
CS 6840 – Algorithmic Game Theory (3 pages) Spring 2012

Lecture 1 Scribe Notes
Instructor: Eva Tardos Costandino Dufort Moraites (cdm82)

1 Lecture 1 – Monday 23 January 2012 - Mostly Intro

1.1 Overview

Special - possible extra credit for improving wikipedia articles on topics related to this course.
Motivating connecting Game Theory and Computer Science.

• The Internet. Computer Science used to be summarized by trying to make computers effective.
In comparison, today, there is the Internet connecting everything and the idea that one person
designing one algorithm controls everything is just wrong.

• Mechanism design. Really an engineering discipline, designing a game to get a desired out-
come.

Different perspectives. Ways in which our perspective is different from the traditional approaches
to game theory.

• We care about algorithms and as mentioned previously we know how to design and analyse
them. Economists come from a different historical perspective when it comes to approaching
these problems and there isn’t the same emphasis on the complexity of finding the equilibria
of a system. From the Computer Science perspective, taking up this approach brings us to
interesting complexity results which we’ll explore throughout the semester.

• Simplicity of mechanisms. Particularly coming from a systems background, mechanisms must
be simple.

• (Approximate) optimality. Say average response or delivery time. Often times, our objective
functions don’t have such clear cut measures of utility. Time can be relative. Do we care
about the difference between 7 and 8 seconds?

See the web page for a rough syllabus for the course.
Since the book, mechanism design has changed a bit. We will be using Jason Hartline’s book

on this topic more than the book listed as the text for this course.
Ken Binmoore basic introduction to game theory is a good, quick intro to game theory.

1.2 An Example – Braess’ paradox

We’ll start by talking about Braess’ paradox. Consider the following graph.
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For every edge there is de(x) = delay on e if x players use this edge. We will assume de(x)
is a monotone increasing (i.e. non-decreasing) function. Here strategy 1 is the bottom path and
strategy 2 is the top path.

Notice the two edges with weight 100. These edges take 100 seconds to cross regardless of
congestion, whereas the edges labelled x are congestion sensitive.

Our goal: predict what will happen here. The obvious prediction is that the players should split
half-half. So 50 choose strategy one and another 50 choose strategy two. This prediction is a (pure)
Nash equilibirium - an outcome so that everyone chooses a strategy such that deviating from their
strategy will not improve their outcome. Total time is 150 for all players. If someone following one
strategy tries to deviate, they will not improve their outcome. In this example, someone switching
from strategy one to strategy two will increase their travel time by a second worsening their outcome.

Now we add an extra edge with no delay and see how this affects the strategies. Adding the
extra edge provides an additional strategy: strategy 3 where a player starts out using the top edge,
then uses the edge we just added and then takes the last edge to the sink.

Start with the 50-50 solution, but this is no longer an equilibrium. Now we claim that all 100
choosing strategy 3 is a Nash equilibrium with total delay 200 for all players.

Strategy 2

Strategy 1

x

100

100

x
Strategy 3

To see this, notice that a player taking strategy 1 or strategy 2, then changes his delay time
from 200 to 200 so no improvement, thus we have the desired equilibrium.
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This equilibrium is not unique. 99 could choose strategy 3 and 1 could choose strategy 1. This
would still be at equilibrium. The lonely guy might be jealous of his 99 friends for getting delay 199,
but changing his strategy would not help his outcome from 200 so the system is still in equilibrium.
There are many more similar such equilibria.

Claim that at least 98 players must choose strategy 3 and at most 1 player can choose strategy
1 and at most 1 player can choose strategy 2 for Nash equilibrium.

Contrasting the dynamics of this game with the previous, is that now total delay is 200 for most
players and at best 198 for some players. In either case, making life worse for all characters. Hence
Braess’ paradox – adding an edge to the graph made life worse for all the players.

Questions we will look at: how do you find these equilibria? Why do we get paradoxes like this
one? Are situations like this paradox really so bad? Adding the edge didn’t make life that much
worse for players. Can players find these equilibria?

We will look at various ways for looking at how to prevent paradoxes like this one. We will
heavily rely on some sort of ‘rationality’ for the players. Later we’ll go back and look at a more
intricate definition of equilibrium. Our current definition is good enough when these equilibria are
fairly stable and unique. There are however criticisms of Nash Equilibrium and next time we’ll get
some examples of where Nash Equilibrium doesn’t capture everything we want.

Next time we’ll consider the significance of various objective functions. Maybe you don’t just
want to make lots of money – maybe it’s more important to make more money than your neighbors?
Or maybe you don’t just want to make as much money as possible in a game, but rather to make
sure you win the game. We will explore trade offs between various measures of utility.
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Lecture 2 Scribe Notes
Instructor: Eva Tardos Deniz Altınbüken (da279)

1 Lecture 2 – Wednesday 25 January 2012 - Congestion Games

1.1 Definition

Definition. Congestion games are a class of games defined as follows:

• base set of congestable elements E

• n players

• each player i has finite set of strategies Si

• a strategy P ∈ Si where P ⊆ E

• given a strategy Pi for each player i

xe = #{i; e ∈ Pi} for e ∈ E

• player i choosing strategy Pi experiences delay∑
e∈Pi

de(xe)

Remark. Strategies Pi for player i define Pure Nash Equilibrium iff no one player can improve
the delay by changing to another strategy Qi.

Pi

Qi

︷ ︸︸ ︷
e ∈ Qi \ Pi

︷ ︸︸ ︷
e ∈ Qi ∩ Pi

S T

Figure 1: Strategies Pi, Qi

Consider a player in the game shown in Figure 1. In this game, player i is switching from Pi to
Qi. As depicted, Pi and Qi might have common parts as well as parts that differ. By switching,
player i would experience the same delay in the parts that are common for Pi and Qi and she will
experience delay that results from adding one more person in Qi in the parts that differ.
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For all players i & all other Qi ∈ Si∑
e∈Pi

de(xe) ≤
∑

e∈Pi∩Qi

de(xe) +
∑

e∈Qi\Pi

de(xe + 1)

1.2 Equilibrium at Congestion Games

Now, lets explore the following questions:

• Does a general congestion game have a Nash Equilibrium?

• Are reasonable players able to find the Nash Equilibrium?

When we are looking for the Nash Equilibrium, the trivial approach is to change the strategy of
one player and see if the resulting state is a Nash Equilibrium. In this approach, it is important to
make sure that cycles do not occur to guarantee that the Nash Equilibrium is found. To see how
cycles might occur, consider the following Matching Pennies Game.

Side Note If there are cycles present in the game, the equilibrium may not be found.

Example: Matching Pennies Game

• 2 players
• Strategies: H,T
• Rule:

m(s) =

{
player 1 wins if strategies match
player 2 wins otherwise

• Best response: Player starts with arbitrary strategy, switches if she loses

(H | H)→ (H | T )→ (T | T )→ (T | H)→

1.3 Existence of Nash Equilibrium

Theorem 1. Congestion games repeated best response always finds the Nash Equilibrium.

Proof. Congestion games have a potential function Φ s.t. best response improves this function:

Φ =
∑
e

xe∑
k=1

de(k)

Consider: Player i switches from Pi to Qi, change in Φ:

• edges e ∈ Pi \Qi decrease by de(xe)



CS 6840 Lecture 1 Scribe Notes (page 3 of 3)

• edges e ∈ Qi \ Pi increase by de(xe + 1)

Note that,
xe∑
k=1

de(k) is the discrete integral of xe, i.e. the potential function Φ is the summation

of the discrete integral of xe over all edges and the change in the potential function is equal to the
change in a player’s delay when she switches from strategy Pi to Qi.

When a player changes from strategy Pi to Qi, the change
in the delay is equal to the change in the potential function Φ.

Alternate Proof. Solution minimizing Φ is the Nash Equilibrium, assuming there are a finite number
of solutions and a minimum exists. Since we assumed de(x) is a monotone increasing (i.e. non-
decreasing) function, there exists only one minimum, i.e. the Nash Equilibrium.
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Lecture 39: The Existence of Nash Equilibrium in Finite Games
Instructor: Eva Tardos Wenlei Xie(wx49)

Today we will use the same methodology that we used in the last time to prove Nash Equilibrium
exists in finite games.

Theorem 1 (Existence of NE). Game with finite set of players and finite strategy sets has at least
one (mixed) Nash Equilibrium.

Remark (Finite Game and Mixed NE). This only applies to what usually called Finite Games.
Here “finite” means two things: finite set of players and each of them has finite set of strategies. So
this theorem doesn’t apply to a bunch of games we studied, e.g. when the strategy is the price, the
strategy set is not finite since it can be real numbers. Some other games could have infinite players.
In most of these games, we actually have other arguments to prove that NE exists, usually even a
better argument because we used to prove a pure strategy NE exists. And this theorem only states
a mixed strategy NE exists, which is not surprising because some small 2 by 2 games, e.g. Pennies
Matching game doesn’t have a pure NE.

To prove this theorem, the main tool we will use is the Brouwer fixpoint theorem.

Theorem 2 (Brouwer Fixpoint Theorem). If C is bounded, convex and closed, and f : C → C is
continuous, there exists x s.t. f(x) = x.

Remark. Last time we only did it for the simplex. Generally we certainly need it to be bounded
and closed. Topologically, we can make stronger statements than convex – but convex is certainly
enough for today.

We will start with a natural but problematic proof. What we want to do is the same story as
last time. Starting from one possible game state, which is a set of mixed strategies of all the players,
we would like to know if it’s an equilibrium or not. And if it’s not we want a function that moves
it more “closer” to the equilibrium.

Let n be the number of players and Si to be the strategy set of player i, and ∆i be the probability
distribution space of strategies for player i, i.e.

∆i = {(ps : s ∈ Si) | ps ≥ 0 and
∑
s∈Si

ps = 1} (1)

We use C to denote the set of the mixed strategies of all the players, i.e. C = ∆1 ×∆2 × · · · ×∆n.
It can be proved that C is convex, bounded and closed. Next we need a function f : C → C
that the NE is a fixpoint. A natural answer is to use the best response. That is to say, given
p = (p1, p2, · · · , pn) ∈ C, where pi ∈ ∆i. Let qi be the best response of player i, we could define
the function as f(p) = (q1, q2, · · · , qn). This can be viewed as all the players are moving to the best
response state simultaneously as if others don’t move.

The fundamental issue in this “proof” is that f might not be a function since the best response
for the player might not be unique. A natural way to address this issue is to use lexicographic tie-
breaking rule. Unfortunately the function constructed in this way might not be continuous. Let’s
consider the following example.
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Heads Tails
Heads (+1,−1) (−1,+1)

Tails (−1,+1) (+1,−1)

Table 1: The payoff matrix for the matching pennies game

Example (Matching Pennies). Recall the payoff matrix in the matching pennies game shown in
Table 1. Suppose the mixed strategy for the first player is (p1, 1 − p1), i.e. he will turn the penny
into head with probability p1 and turn it into tail with probability 1− p1. Then the best response
(q2, 1− q2) for the second player is

Best Response =


q2 = 0 if p1 > 1/2,
q2 = 1 if p1 < 1/2,

0 ≤ q2 ≤ 1 if p1 = 1/2.

And clearly it is not continuous at p1 = 1/2.

Thus, we need some better methods to fix this issue. We will discuss two options in this lecture.

Option 1 (Set Function). Define f : C → 2C as f(p) = {q | qi is best response for p−i}

In this option, we hope to find the p, s.t. p ∈ f(p). To this end we need to use a stronger fixpoint
theorem by Kakutoni and formally define what does “continuity” means for such set functions. We
are not going to discuss the details in today’s lecture.

Option 2 (More Sophisticated Objective Function). Let ui(q, p−i) be the utility of player i playing
q in response to p−i. Here comes the natural best response function

max
q
ui(q, p−i)→ Original best response q

As we have shown before, this doesn’t define a function, and the natural way to make it a function
breaks the continuity. Alternatively, consider

max
q
ui(q, p−i)− ||pi − q||2

So for player i, instead of maximizing the utility ui(q, p−i), it maximizing the utility minus a penalty
from going away from the original pi, i.e. ||pi − q||2. Notice any positive scale for ||pi − q||2 works.
Suppose the maximizer for player i is qi, we define f(p) = (q1, q2, · · · , qn).

To finish the proof, we first claim that it indeed defines a function, which means the maximizer
is unique.

Lemma 3. maxq ui(q, p−i)− ||q − pi||2 is unique.

To prove this, we will use the fact that strictly concave function has unique maximization. Notice
there are many definitions for strictly concave for vector functions. And we will use the following
definition in our proof.

Definition (Strictly Concave). g(x) is strictly concave of x if

∀x, x′, 1

2
(g(x) + g(x′)) > g(

x+ x′

2
) (2)
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Proof. Notice that
ui(q, p−i) =

∑
s∈Si

qsvs(p−i) (3)

where vs(p−i) is the value of pure strategy s. Thus ui(q, p−i) is a linear function of q. And −||q−pi||2
is a strictly concave function of q, which makes ui(q, p−i) − ||q − pi||2 strictly concave, and it has
unique maximization.

To show f is continuous, we will use the following fact from convex optimization without proof.

Claim 1. If a class of optimization problems has unique optima, then the optimum is a continuous
function of the coefficients in the objective function

An important part that is missing is that we want to show the fixpoint of function f is the Nash.
When f is defined by the maximizer of ui(q, p−i), it is obvious. Now with the penalty term it is less
obvious, but we can nonetheless prove it.

Lemma 4. If f(p) = p, then p is Nash.

If p is not Nash, there is some other best response q = (q1, q2, · · · , qn). For the player i that
doesn’t perform best response, consider move from pi to qi. It will certainly increase the first part
of the objective function ui(qi, p−i). However the whole objective function might not be increased
since the second part ||qi−pi||2 is also increased. And we will show if we just move on that direction
small enough, it will be OK.

Proof. Suppose p is not Nash. Suppose one best response is q = (q1, q2, · · · , qn). For player i that
pi is not best response, we have

ui(qi, p−i) > ui(pi, p−i) (4)

Let ri(ε) = (1 − ε)pi + εqi. And if player i move from pi to ri(ε), consider the change in his
objective function δi(ε)

δi(ε) =
(
ui(ri(ε), p−i)− ||ri(ε)− pi||2

)
− ui(pi, p−i)

= ε
(
ui(qi, p−i)− ui(pi, p−i)

)
− ε2||qi − pi||2

For small enough ε, we have the change δi(ε) > 0. Hence pi does not maximize ui(q, p−i)−||q−pi||2,
which means p couldn’t be a fixpoint.

Remark (Function f). The function f assumes everyone simultaneously best response, but how
would people’s utility change as everyone best response? We don’t know. This is a proof and
it wants to do this artificial yet somewhat meaningless activity, of considering a function where
everyone best response as if the other people don’t move. If they don’t move, we reach the Nash.
But if they move, it is meaningless. Notice it is not a game dynamic, in fact it is nothing but a
mathematic gadget of proof.

In the following lectures, we will show if you can find the NE in a game, you can find the fixpoint
of the corresponding function.
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Notes from Week 1: Algorithms for sequential prediction

Instructor: Robert Kleinberg 22-26 Jan 2007

1 Introduction

In this course we will be looking at online algorithms for learning and prediction.
These algorithms are interesting in their own right — as a topic in theoretical com-
puter science — but also because of their role in the design of electronic markets
(e.g. as algorithms for sequential price experimentation, or for online recommenda-
tion systems) and their role in game theory (where online learning processes have
been proposed as an explanation for how players learn to play an equilibrium of a
game).

2 Online algorithms formalism

For general background on online algorithms, one can look at the book Online Com-

putation and Competitive Analysis by Borodin and El-Yaniv, or read the notes from
an online algorithms course taught by Michel Goemans at MIT, available by FTP at

ftp://theory.csail.mit.edu/pub/classes/18.415/notes-online.ps

In this section we give an abstract definition of online algorithms, suitable for the
prediction problems we have studied in class.

Definition 1. An online computation problem is specified by:

1. A set of inputs I =
∏∞

t=1 It.

2. A set of outputs O =
∏∞

t=1 Ot.

3. A cost function Cost : I ×O → R.

For a positive integer T , we will define

I [T ] =
T
∏

t=1

It, O[T ] =
T
∏

t=1

Ot.
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One should interpret an element i = (i1, i2, . . .) ∈ I as a sequence representing
the inputs revealed to the algorithm over time, with it representing the part of the
input revealed at time t. Similarly, one should interpret an element o = (o1, o2, . . .)
as a sequence of outputs produced by the algorithm, with ot being the output at time
t.

Remark 1. The definition frames online computation problems in terms of an infinite

sequence of inputs and outputs, but it is easy to incorporate problems with a finite
time horizon T as a special case of the definition. Specifically, if |It| = |Ot| = 1 for
all t > T then this encodes an input-output sequence in which no information comes
into or out of the algorithm after time T .

Definition 2. An online algorithm is a sequence of functions

Ft : I [t]→ Ot.

An adaptive adversary (or, simply, adversary) is a sequence of functions

Gt : O[t− 1]→ It.

An adversary is called oblivious if each of the functions Gt is a constant function.
If F is an online algorithm and G is an adaptive adversary, the transcript of F

and G is the unique pair Trans(F, G) = (i, o) ∈ I × O such that for all t ≥ 1,

it = Gt(o1, o2, . . . , ot−1)

ot = Ft(i1, i2, . . . , it).

The cost of F and G is Cost(F, G) = Cost(Trans(F, G)).

One should think of the algorithm and adversary as playing a game in which the
adversary specifies a component of the input based on the algorithm’s past outputs,
and the algorithm responds by producing a new output. The transcript specifies the
entire sequence of inputs and outputs produced when the algorithm and adversary
play this game.

Remark 2. Designating an oblivious adversary is equivalent to designating a single
input sequence i = (i1, i2, . . .) ∈ I .

Remark 3. Our definition of algorithm and adversary makes no mention of computa-
tional constraints (e.g. polynomial-time computation) for either party. In general we
will want to design algorithms which are computationally efficient, but it is possible
to ask meaningful and non-trivial questions about online computation without taking
such constraints into account.

In defining randomized algorithms and adversaries, we think of each party as
having access to infinitely many independent random bits (represented by the binary
digits of a uniformly distributed element of [0, 1]) which are not revealed to the other
party.
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Definition 3. A randomized online algorithm is a sequence of functions

Ft : I [t]× [0, 1]→ Ot.

A randomized adaptive adversary is a sequence of functions

Gt : O[t− 1]× [0, 1]→ It.

A randomized adversary is called oblivious if the output of each function Gt(o, y)
depends only on the parameter y.

If F and G are a randomized algorithm and randomized adaptive adversary, re-
spectively, then the transcript of F and G is the function Trans(F, G) : [0, 1]× [0, 1]→
I ×O which maps a pair (x, y) to the unique input-output pair (i, o) satisfying:

it = Gt(o1, o2, . . . , ot−1, y)

ot = Ft(i1, i2, . . . , it, x)

for all t ≥ 1. The cost of F and G is Cost(F, G) = E[Cost(Trans(F, G)(x, y))], when
the pair (x, y) is sampled from the uniform distribution on [0, 1]2.

Remark 4. A randomized oblivious adversary is equivalent to a probability distri-
bution over input sequences i = (i1, i2, . . .) ∈ I .

Remark 5. In class I defined a randomized algorithm using an infinite sequence of
independent random variables (x1, x2, . . .) ∈ [0, 1]∞, and similarly for a randomized
adversary. Consequently the transcript Trans(F, G) was described as a function from
[0, 1]∞ × [0, 1]∞ to I × O. This was unnecessarily complicated: a single random
number x ∈ [0, 1] contains infinitely many independent random binary digits, so it
already contains as much randomness as the algorithm would need for an entire infinite
sequence of input-output pairs. Accordingly, in these notes I have simplified the
definition by assuming that the algorithm’s and adversary’s random bits are contained
in a single pair of independent random real numbers (x, y), with x representing the
algorithm’s supply of random bits and y representing the adversary’s supply.

3 Binary prediction with one perfect expert

As a warm-up for the algorithms to be presented below, let’s consider the following
“toy problem.” The algorithm’s goal is to predict the bits of an infinite binary
sequence ~B = (B1, B2, . . .), whose bits are revealed one at a time. Just before the
t-th bit is revealed, a set of n experts make predictions b1t, b2t, . . . , bnt ∈ {0, 1}. The
algorithm is allowed to observe all of these predictions, then it makes a guess denoted
by at ∈ {0, 1}, and then the truth, Bt, is revealed. We are given a promise that there
is at least one expert whose predictions are always accurate, i.e. we are promised that
∃i ∀t bit = Bt.
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This prediction problem is a special case of the framework described above. Here,
It = {0, 1} × {0, 1}n and Ot = {0, 1}. The input it contains all the information
revealed to the algorithm after it makes its (t − 1)-th guess and before it makes its
t-th guess: thus it consists of the value of Bt−1 together with all the predictions
b1t, . . . , bnt. The output ot is simply the algorithm’s guess at. The cost Cost(i, o) is
the number of times t such that at 6= Bt.

Consider the following algorithm, which we will call the “Majority algorithm”: at
each time t, it consults the predictions of all experts who did not make a mistake
during one of the first t − 1 steps. (In other words, it considers all experts i such
that bis = Bs for all s < t.) If more of these experts predict 1 than 0, then at = 1;
otherwise at = 0.

Theorem 1. Assuming there is at least one expert i such that bit = Bt for all t, the

Majority algorithm makes at most blog2(n)c mistakes.

Proof. Let St denote the set of experts who make no mistakes before time t. Let
Wt = |St|. If the Majority algorithm makes a mistake at time t, it means that at least
half of the experts in St made a mistake at that time, so Wt+1 ≤ bWt/2c. On the
other hand, by assumption we have |Wt| ≥ 1 for all t. Thus the number of mistakes
made by the algorithm is bounded above by the number of iterations of the function
x 7→ bx/2c required to get from n down to 1. This is blog2(n)c.

Remark 6. The bound of blog2(n)c in Theorem 1 is information-theoretically op-
timal, i.e. one can prove that no deterministic algorithm makes strictly fewer than
blog2(n)c mistakes on every input.

Remark 7. Although the proof of Theorem 1 is very easy, it contains the two essential
ingredients which will reappear in the analysis of the Weighted Majority and Hedge
algorithms below. Namely, we define a number Wt which measures the “remaining
amount of credibility” of the set of experts at time t, and we exploit two key properties
of Wt:

• When the algorithm makes a mistake, there is a corresponding multiplicative
decrease in Wt.

• The assumption that there is an expert whose predictions are close to the truth
implies a lower bound on the value of Wt for all t.

The second property says that Wt can’t shrink too much starting from its initial value
of n; the first property says that if Wt doesn’t shrink too much then the algorithm
can’t make too many mistakes. Putting these two observations together results in
the stated mistake bound. Each of the remaining proofs in these notes also hinges
on these two observations, although the manipulations required to justify the two
observations become more sophisticated as the algorithms we are analyzing become
more sophisticated.

W1-4



Algorithm WMA(ε)

/* Initialization */
wi ← 1 for i = 1, 2, . . . , n.

/* Main loop */
for t = 1, 2, . . .

/* Make prediction by taking weighted majority vote */
if
∑

i : bit=0 wi >
∑

i : bit=1 wi

output at = 0;
else

output at = 1.

Observe the value of Bt.

/* Update weights multiplicatively */
Et ← {experts who predicted incorrectly}
wi ← (1− ε) · wi for all i ∈ Et.

end

Figure 1: The weighted majority algorithm

4 Deterministic binary prediction: the Weighted

Majority Algorithm

We now present an algorithm for the same binary prediction problem discussed in
Section 3. This new algorithm, the Weighted Majority algorithm, satisfies a provable
mistake bound even when we don’t assume that there is an expert who never makes
a mistake. The algorithm is shown in Figure 1. It is actually a one-parameter family
of algorithms WMA(ε), each with a preconfigured parameter ε ∈ (0, 1).

Theorem 2. Let M denote the number of mistakes made by the algorithm WMA(ε).
For every integer m, if there exists an expert i which makes at most m mistakes, then

M <

(

2

1− ε

)

m +

(

2

ε

)

ln(n).

Proof. Let wit denote the value of wi at the beginning of the t-th iteration of the
main loop, and let Wt =

∑n

i=1 wit. The hypothesis implies that there is an expert i
such that wiT ≥ (1− ε)m for all T , so

WT > wiT ≥ (1− ε)m (1)
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for all T . On the other hand, if the algorithm makes a mistake at time t, it implies
that

∑

i∈Et

wit ≥
Wt

2
,

hence

Wt+1 =
∑

i∈Et

(1− ε) · wit +
∑

i6∈Et

wit

=
n
∑

i=1

wit − ε
∑

i∈Et

wit

≤ Wt

(

1−
ε

2

)

.

For any T > 0, we find that

WT

W0
=

T−1
∏

t=0

Wt+1

Wt

≤
(

1−
ε

2

)M

(2)

where M is the total number of mistakes made by the algorithm WMA(ε). Combining
(1) with (2) and recalling that W0 =

∑n

i=1 wi0 =
∑n

i=1 1 = n, we obtain

(1− ε)m

n
<

WT

W0

≤
(

1−
ε

2

)M

.

Now we take the natural logarithm of both sides.

ln(1− ε)m− ln(n) < ln
(

1−
ε

2

)

M (3)

ln(1− ε)m− ln(n) < −(ε/2)M (4)

ln

(

1

1− ε

)

m + ln(n) > (ε/2)M (5)

(

2

ε

)

ln

(

1

1− ε

)

m +

(

2

ε

)

ln(n) > M (6)

(

2

1− ε

)

m +

(

2

ε

)

ln(n) > M (7)

where (4) was derived from (3) using identity (21) from the appendix of these notes,
and (7) was derived from (6) using identity (22) from the appendix.

5 Randomized prediction: the Hedge Algorithm

We now turn to a generalization of the binary prediction problem: the “best expert”
problem. In this problem, there is again a set of n experts, which we will identify

W1-6



Algorithm Hedge(ε)

/* Initialization */
wx ← 1 for x ∈ [n]

/* Main loop */
for t = 1, 2, . . .

/* Define distribution for sampling random strategy */
for x ∈ [n]

pt(x)← wx

/(

∑n

y=1 wy

)

end

Choose xt ∈ [n] at random according to distribution pt.
Observe cost function ct.

/* Update score for each strategy */
for x ∈ [n]

wx ← wx · (1− ε)ct(x)

end

end

Figure 2: The algorithm Hedge(ε).

with the set [n] = {1, 2, . . . , n}. In each time step t, the adversary designates a cost
function ct from [n] to [0, 1], and the algorithm chooses an expert xt ∈ [n]. The cost
function Ct is revealed to the algorithm only after it has chosen xt. The algorithm’s
objective is to minimize the sum of the costs of the chosen experts, i.e. to minimize
∑∞

t=1 ct(xt).
Observe that this problem formulation fits into the formalism specified in Sec-

tion 2; the input sequence (i1, i2, . . .) is given by it = ct−1, the output sequence
(o1, o2, . . .) is given by ot = xt, and the cost function is

Cost(i, o) =

∞
∑

t=1

it+1(ot) =

∞
∑

t=1

ct(xt).

Also observe that the binary prediction problem is a special case of the best expert
problem, in which we define ct(x) = 1 if bxt 6= Bt, 0 otherwise.

Figure 2 presents a randomized online algorithm for the best expert problem. As
before, it is actually a one-parameter family of algorithms Hedge(ε) with a preconfig-
ured parameter ε ∈ (0, 1). Note the algorithm’s similarity to WMA(ε): it maintains a
vector of weights, one for each expert, and it updates these weights multiplicatively
using a straightforward generalization of the multiplicative update rule in WMA. The
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main difference is that WMA makes its decisions by taking a weighted majority vote
of the experts, while Hedge makes its decisions by performing a weighted random
selection of a single expert.

Theorem 3. For every randomized adaptive adversary, for every T > 0, the expected

cost suffered by Hedge(ε) satisfies

E

[

T
∑

t=1

ct(xt)

]

<

(

1

1− ε

)

E

[

min
x∈[n]

T
∑

t=1

ct(x)

]

+

(

1

ε

)

ln(n). (8)

Proof. Let wxt denote the value of wx at the beginning of the t-th iteration of the
main loop, and let Wt =

∑n

x=1 wxt. Note that wxt, Wt are random variables, since they
depend on the adversary’s choices which in turn depend on the algorithm’s random
choices in previous steps. For an expert x ∈ [n], let c1..T (x) denote the total cost

c1..T (x) =

T
∑

t=1

ct(x).

Let x∗ = arg minx∈[n] c1..T (x). We have

WT > wx∗t = (1− ε)c1..T (x∗)

and after taking logarithms of both sides this becomes

ln(WT ) > ln(1− ε)c1..T (x∗) (9)

On the other hand, we can bound the expected value of ln(WT ) from above, using an
inductive argument. Let w∗t denote the vector of weights (w1t, . . . , wnt).

E(Wt+1 |w∗t) =
n
∑

x=1

E
(

(1− ε)ct(x)wxt |w∗t

)

(10)

≤

n
∑

x=1

E ((1− εct(x))wxt |w∗t) (11)

=

n
∑

x=1

wxt − εE

(

n
∑

x=1

ct(x)wxt |w∗t

)

(12)

= Wt ·

(

1− εE

(

n
∑

x=1

ct(x)pt(x) |w∗t

))

(13)

= Wt · (1− εE(ct(xt) |w∗t)) (14)

E(ln(Wt+1) |w∗t) ≤ ln(Wt) + ln(1− εE(ct(xt) |w∗t)) (15)

≤ ln(Wt)− εE(ct(xt) |w∗t) (16)
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εE(ct(xt) |w∗t) ≤ ln(Wt)− E(ln(Wt+1) |w∗t) (17)

εE(ct(xt)) ≤ E(ln(Wt))−E(ln(Wt+1)) (18)

εE

(

T
∑

t=1

ct(xt)

)

≤ ln(n)−E(ln(WT )). (19)

Here, (11) is derived using identity (23) from the appendix, (13) is derived using
the fact that pt(x) = wxt/Wt, (14) is derived using the observation that xt is a
random element sampled from the probability distribution pt(·) on [n], (15) and (16)
are derived using the identities (24) and (21) respectively, (18) is derived by taking
the unconditional expectation of both sides of the inequality, and (19) is derived by
summing over t and recalling that W0 = n.

Combining (9) and (19) we obtain

εE

(

T
∑

t=1

ct(xt)

)

< ln(n)− ln(1− ε)E(c1..T (x∗))

E

(

T
∑

t=1

ct(xt)

)

<

(

1

ε

)

ln(n) +
1

ε
ln

(

1

1− ε

)

E(c1..T (x∗))

E

(

T
∑

t=1

ct(xt)

)

<

(

1

ε

)

ln(n) +

(

1

1− ε

)

E(c1..T (x∗))

where the last line is derived using identity (22) from the appendix.

6 Appendix: Some useful inequalities for logarithms

and exponential functions

In various steps of the proofs given above, we applied some useful inequalities that
follow from the convexity of exponential functions or the concavity of logarithms. In
this section we collect together all of these inequalities and indicate their proofs.

Lemma 4. For all real numbers x,

1 + x ≤ ex (20)

with equality if and only if x = 0.

Proof. The function ex is strictly convex, and y = 1 + x is the tangent line to y = ex

at (0, 1).

Lemma 5. For all real numbers x > −1,

ln(1 + x) ≤ x (21)

with equality if and only if x = 0.
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Proof. Take the natural logarithm of both sides of (20).

Lemma 6. For all real numbers y ∈ (0, 1),

1

y
ln

(

1

1− y

)

<
1

1− y
. (22)

Proof. Apply (21) with x = y

1−y
, then divide both sides by y.

Lemma 7. For every pair of real numbers x ∈ [0, 1], ε ∈ (0, 1),

(1− ε)x ≤ 1− εx (23)

with equality if and only if x = 0 or x = 1.

Proof. The function y = (1− ε)x is strictly convex and the line y = 1− εx intersects
it at the points (0, 1) and (1, 1− ε).

Lemma 8. For every random variable X, we have

E(ln(X)) ≤ ln(E(X)) (24)

with equality if and only if there is a constant c such that Pr(X = c) = 1.

Proof. Jensen’s inequality for convex functions says that if f is a convex function and
X is a random variable,

E(f(X)) ≥ f(E(X)),

and that if f is strictly convex, then equality holds if and only if there is a constant c
such that Pr(X = c) = 1. The lemma follows by applying Jensen’s inequality to the
strictly convex function f(x) = − ln(x).
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CS 683 — Learning, Games, and Electronic Markets Spring 2007

Notes from Week 2: Prediction algorithms and zero-sum games

Instructor: Robert Kleinberg 29 Jan – 2 Feb 2007

1 Summary of Week 1

Here are some closing observations about sequential prediction algorithms.

• For the problem of predicting a sequence using expert advice, we saw two algo-
rithms: a deterministic algorithm which satisfies a mistake bound

M ≤

(

2

1− ε

)

m +

(

2

ε

)

ln n

and a randomized algorithm which satisfies a mistake bound

M ≤

(

1

1− ε

)

m +

(

1

ε

)

lnn,

where n is the number of experts, m is the number of mistakes made by the
best expert, and ε > 0 is a parameter which is pre-configured by the algorithm
designer.

• You should think of 1/(1 − ε) as being equivalent to 1 + O(ε). (For example,
when ε < 1/2 we have 1/(1 − ε) < 1 + 2ε.) Hence when m � ln(n), the
randomized prediction algorithm comes very close to making the same number
of mistakes as the best expert.

• Neither algorithm needs to know the value of m in order to achieve these mistake
bounds.

• The best randomized algorithm makes half as many mistakes as the best deter-
ministic algorithm. This seems to be a recurring theme in sequential prediction
problems. (You saw another example of it on your homework.) The factor of
2 is not because it’s a binary prediction problem; randomization also saves a
factor of 2 when predicting the data in a k-ary sequence for k > 2.

• The randomized prediction algorithm actually applies to a more general problem
— the “best expert” problem — in which there is a cost associated with each
expert in each time step, and the cost of every expert (a real number between
0 and 1) is revealed only after the algorithm picks one expert.
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• The analysis of both algorithms follows the same rough outline. It’s important
to remember this rough outline: every time the algorithm accrues one unit of
cost, there is a corresponding multiplicative decrease in the total “weight” of
the experts. Since the total weight can never sink below the weight of the best
expert — and it starts out only n times larger than the best expert’s weight —
the algorithm can only accrue O(log n) more units of cost than the best expert.

2 Regret

We’ve seen a randomized algorithm Hedge for the best-expert problem whose expected
cost relative to the best expert x∗ satisfies

E[Cost(Hedge)] ≤ (1 + 2ε)Cost(x∗) +
ln(n)

ε
, (1)

for an arbitrary constant ε ∈ (0, 1
2
). Whenever you see a bound that says that an

algorithm computes a solution whose cost is within a 1 + 2ε factor of the optimum,
for an arbitrarily small ε > 0, a natural follow-up question is whether one can actually
get the cost to be 1 + o(1) times the optimum, and if so how small can we make the
o(1) term?

Let’s rewrite (1) as

E[Cost(Hedge)− Cost(x∗)] ≤ 2ε Cost(x∗) +
ln(n)

ε
. (2)

Definition 1 (Informal definition of regret.). The regret of an online learning
algorithm ALG is the maximum (over all input instances) of the expected difference
in cost between the algorithm’s choices and the best choice.

Definition 2 (Formal definition of regret, valid for this lecture.). The regret

of an online learning algorithm ALG relative to a class of adversaries G is

R(ALG, ADV) = sup
G∈G

E

[

max
x∈[n]

∞
∑

t=1

ct(xt)− ct(x)

]

,

where ct denotes the (random) cost function chosen at time t by adversary G playing
against algorithm ALG (i.e. the component it+1 in the transcript Trans(ALG, G)), and
xt denotes the expert chosen at time t by ALG playing against G (i.e. the component
ot in the transcript Trans(ALG, G)).

Inequality (2) gives a useful upper bound on regret in cases where it is possible to
bound, a priori, the cost of the best expert x∗. Two such cases are the following.

Finite time horizon Say that an adversary G has time horizon T if ct(x) = 0 for
all t > T and x ∈ [n], regardless of the choices made by the algorithm. Denote
the set of all such adversaries by G[T ]. For an adversary in G[T ], Cost(x∗) ≤ T .
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Geometric discounting Say that an adversary G has discount factor δ = 1− r if r
is a positive constant and there is another adversary hatG — with cost functions
ĉt taking values between 0 and 1 — such that ct = δtĉt. Denote the set of all
such adversaries by G〈1− r〉. For an adversary in G〈1− r〉, Cost(x∗) ≤ 1/r.

By choosing ε =
√

ln(n)/2T in the case of a finite time horizon T , or ε =
√

r ln(n)/2 in the case of discount factor 1 − r, we obtain upper bounds on the
regret of Hedge against the adversary sets G[T ] and G〈1− r〉.

R
(

Hedge
(

√

ln(n)/2T
)

,G[T ]
)

≤ 2
√

2T ln(n) (3)

R
(

Hedge
(

√

r ln(n)/2
)

,G〈1− r〉
)

≤ 2
√

2 ln(n)/r (4)

2.1 The doubling trick

To achieve the regret bound (3), the algorithm designer must know the time horizon T
in advance, to specify the appropriate value of ε when the algorithm is initialized. We
can avoid this assumption that T is known in advance, at the expense of a constant
factor, using the doubling trick. Whenever we reach a time step t such that t is a power
of 2, we restart the algorithm (forgetting all of the information gained in the past)
setting ε to

√

ln(n)/2t. Let us denote this algorithm by Hedge∗. If 2k ≤ T < 2k+1,
the algorithm satisfies the following upper bound on its regret:

R(Hedge∗,G[T ]) = sup
G∈G[T ]

E

[

sup
x∈[n]

T
∑

t=1

ct(xt)− ct(x)

]

= sup
G∈G[T ]

E



sup
x∈[n]

k
∑

j=0

2j+1−1
∑

t=2j

ct(xt)− ct(x)





≤
k
∑

j=0

sup
G∈G[2j ]

E





∑

x∈[n]

2j
∑

t=1

ct(xt)− ct(x)





=

k
∑

j=0

R
(

Hedge
(

√

ln(n)/2j+1
)

,G[2j]
)

≤

k
∑

j=0

2
√

2j+1 ln(n)

< 2
√

2k+1 ln(n)
∞
∑

i=0

2−i/2

< 7
√

T ln(n).
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We can use this doubling trick whenever we have an algorithm with known time
horizon T , whose regret is O(T α) for some α > 0, to obtain another algorithm with
unknown time horizon, whose regret is O(T α) for all time horizons T .

2.2 A lower bound for regret

The regret bound (3) is information-theoretically optimal up to a constant factor:

a matching lower bound of Ω
(

√

T ln(n)
)

arises by considering an input in which

the costs {ct(x) : 1 ≤ t ≤ T, x ∈ [n]} costitute a set of Tn independent uniformly
distributed random samples from {0, 1}. The central limit theorem tells us that with

high probability, there is an expert whose total cost is T
2
− Ω

(

√

T ln(n)
)

. On the

other hand, it is obvious that any randomized algorithm will have expected cost T/2.

3 Normal-form games, mixed strategies, and Nash

equilibria

3.1 Definitions

Definition 3. A normal-form game is specified by:

• A set I of players.

• For each player i ∈ I, a set Ai of strategies.

• For each player i ∈ I, a payoff function

ui :
∏

i∈I

Ai → R.

When a normal-form game has two players, we will generally refer to them as the
row player (player 1) and the column player (player 2) and we will write the payoff
functions in a matrix whose rows and columns are indexed by elements of A1 and
A2, respectively. The entry in row r and column c of the matrix is the ordered pair
(u1(r, c), u2(r, c)).

3.2 Examples of two-player normal-form games

Example 1. (Bach or Stravinsky) Two players have to decide whether to go to a
concert of Bach or of Stravinsky. One prefers Bach, the other prefers Stravinsky, but
both of them prefer going to a concert together over going alone.
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B S
B (2,1) (0,0)
S (0,0) (1,2)

Example 2. (Bach and Stravinsky) Two players live in neighboring rooms. Each
must decide whether to play their music at low volume or at high volume. Each one
would prefer to play their own music at high volume and would prefer their neighbor’s
music to be played at low volume.

Q L
Q (3,3) (1,4)
L (4,1) (2,2)

This game is a form of the famous prisoner’s dilemma game. Each player is better
off playing “L” no matter what the opponent’s strategy is. Yet the outcome (L,L) is
worse for both players than the outcome (Q,Q).

Example 3. (Penalty kick) There are two players: striker and goalie. Each must
choose whether to go left or right. If both choose the same direction, the goalie wins.
If both choose opposite directions, the striker wins.

L R
L (-1,1) (1,-1)
R (1,-1) (-1,1)

This game is sometimes called matching pennies.

3.3 Mixed strategies

A mixed strategy for a player of a normal-form game is a rule for picking a random
strategy from its strategy set. More formally, for a finite set A, let ∆(A) denote the
set of all probability distributions on A, i.e.

∆(A) =

{

p : A→ [0, 1]

∣

∣

∣

∣

∣

∑

a∈A

p(a) = 1

}

.

(This definition can be extended to infinite sets using measure theory, but the for-
malism required to deal with this extension is outside the scope of this course.) The
elements of ∆(Ai) are called mixed strategies of player i.

Elements of
∏

i∈I Ai are called pure strategy profiles. Elements of
∏

i∈I ∆(Ai) are
called mixed strategy profiles. The payoff function of a game can be extended from
pure strategy profiles to mixed strategy profiles by defining the payoff of a mixed
strategy profile to be the expected payoff when every player samples their random
strategy independently:

ui(p1, p2, . . . , p|I|) =
∑

~a

ui(~a)p1(a1)p2(a2) . . . p|I|(a|I|),

where the sum runs over all pure strategy profiles ~a = (a1, a2, . . . , a|I|).
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3.4 Nash equilibrium

Let k = |I|. For a strategy profile ~a = (a1, a2, . . . , ak), and an element a′
i ∈ Ai, we

introduce the notation (a′
i, a−i) to denote:

(a′
i, a−i) = (a1, a2, . . . , ai−1, a

′
i, ai+1, . . . , ak).

In words, (a′
i, a−i) is the strategy profile obtained by changing player i’s strategy from

ai to a′
i.

Definition 4 (Nash equilibrium). A mixed strategy profile ~p = (p1, p2, . . . , pk) is
a mixed Nash equilibrium (or, simply, Nash equilibrium) if it is the case that for all
i ∈ I and all qi ∈ ∆(Ai),

ui(qi, p−i) ≤ ui(pi, p−i).

If each pi is a pure strategy (i.e. a mixed strategy which assigns probability 1 to a
single element of Ai) then ~p is a pure Nash equilibrium.

Example 4. There are two pure Nash equilibria of “Bach or Stravinsky”, namely
(B,B) and (S,S). There is also another mixed Nash equilibrium in which player 1
chooses B with probability 2/3, S with probability 1/3; and player 2 chooses B with
probability 1/3, S with probability 2/3. Interestingly, in the mixed equilibrium the
payoff for both players is 2/3, so both of the pure equilibria are better for both players.
(In game-theoretic terms, the mixed Nash equilibrium is Pareto dominated by the pure
equilibria. If x and y are two outcomes of a game, we say that x Pareto dominates y
when at least one player strictly prefers x to y, and no player strictly prefers y to x.)
This example illustrates three of the critiques of the Nash equilibrium concept.

1. In situations like this where there are multiple Nash equilibria, we can’t predict
which equilibrium the players will choose (if any).

2. Moreover, the different equilibria imply different payoffs for the two players, so
we can’t even predict their payoffs.

3. The contention that players will select a Nash equilibrium of the game seems
to rely on circular reasoning. Player 1 wants to play its side of the equilibrium
strategy profile because it believes that player 2 will play its own side of the
same strategy profile, and vice-versa. In situations where there are multiple
equilibria, why should we assume that both players will be able to coordinate
their beliefs in this way?

These critiques of Nash equilibrium are not the end of the story; they are the be-
ginning of a very interesting story in which game theorists have tried to enhance the
theory in various ways to address these critiques and improve the predictive power of
game-theoretic equilibrium concepts. In particular, some game theorists have tried
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addressing critique (3) using models in which players arrive at an equilibrium by play-
ing the game repeatedly and using learning rules to adapt to their opponent’s past
behavior. This theory of learning in games will be one of the main topics we address
in the coming weeks.

Example 5. The “Bach and Stravinsky” game (i.e. the prisoner’s dilemma) has only
one Nash equilibrium, the pure strategy profile (L,L). This is a dominant strategy

equilibrium, meaning that each player is better off playing L than Q, no matter what

the other player does.

Example 6. The “penalty kick” game has no pure Nash equilibrium. In the unique
mixed Nash equilibrium, each player assigns probability 1/2 to both strategies.

4 Two-player zero-sum games and von Neumann’s

minimax theorem

Definition 5. A two-player zero-sum game is one in which I = {1, 2} and u2(a1, a2) =
−u1(a1, a2) for all pure strategy profiles (a1, a2).

A famous theorem of von Neumann illustrates that the equilibria of two-player
zero-sum games are much simpler than the equilibria of general two-player games.

Theorem 1 (von Neumann’s minimax theorem). For every two-player zero-

sum game with finite strategy sets A1, A2, there is a number v ∈ R, called the game
value, such that:

1.

v = max
p∈∆(A1)

min
q∈∆(A2)

u1(p, q) = min
q∈∆(A2)

max
p∈∆(A1)

u1(p, q)

2. The set of mixed Nash equilibria is nonempty. A mixed strategy profile (p, q) is

a Nash equilibrium if and only if

p ∈ arg max
p

min
q

u1(p, q)

q ∈ arg min
q

max
p

u1(p, q)

3. For all mixed Nash equilibria (p, q), u1(p, q) = v.

Remark 1. Among other things, the theorem implies that two-player zero-sum games
don’t suffer from critiques (2) and (3) discussed above. Although there can be multiple
equilibria, part (3) of the theorem says that all equilibria result in the same payoffs
for both players. Moreover, the players don’t need to coordinate with each other in
order to play an equilibrium: by part (2) it is sufficient for each of them to choose
a mixed strategy in their respective arg max or arg min set, without knowing which
equilibrium mixed strategy the opponent is going to choose.
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4.1 Some extra observations about Hedge

Before giving the proof of Theorem 1 we must point out two simple properties of the
Hedge algorithm which were not derived in previous lectures.

4.1.1 Using Hedge for maximization problems.

Although we defined and analyzed Hedge in the context of online cost-minimization
problems, it is easy to adapt the algorithm to the setting of online payoff maximiza-
tion. The simplest way to do this is to just transform payoff functions into cost func-
tions. If gt : [n]→ [0, 1] is the payoff function at time t, then define ct(x) = 1− gt(x)
and use Hedge to compute a sequence of experts xt which approximately minimize
∑∞

t=1 ct(xt), which is the same as approximately maximizing
∑∞

t=1 gt(xt). This suffices
for the purpose of bounding the additive regret when using Hedge for maximization
problems, since the additive difference between Hedge and the best expert is unaf-
fected by the transformation ct(x) = 1 − gt(x). (In other words, if x∗ is the best
expert, then ct(xt)−ct(x

∗) is equal to gt(x
∗)−gt(xt); summing over t we find that the

algorithm’s regret is the same in both the maximization and minimization contexts.)
For future reference, Appendix A presents a slightly different version of Hedge,

denoted by MaxHedge, which is suitable for maximization problems. In the appendix
we prove the following multiplicative bound which is analogous to Theorem 3 from
last week’s notes.

Theorem 2. For every randomized adaptive adversary, for every T > 0, the expected

payoff gained by MaxHedge(ε) satisfies

E

[

T
∑

t=1

gt(xt)

]

> (1− ε)E

[

max
x∈[n]

T
∑

t=1

gt(x)

]

−

(

1

ε

)

ln(n). (5)

Corollary 3. For every T > 0, if ε =
√

ln(n)/T , the expected payoff gained by

MaxHedge(ε) against any adaptive adversary satisfies

E

[

T
∑

t=1

gt(xt)

]

> E

[

max
x∈[n]

T
∑

t=1

gt(x)

]

− 2
√

T ln(n). (6)

In the rest of these notes, we will not distinguish between the algorithms Hedge

and MaxHedge.

4.1.2 Hedge tracks the best mixture of experts

For the best-expert problem, we can extend each payoff function gt from a function
on [n] to a function on ∆([0, 1]) by averaging:

gt(p) =
∑

x∈[n]

p(x)gt(x).

W2-8



Observe that for any p ∈ ∆([0, 1]),

T
∑

t=1

gt(p) ≤ max
x∈[n]

T
∑

t=1

gt(x),

since the left side is a weighted average of the values of
∑T

t=1 gt(x) as x runs over
all elements of [n]. Using this fact, we see that the bounds (5) and (6) extend to
distributions:

E

[

T
∑

t=1

gt(xt)

]

> (1− ε)E

[

max
p∈∆([n])

T
∑

t=1

gt(p)

]

−

(

1

ε

)

ln(n). (7)

E

[

T
∑

t=1

gt(xt)

]

> E

[

max
p∈∆([n])

T
∑

t=1

gt(p)

]

− 2
√

T ln(n). (8)

4.2 The main lemma

The hardest step in the proof of von Neumann’s minimax theorem is to prove that

max
p

min
q

u1(p, q) ≥ min
q

max
p

u1(p, q).

We will prove this fact using online learning algorithms. The basic idea of the proof
is that if the players are allowed to play the game repeatedly, using Hedge to adapt to
the other player’s moves, then low-regret property of Hedge guarantees that the time-
average of each player’s mixed strategy is nearly a best response to the time-average
of the other player’s mixed strategy.

Lemma 4. For any two-player zero-sum game,

max
p∈∆(A1)

min
q∈∆(A2)

u1(p, q) ≥ min
q∈∆(A2)

max
p∈∆(A1)

u1(p, q).

Proof. Without loss of generality, assume that 0 ≤ u1(a1, a2) ≤ 1 for all a1 ∈ A1, a2 ∈
A2. (If the original payoff function u1 doesn’t satisfy these bounds, we can replace u1

with the function bu1 + c for suitable constants b, c > 0.)
Let n = max{|A1|, |A2|} and for any positive δ > 0 let

T = d4 ln(n)/δ2e

ε =
√

ln(n)/T .

Suppose that each player uses Hedge(ε) (with “experts” corresponding to elements of
the player’s strategy set) to define a T -step sequence of mixed strategies in response
to the other player’s sequence of mixed strategies. More precisely, player 1 defines a
sequence of mixed strategies p1, p2, . . . , pT and player 2 defines a sequence of mixed
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strategies q1, q2, . . . , qT , according to the following prescription. Player 1 runs the
payoff-maximizaton version of Hedge(ε), defining the payoff function at time t by
gt(x) = u1(x, qt). The mixed strategy pt is taken to be the distribution from which

the algorithm samples at time t, i.e. pt(x) = wxt

/(

∑

y∈A1
wyt

)

, where wxt is the

weight which Hedge(ε) assigns to strategy x at time t. Similarly, player 2 runs the
payoff-maximization version of Hedge(ε), defining the payoff function at time t by
gt(x) = 1− u1(pt, x), and qt is taken to be the distribution from which the algorithm
samples at time t.

Our choice of T and ε guarantees that each player’s regret is at most δT , using
Corollary 3. Hence we have

min
q

1

T

T
∑

t=1

u1(pt, q) + δ ≥
1

T

T
∑

t=1

u1(pt, qt) ≥ max
p

1

T

T
∑

t=1

u1(p, qt)− δ (9)

where the first inequality follows from considering Player 2’s regret, and the second
inequality follows from considering Player 1’s regret. Letting

p =
1

T

T
∑

t=1

pt, q =
1

T

T
∑

t=1

qt,

we can rewrite (9) as

min
q

u1(p, q) + δ ≥ max
p

u1(p, q)− δ. (10)

Trivially, we have

max
p

min
q

u1(p, q) + δ ≥ min
q

u1(p, q) + δ (11)

max
p

u1(p, q)− δ ≥ min
q

max
p

u1(p, q)− δ (12)

and combining (10)-(12) we find that

max
p

min
q

u1(p, q) + δ ≥ min
q

max
p

u1(p, q)− δ. (13)

The lemma follows because δ can be made arbitrarily close to zero.

It will be useful to considering the following alternate proof of Lemma 4, which is
almost identical to the first proof.

Alternate proof of Lemma 4. As before, assume without loss of generality that 0 ≤
u1(a1, a2) ≤ 1 for all strategy profiles (a1, a2). Let δ > 0 be an arbitrarily small
positive number, and define n, T, ε as above. Player 1 still uses Hedge(ε) to define a
sequence of mixed strategies p1, p2, . . . , pT in response to the payoff function induced
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by the opponent’s sequence of strategies. But player 2 now chooses its strategies
adversarially, according to the prescription

qt ∈ arg min
q

u1(pt, q). (14)

Note that the set of mixed strategies minimizing player 1’s payoff always contains a
pure strategy, so we may assume qt is a pure strategy if desired.

Define p, q as above. We find that

max
p

min
q

u1(p, q) ≥ min
q

u1(p, q)

= min
q

1

T

T
∑

t=1

u1(pt, q)

≥
1

T

T
∑

t=1

min
q

u1(pt, q)

=
1

T

T
∑

t=1

u1(pt, qt)

≥ max
p

1

T

T
∑

t=1

u1(p, qt)− δ

= max
p

u1(p, q)− δ

≥ min
q

max
p

u1(p, q)− δ.

4.3 Proof of Theorem 1

In this section we complete the proof of von Neumann’s minimax theorem.

Proof of Theorem 1. For any mixed strategy profile (p̂, q̂) we have

u1(p̂, q̂) ≤ max
p

u1(p, q̂).

Taking the minimum of both sides as q̂ ranges over ∆(A2) we find that

min
q

u1(p̂, q) ≤ min
q

max
p

u1(p, q).

Taking the maximum of both sides as p̂ ranges over ∆(A1) we find that

max
p

min
q

u1(p, q) ≤ min
q

max
p

u1(p, q).
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The reverse inequality was proven in Lemma 4. Thus we have established part (1) of
Theorem 1.

Note that the sets B1 = arg maxp minq u1(p, q) and B2 = arg minq maxp u1(p, q)
are both nonempty. (This follows from the compactness of ∆(A1) and ∆(A2), the
contintuity of u1, and the finiteness of A1 and A2.) If p ∈ B1 and q ∈ B2 then

v = min
q

u1(p, q) ≤ u1(p, q) ≤ max
p

u1(p, q) = v

hence u1(p, q) = v. Moreover, since q ∈ B2, player 1 can’t achieve a payoff greater
than v against q by changing its mixed strategy. Similarly, since p ∈ B1, player 2
can’t force player 1’s payoff to be less than v by changing its own mixed strategy.
Hence (p, q) is a Nash equilibrium. Conversely, if (p, q) is a Nash equilibrium, then

u1(p, q) = max
p

u1(p, q) ≥ v (15)

u1(p, q) = min
q

u1(p, q) ≤ v (16)

and this implies that in each of (15), (16), the inequality on the right side is actually
an equality, which in turn implies that p ∈ B1 and q ∈ B2. This completes the proof
of (2) and (3).

The proof of the minimax theorem given here, using online learning, differs from
the standard proof which uses ideas from the theory of linear programming. The
learning-theoretic proof has a few advantages, some of which are spelled out in the
following remarks.

Remark 2. The procedure of using Hedge to approximately solve a zero-sum game
is remarkably fast: it converges to within δ of the optimum using only O(log(n)/δ2)
steps, provided the payoffs are between 0 and 1. (By “converges to within δ”, we
mean that it outputs a pair of mixed strategies, (p, q) such that minq u1(p, q) ≥ v− δ
and maxp u1(p, q) ≤ v + δ, where v is the game value.) This is especially important
when one of the players has a strategy set whose size is exponentially larger than the
size of the natural representation of the game. See Example 7 below for an example
of this.

Recall that in the second proof of Lemma 4 we remarked that player 2’s strategies
qt could be taken to be pure strategies. Note also that the Hedge algorithm used
by player 1 only needs to look at the scores in a column of the payoff matrix if the
corresponding strategy has been used by player 2 some time in the past. Thus, as long
as we have an oracle for finding player 2’s best response to any mixed strategy, we
need only look at a very sparse subset of the payoff matrix — a set of O(log(n)/δ2)
columns — to compute a mixed strategy for player 1 which obtains an additive
δ-approximation to the game value. Again, see Example 7 for an example in which
it is reasonable to assume that we don’t have an explicit representation of the payoff
matrix, but we can examine any desired column and we have an oracle for finding
player 2’s best response to any mixed strategy.
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Example 7 (The VPN eavesdropping game). Let G = (V, E) be an undirected
graph. In the “VPN eavesdropping game”, player 1 chooses an edge of G, and player
2 chooses a spanning tree of G. For any edge e and spanning tree T , the payoff of
player 1 is

u1(e, T ) =

{

1 if e ∈ T
0 otherwise.

(We can think of player 1 as an eavesdropper who can listen on any single edge of G,
and player 2 as someone who is setting up a virtual private network on the edges of
T , to join together all the nodes of G. The game is a win for player 1 if he or she
eavesdrops on an edge which is part of the VPN.)

Note that, in general, the cardinality of player 2’s strategy set is exponential in
the size of G. Thus the parameter n appearing in the proof of Lemma 4 will be
exponential in the size of the game’s natural representation. However, it is easy to
examine any particular column of the payoff matrix u1: the column corresponding to
a spanning tree T will be a vector of 0’s and 1’s, with 1’s in the rows corresponding to
the edges of T . Moreover, it is easy to compute player 2’s best response to any mixed
strategy of player 1: one simply computes a minimum spanning tree of G, where the
weight of each edge is equal to the probability of player 1 picking that edge.

Consequently, there is an algorithm for approximately solving the game (up to
an additive error of δ) which requires only O(log(M)/δ2) minimum spanning tree
computations, where M is the total number of minimum spanning trees of G. (If
G has V vertices, then by Cayley’s formula M ≤ V V −2. Hence log(M) is always
polynomial — in fact, nearly linear — in the number of vertices of G.)

Remark 3. Another consequence of the second proof of Lemma 4 is that player 2
has a mixed strategy which has sparse support — i.e. at most O(log(n)/δ2) strategies
have positive probability — yet it achieves an additive δ-approximation to the game
value. By symmetry, player 1 also has a mixed strategy with sparse support which
achieves an additive δ-approximation to the game value. Hence the game has an
approximate Nash equilibrium in which both players use sparsely-supported mixed
strategies.

Remark 4. If player 2 is not playing rationally, by using Hedge player 1 comes close
to achieving the best possible payoff against whatever distribution of strategies player
2 happens to be using. This property would not be ensured in repeated play if player
1 instead solved the game offline, picked a strategy in arg maxp minq u1(p, q), and
always used this strategy.

Remark 5. If we think about our intuition of how human beings learn to play games
against each other, the process is probably more similar to a learning algorithm such
as Hedge than to a linear programming algorithm such as the simplex method. Hence
another benefit of the learning-theoretic proof is that it gives an intuitive justification
for why human beings are able to find the equilibria of zero-sum games.
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4.4 Yao’s lemma

The von Neumann minimax theorem has an important consequence in computer
science. Suppose we have a computational problem with a finite set of possible inputs
I, and we are considering a finite set of possible algorithms A. For example, I might
be the set of all n-bit binary strings, and A might be the set of all Boolean circuits
of size at most n3 which accept an n-bit input and return a valid output for the
problem under consideration. Suppose we have a parameter t(i, a) which corresponds
to the cost of running algorithm a on input i. For example, t(i, a) could denote the
algorithm’s running time, or the cost of the solution it computes.

We may interpret this scenario as a two-player zero-sum game in which player 1
specifies an input, player 2 specifies an algorithm, and t(i, a) is the payoff for player
1. Let D = ∆(I) denote the set of all probability distributions on inputs, and let
R = ∆(A) denote the set of all probability distributions on algorithms, i.e. the set of
all randomized algorithms. We can extend the function t to mixed strategy profiles
in the usual way, i.e.

t(d, r) =
∑

i∈I

∑

a∈A

t(i, a)d(i)r(a).

Lemma 5 (Yao’s Lemma).

max
d∈D

min
a∈A

t(d, a) = max
d∈D

min
r∈R

t(d, r) = min
r∈R

max
d∈D

t(d, r) = min
r∈R

max
i∈I

t(i, r).

Proof. The second equality is a restatement of von Neumann’s minimax theorem.
The first and third equalities follow from the fact that for any mixed strategy of one
player, the other player always has a best response which is a pure strategy, i.e.

∀d ∈ D min
r∈R

t(d, r) = min
a∈A

t(d, a)

∀r ∈ R max
d∈D

t(d, r) = max
i∈I

t(i, r).

5 Learning equilibria in non-zero sum games

Here we present a short example to illustrate that the dynamics of learning processes
in non-zero-sum games can be much more complicated. We will consider a variant of
the well-known “rock, paper, scissors” game, with the following payoff matrix.

R P S
R (-5,-5) (-1,1) (1,-1)
P (1,-1) (-5,-5) (-1,1)
S (-1,1) (1,-1) (-5,-5)
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Consider the dynamics studied in the second proof of Lemma 4, i.e. player 1 uses
Hedge(ε) to choose mixed strategies pt, and player 2 responds adversarially with a pure
strategy qt ∈ arg minq u1(pt, q). If one looks at the strategies of both players during
the course of an infinite time history, the timeline is divided into epochs during which
player 2 is always picking the same strategy in {R,P,S}, and player 1 is adjusting
its mixed strategy accordingly. The lengths of these epochs are approximated by a
geometric progression. For example, in an epoch when player 2 is always picking
R, player 1 is increasing the probability of P, decreasing the probability of S, and
rapidly decreasing the probability of R. At some point when the probability of S is
small enough and the probability of P is large enough, player 2 will shift to playing S.
Player 2 will continue playing S until player 1 increases the probability of R enough
to make P more attractive than S for player 2. However, this shift from S to P takes
longer (by a constant factor) than the previous shift from R to S, because player 1
decreased the weight assigned to R very rapidly during the period when player 2 was
playing R, and player 1 increased the weight assigned to R much more slowly during
the period when player 2 was playing S.

As a consequence of these observations, we see that the average of the strategies
chosen by player 2 (the mixed strategy denoted by q in the proof of Lemma 4) never
converges! Similarly, the average of the strategies chosen by player 1 never converges.
So the description of the type of equilibrium achieved by this process (if any) must
be significantly more complicated than Nash equilibrium. During the next few weeks
we will be discussing equilibrium concepts for non-zero-sum games and analyzing the
types of equilibria which arise as the limiting outcomes of different learning processes.

A Appendix: The MaxHedge algorithm

The algorithm MaxHedge(ε) — a version of Hedge suited for payoff maximization
rather than cost minimization — is presented in Figure 1. In this section we analyze
the algorithm, proving Theorem 2 and Corollary 3.

Lemma 6. For x > 0,
1

x
ln(1 + x) > 1− x. (17)

Proof. We have

ln

(

1

1 + x

)

= ln

(

1−
x

1 + x

)

< −

(

x

1 + x

)

.

Multiplying both sides by −1/x,

1

x
ln(1 + x) >

1

1 + x
.

Finally, the inequality 1 > (1− x)(1 + x) implies that 1
1+x

> 1− x, which concludes
the proof of the lemma.
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Algorithm MaxHedge(ε)

/* Initialization */
wx ← 1 for x ∈ [n]

/* Main loop */
for t = 1, 2, . . .

/* Define distribution for sampling random strategy */
for x ∈ [n]

pt(x)← wx

/(

∑n
y=1 wy

)

end
Choose xt ∈ [n] at random according to distribution pt.
Observe payoff function gt.

/* Update score for each strategy */
for x ∈ [n]

wx ← wx · (1 + ε)gt(x)

end
end

Figure 1: The algorithm MaxHedge(ε).

Proof of Theorem 2. Let wxt denote the value of wx at the beginning of the t-th
iteration of the main loop, and let Wt =

∑n
x=1 wxt. Note that wxt, Wt are random

variables, since they depend on the adversary’s choices which in turn depend on the
algorithm’s random choices in previous steps. For an expert x ∈ [n], let g1..T (x)
denote the total payoff

g1..T (x) =

T
∑

t=1

gt(x).

Let x∗ = arg maxx∈[n] g1..T (x). We have

WT > wx∗t = (1 + ε)g1..T (x∗)

and after taking logarithms of both sides this becomes

ln(WT ) > ln(1 + ε)g1..T (x∗) (18)

On the other hand, we can bound the expected value of ln(WT ) from above, using an
inductive argument. Let w∗t denote the vector of weights (w1t, . . . , wnt).

E(Wt+1 |w∗t) =
n
∑

x=1

E
(

(1 + ε)gt(x)wxt |w∗t

)

(19)

W2-16



≤
n
∑

x=1

E ((1 + εgt(x))wxt |w∗t) (20)

=
n
∑

x=1

wxt + εE

(

n
∑

x=1

gt(x)wxt |w∗t

)

(21)

= Wt ·

(

1 + εE

(

n
∑

x=1

gt(x)pt(x) |w∗t

))

(22)

= Wt · (1 + εE(gt(xt) |w∗t)) (23)

E(ln(Wt+1) |w∗t) ≤ ln(Wt) + ln(1 + εE(gt(xt) |w∗t)) (24)

≤ ln(Wt) + εE(gt(xt) |w∗t) (25)

E(ln(Wt+1) |w∗t)− ln(Wt) ≤ εE(gt(xt) |w∗t) (26)

E(ln(Wt+1))−E(ln(Wt)) ≤ εE(gt(xt)) (27)

E(ln(WT ))− ln(n) ≤ εE

(

T
∑

t=1

gt(xt)

)

(28)

Here, (20) is derived using the identity (1+ ε)x ≤ 1+ εx, which is valid for ε > 0 and
0 ≤ x ≤ 1. Step (22) is derived using the fact that pt(x) = wxt/Wt, (23) is derived
using the observation that xt is a random element sampled from the probability
distribution pt(·) on [n], (24) is derived using Jensen’s inequality, (27) is derived
by taking the unconditional expectation of both sides of the inequality, and (28) is
derived by summing over t and recalling that W0 = n.

Combining (18) and (28) we obtain

εE

(

T
∑

t=1

gt(xt)

)

> ln(1 + ε)E(g1..T (x∗))− ln(n)

E

(

T
∑

t=1

gt(xt)

)

>
1

ε
ln

(

1

1 + ε

)

E(g1..T (x∗))−

(

1

ε

)

ln(n)

E

(

T
∑

t=1

gt(xt)

)

> (1− ε)E(g1..T (x∗))−

(

1

ε

)

ln(n) (29)

where the last line is derived using identity (17) from the Lemma above.

Proof of Corollary 3. The corollary follows by combining (29) above with the trivial
bound E(g1..T (x∗)) ≤ T.
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CS 6840 – Algorithmic Game Theory Spring 2012

Lecture 14 – Wednesday 22 February 2012 – Scribe Notes
Instructor: Eva Tardos Boris Burkov (bb393)

Coarse correlated equilibria as a convex set

Last time - Looked at algorithm that guarantees no regret Last last time - Defined coarse correlated
equilibrium as a probability distribution on strategy vectors

Definition. p(s) s.t. E(ui(s)) ≥ E(ui(x, s−i)) ∀i,∀x.

which lead to the corollary:

Corollary 1. All players using small regret strategies gives an outcome that is close to a coarse
correlated equilibrium

The next natural question to ask is: Does there exist a coarse correlated equilibrium? We
consider finite player and strategy sets.

Theorem 2. With finite player and strategy sets, a coarse correlated equilibrium exists.

Proof 1. We know that a Nash equilibrium exists. Then let p1, . . . pn be probability distributions
that form a Nash equilibrium. Observe that p(s) = Πipi(si) is a coarse correlated equilibrium.

Proof 2. (doesn’t depend on Nash’s theorem). Idea: Algorithm from last lecture finds it with small
error. Consider

min
p

[max
i

[max
x

[Ep(ui(xi, s−i))− Ep(ui(s))]]]

The quantity inside the innermost max is the regret of players i about strategy x. If this minimum
is ≤ 0, then p is a coarse correlated equilibrium. The minimum cannot equal ε > 0 as we know
by the algorithm that we can find a p with arbitrarily small regret. In this instance, ε

2 would be
sufficient to reach a contradiction. Hence, we know that the infimum must be less than or equal to
0 but does the minimum exist? Since we have a continuous function over p, the compact space of
probability distributions, we must attain the infimum, so the minimum is in fact ≤ 0, so a coarse
correlated equilibrium exists.

Remark. This minimum can be calculated as the solution of a linear program satisfying
∑
p(s) =

1, p(s) ≥ 0 and the no regret inequality for each (i, x) pair.

2-person 0-sum games

The game is defined by a matrix a with the first players strategies labelling the rows and the second
players strategies labelling the columns. aij is the amount Player 1 pays to Player 2 if strategy
vector (i, j) plays.

Theorem 3. Coarse correlated equilibrium in these games is (essentially) the same as the Nash
equilibrium.
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To be a bit more precise, let p(i, j) be at coarse correlated equilibrium. When considering Player
1, we care about q Player 2’s marginal distribution. q(j) =

∑
i p(i, j). Since Player 1 has no regret,

we have that ∑
ij

aijp(i, j) ≤ min
i

∑
j

aijqj

Likewise, let r(i) =
∑

j p(i, j) be Player 1’s marginal distribution, so Player 2’s lack of regret tells
that: ∑

ij

aijp(i, j) ≥ max
j

∑
i

aijri

Theorem 4. q, r from above are Nash equilibria.

Proof. The best response to q is

min
i

∑
j

aijqj ≤
∑
ij

r(i)q(j) ≤ max
j

∑
i

aijri

the last of which is the best response to r. Thus, we also have∑
ij

aijp(i, j) ≤ min
i

∑
j

aijqj ≤
∑
ij

r(i)q(j) ≤ max
j

∑
i

aijri ≤
∑
ij

aijp(i, j)

Which implies the result, since they must all be equal.
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Lecture Scribe Notes

Instructor: Eva Tardos Sidharth Telang (sdt45)

1 Lecture � Friday 17 February 2012 - Other equilibria

The following notation is used. [n] = {1, 2, . . . , n} is used to denote the set of players. Player i has
strategy set Si. s̄ denotes a strategy vector. s̄i denotes the i

th entry of s̄ and s̄−i denotes s̄ without
the ith entry. ci(s̄) denotes the cost player i incurs when the players play s̄.

We say a sequence of plays (s̄1, s̄
2, . . . s̄T ) is no regret for player i if and only if

ΣT
t=1ci(s̄

t) ≤ minx∈SiΣ
T
t=1ci(x, s̄

t
−i)

which means that player i does at least as well as he would have had he chosen any �xed strategy
in hindsight.

Recall that a mixed Nash equilibrium is de�ned as a probability distribution pi for every player
i over Si such that for every player i and every x ∈ Si

E(ci(s̄)) ≤ E(ci(x, s̄−i))

where s̄ is now a random variable. That is, the probability s̄ is played is Πipi(s̄i). Let this be
denoted by p(s̄).

Here we note that the more natural de�nition of enforcing the expected cost of any player i under
pi to be no more than that when i switches to any other probability distribution p′i is equivalent
to the above de�nition. This is because the expected cost of player i on switching to a probability
distribution will be a convex combination of his expected cost on switching to �xed strategies.

A sequence of plays de�nes a probability distribution on the set of strategy vectors. We set p(s̄)
to be the frequency of s̄, that is the number of times s̄ was played divided by the total number of
plays.

If a sequence of plays are no regret for all players we have for every player i

ΣT
t=1ci(s̄

t) ≤ minx∈SiΣ
T
t=1ci(x, s̄

t
−i)

which is equivalent to the condition that for every player i

Σs̄p(s̄)ci(s̄) ≤ minx∈SiΣs̄p(s̄)ci(x, s̄−i)

Such a probability distribution is de�ned as a coarse correlated equilibrium.

De�nition. A coarse correlated equilibrium is de�ned as a probability distribution p over strategy
vectors such that for every player i

Σs̄p(s̄)ci(s̄) ≤ minx∈SiΣs̄p(s̄)ci(x, s̄−i)

We have seen that the distribution induced by a sequence of plays that are no regret for every
player is a coarse correlated equilibrium.
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It's easy to see that every Nash is a coarse correlated equilibrium. But a coarse correlated
equilibrium p induces a Nash equilibrium if there exists a probability distribution pi for every player
i such that for every s̄, p(s̄) can be expressed as Πipi(s̄i).

We look at the example of Rock-paper-scissors to �nd a coarse correlated equilibrium. The
following table describes the payo� where (x, y) denotes that the payo� to the row player is x and
that column player is y.

R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)
This game admits a unique Nash equilibrium, the mixed Nash of choosing one of the three

strategies at random.
A uniform distribution on (R,P ), (R,S), (P,R), (P, S), (S,R), (S, P ) , that is, the non-tie strat-

egy vectors, is a coarse correlated equilibrium. We can see that if any player chooses a �xed strategy,
his expected payo� will stay the same i.e. 0.

If we change the payo� table to the following
R P S

R (-2,-2) (-1,1) (1,-1)

P (1,-1) (-2,-2) (-1,1)

S (-1,1) (1,-1) (-2,-2)
then the same is a coarse correlated equilibrium, where the expected payo� per player is 0. Here

choosing a �xed strategy will decrease any player's payo� to -2/3.
This modi�ed game too has a unique Nash which is choosing each strategy uniformly at random,

giving each player a negative payo� of -2/3.
Here we note that in this example the coarse correlated equilibrium is uniform over a set of

strategy vectors that form a best response cycle.
We now de�ne a correlated equilibrium.

De�nition. A correlated equilibrium is de�ned as a probability distribution p over strategy vectors
such that for every player i, and every strategy si ∈ Si

Σs̄p(s̄|s̄i = si)ci(s̄) ≤ minx∈SiΣs̄p(s̄|s̄i = si)ci(x, s̄−i)

Intuitively, it means that in such an equilibrium, every player is better o� staying in the equi-
libirum than choose a �xed strategy, when all the other players assume that this player stays in
equilibrium. Staying in equilibrium hence can be thought of as following the advice of some co-
ordinator. In other words, when other players assume you follow your advice, you are better o�
following the advice than deviating from it.

We consider as an example the game of Chicken. Two players play this game, in which each
either Dares to move forward or Chickens out. If both Dare, they will crash, if one Dares then he
wins and the other loses and if none Dare then no one wins. The payo�s are as follows.

D C

D (-10,-10) (1,0)

C (0,1) (0,0)
This game has three Nash equilibra, two are pure and one is mixed. The pure equilibra are

(D,C) and (C,D). The mixed Nash is choosing to Dare(D) with probability large enough to drive
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down the other player's expected payo� if he chose to just Dare, and small enough to ensure that
just Chickening is not a better option.

A correlated equilibrium would be the uniform distribution over (D,C), (C,C), (C,D). We can
think of the co-ordinator as a tra�c light to each player. A player can view his light but not the
other player's. If a player is told to Chicken, it's possible (with probability 1/2) the other has been
told to Dare, hence it's better to Chicken. If a player is told to Dare, the other player has been told
to Chicken, and hence it's best to Dare.
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Lecture 3: Continuous Congestion Games

Instructor: Eva Tardos Scribe: Karn Seth

1 Review: Atomic Congestion Games

Recall the definition of an Atomic Congestion Game from last lecture, which consisted
of the following:

• E, a finite set of congestible elements.

• Players i ∈ {1, . . . , n}, each with a strategy set Si, where each strategy P ∈ Si is a
subset of E. (Each strategy choice ”congests” some of the congestible elements.)

• Delay functions de ≥ 0 for each e ∈ E.

Further, given a set of strategy choices Pi ∈ Si for each player i, we defined the following:

• The congestion on an element e, given by xe = |{i : e ∈ Pi}|, the number of players
congesting that element.

• The delay on each element e, given by de(xe).

• The cost for each player i, equal to
∑

e∈Pi
de(xe), the sum of delays for all elements

used by that player.

We also defined a set of strategies to be a Nash Equilibrium if no single player could
improve their cost by swapping only his/her own strategy. More formally,

∀i, ∀Qi ∈ Si,
∑
e∈Pi

de(xe) ≤
∑

e∈Pi∩Qi

de(xe) +
∑

e∈Qi−Pi

de(xe + 1)

We also showed that each Atomic Congestion Game has a Nash Equilibrium, and in fact
this Nash Equilibrium can be found quite naturally, by performing iterative best response.
Our proof of used the following potential function:

Φ =
∑
e∈E

xe∑
1

de(xe)

We showed that each step of the iterative best response algorithm strictly reduced the
value of this potential function, with the decrease in Φ being exactly the decrease in the
cost of the user changing his/her strategy in that iteration. Further, we showed that any
local minimum corresponds to a Nash Equilibrium.

3-1



We noted an inelegance of the atomic version of congestion games was that the expression
for Nash Equilibria contains a ”+1”. When the number of players is very large, this 1
player should have a very tiny effect. With this in mind, we defined a non-atomic version
of Congestion Games.

2 Non-Atomic Congestion Games

Our definition of non-atomic congestion games uses the fact that players are now in-
finitesimally small. We have the following components:

• The finite set of congestible elements E, which remains the same.

• Instead of n players, we have n types of players, with a number ri reflecting the
”amount” of players of type i. Each type i selects from strategy set Si, and we
assume for simplicity that the Si are mutually disjoint. (The ri can be thought of
as ”rate” of traffic between a particular source and sink, for example).

• The delay functions, de for every e ∈ E, are now assumed to be continuous.

• We allow each type of players to distribute fractionally over their strategy set. We
let fP ≥ 0 represent the amount of players using strategy P . Then we have the
constraint

∑
P∈Si

fP = ri, that is, all the players of type i have some strategy.

• The congestion on e is defined similarly to the atomic case: xe =
∑

P :e∈P fP .

A choice of strategies, fP , is now said to be a Nash Equilibrium if the following holds:

∀i, ∀P ∈ Si s.t. fP > 0,∀Q ∈ Si,
∑
e∈P

dexe ≤
∑
e∈Q

de(xe)

The equation reflects the fact that not even changing the strategy of a tiny amount of
players of a single type can decrease the cost experienced.

We now wish to show that such a Nash Equilibrium exists.

3 Existence of a Nash Equilibrium

We will utilize the non-atomic analogue of the potential function from atomic games:

Φ =
∑
e∈E

∫ xe

o

de(z)dz

We claim that the minimum of this function is a Nash Equilibrium. But how do we know
that such a minimum exists?
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Observe first that Φ is continuous. This follows from the fact that the inner terms are
integrals of a continuous function (de) with a continuous upper limit, and are thus con-
tinous. Further, the sum of continuous functions is also continuous. It follows that Φ is
continuous.

Also notice that the set we are optimizing over is compact, and continuous functions have
minima over compact sets.

[Note : A compact set is one that is bounded and contains the limit of every conver-
gent sequence of elements the set. For example, [0,∞) is not compact because it is not
bounded, and [0, 2) is not compact because we can construct an infinite sequence of num-
bers converging to 2, but 2 is not in the set.

Note also that any decreasing function, for example f(x) = 7 − 2x, does not have a
minimum over these sets, because we can always find an element with smaller value.

Further, the set we are optimizing over is bounded from above and below, because we
have the restrictions that fP ≥ 0 and

∑
P∈Si

fP = ri, and this set is also ”closed”, that
is, it contains the limits of all sequences in it. Hence it is a compact set. ]

It follows that there exists a set of fP minimizing Φ. It remains to show that a minimum
of Φ is actually a Nash Equilibrium.

Claim 1 A minimum of Φ is a Nash Equilibrium.

Proof. We give a somewhat informal proof of this claim.

Suppose that we have a set of fP minimizing Φ that is not a Nash equilibrium. Then
∃i, P ∈ Si with fp > 0 and ∃Q ∈ Si such that∑

e∈P

de(xe) >
∑
e∈Q

de(xe)

The idea is to take a tiny amount δ < fP of players using strategy P and change them
to strategy Q, that is, change the strategies to fP − δ and fQ − δ.

Notice that increasing fQ by δ increases xe for e ∈ Q by the same δ. This has the effect of

increasing changing the xe term in Φ to
∫ xe+δ
0

de(xe). Since de is continuous, the change
is approximately δ · de(xe) (with error that is proportional to δ2, using Taylor bounds
from calculus) . A similar argument holds when we decrease fP by δ.

Then, as long as δ is sufficiently small and the error is sufficiently low (as it is proportional
to δ2), the change in Φ from changing a δ amount of players from P to Q is given by
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approximately

δ · (
∑
e∈Q

de(xe)−
∑
e∈P

de(xe)) < 0

Which contradicts the fact that our original set of strategies minimized Φ. It follows that
any minimum of Φ must also be a Nash Equilibrium.

3-4
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ongestible elements E
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• strategy sets Si for all i
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ongestion de(x) along element e given x users
• fp users 
hoosing strategy pDe�ne the 
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h element e as

xe =
∑
p|e∈p

fp,and re
all that equilibrium is attained if for all fp > 0, user types i, and p, q ∈ Si we have that∑
e∈p de(xe) ≤

∑
e∈q de(xe); alternatively, equilibrium is attained when

φ =
∑
e

∫ xe

0

de(ξ) dξis minimized.1.1 Measuring the quality of solutions
• Sum of delays / average delay
• Maximum delay
• Pareto optimal � doesn't require a shared obje
tive.Note that minimizing average delay implies Pareto optimality. We 
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∑
p

fp
∑
e∈p

de(xe) =
∑
e

de(xe)
∑
p∈e

fp =
∑
e

de(xe)xe.De�nition. Delay is (λ, µ)-smooth if for all x, y > 0

yd(x) ≤ λyd(y) + µxd(x).



Patri
k Steele CS 6840 Le
ture 4 S
ribe Notes (page 2 of 3) prs233We 
hoose x as a Nash solution and y as an optimal solution.Lemma. The linear delay fun
tion d(x) = ax+ b is (1, 1/4)-smooth for a, b ≥ 0.Proof. We want to show that y(ax+b) ≤ y(ay+b)+ 1

4
x(ax+b). Let x, y ≥ 0 be given, and suppose�rst that x ≤ y. Then
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1

4
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onsider the 
ase when y < x. We want to show that

yd(x) ≤ yd(y) + 1

4
xd(x), or

yd(x)− yd(y) ≤
1

4
xd(x)

y(ax+ b)− y(ay + b) ≤
1

4
x(ax+ b)

ayx− ay2 ≤
1

4
ax2 +

1

4
xb.Sin
e b ≥ 0 it is su�
ient to show that

ayx− ay2 ≤
1

4
ax2.If a = 0, we are done. If a > 0, we are interested in upper-bounding ayx− ay2 with respe
t to y.Using elementary 
al
ulus we 
an see that the fun
tion f(y) = axy− ay2 attains a maximum valuewhen y = x/2, and so we have that

ayx− ay2 ≤ ax ·
x

2
− a

x2

4
=

1

4
ax2,as required.Theorem 1. Suppose the delay fun
tion is (λ, µ)-smooth. If a �ow f is a Nash equilibrium and a�ow f∗ is optimal (with respe
t to the sum of delays) then

∑
e

xede(xe) ≤
λ

1− µ

∑
e

x∗ede(x
∗
e).Proof. Let pj and p∗j be paths between the same sour
e and sink at Nash equilibrium and optimality,respe
tively, and let δj �ow along pj at Nash and along p∗j at optimality. Sin
e pj is at Nash, wehave that ∑

e∈pj

de(xe) ≤
∑
e∈p∗

j

de(xe)

∑
j

δj
∑
e∈pj

de(xe) ≤
∑
j

δj
∑
e∈p∗

j

de(xe)

∑
e

de(xe)
∑

pj |e∈pj

δj ≤
∑
e

de(xe)
∑

p∗
j
|e∈p∗

j

δj

∑
e

de(xe)xe ≤
∑
e

de(xe)x
∗
e.
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e de is (λ, µ)-smooth, we have
∑
e

de(xe)xe ≤
∑
e

de(xe)x
∗
e

∑
e

de(xe)xe ≤ λ
∑
e

x∗ede(x
∗
e) + µ

∑
e

xede(xe)

∑
e

de(xe)xe − µ
∑
e

xede(xe) ≤ λ
∑
e

x∗ede(x
∗
e)

(1− µ)
∑
e

de(xe)xe ≤ λ
∑
e

x∗ede(x
∗
e)

∑
e

de(xe)xe ≤
λ

1− µ

∑
e

x∗ede(x
∗
e),as required.
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Lecture 5 Scribe Notes
Instructor: Eva Tardos Lior Seeman

1 Price of Anarchy for non-atomic congestion game

Theorem 1. If the delay functions are (λ, µ)-smooth (for all x, y yd(x) ≤ λyd(y) + µxd(x)), then
the total delay in a Nash equilibrium ≤ λ

1−µ total delay in optimum, where total delay is equal to∑
P fP (

∑
e∈P de(xe)) =

∑
e xede(xe).

Proof. Let f be the flow at a Nash equilibrium and X be the congestion it creates, and let f∗ be the
flow at optimum and X∗ be the congestion it creates. Let δ1, . . . , δN be disjoint groups of r1, . . . , rn,
such that all members of δi are of the same type and all use Pi in f and P ∗i in f∗.

We know that for each member of δi∑
e∈Pi

de(xe) ≤
∑
e∈P ∗

i

de(xe)

We can multiply this by δi and sum for all i and we get∑
i

δi
∑
e∈Pi

de(xe) ≤
∑
i

δi
∑
e∈P ∗

i

de(xe)

Changing the order of summation we get∑
e

de(xe)
∑
i:e∈Pi

δi ≤
∑
e

de(xe)
∑
i:e∈P ∗

i

δi

We now notice that
∑

i:e∈Pi
δi = xe and

∑
i:e∈P ∗

i
δi = x∗e . So by using smoothness we get∑

e

de(xe)xe ≤
∑
e

de(xe)x
∗
e ≤ λ

∑
e

de(x
∗
e)x
∗
e + µ

∑
e

de(xe)xe

Rearranging terms we get what we wanted to prove.

2 Price of Anarchy for the discrete version

We use a more general game formalization:

• n players, numbered 1 . . . n

• each player has a strategy set Si

• Given a strategy si ∈ Si for each player, each player has a cost function, Ci(S), which is a
function of the strategy vector S = (s1 . . . sn)

• we say that S = (s1 . . . sn) is a Nash equilibrium if for every player i and for every strategy
s′i ∈ Si, Ci(S) ≤ Ci(s′i, S−i) (S−i is the vector where all coordinates except for i are the same
as in S).
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• We say that such a game is (λ, µ)-smooth if for all strategy vectors S, S∗
∑

iCi(S
∗
i , S−i) ≤

λ
∑

iCi(S
∗) + µ

∑
iCi(S).

Theorem 2. (Roughgarden ’09) If a game is (λ, µ)-smooth for µ < 1 then the total cost at a Nash
equilibrium is ≤ λ

1−µ minimum possible total cost.

Proof. Let S be the strategy vector in a Nash equilibrium and S∗ be a strategy vector in a minimum
cost solution. From Nash we know that

Ci(S) ≤ Ci(S∗i , S−i)

We can sum this for all i’s, apply smoothness and get∑
i

Ci(S) ≤
∑
i

Ci(S
∗
i , S−i) ≤ λ

∑
i

Ci(S
∗) + µ

∑
i

Ci(S)

Rearranging terms we get what we wanted to prove.

This gives a general framework for Price of Anarchy proofs, and it was shown that many of the
proofs were actually reproving this theorem with specific parameters that matched their settings.

2.1 Smoothness for discrete congestion games

Let p1, . . . , pn and p∗1, . . . , p∗n be two series of paths chosen by the players that result in congestions
X and X∗.

We say that a discrete congestion game is (λ, µ)-smooth if for all such P and P ∗,
∑

i(
∑

e∈p∗i∩pi
de(xe)+∑

e∈p∗i \pi
de(xe + 1)) ≤ λ

∑
e x
∗
ede(x

∗
e) + µ

∑
e xede(xe).



CS 6840 – Algorithmic Game Theory (3 pages) 2/3/2012

Lecture 6: Utility Games
Instructor: Eva Tardos Scribe: Jane Park (jp624)

1 Announcements

• Scribe duty: try to get it done within a week while it’s fresh.

• Final Projects

1. Two types

(a) Choose a favorite subarea from what we cover, “realize what we are missing" and
“further the literature.”

(b) Incorporate game theoretic thinking into something else you’re working on.

2. Length: absolute max 10 pages. Min 5 or 6 pages.

3. Partners: Try to work in pairs for the final project. Triples for the project is okay, if you
can make it work.

2 Review: Price of Anarchy Bounds for Congestion Games

We derived Price of Anarchy bounds from the (λ, µ)-smooth inequality. A lot of you didn’t buy this
proof, so I’m doing two things to convince you: 1) We assume things we need. I’ll provide examples
where these things are actually true. 2) convince you that the bounds are sharp (we can’t do any
better).

3 Utility Games

Today we switch to utility games, another example of a game where the smoothness inequality
results in games that have Price of Anarchy bounds. So far we’ve covered cost-minimizing games,
but in other games like utility games, you derive benefits from participating in the game.

Definition. Utility game

• Players 1, . . . , n; player i has strategy set Si

• Strategies give vector s = s1, . . . , sn

• Player i’s utility ui(s) ≥ 0: depends on strategy vector (what you’re doing and what everyone
else is doing)

• Goal of player: maximize utility

• s is Nash if ∀i, s′i ∈ Si :
ui(s

′
i, s−i) ≤ ui(s)
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• A game is (λ− µ)-smooth if:∑
ui(s

∗
i , s−i) ≥ λ

∑
i

ui(s
∗)− µ

∑
i

µi(s)

Each
∑

-term is utility (negative cost). We would like to place an upperbound on the cost,
or lower bound on utilit at Nash. Intuition: if the optimal solution is better than the current
solution, we hope someone discovers it via his/her ui(s∗i , s−i) utility being high.

Note: for now we always assume that everyone knows everything, that is, we consider “full informa-
tion games”.

Theorem 1. If s is Nash equilibrium and s∗ maximizes sum (s is at least as good as optimal):∑
ui(s) ≥

λ

µ+ 1

∑
i

ui(s
∗)

Proof. ∑
i

ui(s) ≥
∑
i

ui(s
∗
i , s−i) ≥ λ

∑
i

ui(s
∗)− µ

∑
i

ui(s)

(1 + µ)
∑
i

ui(s) ≥ λ
∑
i

ui(s
∗)

Remark. This is a very different kind of game–no congestion/congestible elements.

Example. Location Game
Clients desire some sort of service, and k service providers position themselves to provide as

much of this service as possible. Service providers(i) offer different prices pij to different clients(j).
There is a service cost cij > 0 (not fixed, determined by location). Each client has associated value
Πi.

Client j selects the min price pij , and only if Πj ≥ pij . A client’s benefit is Πj −pij , and a client
reacts to price only. We allow customers to make harmless changes (0-benefit) for mathematical
simplicity.

Service provider i has customers Ai and benefit
∑
j∈Ai

pij − cij . Provider locations are set, but

prices can change often. Providers undercut each other to a point, then stop at equilibrium.
The natural outcome for given locations is that clients choose min

i
cij (the nearest location) and

the price offered is:
pij = max(cij ,min(Πj ,min

k 6=i′
ckj))

Explanation: mink 6=i′ ckj : the second cheapest location (the provider that you’re afraid will undercut
you). If the value of the customer’s lower, charge that, but never charge less than your cost to serve
the customer.

Note: This must be thought of as a multi-stage game where locations are fixed first, then prices
are chosen.
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Technical assumption: Cost never exceeds benefits.

Πj ≥ cij , ∀i, j

This assumption allows setting a much simpler rule for prices:

pij =

{
mini 6=kckj by cheapest provider k
ckj by everyone else

This assumption is helpful, and also harmless. There is no loss of generality since if cost does exceed
value, we replace cij by Πj . If this edge ever gets used for service, the price will be pij = cij as all
other edges have ckj ≤ Πj by assumption. This means that no one has any benefit from the edge:
the user’s benefit is Πj − pij = 0 and the edge contributes to the provider’s benefit by pij − cij = 0.
So while our proposed solution can have such an edge with changed cost, we can drop the edge from
the solution without affecting the anyone’s solution quality.

Theorem 2. This game is also a potential game. Service providers are players, and their change in
benefit is exactly matched by the change in potential function. We claim that the potential function
that works here is social welfare–the sum of everyone’s “happiness”, and set Φ = social welfare.

Proof. Social welfare is the sum of all client and user benefits. Note: money (prices) does not
contribute to benefit/welfare, but makes the economy run. Money cancels out due to its negative
contribution on the client side and the positive contribution on the provider side. ij is the location
serving j.

Φ =
∑

j:client served

Πj − cijj

Change in Φ if provider i stops participating: let Ai be the set of users served by i. Each of
them has to switch to the second closest provider now, so service cost increases; ∆Φ =

∑
i∈Ai
−cij +

mink 6=ickj . The second closest provider was setting the price for j ∈ Ai, so ∆Φ =
∑

i∈Ai
−cij + pij ,

exactly the value i had in the game.
To evaluate the change when i changes location, think of a two step process for provider switching

location: 1) Go home (lose benefit) 2) Come back (gain benefit).
Note that the social welfare is the potential function. Will come back to it.
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Lecture 7: Generalized Utility Games

Instructor: Eva Tardos Scribe: Danfeng Zhang (dz94)

1 Review: Facility Location Game

Recall the facility location problem discussed in last class. In this problem, there are a set of clients
that need a service and a set of service providers. Each service provider i selects a location from
possible locations Ai and o�er price pi,j to client j. Note that providers may o�er di�erent prices
to di�erent clients.

Moreover, each location is associated with a cost ci,j for serving customer j from location i. We
assume that client j has a value πj for service. A strategy vector S is simply a vector of locations
selected by each service provider. That is, S = {s1, . . . , sk} for k providers.

We may consider this problem as a three-stage game as follows.

Stage 1. Providers select locations.

Stage 2. Providers setup prices for clients. Each provider i provides second cheapest cost
among all other providers. That is pi,j = mini 6=k ck,j by cheapest provider, and ck,j by everyone
else.

Stage 3. Each user selects a provider for a service, and pay the speci�ed price.

Last time, we also showed that this is a potential game with social welfare as a potential function:

Φ =
∑
j

(πj − cij ,j)

, where ij is the min cost location to user j.

2 Generalized Frame for Utility Games

In this lecture, we would provide several desired properties on the utility games and derive useful
results from these properties. Later, we will see that the facility location game is just one example
of such games. The contents of this lecture came from the paper [Vetta2002] and Chapter 19 of the
textbook.

Recall that in a utility game, each player i choose a location si. Social welfare is a function
U(S), where S is the vector of locations.

Here are the properties we require on the games:

Property 1. If player i selects location si and others select S−i other locations. Player i gets utility
ui(si, S−i). We assume ∑

i

ui(si, S−i) ≤ U(S)
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Property 2. U(S) ≥ 0 and U is monotone on S. Also, U(S) has decreasing marginal utility (same
as submodular): for provider sets X ⊆ Y and some extra service provider s, we have

U(X + s)− U(X) ≥ U(Y + s)− U(Y )

Remark. While other requirements of this property are reasonable, the monotonicity requirement
is questionable. This assumption ignores the cost of providing new service.

Lemma. The potential function of facility location game Φ =
∑

j(πj−cij ,j) has decreasing marginal
utility property.

Proof. With X, more clients switch to s when added. Moreover, for each client j switching to s, its
previous cost in Y ≤ cost in X.

Property 3. ui(si, S−i) ≥ U(S)− U(S−i)

Remark. Notice that in the facility location game, we have a stronger condition ui(si, S−i) =
U(S)− U(S−i).

3 Price of Anarchy

With the properties de�ned above, we next prove the main theorem of this lecture. We �rst recall
the de�nition of (λ, µ)-smooth games.

De�nition. A game is (λ, µ)-smooth if for all strategy vectors S, S∗ we have∑
i

ui(s
∗
i , S−i) ≥ λ

∑
i

ui(S
∗)− µ

∑
i

ui(S)

As shown in previous lectures, if the social welfare function is (λ, µ)-smooth, then we have the
result that (social welfare at Nash) ≥ λ

1+µ (optimal social welfare).
Next, we prove the main theorem of this class.

Theorem 1. Service location games are (1, 1)-smooth. (Hence, Nash ≥ 1
2 Optimal)

Proof. We �rst de�ne P ∗i = {s∗1, s∗2, . . . , s∗i }, which is the �rst i pre�x of S∗.

∑
i

ui(s
∗
i , S−i) ≥

∑
i

U(S−i + s∗i )− U(S−i) (By Property 3)

≥
∑
i

U(S−i + s∗i + P ∗i−1 + si)− U(S−i + P ∗i−1 + si) (By Property. 2)

=
∑
i

U(S + P ∗i )− U(S + P ∗i−1)

= U(S + S∗)− U(S) (telescoping sum)

≥ U(S∗)− U(S) (monotonicity)

Remark. This property is not �strictly� (1,1)-smooth by de�nition, but very close. Note that the
proof of Nash ≥ 1

2 Opt is not �nished yet. The rest of proof will be shown in next class, using
Property 1.
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4 Extra Example

In this part, we show another example of utility games that satisfy the requirements.
In this example, there are still a set of clients and a set of service providers. We model life as a

graph, as shown in Figure 1.

Figure 1: Example

In this graph, each node corresponds to a client. Service
providers select among same nodes in the graph as their loca-
tions. For instance, service providers select the black nodes in
Figure 1. There is an edge between a client and a location if
the client is interested in the service on that node.

All users select providers in the following way:

• Each client selects the provider on the same node if there
is one. For instance, the clients on black nodes select the
providers on the same node.

• If there are providers on neighboring nodes, then client
evenly share the services from those providers. For in-
stance, the blue node shares the services provided by the
two neighboring black nodes.

The unfortunate red node in Figure 1 gets no service since
no neighbor is a provider.

The main di�erence between the facility location game and this example is that we assume the
providers have to undercut other competitors' price in the previous one since only one provider could
win the client; but that is not true in this example since services are shared among the competitors.

Due to the lack of time, we would not provide detailed utility function for this example. However,
the point is that this example also satis�es all the required properties we used in this lecture.
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Lecture 9 Scribe Notes
Instructor: Vasilis Syrgkanis Sin–Shuen Cheung

Today’s topic: book Sec. 19.3. Reference: Anshelevich et al. The Price of Stability for Network
Design with Fair Cost Allocation. FOCS 2004.

1 Network Design Games

Description:

• n players;

• each player i: connect (si, ti) on a directed network G = (V,E);

• strategy for player i: Pi ∈ Pi;

• each e ∈ E has a cost ce;

• fair cost allocation: de(ne) = ce
ne
, where ne is the number of players choosing e;

• player cost: Ci(S) =
∑

e∈Pi

ce
ne
;

• social cost: SC(S) =
∑

iCi(S) =
∑

e∈S ne
ce
ne

=
∑

e∈S ce

Example 1: consider the following network: n players can choose either edge to connect s1 and
t1.

n

1+ε

s1 t1

One Nash is that all players choose the edge with cost 1+ ε. In this case, player’s cost Ci = 1+ε
n .

The other Nash is that everyone chooses the edge with cost n, where the player’s cost Ci = n/n = 1.

From the analysis above, PoA ≥ n in this class of games. On the other hand, PoA is at most
n, since in an NE, a player’s worse–case cost is at most

∑
e∈P ∗

i
ce ≤

∑
e∈OPT ce. Therefore the

summation of all players’ costs is upper bounded by n times of the optimal cost.

More naturally, we are interested in relation between the best Nash and the optimal.

1.1 Price od Stability

Definition: Price of Stability (PoS) =
SC(Best–NE)

SC(OPT)
Example 2: consider the following network: Each player i wants to connect from si to t. The

costs on edges are shown in the figure, if they have costs.
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sn

s3

s2

s1

.

.

.

1 + ε

1
n

1
n−1

1
n−2

1

t

Obviously the optimal strategy has SC(OPT) = 1 + ε, where everyone chooses the route with
the (1 + ε) edge. There is a unique Nash for this game – that is player i chooses the route with the

1
n+1−i edge. SC(U–NE) = 1 + 1

2 + 1
3 + · · ·+ 1

n = Hn. Thus, here PoS≥ Hn = O(log n). Comparing
with PoA, which is n, PoS is still exponentially better.

Now we are interested in upper bounding PoS for network design games.

Notice that by definition, network design games are congestion games. Thus they are potential
games with the poetential function as follows:

• Φ(S) =
∑

e

∑ne
i=1 de(i) =

∑
e

∑ne
i=1

ce
i .

A special Nash among all is the global minimizer of the potential. However, min potential 6=
min SC. In the main theorem, we present that min potential is an approximate of min SC in some
sense.

Theorem 1. Let us consider a congestion game with potential function Φ(·). Suppose that for any
strategy S,

A · SC(S) ≤ Φ(S) ≤ B · SC(S),

then PoS≤ B/A.

Proof. Let NE denote the global minimizer of the potential, which is a Nash.

SC(NE) ≤ 1/A · Φ(NE) ≤ 1/A · Φ(OPT) ≤ B/A · SC(OPT).

For the class of network design games, we have the following corollary.

Corollary 2. PoS of network design games is ≤ Hn.

Proof. SC is the sum of the costs of all edges:

SC(S) =
∑
e∈S

ce.
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The potential is by definition

Φ(S) =
∑
e∈S

ne∑
i=1

ce
i

=
∑
c∈S

ceHne .

Therefore,
SC(S) ≤ Φ(S) ≤ Hn · SC(S).

Then apply Theorem 1 to prove the corollary.

For congestion games with linear delays:

• de(ne) = aene + be, where ae, be ≥ 0,

we have the following theorem

Theorem 3. For congestion games with linear delays as defined above, PoS ≤ 2.

Proof. The social cost is

SC(S) =
∑
e

nede(ne) =
∑
e

aen
2
e + bene.

The potential is

Φ(S) =
∑
e

n∑
i=1

(aei+ be) =
∑
e

(ae
n(n+ 1)

2
+ bene).

Therefore,
1

2
SC(S) ≤ Φ(S) ≤ SC(S).

Again, apply Theorem 1 to complete the proof.

More generally, for the class of network design games, we consider the case where the cost ce is
no longer a constant. Suppose that

• ce(i) is a concave and monotone increasing function of i, and thus that ce(i)
i is a decreasing

function of i.

Then we have the following theorem.

Theorem 4. For the class of network design games, we assume that the building cost ce is a concave
and increasing function of ne. Then PoS ≤ Hn.

Proof. The social cost is
SC(S) =

∑
e

ce(ne).

The potential is

Φ(S) =
∑
e

ne∑
i=1

ce(i)

i
.
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Thus,

Φ(S) ≤
∑
e

ne∑
i=1

ce(ne)

i
=

∑
e

ce(ne)Hne ≤ Hn · SC(S),

where the first inequality follows from our assumption that ce(·) is increasing. On the other hand,
noticing that ce(i)

i is a decreasing function of i, we have that

SC(S) =
∑
e

ce(ne) =
∑
e

ne∑
i=1

ce(ne)

ne
≤

∑
e

ne∑
i=1

ce(i)

i
= Φ(S).

By applying Theorem 1 we complete the proof.

For Example 2, if we remove the directedness, the Nash would be that everyone goes through
the cheapest edge, which is also the optimal. Then the Hn bound is no longer tight. In fact, when
the underlying graph is undirected, it is an open question that whether there is a constant PoS
instead of Hn. The best lower bound is ≈ 2.24.

Can we compute the best Nash? Unfortunately computing the best Nash is NP–hard. Comput-
ing the Nash that minimizes the potential is also NP-hard.
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Lecture 15 Scribe Notes

Instructor: Eva Tardos Jesseon Chang (jsc282)

1 Lecture 15 � Friday 24 February 2012 - Single Item Auctions

1.1 Single Item Auctions

• n players

• Player i has value vi for the item.

• If player i wins the item then the social value is vi.

1.2 Second Price Auction

• Each player bids a value/willingness to pay bi.

• Select i such that maxi bi and make him/her pay pi = maxj 6=i bj .

Property 1: A second price auction is truthful. For each player i, bidding bi = vi dominates all
other bids.

If a player i bids bi < vi and bi < maxj 6=i bj < vi, i will want to deviate. If a player i bids bi > vi
and vi < maxj 6=i bj < bi, i will want to deviate.

Nash Equilibria?

• bi = vi for all i is a Nash and maximizes social welfare.

• There exists other equilibria where player i with the maximum vi makes a bid greater than
the second largest value and smaller than vi. maxj 6=i bj < bi < vi.

• Yes, there exist Nash equilibria that are not socially optimal. For example, for two players:
v1 < v2, b1 > v2 and b2 = 0.

All equilibria where bi ≤ vi for all i are socially optimal.
Proof: If winner i has bi < vi and ∃j : vj > vi, the solution is not a Nash equilibrium, as j

wants to deviate and outbid i. Thus there cannot exist a Nash equilibrium where the player with
the highest value does not win.

1.3 English Auction

• Raise price of item slowly.

• Once there is only one player still interested, that player wins.

• Players are no longer interested once the price equals their value of the item.

• Similarly to second price auction, winner pays an amount equal to the second highest value.
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1.4 Posted Price Auction

• Post a price p.

• Sell to anyone at price p if bi > p.

• If a full information game, p = maxi vi − ε.

Full information game is unrealistic. We consider a Bayesian game.
Bayesian Game:

• Players draw values vi from a known probability distribution.

• Each vi is independent and drawn from the distribution.

• An example: vi ∈ [0, 1] uniform

• In a second price auction, for any i Pr(i wins) = 1
n .

• Set the sell price p such that Pr(v > p) = 1
n . If vi ∈ [0, 1] uniform, then p = 1− 1

n .

Theorem: Assuming values are drawn independently from identical distributions, this �xed price
auction results in: E(value for winner) ≥ e−1

e Ex(maxi vi).
Expected value of our auction:

• The probability that the �rst player doesn't win is 1− 1
n by our choice of price.

• The probability there is no winner is (1− 1
n)

n.

• The expected value for the winner is Ex(v|v ≥ p).

• Expected value of our auction is (1− (1− 1
n)

n) Ex(v|v ≥ p) ≈ (1− 1
e ) Ex(v|v ≥ p).

Fact: We can bound the expected value of the auction above by the value of the optimal auction.
We consider an auction where the seller has an unlimited number of items to sell and a player has
a 1

n chance of winning. We call this auction the unlimited auction.
value of optimal auction ≥ max value in unlimited auction = n( 1n) Ex(v|v ≥ p) = Ex(v|v ≥ p).

Thus the value of our auction above is bounded by Ex(v|v ≥ p).
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Bayesian Auctions

Last time - single-item auction

• User’s value drawn independently from distribution F .

• There are n users, what we know about them is the all the same.

Two types of auctions

• Second price auction (select maxi bi)

• Fixed price p such that P r(v > p) = 1
n

Notation

• User has value vi (drawn from F)

• Social welfare is vi for i that receives the item.
This could be in expectation if we randomize who gets the item.

Today - First Price Auction

This is a traditional game, in contrast to the second price auction where it is optimal to bid truthfully.

• Distribution F is known, player values vi are drawn independently, and all players know this distribution

• Player bids bi

• Select maxi bi , and maximum bidder gets item and pays bi

• Benefit is vi − pi if player i wins

Bidding bi = vi guarantees no gain If you don’t win, you gain nothing. If you win, then the net value of
what you gain is still 0.

Theorem

The following bid is a Nash equilibrium:

b(v) = bid if value is v = Ex(maxj 6=i vj | vj ≤ v ∀ j)

1
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Conditioning: v is highest. Expectation: expected value of 2nd highest.

In other words, what’s the expected value of the second highest bid, supposing that you have the highest bid?

Assuming all players use this bidding strategy, does the player with the highest value win? Determin-
istically yes! Each bi(v) is the same function (independent of i). Also, b(v) is monotone in v , so the highest
value wins. This results in the same outcome as the second price auction (=outcome-equivalent to the second
price auction).

Is this also revenue-equivalent to the second price auction? Yes! Suppose you are a player i with value v .
You are winning with the same probability as in a second-price auction. In fact, for each player, price is same
as the expected price in a second-price auction.

Proof of Theorem

Suppose player 1 feels like deviating. Suppose that his bid b1(v) has a range from 0 to some unknown number.

Is it better to bid above any other player’s range? No. Since you’re guaranteed to win by bidding just at
the top of someone’s range anyway.

So consider a plausible alternate bid b(z) < v . This is effectively bluffing that your value is z rather than v .

Goal: solve calculus problem of what the best z is. If z = v , then b() is Nash.

Player with b(z) if z ≥ vi ∀ i > 1 then the probability is P r(maxi>1 vi < z).

What you pay is b(z) = Ex(maxi>1 vi |vi < z ∀ i)

Thus, your expected value is

P r(max
i>1

vi < z)

(
v − Ex(max

i>1
vi |vi < z ∀ i)

)

Let maxi>1 vi = X, a random variable.

Rewritten, the expected value is
P r(X < z) · (v − E(X|X ≤ z))

The expected value can be written as

P r(X < z)v −
∫ ∞
0

(P r(X < z)− P r(X < ξ))dξ

=P r(X < z)v − P r(X < z)z +

∫ z
0

P r(X < ξ)dξ

Taking derivatives w.r.t z , we get

−P r(X < z) + P r(X < z) + P r(X < z)′(v − z)

by the product rule and because the derivative of an integral is the value inside, and simplifying,

2
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P r(X < z)′(v − z)

To maximize our expectation, set v = z , and we need to verify that this is a maximum by checking that
P r(X < z) is monotone and hence its derivative is positive.

Side Note about Expectations and Probabilities

X is any random variable ≥ 0.

Ex(X) =
∫∞
0 (1− P r(X < z))dz =

∫∞
0 P r(X ≥ z)dz

Why? If X is discrete, taking values 1, ..., u, E(X) =
∑
i i ·P r(X = i) =∑

i P r(X ≥ i). The continuous version of this follows immediately.

Also,

Ex(X|X < z) · P r(X < z) = Ex(Xz) where Xz =

{
X if X < z

0 otherwise

=
∫∞
0 P r(X < z)− P r(X < ξ)dξ =

∫∞
0 P r(z > X > ξ)dξ

3
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Lecture 18 Scribe Notes

Instructor: Eva Tardos Daniel Fleischman (df288)

Lecture 18 � Monday 23 January 2012 - The VCG Mechanism

Overview/Review

The purpose of this lecture is to show theVCG mechanism, which generalizes the Vickery Auction

to much more general settings. It does this by giving a pricing mechanism so that to make the

auction truthful (i.e., each player's best strategy is to bid his true value).

Remember our de�nition of a single item auction:

• n players

• a value vi for each player i

• goal: pick a winner i∗ maximizing the social welfare SW (i∗) = vi∗

• each player maximizes each own utility: ui = vi − p if i = i∗ and ui = 0 otherwise.

In this setting, we have a truthful auction: the Second Price Auction (or Vickery Auction):

• each player i submits a bid bi to the auctioneer

• the player with the highest bid wins the auction (i∗ = Argmax bi)

• player i∗ pays the second highest bid

This is interesting because we had an optimization problem (�nd the maximum vi) over unknown
input. So we de�ned a game to solve it.

Vickery-Clarke Groves mechanism

We are interested in solving the following optimization problem:

• n players

• a set of alternatives A that we can perform

• player i has a value vi(a) for each a ∈ A

• If alternative a∗ is selected, player i's utility is ui = vi(a
∗)− pi

• goal is to select the alternative A∗ that maximizes the social welfare:
∑

i vi(a
∗)

If the values are again, unknown, we can de�ne a game such that:

• a strategy for each player is a function bi : A→ R
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• player i reports bi(.)

• picks a∗ that maximizes
∑

i bi(a
∗) (in other words, treat the bids as if they were the values)

• charge player i with

pi =

max
a∈A

∑
j 6=i

bj(a)

−∑
j 6=i

bj(a
∗)

as we will see, the previous game solves the problem we are trying to solve, because it is truthful

(and therefore, each player will report bid bi(a) = vi(a)).

VCG Mechanism is truthful

Theorem 1. VCG is truthful (in other words: ui(vi, b−i) ≥ ui(bi, b−i) for all bi).

Proof.

ui(bi, b−i) = vi(a
∗)− pi

= vi(a
∗)−

max
a∈A

∑
j 6=i

bj(a)

−∑
j 6=i

bj(a
∗)


=

vi(a∗) +∑
j 6=i

bj(a
∗)


︸ ︷︷ ︸

depends on bi through a∗

−

max
a∈A

∑
j 6=i

bj(a)


︸ ︷︷ ︸

doesn't depend on bi

Remember that a∗ maximizes bi(a
∗) +

∑
j 6=i bj(a

∗), and player i wants to maximize vi(a
∗) +∑

j 6=i bj(a
∗). So its best strategy is to bid his actual value.

Properties of the VCG Mechanism

There are (at least) two interesting properties of the VCG mechanism.

The �rst one is that pi ≥ 0 (in other words, the auctioneer never pays to the players). This is

clear by the de�nition of pi. This property is called no-positive transfers.

The second property is that (if vi ≥ 0 then) ui ≥ 0 (i.e., the players �play because they want�).

To see this:

ui(vi, b−i) = max
a∗∈A

vi(a∗) +∑
j 6=i

bj(a
∗)

−max
a∈A

∑
j 6=i

bj(a) ≥ 0
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Example: Single Item Auction

Here the alternatives are A = {1, 2, . . . , n}, the player we choose to win. If ṽi ∈ R is the value of

that item for each player then vi : A→ R is vi(i) = ṽi and vi(j) = 0.
The alternative selected i∗ ∈ A is the one which maximizes

∑
i bi(i

∗) (= maxi ṽi if truthful).

The player each player pays is pi =
[
maxa∈A

∑
j 6=i bj(a)

]
−
∑

j 6=i bj(i
∗). If i = i∗ then the second

term is 0 and the �rst term is the second highest bid. If i 6= i∗ then both the �rst and the second

term are ṽi∗ and pi = 0.

Example: Multiple Item Auction

Here we have the following setting:

• n players

• n houses

• player i has a value ṽij for house J

The set of alternatives is A = {all matchings from players to houses}.
If we had all the values, maximizing the social welfare is the problem of �nding a matching of

maximum total value, which is known as the weighted bipartite matching problem.

In this case, we ask for bids b̃ik (we will think of this as the function bi(a) = b̃ik if in the matching

a, the house k goes to player i. To select the alternative (matching) a∗ we solve a maximum weighted

bipartite matching problem using the bids as weights. Let ai be the house given to player i under
alternative a. The price will be:

pi =

max
a∈A

∑
j 6=i

bj(a)

−∑
j 6=i

bj(a
∗) =

max
a∈A

∑
j 6=i

b̃jaj

−∑
j 6=i

b̃ja∗j

The second part of the equation above is a simple computation, and the �rst part is simply a

maximum weighted bipartite matching where we set to 0 all the weights of player i to all houses.

Another interpretation to this is that player i should pay �the harm� it causes to the other

players (the di�erence from the bene�t they would have without him and how much they have with

him).
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March 14 - Smoothness in Auction Games
Instructor:Eva Tardos Chris Liu(cl587)

Reminder:

Last few lectures: Single item auctions, full information & Bayesian. General mechanism - VCG.
(Truthful bidding is dominant)

Next few lectures: Make statements about outcomes in auctions without strenuous calculus using
smoothness framework.

Smooth auctions:

Set up:

• Outcome a ∈ Ω
• Payment pi for player i
• Value vi(a) for each outcome
• Utility (quasi-linear) ui(a, pi) = vi(a)− pi
• Strategy space Si for player i
• s = (s1, . . . , sn) a vector of strategies.
• Outcome function o: S1 × . . .× Sn 7→ Ω
• Payment functions pi: S1 × . . .× Sn 7→ R

Remarks: The strategy si should be thought of as a set of bids for player i on outcomes, often their
willingness to pay. Previous notation for bids that are such ”willingness to pay” was bi.

Notation: Let o(s) be the outcome function. Payment, value, utility functions may be written as
pi(s), vi(o(s)), ui(o(s), pi(s)), respectively. The rest of the notes will write vi(s) to mean vi(o(s))
and ui(s) to mean ui(o(s), pi(s)) when a mechanism (a tuple of outcome and payment functions) is
given.

Example:

1. VCG - outcome: argmaxa
∑
i bi(a).

2. First price auction - outcome: argmaxi bi. payment: pi = bi if i = argmaxi bi, 0 otherwise.

Approach: Let’s see where we get using utility smoothness. Then we will define a new notion of
smoothness for auction games.

Smoothness, utility maximization games:



CS6840 - Algorithmic Game Theory - March 14 - Smoothness in Auction Games (page 2 of 3)

Recall that a utility game is (λ, µ) smooth if ∃s∗ s.t ∀s
∑
i ui(s∗i , s−i) ≥ λOPT−µ SW(s).

Remarks:

• We will regard this as utility smoothness for the rest of these notes.

• OPT = maxs
∑
i vi(s). Note that SW(s∗) is not required to be equal to OPT.

• SW(s) =
∑
i ui(s), where ui(s) = vi(s)− pi(s)

It is useful to see how this translates to an auction game. In an auction, the auctioneer is a player
with a fixed strategy: to collect the money. His/her utility may be written as uauctioneer(s) =

∑
i pi(s).

We add the auctioneer as a player to the utility game.

Translating utility smoothness inequality directly, this is

∑
i

ui(s∗i , s−i) +
(∑

i

pi(s)
)

︸ ︷︷ ︸
auctioneer “deviating”

≥ λOPT−µ
(∑

i

ui(s) +
∑
i

pi(s)
)

︸ ︷︷ ︸
SW(s)

Remarks: The sum on i is over all players excluding the auctioneer.

Smoothness, auction games:

Now, in comparison, we define this new notion of smoothness for auction games. (motivation in
future lectures)

Definition. An auction game is (λ, µ) smooth if ∃s∗ s.t ∀s,∑
i

ui(s∗i , s−i) ≥ λOPT−µ
∑
i

pi(s)

Remarks: Sum on i is over all players, excluding the auctioneer. This is not that dissimilar to utility
smoothness: Assuming ui ≥ 0, we can think of a (λ, µ) smooth auction as (λ, µ+ 1) smooth utility
game, with the auctioneer added as a player. In future lectures we will see why this new definition
of smoothness for auction games is natural.

Theorem 1. An auction is (λ, µ) smooth implies a Nash equilibrium strategy profile s satisfies
SW(s) ≥ λ

max{1,µ} OPT

Proof. Let s be Nash strategy profile, and s∗ a strategy profile that satisfies smoothness requirements.

Because s is Nash, ui(s) ≥ ui(s∗i , s−i). Summing over all players:

SW(s) ≥
∑
i

ui(s∗i , s−i) +
∑
i

pi(s)∑
i

(ui(s) + pi(s)) ≥
∑
i

ui(s∗i , s−i) +
∑
i

pi(s)
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∑
i

(ui(s) + pi(s)) ≥ λOPT−µ
∑
i

pi(s) +
∑
i

pi(s) by auction smoothness∑
i

ui(s) + µ
∑
i

pi(s) ≥ λOPT

max{µ, 1}
(∑

i

ui(s) +
∑
i

pi(s)
)
≥ λOPT

SW(s) ≥ λ

max{1, µ} OPT

Remark: Sum on i is over all players excluding the auctioneer.

Generalization to Bayesian Nash: In general, s∗i for player i is computed with knowledge of
other players’ values. In a Bayesian setting, we do not have this information. Restricting s∗i such
that it only depends on player i’s value allows us to prove the following theorem:

Theorem 2. If an auction is (λ, µ) smooth with an s∗ such that s∗i depends only on the value of
player i, this implies that a Bayesian Nash equilibrium satisfies E[SW] ≥ λ

max{1,µ} E[OPT]

Proof. Idea is to put expectation operator around the proof of Theorem 1.

By definition, a strategy s(v) = (s1(v1), . . . , sn(vn)) is now a function (or a distribution over functions,
if randomized), as each player’s strategy depends on his/her own value. If such a function is a
Bayesian Nash Equilibrium if Ev[ui(s′i, s−i)|vi] ≤ Ev[ui(s)|vi], for all strategies s′i ∈ Si, where values
v = (v1, . . . , vn) is drawn from some distribution. Using this for s∗i , and taking also expectations
over vi we get:

Ev [ui(s)] ≥ Ev [ui(s∗i , s−i)]∑
i

Ev [ui(s)] ≥
∑
i

Ev [ui(s∗i , s−i)] summing over players

Ev

[∑
i

ui(s)
]
≥ Ev

[∑
i

ui(s∗i , s−i)
]

linearity of expectation

Ev

[∑
i

ui(s)
]
≥ Ev

[
λOPT−µ

∑
i

pi(s)
]

by smoothness

Ev

[∑
i

ui(s)
]

+ Ev

[
µ
∑
i

pi(s)
]
≥ Ev [λOPT]

Ev[SW(s)] ≥ λ

max{1, µ} Ev[OPT]

Next time: Examples of auctions that satisfy (λ, µ) smoothness in this framework.



Examples of Smooth Auctions (Part 1)
Scribe: Jiayang Gao
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Course: CS 6840

Instructor: Eva Tardos

Last lecture, we defined smoothness of auctions as following:

Definition 1. An auction game is (λ, µ) smooth if ∃s∗, s.t,
∑

i ui(s
∗
i , s−i) ≥ λOPT − µ

∑
i pi(s).

Where o(s) is the outcome at strategy vector s, Vi(o(s)) is the value of player i at outcome o(s),
pi(s) is the payment of player i given strategy vector s, and ui(s) = Vi(o(s)) − pi(s), OPT =
maxo

∑
i Vi(o).

Using smoothness, we also had the following two theorems on PoA bounds for full info. game
and Bayesian game (respectively).

Theorem 1. For a full information game, (λ, µ) smooth implies for any Nash s, SW (s) ≥
λ

max(1,µ)OPT .

Theorem 2. For a Bayesian game, (λ, µ) smooth with s∗i depends only on vi for all i, implies for
any Nash s, E[SW (s)] ≥ λ

max(1,µ)E[OPT ].

In this lecture and next lecture, we will look at examples of smooth games.

Example 1: First Price Auction of a single item
• Players 1, . . . , n.

• Values of getting the item (v1, . . . , vn), and value = 0 if not getting it.

• Bids (b1, . . . , bn).

We use the following simple argument to show that the game is (12 , 1) smooth if we let s∗i = vi
2

for all i.

Proof. If j = argmaxi vi, then uj(s∗j , s−j) ≥ 1
2vj −

∑
i pi(s) because

• If j wins, uj = vj − s∗j (vj) =
vj
2 ≥

1
2vj −

∑
i pi(s).

• If j loses, uj = 0, and maxi bi >
1
2vj . Notice that

∑
i pi(s) = maxi bi because the maximum

bid person pays his bid, and others pays 0. Therefore, uj = 0 > 1
2vj −

∑
i pi(s).

1



If i 6= argmaxi vi, then ui(s∗i , s−i) ≥ 0 because if wins, utility is half of his value which is positive,
and if loses, utility is 0.

Sum up over all players we get∑
i

ui(s
∗
i , s−i) ≥

1

2
vj −

∑
i

pi(s) =
1

2
OPT −

∑
i

pi(s)

Thus the game is (12 , 1) smooth.

Thus, according to Theorem 1 and Theorem 2, (notice Theorem 2 applies because here s∗i
only depends on vi), we have SW (s) ≥ 1

2OPT for full info game and E[SW (s)] ≥ 1
2E[OPT ] for

Bayesian game.
In fact, we can get a tighter bound on PoA as follows.

Theorem 3. For the single item first price auction defined above, the game is (1− 1
e , 1) smooth.

Proof. Let bi be randomly chosen according to probability distribution f(x) = 1
vi−x from the

interval [0, (1 − 1
evi)]. This probability distribution is well defined because

∫ vi(1− 1
e
)

0
1

vi−xdx =

[− ln(vi − x)]
vi(1− 1

e
)

0 = − ln(vie ) + ln(vi) = ln( vi
vi/e

) = 1.
We use the similar technique as above, that

• If i 6= argmaxi vi, then ui(s∗i , s−i) ≥ 0.

• If i = argmaxi vi. Then vi = OPT . Let p = maxj 6=i bj , then uj(s
∗
j , s−j) =

∫ vi(1− 1
e
)

p f(x)(vi −
x)dx = v(1− 1

e )− p = vi(1− 1
e )−maxj 6=i bj ≥ vi(1− 1

e )−maxj bj = (1− 1
e )OPT −

∑
j pj .

Sum up over all i we get

∑
i

ui(s
∗
i , s−i) ≥ (1− 1

e
)OPT −

∑
i

pi(s)

Therefore the game is (1− 1
e , 1) smooth.

Similarly, according to Theorem 1 and Theorem 2, we have SW (s) ≥ e−1
e OPT for full info

game and E[SW (s)] ≥ e−1
e E[OPT ] for Bayesian game.

Comments:

1. For s∗i = vi
2 , o(s

∗) = OPT because bid is monotone in value, so the maximum value player
is always getting the item.

2. For s∗i random in interval [0, (1 − 1
evi)], it is possible that o(s∗) 6= OPT , because there’s

possibility even for the max value player to bid close to 0. So in this case the max value
person not always get the item.

3. So far we analyzed single item auction. We will talk about how to generalize to multiple
item auction next time.

2



CS6840 - Algorithmic Game Theory (3 pages) Spring 2014

March 19 - Smoothness in Multiple Items Auction Games
Instructor:Eva Tardos Cathy Fan

1 Review:

Definition. An auction is (λ, µ)- smooth if ∃s∗, s.t. for all s:

Σiui(s∗i , s−i) ≥ λOPT − µΣipi(s).

Smooth auctions: Set up:

• o(s): outcome
• vi(o): value of player i. OPT = maxo Σvi(o)
• ui(s) = vi(o(s))− pi(s)
• pi(s) = ith payment

Last Time: Smoothness for single item 1st price auction.

Theorem 1. All pay single item auction is (1
2 , 1)-smooth for any distribution of values.

Proof. : Let i∗ = arg maxi Vi. Let s∗j = 0 for j 6= i∗ and s∗i : randomly chosen according to uniform
distribution in [0, vi]. For j 6= i∗:

uj(s∗j , s−j) ≥ 0;

for j = i∗, let p = maxj 6=i∗ sj , then:

ui∗(s∗i∗ , s−i∗) ≥ −E(s∗i ) + vi∗Pr(i∗ wins)

= −vi∗

2 + vi∗(vi∗ − p
vi∗

)

= 0.5v∗i∗ − p
≥ 0.5v∗i∗ − Σjpj(s)

Sum up over all i, we get:
Σiui(s∗i , s−i) ≥

1
2OPT − Σipi(s)

2 Multiple Items:

2.1 Set up for today:

• Unit demand bidders
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• Items on sale: Ω
• Players: 1, ..., n
• Player i has value vij ≥ 0 for item j
• A ⊂ Ω, player i’s value for set A 6= ∅ is maxj∈A vij (there is free disposal).

2.2 Smoothness

Today: each item is sold on first price.

VCG Mechanism: uses OPT assignment. First price auction uses opt assignment in analysis, but
not on mechanism.
Max value matching (optimal matching): maxM Σ(i,j)∈Mvij , M represents a Matching.

Theorem 2. 1st price multiple items auction is (1
2 , 1)-smooth (also (1− 1

e , 1)-smooth).

Proof. Take optimal matching M∗. If (i, j) ∈M (player i,item j), then bid s∗i∗ = vij

2 for item j and
bid 0 for all other items. If i is unmatched in M, bid 0 on all items.

If i unmatched,
ui(s∗i , s−i) ≥ 0;

Else, (i, j) ∈M ,
ui(s∗i , s−i) ≥

vij

2 − pj(s).

pj(s) is price for item j on bids s. (This is because if player i wins item j, ui(s∗i , s−i) = vij

2 ; if player
i loses item j, item j’s price pj(s) is ≥ vij

2 .) Sum over i:

Σiui(s∗i , s−i) ≥
1
2Σ(i,j)∈Mvij − Σj∈Apj(s) = 1

2OPT − Σjpj(s)

(pj = 0 if item j not in assigned).

Corollary 3. Nash equilibrium s for full information game satisfies:

SW (s) ≥ λ

max{1, µ}OPT.

Want Bayesian version:

Option 1: s∗i depends only on vi (ith valuation). We used it in single item 1st price auction. Doesn’t
apply to either "all-pay" of auctions with multiple items.
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3 Next Time:

Theorem: smooth game → Bayesian PoA small

2nd price auction



CS6840 - Algorithmic Game Theory (3 pages) Spring 2014

March 21 - Bayesian Price of Anarchy in Smooth Auction
Instructor:Eva Tardos Xiaodong Wang(xw285)

1 Administrative

• PS3 deadline is extended to March 24/25

• Project proposal is 1-4 pages

2 Smoothness ⇒ Bayesian Price of Anarchy

Auction game is (λ, µ) smooth if for fixed v, ∃ s∗(v), s.t ∀s (any),∑
i

ui(s∗i (v), s−i) ≥ λOPT(v)− µ
∑

i

pi(s)

• Bayesian values ∈ distribution

• uvi
i (s) = utility of i when value is vi; vi can be a vector

• OPT(v) = max SW when values are v

• uvi
i (s∗i , s−i) depends on vi

• s∗ depends on values v: s∗(v)

Theorem 1. If ∃ s∗(v), and auction is (λ, µ) smooth and s∗i depends only on vi (and not on v−i,
then

E( SW (Nash)︸ ︷︷ ︸
a Bayesian Nash

) ≥ λ

max{1, µ} Ev(OPT(v))

Example smooth games:

• s∗i (vi): first price single item

• s∗i (v) :
{
all pay

price with multiple item and unit demand

Today:
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Theorem 2. if an auction is (λ, µ) smooth (even if s∗i depends on all coordinates of v), and the
distribution of values for different players is independent, then:

E(SW (BayesianNash)) ≥ λ

max{1, µ} Ev(OPT(v))

• values to different items of a single bidder can be correlated

• values to items of different bidders cannot be correlated

• common knowledge: the distribution of values, as well as the strategies used at Bayesian Nash
si(vi), i.e., si as a function of vi, is common knowledge.

• if s is Bayesian Nash, then for all i and s′i and all vi,

Ev−i(u
vi
i (si(vi), s−i(v−i))|vi) ≥ Ev−i(u

vi
i (s′i, s−i(v−i))|vi)

An example of Bayesian Nash: 2 bidders, uniform [0,1] distribution, and first price auction,
bi(vi) = vi/2.

Proof. of the Theorem.
take w−i from value distribution of v−i; take s∗i (vi, w−i), and use this as s′i. At a Bayesian Nash
equilibrium

Ev−i(u
vi
i (s)|vi) ≥ Ev−i,w−i(u

vi
i (s∗i (vi, w−i), s−i(v−i))|vi)

Taking also expectation over vi we get:

Ev(uvi
i (s(v))) ≥ Ev,w−i(u

vi
i (s∗i (vi, w−i), s−i(v−i)))

sum up,
Ev(

∑
i

uvi
i (s(v))) =

∑
i

Ev(uvi
i (s)) ≥︸︷︷︸

Nash

∑
i

Ev,w−i(u
vi
i (s∗i (vi, w−i), s−i(vi)))

(vi, w−i) is of random draw of the type v, because the different coordinates are independent. Define
a new variable t = (vi, w−i) as a phantom player, or simply as renaming of the variables (vi, w−i),
and let z = (wi, v−i) using a new random variable wi. Using the new variables t and z we can
rewrite our sum as follows.

∑
i

Ev,w−i(u
vi
i (s∗i (vi, w−i), s−i(vi))) =

∑
i

Et,z(uti
i (s∗(t), s−i(z))) ≥︸︷︷︸

smoothness

Ez,t(λOPT(t)− µ
∑

i

pi(s(z)))

= λEt(OPT(t))− µEz(
∑

i

pi(s(z)))
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⇒ Ev(
∑

i

uvi
i (s(v))) ≥ λEt(OPT(t))− µEz(

∑
i

pi(s(z)))

Ev(SW (Nash)) = Ev(
∑

i

uvi
i (s(v))) + Ev(

∑
i

pi(s(v))) ≤ λ

max(1, µ) Ez(SW (s(z)))
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March 24 -Generalized second prize I
Instructor:Eva Tardos Daniel Freund (df365)

"Second prize" with one item was truthful and thus too simple. An application of Generalized Second
Prize auctions is in found in selling ads next to search.

Simple model: advertisers bid on ads

bi → willingness of advertiser i to pay for a click (bidding language allows dependence on lots of
info)
[BudgetBi = max total "over a day"] we ignore today → think of it as so big that we won’t reach
it.

model advertiser’s value: vi as value per click (depends on search term, time of day, location of
search etc...), 0 for no click
Questionable assumption: is the value really 0 if the advertiser’s ad was displayed?

Probability of getting a click

position j for ads → has probability αj to get a click
ad i itself has probability γi for getting a click (depends like vi on everything)
Questionable assumption: ad i in position j gets click with probability αjγi

Optimal assignment

The value of advertisement i in position j is vij = viγiαj = viP[i gets clicked on in position j]

We may assume, after renumbering, that α1 ≥ α2 ≥ ... ≥ αn and v1γ1 ≥ v2γ2 ≥ ... ≥ vnγn.
The optimal assignment is then given by assigning ad i to αi (this can be seen with a simple
exchange-argument: if an assignment is not sorted like this, then there is some pair i, i+ 1 sorted in
the wrong order. Swapping them will increase

∑
i viP[i gets clicked on]).

This gives rise to the following algorithm:
ALG:
ask bidders for bi
compute γi
sort by biγi
assign slots in this order.
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Pricing

Historically speaking there have been the following versions:
Version 1 (First Price): Pay bi if clicked. Problem: consider two players bidding for two advertisement
locations. for a while they keep outbidding each other for the better advertisement location until
eventually, one decides to take the worse one for very little - but then the other one can take the
better one for just a little more and the outbidding starts all over again → unstable.
Version 2: set pi to be the minimum needed for i to keep her slot, i.e.: pi = min{p : pγi ≥ bi+1γi+1} =
bi+1γi+1

γi
.

Observation: pi ≤ bi. Is this truthful?

Consider two players, v1 = 8, v2 = 5, α1 = 1, α2 = .6, γ1 = γ2 = 1. If both players bid truthfully,
player 2 pays 0, but player has value (v1 − p1)α1 = 3 (her expected utility), but with an alternate
bid - say 4 - (v1 − 0) = 8 · .6 = 4.8 > 3, so the mechanism is not truthful!

Next class:smoothness-style analysis of a Price of Anarchy result for generalized 2nd-price (assump-
tion: bi ≤ vi∀i - How bad is this assumption?)
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March 14 - Price of Anarchy for GSP
Instructor:Eva Tardos Jonathan DiLorenzo (jd753)

Administrative details:

The fourth problem set will be out after break.
That will be the last one before the final.

Generalized Second Price (GSP)

Def:
n is the number of slots.
∀i. we have some αi corresponding to the click-through rate at slot i.
m is the number of ads (or advertisers).
vj is the value per click for ad j.
γj is the quality factor for ad j.
The probability of someone clicking ad j in slot i is αi × γj .

For today, we will assume that ∀j. γj = 1. This is a common assumption, which mostly serves to
simplify notation.

In GSP, we ask advertisers for some bid bj and sort by bj × γj (i.e. sort bj given our assumption).
Note that bids are given at a per-click rate, not a total.

We can safely assume b1 ≥ ... ≥ bm (on account of the sorting noted above), which means that
∀i. pi = bi+1 because it’s a second price auction (well, excluding that last i, where we say pi = 0).

The slots have a total ordering based on α, so also assume WLOG that α1 ≥ ... ≥ αn.

We can set m = n by adding phantom slots (if n < m, where they have an α = 0), or by adding
phantom bidders (if m < n, where they have a b = 0), so for simplicity, we’ll consider this situation.

On a side note, apparently Google invented the γ and Yahoo did not initially use it. The γ helps
the search company get more money.
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Price of Anarchy

Theorem 1. Price of Stability of GSP is 1 (i.e. in a full info game there exists a Nash Eq. that is
optimal).

We will come back to this theorem a bit after break as it needs a topic that hasn’t yet been covered.

So now to the part we’re actually dealing with:

Theorem 2. Price of Anarchy: all Bayesian Nash of GSP have SW (NE) ≥ 1
4SW (Opt) assuming

∀i. bi ≤ vi where i are advertisers.

In fact, it turns out that SW (NE) ≥ 1
2(1− 1

e
)SW (Opt), but we won’t prove this today. Also, note

that the second condition, ∀i. bi ≤ vi tends to be accurate since you don’t want to bid more
than your value as bidding above your value is dominated by bidding the value itself (see further
explanation at the end).

It’s best to think of the value/click as not being random. You can sort of figure this out if you’re an
advertiser. In actuality, the real randomness comes from γ which turns out to be super random, but
in our case we’re assuming it to be 1.

We prove Theorem 2:

Proof. Recall that ui = (vi − pi) ∗ αki
where ki is the slot that i gets with bid bi.

Firstly, we choose some b∗
i = vi

2 because this happens to be convenient for our proof.

If b is the Bayesian Nash vector and b∗ is the bid vector from above, then:

Ev−i(ui(b∗
i , b−i)|vi) ≤ Ev−i(ui(bi))|vi)

by the definition of a Nash. We take the expectation over vi and sum over i:

∑
i
Ev(ui(b∗

i , b−i)) ≤
∑
i
Ev(ui(bi))

And so we get our standard Bayesian Nash.

Now, suppose in Opt, ad i goes to slot ji. In that case, i contributes vi × αji to SW (OPT ). Note
that this is the value times the number of clicks, since γ = 1.

Let βj be the bid that actually wins slot j in GSP. Note that this is a random variable. Also, recall
that b∗

i = vi
2 . Then: ui(b∗

i , b−i) ≥ 1
2viαji − βjiαji .
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Here is the intuition for why this is true: We want to claim that i ’wins’ if he gets slot ji (the slot
he gets in optimum) or better. He loses if he gets a slot lower than ji. If he wins, then the price
pi ≤ b∗

i = vi
2 . Then, vi − pi ≥ vi

2 and the number of clicks is greater than or equal to αji (since the
slots are ordered by α and he did at least as well as slot ji). Thus, the above inequality holds (since
ui must be greater than the first term on the right side of the inequality).

If he loses, then it’s still true because vi
2 ≤ βji so it just says that ui ≥ 0 (or some negative number).

Now, we sum over all players (explanations of some steps below the equations):

∑
i

ui(b∗
i , b−i) ≥

1
2

∑
i

viαji −
∑

i

αjiβji (1)

= 1
2OPT (v)−

∑
i

αjiβji (2)

= 1
2OPT (v)−

∑
i

αki
bi (3)

≥ 1
2OPT (v)−

∑
i

αki
vi (4)

= 1
2OPT (v)− SW (b(v)) (5)

Of note:
ki in steps (3) and (4) are meant to denote the slot that player i gets with bid bi.
The equation in (3) is true because if we sum over i, we cover all the values whether we use the ji
notation or not.
The inequality in (4) is true because ∀i.vi ≥ bi.

Thus, we now know both of these things:∑
i
Ev(ui(b∗

i , b−i)) ≥ 1
2Ev(OPT (v))− Ev(SW (b(v)))∑

i
Ev(ui(b∗

i , b−i)) ≤
∑
i
Ev(ui(bi)) ≤ Ev(SW (b(v)))

and so we get:

2Ev(SW (b(v))) ≥ 1
2Ev(OPT (v))

And so we’ve proven what we want.

Final claim: Bidding above your value is a dominated strategy. bid bi > vi is dominated by bi = vi.
If you’re bidding above your value either you pay more and you’re hosed or you pay less than your
value and then you may as well have bid the same as your value.

Thus, the assumption made that bi ≤ vi is a decent assumption. Of course, in the real world we
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may want to drive neighbors out of business or make sure that they don’t get business at least, in
which case bidding above our value is perhaps worth it. Though arguably you could include that in
your value.
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March 28 - Greedy Algorithm as a Mechanism
Instructor:Eva Tardos Thodoris Lykouris (tl586)

Main result

This lecture is based on a result by Brendan Lucier and Alan Borodin [1]. The main result is the
following:

Theorem 1. If a greedy algorithm is a c-approximation in the optimization version of the problem
then, in the game-theoretic version of the problem, it derives a Price of Anarchy of at most c with
first price and (c + 1) with second price.

Before proving the result, we need to first understand what we really mean with this theorem.

Framework of the optimization version

• Set S of items on sale.

• Each bidder i ∈ [n] has value vi(A) for subset A ⊆ S.

The goal of the greedy algorithm is to maximize the social welfare:

max
disjoint A1,...,Ak⊆S

∑
vi(Ai)

Mechanism for the game-theoretic version

• All users i ∈ [n] declare a bid bi(A) for every subset A ⊆ S.

• We then run the previous algorithm to determine the allocation.

• For the pricing, we could have:

1. If i gets Ai, charge her bi(Ai) (first price)
2. If i gets Ai, charge her Θi(Ai) (second price), where Θi(A) will be defined later. Note

that, in this case, we need an extra no overbidding assumption: ∀i, A : bi(A) ≤ vi(A).

Greedy algorithm We will consider the case that the greedy algorithm uses some function
f(i, A, v) → R to determine its next step in the allocation. This function f should be monotone non-
decreasing in the value v for fixed i, A and satisfy the property ∀i, v, A ⊆ A′ : f(i, A, v) ≥ f(i, A′, v).
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The algorithm is the following: In decreasing order of f(i, A, vi(A)) give A to i and remove i from
the game.

The latter (removing part) gives a unit-demand feature in the players and captures the fact that
the valuation that some player has on the union of two sets is not the sum of their valuations.
Hence, we are not allowed to assign him another set, once something is assigned to him as then the
valuations are no more valid.

Possible catches

1. There is no assumption on the valuation function (monotonicity/submodularity) in the theo-
rem. The reason why this is not a problem is hidden in the “if” statement. These assumptions
guarantee the existence of a greedy algorithm in most settings. However, the theorem just
takes care in transforming an approximation algorithm for the optimization version of the
problem to a mechanism with decent Price of Anarchy to the game-theoretic version of the
problem.

2. There is exponential amount of information. This is, as well, related to the greedy algorithm
and not with the theorem. In fact, there exist greedy algorithms that behave well and fit in
our framework. We will give some examples of this form.

Examples

1. The problem of finding a matching of maximum value has a very simple 2-approximation
greedy algorithm (sorting edges by value and iteratively adding the edge with the maximum
value among the edges that have unassigned adjacent vertices). This case behaves well as the
number of items is small.

2. A case more close to our problem is when every player i is interested in just one set Ai. By
sorting them by vi or vi

|Ai| , we get a n-approximation, which gets better if we sort by vi√
|Ai|

.
This case behaves well as just few items have non-zero value.

3. The routing problem where there is a graph G and some {si, ti} and we have value vi for any
(si − ti) path. Although we might have an exponential numbers of possible paths/items, their
values are given implicitly.

c-approximation algorithm

An algorithm is called a c-approximation for a maximization problem if the value of its solution is
at least 1

c the value of the optimal solution.
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Second price

Last but not least, we need to define what Θi(A) (used in second price auction) is. This corresponds
to the critical price related to player i and set A, i.e. the smallest price which would allow him to
still win the set.

More formally, Θi(A) equals to the minimum bid that gets set A to player i when the algorithm
favors i in all ties. The latter is to avoid the need of bidding slightly above to strictly win the
auction. The number depends on b−i but not in bi.

Proof of Theorem

Suppose that b is the bids’ trajectory in Nash, which results in solution A1, . . . , An and Opt is the
solution of disjoint sets O1, . . . On that maximizes

∑
i vi(Oi).

Suppose that X1, . . . , Xn is the allocation that maximizes
∑

i bi(Xi) (different from Opt as we are
not maximizing on the real valuations but on the bids). It holds that

∑
i bi(Oi) ≤

∑
i bi(Xi) (as

Opt was among the possible allocations).

In addition, as the algorithm is c-approximation, it holds that
∑

i bi(Xi) ≤ c
∑

i bi(Ai).

Hence, we have the following inequality to which we will refer as (*):∑
i

bi(Oi) ≤ c
∑

i

bi(Ai)

Claim 2. ∑
i

Θi(Oi) ≤ c
∑

i

bi(Ai)

Proof. Let the following bids:

b′
i(A) =

{
bi(A) if A 6= Oi

Θi(A) − ε else

We define b∗
i (A) = max(bi, b′

i). As a result, the outcome is not affected as, either:

• A is in the winning set in which case it doesn’t alter

• it keeps its value without being in the winning set

• it increases to slightly less than its critical value thus not getting in the winning set.

Applying (*) on b∗, using that b′
i(A) ≤ b∗

i (A) and taking ε → 0, the claim follows.
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We will continue the proof for the case of the second price (the case of the first price is similar).

b∗
i (A) =

{
vi(A) if A = Oi

0 else

As b is Nash, we have ∀i : ui(b) ≥ ui(b∗
i , b−i). Furthermore, ui(b∗

i , b−i) ≥ vi(Oi) − Θi(Oi) as the
right hand is negative in the case that i has 0 utility and the inequality holds with equality from
the definition of utility otherwise.

Combining the two inequalities and summing over all i, we have:∑
i

ui(b) ≥
∑

i

(b∗
i , b−i) ≥

∑
i

vi(Oi) −
∑

i

Θi(Oi) = OPT −
∑

i

Θi(Oi)

By the Claim, we have
∑

i Θi(Oi) ≤ c
∑

i bi(Ai) and, by the no overbidding assumption, bi(Ai) ≤
vi(Ai). Hence, it holds∑

i

ui(b) ≥ OPT −
∑

i

Θi(Oi) ≥ OPT − c
∑

i

bi(Ai) ≥ OPT − c
∑

i

vi(Ai)

This inequality
∑

i ui(b) ≥ OPT − c
∑

i vi(Ai) is smoothness-like. Adding the prices on the left
hand, we have: ∑

i

vi(Ai) ≥ OPT − c
∑

i

vi(Ai)

which results in a Price of Anarchy of at most (c + 1).

Open Questions An interesting open question is to what extent the above technique can be
extended to other (non-greedy) approximations. That is, when turned into games, can they generate
good Price of Anarchy results?
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April 7 - Auction, Smoothness, and Second Price
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1 Outline

In the last few lectures we looked at smoothness analysis (but not quite exactly the “Roughgarden
smoothness” for utility games) in the following examples of auctions:

• 2nd price item auction

• generalized second price

• greedy algorithms as mechanism

Today, we look at the general smoothness for an auction on many items, all sold on second price.
Player i’s value for item j is vij . All players have unit demands, so there is free disposal; if player
i gets a set of items S, the value for that player is just the maximum valued item in that set,
vi(S) = maxj∈S vij .

On Wednesday, we will look at a more general class of valuation, and that will tie up our study of
auctions.

2 Smoothness and PoA

In the proofs of price of anarchy for both Generalized Second Price and mechanisms based on greedy
algorithms, we made use of the following smoothness property (?):

∃ bid b∗i ∀i s.t. ∀b∑
i
ui(b∗i , b−i) ≥ λ·OPT −µ ·

∑
i
bi(Ai)

Here, OPT = max
O

∑
i
vi(Oi) where O = (O1, ...,On) is an allocation of items to players. Similarly,

A = (A1, ..., An) is the allocation made by the mechanism on bids b.
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For GSP, λ = 1
2 , µ = 1; for mechanisms based on greedy algorithms, λ = 1, µ = c (the approximation

factor).

We have shown this multiple times in different contexts, but as a review, the above lemma implies
the following bound on PoA given some additional assumptions:

Claim 1. In a full information game, if (?) holds and bi(X) ≤ vi(X) ∀i ∀X (i.e. the bidders are
conservative), then SW(CCE) ≥ λ

µ+1 ·OPT

Proof. Recall that for a CCE (or a learning outcome) that is some distribution on bid b, we have

Eb(ui(b′i, b−i)) ≤ Eb(ui(b)) ∀ player i, ∀ alternate bid b′i

Hence, we have

SW(b) ≥ Eb

[∑
i

ui(b)
]

(1)

≥ Eb

[∑
i

ui(b∗i , b−i)
]

(2)

≥ λ ·OPT− µ · Eb

[∑
i

bi(Ai)
]

(3)

≥ λ ·OPT− µ · Eb

[∑
i

vi(Ai)
]

(4)

(5)

(1) holds since social welfare is the sum of utilities of all players plus the auctioneer utility
(2) holds because the distribution on b is a CCE
(3) is due to smoothness and linearity of expectations
(4) uses the conservative assumption

The right most term is just SW(b), so after rearranging we get the desired PoA bound.

Observation With the conservative assumption, this is exactly Roughgarden’s smoothness for utility
games.
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3 Auction example

Now, we look at the case of many items, second price auction with unit demand bidders. Recall
that if we instead used first price auction, then the cost of the optimal social welfare is given by the
maximum matching between players and items, i.e.

OPT = max
matchingM

∑
(i,j)∈M

vij

Claim 2. second price item auction is (1,1) smooth in the sense of (?).

Proof. We need to come up with some special bids b∗. Suppose j∗i is the item player i gets in the
optimal allocation. Then, let

b∗i =
{
vij if j = j∗i
0 otherwise

Of course, the players don’t know what j∗i is so they can’t bid like above practically. We will come
back to address this issue.

We can lower bound the utility of a player i bidding b∗i as

ui(b∗i , b−i) ≥ vij∗
i
−max

k 6=i
bkj∗

i

≥ vij∗
i
−max

k
bkj∗

i

Summing over all players, ∑
i

(b∗i , b−i) ≥
∑
i

vij∗
i
−

∑
i

max
k

bkj∗
i

= OPT−
∑
i

bi(Ai)

The last equality follows from observing that since max
k

bkj∗
i
is the maximum bid in b for item j∗i , if

we sum over all players, we are effectively summing the highest bid over all items, which is equal to∑
i
bi(Ai).
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4 Learning and PoA bound

We pointed out above that the players do not actually know j∗i , so though we were able to prove
the claim we may wonder what the claim actually means practically. The idea is that we let players
use learning, where their options are between the n items; then they bid vij for the chosen item j
and 0 for all others.

The corollary of Claim 2 is that if the players use learning, social welfare in expectation is at least
1
2OPT in the above setting.

Now, is conservativeness a reasonable assumption? This is not necessarily so, as the following
example shows: consider a game with two items A and B. Player 1 has value 1 for both items, and
player 2 has value 1

2 for both items. We may assume there are other players with lower values.
Player 1 bids 1 for one item and 0 for the other. Player 2 bids 1

2 for each item, since this is a
full information and he knows that he’s going to lose one item to player A. Now, player 2 is not
conservative as b2(A,B) = 1

2 + 1
2 = 1 > v2(A,B) = 1

2 .
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Auctions with More Complex Valuations

So far we studied second price style auctions for the following valuations.

v1 ∈ R, Single Item
GSP

(a)Unit Demand ui(A) = max
j

vij

(b)Additive ui(A) =
∑
j∈A

vij

For the additive valuations the optimal solution is
∑

i max
i

vij, where each auction is separate,

and no collection between the items.
Today we will consider a General Class of Valuations. � Generalizing (a) and (b)

� Each i possible ways to use items vkij

(i) vi(A) = max
k

∑
j∈A

vkij

Claim. This class of valuations contains Unit Demand

vkij =

{
vij if k = j

0 otherwise
(0, . . . , 0, vij, 0, . . . , 0)

Theorem. Item Auctions on Second Price each sold separately, bidders conservative,
∑

j∈A bij ≤
vi(A) for all i and all subset of the items, then Social Welfare Nash (or CCE) ≥ 1

2
opt

Assuming Valuations of (i) form, bij = ith bid for item i, let the winning bid for item j
be b(j) = max

i
(bij).

Proof. Consider opt location. O1, . . . , On set items going to bidders 1, . . . , n. Vi(Oi) =
maxk(

∑
j∈Oi

vkij), and let ki be the vector on which the maximum is achieved.

Now de�ne b∗ij = vkiij , and we claim that this bid satis�es the usual smoothness style
inequality.

we have ui(b
∗
i , b−i) ≥

∑
j∈Oi

(vkiij − b(j))
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(To See why, assume with this bid, person i wins a set A. Now

ui(b
∗
i , b−i) = Vi(A)−

∑
j∈A

b(j) ≥
∑
j∈A

(vkiij − b(j))

≥
∑

j∈(A∩Oi)

(vkiij − b(j))

≥
∑

j∈(A∩O)

(vkiij − b(j))

Where the inequality in the top line follows from the de�nition of Vi, the inequality in teh
second line follows as winning additional items A \ Oi only make the value higher, and the
last inequality follows as the added terms are negative.

Sum Over all players, and using that the bids b form an equilibrium (and hence deviating
to b∗ doesn't improve player utility), we get:∑

ui(b) ≥
∑
i

∑
j∈Oi

vkiij −
∑
i

∑
j∈Oi

b(j) = SW (opt)−
∑
j

b(j)

≥ SW (opt)−
∑
i

∑
j∈Ai

≥ SW (opt) +
∑
i

vi(Ai) =≥ SW (opt) + SW (Nash)

where Ai is the set of items won by player i in Nash, and that last inequality used the
assumption of no overbidding.

Now rearranging terms, and using the fact that
∑

ui(b) ≤ SW (Nash) we get∑
ui(b) +

∑
vi(Ai) ≥ SW (opt)

Next class we will talk about what valuations can be written in the form used in this
proof.
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Classes of valuations

We started to consider three classes of valuations last time. For a set A, we will use v(A) to be the
value of set A to a user. We will not index valuations with users this class, as we will only consider
one user. For all classes we consider today, we will assume that v(∅) = 0, value is monotone, that is
A ⊂ B implies that v(A) ≤ v(B) (there is free disposal). Note that this also implies that v(A) ≥ 0
for all A.

1. subadditive valuations, requiring that for any pair of disjoint sets X and Y we have v(X) +
v(Y ) ≥ v(X ∪ Y ).

2. diminishing marginal value, requiring that for any element j and any pair of sets S ⊂ S′ we
have v(S + j)− v(S) ≥ v(S′ + j)− v(S′)

3. fractionally subadditive: defined as a function v obtained from a set of vectors vk with
coordinates vk

j for some k = 1, .. with v(A) = maxk
∑

j∈A vk
j .

First we want to show that diminishing marginal value has the following alternate definition called
submodular. A function is submodular, if for any two sets A and B the following holds.

v(A) + v(B) ≥ v(A ∩B) + v(A ∪B).

Claim 1. A function v that is nonnegative, monotone, and v(∅) = 0, it is submodular if and only if
it satisfies the diminishing marginal value property.

Proof. First, we show by induction that for a pair of sets S ⊂ S′, and a any set A the following
diminishing marginal value property holds v(S ∪A)− v(S) ≥ v(S′ ∪A)− v(S′). We show this by
induction on |A|. When |A| = 1 this is the diminishing marginal value property. When A = A′ + j,
by the induction hypothesis v(S ∪A′)−v(S) ≥ v(S′∪A′)−v(S′), by the diminishing marginal value
property applied to S ∪A′ ⊂ S′ ∪A′, we get v(S ∪A′ + j)− v(S ∪A′) ≥ v(S′ ∪A′ + j)− v(S′ ∪A′).
Adding the two we get v(S ∪A)− v(S) ≥ v(S′ ∪A)− v(S′) as claimed.

For sets S ⊂ S′ a set A disjoint from S′, let X = S ∪A, and Y = S′ then the diminishing marginal
value property is exactly the submodular property with X and Y , and vice versa, the submodular
property for sets X and Y is this diminishing marginal value property with S′ = Y , S = X ∩ Y and
A = X \ Y .

Next we show that all fractionally subadditive functions are subadditive.
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Claim 2. A fractionally subadditive function is subadditive.

Proof. Let A and B two disjoint sets. The value v(A ∩B) = maxk
∑

j∈A∪B vk
j . Let k∗ be the value

that takes the maximum. Now we have

v(A ∪B) =
∑

j∈A∪B

vk∗
j = max

k

∑
j∈A

vk∗
j + max

k∗

∑
j∈B

vk
j ≤ v(A) + v(B).

Claim 3. Any submodular function is fractionally subadditive.

Proof. For a submodular function v, we define vectors vk
j that define v as a required for a fractionally

subadditive function. For any order k of the elements, let Bk
j denote the set of first j elements of

the order k. For `’s element in this order, {æ} = Bk
` −Bk

`−1, we define vk
j = v(Bk

` )− v(Bk
`−1). We

claim that this defines v.

For a set A, and any order k that starts with A, clearly v(A) = sumj∈Avk
j .

We need to show that for all orders k we have v(A) ≤
∑

j∈A vk
j . For this order k define the related

order k′ that is the same as k in ordering A, but has elements not in A after all elements of A.
By the above v(A) =

∑
j∈A vk′

j , and by the diminishing marginal value property vk′
j ≤ vk

j for all
j ∈ A.

Finally, we wonder about how many functions needed in defining a fractionally subadditive function,
and which functions can be defined this way. For a vector vk to be useable in the definition, it must
satisfy vk

j ≥ 0 and
∑

j∈A vk
j ≤ v(A) for all sets A. To be able to define a function v as fractionally

subadditive, for all sets X we need such a vector vk that also has
∑

j∈X vk
j = v(X). Looking for

such a vk can be written this as a linear program as follows:

xj ≥ 0for all j (1)∑
j∈A

xj ≤ v(A)for all sets A (2)

∑
j∈X

xj = v(X) (3)

A valuation v is fractionally subadditive, if and only if this linear program has a solution for all
sets X. Note that this also shows that it suffices to have 2n vectors vk in the definition. To see the
condition required for a function to be fractionally subadditive, one takes linear programming dual
(or Farkas lemma) to get the condition needed to make the above linear program solvable.
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1 Bandwidth Sharing

Many users want to use a limited resource, how do we allocate this resource as e�ciently as possible?

We de�ne the problem:

• user i has utility Ui(x) for x amount of bandwidth

• user i pays wi for x amount of bandwidth and recieves net utility of U i(x)− wi

• the total amount of bandwidth available is B

We will also use assumptions regarding Ui(x)

• U i(x) ≥ 0

• U i(x) is increasing and concave

• U(x) is continuous and di�erentiable (not neccessary, but useful for convenience)

The assumptions of Ui(x) being increasing and concave implies that more of x is better, but two times of x doesn't imply twice
the utility.

2 How to we allocate the resource optimally?

2.1 First idea: set a price p and let everyone individually optimize their own welfare

e.g. each player individually �nds

argmaxx Ui(x)− px

Solving for this maximum yields

U
′

i (x)− p = 0

which simpli�es to

U
′

i (x) = p

This function is monotone decreasing.

Of course, if every player maximizes this function individually, it could result in players cumulatively asking for more of the
resource than available. Thus, we de�ne a market clearing price p:

2.1.1 De�nition of Market Clearing

p is market clearing if there exists amounts xi...xn such that xi maximizes U i(x) − px and
∑

i xi = B where B is the total
amount of the resource

If Ui(x) is only non-decreasing, then some users will not want any of the resource, even at price p = 0.

In this case,
∑

i xi ≤ B by the property of free disposal; if property is not valuable, one can dispose of it for free.

2.1.2 Market Clearing Price Lemma

If a market clearing price exists, division of B into xi...xn is socially optimal.∑
i Ui(x) is the max among all ways to divide B.

1



2.1.3 Proof of Market Clearing Price Lemma

Let x∗
1...x

∗
nbe the optimal amounts

We know Ui(xi)− pxi ≥ Ui(x
∗
i )− px∗

i because Ui(xi)− pxi was de�ned to be the maximum.

⇒
∑

i Ui(xi)− p
∑

i xi ≥
∑

i Ui(x
∗
i )− p

∑
i x

∗
i

We know that p
∑

i xi = pB since
∑

i xi = B

⇒
∑

i Ui(xi) ≥
∑

i Ui(x
∗
i ) + p(B −

∑
i x

∗
i )

B −
∑

i x
∗
i is zero at optimal because all of B is allocated to users

2.1.4 Does such a p exist?

We can always �nd a market clearing p using the following algorithm:

• set p = 0 and if
∑

i xi(p) ≤ B, then we are done

• else, raise p until
∑

i xi(p) = B

Will the price rise forever?

This will not happen because of the bounded derivative (marginal utility). If the price was ever raised higher than U
′

i (
B
n ), then

users will only want to buy at most B
n amount of bandwidth and the total amount of bandwidth requested would be less than

or equal to the total amount of bandwidth.

p = argmaxi U
′

i (
B
n ) results in xi ≤ B

n for all i

2.2 Another idea of optimal allocation: Fair Sharing

The game:

1. Ask every user for how much money they are willing to pay for the resource wi

2. Collect the money

3. Distribute the resource in xi amounts by the formula xi = ( wi∑
j wj

) ∗ (B)

This yields an e�ective price of p =
∑

j wj

B

2.2.1 Is the distribution w1...wn optimal?

Assume wj for all j 6= i

Users will individually optimize. Imagine a game where every user bids their value wi, and get some bandwidth in return. At a
Nash equilibrium, each wi is optimal given wj for all j 6= i are �xed. Thus, the following argmax is a Nash equilibrium.

argmaxwi
Ui[(

wi∑
j wj

) ∗ (B)]− wi

U
′

i (
wi∑
j wj
∗B)( 1∑

j wj
∗B − wi

(
∑

j wj)2
∗B)− 1 = 0

By the e�ective price and #3, we conclude

⇒ U
′

i (xi)(
1
p −

1
p ∗

xi

B )− 1 = 0

⇒ U
′

i (xi)(1− xi

B ) = p

Comparing this to price equlibrium U
′

i (xi) = p we see that when xi

B is close to zero, the two conditions are almost the same. In
the context of the internet, users usually do not have a signi�cantly large share of the bandwidth and this pricing scheme is thus
approximately optimal.

2
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Lecture 35 Scribe Notes

Instructor: Eva Tardos Anirvan Mukherjee (am767)

1 Overview

1.1 Summary

In this lecture, we:

• Analyze the Price of Anarchy of the fair-sharing model for bandwidth sharing along a single
network edge (as introduced in the previous lecture). It turns out to be at most 4

3
.

• Introduce a new approach to bounding the PoA of a set of problems – we create a many-to-one
mapping f from our set of problems into a more restricted subset of problems, such that f
can only increase the PoA. We do this strategically so that it is easier to calculate the PoA of
the subset. This is different from approaches focused on agent behavior.

2 Context

2.1 Recap of Bandwidth Fair-Sharing

Last lecture, we introduced a bandwidth sharing problem:

• n users want to share a single edge of a network.

• Users have utility Ui(x) for bandwidth x, which is non-negative, monotone nondecreasing,
concave, and differentiable.

• Users receive allocations xi.

• The edge has total capacity B =
∑

i xi.

We came up with the following fair-sharing allocation scheme:

• Each user comes up with a bid wi representing his/her willingness to pay.

• Users pay their wi.

• Users receive a fraction of the bandwidth proportional to their bids: xi =
(

wi∑
j wj

)

B.

• If a user increases his bid, he will get more bandwidth, but also will increase peff =
∑

j wj

B
.



CS 6840 – Lecture 35 Scribe Notes Anirvan Mukherjee (am767)

2.2 Key Results from Last Lecture

Last lecture, we found that:

• Price equilibrium: U ′

i(xi) = p, e.g. when i is allocated bandwidth until marginal payoff
becomes zero.

• Proof that price equilibrium exists in the first place.

• Fair-sharing Nash Equilibrium: U ′

i(xi)
(

1− xi

B

)

= peff .

• In a case with many users, xi

B
≈ 0, so this mechanism is approximately optimal.

3 Price of Anarchy Analysis

3.1 Overview

As mentioned in the Summary, we will perform two steps which will map a given problem (specified
by a set of Ui functions) to one whose PoA is strictly not worse. We will then be able to reason
algebraically about the PoA of a simpler, restricted set of problems, and upper-bound the PoA in
the general case.

The three steps are detailed in the following subsections. We’ll use the notation: xi is the allocation
to i at Nash Equilibrium, x∗i is the optimal (in the maximum sum-of-utilities sense) allocation, and
use p to refer to peff .

3.2 Step 1: Map into the set of linear functions, Ui(x) = aixi + bi

Consider a corresponding problem in which each Ui is mapped to a new utility function Vi, which
is the tangent to Ui(x) at x = xi, the Nash allocation. Explicitly, Vi(x) = U ′

i(xi)(x− xi) + U(xi).

We see that the allocation ~x is still at Nash Equilibrium:

V ′(xi) = U ′(xi) =⇒ V ′

i (xi)
(

1−
xi
B

)

= peff

Note that the optimal social value didn’t get worse: Because Ui are concave, Vi(x
∗

i ) ≥ Ui(x
∗

i ) ∀i,
and thus there exists an allocation at least as socially optimal as the optimal allocation in the U
problem.

Because the Nash value didn’t change and the optimum didn’t decrease, the PoA did not decrease.

3.3 Step 2: Map into the space of linear functions through (0, 0), Yi(x) = aixi

Consider a correspondign problem in which each Vi(x) = aix+bi is mapped to a new utility function
Yi(x) = aix, which is Vi(x) shifted to cross the origin. We’ll show that the PoA in this restricted
subset of problems is not improved.

(page 2 of 5)
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First, observe that bi ≥ 0 must have been true, since Ui(0) ≥ 0 by stipulation, and b = Vi(0) ≥ Ui(0)
due to Vi never being less than Ui (a consequence of concavity). It follows that each of the Vi was
shifted down to get Wi.

Now note that Y ′(xi) = V ′(xi) = U ′(xi), so as before, the Nash allocation doesn’t change.

From these, we see that the Nash social value decreases by bΣ =
∑

i bi ≥ 0, and the optimal
allocation must have decreased by the same amount (a vertical shift does not introduce a chance to
improve the allocation).

Letting O and N be the respective total social values from utility functions Vi, we have:

O ≥ N

O ×N −N × bΣ ≥ O ×N −O × bΣ

N(O − bΣ) ≥ O(N − bΣ)

O − bΣ
N − bΣ

≥
O

N

Thus, we see that the PoA has not decreased under this mapping.

3.4 Step 3: Bound the worst PoA in the restricted problem space

At this point, we note that the socially optimal allocation awards the entire bandwith to the user
with the highest ai. For convenience, we’ll sort all users by ai, so that the optimal allocation gives
B to a1, for a total optimal utility of O′ = Ba1.

The sum of utilities at Nash, on the other hand, is N ′ =
∑

i Yi(xi) =
∑

i aixi = a1x1 +
∑

i>1
aixi.

Note that if ai ≤ p, then in the Nash allocation, xi = 0, so only people with ai > 0 contribute to
decreased social welfare. We’ll use this fact to, holding the optimal value constant now (instead of
the Nash), make the Nash value as poor as possible.

Recall that, at equilibrium, Y ′(xi) = ai
(

1− xi

B

)

= p. Rearranging this, we see that i’s utility is
Y (xi) = aixi = B (ai − p). To conceive a worst-case bound, we want to make this value as low
as possible while still allocating to i, i.e. be as wasteful as possible of this capacity xi, which was
allocated to i rather than 1. So, the worst case bound comes from choosing ai very close to p, that
is, ai = p+ε for very small ε. It follows that pxi is a lower bound on Yi(xi) = aixi, the Nash utility.

(page 3 of 5)
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PoA ≤ O′/N ′

=
Ba1

a1x1 +
∑

i>1
aixi

≤
Ba1

a1x1 +
∑

i>1
pxi

=
Ba1

a1x1 + p
(
∑

i>1
xi
)

=
Ba1

a1x1 + p(B − x1)

=
Ba1

a1x1 + a1
(

1− x1

B

)

(B − x1)

=
Ba1

a1x1 + a1
(

1− x1

B

)

(B − x1)

=
B

x1 + (1− x1

B
)(B − x1)

=
1

x1

B
+

(

1− x1

B

)2

Differentiating with respect to the ratio x1

B
, we find that our PoA upper bound occurs at x1

B
= 1

2

via calculus, so that worst case PoA is:

PoA ≤
1

1

2
+

(

1− 1

2

)2
=

4

3

Which is our final result.

4 Existence of Nash Equilibrium

Last lecture, we saw that there was necessarily a price equilibrium. As it turns out, an almost
identical proof works to show that there exists a Nash Equilibrium. We can even reduce the proof
of existence of a Nash Equilibrium to the same proof used for a price equilibrium:

• We seek to establish the existence of an allocation such that U ′

i(xi)
(

1− xi

B

)

= peff .

• Define ‘effective’ utility function whose derivative is U ′

i,eff (xi) = U ′

i(xi)
(

1− xi

B

)

. This can be
found by integrating by parts.

• Note that U ′

i,eff is decreasing if U ′

i(x) were decreasing, since the multiplicative factor is de-
creasing in xi, so our property of concavity is maintained.

• Since the multiplicative factor is > 0 for all xi < B, the multiplicative factor is positive, and
thus U ′

i,eff is positive.

(page 4 of 5)
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• Thus, this ‘effective’ utility function has the properties we required of the actual utility function
in our proof of the existence of a price equilibrium.

5 Overview of Next Lecture

• We’ll introduce a network version of the problem, in which each user has a desired path
through the network, bids for each edge e ∈ his path, and receives bandwidth equal to the
minimum of his bandwidth along any edge in the path.

• We’ll analyze a mechanism in which we run fair-sharing on each edge individually.

• We’ll show that the PoA of fair-sharing in the network game is also 4

3

(page 5 of 5)
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Lecture 36 Scribe Notes:

Fair sharing and networks

Instructor: Eva Tardos Scribe: Jean Rougé (jer329)

NOTE: This lecture is based on a paper by R. Johari and J.N. Tsitsiklis published in 2004 that

you can �nd on the course's website.

1 Review of previous lectures

We've investigated fair sharing on a single link during the last two lectures. Let us recall the setting:

* n users compete for bandwidth on a single link of total capacity B

* each user i has his own utility function Ui (x) for x amount of bandwidth

* for all i, we assume that Ui is concave, continously di�erentiable, monotone increasing, and

positive

* user i pays an amount wi to get an amount xi of bandwidth, and receives net utility Ui (xi)−wi

We've seen two disctinct ways of allocating the resource :

1. Price equilibirum: we post a �xed price p per amount and we let every user choose his own

amount xi by solving the optmization problem

xi = argmax
x

(Ui (x)− px)

then we showed that this is an equilibrium if either p = 0 and
∑

i xi ≤ B, or p > 0 and∑
i xi = B; and we also showed that the solution for price equilibirum is socially optimum,

i.e. that it maximizes
∑

i Ui (xi).

2. Fair sharing as a game: now each user o�ers an amount of money wi, and as a result gets

his fair share

xi =
xi∑
j wj

B

We proved that any Nash equilibrium for this game satis�es that for every user i, either

U ′i (0) ≤ p and wi = 0

or

U ′i (xi)
(
1− xi

B

)
= p

where p =
∑

i wi

B is the "implicit" price at which the bandwidth gets sold.

Finally we've also seen that the price of anarchy in that game is bounded by 4
3 .
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2 And now to networks

Now we want to extend these results to a network comprising a number of links.

Let us de�ne this new setting:

* we consider a graph G = (V,E), where each edge e ∈ E has a bandwidth capacity be ≥ 0

* user i wants to use links along a �xed path Pi in G

* each user i o�ers an amount of money wi,e for every edge e ∈ Pi along his path

* and as a result, player i gets allocated an amount xi,e for each edge edge e ∈ Pi; and he

actually enjoys bandwidth1

xi = min
e∈Pi

xi,e

* thus the net utility for user i is

Ui (xi)−
∑
e∈Pi

wi,e

To be able to say something on the Nash equilibria in this game, we'll need to have a result

comparable to the price equilibrium theorem we proved for the single-link setting, so that we'll be

able to compare a Nash equilibrium to the price equilibrium.

2.1 Price equilibirum theorem

Like we did last time for a single link, let us de�ne a price pe for every edge e ∈ E; then each user

i maximizes his utility by solving the optimization problem

xi = argmax
x

Ui (x)− x
∑
e∈Pi

pe


De�nition. (pe)e∈E de�nes a price equilibrium if for every edge e ∈ E, either∑

i|e∈Pi

xi = be

or ∑
i|e∈Pi

xi ≤ be and pe = 0

And it turns out that we get the same result as in the single-link case:

Theorem 1. A price equilibrium is socially optimal, i.e. it maximizes
∑

i Ui (xi).

1The paper by Johari and Tsitsiklis mentioned above is more general than this, in particular the following analysis

can be extended to other de�nitions of xi as a function of (xi,e)e; what's important is that the utility depends on a

global variable which in turn depends on the local allocations of the elemtary resources.
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Proof. Let us consider a price equilibrium (x1, x2, . . . , xn), and let us compare it to a socially

optimum allocation (x∗1, x
∗
2, . . . , x

∗
n). By de�nition of the xi, for all user i,

Ui (xi)− xi
∑
e∈Pi

pe ≥ Ui (x
∗
i )− x∗i

∑
e∈Pi

pe

Now by summing over all users∑
i

Ui (xi) ≥ Ui (x
∗
i ) +

∑
i

xi
∑
e∈Pi

pe −
∑
i

x∗i
∑
e∈Pi

pe (1)

Yet by reversing the order of summation∑
i

xi
∑
e∈Pi

pe =
∑
e

pe
∑
i|e∈Pi

xi =
∑
e

pebe

where the last equality comes from the de�nition of a price equilibirum : either
∑

i|e∈Pi
xi = be

or pe = 0, hence in either case pe
∑

i|e∈Pi
xi = pebe. Besides, by reversing the order of summation

again, ∑
i

x∗i
∑
e∈Pi

pe =
∑
e

pe
∑
i|e∈Pi

x∗i ≤
∑
e

pebe

where the last inequality comes from the fact that we can't allow users to exceed an edge's capacity.

Hence, ∑
i

xi
∑
e∈Pi

pe −
∑
i

x∗i
∑
e∈Pi

pe ≥ 0

and so (1) becomes

Ui (xi) ≥ Ui (x
∗
i )

Note that this theorem does not state that a price equilibrium exists. Using convex optimization,

one can prove that price equilibrium exists, when utilities are concave. However, we did not prove

this here.

2.2 Network sharing as a game

Now let's get back to considering the game outlined at the beginning of this section : each user i
o�ers an amount of money wi,e for every edge e ∈ Pi along his path, and as a result gets allocated

the amount of bandwidth xi,e according to fair-sharing:

xi,e =
wi,e∑
j wj,e

be

Then the actual bandwitdh he actually enjoys is the minimum along his path, i.e.

xi = min
e∈Pi

xi,e

which results in the net utility

Ui (xi)−
∑
e∈Pi

wi,e
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Unfortunately, this natural de�nition for this game cannot have an equilibrium : indeed, if an

user i is the only one competing for a given edge e, then any o�er wi,e > 0 will ensure that he'll

have the whole link for himself alone; but if he o�ers wi,e = 0 he won't get anything.

So we're going to consider a slightly modi�ed version of the game to account for this:

1. each user i, for any edge along his path, either makes an o�er wi,e > 0 or asks for a free

bandwidth fi,e over that edge

2. now for any edge e ∈ E:

* if anyone o�ered money for e, we share e according to the fair-share rule

* if no one o�ered money for e and if we can accomodate all the requests, i.e.
∑

i|e∈Pi
fi,e ≤

be then we give away the bandwidth for free, i.e. xi,e = fi,e

* if no one o�ered money for e but we can't accomodate all the requests, i.e.
∑

i|e∈Pi
fi,e >

be, then nobody gets anything, i.e. xi,e = 0 (the idea being that this is an over-demanded

resource, so we're not willing to give it away for free)

We are going to show for this game a similar result to the one we've seen for the single-link

setting:

Theorem 2. The price of anarchy in this game is at most 4
3 . That is, if (x1, x2, . . . , xn) and

(x∗1, x
∗
2, . . . , x

∗
n) respectively are the allocation at a Nash equilibrium and a socially optimal alloca-

tion, then ∑
i

Ui (xi) ≥
3

4

∑
i

Ui (x
∗
i )

The proof of this theorem wasn't completed during that lecture, by lack of time. We are only

going to establish a caracterization of Nash equilibria here, and the rest of the proof will be derived

in lecture 37 scribe notes.

This characterization of Nash equilibria we're looking for would be an analog of the result

we've recalled at the beginning on Nash equilibria for the single-link setting. We had obtained this

characterization as the result of a single-variate optimization problem in the player's o�er w. Here,
by contrast, each player makes a number of o�ers wi,e, and we don't want to try and solve a multi-

variate optimization problem. Let us see how we can translate this problem into a single-variate

problem.

We only have to notice that at equilibrium, for every user i, and for all edge e ∈ Pi, xi,e = xi
(indeed, user i has no interest in having more bandwidth on one edge than on another, since he

only enjoys the minimum of all them).

Then we can express all the wi,e variables as functions of xi, since by de�nition

xi,e =
wi,e∑
j wj,e

be

Re-arranging the terms, and using that at equilibrium xi = xi,e, we get that at equilibrium

wi,e = xi

∑
j 6=iwj,e

be − xi
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And now we're down to a single-variate optimization problem: we're looking for

xi = argmax
x

Ui (x)−
∑
e∈Pi

∑
j 6=iwj,e

be − x


Setting the derivative of the expression above to 0, we get the following characterization: for every

user i, at equilibirum, either

U ′i (0) ≤
∑
e∈Pi

pe and xi = 0

or else

U ′i (xi) =
∑
e∈Pi

pe
1

1− xi
be

where pe is the unit price at which edge e gets sold, namely pe =

∑
i|e∈Pi

wi,e

be
.

See lecture 37 scribe notes for the end of this proof.
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Lecture 38 Notes

Instructor: Eva Tardos Scirbe: Marcus Lim (mkl65)

1 Lecture 38 � Friday 20 April 2012 - Price Equilibrium in Arrow-

Debreu Model

1.1 Setup

• Goods {1, ..., k}.

• Players {1, ..., n}.

• Player i brings w̄i = (w1, ..., wk) amount of goods to the market, and has utility Ui(x̄i), where
x̄i = (xi1, ..., xik), where xij = amount of good j that player i gets.

• Assume utilities Ui(·) strictly monotone increasing, strictly concave, continuously di�eren-

tiable.

1.2 Price Equilibrium

Let p = (p1, ..., pk) be the prices for each good. Each player i sells w̄i to get p · w̄i amount of money

that is used for trading. Given prices, each player �nds

x̄i = arg max
x̄
{Ui(x̄) : p · x̄ ≤ p · w̄i, x̄ ≥ 0}

Note that since Ui(·) is strictly concave, x̄i is unique. Also, since Ui(·) is strictly monotone increasing

(in every dimension), p · x̄i = p · w̄i.

De�nition. Prices p = (p1, ..., pk), pj > 0 is a price equilibrium if the resulting x̄1, ..., x̄n optima

satisfy:

∀j
∑
i

xij ≤
∑
i

wij

Note that by strict monotonicity of utilities, if pj = 0 then all users want xij =∞, so that cannot

be an equilibrium.

Lemma (Market clearing). For all goods j,
∑

i xij =
∑

iwij .

Proof. As noted earlier, we have

p · x̄i = p · w̄i∑
i

p · x̄i =
∑
i

p · w̄i∑
j

pj
∑
i

xij =
∑
j

pj
∑
i

wij
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The only way for this to be equal is that they are term-by-term equal, so

pj
∑
i

xij = pj
∑
i

wij∑
i

xij =
∑
i

wij

More generally, pj(
∑

i xij)−
∑

iwij) = 0 even if Ui(·) is only monotone increasing.

De�nition (Simplex). ∆n := {x ∈ Rn : xi ≥ 0,
∑

i xi = 1}.

Theorem 1 (Brouwer Fixed Point Theorem). If function f : ∆n → ∆n is continuous, then there

exists x such that f(x) = x.

Theorem 2. Equilibrium prices exist.

Proof. Note that if p is a price equilibrium, then αp is also a price equilibrium for any α > 0.
WLOG, restrict to prices such that p ∈ ∆n. Let x̄1, ..., x̄n be user optima, and let

ej =

∑
j

(xij − wij)

+

f(p) = p̄

∀j p̄j =
pj + ej∑
i(pi + ei)

Lemma 3. p is price equilibrium ⇐⇒ f(p) = p.

Proof. Clearly, p is price equilibrium =⇒ f(p) = p. Thus, we only need to show that if p is not a
price equilibrium, then p is not a �xed point of f . Note that price changes unless ej/pj is �xed for

all j. We claim that there exist a good j such that
∑

i xij ≤
∑

iwij . Recall,∑
j

pj
∑
i

xij =
∑
j

pj
∑
i

wij

Hence, it cannot be the case that ej > 0 and for all goods j,
∑

i xij >
∑

iwij . Thus, if p is not a

price equilibrium, then there is some good j such that ej > 0 and hence, there must be some good

that will have its price reduced under f , so p is not a �xed point of f .

Lemma 4. f is continuous.

Proof. p̄ is continuous, and ej is continous, so we only need x̄i to be continous for all players i.
Using a fact from continuous optimization, optimizer x̄i (unique) is a continuous function of p, so
f is continuous.

Lemma 5. f : ∆n → ∆n is a function. If prices are zero, then xij =∞ and ej is unbounded. Hence,
we need x̄i's to be bounded to make ej 's bounded. To do this, we modify the user optimization to

include an extra condition.

x̄i = arg max
x̄

{
Ui(x̄) : px̄ ≤ pw̄, ∀j, xj ≥ 0, ∀j, xj ≤

∑
i

wij + 1

}
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Note that the last condition cannot be tight at the �xed point as it violates price equilibirum

conditions. Hence, this does not change the problem, but ensures that x̄i's are bounded, and

f : ∆n → ∆n is indeed a function.

Applying Brouwer's �xed point theorem to f shows that price equilibrium p exists.
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Lecture 19 � A Game with Private Information

Instructor: Eva Tardos Scribe: Kenneth Chong

Note: For administrative details regarding Homework 3 and the project, please view the �rst 7

minutes of the VideoNote lecture.

1 Introduction

In Lecture 17, we discussed two types of single-item auctions: �rst-price and second-price. For the

former, we applied a Bayesian framework, in which we assumed that players independently draw

values from a publicly known distribution, and use a single bidding function that is monotone in

their values. Under this framework, we observed that the two auctions are:

• Outcome equivalent: the player with the highest value wins.

• Revenue equivalent: the payment collected from the winner is equal in expectation.

In general, two forms of auctions may not be outcome equivalent. However, even under more

sophisticated Bayesian frameworks, outcome equivalence implies revenue equivalence (the revenue

equivalence theorem). We consider a game under which the latter holds.

2 The Game

Suppose now that:

• Player i has a private value vi drawn from distribution Fi

• Player values are independent of another.

• Distributions Fi are public knowledge, but values are not.

• Players have individual bidding functions bi(vi).

We construct the following mechanism, which converts bids into outcomes and payments:

1. Players submit bids bi(vi).

2. Mechanism gives each player an amount Xi ≥ 0 (possibly a random variable), and charges

each player price pi. Net value for each player is viXi − pi.

Remark: Letting Xi ∈ {0, 1},
∑

iXi = 1, pi = bi(vi) for the �high bidder� (and zero for everyone

else), we recover a single-item auction. Letting Xi ∈ [0, 1], we obtain a lottery where each player

pays pi for a probability Xi of �winning� the item.
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3 Revenue Equivalence

The Nash equilibrium strategies for this game can be neatly characterized:

Theorem: The bid functions form a Nash equilibrium if and only if:

1. For each i,
xi(vi) = E[Xi|vi = v]

is nondecreasing in v

2. Prices pi(vi) = E[pi|vi = v] satisfy

pi(vi) = xi(vi)vi −
∫ vi

0
xi(z) dz + pi(0)

Where the expectation is taken over other players' value distributions Fi.

Remark: By statement 2, because player payments depend only on xi(vi) (the outcomes), revenue

equivalence follows by corollary (with the additional assumption that pi(0) = 0).

Proof: (NE =⇒ 1) Suppose there exists a player i and values v < v′ such that xi(v) > xi(v
′). By

de�nition of Nash equilibrium, if player i's value is v, he prefers placing a bid using his true value

to blu�ng a value v′:
xi(v)v − pi(v) ≥ xi(v

′)v − pi(v
′)

Similarly, if player i has value v′, he prefers not to blu� value v:

xi(v
′)v′ − pi(v

′) ≥ xi(v)v
′ − pi(v)

Summing the two equations, canceling, and regrouping terms, we get

xi(v)v + xi(v
′)v′ ≥ xi(v

′)v + xi(v)
′

[xi(v)− xi(v
′)]v ≥ [xi(v)− xi(v

′)]v′

[xi(v)− xi(v
′)](v − v′) ≥ 0

Since we assumed v < v′ and xi(v) > xi(v
′), contradiction.

(1 & 2 =⇒ NE) By picture. For convenience, assume that the bid functions are onto (the theorem

still holds if this is relaxed). Consider the following plot of xi(vi) versus v:
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(Because we assumed that bid functions are onto, we can ignore jumps in the graph.) The area

bounded by the rectangle represents the value of the item that player i receives. The shaded area

is player i's payment, the white area his net payo�.

If player i blu�s a value v′ > vi, consider the following plot:

Although he increases the amount he receives to xi(v
′), player i values the item at xi(v

′)vi, the area
of the solid rectangle. However, his payment increases to pi(v

′), resulting in a net loss represented

by the wavy area in the graph.

If player i blu�s a value v′ < vi, a similar phenomenon occurs:

Player i thus could have increased his net value by the wavy area if he bid according to his true

value vi. This implies that player i has no incentive to place a bid di�erent from that corresponding

to his true value. We conclude that we are at a Nash equilibrium.

To be continued...
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Scribe Notes - Lecture 20

Instructor: Eva Tardos Isabel Mette Kloumann (imk36)

Lecture 20 � Monday March 3 2012 - Game with Private Informa-
tion - continued

Please see sections 2.4 and 2.5 in Hartline's Approximation and Economic Design for a discussion
similar to these notes.

1 Summary of lecture.

Nash equilibria - Review and discuss conditions for Nash equilibrium in Bayes payment/outcome
games.

Revenue equivalence - Find that if 0-valued agents have zero cost, mechanisms are revenue
equivalent, i.e. that if mechanisms produce the same outcomes in Nash equilibrium, they
have the same expected revenue.

Importance of revenue equivalence - An auctioneer is free to choose outcomes, and thus can
choose them to maximize revenue (this means that auctioneers just have to solve an optimiza-
tion problem to optimize their revenue).

From value space to probability space - We will introduce a change of variables that takes
us from value space to probability space. This change of variables will ultimately simplify the
mathematics required to solve the above optimization problem, as well as provide valuable
insight.

2 Review of Bayes payment/outcome game set up and conditions
for Nash equilibrium.

Review of the game:

• player i has value vi, where vi is drawn independently from a distribution Fi

• player i's outcome is Xi ≥ 0 and their payment is Pi

• utility for player i is viXi − Pi. Observe that viXi is the value player i enjoys given the
outcome of the game, and Pi is how much they have to pay for it.

Comment: we have been discussing the Nash equilibria of these games solely by thinking about
outcomes rather than bidding structures.

IMPORTANT: There was a major error in the de�nitions of xi and pi from the previous lecture.
The error is �xed in the posted lecture notes. Note that the proof of the erroneous theorem was
actually a valid proof of the correct theorem. We will state the correct theorem here, and discuss
why the proof from last time is applicable to this theorem and not the erroneous one.



CS 6840 Lecture 20 Scribe Notes (page 2 of 5)

2.1 Correcting the de�nitions from last lecture.

We de�ne player i's expected outcome and expected payment as a function of their value vi:

expected outcome - xi(v) = Exp(Xi|vi = v)

expected payment - pi(v) = Exp(Pi|vi = v)

The expectations are conditioned on player i's value vi being equal to v and integrated over all
possible values vj taken from F for all players j 6= i. These statements encode the qualitative idea
that this is a game with private information.

[The error from last lecture: we de�ned xi and pi to be conditioned on the OTHER players'
values - this doesn't make sense, given that this is a private information game. Rather, it makes
sense to condition on our value, and consider the expectation of other players' values.]

2.2 Theorem giving the conditions for Nash equilibrium.

Theorem 1. A game with outcomes and payments is in a Nash equilibrium i� it has the following
properties:

monotonicity the expected outcome, xi(vi), is monotone in vi.

payment identity the expected payment is given by

pi(v) = vxi(v) + pi(0)−
∫ xi(v)

0
xi(z)dz. (1)

pi(0) is the required payment given you don't value the item - this term is typically zero, as one
usually wants a game with free participation.

2.3 Discussion of proof from last lecture.

Monotonicity: Also see Hartline p 32. Let v′ ≥ v. If you are a player with value v and you
consider blu�ng and naming another value v′, then you will experience the outcome

vxi(v)− pi(v)︸ ︷︷ ︸
outcome if you name true value

≥ vxi(v
′)− pi(v′)︸ ︷︷ ︸

outcome if you blu�

. (2)

If you are a player with value v′ and you consider blu�ng and naming another value v, then
you will experience the outcome

v′xi(v
′)− pi(v′)︸ ︷︷ ︸

outcome if you name true value

≥ v′xi(v)− pi(v)︸ ︷︷ ︸
outcome if you blu�

. (3)

Adding these two inequalities we get

(v′ − v)(xi(v′)− xi(v)) ≥ 0. (4)

This implies that v′ ≥ v implies xi(v
′) ≥ xi(v).
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[Comment: This is true in the current game, but couldn't have been true last time. We
were conditioning on other people's values: how could we blu� if we were talking about
expectations of our value and other players' �xed values? It doesn't make sense to condition
on other people's values, because we don't know them - this is a game with private information!
We can only condition on our own value, and change our behavior with respect to that value.
We can only consider the other players' expected values (i.e. behaviors).]

Payment identity: We can rearrange inequalities 2 and 3 to observe:

v(xi(v
′)− xi(v)) ≤ pi(v′)− pi(v) ≤ v′(xi(v′)− xi(v)). (5)

This gives us lower and upper bounds on the price di�erence between v and v′.

Figure 1:

v v`
v

x_iHvL
x_iHv`L

x_i

Say v′ is a little larger than v, i.e. v′ = v + δ. Graphically this means the di�erence in
p(v′)− p(v) must be at least the purple area in �gure 1, and at most the blue + purple area.
This means that as we increase v′ the price goes as the blue area. This is a pictorial proof of
the theorem's forward statement of the payment identity, that the price is

p(i) = vxi(v)︸ ︷︷ ︸
whole box

−
∫ v

0
xi(z)dz︸ ︷︷ ︸

area under curve

. (6)

So far we have the forward direction of the theorem: if the game is in a Nash equilibrium, the
outcomes and payments of players must be given by statements (1) and (2) in the theorem. Last
time we give a proof of both directions. For our purposes today, it's satisfactory to focus only on
the forward direction.

3 Revenue equivalence and its implications.

If we add the condition that pi(0) = 0 for all i, then the payment identity shows revenue equiva-
lence: the outcomes determine the payments.
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Why do we care about revenue equivalence? Given you are an auctioneer who controls the
outcomes, if you have revenue equivalence you also control the revenue! Thus, to maximize your
revenue, you simply need to choose outcomes xi that make pi as high as possible: your task becomes
a simple optimization problem!

3.1 How to use revenue equivalence in auction design.

To maximize the expectation, evaluate the expected v subject to the distribution F . This is, �nd
xi that are monotone in v such that the expected payments are maximal:

max
∑
i

ExpFi(pi(v)) (7)

This problem could become awkward: we are maximizing a function that is a double integral
over the distribution Fi. (The expectation involves an integral of pi(v) over Fi, and pi(v) is itself
an integral over Fi.)

3.1.1 Simplify the integrals: change from value space to probability space.

Cumulative distribution maps values to probabilities - Fi(v) = Pr(z ≤ v) = 1 − q is the
cumulative distribution, that is, it's the probability that we would sample a value less than v.

Inverse cumulative distribution maps probabilities to values - With probability q a player
will have a value above v = F−1(1− q).

A one-to-one correspondence - F gives a one-to-one correspondence between q and v. Proba-
bility that you're less than some very small value is 0, probability that you're less than some
very large value is 1. Probability that you're less than v is 1 − q. Probability you're greater
than v is q.

The buying probability as an interpretation of q - q can be interpreted as the buying prob-
ability: a player will value the item above v with probability q = Pr(v > z) = 1 − Pr(v ≤
z) = 1− F (v).

THE PLAN: Instead of sampling and integrating over v in F (v), we will sample and integrate
over q ∈ [0, 1]. Sampling over q will be a nicer process to think about: v comes from Fi which is a
`weird' distribution, whereas q is a probability and thus comes from the `friendly' interval [0, 1].

• vi(q) is the value that corresponds to probability q, i.e. vi(q) = F−1(1− q).

• When we sampled a value v from F , we were thinking about the expected payments and
outcomes given the price of the item is v: xi(v) and pi(v)

• Now that we're sampling a probability q from [0,1] we will be thinking about the expected
payments and outcomes given the item will be sold with probability q: xi(v(q)) = xi(q) and
pi(v(q)) = pi(q).

Next time we will develop a theorem that gives the conditions for Bayes-Nash equilibrium in
probability space.

Summary: sampling q instead of v turns awkward integrals into friendly integrals.
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4 Thinking about a transaction with a single item and a single user.

How would you sell a single item to a single user if you're revenue maximizing?

Buyers - There is one buyer with distribution Fi.

Products - You have one item to sell.

What do you do? There is no competition between the buyers, your sole action is to set the
price p. So, you ought to set p to maximize revenue.

Revenue curve expressed in terms of the price you set p - You will make p ∗Pr(v > p) =
p(1− F (p)). Expected revenue with price v: v(1− F (v)).

Revenue curve expressed with probability of buying q - The probability a player will buy
is q and the associated price is vi(q): you will make revenue q ∗ vi(q).

Preview: Ultimately our goal will be to implement a change of variables from value to virtual
value. This will both simplify the calculus and give insight into where the formula for revenue comes
from.


