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Scribes: David G. Andersen, Ioana Dumitriu, John Dunagan, Akshay Patil (2003) 

Fibonaccci Heaps 

1.1 Motivation and Background 

Priority queues are a classic topic in theoretical computer science. As we shall see, Fibonacci 
Heaps provide a fast and elegant solution. The search for a fast priority queue implementation is 
motivated primarily by two network optimization algorithms: Shortest Path and Minimum Spanning 
Tree (MST). 

1.1.1 Shortest Path and Minimum Spanning Trees 

Given a graph G(V, E) with vertices V and edges E and a length function l : E → �+ . We define 
the Shortest Path and MST problems to be, respectively: 

shortest path. For a fixed source s ∈ V , find the shortest path to all vertices v ∈ V 

minimum spanning tree (MST). Find the minimum length set of edges F ⊂ E such that F 
connects all of V . 

Note that the MST problem is the same as the Shortest Path problem, except that the source is 
not fixed. Unsurprisingly, these two problems are solved by very similar algorithms, Prim’s for MST 
and Djikstra’s for Shortest Path. The algorithm is: 

1. Maintain a priority queue on the vertices 

2. Put s in the queue, where s is the start vertex (Shortest Path) or any vertex (MST). Give s a 
key of 0. 

3.	 Repeatedly delete the minimum-key vertex v from the queue and mark it “scanned”


For each neighbor w of v:


If w is not in the queue and not scanned, add it with key:


•	 Shortest Path: key(v) +  length(v → w) 

•	 MST: length(v → w) 

If, on the other hand, w is in the queue already, then decrease its key to the minimum of the 
value calculated above and w’s current key. 
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1.1.2 Heaps 

The classical answer to the problem of maintaining a priority queue on the vertices is to use a binary 
heap, often just called a heap. Heaps are commonly used because they have good bounds on the 
time required for the following operations: 

insert O(log n) 
delete-min O(log n) 
decrease-key O(log n) 

If a graph has n vertices and m edges, then running either Prim’s or Djikstra’s algorithms will 
require O(n log n) time for inserts and deletes. However, in the worst case, we will also perform m 
decrease-keys, because we may have to perform a key update every time we come across a new edge. 
This will take O(m log n) time. Since the graph is connected, m ≥ n, and the overall time bound is 
given by O(m log n). 

Since m ≥ n, it would be nice to have cheaper key decreases. A simple way to do this is to use 
d-heaps. 

1.1.3 d-Heaps 

d-heaps make key reductions cheaper at the expense of more costly deletions. This trade off is 
accomplished by replacing the binary heap with a d-ary heap—the branching factor (the maximum 
number of children for any node) is changed from 2 to d. The depth of the tree then becomes logd(n). 
However, delete-min operations must now traverse all of the children in a node, so their cost goes up 
to d logd(n). Thus, the running time of the algorithm becomes O(nd logd(n)+  m logd(n)). Choosing 
the optimal d = m/n to balance the two terms, we obtain a total running time of O(m logm/n n). 

When m = n2, this is  O(m), and when m = n, this is  O(n log n). This seems pretty good, but it 
turns out we can do much better. 

1.1.4 Amortized Analysis 

Amortized analysis is a technique for bounding the running time of an algorithm. Often we analyse an 
algorithm by analyzing the individual operations that the algorithm performs and then multiplying 
the total number of operations by the time required to perform an operation. However, it is often the 
case that an algorithm will on occasion perform a very expensive operation, but most of the time the 
operations are cheap. Amortized analysis is the name given to the technique of analyzing not just 
the worst case running time of an operation but the average case running time of an operation. This 
will allow us to balance the expensive-but-rare operations against their cheap-and-frequent peers. 

There are several methods for performing amortized analysis; for a good treatment, see Introduction 
to Algorithms by Cormen, Leiserson, and Rivest. The method of amortized analysis used to analyze 
Fibonacci heaps is the potential method: 

• Measure some aspect of the data structure using a potential function. Often this aspect of 
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the data structure corresponds to what we intuitively think of as the complexity of the data 
structure or the amount by which it is out of kilter or in a bad arrangement. 

•	 If operations are only expensive when the data structure is complicated, and expensive op-
erations can also clean up (“uncomplexify”) the data structure, and it takes many cheap 
operations to noticeably increase the complexity of the data structure, then we can amortize 
the cost of the expensive operations over the cost of the many cheap operations to obtain a 
low average cost. 

Therefore, to design an efficient algorithm, we want to force the user to perform many operations to 
make the data structure complicated, so that the work doing the expensive operation and cleaning 
up the data structure is amortized over those many operations. 

We compute the potential of the data structure by using a potential function Φ that maps the data 
structure (DS) to a real number Φ(DS). Once we have defined Φ, we calculate the cost of the ith 

operation by: 

costamortized(operationi) =  costactual (operationi) + Φ(DSi) − Φ(DSi−1) 

where DSi refers to the state of the data structure after the ith operation. The sum of the amortized 
costs is then  

costactual (operationi) + Φfinal − Φinitial 

. 

If we can prove that Φfinal  ≥ Φinitial, then we’ve shown that the amortized costs bound the real 
costs, that is, costamortized ≥ costactual . Then we can just analyze the amortized costs and 
show that this isn’t too much, knowing that our analysis is useful. Most of the time it is obvious 
that Φfinal  ≥ Φinitial and the real work is in coming up with a good potential function. 

1.2 Fibonacci Heaps 

The Fibonacci heap data structure invented by Fredman and Tarjan in 1984 gives a very efficient 
implementation of the priority queues. Since the goal is to find a way to minimize the number of 
operations needed to compute the MST or SP, the kind of operations that we are interested in are 
insert, decrease-key, merge, and  delete-min. (We haven’t covered why merge is a useful operation 
yet, but it will become clear.) The method to achieve this minimization goal is laziness – “do work 
only when you must, and then use it to simplify the structure as much as possible so 
that your future work is easy”. This way, the user is forced to do many cheap operations in 
order to make the data structure complicated. 

Fibonacci heaps make use of heap-ordered trees. A heap-ordered tree is one that maintains the heap 
property, that  is,  where  key(parent) ≤ key(child) for all nodes in the tree. 

A Fibonacci heap H is a collection of heap-ordered trees that have the following properties: 
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1. The roots of these trees are kept in a doubly-linked list (the “root list” of H); 

2. The root of each tree contains the minimum element in that tree (this follows from being a 
heap-ordered tree); 

3. We access the heap by a pointer to the tree root with the overall minimum key; 

4. For each node x, we keep track of the rank (also known as the order or degree) of  x, which  
is just the number of children x has; we also keep track of the mark of x, which is a Boolean 
value whose role will be explained later. 

For each node, we have at most four pointers that respectively point to the node’s parent, to one of 
its children, and to two of its siblings. The sibling pointers are arranged in a doubly-linked list (the 
“child list” of the parent node). Of course, we haven’t described how the operations on Fibonacci 
heaps are implemented, and their implementation will add some additional properties to H . Here  
are some elementary operations used in maintaining Fibonacci heaps. 

1.2.1 Inserting, merging, cutting, and marking. 

Inserting a node x. We create a new tree containing only x and insert it into the root list of H ; 
this is clearly an O(1) operation. 

Merging two trees. Let x and y be the roots of the two trees we want to merge; then if the key 
in x is no less than the key in y, we  make  x the child of y; otherwise,  we make  y the child of x. We  
update the appropriate node’s rank and the appropriate child list; this takes O(1) operations. 

Cutting a node. If x is a root in H , we are done. If x is not a root in H , we  remove  x from the 
child list of its parent, and insert it into the root list of H , updating the appropriate variables (the 
rank of the parent of x is decremented, etc.). Again, this takes O(1) operations. (We assume that 
when we want to find a node, we have a pointer hanging around that accesses it directly, so actually 
finding the node takes O(1) time.) 

Marking. We say that x is marked if its mark is set to “true”, and that it is unmarked if its mark 
is set to “false”. A root is always unmarked. We mark x if it is not a root and it loses a child (i.e., 
one of its children is cut and put into the root-list). We unmark x whenever it becomes a root. We 
will make sure later that no marked node loses another child before it itself is cut (and reverted 
thereby to unmarked status). 

1.2.2 Decreasing keys and Deleting mins 

At first, decrease-key does not appear to be any different than merge or insert ; just find the node 
and cut it off from its parent, then insert the node into the root list with a new key. This requires 
removing it from its parent’s child list, adding it to the root list, updating the parent’s rank, and (if 
necessary) the pointer to the root of smallest key. This takes O(1) operations. 
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The delete-min operation works in the same way as decrease-key: Our pointer into the Fibonacci 
heap is a pointer to the minimum keyed node, so we can find it in one step. We remove this root of 
smallest key, add its children to the root-list, and scan through the linked list of all the root nodes to 
find the new root of minimum key. Therefore, the cost of a delete-min operation is O(# of children ) 
of the root of minimum key plus O(# of root nodes); in order to make this sum as small as possible, 
we have to add a few bells and whistles to the data structure. 

1.2.3 Population Control for Roots 

We want to make sure that every node has a small number of children. This can be done by ensuring 
that the total number of descendants of any node is exponential in the number of its children. In 
the absence of any “cutting” operations on the nodes, one way to do this is by only merging trees 
that have the same number of children (i.e, the same rank). It is relatively easy to see that if we 
only merge trees that have the same rank, the total number of descendants (counting onself as a 

descendant) is always (2# of children). The resulting structure is called a binomial tree because the 
number of descendants at distance k from the root in a tree of size n is exactly n

k . Binomial heaps 
preceded Fibonacci heaps and were part of the inspiration for them. We now present Fibonacci 
heaps in full detail. 

1.2.4 Actual Algorithm for Fibonacci Heaps 

•	 Maintain a list of heap-ordered trees. 

•	 insert : add a degree 0 tree to the list. 

•	 delete-min: We can find the node we wish to delete immediately since our handle to the entire 
data structure is a pointer to the root with minimum key. Remove the smallest root, and add 
its children to the list of roots. Scan the roots to find the next minimum. Then consolidate all 
the trees (merging trees of equal rank) until there is ≤ 1 of each rank. (Assuming that we have 
achieved the property that the number of descendants is exponential in the number of children 
for any node, as we did in the binomial trees, no node has rank > c  log n for some constant c. 
Thus consolidation leaves us with O(log n) roots.) The consolidation is performed by allocating 
buckets of sizes up to the maximum possible rank for any root node, which we just showed to 
be O(log n). We put each node into the appropriate bucket, at cost O(log n) +  O(# of roots). 
Then we march through the buckets, starting at the smallest one, and consolidate everything 
possible. This again incures cost O(log n) +  O(# of roots). 

•	 decrease-key: cut the node, change its key, and insert it into the root list as before, Additionally, 
if the parent of the node was unmarked, mark it. If the parent of the node was marked, cut it 
off also. Recursively do this until we get up to an unmarked node. Mark it. 

1.2.5 Actual Analysis for Fibonacci Heaps 

Define Φ(DS) =  (k· # of  roots  in  DS + 2  · # marked bits in DS). Note that insert and delete-min 
do not ever cause nodes to be marked - we can analyze their behaviour without reference to marked 
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and unmarked bits. The parameter k is a constant that we will conveniently specify later. We now 
analyze the costs of the operations in terms of their amortized costs (defined to be the real costs 
plus the changes in the potential function). 

•	 insert : the amortized cost is O(1). O(1) actual work plus k * O(1) change in potential for 
adding a new root. O(1) + kO(1) = O(1) total amortized cost. 

•	 delete-min: for every node that we put into the root list (the children of the node we have 
deleted), plus every node that is already in the root list, we do constant work putting that 
node into a bucket corresponding to its rank and constant work whenever we merge the node. 
Our real costs are putting the roots into buckets (O(#roots)), walking through the buckets 
(O(log n)), and doing the consolidating tree merges (O(#roots)). On the other hand, our 
change in potential is k∗(log n−#roots) (since there are at most log n roots after consolidation). 
Thus, total amortized cost is O(#roots) +  O(log  n) +  k ∗ (log n − #roots) =  O(log  n). 

•	 decrease-key: The real cost is O(1) for the cut, key decrease and re-insertion. This also 
increases the potential function by O(1) since we are adding a root to the root list, and maybe 
by another 2 since we may mark a node. The only problematic issue is the possibility of a 
“cascading cut” - a cascading cut is the name we give to a cut that causes the node above it 
to cut because it was already marked, which causes the ndoe above it be cut since it too was 
alrady marked, etc. This can increase the actual cost of the operation to (# of nodes already 
marked). Luckily, we can pay for this with the potential function! Every cost we incur from 
having to update pointers due to a marked node that was cut is offset by the decrease in the 
potential function when that previously marked node is now left unmarked in the root list. 
Thus the amortized cost for this operation is just O(1). 

The only thing left to prove is that for every node in every tree in our Fibonacci heap, the number 
of descendants of that node is exponential in the number of children of that node, and that this is 
true even in the presence of the “weird” cut rule for marked bits. We must prove this in order to 
substantiate our earlier assertion that all nodes have degree ≤ log n. 

1.2.6 The trees are big 

Consider the children of some node x in the order in which they were added to x. 

Lemma : The  ith child to be added to x has rank at least i − 2. 

Proof : Let  y be the ith child to be added to x. When it was added, y had at least i − 1 children. 
This is true because we can currently see i − 1 children that were added earlier, so they were there 
at  the time of  the  y’s addition. This means that y had at least i − 1 children at the time of it’s 
merger, because we only merge equal ranked nodes. Since a node could not lose more than one child 
without being cut itself, it must be that y has at least i − 2 children (i− 1 from when it was added, 
and no more than a potential 1 subsequently lost). 

Note that if we had been working with a binomial tree, the appropriate lemma would have been 
rank = i − 1 not  ≥ i − 2. 
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Let Sk be the minimum number of descendants of a node with k children. We have S0 = 1, S1 = 2  
and, 

k−2 

Sk ≥ Si 

i=0 

This recurrence is solved by Sk ≥ Fk+2, the  (k+2)th Fibonacci number. Ask anyone on the street and 
that person will tell you that the Fibonacci numbers grow exponentially; we have proved Sk ≥ 1.5k , 
completing our analysis of Fibonacci heaps. 

1.2.7 Utility 

Only recently have problem sizes increased to the point where Fibonacci heaps are beginning to 
appear in practice. Further study of this issue might make an interesting term project; see David 
Karger if you’re curious. 

Fibonacci Heaps allow us to improve the running time in Prim’s and Djikstra’s algorithms. A more 
thorough analysis of this will be presented in the next class. 
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Persistent Data Structures 

2.1 Introduction and motivation 

So far, we’ve seen only ephemeral data structures. Once changes have been made to an ephemeral 
data structure, no mechanism exists to revert to previous states. Persistent data structures are 
really data structures with archaeology. 

Partial persistence lets you make modifications only to the present data structure but allows queries 
of any previous version. These previous versions might be accessed via a timestamp. 

Full persistence lets you make queries and modifications to all previous versions of the data structure. 
With this type of persistence the versions don’t form a simple linear path — they form a version 
tree. 

The obvious way to provide persistence is to make a copy of the data structure each time it is 
changed. 

This has the drawback of requiring space and time proportional to the space occupied by the original 
data structure. 

In turns out that we can achieve persistence with O(1) additional space and O(1) slowdown per 
operation for a broad class of data structures. 

2.1.1 Applications 

In addition to the obvious ‘look-back’applications, we can use persistent data structures to solve 
problems by representing one of their dimensions as time. 

Once example is the computational geometry problem of planar point location. Given a plane with 
various polygons or lines which break the area up into a number of regions, in which region is a 
query point is located? 

In one dimension, the linear point location problem can be solved with a splay tree or a binary tree 
that simply searches for the two objects on either side of the query point. 

To solve the problem in two dimensions, break the plane into vertical slices at each vertex or point 
where lines cross. These slices are interesting because crossovers don’t happen inside slices: inside 
each slice, the dividing lines between regions appear in a fixed order, so the problem reduces to the 

2-1 
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Figure 2.1: Breaking the plane into slices for planar point location 

linear case and requires a binary search (plus a bit of linear algebra). Figure 2.1 shows an example 
of how these slices look. To locate a point, first find the vertical slice it is in with a search on the 
point’s x coordinate, and then, within that slice, find the region it is in with a search on the point’s 
y coordinate (plus algebra). To do two binary searches takes only O(log n) time, so we can locate 
a point  in  O(log n) time. However, setting up the trees for searching a figure with n vertices will 
require n different trees, taking O(n2 log n) time  and  O(n2) space to do the preprocessing. 

Notice that between two adjacent slices of the picture there will only be one change. If we treat 
the horizontal direction as a timeline and use a persistent data structure, we can find the horizontal 
location of the point as a ’version’ of the vertical point location data structure. In this way, we can 
preserve the O(log n) query time and use only O(n) space  and  O(n log n) preprocessing time. 

2.2 Making pointer-based data structures persistent 

Now let’s talk about how to make arbitrary pointer-based data structures persistent. Eventually, 
we’ll  reveal  a general  way  to do this with  O(1) additional space and O(1) slowdown, first published by 
Sleator and Tarjan et al. We’re mainly going to discuss partial persistence to make the explanation 
simpler, but their paper achieves full persistence as well. 

2.2.1 First try: fat nodes 

One natural way to make a data structure persistent is to add a modification history to every node. 
Thus, each node knows what its value was at any previous point in time. (For a fully persistent 
structure, each node would hold a version tree, not just a version history.) 

This simple technique requires O(1) space for every modification: we just need to store the new 
data. Likewise, each modification takes O(1) additional time to store the modification at the end 
of the modification history. (This is an amortized time bound, assuming we store the modification 
history in a growable array. A fully persistent data structure would add O(log m) time  to every  
modification, since the version history would have to be kept in a tree of some kind.) 
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Unfortunately, accesses have bad time behavior. We must find the right version at each node as we 
traverse the structure, and this takes time. If we’ve made m modifications, then each access operation 
has O(log m) slowdown. (In a partially persistent structure, a version is uniquely identified by a 
timestamp. Since we’ve arranged the modifications by increasing time, you can find the right version 
by binary search on the modification history, using the timestamp as key. This takes O(log m) time  
to find the last modification before an arbitrary timestamp. The time bound is the same for a fully 
persistent structure, but a tree lookup is required instead of a binary search.) 

2.2.2 Second try: path copying 

Another simple idea is to make a copy of any node before changing it. Then you have to cascade the 
change back through the data structure: all nodes that pointed to the old node must be modified to 
point to the new node instead. These modifications cause more cascading changes, and so on, until 
you reach a node that nobody else points to—namely, the root. (The cascading changes will always 
reach the root.) Maintain an array of roots indexed by timestamp; the data structure pointed to by 
time t’s root is exactly time t’s data structure. (Some care is required if the structure can contain 
cycles, but it doesn’t change any time bounds.) 

Figure 2.2 shows an example of path copying on a binary search tree. Making a modification creates 
a new root, but we keep the old root around for later use; it’s shown in dark grey. Note that the 
old and new trees share some structure (light grey nodes). 

Figure 2.2: Path copying on binary search trees 

Access time does better on this data structure. Accesses are free, except that you must find the 
correct root. With m modifications, this costs O(log m) additive lookup time—much better than 
fat nodes’ multiplicative O(log m) slowdown.  

Unfortunately, modification time and space is much worse. In fact, it’s bounded by the size of the 
structure, since a single modification may cause the entire structure to be copied. That’s O(n). 

Path copying applies just as well to fully persistent data structures. 

2.2.3 Sleator, Tarjan et al. 

Sleator, Tarjan et al. came up with a way to combine the advantages of fat nodes and path copying, 
getting O(1) access slowdown and O(1) modification space and time. Here’s how they did it, in the 
special case of trees. 

In each node, we store one modification box. This box can hold one modification to the node—either 
a modification to one of the pointers, or to the node’s key, or to some other piece of node-specific 
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data—and a timestamp for when that modification was applied. Initially, every node’s modification 
box is empty. 

Whenever we access a node, we check the modification box, and compare its timestamp against the 
access time. (The access time specifies the version of the data structure that we care about.) If the 
modification box is empty, or the access time is before the modification time, then we ignore the 
modification box and just deal with the normal part of the node. On the other hand, if the access 
time is after the modification time, then we use the value in the modification box, overriding that 
value in the node. (Say the modification box has a new left pointer. Then we’ll use it instead of 
the normal left pointer, but we’ll still use the normal right pointer.) 

Modifying a node works like this. (We assume that each modification touches one pointer or similar 
field.) If the node’s modification box is empty, then we fill it with the modification. Otherwise, the 
modification box is full. We make a copy of the node, but using only the latest values. (That  is,  
we overwrite one of the node’s fields with the value that was stored in the modification box.) Then 
we perform the modification directly on the new node, without using the modification box. (We 
overwrite one of the new node’s fields, and its modification box stays empty.) Finally, we cascade 
this change to the node’s parent, just like path copying. (This may involve filling the parent’s 
modification box, or making a copy of the parent recursively. If the node has no parent—it’s the 
root—we add the new root to a sorted array of roots.) 

Figure 2.3 shows how this works on a persistent search tree. The modification boxes are shown in 
grey. 

Figure 2.3: Modifying a persistent search tree. 

With this algorithm, given any time t, at most one modification box exists in the data structure 
with time t. Thus, a modification at time t splits the tree into three parts: one part contains the 
data from before time t, one part contains the data from after time t, and one part was unaffected 
by the modification. 

Figure 2.4: How modifications split the tree on time. 
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How about time bounds? Well, access time gets an O(1) slowdown (plus an additive O(log m) cost  
for finding the correct root), just as we’d hoped! (We must check the modification box on each node 
we access, but that’s it.) 

Time and space for modifications require amortized analysis. A modification takes O(1) amortized 
space, and O(1) amortized time. To see why, use a potential function ϕ, where  ϕ(T ) is  the number 
of full live nodes in T . The live nodes of T are just the nodes that are reachable from the current 
root at the current time (that is, after the last modification). The full live nodes are the live nodes 
whose modification boxes are full. 

So, how much does a modification cost? Each modification involves some number of copies, say k, 
followed by 1 change to a modification box. (Well, not quite—you could add a new root—but that 
doesn’t change the argument.) Consider each of the k copies. Each costs O(1) space and time, but 
decreases the potential function by one! (Why? First, the node we copy must be full and live, so it 
contributes to the potential function. The potential function will only drop, however, if the old node 
isn’t reachable in the new tree. But we know it isn’t reachable in the new tree—the next step in 
the algorithm will be to modify the node’s parent to point at the copy! Finally, we know the copy’s 
modification box is empty. Thus, we’ve replaced a full live node with an empty live node, and ϕ 
goes down by one.) The final step fills a modification box, which costs O(1) time and increases ϕ 
by one. 

Putting it all together, the change in ϕ is ∆ϕ = 1  − k. Thus,  we’ve  paid  O(k + ∆ϕ) =  O(1) space 
and O(k + ∆ϕ + 1)  =  O(1) time! 

What about non-tree data structures? Well, they may require more than one modification box. The 
limiting factor is the in-degree of a node: how many other nodes can point at it. If the in-degree of 
a node  is  k, then we must use k extra modification boxes to get O(1) space and time cost. 

2.2.4 The geometric search problem 

Let’s return to the geometric search problem discussed in Section 2.1. We now know how to make 
a persistent tree; but what kind of balanced tree should we use? 

It turns out that this is one application where splay trees crash and burn. The reason is splaying. 
Every rotation while we access a splay tree is a modification, so we do O(log n) modifications (costing 
an additional O(log n) space) per access—including reads! 

A less sexy balanced tree, like a red-black tree, is a better choice. Red-black trees keep themselves 
balanced with at most one rotation per modification (and a bunch of fiddling with red/black bits). 
This looks good—accesses are cheaper, and modifications cost O(1)—almost. The “almost” is 
because of red/black bit fiddling, which may affect a lot more than one node on the tree. A fully 
persistent red-black tree would need to keep the proper values for the red/black bits for every single 
version of the tree (so that further modifications could be made). This would mean that changing 
a red/black bit would count as a modification, and would have a persistence-related cost. Luckily, 
in the geometric search problem, we won’t need to look at the red/black bits for old versions of the 
tree, so we can keep them only for the latest version of the tree and pay O(1) persistence-related 
cost per modification. 
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Splay Trees 

3.1 Introduction 

Splay trees are binary search trees with good balance properties when amortized over a sequence of 
operations. 

When a node x is accessed, we perform a sequence of splay steps to move x to the root of the tree. 
There are 6 types of splay steps, each consisting of 1 or 2 rotations (see Figures 3.1, 3.2, and 3.3). 
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Figure 3.1: The rr splay step: This is performed when x and x’s parent are both left children. 
The splay step consists of first a right rotation on z and then a right rotation on y (hence rr). The 
ll splay step, for x and x’s parent being right children, is analogous. 

We perform splay steps to x (rr, ll, lr, or  rl, depending on whether x and x’s parent are left or 
right children) until x is either the root or a child of the root. In the latter case, we need to perform 
either a r or l splay step to make x the root. This completes a splay of x. 

We will show that splay operations have amortized cost O(log n), and that consequently all splay 
tree operations have amortized cost O(log n). 

3.2 Analysis of Splay Steps 

For amortized analysis, we define the following for each node x: 
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Figure 3.2: The lr splay step: This is performed when x is a right child and x’s parent is a left 
child. The splay step consists of first a left rotation on y and then a right rotation on z. The  rl 
splay step, for x being a left child and x’s parent being a right child, is analogous. 
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Figure 3.3: The r splay step: This is performed when x is the left child of the root y. The  splay  
step consists of a right rotation on the root. The l splay step, for x being the right child of the root, 
is analogous. 

•	 a constant weight w(x) > 0 (for the analysis, this can be arbitrary) 

•	 weight sum s(x) =  y∈subtree(x) w(y) (where subtree(x) is the subtree rooted at x, including 
x) 

•	 rank r(x) =  log  s(x) 

We use r(x) as the potential of a node. The potential function after i operations is thus φ(i) =  

x∈tree r(x). 

Lemma 1 The amortized cost of a splay step on node x is ≤ 3(r′(x) − r(x)) + 1, where  r is rank 
before the splay step and r is rank after the splay step. Furthermore, the amortized cost of the rr, 
ll, lr, and  rl splay steps is ≤ 3(r′(x) − r(x)). 

Proof: 



( ) 
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We will consider only the rr splay step (refer to Figure 3.1). The actual cost of the splay step is 2 
(for 2 rotations). The splay step only affects the potentials/ranks of nodes x, y, and  z; we observe  
that r′(x) =  r(z), r(y) ≥ r(x), and r′(y) ≤ r′(x). 

The amortized cost of the splay step is thus: 

amortized cost = 2 + φ(i + 1)  − φ(i) 
= 2  +  (r ′(x) +  r ′(y) +  r ′(z)) − (r(x) +  r(y) − r(z)) 
= 2  +  (r ′(x) − r(z)) + r ′(y) +  r ′(z) − r(x) − r(y) 
≤ 2 + 0 +  r ′(x) +  r ′(z) − r(x) − r(x) 
= 2  +  r ′(x) +  r ′(z) − 2r(x) 

The log function is concave, i.e., log a+log b ≤ log 2 
a+b . Thus  we  also  have  (s is weight sum before 2 

the splay step and s′ is weight sum after the splay step): 

log(s(x)) + log(s′(z)) s(x) +  s′(z)≤ log 
2 2 

r(x) +  r′(z) s(x) +  s′(z)≤ log (note that s(x) +  s′(z) ≤ s′(x))
2 2 

s′(x)≤ log 
2 

= r ′(x) − 1 

r ′(z) ≤ 2r ′(x) − r(x) − 2 

Thus the amortized cost of the rr splay step is ≤ 3(r′(x) − r(x)). 

The same inequality must hold for the ll splay step; the inequality also holds for the lr (and rl) 
splay steps. The +1 in the lemma applies for the r and l cases. 

Corollary 1 The amortized cost of a splay operation on node x is O(log n). 

Proof: 

The amortized cost of a splay operation on x is the sum of the amortized costs of the splay steps on 
x involved: 

amortized cost = cost(splay stepi) 
i ( 

i(x) 
)

i+1(x) − r≤ 3(r + 1  
i 

= 3(r(root) − r(x)) + 1 



( 
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The +1 comes from the last r or l splay step (if necessary). If we set w(x) = 1 for all nodes in the 
tree, then r(root) = log n and we have: 

amortized cost ≤ 3 log  n + 1  =  O(log n) 

3.3 Analysis of Splay Tree Operations 

3.3.1 Find 

For the find operation, we perform a normal BST find followed by a splay operation on the node 
found (or the leaf node last encountered, if the key was not found). We can charge the cost of going 
down the tree to the splay operation. Thus the amortized cost of find is O(log n). 

3.3.2 Insert 

For the insert operation, we perform a normal BST insert followed by a splay operation on the node 
inserted. Assume node x is inserted at depth k. Denote the parent of x as y1, y1’s parent as y2, and  
so on (the root of the tree is yk). Then the change in potential due to the insertion of x is (r is rank 
before the insertion and r′ is rank after the insertion, s is weight sum before the insertion): 

k ∑ 
∆φ = (r ′(yj) − r(yj)) 

j=1 

k ∑ 
= (log(s(yj) + 1)  − log(s(yj)) 

j=1 

= 
k ∑ 

j=1 

log 

( 
s(yj) + 1  

s(yj) 

) 

⎛ ⎞ 
k ∏ s(yj) + 1

= log  (note that s(yj) + 1  ≤ s(yj+1))⎝ ⎠ 
s(yj)j=1 

s(y2) s(y3) s(yk) s(yk) +  1  
) 

≤ log · · · ·  · 
s(y1) s(y2) s(yk−1) s(yk) 
s(yk) +  1  

) 

= log  
s(yk)


≤ log n


The amortized cost of the splay operation is also O(log n), and thus the amortized cost of insert is 
O(log n). 
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We have proved the following:


Theorem 1 All splay tree operations have amortized cost O(log n).




6.854 Advanced Algorithms 

Lecture 4: September 14, 2005 Lecturer: David Karger 
   

Suffix Trees and Fibonacci Heaps 

4.1 Suffix Trees 

Recall that our goal is to find a pattern of length m in a text of length n. Also recall that the trie 
will contain a size |Σ| array at each node to give O(m) lookups. 

4.1.1 Size of the Trie 

Previously, we have seen a construction algorithm that was linear in the size of the trie. We would 
like to show that the size of the trie is linear in the size of the text, so that the construction algorithm 
takes O(n) time. We can achieve this size goal by using a compressed suffix tree. In a compressed 
tree, each node has strictly more than one child. Below, we see the conversion from a uncompressed 
suffix tree to a compressed suffix tree. 

o

\ b 

o o

\ b => \ bbb

o o

\ b 

o


How will this change the number of nodes in the trie? Since there are no nodes with only one child, 
this is a full binary tree (i.e. every internal node has degree ≥ 2). 

Lemma 1 In any full tree, the number of nodes is not more than twice the number of leaves. 

When we use the trailing $, the number of leaves in the trie is the number of suffixes. So does this 
mean that there are n leaves and the tree is of size O(n)? Yes; however, the number of nodes isn’t 
necessarily the full size of the tree – we must store the substrings as well. For a string with distinct 
characters, storing strings on the edges could lead to a O(n2) size algorithm. Instead, we just store 
the starting and ending index in the original text on each edge, meaning that the storage at each 
node is O(1), so the total size for the tree is in fact O(n). 

4-1 
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With the compressed tree, we can still perform lookups in O(m) time  using  the  slowfind algorithm 
which compares one character at a time from the pattern to the text in the trie. When slowfind 
encounters a compressed node, it checks all of the characters in the node, just as if it were traversing 
the uncompressed series of nodes. 

4.1.2 Building the Trie 

A simple approach to building the compressed tree would be to build an uncompressed tree and 
then compress it. However, this approach would require quadratic time and space. 

The construction algorithm for compressed tries will still insert S1...Sn in order. As we go down the 
trie to insert a new suffix, we may need to leave in the middle of an edge. For example, consider the 
trie that contains just bbb. To  insert  ba, we must split the edge : 

o o 
\  \  b  
\ bbb o 
\  a / \ bb  
o o o 

Splitting an edge is easy; we will create one new node from the split and then one new node (a leaf) 
from the insertion. 

One problem with compressed trie is where to put suffix links from the compressed edges. Another 
problem is that we previously described the time to operate on the tree in terms of n (the number 
of characters in the text); however, n may now be greater than the number of nodes. 

fastfind is an algorithm for descending the trie if you know that the pattern is in the trie. fastfind 
only checks the first character of a compressed edge; all the other characters must match if the first 
does because the pattern is in the trie and because there is no branch in the edge (ie, if the pattern 
is there and there is no branch, it must match the entire edge or stop in the middle of the edge). If 
the pattern is shorter than the edge, then fastfind will stop in the middle of the edge. Consequently, 
the number of operations in a fastfind is linear in the number of checked nodes in the trie rather 
than the length of the pattern. 

Suppose we have just inserted Si = aw and are at the newly created leaf which has parent node pi. 
We maintain the following invariant: 
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Invariant: Every internal node except for the current parent has a suffix link (ignore for now the 
issue of where the suffix links point). 

/

/  SL 


g_i o ==============o

/ \  |  w1  

w1 / ... | 
o p_i o alpha 
| 
| 

w2 | 
o s_i 

Now we describe the consruction in detail. Let gi be a parent of pi. To  insert  Si+1: ascend to gi, 
traverse the suffix link there, and do a fastfind of w1, which takes you to node α (thus maintaining 
the invariant for next time). Make a suffix link from pi to α. From there, do a slowfind on w2 and 
do the insertions that you need. Since pi was previously a leaf node, it has no suffix link yet. gi was 
previously an internal node, so it has a suffix link. w1 is the part of Si that was already in the trie 
below gi (i.e., it was pi),  which is why  we  can use  fastfind on it. w2 is the part of Si that was not 
previously in the trie. 

The running time analysis will be in two parts. The first part is the cost from the suffix of gi to the 
suffix of pi. The second is the cost from the suffix of pi to the bottom of the search. The cost of 
going up is constant, since there are only two steps thanks to the compressed edges. 

Looking at the second cost (the slowfind part), we see that it is the number of charactersr in the 
length difference between the suffix of pi and pi+1, which  is  |pi+1| − |pi| + 1. The sum of this term 
over all i is |pn| − |p0| + n = O(n). 

For the first cost, recall that fastfind ’s runtime will be upperbounded by the runtime of slowfind. It  
takes at most |gi+1| − |gi| time to reach gi+1. If  gi+1 is below the suffix of pi, then there is no cost. 
If the suffix of pi is below gi+1, then the suffix of pi is pi+1 and the fastfind only takes one step from 
gi+1 to pi+1, so  the  cost  is  O(1). 

The progression of the insert is 

• suffix of gi 

• gi+1 

• suffix of pi 

• pi+1 

The total time is linear in the size of the compressed tree, which is linear in the size of the input. 
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4.2 Heaps 

Prim and Dijkstra’s algorithms for shortest paths and minimum spanning trees were covered in 
6.046. Both are greedy algorithms that start by setting node distances to infinity and then relaxing 
the distances while choosing the shortest. To perform these operations, we use a priority queue 
(generally implemented as a heap). A heap is a data structure that will support insert, decrease-key, 
and delete-min operations (and perhaps others). 

With a standard binary heap, all operations run in O(log n) time, so both algorithms take O(m log n) 
time. We’d like to improve the performance of the heap to get a better running time for these 
algorithms. We could show that O(log n) is a lower bound on the time for delete-min, so the 
improvement will have to come from somewhere else. The Fibonacci Heap performs a decrease-key 
operation in O(1) time such that Prim and Dijkstra’s algorithms require only O(m + n log n) time,  

Idea: During insertions, perform the minimal work possible. Rather than performing the whole 
insert, we’ll just stick the node onto the end of some list, taking O(1) time. This would require us 
to do O(n) work to perform delete-min. However, we can put that linear amount of work to good 
use to make the next delete-min more efficient. 

The Fibonacci heap uses “Heap Ordered Trees,” meaning that the children of every node have a key 
greater than their parent and that the minimum element is at the root. For Fibonacci heaps, we 
will have only 1 child pointer, a doubly linked list of children, and parent pointers at every node. 

The time to merge two HOTs is constant: compare the two root keys and attach the HOT with the 
larger root as a child of the smaller root. 

To insert into a HOT, compare the new element x and the root. If x is smaller, it becomes the new 
root and the old root is its child. If x is larger, it is added to the list of children. 

To decrease a key, you prune the node from the list of children and then perform a merge. 

The expensive operation is delete-min. Finding the minimum node is easy; it is the root. However, 
when we remove the root, we might have a large number of children that need to be processed. 
Therefore, we wish to keep the number of children of any node in the tree relatively small. We will 
see how to do this next lecture 
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6.854 Advanced Algorithms 

Lecture 6: 9/24/2003 Lecturer: Erik Demaine, David Karger 
Scribes: Alexandr Andoni 

Maximum Flows 

6.1 The Maximum Flow Problem 

In this section we define a flow network and setup the problem we are trying to solve in this lecture: 
the maximum flow problem. 

Definition 1 A network is a directed graph G = (V, E) with a source  vertex  s ∈ V and a sink vertex 
t ∈ V . Each edge e = (v, w) from v to w has a defined capacity, denoted by u(e) or u(v, w). It  is  
useful to also define capacity for any pair of vertices (v, w), with  u(v, w) = 0  for any pair (v, w) �∈ E. 
Let m = |E| and n = |V | be the number of edges and vertices in the graph, respectively. 
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Figure 6.1: An example of a network with 4 vertices and 6 edges. The capacities of the edges are 
shown on the  edges.  

In a network flow problem, we assign a flow to each edge. There are two ways of defining a flow: 
raw (or gross) flow and net flow. 

Definition 2 Raw flow is a function r(v, w) :  V 2 → � that satisfies the following properties: 

• Conservation: r(w, v) − r(v, w) = 0, for all v ∈ V \ {s, t}. 
w∈V w∈V � �� � � �� � 

incoming flow outgoing flow 

• Capacity constraint: 0 ≤ r(v, w) ≤ u(v, w). 

6-1 
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For every vertex v except the source or sink, conservation requires that the total flow entering v 
must equal the total flow leaving v. The capacity constraint requires that the flow along any edge 
be positive and less than the capacity of that edge. We say that a flow f is feasible if satisfies these 
two conditions. 
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Figure 6.2: An example of a raw flow for the network above. The flow has a value of 2. 

With a raw flow, we can have flows going both from v to w and flow going from w to v. In  a  net  
flow formulation however, we only keep track of the difference of these two flows. 

Definition 3 Net flow is a function f(v, w) :  V 2 → � that satisfies the following conditions: 

• Skew symmetry: f(v, w) =  −f(w, v). 

• Conservation: w∈V f(v, w) = 0, for all v ∈ V \ {s, t}. 
• Capacity constraint: f(v, w) ≤ u(v, w) for all v, w ∈ V . 

A raw  flow  r(v, w) can be converted into a net flow via the formula f(v, w) =  r(v, w) − r(w, v). For 
example, if we have 7 units of flow from v to w and 4 units of flow from w to v, then the net flow 
from v to w is f(v, w) = 3. Skew symmetry follows directly from this formula relating raw flows and 
net flows. Because we can convert from raw flows to net flows, for the rest of the lecture we consider 
only net flow problems. 

Although skew symmetry relates f(v, w) and  f(w, v), it is important to note that capacity is still 
directional for a net flow problem. The capacity in one direction u(v, w) is independent of the 
capacity in the reverse direction, u(w, v). 

To simplify notation later in the lecture, we denote f(v, w) by  f(v, S) or  −f(S, v).w∈S 

Definition 4 The value of a flow f is defined as |f | = f(s, v). v∈V 

The value of a flow is the sum of the flow on all edges leaving the source s. We later show that this 
is equivalent to the sum of all the flow going into the sink t. The value of a flow represents how 
much we can transport from the source to the sink. Our goal in this lecture is to solve the maximum 
flow problem. 

Definition 5 Maximum flow problem: Given a network G = (V, E),  find a feasible  flow  f with 
maximum value. 
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6.2 Flow Decomposition and Cuts 

In this section, we show that any feasible flow can be decomposed into paths from the source to the 
sink and cycles. We use this fact to derive an upper bound on the maximum flow value in terms of 
cuts of the network. 

Lemma 1 (Flow decomposition). We can decompose any feasible flow f on a network G into at 
most m cycles and s-t paths. 

Proof: The following algorithm extracts the m paths and cycles. 

1. Find a path with positive flow from the node s to node t. (If the flow is non-zero, 
there exists at least one such path.) 

2.	 Anti-augment the flow on this path—that is, reduce the flow in the path until the 
flow on some edge becomes 0. 

3. Add this path as an element of the flow decomposition. 

4. Continue these operations until there are no more paths from s to t with positive 
flow. 

5. If there are still some edges with non-zero flow, the remaining flow can be decom-
posed into cycles. Find a cycle in the following way: take any edge with non-zero 
flow and follow an outgoing edge with non-zero flow until a cycle is found. 

6.	 Anti-augment on the cycle found. 

7. Add the cycle as an element of the flow decomposition. 

8.	 Continue finding cycles until there are no more edges with non-zero flow. 

Each time we anti-augment a path or a cycle, we zero out the flow on some edge. There are at most 
m anti-augmentations, and, consequently, m paths/cycles in the flow decomposition. 

In a network flow problem, it is useful to work with a cut of the graph, particularly an s-t cut. 

Definition 6 A cut of network G is a partition of the vertices V into 2 groups: S and S ̄ = V \ S. 

Definition 7 An s-t cut is a cut such that s ∈ S and t ∈ S̄ . 

We will usually represent a cut as the pair (S, S̄), or just S. We generalize the concept of the net 
flow and the capacity of an edge to define the net flow and capacity of a cut. 

Definition 8 The net flow along cut (S, S̄) is defined as f(S) =  f(v, w). v∈S w∈S̄ 

Definition 9 The value (or capacity) of a cut is defined as u(S) =  v∈S w∈ ( )u v, w .S̄ 
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¯Figure 6.3: An illustration of the s-t cut. s ∈ S and t ∈ S̄. There might be both edges from S to S 
and from S ̄ to S. 
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Figure 6.4: An example of a cut in a network. The s-t cut is represented by a dashed line. The 
value (capacity) of the cut is equal to 3. This is one of the minimum s-t cuts. 

In summary, the flow (or capacity) of a cut is the sum of all flows (capacities) of edges that go from 
¯ S to S. Note that direction is important in these definitions. Flow or capacity along an edge in the 

reverse direction, from w ∈ S ̄ to v ∈ S, does not  count.  

Working with cuts is useful because of the following lemma: 

Lemma 2 Given a flow f , for any cut S, f(S) =  |f |. In other words, all s-t cuts carry the same 
flow: the value of the flow f . 

Proof: We can use Lemma 1 to prove this statement directly. We decompose the flow into s-t paths 
¯and cycles. Each s-t path must end up in S̄, so it must go from set S to S one more time than it 

goes from S ̄ to S. Therefore, an s-t path carring x flow along that path contributes exactly x to the 
¯value of the cut. A cycle must go from S to S ̄ the same number of times as it goes from S to S, 

contributing 0 to the value of the cut. Therefore the total value of the cut S is equal to the sum of 
the flows along every s-t path, which is equal to |f |. 
Alternatively, we can prove the lemma by induction on the size of the sets S. For  S = s, the  claim  
is true. Now, suppose we move one vertex v from S ̄ to S. The  value  f(S) changes in the following 
way: 

• f(S) increases by f(v, S̄). 

• f(S) decreases by f(S, v) =  −f(v, S). 
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In conclusion, the total change in the value of f(S) after moving the vertex v from S to S ̄ is equal 
to f(v, S̄) +  f(v, S) =  f(v, V ) = 0 (by conservation of flow). 

For a flow network, we define a minimum cut to be a cut of the graph with minimum capacity. 
Then, Lemma 3 gives us an upper bound on the value of any flow. 

Lemma 3 If f is a feasible flow, then |f | ≤ u(S) for any cut S. 

Proof: For all edges e, f(e) ≤ u(e), so f(S) ≤ u(S) (the flow across any cut S is not more than the 
capacity of the cut). By Lemma 2, |f | = f(S), so |f | ≤ u(S) for any cut S. 

If we pick S to be a minimum cut, then we get an upper bound on the maximum flow value. 

6.3 Max-Flow Min-Cut Theorem 

In this section, we show that the upper bound on the maximum flow given by Lemma 3 is exact. 
This is the max-flow min-cut theorem. 

To prove the theorem, we introduce the concepts of a residual network and an augmenting path. 

Definition 10 Let f be a feasible flow on a network G. The corresponding residual network, denoted 
Gf , is a network that has the same vertices as the network G, but has edges with capacities uf (v, w) =  
u(v, w) − f(v, w). Only edges with non-zero capacity, uf (v, w) > 0, are included in Gf . 

Note that the feasibility conditions imply that uf (v, w) ≥ 0 and  uf (v, w) ≤ u(v, w) +  u(w, v). This 
means all capacities in the residual network will be non-negative. 

Definition 11 An augmenting path is a directed path from the node s to node t in the residual 
network Gf . 
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Figure 6.5: An example of a residual network. This residual network corresponds to the network de-
picted in Figure 6.1 and the flow in Figure 6.2. The dashed line corresponds to a possible augmenting 
path. 
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Note that if we have an augmenting path in Gf , then this means we can push more 
flow along such a path in the original network G.  To  be more precise,  if  we have  
an augmenting path (s, v1, v2, . . . vk, t), the maximum flow we can push along that path is 
min{uf(s, v1), uf (v1, v2), uf (v2, v3), . . . uf(vk−1, vk), uf(vk, t)}. Therefore, for a given network G and 
flow f , if there exists an augmenting path in Gf , then the flow f is not a maximum flow. 

More generally, if f ′ is a feasible flow in Gf , then  f + f ′ is a feasible flow in G. The flow f + f ′ still 
satisfies conservation because flow conservation is linear. The flow f + f ′ is feasible because we can 
rearrange the inequality f ′(e) ≤ uf (e) =  u(e) − f(e) to  get  f ′(e) +  f(e) ≤ u(e). Conversely, if f ′ is 
a feasible  flow  in  G, then the flow f − f ′ is a feasible in Gf . 

Using residual networks and augmenting paths, we can state and prove the max-flow min-cut theo-
rem. 

Theorem 1 (Max-flow min-cut theorem). In a flow network G, the following conditions are equiv­
alent: 

1. A flow f is a maximum flow. 

2. The residual network Gf has no augmenting paths. 

3. |f | = u(S) for some cut S. 

These conditions imply that the value of the maximum flow is equal to the value of the minimum s-t 
cut: maxf |f | = minS u(S), where  f is a flow and S is as-t cut. 

Proof: We show that each condition implies the other two. 

•	 1 ⇒ 2: If there is an augmenting path in Gf , then we previously argued that we can push 
additional flow along that path, so f was not a maximum flow. 1 ⇒ 2 is  the  contrapositive  of  
this statement. 

•	 2 ⇒ 3: 

If the residual network Gf has no augmenting paths, s and t must be disconnected. Let 
S = {vertices reachable from s in Gf}. Since  t is not reachable, the set S describes a s-t cut. 

s 
t 

� 

Figure 6.6: Network Gf is disconnected. The set S contains all the nodes that are reachable from s. 

By construction, all edges (v, w) straddling the cut have residual capacity 0. This means in 
the original network G, these  edges  have  f(v, w) =  u(v, w). Therefore, |f | = f(S) =  u(S). 
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•	 3 ⇒ 1: If for some cut S, |f | = u(S), we know f must be a maximum flow. Otherwise, we 
would have a flow g with |g| > u(S), contradicting Lemma 3. 

From (1) and (3), we know that the maximum flow can not be less than the value of the minimum 
cut, because for some S, |f | = u(S) and  u(S) is at least as big as the minimum cut value. Lemma 
3 tells us that the maximum flow can not be greater than the minimum cut value. Therefore, the 
maximum flow value and the minimum cut value are the same. 

6.4 Ford-Fulkerson Algorithm 

The Ford-Fulkerson algorithm solves the problem of finding a maximum flow for a given network. 
The description of the algorithm is as follows: 

1. Start with f(v, w) =  0.  

2. Find an augmenting path from s to t (using, for example, a depth first search or 
similar algorithms). 

3.	 Use the augmenting path found in the previous step to increase the flow. 

4. Repeat until there are no more augmenting paths. 

If the capacities are all integers, then the running time is O(m|f |). This is true because finding an 
augmenting path and updating the flow takes O(m) time, and every augmenting path we find must 
increase the flow by an integer that is at least 1. 

In general, if we have integral capacities, then our solution satisfies an integrality property: there  
exists an integral maximal flow. This happens because every augmenting path increases flows by an 
integer amount. 

Since the running time is directly proportional to the value of the maximal flow, this particular 
algorithm is only good for cases when the value |f | is small. For example, when all capacities are at 
most 1, the maximum flow |f | is at most n. In general, the algorithm may be as bad as linear in unary 
representation of the input. Figure 6.7 illustrates a bad case for this form of the Ford-Fulkerson 
algorithm. 

We describe such an algorithm as being pseudo-polynomial, because it is polynomial in terms of 
variables we care about (but not necessarily the input). 

If the capacities are rational, then it can be shown that the algorithm will finish. It might, however, 
require more than O(m|f |) time. If the capacities are real, the algorithm might never finish, or even 
converge to a non-optimal value. 

If we setup better rules for selecting the augmentation paths however, we might get better results. 
Before showing some improvements to the Ford-Fulkerson algorithm, we will introduce some new 
notions on the running time of algorithms. 
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Figure 6.7: An example for which the Ford-Fulkerson, in the stated form, might perform very badly. 
The algorithm runs slowly if at each step, the augmentation path is either s → 1 → 2 → t or 
s → 2 → 1 → t (shown with dashed lines). At an augmentation, the flow will increase by at most 2. 

Definition 12 An algorithm is psuedo-polynomial if it is polynomial in the unary representation of 
the input. 

Definition 13 An algorithm is weakly polynomial if it is polynomial in the binary representation of 
the input. 

Definition 14 An algorithm is strongly polynomial if it is polynomial in combinatorial complexity 
of input. (For example, in the case of max-flow problem, the algorithm would have to be polynomial 
in n and m.) 

6.4.1 Improvements to the Ford-Fulkerson Algorithm 

The are at least two possible ideas for improving the Ford-Fulkerson algorithm. Both of the im-
provements rely on a better choice of an augmenting path (rather than a random selection of an 
augmenting path). 

1. Using breadth-first search, we can choose shortest-length augmenting path.	 With this path-
selection rule, the number of augmentations is bounded by n · m, and thus the running time 
of the algorithm goes down to O(nm2) time.  

2.	 We can also choose the maximum-capacity augmenting path: the augmenting path among 
all augmenting paths that increases the flow the most (max-capacity augmenting path). It is 
possible to find such a path in O(m log n) time using a modified Dijkstra’s algorithm (ignoring 
the cycles). The number of augmentations will be at most m ln |f | ≤ m ln(nU ), where U = 
max{u(v, w)} (for integral capacities). 

In this lecture we prove the time bound for the second improvement. Consider the maximum flow 
f in the current residual network. We apply the flow-decomposition lemma, Lemma 1 (discarding 
the cycles because they do not modify |f |). There are at most m paths carrying all the flow, so 
there must be at least one path carrying at least |f |/m flow. Therefore, the augmenting path with 
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maximum capacity increases the flow in the original network by at least |f |/m. This decreases the 
maximum possible flow in the residual graph from |f | to (1 − 1/m)|f | (remember, the smaller is the 
maximum possible flow in the residual graph, the greater is the corresponding flow in the original 
graph). 

We need to decrease the flow |f | by a factor of (1 − 1/m) about  m ln |f | times before we decrease 
the max flow in the residual graph to 1. This is because 

m ln |f | �ln |f |1 1 |f | 1 − ≈ |f | ≈ 1. 
m e 

In one more step, the residual graph will have a maximum flow of 0, meaning that the corresponding 
flow in the original graph is maximal. Thus, we need O(m ln |f |) augmentations. Since one augmen-
tation step takes about O(m log n) time, the total running time is O(m2 ln |f | · ln n). This algorithm 
is weakly polynomial, but not strongly polynomial. 

6.4.2 Scaling Algorithm 

We can also improve the running time of the Ford-Fulkerson algorithm by using a scaling algorithm. 
The idea is to reduce our max flow problem to the simple case, where all edge capacities are either 
0 or 1.  

The scaling idea, described by Gabow in 1985 and also by Dinic in 1973, is as follows: 

1.	 Scale the problem down somehow by rounding off lower order bits. 

2.	 Solve the rounded problem. 

3. Scale the problem back up, add back the bits we rounded off, and fix any errors in our solution. 

In the specific case of the maximum flow problem, the algorithm is: 

1. Start with all capacities in the graph at 0. 

2. Shift in the higher-order bit of each capacity. Each capacity is then either 0 or 1. 

3.	 Solve this maximum flow problem. 

4.	 Repeat this process until we have processed all remaining bits. 

This description of the algorithm tells us how to scale down the problem. However, we also need to 
describe how to scale our algorithm back up and fix the errors. 

To scale back up: 

1. Start with some max flow for the scaled-down problem.	 Shift the bit of each capacity by 1, 
doubling all the capacities. If we then double all our flow values, we still have a maximum 
flow. 
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2. Increment some of the capacities. This restores the lower order bits that we truncated.	 Find 
augmenting paths in the residual network to re-maximize the flow. 

We will need to find at most m augmenting paths. Before we scaled our problem back up, we had 
solved a maximum flow problem, so some cut in the residual network had 0 capacity. Doubling all 
the capacities and flows keeps this the same. When we increment the edges however, we increase 
the cut capacity by at most m: once for each edge. Each augmenting path we find increases the 
flow by at least 1, so we need at most m augmenting paths. 

Each augmenting path takes at most O(m) time to find, so we spend O(m2) time  in each iteration  
of the scaling algorithm. If the capacity of any edge is at most U , which  is  an  O(lg U) bit  number,  
we require O(lg U) iterations of the scaling algorithm. 

Therefore the total running time of the algorithm is O(m2 lg U). This algorithm is also a weakly 
polynomial algorithm. 
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6.854 Advanced Algorithms 

Lecture 1: 10/13/2004 Lecturer: David Karger 
Scribes: Jay Kumar Sundararajan 

Duality 

This lecture covers weak and strong duality, and also explains the rules for finding the dual 
of a linear program, with an example. Before we move on to duality, we shall first see some 
general facts about the location of the optima of a linear program. 

1.1 Structure of LP solutions 

1.1.1 Some intuition in two dimensions 

Consider a linear program -

Maximize yT b 
subject to yT A ≤ c 

The feasible region of this LP is in general, a convex polyhedron. Visualize it as a polygon in 
2 dimensions, for simplicity. Now, maximizing yT b is the same as maximizing the projection 
of the vector y in the direction represented by vector b. For whichever direction b we choose, 
the point y that maximizes yT b cannot lie strictly in the interior of the feasible region. The 
reason is that, from an interior point, we can move further in any direction, and still be 
feasible. In particular, by moving along b, we can get to a point with a larger projection 
along b. This intuition suggests that the optimal solution of an LP will never lie in the 
interior of the feasible region, but only on the boundaries. In fact, we can say more. We 
can show that for any LP, the optimal solutions are always at the “corners” of the feasible 
region polyhedron. This notion is formalized in the next subsection. 

1.1.2 Some definitions 

Definition 1 (Vertex of a Polyhedron) A point in the polyhedron which is uniquely op-
timal for some linear objective, is called a vertex of the polyhedron. 

Definition 2 (Extreme Point of a Polyhedron) A point in the polyhedron which is not 
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a convex combination of two other points in the polyhedron is called an extreme point of the 
polyhedron. 

Definition 3 (Tightness) A constraint of the form aT x ≤ b, aT x = b or aT x ≥ b in a 
linear program is said to be tight for a certain point y, if  aT y = b. 

Definition 4 (Basic Solution) For an n-dimensional linear program, a point is called a 
basic solution, if n linearly independent constraints are tight for that point. 

Definition 5 (Basic Feasible Solution) A point is a basic feasible solution, iff it is a 
basic solution that is also feasible. 

Note: If x is a basic feasible solution, then it is in fact, the unique point that is tight for all 
its tight constraints. This is because, there can be only one solution for a set of n linearly 
independent equalities, in n-dimensional space. 

Theorem 1 For a polyhedron P and a point x ∈ P , the following are equivalent: 

1.	 x is a basic feasible solution 

2.	 x is a vertex of P 

3.	 x is an extreme point of P 

Proof: Assume the LP is in the canonical form. 

1.	 Vertex⇒ Extreme Point 
Let v be a vertex. Then for some objective function c, cT x is uniquely minimized at 
v. Assume v is not an extreme point. Then, v can be written as v = λy + (1  − λ)z 
for some y, z neither of which is v, and  some  λ satisfying 0 ≤ λ ≤ 1. 

TNow, cT v = cT [λy + (1  − λ)z] =  λcT y + (1  − λ)c z 

This means cT y ≤ cT v ≤ cT z. But,  since  v is a minimum point, cT v ≤ cT y and 
cT v ≤ cT z. Thus,  cT y = cT v = cT z. This is a contradiction, since v is the unique 
point at which  cT x is minimized. 

2.	 Extreme Point ⇒ Basic Feasible Solution 
Let x be an extreme point. By definition, it lies in the polyhedron and is therefore 
feasible. Assume x is not a basic solution. Let T be the set of rows of the constraint 
matrix A for which the constraints are tight at x. Let  ai (a 1 × n vector) denote the 
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ith	 row of A. For  ai /∈ T , ai.x > bi. Since  x is not a basic solution, T does not span 
Rn . So, there is a vector d �= 0  such  that  ai.d = 0  ∀ai ∈ T . 

Consider y = x + εd and z = x − εd. If  ai ∈ T , then  ai.y = ai.z = bi. If  ai /∈ T , 
then, by choosing a sufficiently small ε: 0  < ε  ≤ mini/

ai.x−bi , we can ensure that ∈T |ai.d|
ai.y ≥ bi and ai.z ≥ bi. Thus  y and z are feasible. Since x = y/2 +  z/2, x cannot be 
an extreme point – a contradiction. 

3.	 Basic Feasible Solution ⇒ Vertex 
Let x be a basic feasible solution. Let T = {i | ai.x = bi}. Consider the objective as 
minimizing c.y for c = i∈T ai. Then, c.x = i∈T (ai.x) =  i∈T bi. 
For any x′ ∈ P, c.x = i∈T (ai.x

′) ≥ i∈T bi with equality only if ai.x = bi ∀i ∈ T . 
This implies that x = x and that x uniquely minimizes the objective c.y. 

This proves that vertex, extreme point and basic feasible solution are equivalent terms. 

Theorem 2 Any bounded LP in standard form has an optimum at a basic feasible solution. 

Proof: Consider an optimal x which is not a basic feasible solution. Being optimal, it is 
feasible, hence it is not basic. As in the previous proof, let T be the set of rows of the 
constraint matrix A for which the constraints are tight at x. Since  x is not a basic solution, 
T does not span Rn . So, there is a vector d �= 0  such  that  ai.d = 0  ∀ai ∈ T . For  a  scalar  ε 
with sufficiently small absolute value, y = x + εd is feasible, and represents a line containing 
x in the direction d. The objective function at y is cT x + εcTd. Since  x is optimal, cT d = 0,  
as otherwise, an ε of the opposite sign can reduce the objective. This means, all feasible 
points on this line are optimal. One of the directions of motion on this line will reduce some 
xi. Keep going till some xi reduces to 0. This results in one more tight constraint than 
before. 

This technique can be repeated, till the solution becomes basic. 

Thus, we can convert any feasible solution to a basic feasible solution of no worse value. In 
fact, this proof gives an algorithm for solving a linear program: evaluate the objective at 
all basic feasible solutions, and take the best one. Suppose there are m constraints and n 
variables. Since a set of n constraints defines a basic feasible solution, there can be upto 
m basic feasible solutions. For each set of n constraints, a linear system of inequalities n 

has to be solved, which by Gaussian elimination, takes O(n3) time. This is in general an 
exponential complexity algorithm in n. Note that the output size is polynomial in n, since  
the optimal solution is just the solution of a system of linear equalities. 
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1.2 The dual of a linear program 

Given an LP in the standard form: 

Minimize c.x 
subject to: Ax = b; x ≥ 0 

We  call  the above  LP  the primal LP.  The decision  version  of  the  problem is:  Is  the optimum  
c.x ≤ δ ? This problem is in NP  , because, if we find a feasible solution with optimum 
value ≤ δ, we can verify that it satisfies these requirements, in polynomial time. A more 
interesting question is whether this problem is in co-NP. We need to find an easily verifiable 
proof for the fact that there is no x which satisfies c.x < δ. To do this, we require the concept 
of duality. 

1.2.1 Weak Duality 

We seek a lower bound on the optimum. Consider a vector y (treat is as a row vector here). 
For any feasible x, yAx = yb holds. If we require that yA ≤ c, then  yb = yAx ≤ cx. Thus,  
yb is a lower bound on cx, and in particular on the optimum cx. To get the best lower 
bound, we need to maximize yb. This new linear program: 

Maximize yb 
subject to: yA ≤ c 

is called the dual linear program. (Note: The dual of a dual program is the primal). Thus 
primal optimum is lower bounded by the dual optimum. This is called weak duality. 

Theorem 3 (Weak Duality) Consider the LP z = Min{c.x | Ax = b, x ≥ 0} and its 
dual w = max{y.b | yA ≤ c}. Then  z ≥ w. 

Corollary 1 If the primal is feasible and unbounded, then the dual is infeasible. 

1.3 Strong Duality 

In fact, if either the primal or the dual is feasible, then the two optima are equal to each 
other. This is known as strong duality. In this section, we first present an intuitive expla-
nation of the theorem, using a gravitational model. The formal proof follows that. 
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1.3.1 A gravitational model 

Consider the LP min{y.b|yA ≥ c}. We represent this feasible region as a hollow polytope, 
with the vector b pointing “upwards”. If a ball is dropped into the polytope, it will settle 
down at the lowest point, which is the optimum of the above LP. Note that any minimum 
is a global minimum, since the feasible region of an LP is a convex polyhedron. At the 
equilibrium point, there is a balance of forces – the gravitational force and the normal 
reaction of the floors (constraints). Let xi represent the amount of force exerted by the ith 

constraint. The direction of this force is given by the ith column of A. Then the total force 
exerted by all the constraints Ax balances the gravity b: Ax = b. 

The physical world also gives the constraints that x ≥ 0, since the floors’ force is always 
outwards. Only those floors which the ball touches exert a force. This means that for the 
constraints which are not tight, the corresponding xi’s are zero: xi = 0  if  yAi > ci. This  
can be summarized as 

(ci − yAi)xi = 0  

. This means x and y satisfy: 

y.b = yAixi = cixi = c.x 

But weak duality says that yb ≤ cx, for every x and y. Hence the x and y are the optimal 
solutions of their respective LP’s. This implies strong duality – the optima of the primal 
and dual are equal. 

1.3.2 A formal proof 

Theorem 4 (Strong Duality) Consider w = min{y.b | yA ≥ c} and z = min{c.x | Ax = 
b, x ≥ 0}. Then  z = w. 

Proof: Consider the LP min{y.b|yA ≥ c}. Consider the optimal solution y ∗ . Without loss 
∗of generality, ignore all the constraints that are loose for y . If there are any redundant 

constraints, drop them. Clearly, these changes cannot alter the optimal solution. Dropping 
these constraints leads to a new A with fewer columns and a new shorter c. We will prove 
that the dual of the new LP has an optimum equal in value to the primal. This dual optimal 
solution can be extended to an optimal solution of the dual of the original LP, by filling in 
zeros at places corresponding to the dropped constraints. The point is that we do not need 
those constraints to come up with the dual optimal solution. 

After dropping those constraints, at most n tight constraints remain (where n is the length 
of the vector y). Since we have removed all redundancy, these constraints are linearly 
independent. In terms of the new A and c,  we have new  constraints  yA = c. y ∗ is still the 
optimum. 
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Claim: There exists an x, such that Ax = b.

Proof: Assume such an x does not exist, i.e. Ax = b is infeasible. Then “duality” for

linear equalities implies that there exists a z such that zA = 0, but zb �
= 0. Without 

∗loss of generality, assume z.b < 0 (otherwise, just negate the z). Now consider (y + z). 
∗ ∗ ∗ ∗A(y + z) =  Ay + Az = Ay∗ . Hence, it is feasible. (y + z).b = y .b + z.b < y ∗.b, which  

is better than the assumed optimum – a contradiction. So, there is an x such that Ax = b. 
∗Let this be called x . 

∗ ∗Claim: y .b = c.x . 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗Proof: y .b = y .(Ax ) = (y A).x = c.x (since Ax = b and y A = c) 

Claim: x ∗ ≥ 0 
∗ ′Proof: Assume the contrary. Then, for some i, xi < 0. Let c = c + ei, where  ei is all 

0’s  except at the  ith position, where it has a 1. Since A has full rank, yA ≥ c has a 
solution, say y . Besides, since c′ ≥ c, y′ is feasible for the original constraints yA ≥ c. But,  

∗ ∗ ∗ ′y′.b = y′Ax∗ = c′x < cx  = y b (since ci is now higher and xi < 0). This means y′ gives a 
better objective value than the optimal solution – a contradiction. Hence, x ∗ ≥ 0. 

∗Thus, there is an x which is feasible in the dual, and whose objective is equal to the primal 
∗optimum. Hence, x must be the dual optimal solution, using weak duality. Thus, the 

optima of primal and dual are equal. 

Corollary 2 Checking for feasibility of a linear system of inequalities and optimizing an 
LP are equally hard. 

Proof: Optimizer → Feasibility checker 
Use the optimizer to optimize any arbitrary function with the linear system of inequalities 
as the constraints. This will automatically check for feasibility, since every optimal solution 
is feasible. 

Feasibility checker → Optimizer 
We construct a reduction from the problem of finding an optimal solution of LP1 to the 
problem of finding a feasible solution of LP2. LP1 is min{c.x | Ax = b, x ≥ 0}. Consider  
LP2 = min{0.x|Ax = b, x ≥ 0, yA  ≤ c, c.x = b.y}. Any feasible solution of LP2 gives an 
optimal solution of LP1 due to the strong duality theorem. Finding an optimal solution is 
thus no harder than finding a feasible solution. 
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1.4 Rules for duals 

Usually the primal is constructed as a minimization problem and hence the dual becomes 
a maximization problem. For the standard form, the primal is given by: 

T z = min  (c x) 
Ax ≥ b 

x ≥ 0 

while the dual is given by: 

w = max  (bT y) 
AT y ≤ c 

y ≥ 0 

For a mixed form of the primal, the following describes the dual: 

Primal: 

z = min  c1x1 + c2x2 + c3x3 

A11x1 + A12x2 + A13x3 = b1


A21x1 + A22x2 + A23x3 ≥ b2


A31x1 + A32x2 + A33x3 ≤ b3


x1 ≥ 0 

x2 ≤ 0 

x3 UIS 

(UIS = unrestricted in sign) 

Dual: 

w = max  y1b1 + y2b2 + y3b3 

y1A11 + y2A21 + y3A31 ≤ c1


y1A12 + y2A22 + y3A32 ≥ c2


y1A13 + y2A23 + y3A33 = c3
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y1 UIS 

y2 ≥ 0 

y3 ≤ 0 

These rules are summarized in the following table. 

PRIMAL Minimize Maximize DUAL 
Constraints ≥ bi ≥ 0 Variables 

≤ bi ≤ 0 
= bi Free 

Variables ≥ 0 
≥ 0 
Free 

≤ cj 

≤ cj 

= cj 

Constraints 

Each variable in the primal corresponds to a constraint in the dual, and vice versa. For a 
maximization, an upper bound constraint is a “natural” constraint, while for a minimization, 
a lower bound constraint is natural. If the constraint is in the natural direction, then the 
corresponding dual variable is non-negative. 

An interesting observation is that, the tighter the primal gets, the looser the dual gets. 
For instance, an equality constraint in the primal leads to an unrestricted variable in the 
dual. Adding more constraints in the primal leads to more variables in the dual, hence more 
flexibility. 

1.5 Shortest Path – an example 

Consider the problem of finding the shortest path in a graph. Given a graph G, we wish  
to find the shortest path from a specified source node, to all other nodes. This can be 
formulated as a linear program: 

w = max  (dt − ds) 

s.t. dj − di ≤ cij , ∀i, j 

In this formulation, di represents the distance of node i from the source node s. The  
cij constraints are essentially the triangle inequalities – the distance from the source to a 
node i should not be more than the distance to some node j plus the distance from j to 



� 

� 

� 

� 

� 

1-9 Lecture 1: 10/13/2004 

i. Intuitively, one can imagine stretching the network physically, to increase the source-
destination distance. When we cannot pull any further without breaking an edge, we have 
found a shortest path. 

The dual to this program is found thus. The constraint matrix in the primal has a row for 
every pair of nodes (i, j), and a column for every node. The row corresponding to (i, j) has  
a +1  in the  ith column and a -1 in the jth column, and zeros elsewhere. 

1. Using this, we conclude that the dual has a variable for each pair (i, j), say yij. 

2. It has a constraint for each node i. The constraint has a coefficient of +1 for each edge 
entering node i and a -1 for each edge leaving i. The right side for the constraints 
are -1 for the node s constraint, 1 for the node t constraint, and 0 for others, based 
on the objective function in the primal. Moreover, all the constraints are equality 
constraints, since the di variables  were unrestricted in sign in the  primal.  

3. The dual variables will have to have a non-negativity constraint as well, since the 
constraints in the primal were “natural” (upper bounds for a maximization). 

4. The objective is to minimize i,j cijyij, since the right side of the primal constraints 
are cij . 

Thus the dual is: 

z = min  cijyij 

i,j 

(yjs − ysj) =  −1 
j 

(yjt  − ytj) = 1  
j 

(yji  − yij) = 0, ∀i �= s, t 
j 

yij ≥ 0, ∀i, j 

This is precisely the linear program to solve the minimum cost unit flow, in a gross flow 
formulation. The constraints correspond to the flow conservation at all nodes except at the 
source and sink. The value of the flow is forced to be 1. Intuitively, this says that we can 
use minimum cost unit flow algorithms to find the shortest path in a network. 

Duality is a very useful concept, especially because it helps to view the optimization problem 
on hand from a different perspective, which might be easier to handle. 
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Min-Cost Flow Algorithms 

10.1 Shortest Augmenting Paths: Unit Capacity Networks 

The shortest augmenting path algorithm for solving the MCF problem is the natural extension of 
the SAP algorithm for the max flow problem. Note that here the shortest path is defined by edge 
cost, not edge capacity. 

For the unit capacity graph case, we assume that all arcs have unit capacity and that there are no 
negative cost arcs. Therefore, the value of any flow in the cycle must be less than or equal to n. 
Given that each augmenting path increases the value of the flow by 1, at most n augmentation steps 
will suffice in finding the MCF. 

Shortest augmenting paths can be found using any single-source shortest path algorithm. We can 
use Dijkstra’s algorithm since there are no negative-cost edges in the graph. Each path calculation 
takes O(m log n) time, for a total runtime of O(nm log n). 

Two questions arise: 

• what if augmentations create negative cost edges? 

• how do we know the result is a MCF? 

We answer both of these questions with the following claim. 

Claim 1 Under the SAP algorithm, there will never be a negative reduced-cost cycle in the residual 
graph. 

Proof: (by induction). We want to show that one SAP doesn’t introduce negative cycles in Gf . 
Initially there are no negative cost cycles. Feasible prices can be computed by using shortest path 
distances from s. After finding the shortest s-t path, it has reduced cost 0. Every arc on the path 
has reduced length 0. This demonstrates that the triangle inequality property is tight on shortest 
path edges. When we augment along the path, therefore, the residual backwards arcs we create are 
of reduced cost 0. Therefore in the new Gf , the price function is still feasible. Furthermore, there 
are: 

• no residual negative reduced cost arcs 

10-1 
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• no negative reduced cost cycles 

• no negative cost cycles 

Proof of this claim also proves the correctness of the algorithm, since it will also apply to the residual 
graph at the time the algorithm terminates. 

The SAP algorithm we present suffers from two limitations. It is applicable only to unit capacity 
graphs, and it cannot handle graphs with negative cost cycles. 

10.2 MCF Scaling by Capacity: General Networks 

We can extend the SAP algorithm to general-capacity networks by scaling. During each scaling 
phase, we roll in one bit of precision, for a total of O(log U ) phases. 

At the end of each phase we have an MCF and a feasible price function. After rolling in the next bit, 
though, we can introduce residual capaicty on negative reduced cost arcs. This will cause the price 
function no longer to be feasible. We can correct this problem by sending flow along the negative 
arcs. This introduces flow excesses (of one unit) at some nodes and deficits (of one unit) at others. 
We use an MCF to send the excesses back to deficits. 

Since each arc can create at most one unit of excess, total excess is at most m units and m SAPs 
will suffice in returning all excesses to deficits. Using Dijkstra’s for finding SAPs as before, runtime 
per phase is O(m2 log n). The total runtime of the algorithm is O(m2 log n log U ). 

10.3 MCF Scaling by Cost 

An alternative method of solving for MCF in a general network is by scaling by costs, rather than 
capacities. This is useful for graphs with integral costs, since all cycles will have integer costs. The 
idea is to allow for slightly negative cost arcs and continuously improve on the price function. We 
introduce the idea of ε-optimality: 

Definition 1 A price  function  p  is  ε-optimal if for all residual arcs (i, j), cp(i, j) ≥ −ε. 

We start with a max flow and a zero price function, which will be C-optimal. During each phase, we 
go from an ε-optimal max flow to an (ε/2)-optimal max flow. When can we terminate the algorithm? 

1Claim 2 A n+1 -optimal max flow is optimal. 

Proof: We start with the observation that the least negative cycle cost is −1 in a integral-cost graph. 
All cycles in the residual network cost at least − n 

n+1 , which is strictly larger than −1. Therefore 
1the reduced cost of any residual cycle is at least − n , and  a  n+1 -optimal max flow is optimal. n+1 
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To get an (ε/2)-optimal max flow from an ε-optimal max flow, we first saturate all negative-cost 
residual arcs. This makes all residual arcs have non-negative reduced cost, but introduces excesses 
and deficits into the network. We then use MCF to push the excesses back to the deficits, without 
allowing any edge costs to drop below ε/2. 

Using dynamic trees, the runtime of this algorithm is O(mn log n log C). 

10.4 State of the Art 

The double-scaling algorithm combines cost- and capacity-scaling introduced here. It has the runtime 
of O(mn log C log log U ). 

Tardos’ minimum mean-cost cycles algorithm (’85) is a strongly polynomial algorithm for MCF. 
The algorithm proceeds by finding the negative cycles in which the average cost per edge is most 
strongly negative. Thus short cycles of a particular negativity are preferred over long ones. The 
algorithm uses a cost scaling technique from the ideas of ε-optimality. After every m negative-cycle 
saturations, an edge becomes “frozen,” meaning its flow value never changes again. The minimum 
mean-cost cycle algorithm has time bound O(m2 polylog m). 
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6.854 Advanced Algorithms 

Lecture 15: October 15, 2003 Lecturer: David Karger and Erik Demaine 
Scribes: Nelson Lai 

15.1 Addendum from last lecture 

Theorem 1 If the primal P (primal) or D (dual) are feasible, then they have the same value. 

15.2 Rules for Taking Duals 

In general we construct the primal P as a minimization problem and, conversely, the dual D as a 
maximization problem. If P is a linear program in standard form given by: 

T z = min(c x) 
Ax ≥ b 

x ≥ 0 

then the dual, D is given by: 

w = max(bT y) 
AT y ≤ c 

y ≥ 0 

In general, the form of the dual will depend on the form of the primal. If one is given a primal linear 
program P in mixed form: 

x = min(c1x1 + c2x2 + c3x3) 
A11x1 + A12x2 + A13x3 = b1


A21x1 + A22x2 + A23x3 ≥ b2


A31x1 + A32x2 + A33x3 ≤ b3


x1 ≥ 0 

x2 ≤ 0 

x3 unrestricted in sign (UIS) 

then the dual D is given by: 

15-1 
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w = max(b1y1 + b2y2 + b3y3) 
y1A11 + y2A21 + y3A31 ≤ c1


y1A12 + y2A22 + y3A32 ≥ c2


y1A13 + y2A23 + y3A33 = c3


y1 unrestricted in sign (UIS)

y2 ≥ 0


y3 ≤ 0


By simple transformations, we can confirm that this is consistent with the dual for the standard 
form of the primal and that in fact the dual of the dual is the primal. 

We can summarize these results with the following table which states the rules for taking duals. 
Note that each variable in the primal corresponds to a variable in the dual and each constraint in 
the primal corresponds to a variable in the dual. 

PRIMAL minimize maximize DUAL 

≥ bi ≥ 0 
constraints ≤ bi ≤ 0 variables 

= bi unrestricted 

variables 
≥ 0 
≥ 0 

unrestricted 

≤ cj 

≤ cj 

= cj 

constraints 

Note that this makes intuitive sense. For example, the primal minimization problem has lower 
bounds as the natural constraints. This corresponds to a positive variable in the dual maximization 
problem. Conversely, the primal maximization problem has upper bounds as natural constraints. 
The dual minimization problem now has a negative variable. 

To develop an intuition for these relationships, we consider the effect of the sign of a variable in 
the minimization problem on the type of the corresponding constraint in the maximization problem. 
We know from weak duality that cT x ≥ yb = yAx. Consider the case where x1 ≥ 0. Then in order 
to have yAx1 ≤ c1x1, we  must have  yA11 ≤ c1 for any y. Similarly, if x2 ≤ 0, then we must have 
yA12 ≥ c2 in order for cT x ≥ yAx. Finally, for x3 unrestricted, we must have yA13 = c3 since 
multiplying both sides by x might or might not change the direction of any inequality. In general, 
tighter constraints in the primal lead to looser constraints in the dual. An equal constraint leads to 
an unrestricted variable and adding new constraints creates new variables and more flexibility. 
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We now examine an example showing the relationship between the primal and dual problems. We 
consider formulating the shortest paths problem as a linear program. Given a graph G, we  wish  to  
find the shortest path from any one point (the source) to any other point. We formulate the problem 
as a dual (or maximization) linear program. 

w = max(dt − ds) 
dj − di ≤ cij 

dj unrestricted 

Each variable di represents the distance to vertex i and each constraint represents the triangle 
inequality — that is, the the distance to vertex i should always be less than or equal to the distance 
to vertex j plus the distance from vertex j to vertex i. Any feasible solution to this would find a 
lower bound to the shortest path distances — the maximization objective makes sure these shortest 
path distances are valid. You can imagine physically holding up the source and the sink and pulling 
them apart slowly. The first time we cannot pull any further, this indicates the shortest path has 
been reached. 

The constraint matrix A has n2 rows and n columns of ±1 or  0.  Each  row  ij has a 1 in column i, 
−1 in column  j, and 0 in all others. Thus we can write the primal as follows: 

T z = min(c x) 

=
� 

i,j 

cijxij 

n � 

j=1 

n � 

j=1 

xjs − xsj = −1 

xjt − xtj = 1  

n � 

j=1 

xji − xij = 0  ∀i �= s, t 

But this is simply a linear program for a minimum cost unit-flow! The constraints represent the 
conservation of flow with one unit of flow going into the sink and one unit coming out from the 
source. All other vertices are constrained to have the same amount of flow coming in as going out. 
Thus any feasible solution to the linear program will be a feasible flow. The objective function simply 
tries to minimize the cost of this flow. We see that often the dual of a LP allows us to understand 
the problem from a different (but equivalent) perspective. 
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Consider a linear program min{cx | Ax ≥ b}. We consider a hollow polytope defined by a set of 
constraints. Let c be the gravitation vector, pointing straight up. We can put a ball in the polytope, 
and let it fall to the bottom. 

∗At equilibrium point x , the forces exerted by the floors are balanced by the gravitational force. 
The normal forces by the floors are aligned with the Ai’s. Therefore, we have c = 

� 
yiAi for some 

∗nonnegative force coefficients yi. In particular, y is a feasible solution for max{yb | yA = c, y ≥ 0}. 
Since the forces can be only be exerted by those walls touching the ball, we have yi = 0  if  Aix >  bi. 
Therefore, we have 

yi(aix − bi) =  0, 

thus, 
yb = 

� 
yi(aixi) =  cx, 

∗which means that y is dual optimal. 

15.5 Complementary Slackness 

The above example leads to the idea of complementary slackness. Given feasible solutions x and 
y, cx − by ≥ 0 is called the duality gap. The solutions are optimal if and only if the gap is zero. 
Therefore, the gap is a good measure of “how far off” we are from the optimum. 

Going back to original primal and dual forms, we can rewrite the dual: yA + s = c for some s ≥ 0 
(that is, s = cj − yAj). 

Theorem 2 The followings are equivalent for feasible x and y: 

• x and y are optimal 

• sx = 0  

• xjsj = 0  for all j 

• sj > 0 implies xj = 0  

Proof: First, cx = by if and only if 

(yA + s)x = (Ax)y, 

thus sx = 0.  If  sx = 0,  then  since  s, x ≥ 0, we have have sjxj = 0,  so  of  course  sj > 0 forces xj = 0.  
The converse is easy. 

The basic idea of complementary slackness is that an optimum solution cannot have a variable xj 

and corresponding dual constraint sj slack at same time — one must be tight. 

This can be stated in another way: 



� 
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yi(aix − bi) = 0  ∀i 

(cj − yAj)xj = 0  ∀j 

Proof: Note that in the definition of primal/dual, feasibility means yi(aix − bi) ≥ 0 (since  ≥ 
constraint corresponds to nonnegative yi). Also, (cj − yAj)xj ≥ 0, thus 

� 
yi(aix − bi) +  (cj − yAj)xj = yAx − yb + cx − yAx 

= cx − yb 

= 0  

at optimum. But since all terms are nonnegative, they must be all 0. 

15.6 Examples Using Complementary Slackness 

In some linear optimization problems, we can gain new insight by investigating its primal and dual 
optimal solutions using complementary slackness. We are going to give two examples. In the first 
example, we will consider the LP formulation of the maximum flow problem. Using complementary 
slackness, we derive the Max-Flow Min-Cut Theorem. In the second example, we consider the 
minimum cost circulation problem. Using the linear programming framework, we give an alternative 
proof of the complementary slackness property introduced in lecture 13 (the lecture on minimum 
cost flow). 

15.6.1 Max-flow Min-Cut Theorem 

In the maximum flow problem, we can imagine the network has an arc (t, s) with infinite capacity. 
And we are maximizing the flow on that arc. Therefore, the max flow problem can be written as 
follows (in the gross flow form): 

max xts 

xvw − xwv = 0  
w 

xvw ≤ uvw 

xvw ≥ 0 

In the dual problem, for each node v there is a conservation constraint. Besides, for each edge (v, w) 
there is a capacity constraint. Therefore, in the primal formulation, we have a variable zv for each 
conservation constraint and a variable yvw for each capacity constraint. The primal formulation is 
therefore: 
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min 
� 

uvwyvw 

vw 

zv − zw + yvw ≥ 0 

zt − zs + yts ≥ 1 

yvw ≥ 0 

We rewrite the first set of constraints as yvw ≥ zw −zv. Besides, the second constraint can be written 
as zt − zs ≥ 1. This is because yts = 0 in any optimal solution. If yts > 0 in some optimal solution, 
the fact that uts = ∞ implies that utsyts = ∞ and therefore the optimal value is unbounded. This 
is impossible since the max flow problem is never infeasible (in particular, the zero flow is a feasible 
solution). 

If we consider yvw as the edge length of (v, w) and  zv as the distance from s to v, we can interpret 
the dual problem as follows: Minimize the volume of the network by tuning the edge lengths, subject 
to the constraint that the distance from s to t is at least 1. Here the volume of network is defined as 
the sum of edge volumes, which is the product of edge capacity uvw and edge length yvw. 

Note that the optimal solution in this primal problem is at most the min-cut value of the network, as 
we can assign length 1 to the min-cut edges and 0 otherwise. This satisfies the s-t distance constraint 
(because any s-t path has to traverse some edge of a cut.) The value of this solution is the sum 
of min-cut edge capacities. By strong duality this implies max-flow ≤ min-cut. We now prove the 
other direction. 

∗ ∗ ∗Denote zv , y  as an optimal solution for the primal problem and similarly x for the dual problem. vw vw ∗ ∗ ∗ ∈ T and Since z are distances, we can always rescale z to 0. Let T = {v|z ≥ 1}. Note  that  s /v s v 

t ∈ T . Therefore T is a s − t cut. 

Now consider any edge (v, w) crossing the cut: 

∗ ∗ ∗ ∗ ∗1. if v ∈ T and w /∈ T , then  zv ≥ 1 and  z < 1. Therefore, zv − z + y ∗ ≥ z − z ∗ > 0.w w vw v w 

Therefore, the constraint for edge (v, w) in the primal problem is slack. By complementary 
∗ ∗slackness, the variable xvw in the dual problem has to be tight, i.e., x = 0.  vw 

∗ ∗2. if v /∈ T and w ∈ T , then  zw ≥ 1 and  z < 1. It follows that the variable y ∗ ≥ z ∗ − z ∗ > 0.v vw w v 

Again, by complementary slackness, the constraint in the dual problem xvw ≤ uvw is tight. 
∗Therefore, xvw = uvw. 

In other words, in a max flow, all edges entering T is saturated and all edge leaving T is empty. 
Therefore, in a max flow, the net flow entering T equals the cut value of T . Since the flow value 
equals the amount of net flow entering any s − t cut, the max-flow value equals the cut value of T , 
which is at least the min-cut value. As a result, we have shown that max-flow ≥ min-cut, which 
completes the proof of the Max-Flow Min-Cut Theorem. 
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Lecture 17: 11/8/2004 Lecturer: David Karger 
Scribes: Matt Rasmussen 

Sweep Line 

Definition 1 Sweep Line Technique: Given some planar problem, sweep a line through the plane 
dealing with events that occur on the line and leaving behind a solved portion of the problem. 

17.1 Convex Hull 

The Convex Hull problem is to find the smallest enclosing convex polygon of a set of given points 
in the plane. 

17.1.1 Algorithm 

One method for solving the convex hull problem is to use a sweep line technique to find the upper 
envelope of the hull. The lower evelope of the convex hull can be found by rerunning the following 
algorithm with only slight modifications. 

Use a vertical sweep line that sweeps from negative infinity to positive infinity on the x­axis. As 
the line sweeps, we will maintain a partital convex hull for the points left of the sweep line. When 
the sweep line crosses a new point we will need to update the partial convex hull to include the new 
point. After the sweep line has gone past all the points, we will have a complete upper envelope of 
the convex hull. 

To determine the order in which the sweep line will cross points we can use a priority queue such a 
min­heap that will order points by their x­coordinates. Therefore, the only remaining issue is how 
to insert a new point into an existing convex hull. When inserting a new point, two cases arise: 
(1) either the existing convex hull can be extended to include the new point or (2) the new point 
requires the existing convex hull to be modified. Informally, we can distinguish the two cases by 
noticing that in case (1) the new point causes a “right turn” in the hull’s boundary, whereas in case 
(2) the new point causes a “left turn”. This can be determined mathematically by finding the angle 
between the right most line segment of evelope and the line segment of the right most evelope point 
and the new point. If the angle is less than 180 degrees then we have a case (1), otherwise we have 
a case (2). 

case 1: Since the new point can be safely added to the existing evelope without violating its 
convexity, the new point is directly added to the list of evelope points. 

case 2: In this case, the new point cannot be safely added to the existing evelope without violating 
its convexity, therefore, the existing evelope must be modified to accommodate the new point. This 

17­1 
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can be done by the following procedure. At the new point the evelope. Peform a convexity check on 
the predecessor to the new point. If the convexity check fails, delete the point from the evelope. Now 
the new point has a new predecessor. Repeat the convexity check and deletion on the predecessor 
of the new point until the convexity check is satisfied, at which point we will have a valid upper 
evelope again. 

17.1.2 Analysis 

Let there be n points in the problem. Creating the min­heap and performing n extract­mins will 
have a O(n log n) runtime. Convexity checks take a constant amount of algebra and therefore take 
O(1). Case (1) simply extends a linked list in O(1) and may occur a maximum of n times, which 
implies a O(n) runtime. To find the runtime contribution of case (2), we bound the total number 
of deletions that may be made from the evelope over the course of the algorithm. This bound is n 
since each point can be deleted at most once. Therefore, the amortized cost of case (2) is also O(n). 
This gives a total runtime of O(n log n). 

17.2 Segment Intersections 

In the Segment Intersections problem, we are given n line segments and must output the coordinates 
of all pair­wise intersections. 

17.2.1 Algorithm 

In this algorithm, we will use a horizontal sweep line that sweeps from positive infinity to negative 
infinity along the y­axis. The idea, will be to output each intersection as we cross it. Also we will 
strive to make the algorithm output sensitive. That is, although there may be O(n2) intersections, 
which would require an O(n2)­time algorithm, we will run in much less time if the number of 
intersections k is much less than n. 

Let a segment be considered “active” if it crosses the current sweep line. As the sweep line sweeps, 
we will encouter three types of events: 

1. new segment becomes active 

2. old segment becomes inactive 

3. two active segments cross 

Events (1) and (2) can be handled with a min­heap containing segment endpoints that are ordered by 
their y­coordinates. In dealing with the third case, the key idea is that only “neighboring” segments 
on the sweep line can cross. To provide a quick lookup of neighboring segments we can use a Binary 
Search Tree (BST) to store the segments by the x­coordinate of their intersection with the sweep 
line. After inserting a new line into the BST, determine if it will eventually cross with its neighbors. 
If so, insert a crossing event into the event queue. Later, when a crossing event occurs, we output 
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an intersection, swap the order of the lines segments in the BST, and find their two new neighbors 
and possible future crossings. 

17.2.2 Analysis 

Inserting and extracting line segments activations and deactivations from the event queue will take 
a total of O(n log n) time. The total time inserting into the BST will take O(n log n) and the total 
deletes from the BST will take O(n). The number of crossing events is k, therefore the total time 
needed for inserting crossing events into the event queue is O(k log n). Therefore, the total runtime 
is O((n + k) log n). 
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Lecture 18: 11/05/2004 Lecturer: David Karger 
Scribes: Chun­Chieh Lin 

18.1	 Lower Bounds for Competitive Ratios of Randomized 
Online Algorithms 

Designing an online algorithm can be viewed as a game between the algorithm designer and the 
adversary. The algorithm designer chooses an algorithm Ai, and the adversary chooses an input 
σj . The payoff matrix contains the cost of the algorithm on the input CAi(σj). The algorithm 
designer wants to minimize the cost, while the adversary wants to maximize the cost. A randomized 
online algorithm is a probability distribution over the deterministic algorithms, so it corresponds to 
a mixed strategy for the algorithm designer. 

18.1.1	 Game Theory Analysis 

Von Neumann proved that for any game, there exist equilibrium (mixed) strategies for the players. 
At the equilibrium, neither side is able to improve (increase or decrease depending on the player) 
the cost any further by changing the strategy. 

However, problem 4a of problem set 6 showed that if one player’s mixed strategy is known (and 
fixed), the other player has a pure strategy as a best response. That means, if one of the players 
is using the equilibrium (optimal) mixed strategy, the other player has pure strategy as a best 
response, and the resulting cost is the equilibrium cost. Again, a pure strategy for the algorithm 
designer corresponds to a deterministic algorithm, and a mixed strategy for the algorithm designer 
corresponds to a randomized algorithm, so this leads to Yao’s Minimax Principle: 

Theorem 1 Yao’s Minimax Princliple: If for some input distribution no deterministic algo­
rithm is k­competitive, then no randomized k­competitive algorithm exists. 

18.1.2	 Example: Paging 

Suppose there are k + 1 pages and n accesses, and for each access, the pages all have probability 
1/(k + 1) of being requested. In other words, this is a uniform distribution over inputs with length 
n of the k + 1 pages. 

18­1 
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Online Algorithm 

No matter what the online algorithm does, there are only k pages in the memory at any point 
in time. So with probability 1/(k + 1), the requested page is not in the memory. Therefore, the 
expected number of faults over the n accesses is n/(k +1), and the expected number of requests per 
fault is k + 1, which is Θ(k). 

Offline Algorithm 

Even though the sequence of requests is still chosen at random, the offline algorithm has access to 
the whole sequence before it starts running. 

As shown in previous lectures, an optimal algorithm for the offline algorithm is the Farthest in 
Future algorithm, which evicts the page that is requested farthest in the future. This algorithm 
faults once every k+1 distinct pages seen, because after each fault, the evicted page is not requested 
again until after all other k pages are requested. 

The expected number of requests it takes to see all k +1 distinct pages can be calculated as follows: 

E[No. requests total] = Σk+1 E[No. requests between the i− 1th distinct request and the ith]i=1 

k+2−iP (each request after the i− 1th distinct request is the ith distinct request) = k+1 

k+1E[No. requests between the i− 1th distinct request and the ith] = k+2−i 

1E[No. requests total] = Σk+1 k+1 1 1 1 + 1 + ... + 1 ) = Θ(klogk)i=1 k+2−i = (k + 1) ∗ (k+1 + k + k−1 k−2 

Conclusions 

The expected number of pages per fault for the online algorithm is Θ(k). The expected number of 
pages per fault for the offline algorithm is Θ(klogk). So the ratio of fault counts is Θ(logk). 

Using Yao’s Minimax Principle, this shows that no randomized algorithm can have competitive ratio 
better than Θ(logk) for paging. 
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