two. This again takes two disk operations.

Traverse works as expected, going through blocks until k elements are seen. This requires reading
at most 2k/B items, since each cost corresponds to reading at least B/2 items.

2.4 Predecessor

Here we have N static items, which are ordered and comparable. Each item is a (key,value) pair,
where the keys are being compared. Then we need to support query(k), where the predecessor item
must be returned, i.e. the item with greatest key less than key k. For example, keys could be IP

2

addresses, and queries in a router table would return where to forward the IP address.

We can also have the same problem, except dynamic, i.e. there are inserts and deletes.

Static predecessor can be solved by storing a sorted array in memory, i.e. in N space, with O(logN)
queries using binary search. On an actual computer, which follows the word RAM model, we can
perform operations on actual bits, with word size W , usually W = Θ(logN). Predecessor has been
perfectly well understood. We can get O(N) memory with O(log logN) queries, with Van Emde
Boas trees [4]. With O(NO(1)) memory, say O(N1.01), we can have O(log logN/ log log logN) query
time. This was shown by Beame and Fich [3]. These bounds have been proven optimal by Patrascu
and Thorup [7].

2.5 (a,b)-tree / B-tree

In an external memory model, we can solve this problem with (a, b)-trees, which are used in
databases and were invented by Bayer and McCreight [2]. This is kind of like a binary search tree,
except each internal node has within [a, b] children (except possibly the root, which has either no
children or ≥ 2). Each node, regardless of whether it is a leaf or an internal node, stores an array
of B values. Items are stored in leaves. Guides are stored in internal nodes. Each guide at index
i in an internal node corresponds to a dividing value between i and i + 1, where all values in the
subtree at i must have value less than the guide, and the subtree at i+ 1 must have value ≥ than
the guide.

Every time an insert happens, traverse the tree downwards, and place the new value into the leaf
where it should go. If the leaf overflows, split the leaf into two leaves, and copy one of its keys to
the parent. If that parent overflows, split that, etc., up until the root.

On removal, when a leaf is removed, the node may underflow (go under a). If so, merge it a
neighboring (sibling) leaf, which removes one guide from its parent. This may cause another
underflow, another merge, etc., up until the root. Then we have a guarantee of at least a children,
so the height is limited by O(loga(n/a)), which is usually O(log n) since a is chosen to be a constant.
There is an additional computation time of log b per operation, since we need to binary search the
arrays, but b is usually chosen proportional to a.

A B-tree is just a (B/2, B)-tree, so that we can fit each node in one block. Thus each operation
takes at most one I/O per height, which is O(logB N).

2.6 (2, 4)-tree with Buffers / Buffered Repository Tree (BRT)

Tradeoffs. Compare the B-tree to a logging model, where we just log all operations and scan
through them. This model has query cost O(N/B + 1). An insertion, which just appends one log
entry, takes at most 1 disk update. Amortizing this across all inserts, however, only every B inserts
needs to actually update the disk if we cache in memory. Thus, updates take amortized 1/B cost.

Can we get a better insertion time while still keeping the better query time? We can, by using
a (2, 4)-tree with buffers, shown by Buchsbaum et al. [6]. For each node, keep a buffer. When
inserting, simply append to the root’s buffer. When the buffer becomes full, then flush it to its
children. When the buffer at the leaf is full, then split the leaf, and apply the normal promotion
operation.

3

Each query has the same cost, since we are just reading the buffer along with its node. This takes
O(1) I/Os per height.

It turns out that the amortized complexity of insertion/deletion is O(logN/B). We can imagine
allocating each insert θ(logN/B) dollars, where 1 dollar can pay for 1 disk I/O. Since items are
only flushed downwards, we can charge each item 1/B dollars. The number of times an item can
be flushed is limited by the height, O(logN), so we have just enough money.

The given scheme has a poor worst-case complexity, since it could potentially recursively flush to
both sides. Instead, when flushing, we can choose to only flush to the child that would receive the
most items, which flushes at least B/4 items. This maintains the amortized complexity above, but
decreases the worst case to O(logN).

An improvement by Brodal and Fagerberg [5] is to use a (Bε, 2Bε) tree with buffers, called a
buffered B-tree. The resulting height is logBε N = 1

ε logB N , and we have amortized insertion time
1

εB1−ε logB N , which is better than the standard B − tree.

2.7 Sorting

O(n log n) is optimal for sorting in an comparison model. This is, however, not optimal in the
word-RAM model, where sorting can be done in O(n log log n) time with Han’s sorting algorithm,
and O(n

√
log log n) with randomization.

In the external memory model, given N elements, divide them into M/B groups, so that we
can store one page from each group in memory. Merge sort will then consume M/B · B = M
memory at any time. Then we have the recursion T (N) = 1 for N ≤ B, and otherwise T (N) =
O(N/B) + M/B · T (N/(M/B)). Solving with the Master theorem, we have O(NB logM

B

N
B) as the

final complexity.

This can be shown to be optimal in the comparison model. First assume that in the input, each block
of B elements is sorted, since we might as well iterate through them and sort them in memory. Then
the number of valid permutations is N !/(B!)N/B, which has a log of N logN− N

BB logB = N log N
B .

Given that we can only store M elements in memory, upon reading B elements, we can only learn
how their interleave within the M elements. As a result, the amount of information we can gain is
log(

(
M+B
B

)
) = B log M

B . Then, dividing the information needed by that gained per I/O, we have a

lower bound of Ω(NB logM
B

N
B), as shown earlier.

We will learn next week about cache-oblivious versions of these algorithms and data structures,
which will have the same performance for B-trees, linked lists, and sorting.

References

[1] Alok Aggarwal, Jeffrey S. Vitter. The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.

[2] Rudolf Bayer, Edward M. McCreight. Organization and Maintenance of Large Ordered Indices.
Acta Inf. 1: 173–189, 1972.

4

[3] Paul Beame, Faith E. Fich. Optimal bounds for the predecessor problem. STOC, 295–304,
1999.

[4] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. SFCS, 6(3):75–84, 1975.

[5] Gerth S. Brodal, Rolf Fagerberg. Lower bounds for external memory dictionaries. SODA,
546–554, 2003.

[6] Adam Buchsbaum, Michael H. Goldwasser, Suresh Venkatasubramanian, Jeffery Westbrook.
On external memory graph traversal. SODA, 859–860, 2000.

[7] Mihai Pǎtraşcu, Mikkel Thorup. Time-space trade-offs for predecessor search. STOC, 232–240,
2006.

5

CS 229r: Algorithms for Big Data Fall 2015

Lecture 24 — November 24, 2015

Prof. Jelani Nelson Scribes: Zhengyu Wang

1 Cache-oblivious Model

Last time we talked about disk access model (as known as DAM, or external memory model). Our
goal is to minimize I/Os, where we assume that the size of the disk is unbounded, while the memory
is bounded and has size M . In particular, the memory is divided into M

B pages, each of which is
a block of size B. Today we are going to continue trying to minimize I/Os, but we are going to
look at a new model called cache-oblivious model introduced in [FLPR99] (you can also refer to the
survey [Dem02] for more detail). The new model is similar to DAM, but with two differences (we
further refer them as two assumptions):

1. Algorithms are not allowed to know M or B.

2. Algorithms do not control cache replacement policy. Operating system handles cache replace-
ment, and we assume it makes optimal choices. (So in our analysis, we assume that we evict
what we want to evict.)

Why do we have cache-oblivious model? First, it makes programs easily portable across different
machines. You do not have to find parameters in your code for a specific machine. Note that the
block size B is chosen to amortize against the expensive cost of seeking on the disk. In really, B is
not fixed, because even on a given disk, there are multiple levels of memory hierarchy (L1/L2 cache,
memory and disk), and we have different effective B’s to get the optimal amortized performance
guarantee. Second, your code might actually be running on a machine that are also running a lot
of other processes at the same time. So the effective M used by your process might change over
time. Therefore, our first assumption that we do not know M or B makes the model more robust.

When first looking at the second assumption, it seems unrealistic to know optimal choices. In
particular, the optimal choices depend on the future, because we should evict pages that would
not be used in the near future. Actually, we can show that Assumption 2 is not a very idealized
assumption, and it is fine to assume that the operation system knows about the future. The reason
for that is related to some facts about online algorithms. In the following, we have a brief detour
for online algorithms, in order to justify the optimal choices from the operating system.

Before doing the justification, let us make sure the model is not completely crazy. We actually have
I/O efficient algorithms that do not know M or B beforehand. We have already seen one in the
last lecture, which was scanning an array. Even if we do not know B, we can store elements in a
continuous array. Then when you scan the array, the I/O complexity is M

B . So the bound depends
on B, although the code does not know B.

1

1.1 Online Algorithms

The idea of the online algorithms is, we have a sequence of events, and after each event we must
make an irreversible decision. One example of online problem is ski rental problem. Assume that
you and your friends are on vacation. You do not have preference on how long the vacation is.

• Every morning you wake up at the resort, you ask your friends if “you want to continue skiing
tomorrow” or “finish the vacation”. Your friends say “continue skiing” or “we’re done”.

• In terms of expenses for skis, you have two options. The first option is to buy skis, which
takes $10 (no refunds). The second option is to rent skis, which takes $1.

On each day, if your friends decide to continue skiing, you need to decide whether buy skis or rent
skis. Once you buy skis, in the future you do not need to pay extra expenses. The goal is to
minimize cost ratio versus an omniscient being who knows future. The ratio is called “competitive
ratio”. Let D =#days skiing, then OPT = min{D, 10}. If our strategy is to rent for the first 9
days, and buy on 10-th day, then we have worst case ratio 1.9.

If we are allowed to use randomness when making decisions, an expected competitive ratio of e
e−1

can be achieved1. On the other hand, we have lower bound for deterministic algorithm, and a
competitive ratio of 2− o(1) is the best possible (as the cost of buying skis goes to infinity).

1.2 Paging Problem

The problem is studied in [ST85]. In the paging problem, the memory can hold k = M
B pages, and

we have a sequence of page access requests. Just like the DAM model we have seen, if the page
(a page is a block now) is in the memory, we can get access to it for free; if the page is not in the
memory, we have to fetch it, bring it in, and evict some page in the memory (if the cost is 1, we get
exactly the DAM model). In our situation, the online problem is choosing how to evict memory.
Again, we do not know the future. We have to decide which to evict on the fly. The omniscient
algorithm would evict the page that will be fetched again farthest in the future (in time). But we
don’t know the future, so what to do in the real system? Two commonly used strategies/algorithms
are:

LRU (least recently used): for each page in the memory, keep track of when most recently I
touched the page. And the page furthest back to the past is the one that we choose to evict.

FIFO (first-in / first-out): we evict the oldest page in memory.

These strategies are nice because of the following fact.

Theorem 1 (Sleator-Tarjan [ST85]). FIFO and LRU are:

1. k-competitive against OPT .

2. 2-competitive against OPT when OPT is given k/2 memory.

1The result is covered in CS224 Fall 2014, http://people.seas.harvard.edu/~minilek/cs224/lec/lec10.pdf

2

Why does this justify the Assumption 2 of the cache-oblivious model? Well, as long as T (N,M,B) =
Θ(T (N,M/2, B)), where T (·, ·, ·) is the cost given by the analysis of our cache-oblivious algorithm,
then Theorem 1 implies that using FIFO or LRU instead of the assumed OPT results in no
(asymptotic) loss in performance.

2 Some Cache-oblivious Algorithms

Now we are going to look at some cache-oblivious algorithms2.

2.1 Array traversal/Reversal

For traversal, as mentioned in the last lecture, the DAM algorithm is actually cache oblivious: we
just scan the array in blocks of size B at a time. I/O cost is still at most O(1 +N/B).

For reversal, we can traverse the array backwards and forwards and swap along the way. So by
traversal cost, cost for reversal is O(1 +N/B).

2.2 Square Matrix Multiplication

Here our DAM algorithm from last time does not carry over to the cache-oblivious model, since

we explicitly broke up the matrix into sub-matrices of size
√

M
2 by

√
M
2 . But we are still able to

do something simple. Note that we can choose how things layout in the memory. We recursively
construct our layout. We first split our matrices into four blocks such that:(

A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
,

reducing multiplication of N×N matrices to eight multiplications and four additions of N/2×N/2
matrices. Moreover, we will store our matrices A and B on disk as follows.

A11 A12 A21 A22 B11 B12 B21 B22

Then we apply this construction recursively (until the sub-matrix we want to store is 1 × 1) for
each Aij and Bij . For example, A11 will be further decomposed (within the decomposition of A
above) as follows.(

(A11)11 (A11)12
(A11)21 (A11)22

)
(A11)11 (A11)12 (A11)21 (A11)22

This gives us a recursive algorithm for matrix multiplication.

Let’s analyze number T (N) of I/Os. We have 8 recursive multiplications, and the additions just

require scans over O(N2) entries. Thus recurrence is given by T (N) = 8T (N2) + O(1 + N2

B). The

base case is T (
√
M) = O(MB) for N ≤

√
M , since we can read an entire

√
M ×

√
M matrix into

memory (due to the recursive data layout!). Solving this gives T (N) = O(N
2

B + N3

B
√
M

). For N ≥M ,

N3

B
√
M

dominates T (N), and we get T (N) = O(N3

B
√
M

).

2This section borrows largely from notes of CS229r Fall 2013 Lecture 22 scribed by Arpon Raksit.

3

Remark 2. This technique of recursively laying out data to get locality, and then using M and B
to get a good base case of our analysis, will be quite useful in many situations.

2.3 Linked Lists

We want to support the following three operations:

• Insert(x, p): insert element x after p;

• Delete(p): delete p;

• Traverse(p, k): traverse k elements starting at p.

Shooting for: O(1) each insertion and deletion, and O(1+k/B) to traverse k elements (amortized).

Data structure: maintain an array where each element has pointers to the next and previous
locations that contain an element of the list. But it will be self-organizing.

Insertion(x, p): append element x to end of array. Adjust pointers accordingly. It costs O(1)
I/Os.

Deletion(p): mark the array location specified by p as deleted. It costs O(1) I/Os.

But now elements might be far apart in the array, so on traversal queries we’re going to fix up the
data structure (this is the self-organising part).

Traverse(p, k): we traverse as usual using the pointers. But in addition, afterwards we delete the
k elements we traversed from their locations and append them to the end of the array.

4 1 2 3 5 6

X X X X X X 1 2 3 4 5 6

Rebuild: finally, after every N
2 operations (traverse counts as k operations), rewrite entire data

structure to a new contiguous array. Free the old one. This increases amortized complexity of each
operation by O(1

B).

Now, what does traversal cost? When we do a traversal, we touch r contiguous runs of elements.
Thus the number of I/Os in the traversal is O(r + k/B)——one I/O for each run, and the cost
of a scan of the k elements. But there must have been r updates to cause the gaps before each
run. We amortize the O(r) over these r updates, so that traversal costs O(k/B) amortized. (To
be more precise: any sequence of a insertions, b deletions, and a total of k items traversed costs
O(a + b + 1 + k/B) total I/Os.) And since after a traversal we consolidate all of the runs, the r
updates we charged here won’t be charged again.

“One money for me means one I/O.” – Jelani Nelson

That’s amortized linked lists. See [BCD+02] for worst-case data structure.

4

2.4 Static B-tree

We’re going to build a B-tree (sort of) without knowing B. The data structure will only support
queries, that is, no insertions [FLPR99]. For dynamic B-tree, refer to [BDFC05]. We will use
another recursive layout strategy, except with binary trees. It looks as follows (conceptual layout
on left, disk layout on right). Keep in mind this picture is recursive again.

T0

T1 T√N· · ·

lg(N)

1
2 lg(N)

T0 T1 · · · T√N

We query as usual on a binary search tree. To analyse the I/O cost, consider the first scale of
recursion when the subtrees/triangles have at most B elements. Reading in any such triangle is
O(1) I/Os. But of course there are at least

√
B elements in the tree, so in the end traversal from

root to leaf costs O(2 · log(N)/ log(
√
B)) = O(logB N) I/Os.

2.5 Lazy Funnel Sort

Original funnel sort is due to [FLPR99], simplified by [BFJ02]. Yet another recusrive layout strat-
egy, but a lot funkier. Assume we have the following data structure.

Definition 3. A K-funnel is an object which uses O(K2) space and can merge K sorted lists of
total size K3 with O((K3/B) logM/B(K3/B) +K) I/Os.

Lazy funnel sort splits the input into blocks of size N2/3, recuseively sorts each block, and merges
blocks using the K-funnel, with K = N1/3.

N2/3 N2/3 · · · N2/3

When analysing this, we will make the following tall cache assumption. Unfortunately this assump-
tion is required to get the desired O((N/B) logM/B(N/B)) I/Os for sorting [BFJ02].

Assumption 4 (Tall cache). Assume M = Ω(B2). But note that this can be relaxed to M =
Ω(B1+γ) for any γ > 0.

We’re running low on time so let’s just see what the K funnel is. It’s another recursive, built out
of
√
K-funnels. The funnels are essentially binary trees, except with buffers (the rectangles, with

labelled sizes) attached.

5

F0

F1 F√K· · ·

K3

K3/2 K3/2 F0 buffers F1 · · · F√K

At each level the
√
K buffers use O(K2) space. Then the total space used is given by the recurrence

S(K) = (1 +
√
K)S(

√
K) + S(K2). Solving this gives S(K) ≤ O(K2).

How do you use a K-funnel to merge? Every edge has some buffer on it (which all start off empty).
The root node tries to merge the contents of the buffers of the two edges to its children. If they
are empty, the root recursively asks its children to fill their buffers, then proceeds to merge them.
The recursion can go all the way down to the leaves, which are either connected to the original K
lists to be merged, or are connected to the output buffers of other funnels created at the same level
of recursion (in which case you recursively ask them to fill their output buffers before merging).

Theorem 5. As described, lazy funnel sort costs O((N/B) logM/B(N/B)) I/Os (under the tall
cache assumption).

Proof sketch. The recurrence above proved funnel property (1). For funnel property (2), look at the
coarsest scale of recursion where we have J funnels, with J �

√
M . The details are in [Dem02].

6

References

[BCD+02] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-Colton, and Jack
Zito. Two simplified algorithms for maintaining order in a list. In Algorithms?ESA
2002, pages 152–164. Springer, 2002.

[BDFC05] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. Cache-oblivious b-trees.
SIAM Journal on Computing, 35(2):341–358, 2005.

[BFJ02] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious search trees
via binary trees of small height. In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 39–48. Society for Industrial and Applied
Mathematics, 2002.

[Dem02] Erik D Demaine. Cache-oblivious algorithms and data structures. Lecture Notes from
the EEF Summer School on Massive Data Sets, 8(4):1–249, 2002.

[FLPR99] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual Sympo-
sium on, pages 285–297. IEEE, 1999.

[ST85] Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

7

CS 229r: Algorithms for Big Data Fall 2015

Lecture 26 — December 1, 2015

Prof. Jelani Nelson Scribe: Zezhou Liu

1 Overview

Final project presentations on Thursday. Jelani has sent out emails about the logistics: 8 minute
presentation with 1-2 minutes for questions. Groups can split up the work however they want (one
person can make the slides and the other presents, etc.)

This time, we want to cover algorithms in a distributed environment, maybe 1M machines. How to
do this efficiently? Work starts as early as (’76 Csanky)[1], with a survey by (’88, Eppstein, Galil)
on PRAM.

PRAM: ignore communication (shared memory across all processors) and synchronization. The
goal is to understand time vs. number of processors. However, shared memory is unrealistic, and
somewhere in late 80s/early 90s, PRAM wasn’t studied much anymore because you had to consider
communication and syncrhonization.

Bulk Synch Parallel (BSP) [BSP]: You should explicitly worry about communication and synchro-
nization. BSP today: Apache, Hama, Google, Pragel.

Today: MapReduce [DG08]. This system was built and used at Google to deal with massively
parallel jobs. Hadoop is an open-source version. This system is used by Google, Facebook, Amazon,
...

How do we work with these systems and build efficient algorithms on these models?

2 MapReduce

In this model, data items are each 〈key, value〉 pairs. Computation is broken up into rounds:

Round:

• Map: Each item is processed by some map function, and emits a set of new 〈key, value〉 pairs.

• Shuffle: This step is oblivious to the programmer. All items emitted in the map phase are
grouped by key, and items with the same key are sent to the same reducer.

• Reducer: Receives 〈k, v1, v2, ..., v3〉 and emits new set of items.

Goals:

• Few number of rounds

• Want to use << n mem per reducer.

1

• Want << n2 total mem used.

• Small total work (# machines * max(work per machine))

• Small parallel work (What max(time per machine)?)

3 MapReduce Problems

Example: Sorting.

Theorem 1. TeraSort (O’Malley, ’08) [2]. Sorts arbitrary and comparable elements (although the
original was on bounded integers and used tricks to speed that up).

Input elements are 〈i;A[i]〉, where A is an unsorted array A[1..n].

Say we want to use p-machines in parallel. So we want to divide it into the smallest n/p elements,
next smallest n/p elements, etc. so we can send the jth n/p elements to machine j to be sorted.

Two-round algorithm:

Round 1: Sample T = log(p)/ε2)

def map1 〈i, A[i]〉:

emit 〈i%p,A[i]〉

w.p T/n:

for j = 0...p:

emit 〈j, A[i]〉

First partition the values, and then for some random samples, send to some reducer.

def reduce1 〈j;X〉:

B are the (i, A[i]), and S is set of sampled elements

S ← sort(S)

for each (i, x) ∈ B:

find some r ∈ 0, ...p− 1 that x should map to in relation to S, and emit 〈r; (i, x)〉

Round 2:

def map2: identity

def reduce2 〈j, B〉:

Sort B by 2nd element (recall B is (i, x))

write output to j.out

At this point, each machine has their own sorted list, so we just need to concatenate the sorted
lists from each machine.

2

Analysis: First, I have to choose epsilon. There are two things I want to balance: 1) Each reducer
is getting set of size n/p, but also getting some additional sampled elements log(p)/ε2. So want
log(p)/ε2 ≤ n/p. 2) Chernoff bound says: if we sample T = log(1/delta) ∗ C/ε2 elements and look
at αth smallest element in sample, its rank in actual sorted order of A is αn + −εn w.p. 1 − δ.
Union bound says that with high probability, each reducer in the second round gets ≤ n/p + εn
items to sort. (set ε = 1/p→ T = log(p) p2)

Going back, we want p2lg(p) ≤ n/p, so p = n1/3/lg(n) → with high probability each of the p
machines needs to sort ≤ O(n/p) = O(n2/3lg(n)).

4 Min Spanning Tree (MST)

In the case where it is not too sparse, with m = #edges = n1+c for some c > 0. We want memory
per machine to be << m(m1−δ). Algorithm by (Karloff, Suri, Vassilivitskii, SODA ’10)[3].

For each pair (i, j) ∈ [k]2:

• Let Gij = (Vi ∪ Vj , Eij) be the induced graph on Vi ∪ Vj

• Compute using any sequential algorithm Mij = MSF (Gij)

• Send H =
⋃
i,jMij to a single reducer and output M = MST (H).

MapReduce:

Round1:

def map1 〈(u, v);NULL〉:

emit 〈h(u), h(v); (u, v)〉

if h(u) == h(v) = i:

for each j = 1, ..., k

emit 〈(i, j); (u, v)〉

def reduce1 〈(i, j), Ei,j〉:

let e1, ..., et be MSF of Eij

for a = 1..t:

emit〈$, (ea, (i, j))〉

This is emitting all the edges of Mi,j .

def map2: identity

def reduce2: Take all previous edges and call MST of this set of edges.

Analysis: (memory) - mem per machine round 2: ≤ k2·O(n/k) = O(kn) = O(n1+c/2) << m = n1+c

- mem per machine round 1: maxi, j |Ei,j |. The expected size of Ei,j =
∑

p∈E P(endpoints of e in
V i ∪ V j) = 2m/k

3

For Chernoff, we have that Ei,j ≤
∑

v∈V 1h(u)∈{i,j} · deg(v). You can do better than this, as shown
in KSV ’10: partition V according to degrees. Vt = {v : 2t−1 ≤ deg(v) < 2t}. This means with
high probability maxi,j |Ei,j | = O(n1+c/2)

Downside: Total memory needed ∼ k2 · n1+c/2 = n1+3c/2 = n2+c/2 = m2−ε (Lattanzi et all, SPAA
’11) with O(nc) machines, O(n1−ε) mem per machine, and ceil(c/ε) rounds.

5 Triangle Counting

For Triangle Counting, the input is an undirected graph, and we want to output |{u < v < w ∈
V |(u, v), (v, w), (w, u) ∈ E}|. With no parallelism, there is a simple O(n3) algorithm using 3 nested
for-loops by looping over all (u, v, w). You can even get m3/2. MapReduce can implement this with√

(m) machines.

x← 0
for v ∈ V

for u ∈ Γ(v) s.t. deg(u) ≥ deg(v)
for w ∈ Γ(v) s.t. deg(w) ≥ deg(v)

if (u,w) ∈ E
x← x+ 1

return x/2

We can implement the above algorithm in MapReduce, with the the following properties:

• No reducer gets more than O(
√
m) items

• The total work done is O(m
3
2)

• The number of rounds is 2

5.1 MapReduce algorithm

Round 1:
def map1: The input is < (v, u);∅ >.

if u � v : emit 〈v, u〉

def reduce1: The input is < v;S ⊆ T (v) >.

for < u,w >∈ S:

emit < u,w > if is an edge.

Round 2:

def map2:

if input is < v, (u,w) >:

emit < (u,w); v >

if input is < (u,w),∅) >:

4

emit < (u,w), $ >

def reduce2 < (u,w);S >:

if $ ∈ S: then

for each v ∈ S s.t. v 6= $:

emit < v, 1 >

References

[1] Csanky, L., Fast parallel matrix inversion algorithms, SIAM J. Computing 5, 1976,

[BSP] Leslie G. Valiant. 1990. A bridging model for parallel computation. Commun. ACM 33, 8
(August 1990), 103-111. DOI=10.1145/79173.79181 http://doi.acm.org/10.1145/79173.79181

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–113, 2008.

[2] O’Malley, O. TeraByte sort on Apache Hadoop, 2008;

[3] Howard J. Karloff, Siddharth Suri, Sergei Vassilvitskii. A Model of Computation for MapRe-
duce. SODA 2010: 938-948.

[4] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, Sergei Vassilvitskii. Filtering: a method
for solving graph problems in MapReduce. SPAA 2011: 85-94.

[5] Siddharth Suri, Sergei Vassilvitskii. Counting triangles and the curse of the last reducer WWW
2011: 607-614.

5

	Lecture 1
	Lecture 2
	Lecture 03
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 13
	Lecture 14
	Lecture 15
	Lecture 16
	Lecture 17
	Lecture 18
	Lecture 19
	Lecture 20
	Lecture 21
	Lecture 22
	Lecture 23
	Lecture 24
	Lecture 26

