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To The Reader

Welcome! This book (and course) takes a unique approach to “Intro CS.” In a nutshell, our objective is to provide an introduction to computer science as an intellectually rich and vibrant field  rather than focusing exclusively on computer programming. While programming is certainly an important and pervasive element of our approach, we emphasize concepts and problem-solving over syntax and programming language features.
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Our name is Mudd!



This book is a companion to the course  “CS for All” developed at Harvey Mudd College. At Mudd, this course is taken by almost every first-year student—irrespective of the student’s ultimate major—as part of our core curriculum.  Thus, it serves as a first computing course for future CS majors and a first and last computing course for many other students. The course also enrolls a significant number of students from the other Claremont Colleges, many of whom are not planning to major in the sciences or engineering. At other schools, versions of this course have also been taught to students with varying backgrounds and interests.

The emphasis on problem-solving and big ideas is evident beginning in the introductory chapter, where we describe a very simple programming language for controlling the  virtual “Picobot” robot. The syntax takes ten minutes to master but the computational problems posed  here are deep and intriguing.

The remainder of the book follows in the same spirit.  We use the Python language due to the simplicity of its syntax and the rich set of tools and packages that allow a novice programmer to write useful programs. Our introduction to programming with Python in Chapter 2 uses only a limited  subset of the language’s syntax in the spirit of a functional programming language.   In this approach, students master recursion early and find that they can write interesting programs with surprisingly little code. Chapter 3 takes another step in functional programming, introducing the concept of higher-order functions.

Chapter 4 addresses the question “How does my computer do all this?” We examine the inner-workings of a computer, from digital logic through the organization of a machine and programming the machine in its native machine and assembly language.

Now that the computer has been demystified and students have a physical  representation of what happens “under the hood,” we move on in Chapter 5 to explore more complex ideas in computation and,  concomitantly, concepts such as references and mutability, and constructs including loops, arrays, and dictionaries.  We explain these concepts and constructs  using the physical model of the computer introduced in the  previous chapter. In our experience, students find these concepts are much easier to comprehend when there is an underlying physical model.

Chapter 6 explores some of the key ideas in object-oriented programming and design.  The objective here is not to train industrial-strength programmers but rather to explain the rationale for the object-oriented paradigm and allow students to exercise some key concepts. Finally, Chapter 7 examines the “hardness” of problems—providing a gentle but mathematically sound treatment of some of the ideas in
complexity and computability and ultimately proving that there are many  computational problems that are impossible to solve on a computer.   Rather than using formal models of computation (e.g., Turing Machines), we use Python as our model.

This book is intended to be used with the substantial resources that we have developed for the course, which are available on the Web at https://www.cs.hmc.edu/twiki/bin/view/ModularCS1. These resources include complete lecture slides, a rich collection of  weekly assignments, some accompanying software, documentation, and papers that have been published about the course.
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New!  Improved!  With many “marginally” useful comments!



We have kept this book relatively short and have endeavored to make it  fun and readable. The content of this book is an accurate reflection of  the content of the course rather than an intimidating encyclopedic tome that can’t possibly be covered in a single semester. We have written this book in the belief that a student can read all of it comfortably as the  course proceeds.  In an effort to keep the book short (and hopefully sweet),  we have not included the exercises and programming assignments in the text but rather have posted these on the course Web site.

We wish you happy reading and happy computing!
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Chapter 1: Introduction


Computer science is to the information revolution what mechanical engineering was to the industrial revolution.

—Robert Keller






1.1 What is Computer Science?

You might be uncertain about what computer science (CS) is, but you use it every day. When you use Google or your smartphone, or watch a movie with special effects, there’s lots of CS in there. When you order a product over the Internet, there is CS in the web site, in the cryptography used to keep your credit card number secure, and in the way that FedEx routes their delivery vehicle to get your order to you as quickly as possible. Nonetheless, even computer scientists can struggle to answer the question “What exactly is CS?”

Many other sciences try to understand how things work: physics tries to understand the physical world, chemistry tries to understand the composition of matter, and biology tries to understand life. So what is computer science trying to understand? Computers? Probably not: computers are designed and built by humans, so their inner workings are known (at least to some people!).

Perhaps it’s all about programming. Programming is indeed important to a computer scientist, just as grammar is important to a writer or a telescope is important to an astronomer. But nobody would argue that writing is about grammar or that astronomy is about telescopes. Similarly, programming is an important piece of computer science but it’s not what CS is all about.

If we turn to origins, computer science has roots in disparate fields that include engineering, mathematics, and cognitive science, among others. Some computer scientists design things, much like engineers. Others seek new ways to solve computational problems, analyze their solutions, and prove that they are correct, much like mathematicians. Still others think about how humans interact with computers and software, which is closely related to cognitive science and psychology. All of these pieces are a part of computer science.


[image: ../Images/Alien7.PNG]
Zoogenesis refers to the origin of a particular animals species. Computational biology is a field
that uses CS to help solve zoogenetic questions, among many others.



One theme that unifies (nearly) all computer scientists is that they are interested in the automation of tasks ranging from artificial intelligence to zoogenesis. Put another way,  computer scientists are interested in finding solutions for a wide variety of computational problems. They analyze those solutions to determine their “goodness,” and they implement the good solutions to create useful software for people to work with. This diversity of endeavors is, in part, what makes CS so much fun.

There are several important concepts at the heart of computer science; we have chosen to emphasize six of them: data, problem solving, algorithms, programming, abstraction, and creativity.


1.1.1 Data
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When you Google the words “pie recipe,” Google reports that it finds approximately 38 million pages, ranked in order of estimated relevance and usefulness. Facebook has approximately 1 billion active users who generate over 3 billion comments and “Likes” each day. GenBank, a national database of DNA sequences used by biologists and medical researchers studying genetic diseases, has over 100 million genetic sequences with over 100 billion DNA base pairs. According to the International Data Corporation, in 2010 the size of our “Digital Universe” reached 1.2 zettabytes. How much is that? Jeffrey Heer, a computer scientist who specializes in managing and visualizing large amounts of data, puts it this way: A stack
of DVDs that reached to the moon and back would store approximately 1.2 zettabytes of data.

Without computer science, all of this data would be junk. Searching for a recipe on Google, a friend on Facebook, or genes in GenBank would all be impossible without ideas and tools from computer science.

Doing meaningful things with data is challenging, even if we’re not dealing with millions or billions of things. In this book, we’ll do interesting things with smaller sets of data. But much of what we’ll do will be applicable to very large amounts of data too.




1.1.2 Algorithms

Making Pie and Making \(\pi\)

When presented with a computational problem, our first objective is to find a computational solution, or “algorithm,” to solve it. An algorithm is a precise sequence of steps for carrying out a task, such as ranking web pages in Google, searching for a friend on Facebook, or finding closely related genes in Genbank. In some cases, a single good algorithm is enough to launch a successful company (e.g., Google’s initial success was due to its Page Rank algorithm).

Algorithms are commonly compared to recipes that act on their ingredients (the data). For example, imagine that an alien has come to Earth from a distant planet and has a hankering for some pumpkin pie. The alien does a Google search for pumpkin pie and finds the following:
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I’ve come to Earth for pumpkin pie!




	Mix 3/4 cup sugar, 1 tsp cinnamon, 1/2 tsp salt, 1/2 tsp ginger and 1/4 tsp cloves in a small bowl.

	Beat two eggs in a large bowl.

	Stir 1 15-oz. can pumpkin and the mixture from step 1 into the eggs.

	Gradually stir in 1 12 fl. oz. can evaporated milk into the mixture.

	Pour mixture into unbaked, pre-prepared 9-inch pie shell.

	Bake at 425°F for 15 minutes.

	Reduce oven temperature to 350°F.

	Bake for 30-40 minutes more, or until set.

	Cool for 2 hours on wire rack.
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No! Don’t lick the spoon - there are raw eggs in there!



Assuming we know how to perform basic cooking steps (measuring ingredients, cracking eggs, stirring, licking the spoon, etc.), we could make a tasty pie by following these steps precisely.

Out of respect for our gastronomical well-being, computer scientists rarely write recipes (algorithms) that have anything to do with food. As a computer scientist, we would be more likely to write an algorithm to calculate \(\pi\) very precisely than we would be to write an algorithm to make a pie. Let’s consider just such an algorithm:


	Draw a square that is 2 by 2 feet.

	Inscribe a circle of radius 1 foot (diameter 2 feet) inside this square.

	Grab a bucket of n darts, move away from the dartboard, and put on a blindfold.
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Please don’t try this at home!




	Take each dart one at a time and for each dart:



	With your eyes still covered, throw the dart randomly (but assume that your throwing skills ensure that it will land somewhere on the square dartboard).

	Record whether or not the dart landed inside the circle.









	When you have thrown all the darts, divide the number that landed inside the circle by the total number, n, of darts you threw and multiply by 4. This will give you your estimate for \(\pi\).





Figure 1.1 shows the scenario.


[image: ../Images/dart.PNG]
Figure 1.1: Using a dartboard to approximate \(\pi\)
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Hey, watch it! That dart almost hit me!



That’s the description of the algorithm, but why does it work? Here’s why: The area of the circle is \(\pi r^2\) which is π in this case because we made the radius of the board to be 1. The area of the square is 4. Since we’re assuming that darts are equally likely to end up anywhere in the square, we expect the proportion of them that land in the circle to be the ratio of the area of the circle to the area of the square: \(\frac{\pi}{4}\). Therefore, if we throw n darts and determine that some number k land inside the circle, then \(\frac{k}{n}\) should be approximately \(\frac{\pi}{4}\). So multiplying the ratio by 4 gives us an approximation of \(\pi\).

Happily, the computer does not have to robotically throw physical darts; instead we can simulate this dart throwing process on a computer by generating random coordinates that describe where the darts land. The computer can throw millions of virtual darts in a fraction of a second and will never miss the square–making things considerably safer for your roommate!




1.1.3 Programming

Although we noted earlier that computer science is not exclusively about programming, ultimately we usually want to have a program–that is, software–that implements the algorithm that will operate on our data.

Learning to program is a bit like learning to speak or write in a new language. The good news is that the syntax of a programming language–the vocabulary and grammar–is not nearly as complicated as for a spoken language. In this book, we’ll program in a language called Python, whose syntax is particularly easy to learn. But don’t be fooled into thinking it’s not a real programming language–Python is a very real language used
by real programmers to write real software. Moreover, the ideas that you’ll learn here will be transferable to learning other languages later.




1.1.4 Abstraction

While data, algorithms, and programming might seem like the whole story, the truth is that there are other important ideas behind the scenes. Software is often immensely complex and it can be difficult or even impossible for any single person to keep all of the interacting pieces in mind.  To deal with such complex systems, computer scientists use the the notion of  abstraction–the idea that when designing one part of a program, we can ignore the inessential details of other parts of the program as long as we have a high level understanding of what they do.

For example, a car has an engine, a drivetrain, an electrical system, and other components. These components can be designed individually and then assembled to work together. The designer of the drivetrain doesn’t need to understand every aspect of how the engine works, but just enough to know how the drivetrain and the engine will be connected. To the drivetrain designer, the engine is an “abstraction.” In fact, the engine itself is divided into components such as the engine block, distributor, and others. These parts too can be viewed as abstract entities that interact with one another. When designing the engine block, we don’t need to think about every detail of how the distributor works.

Software systems can be even more complicated than a car. Designing software requires that we think about abstractions in order to ensure that many people can contribute to the project without everyone needing to understand everything, in order to test the software methodically, and in order to be able to update it in the future by simply replacing one “component” by a new and improved component. Abstraction, therefore, is a key idea in the design of any large system, and software in particular.




1.1.5 Problem Solving and Creativity

This book strives to prepare you to write well-designed programs that do interesting things with data. In the process, we hope to convey to you that computer science is an enormously creative endeavor that requires innovative problem-solving, exploration, and even experimentation. Often times, there’s more than one way to solve a problem. In some cases there’s not even a clear “best” way to solve a problem. Different solutions will have different merits. While Google, Facebook, GenBank are wonderfully easy to use, many challenges arose–and continue to arise–in the design and continual updating of such systems. These challenges often lead to groups of computer scientists working together to find different solutions and evaluate their relative merits. While the challenges that we’ll confront in this book are of a more modest scope, we hope to share with you the sense of problem solving and creativity that are at the heart of computer science.

Takeaway message:  In a nutshell, the objective of this book is to demonstrate the breadth of activities that comprise computer science, show you some fundamental and beautiful ideas, and provide you with the skills to design, implement, and analyze your own programs.






1.2 PicoBot


Leap before you look.

—W.H. Auden





The best way for you to get a feel for computer science is to jump right in and start solving a computer science problem. So let’s do just that. In this section, we’ll examine solutions to an important problem: How to make sure you’ll never have to clean–or at least vacuum–your room again. To solve this problem we’ll use a simple programming language named Picobot that controls a robot loosely based on the Roomba vacuum cleaner robot.
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This web site offers a simulation environment for exploring Picobot’s capabilities



You’re probably wondering what happened to Python, the programming language we said we would be using throughout this book. Why are we sweeping Python under the carpet and brushing aside the language that we plan to use for the remainder of the book?  The answer is that although Python is a simple (but powerful!) programming language that’s easy to learn, Picobot is an even simpler language that’s even easier to learn. The entire language takes only a few minutes to learn and yet it allows you to do some very powerful and interesting computation. So, we’ll be able to start some serious computer science before we get sucked into a discussion of a full-blown programming language. This will be new and fun–and whether you have programmed before, it should offer a “Eureka!” experience. So, dust off your browser and join us at http://www.cs.hmc.edu/picobot.
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Or, at least, the “breakout” app that enable the industry’s first large-scale profits.




[image: ../Images/roomba.jpg]
An iRobot Roomba. You’ll notice that we use the word “Picobot” to refer to both the Roomba robot and the language that we will use to program it.
Actually, Picobot might not be able to actually “see” at all. Instead, it might sense its environment though one of many possible sensors including bump sensors, infrared, camera, lasers, etc.




1.2.1 The Roomba Problem

It is the humblest of tasks–cleaning up–that has turned out to be the “killer app” for household robots. Imagine yourself as a Roomba vacuum named Picobot: your goal is to suck up the debris from the free space around you- ideally without missing any nooks or crannies. The robotics
community calls this the coverage problem: it is the task of ensuring that all the grass is mown, all the surface receives paint, or all the Martian soil is surveyed.

At first this problem might seem pretty easy.  After all, if your parents gave you a vacuum cleaner and told you to vacuum your room without missing a spot, you’d probably do a pretty great job without even thinking too much about it. Shouldn’t it be straightforward to convey your strategy to a robot?

Unfortunately, there are a couple of obstacles that make the Picobot’s job considerably more difficult than yours. First, Picobot has very limited “sight”; it can only sense what’s directly around it. Second, Picobot is totally unfamiliar with the environment it is supposed to clean.  While you could probably walk around your room blindfolded without crashing into things, Picobot is not so lucky. Third, Picobot has a very limited memory. In fact, it can’t even remember which part of the room it has seen and which part it has not.

While these challenges make Picobot’s job (and our job of programming Picobot) more difficult, they also make the coverage problem an interesting and non-trivial computer science problem worth serious study.




1.2.2 The Environment


[image: ../Images/Alien7.PNG]
“Discretize” is CS-speak for “break up into individual pieces”.



Our first task in solving this problem is to represent it in a way that the computer can handle. In other words, we need to define the data we will be working with to solve this problem. For example, how will we represent where the obstacles in the room are? Where Picobot is? We could represent the room as a plane, and then list the coordinates of the object’s corners and the coordinates of Picobot’s location. While this representation is reasonable, we will actually use a slightly simpler approach.

Whether lawn or sand, an environment is simpler to cover if it is discretized into cells as shown in Figure 1.2. This is our first example of an abstraction: we are ignoring the details of the environment and simplifying it into something we can easily work with. You, as Picobot, are similarly simplified: you occupy one grid square (the green one), and you can travel one step at a time in one of the four compass directions: north, east, west, or south.

Picobot cannot travel onto obstacles (the blue cells–which we will also call–”walls”); as we mentioned above, it does not know the positions of those obstacles ahead of time. What Picobot can sense is its immediate surroundings: the four cells directly to its north, east, west, or south. The surroundings are always reported as a string of four letters in “NEWS” order, meaning that we first see what is in our neighboring cell to the North, next what’s to the East, then West, and finally South. If the cell to the north is empty, the letter in the first position is an x. If the cell to the north is occupied, the letter in that first position is an N. The second letter, an x or an E, indicates whether the eastern neighbor is empty or occupied; the third, x or W, is the west; the fourth, x or S, is the south. At its position in the lower-left-hand corner of Figure 1.2, for example, Picobot’s sensors would report its four-letter surroundings as xxWS. There are sixteen possible surroundings for Picobot, shown in Figure 1.3 with their textual representations.


[image: ../Images/picoRules.jpg]
Figure 1.2: There are four types of cells in a Picobot environment, or map: green is Picobot itself, blue cells are walls, and gray cells are free space. Picobot can’t sense whether a empty cell has been visited or not (dark or light gray), but it can sense whether each of its four immediate neighbors is free space or an obstacle.




[image: ../Images/picoPossibilities.jpg]
Figure 1.3: There are sixteen possible surroundings strings for Picobot. The one in which
Picobot is completely enclosed will not occur in our simulator!






1.2.3 State

As we’ve seen, Picobot can sense its immediate surroundings. This will be important in its
decision-making process. For example, if Picobot is in the process of moving north and it
senses that the cell to its north is a wall, it should not try to continue moving north! In
fact, the simulator will not allow it.
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I’m currently in an inquisitive state.



But how does Picobot “know” whether it is moving north or some other direction? Picobot doesn’t have an innate sense of direction. Instead, we make use of a powerful concept called state. The state of a computer (or a person or almost any other thing) is simply its current condition: on or off, happy or sad, underwater or in outer space, etc. In computer science, we often use “state” to refer to the internal information that describes what a computer is doing.

Picobot’s state is extremely simple: it is a single number in the range 0-99. Somewhat surprisingly, that’s enough to give Picobot some pretty complex behaviors. Picobot always starts in state 0.
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The state of anything can be described with a set of numbers.. but describing human states would
take at least trillions of values



Although Picobot’s state is numeric, it’s helpful to think of it in English terms. For example, we might think of state 0 as meaning “I’m heading north until I can’t go any further.” However, it’s important to note that none of the state numbers has any special built-in meaning; it is up to us to make those decisions. Moreover, Picobot doesn’t actually have a sense of which directions it is pointing. But we can define our own conception of which direction Picobot is “pointing” by defining an appropriate set of states.

For example, imagine that Picobot wants to perform the task of continually moving north until it gets to a wall. We might decide that state 3 means “I’m heading north until I can’t go any further (and when I get to a wall to my north, then I’ll consider what to do next!).” When Picobot gets to a wall, it might want to enter a new state such as “I’m heading west until I can’t go any further (and when I get to a wall to my west, I’ll have to think about what to do then!).” We might choose to call that state 42 (or state 4; it’s entirely up to us).


[image: ../Images/states.PNG]
Figure 1.4: The five parts of two Picobot rules. One useful way to interpret the idea of
state is to attribute a distinct intention to each state. With these two rules, Picobot’s initial
state (state 0) represents “go west as far as possible.”



As we’ll see next, your job as the Picobot programmer is to define the states and their meanings; this is what controls Picobot and makes it do interesting things!

Takeaway message:  The state is simply a number representing a task that you would like Picobot to undertake.




1.2.4 Think locally, act globally

Now we know how to represent Picobot’s surroundings, and how to represent its state. But how do we make Picobot do anything?

Picobot moves by following a set of rules that specify actions and possibly state changes. Which rule Picobot chooses to follow depends on its current state and its current surroundings. Thus, Picobot’s complete “thought process” is as follows:


	I take stock of my current state and immediate surroundings.

	Based on that information, I find a rule that tells me (1) a direction to move and (2) the state I want to be in next.



Picobot uses a five-part rule to express this thought process. Figure 1.4 shows two examples
of such rules.

The first rule,


0 xxWx -> E 1



re-expressed in English, says “If I’m in state 0 and only my western neighbor contains an obstacle, take one step east and change into state 1.” The second rule,


0 xxxx -> W 0




[image: ../Images/Alien7.PNG]
Go west, young Picobot!



says “If I’m in state 0 with no obstacles around me, move one step west and stay in state 0.” Taken together, these two rules use local information to direct Picobot across an open area westward to a boundary.


[image: ../Images/movingPico.jpg]
Figure 1.5: The result of running Picobot with this section’s four rules.
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Remember that Picobot always begins its mission in state 0



At each step, Picobot examines the list of rules that you’ve written looking for the one rule that applies. A rule applies if the state part of the rule matches Picobot’s current state and the surroundings part of the rule matches the current surroundings. What happens if there are NO rules that match Picobot’s current state and surroundings? The Picobot simulator will let you know about this in its Messages box and the robot will stop running. Similarly, if more than one rule applies, Picobot will also complain. Figure 1.5 shows how Picobot follows the first rule that matches its current state and surroundings at each time step. But what about state 1? No rules specify Picobot’s actions in state 1-yet! Just as state 0 represents the “go west” task, we can specify two rules that will make state 1 be the “go east” task:


1 xxxx -> E 1

1 xExx -> W 0
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Picobot cannot sense whether or not a cell has been visited. This limitation is quite realistic: the Roomba, for example, does not know whether a region has already been cleaned.



These rules transition back to state 0, creating an infinite loop back and forth across an open row. Try it out!
Note that the Picobot website starts Picobot at a randomly selected empty cell. Note also that if Picobot starts along a top or bottom wall, no rules match and it does not move! We will remedy this defect in the next section.


[image: ../Images/picoTable.PNG]
Table 1.1: Two equivalent formulations of a more general “go-west-go-east” behavior for
Picobot. Both sets of rules use only two states, but the wildcard character * allows for a
much more succinct representation on the left than on the right!



By the way, sometimes you might not want Picobot to move as the result of applying a rule. Rather than specifying a move direction (“E”, ‘W”, “N”, or “S”), you may use the upper-case letter “X” to indicate “stay where you are”. For example, the rule


0 Nxxx -> X 1



is saying “if I’m in state 0 and there is a wall to the north, don’t move but enter state 1.”




1.2.5 Whatever

The problem with the previous “go-west-go-east” example is that the rules are too specific. When going west, we really don’t care whether or not walls are present to the north, south, or east. Similarly, when going east, we don’t care about neighboring cells to the north, south, or west. The wildcard character * indicates that we don’t care about the surroundings in the given position (N, E, W, or S). Table 1.1’s rules use the wildcard to direct Picobot to forever visit (vacuum) the east-west row in which it starts.
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Picobot needs to get over its “don’t care” attitude!






1.2.6 Algorithms and Rules

So far we’ve looked at how to write rules that make Picobot move. But in trying to solve problems with Picobot, it’s usually helpful to take a more global view of how Picobot is accomplishing its task, and then to translate that approach into rules. In other words, we want to develop an algorithm that allows Picobot to accomplish the desired task, where that task is usually to cover the entire room. In the previous section, Picobot had the more modest goal of simply moving back and forth in an empty room. The algorithm for accomplishing this task was the following:


	Move west until Picobot hits a wall to the west

	Then move east until Picobot hits a wall to the east

	Then go back to step 1



Now the question becomes: how do we translate this algorithm into the rules from the previous section:


0 **x* -> W 0

0 **W* -> E 1

1 *x** -> E 1

1 *E** -> W 0





As written, it is difficult to see the connection between the steps of the algorithm and the Picobot rules. We can see that Picobot will need two states to keep track of which direction it is moving (i.e., is it in step 1 or step 2), but it’s still not exactly clear how the algorithm translates into precise rules. Essentially, each of Picobot’s rules applies in an “if-then” fashion. In other words, if Picobot is in a particular state and sees a particular environment, then it takes a certain action and potentially enters a new state. With some minor modifications, we can rewrite the algorithm above to follow Picobot’s “if-then” rule structure more directly:


	Repeat the following steps forever:



	If Picobot is moving west and there is no wall to the west, then keep moving west.

	If Picobot is moving west and there is a wall to the west, then start moving east.

	If Picobot is moving east and there is no wall to the east, then keep moving east.

	If Picobot is moving east and there is a wall to the east, then start moving west.











Now we can see more clearly the direct translation between the steps of this algorithm and the Picobot rules: each step in the algorithm translates directly into a rule in Picobot, where state 0 represents “Picobot is movingWest” and state 1 represents “Picobot is moving East”. Formulating algorithms in this way is the key to writing successful programs in Picobot.




1.2.7 The Picobot challenge
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Table 1.1’s rules direct Picobot to visit the entirety of its starting row. This section’s challenge is to develop a set of rules that direct Picobot to cover the entirety of an empty rectangular room, such as the rooms in Figure 1.2 and 1.5. The set of rules–that is, your program–should work regardless of how big the room is and regardless of where Picobot initially begins.

Because Picobot does not distinguish already-visited from unvisited cells, it may not know when it has visited every cell. The online simulator, however, will detect and report a successful, complete traversal of an environment.

Try it out. You might find it helpful to simply play around with modifying the rules we’ve given you here. For example, you might start by altering the rules in Figure 1.1 so that they side-step into a neighboring row after clearing the current one. However, once you have an idea for how you might solve the problem, we encourage you to plan your algorithm, and then express that algorithm in a way that is easily translatable into Picobot rules.
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Thank you for sparing us from any corny maize jokes.






1.2.8 A-Maze Your Friends!

Once you’ve developed a Picobot program that completely traverses the empty room, try to write other programs for more complex environments. You’ll see a “MAP” option on the Picobot Web page where you can scroll forward or backward through a collection of maps that we’ve created. You can also edit these maps by clicking on a cell with your mouse; clicking on an empty cell turns it into a wall and clicking on a wall turns it into an empty cell. Remember that your program should work no matter where Picobot begins.


[image: ../Images/maze.jpg]
Figure 1.6: Picobot’s maze.



One environment that is particularly interesting is the maze shown in Figure 1.6. Notice that in this maze, all the walls are connected to the outer boundary and all empty cells are adjacent to a wall. A smaller maze with this property is shown in Figure 1.7(a). Any maze with this property can be completely explored with a simple algorithm called the right-hand rule (or the left-hand rule if you prefer).

Imagine for a moment that you are in the maze rather than Picobot. In contrast to Picobot, you have a clear sense of the direction you’re pointing and you have two hands. You start facing north with your right hand touching the wall. Now, you can visit every empty cell by simply walking through the maze, making sure that your right hand is always touching the wall. Pause here for a moment to convince yourself that this is true. Notice also that this algorithm will not visit every cell if some walls are not connected to the outer boundary, as shown in the maze in Figure 1.7(b) or if some empty cells are not adjacent to a wall, as shown in Figure 1.7(c).


[image: ../Images/threemazes.jpg]
Figure 1.7: (a) A maze in which all walls are connected to the outer boundary and all empty
cells are adjacent to a wall. (b) A maze in which some walls are not connected to the outer
boundary. (c) A maze in which some empty cells are not adjacent to walls.



Converting the right-hand rule into a set of Picobot rules is an interesting computational challenge. After all, you have a sense of direction and you have a right hand that was guiding you around the walls, whereas Picobot has neither hands nor a sense of orientation. To “teach” Picobot the right-hand rule, we’ll again need to use states to represent the direction that Picobot is pointing. It may seem that an impossibly large number of situations must be considered, but in fact, the number of situations is finite and actually quite small, which makes it possible to program Picobot for this task.

To get started, it seems pretty natural to use the four states 0, 1, 2, and 3 to represent
Picobot pointing north, south, east, or west. Now, we’ll need to introduce rules that allow
Picobot to behave as if it had a right hand to touch against the wall.
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Of course, all empty cells must be reachable. If some cells are isolated from others, the problem is just physically impossible.



Assume we are in state 0, which we (arbitrarily) choose to correspond to representing Picobot pointing north. Picobot’s imaginary right hand is then pointing east. If there is a wall to the east and none to the north, the right-hand rule would tell us to take a step to the north and keep pointing north. Taking a step to the north is no problem. “Keep pointing north” means “stay in state 0.” On the other hand, if we are in state 0 and there is no wall to the east, Picobot should take a step to the east and think of itself as pointing to the east. “Pointing east” will mean changing to another state that is intended to encode that information. This is a fun challenge and we encourage you to stop here and try it. (Remember, your program should work regardless of where Picobot starts and for any maze with the property that all walls are connected to the outer boundary and all empty cells are adjacent to a wall.)




1.2.9 Uncomputable environments

Is it possible to write a Picobot program that will fully explore any room that we give it? Surprisingly, the answer is “no,” and it’s possible to prove that fact mathematically. Picobot’s computational capabilities aren’t enough to guarantee coverage of all environments. However, by adding one simple feature to Picobot, it can be programmed to fully explore any room. That feature is the ability to drop, sense, and pick up “markers” along the way.

The fact that computational challenges as elementary as Picobot lead us to provably unsolvable problems suggests that computation and computers are far from omnipotent. And by the time you’re done reading this book, you’ll have learned how to prove that certain problems are beyond the limits of what computers can solve.









          



            
  
Chapter 1: Introduction


Computer science is to the information revolution what mechanical engineering was to the industrial revolution.

—Robert Keller






1.1 What is Computer Science?

You might be uncertain about what computer science (CS) is, but you use it every day. When you use Google or your smartphone, or watch a movie with special effects, there’s lots of CS in there. When you order a product over the Internet, there is CS in the web site, in the cryptography used to keep your credit card number secure, and in the way that FedEx routes their delivery vehicle to get your order to you as quickly as possible. Nonetheless, even computer scientists can struggle to answer the question “What exactly is CS?”

Many other sciences try to understand how things work: physics tries to understand the physical world, chemistry tries to understand the composition of matter, and biology tries to understand life. So what is computer science trying to understand? Computers? Probably not: computers are designed and built by humans, so their inner workings are known (at least to some people!).

Perhaps it’s all about programming. Programming is indeed important to a computer scientist, just as grammar is important to a writer or a telescope is important to an astronomer. But nobody would argue that writing is about grammar or that astronomy is about telescopes. Similarly, programming is an important piece of computer science but it’s not what CS is all about.

If we turn to origins, computer science has roots in disparate fields that include engineering, mathematics, and cognitive science, among others. Some computer scientists design things, much like engineers. Others seek new ways to solve computational problems, analyze their solutions, and prove that they are correct, much like mathematicians. Still others think about how humans interact with computers and software, which is closely related to cognitive science and psychology. All of these pieces are a part of computer science.
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Zoogenesis refers to the origin of a particular animals species. Computational biology is a field
that uses CS to help solve zoogenetic questions, among many others.



One theme that unifies (nearly) all computer scientists is that they are interested in the automation of tasks ranging from artificial intelligence to zoogenesis. Put another way,  computer scientists are interested in finding solutions for a wide variety of computational problems. They analyze those solutions to determine their “goodness,” and they implement the good solutions to create useful software for people to work with. This diversity of endeavors is, in part, what makes CS so much fun.

There are several important concepts at the heart of computer science; we have chosen to emphasize six of them: data, problem solving, algorithms, programming, abstraction, and creativity.


1.1.1 Data
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When you Google the words “pie recipe,” Google reports that it finds approximately 38 million pages, ranked in order of estimated relevance and usefulness. Facebook has approximately 1 billion active users who generate over 3 billion comments and “Likes” each day. GenBank, a national database of DNA sequences used by biologists and medical researchers studying genetic diseases, has over 100 million genetic sequences with over 100 billion DNA base pairs. According to the International Data Corporation, in 2010 the size of our “Digital Universe” reached 1.2 zettabytes. How much is that? Jeffrey Heer, a computer scientist who specializes in managing and visualizing large amounts of data, puts it this way: A stack
of DVDs that reached to the moon and back would store approximately 1.2 zettabytes of data.

Without computer science, all of this data would be junk. Searching for a recipe on Google, a friend on Facebook, or genes in GenBank would all be impossible without ideas and tools from computer science.

Doing meaningful things with data is challenging, even if we’re not dealing with millions or billions of things. In this book, we’ll do interesting things with smaller sets of data. But much of what we’ll do will be applicable to very large amounts of data too.




1.1.2 Algorithms

Making Pie and Making \(\pi\)

When presented with a computational problem, our first objective is to find a computational solution, or “algorithm,” to solve it. An algorithm is a precise sequence of steps for carrying out a task, such as ranking web pages in Google, searching for a friend on Facebook, or finding closely related genes in Genbank. In some cases, a single good algorithm is enough to launch a successful company (e.g., Google’s initial success was due to its Page Rank algorithm).

Algorithms are commonly compared to recipes that act on their ingredients (the data). For example, imagine that an alien has come to Earth from a distant planet and has a hankering for some pumpkin pie. The alien does a Google search for pumpkin pie and finds the following:
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I’ve come to Earth for pumpkin pie!




	Mix 3/4 cup sugar, 1 tsp cinnamon, 1/2 tsp salt, 1/2 tsp ginger and 1/4 tsp cloves in a small bowl.

	Beat two eggs in a large bowl.

	Stir 1 15-oz. can pumpkin and the mixture from step 1 into the eggs.

	Gradually stir in 1 12 fl. oz. can evaporated milk into the mixture.

	Pour mixture into unbaked, pre-prepared 9-inch pie shell.

	Bake at 425°F for 15 minutes.

	Reduce oven temperature to 350°F.

	Bake for 30-40 minutes more, or until set.

	Cool for 2 hours on wire rack.
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No! Don’t lick the spoon - there are raw eggs in there!



Assuming we know how to perform basic cooking steps (measuring ingredients, cracking eggs, stirring, licking the spoon, etc.), we could make a tasty pie by following these steps precisely.

Out of respect for our gastronomical well-being, computer scientists rarely write recipes (algorithms) that have anything to do with food. As a computer scientist, we would be more likely to write an algorithm to calculate \(\pi\) very precisely than we would be to write an algorithm to make a pie. Let’s consider just such an algorithm:


	Draw a square that is 2 by 2 feet.

	Inscribe a circle of radius 1 foot (diameter 2 feet) inside this square.

	Grab a bucket of n darts, move away from the dartboard, and put on a blindfold.




[image: ../Images/Alien7.PNG]
Please don’t try this at home!




	Take each dart one at a time and for each dart:



	With your eyes still covered, throw the dart randomly (but assume that your throwing skills ensure that it will land somewhere on the square dartboard).

	Record whether or not the dart landed inside the circle.









	When you have thrown all the darts, divide the number that landed inside the circle by the total number, n, of darts you threw and multiply by 4. This will give you your estimate for \(\pi\).





Figure 1.1 shows the scenario.


[image: ../Images/dart.PNG]
Figure 1.1: Using a dartboard to approximate \(\pi\)
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Hey, watch it! That dart almost hit me!



That’s the description of the algorithm, but why does it work? Here’s why: The area of the circle is \(\pi r^2\) which is π in this case because we made the radius of the board to be 1. The area of the square is 4. Since we’re assuming that darts are equally likely to end up anywhere in the square, we expect the proportion of them that land in the circle to be the ratio of the area of the circle to the area of the square: \(\frac{\pi}{4}\). Therefore, if we throw n darts and determine that some number k land inside the circle, then \(\frac{k}{n}\) should be approximately \(\frac{\pi}{4}\). So multiplying the ratio by 4 gives us an approximation of \(\pi\).

Happily, the computer does not have to robotically throw physical darts; instead we can simulate this dart throwing process on a computer by generating random coordinates that describe where the darts land. The computer can throw millions of virtual darts in a fraction of a second and will never miss the square–making things considerably safer for your roommate!




1.1.3 Programming

Although we noted earlier that computer science is not exclusively about programming, ultimately we usually want to have a program–that is, software–that implements the algorithm that will operate on our data.

Learning to program is a bit like learning to speak or write in a new language. The good news is that the syntax of a programming language–the vocabulary and grammar–is not nearly as complicated as for a spoken language. In this book, we’ll program in a language called Python, whose syntax is particularly easy to learn. But don’t be fooled into thinking it’s not a real programming language–Python is a very real language used
by real programmers to write real software. Moreover, the ideas that you’ll learn here will be transferable to learning other languages later.




1.1.4 Abstraction

While data, algorithms, and programming might seem like the whole story, the truth is that there are other important ideas behind the scenes. Software is often immensely complex and it can be difficult or even impossible for any single person to keep all of the interacting pieces in mind.  To deal with such complex systems, computer scientists use the the notion of  abstraction–the idea that when designing one part of a program, we can ignore the inessential details of other parts of the program as long as we have a high level understanding of what they do.

For example, a car has an engine, a drivetrain, an electrical system, and other components. These components can be designed individually and then assembled to work together. The designer of the drivetrain doesn’t need to understand every aspect of how the engine works, but just enough to know how the drivetrain and the engine will be connected. To the drivetrain designer, the engine is an “abstraction.” In fact, the engine itself is divided into components such as the engine block, distributor, and others. These parts too can be viewed as abstract entities that interact with one another. When designing the engine block, we don’t need to think about every detail of how the distributor works.

Software systems can be even more complicated than a car. Designing software requires that we think about abstractions in order to ensure that many people can contribute to the project without everyone needing to understand everything, in order to test the software methodically, and in order to be able to update it in the future by simply replacing one “component” by a new and improved component. Abstraction, therefore, is a key idea in the design of any large system, and software in particular.




1.1.5 Problem Solving and Creativity

This book strives to prepare you to write well-designed programs that do interesting things with data. In the process, we hope to convey to you that computer science is an enormously creative endeavor that requires innovative problem-solving, exploration, and even experimentation. Often times, there’s more than one way to solve a problem. In some cases there’s not even a clear “best” way to solve a problem. Different solutions will have different merits. While Google, Facebook, GenBank are wonderfully easy to use, many challenges arose–and continue to arise–in the design and continual updating of such systems. These challenges often lead to groups of computer scientists working together to find different solutions and evaluate their relative merits. While the challenges that we’ll confront in this book are of a more modest scope, we hope to share with you the sense of problem solving and creativity that are at the heart of computer science.

Takeaway message:  In a nutshell, the objective of this book is to demonstrate the breadth of activities that comprise computer science, show you some fundamental and beautiful ideas, and provide you with the skills to design, implement, and analyze your own programs.






1.2 PicoBot


Leap before you look.

—W.H. Auden





The best way for you to get a feel for computer science is to jump right in and start solving a computer science problem. So let’s do just that. In this section, we’ll examine solutions to an important problem: How to make sure you’ll never have to clean–or at least vacuum–your room again. To solve this problem we’ll use a simple programming language named Picobot that controls a robot loosely based on the Roomba vacuum cleaner robot.
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This web site offers a simulation environment for exploring Picobot’s capabilities



You’re probably wondering what happened to Python, the programming language we said we would be using throughout this book. Why are we sweeping Python under the carpet and brushing aside the language that we plan to use for the remainder of the book?  The answer is that although Python is a simple (but powerful!) programming language that’s easy to learn, Picobot is an even simpler language that’s even easier to learn. The entire language takes only a few minutes to learn and yet it allows you to do some very powerful and interesting computation. So, we’ll be able to start some serious computer science before we get sucked into a discussion of a full-blown programming language. This will be new and fun–and whether you have programmed before, it should offer a “Eureka!” experience. So, dust off your browser and join us at http://www.cs.hmc.edu/picobot.
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Or, at least, the “breakout” app that enable the industry’s first large-scale profits.




[image: ../Images/roomba.jpg]
An iRobot Roomba. You’ll notice that we use the word “Picobot” to refer to both the Roomba robot and the language that we will use to program it.
Actually, Picobot might not be able to actually “see” at all. Instead, it might sense its environment though one of many possible sensors including bump sensors, infrared, camera, lasers, etc.




1.2.1 The Roomba Problem

It is the humblest of tasks–cleaning up–that has turned out to be the “killer app” for household robots. Imagine yourself as a Roomba vacuum named Picobot: your goal is to suck up the debris from the free space around you- ideally without missing any nooks or crannies. The robotics
community calls this the coverage problem: it is the task of ensuring that all the grass is mown, all the surface receives paint, or all the Martian soil is surveyed.

At first this problem might seem pretty easy.  After all, if your parents gave you a vacuum cleaner and told you to vacuum your room without missing a spot, you’d probably do a pretty great job without even thinking too much about it. Shouldn’t it be straightforward to convey your strategy to a robot?

Unfortunately, there are a couple of obstacles that make the Picobot’s job considerably more difficult than yours. First, Picobot has very limited “sight”; it can only sense what’s directly around it. Second, Picobot is totally unfamiliar with the environment it is supposed to clean.  While you could probably walk around your room blindfolded without crashing into things, Picobot is not so lucky. Third, Picobot has a very limited memory. In fact, it can’t even remember which part of the room it has seen and which part it has not.

While these challenges make Picobot’s job (and our job of programming Picobot) more difficult, they also make the coverage problem an interesting and non-trivial computer science problem worth serious study.




1.2.2 The Environment
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“Discretize” is CS-speak for “break up into individual pieces”.



Our first task in solving this problem is to represent it in a way that the computer can handle. In other words, we need to define the data we will be working with to solve this problem. For example, how will we represent where the obstacles in the room are? Where Picobot is? We could represent the room as a plane, and then list the coordinates of the object’s corners and the coordinates of Picobot’s location. While this representation is reasonable, we will actually use a slightly simpler approach.

Whether lawn or sand, an environment is simpler to cover if it is discretized into cells as shown in Figure 1.2. This is our first example of an abstraction: we are ignoring the details of the environment and simplifying it into something we can easily work with. You, as Picobot, are similarly simplified: you occupy one grid square (the green one), and you can travel one step at a time in one of the four compass directions: north, east, west, or south.

Picobot cannot travel onto obstacles (the blue cells–which we will also call–”walls”); as we mentioned above, it does not know the positions of those obstacles ahead of time. What Picobot can sense is its immediate surroundings: the four cells directly to its north, east, west, or south. The surroundings are always reported as a string of four letters in “NEWS” order, meaning that we first see what is in our neighboring cell to the North, next what’s to the East, then West, and finally South. If the cell to the north is empty, the letter in the first position is an x. If the cell to the north is occupied, the letter in that first position is an N. The second letter, an x or an E, indicates whether the eastern neighbor is empty or occupied; the third, x or W, is the west; the fourth, x or S, is the south. At its position in the lower-left-hand corner of Figure 1.2, for example, Picobot’s sensors would report its four-letter surroundings as xxWS. There are sixteen possible surroundings for Picobot, shown in Figure 1.3 with their textual representations.
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Figure 1.2: There are four types of cells in a Picobot environment, or map: green is Picobot itself, blue cells are walls, and gray cells are free space. Picobot can’t sense whether a empty cell has been visited or not (dark or light gray), but it can sense whether each of its four immediate neighbors is free space or an obstacle.
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Figure 1.3: There are sixteen possible surroundings strings for Picobot. The one in which
Picobot is completely enclosed will not occur in our simulator!






1.2.3 State

As we’ve seen, Picobot can sense its immediate surroundings. This will be important in its
decision-making process. For example, if Picobot is in the process of moving north and it
senses that the cell to its north is a wall, it should not try to continue moving north! In
fact, the simulator will not allow it.
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I’m currently in an inquisitive state.



But how does Picobot “know” whether it is moving north or some other direction? Picobot doesn’t have an innate sense of direction. Instead, we make use of a powerful concept called state. The state of a computer (or a person or almost any other thing) is simply its current condition: on or off, happy or sad, underwater or in outer space, etc. In computer science, we often use “state” to refer to the internal information that describes what a computer is doing.

Picobot’s state is extremely simple: it is a single number in the range 0-99. Somewhat surprisingly, that’s enough to give Picobot some pretty complex behaviors. Picobot always starts in state 0.
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The state of anything can be described with a set of numbers.. but describing human states would
take at least trillions of values



Although Picobot’s state is numeric, it’s helpful to think of it in English terms. For example, we might think of state 0 as meaning “I’m heading north until I can’t go any further.” However, it’s important to note that none of the state numbers has any special built-in meaning; it is up to us to make those decisions. Moreover, Picobot doesn’t actually have a sense of which directions it is pointing. But we can define our own conception of which direction Picobot is “pointing” by defining an appropriate set of states.

For example, imagine that Picobot wants to perform the task of continually moving north until it gets to a wall. We might decide that state 3 means “I’m heading north until I can’t go any further (and when I get to a wall to my north, then I’ll consider what to do next!).” When Picobot gets to a wall, it might want to enter a new state such as “I’m heading west until I can’t go any further (and when I get to a wall to my west, I’ll have to think about what to do then!).” We might choose to call that state 42 (or state 4; it’s entirely up to us).


[image: ../Images/states.PNG]
Figure 1.4: The five parts of two Picobot rules. One useful way to interpret the idea of
state is to attribute a distinct intention to each state. With these two rules, Picobot’s initial
state (state 0) represents “go west as far as possible.”



As we’ll see next, your job as the Picobot programmer is to define the states and their meanings; this is what controls Picobot and makes it do interesting things!

Takeaway message:  The state is simply a number representing a task that you would like Picobot to undertake.




1.2.4 Think locally, act globally

Now we know how to represent Picobot’s surroundings, and how to represent its state. But how do we make Picobot do anything?

Picobot moves by following a set of rules that specify actions and possibly state changes. Which rule Picobot chooses to follow depends on its current state and its current surroundings. Thus, Picobot’s complete “thought process” is as follows:


	I take stock of my current state and immediate surroundings.

	Based on that information, I find a rule that tells me (1) a direction to move and (2) the state I want to be in next.



Picobot uses a five-part rule to express this thought process. Figure 1.4 shows two examples
of such rules.

The first rule,


0 xxWx -> E 1



re-expressed in English, says “If I’m in state 0 and only my western neighbor contains an obstacle, take one step east and change into state 1.” The second rule,


0 xxxx -> W 0




[image: ../Images/Alien7.PNG]
Go west, young Picobot!



says “If I’m in state 0 with no obstacles around me, move one step west and stay in state 0.” Taken together, these two rules use local information to direct Picobot across an open area westward to a boundary.


[image: ../Images/movingPico.jpg]
Figure 1.5: The result of running Picobot with this section’s four rules.
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Remember that Picobot always begins its mission in state 0



At each step, Picobot examines the list of rules that you’ve written looking for the one rule that applies. A rule applies if the state part of the rule matches Picobot’s current state and the surroundings part of the rule matches the current surroundings. What happens if there are NO rules that match Picobot’s current state and surroundings? The Picobot simulator will let you know about this in its Messages box and the robot will stop running. Similarly, if more than one rule applies, Picobot will also complain. Figure 1.5 shows how Picobot follows the first rule that matches its current state and surroundings at each time step. But what about state 1? No rules specify Picobot’s actions in state 1-yet! Just as state 0 represents the “go west” task, we can specify two rules that will make state 1 be the “go east” task:


1 xxxx -> E 1

1 xExx -> W 0
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Picobot cannot sense whether or not a cell has been visited. This limitation is quite realistic: the Roomba, for example, does not know whether a region has already been cleaned.



These rules transition back to state 0, creating an infinite loop back and forth across an open row. Try it out!
Note that the Picobot website starts Picobot at a randomly selected empty cell. Note also that if Picobot starts along a top or bottom wall, no rules match and it does not move! We will remedy this defect in the next section.


[image: ../Images/picoTable.PNG]
Table 1.1: Two equivalent formulations of a more general “go-west-go-east” behavior for
Picobot. Both sets of rules use only two states, but the wildcard character * allows for a
much more succinct representation on the left than on the right!



By the way, sometimes you might not want Picobot to move as the result of applying a rule. Rather than specifying a move direction (“E”, ‘W”, “N”, or “S”), you may use the upper-case letter “X” to indicate “stay where you are”. For example, the rule


0 Nxxx -> X 1



is saying “if I’m in state 0 and there is a wall to the north, don’t move but enter state 1.”




1.2.5 Whatever

The problem with the previous “go-west-go-east” example is that the rules are too specific. When going west, we really don’t care whether or not walls are present to the north, south, or east. Similarly, when going east, we don’t care about neighboring cells to the north, south, or west. The wildcard character * indicates that we don’t care about the surroundings in the given position (N, E, W, or S). Table 1.1’s rules use the wildcard to direct Picobot to forever visit (vacuum) the east-west row in which it starts.
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Picobot needs to get over its “don’t care” attitude!






1.2.6 Algorithms and Rules

So far we’ve looked at how to write rules that make Picobot move. But in trying to solve problems with Picobot, it’s usually helpful to take a more global view of how Picobot is accomplishing its task, and then to translate that approach into rules. In other words, we want to develop an algorithm that allows Picobot to accomplish the desired task, where that task is usually to cover the entire room. In the previous section, Picobot had the more modest goal of simply moving back and forth in an empty room. The algorithm for accomplishing this task was the following:


	Move west until Picobot hits a wall to the west

	Then move east until Picobot hits a wall to the east

	Then go back to step 1



Now the question becomes: how do we translate this algorithm into the rules from the previous section:


0 **x* -> W 0

0 **W* -> E 1

1 *x** -> E 1

1 *E** -> W 0





As written, it is difficult to see the connection between the steps of the algorithm and the Picobot rules. We can see that Picobot will need two states to keep track of which direction it is moving (i.e., is it in step 1 or step 2), but it’s still not exactly clear how the algorithm translates into precise rules. Essentially, each of Picobot’s rules applies in an “if-then” fashion. In other words, if Picobot is in a particular state and sees a particular environment, then it takes a certain action and potentially enters a new state. With some minor modifications, we can rewrite the algorithm above to follow Picobot’s “if-then” rule structure more directly:


	Repeat the following steps forever:



	If Picobot is moving west and there is no wall to the west, then keep moving west.

	If Picobot is moving west and there is a wall to the west, then start moving east.

	If Picobot is moving east and there is no wall to the east, then keep moving east.

	If Picobot is moving east and there is a wall to the east, then start moving west.











Now we can see more clearly the direct translation between the steps of this algorithm and the Picobot rules: each step in the algorithm translates directly into a rule in Picobot, where state 0 represents “Picobot is movingWest” and state 1 represents “Picobot is moving East”. Formulating algorithms in this way is the key to writing successful programs in Picobot.




1.2.7 The Picobot challenge
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Table 1.1’s rules direct Picobot to visit the entirety of its starting row. This section’s challenge is to develop a set of rules that direct Picobot to cover the entirety of an empty rectangular room, such as the rooms in Figure 1.2 and 1.5. The set of rules–that is, your program–should work regardless of how big the room is and regardless of where Picobot initially begins.

Because Picobot does not distinguish already-visited from unvisited cells, it may not know when it has visited every cell. The online simulator, however, will detect and report a successful, complete traversal of an environment.

Try it out. You might find it helpful to simply play around with modifying the rules we’ve given you here. For example, you might start by altering the rules in Figure 1.1 so that they side-step into a neighboring row after clearing the current one. However, once you have an idea for how you might solve the problem, we encourage you to plan your algorithm, and then express that algorithm in a way that is easily translatable into Picobot rules.
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Thank you for sparing us from any corny maize jokes.






1.2.8 A-Maze Your Friends!

Once you’ve developed a Picobot program that completely traverses the empty room, try to write other programs for more complex environments. You’ll see a “MAP” option on the Picobot Web page where you can scroll forward or backward through a collection of maps that we’ve created. You can also edit these maps by clicking on a cell with your mouse; clicking on an empty cell turns it into a wall and clicking on a wall turns it into an empty cell. Remember that your program should work no matter where Picobot begins.


[image: ../Images/maze.jpg]
Figure 1.6: Picobot’s maze.



One environment that is particularly interesting is the maze shown in Figure 1.6. Notice that in this maze, all the walls are connected to the outer boundary and all empty cells are adjacent to a wall. A smaller maze with this property is shown in Figure 1.7(a). Any maze with this property can be completely explored with a simple algorithm called the right-hand rule (or the left-hand rule if you prefer).

Imagine for a moment that you are in the maze rather than Picobot. In contrast to Picobot, you have a clear sense of the direction you’re pointing and you have two hands. You start facing north with your right hand touching the wall. Now, you can visit every empty cell by simply walking through the maze, making sure that your right hand is always touching the wall. Pause here for a moment to convince yourself that this is true. Notice also that this algorithm will not visit every cell if some walls are not connected to the outer boundary, as shown in the maze in Figure 1.7(b) or if some empty cells are not adjacent to a wall, as shown in Figure 1.7(c).


[image: ../Images/threemazes.jpg]
Figure 1.7: (a) A maze in which all walls are connected to the outer boundary and all empty
cells are adjacent to a wall. (b) A maze in which some walls are not connected to the outer
boundary. (c) A maze in which some empty cells are not adjacent to walls.



Converting the right-hand rule into a set of Picobot rules is an interesting computational challenge. After all, you have a sense of direction and you have a right hand that was guiding you around the walls, whereas Picobot has neither hands nor a sense of orientation. To “teach” Picobot the right-hand rule, we’ll again need to use states to represent the direction that Picobot is pointing. It may seem that an impossibly large number of situations must be considered, but in fact, the number of situations is finite and actually quite small, which makes it possible to program Picobot for this task.

To get started, it seems pretty natural to use the four states 0, 1, 2, and 3 to represent
Picobot pointing north, south, east, or west. Now, we’ll need to introduce rules that allow
Picobot to behave as if it had a right hand to touch against the wall.
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Of course, all empty cells must be reachable. If some cells are isolated from others, the problem is just physically impossible.



Assume we are in state 0, which we (arbitrarily) choose to correspond to representing Picobot pointing north. Picobot’s imaginary right hand is then pointing east. If there is a wall to the east and none to the north, the right-hand rule would tell us to take a step to the north and keep pointing north. Taking a step to the north is no problem. “Keep pointing north” means “stay in state 0.” On the other hand, if we are in state 0 and there is no wall to the east, Picobot should take a step to the east and think of itself as pointing to the east. “Pointing east” will mean changing to another state that is intended to encode that information. This is a fun challenge and we encourage you to stop here and try it. (Remember, your program should work regardless of where Picobot starts and for any maze with the property that all walls are connected to the outer boundary and all empty cells are adjacent to a wall.)




1.2.9 Uncomputable environments

Is it possible to write a Picobot program that will fully explore any room that we give it? Surprisingly, the answer is “no,” and it’s possible to prove that fact mathematically. Picobot’s computational capabilities aren’t enough to guarantee coverage of all environments. However, by adding one simple feature to Picobot, it can be programmed to fully explore any room. That feature is the ability to drop, sense, and pick up “markers” along the way.

The fact that computational challenges as elementary as Picobot lead us to provably unsolvable problems suggests that computation and computers are far from omnipotent. And by the time you’re done reading this book, you’ll have learned how to prove that certain problems are beyond the limits of what computers can solve.









          



            
  
Chapter 3: Functional Programming, Part Deux


Whoever said that pleasure wasn’t functional?

—Charles Eames






3.1 Cryptography and Prime Numbers
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I’m headed home soon, but there’s just a bit more shopping to be done first!



Imagine that our alien is sitting at a cafe, surfing the Internet, sipping a triple mochaccino, and is now about to purchase the Harry Potter Complete DVD Collection (movies 1 through 17) from the massive online store, Nile.com. As it types in its credit card number to make its purchase, it suddenly pauses to wonder how its financial details will be kept secure as they are transmitted over the cafe’s Wi-Fi and then over the vast reaches of the Internet. That’s a valid concern. The good news is that many online stores use cryptography to keep such transactions secure.
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Rivest, Shamir, and Adleman received the Turing Award—the computer science equivalent of the Noble Prize.



One of the most famous and widely-used cryptography schemes is called RSA, after the three computer scientists who invented it: Ron Rivest, Adi Shamir, and Leonard Adleman. Here’s how it works: The online store has its own mathematical function that all customers use to encrypt their data before transmitting it over the network. This mathematical function is made publicly available. The hope is that while anyone can easily use this function to encrypt data, only the online store can “undo” (or, more technically, “invert”) the function to decrypt the data and recover the original number.

For example, imagine that Nile.com tells customers to use the function \(f(x)=2x\). It’s certainly easy to encrypt any number we wish to send—we simply double it. Unfortunately, any first grader with a calculator can decrypt the message by simply dividing it by 2, so that encryption function is not secure.

The RSA scheme uses a slightly more complicated function. If \(x\) is our credit-card number, we encrypt it using the function \(f(x) = x^e \text{ mod } n\), where \(e\) and \(n\) are carefully chosen numbers. (Remember from the previous chapter that \(x^e \text{ mod } n\) means the remainder when \(x^e\) is divided by \(n\); it can be easily computed in Python using the expression (x**e) % n.)

It turns out that if \(e\) and \(n\) are chosen appropriately, the online store will be able to decrypt the number to retrieve the credit card number \(x\) but it will be nearly impossible for anyone else to do so—even though everyone knows \(e\) and \(n\).

That’s pretty interesting, but how do we choose \(e\) and \(n\) and how will the store later decrypt the number that it receives? Well, we first choose two different large prime numbers \(p\) and \(q\) at random. Next, \(n\) is just \(pq\). Now, to get the number \(e\), we have to perform two steps: first we let \(m = (p−1)(q−1)\), and then we choose our exponent \(e\) to be a random prime number less than \(m\) that is also not a divisor of \(m\). That’s it!

Now, any number \(x\) less than \(n\) can be encrypted by computing \(x^e \text{ mod } n\). Once we have selected \(e\) and \(n\), we can share those values with anyone wishing to send us encrypted information. In a typical Internet shopping transaction, your web browser would get the publicly available values of \(e\) and \(n\) from the online store and use them to encrypt your credit card number, \(x\). Together, the values \(e\) and \(n\) are called the public key for this store. (In cryptology, a public key is simply a key that can be safely published without giving away the corresponding secret key.)

For example, let \(p=3\) and \(q=5\). They’re certainly prime (although they are way too small to be secure in practice). Now, \(n=3 \times 5=15\) and \(m = (3−1) \times (5−1) = 8\). For our encryption exponent \(e\), we could choose the prime number 3 because it’s less than 8 and also doesn’t divide 8. Now, we can encrypt any number less than n. Let’s encrypt the number 13, for example. We can compute \(13^3 \text{ mod } 15\) in Python as (13**3) % 15; the result is 7. So 7 is our encrypted number, which we send over the Internet to the online store.
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I think the mathematics of cryptography should be called “discreet” math.



How does the store decrypt that 7 and discover that the original number was actually 13? At the same time that the encryption exponent e was computed, we should have also computed a decryption exponent \(d\), which has two properties: it is between 1 and \(m − 1\), and \(ed \text{ mod } m = 1\). It’s not hard to show that, because of the way \(e\) and \(m\) were chosen, there is exactly one value that has these properties; we call d the multiplicative inverse of e modulo m. In our example, \(e = 3\) and \(m = 8\), and \(d\) is also 3 (it’s a coincidence that \(e\) and \(d\) are equal; that’s not normally the case—if it were, the decryption key wouldn’t exactly be a secret!). Notice that \(ed \text{ mod } 8 = 9 \text{ mod } 8 = 1\). Now, the online store can decrypt any number \(y\) that it receives by simply computing \(y^d \text{ mod } n\). In our case, we received the encrypted number \(y = 7\). We compute \(7^3 \text{ mod } 15\) using Python ((7**3) % 15) and get the answer 13. Indeed, that’s the value that we encrypted a moment ago! Keep in mind that while the encryption key \(e\) and \(n\) are public, the online store must keep the decryption key \(d\) private. Anyone with access to \(d\) can decrypt any message sent with the encryption key.

Exactly why this works is not too hard to show and is often taught in an introductory discrete math or algorithms course. But you may be wondering why we are so confident that the scheme is secure. This, too, requires a bit more time to explain than we have here. We will point out, however, that since the the values \(e\) and \(n\) are public, if a malicious person could find the two primes \(p\) and \(q\) that we originally selected, then they could figure out \(m\) and then \(d\) and they could crack the code. The good news is that “factoring” a number \(n\) into its prime divisors is known to be a “computationally hard” problem—very hard. (Computationally hard means a problem that takes a long time to compute the answer for.) For example, the U.S. National Institutes of Standards and Technology estimates that if we encrypt a message today using public keys that are about 600 digits long, it would take until about the year 2030 to crack the code—even if a very large number of very fast computers
were used for the attack.




3.2 First-Class Functions
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I prefer to do everything first-class.



Recall that in the previous chapter we learned about Python functions and explored the power of recursion. The style of programming that we examined—programs constructed from functions that call one another (and possibly themselves)—is called functional programming. Interestingly, in functional programming languages like Python, functions are actually data just like numbers, lists, and strings. We say that functions are “first-class citizens” of the language. In particular, we can write functions that take other functions as arguments and return other functions as results! In this chapter we’ll explore these ideas, first using them to write a short program that efficiently generates long lists of primes, and ultimately writing a function that generates both the encryption and decryption functions for RSA cryptography. By the end of this chapter, we’ll have written Python programs that will allow you to securely send data to your friends.




3.3 Generating Primes

Motivated by RSA cryptography, our first mission is to find a way to generate a list of primes. One reasonable way to do this is to first write a function that determines whether or not its argument is prime. Once we have such a function, we could use it to test a sequence of consecutive numbers for primality, keeping those that are prime in a list.

But how do we test if a single positive integer \(n\) is prime? One idea is to simply test whether any number between 2 and \(n − 1\) divides it. If so, the number is not prime. Otherwise the number is prime. (In fact, it suffices to test just the numbers between 2 and \(\sqrt{n}\), since if \(n\) is not prime, at least one of its divisors must be less than or equal to \(\sqrt{n}\). But for now, let’s simply test all the possible divisors between 2 and \(n−1\).)

To that end, it would be useful to have a function divisors(n) that accepts our number n (which we wish to test for primality) and returns True if n has any divisors (other than 1 and itself), and False otherwise. Actually, it will turn out to be handy if divisors accepts two additional numbers, low and high, that give a range of divisors to test. That will let us reduce the amount of work that has to be done.

For example, divisors(15, 2, 14) should return True because 15 has a divisor between 2 and 14 (and therefore is not prime), but divisors(11, 2, 10) should return False because 11 has no divisors between 2 and 10 (and therefore is prime). Also, note that divisors(35, 2, 4) should return False even though 35 is not prime.

We can write the divisors(n, low, high) function using recursion! To simplify matters, we’ll assume that the arguments are all positive integers. If low is higher than high, then the answer is False because n cannot have any divisors in the specified range (since there are no numbers in increasing order between low and high). So, if low > high we must return False—which is a base case.

But what if low is less than or equal to high? In this case, we can test whether n has a divisor between low and high like this: If n is divisible by low, then we’ve found a divisor in that range and we must return True. Otherwise, the answer to the question: “Does n have a divisor between low and high?” now becomes the same as the answer to the question “Does n have a divisor between low+1 and high?” But that’s a version of the original question, and thus one that we can solve recursively! Here’s our solution:

def divisors (n, low, high):
    '''Returns True if n has a divisor in the range from low to high.
    Otherwise returns False.'''
    if low > high:
        return False
    elif n % low == 0: # Is n divisible by low?
        return True
    else:
        return divisors (n , low + 1, high)






Now we can test if n is prime by checking whether it has any divisors between 2 and
n-1:

def isPrime (n):
    '''For any n greater than or equal to 2,
    Returns True if n is prime. False if not.'''
    if divisors (n, 2, n-1):
        return False
    else :
        return True






We can do this even more elegantly this way:

def isPrime (n):
    '''For any n greater than or equal to 2,
    Returns True if n is prime. False if not.'''
    return not divisors (n, 2, n-1)






Recall from Chapter 2, that not “negates” a Boolean, so if divisors(n, 2, n-1) is True then not divisors(n, 2, n-1) is False, and if divisors(n, 2, n-1) is False then not divisors(n, 2, n-1) is True.

Now we can use isPrime to generate lists of primes, again using recursion. Imagine that we want to know all of the primes from 2 to some limit, for example 100. For each number in that range, we could test if it’s prime and, if so, add it to our growing list of primes. Before you look at the code below, see if you can determine the base case and the
recursive step for such a function.

Now, here is the Python implementation:

def listPrimes (n, limit):
    '''Returns a list of prime numbers between n and limit.'''
    if n == limit:
        return []
    elif isPrime (n):
        return [n] + listPrimes (n+1, limit)
    else:
        return listPrimes (n+1, limit)






Notice that in the second return statement, we returned [n] + listPrimes(n+1, limit) rather than n + listPrimes(n+1, limit). Why? Well, in this case the plus sign means that two lists should be concatenated, so the expressions on its left and right have to be lists. Indeed, the result of calling listPrimes will be a list, since by definition a list is what this function returns (and notice that in the base case it returns the empty list). However, n is a number, not a list! To make it a list, we place it inside square brackets. That way, we are concatenating two lists and life is good.

The above strategy for generating primes works, but it’s quite slow—particularly when attempting to generate large primes. The problem is that it repeats a lot of work. For example, if you call listPrimes(51, 2, 50) it will test 2 as a divisor and fail—but it will still insist on testing 4,6,8,...,50 even though we’ve already proven that 51 isn’t even!
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It’s not entirely clear that Eratosthenes actually discovered this idea.



A much faster algorithm for generating primes is the so-called sieve of Eratosthenes. This method is named after Eratosthenes, an ancient Greek mathematician who lived around 2200 years ago. Here’s the idea: To find all of the primes from 2 to 1000, for example, we first write down all of the integers in that range. Then we start with 2; it’s the first prime. Now, we remove (or “sift”) all multiples of 2 from this list since they are definitely not prime. When we’re done, we come back to the beginning of our remaining list. The number 3 survived the sifting of numbers that was performed by 2, so 3 is prime. We now cancel out all remaining numbers that are multiples of 3, since they too cannot be prime. When we’re done, we look at the first number in the remaining list. It’s not 4 (it got sifted out earlier when we looked at 2), but 5 is there. So 5 is prime and we let it sift all of its multiples that remain in the list. We continue this process until every remaining number has had a chance to sift the numbers above it.
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Figure 3.1: Sieve of Eratosthenes


(http://commons.wikimedia.org/wiki/File:Sieve_of_Eratosthenes_animation.gif)



We’ll implement a recursive algorithm motivated by Eratosthenes’ algorithm as a Python function called... primeSieve.  (In the spirit of full disclosure, our implementation will take a few liberties with Eratosthenes’ algorithm.)  It will take a list of numbers 2,3,... up to the largest number that we’re interested in, and will return a list of all the primes in the original list. Fortunately, Python has a built-in function that allows us to obtain the list of all integers from a starting point to an ending point. It’s called range, and in Python 2 it works like this:

>>> range(0,5)
[0, 1, 2, 3, 4]
>>> range(3,7)
[3, 4, 5, 6]






In Python 3 range works almost the same, but it needs a little nudge to turn the result into a list:

>>> list(range(0,5))
[0, 1, 2, 3, 4]
>>> list(range(3,7))
[3, 4, 5, 6]






Notice that the list that we get back from range seems to stop one number too soon. That may seem weird, but as we’ll see later, it turns out to be useful. So getting all the integers from 2 to 1000, for example, is easy: range(2, 1001). We can then pass that list into the primeSieve function.

Before writing primeSieve let’s just do a small thought experiment to better understand how it will work. Imagine that we start it with the list range(2, 11), which is:

[2, 3, 4, 5, 6, 7, 8, 9, 10]

Passing this list to primeSieve is basically saying “Could you please find me all of the primes in this list?” To accommodate your polite request, the primeSieve function should grab the 2 and hold on to it because it’s a prime. It should then sift all of the multiples of 2 from this list, resulting in a new list:

[3, 5, 7, 9]

Now what? Well, primeSieve would like to do as little work as possible and instead send that list to some function and ask it, “Could you please find me all of the primes in this list?” Aha! We can send that list back to primeSieve because its job is to find the primes in a given list. That’s just recursion!

So, continuing with our example, the first time we called primeSieve it found the 2, sifted out the multiples of 2 to get the list [3, 5, 7, 9], and called primeSieve on that list. Whatever comes back from the recursive call will be tacked on to the 2 that we’re currently holding—and then we’ll have the whole list of primes from 2 to 10.

The recursive call to primeSieve with the argument list [3, 5, 7, 9] will similarly grab the 3 from the front of that list, sift out all of the multiples of 3 to get list [5, 7], and will ask for help finding the primes in that list. Whatever primes are returned will be tacked on to the 3 that we’re holding, and that will be all of the primes in the list [3, 5, 7, 9].
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I think that this approach should be called the “wishful thinking” method because we just wish for a helper function whenever we need one.



In the next recursive call, we’ll grab 5 and recur on the list [7]. That recursive call will grab the 7 and recur on the empty list. We see here that since the list is getting shorter each time, the base case arises when we have an empty list. In that case, primeSieve must report that “the list of all the primes in my argument is empty”—that is, it should return the empty list.

We still need a function that will do the actual sifting.  We can imagine a function called sift that takes two arguments—a number toRemove and a list of numbers numList—and returns all of the numbers in numList that are not multiples of toRemove. Let’s come back to that in a moment, and write our primeSieve under the assumption that we have sift. This approach for writing programs is called top-down design because we start at the “top” (what we want) and then work our way down to the details that we need.

def primeSieve(numberList):
    '''Returns the list of all primes in numberList, using a prime sieve algorithm.'''
    if numberList == []:      # if the list is empty,
        return []             # ...we're done
    else:
        prime = numberList[0]  # The first element is prime!
        return [prime] + primeSieve(sift(prime, numberList[1:]))






Now, we need to sift.  The next section will introduce a tool that will help us do exactly that, so read on...




3.4 Filtering

Fortunately for us, Python (like most functional programming languages) has a built-in function named filter that does (almost) exactly the sifting that we would like to do.

We’ll eventually get back to the problem of general list sifting that we started above, but for the moment let’s just focus on the problem of sifting a list by removing numbers divisible by two.  To demonstrate filter in action, let’s first define a function called isNotDivisibleBy2 that takes a number n as an argument and returns a Boolean value:  True if the number is not divisible by 2 (i.e., it is odd) and False otherwise (i.e. it is even).

def isNotDivisibleBy2(n):
    '''Returns True if n is not divisible by 2,
    else returns False.'''

    return n % 2 != 0






Now back to filtering.  Having isNotDivisibleBy2, here’s how we can use it with Python’s filter function.  In Python 2 it looks like this:

>>> filter(isNotDivisibleBy2, range(3, 10))
[3, 5, 7, 9]






In Python 3, filter doesn’t eagerly produce a list, so we need to send its result to the
list function, as follows:

>>> list(filter(isNotDivisibleBy2, range(3, 10)))
[3, 5, 7, 9]
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I couldn’t function without a filter to remove the noxious oxygen from Earth’s air!



You may have inferred what filter is doing: its first argument is a function and its second argument is a list. The function is a special one that takes a single argument and returns a Boolean result.  A function that returns a Boolean is called a predicate; you can think of the predicate as telling us whether or not it “likes” its argument. Then, filter gives us back all of the elements in the list that the predicate likes. In our example, isNotDivisibleBy2 is a predicate that likes odd numbers. So we got back the list of all the odd numbers in the original list.

A function that takes other functions as arguments?! Strange, but definitely allowed, and even encouraged! This idea is central to functional programming: functions can be passed into and returned from other functions just like any other kind of data. In fact, Chapter 4 will explain why this idea is not so strange after all.
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Four letr wrds rock!



Lists of numbers are not all we can filter. Here’s another example of filter, this time using lists of strings.  In preparation for its next visit to Earth, our alien is attempting to master English and a number of other languages.  The alien has a list of words to learn, but it’s particularly keen on learning the four-letter words first. For example, if it’s given the list of words ['aardvark', 'darn', 'heck', 'spam', 'zyzzyva'] it would like to have a way of filtering that list to just be the “bad” words ['darn', 'heck', 'spam'].

Again, we define a predicate function first: a function called isBad that takes a string named word as an argument and returns a Boolean value: True if the word is of length four and False otherwise.

def isBad(word):
    '''Returns True if the length of "word" is 4, else returns False.'''

    return len(word) == 4
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*In Python 2, we can omit the call to list, so we simply have filter(isBad, ...






Now that we have isBad, here’s how we can use it with Python’s filter function:

>>> list(filter(isBad, ['ugh', 'darn', 'heck', 'spam', 'zyzzyva']))
['darn', 'heck', 'spam']









3.5 Lambda

Filter helps us sift lists of numbers, but so far all we’ve seen how to do is to sift them to remove even numbers.  If we wanted to remove multiples of 3 we would need another helper function:

def isNotDivisibleBy3(n):
    '''Returns True if n is not divisible by 3, else returns False.'''
    return n % 3 != 0






And then we’d need another to remove multiples of 5, and one for 7, and 11, and so on.  Obviously this is not going to work.

The idea behind our primeSieve function is that we want to change what we are filtering for “on the fly,” depending on which number is currently firs