
6.854 Advanced Algorithms

Lecture 1: September 7, 2005 Lecturer: David Karger
Scribes: David G. Andersen, Ioana Dumitriu, John Dunagan, Akshay Patil (2003)

Fibonaccci Heaps

1.1 Motivation and Background

Priority queues are a classic topic in theoretical computer science. As we shall see, Fibonacci
Heaps provide a fast and elegant solution. The search for a fast priority queue implementation is
motivated primarily by two network optimization algorithms: Shortest Path and Minimum Spanning
Tree (MST).

1.1.1 Shortest Path and Minimum Spanning Trees

Given a graph G(V, E) with vertices V and edges E and a length function l : E → �+ . We define
the Shortest Path and MST problems to be, respectively:

shortest path. For a fixed source s ∈ V , find the shortest path to all vertices v ∈ V

minimum spanning tree (MST). Find the minimum length set of edges F ⊂ E such that F
connects all of V .

Note that the MST problem is the same as the Shortest Path problem, except that the source is
not fixed. Unsurprisingly, these two problems are solved by very similar algorithms, Prim’s for MST
and Djikstra’s for Shortest Path. The algorithm is:

1. Maintain a priority queue on the vertices

2. Put s in the queue, where s is the start vertex (Shortest Path) or any vertex (MST). Give s a
key of 0.

3.	 Repeatedly delete the minimum-key vertex v from the queue and mark it “scanned”

For each neighbor w of v:

If w is not in the queue and not scanned, add it with key:

•	 Shortest Path: key(v) + length(v → w)

•	 MST: length(v → w)

If, on the other hand, w is in the queue already, then decrease its key to the minimum of the
value calculated above and w’s current key.

1-1

Lecture 1: September 7, 2005 1-2

1.1.2 Heaps

The classical answer to the problem of maintaining a priority queue on the vertices is to use a binary
heap, often just called a heap. Heaps are commonly used because they have good bounds on the
time required for the following operations:

insert O(log n)
delete-min O(log n)
decrease-key O(log n)

If a graph has n vertices and m edges, then running either Prim’s or Djikstra’s algorithms will
require O(n log n) time for inserts and deletes. However, in the worst case, we will also perform m
decrease-keys, because we may have to perform a key update every time we come across a new edge.
This will take O(m log n) time. Since the graph is connected, m ≥ n, and the overall time bound is
given by O(m log n).

Since m ≥ n, it would be nice to have cheaper key decreases. A simple way to do this is to use
d-heaps.

1.1.3 d-Heaps

d-heaps make key reductions cheaper at the expense of more costly deletions. This trade off is
accomplished by replacing the binary heap with a d-ary heap—the branching factor (the maximum
number of children for any node) is changed from 2 to d. The depth of the tree then becomes logd(n).
However, delete-min operations must now traverse all of the children in a node, so their cost goes up
to d logd(n). Thus, the running time of the algorithm becomes O(nd logd(n)+ m logd(n)). Choosing
the optimal d = m/n to balance the two terms, we obtain a total running time of O(m logm/n n).

When m = n2, this is O(m), and when m = n, this is O(n log n). This seems pretty good, but it
turns out we can do much better.

1.1.4 Amortized Analysis

Amortized analysis is a technique for bounding the running time of an algorithm. Often we analyse an
algorithm by analyzing the individual operations that the algorithm performs and then multiplying
the total number of operations by the time required to perform an operation. However, it is often the
case that an algorithm will on occasion perform a very expensive operation, but most of the time the
operations are cheap. Amortized analysis is the name given to the technique of analyzing not just
the worst case running time of an operation but the average case running time of an operation. This
will allow us to balance the expensive-but-rare operations against their cheap-and-frequent peers.

There are several methods for performing amortized analysis; for a good treatment, see Introduction
to Algorithms by Cormen, Leiserson, and Rivest. The method of amortized analysis used to analyze
Fibonacci heaps is the potential method:

• Measure some aspect of the data structure using a potential function. Often this aspect of

�

�	 �

Lecture 1: September 7, 2005	 1-3

the data structure corresponds to what we intuitively think of as the complexity of the data
structure or the amount by which it is out of kilter or in a bad arrangement.

•	 If operations are only expensive when the data structure is complicated, and expensive op-
erations can also clean up (“uncomplexify”) the data structure, and it takes many cheap
operations to noticeably increase the complexity of the data structure, then we can amortize
the cost of the expensive operations over the cost of the many cheap operations to obtain a
low average cost.

Therefore, to design an efficient algorithm, we want to force the user to perform many operations to
make the data structure complicated, so that the work doing the expensive operation and cleaning
up the data structure is amortized over those many operations.

We compute the potential of the data structure by using a potential function Φ that maps the data
structure (DS) to a real number Φ(DS). Once we have defined Φ, we calculate the cost of the ith

operation by:

costamortized(operationi) = costactual (operationi) + Φ(DSi) − Φ(DSi−1)

where DSi refers to the state of the data structure after the ith operation. The sum of the amortized
costs is then

costactual (operationi) + Φfinal − Φinitial

.

If we can prove that Φfinal ≥ Φinitial, then we’ve shown that the amortized costs bound the real
costs, that is, costamortized ≥ costactual . Then we can just analyze the amortized costs and
show that this isn’t too much, knowing that our analysis is useful. Most of the time it is obvious
that Φfinal ≥ Φinitial and the real work is in coming up with a good potential function.

1.2 Fibonacci Heaps

The Fibonacci heap data structure invented by Fredman and Tarjan in 1984 gives a very efficient
implementation of the priority queues. Since the goal is to find a way to minimize the number of
operations needed to compute the MST or SP, the kind of operations that we are interested in are
insert, decrease-key, merge, and delete-min. (We haven’t covered why merge is a useful operation
yet, but it will become clear.) The method to achieve this minimization goal is laziness – “do work
only when you must, and then use it to simplify the structure as much as possible so
that your future work is easy”. This way, the user is forced to do many cheap operations in
order to make the data structure complicated.

Fibonacci heaps make use of heap-ordered trees. A heap-ordered tree is one that maintains the heap
property, that is, where key(parent) ≤ key(child) for all nodes in the tree.

A Fibonacci heap H is a collection of heap-ordered trees that have the following properties:

Lecture 1: September 7, 2005 1-4

1. The roots of these trees are kept in a doubly-linked list (the “root list” of H);

2. The root of each tree contains the minimum element in that tree (this follows from being a
heap-ordered tree);

3. We access the heap by a pointer to the tree root with the overall minimum key;

4. For each node x, we keep track of the rank (also known as the order or degree) of x, which
is just the number of children x has; we also keep track of the mark of x, which is a Boolean
value whose role will be explained later.

For each node, we have at most four pointers that respectively point to the node’s parent, to one of
its children, and to two of its siblings. The sibling pointers are arranged in a doubly-linked list (the
“child list” of the parent node). Of course, we haven’t described how the operations on Fibonacci
heaps are implemented, and their implementation will add some additional properties to H . Here
are some elementary operations used in maintaining Fibonacci heaps.

1.2.1 Inserting, merging, cutting, and marking.

Inserting a node x. We create a new tree containing only x and insert it into the root list of H ;
this is clearly an O(1) operation.

Merging two trees. Let x and y be the roots of the two trees we want to merge; then if the key
in x is no less than the key in y, we make x the child of y; otherwise, we make y the child of x. We
update the appropriate node’s rank and the appropriate child list; this takes O(1) operations.

Cutting a node. If x is a root in H , we are done. If x is not a root in H , we remove x from the
child list of its parent, and insert it into the root list of H , updating the appropriate variables (the
rank of the parent of x is decremented, etc.). Again, this takes O(1) operations. (We assume that
when we want to find a node, we have a pointer hanging around that accesses it directly, so actually
finding the node takes O(1) time.)

Marking. We say that x is marked if its mark is set to “true”, and that it is unmarked if its mark
is set to “false”. A root is always unmarked. We mark x if it is not a root and it loses a child (i.e.,
one of its children is cut and put into the root-list). We unmark x whenever it becomes a root. We
will make sure later that no marked node loses another child before it itself is cut (and reverted
thereby to unmarked status).

1.2.2 Decreasing keys and Deleting mins

At first, decrease-key does not appear to be any different than merge or insert ; just find the node
and cut it off from its parent, then insert the node into the root list with a new key. This requires
removing it from its parent’s child list, adding it to the root list, updating the parent’s rank, and (if
necessary) the pointer to the root of smallest key. This takes O(1) operations.

�	 �

Lecture 1: September 7, 2005	 1-5

The delete-min operation works in the same way as decrease-key: Our pointer into the Fibonacci
heap is a pointer to the minimum keyed node, so we can find it in one step. We remove this root of
smallest key, add its children to the root-list, and scan through the linked list of all the root nodes to
find the new root of minimum key. Therefore, the cost of a delete-min operation is O(# of children)
of the root of minimum key plus O(# of root nodes); in order to make this sum as small as possible,
we have to add a few bells and whistles to the data structure.

1.2.3 Population Control for Roots

We want to make sure that every node has a small number of children. This can be done by ensuring
that the total number of descendants of any node is exponential in the number of its children. In
the absence of any “cutting” operations on the nodes, one way to do this is by only merging trees
that have the same number of children (i.e, the same rank). It is relatively easy to see that if we
only merge trees that have the same rank, the total number of descendants (counting onself as a

descendant) is always (2# of children). The resulting structure is called a binomial tree because the
number of descendants at distance k from the root in a tree of size n is exactly n

k . Binomial heaps
preceded Fibonacci heaps and were part of the inspiration for them. We now present Fibonacci
heaps in full detail.

1.2.4 Actual Algorithm for Fibonacci Heaps

•	 Maintain a list of heap-ordered trees.

•	 insert : add a degree 0 tree to the list.

•	 delete-min: We can find the node we wish to delete immediately since our handle to the entire
data structure is a pointer to the root with minimum key. Remove the smallest root, and add
its children to the list of roots. Scan the roots to find the next minimum. Then consolidate all
the trees (merging trees of equal rank) until there is ≤ 1 of each rank. (Assuming that we have
achieved the property that the number of descendants is exponential in the number of children
for any node, as we did in the binomial trees, no node has rank > c log n for some constant c.
Thus consolidation leaves us with O(log n) roots.) The consolidation is performed by allocating
buckets of sizes up to the maximum possible rank for any root node, which we just showed to
be O(log n). We put each node into the appropriate bucket, at cost O(log n) + O(# of roots).
Then we march through the buckets, starting at the smallest one, and consolidate everything
possible. This again incures cost O(log n) + O(# of roots).

•	 decrease-key: cut the node, change its key, and insert it into the root list as before, Additionally,
if the parent of the node was unmarked, mark it. If the parent of the node was marked, cut it
off also. Recursively do this until we get up to an unmarked node. Mark it.

1.2.5 Actual Analysis for Fibonacci Heaps

Define Φ(DS) = (k· # of roots in DS + 2 · # marked bits in DS). Note that insert and delete-min
do not ever cause nodes to be marked - we can analyze their behaviour without reference to marked

Lecture 1: September 7, 2005	 1-6

and unmarked bits. The parameter k is a constant that we will conveniently specify later. We now
analyze the costs of the operations in terms of their amortized costs (defined to be the real costs
plus the changes in the potential function).

•	 insert : the amortized cost is O(1). O(1) actual work plus k * O(1) change in potential for
adding a new root. O(1) + kO(1) = O(1) total amortized cost.

•	 delete-min: for every node that we put into the root list (the children of the node we have
deleted), plus every node that is already in the root list, we do constant work putting that
node into a bucket corresponding to its rank and constant work whenever we merge the node.
Our real costs are putting the roots into buckets (O(#roots)), walking through the buckets
(O(log n)), and doing the consolidating tree merges (O(#roots)). On the other hand, our
change in potential is k∗(log n−#roots) (since there are at most log n roots after consolidation).
Thus, total amortized cost is O(#roots) + O(log n) + k ∗ (log n − #roots) = O(log n).

•	 decrease-key: The real cost is O(1) for the cut, key decrease and re-insertion. This also
increases the potential function by O(1) since we are adding a root to the root list, and maybe
by another 2 since we may mark a node. The only problematic issue is the possibility of a
“cascading cut” - a cascading cut is the name we give to a cut that causes the node above it
to cut because it was already marked, which causes the ndoe above it be cut since it too was
alrady marked, etc. This can increase the actual cost of the operation to (# of nodes already
marked). Luckily, we can pay for this with the potential function! Every cost we incur from
having to update pointers due to a marked node that was cut is offset by the decrease in the
potential function when that previously marked node is now left unmarked in the root list.
Thus the amortized cost for this operation is just O(1).

The only thing left to prove is that for every node in every tree in our Fibonacci heap, the number
of descendants of that node is exponential in the number of children of that node, and that this is
true even in the presence of the “weird” cut rule for marked bits. We must prove this in order to
substantiate our earlier assertion that all nodes have degree ≤ log n.

1.2.6 The trees are big

Consider the children of some node x in the order in which they were added to x.

Lemma : The ith child to be added to x has rank at least i − 2.

Proof : Let y be the ith child to be added to x. When it was added, y had at least i − 1 children.
This is true because we can currently see i − 1 children that were added earlier, so they were there
at the time of the y’s addition. This means that y had at least i − 1 children at the time of it’s
merger, because we only merge equal ranked nodes. Since a node could not lose more than one child
without being cut itself, it must be that y has at least i − 2 children (i− 1 from when it was added,
and no more than a potential 1 subsequently lost).

Note that if we had been working with a binomial tree, the appropriate lemma would have been
rank = i − 1 not ≥ i − 2.

�

Lecture 1: September 7, 2005 1-7

Let Sk be the minimum number of descendants of a node with k children. We have S0 = 1, S1 = 2
and,

k−2

Sk ≥ Si

i=0

This recurrence is solved by Sk ≥ Fk+2, the (k+2)th Fibonacci number. Ask anyone on the street and
that person will tell you that the Fibonacci numbers grow exponentially; we have proved Sk ≥ 1.5k ,
completing our analysis of Fibonacci heaps.

1.2.7 Utility

Only recently have problem sizes increased to the point where Fibonacci heaps are beginning to
appear in practice. Further study of this issue might make an interesting term project; see David
Karger if you’re curious.

Fibonacci Heaps allow us to improve the running time in Prim’s and Djikstra’s algorithms. A more
thorough analysis of this will be presented in the next class.

6.854 Advanced Algorithms

Lecture 2: September 9, 2005 Lecturer: David Karger
Scribes: Sommer Gentry, Eddie Kohler

Persistent Data Structures

2.1 Introduction and motivation

So far, we’ve seen only ephemeral data structures. Once changes have been made to an ephemeral
data structure, no mechanism exists to revert to previous states. Persistent data structures are
really data structures with archaeology.

Partial persistence lets you make modifications only to the present data structure but allows queries
of any previous version. These previous versions might be accessed via a timestamp.

Full persistence lets you make queries and modifications to all previous versions of the data structure.
With this type of persistence the versions don’t form a simple linear path — they form a version
tree.

The obvious way to provide persistence is to make a copy of the data structure each time it is
changed.

This has the drawback of requiring space and time proportional to the space occupied by the original
data structure.

In turns out that we can achieve persistence with O(1) additional space and O(1) slowdown per
operation for a broad class of data structures.

2.1.1 Applications

In addition to the obvious ‘look-back’applications, we can use persistent data structures to solve
problems by representing one of their dimensions as time.

Once example is the computational geometry problem of planar point location. Given a plane with
various polygons or lines which break the area up into a number of regions, in which region is a
query point is located?

In one dimension, the linear point location problem can be solved with a splay tree or a binary tree
that simply searches for the two objects on either side of the query point.

To solve the problem in two dimensions, break the plane into vertical slices at each vertex or point
where lines cross. These slices are interesting because crossovers don’t happen inside slices: inside
each slice, the dividing lines between regions appear in a fixed order, so the problem reduces to the

2-1

2-2 Lecture 2: September 9, 2005

Figure 2.1: Breaking the plane into slices for planar point location

linear case and requires a binary search (plus a bit of linear algebra). Figure 2.1 shows an example
of how these slices look. To locate a point, first find the vertical slice it is in with a search on the
point’s x coordinate, and then, within that slice, find the region it is in with a search on the point’s
y coordinate (plus algebra). To do two binary searches takes only O(log n) time, so we can locate
a point in O(log n) time. However, setting up the trees for searching a figure with n vertices will
require n different trees, taking O(n2 log n) time and O(n2) space to do the preprocessing.

Notice that between two adjacent slices of the picture there will only be one change. If we treat
the horizontal direction as a timeline and use a persistent data structure, we can find the horizontal
location of the point as a ’version’ of the vertical point location data structure. In this way, we can
preserve the O(log n) query time and use only O(n) space and O(n log n) preprocessing time.

2.2 Making pointer-based data structures persistent

Now let’s talk about how to make arbitrary pointer-based data structures persistent. Eventually,
we’ll reveal a general way to do this with O(1) additional space and O(1) slowdown, first published by
Sleator and Tarjan et al. We’re mainly going to discuss partial persistence to make the explanation
simpler, but their paper achieves full persistence as well.

2.2.1 First try: fat nodes

One natural way to make a data structure persistent is to add a modification history to every node.
Thus, each node knows what its value was at any previous point in time. (For a fully persistent
structure, each node would hold a version tree, not just a version history.)

This simple technique requires O(1) space for every modification: we just need to store the new
data. Likewise, each modification takes O(1) additional time to store the modification at the end
of the modification history. (This is an amortized time bound, assuming we store the modification
history in a growable array. A fully persistent data structure would add O(log m) time to every
modification, since the version history would have to be kept in a tree of some kind.)

Lecture 2: September 9, 2005 2-3

Unfortunately, accesses have bad time behavior. We must find the right version at each node as we
traverse the structure, and this takes time. If we’ve made m modifications, then each access operation
has O(log m) slowdown. (In a partially persistent structure, a version is uniquely identified by a
timestamp. Since we’ve arranged the modifications by increasing time, you can find the right version
by binary search on the modification history, using the timestamp as key. This takes O(log m) time
to find the last modification before an arbitrary timestamp. The time bound is the same for a fully
persistent structure, but a tree lookup is required instead of a binary search.)

2.2.2 Second try: path copying

Another simple idea is to make a copy of any node before changing it. Then you have to cascade the
change back through the data structure: all nodes that pointed to the old node must be modified to
point to the new node instead. These modifications cause more cascading changes, and so on, until
you reach a node that nobody else points to—namely, the root. (The cascading changes will always
reach the root.) Maintain an array of roots indexed by timestamp; the data structure pointed to by
time t’s root is exactly time t’s data structure. (Some care is required if the structure can contain
cycles, but it doesn’t change any time bounds.)

Figure 2.2 shows an example of path copying on a binary search tree. Making a modification creates
a new root, but we keep the old root around for later use; it’s shown in dark grey. Note that the
old and new trees share some structure (light grey nodes).

Figure 2.2: Path copying on binary search trees

Access time does better on this data structure. Accesses are free, except that you must find the
correct root. With m modifications, this costs O(log m) additive lookup time—much better than
fat nodes’ multiplicative O(log m) slowdown.

Unfortunately, modification time and space is much worse. In fact, it’s bounded by the size of the
structure, since a single modification may cause the entire structure to be copied. That’s O(n).

Path copying applies just as well to fully persistent data structures.

2.2.3 Sleator, Tarjan et al.

Sleator, Tarjan et al. came up with a way to combine the advantages of fat nodes and path copying,
getting O(1) access slowdown and O(1) modification space and time. Here’s how they did it, in the
special case of trees.

In each node, we store one modification box. This box can hold one modification to the node—either
a modification to one of the pointers, or to the node’s key, or to some other piece of node-specific

2-4 Lecture 2: September 9, 2005

data—and a timestamp for when that modification was applied. Initially, every node’s modification
box is empty.

Whenever we access a node, we check the modification box, and compare its timestamp against the
access time. (The access time specifies the version of the data structure that we care about.) If the
modification box is empty, or the access time is before the modification time, then we ignore the
modification box and just deal with the normal part of the node. On the other hand, if the access
time is after the modification time, then we use the value in the modification box, overriding that
value in the node. (Say the modification box has a new left pointer. Then we’ll use it instead of
the normal left pointer, but we’ll still use the normal right pointer.)

Modifying a node works like this. (We assume that each modification touches one pointer or similar
field.) If the node’s modification box is empty, then we fill it with the modification. Otherwise, the
modification box is full. We make a copy of the node, but using only the latest values. (That is,
we overwrite one of the node’s fields with the value that was stored in the modification box.) Then
we perform the modification directly on the new node, without using the modification box. (We
overwrite one of the new node’s fields, and its modification box stays empty.) Finally, we cascade
this change to the node’s parent, just like path copying. (This may involve filling the parent’s
modification box, or making a copy of the parent recursively. If the node has no parent—it’s the
root—we add the new root to a sorted array of roots.)

Figure 2.3 shows how this works on a persistent search tree. The modification boxes are shown in
grey.

Figure 2.3: Modifying a persistent search tree.

With this algorithm, given any time t, at most one modification box exists in the data structure
with time t. Thus, a modification at time t splits the tree into three parts: one part contains the
data from before time t, one part contains the data from after time t, and one part was unaffected
by the modification.

Figure 2.4: How modifications split the tree on time.

Lecture 2: September 9, 2005 2-5

How about time bounds? Well, access time gets an O(1) slowdown (plus an additive O(log m) cost
for finding the correct root), just as we’d hoped! (We must check the modification box on each node
we access, but that’s it.)

Time and space for modifications require amortized analysis. A modification takes O(1) amortized
space, and O(1) amortized time. To see why, use a potential function ϕ, where ϕ(T) is the number
of full live nodes in T . The live nodes of T are just the nodes that are reachable from the current
root at the current time (that is, after the last modification). The full live nodes are the live nodes
whose modification boxes are full.

So, how much does a modification cost? Each modification involves some number of copies, say k,
followed by 1 change to a modification box. (Well, not quite—you could add a new root—but that
doesn’t change the argument.) Consider each of the k copies. Each costs O(1) space and time, but
decreases the potential function by one! (Why? First, the node we copy must be full and live, so it
contributes to the potential function. The potential function will only drop, however, if the old node
isn’t reachable in the new tree. But we know it isn’t reachable in the new tree—the next step in
the algorithm will be to modify the node’s parent to point at the copy! Finally, we know the copy’s
modification box is empty. Thus, we’ve replaced a full live node with an empty live node, and ϕ
goes down by one.) The final step fills a modification box, which costs O(1) time and increases ϕ
by one.

Putting it all together, the change in ϕ is ∆ϕ = 1 − k. Thus, we’ve paid O(k + ∆ϕ) = O(1) space
and O(k + ∆ϕ + 1) = O(1) time!

What about non-tree data structures? Well, they may require more than one modification box. The
limiting factor is the in-degree of a node: how many other nodes can point at it. If the in-degree of
a node is k, then we must use k extra modification boxes to get O(1) space and time cost.

2.2.4 The geometric search problem

Let’s return to the geometric search problem discussed in Section 2.1. We now know how to make
a persistent tree; but what kind of balanced tree should we use?

It turns out that this is one application where splay trees crash and burn. The reason is splaying.
Every rotation while we access a splay tree is a modification, so we do O(log n) modifications (costing
an additional O(log n) space) per access—including reads!

A less sexy balanced tree, like a red-black tree, is a better choice. Red-black trees keep themselves
balanced with at most one rotation per modification (and a bunch of fiddling with red/black bits).
This looks good—accesses are cheaper, and modifications cost O(1)—almost. The “almost” is
because of red/black bit fiddling, which may affect a lot more than one node on the tree. A fully
persistent red-black tree would need to keep the proper values for the red/black bits for every single
version of the tree (so that further modifications could be made). This would mean that changing
a red/black bit would count as a modification, and would have a persistence-related cost. Luckily,
in the geometric search problem, we won’t need to look at the red/black bits for old versions of the
tree, so we can keep them only for the latest version of the tree and pay O(1) persistence-related
cost per modification.

6.854 Advanced Algorithms

Lecture 3: 09/12/2005 Lecturer: David Karger
Scribes: Xin Zhang

Splay Trees

3.1 Introduction

Splay trees are binary search trees with good balance properties when amortized over a sequence of
operations.

When a node x is accessed, we perform a sequence of splay steps to move x to the root of the tree.
There are 6 types of splay steps, each consisting of 1 or 2 rotations (see Figures 3.1, 3.2, and 3.3).

A B

C

D

x

z

y A

B

C D

x

z

y2

1

Figure 3.1: The rr splay step: This is performed when x and x’s parent are both left children.
The splay step consists of first a right rotation on z and then a right rotation on y (hence rr). The
ll splay step, for x and x’s parent being right children, is analogous.

We perform splay steps to x (rr, ll, lr, or rl, depending on whether x and x’s parent are left or
right children) until x is either the root or a child of the root. In the latter case, we need to perform
either a r or l splay step to make x the root. This completes a splay of x.

We will show that splay operations have amortized cost O(log n), and that consequently all splay
tree operations have amortized cost O(log n).

3.2 Analysis of Splay Steps

For amortized analysis, we define the following for each node x:

3-1

∑

∑

′

3-2 Lecture 3: 09/12/2005

A

B C

D

A B C D

2

x

z

y 1

x

zy

Figure 3.2: The lr splay step: This is performed when x is a right child and x’s parent is a left
child. The splay step consists of first a left rotation on y and then a right rotation on z. The rl
splay step, for x being a left child and x’s parent being a right child, is analogous.

A B

Cx

y

A

B C

x

y

1

Figure 3.3: The r splay step: This is performed when x is the left child of the root y. The splay
step consists of a right rotation on the root. The l splay step, for x being the right child of the root,
is analogous.

•	 a constant weight w(x) > 0 (for the analysis, this can be arbitrary)

•	 weight sum s(x) = y∈subtree(x) w(y) (where subtree(x) is the subtree rooted at x, including
x)

•	 rank r(x) = log s(x)

We use r(x) as the potential of a node. The potential function after i operations is thus φ(i) =

x∈tree r(x).

Lemma 1 The amortized cost of a splay step on node x is ≤ 3(r′(x) − r(x)) + 1, where r is rank
before the splay step and r is rank after the splay step. Furthermore, the amortized cost of the rr,
ll, lr, and rl splay steps is ≤ 3(r′(x) − r(x)).

Proof:

()

()

()

()

∑

∑

3-3 Lecture 3: 09/12/2005

We will consider only the rr splay step (refer to Figure 3.1). The actual cost of the splay step is 2
(for 2 rotations). The splay step only affects the potentials/ranks of nodes x, y, and z; we observe
that r′(x) = r(z), r(y) ≥ r(x), and r′(y) ≤ r′(x).

The amortized cost of the splay step is thus:

amortized cost = 2 + φ(i + 1) − φ(i)
= 2 + (r ′(x) + r ′(y) + r ′(z)) − (r(x) + r(y) − r(z))
= 2 + (r ′(x) − r(z)) + r ′(y) + r ′(z) − r(x) − r(y)
≤ 2 + 0 + r ′(x) + r ′(z) − r(x) − r(x)
= 2 + r ′(x) + r ′(z) − 2r(x)

The log function is concave, i.e., log a+log b ≤ log 2
a+b . Thus we also have (s is weight sum before 2

the splay step and s′ is weight sum after the splay step):

log(s(x)) + log(s′(z)) s(x) + s′(z)≤ log
2 2

r(x) + r′(z) s(x) + s′(z)≤ log (note that s(x) + s′(z) ≤ s′(x))
2 2

s′(x)≤ log
2

= r ′(x) − 1

r ′(z) ≤ 2r ′(x) − r(x) − 2

Thus the amortized cost of the rr splay step is ≤ 3(r′(x) − r(x)).

The same inequality must hold for the ll splay step; the inequality also holds for the lr (and rl)
splay steps. The +1 in the lemma applies for the r and l cases.

Corollary 1 The amortized cost of a splay operation on node x is O(log n).

Proof:

The amortized cost of a splay operation on x is the sum of the amortized costs of the splay steps on
x involved:

amortized cost = cost(splay stepi)
i (

i(x)
)

i+1(x) − r≤ 3(r + 1
i

= 3(r(root) − r(x)) + 1

(

(

Lecture 3: 09/12/2005 3-4

The +1 comes from the last r or l splay step (if necessary). If we set w(x) = 1 for all nodes in the
tree, then r(root) = log n and we have:

amortized cost ≤ 3 log n + 1 = O(log n)

3.3 Analysis of Splay Tree Operations

3.3.1 Find

For the find operation, we perform a normal BST find followed by a splay operation on the node
found (or the leaf node last encountered, if the key was not found). We can charge the cost of going
down the tree to the splay operation. Thus the amortized cost of find is O(log n).

3.3.2 Insert

For the insert operation, we perform a normal BST insert followed by a splay operation on the node
inserted. Assume node x is inserted at depth k. Denote the parent of x as y1, y1’s parent as y2, and
so on (the root of the tree is yk). Then the change in potential due to the insertion of x is (r is rank
before the insertion and r′ is rank after the insertion, s is weight sum before the insertion):

k ∑
∆φ = (r ′(yj) − r(yj))

j=1

k ∑
= (log(s(yj) + 1) − log(s(yj))

j=1

=
k ∑

j=1

log

(
s(yj) + 1

s(yj)

)

⎛ ⎞
k ∏ s(yj) + 1

= log (note that s(yj) + 1 ≤ s(yj+1))⎝ ⎠
s(yj)j=1

s(y2) s(y3) s(yk) s(yk) + 1
)

≤ log · · · · ·
s(y1) s(y2) s(yk−1) s(yk)
s(yk) + 1

)

= log
s(yk)

≤ log n

The amortized cost of the splay operation is also O(log n), and thus the amortized cost of insert is
O(log n).

3-5 Lecture 3: 09/12/2005

We have proved the following:

Theorem 1 All splay tree operations have amortized cost O(log n).

6.854 Advanced Algorithms

Lecture 4: September 14, 2005 Lecturer: David Karger

Suffix Trees and Fibonacci Heaps

4.1 Suffix Trees

Recall that our goal is to find a pattern of length m in a text of length n. Also recall that the trie
will contain a size |Σ| array at each node to give O(m) lookups.

4.1.1 Size of the Trie

Previously, we have seen a construction algorithm that was linear in the size of the trie. We would
like to show that the size of the trie is linear in the size of the text, so that the construction algorithm
takes O(n) time. We can achieve this size goal by using a compressed suffix tree. In a compressed
tree, each node has strictly more than one child. Below, we see the conversion from a uncompressed
suffix tree to a compressed suffix tree.

o

\ b

o o

\ b => \ bbb

o o

\ b

o

How will this change the number of nodes in the trie? Since there are no nodes with only one child,
this is a full binary tree (i.e. every internal node has degree ≥ 2).

Lemma 1 In any full tree, the number of nodes is not more than twice the number of leaves.

When we use the trailing $, the number of leaves in the trie is the number of suffixes. So does this
mean that there are n leaves and the tree is of size O(n)? Yes; however, the number of nodes isn’t
necessarily the full size of the tree – we must store the substrings as well. For a string with distinct
characters, storing strings on the edges could lead to a O(n2) size algorithm. Instead, we just store
the starting and ending index in the original text on each edge, meaning that the storage at each
node is O(1), so the total size for the tree is in fact O(n).

4-1

Lecture 4: September 14, 2005 4-2

With the compressed tree, we can still perform lookups in O(m) time using the slowfind algorithm
which compares one character at a time from the pattern to the text in the trie. When slowfind
encounters a compressed node, it checks all of the characters in the node, just as if it were traversing
the uncompressed series of nodes.

4.1.2 Building the Trie

A simple approach to building the compressed tree would be to build an uncompressed tree and
then compress it. However, this approach would require quadratic time and space.

The construction algorithm for compressed tries will still insert S1...Sn in order. As we go down the
trie to insert a new suffix, we may need to leave in the middle of an edge. For example, consider the
trie that contains just bbb. To insert ba, we must split the edge :

o o
\ \ b
\ bbb o
\ a / \ bb
o o o

Splitting an edge is easy; we will create one new node from the split and then one new node (a leaf)
from the insertion.

One problem with compressed trie is where to put suffix links from the compressed edges. Another
problem is that we previously described the time to operate on the tree in terms of n (the number
of characters in the text); however, n may now be greater than the number of nodes.

fastfind is an algorithm for descending the trie if you know that the pattern is in the trie. fastfind
only checks the first character of a compressed edge; all the other characters must match if the first
does because the pattern is in the trie and because there is no branch in the edge (ie, if the pattern
is there and there is no branch, it must match the entire edge or stop in the middle of the edge). If
the pattern is shorter than the edge, then fastfind will stop in the middle of the edge. Consequently,
the number of operations in a fastfind is linear in the number of checked nodes in the trie rather
than the length of the pattern.

Suppose we have just inserted Si = aw and are at the newly created leaf which has parent node pi.
We maintain the following invariant:

4-3 Lecture 4: September 14, 2005

Invariant: Every internal node except for the current parent has a suffix link (ignore for now the
issue of where the suffix links point).

/

/ SL

g_i o ==============o

/ \ | w1

w1 / ... |
o p_i o alpha
|
|

w2 |
o s_i

Now we describe the consruction in detail. Let gi be a parent of pi. To insert Si+1: ascend to gi,
traverse the suffix link there, and do a fastfind of w1, which takes you to node α (thus maintaining
the invariant for next time). Make a suffix link from pi to α. From there, do a slowfind on w2 and
do the insertions that you need. Since pi was previously a leaf node, it has no suffix link yet. gi was
previously an internal node, so it has a suffix link. w1 is the part of Si that was already in the trie
below gi (i.e., it was pi), which is why we can use fastfind on it. w2 is the part of Si that was not
previously in the trie.

The running time analysis will be in two parts. The first part is the cost from the suffix of gi to the
suffix of pi. The second is the cost from the suffix of pi to the bottom of the search. The cost of
going up is constant, since there are only two steps thanks to the compressed edges.

Looking at the second cost (the slowfind part), we see that it is the number of charactersr in the
length difference between the suffix of pi and pi+1, which is |pi+1| − |pi| + 1. The sum of this term
over all i is |pn| − |p0| + n = O(n).

For the first cost, recall that fastfind ’s runtime will be upperbounded by the runtime of slowfind. It
takes at most |gi+1| − |gi| time to reach gi+1. If gi+1 is below the suffix of pi, then there is no cost.
If the suffix of pi is below gi+1, then the suffix of pi is pi+1 and the fastfind only takes one step from
gi+1 to pi+1, so the cost is O(1).

The progression of the insert is

• suffix of gi

• gi+1

• suffix of pi

• pi+1

The total time is linear in the size of the compressed tree, which is linear in the size of the input.

Lecture 4: September 14, 2005 4-4

4.2 Heaps

Prim and Dijkstra’s algorithms for shortest paths and minimum spanning trees were covered in
6.046. Both are greedy algorithms that start by setting node distances to infinity and then relaxing
the distances while choosing the shortest. To perform these operations, we use a priority queue
(generally implemented as a heap). A heap is a data structure that will support insert, decrease-key,
and delete-min operations (and perhaps others).

With a standard binary heap, all operations run in O(log n) time, so both algorithms take O(m log n)
time. We’d like to improve the performance of the heap to get a better running time for these
algorithms. We could show that O(log n) is a lower bound on the time for delete-min, so the
improvement will have to come from somewhere else. The Fibonacci Heap performs a decrease-key
operation in O(1) time such that Prim and Dijkstra’s algorithms require only O(m + n log n) time,

Idea: During insertions, perform the minimal work possible. Rather than performing the whole
insert, we’ll just stick the node onto the end of some list, taking O(1) time. This would require us
to do O(n) work to perform delete-min. However, we can put that linear amount of work to good
use to make the next delete-min more efficient.

The Fibonacci heap uses “Heap Ordered Trees,” meaning that the children of every node have a key
greater than their parent and that the minimum element is at the root. For Fibonacci heaps, we
will have only 1 child pointer, a doubly linked list of children, and parent pointers at every node.

The time to merge two HOTs is constant: compare the two root keys and attach the HOT with the
larger root as a child of the smaller root.

To insert into a HOT, compare the new element x and the root. If x is smaller, it becomes the new
root and the old root is its child. If x is larger, it is added to the list of children.

To decrease a key, you prune the node from the list of children and then perform a merge.

The expensive operation is delete-min. Finding the minimum node is easy; it is the root. However,
when we remove the root, we might have a large number of children that need to be processed.
Therefore, we wish to keep the number of children of any node in the tree relatively small. We will
see how to do this next lecture

����� ����	
�� ���������

������� �� ��	��
��� �� ���� ��������� ����� ������
�������� ���� ������ ������� ����� !����� ������� �"���# $���� ������

��� ���� ���	
����	

%� &��� ��"� �& ������ � '���� ���� &��# ������� �������� (�&
 ������ ��� ��		&��� ��� &	�����&�� ��
���&� �&��� ��
�) *��� ���� �� +��� 	�������� �� ,������ ��� -
	��
������&� &(�� �Æ����� 	��&���#
'����.� !����
������ �#���
� *��&�# �� ���//�) !�""�� *�&��	 	�&����� �&
� �0�����&�� �� ,1�
2�! 	��&���# '�����. �� �1�� ���3)

*��� �� � (�������� �0�
	�� &(�� �Æ����� ��������� ���� ���������) *��� ��������� ���& �0	�&��� ���
(��� ���� "�#� �� 	��&���# '����� ���
&�� &(��� �������� ��� ���� �&
	����� ���� �Æ����� &	�����&��
(&�
���	������� ��� �����# ��	���������&�� &(�������� ����(���
��"�� �&����� &	�����&���)

4��� �45 '����
�������� ��� (&��& ��� ��(&�
���&��

6���� 7&����&�
*�� �������
���
�
 �����
�45 '���� &� ���� ���(&�� ������
�� ����# ���� ���� ����# �� � �45 '���� &� ��� �& ���(&��� �8	�9

-���������#� � ���� ���
���
�
 ���
 ��&��� �& � ��� ������ �� '���"�#) :45 	��&���# '����� ��"�
��� 	���� &(��� ���"��� �� ���
����;����� ���"�� ��������� ���� �� 	�������� ������� ���� ������
7&��� ��)

*���� ���
�

 ���
���� �� ��� ����#� ��� ���� ���
��� �� ��� ����# �&����	&��� �& � �������� ����

���(&�� 	�) ����� ���(&��� 	� < ��� ������;&���� �

�
���� �� ��� �;��� ��	���������&� &(� ��
����

	= � < ���) �& ���(&��� 	� < ��� �����) *��� ��� �&&"��� (&� �� ���
���� � ��� �&&" (&� ���
�		�� ���� ���(&�� &(��� ��
���� ���� ������� &� ��� �& ���(&��

*�� 	��	&�� &(��� ���� �� �& '���"�# �����
��� ���� �& ���(&�� �45 '����� �������# �&�����
���
����) -(� �& ���(&�� �45 �� �&�;�
	�#� ���� � ��&�� ��� �45>� ������� �	�� �� ������)
*��� ������ �� � �45 &(��?�

�

 @��� ��"� ��� �& ���(&�� �45�)

*��� �� � ������ ��������(&� ��� �		�&��� ��� ��'����� ��
� �	���) ��
&�� �&
	��0� ����&
�?��
�		�&��� �� 	&������� ������� �& ��

�

� �	���)�

�	�����

A&������ ��� ���&����
 (&� ��������� �� ���
��� ���& ��� '����)

6���� � �	���� ��� B)
�� ��(&�
���&�) *��� ��"�� ����� �;

���� / &(��� ���&����
 �	���� 	 ���& ���(&���) *��� &	�����&� ��� �� �&�� ��� � ��� ���(� &	�����&�
��� � ��� ���;�7� &	�����&�)

�;�

������� �� ��	��
��� �� ���� �;�

�������� � �������	���

�� �� ����� < �� ���	

�� ����� < 	� ������
�� �	� ��

�� �� ����� � 	 ���	

�� � �	 	� �����
�� �	� ��

�� �	�� 	��� 	 ������� 	 ���& ��� ���� ���(&��� 	�� ��� ��� �& ���(&��� 	��
�� �� �8	�9���� < �� ���	

	� �������	�� �������
�
� �8	�9���� < 	�
��� ����

��� �������	�� �8	�9�
��� �	� ��

�� ���� 	&���� � ���� �	��� ��� 	�&���
 &(��������� 	 ���& ���� '���� ���& � �
����� 	�&���
 &(
������ ��������� ��� ���� ���(&�� &(� &� ��� �& ���(&�� &() -(� ���� ������# �������� 	� ��
� 	����&�� &	�����&�� ���� �� ��Æ��� �& ������ 	� �� ��� �& ���(&�� '���� ���� ���&��� �& 	�) -(
 � ���� �&� ������# ���� 	�� ���� � ���� �& ������ �� ���& &�� ���� ���(&�� '����) C& ����� ����

���� ���� � ��� ������ 	� �� ���� ��
� �# ��
	�# �������� �8	�9����)

*�� �������&�� +������ ��� ��� '����� ���&
� �
��� ��&��� �& ��&�� �� ����#� ���� �;��� '������)

7&���� ���� ��� (�����&�
�"�� &��# &�� ��������� ���� �& ��� ������ (�����&�) 5������ ��� &(���
&���� &	�����&�� ��� ���� ��
�� ��� ���������� ��

� ��� < � ����� D����

 ���� � �� ��� ��
��� &(���� ��) C����� � ��� < ���&� �� ��� ����� � < �&��� ��� ���&����
 ����
�� ���&� �&��� ��
�)

��	����	

*������� ������ B)
��) *��� ��&��� ��"� ���� ��
�)

������

�� �&
�	&���� ����# ���
��� �� �
���
�
 ���
��� (&� �&
� �45) %� ������ ���� ���� ���� �#
�������� ���
�� ��� ���� ������������� ��� ���
���
�
 ���
��� ��) %�
��� ��
���(�� �& "��	
������ �	 �& ���� �� ���) 1���� ���� �
����# ����� �& � ��� ������ &(�45 ����� � ����� &��
���� ���� �������&�)

1��� ������ ��� ������� ��
� (&� ���� ���&����
 �� ���&� �&���) *�� ����&� �# ���� ����� �������
�� &��# &�� ���� �& � ��

�

� 	�&���
 �� ���� ���� �(������ �� ������ � ���� ��� ���&�� ���� �
	����

���� ��� +��� ���� �&&" &��# �&������ ��
�) ��(��	�� �� �& �
	�#� ����
���� ���� ��� ������� ����
�& ������ �� �������� ���� �45�
���
�
� ��� &��#� ���
���) ���� � ���� ��"�� �&������ ��
��
�& � ��� �& ��� &�� ��

�

� ��
� &� �	������ �������)

����� ��������� ��������	�

7&�� ���� �� �� ���# �& ��		&�� ��� &(��� (&��& ��� &	�����&�� �� ���&� �&��� ��
�

������� �� ��	��
��� �� ���� �;�

�������� � �������	���

�� �� 	 � ����� ���	

�� ������E���
�� �	� ��

�� �� 	 < ����� ���	

�� ����� < ����������
�� �� ����� < �� ���	

�� ����� < ��� ������
�� �	� ��

	� 	 < ����� < �������8�����9���� ������� ���
��� ��� ���� ���(&�� < ,+���.� �& <
�8�����9���� �

�
� �	� ��

��� �������	�� �8	�9�
��� �� �8	�9���� < �� ���	

��� �������	�� �������
��� �	� ��

� �	
��) �#

����� �& ���
��)

� ����	�) �����
���� ������ ��� ���
��� �0���� �� ��� '����)

� �����	�) 6���� ��� �
������ ����� �� ��� '���� ���� �� ������ ����) 2������ �&����� �(��
��� �������)

� ����	�) 6���� ��� ������� ����� �� ��� '���� ���� �� �
����� ����) 2������ �&����� �(��
��� �
������)

� �����������	�) �	����� ���� &(������)

� ��������	
��) 2�
&��� ���
�0 ���
��� (�&
 ��� '����) %&�"� �� ��� ��
� �# ����
���������� &�"�)

� �

6.854 Advanced Algorithms

Lecture 6: 9/24/2003 Lecturer: Erik Demaine, David Karger
Scribes: Alexandr Andoni

Maximum Flows

6.1 The Maximum Flow Problem

In this section we define a flow network and setup the problem we are trying to solve in this lecture:
the maximum flow problem.

Definition 1 A network is a directed graph G = (V, E) with a source vertex s ∈ V and a sink vertex
t ∈ V . Each edge e = (v, w) from v to w has a defined capacity, denoted by u(e) or u(v, w). It is
useful to also define capacity for any pair of vertices (v, w), with u(v, w) = 0 for any pair (v, w) �∈ E.
Let m = |E| and n = |V | be the number of edges and vertices in the graph, respectively.

1

2

1

1

1

2

s

2

t

1

Figure 6.1: An example of a network with 4 vertices and 6 edges. The capacities of the edges are
shown on the edges.

In a network flow problem, we assign a flow to each edge. There are two ways of defining a flow:
raw (or gross) flow and net flow.

Definition 2 Raw flow is a function r(v, w) : V 2 → � that satisfies the following properties:

• Conservation: r(w, v) − r(v, w) = 0, for all v ∈ V \ {s, t}.
w∈V w∈V � �� � � �� �

incoming flow outgoing flow

• Capacity constraint: 0 ≤ r(v, w) ≤ u(v, w).

6-1

�

�

�

6-2 Lecture 6: 9/24/2003

For every vertex v except the source or sink, conservation requires that the total flow entering v
must equal the total flow leaving v. The capacity constraint requires that the flow along any edge
be positive and less than the capacity of that edge. We say that a flow f is feasible if satisfies these
two conditions.

1

1

1

2

s

2

t

1

Figure 6.2: An example of a raw flow for the network above. The flow has a value of 2.

With a raw flow, we can have flows going both from v to w and flow going from w to v. In a net
flow formulation however, we only keep track of the difference of these two flows.

Definition 3 Net flow is a function f(v, w) : V 2 → � that satisfies the following conditions:

• Skew symmetry: f(v, w) = −f(w, v).

• Conservation: w∈V f(v, w) = 0, for all v ∈ V \ {s, t}.
• Capacity constraint: f(v, w) ≤ u(v, w) for all v, w ∈ V .

A raw flow r(v, w) can be converted into a net flow via the formula f(v, w) = r(v, w) − r(w, v). For
example, if we have 7 units of flow from v to w and 4 units of flow from w to v, then the net flow
from v to w is f(v, w) = 3. Skew symmetry follows directly from this formula relating raw flows and
net flows. Because we can convert from raw flows to net flows, for the rest of the lecture we consider
only net flow problems.

Although skew symmetry relates f(v, w) and f(w, v), it is important to note that capacity is still
directional for a net flow problem. The capacity in one direction u(v, w) is independent of the
capacity in the reverse direction, u(w, v).

To simplify notation later in the lecture, we denote f(v, w) by f(v, S) or −f(S, v).w∈S

Definition 4 The value of a flow f is defined as |f | = f(s, v). v∈V

The value of a flow is the sum of the flow on all edges leaving the source s. We later show that this
is equivalent to the sum of all the flow going into the sink t. The value of a flow represents how
much we can transport from the source to the sink. Our goal in this lecture is to solve the maximum
flow problem.

Definition 5 Maximum flow problem: Given a network G = (V, E), find a feasible flow f with
maximum value.

� �

� �

Lecture 6: 9/24/2003	 6-3

6.2 Flow Decomposition and Cuts

In this section, we show that any feasible flow can be decomposed into paths from the source to the
sink and cycles. We use this fact to derive an upper bound on the maximum flow value in terms of
cuts of the network.

Lemma 1 (Flow decomposition). We can decompose any feasible flow f on a network G into at
most m cycles and s-t paths.

Proof: The following algorithm extracts the m paths and cycles.

1. Find a path with positive flow from the node s to node t. (If the flow is non-zero,
there exists at least one such path.)

2.	 Anti-augment the flow on this path—that is, reduce the flow in the path until the
flow on some edge becomes 0.

3. Add this path as an element of the flow decomposition.

4. Continue these operations until there are no more paths from s to t with positive
flow.

5. If there are still some edges with non-zero flow, the remaining flow can be decom-
posed into cycles. Find a cycle in the following way: take any edge with non-zero
flow and follow an outgoing edge with non-zero flow until a cycle is found.

6.	 Anti-augment on the cycle found.

7. Add the cycle as an element of the flow decomposition.

8.	 Continue finding cycles until there are no more edges with non-zero flow.

Each time we anti-augment a path or a cycle, we zero out the flow on some edge. There are at most
m anti-augmentations, and, consequently, m paths/cycles in the flow decomposition.

In a network flow problem, it is useful to work with a cut of the graph, particularly an s-t cut.

Definition 6 A cut of network G is a partition of the vertices V into 2 groups: S and S ̄ = V \ S.

Definition 7 An s-t cut is a cut such that s ∈ S and t ∈ S̄ .

We will usually represent a cut as the pair (S, S̄), or just S. We generalize the concept of the net
flow and the capacity of an edge to define the net flow and capacity of a cut.

Definition 8 The net flow along cut (S, S̄) is defined as f(S) = f(v, w). v∈S w∈S̄

Definition 9 The value (or capacity) of a cut is defined as u(S) = v∈S w∈ ()u v, w .S̄

6-4 Lecture 6: 9/24/2003

s
t

�

��

¯Figure 6.3: An illustration of the s-t cut. s ∈ S and t ∈ S̄. There might be both edges from S to S
and from S ̄ to S.

1

2

1

1

1

2

s

2

t

1

Figure 6.4: An example of a cut in a network. The s-t cut is represented by a dashed line. The
value (capacity) of the cut is equal to 3. This is one of the minimum s-t cuts.

In summary, the flow (or capacity) of a cut is the sum of all flows (capacities) of edges that go from
¯ S to S. Note that direction is important in these definitions. Flow or capacity along an edge in the

reverse direction, from w ∈ S ̄ to v ∈ S, does not count.

Working with cuts is useful because of the following lemma:

Lemma 2 Given a flow f , for any cut S, f(S) = |f |. In other words, all s-t cuts carry the same
flow: the value of the flow f .

Proof: We can use Lemma 1 to prove this statement directly. We decompose the flow into s-t paths
¯and cycles. Each s-t path must end up in S̄, so it must go from set S to S one more time than it

goes from S ̄ to S. Therefore, an s-t path carring x flow along that path contributes exactly x to the
¯value of the cut. A cycle must go from S to S ̄ the same number of times as it goes from S to S,

contributing 0 to the value of the cut. Therefore the total value of the cut S is equal to the sum of
the flows along every s-t path, which is equal to |f |.
Alternatively, we can prove the lemma by induction on the size of the sets S. For S = s, the claim
is true. Now, suppose we move one vertex v from S ̄ to S. The value f(S) changes in the following
way:

• f(S) increases by f(v, S̄).

• f(S) decreases by f(S, v) = −f(v, S).

Lecture 6: 9/24/2003 6-5

In conclusion, the total change in the value of f(S) after moving the vertex v from S to S ̄ is equal
to f(v, S̄) + f(v, S) = f(v, V) = 0 (by conservation of flow).

For a flow network, we define a minimum cut to be a cut of the graph with minimum capacity.
Then, Lemma 3 gives us an upper bound on the value of any flow.

Lemma 3 If f is a feasible flow, then |f | ≤ u(S) for any cut S.

Proof: For all edges e, f(e) ≤ u(e), so f(S) ≤ u(S) (the flow across any cut S is not more than the
capacity of the cut). By Lemma 2, |f | = f(S), so |f | ≤ u(S) for any cut S.

If we pick S to be a minimum cut, then we get an upper bound on the maximum flow value.

6.3 Max-Flow Min-Cut Theorem

In this section, we show that the upper bound on the maximum flow given by Lemma 3 is exact.
This is the max-flow min-cut theorem.

To prove the theorem, we introduce the concepts of a residual network and an augmenting path.

Definition 10 Let f be a feasible flow on a network G. The corresponding residual network, denoted
Gf , is a network that has the same vertices as the network G, but has edges with capacities uf (v, w) =
u(v, w) − f(v, w). Only edges with non-zero capacity, uf (v, w) > 0, are included in Gf .

Note that the feasibility conditions imply that uf (v, w) ≥ 0 and uf (v, w) ≤ u(v, w) + u(w, v). This
means all capacities in the residual network will be non-negative.

Definition 11 An augmenting path is a directed path from the node s to node t in the residual
network Gf .

1

2

s

2

t

1

1

2

1

1

Figure 6.5: An example of a residual network. This residual network corresponds to the network de-
picted in Figure 6.1 and the flow in Figure 6.2. The dashed line corresponds to a possible augmenting
path.

6-6 Lecture 6: 9/24/2003

Note that if we have an augmenting path in Gf , then this means we can push more
flow along such a path in the original network G. To be more precise, if we have
an augmenting path (s, v1, v2, . . . vk, t), the maximum flow we can push along that path is
min{uf(s, v1), uf (v1, v2), uf (v2, v3), . . . uf(vk−1, vk), uf(vk, t)}. Therefore, for a given network G and
flow f , if there exists an augmenting path in Gf , then the flow f is not a maximum flow.

More generally, if f ′ is a feasible flow in Gf , then f + f ′ is a feasible flow in G. The flow f + f ′ still
satisfies conservation because flow conservation is linear. The flow f + f ′ is feasible because we can
rearrange the inequality f ′(e) ≤ uf (e) = u(e) − f(e) to get f ′(e) + f(e) ≤ u(e). Conversely, if f ′ is
a feasible flow in G, then the flow f − f ′ is a feasible in Gf .

Using residual networks and augmenting paths, we can state and prove the max-flow min-cut theo-
rem.

Theorem 1 (Max-flow min-cut theorem). In a flow network G, the following conditions are equiv
alent:

1. A flow f is a maximum flow.

2. The residual network Gf has no augmenting paths.

3. |f | = u(S) for some cut S.

These conditions imply that the value of the maximum flow is equal to the value of the minimum s-t
cut: maxf |f | = minS u(S), where f is a flow and S is as-t cut.

Proof: We show that each condition implies the other two.

•	 1 ⇒ 2: If there is an augmenting path in Gf , then we previously argued that we can push
additional flow along that path, so f was not a maximum flow. 1 ⇒ 2 is the contrapositive of
this statement.

•	 2 ⇒ 3:

If the residual network Gf has no augmenting paths, s and t must be disconnected. Let
S = {vertices reachable from s in Gf}. Since t is not reachable, the set S describes a s-t cut.

s
t

�

Figure 6.6: Network Gf is disconnected. The set S contains all the nodes that are reachable from s.

By construction, all edges (v, w) straddling the cut have residual capacity 0. This means in
the original network G, these edges have f(v, w) = u(v, w). Therefore, |f | = f(S) = u(S).

Lecture 6: 9/24/2003	 6-7

•	 3 ⇒ 1: If for some cut S, |f | = u(S), we know f must be a maximum flow. Otherwise, we
would have a flow g with |g| > u(S), contradicting Lemma 3.

From (1) and (3), we know that the maximum flow can not be less than the value of the minimum
cut, because for some S, |f | = u(S) and u(S) is at least as big as the minimum cut value. Lemma
3 tells us that the maximum flow can not be greater than the minimum cut value. Therefore, the
maximum flow value and the minimum cut value are the same.

6.4 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm solves the problem of finding a maximum flow for a given network.
The description of the algorithm is as follows:

1. Start with f(v, w) = 0.

2. Find an augmenting path from s to t (using, for example, a depth first search or
similar algorithms).

3.	 Use the augmenting path found in the previous step to increase the flow.

4. Repeat until there are no more augmenting paths.

If the capacities are all integers, then the running time is O(m|f |). This is true because finding an
augmenting path and updating the flow takes O(m) time, and every augmenting path we find must
increase the flow by an integer that is at least 1.

In general, if we have integral capacities, then our solution satisfies an integrality property: there
exists an integral maximal flow. This happens because every augmenting path increases flows by an
integer amount.

Since the running time is directly proportional to the value of the maximal flow, this particular
algorithm is only good for cases when the value |f | is small. For example, when all capacities are at
most 1, the maximum flow |f | is at most n. In general, the algorithm may be as bad as linear in unary
representation of the input. Figure 6.7 illustrates a bad case for this form of the Ford-Fulkerson
algorithm.

We describe such an algorithm as being pseudo-polynomial, because it is polynomial in terms of
variables we care about (but not necessarily the input).

If the capacities are rational, then it can be shown that the algorithm will finish. It might, however,
require more than O(m|f |) time. If the capacities are real, the algorithm might never finish, or even
converge to a non-optimal value.

If we setup better rules for selecting the augmentation paths however, we might get better results.
Before showing some improvements to the Ford-Fulkerson algorithm, we will introduce some new
notions on the running time of algorithms.

6-8 Lecture 6: 9/24/2003

11s

2

t

1

�

���

�

����

���

�

���

Figure 6.7: An example for which the Ford-Fulkerson, in the stated form, might perform very badly.
The algorithm runs slowly if at each step, the augmentation path is either s → 1 → 2 → t or
s → 2 → 1 → t (shown with dashed lines). At an augmentation, the flow will increase by at most 2.

Definition 12 An algorithm is psuedo-polynomial if it is polynomial in the unary representation of
the input.

Definition 13 An algorithm is weakly polynomial if it is polynomial in the binary representation of
the input.

Definition 14 An algorithm is strongly polynomial if it is polynomial in combinatorial complexity
of input. (For example, in the case of max-flow problem, the algorithm would have to be polynomial
in n and m.)

6.4.1 Improvements to the Ford-Fulkerson Algorithm

The are at least two possible ideas for improving the Ford-Fulkerson algorithm. Both of the im-
provements rely on a better choice of an augmenting path (rather than a random selection of an
augmenting path).

1. Using breadth-first search, we can choose shortest-length augmenting path.	 With this path-
selection rule, the number of augmentations is bounded by n · m, and thus the running time
of the algorithm goes down to O(nm2) time.

2.	 We can also choose the maximum-capacity augmenting path: the augmenting path among
all augmenting paths that increases the flow the most (max-capacity augmenting path). It is
possible to find such a path in O(m log n) time using a modified Dijkstra’s algorithm (ignoring
the cycles). The number of augmentations will be at most m ln |f | ≤ m ln(nU), where U =
max{u(v, w)} (for integral capacities).

In this lecture we prove the time bound for the second improvement. Consider the maximum flow
f in the current residual network. We apply the flow-decomposition lemma, Lemma 1 (discarding
the cycles because they do not modify |f |). There are at most m paths carrying all the flow, so
there must be at least one path carrying at least |f |/m flow. Therefore, the augmenting path with

� � �

Lecture 6: 9/24/2003	 6-9

maximum capacity increases the flow in the original network by at least |f |/m. This decreases the
maximum possible flow in the residual graph from |f | to (1 − 1/m)|f | (remember, the smaller is the
maximum possible flow in the residual graph, the greater is the corresponding flow in the original
graph).

We need to decrease the flow |f | by a factor of (1 − 1/m) about m ln |f | times before we decrease
the max flow in the residual graph to 1. This is because

m ln |f | �ln |f |1 1 |f | 1 − ≈ |f | ≈ 1.
m e

In one more step, the residual graph will have a maximum flow of 0, meaning that the corresponding
flow in the original graph is maximal. Thus, we need O(m ln |f |) augmentations. Since one augmen-
tation step takes about O(m log n) time, the total running time is O(m2 ln |f | · ln n). This algorithm
is weakly polynomial, but not strongly polynomial.

6.4.2 Scaling Algorithm

We can also improve the running time of the Ford-Fulkerson algorithm by using a scaling algorithm.
The idea is to reduce our max flow problem to the simple case, where all edge capacities are either
0 or 1.

The scaling idea, described by Gabow in 1985 and also by Dinic in 1973, is as follows:

1.	 Scale the problem down somehow by rounding off lower order bits.

2.	 Solve the rounded problem.

3. Scale the problem back up, add back the bits we rounded off, and fix any errors in our solution.

In the specific case of the maximum flow problem, the algorithm is:

1. Start with all capacities in the graph at 0.

2. Shift in the higher-order bit of each capacity. Each capacity is then either 0 or 1.

3.	 Solve this maximum flow problem.

4.	 Repeat this process until we have processed all remaining bits.

This description of the algorithm tells us how to scale down the problem. However, we also need to
describe how to scale our algorithm back up and fix the errors.

To scale back up:

1. Start with some max flow for the scaled-down problem.	 Shift the bit of each capacity by 1,
doubling all the capacities. If we then double all our flow values, we still have a maximum
flow.

6-10 Lecture 6: 9/24/2003

2. Increment some of the capacities. This restores the lower order bits that we truncated.	 Find
augmenting paths in the residual network to re-maximize the flow.

We will need to find at most m augmenting paths. Before we scaled our problem back up, we had
solved a maximum flow problem, so some cut in the residual network had 0 capacity. Doubling all
the capacities and flows keeps this the same. When we increment the edges however, we increase
the cut capacity by at most m: once for each edge. Each augmenting path we find increases the
flow by at least 1, so we need at most m augmenting paths.

Each augmenting path takes at most O(m) time to find, so we spend O(m2) time in each iteration
of the scaling algorithm. If the capacity of any edge is at most U , which is an O(lg U) bit number,
we require O(lg U) iterations of the scaling algorithm.

Therefore the total running time of the algorithm is O(m2 lg U). This algorithm is also a weakly
polynomial algorithm.

����� ����	
�� ���������

������� �� �	
	���
 ��������� ��� �������� ����� ������

�������� ������ ����

������ ����	���

��� ������� 	���
�����

 � �!������ � ����� "�!�#�� �� ������ ��������� ��� ��! ��$����� �""�!����� �! ��% &�� '��� ��##

�� �#�!�������� ���#� ��� ���!�� ��## ��"����(� ���� ����������% &�� ����� "�!�#�� �� � ! � � � � � � � � �

����� � ������ � ��� � "������ � � ��������� �) � �""���� �� � ��������� �� � � �%�%�

�	���� * ��+� � ��� � "������ � %

������� ,� � � ��������� !) � - ,) �!� �����-

�
�
 ��������� ��� ����������

&�� ������ ��������� "�!�#�� ������ �� ���. '�#��% *� �+��"#� �� ���������)!� �!��!� ����

��/������ �� � #!�� �0* ��/�����% * �!��)���#��� �+��"#� ��� ��� �."�1�����1'��)������� !)

�!���� ,������� ��!����� ��� ��+� ����!��%

�
�� ������ �������	�

&�� !���!�� �#�!����� �! �!#�� ���� "�!�#�� �!�"��� ���� � ���� � �� ���� "!����!�� ���)���� !���

� �� ���� �������!�% &�� ������� ���� !) ���� �#�!����� �� �2� � � � � � � 3% &�� �#�!����� ����� �!

�!�"��� �## � � � ���������� !) � �� ���� �������!�� ��� ����� ��� �� �!��� � � � �������!�� 2�����##.�

� � � � � � � 3%

�
�� ���������� ������ ����	���

&�� 4����1���" ������ �������� �#�!����� �� � ����!��(�� �#�!����� ���� ��� �!#�� ��� ������

�������� "�!�#�� �� �2� � � 5 � � � 3% &�� ���� ������/�� ���� ���� �� �������������� ����� � � ��##

������� �� �����# � ��� #����% &�� �!���� � � ! � � � � �) ! # # ! ��� �) �� ��� '�� � ��. !) �!�"��� ��� "������

� ���� � � � � ������� !) � �� �2�3 ����� �� ��� ������ ��� ��+� �� �2� � � 3 ����%

&�� ���� !) '����"������� �� ��)!##!��� �!�"����� ��! ������� �� � !) #����� � � � ����� � � � �!�"����!��%

��""!�� �� ��� �)�����!� � ���� ���)!##!���� "�!"���.�

� 2�3 6 � 2�3 �� � 6 �

�1�

������� �� �	
	���
 �1�

T

P

7����� �%�� 0���� ������ 8�������

��� �������� � 2�3 6 � 2�3 �!�#� �� �!�� �� �!������ ����% &��� �� �!� "!����#�� �! ������� �� ����#�

)!� ���)!##!�����

���	����	 � ���������� �	
 ������ �� 2�3� �	� ����������
� � ����� � � � ������� ��
�

�	� ����� � �
 � ��
� ������� ��	 �	�� �� � 6 � �	�� � 2�3 6 � 2�3 ��� �� � 2�3 6 � 2�3 �	�� � 6 �

���� ���� "�!����#��.�

*����� 2����!�� #!�� !) ������#��.3 ���� ��� ��"�� ������� ��� !��� ��� ��% &���� � ������ � �� ���

�����. ��"���������!� !) � ������% ��'�� � 2�3 6 2 � ����� ��"�������� �. �3 � !� �� � ���� � �� �

����!� "����%

&! �! ��� �!�"����!��� �� ���� �! �!�"��� � 2� 3 ��� � 2� 9� � � 5 �� �� �:3�)!� ����. � � � � � � �� � � �%

��� �� �!�"��� ���� �� �2�� � 5 �� �3 ����- ;��% &�� ����� �� �! �!� "��� � 2� 9� 5 � � � 5 �� �:3)�!�

� 2� 9� � � 5 �� � � �:3 �� �!������ ��� � ��)!##!��� �!�"��� � 9� 5 � � � 5 �� � � �:)�!� � 9� � � 5 �� � � �:

�. <��!""���= � 9�:� ��������)�!� ��� ������� '����"���� �

�� ��� � � 9�:%

&��� �!�"��� � 9� 5 � � � 5 �� �:)�!� � 9� 5 � � � 5 �� � � �: �. <������ ��� #��� #����� ��� ���)����=�

��#��"#. ��� ������� '����"���� � . � ��� ��� � 9� 5 �� �:%

�	������

* ���� ����	 ���� � 2�3 6 � 2�3 ��� � �6 �% 7!� !�� '����"����� ���� !����� ���� � 2�3 	 � 2�3 2 	
� �3

����� �� �+���#. ���� � 2�3 � � 2�3 �� � � �#��"#� !) �% 2�#���� �!����!��# ��Æ��#�. ����� � ���� �

��"���# #����� �� ��� ��"�� ��+� "������ �� � ��� �! '�� �� ��� ��+� ��� �� � ������% � ���� � #!���

���� �� ��� ����!� "���� ������ ���� � � "���%3

 ��� �� ��� "�!����#��. � � � � � ���� ����	 !�����- &��� �� �+���#. ���)!##!���� "�!����#��.�

>� 2� �� � ��#��"#� !) �3

����� � 6 � 2�3 � � 2�3% � �""�� �!��� ���� "�!����#��. ��)!##!��� �!� ���. "����)���!�� �!��

� ����- �#���#.� ���� �� �� �!�� #!� �% *� #!�� �� ��� "���� �� � �!!�� �� �!� !�� !) ������ �� ��##

�� '��% ��""!�� �� � �!!�� � �� � ����!� "����)�!� 9�� :% ?. ��� >���� 0����� &��!���� �����

������� �� �	
	���
 �1

��� �!���#. � #!� "����� �� 9�� :% &����)!��� �� � � �� �����

#!� �

>� 2� �� � ��#��"#� !) �3 �

� #!�

@���� ��� ���
� �
���� � � � � � ������ �����

>� 2� �

 � �

3 � >� 2� �

3 5 >� 2 � �

3

 � � � �� �����

#!� �

>� 2� �)��#��� ����3 � � � � �

� #!�

?. ��!!���� �""�!"�����#. #����� �� ��� ���� ���� "�!����#��. ���������#. ���##� �! ���� !��

�#�!����� ��## �#�!�� �#��.� �� �!�����%

��
��	� �����

A�� ��"��� ���� �� ��� ���!�� �� !�� ���#.��� ��� ���� ��� ������� �!��#% � � � �� ������� ���� ��

��� �!�"��� ��� ����"�#��� ��� '����"����� �� �2�3 ����% � ����!���#. ������ ���� !�� �������

��� ����"�#��� ���	��� �
�� �� �2�3 ����% *
�1��� ������� �!�� ��� ������� �� ��������#. #����

������ �! �� �� ����!���#� �! ���� !�� ������� ��� ����"�#���� �� �!������ ����� ������� �!���

!) ��(� �2#!� �3� ����� � �� ��� "�!�#�� ��(�% &��� �����"��!� �� ��!�� �� ��� �������	
�
�
�

������
�%

7!� ��� 4����1���" ������ �������� �#�!������ �� ���� �! ����"�#��� �������� �" �! ��(� % 7!� 6

�2�� � � � � �3� �! ���� ��� "�!����#��. !) �)�#�� ����� � � � � � � ���� #!� 6 �2#!� �� � 5 #!� �� �3%�� ���� �

&����)!��� ����� ���� ������� �!��#� 4����1���" ��� �� ��� �� �2�� � 5 �� �3%

�����	��

0!���� ���� ���� �) 4����1���" '��� � ��������� �� ��� ����#. ����� ��� ����#� �! ��� �) �� ���##.

��� �����% ?�� �!� � � � ��� "��)!�� ��� ����� � � ��. ���� ��� '����"����� ������ ����� ���������

��� �������%

&�� �����!� !) 4����1���" �� ������ ��!�� � � � � ! �� �� � �
��� ����
 ���
���	�� ����� �� <�#��.�

)��� ��� "�!���#. �����%=

,) �� � ���� ��� ����#�� ��� �#!� � � � ! ��� �� ���!��� � �� ���� ���
���	�� ����� �� <�#��.� ������

��� "�!���#.)���%=

B���� � 8!��� ���#! �#�!������ �� �� ���. �! �!��� � � � � � ! � � � � C ���� �#�!����� �) �� � � � � ���� !��

�������% B!��� ��� ������� ��. �� �!�� ��Æ��#�%

�
�� ��Æ� �!!�

 � ���� ��������� ��� ������ �������� "�!�#��)�!� ��� �#�!������ " � � � " � � � � � � ��� ��������� �

����!��(�� �#�!����� �! �!#�� ��� "�!�#�� �� D��� �2�� � 5 �� �3 ����% E���� �� ������� � ����

���������� "���"������%

������� �� �	
	���
	 �1F

*#��!��� 4����1���" �� <)����= �� � � . � ��� �! "������� ��� �!�� �� � � �� � ! � � �) � � � � �� � �#��"#�

/������% � � ��� �! ������ � ���� ��������� ���� ��� ������ ��#��"#� /������ �Æ�����#.%

��� � �� ��� #����� !) ��� ��+� ��� 	 �� ��� #����� !) ��� "������% � � ��� �! "��"�!���� ��� ��+�

�� �2�3 ���� ��� "�!���� � ���� ��������� ���� ����� �2�3 �"��� ��� ��� ������ /������ �� �2	3

����%

 ���� �	� ����

E��� �� ���� � ������"��!� !) ����!�� ���� ���������� ���� �� ����� ��. �! ����

�%	 ��� ��
���	��� ���" � ��� !) � ������� �� � �����. ���� �����!���.% ����� �) ��� "������ ��

!�� !) ��� ������� �� ����% &��� �!�#� ���� �2	 #!� �3 ��� � �! �! � ������% &�� "�!�#�� ����

�� ���� �� � !�#� ���� �! ��!�� �## �2� 5 �3 �� ���������� �� ��� �����!���.% &��� �� �#���#. �!!

#���� � ��#��)!� �%

ba
c

d

da b c

7����� �%�� *� �+��"#� !) � ���� !� ���������%

�%	 ��� * ���� �� ��!���� �."� !) ������ ����% &�� ��$������ ������� � ���� ��� � ����#�� ������

���� �� ���� ��� !���!��� ����� !) � �!�� ��� ��� !��� ���� �!����"!�� �! ����������% * � �#�

�!�� ��� "��� !) � ���� �!����"!��� �! ��������� ���!��� ��� ���������� !) � ������% ��� 7�����

�%�)!� �� �+��"#�% &�� �!��� ��!�� ��� ����+ ��)!�����!�)!� � ������% *� ���� �!��� ���

����� ��� ��"#������� �. �� ����. !) ��(� �G�� � � � � � G � � ��� �#"����� ��� �� ���� ������#.

����+��#�% &����)!��� ����� ��� ������)!� � "������ �� �2	3 ����H &�� "�!�#�� ���� � � � � �

�� ���� �� �#�! ��/����� ��� ��!���� !) �## "!����#� ���������� !) ��� ��+� ��� �!�#� ���� �2�� 3

���� �! ���#� ��� ����%

%	 !�Æ" ��� ����� �� ���#�(� ���� ��!���� �## "!����#� ���������� �� ����#. ���������� �������

���#� � ���� !) !�#. ��� � �Æ�� !) ��� ��+�% *�. ��������� !) ��� ��+� �� � ����� �!
��

�Æ� �� ��� ��+�I �����)!��� �� ������� �!�� �������# �!�� !) ��� ����% � #���# ���� #��) �!��

������� �� �	
	���
 �1J

$

$

$

a

b

a b

a

$

7����� �%
� * ��Æ+ ���� !� ���K

!) ��� ��Æ+ ���� ���� ��� �������� "!����!� !) ��� ��Æ+ �� ��"�������% ,� !���� �! ������ ����

����. ��Æ+ �� ��"�������� �. � #��) �!��� �� �""��� �! ��� ��"�� ��+� � �"����# ��������� K%

&�� ��(� !) ���� � ��Æ+ ���� �� ���## �2�� 3% ,) ��� ��Æ+ ���� �� �!��������� �� � ����� � �.�

)!� ����. ��������� �� ����. ��Æ+ �� � � �� �! ������ "��)!�� � ������ !� ������ � ��� �!���

��/������ � �!��# �!��������!� ���� !) L2�� 3%

!�Æ" ��� ��	����
���	

&�� �!�# ��## �� �! ��. �! ���#� ��Æ+ ����� �� #����� ���� ��� �"���% � ����� �� �����"� �� ����

����%

��������
� ��""!�� �� D��� �������� ��� � ���� � �� � ��������� ��� � �� � ������� �� ��!� ����

��� ��+� �������!� �� �!��� �! �� �%

0�+�� �� ��'�� � <��Æ+ #���=� ����� � � # # � � � � � ���# �! !�� #����� ���� �!��������!� !) ��Æ+ �����%

���	����	 # ��Æ� ����� � �Æ� ���! � � �
����� ��
� �	� �
�� ����������� �� �
 �	� �
��

����������� ��

 � ���#� � ��Æ+ ���� �. ��������� ��� #!����� ��Æ+ 2��� ������ �!��3� ���� ��� ���!�� #!����� ��Æ+�

���%� ��� ��������� ��Æ+ #����)�!� ��� �!�� D��� �������� �! ��� #��� �!�� ��������% &��)!##!����

����� ���� "������%

�	������	 �������� *����� �� ��� D��� ��������% ���" ��� "!����� �� ��� �!��!� !) ��� "���

��#��� �! ������ ��% �#� �" ����# �� ' � � � �� Æ + #��� !� ����� �� � �!!�% ,) �� ������� � ��Æ+

#���� �������� ��% ,) .!�)!��� ��� �!!�� ���. �����% �#� �!�� �� ���� � � � � � �#��� �"� �+�������

������� �� �	
	���
 �1M

��� ���� �� ������% ,� !���� �!���� ������	������ ��� ��������� !) � .!� D��� ��#��� �"% 7!� ����

�!�� �� � �#��� �"� ��� ��� ��Æ+ #����%

a

ax

aw
suffix link

x

w-x

7����� �%F� ��Æ+ &��� �!��������!�

�	������

A������ ���� ������ �!��������!�� �� � � � �� ������ "��� � �!�� ���� � ��Æ+ #��� ��� ���� � ! � � � �

������ ���� � ��Æ+ #��� �)��� ���� "���% &����)!��� ��� �!��# ������ � !�� �� �� �!�� ��� ���� � � !)

��Æ+ #����� ����� �� �� � !�� ��� ������ !) �!��� �� ����%

����� �� ������� �� � ��� �� � � ������� ��� �!��# �!�� �� L2��(� !) ��Æ+ ����3%

��� �) �� ��� ��Æ+ #����� �!��������!� ���� �� ���## �!� �2�3 ����� �� � 6 L2 �� 3% � ��## ��� ��+�

#������ �!� � ! �
���� ��� ���� �! ���� �� ��� ������� �2�3 �� �!�� �"��� ��� ����%

6.854 Advanced Algorithms

Lecture 1: 10/13/2004 Lecturer: David Karger
Scribes: Jay Kumar Sundararajan

Duality

This lecture covers weak and strong duality, and also explains the rules for finding the dual
of a linear program, with an example. Before we move on to duality, we shall first see some
general facts about the location of the optima of a linear program.

1.1 Structure of LP solutions

1.1.1 Some intuition in two dimensions

Consider a linear program -

Maximize yT b
subject to yT A ≤ c

The feasible region of this LP is in general, a convex polyhedron. Visualize it as a polygon in
2 dimensions, for simplicity. Now, maximizing yT b is the same as maximizing the projection
of the vector y in the direction represented by vector b. For whichever direction b we choose,
the point y that maximizes yT b cannot lie strictly in the interior of the feasible region. The
reason is that, from an interior point, we can move further in any direction, and still be
feasible. In particular, by moving along b, we can get to a point with a larger projection
along b. This intuition suggests that the optimal solution of an LP will never lie in the
interior of the feasible region, but only on the boundaries. In fact, we can say more. We
can show that for any LP, the optimal solutions are always at the “corners” of the feasible
region polyhedron. This notion is formalized in the next subsection.

1.1.2 Some definitions

Definition 1 (Vertex of a Polyhedron) A point in the polyhedron which is uniquely op-
timal for some linear objective, is called a vertex of the polyhedron.

Definition 2 (Extreme Point of a Polyhedron) A point in the polyhedron which is not

1-1

1-2 Lecture 1: 10/13/2004

a convex combination of two other points in the polyhedron is called an extreme point of the
polyhedron.

Definition 3 (Tightness) A constraint of the form aT x ≤ b, aT x = b or aT x ≥ b in a
linear program is said to be tight for a certain point y, if aT y = b.

Definition 4 (Basic Solution) For an n-dimensional linear program, a point is called a
basic solution, if n linearly independent constraints are tight for that point.

Definition 5 (Basic Feasible Solution) A point is a basic feasible solution, iff it is a
basic solution that is also feasible.

Note: If x is a basic feasible solution, then it is in fact, the unique point that is tight for all
its tight constraints. This is because, there can be only one solution for a set of n linearly
independent equalities, in n-dimensional space.

Theorem 1 For a polyhedron P and a point x ∈ P , the following are equivalent:

1.	 x is a basic feasible solution

2.	 x is a vertex of P

3.	 x is an extreme point of P

Proof: Assume the LP is in the canonical form.

1.	 Vertex⇒ Extreme Point
Let v be a vertex. Then for some objective function c, cT x is uniquely minimized at
v. Assume v is not an extreme point. Then, v can be written as v = λy + (1 − λ)z
for some y, z neither of which is v, and some λ satisfying 0 ≤ λ ≤ 1.

TNow, cT v = cT [λy + (1 − λ)z] = λcT y + (1 − λ)c z

This means cT y ≤ cT v ≤ cT z. But, since v is a minimum point, cT v ≤ cT y and
cT v ≤ cT z. Thus, cT y = cT v = cT z. This is a contradiction, since v is the unique
point at which cT x is minimized.

2.	 Extreme Point ⇒ Basic Feasible Solution
Let x be an extreme point. By definition, it lies in the polyhedron and is therefore
feasible. Assume x is not a basic solution. Let T be the set of rows of the constraint
matrix A for which the constraints are tight at x. Let ai (a 1 × n vector) denote the

�	 � �

′	 ′ � �

′

�	 �

1-3 Lecture 1: 10/13/2004

ith	 row of A. For ai /∈ T , ai.x > bi. Since x is not a basic solution, T does not span
Rn . So, there is a vector d �= 0 such that ai.d = 0 ∀ai ∈ T .

Consider y = x + εd and z = x − εd. If ai ∈ T , then ai.y = ai.z = bi. If ai /∈ T ,
then, by choosing a sufficiently small ε: 0 < ε ≤ mini/

ai.x−bi , we can ensure that ∈T |ai.d|
ai.y ≥ bi and ai.z ≥ bi. Thus y and z are feasible. Since x = y/2 + z/2, x cannot be
an extreme point – a contradiction.

3.	 Basic Feasible Solution ⇒ Vertex
Let x be a basic feasible solution. Let T = {i | ai.x = bi}. Consider the objective as
minimizing c.y for c = i∈T ai. Then, c.x = i∈T (ai.x) = i∈T bi.
For any x′ ∈ P, c.x = i∈T (ai.x

′) ≥ i∈T bi with equality only if ai.x = bi ∀i ∈ T .
This implies that x = x and that x uniquely minimizes the objective c.y.

This proves that vertex, extreme point and basic feasible solution are equivalent terms.

Theorem 2 Any bounded LP in standard form has an optimum at a basic feasible solution.

Proof: Consider an optimal x which is not a basic feasible solution. Being optimal, it is
feasible, hence it is not basic. As in the previous proof, let T be the set of rows of the
constraint matrix A for which the constraints are tight at x. Since x is not a basic solution,
T does not span Rn . So, there is a vector d �= 0 such that ai.d = 0 ∀ai ∈ T . For a scalar ε
with sufficiently small absolute value, y = x + εd is feasible, and represents a line containing
x in the direction d. The objective function at y is cT x + εcTd. Since x is optimal, cT d = 0,
as otherwise, an ε of the opposite sign can reduce the objective. This means, all feasible
points on this line are optimal. One of the directions of motion on this line will reduce some
xi. Keep going till some xi reduces to 0. This results in one more tight constraint than
before.

This technique can be repeated, till the solution becomes basic.

Thus, we can convert any feasible solution to a basic feasible solution of no worse value. In
fact, this proof gives an algorithm for solving a linear program: evaluate the objective at
all basic feasible solutions, and take the best one. Suppose there are m constraints and n
variables. Since a set of n constraints defines a basic feasible solution, there can be upto
m basic feasible solutions. For each set of n constraints, a linear system of inequalities n

has to be solved, which by Gaussian elimination, takes O(n3) time. This is in general an
exponential complexity algorithm in n. Note that the output size is polynomial in n, since
the optimal solution is just the solution of a system of linear equalities.

Lecture 1: 10/13/2004 1-4

1.2 The dual of a linear program

Given an LP in the standard form:

Minimize c.x
subject to: Ax = b; x ≥ 0

We call the above LP the primal LP. The decision version of the problem is: Is the optimum
c.x ≤ δ ? This problem is in NP , because, if we find a feasible solution with optimum
value ≤ δ, we can verify that it satisfies these requirements, in polynomial time. A more
interesting question is whether this problem is in co-NP. We need to find an easily verifiable
proof for the fact that there is no x which satisfies c.x < δ. To do this, we require the concept
of duality.

1.2.1 Weak Duality

We seek a lower bound on the optimum. Consider a vector y (treat is as a row vector here).
For any feasible x, yAx = yb holds. If we require that yA ≤ c, then yb = yAx ≤ cx. Thus,
yb is a lower bound on cx, and in particular on the optimum cx. To get the best lower
bound, we need to maximize yb. This new linear program:

Maximize yb
subject to: yA ≤ c

is called the dual linear program. (Note: The dual of a dual program is the primal). Thus
primal optimum is lower bounded by the dual optimum. This is called weak duality.

Theorem 3 (Weak Duality) Consider the LP z = Min{c.x | Ax = b, x ≥ 0} and its
dual w = max{y.b | yA ≤ c}. Then z ≥ w.

Corollary 1 If the primal is feasible and unbounded, then the dual is infeasible.

1.3 Strong Duality

In fact, if either the primal or the dual is feasible, then the two optima are equal to each
other. This is known as strong duality. In this section, we first present an intuitive expla-
nation of the theorem, using a gravitational model. The formal proof follows that.

� �

Lecture 1: 10/13/2004 1-5

1.3.1 A gravitational model

Consider the LP min{y.b|yA ≥ c}. We represent this feasible region as a hollow polytope,
with the vector b pointing “upwards”. If a ball is dropped into the polytope, it will settle
down at the lowest point, which is the optimum of the above LP. Note that any minimum
is a global minimum, since the feasible region of an LP is a convex polyhedron. At the
equilibrium point, there is a balance of forces – the gravitational force and the normal
reaction of the floors (constraints). Let xi represent the amount of force exerted by the ith

constraint. The direction of this force is given by the ith column of A. Then the total force
exerted by all the constraints Ax balances the gravity b: Ax = b.

The physical world also gives the constraints that x ≥ 0, since the floors’ force is always
outwards. Only those floors which the ball touches exert a force. This means that for the
constraints which are not tight, the corresponding xi’s are zero: xi = 0 if yAi > ci. This
can be summarized as

(ci − yAi)xi = 0

. This means x and y satisfy:

y.b = yAixi = cixi = c.x

But weak duality says that yb ≤ cx, for every x and y. Hence the x and y are the optimal
solutions of their respective LP’s. This implies strong duality – the optima of the primal
and dual are equal.

1.3.2 A formal proof

Theorem 4 (Strong Duality) Consider w = min{y.b | yA ≥ c} and z = min{c.x | Ax =
b, x ≥ 0}. Then z = w.

Proof: Consider the LP min{y.b|yA ≥ c}. Consider the optimal solution y ∗ . Without loss
∗of generality, ignore all the constraints that are loose for y . If there are any redundant

constraints, drop them. Clearly, these changes cannot alter the optimal solution. Dropping
these constraints leads to a new A with fewer columns and a new shorter c. We will prove
that the dual of the new LP has an optimum equal in value to the primal. This dual optimal
solution can be extended to an optimal solution of the dual of the original LP, by filling in
zeros at places corresponding to the dropped constraints. The point is that we do not need
those constraints to come up with the dual optimal solution.

After dropping those constraints, at most n tight constraints remain (where n is the length
of the vector y). Since we have removed all redundancy, these constraints are linearly
independent. In terms of the new A and c, we have new constraints yA = c. y ∗ is still the
optimum.

′
′

1-6 Lecture 1: 10/13/2004

Claim: There exists an x, such that Ax = b.

Proof: Assume such an x does not exist, i.e. Ax = b is infeasible. Then “duality” for

linear equalities implies that there exists a z such that zA = 0, but zb �
= 0. Without

∗loss of generality, assume z.b < 0 (otherwise, just negate the z). Now consider (y + z).
∗ ∗ ∗ ∗A(y + z) = Ay + Az = Ay∗ . Hence, it is feasible. (y + z).b = y .b + z.b < y ∗.b, which

is better than the assumed optimum – a contradiction. So, there is an x such that Ax = b.
∗Let this be called x .

∗ ∗Claim: y .b = c.x .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗Proof: y .b = y .(Ax) = (y A).x = c.x (since Ax = b and y A = c)

Claim: x ∗ ≥ 0
∗ ′Proof: Assume the contrary. Then, for some i, xi < 0. Let c = c + ei, where ei is all

0’s except at the ith position, where it has a 1. Since A has full rank, yA ≥ c has a
solution, say y . Besides, since c′ ≥ c, y′ is feasible for the original constraints yA ≥ c. But,

∗ ∗ ∗ ′y′.b = y′Ax∗ = c′x < cx = y b (since ci is now higher and xi < 0). This means y′ gives a
better objective value than the optimal solution – a contradiction. Hence, x ∗ ≥ 0.

∗Thus, there is an x which is feasible in the dual, and whose objective is equal to the primal
∗optimum. Hence, x must be the dual optimal solution, using weak duality. Thus, the

optima of primal and dual are equal.

Corollary 2 Checking for feasibility of a linear system of inequalities and optimizing an
LP are equally hard.

Proof: Optimizer → Feasibility checker
Use the optimizer to optimize any arbitrary function with the linear system of inequalities
as the constraints. This will automatically check for feasibility, since every optimal solution
is feasible.

Feasibility checker → Optimizer
We construct a reduction from the problem of finding an optimal solution of LP1 to the
problem of finding a feasible solution of LP2. LP1 is min{c.x | Ax = b, x ≥ 0}. Consider
LP2 = min{0.x|Ax = b, x ≥ 0, yA ≤ c, c.x = b.y}. Any feasible solution of LP2 gives an
optimal solution of LP1 due to the strong duality theorem. Finding an optimal solution is
thus no harder than finding a feasible solution.

Lecture 1: 10/13/2004 1-7

1.4 Rules for duals

Usually the primal is constructed as a minimization problem and hence the dual becomes
a maximization problem. For the standard form, the primal is given by:

T z = min (c x)
Ax ≥ b

x ≥ 0

while the dual is given by:

w = max (bT y)
AT y ≤ c

y ≥ 0

For a mixed form of the primal, the following describes the dual:

Primal:

z = min c1x1 + c2x2 + c3x3

A11x1 + A12x2 + A13x3 = b1

A21x1 + A22x2 + A23x3 ≥ b2

A31x1 + A32x2 + A33x3 ≤ b3

x1 ≥ 0

x2 ≤ 0

x3 UIS

(UIS = unrestricted in sign)

Dual:

w = max y1b1 + y2b2 + y3b3

y1A11 + y2A21 + y3A31 ≤ c1

y1A12 + y2A22 + y3A32 ≥ c2

y1A13 + y2A23 + y3A33 = c3

1-8 Lecture 1: 10/13/2004

y1 UIS

y2 ≥ 0

y3 ≤ 0

These rules are summarized in the following table.

PRIMAL Minimize Maximize DUAL
Constraints ≥ bi ≥ 0 Variables

≤ bi ≤ 0
= bi Free

Variables ≥ 0
≥ 0
Free

≤ cj

≤ cj

= cj

Constraints

Each variable in the primal corresponds to a constraint in the dual, and vice versa. For a
maximization, an upper bound constraint is a “natural” constraint, while for a minimization,
a lower bound constraint is natural. If the constraint is in the natural direction, then the
corresponding dual variable is non-negative.

An interesting observation is that, the tighter the primal gets, the looser the dual gets.
For instance, an equality constraint in the primal leads to an unrestricted variable in the
dual. Adding more constraints in the primal leads to more variables in the dual, hence more
flexibility.

1.5 Shortest Path – an example

Consider the problem of finding the shortest path in a graph. Given a graph G, we wish
to find the shortest path from a specified source node, to all other nodes. This can be
formulated as a linear program:

w = max (dt − ds)

s.t. dj − di ≤ cij , ∀i, j

In this formulation, di represents the distance of node i from the source node s. The
cij constraints are essentially the triangle inequalities – the distance from the source to a
node i should not be more than the distance to some node j plus the distance from j to

�

�

�

�

�

1-9 Lecture 1: 10/13/2004

i. Intuitively, one can imagine stretching the network physically, to increase the source-
destination distance. When we cannot pull any further without breaking an edge, we have
found a shortest path.

The dual to this program is found thus. The constraint matrix in the primal has a row for
every pair of nodes (i, j), and a column for every node. The row corresponding to (i, j) has
a +1 in the ith column and a -1 in the jth column, and zeros elsewhere.

1. Using this, we conclude that the dual has a variable for each pair (i, j), say yij.

2. It has a constraint for each node i. The constraint has a coefficient of +1 for each edge
entering node i and a -1 for each edge leaving i. The right side for the constraints
are -1 for the node s constraint, 1 for the node t constraint, and 0 for others, based
on the objective function in the primal. Moreover, all the constraints are equality
constraints, since the di variables were unrestricted in sign in the primal.

3. The dual variables will have to have a non-negativity constraint as well, since the
constraints in the primal were “natural” (upper bounds for a maximization).

4. The objective is to minimize i,j cijyij, since the right side of the primal constraints
are cij .

Thus the dual is:

z = min cijyij

i,j

(yjs − ysj) = −1
j

(yjt − ytj) = 1
j

(yji − yij) = 0, ∀i �= s, t
j

yij ≥ 0, ∀i, j

This is precisely the linear program to solve the minimum cost unit flow, in a gross flow
formulation. The constraints correspond to the flow conservation at all nodes except at the
source and sink. The value of the flow is forced to be 1. Intuitively, this says that we can
use minimum cost unit flow algorithms to find the shortest path in a network.

Duality is a very useful concept, especially because it helps to view the optimization problem
on hand from a different perspective, which might be easier to handle.

6.854 Advanced Algorithms

Lecture 10: 10/04/2004 Lecturer: David Karger
Scribe: Wendy Chang

Min-Cost Flow Algorithms

10.1 Shortest Augmenting Paths: Unit Capacity Networks

The shortest augmenting path algorithm for solving the MCF problem is the natural extension of
the SAP algorithm for the max flow problem. Note that here the shortest path is defined by edge
cost, not edge capacity.

For the unit capacity graph case, we assume that all arcs have unit capacity and that there are no
negative cost arcs. Therefore, the value of any flow in the cycle must be less than or equal to n.
Given that each augmenting path increases the value of the flow by 1, at most n augmentation steps
will suffice in finding the MCF.

Shortest augmenting paths can be found using any single-source shortest path algorithm. We can
use Dijkstra’s algorithm since there are no negative-cost edges in the graph. Each path calculation
takes O(m log n) time, for a total runtime of O(nm log n).

Two questions arise:

• what if augmentations create negative cost edges?

• how do we know the result is a MCF?

We answer both of these questions with the following claim.

Claim 1 Under the SAP algorithm, there will never be a negative reduced-cost cycle in the residual
graph.

Proof: (by induction). We want to show that one SAP doesn’t introduce negative cycles in Gf .
Initially there are no negative cost cycles. Feasible prices can be computed by using shortest path
distances from s. After finding the shortest s-t path, it has reduced cost 0. Every arc on the path
has reduced length 0. This demonstrates that the triangle inequality property is tight on shortest
path edges. When we augment along the path, therefore, the residual backwards arcs we create are
of reduced cost 0. Therefore in the new Gf , the price function is still feasible. Furthermore, there
are:

• no residual negative reduced cost arcs

10-1

Lecture 10: 10/04/2004 10-2

• no negative reduced cost cycles

• no negative cost cycles

Proof of this claim also proves the correctness of the algorithm, since it will also apply to the residual
graph at the time the algorithm terminates.

The SAP algorithm we present suffers from two limitations. It is applicable only to unit capacity
graphs, and it cannot handle graphs with negative cost cycles.

10.2 MCF Scaling by Capacity: General Networks

We can extend the SAP algorithm to general-capacity networks by scaling. During each scaling
phase, we roll in one bit of precision, for a total of O(log U) phases.

At the end of each phase we have an MCF and a feasible price function. After rolling in the next bit,
though, we can introduce residual capaicty on negative reduced cost arcs. This will cause the price
function no longer to be feasible. We can correct this problem by sending flow along the negative
arcs. This introduces flow excesses (of one unit) at some nodes and deficits (of one unit) at others.
We use an MCF to send the excesses back to deficits.

Since each arc can create at most one unit of excess, total excess is at most m units and m SAPs
will suffice in returning all excesses to deficits. Using Dijkstra’s for finding SAPs as before, runtime
per phase is O(m2 log n). The total runtime of the algorithm is O(m2 log n log U).

10.3 MCF Scaling by Cost

An alternative method of solving for MCF in a general network is by scaling by costs, rather than
capacities. This is useful for graphs with integral costs, since all cycles will have integer costs. The
idea is to allow for slightly negative cost arcs and continuously improve on the price function. We
introduce the idea of ε-optimality:

Definition 1 A price function p is ε-optimal if for all residual arcs (i, j), cp(i, j) ≥ −ε.

We start with a max flow and a zero price function, which will be C-optimal. During each phase, we
go from an ε-optimal max flow to an (ε/2)-optimal max flow. When can we terminate the algorithm?

1Claim 2 A n+1 -optimal max flow is optimal.

Proof: We start with the observation that the least negative cycle cost is −1 in a integral-cost graph.
All cycles in the residual network cost at least − n

n+1 , which is strictly larger than −1. Therefore
1the reduced cost of any residual cycle is at least − n , and a n+1 -optimal max flow is optimal. n+1

Lecture 10: 10/04/2004 10-3

To get an (ε/2)-optimal max flow from an ε-optimal max flow, we first saturate all negative-cost
residual arcs. This makes all residual arcs have non-negative reduced cost, but introduces excesses
and deficits into the network. We then use MCF to push the excesses back to the deficits, without
allowing any edge costs to drop below ε/2.

Using dynamic trees, the runtime of this algorithm is O(mn log n log C).

10.4 State of the Art

The double-scaling algorithm combines cost- and capacity-scaling introduced here. It has the runtime
of O(mn log C log log U).

Tardos’ minimum mean-cost cycles algorithm (’85) is a strongly polynomial algorithm for MCF.
The algorithm proceeds by finding the negative cycles in which the average cost per edge is most
strongly negative. Thus short cycles of a particular negativity are preferred over long ones. The
algorithm uses a cost scaling technique from the ideas of ε-optimality. After every m negative-cycle
saturations, an edge becomes “frozen,” meaning its flow value never changes again. The minimum
mean-cost cycle algorithm has time bound O(m2 polylog m).

������������ ��	
��� ���������� ������� ��� �		

������� ��

��������� ���	�
 �� ������ ������� ��	����� ������	���� ��	�� ��������

�� �� ���� �������� �� ��� � ����� ��������� �������� ��� �� ������� ���� ����������� ��������
�� ��� ������� �� ������� � �������� ���������� ���� ��������� ��� ���� �� ������ ����� �� ��
������� ���� ������� ����� �� �������� ������

�� ������� �� ������ � �������� ���������� �������� ��� ���� ��� �!�������" ��� �� �������
���� ����������� ������� ��� ���� ��� ������� ������ ��
#$%� &'�� ������ ��������� �� ���� ���
��������� ��
#$(�)������� ��� ���*�� �������� �� �������� ������� ��������� ������

� ��� ������	
���	�� ��
�	����

�� �� ���� �������� �� ��� �� ��������� ���������

���������
��
�
���������

� +�� � , 	�

�� -��� � �" � 	 ��
��� Æ , ���

�������
�� �� �" ����� � ������� ���� ���� ����� . �� �� �

��)�������/���*�� �������� �� � ����� ��������� �������� ����� �� �� � �������� �������� �����
�0 � �" � 	�

� �������� �� ��� ������	
���	�� ��
�	����

1����� �����2��� ��)�������/���*�� ����� ��������� ��������� �� ������ ���� �����������

�������� � � �����
����� � �� ��������
 � �	��� �!���� 	 ���	 �	��
� �� �" � �� �� �

 �� �" �
�� �

3�� � , 	� �� ���� ��� ���� �!��� ��������� 	 ��� ���
� �� �" � 	 ��� �� �" � �� � ���� �
	/������� ����������� �� � ������� ���� ������������

�������� � � �" , ������� � ���	 �	�� � �� ��������
� "� ��	�� #�����

� �" , ���� � �	 4
� �� �" � �� � �� �" � ����

�� ��� �������� ������ ��� ���
 ���" ��� ��������� -� ���� ��� ���������� ����� �� ��� ������� ����
��� ��� �� ��� ����� 5��� �� ��� �� ��������� ������� ��� ���� ������ �� �� ���� ��������

����� � " � �� � �����
����� #��	 � �" � �
� �	�� � �� ������
�

/

����� � $�� ��� �����
����� � � � �" , �� �"�

-� ��� ��� ����� �� �����2� �� ��������� 3����� �� ��� ���� ����� � �" �� � ������� �� ����/
����������� �� �������� �������� ������������ ��� ��� ������ ��� ������ �� ��������

����� ��� � �� � �����
����� ���
�� � � �� �	� �����
����� �������� �� �����
��� �	� �������
���� ���� ���
� . �� �� � %	�� � �" � � � �"�

!���"� 1� ���������� ���� �!���� 	 ��� ���

� �� �" � �� �"
"

��� ��� �� �" � �� � 6�������� ��� ��� �� �" � .� �� ���
� �� �" , �� �" ������ ��������� ��� ����
���� ����� ��� �� �� �"� -� ����� ���� ��� �� ���� 	�
" ���� ��� ��� �� �" � �� � � ������� ��
 �� �" � �� � ��� �
" ��������� ����� �� �� �" � �� � 	�� ��� �� �" ��������� ������� �� .� 7�����

� �� �" , �
� �� �" , � �" � 	 ���
" �� ���� ��������� �

8�!�� �� ��� ��� � �" ��������� ����� � ������� ������ �� �����������

����� � ��� � �� ��� �����
����� ���
�� � � �� �	� �����
����� �������� �� ��� ������ � ����������
� �	� �
�����%����� �
�����	�� %	�� � � �"

� �

� "� �"�

!���"� +�� 	 �� ��� ���
� �� �" � �� �" ��� ��� �� �" � �� � +�� .� �� �� ����� �������� �� ��
� ���������� +�� � �� �� �������� ������� ��� ��� ���� �!���� �� �" � .��� ���
� �� �" � 	�
-� ���� ��� ��������� � ����� ������� �� ����� ��� ��� ��� �������� ������� ���� ���� �� ��������
���� ��� ������� ���� ���� ��� �������� ������� ����� �������� �
 �� +�� � � �� �� ��� ��������
����� � ����������� 1� ������ �� �� � �" �� �9��� �� �� ���� ���� �� .��� ��� ��4

�
����������

� �� �"

�
�

� ��
"

�
� �"

, �
�

�
"� �" � �
�

�
"� �"�

���� � , �.����� ��������� �� ������ :� ����� � ����������� � �" ��������� �� � ������ ��
� �
� "�
�

5������� ��� ���
 ���" ��� ��������� �� ��� �� ��������� ������4

����� � ��� � , ��!
�������

�
 �� �"�� %	�� �	� �
������%����� �
�����	� &��� � ������� ����

�����
����� � ��� �����
��� �� ��� ��" ���
�� '��� , ���	(�

!���"� �� ������� ����������� � , 	 �� ��������� �/������� ������ ��� 	 , 	� �� ���
� �� �" � ���
��������� �� ������ ;� �� ����������� �������� ����� �� ����� ���������� �� ��������� ����4

�

�

�

�

�� �����
�

� � �� �����
�� ,
�

��
,

�
�

���� �� ��� ���� �� ���� ���
� �
� "� � ��� ��� ��� � � 	� �� ��������� ����������� �� ��������

������� �� ������
� �

�� ������� ������� ���� �� ��)�������/���*�� �������� �� �������� � ���� ��� ��"" ����� ��
������� ���� ���� ����� ��� �� �������� �� � ��" �����

/�

� ������ ��� ��
���� ��
�	����

-� ��� ������� �� �������� ��������� �� �� �������� �������� �� ����� � ���� ��!���� ���������
�� ������ ��� ��������� ��� �!�������� ����������� ���������� �� ��� �������� ������ ��� ���������� ��
���� �� �� ��� �� ���������� �� ��� ���� �� ������� ���� ���� ����� �� ������� �� ���� �����

� �� �" ��� ��� ��� ��� ����� ��� ������ ��� ���� �������� ���� ������ �� �������� <�����
��� ������ �� ��������� ������

#
���
�� �������

� <�����4 5� ���� �� ���� �!���� � ����� . �� �� ���
� �� �" � 	�� �� �" � . ��� �� ���
��� �� �������� ����� .�

�� ������4 <������ � ������� ���� ���� ����� �� �� ��� ������ ��

-� ��� ��� ��� �� <����� ���� ������� �� ��������� �� ���� � ������ ��� ��������� ��� �� ���
�� ����� ��
�
��"� �" ��������

����� � ��� � �� � �����
����� ���
�� � � �� �	� �����
����� �������� �� ��� ������ �	�)����

����� %	�� #� �����
 �� ���� � ���
�� �� ��� � � ���

� � �"

�

�
"� �"�

!���"� +�� 	 �� ��� ���
� �� �" � �� �" ��� ��� �� �" � �� � +�� . �� ��� ����� �� � � ��� ��� �
�� �� ����� �� .� -� ���� ��� ��������� � ����� ������� �� ����� ��� ��� ��� �������� �������
���� ���� �� �������� ���� ��� ������� ���� ���� ��� �������� ������� ����� �������� �� ���
������ �� ���� � ������� 8�� �� � �� �� �������� ������ �������� ����� ����� �� �� � �������� ��
���� �� �" ��� ���
� �� �" � 	� 7���� �� ���� ���� �� . �� �� �����4

�
�������
� �� �"

�
�

� � �
"

�
� �"

, �
�

�
"� �" � �
�

�
"� �"�

�

�� ����� ������ ������� ��� �� <����� ��� ������ ��������� ���� � ������� ���� �����������
�� �� ���� � ��� ��" ���������� �� �� �������� ��� �� � ����������� �� ������ %"� �� ���� ����� ��
� �" ���� �� ��� � ����� �� �� ���������� ����� ��� ������� ��� ��� <����� ���� ����� � ��"
����� ��� �� �� ���� ��� �� ������ �� ���� � ������ ��� ��� � ������� ���� �� � ��" ��� ���
��������� �� �� <����� ��� ������ 5�������� �������� �� ������� ������� ���� �� <����� ���
������ �� � ��� ��� ��"" ���� �� ������2�� ���� �� � �" ��� ����� ��������"� -� ��� ������
������� ��� �� ����� ������� ����� �� ��� �� ������2�� ���� �� � ����" ��� ����� �������� ���
��� ������� �� �� � �� ���� ��� ��"" ���������

� � ��	��
�� ���������� �����

�� ��� �������� �� ���� ������ �������� �� �� ��������� ��� �������� �� �� ��������� �� ������
��� �� ������ �� ���������� �� �������� ����������� ���� ��� �� �� ���������� �� � ��� � ��� ����

/:

��� ������ �� �� �� ���� �������� ���������� �������� ��� �� ������� ���� ����������� �������
�� ��� �� �������

�������� �� ��� �� �" � � �� ��&!�� � � �� �" �� �	� ���� �� �

 ��������
 �����
�������

���� �!���� � ������ ��������� ��� �������� ����� �� ��� �� ���!���

����� $ ��� � � 	� ��� � �� � �����
����� ��� 	 �� ���� ��������
� ���	 �	�� � �� ��������
 #��	
������� �� 	� " �
� �� �"� � ��� �	�� �� �" �� ��&!���

!���"� �� ����� �� �� �������������� +�� � � �� �� �/������� ����������� ��� ��� � � �� �" �,
� �� �"� 5����� ��� �
� �� �"� � ���� -����� ���� �� ����������� �� ��� ������ �� ������������
���
� �� �"
 ����� 7���� �� �" �� �� � ���� � �� �" , � �� �"� ��� ������� ��� � � �� �" � � �� �"�
+�� �� , � �� �" � � 4 � � �� �" � � �� �"��

#�
�� � %	��� �!���� � ���
� . �� ����" �	�� �������� �� �"�

!���"� =���� �� �" � ��� �� �� ��Æ����� �� ����� �� �!������� �� � �������� ��� ���� � �� � ��
 ����"� +�� � � � �� �� ����� �������� ���� � �� ����"� 5����� � �� �� 1� ��� �������������
�� ��� �

������

 � �� �"� � � �� �"" ,
�
��

�
���

 � �� �"� � � �� �"" , 	�

7������� � �� �" � � � �� �" � 	� ���� � �� �" � � � �� �" � 	� ��� �� ���������� � � � ��� � �� ��
��������� ���� ���� �!���� � � � ��� � �� � ��� ��� � �� �" � � � �� �" � 	� �������� ���
 �� �" � ��� ��� ����������� �� ���� ��� � �� �� �

1� ��������� �� ��� �� ��� ��� �� � �� � � 7����� �� ���� ���� �� . �� �� ����� � � �" , �� � �" ,
��� �� �� ���� ���� �� ���� ���� �� . �� � , �.�"4

 ."

�
,

� ."

�
,

�

�
�
� �� �" >

�
���������������

� �� �"

�
�

�
 ����> � �
"�" �

�
 ���" , ���

� �������������� �

����� % %	� �
������%����� �
�����	� ���������� � ��� � ��� ����" �����������

!���"� �� �� ��� ������� �!�� ������ �� �!������� �� �� ��������� ��� �� ���� ������ �!�� �����
� �" ���� ��� ��������� -� ����� ���� �� ���� �� �� �������� �� ��� ����������� ��� ����������
��� ������� �!�� ����� � �� ����" ����������� +�� � �� �� ������� ����������� ��� ��� . �� ��
���� ����� ��������� 5���� �� ��� ��" ����������� �� ������ � ����������� � � ���

� � �"

�

�

�

�� �������

� �" � �� �������� �" ,
� �"

��

�� ������ ?� +�� 	� �� ���������� ��� ��� � � �������� �� � � �"/���������� ������������ 1�
��������� �� .�

�� �" ,

�� ."

�.�
�

/;

7�����

�� ."

�.�
� ���� � �"�

��������� ���� �!���� �� �" � . ��� ��� �
�� �� �"� � ���� � �"� 1� �� �������� ������� �� �"
�� � � �"��!��� 6�������� �� �" �� ��� � �"��!�� ����� ��������� . ��������� �� ��� �� �� �"�
��� ������ ���� ����� �� ��� ��" ����������� ��� ���������� ��� ������� �!�� ��� �������� ��
�������� ���������� �� ��� ��� ��" ����������� �

@���� �� � ��" �������� ��� �� ������� ���� ���� ����� �������� �� ������ � � �	�� ����"
�������� ��� �� ������� ���� ����������� �������� @���� �� <����� ��� ������ �����������
�� ������ � ������� ���� �� � ���� ����"� 5�� �� �� ��������� <����� ��� ������ ��� ��
������� ����� ���� ��������� �� ��� � ������� ���� �� � ��������"�

�� ���� ����� �������� ���������� �������� ��� �� ������� ���� ����������� ������� �� ��� ��
����� ��� ���� �� � � ��� � �> � ����"" , � �� ����>�� ���� �" �����

/%

����� ����	
�� ���������

������� ��� 	��
��� �� ���� ���������� ���� ������� ����� ������
������� ���
� ���������

������������	 �
�������

���� ������	
����

�
 ��� �� ����� �� ��� ������� !�
����� � �� ��� �Æ������" �
������ #�
������ �� !
�"�
���� ����$
��� �� ��� �����
� %�����" �� ��� �
��� � ��& '
� � � ��(� ��� ��������
����� �� ����
�
������ !�
����� � �� ��� �
� ��
�� �
 �� �Æ������" �
������&

������ ������	
������

)� ����"��� ��� !�
����� �� ���
����� � � �
��
�
� *+,�
�!��������& *+,�
�!���� !�
�����
�
�!���� � �����"
� �
������
� �������� �
������
���� ���
!����-���
� !�
����� �
� � ��

� �
 �Æ����� ���
��� �� ��� ��
��. �� ���
����� ��� ����� �
��� �
 �
��� � ��� !�
����� ��
�(!
������� ����

� �� �Æ����� �������
� �(���� ��
� ����"
� �� *+,�
�!���� !�
����. � �� �� �� ��� � �����
�
(� �� �� ���� �
 �
���
��
� � ��� !�
����� �Æ������" �� ��� �
��� ���
� � � !�
�����
�Æ������"

/��
� ��� ������ �
�� �(��!���
� *+,�
�!���� !�
�����& ��� !�
���� �(��!� �01 �� �
��������
�� ��
!����-���
� !�
���� ���
�� �������" �!������ �� �� � � ������
� �����
�
� ��� !�
����
� �� �� *+,�
�!����& 0� �� ����� � ��� �
�� �(��� ��
!����-���
� !�
���� ������� �
 �01 ������
203�01&)� � �� !�
���� �� ��� ����� � �

���� �
����� ��� �� ���� 4�� �� ���������� �
 � �
��������� � �� ��(���-�� � � ������
� �����4�� �������&

������������� ������ 5���� � �

���� �
����� �� � ��� �� ���������� �
 � � ��������� � ��
�����4�� � � �
����� #����� � � �
����� �������� �
 ����$6

��	 ��
��	� 5���� � ���
� �����
� �!���4�� ��-�� ��� ����,��-� ���� ��������� � � �������
������
� ���� ��%����� �

�� � � �����&

 �! "	��#�	��	� ���� 5���� � ���! 4�� � ��(����,��-� ������
� �������� ��� � �� �
 ��

�������� �� � � ������ ��� ��7�����&

$	�#��
�� 5���� � ���!����
� 4(�� ��-� ��� � ���
� ����� ���
� � �!���4�� ����� ��� ��-�
��������� � � ��(���� �
��� �����
� ��" ���
� ����� � �� 4�� �� � � ���!����&

��,�

������� ��� 	��
��� �� ���� ��,�

�������� �
��	� �
���%��	� 5���� � ���
� ��������� ��� ���� ��� � ���
� ����� ���
� �!��,
�4�� ������
� 4�� �� ����������
� ����� �
 ��� ���� � �� ������-�� � � ���� ��%����� �
�
��� ��� ���� �
 �
�!���� � ��� �������� �����&

�������	 �������	 ������� ������ '��� � �������,�������� �
��� � �
�� � ���
� ������
� �� ���
�� � �������� �
 ����� ��� ��� �� � � ���� ���" ��� ����� ����"
� �� ���" �(����"

���&

1 �� ���
� � ��� !�
����� ����
� �� �
���� �Æ������" ��!����
� � � �����!��
� � �� + �8 *+&
0��
�� � �� �
�7������ �� �
� !�
��� �� �� �����" �������� �
 �� ���� ��� �
 �� ���� ���!�" ������
� �� + �8 *+&

������ ��	�� ���� ������	
������

����� �� �
 �
� ��
�
� �
 �
��� *+,�
�!���� !�
����� �Æ������" � �� ��� �� �
6

��%�����
�� 	�� !
��������" �� �
 �����
� ����� ��� �
� !
�"�
����,���� ���
��� �� ��� �
 �������
�
���������
� �����
!��� ��������� � �� ��� ���
�� !
�"�
����,���� �� !������� �
� ���������
� �� ��� �
� �

 �����& /�� �� ������� �� �
��� �� ���!������ �

����� ���
��� �� � �� ���
���� ����(!
������� �� �� ������ � �� �
�� �
��� ��� ����4����
�� �� �
 � �� �� + ��� *+
��� �%���&

������&
��� �	������� 9�� �� � �� �

���� �� � � �
���,���� !���
������
� ���
��� �� �
� � ���
!�
����� �� ��� ����"-� � � ���
��� ��: �� ���
�
��"
� ������� �������
� ��!���& 1 �� ��
�
�� �" ����������� � ��� �(!����� !���
������
��� �
�� �!���4�� ����������
�
� � � ��!��
���������& /�� � ��� ��
���� ��� ������������
��� � �� ����������
� �
 ���&

�##��!������	 ���������� ;� ��� �����!� �
 4�� !
�"�
����,���� �!!�
(�����
� ���
��� ��
� �� ��� �� !�
��� �
 �� �����������	
 �
�����&

;� ���� �(!�
�� � � �
!��
� �!!�
(�����
� ���
��� ��
��� � � ��(� ��� ��������&

���� ����������� ��������

/��
�� ���������� �!!�
(�����
� ���
��� �� �� ���� �������� �
�� ������
�
�" �
�
!����-���
�
!�
�����&

'��	����	 (�� ����������� ����	�� ��� � ��� �� #������ �	���	
���

'��	����) ���� �������� � ��� � ���%���	 ��� ��"��

'��	����	 * ��� ����������������������� ����	�� �� �� ��� � ��	����� � � �#�$ �� �����
����������� ��������� ���%� +���� �� ��		 ������ ��� ����� ��� ������ �� � ��� �������� ����
����� �� � ��	
�����	 ������ �� �����

������� ��� 	��
��� �� ���� ��,�

'��	����	 � ��� ��	�� �#�$ �� �� ������� ��	����� � ��� �������� � �� ������� ,���"��

���
� � �
!����-���
� !�
����� ����� �� �����
� ��&�&� 4�� ���
 � ��
!����-���
� ������
��&
'
� �(��!�� �
������ � � 2�()���!������ ��� !�
����& ��� !�
���� �������� �� � ���! . � �
�
����
� ��� �
� � ���! �
������
� ��� �������
� �������� ��� � �� �
 ��
 �������� �� ��� ������
��� ��7�����. ��� � � �����
� � �
����
� �� � � ������
� �������� �� � � ������&

0��
�� �� �
��� ���� �
 ����� �
 � ���
!����-���
� !�
����� �� ����� *+,�
�!���� � �� ���� ��
������" �������� �
� ������
� !�
����� ��� ���������&)������ �� ��� � � �
���!�
� *+, �������&

'��	����	 � �� ����������� ����	�� �� -�&���� �� ���� ����� !����� ����	�� ��� �� �������
�� �� �� ��	
�����	 �����

<�����" � � *+, ��� !�
���� ���� �� � � �������
� �� � � �
����!
����� ������
� !�
����
� � �� ��
��� #�$ �� �� ����� #
� �� �
��$ �
�� ����� �&

���� �����	�� ����������� ����������

'��	����	 � �� �##��!������	 �������� �� � ��	
�����	����� �	������� ����� ���� ����� ��
�������� �" ������� � ��	����� � �� ��� ��	����� ����� �#�$�

'
� �(��!�� �� � � ���,!������ !�
����
�� !
������ �!!�
(�����
� ���
��� � �� �
 ���!�" !����
��� ���� �� ���
�� ���& /�� �
��� �
 �
�� �����" !�
����� � !

� %�����" �
����
�& 1
 ������� � �
�����
� %�����" ��� �� �
������ ���
���� �!!�
(�����
� ���
��� ��&

'��	����	 . #���� �� �������� �" �� �&�����%�� �##��!������	 �������� ���� � ��	����� ��
��	�� �� ���� ��� #�$ = ��

*
�� � �� � �� ��4����
�
��" ����� ����� �
� ������-���
� !�
�����. �� �,���
���� �!!�
(�����
�
���
��� � �
� � ��(���-���
� !�
���� �
��� ������ � �
����
�
� ����� �� ����� ��� #�$��& '��� ��

������ � �� � �� ��������� �� ���
���� �!!�
(�����
� ���
��� � �� �
��� ���� � �
 �� �� �����
�� !
������&

������ �
�������� ��� ���	� ��
����

>
������ � � !�
����
� #��	�� ��#�
�����	 �� � �� �� ��� ����� � !����� ���! #
�� � ��
��� �� ����� �� � !���� ���
�� ��� ����� ��
�����$ ��� �� ���� 4�� � �
�
����
� � � �������� ���
� �� �
 ��
 ���� �
���� �������� ��� � � ���� �
�
�& 0� � � �
��
���� � �
��� ���
�������� � ��
!�
���� !
������� �� ���
���� �!!�
(�����
� ���
��� �&

������� (� $�����	��� ������������� �	������� ������ ��� �	���� ����� ��	������

����+� /" � � '��� >
�
� 1 �
��� ����" !����� ���! �� ?,�
�
�����& '��� �� �
�� � �� ��!�"
���! � #���! � ���
�� �����$ ��� �,�
�
����� ��!������ ���! � ��� �,�
�
����� � ��� ���
� �� ���! �
��%���� �� ����� � �
�
��& 1 ���
��������
�� ���� �
 � � �
��
���� ���
��� ��

�&)� � � ���! �� ��!�"
� ��!������ �
�
� ��
!������"&

������� ��� 	��
��� �� ���� ��,@

�& 	� ������ �
�
� �� ��� ? �
�
��&

����� � �� ���
��� �
��" ���� ? �
�
�� � �� � �
!����� ������
� �
�
�� �� �� ����� � �� �� �
�,���
���� �!!�
(�����
� ���
��� �&

;� ��� ���
 �
������ � � !�
����
� ���&
�����	 �� � �� �� �
�
� � � ����� ��� �� � �� � �
��������& <����� �� !����� ���! �
�
���� � ��� �� �
 �
������ �!!�� �
���
� � � ������
� �
�
��
��%����� ����� � �
!����� ������ ��� #�$ �� �
���,�
����� �" � � ��(���� �����(������ A&
*����� ����� �� ��� � � �
��
���� � �
��� ��� �
 B�-����

�������) ��� ����� �� ��
 ����� ��� �� ��	���� ����� �� ���� A= � ��	����

����� �� !�

�
� � � � �
��� �� �
���������� �� !�
����� �� ��� �� ���
��� � �
� 4����� �� ����,
�
�
���� ����� �� �
�� � �
�� �
�
� � �� � �
!�����&

/�������� (� %�����	��� ������������� �	������� ������ ��� �������	������

������ ������ �������� ����	
�� �� ���
��

0��
�� � ��� �
�
���� !�
����� !
����� ���
���� �!!�
(�����
� ���
��� �� �
�� *+, ��� !�
�,
���� �
 �
�&)� ���� �
� �
��
� � ��� !�
����� �� ��� !�
�� � �� �� ���
���� �!!�
(�����
�
���
��� � ����
� �(��� ������ + �%���� *+& ��� !�

�� ��� � ��� ��%�� ������ �
���	&)� �������
�� 4��� �������� #�����$ ������� !���������
� � � !�
���� ��������& ;� � �� �
� � �� �� �� ���
����
�!!�
(�����
� ���
��� � �(����� � � �
����
� �� �
��� !�
���� �
� � � �
��4�� �������� �
��� ��
�������� �
 "���� ��
!����� �
����
� �
� � �
������� ��������& /�� � �� �
��� ��!�" � � �(�������

� �� �Æ����� ���
��� � �
� �� *+, ��� !�
���� ��� � �� + �
��� �%��� *+&

1 � �
��
���� ��
 �(��!��� ���������� � � ���
� �������&

/���� (�� ����	��� ������������� �	������� ���� ��� ����� ��� ��� &������' ����	���

����+� >
������ � ���!���� !�
���� �������� � �� � �� ���
� � � ����� 	 �� !�
4�
� ���
��!!
�� �� ��� �� �,���
���� �!!�
(�����
� ���
��� � � �
� � � !�
����&)� �� �
���� � � !�
4�

� ��� ���� �
 �
� �
 �
�� � ��� �������� #���� �� ��$ � � ���������
!����� �
����
� ��� #��$ ��
����� � �
�������
!����� �
����
� ��� #�$ ����� � � ���
� ����� � ��
��������" "������ � !�
4�

� ��� #�$ �
� "����� � !�
4�
� ���� #�$&)� �� � �� ��� �
� �������� �� ��
����� � �
����
�

� �� ����� ��� #��$� � 8 ���� #�$� �& '�����" �������� � �� ������ �" � "����� � �
����
� �
 � �

������� ��������
� �� ����� ��� #�$����& 1 �� �� ��� ��!�
��� � � �����
� � �" � ����
�
� �&

)� ������� ������� � �
������� �������� � �" � ����
�
� ��� � �� �������� � � ��������� �
����
�

� � �" ���
�� �� �
 ������ � �
 ��& C���� �� �� �

�� �
 �� ���� �� ��� ������ � �

������ � ��� ��!�"��� � ��� �� ���� �

����� � �
����
� � �
� �
� �� ����� ��� #�$� ���&)� ��
������ � �� ������� ��-�� ��� !�
4�� � � ��(���� �� ������� !�
4� ��� #�$ �� ���
 �� ������� ���
�
 � ���� �%��� ��� #�$& >
���%�����" �� ��� �� �Æ����� ���
��� � �
� �
����� ������� ���������

� ���!���� � �� �
���������
�� �����!��
� � �� + �8 *+&

������� ��� 	��
��� �� ���� ��,?

/����) �� ����	��� ������������� �	������� ���� ��� ����� ��� (��)���������� *���

����+� ��!!
�� �� ��� �� �,���
���� �!!�
(�����
� ���
��� � �&)� �� �
���" �� �������� � �"
������ � �
!"
� � � ���! #���� � �� ��� �������� ��$ � � ��-�
� � �
!����� ����!������ ��� ��
�� �� ����� � �� �� � & 1 �� ��� #��$ �%���� ���� #�$ � �� ��!���� � �� ������� �
� �������� ��
"����� �� ����!������ ���
� ��-�
� �� ����� ��� #��$�� 8 ���� #�$��& 1
 ������
�� � �� �
����
�
���

�� �
� � �
������� � �� �
��� � � ������
� �������� �� � � ����!������ ���
� �� & 	��
� � �
���! � ���� ��� �� ����� ���
� � ��� �������� ��� � �� � �� ���! �� �� ����!������ ���
� ��-� ��
����� #���� #�$��$�� 8 ��� #�$���� ��!�"��� �� ��� ������� � �" � ����
�
� �& 5�������-���
� �� ������ �� �� ���� ���� �
!���
� � � ���! �� ��� ��� � �
 4�� �� ����!������ ���
� ��-�
�� ����� ��� #�$ � ��� �� � & /�� � �� ���� �%��� ��� #�$ ����� � � ������
� �������� �� ��������&
1 �� �� ��� �� �Æ����� ���
��� � �
� �
����� 2�()���!������ ��� � �� �� � �
���������
�&

���� �������� ����������� ����������

����� ���
���� �!!�
(�����
� ���
��� �� ��� ��
�� �
 �(��� �
� �
 ���
!����-���
� !�
����� �
������ �����
� �!!�
(�����
� ���
��� �� �
 �
������ ��� �������� �!!�
(�����
� ���
��� ��& /������
� �" ��� �
 �
��
�!���� �� ���� ����� �
 � �� ���!�" �� �!!�
(�����
� ���
��� ��&

'��	����	 � �� �&�##��!������	 �������� ���� � ��	����� �� ��	�� �� ���� � � ��� #�$�

*
�� � �� ���
�� � ��� ���" ��� � � ��-�
� � � ��!�� �� ����
��" �
������ �
�� ����� �� � �� ��
�� � �
������& 1
 ���������� � � ������ ��� ����"���
� �� �,�!!�
(�����
� ���
��� � ��� �� �
������
� � +������� 2�� ��� �� ������� !�
���� � ������� �
��
� �
�� ���������&

�������� �
��	� �
���%��	� 5���� � ��� ���� �� ��� � 7
�� ��� !�
������� �����
� ������
� � 7
�� �
 � � ��� ���� �
 ������-� � � �
��

��(
�

�

���

� �

� � ���� ��%����� �
� ��� ��� ���� �
 �
�!���� � ��� �������� 7
��&)� �� ������� �
����
� � ��
!�
���� �� ��������� �� + � >��(&

0 ������� ��" �
 �
��� � �� !�
���� �� �
 ��� � �����" ���
��� � ������ ���� �
���%��	&

'��	����	 0 � ���� �
���%��	 �	������� ������� ���� �� �������� �
 ��������� ���� ��� �� ���
	���� 	����� ��������

*
�� � �� � �
���� �� � �� � � 7
�� ��� !�
������ �� �
� �!���4��& 1
 ����"-� � � !���
������

� ���� �� ������� �� ���� �
��
� �
�!��� ��� �
����
� �
� ��� �������� � #���� � �� �
����
�
�#�$$ �
 � �
!����� ��� #�$& /�� �� �
 �
� ��
�
� �

����� �� ����"����� �(!�����
� �
�
��� #�$& *
��� ����� �� �� ��� 4�� � ���������� �
��� �
��� ��#�$ �
� ��� #�$ ��� ��� !�
��
� �� �#�$ � � � ��#�$ �
� �
�� � �� � �� ���

�#�$ � � � ��#�$

� � ���� #�$�

<���� � �� ����
� �
���,�
������ ��� #�$ �� ��� �
� ��������� � � !���
������
� ���� �� �������&

������� ��� 	��
��� �� ���� ��,D

/���� * +��� ������	��� �� � $�������������� �	������� ��� !���		�	 (������ *�����	����

����+� >
������ � � �
��
���� ��
 �
��� �
���� �
� � �
!����� �
�� ��� #�$�

� � � ��(���� !�
������� ����
 8 ��(�
�

� � � ������� �
�� � 8
�

�
���

1 � ��(���� !�
������� ����
 �� ������" � �
��� �
��� �� � � ��� ��� �
 � �� � � �
����!
�����
7
� �� �������� ��%����� �� ����� ����
 �
 �
�!���� ��� �����& 1
 ��� � �� � � ������� �
�� �� � �
���
�
��� �
�� � �� �� ���
� � � ��� ���� �
��� �
�!���� � ��� �������� ����� �� ���� � �� ���� � � �
��(���� �
�� �
��� �� ���� � �� � � ������� � �� �� � �
���������
�& *
� ��!!
�� ��� ��� ��

 �� � � ��(���� ������� ���� ��� ��� 7
� � �� � � ���� 7
� � �� ��� �������� �
 ��& 0� � � ����
7
� � ��� �������� �� ���� ��� �� � � ������� �
�� #���� �� ��$ ����� ���� �� ������� �������
��� 7
� �
 � � ����� �
���� ��� ���& 1 ��

�� � ������� �
�� � �� � ��������

� 4��� ������� �
�� ��

����� � � ������� �
�� ���
��" ��������& 0�������� 7
� � �
 �� ����� �� �
��
 �
 �� � �� ��!����
� ��

���� � �� =

� �=

� ���� #�$ #� ���
 ��� �
��� �
���� �
� ��� #�$$�

1 � �
����
� �������� �" ���� �� ������� �� ���� ��� � �� ���� �� ������� �� � �,�!!�
(�����
�
���
��� � �
� +������� 2�� ��� �� �������&

)� �� !
������ �
 �
� � �� �" �
���"��� ���� �� ������� �
 ������ � � 7
�� �� ����������
����
�
!�
������� ���� ��
����� � @��,�!!�
(�����
� ���
��� �& '��� �� �
�� � �� ���� �� ������� �� ��

����� ���
��� �& *����
����� ���
��� �� ��� ���� �
 �� ���� �� �
� ��
�� ��E&

���� ���������� �����������
�����

1 �
���
�� %�����
� �
 �
� ��� ��
� �

� �� � �� ���
�����&

'��	����	 (1 � #���	����� �##��!������	 �
���� ����� �� � ��� �� �	�������� 	��
 ���
����� ���� �� �� � ��	
�����	����� #� = �$�������������� �	��������

1 �� ����� ��" � � � � +0� !�
����� �� ���
��� � � �� �� ����� � #� = �$,�!!�
(�����
�& C
� �

�� ������ � +0�6 1 � �
�� �
��
� ���
� ���� �� �,���������
�&

'��	����	 ((�� ������������� �	������� ����� �&�	%�������	 ���� �� ������	 ��	����� ��� ���
� ���� ��������� �	������ �� ��� ����	�� ��� ���� ���� �� ����������� ��	
�����	����� ������ ��
��	�� ��� ��������� �� ��� ����	���

'
� �(��!�� �� �!!�
(�����
� ���
��� � � �� ���� �,���������
� �
 �
��� +������� 2�� ���
�� ������� �� �� �
��
���

������� ��� 	��
��� �� ���� ��,F

�& ��������� ��� !
������ �����������
� � � � ������� 7
��&

�& '
� ���
� � ��� !������ ����������� ���� �� ����� � � ��������� 7
��&

�& 9����� �� � � �
����
� � � ���������� ��� � � ������� �
��&

*
�� � �� �� ����������� ��� !
������ �����������
� � � � ������� 7
�� � � ���
��� � ���� ����"�
4�� � �
!����� ���������� �
� � ��� 7
��& 1 � �
��
���� ����� ���
�������� � �� � �� ���
��� �
!�
����� �� ��� � +0�&

/���� � ,�� ��
 ���� �" �������������
��	�� � ��	
�����	 ������������� ������ ��� !���		�	
(������ *�����	����

����+� 0� �� � � !�

�
� >���� � ��� �� �
������ � � ��� ��� �� ��� ��(���� ������� ���� ���
� � ���� 7
� � � �� �� ��� ��������&)� � �� 7
� �� �
� ��
�� � � � ������� �� ��� �������� ������
���� �� ������� �� � �� !
��� � ��� ���� �� ����� � ������ 7
�� � �� �� ������" ���� �� ������&
1 �� � �� 7
� � ��� �������� � � ������� �
�� #���� �� ���������$ ���� ��� ���� �� ����� �
���
� �� ��!���� � ��

� �
����������

�

�
��

�
�

����� ���� �� � � ���
�
� ��� � � �
��
� �� ���
�� 7
� � ��� �������� #� �� ��� �
�� �� � �
!�

�
� >���� � �
 �� �� �
�� �$ �� ���

���� � �=
�

� #� =
�

�
$�

� #� =
�

�
$��� #�$�

5���� �� � � � �� �� ��� � �%��� ���

���� � #� = �$��� #�$�

1 �� �
���
� ���� ���

��� �� 7
� � �� ��
�� � � � �������&)� � �� ���� 7
� � �� �� ������

!������" ��� ���� � �� �%���� ��� #�$& '�����" �
 ��������� � � ������� ����
� � � ���
��� �
�
�� � �� ������� ���
� � � � ������� 7
�� ��� �� �������� �
 ��"
� � � � ��� ���� � ��� ���
�� 8 ���� !
������ �����������
� � ��� 7
��& ����� � � ���� �� ������� !���
���� �
� ���
� � ���
����������� ����� �#�$ ���� � � �
��� ������� ���� �� �#�����$ � �� �� !
�"�
���� ������� � ��
4(��& 1 �� ����� �� � � � � � ���
��� � �� � #� = �$,�!!�
(�����
� ��� �
 �� ��� � !
�"�
����
�!!�
(�����
� �� ���&

	���
���" �� �
��� !����� �� �!!�
(�����
� ���
��� � �
� � �� � �
�� �
� ��� �
 �� 4(��& 0� �
4��� ���! �
����� �� ������ � �� �
�� ��� �� ���
������ +������� 2�� ��� �� ������� � �� � ��� ���

��" � !
������ ��-�� #
� �"!��$
� 7
�� � ��� � �� �
����� �" � �
������&)� � �� ���� �� �� !
������
�
 4�� ��
!����� �
����
� �� !
�"�
���� ���� ����� �"����� !�
��������& *
�� � �� ��� ���
�
7
�� ��� �� ��������� �" ��� G!�
4��H � � ������
� ��� �"!�
� 7
� ��� � � ������
� !
������

������� ��� 	��
��� �� ���� ��,E

!�
4��� �� �� �
�� �� � �� �� !
�"�
���� �� � � ��!�� ��-�& 1 � �"����� !�
���� �
�!���� � �
������
� �#�	� �
� � � � � ��$ � � ������� ������
� ��� ���� ������ �
 �
�!���� � � �� �"!�,	 7
��
�� �
�� 4(�� ���� � & 0���� ����������� � � ��� �
� ��� !�
4��� � �� ��� �� �
�!����� �" � ������
��� ��� �� ���� � ��� ����� � �
 ��������-� � � �!!�
!����� ������� �� � � ����� � � ���������
������� ��� �
�!���� �����

�#�	� �
� � � � � ��$ 8 � = ���
���������������	

�#�	 � �	� �
 � �
� � � � � �� � ��$�

1 �� � � ������� ������
� ��� ���� ��%����� �
 �
�!���� � !�
4�� � �� �
��� �" �(��������"
���
���� ��� !
������ ������,��� ��� !�
4��� ��
� � ��� �

���� �! � � ������� ������
� ��� ����
��%����� �
 �
�!���� � � ����
� �& '�����" �
 ��������� � �
!����� ���� ��%����� �
 �
�!���� ���

� � � 7
�� � � �"����� !�
���� ��� �� ���� �� � G����
�����H �� � �����" �����
��� � � ������

� � &

����� ����	
�� ���������

������� ��� �	
��
�		 ��������� ����� ������
������� ������ �����

���������� 	�
������

���� ������	
����

����� � ������� � �� ����� � �� ����� ����!�� ������� �" ��� ������� �
�

����� �� ������� �� � # �
�

�� ������ ���� ���� ����$ �������� �� � �� "������� "�� �
�

%���� ��� ������� "�� �
�

������ ���
������� "�� � #

&�� ���� �
�

��� ���� ������' �� ���� �� (�� � ��$ �� ������� ���� �������� �� ���� �" � �����
���� ������� ���� ���������� ����#)��� ���� ����� ��� �����!������� ���������# *� �������� ����
�!������ �� ���������� ��� ������+��#

���� ��������� �������� �������

������ ������� ����������

����� � ��� �" ������,�������� � - ��� ���������,���� ������� �- ������� ���� ���)�. �� �� (�� �
����������� �$��� ,�#�# � ���� ���� ���� ���� �����! �� ������� �!����$ ����- �" ������� ����#

������ �����
 	��

)�� ������� �� /.0����' ����� ����� �� �� �����!������� ��������� "�� ��� �������# &�� �" ��
�������� ��� ������� �� �)�. ���� ��� �������� ���+�����$ �#�# �,�� �- 1 �,�� �- � �,�� �- "�� ���
�� �� � � � ' �� ��� (�� �����!������� ����������#)��� ������� �� ������ ��� 2�����)�.# 3�������
��� "�������� ���������

� 3�������� � 2������ ��������)��� "�� ��� �����#

�)�4� �� 5���� ���� ������ ��� 2�)#

)�� ���� �� �� ������ ��� ���������� �" ��4���� � ����' ������� ����� ����$����� �� �� ����� � ������
�� ��������# ����� ����$ ���� ������� ��� ���� ���� �� � �������� ����' 3��� �" 2�) � 3��� �")�.#
&�� �� ��� 5���� ���� ���� ���� �� ������� �����# %����

3��� �" 5����)��� � �63��� �" 2�) � �63��� �" 7��)�. ,��#�-

��0�

������� ��� �	
��
�		 ��0�

)� ��� � ����' �� 8��� �������� ��� 5���� ����' �#�# ���� �� ��� ������� � �����! "�� ��� ������ ����
����� ����� ���4' ������� ��4� ��� �������� ���� "��� ��� �������� �����! �� ��� ��!� ������ �� ���
����# ��� �� ��� �������� ���+�����$ �����' ��� ���� �" ��� ��������� ���� ���� �� ���� ���� ���� �"
��� 5���� ����#)��� �� ���� � � �����!������� ���������#

������������� ��������
 ��� �����
 ���

9��� ��� ����� ��������� �� ��� ���� ��������$ �� ���� �� ���4����4 "��� ��� ������ ��������#
%���� �" �� ��� ����"$ ��� ����� ���� ���� ��� �������� ���� ���� ������' �� ��� (�� � ���� ������
�����!�������# %���� ��� ��������� �� �� "������

� 3������ ��� ������� �������� ���� 	 �" ��� �����
 : ,���-#

� ��� � �� ��� ��� ������ �������� �� 	 # ��� �� ���� ����� ��� ��� �" ��� ������� �" �������� ��
	 �� ���� ��� �" �� �������� ���$ ��� ��� ������ ��������' ����� ��� ���� ��� �� �� �� ����
������ ����� ������� ���� ��� �� ����#

� 3������ � ���0���� ���"��� �������� � �� ��� ����� ������� �$ �#

� ;�� ��� ����� �� � �� �# /�� ��� ������ �" ����$ �����! ��
 �� ����')����"��
 ��� ��
5������� ����#)���� ��� ���� ��� ��4� ��������� ���� ��� ���� �����! �� ������� �����#)���
������ �������� ��� ���� ��� �� ��� �������� ���+�����$#

*� ����� ���� ��� ���� �" � �� �� ���� ���� ���" ��� ���� �" ��,	�� -# 3������� ��� �������
���� �������� ���$ ��� �������� �� �# 3�����$ �$ ��� �������� ���+�����$' ���� �� �" ������ �� ����
���� ��,	�� -#)���� ��� �� ���� ������ �" �������� �� ��� ���� ��� ����� ���� ������ �" �����#
)�� ���� ��(��� ��� ���8���� ��������� �� ��� ����� ������� �$ �# ;������ ��� �" ����� ��� ����
� �

�
��,	�� - ' ��� ����� ��� ���� �" � �� �� ���� ���� ����#

)����"��� ��� ����� ���� �" ��� ��������� 5������� ���� �� �� ���� ���� �

�
��,	�� - ��� ����� ��

��� � �

�
�����!������� ���������#

������ ����
��� 	��

)�� ��������)�. ��� �� ����!�� �� � ������� �" (����� � ��� ���� �$��� �����# <� ��� ���� �$���
����� �� (�� � ��$ �� ����� ��� ��� �������� ���� �������� �$����#)� �� ���4 �� �������)�.' ��
������� ���� �$��� �$ � �����! ��� ����������$ ����$ ��� ����� ��������� ����� �� ��� (�� �)�.
���� �� ��� ������� �����# 7��� �� ���� "���� � ���� �� ��� �� �� ����� ��� �$���� �������� ����
��� �$���#
)�� �������� ���� �� �� ���� � ����� ���� �" ��� �$��� ����� ����� �� ����� ���� �� �� �� ���� �����
���� ���� ����# %���� �� ��� ��� "�������� ���������

3���,�- : � � 3���,3$��� 3����- 1 3���,
�

�
- � � �3���,)�.- 1 3���,

�

�
- � � � ���� � ,3���,)�.--

,��#�-

������� ��� �	
��
�		 ��0

���� �� ���������� ��
����	��

;����� ��$ ������� ��� �� �!������� �� �� ������� �.# &�� ������� �. ��� �� ����!�� ���$ �����$
�$ 8��� �������� ���0������� ����������# *� ���� ���� �� (�� � ��$ �" ���������� ��� ���0�������
��������� ���4 �� ������� ���������# *� ��� ��� �����! ����� ������� �� ���������� ��� ������+��#

������ ������ ���� ������ �����

������� ����������	

; �����! ����� � �� � �����
 : ,���- �� � ������ �" ��� �������� ���� ���� ����$ ���� �� ��������
�� ������� ��� �����! �� � #)�� �����! ����� ������� �� ��(��� �� "������

�� 	����	 ! ����� � ����	
 : ,���- ��
 ��� �,�- ��� ���	 ������ � � � � ��
 � ������

����� � � � �	��	 �������� �,�- :
�

��� �,�-�

"� ����������	 �	� ����#����	

)�� ������������� ������� ������ ������� "�� ��� ������� �� �� "������

���� : ���
�

���

�,�-�,�- ,��#-

�����
�,�- 1 �,�- � � �,�� �- � � ,��#�-

�,�- � �	� �� �� � � ,��#=-

)��� �. ��� �� ����!�� �$ �������� ��� ������� ���������� �� "������

�� : ���
�

���

�,�-�,�- ,��#>-

�����
�,�- 1 �,�- � � �,�� �- � � ,��#�-

�,�- � 	 �� � � ,��#?-

������� ��� �	
��
�		 ��0�

$��	��	

��� �� �� ��� ������� �������� �" ��� �. ����!�����# ���

� : �� � � � ��,�- �
�

�
� ,��#@-

*� ����� � �� � �0�����!������� �" ��� ������� ���� A3# 3�����$ � �� � �����! ����� ������� "��
,�� �- � � �� ���� ��,�- 1 ��,�- � �' ����� ������� ��,�- � �

�
�� ��,�- � �

�
;���

�

���

�,�- �
�

���

�,�-���,�- : � � �� ,��#�	-

����� ���,�- � � "�� ��� � � � #
����� �� � ���� �� ���� � �0�����!������� ��������� "�� ���0���� A3#

������ ��� � 	

������� ����������	

����� � ���������� �" 7B ������� �� ���� ���� �������� ��' (�� �� ���������� �" ������� ������ ��
��� �������� ����� ��!������ ��� ������ �" ���� �������#
)�� �����!������� ������+�� �� �� ��� � ������ ����� "�� ���� ��# ����� ���$ ��� 7B �������

.���������$,����� ������ �� �����(��- �
�

�
,��#��-

%����

5C/� �" �����(�� �������D �
E �" �������

�
,��#��-

"� ����������	 �	� ����#����	

/�� �������� ��� ������� �. "���������� "�� ��� �������

���� : ���
�

�� ,��#�-

�

	� �������� ��
�

�� 1
�

�� ������� ��
�

,�	 ��- � �� 	 � �� � � 	 � �� � � ,��#��-

�����
�� : � �" �� �� �����(�� ���� 	 ,��#�=-

�� : � �" �� �� ����' ���� 	 ,��#�>-

/�� ����!��� ��� ������� �.' �� ����� ���0������� ���������#)� ������� ��� �������� ���4 �� ���
�������� ������� �� ��� ��� "�������� �������� ������+���

������� ��� �	
��
�		 ��0=

��� �� ���� %��� &���������' ���

*� ����� ���� � � �������� ������� ������ �� �� �����(�� ���� ����������$ � ���� �����

�� : �	 ,�	
�

�
-
�

,��#��-

)� ����� ��� ����� ����� �������� ��� "��������

.���������$,�� �� �����(��- : �	
�

���
�

�	 �� ,��#�?-

)��� ����������$ �� ������F�� ���� ��� �" ��� ��� ��� �+���' �#�# �� :
�
�
%���� � ������ �� ��

�����(�� ���� ����������$ � ,�	 �

�
-#

%����

5C/�# �" �����(�� �������D : ��!������ � ,�	
�

-
�

�� ,��#�@-

&�� �����
�

�� � ����' ��� �!������ ������ �" �����(�� �������' ��!������ � ,�	 �

�
-����# %����

�� ���� � ,�	 �

�
- �����!������� ���������#

6.854 Advanced Algorithms

Lecture 15: October 15, 2003 Lecturer: David Karger and Erik Demaine
Scribes: Nelson Lai

15.1 Addendum from last lecture

Theorem 1 If the primal P (primal) or D (dual) are feasible, then they have the same value.

15.2 Rules for Taking Duals

In general we construct the primal P as a minimization problem and, conversely, the dual D as a
maximization problem. If P is a linear program in standard form given by:

T z = min(c x)
Ax ≥ b

x ≥ 0

then the dual, D is given by:

w = max(bT y)
AT y ≤ c

y ≥ 0

In general, the form of the dual will depend on the form of the primal. If one is given a primal linear
program P in mixed form:

x = min(c1x1 + c2x2 + c3x3)
A11x1 + A12x2 + A13x3 = b1

A21x1 + A22x2 + A23x3 ≥ b2

A31x1 + A32x2 + A33x3 ≤ b3

x1 ≥ 0

x2 ≤ 0

x3 unrestricted in sign (UIS)

then the dual D is given by:

15-1

15-2 Lecture 15: October 15, 2003

w = max(b1y1 + b2y2 + b3y3)
y1A11 + y2A21 + y3A31 ≤ c1

y1A12 + y2A22 + y3A32 ≥ c2

y1A13 + y2A23 + y3A33 = c3

y1 unrestricted in sign (UIS)

y2 ≥ 0

y3 ≤ 0

By simple transformations, we can confirm that this is consistent with the dual for the standard
form of the primal and that in fact the dual of the dual is the primal.

We can summarize these results with the following table which states the rules for taking duals.
Note that each variable in the primal corresponds to a variable in the dual and each constraint in
the primal corresponds to a variable in the dual.

PRIMAL minimize maximize DUAL

≥ bi ≥ 0
constraints ≤ bi ≤ 0 variables

= bi unrestricted

variables
≥ 0
≥ 0

unrestricted

≤ cj

≤ cj

= cj

constraints

Note that this makes intuitive sense. For example, the primal minimization problem has lower
bounds as the natural constraints. This corresponds to a positive variable in the dual maximization
problem. Conversely, the primal maximization problem has upper bounds as natural constraints.
The dual minimization problem now has a negative variable.

To develop an intuition for these relationships, we consider the effect of the sign of a variable in
the minimization problem on the type of the corresponding constraint in the maximization problem.
We know from weak duality that cT x ≥ yb = yAx. Consider the case where x1 ≥ 0. Then in order
to have yAx1 ≤ c1x1, we must have yA11 ≤ c1 for any y. Similarly, if x2 ≤ 0, then we must have
yA12 ≥ c2 in order for cT x ≥ yAx. Finally, for x3 unrestricted, we must have yA13 = c3 since
multiplying both sides by x might or might not change the direction of any inequality. In general,
tighter constraints in the primal lead to looser constraints in the dual. An equal constraint leads to
an unrestricted variable and adding new constraints creates new variables and more flexibility.

Lecture 15: October 15, 2003 15.3 Shortest Paths 15-3

We now examine an example showing the relationship between the primal and dual problems. We
consider formulating the shortest paths problem as a linear program. Given a graph G, we wish to
find the shortest path from any one point (the source) to any other point. We formulate the problem
as a dual (or maximization) linear program.

w = max(dt − ds)
dj − di ≤ cij

dj unrestricted

Each variable di represents the distance to vertex i and each constraint represents the triangle
inequality — that is, the the distance to vertex i should always be less than or equal to the distance
to vertex j plus the distance from vertex j to vertex i. Any feasible solution to this would find a
lower bound to the shortest path distances — the maximization objective makes sure these shortest
path distances are valid. You can imagine physically holding up the source and the sink and pulling
them apart slowly. The first time we cannot pull any further, this indicates the shortest path has
been reached.

The constraint matrix A has n2 rows and n columns of ±1 or 0. Each row ij has a 1 in column i,
−1 in column j, and 0 in all others. Thus we can write the primal as follows:

T z = min(c x)

=
�

i,j

cijxij

n �

j=1

n �

j=1

xjs − xsj = −1

xjt − xtj = 1

n �

j=1

xji − xij = 0 ∀i �= s, t

But this is simply a linear program for a minimum cost unit-flow! The constraints represent the
conservation of flow with one unit of flow going into the sink and one unit coming out from the
source. All other vertices are constrained to have the same amount of flow coming in as going out.
Thus any feasible solution to the linear program will be a feasible flow. The objective function simply
tries to minimize the cost of this flow. We see that often the dual of a LP allows us to understand
the problem from a different (but equivalent) perspective.

Lecture 15: October 15, 2003 15.4 The Gravitational Model 15-4

Consider a linear program min{cx | Ax ≥ b}. We consider a hollow polytope defined by a set of
constraints. Let c be the gravitation vector, pointing straight up. We can put a ball in the polytope,
and let it fall to the bottom.

∗At equilibrium point x , the forces exerted by the floors are balanced by the gravitational force.
The normal forces by the floors are aligned with the Ai’s. Therefore, we have c =

�
yiAi for some

∗nonnegative force coefficients yi. In particular, y is a feasible solution for max{yb | yA = c, y ≥ 0}.
Since the forces can be only be exerted by those walls touching the ball, we have yi = 0 if Aix > bi.
Therefore, we have

yi(aix − bi) = 0,

thus,
yb =

�
yi(aixi) = cx,

∗which means that y is dual optimal.

15.5 Complementary Slackness

The above example leads to the idea of complementary slackness. Given feasible solutions x and
y, cx − by ≥ 0 is called the duality gap. The solutions are optimal if and only if the gap is zero.
Therefore, the gap is a good measure of “how far off” we are from the optimum.

Going back to original primal and dual forms, we can rewrite the dual: yA + s = c for some s ≥ 0
(that is, s = cj − yAj).

Theorem 2 The followings are equivalent for feasible x and y:

• x and y are optimal

• sx = 0

• xjsj = 0 for all j

• sj > 0 implies xj = 0

Proof: First, cx = by if and only if

(yA + s)x = (Ax)y,

thus sx = 0. If sx = 0, then since s, x ≥ 0, we have have sjxj = 0, so of course sj > 0 forces xj = 0.
The converse is easy.

The basic idea of complementary slackness is that an optimum solution cannot have a variable xj

and corresponding dual constraint sj slack at same time — one must be tight.

This can be stated in another way:

�

15-5 Lecture 15: October 15, 2003 Theorem 3 In arbitrary form LPs, feasible points optimal if:

yi(aix − bi) = 0 ∀i

(cj − yAj)xj = 0 ∀j

Proof: Note that in the definition of primal/dual, feasibility means yi(aix − bi) ≥ 0 (since ≥
constraint corresponds to nonnegative yi). Also, (cj − yAj)xj ≥ 0, thus

�
yi(aix − bi) + (cj − yAj)xj = yAx − yb + cx − yAx

= cx − yb

= 0

at optimum. But since all terms are nonnegative, they must be all 0.

15.6 Examples Using Complementary Slackness

In some linear optimization problems, we can gain new insight by investigating its primal and dual
optimal solutions using complementary slackness. We are going to give two examples. In the first
example, we will consider the LP formulation of the maximum flow problem. Using complementary
slackness, we derive the Max-Flow Min-Cut Theorem. In the second example, we consider the
minimum cost circulation problem. Using the linear programming framework, we give an alternative
proof of the complementary slackness property introduced in lecture 13 (the lecture on minimum
cost flow).

15.6.1 Max-flow Min-Cut Theorem

In the maximum flow problem, we can imagine the network has an arc (t, s) with infinite capacity.
And we are maximizing the flow on that arc. Therefore, the max flow problem can be written as
follows (in the gross flow form):

max xts

xvw − xwv = 0
w

xvw ≤ uvw

xvw ≥ 0

In the dual problem, for each node v there is a conservation constraint. Besides, for each edge (v, w)
there is a capacity constraint. Therefore, in the primal formulation, we have a variable zv for each
conservation constraint and a variable yvw for each capacity constraint. The primal formulation is
therefore:

15-6 Lecture 15: October 15, 2003

min
�

uvwyvw

vw

zv − zw + yvw ≥ 0

zt − zs + yts ≥ 1

yvw ≥ 0

We rewrite the first set of constraints as yvw ≥ zw −zv. Besides, the second constraint can be written
as zt − zs ≥ 1. This is because yts = 0 in any optimal solution. If yts > 0 in some optimal solution,
the fact that uts = ∞ implies that utsyts = ∞ and therefore the optimal value is unbounded. This
is impossible since the max flow problem is never infeasible (in particular, the zero flow is a feasible
solution).

If we consider yvw as the edge length of (v, w) and zv as the distance from s to v, we can interpret
the dual problem as follows: Minimize the volume of the network by tuning the edge lengths, subject
to the constraint that the distance from s to t is at least 1. Here the volume of network is defined as
the sum of edge volumes, which is the product of edge capacity uvw and edge length yvw.

Note that the optimal solution in this primal problem is at most the min-cut value of the network, as
we can assign length 1 to the min-cut edges and 0 otherwise. This satisfies the s-t distance constraint
(because any s-t path has to traverse some edge of a cut.) The value of this solution is the sum
of min-cut edge capacities. By strong duality this implies max-flow ≤ min-cut. We now prove the
other direction.

∗ ∗ ∗Denote zv , y as an optimal solution for the primal problem and similarly x for the dual problem. vw vw ∗ ∗ ∗ ∈ T and Since z are distances, we can always rescale z to 0. Let T = {v|z ≥ 1}. Note that s /v s v

t ∈ T . Therefore T is a s − t cut.

Now consider any edge (v, w) crossing the cut:

∗ ∗ ∗ ∗ ∗1. if v ∈ T and w /∈ T , then zv ≥ 1 and z < 1. Therefore, zv − z + y ∗ ≥ z − z ∗ > 0.w w vw v w

Therefore, the constraint for edge (v, w) in the primal problem is slack. By complementary
∗ ∗slackness, the variable xvw in the dual problem has to be tight, i.e., x = 0. vw

∗ ∗2. if v /∈ T and w ∈ T , then zw ≥ 1 and z < 1. It follows that the variable y ∗ ≥ z ∗ − z ∗ > 0.v vw w v

Again, by complementary slackness, the constraint in the dual problem xvw ≤ uvw is tight.
∗Therefore, xvw = uvw.

In other words, in a max flow, all edges entering T is saturated and all edge leaving T is empty.
Therefore, in a max flow, the net flow entering T equals the cut value of T . Since the flow value
equals the amount of net flow entering any s − t cut, the max-flow value equals the cut value of T ,
which is at least the min-cut value. As a result, we have shown that max-flow ≥ min-cut, which
completes the proof of the Max-Flow Min-Cut Theorem.

6.854 Advanced Algorithms

Lecture 17: 11/8/2004 Lecturer: David Karger
Scribes: Matt Rasmussen

Sweep Line

Definition 1 Sweep Line Technique: Given some planar problem, sweep a line through the plane
dealing with events that occur on the line and leaving behind a solved portion of the problem.

17.1 Convex Hull

The Convex Hull problem is to find the smallest enclosing convex polygon of a set of given points
in the plane.

17.1.1 Algorithm

One method for solving the convex hull problem is to use a sweep line technique to find the upper
envelope of the hull. The lower evelope of the convex hull can be found by rerunning the following
algorithm with only slight modifications.

Use a vertical sweep line that sweeps from negative infinity to positive infinity on the xaxis. As
the line sweeps, we will maintain a partital convex hull for the points left of the sweep line. When
the sweep line crosses a new point we will need to update the partial convex hull to include the new
point. After the sweep line has gone past all the points, we will have a complete upper envelope of
the convex hull.

To determine the order in which the sweep line will cross points we can use a priority queue such a
minheap that will order points by their xcoordinates. Therefore, the only remaining issue is how
to insert a new point into an existing convex hull. When inserting a new point, two cases arise:
(1) either the existing convex hull can be extended to include the new point or (2) the new point
requires the existing convex hull to be modified. Informally, we can distinguish the two cases by
noticing that in case (1) the new point causes a “right turn” in the hull’s boundary, whereas in case
(2) the new point causes a “left turn”. This can be determined mathematically by finding the angle
between the right most line segment of evelope and the line segment of the right most evelope point
and the new point. If the angle is less than 180 degrees then we have a case (1), otherwise we have
a case (2).

case 1: Since the new point can be safely added to the existing evelope without violating its
convexity, the new point is directly added to the list of evelope points.

case 2: In this case, the new point cannot be safely added to the existing evelope without violating
its convexity, therefore, the existing evelope must be modified to accommodate the new point. This

171

Lecture 17: 11/8/2004 172

can be done by the following procedure. At the new point the evelope. Peform a convexity check on
the predecessor to the new point. If the convexity check fails, delete the point from the evelope. Now
the new point has a new predecessor. Repeat the convexity check and deletion on the predecessor
of the new point until the convexity check is satisfied, at which point we will have a valid upper
evelope again.

17.1.2 Analysis

Let there be n points in the problem. Creating the minheap and performing n extractmins will
have a O(n log n) runtime. Convexity checks take a constant amount of algebra and therefore take
O(1). Case (1) simply extends a linked list in O(1) and may occur a maximum of n times, which
implies a O(n) runtime. To find the runtime contribution of case (2), we bound the total number
of deletions that may be made from the evelope over the course of the algorithm. This bound is n
since each point can be deleted at most once. Therefore, the amortized cost of case (2) is also O(n).
This gives a total runtime of O(n log n).

17.2 Segment Intersections

In the Segment Intersections problem, we are given n line segments and must output the coordinates
of all pairwise intersections.

17.2.1 Algorithm

In this algorithm, we will use a horizontal sweep line that sweeps from positive infinity to negative
infinity along the yaxis. The idea, will be to output each intersection as we cross it. Also we will
strive to make the algorithm output sensitive. That is, although there may be O(n2) intersections,
which would require an O(n2)time algorithm, we will run in much less time if the number of
intersections k is much less than n.

Let a segment be considered “active” if it crosses the current sweep line. As the sweep line sweeps,
we will encouter three types of events:

1. new segment becomes active

2. old segment becomes inactive

3. two active segments cross

Events (1) and (2) can be handled with a minheap containing segment endpoints that are ordered by
their ycoordinates. In dealing with the third case, the key idea is that only “neighboring” segments
on the sweep line can cross. To provide a quick lookup of neighboring segments we can use a Binary
Search Tree (BST) to store the segments by the xcoordinate of their intersection with the sweep
line. After inserting a new line into the BST, determine if it will eventually cross with its neighbors.
If so, insert a crossing event into the event queue. Later, when a crossing event occurs, we output

Lecture 17: 11/8/2004 173

an intersection, swap the order of the lines segments in the BST, and find their two new neighbors
and possible future crossings.

17.2.2 Analysis

Inserting and extracting line segments activations and deactivations from the event queue will take
a total of O(n log n) time. The total time inserting into the BST will take O(n log n) and the total
deletes from the BST will take O(n). The number of crossing events is k, therefore the total time
needed for inserting crossing events into the event queue is O(k log n). Therefore, the total runtime
is O((n + k) log n).

6.854 Advanced Algorithms

Lecture 18: 11/05/2004 Lecturer: David Karger
Scribes: ChunChieh Lin

18.1	 Lower Bounds for Competitive Ratios of Randomized
Online Algorithms

Designing an online algorithm can be viewed as a game between the algorithm designer and the
adversary. The algorithm designer chooses an algorithm Ai, and the adversary chooses an input
σj . The payoff matrix contains the cost of the algorithm on the input CAi(σj). The algorithm
designer wants to minimize the cost, while the adversary wants to maximize the cost. A randomized
online algorithm is a probability distribution over the deterministic algorithms, so it corresponds to
a mixed strategy for the algorithm designer.

18.1.1	 Game Theory Analysis

Von Neumann proved that for any game, there exist equilibrium (mixed) strategies for the players.
At the equilibrium, neither side is able to improve (increase or decrease depending on the player)
the cost any further by changing the strategy.

However, problem 4a of problem set 6 showed that if one player’s mixed strategy is known (and
fixed), the other player has a pure strategy as a best response. That means, if one of the players
is using the equilibrium (optimal) mixed strategy, the other player has pure strategy as a best
response, and the resulting cost is the equilibrium cost. Again, a pure strategy for the algorithm
designer corresponds to a deterministic algorithm, and a mixed strategy for the algorithm designer
corresponds to a randomized algorithm, so this leads to Yao’s Minimax Principle:

Theorem 1 Yao’s Minimax Princliple: If for some input distribution no deterministic algo
rithm is kcompetitive, then no randomized kcompetitive algorithm exists.

18.1.2	 Example: Paging

Suppose there are k + 1 pages and n accesses, and for each access, the pages all have probability
1/(k + 1) of being requested. In other words, this is a uniform distribution over inputs with length
n of the k + 1 pages.

181

Lecture 18: 11/05/2004 182

Online Algorithm

No matter what the online algorithm does, there are only k pages in the memory at any point
in time. So with probability 1/(k + 1), the requested page is not in the memory. Therefore, the
expected number of faults over the n accesses is n/(k +1), and the expected number of requests per
fault is k + 1, which is Θ(k).

Offline Algorithm

Even though the sequence of requests is still chosen at random, the offline algorithm has access to
the whole sequence before it starts running.

As shown in previous lectures, an optimal algorithm for the offline algorithm is the Farthest in
Future algorithm, which evicts the page that is requested farthest in the future. This algorithm
faults once every k+1 distinct pages seen, because after each fault, the evicted page is not requested
again until after all other k pages are requested.

The expected number of requests it takes to see all k +1 distinct pages can be calculated as follows:

E[No. requests total] = Σk+1 E[No. requests between the i− 1th distinct request and the ith]i=1

k+2−iP (each request after the i− 1th distinct request is the ith distinct request) = k+1

k+1E[No. requests between the i− 1th distinct request and the ith] = k+2−i

1E[No. requests total] = Σk+1 k+1 1 1 1 + 1 + ... + 1) = Θ(klogk)i=1 k+2−i = (k + 1) ∗ (k+1 + k + k−1 k−2

Conclusions

The expected number of pages per fault for the online algorithm is Θ(k). The expected number of
pages per fault for the offline algorithm is Θ(klogk). So the ratio of fault counts is Θ(logk).

Using Yao’s Minimax Principle, this shows that no randomized algorithm can have competitive ratio
better than Θ(logk) for paging.

	Fibonaccci Heaps
	Persistent Data Structures
	Splay Trees
	Suffix Trees and Fibonacci Heaps
	Van Emde Boas Queues
	Maximum Flows
	String Matching
	Duality
	Min-Cost Flow Algorithms
	The Goldberg-Tarjan Algorithm
	Approximation Algorithms
	Relaxation Techniques
	Addendum from last lecture
	Sweep Line
	Lower Bounds

