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Chapter 1: Why Study Calculus?


Introduction

The purpose of this chapter is to tempt you into learning some calculus.

Topics

1.1 What You Should Know

1.2 What Is Calculus and Why do we Study it?


1.1 What You Should Know

To study calculus it is essential that you are able to breathe. Without that
  ability you will soon die, and be unable to continue.

Beyond that, you will need some familiarity with two notions: the notion of a
number, and that of a function.

Suppose I have forgotten everything I ever knew about numbers and functions?

  Do not worry. We will review their properties.

  And if I know everything there is to know about numbers and functions?

  Then you understand calculus already and need not continue.

 Before reminding yourself about numbers and functions you might ask the following
  questions.

  What is calculus?

  Why should I learn about it?
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1.2 What Is Calculus and Why do we Study it?

 Calculus is the study of how things change. It provides a framework for modeling systems in which there is change, and a way to deduce the predictions of such models.

I have been around for a while, and know how things change, more or less. What can calculus add to that?

I am sure you know lots about how things change. And you have a qualitative notion of calculus. For example the concept of speed of motion is a notion straight from calculus, though it surely existed long before calculus did and you know lots about it.

So what does calculus add for me?

It provides a way for us to construct relatively simple quantitative models of change, and to deduce their consequences.

To what end?

With this you get the ability to find the effects of changing conditions on the system being investigated. By studying these, you can learn how to control the system to do make it do what you want it to do. Calculus, by giving engineers and you the ability to model and control systems gives them (and potentially you) extraordinary power over the material world.

The development of calculus and its applications to physics and engineering is probably the most significant factor in the development of modern science beyond where it was in the days of Archimedes. And this was responsible for the industrial revolution and everything that has followed from it including almost all the major advances of the last few centuries.

Are you trying to claim that I will know enough about calculus to model systems and deduce enough to control them?

If you had asked me this question ten years ago I would have said no. Now it is within the realm of possibility, for some non-trivial systems, with your use of your laptop or desk computer.

OK, but how does calculus models change? What is calculus like?

The fundamental idea of calculus is to study change by studying "instantaneous" change, by which we mean changes over tiny intervals of time.

And what good is that?

It turns out that such changes tend to be lots simpler than changes over finite intervals of time. This means they are lots easier to model. In fact calculus was invented by Newton, who discovered that acceleration, which means change of speed of objects could be modeled by his relatively simple laws of motion.

And so?

This leaves us with the problem of deducing information about the motion of objects from information about their speed or acceleration. And the details of calculus involve the interrelations between the concepts exemplified by speed and acceleration and that represented by position.

So what does one study in learning about calculus?

To begin with you have to have a framework for describing such notions as position speed and acceleration.

Single variable calculus, which is what we begin with, can deal with motion of an object along a fixed path. The more general problem, when motion can take place on a surface, or in space, can be handled by multivariable calculus. We study this latter subject by finding clever tricks for using the one dimensional ideas and methods to handle the more general problems. So single variable calculus is the key to the general problem as well.

When we deal with an object moving along a path, its position varies with time we can describe its position at any time by a single number, which can be the distance in some units from some fixed point on that path, called the "origin" of our coordinate system. (We add a sign to this distance, which will be negative if the object is behind the origin.)

The motion of the object is then characterized by the set of its numerical positions at relevant points in time.

The set of positions and times that we use to describe motion is what we call a function. And similar functions are used to describe the quantities of interest in all the systems to which calculus is applied.

The course here starts with a review of numbers and functions and their properties. You are undoubtedly familiar with much of this, so we have attempted to add unfamiliar material to keep your attention while looking at it. 

I will get bogged down if I read about such stuff. Must I?

I would love to have you look at it, since I wrote it, but if you prefer not to, you could undoubtedly get by skipping it, and referring back to it when or if you need to do so. However you will miss the new information, and doing so could blight you forever. (Though I doubt it.)

And what comes after numbers and functions?

A typical course in calculus covers the following topics:

1. How to find the instantaneous change (called the "derivative") of various functions. (The process of doing so is called "differentiation".)

2. How to use derivatives to solve various kinds of problems.

3. How to go back from the derivative of a function to the function itself. (This process is called "integration".)

4. Study of detailed methods for integrating functions of certain kinds.

5. How to use integration to solve various geometric problems, such as computations 
  of areas and volumes of certain regions.

There are a few other standard topics in such a course. These include description of functions in terms of power series, and the study of when an infinite series "converges" to a number.

So where does this empower me to do what?

It doesn't really do so. The problem is that such courses were first designed 
  centuries ago, and they were aimed not at empowerment (at that time utterly 
  impossible) but at familiarizing their audience with ideas and concepts and 
  notations which allow understanding of more advanced work. Mathematicians and 
  scientists and engineers use concepts of calculus in all sorts of contexts and 
  use jargon and notations that, without your learning about calculus, would be 
  completely inscrutable to you. The study of calculus is normally aimed at giving 
  you the "mathematical sophistication" to relate to such more advanced 
  work.

So why this nonsense about empowerment?

This course will try to be different and to aim at empowerment as well as the other usual goals. It may not succeed, but at least will try.

And how will it try to perform this wonder?

Traditional calculus courses emphasize algebraic methods for performing differentiating and integrating. We will describe such methods, but also show how you can perform differentiation and integration (and also solution of ordinary differential equations) on a computer spreadsheet with a tolerable amount of effort. We will also supply applets which do the same automatically with even less effort. With these applets, or a spreadsheet, you can apply the tools of calculus with greater ease and flexibility than has been possible before. (There are more advanced programs that are often available, such as MAPLE and Mathematica, which allow you to do much more with similar ease.) With them you can deduce the consequences of models of various kinds in a wide variety of contexts.

Also, we will put much greater emphasis on modeling systems. With ideas on modeling and methods for solving the differential equations they lead to, you can achieve the empowerment we have claimed.

And I will be able to use this to some worthwhile end?

Okay, probably not. But you might. And also you might be provoked to learn more about the systems you want to study or about mathematics, to improve your chances to do so. Also you might be able to understand the probable consequences of models a little better than you do now.

Well, what is in the introductory chapter on numbers?

We start with the natural numbers (1,2,3,...,) and note how the operations of subtraction, division and taking the square root lead us to extending our number system to include negative numbers, fractions (called rational numbers) and complex numbers. We also describe decimal expansions and examine the notion of countability.

And in the chapter about functions?

We start with an abstract definition of a function (as a set of argument-value pairs) and then describe the standard functions. These are those obtained by starting with the identity function (value=argument) and the exponential function, and using various operations on them.

Operations, what operations?

These are addition, subtraction, multiplication, division, substitution and inversion.

But what is the exponential function, and what are substitution and inversion?

Here are one sentence answers: if you want to know more read the chapter!

The exponential function is mysteriously defined using calculus: it is the function that is its own derivative, defined to have the value 1 at argument 0. It turns out, however, to be something you have seen before. And it turns out to bear a close relation to the sine function of trigonometry.

Substitution of one function f into another g produces a new function, the function defined to have, at argument x, the value of f at an argument which is the value of g at argument x. This is simpler than it sounds.

An inverse of a function is a function obtained by switching its values with its arguments. For example the square function, usually written as x2 has the square root function as an inverse.

And …?

In the immortal words of Father William to his nephew, as penned by Lewis Carroll, who was a mathematician:

I have answered three questions and that is enough,

Said the sage, don’t give yourself airs.

Do you think I can listen all day to such stuff?

Be off or I’ll kick you downstairs!
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Chapter 2: Numbers


Introduction

Properties of the various kinds of numbers we will encounter are reviewed.

Topics

2.1 What Are Numbers?  The Rational Numbers

2.2 Decimals and Real Numbers

2.3 Complex Numbers


    	
	  Operations on Complex Numbers
	



		
	  Geometric Representations Of Complex Numbers
	




2.1 What Are Numbers?  The Rational Numbers

We have lots of kinds of numbers but they all start with the natural
    numbers,  which are 1, 2, 3, and so on.

  

If you count your figures and toes, you will come to 20 (most of you will), and
that is a natural number. We can, in our imagination, consider that these natural
numbers go on forever, past a million, a billion, a trillion, and so on.

 In elementary school you studied not only these numbers, but how you can
  perform operations on them.

 What operations?

 There is addition, subtraction, multiplication and division (and perhaps
  also uglification and derision according to Lewis
  Carroll who was a well known mathematician).

 You can add two natural numbers together, and you will always get another
  natural number, as in the famous fact that one and one are two.

 Subtraction, on the other hand, is trickier. If you subtract a number, for
  example the number 5, from itself, you get something new, something that is
  not a natural number at all. We call it the number 0 or zero.
  And if you subtract a number, again say 5, from a smaller number, say 3, then
  you get something
  else that is new, namely a negative integer, which in this case is -2,
  called "minus two".

 You can use numbers to count the number of pennies you have in your pocket.
  Thus you might have five pennies in your pocket. Zero is the number of pennies
  you would have if your pocket had a hole in it, and all those you put in immediately
  fell out again.

Now suppose you go to a store, and the storekeeper is foolish enough to give
  you credit. Suppose further that you had five pennies, and you bought some
  expensive item costing 11 pennies. Then the negative integer, -6, represents
  the fact that not only do you have no pennies but if you got six more, you
  would be obligated to surrender them to pay for this item. Six here is the
  number of pennies you would owe your creditor, if you were to pay him your
  5 pennies and he gave you the object, and lent you the rest of the money.

So to accommodate subtraction, and to be able to represent "amount owed" by
  numbers, we extend the natural numbers to include the numbers 0 and the negatives
  of the natural numbers. This entire set of numbers, positive natural numbers,
  their negatives and 0 is called the set of integers, and is
  denoted by the letter Z.

    

  We can take any two members of Z and add them or subtract
  them and in either case get another member of Z.

  

  I know all that, but I am very rusty on actual additions and subtractions.
I get them wrong much of the time I try to do them.

 Most people will make a mistake roughly once in any ten additions or subtractions
  of single digits that they perform. This means that if they add or subtract
  numbers having many digits, like 1234123 and 5432121 they stand an excellent
  chance of getting the wrong answer.

 Fortunately that is of no significance today. You can easily check additions
  and subtractions on a calculator or on a spreadsheet, and see if you get the
  same answer several different times. Unfortunately I usually make an error
  in keying in the numbers to add or subtract, or add instead of subtract or
  do something else equally absurd. All that means today is that I must do every
  calculation at least three times, to have a reasonable chance of correctness.
  True the amount of my effort is triple what it might be, but three times very
  little effort is still very little effort.

 If you have this problem you will be best off adding or subtracting on a
  spreadsheet. Then you can look at your computation and use your judgment as
  to whether it makes sense. Here are some rules for checking for sense.

 When you add positive numbers the result should be bigger than both of the 
  two "summands" that you added. If one of the numbers 
  is positive and one is negative, the magnitude (the value if you ignore any 
  minus sign) of the sum should be smaller than the magnitude of the larger of 
  the two, and the sign should be that of the summand with the larger magnitude.

 Also, the least significant digits of your numbers should add or subtract
  correctly, if you ignore the rest. For example, if you subtract 431 from 512
  then the last digit of the answer had better be 1 which is 2 minus 1.

 If your checking produces something suspicious, try your computation again,
  being more careful, particularly with the input data.

 The operation of subtracting 5 from another number, undoes the operation
  of adding 5 to another number. Thus, if you do both operations, add five and
  then subtract five, or vice versa, you are back where you started from: 3 +
  5 - 5 = 3.

 Adding 5 and subtracting 5 are said to be inverse operations to one another,
  because of this property: Performing them one after the other is equivalent
  to doing nothing.

 Back in elementary school you also encountered the notion of multiplication.  This
  is something you can do to two integers which will produce a third one called
  their product. You were (I hope) forced to learn a multiplication table
  which gives the product of each pair of single digit numbers and then learned
  how to use this table to multiply numbers with more digits.

 I was never very good at this.

 In olden days you had to be able to do these things, additions and multiplications,
  if only to be able to handle money and to perform ordinary purchases without
  being swindled.

 Now you can use a calculator or computer spreadsheet to do these things,
  if you know how to enter integers and to push the + or - or * and = buttons
  as appropriate.

(Unfortunately this fact has led pedagogues to believe they do not have to
  force pupils to go through the drudgery of learning the multiplication table.

This does much harm to those who don't bother to do so, because of the
  way our brains function. It turns out that the more time we spend on any activity
  as children, and even as adults, the bigger the area of the brain gets that
  is devoted to that activity, and the bigger it gets, the better we get at that
  activity.

Thus, your spending less time learning the multiplication table has the effect
  of reducing the area of your brain devoted to calculation, which impedes your
  further mathematical development.

Your skill at mathematics will be directly proportional to the amount
  of time you choose to devote to thinking about it. And that is up to you.)

 Once we are acquainted with multiplication, a natural question is: how can
  we undo multiplication? What is the inverse operation, say to multiplying by
  5, so that multiplying and then doing it is the same as doing nothing? This
  operation is called division. So you learned how to divide integers.

 Now here comes a problem: if we try to divide 5 by 3 we do not get an integer.
  So, just as we had to extend the natural numbers to integers to accommodate
  the operation of subtraction, we have to extend our numbers from integers to
  include also ratios of integers, like , if
  we want to make division well defined for every pair of non-zero integers.
  And we want to be able to define division wherever we can.

 Ratios of integers are called rational numbers, and you get one for any pairs
  of integers, so long as the second integer, called the denominator, is not
  zero. Ratios like  which
  are not themselves integers are called fractions.

 Once we have introduced fractions, we want to provide rules for adding and
  subtracting them and for multiplying and dividing them. These start to get
  complicated, but fortunately for us, we have calculators and spreadsheets that
  can do these things without complaining at all if we have the wit to enter
  what we want done.

 There is one thing we cannot do with our rational numbers, and that is to
  divide by 0. Division, after all, is the action of undoing multiplication.
  But multiplying any number by 0 gives result 0. There is no way to get back
  from this 0 product what you multiplied 0 by to get it.
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2.2 Decimals and Real Numbers

We have a nice way to represent numbers including fractions, and that is as
  decimal expansions. Suppose we consider numbers like ,
  (which is
the same as ),
,
and so on.

 We write them as .1, .2, .3, and so on. The decimal point is a code that
  tells us that the digit just beyond it is to be divided by ten.

 We can extend this to integers divided by one hundred, by adding a second
  digit after the decimal point. Thus .24 means .
  And we can keep right on going and describe integers divided by a thousand
  or by a million and so
  on, by longer and longer strings of integers after the decimal point.

 However we do not get all rational numbers this way if we stop. We will only
  get rational numbers whose denominators are powers of ten. A number like 1/3
  will become .33333...., where the threes go on forever. (This is often written
  as .3*, the star indicating that what precedes it is to be repeated endlessly)

 To get all rational numbers using this decimal notation you must therefore
  be willing to go on forever. If you do so, you get even more than the rational
  numbers. The set of all sequences of digits starting with a decimal point give
  you all the rational numbers and even more. What you get are called the real
  numbers between 0 and 1. The rational numbers turn out to be those that repeat
  endlessly, like .33333...., or .1000...., or .14141414...., (aka .(14)*).

 Now neither you or I or any computer are really going to go on forever writing
  a number so there is a sense of unreality about this notion of real numbers,
  but so what? In your imagination you can visualize a stream of numbers going
  on forever. That will represent a real number.

 If you stop a real number after a finite number of digits, you get a rational
  number, and as a result, the rules of addition, subtraction, uglification and
  derision that work for rational numbers can be used to do the same things for
  real numbers as well. Fortunately, the digits that are far to the right of
  the decimal point in a number have little effect on computations when there
  are non-zero digits much closer to the decimal point.

 Since we cannot in real life go on forever to describe a non-rational real
  number, to do so we have to describe it some other way. Here is an example
  of such a description.

  We define the number that has decimal expansion .1101001000100001....; between
  each consecutive pair of 1's there is a number of 0's that is one
  more than between the previous consecutive pair of 1's. This number is
  not rational; it does not repeat itself.

 We do not have to, but just for the fun of it, we will go one step further
  and extend our numbers once more.









>

2.3 Complex Numbers

Among the operations of multiplication is that of squaring a number. This
  is the operation of multiplying a number by itself. Thus 5 times 5 is 25. We
  can ask for the inverse of this squaring operation. This is an operation that
  acting on 25 should give back 5. This operation has a name: it is called the
square root. The square root of 25 is 5.

 There are two wonderful complications here. The first is that -5 times -5
  is also 25, so 25 has two square roots, 5 and -5. And the same thing
  holds for any positive real number. Any positive real number has two square
  roots.

    

  The second complication is: what on earth is the square root of a negative
  number?

 Well no real number has square that is -2 or -1 or one that is
  minus anything positive.

 When we found that subtraction, which is something of an inverse operation
  to addition, among natural numbers led to non-natural numbers, we extended
  the natural numbers by defining the integers to include both the natural numbers
  and their negatives and zero as well.

 When we considered division, which is an inverse operation to multiplication,
  we extended our numbers again to include fractions.

 Well, to accommodate the inverse operation to squaring a number, we can also
  extend our numbers to include new entities among which we can find square roots
  of negative numbers.

 It turns out to do this we need only introduce one new number, usually designated
  as i, which is defined to have square given by -1. In other words, we
  define the new number i to obey the equation i * i = -1.We can get numbers
  whose squares are any other negative number, say -5, by multiplying i
  by an appropriate real number, here by the square root of 5. The number i is
  definitely
  not a real number, so we call it an imaginary number; this nomenclature is
  in fact silly. Imaginary numbers have just as much existence in our imaginations
  as real numbers have. Of course they are not natural numbers or integers or
  even fractions, or real numbers at all.

 It turns out that if we look at numbers of the form a + bi where a and b
  are real numbers, we get what are called the complex numbers, and we can define
  addition, subtraction multiplication, division for these just as we can for
  rational or real numbers.

 If you want to see what these rules are, click
here.

So by numbers we will mean things like the rational numbers, the real
    numbers or complex numbers, among which the operations of addition, subtraction multiplication
  and division are defined and have all the standard properties.

    

And if I have forgotten most of the standard properties?

 I will remind you of them when you need them. And if I don't, ask about them.

 Can I go now?

 Goodbye.
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Chapter 3: Linear Functions


Introduction

The abstract definition of a function is described, and along with properties
of linear functions.

Topics

3.1 What Are Functions?

3.2 Linear Functions

3.3 Linearity


3.1 What Are Functions?

Functions are what we use to describe things we want to talk about mathematically.
I find, though, that I get a bit tongue tied when I try to define them.

 The simplest definition is: a function is a bunch of ordered pairs of things
  (in our case the things will be numbers, but they can be otherwise), with the
  property that the first members of the pairs are all different from one another.

 Thus, here is an example of a function:

[{1, 1}, {2, 1}, {3, 2}]

 This function consists of three pairs, whose first members are 1, 2 and 3.

  It is customary to give functions names, like f, g or h, and if we call this
    function f, we generally use the following notation to describe it:

 f(1) = 1, f(2) = 1, f(3) = 2

 The first members of the pairs are called arguments and
  the whole set of them is called the domain of the function.
  Thus the arguments of f here are 1, 2 and 3, and the set consisting of these
  three numbers is its domain.

 The second members of the pairs are called the values of the functions, and
  the set of these is called the range of the function.

 The standard terminology for describing this function f is:

The value of f at argument 1 is 1, its value at argument 2 is 1, and its value
  at argument 3 is 2, which we write as f(1) = 1, f(2) = 1, f(3) = 2.

 We generally think of a function as a set of assignments of values (second
  members of our pairs) to arguments (their first members).

 The condition that the first members of the pairs are all different is the
  condition that each argument in the domain of f is assigned a unique value
  in its range by any function.

Exercise 3.1 Consider the function g, defined by the pairs (1, 1),
    (2, 5), (3, 1) and (4, 2). What is its domain? What is the value of g at
    argument
    3? What
  is
  g(4)?

 If you stick a thermometer in your mouth, you can measure your temperature,
  at some particular time. You can define a function T or temperature, which
  assigns the temperature you measure to the time at which you remove the thermometer
  from your mouth. This is a typical function. Its arguments are times of measurement
  and its values are temperatures.

 Of course your mouth has a temperature even when you don't measure
  it, and it has one at every instant of time and there are an infinite number
  of such instants.

 This means that if you want to describe a function T whose value at any time
  t is the temperatures in your mouth at that time, you cannot really list all
  its pairs. There are an infinite number of possible arguments t and it would
  take you forever to list them.

 Instead, we employ a trick to describe a function f: we
  generally provide a rule which allows you, the reader, to choose any argument
  you like in f's
  domain, and, by using the rule, to compute the value of your function at that
  argument. This rule is often called a formula for the function. The symbol
  x is often used to denote the argument you will select, and the formula tells
  you how to compute the function at that argument.

 The simplest function of all, sometimes called the identity function, is
  the one that assigns as value the argument itself. If we denote this function
  as f, it obeys

f(x) = x

for x in whatever domain we choose for it. In other words, both members of
  its pairs are the same wherever you choose to define it.

 We can get more complicated functions by giving more complicated rules, (These
  rules are often called formulae as we have noted already). Thus we can define
  functions by giving any of the following formulae among an infinity of possibilities:

 

These represent,
  respectively, 3 times x, x squared, 3 divided by x, x divided by the sum of
the square of x and 1, and so on.

 We can construct functions by applying the operations of addition, subtraction,
  multiplication and division to copies of x and numbers in any way we see fit
  to do so.

 There are two very nice features of functions that we construct in this way,
  and the first applies to all functions.

 We can draw a picture of a function, called its graph on a piece of graph
  paper, or on a spreadsheet chart or with a graphing calculator. We can do it
  by taking argument-value pairs of the function and describing each by a point
  in the plane, with x coordinate given by the argument and y coordinate given
  by the value for that pair.

 Of course it is impossible to plot all the pairs of a function, but we can
  get a pretty good idea of what its graph looks like by taking perhaps a hundred
  evenly spaced points in any interval of interest to us. This sounds like an
  impossibly tedious thing to do and it used to be so, but now it is not. On
  a spreadsheet, the main job is to enter the function once (with its argument
  given by the address of some other location). That and some copying is all
  you have to do, and with practice it can be done in 30 seconds for a very wide
  variety of functions.

 The second nice feature is that we can enter any function formed by adding,
  subtracting, multiplying, dividing and performing still another operation,
  on the contents of some address very easily on a spreadsheet or graphing calculator.
  Not only that, these devices have some other built in functions that we can
  use as well.

 The two of these facts mean that we can actually look at any function formed
  by adding subtracting multiplying or dividing copies of the identity function
  x and other built in functions, and any number we want, and see how they behave,
  with very limited effort.

 We will soon see that we can use the same procedure used for constructing
  functions to construct their derivatives as well, but that is getting ahead
  of the story. We can compute derivatives for most functions numerically with
  only a small amount of effort as well.

Exercise 3.2 What is the value of the function x2 + 3 at
    x = 5? At argument 10?

 Would you please give some examples?
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3.2 Linear Functions

The basic fundamental function, the one that calculus is based upon, is the
  linear function. A linear function is a function whose graph consists of segments
of one straight line throughout its domain.

 Such a line is, you may remember, determined by any two points on it, say
  (a, f(a)), (b, f(b)). Thus, you can pick any a and any b in its domain and
  determine the line from the two values, f(a) and f(b).

 What is a formula for such a function?

 We can determine the linear function which takes value f(a) at a and f(b)
  at b by the following formula:



because the first term is 0 when x is b and is f(a) when x is a, while the
  second term is 0 when x is a and is f(b) when x is b.

 A more convenient and suggestive form for this function is given by:



The number m which occurs here is called the slope of
  this line. Notice that it is given by the ratio of the change of f between
  x = b and x = a to the change
in x between these two arguments.

 If f is plotted on the y axis, then we call c here the y-intercept of this
  line; it is the value of y when x is 0, which describes the intersection point
  between the line and the y-axis.

 There is an applet here which allows you to vary the slope m and y-intercept
  c and see what that does to a line. You should fiddle with this applet and
  from it get an idea what the slope m tells you about the line. Using it you
  can construct your own examples.

 

[bookmark: SlopeOfLine]
  

 

 You can actually construct a spreadsheet that can do the same thing as this
  applet. You would be wise to do so. Directions on exactly how can be reached
  by clicking here.

 I know all this stuff. Why do you waste my time with it?

 All this may sound simple to you, but if you understand it, you are well
  on your way to understanding calculus. Realize that calculus consists of studying
  functions through studying the slopes of the straight lines they resemble near
  any given argument. Here are some exercises to help you get used to these things.

Exercises:

3.3 Play with the applet until you get a feel for the geometric
    meaning of the slope of a line. Then take a piece of paper, draw x and y
  axes on it
      and put scales on them, and have a friend draw some straight lines on the
      paper. Without measuring, guess the slopes of the lines. Now measure the
  lines (change in y over change in x) and see how good your guesses were.

 3.4 When is the slope of a line negative? When is it 0? When is it
    1? When -1? If you use the same scale for x and y, what does slope 10 look
    like?
    How about slope -1/10?

 3.5 Follow the directions that you can get to above to construct
    a spreadsheet that can work as the applet here. Try it with the various slopes
    of the
      last question.

 3.6 Construct the linear function, g, with slope 2 satisfying g(1)
            = 1; graph it. What is g(4)? Do the same for the linear function,
            h, which
          satisfies
        h(1) = 4, h(4) = 12. What is the slope of h?
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3.3 Linearity

A linear function, we have seen is a function whose graph lies on a straight
line, and which can be described by giving its slope and its y intercept.

 There is a special kind of linear function, which has a wonderful and important
  property that is often useful. These are linear functions whose y intercepts
  are 0 (for example functions like 3x or 5x). This means their graphs
  pass right through the origin, (the point with coordinates (0, 0)). Such functions
  are called homogeneous linear functions.  They
  have the property that their values at any combination of two arguments
  is the same combination of their values at those arguments. In symbols
  this statement is:

f(ax + bz) = af(x) + bf(z)

 Do ordinary linear functions have any such property?

 They do. Any linear function at all has the same property when b
  is 1 - a.  Thus for any linear function at all we have

f(ax + (1 - a)z) = a f(x) + (1 - a) f(z)

 But be careful, linear functions that are not homogeneous do not obey the
  general linearity property stated several lines above.

 Properties like these mean that once you know the value of a linear function
  at two arguments you can easily find its value anywhere else it is defined.

 The property here described is often called the property of linearity. This
  is not really a sensible way to describe it because perfectly good linear functions
  which have y intercept that is not 0 do not obey the more general version of
  the property (the first one above.)

 Anyway, realize that most functions DO NOT have either of these properties.

[bookmark: SubSection3A]3A Describing Linear Functions on a Spreadsheet

 Suppose we have a linear function, say, f(x) = 5x + 3.

  We now address the following questions:

 1. How can we evaluate this function at an arbitrary argument, x, on
    a spreadsheet?

  2. How can we evaluate it at a whole lot of arguments?

  3. How can we plot it?

 Will see that once the first of these questions is addressed, the rest are
  quite easy to do. They were harder in the old days.

 One nice feature of what you can do is that if you set this up once, you
  can change the linear function at will and watch how the plot changes instantly,
  as in the applet.
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Just in case you want to keep what you are doing you will be wise to give
      it labels so at some future time you will know what you have.

 So as a preliminary, you might enter in box A1 the title: Linear Functions.

 Some more preliminaries: in A2 write the word slope, and in B2 enter the
  number 5 (later on you can change this to anything else you want)

  In A3 enter the words: y intercept, and in B3 enter the number 3.

  In A4 enter: starting argument and in B4 enter -1

In A5 enter: spacing and in B5 enter .01.

 (When you want to plot your function, you can only do it over a finite interval,
  and these last lines are useful for creating an interval.)

 Now you are ready to start.

 In A9 enter the symbol x and in B9 enter f(x). These are labels for the columns
  below them.

  In A10 enter =B4

  In B10 enter =B$2*A10 +B$3

  

  You now have the answer to the first question. The number that appears in box
  B10 will be the value of your function at the argument given in B4 (at this
  point that argument is -1, and with function 5x + 3 the value in B10 should
  be -2.)

 You can evaluate this function anywhere else you please, by changing the
  entry in B4 to whatever you please.

 Suppose I want to change the slope or the y intercept of my function?

    

  You can do that by changing the entries in B2 or B3. The value of the changed
function at the argument in A10 will appear in B10.

 What are these funny dollar signs that I have put in A10 and B10?

 To answer the second and third questions above we are going to copy the instruction
  in B10 into other boxes as well. When we do that, the references which do NOT
  have dollar signs in front of them will change . Those with dollar signs will
  stay the same.

 How do the references change? What do you mean?

 Suppose we copy B10 to B11. Then what will appear in B11 will not be exactly
  what is in B10, but instead it will be =B$2*A11 +B$3. Because the A10 had no
  dollar sign in it, when we copied it down one row the 10 turned into an 11.
  The other terms did not change because we put dollar signs in front of them.

 What happens if you copy to a different column?

 The same kind of thing will happen. That is, if you copy what is in B10 to
  C11, you will get =C$2*B11 +C$3. All the column indices that do not have dollar
  signs in front of them will shift over one column, because you shifted over
  one column. The same goes for shifting any number of rows or columns.

 This property is what allows us to look at a function over a range and plot
  it by copying. Our plan is: have the argument increase by d from row to row,
  which can be accomplished by putting one entry in A11 and copying it down the
  A column Then copying B10 down the B column. That is all there is to answer
  the second question.

 OK, what goes into A11?

 We can enter =A10+B$5. This will increase the entry in column A in each row
  we copy it to by the amount in B5 over what it was in the previous row. If
  we do this in Column A, say down to row 500, and copy B10 also down to row
  500, you will have a set of pairs for your function all ready to plot.

 OK, how do I copy?

    

  This varies somewhat from spreadsheet to spreadsheet. For many or most you
  do the following:

  1. Highlight the box you want to copy. 

  2. Press [Ctrl] and c at the same time

  3. Highlight the boxes you want to copy to.

4. Press [Ctrl] and v at the same time.

 There is another way that is easier if you are copying several columns down
  from the same row at once; it is called fill or fill down on the edit menu.
  Try it. You can also fill sidewise. (Here you could copy B10 into B11 and then
  fill A11 and B11 both together down to A500 and B500.) Experiment with these
  things until you get them to work. If you can't get them to work on your spreadsheet,
  ask someone how.

 OK, how do I get a graph of my function?

    

  Highlight columns A and B from row 10 or 11 to row 500 (or to wherever you
  copied to) and click on "chart" in the insert menu.
  You will get to another menu with lots of options. Click on "x-y
  xcatter", and
  you will get to your plot. You will be asked about inserting labels on it and
  asked where you want it. You can put it anywhere, but if you put it on the
  same sheet as your calculation, you can change the function or domain by changing
  what is in B2,...,B5 and see the results immediately. There are ways to
  adjust the size of the graph and where it is, that you have to figure out for
yourself. I generally screw them up.
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Chapter 4: Quadratics and Derivatives of Functions


Introduction

We describe the standard structure of formulae that we use to describe functions,
  review the properties of quadratic functions, and introduce the notion of the
derivative.

Topics

4.1 More Complicated Functions

4.2 The Slope of a Quadratic Function


4.1 More Complicated Functions

Differential calculus is about approximating more complicated functions by
  linear functions. We now address the question, what more complicated functions
do we want to deal with?

 Most all of the functions we will talk about can be formed by starting
    with three basic functions, and applying the operations of addition, subtraction,
  multiplication, division, inversion (like in going from the square to the square
  root) and substitution to copies of them.

 The three basic functions are the identity function, the sine
    function and
    the exponential function. For the moment we will start with only the first,
  the identity function.

 If we multiply copies of the identity function together, we get powers of
  it, like x * x (which is x squared), or x * x * x, which is x cubed, and so
  on. Such functions are called monomials. If we multiply monomials by numbers
  and
  add
  or subtract these, we get what are called polynomials.

 The simplest polynomials are the linear functions we have already mentioned.
  The next more complicated ones are quadratic functions; these have the form,
  ax2 + bx + c, where a, b and c are numbers. Cubic functions have a cube term
  in the, quartic functions a term like dx4, and so on.

 We can evaluate and plot quadratic functions with very little more effort
  than we expended on linear functions. The only difference is that we should
  add a quadratic coefficient say in B6, and enter =b$6*a10*a10+b$2*a10 +b$3
  into A10.

 For example, try this putting 1 in B6. After entering the instruction above
  in A10, you have to copy it into B11 through B500, and you can now plot any
  quadratic by changing your parameters.

 When you do this you will find something that is sort of nice, all quadratics
  look more or less alike except that some are upside down.

 That is, if you plot a quadratic and don't pay attention to the scales of
  your graph, 
  and where its peak or valley is, you cannot tell them apart. Quadratics with
  a given sign for the quadratic coefficient, are all alike except for scale
  and location of their high and low points.

  A second nice fact about quadratics is that we know how to solve some equations
of the form f(x) = 0, when f is quadratic.

 What equations are those?

 Well, we know how to solve equation 

x2 = A

when A is a positive number. We can solve them because a solution is, by definition,
  the square root of A.

 Actually we define 
  to be the positive number whose square is A, when A is positive, and two the
  solutions to this equation are  and
  .

 By arithmetic manipulations you can reduce any quadratic to this solvable
  form, and solve it, and you will get the famous quadratic formula for solutions.

 How is that and what is that?

 The equation ax2 + bx + c = 0 can be rewritten (when a is not 0, after dividing
  by a) as 



which has as solutions, by the definition of the square root:



This is a peculiar way to write the standard quadratic formula.

Exercise 4.1 Find two solutions to each of the following equations:

  x2 - 3x - 4 = 0

  4x2 - 3x - 1 = 0
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4.2 The Slope of a Quadratic Function

If you graph a quadratic you will notice that you do not get a straight line.
  On the other hand, if you were to look at your graph under a microscope, you
  might think it was a straight line. In the same sense, though the earth 
is round, as we walk down the street it looks pretty flat to us poor tiny creatures.

 If you look at a quadratic function f at some particular argument, call
  it z, and very close to z, then f will look like a straight line. The
  line f resembles at argument z is called the tangent line to f at
  argument z, and
  the slope of this tangent line to f at z is called the derivative of
  f at argument z. This slope is often written as f '(z), or as .

 This tangent line to a function f at a specific argument is the graph of
  a linear function. That function is called the linear approximation to f at
  argument z. Notice that it is a different function from f and is typically
  near f only when evaluated at an argument x that is near to z.

 The same exact words can be used to define the derivative of
      any function, f, that looks like a straight line in some vicinity of argument
    z. f 's derivative
  at argument z, which we write as f '(z) or ,
  will be the slope of that straight line.

 This third applet allows you to enter any function you can construct into
  it, and look at the graph of its values, and its slopes, that is, its derivative
  on any interval you choose.
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Chapter 5: Rational Functions and the Calculation of Derivatives


Introduction

We describe the first great property of derivatives, and show how it allows
  us to calculate the derivative of any rational function.
  We also emphasize the need for checking any such calculation, and describe
  how to do so by differentiating numerically on a spreadsheet.

Topics

5.1 Derivatives of Rational Functions


5.1 Derivatives of Rational Functions

Here are some wonderful facts about derivatives in general.

 1. Derivatives have two great properties which allow us to find formulae
  for them if we have formulae for the function we want to differentiate.

    

  2. We can compute and graph the derivative of f as well as f itself for all
  sorts of functions, with not much work on a spreadsheet (In fact, what work
  is needed to find derivatives only has to be done once, and you can switch
  functions almost exactly as you would if you were only graphing the function,
and get a plot of both together. We will see this explicitly soon.)

 What "great properties"?

 We already know the derivative of a linear function. It is its slope. A linear
  function is its own linear approximation. Thus the derivative of ax + b is
  a; the derivative of x is 1. Derivatives kill constant terms, and replace x
  by 1 in any linear term.

 The first great property is this: if an argument, x, occurs more
    than once  in a formula for its value, f(x), at argument x, then you
    can find the derivative of f by looking at the derivative caused by each
    occurrence separately, treating
  the other occurrences as if they were mere numbers as you do so; and then adding
    all these up.

 For example, consider the quadratic, a * x * x + b * x + c. The argument
  x occurs three times in it. Taking the derivative of one single occurrence,
  that
  is,
  of any single x alone, changes that x to 1. If we do that to each occurrence
  separately, ignoring the others as we do so, we get three terms: a * 1 * x
  + a * x * 1 + b * 1, or 2ax + b, and their sum is the derivative of our quadratic.

    

  Notice that the constant term, c, has no effect on the derivative.

  

  This property allows us to calculate a formula for the derivative of any polynomial
  directly from the formula for the polynomial itself, as we shall soon see.

 A special case of this basic rule is the statement that taking the
    derivative is a linear operation. This means that if f consists
    of two terms, you can find f 's derivative by adding the derivatives of each
    of its terms separately,
  computed in both cases as if the other term did not exist.

 This statement can be written as:

(f + g)' = f ' + g'

 Another special case is the formula for the derivative of the product
    of two factors. If we have f = g h, then there will be contributions to the change
  in f from changes in g and from changes in h, and these can be computed separately.
  The result is the statement:

(g * h)' = g' * h + g * h'



  which is called the product rule for differentiation.

 We can deduce, as a special case of this product rule, what
  the derivative of the reciprocal of a function f is. The
  reciprocal of a function is 1 divided by that function, which is usually
  written as .

 By the definition of the reciprocal we have ,
  throughout the domain of f. The derivative of 1, which is a number and is the
  right hand side here,
  is 0; we can deduce that the derivative of the left hand side is also 0.

 By the product rule we then get:



which we can divide by f and rearrange to tell us:



Our first great
  property actually tells us all we need to find the derivative of any polynomial
  or any rational function, by which we mean the ratio of two
  polynomials. And these are all the functions we can get by applying the operations
  of addition, subtraction, multiplication, and division to the identity function.

 The derivative of any positive power, say xn, is obtained by noticing
  that the contribution to the derivative from each of the n occurrences of x
  by itself
  is gotten by replacing that occurrence by 1, or in other words by dividing
  here by x: the total result from all n of the factors x, which is the derivative
  of ,
  is then ,
  or if you prefer, .
  (This statement applies to negative powers as well as positive ones, and to
  fractional and in fact to any power
  at all, as we shall soon see.)

 This, and the rule for differentiating a sum given the derivatives of the
  summands, tells you how to differentiate any polynomial. The reciprocal rule
  of the last equation above then tells us how we can differentiate any
  rational function, say 
  where p and q are polynomials. We apply the product rule and reciprocal rule,
  to get



Exercises:

 5.1 Find the derivatives of the following polynomials:

 a. 3x - 7

 b. x2 - 7x + 4

 c. 3x3 - 2x2 + x + 1

 d. x4 - 7x2 + 4

 e. x4 - x3 + x2 - x + 1

5.2 Find the derivatives of the following
  rational functions:

 a. 

  b. 

  c. 

 You should practice finding the derivatives of polynomials and of rational
  functions using these rules until you feel comfortable with them. In fact you
  should practice until you can differentiate any rational function with 100%
  accuracy.

 But no human being can do anything to 100% accuracy and I certainly can't.

 In the age of computers, any little mistake at all can screw up everything.
  It is very important that you learn to do what you do with 100% accuracy. This
  sounds hopeless, but it isn't. Its not that you have to do everything perfectly;
  far from it. You only have to learn to find your mistakes and fix them. You
  can make them by the dozen if you take the trouble to fix them all.

 Most mistakes that you will make with a computer are so gross in their effects
  that you can see immediately that you have done something wrong, and find and
  fix whatever it is. A few mistakes are subtle enough that you might miss them.
  The key to getting perfect answers is to check whatever you do to see if it
  is right until it is right.

 By the way, the most common subtle mistake by far consists of using incorrect
  input, which means, trying to solve the wrong problem. It is absolutely essential
  that you check to see that you have copied the input information correctly
  into your computation.

 Suppose you find a formula for a derivative. Instead of stopping with the
  formula, you should check it to see if it looks right. The computer gives you
  an easy way to do this: you can compute the derivative numerically, and see
  if you get the same answer. If you do, you KNOW your answer is right.

 If you don't get the same answer numerically that you got from the formula,
  you must find what went wrong. You do not have to be perfect the first time,
  or even the seventh time. But in the end, if you are dealing with machines,
  you MUST be perfect.

 How can I check my differentiations easily? 

 One way is to compare the function you compute as derivative to the derivative
  as found by the derivative applet.

 You can also check your derivative by using a spreadsheet to set up your
  own applet. The setup described in Section 3A  for plotting
  a function, can be enhanced to allow you to plot not only your function, but
  also its numerical derivative and the answer you get to differentiating it,
  without your expending much effort.

 Once you have this set up, all you need do is enter your function in one
  place and your answer for the derivative in another place, copy each appropriately,
  and you can look at your answer and the numerical one on your chart. If they
  are the same, your answer is correct. If not you have to de-bug your differentiation
  and/or your spreadsheet calculation. Becoming an expert means becoming proficient
  at de-bugging, through lots of experience.

 OK, how do I set this up?

    

For explicit directions, see Chapter 9.
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Chapter 6: Exponential Functions, Substitution and the Chain Rule


Introduction

We introduce the notion of constructing complicated functions by substitution,
  and show how to differentiate such functions. The way to do so is called the
  chain rule. We also introduce the exponential function which is defined to
be its own derivative.

Topics

6.1 Derivatives of Most Useful Functions


6.1 Derivatives of Most Useful Functions

Rational functions are an important and useful class of functions,
  but there are others. We actually get most useful functions by starting with
  two additional functions beyond the identity function, and allowing two more
  operations in addition to addition subtraction multiplication and division.

 What additional starting functions?

 The two are the exponential function, which we will write for the moment
  as exp(x), and the sine function, which is generally written as sin(x).

 And what are these?

    

  We will devote some time and effort to introducing and describing these two
  functions and their many wonderful properties very soon. For now, all we care
  about is that they exist, you can find them on spreadsheets and scientific
  calculators, and we can perform arithmetic operations (addition, subtraction,
  multiplication and division) on them. If you want just a hint, the sine function
  is the basic function of the study of angles, which is called trigonometry.
  The exponent function is defined in terms of derivatives. It
  is the function whose value at argument 0 is 1, that has derivative everywhere
  that is the
same as itself. We have



This definition may make the function a bit mysterious to you at first, but
  you have to admit that it makes it easy to differentiate this function.

 And what additional operations are there?

 The two new operations that we want to use are substitution, and inversion. 

    

    And what are these?

 If we have two functions, f and g, with values f(x) and g(x) at argument
  x, we can construct a new function, which we write as f(g), that is gotten
  by using the value of g at argument x as the argument of f. The value
  of f(g) at x, which we write as f(g(x)), is the value of f at argument
  given by the value of g at x; it is the value of f at argument g(x). We
  call this new function
  the substitution of g into f. We'll get to inversion next.

 If you substitute a polynomial into a polynomial, you just get a polynomial,
  and if you substitute a rational function into a rational function, you still
  have a rational function. But if you substitute these things into exponentials
  and sines you get entirely new things (like exp(-cx2) ) which is the basic
  function of probability theory.

 Just as utilizing copies of the exponential or sine functions presents no
  problem to a spreadsheet or scientific calculator, substitution presents no
  real problem. You can create g(A10) in B10, and then f(B10) in C(10) and you
  have created the substituted value f(g(A10)) in C10. You can, by repeating
  this procedure, construct the most horrible looking combination of substitutions
  and arithmetical operations imaginable, and even worse than you could imagine,
  with very little difficulty, and you can find their numerical derivatives as
  well.

 Before we go on to the last operation, we note that there is a great property
  associated with the operation of substitution. Just as we have found formulae
  above for finding the derivative of a sum or product or ratio of functions
  whose derivatives we know, we have a neat formula for the derivative
  of a substitution function in terms of the the derivatives of its constituents. Actually it is
  about as simple a formula for this as could be.

 The result is often called the chain rule:

The derivative f(g(x)) with respect to x at some argument z, like any other
  derivative, is the slope of the straight line tangent to this function, at
  argument z. This slope, like all slopes, is the ratio of the change in the
  given function to a change in its argument, in any interval very near argument
z.

Suppose then, we make a very small change in the variable x, very near to
      x = z, a change that is sufficiently small that the linear approximation
    to g and to f(g) are extremely accurate within the interval of change. Let
    us
    call
      that change dx. This will cause a change in g(x) of g'(z)dx, (because the
    definition of g'(z) is the ratio of the change of g to the change of x for
    x very near
  to z.)

If g'(z) is 0, then g will not change and neither will f(g(x)), which
    depends on x only in that its argument g depends on x.

If g'(z) is not 0,
      we can define dg to be g'(z)dx, and use the fact that the change in f for
    arguments near g(z) is given by  is
    evaluated for arguments of g near g(z).

If we put these two statements together, which we can do by substituting for
  g'(z)dx for dg in the expression here for df, we find that the change in f
  is given by the change in z multiplied by the product of the two derivatives
  and the change in x:



If we now divide both sides by dx, we obtain the famous
    "chain rule", which tells us how to compute the derivative of a function
  defined by substituting
    one function in another.

It follows from this remark that the chain rules reads



In words, this means that the derivative of the substituted function with
  values f(g(z)), with respect to the variable z is the product of the derivatives
  of the constituent functions f and g, taken at the relevant arguments: which
  are z itself for g and g(z) for f.

 How about some examples?

 We will give two examples, but you should work out at least a dozen for yourself.

Example
      1: Suppose we substitute the function g described by values g(x) = x2 +1
      into the function f described by values f(x) = x3 -
    3. The
    substituted function f(g) has values f(g(x)) = (x2 + 1)3 -
    3.

  Let us compute the derivative of this function. The derivative of f(s) with
    respect to s is 3s2, while the derivative of
    g(x) with respect to x is 2x.

  If we set s = g(x) and take the product of these two we get:



You could
  multiply the cube here out and then differentiate to get the same answer, but
  that is much messier, and most people would make at least one mistake
  in doing it. You have a chance of getting such things right even the first
  time, if you do them by the chain rule. (Unfortunately, if you do, you will
  not get any practice debugging from it.)

 Example 2: Find the derivative of the function whose values are .

  This is the function obtained by substituting the function with values  into
  the exponential function.

  Now the derivative of the function with values  is
  the function with values -x; (remember that the exponential function is its
  own derivative.)

On applying the chain rule we find:



Exercises:

 7.1 Write an expression for the result of substituting g into
  f to form f(g) for the following pairs of functions, and find expressions for
  their derivatives
    using the chain rule.

  a. f defined by ,
  g defined by .

 b. f defined by f(x) = -x, g by g(x) = exp(x).

 c. f defined by f(x) = exp(x), g by g(x) = -x.

7. 2 Check each of your results using the derivative
  applet.

  7.3 a. Consider the function defined
      by the formula x4 -
      2x + 3. Use the applet to plot it and see its derivative. Where is its
      minimum value, and what
        is it? What is its derivative at the minimum point? Estimate these things
from the applet.

 b. Find the maximum point for f and the value of f at
    that argument 

  approximately for f defined by f(x) = x2exp(-x).

 OK, where am I now?

 At this point you have rules that enable you to differentiate all functions
  that you can make up using arithmetic operations and substitutions starting
  with the identity function (f(x) = x) or with the mysterious exponential function,
  f(x) = exp(x). 

  In the next section we will extend things so you can start with the sine function,
  f = sin x as well and differentiate anything you can create. Finally we will
  extend the rules to differentiating inverse functions as well.
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Chapter 7: Trigonometric Functions and their Derivatives


Introduction

We define the sine to be 0 at argument 0, to have as derivative the sine
  of the complement to its argument (This is half a right angle minus the original
  argument), and extend differentiation to functions constructed from trigonometric
functions. Some other related functions are introduced.

Topics

7.1 Sines and Cosines and their Derivatives


7.1 Sines and Cosines and their Derivatives

At this point we claim that the derivative of the sine function is another
  related function called the cosine function. This may seem mysterious to you
  since we have not defined either of these functions, but we will eventually
define them.

 The cosine function, whose value at argument x is generally written
    as cos(x) is a short way of saying the sine of the complementary angle to
    x. The complementary
  angle to x is the difference between a right angle and the angle x.

 We will always try to measure angles in radians, though out of habit, old
  farts like myself often lapse into describing them by degrees.

 Imagine we have an angle  at
  some point P and draw a circle C around P that has radius 1. Then the
  size of the angle  in
  radians is the length of the arc between the end-lines of  on
  the circle C.

 It is an important bit of folklore that the total distance around a circle
  of unit radius is . Thus
  the size of an angle is the proportion of the circle that it represents, multiplied
  by the factor .

 We can therefore see that a straight line angle represents half a circle
  so it has 

  angle  while
  a right angle, which is half of a straight line, has angle .
  The complementary angle to  is
  the angle .

 So the derivative of the sine (written usually as sin) obeys



by the chain rule, we get



 These facts about the derivatives of the sine and cosine are almost as simple
  as those for the exponent, and they are not difficult to use in practice. For
  more details about trigonometric functions, click here.

 Armed with these last two facts we can use the substitution rule and our
  previous rule to differentiate any function we care to construct from the identity,
  the exponent, and the sine by arithmetic operations and substitution.

 Are we done?

 We are almost done. Practice using the multiple occurrence rule and the chain
  rule a bit and you can become an expert differentiator. But we still have to
  notice how to differentiate inverse functions.

Exercises:

7.1 Find the derivative for each of the following functions:

  a. (sin x) * exp(2x)

 b. x * cos 2x

 c. (cos x) * sin x

 7.2 Check your answers with the applet.

 7.3 The derivative of the derivative of a function f is called the second
  derivative of f. Find the second derivative of cos x, and also of sin 2x.

The second derivative of f is usually denoted by f ''(x) or .

7.4 What
  functions can you think of that obey the equation f(x) + f ''(x)
= 0?

 Why do you start only with the sine function exponential and identity? what
  happened to the cosine? Or to the other trigonometric functions? And what are
  those weird things on my calculator like cosh and sinh?

 We don't bother with treating the cosine separately since we can define it
  from the sine by substitution: .
  The other trigonometric functions can be defined from these two. The functions
  with the h on the end
  are called hyperbolic sine and cosine. They are easily expressed in terms of
  the exponential function:



  The other functions that appear on good calculators and are available on spreadsheets
  are easily constructed from those mentioned so far or from their inverses.

 And what are inverses?

 We will see that now, and also how to find their derivatives.
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Chapter 8: Inverse Functions and their Derivatives


Introduction

Text.

Topics

8.1 Inverse Functions

8.2 Differentiating Inverse Functions


8.1 Inverse Functions

There is only one more operation to describe and see how to differentiate
  where it occurs, and we will be able to differentiate every function we want
to differentiate. And that operation is inversion.

 We can consider the action of taking an argument and forming the value of
  f at that argument as an operation on numbers. The inverse of that operation
  is the act of going backwards and recreating the argument, x, from the value,
  f(x), of f.

 We have encountered this notion before. A typical example of inversion is
  the square root. The square root function is the inverse of the square function.

 Now if you go from the argument to the value and then go back to the argument,
  you are right back where you started from. And this is the defining property
  of the inverse function to f. f inverse, applied to f(x) is x again. And it
  works in the other order as well. If f is inverse to g then g is inverse to
  f.

 This concept has three complications that you must learn to handle. First,
  is the question of notation. We are tempted to use the notation f-1 for
  the inverse function to f, and we often do this. But we shouldn't and often
  we don't use that notation, because it can be confused with the reciprocal
  function, .

 The commonest inverse functions are, the inverses to powers like 
  which are called roots and denoted as ,
  the inverses to the exponent function, exp(x), which is called the
  natural logarithm of x and denoted as ln(x); the
  inverse sine function is called the arcsine and is denoted as arcsin(x). On
  most spreadsheets it is written as =asin(B6), (if you want the arcsine of what
  is in box B6.) (and there are other related trigonometric inverses which we
  will talk about when the functions are defined.)

 The trouble with using  to
  denote the inverse to f is that this notation is sometimes used for the function,
  ,
  which is the reciprocal function to f, which you apply to argument x by dividing
  1 by f(x), that is by dividing
  1 by the value of f. This is totally different from the inverse function to
  f, which is gotten by switching f 's values and arguments.

 The second complication is that the inverse function is not in general
    defined everywhere. A function like the exponent, exp(x), or the square, whose
    values are always non-negative, will, upon interchanging values and arguments, only
  be capable of definition for non-negative arguments. All the other functions
  we have been considering so far, can be defined almost everywhere; inverse
  functions, however, often have restricted domains.

 The final complication is that many functions that we like to invert
    take on the same value for more than one argument. The function, f with f(x) = x2,
  the function that squares, taking x to x2, is a good example of this. 5 and
  -5 have the same square. Which should be called the square root of 25?

 The sine function is periodic and repeats itself endlessly as you go around
  and around a circle, with period 2. Which
  of its many arguments which have the same value should be taken as the value
  of the inverse function to it?

 The answer to such questions is that in inverting a function f which takes
  on the same values more than once, we must first restrict the domain
  of f so that this does not happen, so that f takes on each
  value at most once, in its restricted domain. The square function can be restricted to the non-negative
  numbers, or to the non-positive numbers, (or to appropriate mixtures). After
  such restriction this problem disappears, since in the restricted domain, f
  is single valued.

 For roots we typically restrict the domain of the power being inverted to
  be the non-negative numbers, which means that the square root which we call
  
  is always positive. In principle we could have chosen  to be negative instead,
  or negative over part of its range and positive on the rest. We do
  not do this for two reasons: first it is an unnatural thing to do; second,
  the positive square root has the nice property that the square root of a product,
  say of xy is the product of their square roots; this is not true for negative
  square roots, since the product of two of them is positive, and not a negative
  square root.

 In general, what we have been saying means that the inverse function to f
  requires an added condition to be well defined, when f is not single valued.
  To get a unique inverse function you must make a restriction of the domain
  of f to one in which f is single valued.

 There are three observations to be made about inverse functions, two nice
  and the other less nice.

 The first nice one is that it is very easy to find the graph of an
    inverse function from that of the original function, and therefore
    to decide on a domain for f (which becomes the range for f -1).
    It is similarly easy to graph f -1
  on a spreadsheet.

 The way to find the graph of the inverse function is to rotate your paper
  (which has the graph on it) by  degrees
  around the main diagonal (the line through the origin at angle  counterclockwise
  from the x axis.) You will
  then find that you have to look through your paper at the function but that
  can usually be done and if you start with the graph of f you are looking at
  the graph of the inverse function to f.

 For the spreadsheet, you can set up the spreadsheet you use to graph a function,
  and copy the column of arguments x beyond the column of values f(x), and then
  highlight and do an x-y scatter chart of the f and new x columns.

Exercises:

8.1 Set up a spreadsheet that plots the exponent function
    in the domain from -3 to 2. Copy the argument column after the value column
    for
    it
    and highlight the value column and the copied column and plot the inverse
  function to the exponent, which is the natural log function. For what argument
  is ln
    x 0? For what argument is it 1? -1?

8. 2 The applet below  allows you to enter functions and plot
    their inverses as well as themselves. Check your answer to 1 by finding the
    inverse
      to exp
      x in the given domain with the applet.

 

[bookmark: OperationsOnFunctions]
  

 

 The not so nice observation is that there is no standard obvious way of finding
  the value of an inverse function at a particular argument x. All the other
  functions we have discussed can be found by performing simple standard operations
  such as adding, dividing, multiplying, subtracting, and substituting. But there
  is no such procedure for inverses. And in general, there cannot be one. This
  is because in general you have to choose the domain for the original function
  to make it single valued, and a means of calculating the inverse would have
  to know in advance what decision you will make, if it is to get the corresponding
  inverse.

 Of course most inverse functions that you will ever encounter, and perhaps
  all of them, are accessible as functions on your spreadsheet or calculator.
  You can compute them by pushing a button. This is because the maker of your
  machine and its programs has made the decision for you as to what domain to
  choose for the original function and hence what range to get for the inverse
  function to it, and has used some sneaky procedure for computing it.
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8.2 Differentiating Inverse Functions

The first good news is that even though there is no general way to compute
  the value of the inverse to a function at a given argument, there is a simple
  formula for the derivative of the inverse of f in terms of the derivative of
f itself.

 In fact, the derivative of f -1 is the reciprocal of the
    derivative of f, with argument and value reversed.

    

  This is more or less obvious geometrically. You get the graph of the inverse
  of f from that of the function f by switching x and y axes. The derivative
  of anything is the change of the function (y) divided by the change of the
  argument, x. Switching value and argument means that the switched derivative
  becomes the change of the original argument, x, divided by the change of the
  original value, y. This is the reciprocal of the original derivative, but
  at argument given by the value (the original x) of the inverse function. Draw
a picture and look and you will agree.

 Let's prove this using algebra. All we have to do is to apply the chain rule
  to the defining property of f -1, which is f -1(f(x))
  = x and f(f -1(x)) = x.

 The derivative of the right hand side is 1 here in both equations. The derivative
  of the left hand side in the second case is, by the chain rule, the product
  of the derivative that we want of f -1 and the derivative of f evaluated
  at the value of f -1(x) This is exactly the statement that the derivative
  of f -1 is the reciprocal of the derivative of f evaluated at the
  value rather than
  the argument of f-1.

 The argument seems simple enough but it is confusing. Can you use this rule
  to actually find derivatives of inverses without going nuts?

 Let us see what this means for the exponential function and
  its inverse, ln(x). The derivative of the exponent function is itself, exp(x).
  Then the
  derivative of the logarithm is the reciprocal of the exponent, evaluated at
  ln(x) or .
  The latter identity follows from the definition of inverse which tells us that
  exp(ln(x) = x.

 Similarly, for the sine function, since its derivative at argument x is cos(x),
  the derivative of arcsin(x) is .
  You could leave it at that, but we generally reduce it to something slightly
  less ugly. A spreadsheet is
  as happy with this as with the result we end up with in the next paragraph.
  By the way, my spreadsheet knows the arcccosine function of argument A6 as
  =acos(A6).

 By the Pythagorean theorem of plane geometry we have .
  If we set y = arcsin(x), we get from this statement: .
  Since sin(arcsin(x)) is x, we finally get, that the derivative of arcsin(x)
  is .

 Similarly the derivative of .
  The derivative of  which
  is the inverse to  is
  then the reciprocal of this expression or  where
  y is the value of the inverse function, which is .
  The derivative of  is
  then , or,
  if you prefer, .

 Notice that this formula is exactly the same as the power formula for integer
  powers. In fact for any rational power, a, positive or negative, we have

(xa)' = axa-1

 There is another piece of good news about inverse functions. Even though
  there is no obvious way to compute a particular value of one, at a particular
  argument, there is any easy way to compute the value of f-1(x) with a spreadsheet
  that you can actually perform in about a minute, once you know how, assuming
  you know how to compute f. We will see it soon.

Exercises:

8.3 Use the fact that  is
true, find .
(you can use the multiple occurrence rule)

8.4 The tangent of an angle z, denoted as tan z, is the ratio given
    by the sine divided by the cosine: .
  What is the derivative of tan z? From it find the derivative of atan
    z (called the arctangent of z) which
    is the inverse function to tan z, (when the domain of tan z has been restricted
  to be from .)

8.5 Plot tan x and atan x using the applet that takes inverses.

I am getting
  tired of this stuff.

 Well, we really are done with what is traditionally taught about how to differentiate
  functions. The multiple occurrence rule, the chain rule and the inverse rule
  tell us how to differentiate anything we can construct, starting from the three
  functions x, exp x, and sin x, whose derivatives we know. It is easy to make
  mistakes when you find derivatives, so it is wise to have a way to check your
  answers.

 How?

 An easy way is to compare them to the results of differentiating numerically,
  which we now describe.
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Chapter 9: Numerical Differentiation, and Non-Differentiable Functions


Introduction

Text.

Topics

9.1 Numerical Differentiation

9.2 Non-Differentiable Functions


9.1 Numerical Differentiation

We will describe a procedure which you can use to compute and plot the derivative
  of any function you can enter into a spreadsheet, which includes all functions
we have mentioned so far, and many others.

 First though, we will digress to see what happens when we differentiate a
  given function at a given point. The derivative that we seek is the ratio of
  the change in the function value to the change in its argument near that given
  point. To find such changes you need to pick two arguments and compute this
  ratio.

 Our plan will be to take two arguments that differ by a certain amount d,
  and calculate this ratio for these two arguments on one line of the spreadsheet,
  then reduce d and do it again on subsequent lines, We can then look at what
  happens to the estimate of the derivative that we find.

 This plan is worked out in detail in Chapter 7 of 18.013A and you should
  go over that Chapter carefully, and implement it yourself on a spreadsheet,
  for whatever function you choose, say exp(-x2) at x = 1. You can
  then change arguments and functions easily.

 The purpose of this activity is to familiarize yourself with how well taking
  a finite difference ratio of value change to argument change, which is what
  you will do, comes close to giving the derivative for typical functions, and
  conversely what you can expect to learn about finite changes in arguments from
  derivatives.

 The following lesson can be learned from this activity.

  If you are considering a function which has no large parameters in it, and
    use the "symmetric derivative approximation" with d = 10-4,
    you will get very close to the true derivative of your function, most of
    the time. The symmetric derivative approximation is



 You can check the accuracy of this approximation by changing d to  and
  observing whether this changes your answer materially. If not, your answer
  is probably accurate. If your answer changes very much, repeat with smaller
  d.

 With my spreadsheet I can usually find derivatives numerically using this
  formula (or the extrapolations of it described in Chapter 7) that are accurate
  to ten decimal places. In practice, that kind of accuracy is hardly ever needed
  and we can stand answers that are accurate to two decimal places, most of the
  time.

 How can I use this to check my answers for derivatives?

 One way is to set up your answer for the derivative in terms of the given
  argument, and compare it to the derivative that the spreadsheet in Chapter
  7 gives you for your function. You can then pick two or three arguments at
  random and see if the answers agree at each. If they do you are probably right.

 Of course it is possible that your answer is right at the exact arguments
  you chose, but is wrong elsewhere. So you can plot your answer and the machines
  answer both and see if they agree entirely.

 And how can I do that?

 You can set up a spreadsheet that has the argument change from row to row
  rather than having d change. You can fix d at say 10^-4, and make a column
  (say A) in which x increases from some initial value (in say A5) by say q per
  row (put A6 =A5+C$1 for q in C1), and in the next column (B) put x + d (B5=A5+B$1
  with d in B1) and in the next column (C) put x-d (set C5=A5-B$1).Copy A6, B5
  and C5 down the columns as far as you want to. Then in the next column put
  f(x) (D5 = f(A5)) and copy this down and into columns E and F as well.

 Now in column G you can copy column A (set G5=A5), and in H you can put H5
  = (E5-D5)/2/B$1, and copy G5 and H5 down their columns. In I5 you can put your
  solution for f'(A5) and copy that down column I.

 If you highlight and plot columns G H and I using an x y scatter chart you
  will get plots of the numerical derivative and of your derivative, which should
  overlap completely if you are right, You can change the contents of B1 to change
  d, or change the domain by changing the initial argument (in A5) or the value
  of q in C!

 Once this is set up, you can change functions by just changing D5 and I5
  appropriately to the new function and new proposed derivative of it, and copy
  the former into columns D E and F and the latter down column I.

Exercise 8.6 Make yourself a spreadsheet derivative checker of this
    kind and use it to check the derivative of x2 (sin (x)) exp(-x2).
    (First find this derivative from the rules)

 I have a problem, When I graph a function that goes to infinity,
    like tan x, on a spreadsheet, my picture stinks. The function looks to be
    0 except at spikes.

 This happens because the program that does the charting chooses a scale for
  the graph based on the largest numbers that occur in the data. When these are
  gigantic, like a trillion, the top of the graph corresponds to the value of
  a trillion. Similar things happen for negative values at the bottom of the
  graph. This means that ordinary numbers, like 1 or 19 or 1000 all look like
  0 on this scale. Its like what you look like to someone trying to pick you
  out while he or she is on Mars. So your graph will look like all 0's except
  where the function gets very big or very negative. 

 What can I do about it?

 The easiest thing is to cut out the high values. One way to do this is only
  highlight rows with reasonable function values when you make your chart. Another
  way is to put in a cutoff in what you plot.

 A cutoff? How can I do that?

 Generally speaking you and I can make visual sense out of differences that
  are of the order of ten or so. Thus if you are dealing with a function most
  of whose values are around 1, if you want to look at its behavior at those
  values you might want to cut the function off at 10.

 Sure, but how?

    

  Suppose your argument column is column F and the values of your function are
  in column G. Then copy column F into column X , say, (set X1=F1 and copy this
  down column X) and in column Y1 put =Min(g1,10) and copy this down column Y
  ; If you highlight and chart columns X and Y your function will cut off. A
  better idea is to set w1=10 and set Y1=min(g1,w$1). This way you can change
  the cutoff value if you do not like it, by changing w1. To cut off at 10 and
  -10 you can put instead Y1=max(min(g1,10),-10).

Exercise 8.7: Try plotting the tangent function (=tan F1) with various
    cutoffs until you like the look of your plot.
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9.2 Non-Differentiable Functions

Can we differentiate any function anywhere?

 Differentiation can only be applied to functions that look like straight lines in the vicinity of the point at which you want to differentiate. After all, differentiating is finding the slope of the line it looks like (the tangent line to the function we are considering) No tangent line means no derivative.
 Also when the tangent line is straight vertical the derivative would be infinite and that is no good either.

 How and when does non-differentiability happen [at argument x]?

 Here are some ways:

 1. The function jumps at x, (is not continuous) like what happens at a step on a flight of stairs.



 2. The function's graph has a kink, like the letter V has. The absolute value function, which is x when x is positive and –x when x is negative has a kink at x = 0.



 3. The function is unbounded and goes to infinity. The functions  do this at x = 0. Notice that at the particular argument x = 0, you have to divide by 0 to form this function, and dividing by 0 is not an acceptable operation, as we noted somewhere.



 4. The function is totally bizarre: consider a function that is 1 for irrational numbers and 0 for rational numbers. This is bizarre.

 5. The function can't be defined at argument x. When we are talking about real functions the square root cannot be defined for negative x arguments.



 6. The function can be defined and finite but its derivative can be infinite. An example is  at x = 0.



 7. The function can be defined and nice, but it can wiggle so much as to have no derivative. Try to differentiate  at x = 0.



 These are the only kinds of non-differentiable behavior you will encounter, and you probably will not encounter many of these.

 Now you have seen just about everything there is to say about differentiating functions of one variable. We next want to study how to apply this, and how to undo differentiation.
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Chapter 10: Review of Functions and Derivatives


Introduction

Text.

Topics

10.1 Review


10.1 Review

Numbers are numbers. Read the section on them again.

Functions are sets of
    (argument, value) pairs of numbers. They are often described by formulae
  which tell us how to compute the value from the argument.
    Only one value is allowed for each argument. These formula usually start
  with the identity function, the exponential function and the sine function,
  and
    are defined by applying arithmetic operations, substitution and inversion
  in some manner to them.

The derivative of a function at any argument is the
    slope of the straight line it resembles near that argument, if that slope
  is finite. The straight
    line it resembles near that argument is called the tangent line to the function
    at that argument and the function describing that line is called the linear
    approximation to the function at that argument. If the function does not
  look like a straight line near an argument, (has a kink or a jump or crazy
  behavior
  there) it is not differentiable at that argument.

There are straightforward
    rules for calculating derivatives of the identity, sine and exponential functions,
    and for computing derivatives of combinations
    of these obtained by applying arithmetic operations, substitution and inversion
    in some manner to them.

  Thus we have means to obtain formulae for the derivative of all functions
  of the kind described above.

Armed with a spreadsheet, you can plot functions
    and determine their derivatives with great accuracy, most of the time, with
    little effort.

What else should I know at this point?

 First, you should feel comfortable with calculating or computing derivatives
  numerically.

So far, all we have said about the exponential function is the
    statements that its value at argument 0 is 1, and it is its own derivative
    everywhere.
    And the sine function is 0 at argument 0 and has derivative that is the sine
    of the argument complement to it.

 You would be well advised to review the properties of the sine and the other
  trigonometric functions and the exponential GO TO stuff from other course on
  these things.

 OK, what can we do with this?

 The two major applications of differentiation are to modeling phenomena,
  and to solving equations.

 Do I really expect to do these things?

 You cannot ever be called on to do either of these things if you have no
  idea how to do them. Similarly you will only rarely be asked to cross a road
  if you never learned how to walk. Once you know about these things, all sorts
  of possibilities open up that you can begin to handle.

 Once a model of a phenomenon has been constructed, you want to be able to
  deduce the consequences of the model. This involves getting back from derivatives
  or equations involving derivatives to the functions whose derivatives they
  are.

 The processes of going from a derivative back to a function is sometimes
  (rarely) called antidifferentiation, and usually called integration or quadrature
  (also a rare name). Going from an equation involving derivatives to the original
  function is called solving (or integrating) a differential equation.

 In the next section we will give some examples of modeling of changes in
  systems using derivatives. Then we will learn how to use derivatives to solve
  equations. Next we will discuss integration and you will learn how to do it,
  where possible, both numerically and by formula. Finally we will learn how
  to solve differential equations numerically.

 Is this all I have to know about calculus?

The answer depends on your goals.

 If you seek only a qualitative notion of what calculus is about, you can
  quit when you are satisfied that you have one.

 If your goal is to understand the language of science, in which models of
  change appear everywhere, this is a good start but there is more, in two directions.

 First, we live in a world in which it takes three numbers to describe the
  location of a point in space; six numbers to describe the location of two points,
  and so on; and people often want to model motion in space. Thus we need to
  be able to examine change when we are dealing with several or many variables
  at a time. So we need to be able to extend the notion of differentiation to
  the analog of functions which depend on more than one variable. Doing this
  means extending the notion of derivative to sets of argument-value pairs for
  which the arguments and/or the values are sequences of numbers rather than
  single numbers. The study of such things is called Multi-Variable Calculus.

 Fortunately it is possible to make the desired extension in a way which allows
  you to exploit your ability to differentiate in one dimension to get results
  in higher dimensions. You have to learn some new concepts but the work of differentiating
  is the same. This subject largely consists of the introduction of new multi-dimensional
  concepts, and description of how they can be calculated or computed by the
  techniques of one dimensional calculus.

Second, there is a large amount of lore
    about differential equations that has developed over the years as people
  have studied equations that arise in real
      world applications. In the past, numerical methods, like those you can
  now apply, were completely impractical, and special methods were found to solve
      many classes of equations. These methods were also valuable for allowing
      people to get an idea of the solutions of more complicated equations without
    actually solving them.

 The fact that these methods are adequate for solving very important problems
  in a number of fields, and that they provide intuition about many other equations
  means that they are still of interest and worth studying today.

 Perhaps the first goal that is well worth your pursuing is to gain the possibility
  of understanding scientific literature. Papers in science and engineering use
  notions and notations of derivatives and integrals incessantly, and if these
  buffalo you, you can get nowhere with reading the literature. Once you are
  comfortable with the concepts of calculus and their notations, this difficulty
  disappears.
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Chapter 11: Modeling Applications to Physics


Introduction

Text.

Topics

11.1 The Motion of Objects

11.2 The Harmonic Oscillator (aka a Spring)


11.1 Motion of Objects

Calculus was invented by Isaac Newton who was trying to understand the motion
  of planets and their orbits around the sun, as well as the motion of anything
  else. Kepler had put together the astronomical data of that time, and had deduced
his three laws from it.

 Planets had elliptical orbits, Kepler had noted. He also found that the area
  swept out by the motion of planet (in the sort of triangle whose corners are
  the location of the sun and the position of the planet at two times separated
  by time dt) is a constant independent of where the planet is in its orbit.
  Finally, he found a relation between a measure of the size of the orbit, and
  the period of the motion around the sun.

 Newton's aim was to construct a model for the motion of the planets that
  would lead to the results found from the data by Kepler.

 He got the neat idea that a body, and that here means a planet, would keep
  on going straight ahead at constant speed, if left strictly alone. So that
  the derivative of the planet's position with respect to time, which is its
  velocity, would be constant, if the sun did not act on it.

 Another way to say the same thing is that in the absence of the sun, the
  derivative of the velocity of the planet, which derivative is called the acceleration
  of the planet, would be zero.

 He developed the idea that the sun exerts a "force" on the planet,
  which force changes the acceleration of the planet in proportional to the force.

 He was able to show that if the force on the planet was directed toward the
  sun, and was proportional to the reciprocal of the square of the distance of
  the planet to the sun, the resulting expression for the second derivative of
  the position of the planet could be solved, and the equations have solutions
  in which the orbit of the planet is elliptical and equal areas are swept out
  by the planets motion in any time interval of given size.

 He also showed that if the force on the planet was proportional to the "mass"
  of the planet, (which is the factor relating the force to the acceleration:
  as
  in F = ma, with F the force, m the mass of the object and
  a its acceleration, the second derivative of its position) then the third of
  Kepler's laws also
  holds. This led Newton to his law of gravity: that bodies attract one another
  with a force proportional to the masses of each and inverse to the square of
  their distance.

 We will not discuss the details of Newton's argument here, because the motion
  is in space, and position and velocity and acceleration require more than one
  number to describe each of them, so that we would first have to discuss how
  to define how to represent these entities.

 He also showed that the motion of objects thrown or dropped could be deduced,
  in this model, from the almost constant gravitational attraction of the earth
  on the objects.

  The observation of Galileo that objects of different weights fall, to a first
  approximation (ignoring the effects of air resistance) at the same speeds,
  also follows from Newton's law of gravity, among many other things.

 If we represent the height of an object from some given base line as h(t)
  with the argument t given by the time, starting at some given time, the effects
  of the earth's gravitation on it will obey the equation



where g is a constant, called the gravitational constant, and m is the mass
  of the object.

 This is the equation for the behavior of a falling object according to Newton's
  model of gravitation.

 In this particular case, we can deduce the consequences of this model quite
  easily.

This tells us that the acceleration, which is the derivative of the
    speed of the object, is constant. What functions have a constant -g as their
    derivative?

 You will recall that taking the derivative of a polynomial lowers the power
  of each of its terms by 1, and multiplies it by the power. The answer we seek
  is: any function of the form -gt + c will have -g as its derivative with respect
  to variable t.

 The next question is, what function, h(t) has -gt + c as its derivative?

 The answer to this is ,
  where d, like c is a constant that you must determine from the initial conditions
  on your specific problem.

 In general, the plan for describing a phenomenon is to emulate Newton:

  First
  find some equations involving derivatives with which to describe the behavior
  of the system.

  Then work out the consequences of the model, by working backwards
  from the derivatives to the function itself.

 And why bother with derivatives? Because the behavior of systems in their
  linear approximation is much much simpler than their ordinary behavior after
  a reasonable length of time. Creating models for the behavior of derivatives,
  here of second derivatives, is incredibly easier than creating direct models
  for general behavior.

 Even in this simple case, the model for the second derivative involves only
  a universal constant, g, while to model height versus time directly requires
  two additional parameters and a quadratic function.
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11.2 The Harmonic Oscillator (aka a Spring)

There is another fairly simple physical system that is of fundamental importance
in many areas. It describes the motion of a spring in one dimension.

A spring
    is a devise that has an equilibrium position, and when moved from that position,
  it pulls itself back toward it.

Suppose we have an object with mass m attached
    to such a spring. We can model this system by claiming that there is a force
    on this object proportional to
    its displacement from the equilibrium position. If we call that position
  the origin and denote the displacement from it by x, the model equation for
  this
    system is



Here k is the proportionality constant which is proportional to the strength
  of the spring.

 There are several additional features we can add to this model.

 First we can try to model the effect of friction. This we do by adding an
  additional (small) force that tends to oppose the motion of the object and
  is proportional to its velocity. This term adds a factor  to
  the right-hand side of the equation.

 Why add this particular term?

 Because this is the simplest term that I can think of that does the right
  sort of thing: opposes the motion by an amount proportional to it.

 Finally, we can imagine that the spring is hooked up with some other devices,
  and these devices provide additional forces on it. Imagine. For example, that
  the additional force on our object behaves like the sine function of a constant,
  ,
  multiplied by t. This is a useful assumption, because if we can find the behavior
  of this spring for all values of , (and we can) we can, by some magic
  tricks, figure out how this system will respond to any forcing function.

 The general model of a forced and damped (this means friction is considered)
  spring is then described by the equation



where A is a constant.

Notice the nature of this model: the first term on the
    right is the basic term which describes a spring. The second term is one
  aimed at causing the
    motion to slow down, being proportional to the velocity and directed opposite
    to it. The third term is an external forcing term independent of x or of
  ,
  the velocity.

 To construct it, you think of each of the factors that you expect to affect the
  spring, construct the simplest possible term to describe it, and add it in
  on the right here.

 How do I know that this model is any good?

 A priori, you don't know it. When you work out the solutions for x(t) that
  emerge from it, you can see if they describe real phenomena. This particular
  model is perhaps the most successful one ever. It predicts many interesting
  real and important phenomena, that describe not only the motion of springs
  but of many other important systems as well.

 There is more than one solution?

 The behavior of our object on one end of a spring depends on how we start
  it off, in other words, it depends on its initial position and velocity. Similarly,
  the solution to the model equation will depend not only on the terms in the
  equation, but on these initial conditions as well. There will be a different
  solution for each pair of initial values.

 What phenomena are predicted by this model?

 In general the motion of our object can be divided into two terms: a transient
  one, which is not unlike the motion that would occur if there were no forcing
  function (that is, if A = 0) and a steady state term which has the same frequency
  as the forcing term.

 The transient term dies out eventually (if there is a second term here so
  that we have f > 0) and the steady state motion can then be characterized
  by two numbers: One is the ratio between the amplitude (which means size) of
  the steady state response to the amplitude, A, of the forcing function, and
  the second is the phase angle between the forcing function and the response.

 The first of these numbers, which represents the relative strength of the
  response of the system to the forcing function, exhibits the phenomenon called
  resonance. There is a natural frequency at which the spring will oscillate
  if left alone. When the forcing function has its frequency near that natural
  frequency there is a big response, and that response gets smaller as a function
  of  in the model, as  moves away from the natural value here.

 The transient term can oscillate, or if f is large enough it will be "critically
damped" and will simply die off.

This is a qualitative picture of what
    this model predicts. And these phenomena are real.

  

  The following applet  describes the motion of this kind of system.

 You will see in the next part of this course how you yourself can work out
  the consequences of this model to create for yourself what this applet shows,
  by creating an appropriate spreadsheet.









>

Chapter 12: More Modeling Applications
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12.1 The Basic Electric Circuit

12.2 Radioactive Decay


12.1 The Basic Electric Circuit

A basic electric circuit consists of four kinds of circuit elements, as follows.

1. A power source: This is a device for causing current to flow in the circuit.
  we will assume that this device produces a difference of potential across itself
  of  where
  V and  are
  constants.

2. A condenser or capacitor: This is like a small cut in the circuit, that
  current cannot cross. Current will flow in the rest of the circuit causing
  charge to build up on either side of the cut. The difference of potential across
  the cut will be proportional to the amount of charge that has built up, call
  it q, on the sides, and will be inversely proportional to the "capacity"of
  the cut to hold charge, which we denote as C thus to .

3. A coil or inductance. Faraday's law of inductance says that a changing
  current produces a difference of potential around a circuit. If you make a
  coil consisting of lots of windings of wire, you can observe this effect. If
  the current flow in the wires is i, then there will be a difference of potential
  caused by this effect that is proportional to  and
  to the strength of the inductance which we denote by the letter L, hence to
  .

4. When current flows through a circuit, it hits obstacles which produce "resistance"
  which is, to a first approximation proportional to the current itself. This
  is described
  by the famous Ohm's Law: the difference in potential caused by this resistance
  is Ri where R is called the resistance of the circuit.

 If we put all of this together, we find the equation



which states that the difference in potential across the circuit produced
  by the power source is the sum of the differences caused by the inductance
  capacity and resistance of the circuit.

    

  If we add the fact that the current i in the circuit is the derivative of the
  charge q that builds up on the capacitor, this equation reads

 

which, apart from garbling the names of the constants (here V, , R, ,
  and L), and of the variables, is exactly the same equation that we had with
  the forced and damped spring.

 The phenomena associated with this circuit are in fact exactly like those
  we mentioned in the last section.

 

[bookmark: SeriesRLCCircuit]
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12.2 Radioactive Decay

Nuclei consist of neutrons and protons bound together. But protons are positively
  charged and hence repel one another. Thus large nuclei consist mostly of neutrons
and some, having large numbers of protons, are quite unstable.

Some of them, from
  time to time, give off some energy and an electron or helium nucleus, and change
  themselves into some other nucleus. Each of these
  changes is described by what is called a "half life"; which is the
time it takes for half of the nuclei of the given kind to decay.

We model this
    by the assertion that in a population of nuclei of a given radioactive isotope,
    in any small finite time interval, ,
    a certain proportion, ,
    of them will decay.

If the population of these nuclei is represented as the
      function p, then p(t) will obey



which corresponds to the differential equation



 This is a differential equation whose solution we know, because it states
  that the function p is a constant multiple of itself.

 This is precisely the property of p(0) * exp(-ct), which is its solution.

 In the case of an isotope that only undergoes a single decay, this is the
  whole story. The only question to raise is, what is the relation between the
  constant c here and the "half-life" of this decay?

 Recall that the half-life of the process is the length of time needed for
  the population to diminish to half its original size. The half-life, T, of
  this process then obeys



Upon dividing by p(0) and taking logarithms of both sides we obtain



A more
    interesting situation occurs when the decay product in the decay of the isotope
    you start with is itself radioactive, and decays itself with its
    own half life.

 We can model this situation by defining p0(t) as the population of the original
  isotope, p1(t) the population of its decay product, and p2(t) as the population
  of the decay product of the decay product.

 Then we have the same model as before for p0(t):



In the previous case, the population of the decay product was p(0) minus p(t).
  Now we must write a differential equation for it:



Here the first term represents the increase in population of the first decay
  product coming from decay of the original isotope, while the second term represents
  the effect of its own decay. (The decay constants associated with these two
  decays are here c1 and c2).

 We do not need an additional equation for p2, though we could
  write one with the same approach,, because the sum, p0(t) + p1(t) + p2(t),
  will be p0(0),
  and we can deduce p2(t) once we have calculated the others, assuming
  that we started with a pure sample of the starting isotope, at least approximately.

Thus,
    in this case we have two dependent variables, p1 and p2, and two differential
    equations to solve.

 We are studying modeling in this section so will not solve these equations
  in detail. However they present little difficulty. The equation for p0(t) can
  be solved exactly as the one for p(t) in the first case, with the same solution.
  This solution can be substituted for p0 in the second equation, and it is straightforward
  to solve the resulting equation. We will solve this equation when we study
  such things later on.

 Please notice that these models only make sense when the initial population
  is quite large, since the only possible changes in population here are integers.
  In other words, a given nucleus either decays or doesn't, so at any time the
  number in each population is an integer. Thus, if we make dp smaller than 1,
  we leave the realm in which the model makes sense, and enter an artificial
  mathematical domain. Thus, keeping dp finite, as we do in numerical calculations,
  rather than letting it go to 0, as we do in formal differentiation is more
  compatible with the model.

 Fortunately, we get essentially the same answer using finite or "infinitesimal"
  differences, in problems of this kind.

 Exercise 10.1 Suppose isotope 0 decays to isotope 1 which decays
    to isotope 2 which decays to isotope 3. (Radium decays to lead by a still
    longer sequence).
  Set up a model of variables, decay constants, and differential equations to
  describe this system.
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Chapter 13: Modeling Chemical Reactions and Predator Prey Situations
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13.2 Predator-Prey Systems


13.1 Chemical Reactions

Suppose two chemicals, (molecules or ions), A and B, have the property that
  if they bump into one another, they can rearrange themselves into molecules
  or ions of two other substances, C and D. This reaction may give off or absorb
  energy, making the objects created move either faster or slower than the reacting
  objects were moving before the collision. This is perhaps the simplest possible
  chemical reaction; typically lots more is going on and there are many more
complicated situations that can be modeled using the approach we apply below.

 A standard question is: if we start with given amounts or concentrations
  of A, B, C and D, at time t = 0, what can we expect these to be at time t?

 The simplest situation occurs if the energy changes in the reaction are sufficiently
  small compared to the heat interchanges between the system and its surroundings
  that the temperature of the system remains constant. In that case, there will
  be a certain probability, p1, that A and B come together, and having done so,
  react to form C and D, and a certain probability, p2, that a C and D come together
  to do the opposite reaction.

    

  The probability p1 will obviously be proportional to the concentrations both
  of A and of B in the system, and p2 will similarly be proportional
  to the concentrations of C and of D. If we denote these concentrations as A,
  B, C and D, we get the
following model:



On the other hand,
    if the reactions that take place are sufficient to cause temperature changes,
  a model should take the effect of these changes into consideration.

The temperature
    of a substance is roughly proportional to the average amount of energy in
  each of its degrees, of freedom, and that includes the kinetic
    energy of motion of its constituent objects. This energy in turn is proportional
    to the square of the speeds of the objects. The probability that objects
  come together is proportional to the speed at which they are moving relative
  to
  one another.

We can model the changes in temperature caused by the reaction
    to be  
    is a measure of how much energy is given off when A and B become C and D.
    There is another effect, and that is the leakage of energy from the
    system to the outside world which we assume has temperature T0. We can model
    this by a term (c4)(T0 - T).

 Finally, we can model  as
  a function of T by ,
  to take into account that  depends
  on the speed of the objects which is crudely proportional to
  the square root of the temperature. The same model can be applied to c2. (You
  might want to refine the model to allow for the fact that the reverse reaction
  cannot take place at all unless the kinetic energy of the reactants is enough
  to supply the energy required to create the rearrangement, but we won't bother
  doing this here.)

 This leads us to the following coupled equations





This is probably not a very good model; we put it here to illustrate how
  you construct a model; if you want to go further, you must study chemistry.
  If you choose initial conditions and values of the various parameters here,
you can solve these equations numberically, and observe the consequences.

 The idea here is that you construct a model that is as simple as possible,
  that has a chance of describing your phenomenon. You then work out the consequences
  and compare them with the phenomenon itself.

 If the model, with parameters chosen appropriately, describes the phenomenon
  perfectly, that is both good and bad. Its goodness lies in the fact that such
  a model can be used to predict behavior. Its badness lies in the fact that
  scientists are generally looking for new phenomena, for discovering them is
  how a scientist makes his or her name. And a new phenomenon is a place where
  accepted models break down and a new one is needed.

It is where models break
    down that there is scope for further scientific activity.
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13.2 Predator - Prey Systems

The population of species F changes with time from natural growth and from being eaten.

The natural growth term is proportional to its population, and we model it by a term in the expression for the derivative of F of the form +aF, for some constant a. (Obviously when the population of F grows tremendously, other factors will have to be considered, but in a normal range of values for F this term seems reasonable.)

The attrition from being eaten term should, to a first approximation be proportional to the number of encounters of P's with F's which should be proportional to the product of the population of each, and hence of the form -bPF, for some constant b.

Without any F's to eat, the popululation of specie P will probably decline, (through starvation or moving away) which can be modeled by a term in the derivative of P(t) of the form -cP for some constant c, since the decline would probably be probably proportional to the population present.

Finally the presence of F allows the P's to survive and perhaps grow, again by a factor proportional to the encounters between them, and hence of the form +dPF.

The coupled equations of the standard predator-prey model are therefore



    We can explore the consequences of this model for varying constants a,b,c and d and initial values, P(0) and F(0) with the following applet which allows us to deduce the consequences of this model.

Without doing so we can notice that there is a static solution at which P and F don't change; this will occur when the right hand sides here are both 0. This will occur when  and . When these identities hold, the populations stay fixed.

It is interesting to examine what happens when we stray from this "equilibrium". Suppose, for example, we decrease the initial population of F, below . Try this on the applet and see what happens.
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Chapter 14: Applications of Differentiation: Solving Equations
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14.1 Solving Equations

If we have a linear equation, such as 5x - 3 = 0, there is a straightforward
  procedure for solving it. You apply "the golden rule of equations":
  do unto the left side exactly what you do unto the right side. And you do it
until all you have on the left is x.

 Thus with this example you would add 3 to both sides, getting rid of the
  -3 on the left, and then divide by 5, with the result, .

 Suppose however, we have a more complicated equation, such as

sin(x) - exp(x) + 2 = 0

Our task here is to find a solution , or all the solutions of such an equation.

 First note that it is always a good idea to plot the left hand side here
  and observe, crudely, where it changes sign or comes very near to 0. This will
  tell you roughly where it becomes 0.

 In the old days this was an extremely tedious task, in general, and people
  tried to solve equations without plotting, which is a bit like flying blind.
  Its OK if you can do it, but why try if you don't have to do so?

 The standard technique for solving such equations apparently goes back to
  Newton. And here it is.

 You start with a guess of an argument, call it x0. You then find the linear
  approximation to your function, f, at argument x0, and solve the equation that
  this linear approximation is 0. Call the argument for which the linear approximation
  is 0 x1.

    

  Now you do exactly the same thing, starting at x1: you find the linear approximation
  to f at x1 and solve the equation that this linear approximation is 0 to determine
x2. And you continue this as long as you need to.

 In the old days this was an extremely tedious thing to do, for any function.
  Finding xj+1 from xj is quite easy, but doing it over and over again is a
  real bore.

 Now with a spreadsheet, you can set this up and find solutions, with practice,
  in under a minute. You only have to do each step once, and copy.

 How?

 First let's see how to get xj+1 from xj.

    

  The linear approximation to f at xj is

f(xj) + (x-xj) f '(xj)

 If we set this to 0 at argument xj+1 we get

f(xj) + (xj+1 - xj) f '(xj) = 0

which has solution, obtained by dividing and subtracting from both sides appropriately



So
  what do I do on a spreadsheet?

 Suppose we put our first guess in box A1. We will put it and subsequent guesses
  in column A starting say, with 3. (just to leave room for labels.)

 We can then put f in column B and f ' in column C.

 To do this we need make the following entries:

 A3 = A1	               (this puts starting guess x0 in A3)

  B3 = f(A3)	            (this computes f(x0))

  C3 = f'(A3)            (this computes f '(x0))

  A4 = A3 – B3/C3	 (this applies the algorithm to get the new guess)

 If you now copy A4 (not A3!) and B3 and C3 down the A, B and C columns, you
  have implemented the algorithm.

 You can change your starting guess by changing A1, and change your function
  by changing B3 and C3 appropriately, and copying the results down.

 Does this really work?

 This method converges very rapidly most of the time. If you start near a
  0 of f, and are on "the good side" it will always converge. Otherwise
  it stands a good chance of doing so, but strange things can happen.

 What is the "good side"?

 Suppose you start above the solution, call the solution z, so x0 is greater
  than z. Then if f and the second derivative of f is positive between z and
  x0, you are on the good side.

 Why?

 Because the second derivative of f is positive, between z and x0,
  we know that the first derivative of f is increasing between z and x0,
  which means that the slope of f is biggest between z and x0 right
  at x0.

 All this means that the linear approximation to f at x0 will dive
  down to 0 faster than f does, so that x1 will lie somewhere between z and x0.
  And each
  successive xj will lie between z and the previous one. As we get closer to
  z, f will look more and more like a straight line, which will mean it will
  look more and more like its linear approximation, so you will get closer and
  closer to z faster and faster.

Exercises:

11.1 Suppose f is negative at x0 which is bigger than z. What condition
  of f " between z and x0 will mean you are on the good side?
  What is the condition when f is positive at x0 but x0 is
  less than z for you to be on the
good side as discussed here?

11. 2 What will happen if f " has the wrong sign but the same
  sign between your guess and z?

 Still and all, the method can do bizarre things. If f '= 0 at a guess, the
  iteration won't even make sense because you will divide by 0 in it. If f '
  is very near 0, the new guess will be very far from the old one, and it can
  zip
  around weirdly.

 The following applet allows you to plot and view the method just by entering
  the function. (which is only slightly simpler than starting from scratch with
  a spreadsheet).

 

[bookmark: NewtonsMethod]
  

 

Exercises: 

11.3 What happens if you look for the solution to ,
and you try to use this method directly? How about tan x = 1?

11 4 Find all solutions to sin (x) - exp(x) + 2 = 0 for x positive,
    accurate to ten decimal places.

  

  Do I have to differentiate f to apply this algorithm?

 No!. you can choose a value of d that is very small relative to the scale
  of your function and put =(f(a3+d)-f(a3-d))/(2*d) in C3 instead of =f '(a3).
  This will do just about as well as the regular Newton's method, practically
  always.

Exercise 11.5 Redo exercise 4 us this entry in C3. How is your answer affected?

 For more thoughts on solving equations look at Chapter 13 of the 18.013A
  notes.
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Chapter 15: Applications of Differentiation: Power Series


Introduction

We can use the power of differentiation to introduce a new way to describe
functions and to relate it to the ways previously discussed. We first discuss
  the notions of infinite series, and of convergence, and then use differentiation
  in this context.

Topics

15.1 Infinite Series and Convergence

15.2 Criteria for Convergence

15.3 Criteria for Absolute Convergence

15.4 Divergent Series

15.5 Power Series

15.6 Application of Power Series: Stirling Formula for n!


15.1 Infinite Series and Convergence

If we have an infinite sequence, we define it to be convergent if, for any
  positive criterion, q, however small, beyond some term, say the n(q)th, all
  of the terms are within 
q of some number, z which we call the limit of the sequence.

Where can you find
  infinite sequences?

 Obviously we cannot write down each term of an infinite sequence in our lifetimes.
  Instead we can give a formula for the n-th term,
  and that does it.

For example,
      we can consider the sequence with n-th element is given by ,
    or by ,
    both of which have limits 0.

 We can associate with any infinite series the sequence of
  its partial
    sums,  the k-th partial sum being the sum of the first k of its terms.  Then convergence of the series is defined to be the same as the convergence
  of that
  sequence
  of partial sums.

 Here are some examples:

 The "harmonic series"

    

 The alternating harmonic series



The geometric series



 If you were not asleep you would ask me: How can we tell whether or when
  a series is convergent?

 Huh? How can we tell when a series is convergent?

 By the way there are several kinds of convergence. There is ordinary convergence,
  already defined, and absolute convergence, which means convergence if we replace
  each term by a positive term of the same absolute value.

 Then, if you have a series that is a function of a variable, like the geometric
  series given, there is uniform convergence, which means given a criterion q,
  there is an n(q) beyond which the partial sums to that point are within q of
  a limit value for all x in the given domain; the same n(q) independent of x.

 If our first series above were convergent, then the second one would be absolutely
  convergent. The third series is uniformly absolutely convergent for |z| < a < 1,
  for any a, but not for |z| &ge 1.

 Why do you care about absolute convergence?

 When a series is absolutely convergent, you can rearrange its terms, differentiate
  it term by term if terms contain a variable, and perform other manipulations,
  which may not work for merely convergent series.

 You can integrate it term by term if it is uniformly absolutely convergent
  between your limits of integration.

 Fine. How can we tell when a series is convergent?
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15.2 Criteria for Convergence

There are particularly simple criteria for alternating series, which are those
which terms alternate in sign.

 First the terms must themselves converge to zero. This is a necessary condition
  for convergence of the partial sums, which is what convergence of the series
  means, for any series.

 For alternating series for which each term is smaller in magnitude
    than its predecessor, this condition (that terms converge to 0) is sufficient for convergence
  as well.

 How come?

 The idea is, you can pair up consecutive terms. In any pair the first, by
  definition dominates over the second, for such series, so the sign is that
  of the first term of the pair.

 This means that the pairs starting with odd entries are all the same sign
  as the first entry, while the pairs starting with even entries all have the
  opposite sign.

 Suppose the first term is positive. That means that the even partial sums
  are each a positive number more than the previous even partial sums. So they
  will always increase. Meanwhile the odd partial sums will be a negative number
  plus the previous one, and so will start at the first term and then constantly
  decrease.

 The sum is then trapped between the rising tide of the even partial sums
  and the falling odd partial sums. And the difference between consecutive even
  and odd sums is just a term of the series, which, by definition goes to 0.
  This implies that the difference of partial sums converges to 0, which in fact
  implies that the series converges to some real number.

 If you look at the partial sums of an alternating series, they zig-zag up
  and down. This means that the average of two successive partial sums is a better
  estimate of the total sum than the first partial sum, and often is better than
  the second one as well.

 Here is something you can do to improve your estimate of the sum
    of an alternating series. First write down the sequence of partial
    sums up to some point. Then average pairs of adjacent partial sums. If these
    still zig-zag, average adjacent
  pairs again, and so on.

 This is an extra easy thing to do. If you put the terms themselves in column
  B starting at B10, say, and the partial sums in column C starting at C10 ,
  you can enter =(C10+C11)/2 in D11, and copy this last instruction down and
  to the right as many columns as you want. This will do averaging over and over
  again. If you put the letter x in E11, that will kill off those entries in
  which you averaged nothing along with some partial sums.

 With the alternating harmonic series, I find that not only is each column
  still zig-zagging, each row is as well. This means we can try the same averaging
  of successive terms in any row, and this ought to improve the answer.

 What i then find is that at some point in each row, you get a zig-zag failure;
  which means three in a row that are increasing or decreasing. If we estimate
  the complete answer by the middle entry of these three in the first zig-zag
  failure we find, we get amazing results.

 If we stop at the 13th term of our series, which is ,
  the answer we get as the middle entry in 3 in the 13th row is accurate to 8
  decimal places. If
  we go as far as the 20th row, which is computed using only the first 20 entries,
  the last of which is .-05, we get ten place accuracy in our answer. (which
  turns out to be ln(2), which you can deduce by summing the geometric series,
  and integrating it term by term, and evaluating as x approaches -1).

Exercises:

15.1 Perform the spreadsheet computation indicated above for the alternating
  harmonic sequence. And verify or disprove the claims above.

15.2 Use the fact that the geometric series converges uniformly and
    absolutely to (1-x)-1 for x < a < 1 to deduce that the value of this
    series is ln(2), by integrating both sides of the identity stating this fact,
    integrating
    the series
  term by term.
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15.3 Criteria for Absolute Convergence

We assume in the following discussion that we are talking about the absolute
values of the terms in your sequence, so they are all positive.

 Then if each of your terms is smaller than the corresponding terms in a series
  you know to converge, your series will also converge; and conversely, if your
  terms are larger than those in a series that you know to diverge, then your
  series will diverge.

 This statement is called "the comparison test" for absolute convergence.

 But what series can I compare to?

 The standard series to compare to is the geometric series.

 This series has the wonderful property that if you multiply it by x and add
  1 you have it back again. Thus, if you call it y, then it obeys xy +1 = y,
  which we can immediately solve for y. This simple fact means you must not and
  cannot forget the formula for this series, which is (1-x)-1.

 It absolutely converges for |x| < 1, and diverges otherwise. By comparison
  to it, any other series will converge if the ratio of successive terms (later
  divided by earlier) is strictly less than some number that is less than 1.
  Your series will diverge if the ratio of successive terms is greater than 1.

 This statement is called the ratio test for absolute convergence.

 And what happens if the ratio of successive terms approaches 1?

 Then you must investigate further.

 How?

One way is to compare to the harmonic series, which
  diverges. Its terms have ratio  or
  roughly .
This ratio is not good enough for convergence. (and neither is   for any c.)

 What's wrong with the harmonic series?

Notice that this series
  has one term 1 that is at least 1, and one that is at least  (namely ),
  two others that are at least  (
  and ),
  four others that are at least   (  through ),
  others that are at least (  through ), and so on. Each of these groups
  sums to at least ,
  so we get an endless number of 's
  which
must diverge.

 Suppose, for simplicity, that the terms in your series are arranged in decreasing
  order. (If not rearrange them.) You can make a histogram, creating blocks,
  each of width 1 and height between j - 1 and j given by the j-th term in your
  series. Then the value of the series is the area between the x axis and the
  top line of this histogram, between 0 and infinity.

 You can then, with reasonable luck, be able to define a nice smooth curve
  that meet the left topmost points of each of your blocks, and another (the
  same one moved a distance one to the right) that meets the right topmost points
  of each of your blocks.

 In the case of the harmonic series, these are the curves  and .

 When you do this you will notice that the first of these curves lies entirely
  under the top of your histogram, while the second lies entirely above it, except
  for its first term.

 This means that the area under your histogram above the x axis is sandwiched
  between the area under your two curves, above the x axis (all for positive
x, starting the upper curve at 1 and adding the first term to it).

The area
  under a curve is usual called the integral of the function defined by the curve,
  and we will study it soon and find ways to evaluate such areas.
  The series will converge when the areas under such curves are finite, and diverge
  otherwise, and that is a powerful criterion for absolute convergence. It is
called the "integral test".

In the case of the harmonic series, the
    area under  betweeon
  x = 0 and x = y can be shown to be ln(y+1) which is unbounded when y increases.
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15.4 Divergent Series

I find divergent series kind of fun. Getting useful information out of them
seems like getting something from nothing, and that appeals to my psyche.

 For some series, we are interested in the terms, not their convergence. The
  individual terms may count something we want to count, and fact that the function
  defined by the series diverges is of little interest to us. We still want to
  count what its terms represent. Such things are called formal power series.

 There are some power series that we can define even where they diverge, especially
  if we allow our variable to be complex. Thus the geometric series diverges
  when x > 1 but its formula,  makes
  sense everywhere except at x = 1 and we can use it to attribute meaning, of
  a sort, to the series, everywhere
  but
  at x = 1.

 We can even take a divergent series and deduce how its n-th partial sum grows
  as a function of n.

 Thus, as we have already claimed, the n-th partial sum of the harmonic series,
  ,
  behaves like ln(n). We can ask, what happens to the difference between that
  partial sum and ln(n+1)? This difference is called Euler's constant (usually
  written as gamma).

Exercise 15.3 Use a spreadsheet to evaluate Euler's constant to 9
  decimal places. Hint: you will have to extrapolate to do this.
  To do this you can evaluate this difference at say n = 2, 4, 8, 16, 32, 64,...
  and assume that
    the
      difference between the partial sum and ln(x) + Euler's constant is a power
      series in .
  Taking twice each difference less the preceding difference will eliminate
      the first term in this series, taking  of
    each resulting term less  of
  its predecessor will eliminate the second term, and so on.
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15.5 Power Series

Power series supply us with a new way to describe functions: we can specify
  the coefficients of each power in the series. This raises the following questions.

Given a function defined previously, what does its power series look like?

What do the terms of the power series tell us about the function?

 A standard power series looks like

f0 + f1x + f2x2 + ... + fnxn +
  ...

We can also look at power series for which we subtract some value, call
    it z, from the variable x. These look like

f0 + f1(x - z) + f2(x - z)2 +
  ... + fn(x-z)n + ...

 A standard notation for such things is



We can answer
  our second question by differentiating the function represented by the series
  n times and then setting x = z. Differentiating n times kills
          off all terms which have degree strictly less than n, and setting x
  = z kills all
        terms which have degree strictly greater than n. We are left with the
    effect of these operations on the nth term alone.

We then can deduce:

f (n)(z) = n! fn

 This tells us that the nth term, fn, in this series, is the nth derivative
  of f(x) evaluated at x =z, divided by n!

 This gives us an answer to our first question as well. If we apply this statement
  to each term in the series, we find:

 

Let
  us apply this result to some functions we know. First the exponential function
  is its own derivative hence its own second derivative and so on. Evaluating
all of these at x = z give the same answer, namely exp(z). This tells us:




  If we keep differentiating the sine function, we first get cosine then minus
    sign then minus cosine, then sine again, and the derivatives repeat this pattern
  in blocks of 4. This gives us:

 

Exercise 15.4 Do the same thing for cos(x) and do the same for both sine
  and cosine for z = 0. Deduce the "addition theorems" for sines and
  cosines
from all these results.

Radius of Convergence of Power Series

 If you change the magnitude of the series variable, you change the ratio
  of successive terms. Since series converge when this ratio is any factor fixed
  factor less than 1, power series typically converge up to some maximum magnitude
  of the expansion variable, which value is the limiting ratio of .
  This ratio is called the radius of convergence of the series.

 If we define these functions in the complex plane, so that our variables
  can be complex numbers, this ratio has a geometric meaning. It turns out that
  it is the distance from the expansion point, here z and the nearest singularity
  of the function f.

 For example, for the geometric series, there is a singularity of the function
  at x = 1. This means that the radius of convergence, expanding around 0 is
  1.

Exercise 15.5 What is the radius of convergence of the functions sine and
  exp? If you expand the function (1-x)-1 about z = -4, what will the radius
  of convergence
  be?
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15.6 Application of Power Series: Stirling Formula for n!

The exponential series converges quite rapidly, because of the factorial in
  the denominator. It is therefore easy to evaluate this series to any accuracy
  on a spreadsheet. You just make a column for j, one for j! one for the j-th
power term, and sum them.

The ratio of the n-th power term to the previous one
  is .
  This means that the terms increase until the x-th term, and then start downward.
  Suppose
  x is an integer, say k. Then the largest term is the k-th power one, and it
  is .
  This term is not the only contribution to exp(k), but it gives a notion of
  the order of magnitude of exp(k). The latter is given by  multiplied
  by the "effective number of terms in the series that contribute to exp(k)". Let
us call the ratio exp(k) divided by,
its largest term, W(k).

We then have 



So what is W(k)? If you think about it, you can probably
  convince yourself that it increases with k, but not as fast as k itself does.

Exercise 15.6 I
    want you to figure out what it is by computing the ratio  on
    a spreadsheet for lots of k values.

  Here is a hint: compare your values for
  this ratio for k = j and k = 4j. What do you find? This tells you the dependence
  of W on k. Then try to find the
    exact
    limit of W. You can do it!
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Chapter 16: The Antiderivative


Introduction

Text.

Topics

16.1 The Antiderivative


16.1 The Antiderivative

The antiderivative is the name we sometimes, (rarely) give to the operation
  that goes backward from the derivative of a function to the function itself.
  Since the derivative does not determine the function completely (you can add
  any constant to your function and the derivative will be the same), you have
to add additional information to go back to an explicit function as antiderivative.

Thus
    we sometimes say that the antiderivative of a function is a function plus
  an arbitrary constant. Thus the antiderivative of cos x is (sin x) + c.

The
    more common name for the antiderivative is the indefinite integral. This
  is the identical notion, merely a different name for it.

 A wavy line is used as a symbol for it. Thus the sentence "the antiderivative
  of cos x is (sin x) + c" is usually stated as: the indefinite integral of cos
  x is (sin x) + c, and this is generally written as



 Actually this is bad notation. The variable x that occurs on the right is
  a variable and represents the argument of the sine function. The symbols on
  the left merely say that the function whose antiderivative we are looking for
  is the cosine function. You will avoid confusion if you express this using
  an entirely different symbol (say y) on the left to denote this. The proper
  way to write this is then



Why use this peculiar and ugly notation?

 We do so out of respect for tradition. This is the notation people have used
  for centuries. We will see why they did so in the next section.

 The first question we address is: if you give me a function, say g, and ask
  me to find its indefinite integral, how do I do it?

 The basic answer to this question is: there are no new gimmicks for doing
  this. You can work backwards from the rules for differentiation, and get some
  rules for integration, and that is essentially all you can do. But that allows
  you to integrate (find the antiderivative of) lots of useful functions.

 The antiderivative of a sum of several terms is the sum of their antiderivatives.
  This follows from the fact that the derivative of a sum is the sum of the derivatives
  of the terms. And similarly, multiplying a function by a constant multiplies
  its antiderivative by the same constant.

 Using these facts we can find the antiderivative of any polynomial.

    

    How?

 The fact that the derivative of is
  equivalent to the statement that the antiderivative of .
  This means that the antiderivative of .
  (The c is a different c in each antiderivative; it is there to signify that
  you can add any constant to an
  antiderivative and
  get another one.)

 We can apply this to each term in a polynomial, and find its antiderivative.

 Thus, the antiderivative of

3x3 - 4x2 - x + 7

is 



Students typically find this so easy that when they are forced
  to do find such an antiderivative on a test, often their minds are already
  focused on
  the next question, and they absent mindedly forget and differentiate instead
of antidifferentiating one or perhaps all terms. Please avoid this error.

Exercises:

Find antiderivatives of each of the following
      functions:

 16.1 x3 - 3x2 + 6

 16.2 cos (x)

 16.3 sin (2x)

 16.4 exp (2x)

 16.5 x-1/2

 (check your answer by differentiating it.)
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Chapter 17: Areas and Volumes of Parallel Sided Figures


Introduction

We will now make what will appear to be a digression, and discuss the geometric
concept of area, and volume and such like things.

Topics

17.1 Signed Areas and Volumes

17.2 Representing Parallel Sided Figures

17.3 Properties of Determinants

17.4 Evaluating Determinants

17.5 The Alice in Wonderland Method for Evaluating Determinants on a Spreadsheet

17.6 Solving Several Simultaneous Linear Equations in Several Variables

17.7 Implementing Cramer's Rule on a Spreadsheet


17.1 Signed Areas and Volumes

Area, like distance, and volume in customary language are quantities that
are always positive. However, we will find it useful to give signs to them.

Thus
    if you are driving a car, and another car is 2 car lengths ahead of you,
  you might assign a positive distance to the distance between your car
  and it, and if it is behind you we can assign a negative distance to the same.

The
    same sort of thing can be done with area and volume. If you have an x-axis,
    you can assign positive area to area above it, and negative area to that
  below it. And the same idea can be generalized to volumes, in three dimensions,
  and
    even further.

Why would you want to do this?

If you plot the distance between you and an
    oncoming vehicle, when you are standing still, this distance will decrease
    as it approaches, and then increase
    again, after it goes past you. Thus the plot of its distance will look like
    a V. If we use signed distance, and the vehicle is moving at a uniform speed,
    the distance from where you were before you dived out of the way will be
  a straight line. After it passes you its distance becomes negative. Straight
    lines are so much easier to deal with than V-like curves that we prefer to
deal with them.

The area of a rectangle, as I hope you remember, is the product
  of the lengths of its sides, if we ignore signs, which we normally do. This
  is the basic fact
  we start from.

  Similarly, the volume of a cube is the cube of its side length.
  The analogue of a rectangle in three dimensions is called a "rectangular
  parallelepiped" and
  its volume is the product of the lengths of its three sides. And you can imagine
similar statements in more dimensions.

We will now discuss the areas of tilted
    parallelograms, and the volumes of general parallelepipeds, which are three
    dimensional six sided figures whose
  opposite sides are parallel to one another.

Why?

You will soon see why. Be patient and you will learn something you do
  not now know.
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17.2 Representing Parallel Sided Figures

The first thing we need is a way to describe parallel sided figures.

And here
    is one way. Imagine we have x and y coordinates in the plane, and we put
  one corner of our figure at the origin, the point (0, 0) which means
  x = 0, y = 0.

Then suppose that the adjacent "corners" of the parallelogram
  are located at points (a, b) and (c, d). The last corner will be at (a + c,
  b + d) because
  the sides are parallel. (Choose values for a, b, c and d and draw yourself
  a figure to verify this statement.)

Then, one way to describe the parallelogram
    is to give a square array consisting of the numbers a, b, c, and d, arranged
  as follows:



For example, the parallelogram with corners (0, 0), counter-clockwise from
    it (1, 2), clockwise from it (0, 1) and with corner (1, 3) opposite the origin,
can be represented as



And in three dimensions, we can describe a parallelepiped with one corner
    at the origin, (0, 0, 0), by putting the coordinates of the three corners
that share edges with the origin as three rows of an array.

And in one dimension
        we can represent a line segment, which starts at the origin and goes
  to a point x, by the single entry, x.

Thus,



can represent a line segment, a parallelogram and a parallelepiped respectively.

We
    give a uniform name to the (signed) length of the line segment, the area
  of the parallelogram and the volume of the parallelepiped, all with some appropriate
    sign:

  Each is called the determinant of the given array. And we
  can define the determinant just as well with similar meaning for larger square
  arrays of
  numbers.

The determinant of an array is represented sometimes by putting parallel
    lines on either side of the array, or by writing det({array}).

 Ok, you have defined these things to be the determinant but what good is
  that?

All these quantities in all dimensions have some wonderful properties, which
  we can convert into properties of determinants, and we will be able to use
  them to calculate all of these. Not only that, we can do this, in any dimension,
  on a spreadsheet with only one non-trivial instruction, and some copying.

(On
    the Excel spreadsheet, there is a command, called mdeterm(), whose argument
    is an array, and which computes determinants, hence areas and volumes and
  so on. We can do the same without using this command.)

Exercises:

17.1 Represent the parallelepiped with corners at (0, 0, 0) and adjacent
corners at (1, 2, 3), (1, 0, 1) and (0, 1, 2) in two different ways.

17.2 Can you
  figure out the volumen of this parallelepiped.

 17.3 What is the relation of the area of a triangle to the area of
    a parallelogram
having two of the sides of the triangle as sides of it?

17.4 If one corner of
  the parallelepiped described by the 3 by 3 array above is at the origin, what
  is the location of the "opposite" corner.
(Figure out yourself what opposite means here.).

What are these "wonderful" properties?









>

17.3 Properties of Determinants

The first property, which we deduce from the definition of determinant and
  what we already know about areas and volumes, is the value of the determinant
  of an array with all its non-zero entries on the main diagonal. Such an array
  describes a figure which is a rectangle or rectangular parallelepiped, with
  sides that are parallel to the x and y and z and whatever axes. We already
  know that the magnitude of this determinant must be the product of its diagonal
entries. The sign we define to be that of this product.



Thus the determinants
  of the three arrays above are 5, -1 and 2, respectively.

This is wonderful?

No, not yet. This is a definition of the sign of a determinant.
  It depends on the order in which you choose to list the sides of the figure.

 We really are interested in the area of parallelograms that are tilted, so
  that sides are not perpendicular to one another, or that are rotated, so that
  the sides are not parallel to axes.

And here is the wonderful fact: If you fix
    the base of a parallelogram, (one side of it,) then its area only depends
  on the height of the parallelogram
    from that base. It does not matter how much the second side tilts in the
  direction of the base.

A similar property holds in any dimension, and tells
    us: we can add any multiple of one row of the array to any other row, without
    changing its determinant.

 Another wonderful fact that follows from the first two is: the determinant
  is linear in any of the rows (or columns) of its array. This
  means that if you multiply some row by 7 the value of the determinant goes
  up by a factor
  of 7. It also means that if you take two arrays that differ only in some one
row, like the following two, which differ only in their first rows:



then the
    determinant of the array gotten by summing the rows that differ and keeping
    the others the same, (getting here 3 4 for the first row and 5 7 for
  the second) is the sum of the determinants of the two arrays you started with.

Exercise
    17.5 Show, by adding rows to one another appropriately, that interchanging
  two rows of an array changes the sign of its determinant. (Hint add a row to
    another, subtract the other way and add back the first way; or something
  like
    that)

And what good is all this?
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17.4 Evaluating Determinants

Well, from the first two facts alone, we can compute the value of any determinant,
and hence the area or volume or whatever of any parallel sided figure.

How?

Well, we can add multiples of rows to one another to get rid of off diagonal
    elements. When we are done, we can deduce the value of the determinant as
  the product of the diagonal elements.

 Actually, we need only make the elements on one side of the diagonal into
  0, and take the product of the diagonal elements. Getting rid of the others
  is sometimes a nice thing to do, but will not affect the diagonal elements
  at all.

    

  Let's evaluate the determinants of the following arrays:



 If we subtract
    5 times the first row from the second in the first matrix we get (0, -3)
    for the
    second
    row, so the determinant is -3. In the second array we subtract  times
    the first row from the second and get (0, 2) as new second
    row. The determinant of the second matrix is therefore 2 * 2 or 4.

This tells us, by linearity
      that the determinant of 



is -3 + 4 or 1. We can verify this by subtracting  of
  the first row from the second.row, turning that second row into ,
  and the product of the
diagonal elements is 1.

This same procedure for evaluating determinants (which
  is sometimes called "row
  reduction" and sometimes called "Gaussian elimination") can
  be applied to square arrays of any size. It is easy to do for 2 by 2 arrays,
  but it is quite easy to make a mistake even for such. It is still reasonably
  easy for 3 by 3's but most people will make some silly mistake along the way
  and get it wrong most of the time. Even you and I can expect to get 4 by 4
  determinants wrong most of the time when doing it by hand by this approach,
  because the steps are so straightforward and so boring. Your mind will stray
along the way and you stand an excellent chance of screwing up.

Is this the only
  way to evaluate a determinant?

No, there are at least two other ways,
  one of which is equally boring and prone to your making errors. The other is
  magical
    and great fun, but surprisingly
    it is never taught, and practically nobody not reading this has ever heard
  of it.

The standard approach is to write a formula for the results of the method
  just described. If you start with rows (a, b) and (c, d). To turn the c into
  0 you subtract 
  times the first row from the second. The resulting diagonal elements are then
  a and  and
  their product is ad - bc. This is
  the formula for the determinant of a general two by two array.

For three by
    threes, you will get products of elements one from each row and one from
  each column (as you must since each such product must be linear
    in each row and column). There are six such products, and they all occur
  with appropriate signs.

  Applying this formula is also an error prone operation,
  if done by hand.

Exercise 17.6 Evaluate the following determinants by any method
above.  



So what is the magical approach?
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17.5 The Alice in Wonderland Method for Evaluating Determinants on a Spreadsheet

As you may not remember, Lewis Carroll, the author of Alice in Wonderland,
  was a mathematician, and the method uses his celebrated theorem on determinants.
  It
goes as follows:

Suppose we have a square array A, and two additional rows, called
    T and B, and two columns L and R. We define the following additional arrays.
    ATL, ATR, ABL, ABR, and ATBLR,
    to be the arrays gotten by adding row T at the top of A and column L to its
    left, row T at the top and column R on the right, row
  B
    on the bottom and column L on the left, B on the bottom and R on the right,
  and finally, T at the top, B at the bottom, L on the left and R on the right.

If
      A is an n by n array then the next four are n + 1 by n + 1 array and the
  last is an n + 2 by n + 2 array.

Then the following equation holds:

Det (ATBLR)*Det(A) = Det(ATL)*Det(ABR)
  - Det(ATR)*Det(ABL)

We define the determinant
      of the 0 by 0 array to be 1. The determinant of a one by one array is its
      lone entry. The content of this equation, when applied
    to the array in which A is 0 by 0, T is (a, b), B is (c, d), the vertical
  entries of L are a and c and those of R are b and d, is the formula that the
  two
  by two determinant of the array with rows (a, b) and (c, d), multiplied by
  1 (the
    determinant of a 0 by 0) is a c - bd, which is what the right hand
  side is here.

(The first entry of T is in the left row and its last entry
    is in the right row, so that if, as on the right here you don't have a right
    or left row, then
    the corresponding entry to T is missing. The same thing happens with all
  the others. Thus ATL is a, ATR is b, and so on, here).

And
  what good is all this?

If we apply this statement for A a zero by zero array,
    we can produce the determinants of 2 by 2 adjacent subarrays of the array
  we apply it to from
    the one by ones and the zero by zero. The original array can be considered
    the array whose elements are determinants of the one by one subarrays of
  the array we started with.

If we apply the same formula again to the array of
    2 by 2 determinants produced at first, we produce an array of 3 by 3 determinants
    of adjacent rows and
      columns, and applied to these we get an array of 4 by 4 determinants of
  adjacent subarrays
      of the original array, and so on, and eventually we get the determinant
  of the entire array.

Now the really wonderful thing is this: to do everything
    just mentioned, we need only make one entry in the spreadsheet, and copy
  and it will do everything
    just discussed.

Huh?

Suppose we have a four by four array, and we locate it in positions A6 B6
  C6 D6 to A9 B9 C9 D9.

Then put a 1 (to represent a 0 by 0 determinant,) in position
    B3 and fill down from B3 to B5 and across to D3 to D6, putting 1's in all
  these places.

Now here is the key step. Put = (A6*B7 – A7*B6)/B3 into
  A10, and fill down to A18 and across to C10 to C18.

Then the determinant of
    your original array will appear in A18, unless along the way you divided
  by 0.

And then what?

 If you divide by 0 along the way, (possible because each step involves dividing
  by something) you can modify the elements of your array by tiny amounts until
  this no longer happens. Then you will have your answer.

When do you divide by
    0?

 This happens if any of the elements of your original array, in positions
  B7 B8 C7 or C8 are 0 or if the two by two determinant created in B11 is 0.

 (There is a systematic way to avoid dividing by 0, that works for almost
  every array of size up to around ten by ten, whose entries are integers. You
  can create an array whose element in the ith row and jth column
  is =x * ln(i + j) where x is 10-8, and add it term by term to the
  original array, and apply the method just described to the sum array. Only
  by some
  sort of
  miracle will
  you end up dividing by 0, and you can vary x to eliminate its effect on the
answer. It is described in the last section below)

Exercises:

17.7 Set up a spreadsheet
        for evaluating determinants of three by three arrays whose middle element
  is non-zero by this approach.

 17.8 Get it to work so that it instantly supplies the answer as you
    change the array.

 17.9 Add 10^-8 to the middle entry so that the method always works
    even when that entry is chosen to be 0. (you have to separate the entry
            data for the
            middle position, which could be 0 from the middle position you use
    here, which should have something like 10^-8 added to the former.)

Is
      this method really useful?

Well, you can set it up in a few minutes, and once it is set up, you can
  change your given array and find the changed determinant immediately. This
  allows you to check any calculation of a determinant almost instantly. Believe
  me, this will save you lots of time, if you ever have to evaluate determinants.

But
  why should I want to evaluate determinants?

We have seen that the magnitude
    of a determinant gives the area or volume or analogue in higher dimension
  of the figure that given array describes. You
    may someday want to find such things. But there are several other uses that
    are even more important.

Such as?

We will describe the first now and just mention the second.

First, determinants
    can be used to solve systems of linear equations. We can and will show how
    to implement this on a spreadsheet and use the method
    of the previous section to solve up to ten equations in ten unknowns with
  very little more work than that of finding the determinant.

Second, determinants
  can be used to find eigenvalues and eigenvectors of arrays, quickly and conveniently.

What
  the devil are those?

One thing at a time. If you have patience, we will eventually
    get to these, but not now.
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17.6 Solving Several Simultaneous Linear Equations in Several Variables

The sort of problem we want to solve is typified by the following example.

We
  are given the equation



and wish to determine the values of x, y and z that these
  equations imply.

We can associate the following array of numbers with this
  set of equations.



Here the first three columns are the coefficients of x, y and z respectively,
  and the last column consists of the numbers on the right hand sides of the
equations.

We really want to extract an equation of the form Ax = B (and similar
  equations for y and for z) from this one.

We can do so using determinants. In
    fact, in general given a system of equations with k equations in k variables
  the same result holds. And it is:

Set A = the determinant of the first k (here
    3) columns of this array, and B the determinant of the array with the right
    hand column substituted for the
    column associated with the variable you are looking for.

Thus, if
    we want an expression for the variable x, B will be the determinant of the
    array whose first column is the last one above, and the second and
  third columns are as given.

The answer is, then, that x is given by the
  ratio, .

This statement is called Cramer's Rule, and is not difficult to
  prove. Proof

Here it is explicitly in this case:



The
    wonderful thing about this expression is that you can use your spreadsheet
    method for computing determinants, to, at the same time, and with hardly
  any more effort, compute the numerators and denominator for all variables,
  and
    to deduce the values of all the variables. Thus, with a few minutes of effort,
    you can set up an instant equation solver, for up to say, 10 equations in
  10 variables. Once you have set it up, as soon as you write down your array,
  it
  will produce solutions, and check that they are solutions.

Does this always
  work?

Well, almost always. You have trouble if the denominator here is 0.
    That means that there will be no solution at all unless the numerator is
  also 0,
    in which case there are lots of solutions, and this method will give you
  one of them, with luck.

The hardest part, in setting this up is in creating
    your input information, which is the array representing the equations you
  want to solve. When you set
    such a thing up, you are wise to use the hint described in a previous section
    for avoiding dividing by 0. Otherwise you are very likely to get some ridiculous
  error message instead of your answer when you want it the most.

Exercises:

17.10 Write down the Cramer's Rule expressions for the variables y
    and z given the equations above.

17.11 Evaluate the determinants in these expressions,
    and verify that you get solutions to these equations by finding x y and z
  explicitly and substituting
  them into the equations.

You claim I can actually do this and solve lots
    of equations in lots of variables? OK, how?
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17.7 Implementing Cramer's Rule on a Spreadsheet

We can accomplish by following the plan here:

First we do some preparation.
  This is the slightly tedious part.

  1. Enter your array of coefficients of your variables + the right hand side
    in some convenient place, starting, say in AA11 as upper left corner.

2.
    Produce the array A*ln(i+j) where i is the row number and j the column number
    and A is set to 10-8, with upper left corner in BA11 (This is
          to protect against
      dividing by 0)

How?

Put =AZ10+1 in BA10 and copy to the right ten or so columns.

  Put = AZ10+1 in AZ11 and copy down ten or so rows.

  Put =10^-8 in BA9.

  Now you have row and column labels and your small constant.

  Then put in BA11:=$BA$9*ln(BA$10+$AZ11) and copy or fill this to the right
      and down ten or so rows and columns.

  That does it.

3. Add your input data from step 1 and the array from step 2 together
    by entering into A11, the instruction =BA11+AA11.

 4. Enter 1 in B2 and copy it into the rectangle with corners B2, B10 Z2
      and Z10.

 5. Put into the entry in row 11 and the column immediately after the
            column containing the right hand side of your equation, the entry
  =A11 and copy
            or fill this entry down to row 20 and far enough to the right to
  copy the entire
  array of coefficients.

You now should have your original data in the form
    (coefficients, right hand sides, coefficients), with small additions to protect
    against dividing by 0,
    and 1's above it all.

 Now we are ready for the main step.

  6. Enter into square A21 the instruction =(A11*B12-A12*B11)/B2, and copy
  or fill this across to Z11 and down to A91 and Z91.

This is all there is to it. Somewhere down below will be the determinant
  of your coefficients in column A, and, apart from sign, the numerators of Cramer's
  rule, in order starting in columns B on.

All that is left to do is to read off
      the solution to your equations, and check them.

OK, where are these solutions?

That depends on how big your array was. If you
    have k variables, this will occur in row 10k+1. Thus A(10k+1) will be the
  determinant of the left hand
    side, and the contents of B(10k+1) and on to the right will be, up to sign,
  the numerator determinants of Cramer's rule.

And what about the signs?

If k is even, all the signs will
  be wrong. If k is odd, the odd signs will
be right and the even ones wrong.

Eh? How come?

The numerator in Cramer's Rule has the right hand side in the position of
  the column corresponding to the variable being solved for. The determinant
  that is obtained in the columns of row 10k+1 will have the right columns, but
  in the wrong order. To set them into the right order requires shifting the
columns to the right order.Each switch reverses a sign.

Let us check with k = 3
  and k = 4. If we call our variables v1, v2, ...,
  we can label the columns of our array as 1 2 3 rhs 1 2 3 in the k = 3 case,
  and
1 2 3 4 rhs 1 2 3 4, in the k = 4 case.

For k = 3 or 4 the content of A(10k+1)
    is the determinant of the columns (1 2 3) or (1 2 3 4). The content in the
    B
    column of that row is the determinant
      of (2 3 rhs), or (2 3 4 rhs), in the two cases. The content in the C column
      of that row will be that of (3 rhs 1) or (3 4 rhs 1). In the D column we
  have (rhs 1 2), or (4 rhs 1 2), and in the E column (1 2 3) and (rhs 1 2 3).

Verify
    from this that to rearrange these columns to the Cramer's rule forms, which
    are (rhs 2 3), (1 rhs 3), and (1 2 rhs) in the k = 3 case, and (rhs 2 3
    4), (1 rhs 3 4 ), (1 2 rhs 4) and (1 2 3 rhs) takes an odd number of shifts
  in every k = 4 case and in the even k = 3 case.

So, what is the solution to
  the equations?

We copy the determinant of coefficients into A1 setting A1=A(10k+1) just
  to have it handy.

Then in the even k case we put the solution for v1 to vk in
    B1, C1, D1 by setting
  B1=-B(10k+1)/$A(10k+1) (you have to convert 10k+1 to an actual number here)
  and copying this to the next k - 1 columns to the right.

When k is odd you
    have to switch the signs of the v's with odd index.

And that is it.

How about checking?

We can do this by substituting the claimed
  solution back into the equations. This can be done by putting in say, box Z1
  the entry 

  =$B$1*$AA11+$C$1*$AB11+ $D$1*$AC11+ ... until you get to the last variable
vk.

If you copy this down column Z you should get the right hand side column
    for your equations. If you do, you have the right solution, when the content
    of
  A1 is not essentially 0.

What do you mean by essentially 0?

Computers, when calculating, do not have
    the ability to distinguish 0 from some very small number near it. Thus, you
    may get an entry that really should
    be 0 that is very close to 0 but not 0. You must learn to recognize that
  as 0. Here, because we add a small array to the original input we make it easy
  for the computer to be slightly off.

How can I tell if the answer is tiny or
    really 0 here?

 One thing to try is to change the entry in BA9, which measures how much of
  a tiny array to add to the input data. If the changes your answer proportionally
  or more then the true answer is probably 0. Otherwise, you could try instead
  doubling the entries in your matrix. If that multiplies your determinant answer
  by 2k then the answer may be correct.

By the way, once you have set this up
    for a given k, you can change your data and immediately see the solution
  for the new data.

Of course you can save lots of space for small k by moving
    the main instruction up (and modifying it appropriately).

Exercise 17.12 Set
    this up for 6 by 6 arrays, and get it to work.
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Chapter 18: Area under a Curve


Introduction

We will now study the area of very irregular figures. In particular, if we
  have a curve defined by some function, we will consider the (signed) area between
  that function and the x axis, between specified values of x. Area above the
axis counts as positive area, and that below the axis counts as negative area.

We will be concerned with the definition, nomenclature and notation for such
  areas, and with means of evaluating them, both exactly and numerically. We
  will also relate such areas to antiderivatives.

Topics

18.1 Areas: Definition, Names, and Notations

18.2 The Fundamental Theorem of Calculus and Determining
Areas

18.3 Tricks of Integration


18.1 Areas: Definition, Names, and Notations

We start with the area of a rectangle with sides A and B. As you know this
  area is AB. Our first task is to use this fact to provide a means of finding
areas of irregular figures.

To do so we must first define precisely what we are
  trying to do.

Suppose we have some function, for example the sine function,
    and have an interval, say from 0 to 1, on the x axis. We can then plot the
    curve defined
    by

y(x) = sin(x)

and ask for the area in the region whose sides are: the lines
  x = 0, x = 2, y = 0 and the given curve.

This area is called the definite integral
    of the function sin(x) from lower limit 0 to upper limit 1. The word definite
    is sometimes left out, and the
    area is then called the integral from 0 to 1.

 The standard notation for it is:



Why this ugly notation? Why the weird thing?

We use this notation because everyone else does. Cheer up! you will be able
  to recognize and read statements involving these symbols.

 I guess the thing
  is there as an indication that you have a sort of a sum here, and things you
  are summing are, sort of, sin(x)dx.

What is dx?

Patience, patience. You will see.

You can also leave out the x='s that lie
    near the integral sign (which is the weird thing),
    which leaves you



We call this the integral from 0 to 1 of the sine function.
      And it is the area between x = 0, x = 1 y = 0 and y = sin(x) counting any
  area below the x axis as negative.

The more general integral is the integral
  from a to b of "the integrand",
  which is the name we give to the function that defines one boundary of our
  area.

 And what happens if the "lower limit" is bigger than the "upper
  limit"?

The area between x = a and x = b plus the area between x = b and x = c is,
  when a is less than b and b less than c, merely the area between a and c.

This
      is such a wonderful property that we define the integral in the case you
    mention to make it hold true for all a, b and c. This means the area from
      a to b plus the area from b back to a must be the area from a to a, which
    is nothing at all. So we define the area from bigger to smaller to be minus
    the
    area from smaller to bigger.

And what good is all this?

Our key task is to figure out how to determine what these areas are. And
  we have a mighty tool for doing this.

Eh?

First notice that the notion of integral here gives us a new way to define
  a function. We can make the upper limit of our integration vary, call it t,
and consider the resulting integral as a function of t.

For example, we can write



And now we can ask, what is the derivative of the
  function g defined this way, as a function of t?
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18.2 The Fundamental Theorem of Calculus and Determining Areas

We are interested in the derivative of the integral



with respect to the upper
  limit, t.

We can compute this derivative, roughly, by evaluating  for
  very small d.

But g(t + d) - g(t) is just



 The region between x = t and x = t + d is just a sliver, in which sin(x)
  is very near sin(t). So the area in this sliver between y = sin(t) and y =
  0 is just
  d*sin(t),
  where d is the width of the sliver and sin(t) its height.

This tells us that
    the derivative of g(t), the derivative of the integral of the sine function
  at argument t, is this area divided by d or sin(t).

Exactly the same result
    holds for any function whose values for arguments sufficiently close to t
  are as close as you like to its value at t. (These
  are called continuous functions) for all t between the limits of integration.

This
    result is called the fundamental theorem of calculus. It says: If
    you differentiate the integral of a function, f, that is continuous at argument
    t in the closed interval including the endpoints of integration (this is
  the condition that if's values are as close as you like to f(t) at arguments
  sufficiently
  near t) you get back the value of the integrand, f, at argument t.

Another way to say this is: the integral with upper limit as variable, as
  we have just defined it, is an antiderivative of its integrand, when that integrand
  is continuous.

This means that integrating a function and then differentiating
  the result with respect to upper limit, gives back the function.

We can also
  make the same statement about applying these operations in the opposite order.

Suppose
    we start with a differentiable function, f, and form its derivative, f '(x),
  and integrate this derivative between somewhere, say a, and t.

In other words
    suppose we form



The fundamental theorem then tells us: g(t) = f(t) – f(a).

To see this,
  recall that if f is differentiable at argument x then for d sufficiently small,
  we have, to any desired accuracy:



 If we chop the interval between t and a up into slices of widths given by
  d's appropriate to each x value, we can sum up the contribution from either
  side of the equation f 'd = f(x + d) - f(x) over all the slices. The sum of
  the left hand terms will give us the sum of the areas in the little slices,
  and
  the sum of the right hand pieces will "telescope". The left term
  from one slice will be the right term from the previous slice with the opposite
  sign; the two will cancel each other out, and we will get contributions only
from the first and last slices.



This is the standard form for the fundamental
  theorem.

And what good is this "fundamental theorem"?

 The uses of this theorem, and of its analogues in higher dimensions, have
      been so significant in history that they cannot be exaggerated. We will
  ignore these
    here. For our purposes, the main use of this theorem is in allowing us to
  evaluate integrals, that is, areas under curves, for vast numbers of integrands.

What
  integrands?

For starters, we can integrate any integrand that we can recognize
  as a derivative.

For example, the sine is the derivative of minus the cosine. Applying the
  last equation above to this fact, we get



The
  original area we used as an example was the integral of the sine from 0 to
  1. This is cos(0) - cos(1) or 1 - cos(1).

What else can we recognize?

1. Any power of x such as xa, and therefore
  any polynomial or sum of powers.

2. The exponent function, exp(x) and therefore
  exp(kx) for any k.

3. The derivative of the arctangent, of the tangent and
  arcsine, and lots more.

Exercises: 

Evaluate the following definite integrals:

18.1 Integrand sin(x)cos(x) from 0 to 2.

18.2 Integrand x2 + 3 x - 7 from 1 to 4.

18.3 Integrand
  (1 + x2)-1 from 0 to infinity.

18.4 Integrand (2 + x)-1 from 0 to 1.

18.5 Write down some horrible
    function. Differentiate it. Now ask some friend (former friend?) to integrate
  your result. You will know the answer!

18.6 Remember the separate occurrence
  rule for this one. Differentiate (with respect to t:
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18.3 Tricks of Integration

The techniques of integration are basically those of differentiation looked
at backwards.

The rule for differentiating a sum: that you get the sum of the
    derivatives of the summands, gives rise to the same fact for integrals: the
    integral of a sum
  as integrand is the sum of the integrals of the summands.

1. The Product Rule Backwards

The product rule, says that the derivative of a product is the sum gotten
  by differentiating each factor as if the other were constant and adding up
the results.

 We can read this backwards as a way to handle an integrand of the form fg',
  when we know how to handle the integrand f 'g. For, we can write the product
  rule as

fg' = (fg)' - f 'g

and integrating both sides tells us



This statement is called "integrating by parts" and
  is useful for
integrands like xkexp(x) or ln(x) or xln(x).

For example, to integrate
  ln(x), set f(x) = ln(x) and g'(x)= 1. Then  and
  g(x) = x.

 We can conclude that the integral of ln(x) from a to b is bln(b) - aln(a)
  - (b - a).

Exercise 18.7 Do the other integrals mentioned just above: with integrands xkexp(x)
    for k = 1 and k = 2, and also xln(x).

2. The Chain Rule Backwards

 The chain rule tells us how to differentiate f(g(x)) and the answer is .

This tells us that we if we can recognize an integrand as having the form
  ,
we can integrate it to get f(g(x)) evaluated at b less its evaluation at a.

What
  can we recognize this way?

Here are examples you should mull over: .
  Try guessing what to choose for g(x) and see if you can get it to work. If
  you
  fail, try again.

Using the chain rule backwards is sometimes called the method
  of substitution.

We will not dwell on this topic. For further details see
  the corresponding sections of course 18.013A.

We do note that, by an appropriate
    magical substitution, you can turn any rational function of sines and cosines
    into a rational function, which you
    can actually integrate, with enough effort.

Is there anything we cannot integrate?

Yes definitely. The integrands  are
  examples, for which there is no solution that can be expressed in terms of
  standard spreadsheet
available functions.

Nowadays, you can consult any of a number of available programs,
    such as Maple, Mathematica, and Matlab and they will give you formal solutions
    to any
    doable integrals, and solutions to arbitrary accuracy for those that cannot
  be integrated exactly in terms of the functions we have defined.

We now turn
    to the question: how feasible is it to integrate, that is, to determine areas
    under curves, numerically?
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Chapter 19: Numerical Integration


Introduction

If you want to evaluate a particular integral, you can do it with amazing
  ease on a spreadsheet. It should take no more than ten minutes to set up an
  integrating spreadsheet, and once you have one, you can apply it to a new integrand
  in under a minute. All you need do is enter your integrand once, copy it into
  a rectangle, and enter your limits of integration.

  Since it is so convenient to do this, you would be wise to check any integral
  you evaluate numerically. If your formal answer and the numerical answer agree,
  you are definitely right, so long as you got the question you are answering
  right.

Topics

19.1 Plan

19.2 "Rules" for Integrating

19.3 Why Do these Rules Work?

19.4 Numerical Integration in Detail

19.5 Where do we go from here?


19.1 Plan

So how do you do it?

Here is the idea. We create a spreadsheet, in one column
    of which we start with the lower limit of integration and increase values
  of the argument by
    some amount, d, per row. This can be arranged by one or two entries and copying
  down. You can call this the argument column.

In the next column, we evaluate
    the integrand at each argument. This can be done by evaluating it at the
  first entry, and copying down. This can be
  called the value column for your integrand.

In the final row we sum the entries
  in the previous column, each multiplied by d, This again requires one entry
  and copying down. And that is essentially
  it. This is the integral column. Its entry is the integral from the beginning
  point to the next entry in the argument column, using the "left hand rule".

Come
  again?

Before fleshing this out in detail, we will digress to discuss,"rules" to
  use for the numerical integration.
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19.2 "Rules" for Integrating

The goal of any integration scheme is to estimate the area in each interval
  of given width w, accurately. There is no problem in doing this if the integrand
  is essentially constant in that interval, but if it is not, we need a plan
for doing the estimation. Any such plan is called a rule for
integration.

Here are the simplest rules, starting from the least sensible ones.

1. Estimate
    the height of the interval by the value of the integrand at the interval's
  leftmost point. This is called the left hand rule.

2. Estimate the height of
    the interval by the value of the integrand at its rightmost point. This is
  the right hand rule.

3. Estimate the height of the interval by the average of the previous
  two. This is called the trapezoid rule.

4. Estimate the height of the
    interval by the value of the integrand smack in the middle of it. This
  is not called anything, but it could be called the no-name rule, since nobody has bothered to give it a name.

5. Choose the combination of the previous two that is exactly satisfied
  by quadratic functions. This is called Simpson's Rule.

Enough! Are there more rules?

Yes, you can do even better.

Better? How well do these rules do?

 Well, the first two rules have errors in them that decline linearly with
  d. So if you divide d by two, the error decreases by a factor of 2 as well.

The
    next two have errors that are quadratic in d; this means that they decline
  by a factor of 4 when d decreases by a factor of 2.

Simpson's rule has an
    error which is quartic in d; it declines by a factor of 16 as d decreases
  by a factor of 2; and you can achieve a decline by a factor
  of 64 if you want, or even more.

The trapezoid rule uses as height of each
  interval half the value at each end. This gives a weight of  to
  the endpoints of integration, and 
  to each intermediate point, ( from
  the interval on each side of it).

Simpsons rule amounts to doubling the contribution
    from the odd numbered
    points but then using 3 as the denominator instead of 2; so the first and
  last points (the last being necessarily even) get weight ,
  the odd ones get weight
    
    and the other even ones get weight .

And
  are these rules hard to apply?

No, the first three are very easy, and you can get Simpson's be a clever
  trick from the third. With another similar trick you can get the super Simpson
  rule with a factor 64 error decline for each decrease of d.

So how accurate
  can you get with such integrations?

For most integrands, over finite intervals you should be able to get ten
  place accuracy, if you want it, which is far more than any problem you encounter
  will need.

OK, you got me curious. Why is does the trapezoid rule do better
    than the first two? And why is Simpson's Rule still better?
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19.3 Why Do these Rules Work?

Suppose your integrand is f(x) and f has a power series expansion about the
point q whose coefficients do not go wild. We can then write, for x near q



Suppose now we want the area under f between q - d and q + d,
  which is an interval of width 2d.

We can figure out the answer: exactly, by
    integrating each and every term, or approximately, by stopping at some point
    and summing the results of integrating
  the terms up to that point.

If we do either, you will notice that the terms
  with an odd power in (x - q) do not contribute at all. (they just tilt the
  contributions in a way that
  averages to nothing in any interval that is symmetric about its center.) The
  area under f will then consist of 2d*f(q) from the first term and then  from
  the third term and then another contribution proportional to  from
  the fifth term, and so on.

Now suppose instead we approximate by the left hand
    rule: This approximates the area by 2d*f(q - d) which has a contribution
  from the second term, and that
    contribution is proportional to d2.

 This d2 term is wrong, and the relative error is the ratio of
  it to the first term. When the contribution from the first term is not 0, this
  relative error
  is proportional to d.

On the other hand, if we approximate the area by something
    symmetric between the endpoints of the interval, the odd terms will cancel
    out, and the error,
    coming from the third and later terms will be proportional to d3,
    and the relative error (since the first term is proportional to d) will be
    proportional
  to d2.

There are two obvious choices for symmetric "rules",
  either of which has error that decreases as d2. These are: take
  half of the value at
  q - d and half at q + d; or take the value at q itself. The first is the trapezoid
  rule and the second is the no-name rule. (In practice, the no-name rule is
  slightly better than the trapezoid rule in accuracy.)

A sneaky trick is to take
    a combination of the trapezoid and no-name rules chosen to get the contribution
    to the area of the interval from the quadratic
    term in the power series expansion exactly right. Then the first term in
  the error will come from the quartic term in the power series expansion, and
  it
  decline relative to the main contribution as d4 does.

The result
    is called Simpson's rule. We can deduce what it is by noticing
    what the quadratic term contributes to the true area between q - d and q
    + d: integrating
  between these two points gives you   (the  combines
  with the fact that you get contributions at both endpoints to give 1). The
  no-name
  rule gets no contribution from the quadratic term while the trapezoid rule
  gets a contribution lacking the  that
  comes from integrating ,
  from the true answer. In other words, it gets a contribution, from that term,
  of
  ,
  which is three times too much.

Simpson's rule therefore says: take  of
  the trapezoid rule, and  of
  the no-name rule. Since the trapezoid rule gives weight of d to each end of
    the interval and the no-name rule gives weight 2d to the center of it, taking
    the   combination
    gives weight  to
    each end and  to
    the middle point. If you sum this up over a sequence of intervals you get
    weights of
     multiplied
    by 1 4 2 4 2 4 ... 4 1, where the 4's go in the middle of intervals and the
    2's at the ends. The separation between adjacent evaluation points
    here is d.

How can you do better?

 Most of the time you won't need to do better, because the error here goes
  as d4 which, for d on the order 10-4 is on the order of 10-16 and
  that should make the error quite negligible. If it does not, your function
  may have some
  horrible behavior in your region of integration, and no improvement in method
  will help it much.

However you can do better.

How? Why do you make me repeat myself?

Calm down.

What we can do is to put in a combination of contributions from
    evaluating f at q, and q plus and minus d, and also at q plus and minus 2d,
    so that
        the quartic term comes out exactly right, and the quadratic term does
  so as well.

And how, how, how?

Well, if you take 16 parts of Simpson's rule with separation
  d as above, and 1 part of Simpson's rule with separation 2d, the contributions
  to the error
  from the quartic term will cancel. So, if we call  the
  result of applying Simpson's rule with separation j, the combination  will
give the correct answer in up to the terms of order 

Why did you divide by 15 here?

I did so because the combination  gives
  the correct answer 16 -1 or 15 times, as well as any error it has. This is
15 times too much.

You mean to say, you can improve the accuracy of Simpson's
  rule with evaluation point separation d by combining it with a less accurate
  (separation 2d) Simpson's
rule answer?

Exactly so. And moreover, Simpson's rule is the same kind
  of improvement of the trapezoid rule. In fact if we define  to
  be the result of using the trapezoid
  rule with evaluation separation d, then .
  This comes from the fact that the error in ,
  to a first approximation, is  of
the error in .

So
  you are saying, that starting with the trapezoid rule for evaluation separation
    d, you can combine it with less accurate trapezoid rule results at separations
    2d and 4d, and end up with something whose error is the order d6?
    And the trapezoid rule answer is just the average of the left and right hand
  rule answers?

Right
    you are. And this means it is quite easy to do all these things.

OK, how?
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19.4 Numerical Integration in Detail

The really wonderful thing about this is how easy it is to implement it.

Suppose we want to integrate sin2(x) from 0 to 3. This is a random
  thing to want to do, and you can perform any similar task in the same way;
  and once
  you have done it you can change limits of functions almost immediately.

Here
  is what I would do, you of course may choose differently, and better.

First
    I would leave some space at the top for input data and use labels so that
  I can recognize what the spreadsheet is about at some future date.

Thus in A1
      I would write Integration, and in A2 write a, A3 b, A4 n, A5 d, where a,
    b, n, and d refer respectively to the lower and upper limits of integration,
      n to the number of evaluation points -1, and d to their separation, which
    is .

Then
      in B2 through B5, I would insert the values of these that we want to choose,
  namely, 0, 3, 1000 (why not), and =(b3-b2)/b4.

So far we have only labeled
      our input data. Now we want to construct columns for, the values of the
  evaluation points, the function at them and the sum
  of same.

If we only want to do the trapezoid rule, that is enough. If we
      want Simpson's rule as well, we can add a column that gives the value of
    the function at every
      second point only. This will allow us to do the trapezoid rule with 2d
  separation in parallel with that for d separation, and combine the two to get
  Simpson's.

So in column a we label, say in a9, x; b9, f(x); c9, left rule, d9
  right rule, e9 left by 2, f9 right by 2.

And now let us construct these columns.
      In a10 we put =b2. In a11 we put =a10+b$5 and copy a11 this down to a1010.

  Then
      in b10 we put =(sin(a10))^2 (which you can later change to whatever you
      want to integrate) and copy this down to b1010.

  Now in c11 we put =c10+b10*$b$5
      and copy down to c1010. This produces the left hand rule computation.

  In
  d11 put =d10+b11*$b$5 and copy down this will give the right hand rule computation.

  In
  e12 put =e10+b10 *$b$5*2 and in f12 put = f10 +b12*$b$5*2, and copy these
  down to row 1010.

What you have done is to produce two left hand and two right
  hand rule computations.

And what is the answer? If you want the integral to
    the argument in a1010 (or mutatis mutandis, anywhere else), by the trapezoid
    rule for separation
    d it is a=(1010b+1010c)/2, and for the trapezoid rule for separation 2d it
    is =(1010d+1010e)/2.

So let us set b6=(1010b+1010c)/2, and b7 =(1010d+1010e)/2

  Then we can put the
  Simpson rule answer in b8, and it will be =(4*b6-b7)/3, and we are done.

Notice
      that what we did involved three kinds of acts: first labeling. Second entering
      the successive arguments at which we evaluate f and its values there.
    Third, setting up a bunch of sums, to produce left and right rules for d
and 2d separations of evaluation arguments.

The nice thing to notice is that
        the first and last steps need be done only once ever. Changing limits
  only involves changing b2 and b3. Changing functions
  only involves changing the entry in b10 and copying it down to b1010.

What
    do you do if you want to use infinite limits?

You can't get there from here.
    You can however, change variables so that the range of integration in the
  new variables becomes finite. (Or you can break
    your interval into finite pieces, and write your integral as a sum of integrals
    over these. For most integrals you will encounter, the contributions from
  all but the first few pieces will be negligible and you can get by summing
  over
    what is essentially a finite domain.)

Exercises:

 19.1 Set up a spreadsheet as we have described it. Check your answer
  for accuracy.

19.2 Add two more columns (computing results for separation
    4d) and use these to compute the super Simpson answer.

We computed
      the left and right hand rules for d and 2d in separate columns and then
  calculated the trapezoid and Simpson answers in B6, B7 and B8.

Instead we can
      devote a column to each of these, setting f10=(b10+c10)/2, g10=(d10+e10)/2
      and h10=(4*f10-g10)/3, and copying these down and then these
      will represent the trapezoid and Simpson's rule integrals to all endpoints
      that are of the form a + 4kd. (You can ignore the other entries in the
  Simpson's rule column, and ignore every second entry in the trapezoid column)

If
    you do this you can use a chart to plot all columns and see what the various
    rules lead to in the integral as you go along. You can get an idea from this
    of the relative accuracy of solutions, and see visually how that changes
as you change d.

Exercises:

19.3 Do this for integrands (sin(x)^2, and sin(x), and try a few others,
  for example try exp(-x^2) from 0 to say 10.

19.4 Do the same for the integrands
      (exp(-x)-1))/x, from 0 on.to say 10, and also sin(x)/x. For each of these
    you have to put in values at 0
      (-1 and 1 respectively)separately
            by hand or the machine will accuse you of dividing by 0.) Extimate
    the accuracy of your answer.

By the way, if you want to check on an integral
    you have evaluated algebraically, you can add still one more column, putting
    in i10=your answer(a10)
          and copy it down, and have your chart show this column as well. If
  it is
          wrong, that
  will stand out like a sore thumb.

What happens when the integrand becomes
  infinite in the region of integration?

This, and using an infinite limit point
  creates what is called an "improper
  integral". Such a thing runs the risk of being infinite, or of being not
  well defined.

However, it is often possible to make perfect sense out of such "improper
  integrals".

For example, suppose we want to integrate x-1 from -1 to 1.
        This integrand behaves badly near x = 0, and the area between 0 and 1
  can be shown to be unbounded.

  However, if you think about it, there is a negative
      contribution between -1 and 0 that exactly matches the positive contributions,
      and it is reasonable
    to claim that this integral should be 0.

If an integrand is singular at x = a,
    we can define the principal part of an integral whose lower limit is below
    a and upper limit above a, by omitting
    a tiny interval (from a - d to a + d) and letting the size of the interval
  converge to 0. If the integral converges to something, that is its principal
  part.
  Thus the principal part of the integral of x - 1 from -1 to 1 is indeed 0.

To
  see that you have to be careful, consider the integral of integrand  between
  -1 and 1. This function and the area under it are both unbounded, and
  both positive for all x in this interval. It is tempting to notice that   is
  the derivative of ,
  so that by the fundamental theorem of calculus, the integral should be  or
  -2.

That an infinite positive area is -2 is a bit hard to swallow. One way to
  see what went wrong is to notice that the integral from 0 to 1 is exactly the
  same as the integral from -1 to 1 and each is .
  The answer -2 comes from ignoring the contributions to this integral from the
  lower limit
  at x = 0.

Strangely enough there is a sense in which this integral actually
    is -2, which you can discover by learning about integration in the complex
    plane.
    If you are allowed to deform your interval of integration to go into the
  complex plane and avoid 0, the answer -2 is always correct if you do so!
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19.5 Where do we go from here?

In a usual calculus course you learn very little about numerical computations,
  and instead spend time applying integration to computing volumes of certain
surfaces in three dimensions.

This is something worth doing, I am sure, but I
  am getting tired of torturing you, and suggest you learn this elsewhere.

The
    next step after studying calculus, is learning how to use the ideas and techniques
    already discussed to handle problems in three or more dimensions.
    It turns out that no new techniques are necessary to do this, and with the
  appropriate definitions and concepts, you can do wonders.

If you want to learn
      about such stuff, you could do worse than looking at course 18.013A, which
    is on the web.

We will do one more thing, and that is to discuss handling
      differential equations, like those produced in the modeling in earlier
  chapters.
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Chapter 20: Solving Differential Equations


Introduction

In earlier sections, we discussed models for various phenomena, and these
  led to differential equations whose solutions, with appropriate additional
  conditions, describes behavior of the systems involved, according to these
models.

In this Chapter we discuss how to use a spreadsheet to find solutions to
  such differential equations.

Topics

20.1 Plan

20.2 First  Order Differential Equation

20.3 Second Order Equations

20.4 Planetary Motion


20.1 Plan

This material is not a replacement for a course in differential equations,
  which courses tend to provide insights and methods that allow for algebraic
  solutions to many important differential equations, as well as providing insight
  into behavior of solutions that you can get without having to solve them in
detail.

We provide it here because many traditional courses in differential equations
      ignore numerical computations entirely and we wish to show that these can
    be done with an amount of effort not much beyond what is involved in numerical
  integration, for all sorts of differential equations.

We will begin by solving
        a first order differential equation, then consider a second order equation,
        and finally one describing planetary motion, which
        is second order and has two dependent variables. (Though planets move
  in three dimensional space, their motions lie in a single plane. Our dependent
      variables
        are then the x and y coordinates of a planet and the independent variable
  is time t.)

The major difference between these is in the number of columns
    that need be created.

What do you mean by "we". Are you going to
  do it while I go to sleep?

Well, I'll show you how to set one up, and you will see that you can change
  the equation without that much effort and solve them yourself.
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20.2 First  Order Differential Equation

We will first deal with a first order differential equation by which we mean,
  specifically, an equation of the form y'(x) = f(x, y), for some function f.
Suppose, further, that we know the solution at some point z.

This tells us, that
    in the interval in x starting at z and ending at z + d for very small d,
  we have, approximately

y(z + d) - y(z) = f(z, y) * d

We can use this "linear approximation" to
  compute y(z + d), and then continue to compute y(z + 2d) from it, and so on.

This
    approach is like the left hand rule for doing integrals; the only difference
  is that y itself appears in f.

It is a little more difficult to produce the
      analogue of the right hand rule, or trapezoid or Simpson's rule, since
  they require evaluating f and hence y
      beyond z, and we only start with y(z). If we put y(z + d) in our formula
  for computing y(z + d) the computer will accuse us, rightly, of using a circular
  reference.

There are ways to get around this and a whole sequence of formulae
    are known for evaluating y(x + d) - y(d) given our equation to any order
    in d. These are called Runge-Kutta rules, and are very effective. You can
  see how they
  do in the accompanying applet.

 

[bookmark: FirstOrderODE]
  

 

We will do only the simplest correction, namely
  approximate y(z + d) according to



This is still pretty easy to do, and is more or less like the
trapezoid rule.

What do you do if you don't know y(z) at all?

Well,
  you can make a grid of (x, y) pairs with separation say d, and at each draw
  an arrow in the
  direction with slope f(x, y). Then you can start anywhere
  and play "connect the dots" to fill in families of solutions. You
can get a good idea of what solutions look like from such pictures.

You tell me
  I can implement the integration you described on a spreadsheet?

Yes. Put your data, which consists of the starting values of
  x and y, and your choice for d in a convenient place at the top, say in b2,
  b3, and b4.

Then start columns at a10, b10, C10 etc, which will contain
  x and y respectively.

So, put a10=b2, b10= b3, set a11=a10+$b$4 and copy it
      down, set b11= b10+$b$4/2*(f(a10,b10)+f(a10, b10+f(a10,b10))*d) and copy
    that down. That is it.

You can compare the result with the left hand rule
    computation by setting up column c and starting c10=b10, but putting c11=c10+$b$4*f(a10,b10)
      and copying
      it down. Then you can make an x,y scatter chart of all three columns, and
    see what happens. The difference between the two computations gives you an
    impression
  of how bad the simpler one is.

You can see that it takes a bit more work
    to change functions, but is quite easy to change initial conditions.

Exercises 20.1 Set this up for f(x, y) = x*y, and for f(x,
y) = x*sin(x, y), starting at x = 0, y = 1.

Does this always work?

No. For lots of interesting equations it
    is fine. However, sometimes your variable y can go to infinity, and then
the calculation becomes quite inaccurate.

 This can happen because, we are allowing any equation for y', and hence any
  equation for .
  Which means  can
  and will wander around. If  should
  happen to go through 0, then y will go to infinity without any particular reason
  for it.

Most of the time you can avoid this difficulty by solving the differential
    equation for  (remember
    that ,
    so that if we call , u,
  then u obeys 

  The point is that usually when y goes haywire, then  is
  close to 0.

Anyway, integrating differential equations this way is sufficiently
    easy that it is worth a try.
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20.3 Second Order Equations

A second order differential equation is one which involves second derivatives.
Here is one.

y" = -ky - fy' + Asin(wt)

where k, f A and w are parameters, t is
  the independent variable, and y the dependent one.

This is a very important
  equation, which describes the harmonic oscillator and basic electrical circuit.

The
    standard approach is to call y' a new variable, say v. Then we have two coupled
    first order equations:

y' = v, and v' = -ky - fv + Asin(wt)

and these can be treated
  as first order differential equations.

We will, for simplicity, attack the original
  equation as it is. To do so we make a column for t just as before, and now
  create a column for y and one
  for y'. You can if you want make a column for y" as well.

You can put your
  constants, k, f A and w in appropriate boxes, say b2, b3, b4 and b5.

If you
    start your columns at a10, b10, c10, you can set a10 to be your starting
  value for y, b10 your starting value for y, c10 your starting value for y',
    and put in your d column.

d10=-b$2*b10-b$3*b10+b$4*sin(b$5*a10)

You can then, with d in
  b6, set

a11 = a20 +b$6,

b11= b10 +b$6/2*(c10 +d10*b$6/2) and

c11= c10 + b$6/2*(d10 + b$6/2*(-b$2*c10 –b$3*c10
+ b$4*b$5*cos(b$5*a10)))

This amounts to adding d to t, 

If you now copy a11, b11 and c11 down, along with d10 you have
  an approximation to your solution.

You can then make a chart which shows y
  and y' vs t, or y' vs y, or chart both of these things if you like.

Exercise 20.2
    Do this. By making d small enough and using enough rows, and varying your
  parameters, you can investigate the properties of solutions in this model as
  much as you
  like.
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20.4 Planetary Motion

Here we have a second order equation, and now there are two dependent variables.
All this means that we need add more columns to handle them.

Here are the equations:
  The dependent variables will be x and y, and the independent variable t.

We
    will, for simplicity assume that at the start y = 0 and x' = 0, the planet
  having coordinates x(t) and y(t), while we assume the sun is fixed at (0, 0).

The
    general equations of motion have the form



We
  can devote a column to t, one to x, one to x', one to y, one to y', one to
r, and one to x" and finally, one to y".

The t column, as usual now,
  will increase by d from row to row. The r, x" and
    y" columns will express the equations just above for these things in
terms of x and y.

x and y will start at their initial values and increase
    from row to row by  where
    the values of the x' and x" are taken from the
previous row, with a similar expression for y.

x' and y' will start at their
initial values and increase by  where 

This may look awful, but it isn't. Only one formula need be entered
  per column, and then copied down, and all these column entries these are quite
straightforward.

Exercise 20.3 Set this up, and Chart x vs y in the motion. See
  if you can arrange
  to get elliptical orbits.

I apologize for the skimpiness of this description,
    but this is the end, so you should have the ability to figure out what should
    be done here.

Thanks for your attention.

If you want to learn about multivariable
  calculus, you could do worse than consult 18.013A.

Good bye.
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